WorldWideScience

Sample records for human embryonal kidney

  1. Agonist-induced desensitization of human β3-adrenoceptors expressed in human embryonic kidney cells

    NARCIS (Netherlands)

    Michel-Reher, Martina B.; Michel, Martin C.

    2013-01-01

    β3-Adrenoceptors are resistant to agonist-induced desensitization in some cell types but susceptible in others including transfected human embryonic kidney (HEK) cells. Therefore, we have studied cellular and molecular changes involved in agonist-induced β3-adrenoceptor desensitization in HEK cells.

  2. Embryonic kidney function in a chronic renal failure model in rodents.

    Science.gov (United States)

    Fujimoto, Eisuke; Yamanaka, Shuichiro; Kurihara, Sho; Tajiri, Susumu; Izuhara, Luna; Katsuoka, Yuichi; Yokote, Shinya; Matsumoto, Kei; Kobayashi, Eiji; Okano, Hirotaka James; Chikaraishi, Tatsuya; Yokoo, Takashi

    2017-08-01

    Rapid advancements have been made in alternative treatments for renal diseases. Our goal for renal regeneration is to establish a kidney graft derived from human embryonic tissues. In this study, we investigated the effects of host renal failure on the structure and activity of transplanted embryonic kidney and bladder, and found that diuretics effectively induced urine production in the transplanted kidney. Uremic conditions were reproduced using a 5/6 renal infarction rat model. An embryonic kidney plus bladder (embryonic day 15) was isolated from a pregnant Lewis rat and transplanted into the para-aortic area of a 5/6 renal-infarcted Lewis rat. Following growth, the embryonic bladder was successfully anastomosed to the host ureter. We assessed graft function in terms of survival rates and found no differences between normal (n = 5) and renal failure (n = 8) groups (median survival: 70.5 vs 74.5 h; p = 0.331) in terms of survival, indicating that the grafts prolonged rat survival, even under renal failure conditions. Furosemide (n = 9) significantly increased urine volume compared with saline-treated controls (n = 7; p < 0.05), confirming that the grafts were functional. We also demonstrated the possibilities of an in vivo imaging system for determining the viability of transplanted embryonic kidney with bladder. The results of this study demonstrate that transplanted embryonic kidney and bladder can grow and function effectively, even under uremic conditions.

  3. Concise Review: Kidney Generation with Human Pluripotent Stem Cells.

    Science.gov (United States)

    Morizane, Ryuji; Miyoshi, Tomoya; Bonventre, Joseph V

    2017-11-01

    Chronic kidney disease (CKD) is a worldwide health care problem, resulting in increased cardiovascular mortality and often leading to end-stage kidney disease, where patients require kidney replacement therapies such as hemodialysis or kidney transplantation. Loss of functional nephrons contributes to the progression of CKD, which can be attenuated but not reversed due to inability to generate new nephrons in human adult kidneys. Human pluripotent stem cells (hPSCs), by virtue of their unlimited self-renewal and ability to differentiate into cells of all three embryonic germ layers, are attractive sources for kidney regenerative therapies. Recent advances in stem cell biology have identified key signals necessary to maintain stemness of human nephron progenitor cells (NPCs) in vitro, and led to establishment of protocols to generate NPCs and nephron epithelial cells from human fetal kidneys and hPSCs. Effective production of large amounts of human NPCs and kidney organoids will facilitate elucidation of developmental and pathobiological pathways, kidney disease modeling and drug screening as well as kidney regenerative therapies. We summarize the recent studies to induce NPCs and kidney cells from hPSCs, studies of NPC expansion from mouse and human embryonic kidneys, and discuss possible approaches in vivo to regenerate kidneys with cell therapies and the development of bioengineered kidneys. Stem Cells 2017;35:2209-2217. © 2017 AlphaMed Press.

  4. Self-organisation after embryonic kidney dissociation is driven via selective adhesion of ureteric epithelial cells.

    Science.gov (United States)

    Lefevre, James G; Chiu, Han S; Combes, Alexander N; Vanslambrouck, Jessica M; Ju, Ali; Hamilton, Nicholas A; Little, Melissa H

    2017-03-15

    Human pluripotent stem cells, after directed differentiation in vitro , can spontaneously generate complex tissues via self-organisation of the component cells. Self-organisation can also reform embryonic organ structure after tissue disruption. It has previously been demonstrated that dissociated embryonic kidneys can recreate component epithelial and mesenchymal relationships sufficient to allow continued kidney morphogenesis. Here, we investigate the timing and underlying mechanisms driving self-organisation after dissociation of the embryonic kidney using time-lapse imaging, high-resolution confocal analyses and mathematical modelling. Organotypic self-organisation sufficient for nephron initiation was observed within a 24 h period. This involved cell movement, with structure emerging after the clustering of ureteric epithelial cells, a process consistent with models of random cell movement with preferential cell adhesion. Ureteric epithelialisation rapidly followed the formation of ureteric cell clusters with the reformation of nephron-forming niches representing a later event. Disruption of P-cadherin interactions was seen to impair this ureteric epithelial cell clustering without affecting epithelial maturation. This understanding could facilitate improved regulation of patterning within organoids and facilitate kidney engineering approaches guided by cell-cell self-organisation. © 2017. Published by The Company of Biologists Ltd.

  5. Human Embryonic Kidney 293 Cells: A Vehicle for Biopharmaceutical Manufacturing, Structural Biology, and Electrophysiology.

    Science.gov (United States)

    Hu, Jianwen; Han, Jizhong; Li, Haoran; Zhang, Xian; Liu, Lan Lan; Chen, Fei; Zeng, Bin

    2018-01-01

    Mammalian cells, e.g., CHO, BHK, HEK293, HT-1080, and NS0 cells, represent important manufacturing platforms in bioengineering. They are widely used for the production of recombinant therapeutic proteins, vaccines, anticancer agents, and other clinically relevant drugs. HEK293 (human embryonic kidney 293) cells and their derived cell lines provide an attractive heterologous system for the development of recombinant proteins or adenovirus productions, not least due to their human-like posttranslational modification of protein molecules to provide the desired biological activity. Secondly, they also exhibit high transfection efficiency yielding high-quality recombinant proteins. They are easy to maintain and express with high fidelity membrane proteins, such as ion channels and transporters, and thus are attractive for structural biology and electrophysiology studies. In this article, we review the literature on HEK293 cells regarding their origins but also stress their advancements into the different cell lines engineered and discuss some significant aspects which make them versatile systems for biopharmaceutical manufacturing, drug screening, structural biology research, and electrophysiology applications. © 2018 S. Karger AG, Basel.

  6. Pathway of 3-MCPD-induced apoptosis in human embryonic kidney cells.

    Science.gov (United States)

    Ji, Jian; Zhu, Pei; Sun, Chao; Sun, Jiadi; An, Lu; Zhang, Yinzhi; Sun, Xiulan

    2017-01-01

    3-Chloropropane-1,2-diol (3-MCPD) is a heat-produced contaminant formed during the preparation of soy sauce worldwide. The present investigation was conducted to determine the molecular aspects of 3-MCPD toxicity on human embryonic kidney cells (HEK293). Cell viability and apoptosis were assessed in response to exposure to 3-MCPD using the MTT assay and high-content screening (HCS). DNA damage, intracellular reactive oxygen species (ROS) and apoptosis-related proteins were evaluated. Genes related with apoptosis were detected by qPCR-array for further understanding the 3-MCPD induced cell apoptosis signaling pathway. Our results clearly showed that 3-MCPD treatment inhibits cell proliferation and reactive oxygen species generation. qPCR-array indicated that nine apoptotic genes were up-regulated more than 2-fold and six down-regulated more than 2-fold. Genes associated with the mitochondrial apoptotic pathway, especially BCL2 family genes, changed significantly, indicating that the mitochondrial apoptotic pathway is activated. Death receptor pathway-related genes, TNFRSF11B and TNFRSF1A, changed significantly, indicating that the death receptor pathway is also activated, resulting in the inhibition of cell growth and proliferation as well as induction of apoptosis. To sum up, the experiment results indicated that 3-MCPD induced HEK293 cell toxicity through the death receptor pathway and mitochondrial pathway.

  7. Culture in embryonic kidney serum and xeno-free media as renal cell carcinoma and renal cell carcinoma cancer stem cells research model.

    Science.gov (United States)

    Krawczyk, Krzysztof M; Matak, Damian; Szymanski, Lukasz; Szczylik, Cezary; Porta, Camillo; Czarnecka, Anna M

    2018-04-01

    The use of fetal bovine serum hinders obtaining reproducible experimental results and should also be removed in hormone and growth factor studies. In particular hormones found in FBS act globally on cancer cell physiology and influence transcriptome and metabolome. The aim of our study was to develop a renal carcinoma serum free culture model optimized for (embryonal) renal cells in order to select the best study model for downstream auto-, para- or endocrine research. Secondary aim was to verify renal carcinoma stem cell culture for this application. In the study, we have cultured renal cell carcinoma primary tumour cell line (786-0) as well as human kidney cancer stem cells in standard 2D monolayer cultures in Roswell Park Memorial Institute Medium or Dulbecco's Modified Eagle's Medium and Complete Human Kidney Cancer Stem Cell Medium, respectively. Serum-free, animal-component free Human Embryonic Kidney 293 media were tested. Our results revealed that xeno-free embryonal renal cells optimized culture media provide a useful tool in RCC cancer biology research and at the same time enable effective growth of RCC. We propose bio-mimic RCC cell culture model with specific serum-free and xeno-free medium that promote RCC cell viability.

  8. Conserved and Divergent Features of Human and Mouse Kidney Organogenesis.

    Science.gov (United States)

    Lindström, Nils O; McMahon, Jill A; Guo, Jinjin; Tran, Tracy; Guo, Qiuyu; Rutledge, Elisabeth; Parvez, Riana K; Saribekyan, Gohar; Schuler, Robert E; Liao, Christopher; Kim, Albert D; Abdelhalim, Ahmed; Ruffins, Seth W; Thornton, Matthew E; Basking, Laurence; Grubbs, Brendan; Kesselman, Carl; McMahon, Andrew P

    2018-03-01

    Human kidney function is underpinned by approximately 1,000,000 nephrons, although the number varies substantially, and low nephron number is linked to disease. Human kidney development initiates around 4 weeks of gestation and ends around 34-37 weeks of gestation. Over this period, a reiterative inductive process establishes the nephron complement. Studies have provided insightful anatomic descriptions of human kidney development, but the limited histologic views are not readily accessible to a broad audience. In this first paper in a series providing comprehensive insight into human kidney formation, we examined human kidney development in 135 anonymously donated human kidney specimens. We documented kidney development at a macroscopic and cellular level through histologic analysis, RNA in situ hybridization, immunofluorescence studies, and transcriptional profiling, contrasting human development (4-23 weeks) with mouse development at selected stages (embryonic day 15.5 and postnatal day 2). The high-resolution histologic interactive atlas of human kidney organogenesis generated can be viewed at the GUDMAP database (www.gudmap.org) together with three-dimensional reconstructions of key components of the data herein. At the anatomic level, human and mouse kidney development differ in timing, scale, and global features such as lobe formation and progenitor niche organization. The data also highlight differences in molecular and cellular features, including the expression and cellular distribution of anchor gene markers used to identify key cell types in mouse kidney studies. These data will facilitate and inform in vitro efforts to generate human kidney structures and comparative functional analyses across mammalian species. Copyright © 2018 by the American Society of Nephrology.

  9. Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells.

    NARCIS (Netherlands)

    Dormeyer, W.; van Hoof, D.; Braam, S.R.; Heck, A.J.R.; Mummery, C.L.; Krijgsveld, J.

    2008-01-01

    Human embryonic stem cells (hESCs) are of immense interest in regenerative medicine as they can self-renew indefinitely and can give rise to any adult cell type. Human embryonal carcinoma cells (hECCs) are the malignant counterparts of hESCs found in testis tumors. hESCs that have acquired

  10. Ectopic expression of PTTG1/securin promotes tumorigenesis in human embryonic kidney cells

    Directory of Open Access Journals (Sweden)

    Malik Mohammed T

    2005-01-01

    Full Text Available Abstract Background Pituitary tumor transforming gene1 (PTTG1 is a novel oncogene that is expressed in most tumors. It encodes a protein that is primarily involved in the regulation of sister chromatid separation during cell division. The oncogenic potential of PTTG1 has been well characterized in the mouse, particularly mouse fibroblast (NIH3T3 cells, in which it induces cell proliferation, promotes tumor formation and angiogenesis. Human tumorigenesis is a complex and a multistep process often requiring concordant expression of a number of genes. Also due to differences between rodent and human cell biology it is difficult to extrapolate results from mouse models to humans. To determine if PTTG1 functions similarly as an oncogene in humans, we have characterized its effects on human embryonic kidney (HEK293 cells. Results We report that introduction of human PTTG1 into HEK293 cells through transfection with PTTG1 cDNA resulted in increased cell proliferation, anchorage-independent growth in soft agar, and formation of tumors after subcutaneous injection of nu/nu mice. Pathologic analysis revealed that these tumors were poorly differentiated. Both analysis of HEK293 cells transiently transfected with PTTG1 cDNA and analysis of tumors developed on injection of HEK293 cells that had been stably transfected with PTTG1 cDNA indicated significantly higher levels of secretion and expression of bFGF, VEGF and IL-8 compared to HEK293 cells transfected with pcDNA3.1 vector or uninvolved tissues collected from the mice. Mutation of the proline-rich motifs at the C-terminal of PTTG1 abolished its oncogenic properties. Mice injected with this mutated PTTG1 either did not form tumors or formed very small tumors. Taken together our results suggest that PTTG1 is a human oncogene that possesses the ability to promote tumorigenesis in human cells at least in part through the regulation of expression or secretion of bFGF, VEGF and IL-8. Conclusions Our results

  11. Regenerative Medicine, Disease Modelling, and Drug Discovery in Human Pluripotent Stem Cell-Derived Kidney Tissue

    Directory of Open Access Journals (Sweden)

    Navin Gupta

    2017-08-01

    Full Text Available The multitude of research clarifying critical factors in embryonic organ development has been instrumental in human stem cell research. Mammalian organogenesis serves as the archetype for directed differentiation protocols, subdividing the process into a series of distinct intermediate stages that can be chemically induced and monitored for the expression of stage-specific markers. Significant advances over the past few years include established directed differentiation protocols of human embryonic stem cells and human induced pluripotent stem cells (hiPSC into human kidney organoids in vitro. Human kidney tissue in vitro simulates the in vivo response when subjected to nephrotoxins, providing a novel screening platform during drug discovery to facilitate identification of lead candidates, reduce developmental expenditures, and reduce future rates of drug-induced acute kidney injury. Patient-derived hiPSC, which bear naturally occurring DNA mutations, may allow for modelling of human genetic diseases to enable determination of pathological mechanisms and screening for novel therapeutics. In addition, recent advances in genome editing with clustered regularly interspaced short palindromic repeats (CRISPR/Cas9 enable the generation of specific mutations to study genetic disease, with non-mutated lines serving as an ideal isogenic control. The growing population of patients with end-stage kidney disease is a worldwide healthcare problem, with high morbidity and mortality rates, that warrants the discovery of novel forms of renal replacement therapy. Coupling the outlined advances in hiPSC research with innovative bioengineering techniques, such as decellularised kidney and three-dimensional printed scaffolds, may contribute to the development of bioengineered transplantable human kidney tissue as a means of renal replacement therapy.

  12. Adaptive regulation of taurine and beta-alanine uptake in a human kidney cell line from the proximal tubule

    DEFF Research Database (Denmark)

    Jessen, H; Jacobsen, Christian

    1997-01-01

    1. The underlying mechanisms involved in the adaptive regulation of beta-amino acid uptake in the human proximal tubule were examined by use of an immortalized human embryonic kidney epithelial cell line (IHKE). 2. The results indicated that the adaptive response to maintain whole-body taurine...

  13. Glutamine synthetase gene knockout-human embryonic kidney 293E cells for stable production of monoclonal antibodies.

    Science.gov (United States)

    Yu, Da Young; Lee, Sang Yoon; Lee, Gyun Min

    2018-05-01

    Previously, it was inferred that a high glutamine synthetase (GS) activity in human embryonic kidney (HEK) 293E cells results in elevated resistance to methionine sulfoximine (MSX) and consequently hampers GS-mediated gene amplification and selection by MSX. To overcome this MSX resistance in HEK293E cells, a GS-knockout HEK293E cell line was generated using the CRISPR/Cas9 system to target the endogenous human GS gene. The GS-knockout in the HEK293E cell line (RK8) was confirmed by Western blot analysis of GS and by observation of glutamine-dependent growth. Unlike the wild type HEK293E cells, the RK8 cells were successfully used as host cells to generate a recombinant HEK293E cell line (rHEK293E) producing a monoclonal antibody (mAb). When the RK8 cells were transfected with the GS expression vector containing the mAb gene, rHEK293E cells producing the mAb could be selected in the absence as well as in the presence of MSX. The gene copies and mRNA expression levels of the mAb in rHEK293E cells were also quantified using qRT-PCR. Taken together, the GS-knockout HEK293E cell line can be used as host cells to generate stable rHEK293E cells producing a mAb through GS-mediated gene selection in the absence as well as in the presence of MSX. © 2018 Wiley Periodicals, Inc.

  14. Cytotoxic effect of microbial biosurfactants against human embryonic kidney cancerous cell: HEK-293 and their possible role in apoptosis.

    Science.gov (United States)

    Pradhan, Arun Kumar; Pradhan, Nilotpala; Mohapatra, Purusottam; Kundu, Chanakya Nath; Panda, Prasanna Kumar; Mishra, Barada Kanta

    2014-11-01

    Two different microbial biosurfactants S9BS and CHBS were isolated from Lysinibacillus fusiformis S9 and Bacillus tequilensis CH. Cytotoxicity effect of these biosurfactants on human embryonic kidney cancerous cell (HEK-293) were studied with the help of 3-(4,5-dimethylthiazol-2yl-)-2, 5-diphenyl tetrazolium bromide (MTT) assay and morphological changes were observed under inverted microscope. The biosurfactants exhibited positive cytotoxic effect on HEK-293 cell line. It was found that LC50 of S9BS and CHBS were 75 and 100 μg ml(-1), respectively. Further cell cycle and apoptosis analysis of biosurfactant-treated HEK-293 cell line were done by FACS. In this study, cytotoxic effect of glycolipid biosurfactant against HEK-293 cell lines is reported for the first time. Mechanism towards increased membrane permeability of biosurfactant-treated cancer cell may be the incorporation of its lipid moiety into the plasma membrane leading to formation of pores and membrane disruption. Hence, these microbial biosurfactants can prove to be significant biomolecule for cancer treatment.

  15. Differential proteome analysis of human embryonic kidney cell line (HEK-293 following mycophenolic acid treatment

    Directory of Open Access Journals (Sweden)

    Rahman Hazir

    2011-09-01

    Full Text Available Abstract Background Mycophenolic acid (MPA is widely used as a post transplantation medicine to prevent acute organ rejection. In the present study we used proteomics approach to identify proteome alterations in human embryonic kidney cells (HEK-293 after treatment with therapeutic dose of MPA. Following 72 hours MPA treatment, total protein lysates were prepared, resolved by two dimensional gel electrophoresis and differentially expressed proteins were identified by QTOF-MS/MS analysis. Expressional regulations of selected proteins were further validated by real time PCR and Western blotting. Results The proliferation assay demonstrated that therapeutic MPA concentration causes a dose dependent inhibition of HEK-293 cell proliferation. A significant apoptosis was observed after MPA treatment, as revealed by caspase 3 activity. Proteome analysis showed a total of 12 protein spots exhibiting differential expression after incubation with MPA, of which 7 proteins (complement component 1 Q subcomponent-binding protein, electron transfer flavoprotein subunit beta, cytochrome b-c1 complex subunit, peroxiredoxin 1, thioredoxin domain-containing protein 12, myosin regulatory light chain 2, and profilin 1 showed significant increase in their expression. The expression of 5 proteins (protein SET, stathmin, 40S ribosomal protein S12, histone H2B type 1 A, and histone H2B type 1-C/E/F/G/I were down-regulated. MPA mainly altered the proteins associated with the cytoskeleton (26%, chromatin structure/dynamics (17% and energy production/conversion (17%. Both real time PCR and Western blotting confirmed the regulation of myosin regulatory light chain 2 and peroxiredoxin 1 by MPA treatment. Furthermore, HT-29 cells treated with MPA and total kidney cell lysate from MMF treated rats showed similar increased expression of myosin regulatory light chain 2. Conclusion The emerging use of MPA in diverse pathophysiological conditions demands in-depth studies to

  16. Preparation, characterization and toxicological investigation of copper loaded chitosan nanoparticles in human embryonic kidney HEK-293 cells

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Divya [Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu (India); Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India); Dhanwal, Vandna [Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India); Nayak, Debasis [Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu (India); Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India); Saneja, Ankit [Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu (India); Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India); Amin, Hina [Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India); Rasool, Reyaz ur [Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu (India); Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India); Gupta, Prem Narayan [Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu (India); Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India); Goswami, Anindya, E-mail: agoswami@iiim.ac.in [Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu (India); Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India)

    2016-04-01

    Metallic nanoparticles often attribute severe adverse effects to the various organs or tissues at the molecular level despite of their applications in medical, laboratory and industrial sectors. The present study highlights the preparation of copper adsorbed chitosan nanoparticles (CuCSNPs), its characterization and validation of cytotoxicity in human embryonic kidney HEK-293 cells. Particle size of the CuCSNPs was determined by using Zetasizer and the copper loading was quantified with the help of ICP/MS. Further characterization of CuCSNPs was carried out by FT-IR analysis to determine the formation of nanoparticles and SEM was conducted for the morphological analysis of the CuCSNPs. The CuCSNPs exhibited pronounced cytotoxic effects towards HEK-293 cells as analyzed by MTT assay. Moreover, the CuCSNPs inhibited the colony formation and induced nuclear damage at the dose of 100 μg/mL, much more effectively than the in built control copper sulfate (CuSO{sub 4}). At the molecular level, the CuCSNPs were found to be triggering reactive oxygen species (ROS), activating effector caspases and subsequent PARP cleavage to induce cell death in HEK-293 cells. - Highlights: • Subtoxic levels of CuCSNPs induce apoptosis in HEK-293 cells. • CuCSNPs mediate toxicity via nuclear cleavage and ROS generation. • CuCSNPs favor caspase activation and PARP cleavage to induce cell death.

  17. Cloning and characterization of a novel human zinc finger gene, hKid3, from a C2H2-ZNF enriched human embryonic cDNA library

    International Nuclear Information System (INIS)

    Gao Li; Sun Chong; Qiu Hongling; Liu Hui; Shao Huanjie; Wang Jun; Li Wenxin

    2004-01-01

    To investigate the zinc finger genes involved in human embryonic development, we constructed a C 2 H 2 -ZNF enriched human embryonic cDNA library, from which a novel human gene named hKid3 was identified. The hKid3 cDNA encodes a 554 amino acid protein with an amino-terminal KRAB domain and 11 carboxyl-terminal C 2 H 2 zinc finger motifs. Northern blot analysis indicates that two hKid3 transcripts of 6 and 8.5 kb express in human fetal brain and kidney. The 6 kb transcript can also be detected in human adult brain, heart, and skeletal muscle while the 8.5 kb transcript appears to be embryo-specific. GFP-fused hKid3 protein is localized to nuclei and the ZF domain is necessary and sufficient for nuclear localization. To explore the DNA-binding specificity of hKid3, an oligonucleotide library was selected by GST fusion protein of hKid3 ZF domain, and the consensus core sequence 5'-CCAC-3' was evaluated by competitive electrophoretic mobility shift assay. Moreover, The KRAB domain of hKid3 exhibits transcription repressor activity when tested in GAL4 fusion protein assay. These results indicate that hKid3 may function as a transcription repressor with regulated expression pattern during human development of brain and kidney

  18. Generation of induced pluripotent stem cells with high efficiency from human embryonic renal cortical cells.

    Science.gov (United States)

    Yao, Ling; Chen, Ruifang; Wang, Pu; Zhang, Qi; Tang, Hailiang; Sun, Huaping

    2016-01-01

    Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) emerges as a prospective therapeutic angle in regenerative medicine and a tool for drug screening. Although increasing numbers of iPSCs from different sources have been generated, there has been limited progress in yield of iPSC. Here, we show that four Yamanaka factors Oct4, Sox2, Klf4 and c-Myc can convert human embryonic renal cortical cells (hERCCs) to pluripotent stem cells with a roughly 40-fold higher reprogramming efficiency compared with that of adult human dermal fibroblasts. These iPSCs show pluripotency in vitro and in vivo, as evidenced by expression of pluripotency associated genes, differentiation into three embryonic germ layers by teratoma tests, as well as neuronal fate specification by embryoid body formation. Moreover, the four exogenous genes are effectively silenced in these iPSCs. This study highlights the use of hERCCs to generate highly functional human iPSCs which may aid the study of genetic kidney diseases and accelerate the development of cell-based regenerative therapy.

  19. Diploid, but not haploid, human embryonic stem cells can be derived from microsurgically repaired tripronuclear human zygotes

    Science.gov (United States)

    Fan, Yong; Li, Rong; Huang, Jin; Yu, Yang; Qiao, Jie

    2013-01-01

    Human embryonic stem cells have shown tremendous potential in regenerative medicine, and the recent progress in haploid embryonic stem cells provides new insights for future applications of embryonic stem cells. Disruption of normal fertilized embryos remains controversial; thus, the development of a new source for human embryonic stem cells is important for their usefulness. Here, we investigated the feasibility of haploid and diploid embryo reconstruction and embryonic stem cell derivation using microsurgically repaired tripronuclear human zygotes. Diploid and haploid zygotes were successfully reconstructed, but a large proportion of them still had a tripolar spindle assembly. The reconstructed embryos developed to the blastocyst stage, although the loss of chromosomes was observed in these zygotes. Finally, triploid and diploid human embryonic stem cells were derived from tripronuclear and reconstructed zygotes (from which only one pronucleus was removed), but haploid human embryonic stem cells were not successfully derived from the reconstructed zygotes when two pronuclei were removed. Both triploid and diploid human embryonic stem cells showed the general characteristics of human embryonic stem cells. These results indicate that the lower embryo quality resulting from abnormal spindle assembly contributed to the failure of the haploid embryonic stem cell derivation. However, the successful derivation of diploid embryonic stem cells demonstrated that microsurgical tripronuclear zygotes are an alternative source of human embryonic stem cells. In the future, improving spindle assembly will facilitate the application of triploid zygotes to the field of haploid embryonic stem cells. PMID:23255130

  20. The ethics of patenting human embryonic stem cells.

    Science.gov (United States)

    Chapman, Audrey R

    2009-09-01

    Just as human embryonic stem cell research has generated controversy about the uses of human embryos for research and therapeutic applications, human embryonic stem cell patents raise fundamental ethical issues. The United States Patent and Trademark Office has granted foundational patents, including a composition of matter (or product) patent to the Wisconsin Alumni Research Foundation (WARF), the University of Wisconsin-Madison's intellectual property office. In contrast, the European Patent Office rejected the same WARF patent application for ethical reasons. This article assesses the appropriateness of these patents placing the discussion in the context of the deontological and consequentialist ethical issues related to human embryonic stem cell patenting. It advocates for a patent system that explicitly takes ethical factors into account and explores options for new types of intellectual property arrangements consistent with ethical concerns.

  1. Estimation of Total Glomerular Number Using an Integrated Disector Method in Embryonic and Postnatal Kidneys

    Directory of Open Access Journals (Sweden)

    Michel G Arsenault

    2014-06-01

    Full Text Available Congenital Anomalies of the Kidney and Urinary Tract (CAKUT are a polymorphic group of clinical disorders comprising the major cause of renal failure in children. Included within CAKUT is a wide spectrum of developmental malformations ranging from renal agenesis, renal hypoplasia and renal dysplasia (maldifferentiation of renal tissue, each characterized by varying deficits in nephron number. First presented in the Brenner Hypothesis, low congenital nephron endowment is becoming recognized as an antecedent cause of adult-onset hypertension, a leading cause of coronary heart disease, stroke, and renal failure in North America. Genetic mouse models of impaired nephrogenesis and nephron endowment provide a critical framework for understanding the origins of human kidney disease. Current methods to quantitate nephron number include (i acid maceration (ii estimation of nephron number from a small number of tissue sections (iii imaging modalities such as MRI and (iv the gold standard physical disector/fractionator method. Despite its accuracy, the physical disector/fractionator method is rarely employed because it is labour-intensive, time-consuming and costly to perform. Consequently, less rigourous methods of nephron estimation are routinely employed by many laboratories. Here we present an updated, digitized version of the physical disector/fractionator method using free open source Fiji software, which we have termed the integrated disector method. This updated version of the gold standard modality accurately, rapidly and cost-effectively quantitates nephron number in embryonic and post-natal mouse kidneys, and can be easily adapted for stereological measurements in other organ systems.

  2. Expression of human oxoguanine glycosylase 1 or formamidopyrimidine glycosylase in human embryonic kidney 293 cells exacerbates methylmercury toxicity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ondovcik, Stephanie L.; Preston, Thomas J.; McCallum, Gordon P. [Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2 (Canada); Wells, Peter G., E-mail: pg.wells@utoronto.ca [Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2 (Canada); Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8 (Canada)

    2013-08-15

    Exposure to methylmercury (MeHg) acutely at high levels, or via chronic low-level dietary exposure from daily fish consumption, can lead to adverse neurological effects in both the adult and developing conceptus. To determine the impact of variable DNA repair capacity, and the role of reactive oxygen species (ROS) and oxidatively damaged DNA in the mechanism of toxicity, transgenic human embryonic kidney (HEK) 293 cells that stably express either human oxoguanine glycosylase 1 (hOgg1) or its bacterial homolog, formamidopyrimidine glycosylase (Fpg), which primarily repair the oxidative lesion 8-oxo-2′-deoxyguanosine (8-oxodG), were used to assess the in vitro effects of MeHg. Western blotting confirmed the expression of hOgg1 or Fpg in both the nuclear and mitochondrial compartments of their respective cell lines. Following acute (1–2 h) incubations with 0–10 μM MeHg, concentration-dependent decreases in clonogenic survival and cell growth accompanied concentration-dependent increases in lactate dehydrogenase (LDH) release, ROS formation, 8-oxodG levels and apurinic/apyrimidinic (AP) sites, consistent with the onset of cytotoxicity. Paradoxically, hOgg1- and Fpg-expressing HEK 293 cells were more sensitive than wild-type cells stably transfected with the empty vector control to MeHg across all cellular and biochemical parameters, exhibiting reduced clonogenic survival and cell growth, and increased LDH release and DNA damage. Accordingly, upregulation of specific components of the base excision repair (BER) pathway may prove deleterious potentially due to the absence of compensatory enhancement of downstream processes to repair toxic intermediary abasic sites. Thus, interindividual variability in DNA repair activity may constitute an important risk factor for environmentally-initiated, oxidatively damaged DNA and its pathological consequences. - Highlights: • hOgg1 and Fpg repair oxidatively damaged DNA. • hOgg1- and Fpg-expressing cells are more

  3. Proteomic analysis of chicken embryonic trachea and kidney tissues after infection in ovo by avian infectious bronchitis coronavirus

    Directory of Open Access Journals (Sweden)

    Kong Xiangang

    2011-03-01

    Full Text Available Abstract Background Avian infectious bronchitis (IB is one of the most serious diseases of economic importance in chickens; it is caused by the avian infectious coronavirus (IBV. Information remains limited about the comparative protein expression profiles of chicken embryonic tissues in response to IBV infection in ovo. In this study, we analyzed the changes of protein expression in trachea and kidney tissues from chicken embryos, following IBV infection in ovo, using two-dimensional gel electrophoresis (2-DE coupled with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-TOF MS. Results 17 differentially expressed proteins from tracheal tissues and 19 differentially expressed proteins from kidney tissues were identified. These proteins mostly related to the cytoskeleton, binding of calcium ions, the stress response, anti-oxidative, and macromolecular metabolism. Some of these altered proteins were confirmed further at the mRNA level using real-time RT-PCR. Moreover, western blotting analysis further confirmed the changes of annexin A5 and HSPB1 during IBV infection. Conclusions To the best of our knowledge, we have performed the first analysis of the proteomic changes in chicken embryonic trachea and kidney tissues during IBV infection in ovo. The data obtained should facilitate a better understanding of the pathogenesis of IBV infection.

  4. A practical guide for the identification of membrane and plasma membrane proteins in human embryonic stem cells and human embryonal carcinoma cells.

    NARCIS (Netherlands)

    Dormeyer, W.; van Hoof, D.; Mummery, C.L.; Krijgsveld, J.; Heck, A.

    2008-01-01

    The identification of (plasma) membrane proteins in cells can provide valuable insights into the regulation of their biological processes. Pluripotent cells such as human embryonic stem cells and embryonal carcinoma cells are capable of unlimited self-renewal and share many of the biological

  5. Receptor-binding properties of modern human influenza viruses primarily isolated in Vero and MDCK cells and chicken embryonated eggs

    International Nuclear Information System (INIS)

    Mochalova, Larisa; Gambaryan, Alexandra; Romanova, Julia; Tuzikov, Alexander; Chinarev, Alexander; Katinger, Dietmar; Katinger, Herman; Egorov, Andrej; Bovin, Nicolai

    2003-01-01

    To study the receptor specificity of modern human influenza H1N1 and H3N2 viruses, the analogs of natural receptors, namely sialyloligosaccharides conjugated with high molecular weight (about 1500 kDa) polyacrylamide as biotinylated and label-free probes, have been used. Viruses isolated from clinical specimens were grown in African green monkey kidney (Vero) or Madin-Darby canine kidney (MDCK) cells and chicken embryonated eggs. All Vero-derived viruses had hemagglutinin (HA) sequences indistinguishable from original viruses present in clinical samples, but HAs of three of seven tested MDCK-derived isolates had one or two amino acid substitutions. Despite these host-dependent mutations and differences in the structure of HA molecules of individual strains, all studied Vero- and MDCK-isolated viruses bound to Neu5Ac α2-6Galβ1-4GlcNAc (6'SLN) essentially stronger than to Neu5Acα2-6Galβ1-4Glc (6'SL). Such receptor-binding specificity has been typical for earlier isolated H1N1 human influenza viruses, but there is a new property of H3N2 viruses that has been circulating in the human population during recent years. Propagation of human viruses in chicken embryonated eggs resulted in a selection of variants with amino acid substitutions near the HA receptor-binding site, namely Gln226Arg or Asp225Gly for H1N1 viruses and Leu194Ile and Arg220Ser for H3N2 viruses. These HA mutations disturb the observed strict 6'SLN specificity of recent human influenza viruses

  6. Acellular Mouse Kidney ECM can be Used as a Three-Dimensional Substrate to Test the Differentiation Potential of Embryonic Stem Cell Derived Renal Progenitors.

    Science.gov (United States)

    Sambi, Manpreet; Chow, Theresa; Whiteley, Jennifer; Li, Mira; Chua, Shawn; Raileanu, Vanessa; Rogers, Ian M

    2017-08-01

    The development of strategies for tissue regeneration and bio-artificial organ development is based on our understanding of embryogenesis. Differentiation protocols attempt to recapitulate the signaling modalities of gastrulation and organogenesis, coupled with cell selection regimens to isolate the cells of choice. This strategy is impeded by the lack of optimal in vitro culture systems since traditional culture systems do not allow for the three-dimensional interaction between cells and the extracellular matrix. While artificial three-dimensional scaffolds are available, using the natural extracellular matrix scaffold is advantageous because it has a distinct architecture that is difficult to replicate. The adult extracellular matrix is predicted to mediate signaling related to tissue repair not embryogenesis but existing similarities between the two argues that the extracellular matrix will influence the differentiation of stem and progenitor cells. Previous studies using undifferentiated embryonic stem cells grown directly on acellular kidney ECM demonstrated that the acellular kidney supported cell growth but limited differentiation occurred. Using mouse kidney extracellular matrix and mouse embryonic stem cells we report that the extracellular matrix can support the development of kidney structures if the stem cells are first differentiated to kidney progenitor cells before being applied to the acellular organ.

  7. Human Embryonic Stem Cell Therapy in Crohn’s Disease: A Case Report

    Science.gov (United States)

    Shroff, Geeta

    2016-01-01

    Patient: Male, 21 Final Diagnosis: Crohn’s disease Symptoms: Intolerance to specific foods • abdominal pain and diarrhea Medication: Human embryonic stem cell therapy Clinical Procedure: Human embryonic stem cell transplantation Specialty: Gastroenterology Objective: Unusual or unexpected effect of treatment Background: Crohn’s disease is a chronic inflammatory disease of the intestines, mainly the colon and ileum, related with ulcers and fistulae. It is estimated to affect 565 000 people in the United States. Currently available therapies, such as antibiotics, thiopurines, and anti-tumor necrosis factor-alpha agents, are only observed to reduce the complications associated with Crohn’s disease and to improve quality of life, but cannot cure the disease. Stem cell therapy appears to have certain advantages over conventional therapies. Our study aimed to evaluate the efficacy of human embryonic stem cell therapy in a patient with Crohn’s disease. Case Report: A 21-year-old male with chief complaints of intolerance to specific foods, abdominal pain, and diarrhea underwent human embryonic stem cell therapy for two months. After undergoing human embryonic stem cell therapy, the patient showed symptomatic relief. He had no complaints of back pain, abdominal pain, or diarrhea and had improved digestion. The patient had no signs and symptoms of skin infection, and had improved limb stamina, strength, and endurance. The condition of patient was stable after the therapy. Conclusions: Human embryonic stem cell therapy might serve as a new optimistic treatment approach for Crohn’s disease. PMID:26923312

  8. Guidelines for human embryonic stem cell research

    National Research Council Canada - National Science Library

    Committee on Guidelines for Human Embryonic Stem Cell Research, National Research Council

    2005-01-01

    Since 1998, the volume of research being conducted using human embryonic stem (hES) cells has expanded primarily using private funds because of restrictions on the use of federal funds for such research...

  9. Live Cell Imaging and 3D Analysis of Angiotensin Receptor Type 1a Trafficking in Transfected Human Embryonic Kidney Cells Using Confocal Microscopy.

    Science.gov (United States)

    Kadam, Parnika; McAllister, Ryan; Urbach, Jeffrey S; Sandberg, Kathryn; Mueller, Susette C

    2017-03-27

    Live-cell imaging is used to simultaneously capture time-lapse images of angiotensin type 1a receptors (AT1aR) and intracellular compartments in transfected human embryonic kidney-293 (HEK) cells following stimulation with angiotensin II (Ang II). HEK cells are transiently transfected with plasmid DNA containing AT1aR tagged with enhanced green fluorescent protein (EGFP). Lysosomes are identified with a red fluorescent dye. Live-cell images are captured on a laser scanning confocal microscope after Ang II stimulation and analyzed by software in three dimensions (3D, voxels) over time. Live-cell imaging enables investigations into receptor trafficking and avoids confounds associated with fixation, and in particular, the loss or artefactual displacement of EGFP-tagged membrane receptors. Thus, as individual cells are tracked through time, the subcellular localization of receptors can be imaged and measured. Images must be acquired sufficiently rapidly to capture rapid vesicle movement. Yet, at faster imaging speeds, the number of photons collected is reduced. Compromises must also be made in the selection of imaging parameters like voxel size in order to gain imaging speed. Significant applications of live-cell imaging are to study protein trafficking, migration, proliferation, cell cycle, apoptosis, autophagy and protein-protein interaction and dynamics, to name but a few.

  10. Embryonic Stem Cells-loaded Gelatin Microcryogels Slow Progression of Chronic Kidney Disease

    Science.gov (United States)

    Geng, Xiao-Dong; Zheng, Wei; Wu, Cong-Mei; Wang, Shu-Qiang; Hong, Quan; Cai, Guang-Yan; Chen, Xiang-Mei; Wu, Di

    2016-01-01

    Background: Chronic kidney disease (CKD) has become a public health problem. New interventions to slow or prevent disease progression are urgently needed. In this setting, cell therapies associated with regenerative effects are attracting increasing interest. We evaluated the effect of embryonic stem cells (ESCs) on the progression of CKD. Methods: Adult male Sprague–Dawley rats were subjected to 5/6 nephrectomy. We used pedicled greater omentum flaps packing ESC-loaded gelatin microcryogels (GMs) on the 5/6 nephrectomized kidney. The viability of ESCs within the GMs was detected using in vitro two-photon fluorescence confocal imaging. Rats were sacrificed after 12 weeks. Renal injury was evaluated using serum creatinine, urea nitrogen, 24 h protein, renal pathology, and tubular injury score results. Structural damage was evaluated by periodic acid-Schiff and Masson trichrome staining. Results: In vitro, ESCs could be automatically loaded into the GMs. Uniform cell distribution, good cell attachment, and viability were achieved from day 1 to 7 in vitro. After 12 weeks, in the pedicled greater omentum flaps packing ESC-loaded GMs on 5/6 nephrectomized rats group, the plasma urea nitrogen levels were 26% lower than in the right nephrectomy group, glomerulosclerosis index was 62% lower and tubular injury index was 40% lower than in the 5/6 nephrectomized rats group without GMs. Conclusions: In a rat model of established CKD, we demonstrated that the pedicled greater omentum flaps packing ESC-loaded GMs on the 5/6 nephrectomized kidney have a long-lasting therapeutic rescue function, as shown by the decreased progression of CKD and reduced glomerular injury. PMID:26879011

  11. Human Embryonic Stem Cell Therapy in Crohn's Disease: A Case Report.

    Science.gov (United States)

    Shroff, Geeta

    2016-02-29

    Crohn's disease is a chronic inflammatory disease of the intestines, mainly the colon and ileum, related with ulcers and fistulae. It is estimated to affect 565,000 people in the United States. Currently available therapies, such as antibiotics, thiopurines, and anti-tumor necrosis factor-alpha agents, are only observed to reduce the complications associated with Crohn's disease and to improve quality of life, but cannot cure the disease. Stem cell therapy appears to have certain advantages over conventional therapies. Our study aimed to evaluate the efficacy of human embryonic stem cell therapy in a patient with Crohn's disease. A 21-year-old male with chief complaints of intolerance to specific foods, abdominal pain, and diarrhea underwent human embryonic stem cell therapy for two months. After undergoing human embryonic stem cell therapy, the patient showed symptomatic relief. He had no complaints of back pain, abdominal pain, or diarrhea and had improved digestion. The patient had no signs and symptoms of skin infection, and had improved limb stamina, strength, and endurance. The condition of patient was stable after the therapy. Human embryonic stem cell therapy might serve as a new optimistic treatment approach for Crohn's disease.

  12. Asynchronous replication and autosome-pair non-equivalence in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Devkanya Dutta

    Full Text Available A number of mammalian genes exhibit the unusual properties of random monoallelic expression and random asynchronous replication. Such exceptional genes include genes subject to X inactivation and autosomal genes including odorant receptors, immunoglobulins, interleukins, pheromone receptors, and p120 catenin. In differentiated cells, random asynchronous replication of interspersed autosomal genes is coordinated at the whole chromosome level, indicative of chromosome-pair non-equivalence. Here we have investigated the replication pattern of the random asynchronously replicating genes in undifferentiated human embryonic stem cells, using fluorescence in situ hybridization based assay. We show that allele-specific replication of X-linked genes and random monoallelic autosomal genes occur in human embryonic stem cells. The direction of replication is coordinated at the whole chromosome level and can cross the centromere, indicating the existence of autosome-pair non-equivalence in human embryonic stem cells. These results suggest that epigenetic mechanism(s that randomly distinguish between two parental alleles are emerging in the cells of the inner cell mass, the source of human embryonic stem cells.

  13. APOPTOSIS DURING HUMAN FETAL KIDNEY DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Rade Čukuranović

    2005-01-01

    Full Text Available Kidney morphogenesis is a complex and stepwise process. The formation of mature kidney in mammals is preceded by two primitive embryonic kidneys known as pronephros and mesonephros. Metanephros develops as a result of reciprocal inductive interactions between two primordial mesodermal derivates: ureteric bud, an epithelial outgrowth of the Wolffian duct, and metanephric blastema, a group of mesenchymal cells. The ureteric bud induces the metanephric mesenchyme to differentiate and form nephrons, whilst the metanephric mesenchyme induces the ureteric bud to grow and branch to form collecting ducts. The nephron goes through four developmental stages, which are described as: 1 vesicle, 2 comma-shaped and S-shaped stages, 3 developing capillary loop, and finally 4 maturing glomerulus. Apoptosis (programmed cell death is a predominant form of physiological cell death, by which organism eliminate unwanted or damaged cells. It is the major component of normal development and disease. Apoptosis is the result of series of biochemical processes happening in certain order in a dying cell, among which the most important is activation of enzyme families called caspases which influence different cell components. Apoptosis is characterized by membrane blebbing, shrinkage of the cell, nuclear fragmentation and chromatin condensation. Organelles are preserved almost intact. Cell surface molecules change. A variety of physiological and pathological stimuli can initiate apoptosis. They act via receptor mechanisms, through biochemical agents, or cause DNA and cell membrane damage. Apoptosis is an important component of fetal development. It is thought that apoptosis is the one of the main regulatory events involved in kidney morphogenesis, considering that among great number of developed cells, only a few of them are involved in the developing program by escaping apoptosis. In any period during kidney development about 3 to 5%of cells are apoptotic. Thorough

  14. Identification of molecules derived from human fibroblast feeder cells that support the proliferation of human embryonic stem cells

    DEFF Research Database (Denmark)

    Anisimov, Sergey V.; Christophersen, Nicolaj S.; Correia, Ana S.

    2011-01-01

    The majority of human embryonic stem cell lines depend on a feeder cell layer for continuous growth in vitro, so that they can remain in an undifferentiated state. Limited knowledge is available concerning the molecular mechanisms that underlie the capacity of feeder cells to support both...... the proliferation and pluripotency of these cells. Importantly, feeder cells generally lose their capacity to support human embryonic stem cell proliferation in vitro following long-term culture. In this study, we performed large-scale gene expression profiles of human foreskin fibroblasts during early...... foreskin fibroblasts to serve as feeder cells for human embryonic stem cell cultures. Among these, the C-KIT, leptin and pigment epithelium-derived factor (PEDF) genes were the most interesting candidates....

  15. Successful Dual Kidney Transplantation After Hypothermic Oxygenated Perfusion of Discarded Human Kidneys

    Science.gov (United States)

    Ravaioli, Matteo; De Pace, Vanessa; Comai, Giorgia; Busutti, Marco; Gaudio, Massimo Del; Amaduzzi, Annalisa; Cucchetti, Alessandro; Siniscalchi, Antonio; La Manna, Gaetano; D’Errico, Antonietta A.D.; Pinna, Antonio Daniele

    2017-01-01

    Patient: Female, 58 Final Diagnosis: Nephroangiosclerosis Symptoms: Renal failure Medication: — Clinical Procedure: Resuscitation of grafts by hypothermic oxygenated perfusion Specialty: Transplantology Objective: Challenging differential diagnosis Background: The recovery of discarded human kidneys has increased in recent years and impels to use of unconventional organ preservation strategies that improve graft function. We report the first case of human kidneys histologically discarded and transplanted after hypothermic oxygenated perfusion (HOPE). Case Report: Marginal kidneys from a 78-year-old woman with brain death were declined by Italian transplant centers due to biopsy score (right kidney: 6; left kidney: 7). We recovered and preserved both kidneys through HOPE and we revaluated their use for transplantation by means of perfusion parameters. The right kidney was perfused for 1 h 20 min and the left kidney for 2 h 30 min. During organ perfusion, the renal flow increased progressively. We observed an increase of 34% for the left kidney (median flow 52 ml/min) and 50% for the right kidney (median flow 24 ml/min). Both kidneys had low perfusate’s lactate levels. We used perfusion parameters as important determinants of the organ discard. Based on our previous organ perfusion experience, the increase of renal flow and the low level of lactate following 1 h of HOPE lead us to declare both kidneys as appropriate for dual kidney transplantation (DKT). No complications were reported during the transplant and in the post-transplant hospital stay. The recipient had immediate graft function and serum creatinine value of 0.95 mg/dL at 3 months post-transplant. Conclusions: HOPE provides added information in the organ selection process and may improve graft quality of marginal kidneys. PMID:28928357

  16. Improved genetic manipulation of human embryonic stem cells.

    NARCIS (Netherlands)

    Braam, S.R.; Denning, C.; van den Brink, S.; Kats, P.; Hochstenbach, R.; Passier, R.; Mummery, C.L.

    2008-01-01

    Low efficiency of transfection limits the ability to genetically manipulate human embryonic stem cells (hESCs), and differences in cell derivation and culture methods require optimization of transfection protocols. We transiently transferred multiple independent hESC lines with different growth

  17. Notch signaling activation in human embryonic stem cells is required for embryonic but not trophoblastic lineage commitment

    OpenAIRE

    Yu, Xiaobing; Zou, Jizhong; Ye, Zhaohui; Hammond, Holly; Chen, Guibin; Tokunaga, Akinori; Mali, Prashant; Li, Yue-Ming; Civin, Curt; Gaiano, Nicholas; Cheng, Linzhao

    2008-01-01

    The Notch signaling pathway plays important roles in cell fate determination during embryonic development and adult life. In this study, we focus on the role of Notch signaling in governing cell fate choices in human embryonic stem (hES) cells. Using genetic and pharmacological approaches, we achieved both blockade and conditional activation of Notch signaling in several hES cell lines. We report here that activation of Notch signaling is required for undifferentiated hES cells to form the pr...

  18. Transgenic Xenopus laevis Line for In Vivo Labeling of Nephrons within the Kidney

    Directory of Open Access Journals (Sweden)

    Mark E. Corkins

    2018-04-01

    Full Text Available Xenopus laevis embryos are an established model for studying kidney development. The nephron structure and genetic pathways that regulate nephrogenesis are conserved between Xenopus and humans, allowing for the study of human disease-causing genes. Xenopus embryos are also amenable to large-scale screening, but studies of kidney disease-related genes have been impeded because assessment of kidney development has largely been limited to examining fixed embryos. To overcome this problem, we have generated a transgenic line that labels the kidney. We characterize this cdh17:eGFP line, showing green fluorescent protein (GFP expression in the pronephric and mesonephric kidneys and colocalization with known kidney markers. We also demonstrate the feasibility of live imaging of embryonic kidney development and the use of cdh17:eGFP as a kidney marker for secretion assays. Additionally, we develop a new methodology to isolate and identify kidney cells for primary culture. We also use morpholino knockdown of essential kidney development genes to establish that GFP expression enables observation of phenotypes, previously only described in fixed embryos. Taken together, this transgenic line will enable primary kidney cell culture and live imaging of pronephric and mesonephric kidney development. It will also provide a simple means for high-throughput screening of putative human kidney disease-causing genes.

  19. Self-organization of spatial patterning in human embryonic stem cells

    Science.gov (United States)

    Deglincerti, Alessia; Etoc, Fred; Ozair, M. Zeeshan; Brivanlou, Ali H.

    2017-01-01

    The developing embryo is a remarkable example of self-organization, where functional units are created in a complex spatio-temporal choreography. Recently, human embryonic stem cells (ESCs) have been used to recapitulate in vitro the self-organization programs that are executed in the embryo in vivo. This represents a unique opportunity to address self-organization in humans that is otherwise not addressable with current technologies. In this essay, we review the recent literature on self-organization of human ESCs, with a particular focus on two examples: formation of embryonic germ layers and neural rosettes. Intriguingly, both activation and elimination of TGFβ signaling can initiate self-organization, albeit with different molecular underpinnings. We discuss the mechanisms underlying the formation of these structures in vitro and explore future challenges in the field. PMID:26970615

  20. Mapping the stem cell state: eight novel human embryonic stem and embryonal carcinoma cell antibodies

    DEFF Research Database (Denmark)

    Wright, A; Andrews, N; Bardsley, K

    2011-01-01

    The antigenic profile of human embryonic stem (ES) and embryonal carcinoma (EC) cells has served as a key element of their characterization, with a common panel of surface and intracellular markers now widely used. Such markers have been used to identify cells within the 'undifferentiated state...... of reactivity for all antibodies against both ES and EC cells, suggesting that these markers will afford recognition of unique sub-states within the undifferentiated stem cell compartment....... and EC cells, and herein describe their characterization. The reactivity of these antibodies against a range of cell lines is reported, as well as their developmental regulation, basic biochemistry and reactivity in immunohistochemistry of testicular germ cell tumours. Our data reveal a range...

  1. Self-Organization of Spatial Patterning in Human Embryonic Stem Cells.

    Science.gov (United States)

    Deglincerti, Alessia; Etoc, Fred; Ozair, M Zeeshan; Brivanlou, Ali H

    2016-01-01

    The developing embryo is a remarkable example of self-organization, where functional units are created in a complex spatiotemporal choreography. Recently, human embryonic stem cells (ESCs) have been used to recapitulate in vitro the self-organization programs that are executed in the embryo in vivo. This represents an unique opportunity to address self-organization in humans that is otherwise not addressable with current technologies. In this chapter, we review the recent literature on self-organization of human ESCs, with a particular focus on two examples: formation of embryonic germ layers and neural rosettes. Intriguingly, both activation and elimination of TGFβ signaling can initiate self-organization, albeit with different molecular underpinnings. We discuss the mechanisms underlying the formation of these structures in vitro and explore future challenges in the field. © 2016 Elsevier Inc. All rights reserved.

  2. Nonsense-Mediated RNA Decay Influences Human Embryonic Stem Cell Fate

    Directory of Open Access Journals (Sweden)

    Chih-Hong Lou

    2016-06-01

    Full Text Available Nonsense-mediated RNA decay (NMD is a highly conserved pathway that selectively degrades specific subsets of RNA transcripts. Here, we provide evidence that NMD regulates early human developmental cell fate. We found that NMD factors tend to be expressed at higher levels in human pluripotent cells than in differentiated cells, raising the possibility that NMD must be downregulated to permit differentiation. Loss- and gain-of-function experiments in human embryonic stem cells (hESCs demonstrated that, indeed, NMD downregulation is essential for efficient generation of definitive endoderm. RNA-seq analysis identified NMD target transcripts induced when NMD is suppressed in hESCs, including many encoding signaling components. This led us to test the role of TGF-β and BMP signaling, which we found NMD acts through to influence definitive endoderm versus mesoderm fate. Our results suggest that selective RNA decay is critical for specifying the developmental fate of specific human embryonic cell lineages.

  3. Generation of Corneal Keratocytes from Human Embryonic Stem Cells.

    Science.gov (United States)

    Hertsenberg, Andrew J; Funderburgh, James L

    2016-01-01

    Human Embryonic Stem Cells (hESC) offer an important resource as a limitless supply of any differentiated cell type of the human body. Keratocytes, cells from the corneal stroma, may have the potential for restoration of vision in cell therapy and biomedical engineering applications, but these specialized cells are not readily expanded in vitro. Here we describe a two-part method to produce keratocytes from the H1 hESC cell line. The hESC cells, maintained and expanded in feeder-free culture medium are first differentiated to neural crest cells using the stromal-derived inducing activity (SDIA) of the PA6 mouse embryonic fibroblast cell line. The resulting neural crest cells are selected by their expression of cell-surface CD271 and subsequently cultured as 3D pellets in a defined differentiation medium to induce a keratocyte phenotype.

  4. Cytotoxic assessment of silver nanoparticles in embryonic development and kidney tissue in pregnant mice

    Directory of Open Access Journals (Sweden)

    Bagher seyedalipour

    2015-10-01

    Full Text Available Background and Aim: Regarding the widespread use of silver nanoparticles in medecine and lack of a detailed study of toxicity effects of these particles on fetus, this study was carried out to investigate histopathological changes of the kidneys and also embryonic development following exposure to silver nanoparticles. Materials and Methods: In this experimental study, thirty five female NMRI mice were randomly divided into five equal groups i.e. one control group and four experimental groups. The experimental groups intraperitoneally (IP received silver nanoparticles at concentrations of 50, 100, 200 and 400 mg/ kg . .every other day. On the 17th day  of pregnancy, the mice were dissected and  their kidneys and embryos tissues were separated and stained with hematoxylin and eosin for histopathological examinations. .Finally, the obtained data was fed into SPSS software (V:16 using statistical tests including Kolmogrof-Smearnof, one-way variance analysis, Dante, Mann-Whitney and Kruskal-Wallis and P<0.05 was taken as the significant level. Results: Histopathological assessment of kidney tissue following IP administration of silver nanoparticle indicated pathological changes including congestion, necrosis, inflammatory cell infiltration, vacuolar degeneration compared to the control group. Our findings showed that silver nanoparticles during the gestation period affects fetal organogenesis, evolution of neural structure, liver lobulation and fetal growth retardation. Mean number of somites in groups receiving doses of 200 and 400 mg kg, . significantly reduced compared to the control group (P<0.05. Conclusion: The obtained results suggest that  passing of silver nanoparticles through placenta is possible and damage caused by the particles  could lead to the deformity or developmental retardation of the fetus.

  5. Human Alpha Defensin 5 Expression in the Human Kidney and Urinary Tract

    Science.gov (United States)

    Porter, Edith; Bevins, Charles L.; DiRosario, Julianne; Becknell, Brian; Wang, Huanyu

    2012-01-01

    Background The mechanisms that maintain sterility in the urinary tract are incompletely understood. Recent studies have implicated the importance of antimicrobial peptides (AMP) in protecting the urinary tract from infection. Here, we characterize the expression and relevance of the AMP human alpha-defensin 5 (HD5) in the human kidney and urinary tract in normal and infected subjects. Methodology/Principal Findings Using RNA isolated from human kidney, ureter, and bladder tissue, we performed quantitative real-time PCR to show that DEFA5, the gene encoding HD5, is constitutively expressed throughout the urinary tract. With pyelonephritis, DEFA5 expression significantly increased in the kidney. Using immunoblot analysis, HD5 production also increased with pyelonephritis. Immunostaining localized HD5 to the urothelium of the bladder and ureter. In the kidney, HD5 was primarily produced in the distal nephron and collecting tubules. Using immunoblot and ELISA assays, HD5 was not routinely detected in non-infected human urine samples while mean urinary HD5 production increased with E.coli urinary tract infection. Conclusions/Significance DEFA5 is expressed throughout the urinary tract in non-infected subjects. Specifically, HD5 is expressed throughout the urothelium of the lower urinary tract and in the collecting tubules of the kidney. With infection, HD5 expression increases in the kidney and levels become detectable in the urine. To our knowledge, our findings represent the first to quantitate HD5 expression and production in the human kidney. Moreover, this is the first report to detect the presence of HD5 in infected urine samples. Our results suggest that HD5 may have an important role in maintaining urinary tract sterility. PMID:22359618

  6. Derivation of Two New Human Embryonic Stem Cell Lines from Nonviable Human Embryos

    Directory of Open Access Journals (Sweden)

    Svetlana Gavrilov

    2011-01-01

    Full Text Available We report the derivation and characterization of two new human embryonic stem cells (hESC lines (CU1 and CU2 from embryos with an irreversible loss of integrated organismic function. In addition, we analyzed retrospective data of morphological progression from embryonic day (ED 5 to ED6 for 2480 embryos not suitable for clinical use to assess grading criteria indicative of loss of viability on ED5. Our analysis indicated that a large proportion of in vitro fertilization (IVF embryos not suitable for clinical use could be used for hESC derivation. Based on these combined findings, we propose that criteria commonly used in IVF clinics to determine optimal embryos for uterine transfer can be employed to predict the potential for hESC derivation from poor quality embryos without the destruction of vital human embryos.

  7. Oncogenic KRAS activates an embryonic stem cell-like program in human colon cancer initiation.

    Science.gov (United States)

    Le Rolle, Anne-France; Chiu, Thang K; Zeng, Zhaoshi; Shia, Jinru; Weiser, Martin R; Paty, Philip B; Chiu, Vi K

    2016-01-19

    Colorectal cancer is the third most frequently diagnosed cancer worldwide. Prevention of colorectal cancer initiation represents the most effective overall strategy to reduce its associated morbidity and mortality. Activating KRAS mutation (KRASmut) is the most prevalent oncogenic driver in colorectal cancer development, and KRASmut inhibition represents an unmet clinical need. We apply a systems-level approach to study the impact of KRASmut on stem cell signaling during human colon cancer initiation by performing gene set enrichment analysis on gene expression from human colon tissues. We find that KRASmut imposes the embryonic stem cell-like program during human colon cancer initiation from colon adenoma to stage I carcinoma. Expression of miR145, an embryonic SC program inhibitor, promotes cell lineage differentiation marker expression in KRASmut colon cancer cells and significantly suppresses their tumorigenicity. Our data support an in vivo plasticity model of human colon cancer initiation that merges the intrinsic stem cell properties of aberrant colon stem cells with the embryonic stem cell-like program induced by KRASmut to optimize malignant transformation. Inhibition of the embryonic SC-like program in KRASmut colon cancer cells reveals a novel therapeutic strategy to programmatically inhibit KRASmut tumors and prevent colon cancer.

  8. Short-term high dose of quercetin and resveratrol alters aging markers in human kidney cells

    Directory of Open Access Journals (Sweden)

    Fatemeh Abharzanjani

    2017-01-01

    Full Text Available Background: Hyperglycemia-mediated oxidative stress implicates in etiology of kidney cell aging and diabetic nephropathy. We evaluated the effects of different doses of resveratrol and quercetin and their combination therapy on aging marker in human kidney cell culture under hyperglycemia condition. Methods: Human embryonic kidney cell (HEK-293 was cultured in Dulbecco's Modified Eagle Medium (DMEM containing 100 mM (18 mg/L for 24 h. The cells were treated with resveratrol (2.5, 5, 10 μm, quercetin (3, 6, 12 μm, and combination of these (R 2.5 μm, Q 3 μm and (R 5 μm, Q 6 μm and (R 10 μm, Q 12 μm for 48 h, and then, cells were lysed to access RNA and lysate. Results: The analysis of data showed that beta-galactosidase enzyme gene expression as an aging marker in all treatment groups has reduced in a dose-dependent manner. Gene expression of Sirtuin1 and thioredoxin (Trx in all treated groups in comparison to control group increased in a dose-dependent fashion. Trx interacting protein (TXNIP gene expression decreased in a dose-dependent manner in all treated groups, especially in resveratrol and combination therapy. Conclusions: According to the results of this research, quercetin, resveratrol, and especially combination treatments with increased expression levels of antioxidants, can reduce aging markers in HEK cell line in hyperglycemia conditions. These results lead us to use flavonoids such as resveratrol for anti-aging potential.

  9. Transplantation of Human Embryonic Stem Cells in Patients with Multiple Sclerosis and Lyme Disease

    OpenAIRE

    Shroff, Geeta

    2016-01-01

    Case series Patient: Male, 42 ? Female, 30 Final Diagnosis: Human embryonic stem cells showed good therapeutic potential for treatment of multiple sclerosis with lyme disease Symptoms: Fatigue ? weakness in limbs Medication: ? Clinical Procedure: Human embryonic stem cells transplantation Specialty: Transplantology Objective: Rare disease Background: Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease in which the myelin sheath of nerve cells is damaged. It can cause dela...

  10. Molecular Imaging of Human Embryonic Stem Cells Stably Expressing Human PET Reporter Genes After Zinc Finger Nuclease-Mediated Genome Editing.

    Science.gov (United States)

    Wolfs, Esther; Holvoet, Bryan; Ordovas, Laura; Breuls, Natacha; Helsen, Nicky; Schönberger, Matthias; Raitano, Susanna; Struys, Tom; Vanbilloen, Bert; Casteels, Cindy; Sampaolesi, Maurilio; Van Laere, Koen; Lambrichts, Ivo; Verfaillie, Catherine M; Deroose, Christophe M

    2017-10-01

    Molecular imaging is indispensable for determining the fate and persistence of engrafted stem cells. Standard strategies for transgene induction involve the use of viral vectors prone to silencing and insertional mutagenesis or the use of nonhuman genes. Methods: We used zinc finger nucleases to induce stable expression of human imaging reporter genes into the safe-harbor locus adeno-associated virus integration site 1 in human embryonic stem cells. Plasmids were generated carrying reporter genes for fluorescence, bioluminescence imaging, and human PET reporter genes. Results: In vitro assays confirmed their functionality, and embryonic stem cells retained differentiation capacity. Teratoma formation assays were performed, and tumors were imaged over time with PET and bioluminescence imaging. Conclusion: This study demonstrates the application of genome editing for targeted integration of human imaging reporter genes in human embryonic stem cells for long-term molecular imaging. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  11. 78 FR 13688 - Proposed Collection; 60-Day Comment Request: Request for Human Embryonic Stem Cell Line To Be...

    Science.gov (United States)

    2013-02-28

    ... Comment Request: Request for Human Embryonic Stem Cell Line To Be Approved for Use in NIH Funded Research... Embryonic Stem Cell Line to be Approved for Use in NIH Funded Research. OMB No. 0925-0601-- Expiration Date... and Use of Information Collection: The form is used by applicants to request that human embryonic stem...

  12. Optical coherence tomography of the living human kidney

    Directory of Open Access Journals (Sweden)

    Peter M. Andrews

    2014-03-01

    Full Text Available Acute tubular necrosis (ATN induced by ischemia is the most common insult to donor kidneys destined for transplantation. ATN results from swelling and subsequent damage to cells lining the kidney tubules. In this study, we demonstrate the capability of optical coherence tomography (OCT to image the renal microstructures of living human donor kidneys and potentially provide a measure to determine the extent of ATN. We also found that Doppler-based OCT (i.e., DOCT reveals renal blood flow dynamics that is another major factor which could relate to post-transplant renal function. All OCT/DOCT observations were performed in a noninvasive, sterile and timely manner on intact human kidneys both prior to (ex vivo and following (in vivo their transplantation. Our results indicate that this imaging model provides transplant surgeons with an objective visualization of the transplant kidneys prior and immediately post transplantation.

  13. Molecular characterisation of stromal populations derived from human embryonic stem cells

    DEFF Research Database (Denmark)

    Harkness, L.; Twine, N. A.; Abu Dawud, R.

    2015-01-01

    Human bone marrow-derived stromal (skeletal) stem cells (BM-hMSC) are being employed in an increasing number of clinical trials for tissue regeneration. A limiting factor for their clinical use is the inability to obtain sufficient cell numbers. Human embryonic stem cells (hESC) can provide an un...

  14. Combined sequencing of mRNA and DNA from human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Florian Mertes

    2016-06-01

    Full Text Available Combined transcriptome and whole genome sequencing of the same ultra-low input sample down to single cells is a rapidly evolving approach for the analysis of rare cells. Besides stem cells, rare cells originating from tissues like tumor or biopsies, circulating tumor cells and cells from early embryonic development are under investigation. Herein we describe a universal method applicable for the analysis of minute amounts of sample material (150 to 200 cells derived from sub-colony structures from human embryonic stem cells. The protocol comprises the combined isolation and separate amplification of poly(A mRNA and whole genome DNA followed by next generation sequencing. Here we present a detailed description of the method developed and an overview of the results obtained for RNA and whole genome sequencing of human embryonic stem cells, sequencing data is available in the Gene Expression Omnibus (GEO database under accession number GSE69471.

  15. Phosphorylation dynamics during early differentiation of human embryonic stem cells

    NARCIS (Netherlands)

    van Hoof, D.; Munoz, J.; Braam, S.R.; Pinkse, M.W.H.; Linding, R.; Heck, A.J.R.; Mummery, C.L.; Krijgsveld, J.

    2009-01-01

    Pluripotent stem cells self-renew indefinitely and possess characteristic protein-protein networks that remodel during differentiation. How this occurs is poorly understood. Using quantitative mass spectrometry, we analyzed the (phospho)proteome of human embryonic stem cells (hESCs) during

  16. Case Study: Organotypic human in vitro models of embryonic ...

    Science.gov (United States)

    Morphogenetic fusion of tissues is a common event in embryonic development and disruption of fusion is associated with birth defects of the eye, heart, neural tube, phallus, palate, and other organ systems. Embryonic tissue fusion requires precise regulation of cell-cell and cell-matrix interactions that drive proliferation, differentiation, and morphogenesis. Chemical low-dose exposures can disrupt morphogenesis across space and time by interfering with key embryonic fusion events. The Morphogenetic Fusion Task uses computer and in vitro models to elucidate consequences of developmental exposures. The Morphogenetic Fusion Task integrates multiple approaches to model responses to chemicals that leaad to birth defects, including integrative mining on ToxCast DB, ToxRefDB, and chemical structures, advanced computer agent-based models, and human cell-based cultures that model disruption of cellular and molecular behaviors including mechanisms predicted from integrative data mining and agent-based models. The purpose of the poster is to indicate progress on the CSS 17.02 Virtual Tissue Models Morphogenesis Task 1 products for the Board of Scientific Counselors meeting on Nov 16-17.

  17. The influence of IVF/ICSI treatment on human embryonic growth trajectories.

    Science.gov (United States)

    Eindhoven, S C; van Uitert, E M; Laven, J S E; Willemsen, S P; Koning, A H J; Eilers, P H C; Exalto, N; Steegers, E A P; Steegers-Theunissen, R P M

    2014-12-01

    groups (βIVF/ICSI = 6 g; P = 0.36 and βIVF/ICSI = 80 g; P = 0.24, respectively). Variations in embryonic growth trajectories of spontaneously conceived pregnancies with reliable pregnancy dating may partially be a result of less precise pregnancy dating and differences in endometrium receptivity compared with IVF/ICSI pregnancies. The absence of a significant difference in embryonic and fetal growth trajectories suggests safety of IVF/ICSI treatment with regard to early embryonic growth. However, further research is warranted to ascertain the influence of IVF/ICSI treatments in a larger study population, and to estimate the impact of the underlying causes of the subfertility and other periconceptional exposures on human embryonic and fetal growth trajectories. This study was supported by the Department of Obstetrics and Gynaecology of the Erasmus MC, University Medical Centre. No competing interests are declared. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. TET2 deficiency inhibits mesoderm and hematopoietic differentiation in human embryonic stem cells

    DEFF Research Database (Denmark)

    Langlois, Thierry; da Costa Reis Monte Mor, Barbara; Lenglet, Gaëlle

    2014-01-01

    . Here, we show that TET2 expression is low in human embryonic stem (ES) cell lines and increases during hematopoietic differentiation. ShRNA-mediated TET2 knockdown had no effect on the pluripotency of various ES cells. However, it skewed their differentiation into neuroectoderm at the expense...... profile, including abnormal expression of neuronal genes. Intriguingly, when TET2 was knockdown in hematopoietic cells, it increased hematopoietic development. In conclusion, our work suggests that TET2 is involved in different stages of human embryonic development, including induction of the mesoderm...... and hematopoietic differentiation. Stem Cells 2014....

  19. Collagen Type I Improves the Differentiation of Human Embryonic Stem Cells towards Definitive Endoderm

    DEFF Research Database (Denmark)

    Rasmussen, Camilla Holzmann; Petersen, Dorthe Roenn; Møller, Jonas Bech

    2015-01-01

    Human embryonic stem cells have the ability to generate all cell types in the body and can potentially provide an unlimited source of cells for cell replacement therapy to treat degenerative diseases such as diabetes. Current differentiation protocols of human embryonic stem cells towards insulin...... and consistent differentiation of stem cells to definitive endoderm. The results shed light on the importance of extracellular matrix proteins for differentiation and also points to a cost effective and easy method to improve differentiation....... embryonic stem cells to the definitive endoderm lineage. The percentage of definitive endoderm cells after differentiation on collagen I and fibronectin was >85% and 65%, respectively. The cells on collagen I substrates displayed different morphology and gene expression during differentiation as assessed...

  20. 78 FR 25091 - Submission for OMB Review; 30-Day Comment Request: Request for Human Embryonic Stem Cell Line To...

    Science.gov (United States)

    2013-04-29

    ...; 30-Day Comment Request: Request for Human Embryonic Stem Cell Line To Be Approved for Use in NIH... Embryonic Stem Cell Line to be Approved for Use in NIH-Funded Research, 0925-0601, Expiration Date 04/30... Information Collection: The form is used by applicants to request that human embryonic stem cell lines be...

  1. Composition and function of macroencapsulated human embryonic stem cell-derived implants: comparison with clinical human islet cell grafts.

    Science.gov (United States)

    Motté, Evi; Szepessy, Edit; Suenens, Krista; Stangé, Geert; Bomans, Myriam; Jacobs-Tulleneers-Thevissen, Daniel; Ling, Zhidong; Kroon, Evert; Pipeleers, Daniel

    2014-11-01

    β-Cells generated from large-scale sources can overcome current shortages in clinical islet cell grafts provided that they adequately respond to metabolic variations. Pancreatic (non)endocrine cells can develop from human embryonic stem (huES) cells following in vitro derivation to pancreatic endoderm (PE) that is subsequently implanted in immune-incompetent mice for further differentiation. Encapsulation of PE increases the proportion of endocrine cells in subcutaneous implants, with enrichment in β-cells when they are placed in TheraCyte-macrodevices and predominantly α-cells when they are alginate-microencapsulated. At posttransplant (PT) weeks 20-30, macroencapsulated huES implants presented higher glucose-responsive plasma C-peptide levels and a lower proinsulin-over-C-peptide ratio than human islet cell implants under the kidney capsule. Their ex vivo analysis showed the presence of single-hormone-positive α- and β-cells that exhibited rapid secretory responses to increasing and decreasing glucose concentrations, similar to isolated human islet cells. However, their insulin secretory amplitude was lower, which was attributed in part to a lower cellular hormone content; it was associated with a lower glucose-induced insulin biosynthesis, but not with lower glucagon-induced stimulation, which together is compatible with an immature functional state of the huES-derived β-cells at PT weeks 20-30. These data support the therapeutic potential of macroencapsulated huES implants but indicate the need for further functional analysis. Their comparison with clinical-grade human islet cell grafts sets references for future development and clinical translation. Copyright © 2014 the American Physiological Society.

  2. Human embryonic stem cells handbook

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2013-03-01

    Full Text Available After the Nobel prize in physiology or medicine was awarded jointly to Sir John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent it became imperative to write down the review for a book entirely devoted to human embryonic stem cells (hES, those cells that are a urgent need for researchers, those cells that rekindle the ethical debates and finally, last but not least, those cells whose study paved the way to obtain induced pluripotent stem cells by the OSKC’s Yamanaka method (the OSKC acronim refers, for those not familiar with the topic, to the four stemness genes used to transfect somatic fibroblasts: Oct4, Sox2, Klf4 and c-Myc....

  3. Growth trajectories of the human embryonic head and periconceptional maternal conditions.

    Science.gov (United States)

    Koning, I V; Baken, L; Groenenberg, I A L; Husen, S C; Dudink, J; Willemsen, S P; Gijtenbeek, M; Koning, A H J; Reiss, I K M; Steegers, E A P; Steegers-Theunissen, R P M

    2016-05-01

    Can growth trajectories of the human embryonic head be created using 3D ultrasound (3D-US) and virtual reality (VR) technology, and be associated with second trimester fetal head size and periconceptional maternal conditions? Serial first trimester head circumference (HC) and head volume (HV) measurements were used to create reliable growth trajectories of the embryonic head, which were significantly associated with fetal head size and periconceptional maternal smoking, age and ITALIC! in vitro fertilization (IVF)/intra-cytoplasmic sperm injection (ICSI) treatment. Fetal growth is influenced by periconceptional maternal conditions. We selected 149 singleton pregnancies with a live born non-malformed fetus from the Rotterdam periconception cohort. Bi-parietal diameter and occipital frontal diameter to calculate HC, HV and crown-rump length (CRL) were measured weekly between 9 + 0 and 12 + 6 weeks gestational age (GA) using 3D-US and VR. Fetal HC was obtained from second trimester structural anomaly scans. Growth trajectories of the embryonic head were created with general additive models and linear mixed models were used to estimate associations with maternal periconceptional conditions as a function of GA and CRL, respectively. A total of 303 3D-US images of 149 pregnancies were eligible for embryonic head measurements (intra-class correlation coefficients >0.99). Associations were found between embryonic HC and fetal HC ( ITALIC! ρ = 0.617, ITALIC! P head measured by HC and HV (All ITALIC! P head may be of benefit in future early antenatal care. This study was funded by the Department of Obstetrics and Gynaecology, Erasmus MC University Medical Centre and Sophia Foundation for Medical Research, Rotterdam, The Netherlands (SSWO grant number 644). No competing interests are declared. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email

  4. [Establishment of sprouting embryoid body model mimicking early embryonic vasculogenesis in human embryo].

    Science.gov (United States)

    Jiang, Hua; Feng, You-Ji; Xie, Yi; Han, Jin-Lan; Wang, Zack; Chen, Tong

    2008-10-14

    To establish a sprouting embryoid body model mimicking early embryonic vasculogenesis in human embryo. Human embryonic stem were (hESCs) were cultured on the mouse embryo fibroblasts and then were induced to differentiate to form three-dimensional EB. The hEBs were cultured in media containing various angiogenesis-related factors: vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), endostatin, angiostatin, and platelet factor (PF)-4 of different concentrations for 3 days to observe the sprouting of the hEBs. 3, 3, 3', 3'-tetramethylindo-carbocyanine perchlorate labeled acetylated low density lipoprotein (Dil-AcLDL) was added onto the hEBs foe 4 h Immunofluorescence assay was used to observe if Dil-AcLDL was absorbed and if CD31 was expressed so as to determine the existence of embryonic endothelial cells in the sprouting structures. The ideal culturing condition was analyzed. The differentiated EBs formed sprouting structures in the collagen I matrix containing VEGF and FGF. The sprouts among individual EBs were able to link to each other and form vascular network-like structures. In the presence of VEGF and FGF, the sprouts branching from the EBs assimilated Dil-AcLDL, expressed CD31 and formed a 3-dimensional cylindrical organization. The concentrations of growth factors ideally stimulating sprouting growth were 100 ng/ml of VEGF and 50 ng/ml of FGF. The networks among the EBs were abolished by the angiostatin, endostatin, and PF4. The sprouting from hEBs accumulates embryonic endothelial cells and the sprouting network-like structures are indeed endothelial in nature. Inducing of sprouting EBs is an ideal model that mimics early embryonic vasculogenesis in humans.

  5. Oxidative stress by monosodium urate crystals promotes renal cell apoptosis through mitochondrial caspase-dependent pathway in human embryonic kidney 293 cells: mechanism for urate-induced nephropathy.

    Science.gov (United States)

    Choe, Jung-Yoon; Park, Ki-Yeun; Kim, Seong-Kyu

    2015-01-01

    The aim of this study is to clarify the effect of oxidative stress on monosodium urate (MSU)-mediated apoptosis of renal cells. Quantitative real-time polymerase chain reaction and immunoblotting for Bcl-2, caspase-9, caspase-3, iNOS, cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), IL-18, TNF receptor-associated factor-6 (TRAF-6), and mitogen-activated protein kinases were performed on human embryonic kidney 293 (HEK293) cells, which were stimulated by MSU crystals. Fluorescence-activated cell sorting was performed using annexin V for assessment of apoptosis. Reactive oxygen species (ROS) were measured. IL-1β siRNA was used for blocking IL-1β expression. MSU crystals promoted ROS, iNOS, and COX-2 expression and also increased TRAF-6 and IL-1β expression in HEK293 cells, which was inhibited by an antioxidant ascorbic acid. Caspase-dependent renal cell apoptosis was induced through attenuation of Bcl-2 and enhanced caspase-3 and caspase-9 expression by MSU crystals, which was significantly reversed by ascorbic acid and transfection of IL-1β siRNA to HEK293 cells. Ascorbic acid inhibited phosphorylation of extracellular signal-regulated kinase and Jun N-terminal protein kinase stimulated by MSU crystals. ROS accumulation and iNOS and COX-2 mRNA expression by MSU crystals was also suppressed by transfection with IL-1β siRNA. Oxidative stress generated by MSU crystals promotes renal apoptosis through the mitochondrial caspase-dependent apoptosis pathway.

  6. Human embryonic stem cells in culture possess primary cilia with hedgehog signaling machinery

    DEFF Research Database (Denmark)

    Kiprilov, Enko N; Awan, Aashir; Desprat, Romain

    2008-01-01

    Human embryonic stem cells (hESCs) are potential therapeutic tools and models of human development. With a growing interest in primary cilia in signal transduction pathways that are crucial for embryological development and tissue differentiation and interest in mechanisms regulating human hESC d...

  7. Human embryonic stem cells and microenvironment

    Directory of Open Access Journals (Sweden)

    Banu İskender

    2014-09-01

    Full Text Available Human embryonic stem cells (hESCs possess a great potential in the field of regenerative medicine by their virtue of pluripotent potential with indefinite proliferation capabilities. They can self renew themselves and differentiate into three embryonic germ layers. Although they are conventionally grown on mitotically inactivated mouse feeder cells, there are in vitro culture systems utilizing feeder cells of human origin in order to prevent cross-species contamination. Recently established in vitro culture systems suggested that direct interaction with feeder cells is not necessary but rather attachment to a substrate is required to ensure long-term, efficient hESC culture in vitro. This substrate is usually composed of a mixture of extracellular matrix components representing in vivo natural niche. In hESC biology, the mechanism of interaction of hESCs with extracellular matrix molecules remained insufficiently explored area of research due to their transient nature of interaction with the in vivo niche. However, an in vitro culture system established using extracellular matrix molecules may provide a safer alternative to culture systems with feeder cells while paving the way to Good Manufacturing Practice-GMP production of hESCs for therapeutic purposes. Therefore, it is essential to study the interaction of extracellular matrix molecules with hESCs in order to standardize in vitro culture systems for large-scale production of hESCs in a less labor-intensive way. This would not only provide valuable information regarding the mechanisms that control pluripotency but also serve to dissect the molecular signaling pathways of directed differentiation for prospective therapeutic applications in the future. J Clin Exp Invest 2014; 5 (3: 486-495

  8. In vitro regeneration of kidney from pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Osafune, Kenji, E-mail: osafu@cira.kyoto-u.ac.jp [Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); JST Yamanaka iPS Cell Special Project, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2010-10-01

    Although renal transplantation has proved a successful treatment for the patients with end-stage renal failure, the therapy is hampered by the problem of serious shortage of donor organs. Regenerative medicine using stem cells, including cell transplantation therapy, needs to be developed to solve the problem. We previously identified the multipotent progenitor cells in the embryonic mouse kidney that can give rise to several kinds of epithelial cells found in adult kidney, such as glomerular podocytes and renal tubular epithelia. Establishing the method to generate the progenitors from human pluripotent stem cells that have the capacity to indefinitely proliferate in vitro is required for the development of kidney regeneration strategy. We review the current status of the research on the differentiation of pluripotent stem cells into renal lineages and describe cues to promote this research field.

  9. In vitro regeneration of kidney from pluripotent stem cells

    International Nuclear Information System (INIS)

    Osafune, Kenji

    2010-01-01

    Although renal transplantation has proved a successful treatment for the patients with end-stage renal failure, the therapy is hampered by the problem of serious shortage of donor organs. Regenerative medicine using stem cells, including cell transplantation therapy, needs to be developed to solve the problem. We previously identified the multipotent progenitor cells in the embryonic mouse kidney that can give rise to several kinds of epithelial cells found in adult kidney, such as glomerular podocytes and renal tubular epithelia. Establishing the method to generate the progenitors from human pluripotent stem cells that have the capacity to indefinitely proliferate in vitro is required for the development of kidney regeneration strategy. We review the current status of the research on the differentiation of pluripotent stem cells into renal lineages and describe cues to promote this research field.

  10. Embryonic stem cell-like cells derived from adult human testis

    NARCIS (Netherlands)

    Mizrak, S. C.; Chikhovskaya, J. V.; Sadri-Ardekani, H.; van Daalen, S.; Korver, C. M.; Hovingh, S. E.; Roepers-Gajadien, H. L.; Raya, A.; Fluiter, K.; de Reijke, Th M.; de la Rosette, J. J. M. C. H.; Knegt, A. C.; Belmonte, J. C.; van der Veen, F.; de rooij, D. G.; Repping, S.; van Pelt, A. M. M.

    2010-01-01

    Given the significant drawbacks of using human embryonic stem (hES) cells for regenerative medicine, the search for alternative sources of multipotent cells is ongoing. Studies in mice have shown that multipotent ES-like cells can be derived from neonatal and adult testis. Here we report the

  11. Quantitation of two endogenous lactose-inhibitable lectins in embryonic and adult chicken tissues

    International Nuclear Information System (INIS)

    Beyer, E.C.; Barondes, S.H.

    1982-01-01

    Two lactose-binding lectins from chicken tissues, chicken-lactose-lectin-I (CLL-I) and chicken-lactose-lectin-II (CLL-II) were quantified with a radioimmunoassay in extracts of a number of developing and adult chicken tissues. Both lectins could be measured in the same extract without separation, because they showed no significant immunological cross- reactivity. Many embryonic and adult tissues, including brain, heart, intestine, kidney, liver, lung, muscle, pancreas, and spleen, contained one or both lectins, although their concentrations differed markedly. For example, embryonic muscle, the richest source of CLL-I contained only traces of CLL-II whereas embryonic kidney, a very rich source of CLL-II contained substantial CLL-I. In both muscle and kidney, lectin levels in adulthood were much lower than in the embryonic state. In contrast, CLL-I in liver and CLL-II in intestine were 10-fold to 30-fold more concentrated in the adult than in the 15-d embryo. CLL-I and CLL-II from several tissues were purified by affinity chromatography and their identity in the various tissues was confirmed by polyacrylamide gel electrophoresis, isoelectric focusing, and peptide mapping. The results suggest that these lectins might have different functions in the many developing and adult tissues in which they are found

  12. Two sides of the same coin? Unraveling subtle differences between human embryonic and induced pluripotent stem cells by Raman spectroscopy.

    Science.gov (United States)

    Parrotta, Elvira; De Angelis, Maria Teresa; Scalise, Stefania; Candeloro, Patrizio; Santamaria, Gianluca; Paonessa, Mariagrazia; Coluccio, Maria Laura; Perozziello, Gerardo; De Vitis, Stefania; Sgura, Antonella; Coluzzi, Elisa; Mollace, Vincenzo; Di Fabrizio, Enzo Mario; Cuda, Giovanni

    2017-11-28

    Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, hold enormous promise for many biomedical applications, such as regenerative medicine, drug testing, and disease modeling. Although induced pluripotent stem cells resemble embryonic stem cells both morphologically and functionally, the extent to which these cell lines are truly equivalent, from a molecular point of view, remains controversial. Principal component analysis and K-means cluster analysis of collected Raman spectroscopy data were used for a comparative study of the biochemical fingerprint of human induced pluripotent stem cells and human embryonic stem cells. The Raman spectra analysis results were further validated by conventional biological assays. Raman spectra analysis revealed that the major difference between human embryonic stem cells and induced pluripotent stem cells is due to the nucleic acid content, as shown by the strong positive peaks at 785, 1098, 1334, 1371, 1484, and 1575 cm -1 , which is enriched in human induced pluripotent stem cells. Here, we report a nonbiological approach to discriminate human induced pluripotent stem cells from their native embryonic stem cell counterparts.

  13. Two sides of the same coin? Unraveling subtle differences between human embryonic and induced pluripotent stem cells by Raman spectroscopy

    KAUST Repository

    Parrotta, Elvira

    2017-11-28

    Background: Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, hold enormous promise for many biomedical applications, such as regenerative medicine, drug testing, and disease modeling. Although induced pluripotent stem cells resemble embryonic stem cells both morphologically and functionally, the extent to which these cell lines are truly equivalent, from a molecular point of view, remains controversial. Methods: Principal component analysis and K-means cluster analysis of collected Raman spectroscopy data were used for a comparative study of the biochemical fingerprint of human induced pluripotent stem cells and human embryonic stem cells. The Raman spectra analysis results were further validated by conventional biological assays. Results: Raman spectra analysis revealed that the major difference between human embryonic stem cells and induced pluripotent stem cells is due to the nucleic acid content, as shown by the strong positive peaks at 785, 1098, 1334, 1371, 1484, and 1575 cm–1, which is enriched in human induced pluripotent stem cells. Conclusions: Here, we report a nonbiological approach to discriminate human induced pluripotent stem cells from their native embryonic stem cell counterparts.

  14. Two sides of the same coin? Unraveling subtle differences between human embryonic and induced pluripotent stem cells by Raman spectroscopy

    KAUST Repository

    Parrotta, Elvira; De Angelis, Maria Teresa; Scalise, Stefania; Candeloro, Patrizio; Santamaria, Gianluca; Paonessa, Mariagrazia; Coluccio, Maria Laura; Perozziello, Gerardo; De Vitis, Stefania; Sgura, Antonella; Coluzzi, Elisa; Mollace, Vincenzo; Di Fabrizio, Enzo M.; Cuda, Giovanni

    2017-01-01

    Background: Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, hold enormous promise for many biomedical applications, such as regenerative medicine, drug testing, and disease modeling. Although induced pluripotent stem cells resemble embryonic stem cells both morphologically and functionally, the extent to which these cell lines are truly equivalent, from a molecular point of view, remains controversial. Methods: Principal component analysis and K-means cluster analysis of collected Raman spectroscopy data were used for a comparative study of the biochemical fingerprint of human induced pluripotent stem cells and human embryonic stem cells. The Raman spectra analysis results were further validated by conventional biological assays. Results: Raman spectra analysis revealed that the major difference between human embryonic stem cells and induced pluripotent stem cells is due to the nucleic acid content, as shown by the strong positive peaks at 785, 1098, 1334, 1371, 1484, and 1575 cm–1, which is enriched in human induced pluripotent stem cells. Conclusions: Here, we report a nonbiological approach to discriminate human induced pluripotent stem cells from their native embryonic stem cell counterparts.

  15. PHARMACOLOGICAL IN VITRO MODELS IN PRE-CLINICAL DRUG TESTING - EXAMPLE OF hSERT TRANSFECTED HUMAN EMBRYONIC KIDNEY CELLS

    Directory of Open Access Journals (Sweden)

    Mihajlo Jakovljević

    2012-06-01

    Full Text Available Preclinical drug testing should be considered an important stage during examinations of its efficiency and safety in any likely indication observed. Purpose of the process is acquisition of substantial amount of particular drug-related data before approaching clinical trials in humans. Historical preclinical testing relied on available testing in microbe cultures and animal models. During recent decades laboratory techniques of human cell lines cultivation have been developed and improved. These provide unique possibility of drug acting mechanism testing in a simplified environment lacking basic homeostatic mechanisms. Some examples of these are measuring drug impact to biochemical transport, signaling or anabolic processes. Humane cell lines of embrional kidney 293 are an example of easy-to-grow and disseminate and quite endurable cell line. This methodological article notices some of the details of HEK293 cells cultivation and breading. We took transfection as an example of in vitro model creation for drug testing. Transfection refers to gene introduction into HEK293 cellular genome in order to achieve membrane expression of coded protein. In our case it would be human serotonin transporter. Article contains description of one particular methodological approach in measuring human serotonin transporter expression. The role and importance of serotonin pump in affective disorders genesis was already widely recognized. Aim of the paper was to emphasize feasibility of cell cultivation and its advantages in comparison with alternative traditional methods.

  16. Nicotine induces mitochondrial fission through mitofusin degradation in human multipotent embryonic carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Naoya; Yamada, Shigeru [Division of Pharmacology, National Institute of Health Sciences (Japan); Asanagi, Miki [Division of Pharmacology, National Institute of Health Sciences (Japan); Faculty of Engineering, Department of Materials Science and Engineering, Yokohama National University (Japan); Sekino, Yuko [Division of Pharmacology, National Institute of Health Sciences (Japan); Kanda, Yasunari, E-mail: kanda@nihs.go.jp [Division of Pharmacology, National Institute of Health Sciences (Japan)

    2016-02-05

    Nicotine is considered to contribute to the health risks associated with cigarette smoking. Nicotine exerts its cellular functions by acting on nicotinic acetylcholine receptors (nAChRs), and adversely affects normal embryonic development. However, nicotine toxicity has not been elucidated in human embryonic stage. In the present study, we examined the cytotoxic effects of nicotine in human multipotent embryonal carcinoma cell line NT2/D1. We found that exposure to 10 μM nicotine decreased intracellular ATP levels and inhibited proliferation of NT2/D1 cells. Because nicotine suppressed energy production, which is a critical mitochondrial function, we further assessed the effects of nicotine on mitochondrial dynamics. Staining with MitoTracker revealed that 10 μM nicotine induced mitochondrial fragmentation. The levels of the mitochondrial fusion proteins, mitofusins 1 and 2, were also reduced in cells exposed to nicotine. These nicotine effects were blocked by treatment with mecamylamine, a nonselective nAChR antagonist. These data suggest that nicotine degrades mitofusin in NT2/D1 cells and thus induces mitochondrial dysfunction and cell growth inhibition in a nAChR-dependent manner. Thus, mitochondrial function in embryonic cells could be used to assess the developmental toxicity of chemicals.

  17. Nicotine induces mitochondrial fission through mitofusin degradation in human multipotent embryonic carcinoma cells

    International Nuclear Information System (INIS)

    Hirata, Naoya; Yamada, Shigeru; Asanagi, Miki; Sekino, Yuko; Kanda, Yasunari

    2016-01-01

    Nicotine is considered to contribute to the health risks associated with cigarette smoking. Nicotine exerts its cellular functions by acting on nicotinic acetylcholine receptors (nAChRs), and adversely affects normal embryonic development. However, nicotine toxicity has not been elucidated in human embryonic stage. In the present study, we examined the cytotoxic effects of nicotine in human multipotent embryonal carcinoma cell line NT2/D1. We found that exposure to 10 μM nicotine decreased intracellular ATP levels and inhibited proliferation of NT2/D1 cells. Because nicotine suppressed energy production, which is a critical mitochondrial function, we further assessed the effects of nicotine on mitochondrial dynamics. Staining with MitoTracker revealed that 10 μM nicotine induced mitochondrial fragmentation. The levels of the mitochondrial fusion proteins, mitofusins 1 and 2, were also reduced in cells exposed to nicotine. These nicotine effects were blocked by treatment with mecamylamine, a nonselective nAChR antagonist. These data suggest that nicotine degrades mitofusin in NT2/D1 cells and thus induces mitochondrial dysfunction and cell growth inhibition in a nAChR-dependent manner. Thus, mitochondrial function in embryonic cells could be used to assess the developmental toxicity of chemicals.

  18. Observation of human embryonic behavior in vitro by high-resolution time-lapse cinematography.

    Science.gov (United States)

    Iwata, Kyoko; Mio, Yasuyuki

    2016-07-01

    Assisted reproductive technology (ART) has yielded vast amounts of information and knowledge on human embryonic development in vitro; however, still images provide limited data on dynamic changes in the developing embryos. Using our high-resolution time-lapse cinematography (hR-TLC) system, we were able to describe normal human embryonic development continuously from the fertilization process to the hatched blastocyst stage in detail. Our hR-TLC observation also showed the embryonic abnormality of a third polar body (PB)-like substance likely containing a small pronucleus being extruded and resulting in single-pronucleus (1PN) formation, while our molecular biological investigations suggested the possibility that some 1PN embryos could be diploid, carrying both maternal and paternal genomes. Furthermore, in some embryos the extruded third PB-like substance was eventually re-absorbed into the ooplasm resulting in the formation of an uneven-sized, two-PN zygote. In addition, other hR-TLC observations showed that cytokinetic failure was correlated with equal-sized, multi-nucleated blastomeres that were also observed in the embryo showing early initiation of compaction. Assessment combining our hR-TLC with molecular biological techniques enables a better understanding of embryonic development and potential improvements in ART outcomes.

  19. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension

    DEFF Research Database (Denmark)

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E

    2010-01-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts t...

  20. Localization of Mg2+-sensing shark kidney calcium receptor SKCaR in kidney of spiny dogfish, Squalus acanthias.

    Science.gov (United States)

    Hentschel, Hartmut; Nearing, Jacqueline; Harris, H William; Betka, Marlies; Baum, Michelle; Hebert, Steven C; Elger, Marlies

    2003-09-01

    We recently cloned a homologue of the bovine parathyroid calcium receptor from the kidney of a spiny dogfish (Squalus acanthias) and termed this new protein SKCaR. SKCaR senses alterations in extracellular Mg2+ after its expression in human embryonic kidney cells (Nearing J, Betka M, Quinn S, Hentschel H, Elger M, Baum M, Bai M, Chattopadyhay N, Brown E, Hebert S, and Harris HW. Proc Natl Acad. Sci USA 99: 9231-9236, 2002). In this report, we used light and electron microscopic immunocytochemical techniques to study the distribution of SKCaR in dogfish kidney. SKCaR antiserum bound to the apical membranes of shark kidney epithelial cells in the following tubular segments: proximal tubules (PIa and PIIb), late distal tubule, and collecting tubule/collecting duct as well as diffusely labeled cells of early distal tubule. The highly specific distribution of SKCaR in mesial tissue as well as lateral countercurrent bundles of dogfish kidney is compatible with a role for SKCaR to sense local tubular Mg2+ concentrations. This highly specific distribution of SKCaR protein in dogfish kidney could possibly work in concert with the powerful Mg2+ secretory system present in the PIIa segment of elasmobranch fish kidney to affect recycling of Mg2+ from putative Mg2+-sensing/Mg2+-reabsorbing segments. These data provide support for the possible existence of Mg2+ cycling in elasmobranch kidney in a manner analogous to that described for mammals.

  1. Left-Right Asymmetry of Maturation Rates in Human Embryonic Neural Development.

    Science.gov (United States)

    de Kovel, Carolien G F; Lisgo, Steven; Karlebach, Guy; Ju, Jia; Cheng, Gang; Fisher, Simon E; Francks, Clyde

    2017-08-01

    Left-right asymmetry is a fundamental organizing feature of the human brain, and neuropsychiatric disorders such as schizophrenia sometimes involve alterations of brain asymmetry. As early as 8 weeks postconception, the majority of human fetuses move their right arms more than their left arms, but because nerve fiber tracts are still descending from the forebrain at this stage, spinal-muscular asymmetries are likely to play an important developmental role. We used RNA sequencing to measure gene expression levels in the left and right spinal cords, and the left and right hindbrains, of 18 postmortem human embryos aged 4 to 8 weeks postconception. Genes showing embryonic lateralization were tested for an enrichment of signals in genome-wide association data for schizophrenia. The left side of the embryonic spinal cord was found to mature faster than the right side. Both sides transitioned from transcriptional profiles associated with cell division and proliferation at earlier stages to neuronal differentiation and function at later stages, but the two sides were not in synchrony (p = 2.2 E-161). The hindbrain showed a left-right mirrored pattern compared with the spinal cord, consistent with the well-known crossing over of function between these two structures. Genes that showed lateralization in the embryonic spinal cord were enriched for association signals with schizophrenia (p = 4.3 E-05). These are the earliest stage left-right differences of human neural development ever reported. Disruption of the lateralized developmental program may play a role in the genetic susceptibility to schizophrenia. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Human Embryonic Stem Cells Suffer from Centrosomal Amplification

    Czech Academy of Sciences Publication Activity Database

    Holubcová, Z.; Matula, P.; Sedláčková, M.; Vinarský, Vladimír; Doležalová, Dáša; Bárta, Tomáš; Dvořák, Petr; Hampl, Aleš

    2011-01-01

    Roč. 29, č. 1 (2011), s. 46-56 ISSN 1066-5099 R&D Projects: GA ČR GA204/09/2044 Grant - others:GA MŠk(CZ) 1M0538; GA MŠk(CZ) 2B06052; EU FP6 project ESTOOLS(XE) LSHG-CT-2006-018739 Program:1M Institutional research plan: CEZ:AV0Z50390703 Keywords : human embryonic stem cells * centrosome * chromosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.781, year: 2011

  3. Generation of a constitutively expressing Tetracycline repressor (TetR human embryonic stem cell line BJNhem20-TetR

    Directory of Open Access Journals (Sweden)

    Ronak Shetty

    2016-03-01

    Full Text Available Human embryonic stem cell line BJNhem20-TetR was generated using non-viral method. The construct pCAG-TetRnls was transfected using microporation procedure. BJNhem20-TetR can subsequently be transfected with any vector harbouring a TetO (Tet operator sequence to generate doxycycline based inducible line. For example, in human embryonic stem cells, the pSuperior based TetO system has been transfected into a TetR containing line to generate OCT4 knockdown cell line (Zafarana et al., 2009. Thus BJNhem20-TetR can be used as a tool to perturb gene expression in human embryonic stem cells.

  4. Sex Differences in Maturation of Human Embryonic Stem Cell-Derived β Cells in Mice.

    Science.gov (United States)

    Saber, Nelly; Bruin, Jennifer E; O'Dwyer, Shannon; Schuster, Hellen; Rezania, Alireza; Kieffer, Timothy J

    2018-04-01

    Pancreatic progenitors derived from human embryonic stem cells (hESCs) are now in clinical trials for insulin replacement in patients with type 1 diabetes. Animal studies indicate that pancreatic progenitor cells can mature into a mixed population of endocrine cells, including glucose-responsive β cells several months after implantion. However, it remains unclear how conditions in the recipient may influence the maturation and ultimately the function of these hESC-derived cells. Here, we investigated the effects of (1) pregnancy on the maturation of human stage 4 (S4) pancreatic progenitor cells and (2) the impact of host sex on both S4 cells and more mature stage 7 (S7) pancreatic endocrine cells implanted under the kidney capsule of immunodeficient SCID-beige mice. Pregnancy led to increased proliferation of endogenous pancreatic β cells, but did not appear to affect proliferation or maturation of S4 cells at midgestation. Interestingly, S4 and S7 cells both acquired glucose-stimulated C-peptide secretion in females before males. Moreover, S4 cells lowered fasting blood glucose levels in females sooner than in males, whereas the responses with S7 cells were similar. These data indicate that the host sex may impact the maturation of hESC-derived cells in vivo and that this effect can be minimized by more advanced differentiation of the cells before implantation.

  5. L1TD1 Is a Marker for Undifferentiated Human Embryonic Stem Cells

    OpenAIRE

    Wong, Raymond Ching-Bong; Ibrahim, Abel; Fong, Helen; Thompson, Noelle; Lock, Leslie F.; Donovan, Peter J.

    2011-01-01

    Background Human embryonic stem cells (hESC) are stem cells capable of differentiating into cells representative of the three primary embryonic germ layers. There has been considerable interest in understanding the mechanisms regulating stem cell pluripotency, which will ultimately lead to development of more efficient methods to derive and culture hESC. In particular, Oct4, Sox2 and Nanog are transcription factors known to be important in maintenance of hESC. However, many of the downstream ...

  6. A practical guide for the identification of membrane and plasma membrane proteins in human embryonic stem cells and human embryonal carcinoma cells.

    Science.gov (United States)

    Dormeyer, Wilma; van Hoof, Dennis; Mummery, Christine L; Krijgsveld, Jeroen; Heck, Albert J R

    2008-10-01

    The identification of (plasma) membrane proteins in cells can provide valuable insights into the regulation of their biological processes. Pluripotent cells such as human embryonic stem cells and embryonal carcinoma cells are capable of unlimited self-renewal and share many of the biological mechanisms that regulate proliferation and differentiation. The comparison of their membrane proteomes will help unravel the biological principles of pluripotency, and the identification of biomarker proteins in their plasma membranes is considered a crucial step to fully exploit pluripotent cells for therapeutic purposes. For these tasks, membrane proteomics is the method of choice, but as indicated by the scarce identification of membrane and plasma membrane proteins in global proteomic surveys it is not an easy task. In this minireview, we first describe the general challenges of membrane proteomics. We then review current sample preparation steps and discuss protocols that we found particularly beneficial for the identification of large numbers of (plasma) membrane proteins in human tumour- and embryo-derived stem cells. Our optimized assembled protocol led to the identification of a large number of membrane proteins. However, as the composition of cells and membranes is highly variable we still recommend adapting the sample preparation protocol for each individual system.

  7. Modeling Kidney Disease with iPS Cells

    Science.gov (United States)

    Freedman, Benjamin S.

    2015-01-01

    Induced pluripotent stem cells (iPSCs) are somatic cells that have been transcriptionally reprogrammed to an embryonic stem cell (ESC)-like state. iPSCs are a renewable source of diverse somatic cell types and tissues matching the original patient, including nephron-like kidney organoids. iPSCs have been derived representing several kidney disorders, such as ADPKD, ARPKD, Alport syndrome, and lupus nephritis, with the goals of generating replacement tissue and ‘disease in a dish’ laboratory models. Cellular defects in iPSCs and derived kidney organoids provide functional, personalized biomarkers, which can be correlated with genetic and clinical information. In proof of principle, disease-specific phenotypes have been described in iPSCs and ESCs with mutations linked to polycystic kidney disease or focal segmental glomerulosclerosis. In addition, these cells can be used to model nephrotoxic chemical injury. Recent advances in directed differentiation and CRISPR genome editing enable more specific iPSC models and present new possibilities for diagnostics, disease modeling, therapeutic screens, and tissue regeneration using human cells. This review outlines growth opportunities and design strategies for this rapidly expanding and evolving field. PMID:26740740

  8. An Assessment of Urinary Biomarkers in a Series of Declined Human Kidneys Measured During ex-vivo Normothermic Kidney Perfusion

    OpenAIRE

    Hosgood, Sarah Anne; Nicholson, Michael Lennard

    2016-01-01

    BACKGROUND: The measurement of urinary biomarkers during ex-vivo normothermic kidney perfusion (EVKP) may aid in the assessment of a kidney prior to transplantation. This study measured levels of neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1) and endothelin-1 (ET-1) during EVKP in a series of discarded human kidneys. METHODS: Fifty six kidneys from deceased donors were recruited into the study. Each kidney underwent 60 minutes of EVKP and was scored based ...

  9. Engineering bone tissue from human embryonic stem cells

    OpenAIRE

    Marolt, Darja; Campos, Iván Marcos; Bhumiratana, Sarindr; Koren, Ana; Petridis, Petros; Zhang, Geping; Spitalnik, Patrice F.; Grayson, Warren L.; Vunjak-Novakovic, Gordana

    2012-01-01

    In extensive bone defects, tissue damage and hypoxia lead to cell death, resulting in slow and incomplete healing. Human embryonic stem cells (hESC) can give rise to all specialized lineages found in healthy bone and are therefore uniquely suited to aid regeneration of damaged bone. We show that the cultivation of hESC-derived mesenchymal progenitors on 3D osteoconductive scaffolds in bioreactors with medium perfusion leads to the formation of large and compact bone constructs. Notably, the i...

  10. Arsenic trioxide (As2O3) induced calcium signals and cytotoxicity in two human cell lines: SY-5Y neuroblastoma and 293 embryonic kidney (HEK)

    International Nuclear Information System (INIS)

    Florea, Ana-Maria; Splettstoesser, Frank; Buesselberg, Dietrich

    2007-01-01

    Arsenic trioxide (As 2 O 3 ) has anticancer properties; however, its use also leads to neuro-, hepato- or nephro-toxicity, and therefore, it is important to understand the mechanism of As 2 O 3 toxicity. We studied As 2 O 3 influence on intracellular calcium ([Ca 2+ ] i ) homeostasis of human neuroblastoma SY-5Y and embryonic kidney cells (HEK 293).We also relate the As 2 O 3 induced [Ca 2+ ] i modifications with cytotoxicity. We used Ca 2+ sensitive dyes (fluo-4 and rhod-2) combined with laser scanning microscopy or fluorescence activated cell sorting to measure Ca 2+ changes during the application of As 2 O 3 and we approach evaluation of cytotoxicity. As 2 O 3 (1 μM) increased [Ca 2+ ] i in SY-5Y and HEK 293 cells. Three forms of [Ca 2+ ] i -elevations were found: (1) steady-state increases (2) transient [Ca 2+ ] i -elevations and (3) Ca 2+ -spikes. [Ca 2+ ] i modifications were independent from extracellular Ca 2+ but dependent on internal calcium stores. The effect was not reversible. Inositol triphosphate (IP 3 ) and ryanodine (Ry) receptors are involved in regulation of signals induced by As 2 O 3 . 2-APB and dantrolene significantly reduced the [Ca 2+ ] i -rise (p 2+ ] i -elevation or spiking. This indicates that other Ca 2+ regulating mechanisms are involved. In cytotoxicity tests As 2 O 3 significantly reduced cell viability in both cell types. Staining with Hoechst 33342 showed occurrence of apoptosis and DNA damage. Our data suggest that [Ca 2+ ] i is an important messenger in As 2 O 3 induced cell death

  11. Functional analysis of variant lysosomal acid glycosidases of Anderson-Fabry and Pompe disease in a human embryonic kidney epithelial cell line (HEK 293 T).

    Science.gov (United States)

    Ebrahim, Hatim Y; Baker, Robert J; Mehta, Atul B; Hughes, Derralynn A

    2012-03-01

    The functional significance of missense mutations in genes encoding acid glycosidases of lysosomal storage disorders (LSDs) is not always clear. Here we describe a method of investigating functional properties of variant enzymes in vitro using a human embryonic kidney epithelial cell line. Site-directed mutagenesis was performed on the parental plasmids containing cDNA encoding for alpha-galactosidase A (α-Gal A) and acid maltase (α-Glu) to prepare plasmids encoding relevant point mutations. Mutant plasmids were transfected into HEK 293 T cells, and transient over-expression of variant enzymes was measured after 3 days. We have illustrated the method by examining enzymatic activities of four unknown α-Gal A and one α-Glu variants identified in our patients with Anderson-Fabry disease and Pompe diseases respectively. Comparison with control variants known to be either pathogenic or non-pathogenic together with over-expression of wild-type enzyme allowed determination of the pathogenicity of the mutation. One leader sequence novel variant of α-Gal A (p.A15T) was shown not to significantly reduce enzyme activity, whereas three other novel α-Gal A variants (p.D93Y, p.L372P and p.T410I) were shown to be pathogenic as they resulted in significant reduction of enzyme activity. A novel α-Glu variant (p.L72R) was shown to be pathogenic as this significantly reduced enzyme activity. Certain acid glycosidase variants that have been described in association with late-onset LSDs and which are known to have variable residual plasma and leukocyte enzyme activity in patients appear to show intermediate to low enzyme activity (p.N215S and p.Q279E α-Gal A respectively) in the over-expression system.

  12. VE-cadherin expression allows identification of a new class of hematopoietic stem cells within human embryonic liver.

    Science.gov (United States)

    Oberlin, Estelle; Fleury, Maud; Clay, Denis; Petit-Cocault, Laurence; Candelier, Jean-Jacques; Mennesson, Benoît; Jaffredo, Thierry; Souyri, Michèle

    2010-11-25

    Edification of the human hematopoietic system during development is characterized by the production of waves of hematopoietic cells separated in time, formed in distinct embryonic sites (ie, yolk sac, truncal arteries including the aorta, and placenta). The embryonic liver is a major hematopoietic organ wherein hematopoietic stem cells (HSCs) expand, and the future, adult-type, hematopoietic cell hierarchy becomes established. We report herein the identification of a new, transient, and rare cell population in the human embryonic liver, which coexpresses VE-cadherin, an endothelial marker, CD45, a pan-hematopoietic marker, and CD34, a common endothelial and hematopoietic marker. This population displays an outstanding self-renewal, proliferation, and differentiation potential, as detected by in vitro and in vivo hematopoietic assays compared with its VE-cadherin negative counterpart. Based on VE-cadherin expression, our data demonstrate the existence of 2 phenotypically and functionally separable populations of multipotent HSCs in the human embryo, the VE-cadherin(+) one being more primitive than the VE-cadherin(-) one, and shed a new light on the hierarchical organization of the embryonic liver HSC compartment.

  13. The Evolution of Lineage-Specific Regulatory Activities in the Human Embryonic Limb

    OpenAIRE

    Cotney, Justin; Leng, Jing; Yin, Jun; Reilly, Steven K.; DeMare, Laura E.; Emera, Deena; Ayoub, Albert E.; Rakic, Pasko; Noonan, James P.

    2013-01-01

    The evolution of human anatomical features likely involved changes in gene regulation during development. However, the nature and extent of human-specific developmental regulatory functions remain unknown. We obtained a genome-wide view of cis-regulatory evolution in human embryonic tissues by comparing the histone modification H3K27ac, which provides a quantitative readout of promoter and enhancer activity, during human, rhesus, and mouse limb development. Based on increased H3K27ac, we find...

  14. Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Arianne van Koppen

    Full Text Available Chronic kidney disease (CKD is a major health care problem, affecting more than 35% of the elderly population worldwide. New interventions to slow or prevent disease progression are urgently needed. Beneficial effects of mesenchymal stem cells (MSC have been described, however it is unclear whether the MSCs themselves or their secretome is required. We hypothesized that MSC-derived conditioned medium (CM reduces progression of CKD and studied functional and structural effects in a rat model of established CKD. CKD was induced by 5/6 nephrectomy (SNX combined with L-NNA and 6% NaCl diet in Lewis rats. Six weeks after SNX, CKD rats received either 50 µg CM or 50 µg non-CM (NCM twice daily intravenously for four consecutive days. Six weeks after treatment CM administration was functionally effective: glomerular filtration rate (inulin clearance and effective renal plasma flow (PAH clearance were significantly higher in CM vs. NCM-treatment. Systolic blood pressure was lower in CM compared to NCM. Proteinuria tended to be lower after CM. Tubular and glomerular damage were reduced and more glomerular endothelial cells were found after CM. DNA damage repair was increased after CM. MSC-CM derived exosomes, tested in the same experimental setting, showed no protective effect on the kidney. In a rat model of established CKD, we demonstrated that administration of MSC-CM has a long-lasting therapeutic rescue function shown by decreased progression of CKD and reduced hypertension and glomerular injury.

  15. Triglycerides in the Human Kidney Cortex: Relationship with Body Size

    Science.gov (United States)

    Bobulescu, Ion Alexandru; Lotan, Yair; Zhang, Jianning; Rosenthal, Tara R.; Rogers, John T.; Adams-Huet, Beverley; Sakhaee, Khashayar; Moe, Orson W.

    2014-01-01

    Obesity is associated with increased risk for kidney disease and uric acid nephrolithiasis, but the pathophysiological mechanisms underpinning these associations are incompletely understood. Animal experiments have suggested that renal lipid accumulation and lipotoxicity may play a role, but whether lipid accumulation occurs in humans with increasing body mass index (BMI) is unknown. The association between obesity and abnormal triglyceride accumulation in non-adipose tissues (steatosis) has been described in the liver, heart, skeletal muscle and pancreas, but not in the human kidney. We used a quantitative biochemical assay to quantify triglyceride in normal kidney cortex samples from 54 patients undergoing nephrectomy for localized renal cell carcinoma. In subsets of the study population we evaluated the localization of lipid droplets by Oil Red O staining and measured 16 common ceramide species by mass spectrometry. There was a positive correlation between kidney cortex trigyceride content and BMI (Spearman R = 0.27, P = 0.04). Lipid droplets detectable by optical microscopy had a sporadic distribution but were generally more prevalent in individuals with higher BMI, with predominant localization in proximal tubule cells and to a lesser extent in glomeruli. Total ceramide content was inversely correlated with triglycerides. We postulate that obesity is associated with abnormal triglyceride accumulation (steatosis) in the human kidney. In turn, steatosis and lipotoxicity may contribute to the pathogenesis of obesity-associated kidney disease and nephrolithiasis. PMID:25170827

  16. Self-organization of human embryonic stem cells on micropatterns

    Science.gov (United States)

    Deglincerti, Alessia; Etoc, Fred; Guerra, M. Cecilia; Martyn, Iain; Metzger, Jakob; Ruzo, Albert; Simunovic, Mijo; Yoney, Anna; Brivanlou, Ali H.; Siggia, Eric; Warmflash, Aryeh

    2018-01-01

    Fate allocation in the gastrulating embryo is spatially organized as cells differentiate to specialized cell types depending on their positions with respect to the body axes. There is a need for in vitro protocols that allow the study of spatial organization associated with this developmental transition. While embryoid bodies and organoids can exhibit some spatial organization of differentiated cells, these methods do not yield consistent and fully reproducible results. Here, we describe a micropatterning approach where human embryonic stem cells are confined to disk-shaped, sub-millimeter colonies. After 42 hours of BMP4 stimulation, cells form self-organized differentiation patterns in concentric radial domains, which express specific markers associated with the embryonic germ layers, reminiscent of gastrulating embryos. Our protocol takes 3 days; it uses commercial microfabricated slides (CYTOO), human laminin-521 (LN-521) as extra-cellular matrix coating, and either conditioned or chemically-defined medium (mTeSR). Differentiation patterns within individual colonies can be determined by immunofluorescence and analyzed with cellular resolution. Both the size of the micropattern and the type of medium affect the patterning outcome. The protocol is appropriate for personnel with basic stem cell culture training. This protocol describes a robust platform for quantitative analysis of the mechanisms associated with pattern formation at the onset of gastrulation. PMID:27735934

  17. Effects of Pulsed Electromagnetic Field on Differentiation of HUES-17 Human Embryonic Stem Cell Line

    Directory of Open Access Journals (Sweden)

    Yi-Lin Wu

    2014-08-01

    Full Text Available Electromagnetic fields are considered to potentially affect embryonic development, but the mechanism is still unknown. In this study, human embryonic stem cell (hESC line HUES-17 was applied to explore the mechanism of exposure on embryonic development to pulsed electromagnetic field (PEMF for 400 pulses at different electric field intensities and the differentiation of HUES-17 cells was observed after PEMF exposure. The expression of alkaline phosphatase (AP, stage-specific embryonic antigen-3 (SSEA-3, SSEA-4 and the mRNA level and protein level of Oct4, Sox2 and Nanog in HUES-17 cells remained unchanged after PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m. Four hundred pulses PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m did not affect the differentiation of HUES-17 cells. The reason why electromagnetic fields affect embryonic development may be due to other mechanisms rather than affecting the differentiation of embryonic stem cells.

  18. Human embryonic stem cells have enhanced repair of multiple forms of DNA damage

    DEFF Research Database (Denmark)

    Maynard, Scott; Swistowska, Anna Maria; Lee, Jae Wan

    2008-01-01

    cells compared with various differentiated murine cells. Using single-cell gel electrophoresis (comet assay) we found that human embryonic stem cells (BG01, I6) have more efficient repair of different types of DNA damage (generated from H2O2, UV-C, ionizing radiation, or psoralen) than human primary...

  19. Derivation of the human embryonic stem cell line RCM1

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCM-1 was derived from a failed to fertilise egg undergoing parthenogenetic stimulation. The cell line shows normal pluripotency marker expression and differentiation to three germ layers in vitro and in vivo. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data is available.

  20. Human Embryonic Stem Cell Responses to Ionizing Radiation Exposures: Current State of Knowledge and Future Challenges

    Directory of Open Access Journals (Sweden)

    Mykyta V. Sokolov

    2012-01-01

    Full Text Available Human embryonic stem cells, which are derived from the inner cell mass of the blastocyst, have become an object of intense study over the last decade. They possess two unique properties that distinguish them from many other cell types: (i the ability to self-renew indefinitely in culture under permissive conditions, and (ii the pluripotency, defined as the capability of giving rise to all cell types of embryonic lineage under the guidance of the appropriate developmental cues. The focus of many recent efforts has been on the elucidating the signaling pathways and molecular networks operating in human embryonic stem cells. These cells hold great promise in cell-based regenerative therapies, disease modeling, drug screening and testing, assessing genotoxic and mutagenic risks associated with exposures to a variety of environmental factors, and so forth. Ionizing radiation is ubiquitous in nature, and it is widely used in diagnostic and therapeutic procedures in medicine. In this paper, our goal is to summarize the recent progress in understanding how human embryonic stem cells respond to ionizing radiation exposures, using novel methodologies based on “omics” approaches, and to provide a critical discussion of what remains unknown; thus proposing a roadmap for the future research in this area.

  1. Identification of human embryonic progenitor cell targeting peptides using phage display.

    Directory of Open Access Journals (Sweden)

    Paola A Bignone

    Full Text Available Human pluripotent stem (hPS cells are capable of differentiation into derivatives of all three primary embryonic germ layers and can self-renew indefinitely. They therefore offer a potentially scalable source of replacement cells to treat a variety of degenerative diseases. The ability to reprogram adult cells to induced pluripotent stem (iPS cells has now enabled the possibility of patient-specific hPS cells as a source of cells for disease modeling, drug discovery, and potentially, cell replacement therapies. While reprogramming technology has dramatically increased the availability of normal and diseased hPS cell lines for basic research, a major bottleneck is the critical unmet need for more efficient methods of deriving well-defined cell populations from hPS cells. Phage display is a powerful method for selecting affinity ligands that could be used for identifying and potentially purifying a variety of cell types derived from hPS cells. However, identification of specific progenitor cell-binding peptides using phage display may be hindered by the large cellular heterogeneity present in differentiating hPS cell populations. We therefore tested the hypothesis that peptides selected for their ability to bind a clonal cell line derived from hPS cells would bind early progenitor cell types emerging from differentiating hPS cells. The human embryonic stem (hES cell-derived embryonic progenitor cell line, W10, was used and cell-targeting peptides were identified. Competition studies demonstrated specificity of peptide binding to the target cell surface. Efficient peptide targeted cell labeling was accomplished using multivalent peptide-quantum dot complexes as detected by fluorescence microscopy and flow cytometry. The cell-binding peptides were selective for differentiated hPS cells, had little or no binding on pluripotent cells, but preferential binding to certain embryonic progenitor cell lines and early endodermal hPS cell derivatives. Taken

  2. Fetal Kidney Anomalies: Next Generation Sequencing

    DEFF Research Database (Denmark)

    Rasmussen, Maria; Sunde, Lone; Nielsen, Marlene Louise

    Aim and Introduction Identification of abnormal kidneys in the fetus may lead to termination of the pregnancy and raises questions about the underlying cause and recurrence risk in future pregnancies. In this study, we investigate the effectiveness of targeted next generation sequencing in fetuses...... with prenatally detected kidney anomalies in order to uncover genetic explanations and assess recurrence risk. Also, we aim to study the relation between genetic findings and post mortem kidney histology. Methods The study comprises fetuses diagnosed prenatally with bilateral kidney anomalies that have undergone...... postmortem examination. The approximately 110 genes included in the targeted panel were chosen on the basis of their potential involvement in embryonic kidney development, cystic kidney disease, or the renin-angiotensin system. DNA was extracted from fetal tissue samples or cultured chorion villus cells...

  3. Impact of transient down-regulation of DREAM in human embryonic stem cell pluripotency

    Directory of Open Access Journals (Sweden)

    A. Fontán-Lozano

    2016-05-01

    Full Text Available Little is known about the functions of downstream regulatory element antagonist modulator (DREAM in embryonic stem cells (ESCs. However, DREAM interacts with cAMP response element-binding protein (CREB in a Ca2+-dependent manner, preventing CREB binding protein (CBP recruitment. Furthermore, CREB and CBP are involved in maintaining ESC self-renewal and pluripotency. However, a previous knockout study revealed the protective function of DREAM depletion in brain aging degeneration and that aging is accompanied by a progressive decline in stem cells (SCs function. Interestingly, we found that DREAM is expressed in different cell types, including human ESCs (hESCs, human adipose-derived stromal cells (hASCs, human bone marrow-derived stromal cells (hBMSCs, and human newborn foreskin fibroblasts (hFFs, and that transitory inhibition of DREAM in hESCs reduces their pluripotency, increasing differentiation. We stipulate that these changes are partly mediated by increased CREB transcriptional activity. Overall, our data indicates that DREAM acts in the regulation of hESC pluripotency and could be a target to promote or prevent differentiation in embryonic cells.

  4. Contested embryonic culture in Japan--public discussion, and human embryonic stem cell research in an aging welfare society.

    Science.gov (United States)

    Sleeboom-Faulkner, Margaret

    2010-01-01

    This article explores the reasons for the lack of a broad discussion on bioethical regulation of human embryonic stem cell research (hESR) in Japan and asks why scientists experience difficulties accessing resources for hESR despite the acclaimed indifference of dominant Japanese culture to embryo research. The article shows how various social actors express their views on the embryo and oocyte donation in terms of dominant Japanese culture, foiled against what is regarded as Western culture. Second, it shows how the lack of concern with hESR should be understood in the context of public health policies and communications and bioethics decision making in Japan. Finally, it interprets the meaning of the embryo in the context of Japan as an aging modern welfare society, explaining how policymakers have come to emphasize the urgency of infertility problems over issues around abortion and embryonic life.

  5. Reconstruction and Analysis of Human Kidney-Specific Metabolic Network Based on Omics Data

    Directory of Open Access Journals (Sweden)

    Ai-Di Zhang

    2013-01-01

    Full Text Available With the advent of the high-throughput data production, recent studies of tissue-specific metabolic networks have largely advanced our understanding of the metabolic basis of various physiological and pathological processes. However, for kidney, which plays an essential role in the body, the available kidney-specific model remains incomplete. This paper reports the reconstruction and characterization of the human kidney metabolic network based on transcriptome and proteome data. In silico simulations revealed that house-keeping genes were more essential than kidney-specific genes in maintaining kidney metabolism. Importantly, a total of 267 potential metabolic biomarkers for kidney-related diseases were successfully explored using this model. Furthermore, we found that the discrepancies in metabolic processes of different tissues are directly corresponding to tissue's functions. Finally, the phenotypes of the differentially expressed genes in diabetic kidney disease were characterized, suggesting that these genes may affect disease development through altering kidney metabolism. Thus, the human kidney-specific model constructed in this study may provide valuable information for the metabolism of kidney and offer excellent insights into complex kidney diseases.

  6. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    Full Text Available In guiding hES cell technology toward the clinic, one key issue to be addressed is to culture and maintain hES cells much more safely and economically in large scale. In order to avoid using mouse embryonic fibroblasts (MEFs we isolated human fetal liver stromal cells (hFLSCs from 14 weeks human fetal liver as new human feeder cells. hFLSCs feeders could maintain hES cells for 15 passages (about 100 days. Basic fibroblast growth factor (bFGF is known to play an important role in promoting self-renewal of human embryonic stem (hES cells. So, we established transgenic hFLSCs that stably express bFGF by lentiviral vectors. These transgenic human feeder cells--bFGF-hFLSCs maintained the properties of H9 hES cells without supplementing with any exogenous growth factors. H9 hES cells culturing under these conditions maintained all hES cell features after prolonged culture, including the developmental potential to differentiate into representative tissues of all three embryonic germ layers, unlimited and undifferentiated proliferative ability, and maintenance of normal karyotype. Our results demonstrated that bFGF-hFLSCs feeder cells were central to establishing the signaling network among bFGF, insulin-like growth factor 2 (IGF-2, and transforming growth factor β (TGF-β, thereby providing the framework in which hES cells were instructed to self-renew or to differentiate. We also found that the conditioned medium of bFGF-hFLSCs could maintain the H9 hES cells under feeder-free conditions without supplementing with bFGF. Taken together, bFGF-hFLSCs had great potential as feeders for maintaining pluripotent hES cell lines more safely and economically.

  7. [Yes to research, no to utilization? Medical, pharmacological and toxicological utilization of human embryonic stem cells from an ethical point of view].

    Science.gov (United States)

    Kress, H

    2008-09-01

    In exceptional cases, the German Stem Cell Act allows research on human embryonic stem cells. However, it does not allow the implementation of the research results if this in turn requires the use of further embryonic stem cell lines. It has, in the meantime, transpired that such research results could be of concrete use. Thus, in the distant future, it could be used in the clinical treatment of patients. Already in the nearer future the use of human embryonic stem cell lines can be envisaged for both the development and testing of medicines as well as in the field of toxicology. To this end, research concerning embryo toxicity and neurotoxicity is ground-breaking. The toxicological and pharmacological use of human embryonic stem cell lines should serve the protection of human health as well as the safe and reliable use of medicines. In addition, animal experiments could be reduced, which is desirable from a point of view of animal protection ethics. Since research on human embryonic stem cell lines is actually permitted in Germany, the use of the respective research results should be allowed all the more. This follows from the basic human right to health protection and health care. Legal ambiguities, which still exist in this respect, should be removed.

  8. Comparison of human and automatic segmentations of kidneys from CT images

    International Nuclear Information System (INIS)

    Rao, Manjori; Stough, Joshua; Chi, Y.-Y.; Muller, Keith; Tracton, Gregg; Pizer, Stephen M.; Chaney, Edward L.

    2005-01-01

    Purpose: A controlled observer study was conducted to compare a method for automatic image segmentation with conventional user-guided segmentation of right and left kidneys from planning computerized tomographic (CT) images. Methods and materials: Deformable shape models called m-reps were used to automatically segment right and left kidneys from 12 target CT images, and the results were compared with careful manual segmentations performed by two human experts. M-rep models were trained based on manual segmentations from a collection of images that did not include the targets. Segmentation using m-reps began with interactive initialization to position the kidney model over the target kidney in the image data. Fully automatic segmentation proceeded through two stages at successively smaller spatial scales. At the first stage, a global similarity transformation of the kidney model was computed to position the model closer to the target kidney. The similarity transformation was followed by large-scale deformations based on principal geodesic analysis (PGA). During the second stage, the medial atoms comprising the m-rep model were deformed one by one. This procedure was iterated until no changes were observed. The transformations and deformations at both stages were driven by optimizing an objective function with two terms. One term penalized the currently deformed m-rep by an amount proportional to its deviation from the mean m-rep derived from PGA of the training segmentations. The second term computed a model-to-image match term based on the goodness of match of the trained intensity template for the currently deformed m-rep with the corresponding intensity data in the target image. Human and m-rep segmentations were compared using quantitative metrics provided in a toolset called Valmet. Metrics reported in this article include (1) percent volume overlap; (2) mean surface distance between two segmentations; and (3) maximum surface separation (Hausdorff distance

  9. Generation of OCIAD1 inducible overexpression human embryonic stem cell line: BJNhem20-OCIAD1-Tet-On

    Directory of Open Access Journals (Sweden)

    Deeti K. Shetty

    2016-03-01

    Full Text Available Human embryonic stem cell line BJNhem20-OCIAD1-Tet-On was generated using non-viral method. The constructs pCAG-Tet-On and pTRE-Tight vector driving OCIAD1 expression were transfected using microporation procedure. pCAG-Tet-On cells can be used for inducible expression of any coding sequence cloned into pTRE-Tight vector. For example, in human embryonic stem cells, Tet-On system has been used to generate SOX2 overexpression cell line (Adachi et al., 2010.

  10. Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Gao, Xiugong; Sprando, Robert L.; Yourick, Jeffrey J.

    2015-01-01

    Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72 h after exposure to 0.25 mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment. - Highlights: • Studied genomic changes in mouse embryonic stem cells upon thalidomide exposure • Identified gene expression changes that may represent thalidomide embryotoxicity • The toxicogenomic changes coincide well with known thalidomide clinical outcomes. • The mouse embryonic stem cell model is suitable for developmental toxicity testing. • The model has the potential for high-throughput screening of a multitude of compounds

  11. Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiugong, E-mail: xiugong.gao@fda.hhs.gov; Sprando, Robert L.; Yourick, Jeffrey J.

    2015-08-15

    Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72 h after exposure to 0.25 mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment. - Highlights: • Studied genomic changes in mouse embryonic stem cells upon thalidomide exposure • Identified gene expression changes that may represent thalidomide embryotoxicity • The toxicogenomic changes coincide well with known thalidomide clinical outcomes. • The mouse embryonic stem cell model is suitable for developmental toxicity testing. • The model has the potential for high-throughput screening of a multitude of compounds.

  12. NANOG reporter cell lines generated by gene targeting in human embryonic stem cells

    DEFF Research Database (Denmark)

    Fischer, Yvonne; Ganic, Elvira; Ameri, Jacqueline

    2010-01-01

    Pluripotency and self-renewal of human embryonic stem cells (hESCs) is mediated by a complex interplay between extra- and intracellular signaling pathways, which regulate the expression of pluripotency-specific transcription factors. The homeodomain transcription factor NANOG plays a central role...

  13. PGC-1α and Reactive Oxygen Species Regulate Human Embryonic Stem Cell-Derived Cardiomyocyte Function

    NARCIS (Netherlands)

    Birket, Matthew J.; Casini, Simona; Kosmidis, Georgios; Elliott, David A.; Gerencser, Akos A.; Baartscheer, Antonius; Schumacher, Cees; Mastroberardino, Pier G.; Elefanty, Andrew G.; Stanley, Ed G.; Mummery, Christine L.

    2013-01-01

    Diminished mitochondrial function is causally related to some heart diseases. Here, we developed a human disease model based on cardiomyocytes from human embryonic stem cells (hESCs), in which an important pathway of mitochondrial gene expression was inactivated. Repression of PGC-1α, which is

  14. Human embryonic stem cells: preclinical perspectives

    Directory of Open Access Journals (Sweden)

    Sarda Kanchan

    2008-01-01

    Full Text Available Abstract Human embryonic stem cells (hESCs have been extensively discussed in public and scientific communities for their potential in treating diseases and injuries. However, not much has been achieved in turning them into safe therapeutic agents. The hurdles in transforming hESCs to therapies start right with the way these cells are derived and maintained in the laboratory, and goes up-to clinical complications related to need for patient specific cell lines, gender specific aspects, age of the cells, and several post transplantation uncertainties. The different types of cells derived through directed differentiation of hESC and used successfully in animal disease and injury models are described briefly. This review gives a brief outlook on the present and the future of hESC based therapies, and talks about the technological advances required for a safe transition from laboratory to clinic.

  15. Raman microscopy of individual living human embryonic stem cells

    DEFF Research Database (Denmark)

    Novikov, Sergey M.; Beermann, Jonas; Bozhevolnyi, Sergey I.

    2010-01-01

    We demonstrate the possibility of mapping the distribution of different biomolecules in living human embryonic stem cells grown on glass substrates, without the need for fluorescent markers. In our work we improve the quality of measurements by finding a buffer that gives low fluorescence, growing...... cells on glass substrates (whose Raman signals are relatively weak compared to that of the cells) and having the backside covered with gold to improve the image contrast under direct white light illumination. The experimental setup used for Raman microscopy is the commercially available confocal...

  16. Combinatorial binding in human and mouse embryonic stem cells identifies conserved enhancers active in early embryonic development.

    Directory of Open Access Journals (Sweden)

    Jonathan Göke

    2011-12-01

    Full Text Available Transcription factors are proteins that regulate gene expression by binding to cis-regulatory sequences such as promoters and enhancers. In embryonic stem (ES cells, binding of the transcription factors OCT4, SOX2 and NANOG is essential to maintain the capacity of the cells to differentiate into any cell type of the developing embryo. It is known that transcription factors interact to regulate gene expression. In this study we show that combinatorial binding is strongly associated with co-localization of the transcriptional co-activator Mediator, H3K27ac and increased expression of nearby genes in embryonic stem cells. We observe that the same loci bound by Oct4, Nanog and Sox2 in ES cells frequently drive expression in early embryonic development. Comparison of mouse and human ES cells shows that less than 5% of individual binding events for OCT4, SOX2 and NANOG are shared between species. In contrast, about 15% of combinatorial binding events and even between 53% and 63% of combinatorial binding events at enhancers active in early development are conserved. Our analysis suggests that the combination of OCT4, SOX2 and NANOG binding is critical for transcription in ES cells and likely plays an important role for embryogenesis by binding at conserved early developmental enhancers. Our data suggests that the fast evolutionary rewiring of regulatory networks mainly affects individual binding events, whereas "gene regulatory hotspots" which are bound by multiple factors and active in multiple tissues throughout early development are under stronger evolutionary constraints.

  17. Epigenetic stability, adaptability, and reversibility in human embryonic stem cells

    OpenAIRE

    Tompkins, Joshua D.; Hall, Christine; Chen, Vincent Chang-yi; Li, Arthur Xuejun; Wu, Xiwei; Hsu, David; Couture, Larry A.; Riggs, Arthur D.

    2012-01-01

    The stability of human embryonic stem cells (hESCs) is of critical importance for both experimental and clinical applications. We find that as an initial response to altered culture conditions, hESCs change their transcription profile for hundreds of genes and their DNA methylation profiles for several genes outside the core pluripotency network. After adaption to conditions of feeder-free defined and/or xeno-free culture systems, expression and DNA methylation profiles are quite stable for a...

  18. Comparison of Gene Expression in Human Embryonic Stem Cells, hESC-Derived Mesenchymal Stem Cells and Human Mesenchymal Stem Cells

    OpenAIRE

    Romain Barbet; Isabelle Peiffer; Antoinette Hatzfeld; Pierre Charbord; Jacques A. Hatzfeld

    2011-01-01

    We present a strategy to identify developmental/differentiation and plasma membrane marker genes of the most primitive human Mesenchymal Stem Cells (hMSCs). Using sensitive and quantitative TaqMan Low Density Arrays (TLDA) methodology, we compared the expression of 381 genes in human Embryonic Stem Cells (hESCs), hESC-derived MSCs ...

  19. Regenerative medicine in kidney disease: where we stand and where to go.

    Science.gov (United States)

    Borges, Fernanda T; Schor, Nestor

    2017-07-22

    The kidney is a complex organ with more than 20 types of specialized cells that play an important role in maintaining the body's homeostasis. The epithelial tubular cell is formed during embryonic development and has little proliferative capacity under physiological conditions, but after acute injury the kidney does have regenerative capacity. However, after repetitive or severe lesions, it may undergo a maladaptation process that predisposes it to chronic kidney injury. Regenerative medicine includes various repair and regeneration techniques, and these have gained increasing attention in the scientific literature. In the future, not only will these techniques contribute to the repair and regeneration of the human kidney, but probably also to the construction of an entire organ. New mechanisms studied for kidney regeneration and repair include circulating stem cells as mesenchymal stromal/stem cells and their paracrine mechanisms of action; renal progenitor stem cells; the leading role of tubular epithelial cells in the tubular repair process; the study of zebrafish larvae to understand the process of nephron development, kidney scaffold and its repopulation; and, finally, the development of organoids. This review elucidates where we are in terms of current scientific knowledge regarding these mechanisms and the promises of future scientific perspectives.

  20. The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors

    DEFF Research Database (Denmark)

    Seminatore, Christine; Polentes, Jerome; Ellman, Ditte

    2010-01-01

    Risk of tumorigenesis is a major obstacle to human embryonic and induced pluripotent stem cell therapy. Likely linked to the stage of differentiation of the cells at the time of implantation, formation of teratoma/tumors can also be influenced by factors released by the host tissue. We have...... analyzed the relative effects of the stage of differentiation and the postischemic environment on the formation of adverse structures by transplanted human embryonic stem cell-derived neural progenitors....

  1. Urinary acylcarnitines are altered in human kidney cancer.

    Science.gov (United States)

    Ganti, Sheila; Taylor, Sandra L; Kim, Kyoungmi; Hoppel, Charles L; Guo, Lining; Yang, Joy; Evans, Christopher; Weiss, Robert H

    2012-06-15

    Kidney cancer often diagnosed at late stages when treatment options are severely limited. Thus, greater understanding of tumor metabolism leading ultimately to novel approaches to diagnosis is needed. Our laboratory has been utilizing metabolomics to evaluate compounds appearing in kidney cancer patients' biofluids at concentrations different from control patients. Here, we collected urine samples from kidney cancer patients and analyzed them by chromatography coupled to mass spectrometry. Once normalized to control for urinary concentration, samples were analyzed by two independent laboratories. After technical validation, we now show differential urinary concentrations of several acylcarnitines as a function of both cancer status and kidney cancer grade, with most acylcarnitines being increased in the urine of cancer patients and in those patients with high cancer grades. This finding was validated in a mouse xenograft model of human kidney cancer. Biological validation shows carbon chain length-dependent effects of the acylcarnitines on cytotoxicity in vitro, and higher chain length acylcarnitines demonstrated inhibitory effects on NF-κB activation, suggesting an immune modulatory effect of these compounds. Thus, acylcarnitines in the kidney cancer urine may reflect alterations in metabolism, cell component synthesis and/or immune surveillance, and may help explain the profound chemotherapy resistance seen with this cancer. This study shows for the first time the value of a novel class of metabolites which may lead to new therapeutic approaches for cancer and may prove useful in cancer biomarker studies. Furthermore, these findings open up a new area of investigation into the metabolic basis of kidney cancer. Copyright © 2011 UICC.

  2. Periconception Maternal Folate Status and Human Embryonic Cerebellum Growth Trajectories : The Rotterdam Predict Study

    NARCIS (Netherlands)

    Koning, Irene V; Groenenberg, Irene A L; Gotink, Anniek W; Willemsen, Sten P; Gijtenbeek, Manon; Dudink, Jeroen; Go, Attie T J I; Reiss, Irwin K M; Steegers, Eric A P; Steegers-Theunissen, Régine P M

    2015-01-01

    We aimed to investigate whether periconceptional maternal folate status affects human embryonic cerebellar size and growth trajectories. In a prospective periconceptional cohort participants filled out questionnaires and received weekly transvaginal 3D-ultrasounds between 7+0 and 12+6 weeks

  3. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    International Nuclear Information System (INIS)

    Varga, Nóra; Veréb, Zoltán; Rajnavölgyi, Éva; Német, Katalin; Uher, Ferenc; Sarkadi, Balázs; Apáti, Ágota

    2011-01-01

    Highlights: ► MSC like cells were derived from hESC by a simple and reproducible method. ► Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. ► MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  4. Sourcing human embryos for embryonic stem cell lines: Problems & perspectives

    Directory of Open Access Journals (Sweden)

    Rajvi H Mehta

    2014-01-01

    Full Text Available The ability to successfully derive human embryonic stem cells (hESC lines from human embryos following in vitro fertilization (IVF opened up a plethora of potential applications of this technique. These cell lines could have been successfully used to increase our understanding of human developmental biology, transplantation medicine and the emerging science of regenerative medicine. The main source for human embryos has been ′discarded′ or ′spare′ fresh or frozen human embryos following IVF. It is a common practice to stimulate the ovaries of women undergoing any of the assisted reproductive technologies (ART and retrieve multiple oocytes which subsequently lead to multiple embryos. Of these, only two or maximum of three embryos are transferred while the rest are cryopreserved as per the decision of the couple. In case a couple does not desire to ′cryopreserve′ their embryos then all the embryos remaining following embryo transfer can be considered ′spare′ or if a couple is no longer in need of the ′cryopreserved′ embryos then these also can be considered as ′spare′. But, the question raised by the ethicists is, "what about ′slightly′ over-stimulating a woman to get a few extra eggs and embryos? The decision becomes more difficult when it comes to ′discarded′ embryos. As of today, the quality of the embryos is primarily assessed based on morphology and the rate of development mainly judged by single point assessment. Despite many criteria described in the literature, the quality assessment is purely subjective. The question that arises is on the decision of ′discarding′ embryos. What would be the criteria for discarding embryos and the potential ′use′ of ESC derived from the ′abnormal appearing′ embryos? This paper discusses some of the newer methods to procure embryos for the derivation of embryonic stem cell lines which will respect the ethical concerns but still provide the source material.

  5. Wnt pathway reprogramming during human embryonal carcinoma differentiation and potential for therapeutic targeting

    International Nuclear Information System (INIS)

    Snow, Grace E; Kasper, Allison C; Busch, Alexander M; Schwarz, Elisabeth; Ewings, Katherine E; Bee, Thomas; Spinella, Michael J; Dmitrovsky, Ethan; Freemantle, Sarah J

    2009-01-01

    Testicular germ cell tumors (TGCTs) are classified as seminonas or non-seminomas of which a major subset is embryonal carcinoma (EC) that can differentiate into diverse tissues. The pluripotent nature of human ECs resembles that of embryonic stem (ES) cells. Many Wnt signalling species are regulated during differentiation of TGCT-derived EC cells. This study comprehensively investigated expression profiles of Wnt signalling components regulated during induced differentiation of EC cells and explored the role of key components in maintaining pluripotency. Human embryonal carcinoma cells were stably infected with a lentiviral construct carrying a canonical Wnt responsive reporter to assess Wnt signalling activity following induced differentiation. Cells were differentiated with all-trans retinoic acid (RA) or by targeted repression of pluripotency factor, POU5F1. A Wnt pathway real-time-PCR array was used to evaluate changes in gene expression as cells differentiated. Highlighted Wnt pathway genes were then specifically repressed using siRNA or stable shRNA and transfected EC cells were assessed for proliferation, differentiation status and levels of core pluripotency genes. Canonical Wnt signalling activity was low basally in undifferentiated EC cells, but substantially increased with induced differentiation. Wnt pathway gene expression levels were compared during induced differentiation and many components were altered including ligands (WNT2B), receptors (FZD5, FZD6, FZD10), secreted inhibitors (SFRP4, SFRP1), and other effectors of Wnt signalling (FRAT2, DAAM1, PITX2, Porcupine). Independent repression of FZD5, FZD7 and WNT5A using transient as well as stable methods of RNA interference (RNAi) inhibited cell growth of pluripotent NT2/D1 human EC cells, but did not appreciably induce differentiation or repress key pluripotency genes. Silencing of FZD7 gave the greatest growth suppression in all human EC cell lines tested including NT2/D1, NT2/D1-R1, Tera-1 and 833

  6. Procedures for Derivation and Characterisation of Human Embryonic Stem Cells from Odense, Denmark

    DEFF Research Database (Denmark)

    Harkness, Linda; Kassem, Moustapha

    2012-01-01

    In 1998, a development occurred in stem cell biology with the fi rst report of the derivation of a human embryonic stem cell (hESC) line. Since then a number of techniques have been used to derive and characterise hESCs. Here, we describe the derivation methods used by our laboratory for isolatio...

  7. Morphometrical study of the human kidney. Radiodiagnosis and patological anatomy applications

    International Nuclear Information System (INIS)

    Sampaio, J.B.; Lacerda, C.A.M. de

    1987-01-01

    A morphometrical estimate was made on 100 human kidneys obtained by necropsies. The results of the renal measurements showed the averages of 11.06cm long, 6.24cm wide for the superior pole, 5.42cm wide for the inferior pole, 3.26cm thickness, and 119.48g weight. The left kidney presented a greater lenght, greater width, greater thickness and greater weight than the kidney. The statistical analysis of the correlation between several indices is presented. (author) [pt

  8. Progressing a human embryonic stem-cell-based regenerative medicine therapy towards the clinic.

    Science.gov (United States)

    Whiting, Paul; Kerby, Julie; Coffey, Peter; da Cruz, Lyndon; McKernan, Ruth

    2015-10-19

    Since the first publication of the derivation of human embryonic stem cells in 1998, there has been hope and expectation that this technology will lead to a wave of regenerative medicine therapies with the potential to revolutionize our approach to managing certain diseases. Despite significant resources in this direction, the path to the clinic for an embryonic stem-cell-based regenerative medicine therapy has not proven straightforward, though in the past few years progress has been made. Here, with a focus upon retinal disease, we discuss the current status of the development of such therapies. We also highlight some of our own experiences of progressing a retinal pigment epithelium cell replacement therapy towards the clinic. © 2015 The Author(s).

  9. Human renin biosynthesis and secretion in normal and ischemic kidneys

    International Nuclear Information System (INIS)

    Pratt, R.E.; Carleton, J.E.; Richie, J.P.; Heusser, C.; Dzau, V.J.

    1987-01-01

    The pathway of renin biosynthesis and secretion in normal and ischemic human kidneys has been investigated by pulse-labeling experiments. The results indicate that in normal human kidney, preprorenin is rapidly processed to 47-kDa prorenin. Microradiosequencing showed that this molecule was generated by cleavage between Gly-23 and Leu-24, yielding a 43-amino acid proregion. Analysis of prorenin secreted by the kidney tissue yielded an identical sequence, indicating that prorenin is secreted without any further proteolysis. An examination of the kinetics of processing and secretion suggested that a majority of the newly synthesized prorenin is quickly secreted, while only a small fraction is processed intracellularly to the mature renin. The differences in secretion kinetics between prorenin and mature renin and the selective inhibition of prorenin secretion by monensin suggest that they are secreted independently via two pathways: a constitutive pathway probably from the Golgi or protogranules that rapidly release prorenin and a regulated pathway that secretes mature renin from the mature granules. A comparison of the kinetics of processing between normal and ischemic tissues suggests that renal ischemia leads to an overall increase in the rate of processing or prorenin to mature renin. In addition, prolonged biosynthetic labeling of renin in the ischemic kidney yielded two smaller molecular weight immunoreactive forms suggestive of renin fragments that may be degradative products. These fragments were not detected in normal kidney tissue labeled for similar lengths of time

  10. Utilization of human amniotic mesenchymal cells as feeder layers to sustain propagation of human embryonic stem cells in the undifferentiated state.

    Science.gov (United States)

    Zhang, Kehua; Cai, Zhe; Li, Yang; Shu, Jun; Pan, Lin; Wan, Fang; Li, Hong; Huang, Xiaojie; He, Chun; Liu, Yanqiu; Cui, Xiaohui; Xu, Yang; Gao, Yan; Wu, Liqun; Cao, Shanxia; Li, Lingsong

    2011-08-01

    Human embryonic stem (ES) cells are usually maintained in the undifferentiated state by culturing on feeder cells layers of mouse embryonic fibroblasts (MEFs). However, MEFs are not suitable to support human ES cells used for clinical purpose because of risk of zoonosis from animal cells. Therefore, human tissue-based feeder layers need to be developed for human ES cells for clinical purpose. Hereof we report that human amniotic mesenchymal cells (hAMCs) could act as feeder cells for human ES cells, because they are easily obtained and relatively exempt from ethical problem. Like MEFs, hAMCs could act as feeder cells for human ES cells to grow well on. The self-renewal rate of human ES cells cultured on hAMCs feeders was higher than that on MEFs and human amniotic epithelial cells determined by measurement of colonial diameters and growth curve as well as cell cycle analysis. Both immunofluorescence staining and immunoblotting showed that human ES cells cultured on hAMCs expressed stem cell markers such as Oct-3/4, Sox2, and NANOG. Verified by embryoid body formation in vitro and teratoma formation in vivo, we found out that after 20 passages of culture, human ES cells grown on hAMCs feeders could still retain the potency of differentiating into three germ layers. Taken together, our data suggested hAMCs may be safe feeder cells to sustain the propagation of human ES cells in undifferentiated state for future therapeutic use.

  11. Genetic recombination pathways and their application for genome modification of human embryonic stem cells.

    Science.gov (United States)

    Nieminen, Mikko; Tuuri, Timo; Savilahti, Harri

    2010-10-01

    Human embryonic stem cells are pluripotent cells derived from early human embryo and retain a potential to differentiate into all adult cell types. They provide vast opportunities in cell replacement therapies and are expected to become significant tools in drug discovery as well as in the studies of cellular and developmental functions of human genes. The progress in applying different types of DNA recombination reactions for genome modification in a variety of eukaryotic cell types has provided means to utilize recombination-based strategies also in human embryonic stem cells. Homologous recombination-based methods, particularly those utilizing extended homologous regions and those employing zinc finger nucleases to boost genomic integration, have shown their usefulness in efficient genome modification. Site-specific recombination systems are potent genome modifiers, and they can be used to integrate DNA into loci that contain an appropriate recombination signal sequence, either naturally occurring or suitably pre-engineered. Non-homologous recombination can be used to generate random integrations in genomes relatively effortlessly, albeit with a moderate efficiency and precision. DNA transposition-based strategies offer substantially more efficient random strategies and provide means to generate single-copy insertions, thus potentiating the generation of genome-wide insertion libraries applicable in genetic screens. 2010 Elsevier Inc. All rights reserved.

  12. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  13. Comprehensive quantitative comparison of the membrane proteome and PTM-ome of human embryonic stem cells and neural stem cells

    DEFF Research Database (Denmark)

    Braga, Marcella Nunes de Melo; Schulz, Melanie; Jakobsen, Lene

    Introduction: Human embryonic stem cells (hESCs) can differentiate into all three germ layers and self-renew. Due to its ability to differentiate in vitro into human neural stem cells (hNSCs), which can further be differentiated into motor neurons and dopaminergic neurons, these cells are potential...... identified phosphorylated and SA glycosylated proteins, respectively. This study allowed us to identify several significantly regulated proteins during the differentiation process, including proteins involved in the early embryonic development as well as in the neural development. In the latter group...... of proteins we could identify a number of proteins associated with synaptic vesicles, which are vesicles that store neurotransmitters in the nerve-terminals. An example of an upregulated protein in hESCs is the gap junction alpha 1 (GJA1), a phosphorylated protein which plays a crucial role in embryonic...

  14. Engineering kidney cells: reprogramming and directed differentiation to renal tissues.

    Science.gov (United States)

    Kaminski, Michael M; Tosic, Jelena; Pichler, Roman; Arnold, Sebastian J; Lienkamp, Soeren S

    2017-07-01

    Growing knowledge of how cell identity is determined at the molecular level has enabled the generation of diverse tissue types, including renal cells from pluripotent or somatic cells. Recently, several in vitro protocols involving either directed differentiation or transcription-factor-based reprogramming to kidney cells have been established. Embryonic stem cells or induced pluripotent stem cells can be guided towards a kidney fate by exposing them to combinations of growth factors or small molecules. Here, renal development is recapitulated in vitro resulting in kidney cells or organoids that show striking similarities to mammalian embryonic nephrons. In addition, culture conditions are also defined that allow the expansion of renal progenitor cells in vitro. Another route towards the generation of kidney cells is direct reprogramming. Key transcription factors are used to directly impose renal cell identity on somatic cells, thus circumventing the pluripotent stage. This complementary approach to stem-cell-based differentiation has been demonstrated to generate renal tubule cells and nephron progenitors. In-vitro-generated renal cells offer new opportunities for modelling inherited and acquired renal diseases on a patient-specific genetic background. These cells represent a potential source for developing novel models for kidney diseases, drug screening and nephrotoxicity testing and might represent the first steps towards kidney cell replacement therapies. In this review, we summarize current approaches for the generation of renal cells in vitro and discuss the advantages of each approach and their potential applications.

  15. Systematically profiling and annotating long intergenic non-coding RNAs in human embryonic stem cell.

    Science.gov (United States)

    Tang, Xing; Hou, Mei; Ding, Yang; Li, Zhaohui; Ren, Lichen; Gao, Ge

    2013-01-01

    While more and more long intergenic non-coding RNAs (lincRNAs) were identified to take important roles in both maintaining pluripotency and regulating differentiation, how these lincRNAs may define and drive cell fate decisions on a global scale are still mostly elusive. Systematical profiling and comprehensive annotation of embryonic stem cells lincRNAs may not only bring a clearer big picture of these novel regulators but also shed light on their functionalities. Based on multiple RNA-Seq datasets, we systematically identified 300 human embryonic stem cell lincRNAs (hES lincRNAs). Of which, one forth (78 out of 300) hES lincRNAs were further identified to be biasedly expressed in human ES cells. Functional analysis showed that they were preferentially involved in several early-development related biological processes. Comparative genomics analysis further suggested that around half of the identified hES lincRNAs were conserved in mouse. To facilitate further investigation of these hES lincRNAs, we constructed an online portal for biologists to access all their sequences and annotations interactively. In addition to navigation through a genome browse interface, users can also locate lincRNAs through an advanced query interface based on both keywords and expression profiles, and analyze results through multiple tools. By integrating multiple RNA-Seq datasets, we systematically characterized and annotated 300 hES lincRNAs. A full functional web portal is available freely at http://scbrowse.cbi.pku.edu.cn. As the first global profiling and annotating of human embryonic stem cell lincRNAs, this work aims to provide a valuable resource for both experimental biologists and bioinformaticians.

  16. Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm.

    Science.gov (United States)

    Cloutier, Frank; Siegenthaler, Monica M; Nistor, Gabriel; Keirstead, Hans S

    2006-07-01

    Demyelination contributes to loss of function following spinal cord injury. We have shown previously that transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into adult rat 200 kD contusive spinal cord injury sites enhances remyelination and promotes recovery of motor function. Previous studies using oligodendrocyte lineage cells have noted a correlation between the presence of demyelinating pathology and the survival and migration rate of the transplanted cells. The present study compared the survival and migration of human embryonic stem cell-derived oligodendrocyte progenitors injected 7 days after a 200 or 50 kD contusive spinal cord injury, as well as the locomotor outcome of transplantation. Our findings indicate that a 200 kD spinal cord injury induces extensive demyelination, whereas a 50 kD spinal cord injury induces no detectable demyelination. Cells transplanted into the 200 kD injury group survived, migrated, and resulted in robust remyelination, replicating our previous studies. In contrast, cells transplanted into the 50 kD injury group survived, exhibited limited migration, and failed to induce remyelination as demyelination in this injury group was absent. Animals that received a 50 kD injury displayed only a transient decline in locomotor function as a result of the injury. Importantly, human embryonic stem cell-derived oligodendrocyte progenitor transplants into the 50 kD injury group did not cause a further decline in locomotion. Our studies highlight the importance of a demyelinating pathology as a prerequisite for the function of transplanted myelinogenic cells. In addition, our results indicate that transplantation of human embryonic stem cell-derived oligodendrocyte progenitor cells into the injured spinal cord is not associated with a decline in locomotor function.

  17. Derivation of Huntington Disease affected Genea046 human embryonic stem cell line

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea046 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying HTT gene CAG expansion of 45 repeats, indicative of Huntington Disease. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 85% of cells expressed Nanog, 92% Oct4, 75% Tra1–60 and 99% SSEA4 and demonstrated Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and visible contamination.

  18. Derivation of the human embryonic stem cell line RCe014-A (RC-10

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCe014-A (RC-10 was derived from a fresh oocyte voluntarily donated as unsuitable and surplus to fertility requirements following ethics committee approved informed consent under licence from the UK Human Fertilisation and Embryology Authority. The cell line shows normal pluripotency marker expression and differentiation to the three germ layers in vitro. It has a mixed 46XY and 47XY +12 male karyotype and microsatellite PCR identity, HLA and blood group typing data is available.

  19. Derivation of the human embryonic stem cell line RCe010-A (RC-6

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCe010-A (RC-6 was derived from a frozen and thawed blastocyst voluntarily donated as unsuitable and surplus to fertility requirements following ethics committee approved informed consent under licence from the UK Human Fertilisation and Embryology Authority. The cell line shows normal pluripotency marker expression and differentiation to the three germ layers in vitro. It has a normal 46XY male karyotype and microsatellite PCR identity, HLA and blood group typing data are available.

  20. Human embryonic stem cell lines model experimental human cytomegalovirus latency.

    Science.gov (United States)

    Penkert, Rhiannon R; Kalejta, Robert F

    2013-05-28

    Herpesviruses are highly successful pathogens that persist for the lifetime of their hosts primarily because of their ability to establish and maintain latent infections from which the virus is capable of productively reactivating. Human cytomegalovirus (HCMV), a betaherpesvirus, establishes latency in CD34(+) hematopoietic progenitor cells during natural infections in the body. Experimental infection of CD34(+) cells ex vivo has demonstrated that expression of the viral gene products that drive productive infection is silenced by an intrinsic immune defense mediated by Daxx and histone deacetylases through heterochromatinization of the viral genome during the establishment of latency. Additional mechanistic details about the establishment, let alone maintenance and reactivation, of HCMV latency remain scarce. This is partly due to the technical challenges of CD34(+) cell culture, most notably, the difficulty in preventing spontaneous differentiation that drives reactivation and renders them permissive for productive infection. Here we demonstrate that HCMV can establish, maintain, and reactivate in vitro from experimental latency in cultures of human embryonic stem cells (ESCs), for which spurious differentiation can be prevented or controlled. Furthermore, we show that known molecular aspects of HCMV latency are faithfully recapitulated in these cells. In total, we present ESCs as a novel, tractable model for studies of HCMV latency.

  1. Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice.

    Science.gov (United States)

    Bruin, Jennifer E; Rezania, Alireza; Xu, Jean; Narayan, Kavitha; Fox, Jessica K; O'Neil, John J; Kieffer, Timothy J

    2013-09-01

    Islet transplantation is a promising cell therapy for patients with diabetes, but it is currently limited by the reliance upon cadaveric donor tissue. We previously demonstrated that human embryonic stem cell (hESC)-derived pancreatic progenitor cells matured under the kidney capsule in a mouse model of diabetes into glucose-responsive insulin-secreting cells capable of reversing diabetes. However, the formation of cells resembling bone and cartilage was a major limitation of that study. Therefore, we developed an improved differentiation protocol that aimed to prevent the formation of off-target mesoderm tissue following transplantation. We also examined how variation within the complex host environment influenced the development of pancreatic progenitors in vivo. The hESCs were differentiated for 14 days into pancreatic progenitor cells and transplanted either under the kidney capsule or within Theracyte (TheraCyte, Laguna Hills, CA, USA) devices into diabetic mice. Our revised differentiation protocol successfully eliminated the formation of non-endodermal cell populations in 99% of transplanted mice and generated grafts containing >80% endocrine cells. Progenitor cells developed efficiently into pancreatic endocrine tissue within macroencapsulation devices, despite lacking direct contact with the host environment, and reversed diabetes within 3 months. The preparation of cell aggregates pre-transplant was critical for the formation of insulin-producing cells in vivo and endocrine cell development was accelerated within a diabetic host environment compared with healthy mice. Neither insulin nor exendin-4 therapy post-transplant affected the maturation of macroencapsulated cells. Efficient differentiation of hESC-derived pancreatic endocrine cells can occur in a macroencapsulation device, yielding glucose-responsive insulin-producing cells capable of reversing diabetes.

  2. The promise of human embryonic stem cells in aging-associated diseases

    Science.gov (United States)

    Yabut, Odessa; Bernstein, Harold S.

    2011-01-01

    Aging-associated diseases are often caused by progressive loss or dysfunction of cells that ultimately affect the overall function of tissues and organs. Successful treatment of these diseases could benefit from cell-based therapy that would regenerate lost cells or otherwise restore tissue function. Human embryonic stem cells (hESCs) promise to be an important therapeutic candidate in treating aging-associated diseases due to their unique capacity for self-renewal and pluripotency. To date, there are numerous hESC lines that have been developed and characterized. We will discuss how hESC lines are derived, their molecular and cellular properties, and how their ability to differentiate into all three embryonic germ layers is determined. We will also outline the methods currently employed to direct their differentiation into populations of tissue-specific, functional cells. Finally, we will highlight the general challenges that must be overcome and the strategies being developed to generate highly-purified hESC-derived cell populations that can safely be used for clinical applications. PMID:21566262

  3. A feeder-free, human plasma-derived hydrogel for maintenance of a human embryonic stem cell phenotype in vitro

    Directory of Open Access Journals (Sweden)

    Lewis Fiona C

    2012-08-01

    Full Text Available Abstract Background Human embryonic stem cells (hESCs represent a tremendous resource for cell therapies and the study of human development; however to maintain their undifferentiated state in vitro they routinely require the use of mouse embryonic fibroblast (MEF feeder-layers and exogenous protein media supplementation. Results These well established requirements can be overcome and in this study, it will be demonstrated that phenotypic stability of hESCs can be maintained using a novel, human plasma protein-based hydrogel as an extracellular culture matrix without the use of feeder cell co-culture. hESCs were resuspended in human platelet poor plasma (PPP, which was gelled by the addition of calcium containing DMEM-based hESC culture medium. Phenotypic and genomic expression of the pluripotency markers OCT4, NANOG and SOX2 were measured using immunohistochemistry and qRT-PCR respectively. Typical hESC morphology was demonstrated throughout in vitro culture and both viability and phenotypic stability were maintained throughout extended culture, up to 25 passages. Conclusions PPP-derived hydrogel has demonstrated to be an efficacious alternative to MEF co-culture with its hydrophilicity allowing for this substrate to be delivered via minimally invasive procedures in a liquid phase with polymerization ensuing in situ. Together this provides a novel technique for the study of this unique group of stem cells in either 2D or 3D both in vitro and in vivo.

  4. Raman microscopy of individual living human embryonic stem cells

    Science.gov (United States)

    Novikov, S. M.; Beermann, J.; Bozhevolnyi, S. I.; Harkness, L. M.; Kassem, M.

    2010-04-01

    We demonstrate the possibility of mapping the distribution of different biomolecules in living human embryonic stem cells grown on glass substrates, without the need for fluorescent markers. In our work we improve the quality of measurements by finding a buffer that gives low fluorescence, growing cells on glass substrates (whose Raman signals are relatively weak compared to that of the cells) and having the backside covered with gold to improve the image contrast under direct white light illumination. The experimental setup used for Raman microscopy is the commercially available confocal scanning Raman microscope (Alpha300R) from Witec and sub-μm spatially resolved Raman images were obtained using a 532 nm excitation wavelength.

  5. Derivation of the human embryonic stem cell line RCe006-A (RC-2

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCe006-A (RC-2 was derived from a frozen and thawed blastocyst voluntarily donated as surplus to fertility requirements following ethics committee approved informed consent under licence from the UK Human Fertilisation and Embryology Authority. The cell line exhibits expression of expected pluripotency markers and in vitro differentiation potential to three germinal lineage representative cell populations. It has a male trisomy 12 karyotype (47XY, +12. Microsatellite DNA marker identity and HLA and blood group typing data are available.

  6. Derivation of the human embryonic stem cell line RCe012-A (RC-8

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCe012-A (RC-8 was derived from a frozen and thawed day 5 embryo cultivated to the blastocyst stage. The embryo was voluntarily donated as unsuitable and surplus to fertility requirements following ethics committee approved informed consent under licence from the UK Human Fertilisation and Embryology Authority. The cell line shows normal pluripotency marker expression and differentiation to the three germ layers in vitro. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data is available.

  7. Adult, embryonic and fetal hemoglobin are expressed in human glioblastoma cells.

    Science.gov (United States)

    Emara, Marwan; Turner, A Robert; Allalunis-Turner, Joan

    2014-02-01

    Hemoglobin is a hemoprotein, produced mainly in erythrocytes circulating in the blood. However, non-erythroid hemoglobins have been previously reported in other cell types including human and rodent neurons of embryonic and adult brain, but not astrocytes and oligodendrocytes. Human glioblastoma multiforme (GBM) is the most aggressive tumor among gliomas. However, despite extensive basic and clinical research studies on GBM cells, little is known about glial defence mechanisms that allow these cells to survive and resist various types of treatment. We have shown previously that the newest members of vertebrate globin family, neuroglobin (Ngb) and cytoglobin (Cygb), are expressed in human GBM cells. In this study, we sought to determine whether hemoglobin is also expressed in GBM cells. Conventional RT-PCR, DNA sequencing, western blot analysis, mass spectrometry and fluorescence microscopy were used to investigate globin expression in GBM cell lines (M006x, M059J, M059K, M010b, U87R and U87T) that have unique characteristics in terms of tumor invasion and response to radiotherapy and hypoxia. The data showed that α, β, γ, δ, ζ and ε globins are expressed in all tested GBM cell lines. To our knowledge, we are the first to report expression of fetal, embryonic and adult hemoglobin in GBM cells under normal physiological conditions that may suggest an undefined function of those expressed hemoglobins. Together with our previous reports on globins (Ngb and Cygb) expression in GBM cells, the expression of different hemoglobins may constitute a part of series of active defence mechanisms supporting these cells to resist various types of treatments including chemotherapy and radiotherapy.

  8. Transplantation of human neonatal foreskin stromal cells in ex vivo organotypic cultures of embryonic chick femurs

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Vishnubalaji, Radhakrishnan

    2017-01-01

    NSSCs in ex vivo organotypic cultures of embryonic chick femurs. Isolated embryonic chick femurs (E10 and E11) were cultured for 10 days together with micro-mass cell pellets of hNSSCs, human umbilical vein endothelial cells (HUVEC) or a combination of the two cell types. Changes in femurs gross morphology......We have previously reported that human neonatal foreskin stromal cells (hNSSCs) promote angiogenesis in vitro and in chick embryo chorioallantoic membrane (CAM) assay in vivo. To examine the in vivo relevance of this observation, we examined in the present study the differentiation potential of h......NSSC + HUVEC cultures. Our data suggest that organotypic cultures can be employed to test the differentiation potential of stem cells and demonstrate the importance of stem cell interaction with 3D-intact tissue microenvironment for their differentiation....

  9. Activin B mediated induction of Pdx1 in human embryonic stem cell derived embryoid bodies

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Pørneki, Ann Dorte Storm; Floridon, Charlotte

    2007-01-01

    embryonic and fetal pancreas anlage in humans. Pdx1(+) cells are found in cell clusters also expressing Serpina1 and FABP1, suggesting activation of intestinal/liver developmental programs. Moreover, Activin B up-regulates Sonic Hedgehog (Shh) and its target Gli1, which during normal development...

  10. REST/NRSF Knockdown Alters Survival, Lineage Differentiation and Signaling in Human Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Kaushali Thakore-Shah

    Full Text Available REST (RE1 silencing transcription factor, also known as NRSF (neuron-restrictive silencer factor, is a well-known transcriptional repressor of neural genes in non-neural tissues and stem cells. Dysregulation of REST activity is thought to play a role in diverse diseases including epilepsy, cancer, Down's syndrome and Huntington's disease. The role of REST/NRSF in control of human embryonic stem cell (hESC fate has never been examined. To evaluate the role of REST in hESCs we developed an inducible REST knockdown system and examined both growth and differentiation over short and long term culture. Interestingly, we have found that altering REST levels in multiple hESC lines does not result in loss of self-renewal but instead leads to increased survival. During differentiation, REST knockdown resulted in increased MAPK/ERK and WNT signaling and increased expression of mesendoderm differentiation markers. Therefore we have uncovered a new role for REST in regulation of growth and early differentiation decisions in human embryonic stem cells.

  11. Mapping of Carboxypeptidase M in Normal Human Kidney and Renal Cell Carcinoma

    Science.gov (United States)

    Denis, Catherine J.; Van Acker, Nathalie; De Schepper, Stefanie; De Bie, Martine; Andries, Luc; Fransen, Erik; Hendriks, Dirk; Kockx, Mark M.

    2013-01-01

    Although the kidney generally has been regarded as an excellent source of carboxypeptidase M (CPM), little is known about its renal-specific expression level and distribution. This study provides a detailed localization of CPM in healthy and diseased human kidneys. The results indicate a broad distribution of CPM along the renal tubular structures in the healthy kidney. CPM was identified at the parietal epithelium beneath the Bowman’s basement membrane and in glomerular mesangial cells. Capillaries, podocytes, and most interstitial cells were CPM negative. Tumor cells of renal cell carcinoma subtypes lose CPM expression upon dedifferentiation. Tissue microarray analysis demonstrated a correlation between low CPM expression and tumor cell type. CPM staining was intense on phagocytotic tumor-associated macrophages. Immunoreactive CPM was also detected in the tumor-associated vasculature. The absence of CPM in normal renal blood vessels points toward a role for CPM in angiogenesis. Coexistence of CPM and the epidermal growth factor receptor (EGFR) was detected in papillary renal cell carcinoma. However, the different subcellular localization of CPM and EGFR argues against an interaction between these h proteins. The description of the distribution of CPM in human kidney forms the foundation for further study of the (patho)physiological activities of CPM in the kidney. PMID:23172796

  12. CRISPR/Cas9-AAV Mediated Knock-in at NRL Locus in Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Xianglian Ge

    2016-01-01

    Full Text Available Clustered interspaced short palindromic repeats (CRISPR/CRISPR-associated protein 9 (Cas9-mediated genome engineering technologies are sparking a new revolution in biological research. This technology efficiently induces DNA double strand breaks at the targeted genomic sequence and results in indel mutations by the error-prone process of nonhomologous end joining DNA repair or homologous recombination with a DNA repair template. The efficiency of genome editing with CRISPR/Cas9 alone in human embryonic stem cells is still low. Gene targeting with adeno-associated virus (AAV vectors has been demonstrated in multiple human cell types with maximal targeting frequencies without engineered nucleases. However, whether CRISPR/Cas9-mediated double strand breaks and AAV based donor DNA mediated homologous recombination approaches could be combined to create a novel CRISPR/Cas9-AAV genetic tool for highly specific gene editing is not clear. Here we demonstrate that using CRISPR/Cas9-AAV, we could successfully knock-in a DsRed reporter gene at the basic motifleucine zipper transcription factor (NRL locus in human embryonic stem cells. For the first time, this study provides the proof of principle that these two technologies can be used together. CRISPR/Cas9-AAV, a new genome editing tool, offers a platform for the manipulation of human genome.

  13. Growth and morphogenesis of embryonic mouse organs on non-coated and extracellular matrix-coated Biopore membrane

    Science.gov (United States)

    Hardman, P.; Klement, B. J.; Spooner, B. S.

    1993-01-01

    Embryonic mouse salivary glands, pancreata, and kidneys were isolated from embryos of appropriate gestational age by microdissection, and were cultured on Biopore membrane either non-coated or coated with type I collagen or Matrigel. As expected, use of Biopore membrane allowed high quality photomicroscopy of the living organs. In all organs extensive mesenchymal spreading was observed in the presence of type I collagen or Matrigel. However, differences were noted in the effects of extracellular matrix (ECM) coatings on epithelial growth and morphogenesis: salivary glands were minimally affected, pancreas morphogenesis was adversely affected, and kidney growth and branching apparently was enhanced. It is suggested that these differences in behaviour reflect differences in the strength of interactions between the mesenchymal cells and their surrounding endogenous matrix, compared to the exogenous ECM macromolecules. This method will be useful for culture of these and other embryonic organs. In particular, culture of kidney rudiments on ECM-coated Biopore offers a great improvement over previously used methods which do not allow morphogenesis to be followed in vitro.

  14. Tracking the mechanical dynamics of human embryonic stem cell chromatin

    Directory of Open Access Journals (Sweden)

    Hinde Elizabeth

    2012-12-01

    Full Text Available Abstract Background A plastic chromatin structure has emerged as fundamental to the self-renewal and pluripotent capacity of embryonic stem (ES cells. Direct measurement of chromatin dynamics in vivo is, however, challenging as high spatiotemporal resolution is required. Here, we present a new tracking-based method which can detect high frequency chromatin movement and quantify the mechanical dynamics of chromatin in live cells. Results We use this method to study how the mechanical properties of chromatin movement in human embryonic stem cells (hESCs are modulated spatiotemporally during differentiation into cardiomyocytes (CM. Notably, we find that pluripotency is associated with a highly discrete, energy-dependent frequency of chromatin movement that we refer to as a ‘breathing’ state. We find that this ‘breathing’ state is strictly dependent on the metabolic state of the cell and is progressively silenced during differentiation. Conclusions We thus propose that the measured chromatin high frequency movements in hESCs may represent a hallmark of pluripotency and serve as a mechanism to maintain the genome in a transcriptionally accessible state. This is a result that could not have been observed without the high spatial and temporal resolution provided by this novel tracking method.

  15. Laser-induced fusion of human embryonic stem cells with optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shuxun; Wang Xiaolin; Sun Dong [Department of Mechanical and Biomedical Engineering, City University of Hong Kong (Hong Kong); Cheng Jinping; Han Cheng, Shuk [Department of Biology and Chemistry, City University of Hong Kong (Hong Kong); Kong, Chi-Wing [Stem Cell and Regenerative Medicine Consortium, and Departments of Medicine and Physiology, LKS Faculty of Medicine, University of Hong Kong (Hong Kong); Li, Ronald A. [Stem Cell and Regenerative Medicine Consortium, and Departments of Medicine and Physiology, LKS Faculty of Medicine, University of Hong Kong (Hong Kong); Center of Cardiovascular Research, Mount Sinai School of Medicine, New York, New York 10029 (United States)

    2013-07-15

    We report a study on the laser-induced fusion of human embryonic stem cells (hESCs) at the single-cell level. Cells were manipulated by optical tweezers and fused under irradiation with pulsed UV laser at 355 nm. Successful fusion was indicated by green fluorescence protein transfer. The influence of laser pulse energy on the fusion efficiency was investigated. The fused products were viable as gauged by live cell staining. Successful fusion of hESCs with somatic cells was also demonstrated. The reported fusion outcome may facilitate studies of cell differentiation, maturation, and reprogramming.

  16. Human embryonic stem cell-derived pancreatic endoderm alleviates diabetic pathology and improves reproductive outcome in C57BL/KsJ-Lep(db/+) gestational diabetes mellitus mice.

    Science.gov (United States)

    Xing, Baoheng; Wang, Lili; Li, Qin; Cao, Yalei; Dong, Xiujuan; Liang, Jun; Wu, Xiaohua

    2015-07-01

    Gestational diabetes mellitus is a condition commonly encountered during mid to late pregnancy with pathologic manifestations including hyperglycemia, hyperinsulinemia, insulin resistance, and fetal maldevelopment. The cause of gestational diabetes mellitus can be attributed to both genetic and environmental factors, hence complicating its diagnosis and treatment. Pancreatic progenitors derived from human embryonic stem cells were shown to be able to effectively treat diabetes in mice. In this study, we have developed a system of treating diabetes using human embryonic stem cell-derived pancreatic endoderm in a mouse model of gestational diabetes mellitus. Human embryonic stem cells were differentiated in vitro into pancreatic endoderm, which were then transplanted into db/+ mice suffering from gestational diabetes mellitus. The transplant greatly improved glucose metabolism and reproductive outcome of the females compared with the control groups. Our findings support the feasibility of using differentiated human embryonic stem cells for treating gestational diabetes mellitus patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Mechanobiology of embryonic limb development.

    Science.gov (United States)

    Nowlan, Niamh C; Murphy, Paula; Prendergast, Patrick J

    2007-04-01

    Considerable evidence exists to support the hypothesis that mechanical forces have an essential role in healthy embryonic skeletal development. Clinical observations and experimental data indicate the importance of muscle contractions for limb development. However, the influence of these forces is seldom referred to in biological descriptions of bone development, and perhaps this is due to the fact that the hypothesis that mechanical forces are essential for normal embryonic skeletal development is difficult to test and elaborate experimentally in vivo, particularly in humans. Computational modeling has the potential to address this issue by simulating embryonic growth under a range of loading conditions but the potential of such models has yet to be fully exploited. In this article, we review the literature on mechanobiology of limb development in three main sections: (a) experimental alteration of the mechanical environment, (b) mechanical properties of embryonic tissues, and (c) the use of computational models. Then we analyze the main issues, and suggest how experimental and computational fields could work closer together to enhance our understanding of mechanobiology of the embryonic skeleton.

  18. Early embryonic chromosome instability results in stable mosaic pattern in human tissues.

    Directory of Open Access Journals (Sweden)

    Hasmik Mkrtchyan

    Full Text Available The discovery of copy number variations (CNV in the human genome opened new perspectives on the study of the genetic causes of inherited disorders and the aetiology of common diseases. Here, a single-cell-level investigation of CNV in different human tissues led us to uncover the phenomenon of mitotically derived genomic mosaicism, which is stable in different cell types of one individual. The CNV mosaic ratios were different between the 10 individuals studied. However, they were stable in the T lymphocytes, immortalized B lymphoblastoid cells, and skin fibroblasts analyzed in each individual. Because these cell types have a common origin in the connective tissues, we suggest that mitotic changes in CNV regions may happen early during embryonic development and occur only once, after which the stable mosaic ratio is maintained throughout the differentiated tissues. This concept is further supported by a unique study of immortalized B lymphoblastoid cell lines obtained with 20 year difference from two subjects. We provide the first evidence of somatic mosaicism for CNV, with stable variation ratios in different cell types of one individual leading to the hypothesis of early embryonic chromosome instability resulting in stable mosaic pattern in human tissues. This concept has the potential to open new perspectives in personalized genetic diagnostics and can explain genetic phenomena like diminished penetrance in autosomal dominant diseases. We propose that further genomic studies should focus on the single-cell level, to better understand the aetiology of aging and diseases mediated by somatic mutations.

  19. Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure

    NARCIS (Netherlands)

    Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C.; van Meer, Berend; Ward-van Oostwaard, Dorien; Passier, Robert; Tertoolen, Leon G. J.; Mummery, Christine L.; Casini, Simona

    2015-01-01

    One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes

  20. Polycystin-1 promotes PKCα-mediated NF-κB activation in kidney cells

    International Nuclear Information System (INIS)

    Banzi, Manuela; Aguiari, Gianluca; Trimi, Viky; Mangolini, Alessandra; Pinton, Paolo; Witzgall, Ralph; Rizzuto, Rosario; Senno, Laura del

    2006-01-01

    Polycystin-1 (PC1), the PKD1 gene product, is a membrane receptor which regulates many cell functions, including cell proliferation and apoptosis, both typically increased in cyst lining cells in autosomal dominant polycystic kidney disease. Here we show that PC1 upregulates the NF-κB signalling pathway in kidney cells to prevent cell death. Human embryonic kidney cell lines (HEK293 CTT ), stably expressing a PC1 cytoplasmic terminal tail (CTT), presented increased NF-κB nuclear levels and NF-κB-mediated luciferase promoter activity. This, consistently, was reduced in HEK293 cells in which the endogenous PC1 was depleted by RNA interference. CTT-dependent NF-κB promoter activation was mediated by PKCα because it was blocked by its specific inhibitor Ro-320432. Furthermore, it was observed that apoptosis, which was increased in PC1-depleted cells, was reduced in HEK293 CTT cells and in porcine kidney LtTA cells expressing a doxycycline-regulated CTT. Staurosporine, a PKC inhibitor, and parthenolide, a NF-κB inhibitor, significantly reduced the CTT-dependent antiapoptotic effect. These data reveal, therefore, a novel pathway by which polycystin-1 activates a PKCα-mediated NF-κB signalling and cell survival

  1. The periconception maternal cardiovascular risk profile influences human embryonic growth trajectories in IVF/ICSI pregnancies.

    Science.gov (United States)

    Wijnands, K P J; van Uitert, E M; Roeters van Lennep, J E; Koning, A H J; Mulders, A G M G J; Laven, J S E; Steegers, E A P; Steegers-Theunissen, R P M

    2016-06-01

    Is the maternal cardiovascular (CV) risk profile associated with human embryonic growth trajectories and does the mode of conception affect this association? This small study suggests that the maternal CV risk profile is inversely associated with first trimester embryonic growth trajectories in in vitro fertilization (IVF)/intra-cytoplasmic sperm injection (ICSI) pregnancies, but not in spontaneously conceived pregnancies. Maternal high-blood pressure and smoking affect placental function, accompanied by increased risk of fetal growth restriction and low-birthweight. Mothers who experience pregnancies complicated by fetal growth restriction are at increased risk of CV disease in later life. In a prospective periconception birth cohort conducted in a tertiary hospital, 111 singleton ongoing pregnancies with reliable pregnancy dating, no pre-existing maternal disease and no malformed live borns were investigated. Spontaneously conceived pregnancies with a reliable first day of the last menstrual period and a regular menstrual cycle of 25-31 days only (n = 66) and IVF/ICSI pregnancies (n = 45) were included. Women underwent weekly three-dimensional ultrasound scans (3D US) from 6- to 13-week gestational age. To estimate embryonic growth, serial crown-rump length (CRL) measurements were performed using the V-Scope software in a BARCO I-Space. Maternal characteristics and CV risk factors were collected by self-administered questionnaires. The CV risk profile was created based on a score of risk factors, including maternal age, body-mass index, CV disease in the family, diet and smoking. Quartiles of the CV risk score were calculated. Associations between the CV risk score and embryonic growth were assessed using square root transformed CRL in multivariable linear mixed model analyses. From the 111 included pregnancies, 696 3D US data sets were obtained of which 637 (91.5%) CRLs could be measured. In the total group, The CV risk score was inversely, but not significantly

  2. Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK.

    NARCIS (Netherlands)

    Graichen, R.; Xu, X.; Braam, S.R.; Balakrishnan, T.; Norfiza, S.; Sieh, S.; Soo, S.Y.; Tham, S.C.; Mummery, C.L.; Colman, A.; Zweigerdt, R.; Davidson, B.P.

    2008-01-01

    Human embryonic stem cells (hESC) can differentiate to cardiomyocytes in vitro but with generally poor efficiency. Here, we describe a novel method for the efficient generation of cardiomyocytes from hESC in a scalable suspension culture process. Differentiation in serum-free medium conditioned by

  3. Insulin redirects differentiation from cardiogenic mesoderm and endoderm to neuroectoderm in differentiating human embryonic stem cells.

    NARCIS (Netherlands)

    Freund, C.M.A.H.; Ward-van Oostwaard, D.; Monshouwer-Kloots, J.; van den Brink, S.; van Rooijen, M.A.; Xu, X.; Zweigerdt, R.; Mummery, C.L.; Passier, R.

    2008-01-01

    Human embryonic stem cells (hESC) can proliferate indefinitely while retaining the capacity to form derivatives of all three germ layers. We have reported previously that hESC differentiate into cardiomyocytes when cocultured with a visceral endoderm-like cell line (END-2). Insulin/insulin-like

  4. Derivation of NEM2 affected human embryonic stem cell line Genea079

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea079 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying compound heterozygous mutations in the NEB gene, exon 55 deletion & c.15110dupA, indicative of Nemaline Myopathy Type 2 (NEM2. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XY and STR analysis demonstrated a male Allele pattern. The hESC line had pluripotent cell morphology, 86% of cells expressed Nanog, 95% Oct4, 54% Tra1-60 and 98% SSEA4 and gave a PluriTest Pluripotency score of 30.25, Novelty of 1.21. The cell line was negative for Mycoplasma and visible contamination.

  5. Production of human CD59-transgenic pigs by embryonic germ cell nuclear transfer

    International Nuclear Information System (INIS)

    Ahn, Kwang Sung; Won, Ji Young; Park, Jin-Ki; Sorrell, Alice M.; Heo, Soon Young; Kang, Jee Hyun; Woo, Jae-Seok; Choi, Bong-Hwan; Chang, Won-Kyong; Shim, Hosup

    2010-01-01

    Research highlights: → Human CD59 (hCD59) gene was introduced into porcine embryonic germ (EG) cells. → hCD59-transgenic EG cells were resistant to hyperacute rejection in cytolytic assay. → hCD59-transgenic pigs were produced by EG cell nuclear transfer. -- Abstract: This study was performed to produce transgenic pigs expressing the human complement regulatory protein CD59 (hCD59) using the nuclear transfer (NT) of embryonic germ (EG) cells, which are undifferentiated stem cells derived from primordial germ cells. Because EG cells can be cultured indefinitely in an undifferentiated state, they may provide an inexhaustible source of nuclear donor cells for NT to produce transgenic pigs. A total of 1980 NT embryos derived from hCD59-transgenic EG cells were transferred to ten recipients, resulting in the birth of fifteen piglets from three pregnancies. Among these offspring, ten were alive without overt health problems. Based on PCR analysis, all fifteen piglets were confirmed as hCD59 transgenic. The expression of the hCD59 transgene in the ten living piglets was verified by RT-PCR. Western analysis showed the expression of the hCD59 protein in four of the ten RT-PCR-positive piglets. These results demonstrate that hCD59-transgenic pigs could effectively be produced by EG cell NT and that such transgenic pigs may be used as organ donors in pig-to-human xenotransplantation.

  6. Production of human CD59-transgenic pigs by embryonic germ cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kwang Sung; Won, Ji Young [Department of Physiology, Dankook University School of Medicine, Cheonan (Korea, Republic of); Park, Jin-Ki [Animal Biotechnology Division, National Institute of Animal Science, Suwon (Korea, Republic of); Sorrell, Alice M. [Department of Physiology, Dankook University School of Medicine, Cheonan (Korea, Republic of); Heo, Soon Young; Kang, Jee Hyun [Department of Nanobiomedical Science, Dankook University, Cheonan (Korea, Republic of); Woo, Jae-Seok [Animal Biotechnology Division, National Institute of Animal Science, Suwon (Korea, Republic of); Choi, Bong-Hwan [Genomics and Bioinformatics Division, National Institute of Animal Science, Suwon (Korea, Republic of); Chang, Won-Kyong [Animal Biotechnology Division, National Institute of Animal Science, Suwon (Korea, Republic of); Shim, Hosup, E-mail: shim@dku.edu [Department of Nanobiomedical Science, Dankook University, Cheonan (Korea, Republic of); Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of)

    2010-10-01

    Research highlights: {yields} Human CD59 (hCD59) gene was introduced into porcine embryonic germ (EG) cells. {yields} hCD59-transgenic EG cells were resistant to hyperacute rejection in cytolytic assay. {yields} hCD59-transgenic pigs were produced by EG cell nuclear transfer. -- Abstract: This study was performed to produce transgenic pigs expressing the human complement regulatory protein CD59 (hCD59) using the nuclear transfer (NT) of embryonic germ (EG) cells, which are undifferentiated stem cells derived from primordial germ cells. Because EG cells can be cultured indefinitely in an undifferentiated state, they may provide an inexhaustible source of nuclear donor cells for NT to produce transgenic pigs. A total of 1980 NT embryos derived from hCD59-transgenic EG cells were transferred to ten recipients, resulting in the birth of fifteen piglets from three pregnancies. Among these offspring, ten were alive without overt health problems. Based on PCR analysis, all fifteen piglets were confirmed as hCD59 transgenic. The expression of the hCD59 transgene in the ten living piglets was verified by RT-PCR. Western analysis showed the expression of the hCD59 protein in four of the ten RT-PCR-positive piglets. These results demonstrate that hCD59-transgenic pigs could effectively be produced by EG cell NT and that such transgenic pigs may be used as organ donors in pig-to-human xenotransplantation.

  7. Using optical coherence tomography (OCT) to evaluate the status of human donor kidneys (Conference Presentation)

    Science.gov (United States)

    Andrews, Peter M.; Konkel, Brandon; Anderson, Erik; Stein, Matthew; Cooper, Matthew; Verbesey, Jennifer E.; Ghasemian, Seyed; Chen, Yu

    2016-02-01

    The main cause of delayed renal function following the transplant of donor kidneys is ischemic induced acute tubular necrosis (ATN). The ability to determine the degree of ATN suffered by donor kidneys prior to their transplant would enable transplant surgeons to use kidneys that might otherwise be discarded and better predict post-transplant renal function. Currently, there are no reliable tests to determine the extent of ATN of donor kidneys prior to their transplant. In ongoing clinical trials, we have been using optical coherence tomography (OCT) to non-invasively image the superficial proximal tubules of human donor kidneys prior to and following transplant, and correlate these observations with post-transplant renal function. Thus far we have studied over 40 living donor kidneys and 10 cadaver donor kidneys, and demonstrated that this imaging can be performed in a sterile and expeditious fashion in the operating room (OR). Because of many variables associated with a diverse population of donors/recipients and transplant operation parameters, more transplant data must be collected prior to drawing definite conclusions. Nevertheless, our observations have thus far mirrored our previously published laboratory results indicating that damage to the kidney proximal tubules as indicated by tubule swelling is a good measure of post-transplant ATN and delayed graft function. We conclude that OCT is a useful procedure for analyzing human donor kidneys.

  8. Distinct gene expression signatures in human embryonic stem cells differentiated towards definitive endoderm at single-cell level

    DEFF Research Database (Denmark)

    Norrman, Karin; Strömbeck, Anna; Semb, Henrik

    2013-01-01

    for the three activin A based protocols applied. Our data provide novel insights in DE gene expression at the cellular level of in vitro differentiated human embryonic stem cells, and illustrate the power of using single-cell gene expression profiling to study differentiation heterogeneity and to characterize...... of anterior definitive endoderm (DE). Here, we differentiated human embryonic stem cells towards DE using three different activin A based treatments. Differentiation efficiencies were evaluated by gene expression profiling over time at cell population level. A panel of key markers was used to study DE...... formation. Final DE differentiation was also analyzed with immunocytochemistry and single-cell gene expression profiling. We found that cells treated with activin A in combination with sodium butyrate and B27 serum-free supplement medium generated the most mature DE cells. Cell population studies were...

  9. Induction of anchorage-independent growth of human embryonic fibroblasts with a deletion in the short arm of chromosome 11 by human papillomavirus type 16 DNA

    International Nuclear Information System (INIS)

    Smits, H.L.; Raadsheer, E.; Rood, I.; Mehendale, S.; Slater, R.M.; van der Noordaa, J.; Ter Schegget, J.

    1988-01-01

    Human embryonic fibroblasts with a large deletion (11p11.11p15.1) in the short arm of one chromosome 11 (del-11 cells) appeared to be susceptible to transformation by early human papillomavirus type 16 (HPV-16) DNA, whereas diploid human embryonic fibroblasts were not. This difference in susceptibility might be explained by the absence of a tumor suppressor gene located within the deleted part on the short arm of chromosome 11. The presence of abundant viral early-gene transcripts in transformed cells suggests that transformation was induced by an elevated level of an HPV-16 early-gene product(s). The low transcriptional activity of HPV-16 in diploid cells may indicate that cellular genes affect viral transcription. Interruption of the HPV-16 E2 early open reading frame is probably required for high-level HPV-16 early-gene expression driven from the homologous enhancer-promoter region

  10. ROCK inhibitor is not required for embryoid body formation from singularized human embryonic stem cells.

    Science.gov (United States)

    Pettinato, Giuseppe; Vanden Berg-Foels, Wendy S; Zhang, Ning; Wen, Xuejun

    2014-01-01

    We report a technology to form human embryoid bodies (hEBs) from singularized human embryonic stem cells (hESCs) without the use of the p160 rho-associated coiled-coil kinase inhibitor (ROCKi) or centrifugation (spin). hEB formation was tested under four conditions: +ROCKi/+spin, +ROCKi/-spin, -ROCKi/+spin, and -ROCKi/-spin. Cell suspensions of BG01V/hOG and H9 hESC lines were pipetted into non-adherent hydrogel substrates containing defined microwell arrays. hEBs of consistent size and spherical geometry can be formed in each of the four conditions, including the -ROCKi/-spin condition. The hEBs formed under the -ROCKi/-spin condition differentiated to develop the three embryonic germ layers and tissues derived from each of the germ layers. This simplified hEB production technique offers homogeneity in hEB size and shape to support synchronous differentiation, elimination of the ROCKi xeno-factor and rate-limiting centrifugation treatment, and low-cost scalability, which will directly support automated, large-scale production of hEBs and hESC-derived cells needed for clinical, research, or therapeutic applications.

  11. Metaplasia of the parietal layer of Bowman's capsule in the human kidney. Incidence in alcoholic liver disease and hypertension

    OpenAIRE

    Haensly, William E.

    1988-01-01

    This report is the second of two surveys to determine the incidence of metaplasia of Bowman's parietal epithelium in the human kidney. Human kidney sections obtained at autopsy at the Department of Pathology, University of Texas Medical Branch, Galveston, Texas, were examined with the light microscope. The kidneys were fixed in neutral formalin, sectioned at 6 pm and stained with hematoxylin and eosin. Autopsy records were consulted after kidney section exa...

  12. Knockdown of Fanconi anemia genes in human embryonic stem cells reveals early developmental defects in the hematopoietic lineage.

    Science.gov (United States)

    Tulpule, Asmin; Lensch, M William; Miller, Justine D; Austin, Karyn; D'Andrea, Alan; Schlaeger, Thorsten M; Shimamura, Akiko; Daley, George Q

    2010-04-29

    Fanconi anemia (FA) is a genetically heterogeneous, autosomal recessive disorder characterized by pediatric bone marrow failure and congenital anomalies. The effect of FA gene deficiency on hematopoietic development in utero remains poorly described as mouse models of FA do not develop hematopoietic failure and such studies cannot be performed on patients. We have created a human-specific in vitro system to study early hematopoietic development in FA using a lentiviral RNA interference (RNAi) strategy in human embryonic stem cells (hESCs). We show that knockdown of FANCA and FANCD2 in hESCs leads to a reduction in hematopoietic fates and progenitor numbers that can be rescued by FA gene complementation. Our data indicate that hematopoiesis is impaired in FA from the earliest stages of development, suggesting that deficiencies in embryonic hematopoiesis may underlie the progression to bone marrow failure in FA. This work illustrates how hESCs can provide unique insights into human development and further our understanding of genetic disease.

  13. A spatially-averaged mathematical model of kidney branching morphogenesis

    KAUST Repository

    Zubkov, V.S.

    2015-08-01

    © 2015 Published by Elsevier Ltd. Kidney development is initiated by the outgrowth of an epithelial ureteric bud into a population of mesenchymal cells. Reciprocal morphogenetic responses between these two populations generate a highly branched epithelial ureteric tree with the mesenchyme differentiating into nephrons, the functional units of the kidney. While we understand some of the mechanisms involved, current knowledge fails to explain the variability of organ sizes and nephron endowment in mice and humans. Here we present a spatially-averaged mathematical model of kidney morphogenesis in which the growth of the two key populations is described by a system of time-dependant ordinary differential equations. We assume that branching is symmetric and is invoked when the number of epithelial cells per tip reaches a threshold value. This process continues until the number of mesenchymal cells falls below a critical value that triggers cessation of branching. The mathematical model and its predictions are validated against experimentally quantified C57Bl6 mouse embryonic kidneys. Numerical simulations are performed to determine how the final number of branches changes as key system parameters are varied (such as the growth rate of tip cells, mesenchyme cells, or component cell population exit rate). Our results predict that the developing kidney responds differently to loss of cap and tip cells. They also indicate that the final number of kidney branches is less sensitive to changes in the growth rate of the ureteric tip cells than to changes in the growth rate of the mesenchymal cells. By inference, increasing the growth rate of mesenchymal cells should maximise branch number. Our model also provides a framework for predicting the branching outcome when ureteric tip or mesenchyme cells change behaviour in response to different genetic or environmental developmental stresses.

  14. A spatially-averaged mathematical model of kidney branching morphogenesis

    KAUST Repository

    Zubkov, V.S.; Combes, A.N.; Short, K.M.; Lefevre, J.; Hamilton, N.A.; Smyth, I.M.; Little, M.H.; Byrne, H.M.

    2015-01-01

    © 2015 Published by Elsevier Ltd. Kidney development is initiated by the outgrowth of an epithelial ureteric bud into a population of mesenchymal cells. Reciprocal morphogenetic responses between these two populations generate a highly branched epithelial ureteric tree with the mesenchyme differentiating into nephrons, the functional units of the kidney. While we understand some of the mechanisms involved, current knowledge fails to explain the variability of organ sizes and nephron endowment in mice and humans. Here we present a spatially-averaged mathematical model of kidney morphogenesis in which the growth of the two key populations is described by a system of time-dependant ordinary differential equations. We assume that branching is symmetric and is invoked when the number of epithelial cells per tip reaches a threshold value. This process continues until the number of mesenchymal cells falls below a critical value that triggers cessation of branching. The mathematical model and its predictions are validated against experimentally quantified C57Bl6 mouse embryonic kidneys. Numerical simulations are performed to determine how the final number of branches changes as key system parameters are varied (such as the growth rate of tip cells, mesenchyme cells, or component cell population exit rate). Our results predict that the developing kidney responds differently to loss of cap and tip cells. They also indicate that the final number of kidney branches is less sensitive to changes in the growth rate of the ureteric tip cells than to changes in the growth rate of the mesenchymal cells. By inference, increasing the growth rate of mesenchymal cells should maximise branch number. Our model also provides a framework for predicting the branching outcome when ureteric tip or mesenchyme cells change behaviour in response to different genetic or environmental developmental stresses.

  15. Human Embryonic Stem Cells: A Model for the Study of Neural Development and Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Piya Prajumwongs

    2016-01-01

    Full Text Available Although the mechanism of neurogenesis has been well documented in other organisms, there might be fundamental differences between human and those species referring to species-specific context. Based on principles learned from other systems, it is found that the signaling pathways required for neural induction and specification of human embryonic stem cells (hESCs recapitulated those in the early embryo development in vivo at certain degree. This underscores the usefulness of hESCs in understanding early human neural development and reinforces the need to integrate the principles of developmental biology and hESC biology for an efficient neural differentiation.

  16. Application of response surface methodology to maximize the productivity of scalable automated human embryonic stem cell manufacture.

    Science.gov (United States)

    Ratcliffe, Elizabeth; Hourd, Paul; Guijarro-Leach, Juan; Rayment, Erin; Williams, David J; Thomas, Robert J

    2013-01-01

    Commercial regenerative medicine will require large quantities of clinical-specification human cells. The cost and quality of manufacture is notoriously difficult to control due to highly complex processes with poorly defined tolerances. As a step to overcome this, we aimed to demonstrate the use of 'quality-by-design' tools to define the operating space for economic passage of a scalable human embryonic stem cell production method with minimal cell loss. Design of experiments response surface methodology was applied to generate empirical models to predict optimal operating conditions for a unit of manufacture of a previously developed automatable and scalable human embryonic stem cell production method. Two models were defined to predict cell yield and cell recovery rate postpassage, in terms of the predictor variables of media volume, cell seeding density, media exchange and length of passage. Predicted operating conditions for maximized productivity were successfully validated. Such 'quality-by-design' type approaches to process design and optimization will be essential to reduce the risk of product failure and patient harm, and to build regulatory confidence in cell therapy manufacturing processes.

  17. Human Urine-Derived Renal Progenitors for Personalized Modeling of Genetic Kidney Disorders.

    Science.gov (United States)

    Lazzeri, Elena; Ronconi, Elisa; Angelotti, Maria Lucia; Peired, Anna; Mazzinghi, Benedetta; Becherucci, Francesca; Conti, Sara; Sansavini, Giulia; Sisti, Alessandro; Ravaglia, Fiammetta; Lombardi, Duccio; Provenzano, Aldesia; Manonelles, Anna; Cruzado, Josep M; Giglio, Sabrina; Roperto, Rosa Maria; Materassi, Marco; Lasagni, Laura; Romagnani, Paola

    2015-08-01

    The critical role of genetic and epigenetic factors in the pathogenesis of kidney disorders is gradually becoming clear, and the need for disease models that recapitulate human kidney disorders in a personalized manner is paramount. In this study, we describe a method to select and amplify renal progenitor cultures from the urine of patients with kidney disorders. Urine-derived human renal progenitors exhibited phenotype and functional properties identical to those purified from kidney tissue, including the capacity to differentiate into tubular cells and podocytes, as demonstrated by confocal microscopy, Western blot analysis of podocyte-specific proteins, and scanning electron microscopy. Lineage tracing studies performed with conditional transgenic mice, in which podocytes are irreversibly tagged upon tamoxifen treatment (NPHS2.iCreER;mT/mG), that were subjected to doxorubicin nephropathy demonstrated that renal progenitors are the only urinary cell population that can be amplified in long-term culture. To validate the use of these cells for personalized modeling of kidney disorders, renal progenitors were obtained from (1) the urine of children with nephrotic syndrome and carrying potentially pathogenic mutations in genes encoding for podocyte proteins and (2) the urine of children without genetic alterations, as validated by next-generation sequencing. Renal progenitors obtained from patients carrying pathogenic mutations generated podocytes that exhibited an abnormal cytoskeleton structure and functional abnormalities compared with those obtained from patients with proteinuria but without genetic mutations. The results of this study demonstrate that urine-derived patient-specific renal progenitor cultures may be an innovative research tool for modeling of genetic kidney disorders. Copyright © 2015 by the American Society of Nephrology.

  18. Embryonic development of human lice: rearing conditions and susceptibility to spinosad

    Directory of Open Access Journals (Sweden)

    Gastón Mougabure Cueto

    2006-05-01

    Full Text Available The embryonic development of human lice was evaluated according to the changes in the morphology of the embryo observed through the transparent chorion. Based on ocular and appendage development, three stages of embryogenesis were established: early, medium, and late. Influence of temperature and relative humidity (RH on the laboratory rearing of Pediculus humanus capitis eggs was assessed. The optimal ranges for temperature and RH were 27-31°C and 45-75%. The susceptibility of human louse eggs to insecticide spinosad (a macrocyclic lactone was assessed by immersion method. The results showed similar susceptibility to spinosad in early, medium, and late stages of head lice eggs. In addition, this study showed similar susceptibility of head and body lice eggs to spinosad, an insecticide that has not been used as pediculicide in Argentina (lethal concentration 50: 0.01%.

  19. Derivation and characterization of the NYSCFe003-A human embryonic stem cell line

    Directory of Open Access Journals (Sweden)

    Ana Sevilla

    2017-12-01

    Full Text Available The human embryonic stem cell line NYSCFe003-A was derived from a day 5 to day 6 blastocyst in feeder-free and antibiotic free conditions. The blastocyst was voluntarily donated for research as surplus after in vitro fertilization treatment following informed consent. The NYSCFe003-A line expresses all the pluripotency markers and has the potential to differentiate into all three germ layers in vitro. The line presents normal karyotype and is mycoplasma free.

  20. Rat embryonic fibroblasts improve reprogramming of human keratinocytes into induced pluripotent stem cells.

    Science.gov (United States)

    Linta, Leonhard; Stockmann, Marianne; Kleinhans, Karin N; Böckers, Anja; Storch, Alexander; Zaehres, Holm; Lin, Qiong; Barbi, Gotthold; Böckers, Tobias M; Kleger, Alexander; Liebau, Stefan

    2012-04-10

    Patient-specific human induced pluripotent stem (hiPS) cells not only provide a promising tool for cellular disease models in general, but also open up the opportunity to establish cell-type-specific systems for personalized medicine. One of the crucial prerequisites for these strategies, however, is a fast and efficient reprogramming strategy from easy accessible somatic cell populations. Keratinocytes from plucked human hair had been introduced as a superior cell source for reprogramming purposes compared with the widely used skin fibroblasts. The starting cell population is, however, limited and thereby further optimization in terms of time, efficiency, and quality is inevitable. Here we show that rat embryonic fibroblasts (REFs) should replace mouse embryonic fibroblasts as feeder cells in the reprogramming process. REFs enable a significantly more efficient reprogramming procedure as shown by colony number and total amount of SSEA4-positive cells. We successfully produced keratinocyte-derived hiPS (k-hiPS) cells from various donors. The arising k-hiPS cells display the hallmarks of pluripotency such as expression of stem cell markers and differentiation into all 3 germ layers. The increased reprogramming efficiency using REFs as a feeder layer occurred independent of the proliferation rate in the parental keratinocytes and acts, at least in part, in a non-cell autonomous way by secreting factors known to facilitate pluripotency such as Tgfb1, Inhba and Grem1. Hence, we provide an easy to use and highly efficient reprogramming system that could be very useful for a broad application to generate human iPS cells. © Mary Ann Liebert, Inc.

  1. Case Study: Organotypic human in vitro models of embryonic morphogenetic fusion

    Science.gov (United States)

    Morphogenetic fusion of tissues is a common event in embryonic development and disruption of fusion is associated with birth defects of the eye, heart, neural tube, phallus, palate, and other organ systems. Embryonic tissue fusion requires precise regulation of cell-cell and cell...

  2. YKL-40 is differentially expressed in human embryonic stem cells and in cell progeny of the three germ layers

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Johansen, Julia S; Larsen, Lars A

    2012-01-01

    oxygen tension, in culture medium with or without basic fibroblast growth factor, and on feeder layers comprising mouse embryonic fibroblasts or human foreskin fibroblasts to evaluate whether hESCs and their progeny produced YKL-40 and to characterize YKL-40 expression during differentiation. Secreted......The secreted glycoprotein YKL-40 participates in cell differentiation, inflammation, and cancer progression. High YKL-40 expression is reported during early human development, but its functions are unknown. Six human embryonic stem cell (hESC) lines were cultured in an atmosphere of low or high...... YKL-40 protein and YKL-40 mRNA expression were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative RT-PCR. Serial-sectioned colonies were stained for YKL-40 protein and for pluripotent hESC (OCT4, NANOG) and germ layer (HNF-3ß, PDX1, CD34, p63, nestin, PAX6) markers. Double...

  3. PTBP1 is required for embryonic development before gastrulation.

    Science.gov (United States)

    Suckale, Jakob; Wendling, Olivia; Masjkur, Jimmy; Jäger, Melanie; Münster, Carla; Anastassiadis, Konstantinos; Stewart, A Francis; Solimena, Michele

    2011-02-17

    Polypyrimidine-tract binding protein 1 (PTBP1) is an important cellular regulator of messenger RNAs influencing the alternative splicing profile of a cell as well as its mRNA stability, location and translation. In addition, it is diverted by some viruses to facilitate their replication. Here, we used a novel PTBP1 knockout mouse to analyse the tissue expression pattern of PTBP1 as well as the effect of its complete removal during development. We found evidence of strong PTBP1 expression in embryonic stem cells and throughout embryonic development, especially in the developing brain and spinal cord, the olfactory and auditory systems, the heart, the liver, the kidney, the brown fat and cartilage primordia. This widespread distribution points towards a role of PTBP1 during embryonic development. Homozygous offspring, identified by PCR and immunofluorescence, were able to implant but were arrested or retarded in growth. At day 7.5 of embryonic development (E7.5) the null mutants were about 5x smaller than the control littermates and the gap in body size widened with time. At mid-gestation, all homozygous embryos were resorbed/degraded. No homozygous mice were genotyped at E12 and the age of weaning. Embryos lacking PTBP1 did not display differentiation into the 3 germ layers and cavitation of the epiblast, which are hallmarks of gastrulation. In addition, homozygous mutants displayed malformed ectoplacental cones and yolk sacs, both early supportive structure of the embryo proper. We conclude that PTBP1 is not required for the earliest isovolumetric divisions and differentiation steps of the zygote up to the formation of the blastocyst. However, further post-implantation development requires PTBP1 and stalls in homozygous null animals with a phenotype of dramatically reduced size and aberration in embryonic and extra-embryonic structures.

  4. Teratoma Formation by Human Embryonic Stem Cells is site-dependent and enhanced by the presence of Matrigel

    DEFF Research Database (Denmark)

    Prokhorova, Tatyana A; Harkness, Linda M; Frandsen, Ulrik

    2008-01-01

    When implanted into immunodeficient mice, human embryonic stem cells (hESC) give rise to teratoma, tumour-like formations containing tissues belonging to all three germ layers. The ability to form teratoma is a sine qua non characteristic of pluripotent stem cells. However, limited data...

  5. Generation of Functional Thymic Epithelium from Human Embryonic Stem Cells that Supports Host T Cell Development

    OpenAIRE

    Parent, Audrey V.; Russ, Holger A.; Khan, Imran S.; LaFlam, Taylor N.; Metzger, Todd C.; Anderson, Mark S.; Hebrok, Matthias

    2013-01-01

    Inducing immune tolerance to prevent rejection is a key step toward successful engraftment of stem-cell-derived tissue in a clinical setting. Using human pluripotent stem cells to generate thymic epithelial cells (TECs) capable of supporting T cell development represents a promising approach to reach this goal; however, progress toward generating functional TECs has been limited. Here, we describe a robust in vitro method to direct differentiation of human embryonic stem cells (hESCs) into th...

  6. Bioenergetic Changes during Differentiation of Human Embryonic Stem Cells along the Hepatic Lineage

    DEFF Research Database (Denmark)

    Hopkinson, Branden M; Madsen, Claus Desler; Kalisz, Mark

    2017-01-01

    Mitochondrial dysfunction has been demonstrated to result in premature aging due to its effects on stem cells. Nevertheless, a full understanding of the role of mitochondrial bioenergetics through differentiation is still lacking. Here we show the bioenergetics profile of human stem cells...... of embryonic origin differentiating along the hepatic lineage. Our study reveals especially the transition between hepatic specification and hepatic maturation as dependent on mitochondrial respiration and demonstrates that even though differentiating cells are primarily dependent on glycolysis until induction...

  7. Plasticity of Calcium Signaling Cascades in Human Embryonic Stem Cell-Derived Neural Precursors

    Czech Academy of Sciences Publication Activity Database

    Forostyak, Oksana; Romanyuk, Nataliya; Verkhratsky, A.; Syková, Eva; Dayanithi, Govindan

    2013-01-01

    Roč. 22, č. 10 (2013), s. 1506-1521 ISSN 1547-3287 R&D Projects: GA ČR GAP304/11/2373; GA ČR(CZ) GBP304/12/G069 Grant - others:FP7(XE) PITN-GA-2008-214003 project AXREGEN; FP7(XE) PITN-GA-2009-237956 project EdU-GLIA Institutional support: RVO:68378041 Keywords : human embryonic stem cells * voltage-operated Ca2+ channels * spontaneous Ca2+ oscillations Subject RIV: FH - Neurology Impact factor: 4.202, year: 2013

  8. GROα regulates human embryonic stem cell self-renewal or adoption of a neuronal fate

    Science.gov (United States)

    Krtolica, Ana; Larocque, Nick; Genbacev, Olga; Ilic, Dusko; Coppe, Jean-Philippe; Patil, Christopher K.; Zdravkovic, Tamara; McMaster, Michael; Campisi, Judith; Fisher, Susan J.

    2012-01-01

    Previously we reported that feeders formed from human placental fibroblasts (hPFs) support derivation and long-term self-renewal of human embryonic stem cells (hESCs) under serum-free conditions. Here, we show, using antibody array and ELISA platforms, that hPFs secrete ~6-fold higher amounts of the CXC-type chemokine, GROα, than IMR 90, a human lung fibroblast line, which does not support hESC growth. Furthermore, immunocytochemistry and immunoblot approaches revealed that hESCs express CXCR, a GROα receptor. We used this information to develop defined culture medium for feeder-free propagation of hESCs in an undifferentiated state. Cells passaged as small aggregates and maintained in the GROα-containing medium had a normal karyotype, expressed pluripotency markers, and exhibited apical–basal polarity, i.e., had the defining features of pluripotent hESCs. They also differentiated into the three primary (embryonic) germ layers and formed teratomas in immunocompromised mice. hESCs cultured as single cells in the GROα-containing medium also had a normal karyotype, but they downregulated markers of pluripotency, lost apical–basal polarity, and expressed markers that are indicative of the early stages of neuronal differentiation—βIII tubulin, vimentin, radial glial protein, and nestin. These data support our hypothesis that establishing and maintaining cell polarity is essential for the long-term propagation of hESCs in an undifferentiated state and that disruption of cell–cell contacts can trigger adoption of a neuronal fate. PMID:21396766

  9. Interkinetic nuclear migration in the mouse embryonic ureteric epithelium: Possible implication for congenital anomalies of the kidney and urinary tract.

    Science.gov (United States)

    Motoya, Tomoyuki; Ogawa, Noriko; Nitta, Tetsuya; Rafiq, Ashiq Mahmood; Jahan, Esrat; Furuya, Motohide; Matsumoto, Akihiro; Udagawa, Jun; Otani, Hiroki

    2016-05-01

    Interkinetic nuclear migration (INM) is a phenomenon in which progenitor cell nuclei migrate along the apico-basal axis of the pseudostratified epithelium, which is characterized by the presence of apical primary cilia, in synchrony with the cell cycle in a manner of apical mitosis. INM is suggested to regulate not only stem/progenitor cell proliferation/differentiation but also organ size and shape. INM has been reported in epithelia of both ectoderm and endoderm origin. We examined whether INM exists in the mesoderm-derived ureteric epithelium. At embryonic day (E) 11.5, E12.5 and E13.5, C57BL/6J mouse dams were injected with 5-bromo-2'-deoxyuridine (BrdU) and embryos were killed 1, 2, 4, 6, 8, 10 and 12 h later. We immunostained transverse sections of the ureter for BrdU, and measured the position of BrdU (+) nuclei in the ureteric epithelia along the apico-basal axis at each time point. We analyzed the distribution patterns of BrdU (+) nuclei in histograms using the multidimensional scaling. Changes in the nucleus distribution patterns suggested nucleus movement characteristic of INM in the ureteric epithelia, and the mode of INM varied throughout the ureter development. While apical primary cilia are related with INM by providing a centrosome for the apical mitosis, congenital anomalies of the kidney and urinary tract (CAKUT) include syndromes linked to primary ciliary dysfunction affecting epithelial tubular organs such as kidney, ureter, and brain. The present study showed that INM exists in the ureteric epithelium and suggests that INM may be related with the CAKUT etiology via primary ciliary protein function. © 2015 Japanese Teratology Society.

  10. Measurement of uranium in human teeth and kidney stones with the fission track technique

    International Nuclear Information System (INIS)

    Vartanian, R.

    1986-01-01

    The measurement of uranium in human teeth and in kidney stones was carried out using the fission track activation technique. In this determination 2759 and 2205 absolute counts of tracks for teeth samples and 1689 tracks for kidney stone samples were performed, respectively. The results are as follows: xsub(tooth) (1)=(0.227+-0.006) ppm, xsub(tooth) (2)=(0.143+-0.007) ppm and xsub(kidney)=(0.568+-0.020) ppm. The experimental method is described and the results are discussed. (author)

  11. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B)

    Energy Technology Data Exchange (ETDEWEB)

    Duangtum, Natapol [Medical Molecular Biology Unit, Office for Research and Development Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Junking, Mutita; Sawasdee, Nunghathai [Medical Molecular Biology Unit, Office for Research and Development Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Cheunsuchon, Boonyarit [Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Limjindaporn, Thawornchai, E-mail: limjindaporn@yahoo.com [Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Yenchitsomanus, Pa-thai, E-mail: grpye@mahidol.ac.th [Medical Molecular Biology Unit, Office for Research and Development Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand)

    2011-09-16

    Highlights: {yields} Impaired trafficking of kAE1 causes distal renal tubular acidosis (dRTA). {yields} The interaction between kAE1 and kinesin family member 3B (KIF3B) is reported. {yields} The co-localization between kAE and KIF3B was detected in human kidney tissues. {yields} A marked reduction of kAE1 on the cell membrane was observed when KIF3B was knockdown. {yields} KFI3B plays an important role in trafficking of kAE1 to the plasma membrane. -- Abstract: Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of {alpha}-intercalated cells of the kidney collecting duct leads to the defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange and the failure of proton (H{sup +}) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney {alpha}-intercalated cells.

  12. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B)

    International Nuclear Information System (INIS)

    Duangtum, Natapol; Junking, Mutita; Sawasdee, Nunghathai; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2011-01-01

    Highlights: → Impaired trafficking of kAE1 causes distal renal tubular acidosis (dRTA). → The interaction between kAE1 and kinesin family member 3B (KIF3B) is reported. → The co-localization between kAE and KIF3B was detected in human kidney tissues. → A marked reduction of kAE1 on the cell membrane was observed when KIF3B was knockdown. → KFI3B plays an important role in trafficking of kAE1 to the plasma membrane. -- Abstract: Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of α-intercalated cells of the kidney collecting duct leads to the defect of the Cl - /HCO 3 - exchange and the failure of proton (H + ) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney α-intercalated cells.

  13. Alternative splicing events identified in human embryonic stem cells and neural progenitors.

    Directory of Open Access Journals (Sweden)

    Gene W Yeo

    2007-10-01

    Full Text Available Human embryonic stem cells (hESCs and neural progenitor (NP cells are excellent models for recapitulating early neuronal development in vitro, and are key to establishing strategies for the treatment of degenerative disorders. While much effort had been undertaken to analyze transcriptional and epigenetic differences during the transition of hESC to NP, very little work has been performed to understand post-transcriptional changes during neuronal differentiation. Alternative RNA splicing (AS, a major form of post-transcriptional gene regulation, is important in mammalian development and neuronal function. Human ESC, hESC-derived NP, and human central nervous system stem cells were compared using Affymetrix exon arrays. We introduced an outlier detection approach, REAP (Regression-based Exon Array Protocol, to identify 1,737 internal exons that are predicted to undergo AS in NP compared to hESC. Experimental validation of REAP-predicted AS events indicated a threshold-dependent sensitivity ranging from 56% to 69%, at a specificity of 77% to 96%. REAP predictions significantly overlapped sets of alternative events identified using expressed sequence tags and evolutionarily conserved AS events. Our results also reveal that focusing on differentially expressed genes between hESC and NP will overlook 14% of potential AS genes. In addition, we found that REAP predictions are enriched in genes encoding serine/threonine kinase and helicase activities. An example is a REAP-predicted alternative exon in the SLK (serine/threonine kinase 2 gene that is differentially included in hESC, but skipped in NP as well as in other differentiated tissues. Lastly, comparative sequence analysis revealed conserved intronic cis-regulatory elements such as the FOX1/2 binding site GCAUG as being proximal to candidate AS exons, suggesting that FOX1/2 may participate in the regulation of AS in NP and hESC. In summary, a new methodology for exon array analysis was introduced

  14. Two human homeobox genes, c1 and c8: structure analysis and expression in embryonic development.

    Science.gov (United States)

    Simeone, A; Mavilio, F; Acampora, D; Giampaolo, A; Faiella, A; Zappavigna, V; D'Esposito, M; Pannese, M; Russo, G; Boncinelli, E

    1987-07-01

    Two human cDNA clones (HHO.c1.95 and HHO.c8.5111) containing a homeobox region have been characterized, and the respective genomic regions have been partially analyzed. Expression of the corresponding genes, termed c1 and c8, was evaluated in different organs and body parts during human embryonic/fetal development. HHO.c1.95 apparently encodes a 217-amino acid protein containing a class I homeodomain that shares 60 out of 61 amino acid residues with the Antennapedia homeodomain of Drosophila melanogaster. HHO.c8.5111 encodes a 153-amino acid protein containing a homeodomain identical to that of the frog AC1 gene. Clones HHO.c1 and HHO.c8 detect by blot-hydridization one and two specific polyadenylylated transcripts, respectively. These are differentially expressed in spinal cord, backbone rudiments, limb buds (or limbs), heart, and skin of human embryos and early fetuses in the 5- to 9-week postfertilization period, thus suggesting that the c1 and c8 genes play a key role in a variety of developmental processes. Together, the results of the embryonic/fetal expression of c1 and c8 and those of two previously analyzed genes (c10 and c13) indicate a coherent pattern of expression of these genes in early human ontogeny.

  15. Two human homeobox genes, c1 and c8: structure analysis and expression in embryonic development

    International Nuclear Information System (INIS)

    Simeone, A.; Mavilio, F.; Acampora, D.

    1987-01-01

    Two human cDNA clones (HHO.c1.95 and HHO.c8.5111) containing a homeobox region have been characterized, and the respective genomic regions have been partially analyzed. Expression of the corresponding genes, termed c1 and c8, was evaluated in different organs and body parts during human embryonic/fetal development. HHO.c1.95 apparently encodes a 217-amino acid protein containing a class I homeodomain that shares 60 out of 61 amino acid residues with the Antennapedia homeodomain of Drosophila melanogaster. HHO.c8.5111 encodes a 153-amino acid protein containing a homeodomains identical to that of the frog AC1 gene. Clones HHO.c1 and HHO.c8 detect by blot-hybridization one and two specific polyadenylylated transcripts, respectively. These are differentially expressed in spinal cord, backbone rudiments, limb buds (or limbs), heart, and skin of human embryos and early fetuses in the 5- to 9-week postfertilization period, thus suggesting that the c1 and c8 genes play a key role in a variety of developmental processes. Together, the results of the embryonic/fetal expression of c1 and c8 and those of two previously analyzed genes (c10 and c13) indicate a coherent pattern of expression of these genes in early human ontogeny

  16. Generation of megakaryocytic progenitors from human embryonic stem cells in a feeder- and serum-free medium.

    Directory of Open Access Journals (Sweden)

    Marjorie Pick

    Full Text Available BACKGROUND: The production of human platelets from embryonic stem cells in a defined culture system is a prerequisite for the generation of platelets for therapeutic use. As an important step towards this goal, we report the differentiation of human embryonic stem cells (hESCs towards the megakaryocyte (Mk lineage using a 'spin embryoid body' method in serum-free differentiation medium. METHODOLOGY AND PRINCIPAL FINDINGS: Immunophenotypic analyses of differentiating hESC identified a subpopulation of cells expressing high levels of CD41a that expressed other markers associated with the Mk lineage, including CD110, CD42b and CD61. Differentiated cells were sorted on the basis of their expression of CD41a, CD34 and CD45 and assessed for Mk colony formation, expression of myeloid and Mk genes and ability to endoreplicate DNA. In a collagen-based colony assay, the CD41a⁺ cells sorted from these differentiation cultures produced 100-800 Mk progenitors at day 13 and 25-160 Mk progenitors at day 20 of differentiation per 100,000 cells assayed. Differentiated Mk cells produced platelet-like particles which expressed CD42b and were activated by ADP, similar to platelets generated from precursors in cord blood. These studies were complemented by real time PCR analyses showing that subsets of cells enriched for CD41a⁺ Mk precursors expressed high levels of Mk associated genes such as PF4 and MPL. Conversely, high levels of myeloid and erythroid related transcripts, such as GATA1, TAL1/SCL and PU.1, were detected in sorted fractions containing CD34⁺ and CD45⁺ cells. CONCLUSIONS: We describe a serum- and feeder-free culture system that enabled the generation of Mk progenitors from human embryonic stem cells. These cells formed colonies that included differentiated Mks that fragmented to form platelet-like particles. This protocol represents an important step towards the generation of human platelets for therapeutic use.

  17. Three-Dimensional Culture of Human Embryonic Stem Cell Derived Hepatic Endoderm and Its Role in Bioartificial Liver Construction

    Directory of Open Access Journals (Sweden)

    Ruchi Sharma

    2010-01-01

    Full Text Available The liver carries out a range of functions essential for bodily homeostasis. The impairment of liver functions has serious implications and is responsible for high rates of patient morbidity and mortality. Presently, liver transplantation remains the only effective treatment, but donor availability is a major limitation. Therefore, artificial and bioartificial liver devices have been developed to bridge patients to liver transplantation. Existing support devices improve hepatic encephalopathy to a certain extent; however their usage is associated with side effects. The major hindrance in the development of bioartificial liver devices and cellular therapies is the limited availability of human hepatocytes. Moreover, primary hepatocytes are difficult to maintain and lose hepatic identity and function over time even with sophisticated tissue culture media. To overcome this limitation, renewable cell sources are being explored. Human embryonic stem cells are one such cellular resource and have been shown to generate a reliable and reproducible supply of human hepatic endoderm. Therefore, the use of human embryonic stem cell-derived hepatic endoderm in combination with tissue engineering has the potential to pave the way for the development of novel bioartificial liver devices and predictive drug toxicity assays.

  18. Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics

    Science.gov (United States)

    Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast™ chemical screening and prioritization research project. Metabolites from hES cultur...

  19. Regional differences in expression of specific markers for human embryonic stem cells

    DEFF Research Database (Denmark)

    Laursen, Steen B; Møllgård, Kjeld; Olesen, Christian

    2007-01-01

    Characterization of human embryonic stem cell (hESC) lines derived from the inner cell masses of blastocysts generally includes expression analysis of markers such as OCT4, NANOG, SSEA3, SSEA4, TRA-1-60 and TRA-1-81. Expression is usually detected by immunocytochemical staining of entire colonies...... of hESC, using one colony for each individual marker. Four newly established hESC lines showed the expected expression pattern and were capable of differentiating into the three germ layers in vitro. Neighbouring sections of entire colonies grown for 4, 11, 21 and 28 days respectively were stained...

  20. Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells

    International Nuclear Information System (INIS)

    Miyazaki, Takamichi; Futaki, Sugiko; Hasegawa, Kouichi; Kawasaki, Miwa; Sanzen, Noriko; Hayashi, Maria; Kawase, Eihachiro; Sekiguchi, Kiyotoshi; Nakatsuji, Norio; Suemori, Hirofumi

    2008-01-01

    Human embryonic stem cells (hESCs) are thought to be a promising cell source for cell transplantation therapy. For such a clinical application, the hESCs should be manipulated using appropriate and qualified materials. In this study, we examined the efficacy of recombinant human laminin (rhLM) isoforms on the undifferentiated growth of hESCs. We first determined the major integrins expressed on the hESCs to reveal the preference of the hESCs for rhLMs, and found that the hESCs mainly expressed integrin α6β1, which binds predominantly to laminin-111, -332 and -511/-521. When the hESCs were seeded onto rhLMs, the cells indeed adhered markedly to rhLM-332, and to rhLM-511 and rhLM-111 to a lesser extent. The hESCs proliferated on these three rhLMs for several passages while preserving their pluripotency. These results show that rhLM-111, -332, and -511 are good substrates to expand undifferentiated hESCs due to their high affinity to integrin α6β1 expressed on hESCs

  1. The Use of Starfish in the Regenaration of Human Kidney. Fact or Fiction?

    Directory of Open Access Journals (Sweden)

    Mehdi Mahmudpour

    2016-11-01

    Full Text Available With performing the first kidney transplantations in 1950s and 1960s, medical science hopes were raised to find out proper ways for treatment of End Stage Renal Disease or dialysis patients. But regarding to immunologic bases of transplantation and the use of immunosuppressant medicines and their side effects, patients may encounter to severe and inevitable side effects that sometimes may even lead to death. Therefore, in recent years, medical sciences in convergence with technology, pursue a new kind of approach so called "regenerative medicine"; however this method has its own challenges and complexities. But regarding to potential regenerative abilities of aquatic animals such as starfish, it may be possible to overcome on some of these challenges. The results of recent studies on evolutionary processes of human kidney and development and regeneration in starfish and, and presence of path and common cytokines among these processes proves this claim. This article presents some evidences that imply on practical usage of starfish in human kidney regeneration.

  2. Subretinal Implantation of Retinal Pigment Epithelial Cells Derived From Human Embryonic Stem Cells: Improved Survival When Implanted as a Monolayer

    Science.gov (United States)

    Diniz, Bruno; Thomas, Padmaja; Thomas, Biju; Ribeiro, Ramiro; Hu, Yuntao; Brant, Rodrigo; Ahuja, Ashish; Zhu, Danhong; Liu, Laura; Koss, Michael; Maia, Mauricio; Chader, Gerald; Hinton, David R.; Humayun, Mark S.

    2013-01-01

    Purpose. To evaluate cell survival and tumorigenicity of human embryonic stem cell–derived retinal pigment epithelium (hESC-RPE) transplantation in immunocompromised nude rats. Cells were transplanted as a cell suspension (CS) or as a polarized monolayer plated on a parylene membrane (PM). Methods. Sixty-nine rats (38 male, 31 female) were surgically implanted with CS (n = 33) or PM (n = 36). Cohort subsets were killed at 1, 6, and 12 months after surgery. Both ocular tissues and systemic organs (brain, liver, kidneys, spleen, heart, and lungs) were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned. Every fifth section was stained with hematoxylin and eosin and analyzed histologically. Adjacent sections were processed for immunohistochemical analysis (as needed) using the following antibodies: anti-RPE65 (RPE-specific marker), anti-TRA-1-85 (human cell marker), anti-Ki67 (proliferation marker), anti-CD68 (macrophage), and anti-cytokeratin (epithelial marker). Results. The implanted cells were immunopositive for the RPE65 and TRA-1-85. Cell survival (P = 0.006) and the presence of a monolayer (P < 0.001) of hESC-RPE were significantly higher in eyes that received the PM. Gross morphological and histological analysis of the eye and the systemic organs after the surgery revealed no evidence of tumor or ectopic tissue formation in either group. Conclusions. hESC-RPE can survive for at least 12 months in an immunocompromised animal model. Polarized monolayers of hESC-RPE show improved survival compared to cell suspensions. The lack of teratoma or any ectopic tissue formation in the implanted rats bodes well for similar results with respect to safety in human subjects. PMID:23833067

  3. Model experiment of in vivo synchrotron X-ray diffraction of human kidney stones

    Energy Technology Data Exchange (ETDEWEB)

    Ancharov, A.I. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, Novosibirsk (Russian Federation)]. E-mail: ancharov@mail.ru; Potapov, S.S. [Institute of Mineralogy UB RAS, Miass (Russian Federation); Moiseenko, T.N. [The State Regional Clinical Hospital, Novosibirsk (Russian Federation); Feofilov, I.V. [The State Regional Clinical Hospital, Novosibirsk (Russian Federation); Nizovskii, A.I. [Boreskov Institute of Catalysis SB RAS, Novosibirsk (Russian Federation)

    2007-05-21

    The diffraction of synchrotron radiation (SR) was used to explore the phase composition of kidney stones placed into a specific object phantom, which imitated the human body. As an imitation of the patient breath, the kidney stone was moved vertically and rotated to an angle of 15{sup o} during the recording of the X-ray pattern. It was shown that rotation and displacement did not distort the X-ray pattern.

  4. Model experiment of in vivo synchrotron X-ray diffraction of human kidney stones

    International Nuclear Information System (INIS)

    Ancharov, A.I.; Potapov, S.S.; Moiseenko, T.N.; Feofilov, I.V.; Nizovskii, A.I.

    2007-01-01

    The diffraction of synchrotron radiation (SR) was used to explore the phase composition of kidney stones placed into a specific object phantom, which imitated the human body. As an imitation of the patient breath, the kidney stone was moved vertically and rotated to an angle of 15 o during the recording of the X-ray pattern. It was shown that rotation and displacement did not distort the X-ray pattern

  5. Inconsistent formation and nonfunction of insulin-positive cells from pancreatic endoderm derived from human embryonic stem cells in athymic nude rats

    OpenAIRE

    Matveyenko, Aleksey V.; Georgia, Senta; Bhushan, Anil; Butler, Peter C.

    2010-01-01

    Embryonic stem cell therapy has been proposed as a therapeutic strategy to restore β-cell mass and function in T1DM. Recently, a group from Novocell (now ViaCyte) reported successful development of glucose-responsive islet-like structures after implantation of pancreatic endoderm (PE) derived from human embryonic stem cells (hESC) into immune-deficient mice. Our objective was to determine whether implantation of hESC-derived pancreatic endoderm from Novocell into athymic nude rats results in ...

  6. Derivation and characterization of human embryonic stem cell lines from the Chinese population

    Institute of Scientific and Technical Information of China (English)

    Zhao Wu; Huimin Dai; Lei Qian; Qing Tian; Lei Xiao; Xiaojun Tan; Hui Li; Lingjun Rao; Lixiazi He; Lei Bao; Jing Liao; Chun Cui; Zhenyu Zuo; Qiao Li

    2011-01-01

    Human embryonic stem cells (hESCs) can self-renew indefinitely and differentiate into all cell types in the human body. Therefore, they are valuable in regenerative medicine, human developmental biology and drug discovery. A number of hESC lines have been derived from the Chinese population,but limited of them are available for research purposes. Here we report the derivation and characterization of two hESC lines derived from human blastocysts of Chinese origin. These hESCs express alkaline phosphatase and hESC-specific markers, including Oct4, Nanog, SSEA-3, SSEA-4,TRA-1-60 and TRA-1-81. They also have high levels of telomerase activity and normal karyotypes. These cells can form embryoid body in vitro and can be differentiated into all three germ layers in vivo by teratoma formation. The newly established hESCs will be distributed for research purposes.The availability of hESC lines from the Chinese population will facilitate studies on the differences in hESCs from different ethnic groups.

  7. Poly(trimethylene carbonate) as an elastic biodegradable film for human embryonic stem cell-derived retinal pigment epithelial cells

    NARCIS (Netherlands)

    Sorkio, Anni; Haimi, Suvi; Verdoold, Vincent; Juuti-Uusitalo, Kati; Grijpma, Dirk; Skottman, Heli

    2017-01-01

    Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cell therapies show tremendous potential for the treatment of retinal degenerative diseases. A tissue engineering approach, where cells are delivered to the subretinal space on a biodegradable carrier as a sheet, shows great

  8. Poly(trimethylene carbonate) as an elastic biodegradable film for human embryonic stem cell-derived retinal pigment epithelial cells

    NARCIS (Netherlands)

    Sorkio, Anni; Haimi, Suvi; Verdoold, Vincent; Juuti-Uusitalo, Kati; Grijpma, Dirk; Skottman, Heli

    Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cell therapies show tremendous potential for the treatment of retinal degenerative diseases. A tissue engineering approach, where cells are delivered to the subretinal space on a biodegradable carrier as a sheet, shows great

  9. A small molecule-based strategy for endothelial differentiation and three-dimensional morphogenesis from human embryonic stem cells

    OpenAIRE

    Geng, Yijie; Feng, Bradley

    2016-01-01

    The emerging models of human embryonic stem cell (hESC) self-organizing organoids provide a valuable in vitro platform for studying self-organizing processes that presumably mimic in vivo human developmental events. Here we report that through a chemical screen, we identified two novel and structurally similar small molecules BIR1 and BIR2 which robustly induced the self-organization of a balloon-shaped three-dimensional structure when applied to two-dimensional adherent hESC cultures in the ...

  10. Generation of KCL035 research grade human embryonic stem cell line carrying a mutation in HBB gene

    Directory of Open Access Journals (Sweden)

    Heema Hewitson

    2016-03-01

    Full Text Available The KCL035 human embryonic stem cell line was derived from an embryo donated for research that carried a mutation in the HBB gene, which is linked to the β-thalassemia syndrome. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro assays.

  11. The Postischemic Environment Differentially Impacts Teratoma or Tumor Formation After Transplantation of Human Embryonic Stem Cell-Derived Neural Progenitors

    Czech Academy of Sciences Publication Activity Database

    Seminatore, CH.; Polentes, J.; Ellman, D.; Kozubenko, Nataliya; Itier, V.; Tine, S.; Tritschler, L.; Brenot, M.; Guidou, E.; Blondeau, J.; Lhuillier, M.; Bugi, A.; Aubry, L.; Jendelová, Pavla; Syková, Eva; Perrier, A. L.; Finsen, B.; Onteniente, B.

    2010-01-01

    Roč. 41, č. 1 (2010), s. 153-159 ISSN 0039-2499 Institutional research plan: CEZ:AV0Z50390703 Keywords : brain transplantation * human embryonic stem cells * neural differentiation Subject RIV: FH - Neurology Impact factor: 5.756, year: 2010

  12. Human embryonic stem cell technologies and drug discovery.

    Science.gov (United States)

    Jensen, Janne; Hyllner, Johan; Björquist, Petter

    2009-06-01

    Development of new drugs is costly and takes huge resources into consideration. The big pharmaceutical companies are currently facing increasing developmental costs and a lower success-rate of bringing new compounds to the market. Therefore, it is now of outmost importance that the drug-hunting companies minimize late attritions due to sub-optimal pharmacokinetic properties or unexpected toxicity when entering the clinical programs. To achieve this, a strong need to test new candidate drugs in assays of high human relevance in vitro as early as possible has been identified. The traditionally used cell systems are however remarkably limited in this sense, and new improved technologies are of greatest importance. The human embryonic stem cells (hESC) is one of the most powerful cell types known. They have not only the possibility to divide indefinitely; these cells can also differentiate into all mature cell types of the human body. This makes them potentially very valuable for pharmaceutical development, spanning from use as tools in early target studies, DMPK or safety assessment, as screening models to find new chemical entities modulating adult stem cell fate, or as the direct use in cell therapies. This review illustrates the use of hESC in the drug discovery process, today, as well as in a future perspective. This will specifically be exemplified with the most important cell type for pharmaceutical development-the hepatocyte. We discuss how hESC-derived hepatocyte-like cells could improve this process, and how these cells should be cultured if optimized functionality and usefulness should be achieved. J. Cell. Physiol. 219: 513-519, 2009. (c) 2009 Wiley-Liss, Inc.

  13. Distinctive Roles of Canonical and Noncanonical Wnt Signaling in Human Embryonic Cardiomyocyte Development

    Directory of Open Access Journals (Sweden)

    Silvia Mazzotta

    2016-10-01

    Full Text Available Wnt signaling is a key regulator of vertebrate heart development; however, specific roles for human cardiomyocyte development remain uncertain. Here we use human embryonic stem cells (hESCs to analyze systematically in human cardiomyocyte development the expression of endogenous Wnt signaling components, monitor pathway activity, and dissect stage-specific requirements for canonical and noncanonical Wnt signaling mechanisms using small-molecule inhibitors. Our analysis suggests that WNT3 and WNT8A, via FZD7 and canonical signaling, regulate BRACHYURY expression and mesoderm induction; that WNT5A/5B, via ROR2 and noncanonical signaling, regulate MESP1 expression and cardiovascular development; and that later in development WNT2, WNT5A/5B, and WNT11, via FZD4 and FZD6, regulate functional cardiomyocyte differentiation via noncanonical Wnt signaling. Our findings confirm in human development previously proposed roles for canonical Wnt signaling in sequential stages of vertebrate cardiomyogenesis, and identify more precise roles for noncanonical signaling and for individual Wnt signal and Wnt receptor genes in human cardiomyocyte development.

  14. Early embryonic failure: Expression and imprinted status of candidate genes on human chromosome 21

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, L.S.; Bennett, P.R.; Moore, G.E. [Queen Charlotte`s and Chelsea Hospital, London (United Kingdom)

    1994-09-01

    Two cases of maternal uniparental (hetero)disomy for human chromosome 21 (mUPD21) have been identified in a systematic search for UPD in 23 cases of early embryonic failure (EEF). Bi-parental origin of the other chromosome pairs was confirmed using specific VNTR probes or dinucleotide repeat analysis. Both maternally and paternally derived isochromosomes 21q have previously been identified in two individuals with normal phenotypes. Full UPD21 has a different mechanism of origin than uniparental isochromosome 21q and its effect on imprinted genes and phenotypic outcome will therefore not necessarily be the same. EEF associated with mUPD21 suggests that developmentally important genes on HSA 21 may be imprinted such that they are only expressed from either the maternally or paternally derived alleles. We have searched for monoallelic expression of candidate genes on HSA 21 in human pregnancy (CBS, IFNAR, COL6A1) using intragenic DNA polymorphisms. These genes were chosen either because their murine homologues lie in imprinted regions or because they are potentially important in embryogenesis. Once imprinted candidate genes have been identified, their methylation status and expression in normal, early embryonic failure and uniparental disomy 21 pregnancies will be studied. At the same time, a larger number of cases of EEF are being examined to further investigate the incidence of UPD21 in this group.

  15. The Inflammatory Transcription Factors NFκB, STAT1 and STAT3 Drive Age-Associated Transcriptional Changes in the Human Kidney

    Science.gov (United States)

    O’Brown, Zach K.; Van Nostrand, Eric L.; Higgins, John P.; Kim, Stuart K.

    2015-01-01

    Human kidney function declines with age, accompanied by stereotyped changes in gene expression and histopathology, but the mechanisms underlying these changes are largely unknown. To identify potential regulators of kidney aging, we compared age-associated transcriptional changes in the human kidney with genome-wide maps of transcription factor occupancy from ChIP-seq datasets in human cells. The strongest candidates were the inflammation-associated transcription factors NFκB, STAT1 and STAT3, the activities of which increase with age in epithelial compartments of the renal cortex. Stimulation of renal tubular epithelial cells with the inflammatory cytokines IL-6 (a STAT3 activator), IFNγ (a STAT1 activator), or TNFα (an NFκB activator) recapitulated age-associated gene expression changes. We show that common DNA variants in RELA and NFKB1, the two genes encoding subunits of the NFκB transcription factor, associate with kidney function and chronic kidney disease in gene association studies, providing the first evidence that genetic variation in NFκB contributes to renal aging phenotypes. Our results suggest that NFκB, STAT1 and STAT3 underlie transcriptional changes and chronic inflammation in the aging human kidney. PMID:26678048

  16. Cycloxygenase-2 is expressed in vasculature of normal and ischemic adult human kidney and is colocalized with vascular prostaglandin E2 EP4 receptors

    DEFF Research Database (Denmark)

    Therland, Karina L; Stubbe, Jane; Thiesson, Helle C

    2004-01-01

    The study was performed to elucidate the distribution and cellular localization of cyclooxygenase (COX)-2 in human kidney and to address localization of downstream targets for COX-derived prostanoids. Cortex and outer and inner medulla tissue were obtained from control kidneys (cancer specimens),...... feature encountered in human kidneys at all ages, whereas COX-2 was seen in macula densa only in fetal kidney. Vascular COX-2 activity in human kidney and extrarenal tissues may support blood flow and affect vascular wall-blood interaction....

  17. Effects of Feeder Cells on Dopaminergic Differentiation of Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Zhenqiang Zhao

    2016-12-01

    Full Text Available Mouse embryonic fibroblasts (MEFs and human foreskin fibroblasts (HFFs are used for the culture of human embryonic stem cells (hESCs. MEFs and HFFs differed in their capacity to support the proliferation and pluripotency of hESCs and could affect cardiac differentiation potential of hESCs. The aim of this study was to evaluate the effect of MEFs and HFFs feeders on dopaminergic differentiation of hESCs lines. To minimize the impact of culture condition variation, two hESCs lines were cultured on mixed feeder cells (MFCs, MEFs: HFFs =1:1 and HFFs feeder respectively, and then were differentiated into DA neurons under the identical protocol. Dopaminergic differentiation was evaluated by immunocytochemistry, quantitative fluorescent real-time PCR (qRT-PCR, transmission and scanning electron microscopy, and patch clamp. Our results demonstrated that these hESCs-derived neurons were genuine and functional DA neurons. However, compared to hESCs line on MFCs feeder, hESCs line on HFFs feeder had a higher proportion of TH positive cells and expressed higher levels of FOXA2, PITX3, NURR1 and TH genes. In addition, the values of threshold intensity and threshold membrane potential of DA neurons from hESCs line on HFFs feeder were lower than those of DA neurons from hESCs line on the MFCs feeder. In conclusion, HFFs feeder not only facilitated the differentiation of hESCs cells into dopaminergic neurons, but also induced hESCs-derived DA neurons to express higher electrophysiological excitability. Therefore, feeder cells could affect not only dopaminergic differentiation potential of different hESCs lines, but also electrophysiological properties of hESCs-derived DA neurons.

  18. Characterization of Tetraploid Somatic Cell Nuclear Transfer-Derived Human Embryonic Stem Cells.

    Science.gov (United States)

    Shin, Dong-Hyuk; Lee, Jeoung-Eun; Eum, Jin Hee; Chung, Young Gie; Lee, Hoon Taek; Lee, Dong Ryul

    2017-12-01

    Polyploidy is occurred by the process of endomitosis or cell fusion and usually represent terminally differentiated stage. Their effects on the developmental process were mainly investigated in the amphibian and fishes, and only observed in some rodents as mammalian model. Recently, we have established tetraploidy somatic cell nuclear transfer-derived human embryonic stem cells (SCNT-hESCs) and examined whether it could be available as a research model for the polyploidy cells existed in the human tissues. Two tetraploid hESC lines were artificially acquired by reintroduction of remained 1st polar body during the establishment of SCNT-hESC using MII oocytes obtained from female donors and dermal fibroblasts (DFB) from a 35-year-old adult male. These tetraploid SCNT-hESC lines (CHA-NT1 and CHA-NT3) were identified by the cytogenetic genotyping (91, XXXY,-6, t[2:6] / 92,XXXY,-12,+20) and have shown of indefinite proliferation, but slow speed when compared to euploid SCNT-hESCs. Using the eight Short Tendem Repeat (STR) markers, it was confirmed that both CHA-NT1 and CHA-NT3 lines contain both nuclear and oocyte donor genotypes. These hESCs expressed pluripotency markers and their embryoid bodies (EB) also expressed markers of the three embryonic germ layers and formed teratoma after transplantation into immune deficient mice. This study showed that tetraploidy does not affect the activities of proliferation and differentiation in SCNT-hESC. Therefore, tetraploid hESC lines established after SCNT procedure could be differentiated into various types of cells and could be an useful model for the study of the polyploidy cells in the tissues.

  19. Rhabdomyosarcoma of the kidney

    Directory of Open Access Journals (Sweden)

    Alaa Samkari

    2018-05-01

    Full Text Available Rhabdomyosarcoma is considered the most common soft tissue sarcoma arising in patients younger than 15 years old, accounting for 5%–10% of childhood solid tumors. Sarcoma of the kidney represents 1% of all primary renal malignancies. Primary renal rhabdomyosarcoma is a very rare entity with limited number of cases reported in the literature. In this paper we present two cases of primary renal rhabdomyosarcoma in pediatric patients. The two tumors involved the renal parenchyma and occurred in 2-year-old girl and 6-year-old boy, respectively. Histopathology examination and immunohistochemistry studies confirm the diagnosis of embryonal rhabdomyosarcoma with pleomorphic component, and pleomorphic rhabdomyosarcoma, respectively. Both cases are treated with chemotherapy and show a good response with no evidence of recurrence or metastasis. The aim of this paper is to expand the differential diagnosis of primary mesenchymal kidney tumors in pediatric age group. Keywords: Rhabdomyosarcoma, Renal neoplasm, Pediatric, Oncology

  20. Derivation and characterisation of the human embryonic stem cell lines, NOTT1 and NOTT2.

    Science.gov (United States)

    Priddle, Helen; Allegrucci, Cinzia; Burridge, Paul; Munoz, Maria; Smith, Nigel M; Devlin, Lyndsey; Sjoblom, Cecilia; Chamberlain, Sarah; Watson, Sue; Young, Lorraine E; Denning, Chris

    2010-04-01

    The ability to maintain human embryonic stem cells (hESCs) during long-term culture and yet induce differentiation to multiple lineages potentially provides a novel approach to address various biomedical problems. Here, we describe derivation of hESC lines, NOTT1 and NOTT2, from human blastocysts graded as 3BC and 3CB, respectively. Both lines were successfully maintained as colonies by mechanical passaging on mouse embryonic feeder cells or as monolayers by trypsin-passaging in feeder-free conditions on Matrigel. Undifferentiated cells retained expression of pluripotency markers (OCT4, NANOG, SSEA-4, TRA-1-60 and TRA-1-81), a stable karyotype during long-term culture and could be transfected efficiently with plasmid DNA and short interfering RNA. Differentiation via formation of embryoid bodies resulted in expression of genes associated with early germ layers and terminal lineage specification. The electrophysiology of spontaneously beating NOTT1-derived cardiomyocytes was recorded and these cells were shown to be pharmacologically responsive. Histological examination of teratomas formed by in vivo differentiation of both lines in severe immunocompromised mice showed complex structures including cartilage or smooth muscle (mesoderm), luminal epithelium (endoderm) and neuroectoderm (ectoderm). These observations show that NOTT1 and NOTT2 display the accepted characteristics of hESC pluripotency.

  1. High-content screening of small compounds on human embryonic stem cells.

    Science.gov (United States)

    Barbaric, Ivana; Gokhale, Paul J; Andrews, Peter W

    2010-08-01

    Human ES (embryonic stem) cells and iPS (induced pluripotent stem) cells have been heralded as a source of differentiated cells that could be used in the treatment of degenerative diseases, such as Parkinson's disease or diabetes. Despite the great potential for their use in regenerative therapy, the challenge remains to understand the basic biology of these remarkable cells, in order to differentiate them into any functional cell type. Given the scale of the task, high-throughput screening of agents and culture conditions offers one way to accelerate these studies. The screening of small-compound libraries is particularly amenable to such high-throughput methods. Coupled with high-content screening technology that enables simultaneous assessment of multiple cellular features in an automated and quantitative way, this approach is proving powerful in identifying both small molecules as tools for manipulating stem cell fates and novel mechanisms of differentiation not previously associated with stem cell biology. Such screens performed on human ES cells also demonstrate the usefulness of human ES/iPS cells as cellular models for pharmacological testing of drug efficacy and toxicity, possibly a more imminent use of these cells than in regenerative medicine.

  2. Multi-modality imaging review of congenital abnormalities of kidney and upper urinary tract.

    Science.gov (United States)

    Ramanathan, Subramaniyan; Kumar, Devendra; Khanna, Maneesh; Al Heidous, Mahmoud; Sheikh, Adnan; Virmani, Vivek; Palaniappan, Yegu

    2016-02-28

    Congenital abnormalities of the kidney and urinary tract (CAKUT) include a wide range of abnormalities ranging from asymptomatic ectopic kidneys to life threatening renal agenesis (bilateral). Many of them are detected in the antenatal or immediate postnatal with a significant proportion identified in the adult population with varying degree of severity. CAKUT can be classified on embryological basis in to abnormalities in the renal parenchymal development, aberrant embryonic migration and abnormalities of the collecting system. Renal parenchymal abnormalities include multi cystic dysplastic kidneys, renal hypoplasia, number (agenesis or supernumerary), shape and cystic renal diseases. Aberrant embryonic migration encompasses abnormal location and fusion anomalies. Collecting system abnormalities include duplex kidneys and Pelvi ureteric junction obstruction. Ultrasonography (US) is typically the first imaging performed as it is easily available, non-invasive and radiation free used both antenatally and postnatally. Computed tomography (CT) and magnetic resonance imaging (MRI) are useful to confirm the ultrasound detected abnormality, detection of complex malformations, demonstration of collecting system and vascular anatomy and more importantly for early detection of complications like renal calculi, infection and malignancies. As CAKUT are one of the leading causes of end stage renal disease, it is important for the radiologists to be familiar with the varying imaging appearances of CAKUT on US, CT and MRI, thereby helping in prompt diagnosis and optimal management.

  3. Modeling Niemann Pick type C1 using human embryonic and induced pluripotent stem cells.

    Science.gov (United States)

    Ordoñez, M Paulina; Steele, John W

    2017-02-01

    Data generated in Niemann Pick type C1 (NPC1) human embryonic and human induced pluripotent stem cell derived neurons complement on-going studies in animal models and provide the first example, in disease-relevant human cells, of processes that underlie preferential neuronal defects in a NPC1. Our work and that of other investigators in human neurons derived from stem cells highlight the importance of performing rigorous mechanistic studies in relevant cell types to guide drug discovery and therapeutic development, alongside of existing animal models. Through the use of human stem cell-derived models of disease, we can identify and discover or repurpose drugs that revert early events that lead to neuronal failure in NPC1. Together with the study of disease pathogenesis and efficacy of therapies in animal models, these strategies will fulfill the promise of stem cell technology in the development of new treatments for human diseases. This article is part of a Special Issue entitled SI: Exploiting human neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The epithelial sodium channel γ-subunit is processed proteolytically in human kidney

    DEFF Research Database (Denmark)

    Langkilde, Rikke Zachar; Skjødt, Karsten; Marcussen, Niels

    2015-01-01

    The epithelial sodium channel (ENaC) of the kidney is necessary for extracellular volume homeostasis and normal arterial BP. Activity of ENaC is enhanced by proteolytic cleavage of the gamma-subunit and putative release of a 43-amino acid inhibitory tract from the gamma-subunit ectodomain. We......ENaC was detected consistently only in tissue from patients with proteinuria and observed in collecting ducts. In conclusion, human kidney gammaENaC is subject to proteolytic cleavage, yielding fragments compatible with furin cleavage, and proteinuria is associated with cleavage at the putative prostasin...

  5. Are there factors preventing cancer development during embryonic life

    International Nuclear Information System (INIS)

    Einhorn, L.

    1983-01-01

    On the basis of the following literature observations, a hypothesis is advanced that the development of cancer is actively inhibited during embryonic life. Although the processes of cell differentiation and proliferation are - without comparison - most pronounced during embryonic life, cancer is rarely found in the newborn and is seldom a cause of neonatal death or spontaneous abortion. Attempts to induce cancer in early-stage animal embryos by irradiation or by transplacental chemical carcinogenesis have been unsuccessful, even when exposed animals have been observed throughout their lifetime. After the period of major organogenesis, however, the embryos become susceptible to carcinogenesis. In humans, the most common embryonic tumors arise in tissues which have an unusually late ongoing development and are still partly immature at or shortly before birth. For many human embryonic tumors the survival rates are higher, and spontaneous regression more frequent, in younger children, i.e. prognosis is age-dependent. Thus, although cancer generally appears in tissues capable of proliferation and differentiation, induction of malignancy in the developmentally most active tissues seems to be beset with difficulty. One possible explanation for this paradox could be that cancer is controlled by the regulators influencing development, regulators that are most active during embryonic life. (Auth.)

  6. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 μ1A (AP-1 mu1A)

    International Nuclear Information System (INIS)

    Sawasdee, Nunghathai; Junking, Mutita; Ngaojanlar, Piengpaga; Sukomon, Nattakan; Ungsupravate, Duangporn; Limjindaporn, Thawornchai; Akkarapatumwong, Varaporn; Noisakran, Sansanee; Yenchitsomanus, Pa-thai

    2010-01-01

    Research highlights: → Trafficking defect of kAE1 is a cause of dRTA but trafficking pathway of kAE1 has not been clearly described. → Adaptor-related protein complex 1 μ1A (AP-1 mu1A) was firstly reported to interact with kAE1. → The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. → AP-1 mu1A knockdown showed a marked reduction of kAE1 on the cell membrane and its accumulation in endoplasmic reticulum. → AP-1 mu1A has a critical role in kAE1 trafficking to the plasma membrane. -- Abstract: Kidney anion exchanger 1 (kAE1) mediates chloride (Cl - ) and bicarbonate (HCO 3 - ) exchange at the basolateral membrane of kidney α-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl - /HCO 3 - exchange at the basolateral membrane and failure of proton (H + ) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 μ1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1 trafficking of kidney α-intercalated cells.

  7. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 {mu}1A (AP-1 mu1A)

    Energy Technology Data Exchange (ETDEWEB)

    Sawasdee, Nunghathai; Junking, Mutita [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Ngaojanlar, Piengpaga [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Immunology and Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Sukomon, Nattakan; Ungsupravate, Duangporn [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Limjindaporn, Thawornchai [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Akkarapatumwong, Varaporn [Institute of Molecular Biosciences, Mahidol University at Salaya Campus, Nakorn Pathom 73170 (Thailand); Noisakran, Sansanee [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Yenchitsomanus, Pa-thai, E-mail: grpye@mahidol.ac.th [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand)

    2010-10-08

    Research highlights: {yields} Trafficking defect of kAE1 is a cause of dRTA but trafficking pathway of kAE1 has not been clearly described. {yields} Adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) was firstly reported to interact with kAE1. {yields} The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. {yields} AP-1 mu1A knockdown showed a marked reduction of kAE1 on the cell membrane and its accumulation in endoplasmic reticulum. {yields} AP-1 mu1A has a critical role in kAE1 trafficking to the plasma membrane. -- Abstract: Kidney anion exchanger 1 (kAE1) mediates chloride (Cl{sup -}) and bicarbonate (HCO{sub 3}{sup -}) exchange at the basolateral membrane of kidney {alpha}-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange at the basolateral membrane and failure of proton (H{sup +}) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1

  8. Generation of human embryonic stem cells from abnormal blastocyst diagnosed with albinism.

    Science.gov (United States)

    Sun, Yi; Zhou, Xiaoying; Chen, Jing; Du, Juan; Lu, Guangxiu; Lin, Ge; Ouyang, Qi

    2016-11-01

    Human embryonic stem cell (hESC) line chHES-478 was derived from abnormal blastocyst diagnosed with albinism after preimplantation genetic diagnosis (PGD) treatment. DNA sequencing analysis confirmed that chHES-478 cell line carried a compound heterozygous mutation, c.896G>A(p.Arg299His) and c.929_930insC(p.Pro310Glnfs*9), of TYR gene. Characteristic tests proved that the chHES-478 cell line presented typical markers of pluripotency and had the capability to form the three germ layers both in vitro and in vivo. Copyright © 2016 Michael Boutros, German Cancer Research Center, Heidelberg, Germany. Published by Elsevier B.V. All rights reserved.

  9. Self-contained induction of neurons from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Okuno

    Full Text Available BACKGROUND: Neurons and glial cells can be efficiently induced from mouse embryonic stem (ES cells in a conditioned medium collected from rat primary-cultured astrocytes (P-ACM. However, the use of rodent primary cells for clinical applications may be hampered by limited supply and risk of contamination with xeno-proteins. METHODOLOGY/PRINCIPAL FINDINGS: We have developed an alternative method for unimpeded production of human neurons under xeno-free conditions. Initially, neural stem cells in sphere-like clusters were induced from human ES (hES cells after being cultured in P-ACM under free-floating conditions. The resultant neural stem cells could circumferentially proliferate under subsequent adhesive culture, and selectively differentiate into neurons or astrocytes by changing the medium to P-ACM or G5, respectively. These hES cell-derived neurons and astrocytes could procure functions similar to those of primary cells. Interestingly, a conditioned medium obtained from the hES cell-derived astrocytes (ES-ACM could successfully be used to substitute P-ACM for induction of neurons. Neurons made by this method could survive in mice brain after xeno-transplantation. CONCLUSION/SIGNIFICANCE: By inducing astrocytes from hES cells in a chemically defined medium, we could produce human neurons without the use of P-ACM. This self-serving method provides an unlimited source of human neural cells and may facilitate clinical applications of hES cells for neurological diseases.

  10. Comparative Proteomic Analysis of Supportive and Unsupportive Extracellular Matrix Substrates for Human Embryonic Stem Cell Maintenance*

    Science.gov (United States)

    Soteriou, Despina; Iskender, Banu; Byron, Adam; Humphries, Jonathan D.; Borg-Bartolo, Simon; Haddock, Marie-Claire; Baxter, Melissa A.; Knight, David; Humphries, Martin J.; Kimber, Susan J.

    2013-01-01

    Human embryonic stem cells (hESCs) are pluripotent cells that have indefinite replicative potential and the ability to differentiate into derivatives of all three germ layers. hESCs are conventionally grown on mitotically inactivated mouse embryonic fibroblasts (MEFs) or feeder cells of human origin. In addition, feeder-free culture systems can be used to support hESCs, in which the adhesive substrate plays a key role in the regulation of stem cell self-renewal or differentiation. Extracellular matrix (ECM) components define the microenvironment of the niche for many types of stem cells, but their role in the maintenance of hESCs remains poorly understood. We used a proteomic approach to characterize in detail the composition and interaction networks of ECMs that support the growth of self-renewing hESCs. Whereas many ECM components were produced by supportive and unsupportive MEF and human placental stromal fibroblast feeder cells, some proteins were only expressed in supportive ECM, suggestive of a role in the maintenance of pluripotency. We show that identified candidate molecules can support attachment and self-renewal of hESCs alone (fibrillin-1) or in combination with fibronectin (perlecan, fibulin-2), in the absence of feeder cells. Together, these data highlight the importance of specific ECM interactions in the regulation of hESC phenotype and provide a resource for future studies of hESC self-renewal. PMID:23658023

  11. Directed Differentiation of Human Embryonic Stem Cells into Prostate Organoids In Vitro and its Perturbation by Low-Dose Bisphenol A Exposure.

    Directory of Open Access Journals (Sweden)

    Esther L Calderon-Gierszal

    Full Text Available Studies using rodent and adult human prostate stem-progenitor cell models suggest that developmental exposure to the endocrine disruptor Bisphenol-A (BPA can predispose to prostate carcinogenesis with aging. Unknown at present is whether the embryonic human prostate is equally susceptible to BPA during its natural developmental window. To address this unmet need, we herein report the construction of a pioneer in vitro human prostate developmental model to study the effects of BPA. The directed differentiation of human embryonic stem cells (hESC into prostatic organoids in a spatial system was accomplished with precise temporal control of growth factors and steroids. Activin-induced definitive endoderm was driven to prostate specification by combined exposure to WNT10B and FGF10. Matrigel culture for 20-30 days in medium containing R-Spondin-1, Noggin, EGF, retinoic acid and testosterone was sufficient for mature prostate organoid development. Immunofluorescence and gene expression analysis confirmed that organoids exhibited cytodifferentiation and functional properties of the human prostate. Exposure to 1 nM or 10 nM BPA throughout differentiation culture disturbed early morphogenesis in a dose-dependent manner with 1 nM BPA increasing and 10 nM BPA reducing the number of branched structures formed. While differentiation of branched structures to mature organoids seemed largely unaffected by BPA exposure, the stem-like cell population increased, appearing as focal stem cell nests that have not properly entered lineage commitment rather than the rare isolated stem cells found in normally differentiated structures. These findings provide the first direct evidence that low-dose BPA exposure targets hESC and perturbs morphogenesis as the embryonic cells differentiate towards human prostate organoids, suggesting that the developing human prostate may be susceptible to disruption by in utero BPA exposures.

  12. Biobanking human embryonic stem cell lines: policy, ethics and efficiency.

    Science.gov (United States)

    Holm, Søren

    2015-12-01

    Stem cell banks curating and distributing human embryonic stem cells have been established in a number of countries and by a number of private institutions. This paper identifies and critically discusses a number of arguments that are used to justify the importance of such banks in policy discussions relating to their establishment or maintenance. It is argued (1) that 'ethical arguments' are often more important in the establishment phase and 'efficiency arguments' more important in the maintenance phase, and (2) that arguments relating to the interests of embryo and gamete donors are curiously absent from the particular stem cell banking policy discourse. This to some extent artificially isolates this discourse from the broader discussions about the flows of reproductive materials and tissues in modern society, and such isolation may lead to the interests of important actors being ignored in the policy making process.

  13. Profiling gene expression induced by protease-activated receptor 2 (PAR2 activation in human kidney cells.

    Directory of Open Access Journals (Sweden)

    Jacky Y Suen

    Full Text Available Protease-Activated Receptor-2 (PAR2 has been implicated through genetic knockout mice with cytokine regulation and arthritis development. Many studies have associated PAR2 with inflammatory conditions (arthritis, airways inflammation, IBD and key events in tumor progression (angiogenesis, metastasis, but they have relied heavily on the use of single agonists to identify physiological roles for PAR2. However such probes are now known not to be highly selective for PAR2, and thus precisely what PAR2 does and what mechanisms of downstream regulation are truly affected remain obscure. Effects of PAR2 activation on gene expression in Human Embryonic Kidney cells (HEK293, a commonly studied cell line in PAR2 research, were investigated here by comparing 19,000 human genes for intersecting up- or down-regulation by both trypsin (an endogenous protease that activates PAR2 and a PAR2 activating hexapeptide (2f-LIGRLO-NH(2. Among 2,500 human genes regulated similarly by both agonists, there were clear associations between PAR2 activation and cellular metabolism (1,000 genes, the cell cycle, the MAPK pathway, HDAC and sirtuin enzymes, inflammatory cytokines, and anti-complement function. PAR-2 activation up-regulated four genes more than 5 fold (DUSP6, WWOX, AREG, SERPINB2 and down-regulated another six genes more than 3 fold (TXNIP, RARG, ITGB4, CTSD, MSC and TM4SF15. Both PAR2 and PAR1 activation resulted in up-regulated expression of several genes (CD44, FOSL1, TNFRSF12A, RAB3A, COPEB, CORO1C, THBS1, SDC4 known to be important in cancer. This is the first widespread profiling of specific activation of PAR2 and provides a valuable platform for better understanding key mechanistic roles of PAR2 in human physiology. Results clearly support the development of both antagonists and agonists of human PAR2 as potential disease modifying therapeutic agents.

  14. Antimicrobial and Cytotoxic Activities of Extracts from Laurus nobilis Leaves

    KAUST Repository

    Felemban, Shaza

    2011-05-01

    The cytotoxic activity and antimicrobial properties of crude extracts from Laurus nobilis were investigated. With the use of the organic solvents, methanol and ethanol, crude extracts were obtained. To determine the availability of active bio‐compounds, an analysis using liquid chromatography was conducted. The crude extract was also tested for antimicrobial activity. The disc diffusion method was used against the bacterium Escherichia coli. The results showed a weak antimicrobial activity against E. coli. For cytotoxicity testing, the crude extract was studied on four cell-­lines: human breast adenocarcinoma, human embryonic kidney, HeLa (human cervical adenocarcinoma), and human lung fibroblast. From the alamarBlue® assay results, the extracts most potently affected the cell-­lines of human breast adenocarcinoma and human embryonic kidney. Using the lactate dehydrogenase (LDH) assay, an effect on human embryonic kidney was most prominent. With these findings, a suggestion that the crude extract of Laurus nobilis may have antiproliferative properties is put forth, with the possibility of this mechanism being induction of apoptosis with the involvement of Nuclear Factor Kappa κB (NF κB).

  15. Cardiotoxicity evaluation using human embryonic stem cells and induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Zhao, Qi; Wang, Xijie; Wang, Shuyan; Song, Zheng; Wang, Jiaxian; Ma, Jing

    2017-03-09

    Cardiotoxicity remains an important concern in drug discovery. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have become an attractive platform to evaluate cardiotoxicity. However, the consistency between human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in prediction of cardiotoxicity has yet to be elucidated. Here we screened the toxicities of four representative drugs (E-4031, isoprenaline, quinidine, and haloperidol) using both hESC-CMs and hiPSC-CMs, combined with an impedance-based bioanalytical method. It showed that both hESC-CMs and hiPSC-CMs can recapitulate cardiotoxicity and identify the effects of well-characterized compounds. The combined platform of hPSC-CMs and an impedance-based bioanalytical method could improve preclinical cardiotoxicity screening, holding great potential for increasing drug development accuracy.

  16. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin.

    NARCIS (Netherlands)

    Braam, S.R.; Zeinstra, L.M.; Litjens, S.H.M.; Ward-van Oostwaard, D.; van den Brink, S.; van Laake, L.W.; Lebrin, F.; Kats, P.; Hochstenbach, R.; Passier, R.; Sonnenberg, A.; Mummery, C.L.

    2008-01-01

    Defined growth conditions are essential for many applications of human embryonic stem cells (hESC). Most defined media are presently used in combination with Matrigel, a partially defined extracellular matrix (ECM) extract from mouse sarcoma. Here, we defined ECM requirements of hESC by analyzing

  17. Lgr5+ve Stem/Progenitor Cells Contribute to Nephron Formation during Kidney Development

    Directory of Open Access Journals (Sweden)

    Nick Barker

    2012-09-01

    Full Text Available Multipotent stem cells and their lineage-restricted progeny drive nephron formation within the developing kidney. Here, we document expression of the adult stem cell marker Lgr5 in the developing kidney and assess the stem/progenitor identity of Lgr5+ve cells via in vivo lineage tracing. The appearance and localization of Lgr5+ve cells coincided with that of the S-shaped body around embryonic day 14. Lgr5 expression remained restricted to cell clusters within developing nephrons in the cortex until postnatal day 7, when expression was permanently silenced. In vivo lineage tracing identified Lgr5 as a marker of a stem/progenitor population within nascent nephrons dedicated to generating the thick ascending limb of Henle’s loop and distal convoluted tubule. The Lgr5 surface marker and experimental models described here will be invaluable for deciphering the contribution of early nephron stem cells to developmental defects and for isolating human nephron progenitors as a prerequisite to evaluating their therapeutic potential.

  18. Comprehensive quantitative comparison of the membrane proteome, phosphoproteome, and sialiome of human embryonic and neural stem cells

    DEFF Research Database (Denmark)

    Melo-Braga, Marcella Nunes; Schulz, Melanie; Liu, Qiuyue

    2014-01-01

    Human embryonic stem cells (hESCs) can differentiate into neural stem cells (NSCs), which can further be differentiated into neurons and glia cells. Therefore, these cells have huge potential as source for treatment of neurological diseases. Membrane-associated proteins are very important......ESCs and NSCs as well as to investigate potential new markers for these two cell stages, we performed large-scale quantitative membrane-proteomic of hESCs and NSCs. This approach employed membrane purification followed by peptide dimethyl labeling and peptide enrichment to study the membrane subproteome as well...... in which 78% of phosphopeptides were identified with ≥99% confidence in site assignment and 1810 unique formerly sialylated N-linked glycopeptides. Several proteins were identified as significantly regulated in hESCs and NSC, including proteins involved in the early embryonic and neural development...

  19. Incidence and mortality of kidney cancers, and human development index in Asia; a matter of concern

    OpenAIRE

    Arabsalmani, Masoumeh; Mohammadian-Hafshejani, Abdollah; Ghoncheh, Mahshid; Hadadian, Fatemeh; Towhidi, Farhad; Vafaee, Kamran; Salehiniya, Hamid

    2016-01-01

    Background The incidence and mortality of kidney cancer have steadily increased by 2%- 3% per decade worldwide, and an increased risk of kidney cancer has been observed in many Asian countries. The information on the incidence and mortality of a disease and its distribution is essential for better planning for prevention and further studies. Objectives This study aimed to assess the incidence and mortality of kidney cancer and their correlation with the human development index (HDI) in Asia. ...

  20. Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells.

    Science.gov (United States)

    Chen, Guokai; Hou, Zhonggang; Gulbranson, Daniel R; Thomson, James A

    2010-08-06

    Human ESCs are the pluripotent precursor of the three embryonic germ layers. Human ESCs exhibit basal-apical polarity, junctional complexes, integrin-dependent matrix adhesion, and E-cadherin-dependent cell-cell adhesion, all characteristics shared by the epiblast epithelium of the intact mammalian embryo. After disruption of epithelial structures, programmed cell death is commonly observed. If individualized human ESCs are prevented from reattaching and forming colonies, their viability is significantly reduced. Here, we show that actin-myosin contraction is a critical effector of the cell death response to human ESC dissociation. Inhibition of myosin heavy chain ATPase, downregulation of myosin heavy chain, and downregulation of myosin light chain all increase survival and cloning efficiency of individualized human ESCs. ROCK inhibition decreases phosphorylation of myosin light chain, suggesting that inhibition of actin-myosin contraction is also the mechanism through which ROCK inhibitors increase cloning efficiency of human ESCs. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Generation of hematopoietic lineage cells from embryonic like cells

    Directory of Open Access Journals (Sweden)

    Gholam Reza Khamisipour

    2014-10-01

    Full Text Available Background: Epigenetic reprogramming of somatic cells into embryonic stem cells has attracted much attention, because of the potential for stem cell transplantation and compatibility with recipient. However, the therapeutic application of either nuclear transfer or nuclear fusion of somatic cell has been hindered by technical complications as well as ethical objections. Recently, a new method is reported whereby ectopic expression of embryonic specific transcription factors was shown to induce fibroblasts to become embryonic like SCs (induced pluripotent stem cells. A major limitation of this method is the use of potentially harmful genome integrating viruses such as reto- or lentivirus. The main aim of this investigation was generation of human hematopoietic stem cells from induced fibroblasts by safe adenovectors carrying embryonically active genes. Material and Methods: Isolated fibroblasts from foreskin were expanded and recombinant adenoviruses carrying human Sox2, Oct4, Klf4, cMyc genes were added to culture. After formation of embryonic like colonies and cell expansion, they were transferred to embryonic media without bFGF, and embryoid bodies were cultured on stromal and non-stromal differentiation media for 14 days. Results: Expression of CD34 gene and antigenic markers, CD34, CD38 & CD133 in stromal culture showed significant difference with non-differentiation and non-stromal media. Conclusion: These findings show high hematopoietic differentiation rate of Adeno-iPS cells in stromal culture and no need to use growth factors. While, there was no difference between non-differentiation and non-stromal media.

  2. Blood cleaner on-chip design for artificial human kidney manipulation

    Directory of Open Access Journals (Sweden)

    Suwanpayak N

    2011-05-01

    Full Text Available N Suwanpayak1, MA Jalil2, MS Aziz3, FD Ismail3, J Ali3, PP Yupapin11Nanoscale Science and Engineering Research Alliance (N'SERA, Advanced Research Center for Photonics, Faculty of Science, King Mongkut's Institute of Technology, Ladkrabang, Bangkok, Thailand; 2Ibnu Sina Institute of Fundamental Science Studies (IIS, 3Institute of Advanced Photonics Science, Nanotechnology Research Alliance, Universiti Teknologi Malaysia, Johor Bahru, MalaysiaAbstract: A novel design of a blood cleaner on-chip using an optical waveguide known as a PANDA ring resonator is proposed. By controlling some suitable parameters, the optical vortices (gradient optical fields/wells can be generated and used to form the trapping tools in the same way as optical tweezers. In operation, the trapping force is formed by the combination between the gradient field and scattering photons by using the intense optical vortices generated within the PANDA ring resonator. This can be used for blood waste trapping and moves dynamically within the blood cleaner on-chip system (artificial kidney, and is performed within the wavelength routers. Finally, the blood quality test is exploited by the external probe before sending to the destination. The advantage of the proposed kidney on-chip system is that the unwanted substances can be trapped and filtered from the artificial kidney, which can be available for blood cleaning applications.Keywords: optical trapping, blood dialysis, blood cleaner, human kidney manipulation

  3. Eighteen-Year Cryopreservation Does Not Negatively Affect the Pluripotency of Human Embryos: Evidence from Embryonic Stem Cell Derivation

    Science.gov (United States)

    Rungsiwiwut, Ruttachuk; Numchaisrika, Pranee; Ahnonkitpanit, Vichuda; Isarasena, Nipan; Virutamasen, Pramuan

    2012-01-01

    Abstract Human embryonic stem (hES) cells are considered to be a potential source for the therapy of human diseases, drug screening, and the study of developmental biology. In the present study, we successfully derived hES cell lines from blastocysts developed from frozen and fresh embryos. Seventeen- to eighteen-year-old frozen embryos were thawed, cultured to the blastocyst stage, and induced to form hES cells using human foreskin fibroblasts. The Chula2.hES cell line and the Chula4.hES and Chula5.hES cell lines were derived from blastocysts developed from frozen and fresh embryos, respectively. The cell lines expressed pluripotent markers, including alkaline phosphatase (AP), Oct3/4, stage-specific embryonic antigen (SSEA)-4, and tumor recognition antigen (TRA)-1-60 and TRA-1-81 as detected with immunocytochemistry. The real-time polymerase chain reaction (RT-PCR) results showed that the cell lines expressed pluripotent genes, including OCT3/4, SOX2, NANOG, UTF, LIN28, REX1, NODAL, and E-Cadherin. In addition, the telomerase activities of the cell lines were higher than in the fibroblast cells. Moreover, the cell lines differentiated into all three germ layers both in vitro and in vivo. The cell lines had distinct identities, as revealed with DNA fingerprinting, and maintained their normal karyotype after a long-term culture. This study is the first to report the successful derivation of hES cell lines in Thailand and that frozen embryos maintained their pluripotency similar to fresh embryos, as shown by the success of hES cell derivation, even after years of cryopreservation. Therefore, embryos from prolonged cryopreservation could be an alternative source for embryonic stem cell research. PMID:23514952

  4. Derivation of Stromal (Skeletal, Mesenchymal) Stem-like cells from Human Embryonic Stem Cells

    DEFF Research Database (Denmark)

    Mahmood, Amer; Harkness, Linda; Abdallah, Basem

    2012-01-01

    EBs using BMP2 (bone morphogenic protein 2) combined with standard osteoblast induction medium led to weak osteoblastic induction. Conversely, subcutaneous in vivo implantation of day 20 hEBs in immune deficient mice, mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) as an osteoconductive scaffold......Derivation of bone forming cells (osteoblasts) from human embryonic stem cells (hESC) is a pre-requisite for their use in clinical applications. However, there is no standard protocol for differentiating hESC into osteoblastic cells. The aim of this study was to identify the emergence of a human...... stromal (mesenchymal, skeletal) stem cell (hMSC)-like population, known to be osteoblastic cell precursors and to test their osteoblastic differentiation capacity in ex vivo cultures and in vivo. We cultured hESC in a feeder-free environment using serum replacement and as suspension aggregates (embryoid...

  5. Developing de novo human artificial chromosomes in embryonic stem cells using HSV-1 amplicon technology.

    Science.gov (United States)

    Moralli, Daniela; Monaco, Zoia L

    2015-02-01

    De novo artificial chromosomes expressing genes have been generated in human embryonic stem cells (hESc) and are maintained following differentiation into other cell types. Human artificial chromosomes (HAC) are small, functional, extrachromosomal elements, which behave as normal chromosomes in human cells. De novo HAC are generated following delivery of alpha satellite DNA into target cells. HAC are characterized by high levels of mitotic stability and are used as models to study centromere formation and chromosome organisation. They are successful and effective as gene expression vectors since they remain autonomous and can accommodate larger genes and regulatory regions for long-term expression studies in cells unlike other viral gene delivery vectors currently used. Transferring the essential DNA sequences for HAC formation intact across the cell membrane has been challenging for a number of years. A highly efficient delivery system based on HSV-1 amplicons has been used to target DNA directly to the ES cell nucleus and HAC stably generated in human embryonic stem cells (hESc) at high frequency. HAC were detected using an improved protocol for hESc chromosome harvesting, which consistently produced high-quality metaphase spreads that could routinely detect HAC in hESc. In tumour cells, the input DNA often integrated in the host chromosomes, but in the host ES genome, it remained intact. The hESc containing the HAC formed embryoid bodies, generated teratoma in mice, and differentiated into neuronal cells where the HAC were maintained. The HAC structure and chromatin composition was similar to the endogenous hESc chromosomes. This review will discuss the technological advances in HAC vector delivery using HSV-1 amplicons and the improvements in the identification of de novo HAC in hESc.

  6. Patently controversial: markets, morals, and the President's proposal for embryonic stem cell research.

    Science.gov (United States)

    Fins, Joseph J; Schachter, Madeleine

    2002-09-01

    This essay considers the implications of President George W. Bush's proposal for human embryonic stem cell research. Through the perspective of patent law, privacy, and informed consent, we elucidate the ongoing controversy about the moral standing of human embryonic stem cells and their derivatives and consider how the inconsistencies in the president's proposal will affect clinical practice and research.

  7. Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo.

    Science.gov (United States)

    Havens, Aaron M; Sun, Hongli; Shiozawa, Yusuke; Jung, Younghun; Wang, Jingcheng; Mishra, Anjali; Jiang, Yajuan; O'Neill, David W; Krebsbach, Paul H; Rodgerson, Denis O; Taichman, Russell S

    2014-04-01

    The purpose of this study was to determine the lineage progression of human and murine very small embryonic-like (HuVSEL or MuVSEL) cells in vitro and in vivo. In vitro, HuVSEL and MuVSEL cells differentiated into cells of all three embryonic germ layers. HuVSEL cells produced robust mineralized tissue of human origin compared with controls in calvarial defects. Immunohistochemistry demonstrated that the HuVSEL cells gave rise to neurons, adipocytes, chondrocytes, and osteoblasts within the calvarial defects. MuVSEL cells were also able to differentiate into similar lineages. First round serial transplants of MuVSEL cells into irradiated osseous sites demonstrated that ∼60% of the cells maintained their VSEL cell phenotype while other cells differentiated into multiple tissues at 3 months. Secondary transplants did not identify donor VSEL cells, suggesting limited self renewal but did demonstrate VSEL cell derivatives in situ for up to 1 year. At no point were teratomas identified. These studies show that VSEL cells produce multiple cellular structures in vivo and in vitro and lay the foundation for future cell-based regenerative therapies for osseous, neural, and connective tissue disorders.

  8. Publishing SNP genotypes of human embryonic stem cell lines: policy statement of the International Stem Cell Forum Ethics Working Party.

    Science.gov (United States)

    Knoppers, Bartha M; Isasi, Rosario; Benvenisty, Nissim; Kim, Ock-Joo; Lomax, Geoffrey; Morris, Clive; Murray, Thomas H; Lee, Eng Hin; Perry, Margery; Richardson, Genevra; Sipp, Douglas; Tanner, Klaus; Wahlström, Jan; de Wert, Guido; Zeng, Fanyi

    2011-09-01

    Novel methods and associated tools permitting individual identification in publicly accessible SNP databases have become a debatable issue. There is growing concern that current technical and ethical safeguards to protect the identities of donors could be insufficient. In the context of human embryonic stem cell research, there are no studies focusing on the probability that an hESC line donor could be identified by analyzing published SNP profiles and associated genotypic and phenotypic information. We present the International Stem Cell Forum (ISCF) Ethics Working Party's Policy Statement on "Publishing SNP Genotypes of Human Embryonic Stem Cell Lines (hESC)". The Statement prospectively addresses issues surrounding the publication of genotypic data and associated annotations of hESC lines in open access databases. It proposes a balanced approach between the goals of open science and data sharing with the respect for fundamental bioethical principles (autonomy, privacy, beneficence, justice and research merit and integrity).

  9. Differentiation of embryonic stem cells towards hematopoietic cells: progress and pitfalls.

    Science.gov (United States)

    Tian, Xinghui; Kaufman, Dan S

    2008-07-01

    Hematopoietic development from embryonic stem cells has been one of the most productive areas of stem cell biology. Recent studies have progressed from work with mouse to human embryonic stem cells. Strategies to produce defined blood cell populations can be used to better understand normal and abnormal hematopoiesis, as well as potentially improve the generation of hematopoietic cells with therapeutic potential. Molecular profiling, phenotypic and functional analyses have all been utilized to demonstrate that hematopoietic cells derived from embryonic stem cells most closely represent a stage of hematopoiesis that occurs at embryonic/fetal developmental stages. Generation of hematopoietic stem/progenitor cells comparable to hematopoietic stem cells found in the adult sources, such as bone marrow and cord blood, still remains challenging. However, genetic manipulation of intrinsic factors during hematopoietic differentiation has proven a suitable approach to induce adult definitive hematopoiesis from embryonic stem cells. Concrete evidence has shown that embryonic stem cells provide a powerful approach to study the early stage of hematopoiesis. Multiple hematopoietic lineages can be generated from embryonic stem cells, although most of the evidence suggests that hematopoietic development from embryonic stem cells mimics an embryonic/fetal stage of hematopoiesis.

  10. Human kidney proximal tubule cells are vulnerable to the effects of Rauwolfia serpentina.

    Science.gov (United States)

    Mossoba, Miriam E; Flynn, Thomas J; Vohra, Sanah; Wiesenfeld, Paddy L; Sprando, Robert L

    2015-12-01

    Rauwolfia serpentina (or Snake root plant) is a botanical dietary supplement marketed in the USA for maintaining blood pressure. Very few studies have addressed the safety of this herb, despite its wide availability to consumers. Its reported pleiotropic effects underscore the necessity for evaluating its safety. We used a human kidney cell line to investigate the possible negative effects of R. serpentina on the renal system in vitro, with a specific focus on the renal proximal tubules. We evaluated cellular and mitochondrial toxicity, along with a variety of other kidney-specific toxicology biomarkers. We found that R. serpentina was capable of producing highly detrimental effects in our in vitro renal cell system. These results suggest more studies are needed to investigate the safety of this dietary supplement in both kidney and other target organ systems.

  11. Uptake and release of glucose by the human kidney. Postabsorptive rates and responses to epinephrine.

    Science.gov (United States)

    Stumvoll, M; Chintalapudi, U; Perriello, G; Welle, S; Gutierrez, O; Gerich, J

    1995-11-01

    Despite ample evidence that the kidney can both produce and use appreciable amounts of glucose, the human kidney is generally regarded as playing a minor role in glucose homeostasis. This view is based on measurements of arteriorenal vein glucose concentrations indicating little or no net release of glucose. However, inferences from net balance measurements do not take into consideration the simultaneous release and uptake of glucose by the kidney. Therefore, to assess the contribution of release and uptake of glucose by the human kidney to overall entry and removal of plasma glucose, we used a combination of balance and isotope techniques to measure renal glucose net balance, fractional extraction, uptake and release as well as overall plasma glucose appearance and disposal in 10 normal volunteers under basal postabsorptive conditions and during a 3-h epinephrine infusion. In the basal postabsorptive state, there was small but significant net output of glucose by the kidney (66 +/- 22 mumol.min-1, P = 0.016). However, since renal glucose fractional extraction averaged 2.9 +/- 0.3%, there was considerable renal glucose uptake (2.3 +/- 0.2 mumol.kg-1.min-1) which accounted for 20.2 +/- 1.7% of systemic glucose disposal (11.4 +/- 0.5 mumol.kg-1.min-1). Renal glucose release (3.2 +/- 0.2 mumol.kg-1.min-1) accounted for 27.8 +/- 2.1% of systemic glucose appearance (11.4 +/- 0.5 mumol.kg-1.min-1). Epinephrine infusion, which increased plasma epinephrine to levels observed during hypoglycemia (3722 +/- 453 pmol/liter) increased renal glucose release nearly twofold (5.2 +/- 0.5 vs 2.8 +/- 0.1 mol.kg-1.min-1, P = 0.01) so that at the end of the infusion, renal glucose release accounted for 40.3 +/- 5.5% of systemic glucose appearance and essentially all of the increase in systemic glucose appearance. These observations suggest an important role for the human kidney in glucose homeostasis.

  12. Comparison of a teratogenic transcriptome-based predictive test based on human embryonic versus inducible pluripotent stem cells.

    Science.gov (United States)

    Shinde, Vaibhav; Perumal Srinivasan, Sureshkumar; Henry, Margit; Rotshteyn, Tamara; Hescheler, Jürgen; Rahnenführer, Jörg; Grinberg, Marianna; Meisig, Johannes; Blüthgen, Nils; Waldmann, Tanja; Leist, Marcel; Hengstler, Jan Georg; Sachinidis, Agapios

    2016-12-30

    Human embryonic stem cells (hESCs) partially recapitulate early embryonic three germ layer development, allowing testing of potential teratogenic hazards. Because use of hESCs is ethically debated, we investigated the potential for human induced pluripotent stem cells (hiPSCs) to replace hESCs in such tests. Three cell lines, comprising hiPSCs (foreskin and IMR90) and hESCs (H9) were differentiated for 14 days. Their transcriptome profiles were obtained on day 0 and day 14 and analyzed by comprehensive bioinformatics tools. The transcriptomes on day 14 showed that more than 70% of the "developmental genes" (regulated genes with > 2-fold change on day 14 compared to day 0) exhibited variability among cell lines. The developmental genes belonging to all three cell lines captured biological processes and KEGG pathways related to all three germ layer embryonic development. In addition, transcriptome profiles were obtained after 14 days of exposure to teratogenic valproic acid (VPA) during differentiation. Although the differentially regulated genes between treated and untreated samples showed more than 90% variability among cell lines, VPA clearly antagonized the expression of developmental genes in all cell lines: suppressing upregulated developmental genes, while inducing downregulated ones. To quantify VPA-disturbed development based on developmental genes, we estimated the "developmental potency" (D p ) and "developmental index" (D i ). Despite differences in genes deregulated by VPA, uniform D i values were obtained for all three cell lines. Given that the D i values for VPA were similar for hESCs and hiPSCs, D i can be used for robust hazard identification, irrespective of whether hESCs or hiPSCs are used in the test systems.

  13. Urea and impairment of the Gut-Kidney axis in Chronic Kidney Disease.

    Science.gov (United States)

    Di Iorio, Biagio Raffaele; Marzocco, Stefania; Nardone, Luca; Sirico, Marilisa; De Simone, Emanuele; Di Natale, Gabriella; Di Micco, Lucia

    2017-12-05

    Gut microbiota can be considered a real organ coordinating health and wellness of our body. It is made of more than 100 trillions of microorganisms, thus about 3 times higher than the number of human body cells and more than 150 times than human genes containing 1000 different microbe species. It has been described a symbiotic relationship between gut and kidney, confirmed by several observations. This is a bi-directional relation with a mutual influence, even when kidney disease occurs, and consequent alterations of intestinal microbiota and production of uremic toxins, that in turn worsens kidney disease and its progression. Our review analyzes the components of gut-kidney axis and relative clinical consequences. Copyright by Società Italiana di Nefrologia SIN, Rome, Italy.

  14. Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Petr; Dvořáková, D.; Košková, S.; Vidinská, M.; Najvirtová, M.; Krekáč, D.; Hampl, Aleš

    2005-01-01

    Roč. 23, č. 8 (2005), s. 1200-1211 ISSN 1066-5099 R&D Projects: GA ČR(CZ) GA301/03/1122; GA ČR(CZ) GA305/05/0434; GA MŠk(CZ) LN00A065 Institutional research plan: CEZ:AV0Z50390512 Keywords : growth factor * human embryonic stem cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.094, year: 2005

  15. Effects of oxidative stress on human embryonic stem cells; global gene expression, advanced glycation end products and NEDD1 levels

    NARCIS (Netherlands)

    Barandalla Sobrados, M.

    2017-01-01

    A number of unfavorable conditions can affect the development of the early embryo inducing oxidative stress both in vivo, for instance in gestational diabetes, and in vitro, when embryos are derived from Assisted Reproductive Technologies (ART). Human Embryonic Stem Cells (hESCs) potentially offer a

  16. Non-invasive determination of metabolite concentrations in human transplanted kidney in vivo by 31P MR spectroscopy

    International Nuclear Information System (INIS)

    Kugel, H.; Wittsack, H.J.; Wenzel, F.; Heindel, W.; Lackner, K.; Stippel, D.

    2000-01-01

    To investigate concentrations of phosphorus-containing metabolites in human transplanted kidney in vivo by quantitative 31 P MR spectroscopy (MRS) using surface coils and to compare the obtained values with previous data. Material and Methods: In 5 patients with well-functioning transplanted kidneys, 31 P spectra were obtained with the three-dimensional localization image-selected in vivo spectroscopy technique applying a protocol for quantitative spectroscopy using surface coils. Relaxation corrected signal intensities determined by time domain fitting were used to derive absolute molar concentrations for phosphate-containing metabolites. Results: Little or no phosphocreatine in all spectra verified the absence of muscle contamination, confirming proper volume localization. The mean concentrations in the transplanted kidneys were as follows: ATP 1.60±0.26 mmol/l, PDE 2.14±0.91 mmol/l, Pi 0.66±0.25 mmol/l, PME 2.32±0.50 mmol/l. These values are consistent with previously reported values determined by other techniques. Conclusion: The non-invasive determination of absolute metabolite concentrations in human kidney using MRS supplements the use of signal intensity ratios to detect pathologic changes in the energy metabolism of transplanted kidneys

  17. Function of FEZF1 during early neural differentiation of human embryonic stem cells.

    Science.gov (United States)

    Liu, Xin; Su, Pei; Lu, Lisha; Feng, Zicen; Wang, Hongtao; Zhou, Jiaxi

    2018-01-01

    The understanding of the mechanism underlying human neural development has been hampered due to lack of a cellular system and complicated ethical issues. Human embryonic stem cells (hESCs) provide an invaluable model for dissecting human development because of unlimited self-renewal and the capacity to differentiate into nearly all cell types in the human body. In this study, using a chemical defined neural induction protocol and molecular profiling, we identified Fez family zinc finger 1 (FEZF1) as a potential regulator of early human neural development. FEZF1 is rapidly up-regulated during neural differentiation in hESCs and expressed before PAX6, a well-established marker of early human neural induction. We generated FEZF1-knockout H1 hESC lines using CRISPR-CAS9 technology and found that depletion of FEZF1 abrogates neural differentiation of hESCs. Moreover, loss of FEZF1 impairs the pluripotency exit of hESCs during neural specification, which partially explains the neural induction defect caused by FEZF1 deletion. However, enforced expression of FEZF1 itself fails to drive neural differentiation in hESCs, suggesting that FEZF1 is necessary but not sufficient for neural differentiation from hESCs. Taken together, our findings identify one of the earliest regulators expressed upon neural induction and provide insight into early neural development in human.

  18. Generation of KCL018 research grade human embryonic stem cell line carrying a mutation in the DMPK gene

    Directory of Open Access Journals (Sweden)

    Cristian Miere

    2016-03-01

    Full Text Available The KCL018 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation affecting one allele of the DMPK gene encoding the dystrophia myotonica protein kinase (2200 trinucleotide repeats; 14 for the normal allele. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro assays.

  19. Generation of KCL028 research grade human embryonic stem cell line carrying a mutation in the HTT gene

    Directory of Open Access Journals (Sweden)

    Laureen Jacquet

    2016-03-01

    Full Text Available The KCL028 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation affecting one allele of the HTT gene encoding huntingtin (43 trinucleotide repeats; 21 for the normal allele. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro and in vivo assays.

  20. Efficient differentiation of human embryonic stem cells to definitive endoderm.

    Science.gov (United States)

    D'Amour, Kevin A; Agulnick, Alan D; Eliazer, Susan; Kelly, Olivia G; Kroon, Evert; Baetge, Emmanuel E

    2005-12-01

    The potential of human embryonic stem (hES) cells to differentiate into cell types of a variety of organs has generated much excitement over the possible use of hES cells in therapeutic applications. Of great interest are organs derived from definitive endoderm, such as the pancreas. We have focused on directing hES cells to the definitive endoderm lineage as this step is a prerequisite for efficient differentiation to mature endoderm derivatives. Differentiation of hES cells in the presence of activin A and low serum produced cultures consisting of up to 80% definitive endoderm cells. This population was further enriched to near homogeneity using the cell-surface receptor CXCR4. The process of definitive endoderm formation in differentiating hES cell cultures includes an apparent epithelial-to-mesenchymal transition and a dynamic gene expression profile that are reminiscent of vertebrate gastrulation. These findings may facilitate the use of hES cells for therapeutic purposes and as in vitro models of development.

  1. Kaempferol increases levels of coenzyme Q in kidney cells and serves as a biosynthetic ring precursor.

    Science.gov (United States)

    Fernández-Del-Río, Lucía; Nag, Anish; Gutiérrez Casado, Elena; Ariza, Julia; Awad, Agape M; Joseph, Akil I; Kwon, Ohyun; Verdin, Eric; de Cabo, Rafael; Schneider, Claus; Torres, Jorge Z; Burón, María I; Clarke, Catherine F; Villalba, José M

    2017-09-01

    Coenzyme Q (Q) is a lipid-soluble antioxidant essential in cellular physiology. Patients with Q deficiencies, with few exceptions, seldom respond to treatment. Current therapies rely on dietary supplementation with Q 10 , but due to its highly lipophilic nature, Q 10 is difficult to absorb by tissues and cells. Plant polyphenols, present in the human diet, are redox active and modulate numerous cellular pathways. In the present study, we tested whether treatment with polyphenols affected the content or biosynthesis of Q. Mouse kidney proximal tubule epithelial (Tkpts) cells and human embryonic kidney cells 293 (HEK 293) were treated with several types of polyphenols, and kaempferol produced the largest increase in Q levels. Experiments with stable isotope 13 C-labeled kaempferol demonstrated a previously unrecognized role of kaempferol as an aromatic ring precursor in Q biosynthesis. Investigations of the structure-function relationship of related flavonols showed the importance of two hydroxyl groups, located at C3 of the C ring and C4' of the B ring, both present in kaempferol, as important determinants of kaempferol as a Q biosynthetic precursor. Concurrently, through a mechanism not related to the enhancement of Q biosynthesis, kaempferol also augmented mitochondrial localization of Sirt3. The role of kaempferol as a precursor that increases Q levels, combined with its ability to upregulate Sirt3, identify kaempferol as a potential candidate in the design of interventions aimed on increasing endogenous Q biosynthesis, particularly in kidney. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Integration-deficient lentivectors: an effective strategy to purify and differentiate human embryonic stem cell-derived hepatic progenitors.

    Science.gov (United States)

    Yang, Guanghua; Si-Tayeb, Karim; Corbineau, Sébastien; Vernet, Rémi; Gayon, Régis; Dianat, Noushin; Martinet, Clémence; Clay, Denis; Goulinet-Mainot, Sylvie; Tachdjian, Gérard; Tachdjian, Gérard; Burks, Deborah; Vallier, Ludovic; Bouillé, Pascale; Dubart-Kupperschmitt, Anne; Weber, Anne

    2013-07-19

    Human pluripotent stem cells (hPSCs) hold great promise for applications in regenerative medicine. However, the safety of cell therapy using differentiated hPSC derivatives must be improved through methods that will permit the transplantation of homogenous populations of a specific cell type. To date, purification of progenitors and mature cells generated from either embryonic or induced pluripotent stem cells remains challenging with use of conventional methods. We used lentivectors encoding green fluorescent protein (GFP) driven by the liver-specific apoliprotein A-II (APOA-II) promoter to purify human hepatic progenitors. We evaluated both integrating and integration-defective lentivectors in combination with an HIV integrase inhibitor. A human embryonic stem cell line was differentiated into hepatic progenitors using a chemically defined protocol. Subsequently, cells were transduced and sorted at day 16 of differentiation to obtain a cell population enriched in hepatic progenitor cells. After sorting, more than 99% of these APOA-II-GFP-positive cells expressed hepatoblast markers such as α-fetoprotein and cytokeratin 19. When further cultured for 16 days, these cells underwent differentiation into more mature cells and exhibited hepatocyte properties such as albumin secretion. Moreover, they were devoid of vector DNA integration. We have developed an effective strategy to purify human hepatic cells from cultures of differentiating hPSCs, producing a novel tool that could be used not only for cell therapy but also for in vitro applications such as drug screening. The present strategy should also be suitable for the purification of a broad range of cell types derived from either pluripotent or adult stem cells.

  3. Immortalization of normal human embryonic fibroblasts by introduction of either the human papillomavirus type 16 E6 or E7 gene alone.

    Science.gov (United States)

    Yamamoto, Akito; Kumakura, Shin-ichi; Uchida, Minoru; Barrett, J Carl; Tsutsui, Takeki

    2003-09-01

    The ability of the human papillomavirus type 16 (HPV-16) E6 or E7 gene to induce immortalization of normal human embryonic fibroblast WHE-7 cells was examined. WHE-7 cells at 9 population doublings (PD) were infected with retrovirus vectors encoding either HPV-16 E6 or E7 alone or both E6 and E7 (E6/E7). One of 4 isolated clones carrying E6 alone became immortal and is currently at >445 PD. Four of 4 isolated clones carrying E7 alone escaped from crisis and are currently at >330 PD. Three of 5 isolated clones carrying E6/E7 were also immortalized and are currently at >268 PD. The immortal clone carrying E6 only and 2 of the 3 immortal clones carrying E6/E7 expressed a high level of E6 protein, and all the immortal clones carrying E7 alone and the other immortal clone carrying E6/E7 expressed a high level of E7 protein when compared to their mortal or precrisis clones. The immortal clones expressing a high level of E6 or E7 protein were positive for telomerase activity or an alternative mechanism of telomere maintenance, respectively, known as ALT (alternative lengthening of telomeres). All the mortal or precrisis clones were negative for both phenotypes. All the immortal clones exhibited abrogation of G1 arrest after DNA damage by X-ray irradiation. The expression of INK4a protein (p16(INK4a)) was undetectable in the E6-infected mortal and immortal clones, whereas Rb protein (pRb) was hyperphosphorylated only in the immortal clone. The p16(INK4a) protein was overexpressed in all the E7-infected immortal clones and their clones in the pre-crisis period as well as all the E6/E7-infected mortal and immortal clones, but the pRb expression was downregulated in all of these clones. These results demonstrate for the first time to our knowledge that HPV-16 E6 or E7 alone can induce immortalization of normal human embryonic fibroblasts. Inactivation of p16(INK4a)/pRb pathways in combination with activation of a telomere maintenance mechanism is suggested to be necessary for

  4. Efficient Generation of Human Embryonic Stem Cell-Derived Corneal Endothelial Cells by Directed Differentiation.

    Directory of Open Access Journals (Sweden)

    Kathryn L McCabe

    Full Text Available To generate human embryonic stem cell derived corneal endothelial cells (hESC-CECs for transplantation in patients with corneal endothelial dystrophies.Feeder-free hESC-CECs were generated by a directed differentiation protocol. hESC-CECs were characterized by morphology, expression of corneal endothelial markers, and microarray analysis of gene expression.hESC-CECs were nearly identical morphologically to primary human corneal endothelial cells, expressed Zona Occludens 1 (ZO-1 and Na+/K+ATPaseα1 (ATPA1 on the apical surface in monolayer culture, and produced the key proteins of Descemet's membrane, Collagen VIIIα1 and VIIIα2 (COL8A1 and 8A2. Quantitative PCR analysis revealed expression of all corneal endothelial pump transcripts. hESC-CECs were 96% similar to primary human adult CECs by microarray analysis.hESC-CECs are morphologically similar, express corneal endothelial cell markers and express a nearly identical complement of genes compared to human adult corneal endothelial cells. hESC-CECs may be a suitable alternative to donor-derived corneal endothelium.

  5. Human embryonic stem cells and good manufacturing practice: Report of a 1- day workshop held at Stem Cell Biology Research Center, Yazd, 27th April 2017

    Directory of Open Access Journals (Sweden)

    Fatemeh Akyash

    2017-09-01

    Full Text Available This report explains briefly the minutes of a 1-day workshop entitled; “human embryonic stem cells (hESCs and good manufacturing practice (GMP” held by Stem Cell Biology Research Center based in Yazd Reproductive Sciences Institute at Shahid Sadoughi University of Medical Sciences, Yazd, Iran on 27th April 2017. In this workshop, in addition to the practical sessions, Prof. Harry D. Moore from Centre for Stem Cell Biology, University of Sheffield, UK presented the challenges and the importance of the biotechnology of clinical-grade human embryonic stem cells from first derivation to robust defined culture for therapeutic applications.

  6. Human embryonic stem cells and good manufacturing practice: Report of a 1- day workshop held at Stem Cell Biology Research Center, Yazd, 27th April 2017.

    Science.gov (United States)

    Akyash, Fatemeh; Sadeghian-Nodoushan, Fatemeh; Tahajjodi, Somayyeh Sadat; Nikukar, Habib; Farashahi Yazd, Ehsan; Azimzadeh, Mostafa; D Moore, Harry; Aflatoonian, Behrouz

    2017-05-01

    This report explains briefly the minutes of a 1-day workshop entitled; "human embryonic stem cells (hESCs) and good manufacturing practice (GMP)" held by Stem Cell Biology Research Center based in Yazd Reproductive Sciences Institute at Shahid Sadoughi University of Medical Sciences, Yazd, Iran on 27 th April 2017. In this workshop, in addition to the practical sessions, Prof. Harry D. Moore from Centre for Stem Cell Biology, University of Sheffield, UK presented the challenges and the importance of the biotechnology of clinical-grade human embryonic stem cells from first derivation to robust defined culture for therapeutic applications.

  7. [Proliferative capacity of mesenchymal stem cells from human fetal bone marrow and their ability to differentiate into the derivative cell types of three embryonic germ layers].

    Science.gov (United States)

    Wang, Yue-Chun; Zhang, Yuan

    2008-06-25

    Strong proliferative capacity and the ability to differentiate into the derivative cell types of three embryonic germ layers are the two important characteristics of embryonic stem cells. To study whether the mesenchymal stem cells from human fetal bone marrow (hfBM-MSCs) possess these embryonic stem cell-like biological characteristics, hfBM-MSCs were isolated from bone barrows and further purified according to the different adherence of different kinds of cells to the wall of culture flask. The cell cycle of hfBM-MSCs and MSC-specific surface markers such as CD29, CD44, etc were identified using flow cytometry. The expressions of human telomerase reverse transcriptase (hTERT), the embryonic stem cell-specific antigens, such as Oct4 and SSEA-4 were detected with immunocytochemistry at the protein level and were also tested by RT-PCR at the mRNA level. Then, hfBM-MSCs were induced to differentiate toward neuron cells, adipose cells, and islet B cells under certain conditions. It was found that 92.3% passage-4 hfBM-MSCs and 96.1% passage-5 hfBM-MSCs were at G(0)/G(1) phase respectively. hfBM-MSCs expressed CD44, CD106 and adhesion molecule CD29, but not antigens of hematopoietic cells CD34 and CD45, and almost not antigens related to graft-versus-host disease (GVHD), such as HLA-DR, CD40 and CD80. hfBM-MSCs expressed the embryonic stem cell-specific antigens such as Oct4, SSEA-4, and also hTERT. Exposure of these cells to various inductive agents resulted in morphological changes towards neuron-like cells, adipose-like cells, and islet B-like cells and they were tested to be positive for related characteristic markers. These results suggest that there are plenty of MSCs in human fetal bone marrow, and hfBM-MSCs possess the embryonic stem cell-like biological characteristics, moreover, they have a lower immunogenic nature. Thus, hfBM-MSCs provide an ideal source for tissue engineering and cellular therapeutics.

  8. A QUANTITATIVE METHOD FOR ANALYSING 3-D BRANCHING IN EMBRYONIC KIDNEYS: DEVELOPMENT OF A TECHNIQUE AND PRELIMINARY DATA

    Directory of Open Access Journals (Sweden)

    Gabriel Fricout

    2011-05-01

    Full Text Available The normal human adult kidney contains between 300,000 and 1 million nephrons (the functional units of the kidney. Nephrons develop at the tips of the branching ureteric duct, and therefore ureteric duct branching morphogenesis is critical for normal kidney development. Current methods for analysing ureteric branching are mostly qualitative and those quantitative methods that do exist do not account for the 3- dimensional (3D shape of the ureteric "tree". We have developed a method for measuring the total length of the ureteric tree in 3D. This method is described and preliminary data are presented. The algorithm allows for performing a semi-automatic segmentation of a set of grey level confocal images and an automatic skeletonisation of the resulting binary object. Measurements of length are automatically obtained, and numbers of branch points are manually counted. The final representation can be reconstructed by means of 3D volume rendering software, providing a fully rotating 3D perspective of the skeletonised tree, making it possible to identify and accurately measure branch lengths. Preliminary data shows the total length estimates obtained with the technique to be highly reproducible. Repeat estimates of total tree length vary by just 1-2%. We will now use this technique to further define the growth of the ureteric tree in vitro, under both normal culture conditions, and in the presence of various levels of specific molecules suspected of regulating ureteric growth. The data obtained will provide fundamental information on the development of renal architecture, as well as the regulation of nephron number.

  9. A Selection of Constitutional Perspectives on Human Kidney Sales ...

    African Journals Online (AJOL)

    There are thousands of desperate people globally who need a kidney for transplantation. The number of people who require a kidney transplant continues to escalate faster than the number of kidneys available for a transplant. The specific focus of this article is to determine whether the payment of kidney donors could be ...

  10. Shift of galectin-3 expression in the human kidney during development

    Directory of Open Access Journals (Sweden)

    Clara Gerosa

    2013-06-01

    Full Text Available Galectin-3 (Gal-3 is a member of the lectin family, including 14 mammalian galectins, and has been shown to be involved in the many biological processes. In fact it has been reported to be expressed during human nephrogenesis, in the ureteric bud tips and in the medullary regions. In 11 developing human kidney the immunoexpression of Gal-3 was studied. Previously observations on Gal-3 expression in collecting ducts were confirmed and a wild variable reactivity was detected among the range from 20 to 36 weeks of gestational age considered. Between the early and late phases of gestation two phases have been identified: the first, from 20 up to 26 weeks of gestation, with a strong reactivity and the second, from 30 to 36 weeks, with a decrease in Gal-3 expression. This finding clearly indicates a major role for Gal-3 in early human nephrogenesis ending around the 30th week of gestation. In conclusion, Gal-3 apparently plays a role in kidney development at different check points, participating both to ureteric bud proliferation and to differentiation of structures originating from the metanephric mesenchyme. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research

  11. Establishment of new murine embryonic stem cell lines for the generation of mouse models of human genetic diseases

    Directory of Open Access Journals (Sweden)

    M.A. Sukoyan

    2002-05-01

    Full Text Available Embryonic stem cells are totipotent cells derived from the inner cell mass of blastocysts. Recently, the development of appropriate culture conditions for the differentiation of these cells into specific cell types has permitted their use as potential therapeutic agents for several diseases. In addition, manipulation of their genome in vitro allows the creation of animal models of human genetic diseases and for the study of gene function in vivo. We report the establishment of new lines of murine embryonic stem cells from preimplantation stage embryos of 129/Sv mice. Most of these cells had a normal karyotype and an XY sex chromosome composition. The pluripotent properties of the cell lines obtained were analyzed on the basis of their alkaline phosphatase activity and their capacity to form complex embryoid bodies with rhythmically contracting cardiomyocytes. Two lines, USP-1 and USP-3, with the best in vitro characteristics of pluripotency were used in chimera-generating experiments. The capacity to contribute to the germ line was demonstrated by the USP-1 cell line. This cell line is currently being used to generate mouse models of human diseases.

  12. Asymmetric BMP4 signalling improves the realism of kidney organoids.

    Science.gov (United States)

    Mills, Christopher G; Lawrence, Melanie L; Munro, David A D; Elhendawi, Mona; Mullins, John J; Davies, Jamie A

    2017-11-01

    We present a strategy for increasing the anatomical realism of organoids by applying asymmetric cues to mimic spatial information that is present in natural embryonic development, and demonstrate it using mouse kidney organoids. Existing methods for making kidney organoids in mice yield developing nephrons arranged around a symmetrical collecting duct tree that has no ureter. We use transplant experiments to demonstrate plasticity in the fate choice between collecting duct and ureter, and show that an environment rich in BMP4 promotes differentiation of early collecting ducts into uroplakin-positive, unbranched, ureter-like epithelial tubules. Further, we show that application of BMP4-releasing beads in one place in an organoid can break the symmetry of the system, causing a nearby collecting duct to develop into a uroplakin-positive, broad, unbranched, ureter-like 'trunk' from one end of which true collecting duct branches radiate and induce nephron development in an arrangement similar to natural kidneys. The idea of using local symmetry-breaking cues to improve the realism of organoids may have applications to organoid systems other than the kidney.

  13. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane.

    NARCIS (Netherlands)

    Huls, M.; Brown, C.D.; Windass, A.S.; Sayer, R.; Heuvel, J.J.M.W. van den; Heemskerk, S.; Russel, F.G.M.; Masereeuw, R.

    2008-01-01

    The Breast Cancer Resistance Protein (BCRP/ABCG2) is a transporter restricting absorption and enhancing excretion of many compounds including anticancer drugs. This transporter is highly expressed in many tissues; however, in human kidney, only the mRNA was found in contrast to the mouse kidney,

  14. Pakistan's kidney trade: an overview of the 2007 'Transplantation of Human Organs and Human Tissue Ordinance.' To what extent will it curb the trade?

    Science.gov (United States)

    Raza, Mohsen; Skordis-Worrall, Jolene

    2012-01-01

    Pakistan has the unenviable reputation for being one of the world's leading 'transplant tourism' destinations, largely the buying and selling of kidneys from its impoverished population to rich international patients. After nearly two decades of pressure to formally prohibit the trade, the Government of Pakistan promulgated the 'Transplantation of Human Organs and Human Tissue Ordinance' (THOTO) in 2007. This was then passed by Senate and enshrined in law in March 2010. This paper gives a brief overview of the organ trade within Pakistan and analyses the criteria of THOTO in banning the widespread practise. It then goes on to answer: 'To what extent will THOTO succeed in curbing Pakistan's kidney trade?' This is aided by the use of a comparative case study looking at India's failed organ trade legislation. This paper concludes THOTO has set a strong basis for curbing Pakistan's kidney trade. However, for this to be successfully achieved, it needs to be implemented with strong and sustained political will, strict and efficient enforcement as well as effective monitoring and evaluation. Efforts are needed to tackle both 'supply' and 'demand' factors of Pakistan's kidney trade, with developed countries also having a responsibility to reduce the flow of citizens travelling to Pakistan to purchase a kidney.

  15. Ethical Assessment of Human Embryonic Stem Cell Research According to Turkish Muslim Scholars: First Critical Analysis and Some Reflections.

    Science.gov (United States)

    Karakaya, Ahmet; Ilkilic, Ilhan

    2016-08-01

    Turkey, with a Muslim population of officially over 99 %, is one of the few secular states in the Muslim world. Although state institutions are not based on Islamic juridical and ethical norms, the latter play a significant role in defining people's attitudes towards controversial issues in the modern world, especially when backed by opinions of Muslim scholars living in Turkey. Accordingly, opinions of Muslim scholars undoubtedly have an important effect on bioethical decisions made by institutions and individuals. To explore the ethical positions of Muslim scholars living in Turkey and their arguments used in the ethical assessment of embryonic stem cell research; to discuss the biological-moral tensions arising in medical research on human embryos. Qualitative study. Muslim scholars located in different parts of Turkey. Qualitative method, involving the collection of opinions of various scholars, by means of 15 individual semi-structured interviews, evaluated using thematic qualitative analysis. Positions regarding embryonic stem cell research differ among Muslim scholars in Turkey. On the other hand, even where positions are similar, they are often supported by different arguments. Despite the heterogeneity of the arguments presented, the dominant position considers embryonic stem cell research as morally acceptable.

  16. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture.

    Science.gov (United States)

    Miller-Pinsler, Lutfiya; Wells, Peter G

    2015-09-15

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat(b)/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug=GD 1), exposed for 24h to 2 or 4mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (pcatalase (PEG-cat) 8h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (pcatalase is a determinant of risk for EtOH embryopathies. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Comparing independent microarray studies: the case of human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Hemmati-Brivanlou Ali

    2005-07-01

    Full Text Available Abstract Background Microarray studies of the same phenomenon in different labs often appear at variance because the published lists of regulated transcripts have disproportionately small intersections. We demonstrate that comparing studies by intersecting lists in this manner is methodologically flawed by reanalyzing three studies of the molecular signature of "stemness" in human embryonic stem cells. There are only 7 genes common to all three published lists, suggesting disagreement. Results Carefully reanalyzing all three together from the raw data we detect 111 genes upregulated and 95 downregulated in all three studies. The upregulated list was subject to rtRTPCR analysis and 75% of the genes were confirmed. Conclusion Our findings show that the three studies have a substantial core of common genes, which is missed if only the published lists are examined. Combined analysis of multiple experiments can be a powerful way to distil coherent conclusions.

  18. Strong human leukocyte antigen matching effect in nonsensitized kidney recipients with high pretransplant soluble CD30.

    Science.gov (United States)

    Süsal, Caner; Pelzl, Steffen; Opelz, Gerhard

    2003-10-27

    The influence of human leukocyte antigen (HLA) matching on graft survival is greater in patients with preformed lymphocytotoxic antibodies than in nonsensitized patients. Pretransplant serum soluble CD30 (sCD30) affects graft outcome independently of presensitization status. The impact of HLA compatibility on kidney transplant survival was analyzed in 3980 nonsensitized first cadaveric kidney recipients in relation to the pretransplant serum sCD30 content. Although HLA compatibility influenced graft outcome only marginally in nonsensitized recipients with low sCD30 (at 3 years: P=0.0095; at 5 years: P=0.1033), a strong HLA matching effect was observed in nonsensitized recipients with high sCD30 (at 3 years: PsCD30 benefit from an HLA well-matched kidney. Patients should be tested for sCD30 while on the waiting list for a kidney transplant, and HLA well-matched kidneys should be allocated to patients with high sCD30.

  19. Tributyltin induces mitochondrial fission through NAD-IDH dependent mitofusin degradation in human embryonic carcinoma cells.

    Science.gov (United States)

    Yamada, Shigeru; Kotake, Yaichiro; Nakano, Mizuho; Sekino, Yuko; Kanda, Yasunari

    2015-08-01

    Organotin compounds, such as tributyltin (TBT), are well-known endocrine disruptors. TBT acts at the nanomolar level through genomic pathways via the peroxisome proliferator activated receptor (PPAR)/retinoid X receptor (RXR). We recently reported that TBT inhibits cell growth and the ATP content in the human embryonic carcinoma cell line NT2/D1 via a non-genomic pathway involving NAD(+)-dependent isocitrate dehydrogenase (NAD-IDH), which metabolizes isocitrate to α-ketoglutarate. However, the molecular mechanisms by which NAD-IDH mediates TBT toxicity remain unclear. In the present study, we evaluated the effects of TBT on mitochondrial NAD-IDH and energy production. Staining with MitoTracker revealed that nanomolar TBT levels induced mitochondrial fragmentation. TBT also degraded the mitochondrial fusion proteins, mitofusins 1 and 2. Interestingly, apigenin, an inhibitor of NAD-IDH, mimicked the effects of TBT. Incubation with an α-ketoglutarate analogue partially recovered TBT-induced mitochondrial dysfunction, supporting the involvement of NAD-IDH. Our data suggest that nanomolar TBT levels impair mitochondrial quality control via NAD-IDH in NT2/D1 cells. Thus, mitochondrial function in embryonic cells could be used to assess cytotoxicity associated with metal exposure.

  20. Adeno-associated virus type 2 enhances goose parvovirus replication in embryonated goose eggs

    International Nuclear Information System (INIS)

    Malkinson, Mertyn; Winocour, Ernest

    2005-01-01

    The autonomous goose parvovirus (GPV) and the human helper-dependent adeno-associated virus type 2 (AAV2) share a high degree of homology. To determine if this evolutionary relationship has a biological impact, we studied viral replication in human 293 cells and in embryonated goose eggs coinfected with both viruses. Similar experiments were performed with the minute virus of mice (MVM), an autonomous murine parvovirus with less homology to AAV2. In human 293 cells, both GPV and MVM augmented AAV2 replication. In contrast, AAV2 markedly enhanced GPV replication in embryonated goose eggs under conditions where a similar effect was not observed with MVM. AAV2 did not replicate in embryonated goose eggs and AAV2 inactivated by UV-irradiation also enhanced GPV replication. To our knowledge, this is the first report that a human helper-dependent member of the Parvoviridae can provide helper activity for an autonomous parvovirus in a natural host

  1. Directed neuronal differentiation of human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Noggle Scott A

    2003-10-01

    Full Text Available Abstract Background We have developed a culture system for the efficient and directed differentiation of human embryonic stem cells (HESCs to neural precursors and neurons. HESC were maintained by manual passaging and were differentiated to a morphologically distinct OCT-4+/SSEA-4- monolayer cell type prior to the derivation of embryoid bodies. Embryoid bodies were grown in suspension in serum free conditions, in the presence of 50% conditioned medium from the human hepatocarcinoma cell line HepG2 (MedII. Results A neural precursor population was observed within HESC derived serum free embryoid bodies cultured in MedII conditioned medium, around 7–10 days after derivation. The neural precursors were organized into rosettes comprised of a central cavity surrounded by ring of cells, 4 to 8 cells in width. The central cells within rosettes were proliferating, as indicated by the presence of condensed mitotic chromosomes and by phosphoHistone H3 immunostaining. When plated and maintained in adherent culture, the rosettes of neural precursors were surrounded by large interwoven networks of neurites. Immunostaining demonstrated the expression of nestin in rosettes and associated non-neuronal cell types, and a radial expression of Map-2 in rosettes. Differentiated neurons expressed the markers Map-2 and Neurofilament H, and a subpopulation of the neurons expressed tyrosine hydroxylase, a marker for dopaminergic neurons. Conclusion This novel directed differentiation approach led to the efficient derivation of neuronal cultures from HESCs, including the differentiation of tyrosine hydroxylase expressing neurons. HESC were morphologically differentiated to a monolayer OCT-4+ cell type, which was used to derive embryoid bodies directly into serum free conditions. Exposure to the MedII conditioned medium enhanced the derivation of neural precursors, the first example of the effect of this conditioned medium on HESC.

  2. Low vascularization of the nephrogenic zone of the fetal kidney suggests a major role for hypoxia in human nephrogenesis.

    Science.gov (United States)

    Gerosa, C; Fanni, D; Faa, A; Van Eyken, P; Ravarino, A; Fanos, V; Faa, G

    2017-09-01

    CD31 reactivity is generally utilized as a marker of endothelial cells. CD31 immunoreactivity in the developing human kidney revealed that fetal glomerular capillary endothelial cells change their immunohistochemical phenotype during maturation. The aim of this study was to analyze CD31 reactivity in the fetal human kidney in the different stages of intrauterine development: We observed different distribution of CD31-reactive vascular progenitors in the different areas of the developing kidney. In particular, the nephrogenic zone and the renal capsule were characterized by a scarcity of CD31-reactive cells at all gestational ages. These data suggest the hypothesis that nephrogenesis does not need high oxygen levels and confirms a major role of hypoxia in nephrogenesis.

  3. Stable isotope labelling with amino acids in cell culture for human embryonic stem cell proteomic analysis

    DEFF Research Database (Denmark)

    Harkness, Linda; Prokhorova, Tatyana A; Kassem, Moustapha

    2012-01-01

    The identification and quantitative measurements of proteins in human embryonic stem cells (hESC) is a fast growing interdisciplinary area with an enormous impact on understanding the biology of hESC and the mechanism controlling self-renewal and differentiation. Using a quantitative mass...... spectroscopic method of stable isotope labelling with amino acids during cell culture (SILAC), we are able to analyse differential expression of proteins from different cellular compartments and to identify intracellular signalling pathways involved in self-renewal and differentiation. In this chapter, we...

  4. 99Tcm-N(NOEt2 Uptake Kinetics Difference among KMB17 Human Embryonic Lung Diploid Fibroblast and Different Human Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wei JIA

    2010-04-01

    Full Text Available Background and objective PET/CT imaging is expensive, so searching the tumor imaging agent for SPECT/CT is necessary. 99Tcm-N(NOEt2 [bis (N-ethoxy-N-ethyl dithiocarbamato nitrido99Tcm (V] can be uptaken by lung cancer cells and other cells alike. The aim of this study is to evaluate the distinctive value in lung tumor with 99Tcm-N(NOEt2, the difference in its uptake kinetics in human embryonic lung diploid fibroblasts KMB17 and several kinds of lung cancer cells lines. Methods Firstly, six different cell culture medium which contained YTMLC Gejiu human lung squamous carcinoma cell, SPC-A1 human lung adenocarcinoma cell, AGZY low metastatic human lung adenocarcinoma, 973 high metastatic human lung adenocarcinoma cell, GLC-82 Gejiu human lung adenocarcinoma cell, and KMB17 human embryonic lung diploid fibroblast, respectively with equal cell density of 1×106/mL and the same volume were prepared; secondly, the same radioactive dose of 99Tcm-N(NOEt2 was added into each sample and then 300 μL mixed sample was taken out respectively and cultured in 37 oC culture box; Finally, 5 min, 15 min, 30 min, 45 min, 60 min, 75 min, 90 min after cultivation, centrifuged each cultured sample and determined the intracellular radiocounts of each sample, calculated each cell sample’s uptake rate of 99Tcm-N(NOEt2 at different time. Results Statistical difference was found among six cell samples, and the uptake rate sequence from high to low is 973 and SPC-A1>YTMLC>GLC-82>AGZY>KMB17 respectively; furthermore, 30 min-45 min after culture, the uptake rate reached stability, and the 45 min uptake rate of each sample was higher than its 96.7% uptake peak. Conclusion Based on the results above mentioned, it is supposed that there are discriminative clinical value when using 99Tcm-N(NOEt2 as a tumor targeting imaging agent, and 30 min or so after injection may be the best imaging time in the early imaging stage.

  5. Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells.

    Science.gov (United States)

    Salehi, Paria Motamen; Foroutan, Tahereh; Javeri, Arash; Taha, Masoumeh Fakhr

    2017-11-01

    In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Human ADSCs were isolated from subcutaneous abdominal adipose tissue and characterized by flow cytometric analysis for the expression of some mesenchymal stem cell markers and adipogenic and osteogenic differentiation. Frequent freeze-thaw technique was used to prepare cytoplasmic extract of ESCs. Plasma membranes of the ADSCs were reversibly permeabilized by streptolysin-O (SLO). Then the permeabilized ADSCs were incubated with the ESC extract and cultured in resealing medium. After reprogramming, the expression of some pluripotency genes was evaluated by RT-PCR and quantitative real-time PCR (qPCR) analyses. Third-passaged ADSCs showed a fibroblast-like morphology and expressed mesenchymal stem cell markers. They also showed adipogenic and osteogenic differentiation potential. QPCR analysis revealed a significant upregulation in the expression of some pluripotency genes including OCT4 , SOX2 , NANOG , REX1 and ESG1 in the reprogrammed ADSCs compared to the control group. These findings showed that mouse ESC extract can be used to induce reprogramming of human ADSCs. In fact, this method is applicable for reprogramming of human adult stem cells to a more pluripotent sate and may have a potential in regenerative medicine.

  6. Establishment of Homozygote Mutant Human Embryonic Stem Cells by Parthenogenesis.

    Science.gov (United States)

    Epsztejn-Litman, Silvina; Cohen-Hadad, Yaara; Aharoni, Shira; Altarescu, Gheona; Renbaum, Paul; Levy-Lahad, Ephrat; Schonberger, Oshrat; Eldar-Geva, Talia; Zeligson, Sharon; Eiges, Rachel

    2015-01-01

    We report on the derivation of a diploid 46(XX) human embryonic stem cell (HESC) line that is homozygous for the common deletion associated with Spinal muscular atrophy type 1 (SMA) from a pathenogenetic embryo. By characterizing the methylation status of three different imprinted loci (MEST, SNRPN and H19), monitoring the expression of two parentally imprinted genes (SNRPN and H19) and carrying out genome-wide SNP analysis, we provide evidence that this cell line was established from the activation of a mutant oocyte by diploidization of the entire genome. Therefore, our SMA parthenogenetic HESC (pHESC) line provides a proof-of-principle for the establishment of diseased HESC lines without the need for gene manipulation. As mutant oocytes are easily obtained and readily available during preimplantation genetic diagnosis (PGD) cycles, this approach should provide a powerful tool for disease modelling and is especially advantageous since it can be used to induce large or complex mutations in HESCs, including gross DNA alterations and chromosomal rearrangements, which are otherwise hard to achieve.

  7. Establishment of Homozygote Mutant Human Embryonic Stem Cells by Parthenogenesis.

    Directory of Open Access Journals (Sweden)

    Silvina Epsztejn-Litman

    Full Text Available We report on the derivation of a diploid 46(XX human embryonic stem cell (HESC line that is homozygous for the common deletion associated with Spinal muscular atrophy type 1 (SMA from a pathenogenetic embryo. By characterizing the methylation status of three different imprinted loci (MEST, SNRPN and H19, monitoring the expression of two parentally imprinted genes (SNRPN and H19 and carrying out genome-wide SNP analysis, we provide evidence that this cell line was established from the activation of a mutant oocyte by diploidization of the entire genome. Therefore, our SMA parthenogenetic HESC (pHESC line provides a proof-of-principle for the establishment of diseased HESC lines without the need for gene manipulation. As mutant oocytes are easily obtained and readily available during preimplantation genetic diagnosis (PGD cycles, this approach should provide a powerful tool for disease modelling and is especially advantageous since it can be used to induce large or complex mutations in HESCs, including gross DNA alterations and chromosomal rearrangements, which are otherwise hard to achieve.

  8. Generation of KCL025 research grade human embryonic stem cell line carrying a mutation in NF1 gene

    Directory of Open Access Journals (Sweden)

    Heema Hewitson

    2016-03-01

    Full Text Available The KCL025 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation in the NF1 gene encoding neurofibromin (c.3739–3742 ΔTTTG. Mutations in this gene have been linked to neurofibromatosis type 1, juvenile myelomonocytic leukemia and Watson syndrome. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro assays.

  9. Cigarette smoking during early pregnancy reduces the number of embryonic germ and somatic cells

    DEFF Research Database (Denmark)

    Mamsen, Linn; Lutterodt, M C; Andersen, Elisabeth Anne Wreford

    2010-01-01

    BACKGROUND: Cigarette smoking during pregnancy is associated with negative reproductive consequences for male fetuses in adult life such as reduced testicular volume and sperm concentration. The present study evaluates the number of germ and somatic cells present in human embryonic first-trimeste......BACKGROUND: Cigarette smoking during pregnancy is associated with negative reproductive consequences for male fetuses in adult life such as reduced testicular volume and sperm concentration. The present study evaluates the number of germ and somatic cells present in human embryonic first......-trimester gonads in relation to maternal smoking. METHODS: The study includes 24 human first-trimester testes, aged 37-68 days post-conception, obtained from women undergoing legal termination of pregnancy. A questionnaire was used to obtain information about smoking and drinking habits during pregnancy. Validated...... confounders such as alcohol and coffee consumption (P = 0.002). The number of germ cells in embryonic gonads, irrespective of gender, was also significantly reduced by 41% (95% CI 58-19%, P = 0.001) in exposed versus non-exposed embryonic gonads. CONCLUSIONS: Prenatal exposure to maternal cigarette smoke...

  10. Use of deep neural network ensembles to identify embryonic-fetal transition markers: repression of COX7A1 in embryonic and cancer cells.

    Science.gov (United States)

    West, Michael D; Labat, Ivan; Sternberg, Hal; Larocca, Dana; Nasonkin, Igor; Chapman, Karen B; Singh, Ratnesh; Makarev, Eugene; Aliper, Alex; Kazennov, Andrey; Alekseenko, Andrey; Shuvalov, Nikolai; Cheskidova, Evgenia; Alekseev, Aleksandr; Artemov, Artem; Putin, Evgeny; Mamoshina, Polina; Pryanichnikov, Nikita; Larocca, Jacob; Copeland, Karen; Izumchenko, Evgeny; Korzinkin, Mikhail; Zhavoronkov, Alex

    2018-01-30

    Here we present the application of deep neural network (DNN) ensembles trained on transcriptomic data to identify the novel markers associated with the mammalian embryonic-fetal transition (EFT). Molecular markers of this process could provide important insights into regulatory mechanisms of normal development, epimorphic tissue regeneration and cancer. Subsequent analysis of the most significant genes behind the DNNs classifier on an independent dataset of adult-derived and human embryonic stem cell (hESC)-derived progenitor cell lines led to the identification of COX7A1 gene as a potential EFT marker. COX7A1 , encoding a cytochrome C oxidase subunit, was up-regulated in post-EFT murine and human cells including adult stem cells, but was not expressed in pre-EFT pluripotent embryonic stem cells or their in vitro -derived progeny. COX7A1 expression level was observed to be undetectable or low in multiple sarcoma and carcinoma cell lines as compared to normal controls. The knockout of the gene in mice led to a marked glycolytic shift reminiscent of the Warburg effect that occurs in cancer cells. The DNN approach facilitated the elucidation of a potentially new biomarker of cancer and pre-EFT cells, the embryo-onco phenotype, which may potentially be used as a target for controlling the embryonic-fetal transition.

  11. Enzyme-mediated hyaluronic acid-tyramine hydrogels for the propagation of human embryonic stem cells in 3D.

    Science.gov (United States)

    Xu, Keming; Narayanan, Karthikeyan; Lee, Fan; Bae, Ki Hyun; Gao, Shujun; Kurisawa, Motoichi

    2015-09-01

    The propagation of human embryonic stem cells (hESCs) in three-dimensional (3D) scaffolds facilitates the cell expansion process and supplies pluripotent cells of high quality for broad-spectrum applications in regenerative medicine. Herein, we report an enzyme-mediated hyaluronic acid-tyramine (HA-Tyr) hydrogel that encapsulated and propagated hESCs in 3D. HA-Tyr hydrogels were formed by crosslinking the tyramine moieties with horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). By changing the HRP and H2O2 concentration, we prepared HA-Tyr hydrogels of different mechanical strength and studied the self-renewal properties of hESCs in these scaffolds. We observed that both the chemical composition and mechanical strength of substrates were important factors affecting cell proliferation and pluripotency. The HA-Tyr hydrogel with a compressive modulus of ∼350Pa supported the proliferation of hESCs at the pluripotent state in both mTeSR1 medium and mouse embryonic fibroblast (MEF)-conditioned medium. Immunohistochemical analyses revealed that hESCs proliferated well and formed spheroid structures in 3D, without undergoing apoptosis. The hESCs cultured in HA-Tyr hydrogels showed high expression of CD44 and pluripotency markers. These cells exhibited the capability to form cell derivatives of all three embryonic germ layers in vitro and in vivo. In addition, the genetic integrity of the hESCs was unaffected in the 3D cultivation system. The scope of this study is to provide a stable 3D cultivation system for the expansion of human embryonic stem cells (hESCs) towards clinical applications. We report an enzyme mediated hyaluronic acid-tyramine (HA-Tyr) hydrogel that encapsulated and propagated hESCs in 3D. Unlike other HA-based photo-crosslinked hydrogel systems reported, we investigated the effects of mechanical strength of hydrogels on the self-renewal properties of hESCs in 3D. Then, we characterized hESCs cultured in hydrogels with lower mechanical strength

  12. Temporal expression pattern of genes during the period of sex differentiation in human embryonic gonads

    DEFF Research Database (Denmark)

    Mamsen, Linn S; Ernst, Emil H; Borup, Rehannah

    2017-01-01

    The precise timing and sequence of changes in expression of key genes and proteins during human sex-differentiation and onset of steroidogenesis was evaluated by whole-genome expression in 67 first trimester human embryonic and fetal ovaries and testis and confirmed by qPCR and immunohistochemistry...... (IHC). SRY/SOX9 expression initiated in testis around day 40 pc, followed by initiation of AMH and steroidogenic genes required for androgen production at day 53 pc. In ovaries, gene expression of RSPO1, LIN28, FOXL2, WNT2B, and ETV5, were significantly higher than in testis, whereas GLI1...... was significantly higher in testis than ovaries. Gene expression was confirmed by IHC for GAGE, SOX9, AMH, CYP17A1, LIN28, WNT2B, ETV5 and GLI1. Gene expression was not associated with the maternal smoking habits. Collectively, a precise temporal determination of changes in expression of key genes involved in human...

  13. Tensin3 is a negative regulator of cell migration and all four Tensin family members are downregulated in human kidney cancer.

    Directory of Open Access Journals (Sweden)

    Danuta Martuszewska

    Full Text Available The Tensin family of intracellular proteins (Tensin1, -2, -3 and -4 are thought to act as links between the extracellular matrix and the cytoskeleton, and thereby mediate signaling for cell shape and motility. Dysregulation of Tensin expression has previously been implicated in human cancer. Here, we have for the first time evaluated the significance of all four Tensins in a study of human renal cell carcinoma (RCC, as well as probed the biological function of Tensin3.Expression of Tensin2 and Tensin3 at mRNA and protein levels was largely absent in a panel of diverse human cancer cell lines. Quantitative RT-PCR analysis revealed mRNA expression of all four Tensin genes to be significantly downregulated in human kidney tumors (50-100% reduction versus normal kidney cortex; P<0.001. Furthermore, the mRNA expressions of Tensins mostly correlated positively with each other and negatively with tumor grade, but not tumor size. Immunohistochemical analysis revealed Tensin3 to be present in the cytoplasm of tubular epithelium in normal human kidney sections, whilst expression was weaker or absent in 41% of kidney tumors. A subset of tumor sections showed a preferential plasma membrane expression of Tensin3, which in clear cell RCC patients was correlated with longer survival. Stable expression of Tensin3 in HEK 293 cells markedly inhibited both cell migration and matrix invasion, a function independent of putative phosphatase activity in Tensin3. Conversely, siRNA knockdown of endogenous Tensin3 in human cancer cells significantly increased their migration.Our findings indicate that the Tensins may represent a novel group of metastasis suppressors in the kidney, the loss of which leads to greater tumor cell motility and consequent metastasis. Moreover, tumorigenesis in the human kidney may be facilitated by a general downregulation of Tensins. Therefore, anti-metastatic therapies may benefit from restoring or preserving Tensin expression in primary

  14. Human Embryonic Stem Cell-Derived Neurons Are Highly Permissive for Varicella-Zoster Virus Lytic Infection.

    Science.gov (United States)

    Sadaoka, Tomohiko; Schwartz, Cindi L; Rajbhandari, Labchan; Venkatesan, Arun; Cohen, Jeffrey I

    2018-01-01

    Varicella-zoster virus (VZV) is highly cell associated when grown in culture and has a much higher (4,000- to 20,000-fold increased) particle-to-PFU ratio in vitro than herpes simplex virus (HSV). In contrast, VZV is highly infectious in vivo by airborne transmission. Neurons are major targets for VZV in vivo ; in neurons, the virus can establish latency and reactivate to produce infectious virus. Using neurons derived from human embryonic stem cells (hESC) and cell-free wild-type (WT) VZV, we demonstrated that neurons are nearly 100 times more permissive for WT VZV infection than very-early-passage human embryonic lung cells or MRC-5 diploid human fibroblasts, the cells used for vaccine production or virus isolation. The peak titers achieved after infection were ∼10-fold higher in human neurons than in MRC-5 cells, and the viral genome copy number-to-PFU ratio for VZV in human neurons was 500, compared with 50,000 for MRC-5 cells. Thus, VZV may not necessarily have a higher particle-to-PFU ratio than other herpesviruses; instead, the cells previously used to propagate virus in vitro may have been suboptimal. Furthermore, based on electron microscopy, neurons infected with VZV produced fewer defective or incomplete viral particles than MRC-5 cells. Our data suggest that neurons derived from hESC may have advantages compared to other cells for studies of VZV pathogenesis, for obtaining stocks of virus with high titers, and for isolating VZV from clinical specimens. IMPORTANCE Varicella-zoster virus (VZV) causes chickenpox and shingles. Cell-free VZV has been difficult to obtain, both for in vitro studies and for vaccine production. While numerous cells lines have been tested for their ability to produce high titers of VZV, the number of total virus particles relative to the number of viral particles that can form plaques in culture has been reported to be extremely high relative to that in other viruses. We show that VZV grows to much higher titers in human

  15. Characterization of human kidney stones using micro-PIXE and RBS: A comparative study between two different populations

    International Nuclear Information System (INIS)

    Pineda-Vargas, C.A.; Eisa, M.E.M.; Rodgers, A.L.

    2009-01-01

    The micro-PIXE and RBS techniques are used to investigate the matrix as well as the trace elemental composition of calcium-rich human tissues on a microscopic scale. This paper deals with the spatial distribution of trace metals in hard human tissues such as kidney stone concretions, undertaken at the nuclear microprobe (NMP) facility. Relevant information about ion beam techniques used for material characterization will be discussed. Mapping correlation between different trace metals to extract information related to micro-regions composition will be illustrated with an application using proton energies of 1.5 and 3.0 MeV and applied to a comparative study for human kidney stone concretions nucleation region analysis from two different population groups (Sudan and South Africa)

  16. Efficient Generation of Functional Hepatocytes From Human Embryonic Stem Cells and Induced Pluripotent Stem Cells by HNF4α Transduction

    OpenAIRE

    Takayama, Kazuo; Inamura, Mitsuru; Kawabata, Kenji; Katayama, Kazufumi; Higuchi, Maiko; Tashiro, Katsuhisa; Nonaka, Aki; Sakurai, Fuminori; Hayakawa, Takao; Kusuda Furue, Miho; Mizuguchi, Hiroyuki

    2012-01-01

    Hepatocyte-like cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are expected to be a useful source of cells drug discovery. Although we recently reported that hepatic commitment is promoted by transduction of SOX17 and HEX into human ESC- and iPSC-derived cells, these hepatocyte-like cells were not sufficiently mature for drug screening. To promote hepatic maturation, we utilized transduction of the hepatocyte nuclear factor 4α (HNF4α) gene, which is kn...

  17. Carcino-embryonic antigen in monitoring the growth of human colon adenocarcinoma tumour cells SK-CO-1 and HT-29 in vitro and in nude mice

    DEFF Research Database (Denmark)

    Sölétormos, G; Fogh, J M; Sehested-Hansen, B

    1997-01-01

    A set of experimental model systems were designed to investigate (a) the inter-relationship between growth of two human cancer cell lines (SK-CO-1, HT-29) and carcino-embryonic antigen (CEA) kinetics; and (b) whether neoplastic growth or CEA concentration is modulated by human growth hormone (hGH...

  18. Art and human embryonic stem cells: from the bench to the high street.

    Science.gov (United States)

    Duprat, Sebastien

    2009-03-01

    ESTOOLS, a project funded by the European Commission (FP6), gathers expertise on human embryonic stem cells in 10 countries of the European Research Area. The ESTOOLS outreach program uses Art extensively as the only universal cross-cultural and cross-religion means of communication. The Smile of a Stem Cell photo exhibition, a major component of this program, aims to fill a missing link between public dissemination of science and science-illiterate citizens. Scientists are also engaged to stand at a distance from their work and observe it with an outsider's perspective, which enhances their competency to communicate science. The photo exhibition, by its situation upstream of scientific education, makes itself open to interest and enthusiasm among a public with no prerequired scientific knowledge or abilities.

  19. Ultrasonography of polycystic kidney

    International Nuclear Information System (INIS)

    Oh, Seung Chul; Cho, Seung Gi; Lee, Kwan Seh; Kim, Kun Sang

    1980-01-01

    Polycystic disease is defined as a heritable disorder with diffuse involvement of both kidneys. The term 'Polycystic disease' comprises at least two separate, genetically different disease-one with an onset typically in childhood (infantile polycystic disease) and the other with an onset typically in adulthood (adult polycystic disease). Adult polycystic kidney disease is the most common form of cystic kidney disease in humans. Ultrasonography is a very useful noninvasive diagnostic modality in the patient with clinically suspected renal diseases as well as screening test. 14 cases of ultrasonography in patient with polycystic kidney were reviewed. All cases show unilateral or bilateral enlarged kidneys. 7 cases reveal kidneys and liver replaced by multiple cysts of varing size. Screening ultrasonography for a familial tree is reported

  20. Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics

    International Nuclear Information System (INIS)

    West, Paul R.; Weir, April M.; Smith, Alan M.; Donley, Elizabeth L.R.; Cezar, Gabriela G.

    2010-01-01

    Teratogens, substances that may cause fetal abnormalities during development, are responsible for a significant number of birth defects. Animal models used to predict teratogenicity often do not faithfully correlate to human response. Here, we seek to develop a more predictive developmental toxicity model based on an in vitro method that utilizes both human embryonic stem (hES) cells and metabolomics to discover biomarkers of developmental toxicity. We developed a method where hES cells were dosed with several drugs of known teratogenicity then LC-MS analysis was performed to measure changes in abundance levels of small molecules in response to drug dosing. Statistical analysis was employed to select for specific mass features that can provide a prediction of the developmental toxicity of a substance. These molecules can serve as biomarkers of developmental toxicity, leading to better prediction of teratogenicity. In particular, our work shows a correlation between teratogenicity and changes of greater than 10% in the ratio of arginine to asymmetric dimethylarginine levels. In addition, this study resulted in the establishment of a predictive model based on the most informative mass features. This model was subsequently tested for its predictive accuracy in two blinded studies using eight drugs of known teratogenicity, where it correctly predicted the teratogenicity for seven of the eight drugs. Thus, our initial data shows that this platform is a robust alternative to animal and other in vitro models for the prediction of the developmental toxicity of chemicals that may also provide invaluable information about the underlying biochemical pathways.

  1. How does blastomere removal affect embryonic development? : A time-lapse analysis

    DEFF Research Database (Denmark)

    Kirkegaard, Kirstine; Hindkjær, Johnny Juhl; Ingerslev, Hans Jakob

    of the 6-10 cell embryo. It has been argued that blastomere removal does not affect embryonic development, but few studies have focussed on safety of the procedure. Recently, time-lapse studies on mice have suggested that blastomere removal affects embryonic development. The present study was conducted...... to evaluate the effect of blastomere biopsy on early human embryonic development using time-lapse analysis. Materials and methods: Couples undergoing IVF treatment or PGD were requested permission to include embryos in the project. The diagnosis healthy/diseased was made by analysis of a single blastomere....... For PGD 56 human embryos were biopsied 68 hours after fertilisation, the majority at the eight cell stage. As controls 43 non-biopsied embryos at the 6-8 cell stage were selected. All embryos were cultured until 5 days after fertilisation in a time-lapse incubator (EmbryoScope™). Key events such as time...

  2. AMP-activated protein kinase-mediated glucose transport as a novel target of tributyltin in human embryonic carcinoma cells.

    Science.gov (United States)

    Yamada, Shigeru; Kotake, Yaichiro; Sekino, Yuko; Kanda, Yasunari

    2013-05-01

    Organotin compounds such as tributyltin (TBT) are known to cause various forms of cytotoxicity, including developmental toxicity and neurotoxicity. However, the molecular target of the toxicity induced by nanomolar levels of TBT has not been identified. In the present study, we found that exposure to 100 nM TBT induced growth arrest in human pluripotent embryonic carcinoma cell line NT2/D1. Since glucose provides metabolic energy, we focused on the glycolytic system. We found that exposure to TBT reduced the levels of both glucose-6-phosphate and fructose-6-phosphate. To investigate the effect of TBT exposure on glycolysis, we examined glucose transporter (GLUT) activity. TBT exposure inhibited glucose uptake via a decrease in the level of cell surface-bound GLUT1. Furthermore, we examined the effect of AMP-activated protein kinase (AMPK), which is known to regulate glucose transport by facilitating GLUT translocation. Treatment with the potent AMPK activator, AICAR, restored the TBT-induced reduction in cell surface-bound GLUT1 and glucose uptake. In conclusion, these results suggest that exposure to nanomolar levels of TBT causes growth arrest by targeting glycolytic systems in human embryonic carcinoma cells. Thus, understanding the energy metabolism may provide new insights into the mechanisms of metal-induced cytotoxicity.

  3. Generation of a Nrf2 homozygous knockout human embryonic stem cell line using CRISPR/Cas9

    Directory of Open Access Journals (Sweden)

    So-Jung Kim

    2017-03-01

    Full Text Available Nuclear factor erythroid 2-related factor 2 (NFE2L2 or Nrf2 is a well-known transcription factor that regulates the expression of a large number of anti-oxidant genes in mammalian cells (J.H. Kim et al., 2014. Here, we generated a homozygous Nrf2 knockout human embryonic stem cell (hESC line, H9Nrf2KO-A13, using the CRISPR/Cas9 genome editing method. The Nrf2 homozygous knockout H9 cell line maintains pluripotency, differentiation potential into three germ layers, and a normal karyotype.

  4. High glucose suppresses embryonic stem cell differentiation into neural lineage cells

    OpenAIRE

    Yang, Penghua; Shen, Wei-bin; Reece, E. Albert; Chen, Xi; Yang, Peixin

    2016-01-01

    Abnormal neurogenesis occurs during embryonic development in human diabetic pregnancies and in animal models of diabetic embryopathy. Our previous studies in a mouse model of diabetic embryopathy have implicated that high glucose of maternal diabetes delays neurogenesis in the developing neuroepithelium leading to neural tube defects. However, the underlying process in high glucose-impaired neurogenesis is uncharacterized. Neurogenesis from embryonic stem (ES) cells provides a valuable model ...

  5. The Relationship between Maternal Nutrition during Pregnancy and Offspring Kidney Structure and Function in Humans: A Systematic Review

    Science.gov (United States)

    Lee, Yu Qi; Collins, Clare E.; Gordon, Adrienne; Rae, Kym M.; Pringle, Kirsty G.

    2018-01-01

    The intrauterine environment is critical for fetal growth and organ development. Evidence from animal models indicates that the developing kidney is vulnerable to suboptimal maternal nutrition and changes in health status. However, evidence from human studies are yet to be synthesised. Therefore, the aim of the current study was to systematically review current research on the relationship between maternal nutrition during pregnancy and offspring kidney structure and function in humans. A search of five databases identified 9501 articles, of which three experimental and seven observational studies met the inclusion criteria. Nutrients reviewed to date included vitamin A (n = 3), folate and vitamin B12 (n = 2), iron (n = 1), vitamin D (n = 1), total energy (n = 2) and protein (n = 1). Seven studies were assessed as being of “positive” and three of “neutral” quality. A variety of populations were studied, with limited studies investigating maternal nutrition during pregnancy, while measurements of offspring kidney outcomes were diverse across studies. There was a lack of consistency in the timing of follow-up for offspring kidney structure and/or function assessments, thus limiting comparability between studies. Deficiencies in maternal folate, vitamin A, and total energy during pregnancy were associated with detrimental impacts on kidney structure and function, measured by kidney volume, proteinuria, eGFRcystC and mean creatinine clearance in the offspring. Additional experimental and longitudinal prospective studies are warranted to confirm this relationship, especially in Indigenous populations where the risk of renal disease is greater. PMID:29466283

  6. Generation of Regionally Specified Neural Progenitors and Functional Neurons from Human Embryonic Stem Cells under Defined Conditions

    Directory of Open Access Journals (Sweden)

    Agnete Kirkeby

    2012-06-01

    Full Text Available To model human neural-cell-fate specification and to provide cells for regenerative therapies, we have developed a method to generate human neural progenitors and neurons from human embryonic stem cells, which recapitulates human fetal brain development. Through the addition of a small molecule that activates canonical WNT signaling, we induced rapid and efficient dose-dependent specification of regionally defined neural progenitors ranging from telencephalic forebrain to posterior hindbrain fates. Ten days after initiation of differentiation, the progenitors could be transplanted to the adult rat striatum, where they formed neuron-rich and tumor-free grafts with maintained regional specification. Cells patterned toward a ventral midbrain (VM identity generated a high proportion of authentic dopaminergic neurons after transplantation. The dopamine neurons showed morphology, projection pattern, and protein expression identical to that of human fetal VM cells grafted in parallel. VM-patterned but not forebrain-patterned neurons released dopamine and reversed motor deficits in an animal model of Parkinson's disease.

  7. Differential state-dependent modification of rat Na{sub v}1.6 sodium channels expressed in human embryonic kidney (HEK293) cells by the pyrethroid insecticides tefluthrin and deltamethrin

    Energy Technology Data Exchange (ETDEWEB)

    He, Bingjun [College of Life Sciences, Nankai University, Tianjin 300071 (China); Soderlund, David M., E-mail: dms6@cornell.edu [Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456 (United States)

    2011-12-15

    We expressed rat Na{sub v}1.6 sodium channels in combination with the rat {beta}1 and {beta}2 auxiliary subunits in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on expressed sodium currents using the whole-cell patch clamp technique. Both pyrethroids produced concentration-dependent, resting modification of Na{sub v}1.6 channels, prolonging the kinetics of channel inactivation and deactivation to produce persistent 'late' currents during depolarization and tail currents following repolarization. Both pyrethroids also produced concentration dependent hyperpolarizing shifts in the voltage dependence of channel activation and steady-state inactivation. Maximal shifts in activation, determined from the voltage dependence of the pyrethroid-induced late and tail currents, were {approx} 25 mV for tefluthrin and {approx} 20 mV for deltamethrin. The highest attainable concentrations of these compounds also caused shifts of {approx} 5-10 mV in the voltage dependence of steady-state inactivation. In addition to their effects on the voltage dependence of inactivation, both compounds caused concentration-dependent increases in the fraction of sodium current that was resistant to inactivation following strong depolarizing prepulses. We assessed the use-dependent effects of tefluthrin and deltamethrin on Na{sub v}1.6 channels by determining the effect of trains of 1 to 100 5-ms depolarizing prepulses at frequencies of 20 or 66.7 Hz on the extent of channel modification. Repetitive depolarization at either frequency increased modification by deltamethrin by {approx} 2.3-fold but had no effect on modification by tefluthrin. Tefluthrin and deltamethrin were equally potent as modifiers of Na{sub v}1.6 channels in HEK293 cells using the conditions producing maximal modification as the basis for comparison. These findings show that the actions of tefluthrin and deltamethrin of Na{sub v}1.6 channels

  8. Drugs to foster kidney regeneration in experimental animals and humans.

    Science.gov (United States)

    Gagliardini, Elena; Benigni, Ariela

    2014-01-01

    The incidence of kidney diseases is increasing worldwide and they are emerging as a major public health problem. Once mostly considered inexorable, renal disease progression can now be halted and lesions can even regress with drugs such as angiotensin-converting enzyme inhibitors (ACEi) and angiotensin II type I receptor blockers, indicating the possibility of kidney repair. The discovery of renal progenitor cells lining the Bowman capsule of adult rat and human kidneys has shed light on the mechanism of repair by ACEi. Parietal progenitors are a reservoir of cells that contribute to podocyte turnover in physiological conditions. In the early phases of renal disease these progenitors migrate chaotically and subsequently proliferate, accumulating in Bowman's space. The abnormal behavior of parietal progenitors is sustained by the activation of CXCR4 receptors in response to an increased production of the chemokine SDF-1 by podocytes activated by the inflammatory environment. Ang II, via the AT1 receptor, also contributes to progenitor cell proliferation. The CXCR4/SDF-1 and Ang II/AT1 receptor pathogenic pathways both pave the way for lesion formation and subsequent sclerosis. ACEi normalize the CXCR4 and AT1 receptor expression on progenitors, limiting their proliferation, concomitant with the regression of hyperplastic lesions in animals, and in a patient with crescentic glomerulopathy. Understanding the molecular and cellular determinants of regeneration triggered by renoprotective drugs will reveal novel pathways that might be challenged or targeted by pharmacological therapy. © 2014 S. Karger AG, Basel.

  9. Periconception Maternal Folate Status and Human Embryonic Cerebellum Growth Trajectories: The Rotterdam Predict Study.

    Directory of Open Access Journals (Sweden)

    Irene V Koning

    Full Text Available We aimed to investigate whether periconceptional maternal folate status affects human embryonic cerebellar size and growth trajectories. In a prospective periconceptional cohort participants filled out questionnaires and received weekly transvaginal 3D-ultrasounds between 7+0 and 12+6 weeks gestational age (GA. Viable non-malformed singleton pregnancies were selected for cerebellar measurements; transcerebellar diameter, (TCD, left and right cerebellar diameters (LCD, RCD. Linear mixed models were performed to estimate associations between questionnaire data on the timing of maternal folic acid supplement initiation and longitudinal cerebellar measurements as a function of crown-rump length (CRL and GA. Maternal red blood cell folate concentrations were analysed before 8 weeks GA to validate the associations. A total of 263 serial high quality three-dimensional ultrasound scans of 135 pregnancies were studied. Preconceptional compared to postconceptional initiation of folic acid use was associated with slightly larger cerebellar diameters per millimetre increase of CRL (TCD: β = 0.260mm, 95%CI = 0.023-0.491, p<0.05; LCD: β = 0.171mm, 95%CI = 0.038-0.305, p<0.05; RCD: β = 0.156mm, 95%CI = 0.032-0.280, p<0.05 and with proportional cerebellar growth (TCD/CRL:β = 0.015mm/mm, 95%CI = 0.005-0.024, p<0.01; LCD/CRL:β = 0.012mm/mm, 95%CI = 0.005-0.018, p<0.01; RCD/CRL:β = 0.011mm/mm, 95%CI = 0.005-0.017, p<0.01. Cerebellar growth was significantly highest in the third quartile of maternal red blood cell folate levels (1538-1813 nmol/L. These first findings show that periconceptional maternal folate status is associated with human embryonic cerebellar development. Implications of these small but significant variations for fetal cerebellar growth trajectories and the child's neurodevelopmental outcome are yet unknown and warrant further investigation.

  10. Albumin-associated lipids regulate human embryonic stem cell self-renewal.

    Directory of Open Access Journals (Sweden)

    Francesc R Garcia-Gonzalo

    Full Text Available BACKGROUND: Although human embryonic stem cells (hESCs hold great promise as a source of differentiated cells to treat several human diseases, many obstacles still need to be surmounted before this can become a reality. First among these, a robust chemically-defined system to expand hESCs in culture is still unavailable despite recent advances in the understanding of factors controlling hESC self-renewal. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we attempted to find new molecules that stimulate long term hESC self-renewal. In order to do this, we started from the observation that a commercially available serum replacement product has a strong positive effect on the expansion of undifferentiated hESCs when added to a previously reported chemically-defined medium. Subsequent experiments demonstrated that the active ingredient within the serum replacement is lipid-rich albumin. Furthermore, we show that this activity is trypsin-resistant, strongly suggesting that lipids and not albumin are responsible for the effect. Consistent with this, lipid-poor albumin shows no detectable activity. Finally, we identified the major lipids bound to the lipid-rich albumin and tested several lipid candidates for the effect. CONCLUSIONS/SIGNIFICANCE: Our discovery of the role played by albumin-associated lipids in stimulating hESC self-renewal constitutes a significant advance in the knowledge of how hESC pluripotency is maintained by extracellular factors and has important applications in the development of increasingly chemically defined hESC culture systems.

  11. Comparison of the glycosphingolipids of human-induced pluripotent stem cells and human embryonic stem cells.

    Science.gov (United States)

    Säljö, Karin; Barone, Angela; Vizlin-Hodzic, Dzeneta; Johansson, Bengt R; Breimer, Michael E; Funa, Keiko; Teneberg, Susann

    2017-04-01

    High expectations are held for human-induced pluripotent stem cells (hiPSC) since they are established from autologous tissues thus overcoming the risk of allogeneic immune rejection when used in regenerative medicine. However, little is known regarding the cell-surface carbohydrate antigen profile of hiPSC compared with human embryonic stem cells (hESC). Here, glycosphingolipids were isolated from an adipocyte-derived hiPSC line, and hiPSC and hESC glycosphingolipids were compared by concurrent characterization by binding assays with carbohydrate-recognizing ligands and mass spectrometry. A high similarity between the nonacid glycosphingolipids of hiPSC and hESC was found. The nonacid glycosphingolipids P1 pentaosylceramide, x2 pentaosylceramide and H type 1 heptaosylceramide, not previously described in human pluripotent stem cells (hPSC), were characterized in both hiPSC and hESC. The composition of acid glycosphingolipids differed, with increased levels of GM3 ganglioside, and reduced levels of GD1a/GD1b in hiPSC when compared with hESC. In addition, the hESC glycosphingolipids sulf-globopentaosylceramide and sialyl-globotetraosylceramide were lacking in hiPSC. Neural stem cells differentiating from hiPSC had a reduced expression of sialyl-lactotetra, whereas expression of the GD1a ganglioside was significantly increased. Thus, while sialyl-lactotetra is a marker of undifferentiated hPSC, GD1a is a novel marker of neural differentiation. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats.

    Science.gov (United States)

    Lund, Raymond D; Wang, Shaomei; Klimanskaya, Irina; Holmes, Toby; Ramos-Kelsey, Rebeca; Lu, Bin; Girman, Sergej; Bischoff, N; Sauvé, Yves; Lanza, Robert

    2006-01-01

    Embryonic stem cells promise to provide a well-characterized and reproducible source of replacement tissue for human clinical studies. An early potential application of this technology is the use of retinal pigment epithelium (RPE) for the treatment of retinal degenerative diseases such as macular degeneration. Here we show the reproducible generation of RPE (67 passageable cultures established from 18 different hES cell lines); batches of RPE derived from NIH-approved hES cells (H9) were tested and shown capable of extensive photoreceptor rescue in an animal model of retinal disease, the Royal College of Surgeons (RCS) rat, in which photoreceptor loss is caused by a defect in the adjacent retinal pigment epithelium. Improvement in visual performance was 100% over untreated controls (spatial acuity was approximately 70% that of normal nondystrophic rats) without evidence of untoward pathology. The use of somatic cell nuclear transfer (SCNT) and/or the creation of banks of reduced complexity human leucocyte antigen (HLA) hES-RPE lines could minimize or eliminate the need for immunosuppressive drugs and/or immunomodulatory protocols.

  13. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells

    Science.gov (United States)

    Arshi, Armin; Nakashima, Yasuhiro; Nakano, Haruko; Eaimkhong, Sarayoot; Evseenko, Denis; Reed, Jason; Stieg, Adam Z.; Gimzewski, James K.; Nakano, Atsushi

    2013-04-01

    While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.

  14. Leukemia inhibitory factor (LIF) enhances MAP2 + and HUC/D + neurons and influences neurite extension during differentiation of neural progenitors derived from human embryonic stem cells.

    Science.gov (United States)

    Leukemia Inhibitory Factor (L1F), a member of the Interleukin 6 cytokine family, has a role in differentiation of Human Neural Progenitor (hNP) cells in vitro. hNP cells, derived from Human Embryonic Stem (hES) cells, have an unlimited capacity for self-renewal in monolayer cultu...

  15. Efficient and Fast Differentiation of Human Neural Stem Cells from Human Embryonic Stem Cells for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Xinxin Han

    2017-01-01

    Full Text Available Stem cell-based therapies have been used for repairing damaged brain tissue and helping functional recovery after brain injury. Aberrance neurogenesis is related with brain injury, and multipotential neural stem cells from human embryonic stem (hES cells provide a great promise for cell replacement therapies. Optimized protocols for neural differentiation are necessary to produce functional human neural stem cells (hNSCs for cell therapy. However, the qualified procedure is scarce and detailed features of hNSCs originated from hES cells are still unclear. In this study, we developed a method to obtain hNSCs from hES cells, by which we could harvest abundant hNSCs in a relatively short time. Then, we examined the expression of pluripotent and multipotent marker genes through immunostaining and confirmed differentiation potential of the differentiated hNSCs. Furthermore, we analyzed the mitotic activity of these hNSCs. In this report, we provided comprehensive features of hNSCs and delivered the knowledge about how to obtain more high-quality hNSCs from hES cells which may help to accelerate the NSC-based therapies in brain injury treatment.

  16. Embryonic stem cells as an ectodermal cellular model of human p63-related dysplasia syndromes.

    NARCIS (Netherlands)

    Rostagno, P.; Wolchinsky, Z.; Vigano, A.M.; Shivtiel, S.; Zhou, Huiqing; Bokhoven, J.H.L.M. van; Ferone, G.; Missero, C.; Mantovani, R.; Aberdam, D.; Virolle, T.

    2010-01-01

    Heterozygous mutations in the TP63 transcription factor underlie the molecular basis of several similar autosomal dominant ectodermal dysplasia (ED) syndromes. Here we provide a novel cellular model derived from embryonic stem (ES) cells that recapitulates in vitro the main steps of embryonic skin

  17. Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease

    Science.gov (United States)

    Cruz, Nelly M.; Song, Xuewen; Czerniecki, Stefan M.; Gulieva, Ramila E.; Churchill, Angela J.; Kim, Yong Kyun; Winston, Kosuke; Tran, Linh M.; Diaz, Marco A.; Fu, Hongxia; Finn, Laura S.; Pei, York; Himmelfarb, Jonathan; Freedman, Benjamin S.

    2017-11-01

    Polycystic kidney disease (PKD) is a life-threatening disorder, commonly caused by defects in polycystin-1 (PC1) or polycystin-2 (PC2), in which tubular epithelia form fluid-filled cysts. A major barrier to understanding PKD is the absence of human cellular models that accurately and efficiently recapitulate cystogenesis. Previously, we have generated a genetic model of PKD using human pluripotent stem cells and derived kidney organoids. Here we show that systematic substitution of physical components can dramatically increase or decrease cyst formation, unveiling a critical role for microenvironment in PKD. Removal of adherent cues increases cystogenesis 10-fold, producing cysts phenotypically resembling PKD that expand massively to 1-centimetre diameters. Removal of stroma enables outgrowth of PKD cell lines, which exhibit defects in PC1 expression and collagen compaction. Cyclic adenosine monophosphate (cAMP), when added, induces cysts in both PKD organoids and controls. These biomaterials establish a highly efficient model of PKD cystogenesis that directly implicates the microenvironment at the earliest stages of the disease.

  18. Bio-engineering inslulin-secreting cells from embryonic stem cells: a review of progress.

    Science.gov (United States)

    Roche, E; Sepulcre, M P; Enseñat-Waser, R; Maestre, I; Reig, J A; Soria, B

    2003-07-01

    According to the Edmonton protocol, human islet transplantation can result in insulin independency for periods longer than 3 years. However, this therapy for type 1 diabetes is limited by the scarcity of cadaveric donors. Owing to the ability of embryonic stem cells to expand in vitro and differentiate into a variety of cell types, research has focused on ways to manipulate these cells to overcome this problem. It has been demonstrated that mouse embryonic stem cells can differentiate into insulin-containing cells, restoring normoglycaemia in diabetic mice. To this end, mouse embryonic stem cells were transfected with a DNA construct that provides resistance to neomycin under the control of the regulatory regions of the human insulin gene. However, this protocol has a very low efficiency, needing improvements for this technology to be transferred to human stem cells. Optimum protocols will be instrumental in the production of an unlimited source of cells that synthesise, store and release insulin in a physiological manner. The review focuses on the alternative source of tissue offered by embryonic stem cells for regenerative medicine in diabetes and some key points that should be considered in order for a definitive protocol for in vitro differentiation to be established.

  19. Development of the Human Fetal Kidney from Mid to Late Gestation in Male and Female Infants

    Directory of Open Access Journals (Sweden)

    Danica Ryan

    2018-01-01

    Interpretation: These findings highlight spatial and temporal variability in nephrogenesis in the developing human kidney, whereas the relative cellular composition of glomeruli does not appear to be influenced by gestational age.

  20. Fucoidan promotes early step of cardiac differentiation from human embryonic stem cells and long-term maintenance of beating areas.

    Science.gov (United States)

    Hamidi, Sofiane; Letourneur, Didier; Aid-Launais, Rachida; Di Stefano, Antonio; Vainchenker, William; Norol, Françoise; Le Visage, Catherine

    2014-04-01

    Somatic stem cells require specific niches and three-dimensional scaffolds provide ways to mimic this microenvironment. Here, we studied a scaffold based on Fucoidan, a sulfated polysaccharide known to influence morphogen gradients during embryonic development, to support human embryonic stem cells (hESCs) differentiation toward the cardiac lineage. A macroporous (pore 200 μm) Fucoidan scaffold was selected to support hESCs attachment and proliferation. Using a protocol based on the cardiogenic morphogen bone morphogenic protein 2 (BMP2) and transforming growth factor (TGFβ) followed by tumor necrosis factor (TNFα), an effector of cardiopoietic priming, we examined the cardiac differentiation in the scaffold compared to culture dishes and embryoid bodies (EBs). At day 8, Fucoidan scaffolds supported a significantly higher expression of the 3 genes encoding for transcription factors marking the early step of embryonic cardiac differentiation NKX2.5 (prelease TGFβ and TNFα was confirmed by Luminex technology. We also found that Fucoidan scaffolds supported the late stage of embryonic cardiac differentiation marked by a significantly higher atrial natriuretic factor (ANF) expression (pstress in the soft hydrogel impaired sarcomere formation, as confirmed by molecular analysis of the cardiac muscle myosin MYH6 and immunohistological staining of sarcomeric α-actinin. Nevertheless, Fucoidan scaffolds contributed to the development of thin filaments connecting beating areas through promotion of smooth muscle cells, thus enabling maintenance of beating areas for up to 6 months. In conclusion, Fucoidan scaffolds appear as a very promising biomaterial to control cardiac differentiation from hESCs that could be further combined with mechanical stress to promote sarcomere formation at terminal stages of differentiation.

  1. Melatonin Inhibits Embryonic Salivary Gland Branching Morphogenesis by Regulating Both Epithelial Cell Adhesion and Morphology

    Science.gov (United States)

    Miura, Jiro; Sakai, Manabu; Uchida, Hitoshi; Nakamura, Wataru; Nohara, Kanji; Maruyama, Yusuke; Hattori, Atsuhiko; Sakai, Takayoshi

    2015-01-01

    Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a potential negative regulator or “brake” of branching morphogenesis, shown that the levels of it and its receptors decline when branching morphogenesis begins, and identified the process that it regulates. Melatonin has various physiological functions, including circadian rhythm regulation, free-radical scavenging, and gonadal development. Furthermore, melatonin is present in saliva and may have an important physiological role in the oral cavity. In this study, we found that the melatonin receptor is highly expressed on the acinar epithelium of the embryonic submandibular gland. We also found that exogenous melatonin reduces salivary gland size and inhibits branching morphogenesis. We suggest that this inhibition does not depend on changes in either proliferation or apoptosis, but rather relates to changes in epithelial cell adhesion and morphology. In summary, we have demonstrated a novel function of melatonin in organ formation during embryonic development. PMID:25876057

  2. Derivation of the clinical grade human embryonic stem cell line RCe016-A (RC-12

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-05-01

    Full Text Available The human embryonic stem cell line RCe016-A (RC-12 was derived under quality assured compliance with UK regulations, EU Directives and International guidance for tissue procurement, processing and storage according to good manufacturing practice (GMP standards. The cell line was derived from a cryopreserved blastocyst stage embryo voluntarily donated as surplus to fertility requirements following informed consent. RCe016-A (RC-12 shows normal pluripotency marker expression and differentiation to three germ layers in vitro. Karyology revealed a mixed male karyotype at early passage (P15, which resolved as normal 46XY by passage 33. Microsatellite PCR identity, HLA and blood group typing data is available.

  3. The Relationship between Maternal Nutrition during Pregnancy and Offspring Kidney Structure and Function in Humans: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Yu Qi Lee

    2018-02-01

    Full Text Available The intrauterine environment is critical for fetal growth and organ development. Evidence from animal models indicates that the developing kidney is vulnerable to suboptimal maternal nutrition and changes in health status. However, evidence from human studies are yet to be synthesised. Therefore, the aim of the current study was to systematically review current research on the relationship between maternal nutrition during pregnancy and offspring kidney structure and function in humans. A search of five databases identified 9501 articles, of which three experimental and seven observational studies met the inclusion criteria. Nutrients reviewed to date included vitamin A (n = 3, folate and vitamin B12 (n = 2, iron (n = 1, vitamin D (n = 1, total energy (n = 2 and protein (n = 1. Seven studies were assessed as being of “positive” and three of “neutral” quality. A variety of populations were studied, with limited studies investigating maternal nutrition during pregnancy, while measurements of offspring kidney outcomes were diverse across studies. There was a lack of consistency in the timing of follow-up for offspring kidney structure and/or function assessments, thus limiting comparability between studies. Deficiencies in maternal folate, vitamin A, and total energy during pregnancy were associated with detrimental impacts on kidney structure and function, measured by kidney volume, proteinuria, eGFRcystC and mean creatinine clearance in the offspring. Additional experimental and longitudinal prospective studies are warranted to confirm this relationship, especially in Indigenous populations where the risk of renal disease is greater.

  4. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture

    International Nuclear Information System (INIS)

    Miller-Pinsler, Lutfiya; Wells, Peter G.

    2015-01-01

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat b /J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 2 or 4 mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p < 0.001). Maternal pretreatment of C57BL/6 WT dams with 50 kU/kg PEG-catalase (PEG-cat) 8 h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p < 0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p < 0.01), and trends for reduced anterior neuropore closure, turning and crown–rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p < 0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. - Highlights: • Ethanol (EtOH) exposure causes structural embryopathies in embryo culture. • Genetically enhanced catalase (hCat) protects against EtOH embryopathies. • Genetically deficient catalase (aCat) exacerbates EtOH embryopathies. • Embryonic catalase is developmentally important. • EtOH developmental

  5. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture

    Energy Technology Data Exchange (ETDEWEB)

    Miller-Pinsler, Lutfiya [Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada); Wells, Peter G., E-mail: pg.wells@utoronto.ca [Division of Biomolecular Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario (Canada); Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada)

    2015-09-15

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat{sup b}/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 2 or 4 mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p < 0.001). Maternal pretreatment of C57BL/6 WT dams with 50 kU/kg PEG-catalase (PEG-cat) 8 h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p < 0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p < 0.01), and trends for reduced anterior neuropore closure, turning and crown–rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p < 0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. - Highlights: • Ethanol (EtOH) exposure causes structural embryopathies in embryo culture. • Genetically enhanced catalase (hCat) protects against EtOH embryopathies. • Genetically deficient catalase (aCat) exacerbates EtOH embryopathies. • Embryonic catalase is developmentally important. • Et

  6. Validation of an LC-MS/MS method to measure tacrolimus in rat kidney and liver tissue and its application to human kidney biopsies.

    Science.gov (United States)

    Noll, Benjamin D; Coller, Janet K; Somogyi, Andrew A; Morris, Raymond G; Russ, Graeme R; Hesselink, Dennis A; Van Gelder, Teun; Sallustio, Benedetta C

    2013-10-01

    Tacrolimus (TAC) has a narrow therapeutic index and high interindividual and intraindividual pharmacokinetic variability, necessitating therapeutic drug monitoring to individualize dosage. Recent evidence suggests that intragraft TAC concentrations may better predict transplant outcomes. This study aimed to develop a method for the quantification of TAC in small biopsy-sized samples of rat kidney and liver tissue, which could be applied to clinical biopsy samples from kidney transplant recipients. Kidneys and livers were harvested from Mrp2-deficient TR- Wistar rats administered TAC (4 mg·kg·d for 14 days, n = 8) or vehicle (n = 10). Tissue samples (0.20-1.00 mg of dry weight) were solubilized enzymatically and underwent liquid-liquid extraction before analysis by liquid chromatography tandem mass spectrometry method. TAC-free tissue was used in the calibrator and quality control samples. Analyte detection was accomplished using positive electrospray ionization (TAC: m/z 821.5 → 768.6; internal standard ascomycin m/z 809.3 → 756.4). Calibration curves (0.04-2.6 μg/L) were linear (R > 0.99, n = 10), with interday and intraday calibrator coefficients of variation and bias <17% at the lower limit of quantification and <15% at all other concentrations (n = 6-10). Extraction efficiencies for TAC and ascomycin were approximately 70%, and matrix effects were minimal. Rat kidney TAC concentrations were higher (range 109-190 pg/mg tissue) than those in the liver (range 22-53 pg/mg of tissue), with median tissue/blood concentrations ratios of 72.0 and 17.6, respectively. In 2 transplant patients, kidney TAC concentrations ranged from 119 to 285 pg/mg of tissue and were approximately 20 times higher than whole blood trough TAC concentrations. The method displayed precision and accuracy suitable for application to TAC measurement in human kidney biopsy tissue.

  7. Nanotopography Promotes Pancreatic Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Kim, Jong Hyun; Kim, Hyung Woo; Cha, Kyoung Je; Han, Jiyou; Jang, Yu Jin; Kim, Dong Sung; Kim, Jong-Hoon

    2016-03-22

    Although previous studies suggest that nanotopographical features influence properties and behaviors of stem cells, only a few studies have attempted to derive clinically useful somatic cells from human pluripotent stem cells using nanopatterned surfaces. In the present study, we report that polystyrene nanopore-patterned surfaces significantly promote the pancreatic differentiation of human embryonic and induced pluripotent stem cells. We compared different diameters of nanopores and showed that 200 nm nanopore-patterned surfaces highly upregulated the expression of PDX1, a critical transcription factor for pancreatic development, leading to an approximately 3-fold increase in the percentage of differentiating PDX1(+) pancreatic progenitors compared with control flat surfaces. Furthermore, in the presence of biochemical factors, 200 nm nanopore-patterned surfaces profoundly enhanced the derivation of pancreatic endocrine cells producing insulin, glucagon, or somatostatin. We also demonstrate that nanopore-patterned surface-induced upregulation of PDX1 is associated with downregulation of TAZ, suggesting the potential role of TAZ in nanopore-patterned surface-mediated mechanotransduction. Our study suggests that appropriate cytokine treatments combined with nanotopographical stimulation could be a powerful tool for deriving a high purity of desired cells from human pluripotent stem cells.

  8. Kidney biomimicry--a rediscovered scientific field that could provide hope to patients with kidney disease.

    Science.gov (United States)

    Stenvinkel, Peter; Johnson, Richard J

    2013-11-01

    Most studies on kidney disease have relied on classic experimental studies in mice and rats or clinical studies in humans. From such studies much understanding of the physiology and pathophysiology of kidney disease has been obtained. However, breakthroughs in the prevention and treatment of kidney diseases have been relatively few, and new approaches to fight kidney disease are needed. Here we discuss kidney biomimicry as a new approach to understand kidney disease. Examples are given of how various animals have developed ways to prevent or respond to kidney failure, how to protect themselves from hypoxia or oxidative stress and from the scourge of hyperglycemia. We suggest that investigation of evolutionary biology and comparative physiology might provide new insights for the prevention and treatment of kidney disease. Copyright © 2013 IMSS. Published by Elsevier Inc. All rights reserved.

  9. Aberrant patterns of X chromosome inactivation in a new line of human embryonic stem cells established in physiological oxygen concentrations.

    Science.gov (United States)

    de Oliveira Georges, Juliana Andrea; Vergani, Naja; Fonseca, Simone Aparecida Siqueira; Fraga, Ana Maria; de Mello, Joana Carvalho Moreira; Albuquerque, Maria Cecília R Maciel; Fujihara, Litsuko Shimabukuro; Pereira, Lygia Veiga

    2014-08-01

    One of the differences between murine and human embryonic stem cells (ESCs) is the epigenetic state of the X chromosomes in female lines. Murine ESCs (mESCs) present two transcriptionally active Xs that will undergo the dosage compensation process of XCI upon differentiation, whereas most human ESCs (hESCs) spontaneously inactivate one X while keeping their pluripotency. Whether this reflects differences in embryonic development of mice and humans, or distinct culture requirements for the two kinds of pluripotent cells is not known. Recently it has been shown that hESCs established in physiological oxygen levels are in a stable pre-XCI state equivalent to that of mESCs, suggesting that culture in low oxygen concentration is enough to preserve that epigenetic state of the X chromosomes. Here we describe the establishment of two new lines of hESCs under physiological oxygen level and the characterization of the XCI state in the 46,XX line BR-5. We show that a fraction of undifferentiated cells present XIST RNA accumulation and single H3K27me foci, characteristic of the inactive X. Moreover, analysis of allele specific gene expression suggests that pluripotent BR-5 cells present completely skewed XCI. Our data indicate that physiological levels of oxygen are not sufficient for the stabilization of the pre-XCI state in hESCs.

  10. Label-free separation of human embryonic stem cells (hESCs) and their cardiac derivatives using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J W; Lieu, D K; Huser, T R; Li, R A

    2008-09-08

    Self-renewable, pluripotent human embryonic stem cells (hESCs) can be differentiated into cardiomyocytes (CMs), providing an unlimited source of cells for transplantation therapies. However, unlike certain cell lineages such as hematopoietic cells, CMs lack specific surface markers for convenient identification, physical separation, and enrichment. Identification by immunostaining of cardiac-specific proteins such as troponin requires permeabilization, which renders the cells unviable and non-recoverable. Ectopic expression of a reporter protein under the transcriptional control of a heart-specific promoter for identifying hESC-derived CMs (hESC-CMs) is useful for research but complicates potential clinical applications. The practical detection and removal of undifferentiated hESCs in a graft, which may lead to tumors, is also critical. Here, we demonstrate a non-destructive, label-free optical method based on Raman scattering to interrogate the intrinsic biochemical signatures of individual hESCs and their cardiac derivatives, allowing cells to be identified and classified. By combining the Raman spectroscopic data with multivariate statistical analysis, our results indicate that hESCs, human fetal left ventricular CMs, and hESC-CMs can be identified by their intrinsic biochemical characteristics with an accuracy of 96%, 98% and 66%, respectively. The present study lays the groundwork for developing a systematic and automated method for the non-invasive and label-free sorting of (i) high-quality hESCs for expansion, and (ii) ex vivo CMs (derived from embryonic or adult stem cells) for cell-based heart therapies.

  11. Stage specific requirement of platelet-derived growth factor receptor-α in embryonic development.

    Directory of Open Access Journals (Sweden)

    Chen Qian

    Full Text Available Platelet-derived growth factor receptor alpha (PDGFRα is a cell-surface receptor tyrosine kinase for platelet-derived growth factors. Correct timing and level of Pdgfra expression is crucial for embryo development, and deletion of Pdgfra caused developmental defects of multiple endoderm and mesoderm derived structures, resulting in a complex phenotypes including orofacial cleft, spina bifida, rib deformities, and omphalocele in mice. However, it is not clear if deletion of Pdgfra at different embryonic stages differentially affects these structures.To address the temporal requirement of Pdgfra in embryonic development.We have deleted the Pdgfra in Pdgfra-expressing tissues at different embryonic stages in mice, examined and quantified the developmental anomalies.Current study showed that (i conditional deletion of Pdgfra at different embryonic days (between E7.5 and E10.5 resulted in orofacial cleft, spina bifida, rib cage deformities, and omphalocele, and (ii the day of Pdgfra deletion influenced the combinations, incidence and severities of these anomalies. Deletion of Pdgfra caused apoptosis of Pdgfra-expressing tissues, and developmental defects of their derivatives.Orofacial cleft, spina bifida and omphalocele are among the commonest skeletal and abdominal wall defects of newborns, but their genetic etiologies are largely unknown. The remarkable resemblance of our conditional Pdgfra knockout embryos to theses human congenital anomalies, suggesting that dysregulated PDGFRA expression could cause these anomalies in human. Future work should aim at defining (a the regulatory elements for the expression of the human PDGFRA during embryonic development, and (b if mutations / sequence variations of these regulatory elements cause these anomalies.

  12. Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells

    DEFF Research Database (Denmark)

    Prokhorova, Tatyana A; Rigbolt, Kristoffer T G; Johansen, Pia T

    2009-01-01

    Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful quantitative proteomics platform for comprehensive characterization of complex biological systems. However, the potential of SILAC-based approaches has not been fully utilized in human embryonic stem cell (hESC) research...... embryonic stem cell lines. Of the 811 identified membrane proteins, six displayed significantly higher expression levels in the undifferentiated state compared with differentiating cells. This group includes the established marker CD133/Prominin-1 as well as novel candidates for hESC surface markers......: Glypican-4, Neuroligin-4, ErbB2, receptor-type tyrosine-protein phosphatase zeta (PTPRZ), and Glycoprotein M6B. Our study also revealed 17 potential markers of hESC differentiation as their corresponding protein expression levels displayed a dramatic increase in differentiated embryonic stem cell...

  13. [Gene transfer-induced human heme oxygenase-1 over-expression protects kidney from ischemia-reperfusion injury in rats].

    Science.gov (United States)

    Lü, Jin-xing; Yan, Chun-yin; Pu, Jin-xian; Hou, Jian-quan; Yuan, He-xing; Ping, Ji-gen

    2010-12-14

    To study the protection of gene transfer-induced human heme oxygenase-1 over-expression against renal ischemia reperfusion injury in rats. The model of kidney ischemia-reperfusion injury was established with Sprague-Dawley rats. In the therapy group (n=18), the left kidney was perfused and preserved with Ad-hHO-1 at 2.5×10(9) pfu/1.0 ml after flushed with 0-4°C HC-A organ storage solution via donor renal aorta. The rats in control groups were perfused with 0.9% saline solution (n=12) or the vector carrying no interest gene Ad-EGFP 2.5×10(9) pfu/1.0 ml (n=18) instead of Ad-hHO-1. BUN and Cr in serum were measured by slide chemical methods. The kidney samples of rats were harvested for assay of histology, immunohistochemistry and quantification of HO enzymatic activity. Apoptosis cells in the kidney were measured by TUNEL. Ad-hHO-1 via donor renal aorta could transfect renal cells of rats effectively, enzymatic activity of HO in treated group [(1.62±0.07) nmol×mg(-1)×min(-1)] is higher than in control groups treated with saline solution team [(1.27±0.07) nmol×mg(-1)×min(-1)] and vector EGFP team [(1.22±0.06) nmol×mg(-1)×min(-1)] (PhHO-1 expressed hHO-1 in kidneys at a high level. Corresponding to this, the level of BUN and Cr, as well as the number of apoptosis cells, were decreased, and the damage in histology by HE staining was ameliorated. Over-expression of human HO-1 can protect the kidney from ischemia/reperfusion injury in rats.

  14. Generation of branching ureteric bud tissues from human pluripotent stem cells.

    Science.gov (United States)

    Mae, Shin-Ichi; Ryosaka, Makoto; Toyoda, Taro; Matsuse, Kyoko; Oshima, Yoichi; Tsujimoto, Hiraku; Okumura, Shiori; Shibasaki, Aya; Osafune, Kenji

    2018-01-01

    Recent progress in kidney regeneration research is noteworthy. However, the selective and robust differentiation of the ureteric bud (UB), an embryonic renal progenitor, from human pluripotent stem cells (hPSCs) remains to be established. The present study aimed to establish a robust induction method for branching UB tissue from hPSCs towards the creation of renal disease models. Here, we found that anterior intermediate mesoderm (IM) differentiates from anterior primitive streak, which allowed us to successfully develop an efficient two-dimensional differentiation method of hPSCs into Wolffian duct (WD) cells. We also established a simplified procedure to generate three-dimensional WD epithelial structures that can form branching UB tissues. This system may contribute to hPSC-based regenerative therapies and disease models for intractable disorders arising in the kidney and lower urinary tract. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A low molecular weight urinary proteome profile of human kidney aging

    OpenAIRE

    Zürbig, Petra; Decramer, Stéphane; Dakna, Mohammed; Jantos, Justyna; Good, David M.; Coon, Joshua J.; Bandin, Flavio; Mischak, Harald; Bascands, Jean-Loup; Schanstra, Joost P

    2009-01-01

    Aging induces morphological changes of the kidney and reduces renal function. We analyzed the low molecular weight urinary proteome of 324 healthy individuals from 2-73 years of age to gain insight on renal aging in humans. We observed age-related modification of secretion of 325 out of 5000 urinary peptides. The majority of these changes was associated with renal development before and during puberty, while 49 peptides were related to aging in adults. Of these 49 peptides, the majority were ...

  16. Patents on inventions related to human embryonic stem cells: the morality clause after Brüstle v. Greenpeace.

    Science.gov (United States)

    Panis, Sarah

    2013-09-01

    This paper analyses the meaning of Article 6, para. 2, sub c of the Biotechnology Directive prohibiting patents on inventions using human embryos for industrial or commercial purposes. It first examines the evolution ofthe Court of Justice ofthe EU's interpretation of this provision (which is part of the morality clause) and focuses on its most recent decision, Brüstle v. Greenpeace. This is considered a landmark case for three reasons: firstly, because it defines for the first time the term "embryo" in patent law; secondly, because it is the Court of Justice (and not EPO) that ruled on patent law; the third reason is its very broad interpretation of the morality exclusion. The exclusion is no longer limited to embryos but is extended to (even banked) embryonic stem cells and all downstream products made with them. It then looks into the consequences for the patentability of inventions using cells derived from human embryonic stem cells, such as Brüstle's invention. The recent decision by Germany's Federal Court of Justice on the validity of Brüstle's patent emphasises the limited influence on the patentability of those inventions. After that, the paper addresses possible cuts in funding stem cell research and even legislative bans of this type of research. This is followed by an evaluation of the existence and content of the morality exclusion. After a comparative analysis with the US, which is lacking in such morality exclusion, the paper concludes that the morality clause as a whole paid its dues but the provision on the use of human embryos is questionable as there is no European consensus against the use of human embryos for industrial or commercial purposes.

  17. Immunoflourescence and mRNA analysis of human embryonic stem cells (hESCs) grown under feeder-free conditions

    DEFF Research Database (Denmark)

    Awan, Aashir; Oliveri, Roberto S; Jensen, Pernille L

    2010-01-01

    onto 16-well glass chambers, and continuing with the general IF and qPCR steps will be provided. The techniques will be illustrated with new results on cellular localization of transcriptional factors and components of the Hedgehog, Wnt, and PDGF signaling pathways to primary cilia in stem cell......This chapter describes the procedures in order to do immunofluorescence (IF) microscopy and quantitative PCR (qPCR) analysis of human embryonic stem cells (hESCs) grown specifically under feeder-free conditions. A detailed protocol outlining the steps from initially growing the cells, passaging...

  18. Topoisomerase I inhibitor, camptothecin, induces apoptogenic signaling in human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Carolina Paola García

    2014-03-01

    Full Text Available Embryonic stem cells (ESCs need to maintain their genomic integrity in response to DNA damage to safeguard the integrity of the organism. DNA double strand breaks (DSBs are one of the most lethal forms of DNA damage and, if not repaired correctly, they can lead to cell death, genomic instability and cancer. How human ESCs (hESCs maintain genomic integrity in response to agents that cause DSBs is relatively unclear. In the present study we aim to determine the hESC response to the DSB inducing agent camptothecin (CPT. We find that hESCs are hypersensitive to CPT, as evidenced by high levels of apoptosis. CPT treatment leads to DNA-damage sensor kinase (ATM and DNA-PKcs phosphorylation on serine 1981 and serine 2056, respectively. Activation of ATM and DNA-PKcs was followed by histone H2AX phosphorylation on Ser 139, a sensitive reporter of DNA damage. Nuclear accumulation and ATM-dependent phosphorylation of p53 on serine 15 were also observed. Remarkably, hESC viability was further decreased when ATM or DNA-PKcs kinase activity was impaired by the use of specific inhibitors. The hypersensitivity to CPT treatment was markedly reduced by blocking p53 translocation to mitochondria with pifithrin-μ. Importantly, programmed cell death was achieved in the absence of the cyclin dependent kinase inhibitor, p21Waf1, a bona fide p53 target gene. Conversely, differentiated hESCs were no longer highly sensitive to CPT. This attenuated apoptotic response was accompanied by changes in cell cycle profile and by the presence of p21Waf1. The results presented here suggest that p53 has a key involvement in preventing the propagation of damaged hESCs when genome is threatened. As a whole, our findings support the concept that the phenomenon of apoptosis is a prominent player in normal embryonic development.

  19. Kidney Transplantation: The Challenge of Human Leukocyte Antigen and Its Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Tilahun Alelign

    2018-01-01

    Full Text Available Kidney transplantation remains the treatment of choice for end-stage renal failure. When the immune system of the recipient recognizes the transplanted kidney as a foreign object, graft rejection occurs. As part of the host immune defense mechanism, human leukocyte antigen (HLA is a major challenge for graft rejection in transplantation therapy. The impact of HLA mismatches between the donor and the potential recipient prolongs the time for renal transplantation therapy, tethered to dialysis, latter reduces graft survival, and increases mortality. The formation of pretransplant alloantibodies against HLA class I and II molecules can be sensitized through exposures to blood transfusions, prior transplants, and pregnancy. These preformed HLA antibodies are associated with rejection in kidney transplantation. On the other hand, the development of de novo antibodies may increase the risk for acute and chronic rejections. Allograft rejection results from a complex interplay involving both the innate and the adaptive immune systems. Thus, further insights into the mechanisms of tissue rejection and the risk of HLA sensitization is crucial in developing new therapies that may blunt the immune system against transplanted organs. Therefore, the purpose of this review is to highlight facts about HLA and its sensitization, various mechanisms of allograft rejection, the current immunosuppressive approaches, and the directions for future therapy.

  20. Kidney Transplantation: The Challenge of Human Leukocyte Antigen and Its Therapeutic Strategies

    Science.gov (United States)

    Ahmed, Momina M.; Bobosha, Kidist; Tadesse, Yewondwossen; Howe, Rawleigh; Petros, Beyene

    2018-01-01

    Kidney transplantation remains the treatment of choice for end-stage renal failure. When the immune system of the recipient recognizes the transplanted kidney as a foreign object, graft rejection occurs. As part of the host immune defense mechanism, human leukocyte antigen (HLA) is a major challenge for graft rejection in transplantation therapy. The impact of HLA mismatches between the donor and the potential recipient prolongs the time for renal transplantation therapy, tethered to dialysis, latter reduces graft survival, and increases mortality. The formation of pretransplant alloantibodies against HLA class I and II molecules can be sensitized through exposures to blood transfusions, prior transplants, and pregnancy. These preformed HLA antibodies are associated with rejection in kidney transplantation. On the other hand, the development of de novo antibodies may increase the risk for acute and chronic rejections. Allograft rejection results from a complex interplay involving both the innate and the adaptive immune systems. Thus, further insights into the mechanisms of tissue rejection and the risk of HLA sensitization is crucial in developing new therapies that may blunt the immune system against transplanted organs. Therefore, the purpose of this review is to highlight facts about HLA and its sensitization, various mechanisms of allograft rejection, the current immunosuppressive approaches, and the directions for future therapy. PMID:29693023

  1. Systematic identification of cis-regulatory sequences active in mouse and human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Marica Grskovic

    2007-08-01

    Full Text Available Understanding the transcriptional regulation of pluripotent cells is of fundamental interest and will greatly inform efforts aimed at directing differentiation of embryonic stem (ES cells or reprogramming somatic cells. We first analyzed the transcriptional profiles of mouse ES cells and primordial germ cells and identified genes upregulated in pluripotent cells both in vitro and in vivo. These genes are enriched for roles in transcription, chromatin remodeling, cell cycle, and DNA repair. We developed a novel computational algorithm, CompMoby, which combines analyses of sequences both aligned and non-aligned between different genomes with a probabilistic segmentation model to systematically predict short DNA motifs that regulate gene expression. CompMoby was used to identify conserved overrepresented motifs in genes upregulated in pluripotent cells. We show that the motifs are preferentially active in undifferentiated mouse ES and embryonic germ cells in a sequence-specific manner, and that they can act as enhancers in the context of an endogenous promoter. Importantly, the activity of the motifs is conserved in human ES cells. We further show that the transcription factor NF-Y specifically binds to one of the motifs, is differentially expressed during ES cell differentiation, and is required for ES cell proliferation. This study provides novel insights into the transcriptional regulatory networks of pluripotent cells. Our results suggest that this systematic approach can be broadly applied to understanding transcriptional networks in mammalian species.

  2. Automated grouping of action potentials of human embryonic stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Gorospe, Giann; Zhu, Renjun; Millrod, Michal A; Zambidis, Elias T; Tung, Leslie; Vidal, Rene

    2014-09-01

    Methods for obtaining cardiomyocytes from human embryonic stem cells (hESCs) are improving at a significant rate. However, the characterization of these cardiomyocytes (CMs) is evolving at a relatively slower rate. In particular, there is still uncertainty in classifying the phenotype (ventricular-like, atrial-like, nodal-like, etc.) of an hESC-derived cardiomyocyte (hESC-CM). While previous studies identified the phenotype of a CM based on electrophysiological features of its action potential, the criteria for classification were typically subjective and differed across studies. In this paper, we use techniques from signal processing and machine learning to develop an automated approach to discriminate the electrophysiological differences between hESC-CMs. Specifically, we propose a spectral grouping-based algorithm to separate a population of CMs into distinct groups based on the similarity of their action potential shapes. We applied this method to a dataset of optical maps of cardiac cell clusters dissected from human embryoid bodies. While some of the nine cell clusters in the dataset are presented with just one phenotype, the majority of the cell clusters are presented with multiple phenotypes. The proposed algorithm is generally applicable to other action potential datasets and could prove useful in investigating the purification of specific types of CMs from an electrophysiological perspective.

  3. Disruption of cardiogenesis in human embryonic stem cells exposed to trichloroethylene.

    Science.gov (United States)

    Jiang, Yan; Wang, Dan; Zhang, Guoxing; Wang, Guoqing; Tong, Jian; Chen, Tao

    2016-11-01

    Trichloroethylene (TCE) is ubiquitous in our living environment, and prenatal exposure to TCE is reported to cause congenital heart disease in humans. Although multiple studies have been performed using animal models, they have limited value in predicting effects on humans due to the unknown species-specific toxicological effects. To test whether exposure to low doses of TCE induces developmental toxicity in humans, we investigated the effect of TCE on human embryonic stem cells (hESCs) and cardiomyocytes (derived from the hESCs). In the current study, hESCs cardiac differentiation was achieved by using differentiation medium consisting of StemPro-34. We examined the effects of TCE on cell viability by cell growth assay and cardiac inhibition by analysis of spontaneously beating cluster. The expression levels of genes associated with cardiac differentiation and Ca 2+ channel pathways were measured by immunofluorescence and qPCR. The overall data indicated the following: (1) significant cardiac inhibition, which was characterized by decreased beating clusters and beating rates, following treatment with low doses of TCE; (2) significant up-regulation of the Nkx2.5/Hand1 gene in cardiac progenitors and down regulation of the Mhc-7/cTnT gene in cardiac cells; and (3) significant interference with Ca 2+ channel pathways in cardiomyocytes, which contributes to the adverse effect of TCE on cardiac differentiation during early embryo development. Our results confirmed the involvement of Ca 2+ turnover network in TCE cardiotoxicity as reported in animal models, while the inhibition effect of TCE on the transition of cardiac progenitors to cardiomyocytes is unique to hESCs, indicating a species-specific effect of TCE on heart development. This study provides new insight into TCE biology in humans, which may help explain the development of congenital heart defects after TCE exposure. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1372-1380, 2016. © 2015 Wiley

  4. Cytokine signalling in embryonic stem cells

    DEFF Research Database (Denmark)

    Kristensen, David Møbjerg; Kalisz, Mark; Nielsen, Jens Høiriis

    2006-01-01

    Cytokines play a central role in maintaining self-renewal in mouse embryonic stem (ES) cells through a member of the interleukin-6 type cytokine family termed leukemia inhibitory factor (LIF). LIF activates the JAK-STAT3 pathway through the class I cytokine receptor gp130, which forms a trimeric...... pathways seem to converge on c-myc as a common target to promote self-renewal. Whereas LIF does not seem to stimulate self-renewal in human embryonic stem cells it cannot be excluded that other cytokines are involved. The pleiotropic actions of the increasing number of cytokines and receptors signalling...... via JAKs, STATs and SOCS exhibit considerable redundancy, compensation and plasticity in stem cells in accordance with the view that stem cells are governed by quantitative variations in strength and duration of signalling events known from other cell types rather than qualitatively different stem...

  5. A transcriptional profile of aging in the human kidney.

    Directory of Open Access Journals (Sweden)

    Graham E J Rodwell

    2004-12-01

    Full Text Available In this study, we found 985 genes that change expression in the cortex and the medulla of the kidney with age. Some of the genes whose transcripts increase in abundance with age are known to be specifically expressed in immune cells, suggesting that immune surveillance or inflammation increases with age. The age-regulated genes show a similar aging profile in the cortex and the medulla, suggesting a common underlying mechanism for aging. Expression profiles of these age-regulated genes mark not only age, but also the relative health and physiology of the kidney in older individuals. Finally, the set of aging-regulated kidney genes suggests specific mechanisms and pathways that may play a role in kidney degeneration with age.

  6. Engineering human cell spheroids to model embryonic tissue fusion in vitro.

    Science.gov (United States)

    Epithelial-mesenchymal interactions drive embryonic fusion events during development and upon perturbation can result in birth defects. Cleft palate and neural tube defects can result from genetic defects or environmental exposures during development, yet very little is known abo...

  7. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells.

    Science.gov (United States)

    D'Amour, Kevin A; Bang, Anne G; Eliazer, Susan; Kelly, Olivia G; Agulnick, Alan D; Smart, Nora G; Moorman, Mark A; Kroon, Evert; Carpenter, Melissa K; Baetge, Emmanuel E

    2006-11-01

    Of paramount importance for the development of cell therapies to treat diabetes is the production of sufficient numbers of pancreatic endocrine cells that function similarly to primary islets. We have developed a differentiation process that converts human embryonic stem (hES) cells to endocrine cells capable of synthesizing the pancreatic hormones insulin, glucagon, somatostatin, pancreatic polypeptide and ghrelin. This process mimics in vivo pancreatic organogenesis by directing cells through stages resembling definitive endoderm, gut-tube endoderm, pancreatic endoderm and endocrine precursor--en route to cells that express endocrine hormones. The hES cell-derived insulin-expressing cells have an insulin content approaching that of adult islets. Similar to fetal beta-cells, they release C-peptide in response to multiple secretory stimuli, but only minimally to glucose. Production of these hES cell-derived endocrine cells may represent a critical step in the development of a renewable source of cells for diabetes cell therapy.

  8. Elasticity of human embryonic stem cells as determined by atomic force microscopy.

    Science.gov (United States)

    Kiss, Robert; Bock, Henry; Pells, Steve; Canetta, Elisabetta; Adya, Ashok K; Moore, Andrew J; De Sousa, Paul; Willoughby, Nicholas A

    2011-10-01

    The expansive growth and differentiation potential of human embryonic stem cells (hESCs) make them a promising source of cells for regenerative medicine. However, this promise is off set by the propensity for spontaneous or uncontrolled differentiation to result in heterogeneous cell populations. Cell elasticity has recently been shown to characterize particular cell phenotypes, with undifferentiated and differentiated cells sometimes showing significant differences in their elasticities. In this study, we determined the Young's modulus of hESCs by atomic force microscopy using a pyramidal tip. Using this method we are able to take point measurements of elasticity at multiple locations on a single cell, allowing local variations due to cell structure to be identified. We found considerable differences in the elasticity of the analyzed hESCs, reflected by a broad range of Young's modulus (0.05-10 kPa). This surprisingly high variation suggests that elasticity could serve as the basis of a simple and efficient large scale purification/separation technique to discriminate subpopulations of hESCs.

  9. Proteomic profiling of human embryonic stem cell-derived microvesicles reveals a risk of transfer of proteins of bovine and mouse origin

    Czech Academy of Sciences Publication Activity Database

    Kubíková, I.; Konečná, H.; Šedo, O.; Zdráhal, Z.; Řehulka, Pavel; Hříbková, H.; Řehulková, Helena; Hampl, Aleš; Chmelík, Josef; Dvořák, Petr

    2009-01-01

    Roč. 11, č. 3 (2009), s. 330-340 ISSN 1465-3249 R&D Projects: GA MŠk 1M0538 Institutional research plan: CEZ:AV0Z40310501; CEZ:AV0Z50390512; CEZ:AV0Z50390703 Keywords : human embryonic stem cell * hESC * proteomic profiling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.204, year: 2009

  10. Do You Have Symptoms of a Kidney Stone?

    Science.gov (United States)

    ... Or, the stone will be removed with treatment. Dogs, Cats, and Kidney Stones Humans aren't the only ones affected by kidney and bladder stones. Dogs, cats, and other animals can also have kidney ...

  11. GLUT3 gene expression is critical for embryonic growth, brain development and survival.

    Science.gov (United States)

    Carayannopoulos, Mary O; Xiong, Fuxia; Jensen, Penny; Rios-Galdamez, Yesenia; Huang, Haigen; Lin, Shuo; Devaskar, Sherin U

    2014-04-01

    Glucose is the primary energy source for eukaryotic cells and the predominant substrate for the brain. GLUT3 is essential for trans-placental glucose transport and highly expressed in the mammalian brain. To further elucidate the role of GLUT3 in embryonic development, we utilized the vertebrate whole animal model system of Danio rerio as a tractable system for defining the cellular and molecular mechanisms altered by impaired glucose transport and metabolism related to perturbed expression of GLUT3. The comparable orthologue of human GLUT3 was identified and the expression of this gene abrogated during early embryonic development. In a dose-dependent manner embryonic brain development was disrupted resulting in a phenotype of aberrant brain organogenesis, associated with embryonic growth restriction and increased cellular apoptosis. Rescue of the morphant phenotype was achieved by providing exogenous GLUT3 mRNA. We conclude that GLUT3 is critically important for brain organogenesis and embryonic growth. Disruption of GLUT3 is responsible for the phenotypic spectrum of embryonic growth restriction to demise and neural apoptosis with microcephaly. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. UV laser radiation alters the embryonic protein profile of adrenal-kidney-gonadal complex and gonadal differentiation in the lizard, Calotes Versicolor.

    Science.gov (United States)

    Khodnapur, Bharati S; Inamdar, Laxmi S; Nindi, Robertraj S; Math, Shivkumar A; Mulimani, B G; Inamdar, Sanjeev R

    2015-02-01

    To examine the impact of ultraviolet (UV) laser radiation on the embryos of Calotes versicolor in terms of its effects on the protein profile of the adrenal-kidney-gonadal complex (AKG), sex determination and differentiation, embryonic development and hatching synchrony. The eggs of C. versicolor, during thermo-sensitive period (TSP), were exposed to third harmonic laser pulses at 355 nm from a Q-switched Nd:YAG laser for 180 sec. Subsequent to the exposure they were incubated at the male-producing temperature (MPT) of 25.5 ± 0.5°C. The AKG of hatchlings was subjected to protein analysis by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and to histology. The UV laser radiation altered the expression of the protein banding pattern in the AKG complex of hatchlings and it also affected the gonadal sex differentiation. SDS-PAGE of AKG of one-day-old hatchlings revealed a total of nine protein bands in the control group whereas UV laser irradiated hatchlings expressed a total of seven protein bands only one of which had the same Rf as a control band. The UV laser treated hatchlings have an ovotestes kind of gonad exhibiting a tendency towards femaleness instead of the typical testes. It is inferred that 355 nm UV laser radiation during TSP induces changes in the expression of proteins as well as their secretions. UV laser radiation had an impact on the gonadal differentiation pathway but no morphological anomalies were noticed.

  13. Proliferation of germ cells and somatic cells in first trimester human embryonic gonads as indicated by S and S+G2+M phase fractions

    DEFF Research Database (Denmark)

    Sørensen, Kristina Pilekær; Lutterodt, Melissa Catherine R; Mamsen, Linn S

    2011-01-01

    The number of germ cells and somatic cells in human embryonic and foetal gonads has previously been estimated by stereological methods, which are time- and labour-consuming with little information concerning cell proliferation. Here, we studied whether flow cytometry could be applied as an easier...

  14. Inhibition of IKK/NF-κB Signaling Enhances Differentiation of Mesenchymal Stromal Cells from Human Embryonic Stem Cells.

    Science.gov (United States)

    Deng, Peng; Zhou, Chenchen; Alvarez, Ruth; Hong, Christine; Wang, Cun-Yu

    2016-04-12

    Embryonic stem cell-derived mesenchymal stromal cells (MSCs; also known as mesenchymal stem cells) represent a promising source for bone regenerative medicine. Despite remarkable advances in stem cell biology, the molecular mechanism regulating differentiation of human embryonic stem cells (hESCs) into MSCs remains poorly understood. Here, we report that inhibition of IκB kinase (IKK)/nuclear factor kappa B (NF-κB) signaling enhances differentiation of hESCs into MSCs by expediting the loss of pluripotent markers and increasing the expression of MSC surface markers. In addition, a significantly higher quantity of MSCs was produced from hESCs with IKK/NF-κB suppression. These isolated MSCs displayed evident multipotency with capacity to terminally differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and to form bone in vivo. Collectively, our data provide important insights into the role of NF-κB in mesenchymal lineage specification during hESC differentiation, suggesting that IKK inhibitors could be utilized as an adjuvant in generating MSCs for cell-mediated therapies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Changes of the glomerular size during the human fetal kidney development

    Directory of Open Access Journals (Sweden)

    Daković-Bjelaković Marija

    2006-01-01

    Full Text Available Introduction. Newborns adaptation on postnatal conditions includes significant morphological and functional renal changes. Every kidney contains a constant number of nephrons, at the end of the nephrogenesis period, which extends from week 8 to 34 of gestation. Mature juxtamedullary nephrons possess higher filtration capacity than primitive superficial nephrons, which have insufficient vascularization. Objective. The objective of the study was to calculate an average glomerular diameter in cortical zones of the kidney during development, to define periods of their most intensive growth, and to record differences of glomerular size between different cortical zones. METHOD A total of 30 human fetal kidneys aged from IV to X lunar months were analyzed. Stereological methods were used for calculating the average glomerular diameter in superficial, intermediate and juxtamedullary zone of the kidney cortex. Results. Glomeruli in the superficial cortical zone had the lowest average diameter. The average glomerular diameter continually increased from IV lunar month (0.057±0.004 mm to X lunar month (0.082±0.004 mm, with highly significant correlation with gestational age (r=0.755; p<0.01. The average glomerular diameter in the intermediate zone increased from 0.081±0.004 mm (IV lunar month to 0.096±0.004 mm (X lunar month with low linear correlation with gestational age (r=0.161. Juxtamedullary glomeruli were the biggest ones. Their average diameter, during the IV LM ranged from 0.093±0.006 mm to 0.101±0.004 mm. In the newborns (X lunar month, juxtamedullary glomeruli had spherical structures with an average diameter of 0.103±0.004 mm, and low negative correlation (r=-0.032 with gestational age. In the IV and V lunar months of gestation, there was significant difference (p<0.01; p<0.05 between the average glomerular diameter in the different zones of the kidney cortex. Conclusion. Superficial glomeruli had the smallest diameter, while

  16. Data for human cell spheroid model of embryonic tissue fusion in vitro.

    Data.gov (United States)

    U.S. Environmental Protection Agency — Epithelial-mesenchymal interactions drive embryonic fusion events during development and upon perturbation can result in birth defects. Cleft palate and neural tube...

  17. Changes in glycosaminoglycan structure on differentiation of human embryonic stem cells towards mesoderm and endoderm lineages.

    Science.gov (United States)

    Gasimli, Leyla; Hickey, Anne Marie; Yang, Bo; Li, Guoyun; dela Rosa, Mitche; Nairn, Alison V; Kulik, Michael J; Dordick, Jonathan S; Moremen, Kelley W; Dalton, Stephen; Linhardt, Robert J

    2014-06-01

    Proteoglycans are found on the cell surface and in the extracellular matrix, and serve as prime sites for interaction with signaling molecules. Proteoglycans help regulate pathways that control stem cell fate, and therefore represent an excellent tool to manipulate these pathways. Despite their importance, there is a dearth of data linking glycosaminoglycan structure within proteoglycans with stem cell differentiation. Human embryonic stem cell line WA09 (H9) was differentiated into early mesoderm and endoderm lineages, and the glycosaminoglycanomic changes accompanying these transitions were studied using transcript analysis, immunoblotting, immunofluorescence and disaccharide analysis. Pluripotent H9 cell lumican had no glycosaminoglycan chains whereas in splanchnic mesoderm lumican was glycosaminoglycanated. H9 cells have primarily non-sulfated heparan sulfate chains. On differentiation towards splanchnic mesoderm and hepatic lineages N-sulfo group content increases. Differences in transcript expression of NDST1, HS6ST2 and HS6ST3, three heparan sulfate biosynthetic enzymes, within splanchnic mesoderm cells compared to H9 cells correlate to changes in glycosaminoglycan structure. Differentiation of embryonic stem cells markedly changes the proteoglycanome. The glycosaminoglycan biosynthetic pathway is complex and highly regulated, and therefore, understanding the details of this pathway should enable better control with the aim of directing stem cell differentiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. SMAD7 directly converts human embryonic stem cells to telencephalic fate by a default mechanism

    Science.gov (United States)

    Ozair, Mohammad Zeeshan; Noggle, Scott; Warmflash, Aryeh; Krzyspiak, Joanna Ela; Brivanlou, Ali H.

    2013-01-01

    Human embryonic stem cells (hESCs) provide a valuable window into the dissection of the molecular circuitry underlying the early formation of the human forebrain. However, dissection of signaling events in forebrain development using current protocols is complicated by non-neural contamination and fluctuation of extrinsic influences. Here we show that SMAD7, a cell-intrinsic inhibitor of TGFβ signaling, is sufficient to directly convert pluripotent hESCs to an anterior neural fate. Time-course gene expression revealed down-regulation of MAPK components, and combining MEK1/2 inhibition with SMAD7-mediated TGFβ inhibition promoted telencephalic conversion. FGF-MEK and TGFβ-SMAD signaling maintain hESCs by promoting pluripotency genes and repressing neural genes. Our findings suggest that in the absence of these cues, pluripotent cells simply revert to a program of neural conversion. Hence the “primed” state of hESCs requires inhibition of the “default” state of neural fate acquisition. This has parallels in amphibians, suggesting an evolutionarily conserved mechanism. PMID:23034881

  19. Podocalyxin as a major pluripotent marker and novel keratan sulfate proteoglycan in human embryonic and induced pluripotent stem cells.

    Science.gov (United States)

    Toyoda, Hidenao; Nagai, Yuko; Kojima, Aya; Kinoshita-Toyoda, Akiko

    2017-04-01

    Podocalyxin (PC) was first identified as a heavily sialylated transmembrane protein of glomerular podocytes. Recent studies suggest that PC is a remarkable glycoconjugate that acts as a universal glyco-carrier. The glycoforms of PC are responsible for multiple functions in normal tissue, human cancer cells, human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). PC is employed as a major pluripotent marker of hESCs and hiPSCs. Among the general antibodies for human PC, TRA-1-60 and TRA-1-81 recognize the keratan sulfate (KS)-related structures. Therefore, It is worthwhile to summarize the outstanding chemical characteristic of PC, including the KS-related structures. Here, we review the glycoforms of PC and discuss the potential of PC as a novel KS proteoglycan in undifferentiated hESCs and hiPSCs.

  20. Higher O-GlcNAc Levels Are Associated with Defects in Progenitor Proliferation and Premature Neuronal Differentiation during in-Vitro Human Embryonic Cortical Neurogenesis

    Directory of Open Access Journals (Sweden)

    Shama Parween

    2017-12-01

    Full Text Available The nutrient responsive O-GlcNAcylation is a dynamic post-translational protein modification found on several nucleocytoplasmic proteins. Previous studies have suggested that hyperglycemia induces the levels of total O-GlcNAcylation inside the cells. Hyperglycemia mediated increase in protein O-GlcNAcylation has been shown to be responsible for various pathologies including insulin resistance and Alzheimer's disease. Since maternal hyperglycemia during pregnancy is associated with adverse neurodevelopmental outcomes in the offspring, it is intriguing to identify the effect of increased protein O-GlcNAcylation on embryonic neurogenesis. Herein using human embryonic stem cells (hESCs as model, we show that increased levels of total O-GlcNAc is associated with decreased neural progenitor proliferation and premature differentiation of cortical neurons, reduced AKT phosphorylation, increased apoptosis and defects in the expression of various regulators of embryonic corticogenesis. As defects in proliferation and differentiation during neurodevelopment are common features of various neurodevelopmental disorders, increased O-GlcNAcylation could be one mechanism responsible for defective neurodevelopmental outcomes in metabolically compromised pregnancies such as diabetes.

  1. Retinal vascular injuries and intravitreal human embryonic stem cell-derived haemangioblasts.

    Science.gov (United States)

    Wang, Jin-Da; An, Ying; Zhang, Jing-Shang; Wan, Xiu-Hua; Zhang, Wei; Lanza, Robert; Lu, Shi-Jiang; Jonas, Jost B; Xu, Liang

    2017-09-01

    To investigate whether intravitreally applied haemangioblasts (HB) derived from human embryonic stem cells (hESCs) are helpful for the repair of vascular damage caused in animals by an oxygen-induced retinopathy (OIR), by an induced diabetic retinopathy (DR) or by an induced retinal ischaemia with subsequent reperfusion. Human embryonic stem cell-derived HBs were transplanted intravitreally into C57BL/6J mice (OIR model), into male Wistar rats with an induced DR and into male Wistar rats undergoing induced retinal ischaemia with subsequent reperfusion. Control groups of animals received an intravitreal injection of endothelial cells (ECs) or phosphate-buffered saline (PBS). We examined the vasculature integrity in the mice with OIR, the blood-retina barrier in the rats with induced DR, and retinal thickness and retinal ganglion cell density in retina flat mounts of the rats with the retinal ischaemic-reperfusion retinopathy. In the OIR model, the study group versus control groups showed a significantly (p < 0.001) smaller retinal avascular area [5.1 ± 2.7%;n = 18 animals versus 12.2 ± 2.8% (PBS group; n = 10 animals) and versus 11.8 ± 3.7% (EC group; n = 8 animals)] and less retinal neovascularization [6.3 ± 2.5%;n = 18 versus 15.2 ± 6.3% (n = 10; PBS group) and versus 15.8 ± 3.3% (n = 8; EC group)]. On retinal flat mounts, hESC-HBs were integrated into damaged retinal vessels and stained positive for PECAM (CD31) as EC marker. In the DR model, the study group versus the EC control group showed a significantly (p = 0.001) better blood-retina barrier function as measured at 2 days after the intravitreal injections [study group: 20.2 ± 12.8 μl/(g × hr); n = 6; versus EC control group: 52.9 ± 9.9 μl/(g × hr; n = 6)]. In the retinal ischaemia-reperfusion model, the groups did not differ significantly in retinal thickness and retinal ganglion cell density at 2, 5 and 7 days after baseline. By integrating into

  2. Finite element modeling of the human kidney for probabilistic occupant models: Statistical shape analysis and mesh morphing.

    Science.gov (United States)

    Yates, Keegan M; Untaroiu, Costin D

    2018-04-16

    Statistical shape analysis was conducted on 15 pairs (left and right) of human kidneys. It was shown that the left and right kidney were significantly different in size and shape. In addition, several common modes of kidney variation were identified using statistical shape analysis. Semi-automatic mesh morphing techniques have been developed to efficiently create subject specific meshes from a template mesh with a similar geometry. Subject specific meshes as well as probabilistic kidney meshes were created from a template mesh. Mesh quality remained about the same as the template mesh while only taking a fraction of the time to create the mesh from scratch or morph with manually identified landmarks. This technique can help enhance the quality of information gathered from experimental testing with subject specific meshes as well as help to more efficiently predict injury by creating models with the mean shape as well as models at the extremes for each principal component. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Storing live embryonic and adult human cartilage grafts for transplantation using a joint simulating device.

    Science.gov (United States)

    Cohen, I; Robinson, D; Cohen, N; Nevo, Z

    2000-11-01

    Cartilage transplantation as a means to replace damaged articular surfaces is of interest. A major obstacle is the long-term preservation of cartilage grafts. The commonly used technique of freezing the grafts inevitably leads to cellular death. The current study compares the technique to an innovative approach using a pulsed-pressure perfusion system termed a joint simulating device (JSD), intended to simulate intra-articular mechanical forces. Human articular cartilage explants were harvested from both embryonic epiphyseal tissue and femoral heads of elderly women (over 70 years of age) undergoing a partial joint replacement (hemi-arthroplasty) and were divided in two groups: half of the samples were incubated in the JSD while the remaining half were grown in static culture within tissue culture plates. After 10 days all samples were evaluated for: (a) cell vitality as assessed by image analysis and XTT assay; (b) biosynthetic activity as expressed by radioactive sulfate incorporation into glycosaminoglycans (GAG's); and (c) proteoglycan content as assessed by alcian blue staining intensity. A 10-fold increase in sulfate incorporation in samples held in the JSD compared to the static culture group was observed in embryonic cartilage. In adult cartilage culture in the JSD elevated sulfate incorporation by threefold as compared to static culture. Central necrosis was observed in specimens grown in the static culture plates, while it did not occur in the samples held in the JSD. Cell vitality as assessed by XTT assay was significantly better in the JSD group as compared to static culture. The difference was more pronounced in the embryonic specimens as compared to adult cartilage. The specimens cultured within the JSD retained proteoglycans significantly better than those cultured in static culture. Maintenance of cartilage specimens in a JSD was highly effective in keeping the vitality of cartilage explants in vitro over a 10-day period. A possible future

  4. YKL-40 is differentially expressed in human embryonic stem cells and in cell progeny of the three germ layers.

    Science.gov (United States)

    Brøchner, Christian B; Johansen, Julia S; Larsen, Lars A; Bak, Mads; Mikkelsen, Hanne B; Byskov, Anne Grete; Andersen, Claus Yding; Møllgård, Kjeld

    2012-03-01

    The secreted glycoprotein YKL-40 participates in cell differentiation, inflammation, and cancer progression. High YKL-40 expression is reported during early human development, but its functions are unknown. Six human embryonic stem cell (hESC) lines were cultured in an atmosphere of low or high oxygen tension, in culture medium with or without basic fibroblast growth factor, and on feeder layers comprising mouse embryonic fibroblasts or human foreskin fibroblasts to evaluate whether hESCs and their progeny produced YKL-40 and to characterize YKL-40 expression during differentiation. Secreted YKL-40 protein and YKL-40 mRNA expression were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative RT-PCR. Serial-sectioned colonies were stained for YKL-40 protein and for pluripotent hESC (OCT4, NANOG) and germ layer (HNF-3β, PDX1, CD34, p63, nestin, PAX6) markers. Double-labeling showed YKL-40 expression in OCT4-positive hESCs, PAX6-positive neuroectodermal cells, and HNF-3β-positive endodermal cells. The differentiating progeny showed strong YKL-40 expression. Abrupt transition between YKL-40 and OCT4-positive hESCs and YKL-40-positive ecto- and neuroectodermal lineages was observed within the same epithelial-like layer. YKL-40-positive cells within deeper layers lacked contact with OCT4-positive cells. YKL-40 may be important in initial cell differentiation from hESCs toward ectoderm and neuroectoderm, with retained epithelial morphology, whereas later differentiation into endoderm and mesoderm involves a transition into the deeper layers of the colony.

  5. Human Embryonic Stem Cell Research: Ethical Views of Buddhist, Hindu and Catholic Leaders in Malaysia.

    Science.gov (United States)

    Sivaraman, Mathana Amaris Fiona; Noor, Siti Nurani Mohd

    2016-04-01

    Embryonic Stem Cell Research (ESCR) raises ethical issues. In the process of research, embryos may be destroyed and, to some, such an act entails the 'killing of human life'. Past studies have sought the views of scientists and the general public on the ethics of ESCR. This study, however, explores multi-faith ethical viewpoints, in particular, those of Buddhists, Hindus and Catholics in Malaysia, on ESCR. Responses were gathered via semi-structured, face-to-face interviews. Three main ethical quandaries emerged from the data: (1) sanctity of life, (2) do no harm, and (3) 'intention' of the research. Concerns regarding the sanctity of life are directed at particular research protocols which interfere with religious notions of human ensoulment and early consciousness. The principle of 'do no harm' which is closely related to ahimsa prohibits all acts of violence. Responses obtained indicate that respondents either discourage research that inflicts harm on living entities or allow ESCR with reservations. 'Intention' of the research seems to be an interesting and viable rationale that would permit ESCR for the Buddhists and Hindus. Research that is intended for the purpose of alleviating human suffering is seen as being ethical. This study also notes that Catholics oppose ESCR on the basis of the inviolability of human life.

  6. Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts.

    Science.gov (United States)

    Wu, Yang; Sriram, Gopu; Fawzy, Amr S; Fuh, Jerry Yh; Rosa, Vinicius; Cao, Tong; Wong, Yoke San

    2016-08-01

    Biological function of adherent cells depends on the cell-cell and cell-matrix interactions in three-dimensional space. To understand the behavior of cells in 3D environment and their interactions with neighboring cells and matrix requires 3D culture systems. Here, we present a novel 3D cell carrier scaffold that provides an environment for routine 3D cell growth in vitro We have developed thin, mechanically stable electrohydrodynamic jet (E-jet) 3D printed polycaprolactone and polycaprolactone/Chitosan macroporous scaffolds with precise fiber orientation for basic 3D cell culture application. We have evaluated the application of this technology by growing human embryonic stem cell-derived fibroblasts within these 3D scaffolds. Assessment of cell viability and proliferation of cells seeded on polycaprolactone and polycaprolactone/Chitosan 3D-scaffolds show that the human embryonic stem cell-derived fibroblasts could adhere and proliferate on the scaffolds over time. Further, using confocal microscopy we demonstrate the ability to use fluorescence-labelled cells that could be microscopically monitored in real-time. Hence, these 3D printed polycaprolactone and polycaprolactone/Chitosan scaffolds could be used as a cell carrier for in vitro 3D cell culture-, bioreactor- and tissue engineering-related applications in the future. © The Author(s) 2016.

  7. Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors.

    Science.gov (United States)

    Stachelscheid, H; Wulf-Goldenberg, A; Eckert, K; Jensen, J; Edsbagge, J; Björquist, P; Rivero, M; Strehl, R; Jozefczuk, J; Prigione, A; Adjaye, J; Urbaniak, T; Bussmann, P; Zeilinger, K; Gerlach, J C

    2013-09-01

    Teratoma formation in mice is today the most stringent test for pluripotency that is available for human pluripotent cells, as chimera formation and tetraploid complementation cannot be performed with human cells. The teratoma assay could also be applied for assessing the safety of human pluripotent cell-derived cell populations intended for therapeutic applications. In our study we examined the spontaneous differentiation behaviour of human embryonic stem cells (hESCs) in a perfused 3D multi-compartment bioreactor system and compared it with differentiation of hESCs and human induced pluripotent cells (hiPSCs) cultured in vitro as embryoid bodies and in vivo in an experimental mouse model of teratoma formation. Results from biochemical, histological/immunohistological and ultrastuctural analyses revealed that hESCs cultured in bioreactors formed tissue-like structures containing derivatives of all three germ layers. Comparison with embryoid bodies and the teratomas revealed a high degree of similarity of the tissues formed in the bioreactor to these in the teratomas at the histological as well as transcriptional level, as detected by comparative whole-genome RNA expression profiling. The 3D culture system represents a novel in vitro model that permits stable long-term cultivation, spontaneous multi-lineage differentiation and tissue formation of pluripotent cells that is comparable to in vivo differentiation. Such a model is of interest, e.g. for the development of novel cell differentiation strategies. In addition, the 3D in vitro model could be used for teratoma studies and pluripotency assays in a fully defined, controlled environment, alternatively to in vivo mouse models. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Innovative virtual reality measurements for embryonic growth and development

    NARCIS (Netherlands)

    C.M. Verwoerd-Dikkeboom (Christine); A.H.J. Koning (Anton); W.C.J. Hop (Wim); P.J. van der Spek (Peter); N. Exalto (Niek); R.P.M. Steegers-Theunissen (Régine)

    2010-01-01

    textabstractBackground Innovative imaging techniques, using up-to-date ultrasonic equipment, necessitate specific biometry. The aim of our study was to test the possibility of detailed human embryonic biometry using a virtual reality (VR) technique. Methods In a longitudinal study, three-dimensional

  9. Revocation of European patent for neural progenitors highlights patent challenges for inventions relating to human embryonic stem cells.

    Science.gov (United States)

    Rigby, Barbara

    2013-11-01

    Cells derived from human embryonic stem cells have great therapeutic potential. Patents are key to allowing companies that develop methods of generating such cells to recuperate their investment. However, in Europe, inventions relating to the use of human embryos for commercial purposes are excluded from patentability on moral grounds. The scope of this morality exclusion was recently tested before Germany's highest court and before the European Patent Office (EPO), with diverging results. The decision by the EPO's Opposition Division to revoke EP1040185 relating to neural precursors and methods for their generation has received a mixed reception. The decision has very recently been appealed, and the outcome of this Appeal should provide more definitive guidance on the scope of the morality exclusion.

  10. Human amniotic epithelial cell feeder layers maintain mouse embryonic stem cell pluripotency via epigenetic regulation of the c-Myc promoter.

    Science.gov (United States)

    Liu, Te; Cheng, Weiwei; Liu, Tianjin; Guo, Lihe; Huang, Qin; Jiang, Lizhen; Du, Xiling; Xu, Fuhui; Liu, Zhixue; Lai, Dongmei

    2010-02-01

    Mouse embryonic stem cells (ESCs) are typically cultured on a feeder layer of mouse embryonic fibroblasts (MEFs), with leukemia inhibitory factor (LIF) added to maintain them in an undifferentiated state. We have previously shown that human amniotic epithelial cells (hAECs) can be used as feeder cells to maintain mouse ESC pluripotency, but the mechanism for this is unknown. In the present study, we found that CpG islands 5' of the c-Myc gene remain hypomethylated in mouse ESCs cultured on hAECs. In addition, levels of acetylation of histone H3 and trimethylation of histone H3K4 in the c-Myc gene promoter were higher in ES cells cultured on hAECs than those in ES cells cultured on MEFs. These data suggested that hAECs can alter mouse ESC gene expression via epigenetic modification of c-Myc, providing a possible mechanism for the hAEC-induced maintenance of ESCs in an undifferentiated state.

  11. [Embryonic stem cells. Future perspectives].

    Science.gov (United States)

    Groebner, M; David, R; Franz, W M

    2006-05-01

    Embryonic stem cells (ES cells) are able to differentiate into any cell type, and therefore represent an excellent source for cellular replacement therapies in the case of widespread diseases, for example heart failure, diabetes, Parkinson's disease and spinal cord injury. A major prerequisite for their efficient and safe clinical application is the availability of pure populations for direct cell transplantation or tissue engineering as well as the immunological compatibility of the transplanted cells. The expression of human surface markers under the control of cell type specific promoters represents a promising approach for the selection of cardiomyocytes and other cell types for therapeutic applications. The first human clinical trial using ES cells will start in the United States this year.

  12. Expression of Nek1 during kidney development and cyst formation in multiple nephron segments in the Nek1-deficient kat2J mouse model of polycystic kidney disease.

    Science.gov (United States)

    Chen, Yumay; Chiang, Huai-Chin; Litchfield, Patricia; Pena, Michelle; Juang, Charity; Riley, Daniel J

    2014-07-17

    Neks, mammalian orthologs of the fungal protein kinase never-in-mitosis A, have been implicated in the pathogenesis of polycystic kidney disease. Among them, Nek1 is the primary protein inactivated in kat2J mouse models of PKD. We report the expression pattern of Nek1 and characterize the renal cysts that develop in kat2J mice. Nek1 is detectable in all murine tissues but its expression in wild type and kat2J heterozygous kidneys decrease as the kidneys mature, especially in tubular epithelial cells. In the embryonic kidney, Nek1 expression is most prominent in cells that will become podocytes and proximal tubules. Kidney development in kat2J homozygous mice is aberrant early, before the appearance of gross cysts: developing cortical zones are thin, populated by immature glomeruli, and characterized by excessive apoptosis of several cell types. Cysts in kat2J homozygous mice form postnatally in Bowman's space as well as different tubular subtypes. Late in life, kat2J heterozygous mice form renal cysts and the cells lining these cysts lack staining for Nek1. The primary cilia of cells lining cysts in kat2J homozygous mice are morphologically diverse: in some cells they are unusually long and in others there are multiple cilia of varying lengths. Our studies indicate that Nek1 deficiency leads to disordered kidney maturation, and cysts throughout the nephron.

  13. Characterization of the human nasal embryonic LHRH factor gene, NELF, and a mutation screening among 65 patients with idiopathic hypogonadotropic hypogonadism (IHH).

    Science.gov (United States)

    Miura, Kiyonori; Acierno, James S; Seminara, Stephanie B

    2004-01-01

    As the mouse nasal embryonic LHRH factor gene (Nelf) encodes a guidance molecule for the migration of the olfactory axon and gonadotropin-releasing hormone neurons, its human homolog, NELF, is a candidate gene for Kallmann syndrome, a disease of idiopathic hypogonadotropic hypogonadism (IHH) with anosmia or hyposmia. We report here characterization of NELF and results of mutation analysis in 65 IHH patients. Assembling EST clones, RACE, and sequencing showed that NELF mapped to 9q34.3 is composed of 16 exons and 15 introns with a 1,590-bp ORF encoding 530 amino acids. RT-PCR on a fetal brain cDNA library revealed five alternatively spliced variants. Among them, NELF-v1 has 93-94% identity at the amino acid level to mouse/rat Nelf, and four other transcripts are also highly conserved among the three species. A 3.0-kb transcript is expressed most highly in the adult and fetal brain, testis, and kidney, indicating that NELF plays a role in the function of these tissues. Mutation screening detected in a patient with IHH one novel heterozygous missense mutation (1438A>G, T480A) at the donor-splice site in exon 15 of NELF. As this mutation was not found in 100 normal control individuals, T480A may be associated with IHH. Four other novel SNPs (102C > T and 1029C > T within the coding region, and two IVS14+47C > T and IVS15+41G > A) were also identified in NELF.

  14. The fine structure of human germ layers in vivo: clues to the early differentiation of embryonic stem cells in vitro.

    Science.gov (United States)

    Sathananthan, Henry; Selvaraj, Kamala; Clark, Joan

    2011-08-01

    The fine structure of the three germ layers in human ectopic embryos (stage 7) have been documented by digital light and electron microscopy. The formation of ectoderm, endoderm and mesoderm and notochordal cells, and also the extraembryonic membranes, amnion and yolk sac, are imaged. The germ layers give rise to all the cells and tissues of the human body. Possible clues to the early differentiation of embryonic stem cells (ESC) in vitro were obtained, since these events are more or less mimicked in cultures of ESC derived from the inner cell mass of human blastocysts. The findings are discussed with reference to previous studies on the fine structure of ESC using the same technique. Copyright © 2011. Published by Elsevier Ltd.

  15. [The characters and specific features of new human embryonic stem cells lines].

    Science.gov (United States)

    Krylova, T A; Kol'tsova, A M; Zenin, V V; Gordeeva, O F; Musorina, A S; Goriachaia, T S; Shlykova, S A; Kamenetskaia, Iu K; Pinaev, G P; Polianskaia, G G

    2009-01-01

    Four continuous human embryonic stem cell lines (SC1, SC2, SC3 and SC4), derived from the blastocysts has been described. The cell lines were cultivated on mitotically inactivated human feeder cells. The cell lines SC1 and SC2 have passed through 150 population doublings and the cell lines SC3 and SC4 -- near 120 populations doublings, which exceeds Hayflick limit sufficiently. These cell lines maintain high activity of alkaline phosphatase, expression of transcription factor OCT-4 and cell surface antigens (SSEA-4, TRA-1-60 and TRA-1-81), confirming their ESC status and human specificity. Immunofluorescent detection of antigens, characteristic of ectoderm, endoderm and mesoderm confirms the ability of these cells to retain their pluripotency under in vitro condition. PCR analysis revealed expression of six genes specific for pluripotent cells (OCT-4, NANOG, DPPA3/STELLA, TDGF/CRIPTO and LEFTYA). Correlation between the level of proliferative activity and the character of DNA-bound fluorescent staining was found. Fluorescent dyes, Hoechst 33342 and PI, produced diffuse staining of the nuclei in slowly proliferating cells of the SC1 and SC2 lines. In contrast, in actively proliferating cells of the SC3 and SC4 lines, the clear staining of the nuclei was observed. Upon changing the cultivation condition, proliferative activity of SC3 and SC4 lines decreased and became similar to that of SC1 and SC2 lines. The character of the fluorescent staining of all these lines was also shown to be similar. These results show that quality of the fluorescent staining with Hoechst 33342 and PI reflects the level of proliferation. Possible causes and mechanisms of this feature of human ESC are discussed.

  16. Human BCAS3 expression in embryonic stem cells and vascular precursors suggests a role in human embryogenesis and tumor angiogenesis.

    Directory of Open Access Journals (Sweden)

    Kavitha Siva

    Full Text Available Cancer is often associated with multiple and progressive genetic alterations in genes that are important for normal development. BCAS3 (Breast Cancer Amplified Sequence 3 is a gene of unknown function on human chromosome 17q23, a region associated with breakpoints of several neoplasms. The normal expression pattern of BCAS3 has not been studied, though it is implicated in breast cancer progression. Rudhira, a murine WD40 domain protein that is 98% identical to BCAS3 is expressed in embryonic stem (ES cells, erythropoiesis and angiogenesis. This suggests that BCAS3 expression also may not be restricted to mammary tissue and may have important roles in other normal as well as malignant tissues. We show that BCAS3 is also expressed in human ES cells and during their differentiation into blood vascular precursors. We find that BCAS3 is aberrantly expressed in malignant human brain lesions. In glioblastoma, hemangiopericytoma and brain abscess we note high levels of BCAS3 expression in tumor cells and some blood vessels. BCAS3 may be associated with multiple cancerous and rapidly proliferating cells and hence the expression, function and regulation of this gene merits further investigation. We suggest that BCAS3 is mis-expressed in brain tumors and could serve as a human ES cell and tumor marker.

  17. Immune System and Kidney Transplantation.

    Science.gov (United States)

    Shrestha, Badri Man

    2017-01-01

    The immune system recognises a transplanted kidney as foreign body and mounts immune response through cellular and humoral mechanisms leading to acute or chronic rejection, which ultimately results in graft loss. Over the last five decades, there have been significant advances in the understanding of the immune responses to transplanted organs in both experimental and clinical transplant settings. Modulation of the immune response by using immunosuppressive agents has led to successful outcomes after kidney transplantation. The paper provides an overview of the general organisation and function of human immune system, immune response to kidney transplantation, and the current practice of immunosuppressive therapy in kidney transplantation in the United Kingdom.

  18. Hydronephrosis in the Wnt5a-ablated kidney is caused by an abnormal ureter-bladder connection.

    Science.gov (United States)

    Yun, Kangsun; Perantoni, Alan O

    The Wnt5a null mouse is a complex developmental model which, among its several posterior-localized axis defects, exhibits multiple kidney phenotypes, including duplex kidney and loss of the medullary zone. We previously reported that ablation of Wnt5a in nascent mesoderm causes duplex kidney formation as a result of aberrant development of the nephric duct and abnormal extension of intermediate mesoderm. However, these mice also display a loss of the medullary region late in gestation. We have now genetically isolated duplex kidney formation from the medullary defect by specifically targeting the progenitors for both the ureteric bud and metanephric mesenchyme. The conditional mutants fail to form a normal renal medulla but no longer exhibit duplex kidney formation. Approximately 1/3 of the mutants develop hydronephrosis in the kidneys either uni- or bilaterally when using Dll1Cre. The abnormal kidney phenotype becomes prominent at E16.5, which approximates the time when urine production begins in the mouse embryonic kidney, and is associated with a dramatic increase in apoptosis only in mutant kidneys with hydronephrosis. Methylene blue dye injection and histologic examination reveal that aberrant cell death likely results from urine toxicity due to an abnormal ureter-bladder connection. This study shows that Wnt5a is not required for development of the renal medulla and that loss of the renal medullary region in the Wnt5a-deleted kidney is caused by an abnormal ureter-bladder connection. Published by Elsevier B.V.

  19. Laser Capture Microdissection and Multiplex-Tandem PCR Analysis of Proximal Tubular Epithelial Cell Signaling in Human Kidney Disease

    Science.gov (United States)

    Wilkinson, Ray; Wang, Xiangju; Kassianos, Andrew J.; Zuryn, Steven; Roper, Kathrein E.; Osborne, Andrew; Sampangi, Sandeep; Francis, Leo; Raghunath, Vishwas; Healy, Helen

    2014-01-01

    Interstitial fibrosis, a histological process common to many kidney diseases, is the precursor state to end stage kidney disease, a devastating and costly outcome for the patient and the health system. Fibrosis is historically associated with chronic kidney disease (CKD) but emerging evidence is now linking many forms of acute kidney disease (AKD) with the development of CKD. Indeed, we and others have observed at least some degree of fibrosis in up to 50% of clinically defined cases of AKD. Epithelial cells of the proximal tubule (PTEC) are central in the development of kidney interstitial fibrosis. We combine the novel techniques of laser capture microdissection and multiplex-tandem PCR to identify and quantitate “real time” gene transcription profiles of purified PTEC isolated from human kidney biopsies that describe signaling pathways associated with this pathological fibrotic process. Our results: (i) confirm previous in-vitro and animal model studies; kidney injury molecule-1 is up-regulated in patients with acute tubular injury, inflammation, neutrophil infiltration and a range of chronic disease diagnoses, (ii) provide data to inform treatment; complement component 3 expression correlates with inflammation and acute tubular injury, (iii) identify potential new biomarkers; proline 4-hydroxylase transcription is down-regulated and vimentin is up-regulated across kidney diseases, (iv) describe previously unrecognized feedback mechanisms within PTEC; Smad-3 is down-regulated in many kidney diseases suggesting a possible negative feedback loop for TGF-β in the disease state, whilst tight junction protein-1 is up-regulated in many kidney diseases, suggesting feedback interactions with vimentin expression. These data demonstrate that the combined techniques of laser capture microdissection and multiplex-tandem PCR have the power to study molecular signaling within single cell populations derived from clinically sourced tissue. PMID:24475278

  20. In Vivo Clonal Analysis Reveals Lineage-Restricted Progenitor Characteristics in Mammalian Kidney Development, Maintenance, and Regeneration

    Directory of Open Access Journals (Sweden)

    Yuval Rinkevich

    2014-05-01

    Full Text Available The mechanism and magnitude by which the mammalian kidney generates and maintains its proximal tubules, distal tubules, and collecting ducts remain controversial. Here, we use long-term in vivo genetic lineage tracing and clonal analysis of individual cells from kidneys undergoing development, maintenance, and regeneration. We show that the adult mammalian kidney undergoes continuous tubulogenesis via expansions of fate-restricted clones. Kidneys recovering from damage undergo tubulogenesis through expansions of clones with segment-specific borders, and renal spheres developing in vitro from individual cells maintain distinct, segment-specific fates. Analysis of mice derived by transfer of color-marked embryonic stem cells (ESCs into uncolored blastocysts demonstrates that nephrons are polyclonal, developing from expansions of singly fated clones. Finally, we show that adult renal clones are derived from Wnt-responsive precursors, and their tracing in vivo generates tubules that are segment specific. Collectively, these analyses demonstrate that fate-restricted precursors functioning as unipotent progenitors continuously maintain and self-preserve the mouse kidney throughout life.

  1. An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells

    DEFF Research Database (Denmark)

    Massumi, Mohammad; Pourasgari, Farzaneh; Nalla, Amarnadh

    2016-01-01

    developed an abbreviated five-stage protocol (25-30 days) to generate human Embryonic Stem Cell-Derived Beta-like Cells (ES-DBCs). We showed that Geltrex, as an extracellular matrix, could support the generation of ES-DBCs more efficiently than that of the previously described culture systems......The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here, through the sequential in vitro targeting of selected signaling pathways, we have...... positive cells, 1% insulin and glucagon positive cells and 30% insulin and NKX6.1 co-expressing cells. Functionally, ES-DBCs were responsive to high glucose in static incubation and perifusion studies, and could secrete insulin in response to successive glucose stimulations. Mitochondrial metabolic flux...

  2. Incidence and mortality of kidney cancers, and human development index in Asia; a matter of concern.

    Science.gov (United States)

    Arabsalmani, Masoumeh; Mohammadian-Hafshejani, Abdollah; Ghoncheh, Mahshid; Hadadian, Fatemeh; Towhidi, Farhad; Vafaee, Kamran; Salehiniya, Hamid

    2017-01-01

    The incidence and mortality of kidney cancer have steadily increased by 2%- 3% per decade worldwide, and an increased risk of kidney cancer has been observed in many Asian countries. The information on the incidence and mortality of a disease and its distribution is essential for better planning for prevention and further studies. This study aimed to assess the incidence and mortality of kidney cancer and their correlation with the human development index (HDI) in Asia. This ecological study was based on GLOBOCAN data Asia for assessment the correlation between age-specific incidence rate (ASIR) and age-specific mortality rate (ASMR) with HDI and its details that include life expectancy at birth, mean years of schooling and gross national income (GNI) per capita. We use of correlation bivariate method for assessment the correlation between ASIR and ASMR with HDI and its components. A total of 121 099 kidney cancer cases were recorded in Asian countries in 2012.Overall, 80 080 cases (66.12%) were males. Sex ratio was 1.95. The three countries with the highest number of new patients were china (66 466 cases), Japan (16 830 cases), India(9658 cases), respectively. Positive correlation were seen between HDI and ASIR of kidney cancer 0.655 ( P = 0.001), and HDI and ASMR of kidney cancer 0.285 ( P = 0.055). A positive relationship between ASIR and the HDI was seen. The relationship is due to risk factors in countries with high development such as older age, smoking, hypertension, obesity, and diet. However, ASMR showed no significant relationship with HDI.

  3. Morphology and morphometry of fetal liver at 16-26 weeks of gestation by magnetic resonance imaging: Comparison with embryonic liver at Carnegie stage 23.

    Science.gov (United States)

    Hamabe, Yui; Hirose, Ayumi; Yamada, Shigehito; Uwabe, Chigako; Okada, Tomohisa; Togashi, Kaori; Kose, Katsumi; Takakuwa, Tetsuya

    2013-06-01

    Normal liver growth was described morphologically and morphometrically using magnetic resonance imaging (MRI) data of human fetuses, and compared with embryonic liver to establish a normal reference chart for clinical use. MRI images from 21 fetuses at 16-26 weeks of gestation and eight embryos at Carnegie stage (CS)23 were investigated in the present study. Using the image data, the morphology of the liver as well as its adjacent organs was extracted and reconstructed three-dimensionally. Morphometry of fetal liver growth was performed using simple regression analysis. The fundamental morphology was similar in all cases of the fetal livers examined. The liver tended to grow along the transversal axis. The four lobes were clearly recognizable in the fetal liver but not in the embryonic liver. The length of the liver along the three axes, liver volume and four lobes correlated with the bodyweight (BW). The morphogenesis of the fetal liver on the dorsal and caudal sides was affected by the growth of the abdominal organs, such as the stomach, duodenum and spleen, and retroperitoneal organs, such as the right adrenal gland and right kidney. The main blood vessels such as inferior vena cava, portal vein and umbilical vein made a groove on the surface of the liver. Morphology of the fetal liver was different from that of the embryonic liver at CS23. The present data will be useful for evaluating the development of the fetal liver and the adjacent organs that affect its morphology. © 2012 The Japan Society of Hepatology.

  4. Nucleosome Organization in Human Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Puya G Yazdi

    Full Text Available The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA, nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently, there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions, we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a "ground state" of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription, histone modifications, and DNA methylation alter this "ground state" by having distinct effects on both nucleosome positioning and occupancy. As the transcriptional rate increases, nucleosomes become better positioned. Exons transcribed and included in the final spliced mRNA have distinct nucleosome profiles in comparison to exons not included at exon-exon junctions. Genes marked by the active modification H3K4m3 are characterized by lower nucleosome occupancy before the transcription start site compared to genes marked by the inactive modification H3K27m3, while bivalent domains, genes associated with both marks, lie exactly in the middle. Combinatorial patterns of epigenetic marks (chromatin states are associated with unique nucleosome profiles. Nucleosome organization varies around transcription factor binding in enhancers versus promoters. DNA methylation is associated with increasing nucleosome occupancy and different types of methylations have distinct location preferences within the nucleosome core particle. Finally, computational

  5. Non-canonical TAF complexes regulate active promoters in human embryonic stem cells.

    Science.gov (United States)

    Maston, Glenn A; Zhu, Lihua Julie; Chamberlain, Lynn; Lin, Ling; Fang, Minggang; Green, Michael R

    2012-11-13

    The general transcription factor TFIID comprises the TATA-box-binding protein (TBP) and approximately 14 TBP-associated factors (TAFs). Here we find, unexpectedly, that undifferentiated human embryonic stem cells (hESCs) contain only six TAFs (TAFs 2, 3, 5, 6, 7 and 11), whereas following differentiation all TAFs are expressed. Directed and global chromatin immunoprecipitation analyses reveal an unprecedented promoter occupancy pattern: most active genes are bound by only TAFs 3 and 5 along with TBP, whereas the remaining active genes are bound by TBP and all six hESC TAFs. Consistent with these results, hESCs contain a previously undescribed complex comprising TAFs 2, 6, 7, 11 and TBP. Altering the composition of hESC TAFs, either by depleting TAFs that are present or ectopically expressing TAFs that are absent, results in misregulated expression of pluripotency genes and induction of differentiation. Thus, the selective expression and use of TAFs underlies the ability of hESCs to self-renew.DOI:http://dx.doi.org/10.7554/eLife.00068.001.

  6. Immunofluorescence Microscopy and mRNA Analysis of Human Embryonic Stem Cells (hESCs) Including Primary Cilia Associated Signaling Pathways

    DEFF Research Database (Denmark)

    Vestergaard, Maj Linea; Awan, Aashir; Warzecha, Caroline Becker

    2016-01-01

    onto 16-well glass chambers, and continuing with the general IFM and qPCR anlysis. The techniques are illustrated with results on cellular localization of transcriptional factors and components of the Hedgehog, Wnt, PDGF, and TGFβ signaling pathways to primary cilia in stem cell maintenance......This chapter describes the procedures for immunofluorescence microscopy (IFM) and quantitative PCR (qPCR) analyses of human embryonic stem cells (hESCs) grown specifically under feeder-free conditions. A detailed protocol is provided outlining the steps from initially growing the cells, passaging...

  7. Fibronectin-synthesizing activity of free and membrane-bound polyribosomes from human embryonic fibroblasts and chick embryos

    International Nuclear Information System (INIS)

    Belkin, V.M.; Volodarskaya, S.M.

    1986-01-01

    The fibronectin-synthesizing activity of membrane-bound and free polyribosomes in a cell-free system was studied using immunochemical methods. It was found that fibronectin biosynthesis on membrane-bound polyribosomes from human embryonic fibroblasts accounts for 4.9% and those from 10-day-old chick embryos for 1.1% of the total amount of newly synthesized proteins, whereas on free polyribosomes it is 1.0 and 0.3%, respectively. Fibronectin monomers with a molecular weight of 220,000 were found only in the material of the cell-free system containing heavy fractions of membrane-bound polyribosomes newly synthesized in the presence of spermidine. Thus, it was shown that fibronectin is synthesized primarily on membrane-bound polyribosomes

  8. SON connects the splicing-regulatory network with pluripotency in human embryonic stem cells.

    Science.gov (United States)

    Lu, Xinyi; Göke, Jonathan; Sachs, Friedrich; Jacques, Pierre-Étienne; Liang, Hongqing; Feng, Bo; Bourque, Guillaume; Bubulya, Paula A; Ng, Huck-Hui

    2013-10-01

    Human embryonic stem cells (hESCs) harbour the ability to undergo lineage-specific differentiation into clinically relevant cell types. Transcription factors and epigenetic modifiers are known to play important roles in the maintenance of pluripotency of hESCs. However, little is known about regulation of pluripotency through splicing. In this study, we identify the spliceosome-associated factor SON as a factor essential for the maintenance of hESCs. Depletion of SON in hESCs results in the loss of pluripotency and cell death. Using genome-wide RNA profiling, we identified transcripts that are regulated by SON. Importantly, we confirmed that SON regulates the proper splicing of transcripts encoding for pluripotency regulators such as OCT4, PRDM14, E4F1 and MED24. Furthermore, we show that SON is bound to these transcripts in vivo. In summary, we connect a splicing-regulatory network for accurate transcript production to the maintenance of pluripotency and self-renewal of hESCs.

  9. NAD-dependent isocitrate dehydrogenase as a novel target of tributyltin in human embryonic carcinoma cells

    Science.gov (United States)

    Yamada, Shigeru; Kotake, Yaichiro; Demizu, Yosuke; Kurihara, Masaaki; Sekino, Yuko; Kanda, Yasunari

    2014-08-01

    Tributyltin (TBT) is known to cause developmental defects as endocrine disruptive chemicals (EDCs). At nanomoler concentrations, TBT actions were mediated by genomic pathways via PPAR/RXR. However, non-genomic target of TBT has not been elucidated. To investigate non-genomic TBT targets, we performed comprehensive metabolomic analyses using human embryonic carcinoma NT2/D1 cells. We found that 100 nM TBT reduced the amounts of α-ketoglutarate, succinate and malate. We further found that TBT decreased the activity of NAD-dependent isocitrate dehydrogenase (NAD-IDH), which catalyzes the conversion of isocitrate to α-ketoglutarate in the TCA cycle. In addition, TBT inhibited cell growth and enhanced neuronal differentiation through NAD-IDH inhibition. Furthermore, studies using bacterially expressed human NAD-IDH and in silico simulations suggest that TBT inhibits NAD-IDH due to a possible interaction. These results suggest that NAD-IDH is a novel non-genomic target of TBT at nanomolar levels. Thus, a metabolomic approach may provide new insights into the mechanism of EDC action.

  10. EMBRYOLOGICAL ASPECTS OF СONGENITAL ANOMALIES OF THE KIDNEY AND URINARY TRACT (CAKUT: REVIEW

    Directory of Open Access Journals (Sweden)

    A. O. Vasilyev

    2015-01-01

    Full Text Available In clinical practice, urologists and nephrologists abnormalities called structural and / or functional abnormalities of the urinary and reproductive systems, caused by disturbance of embryonic development. A significant increase in the number of birth defects may be due to the fact that in embryogenesis kidney is the target organ for exposure to various damaging factors in nature, among which a special place is occupied by medication and physical status of the mother. Violation of prenatal development of the kidneys can often be combined with defects of the lower urinary tract. This condition is often called CAKUT in the development of the role played by the combination of gene mutations. In this article, we describe the majority of congenital anomalies of the kidneys and urinary tract. Significant improvement in antenatal diagnosis of malformations also contributed to the increase in this indicator. Understanding the embryology urinary organs allows to diagnose disorders in the mother-placenta-fetus system.

  11. Differences in mitochondrial function and morphology during cooling and rewarming between hibernator and non-hibernator derived kidney epithelial cells.

    Science.gov (United States)

    Hendriks, Koen D W; Lupi, Eleonora; Hardenberg, Maarten C; Hoogstra-Berends, Femke; Deelman, Leo E; Henning, Robert H

    2017-11-14

    Hibernators show superior resistance to ischemia and hypothermia, also outside the hibernation season. Therefore, hibernation is a promising strategy to decrease cellular damage in a variety of fields, such as organ transplantation. Here, we explored the role of mitochondria herein, by comparing epithelial cell lines from a hibernator (hamster kidney cells, HaK) and a non-hibernator (human embryonic kidney cells, HEK293) during cold preservation at 4 °C and rewarming. Cell survival (Neutral Red), ATP and MDA levels, mitochondrial membrane potential (MMP), mitochondrial morphology (using fluorescent probes) and metabolism (seahorse XF) were assessed. Hypothermia induced dispersion of the tubular mitochondrial network, a loss of MMP, increased oxygen radical (MDA) and decreased ATP production in HEK293. In contrast, HaK maintained MMP and ATP production without an increase in oxygen radicals during cooling and rewarming, resulting in superior cell survival compared to HEK293. Further, normothermic HaK showed a dispersed mitochondrial network and higher respiratory and glycolysis capacity compared to HEK293. Disclosing the mechanisms that hibernators use to counteract cell death in hypothermic and ischemic circumstances may help to eventually improve organ preservation in a variety of fields, including organ transplantation.

  12. Dual roles for coactivator activator and its counterbalancing isoform coactivator modulator in human kidney cell tumorigenesis.

    Science.gov (United States)

    Kang, Yun Kyoung; Schiff, Rachel; Ko, Lan; Wang, Tao; Tsai, Sophia Y; Tsai, Ming-Jer; O'Malley, Bert W

    2008-10-01

    Coactivator activator (CoAA) has been reported to be a coactivator that regulates steroid receptor-mediated transcription and alternative RNA splicing. Herein, we show that CoAA is a dual-function coregulator that inhibits G(1)-S transition in human kidney cells and suppresses anchorage-independent growth and xenograft tumor formation. Suppression occurs in part by down-regulating c-myc and its downstream effectors ccnd1 and skp2 and causing accumulation of p27/Kip1 protein. In this cellular setting, CoAA directly represses the proto-oncogene c-myc by recruiting HDAC3 protein and decreasing both the acetylation of histone H3 and the presence of RNA polymerase II on the c-myc promoter. Interestingly, a splicing isoform of CoAA, coactivator modulator (CoAM), antagonizes CoAA-induced G(1)-S transition and growth inhibition by negatively regulating the mRNA levels of the endogenous CoAA isoform. In addition, we found that expression of CoAA protein is significantly decreased in human renal cell carcinoma compared with normal kidney. Our study presents evidence that CoAA is a potential tumor suppressor in renal carcinoma and that CoAM is a counterbalancing splice isoform. This is, thus far, the only example of a nuclear receptor coregulator involved in suppression of kidney cancer and suggests potentially significant new roles for coregulators in renal cancer biology.

  13. Dual roles for CoAA and its counterbalancing isoform CoAM in human kidney cell tumorigenesis

    Science.gov (United States)

    Kang, Yun Kyoung; Schiff, Rachel; Ko, Lan; Wang, Tao; Tsai, Sophia Y.; Tsai, Ming-Jer; W. O’Malley, Bert

    2008-01-01

    Co-Activator Activator (CoAA) has been reported to be a coactivator that regulates steroid receptor-mediated transcription and alternative RNA splicing. Herein we show that CoAA is a dual-function coregulator that inhibits G1/S transition in human kidney cells and suppresses anchorage independent growth and xenograft tumor formation. Suppression occurs in part by downregulating c-myc and its downstream effectors ccnd1 and skp2, and causing accumulation of p27/Kip1 protein. In this cellular setting, CoAA directly represses the proto-oncogene, c-myc by recruiting HDAC3 protein and decreasing both the acetylation of histone H3 and the presence of RNA polymerase II on the c-myc promoter. Interestingly, a splicing isoform of CoAA, Coactivator Modulator (CoAM), antagonizes CoAA-induced G1/S transition and growth inhibition by negatively regulating the mRNA levels of the endogenous CoAA isoform. In addition, we found that expression of CoAA protein is significantly decreased in human renal cell carcinoma as compared to normal kidney. Our study presents evidence that CoAA is a potential tumor suppressor in renal carcinoma and that CoAM is a counterbalancing splice-isoform. This is so far the only example of a nuclear receptor coregulator involved in suppression of kidney cancer, and suggests potentially significant new roles for coregulators in renal cancer biology. PMID:18829545

  14. Inconsistent formation and nonfunction of insulin-positive cells from pancreatic endoderm derived from human embryonic stem cells in athymic nude rats.

    Science.gov (United States)

    Matveyenko, Aleksey V; Georgia, Senta; Bhushan, Anil; Butler, Peter C

    2010-11-01

    Embryonic stem cell therapy has been proposed as a therapeutic strategy to restore β-cell mass and function in T1DM. Recently, a group from Novocell (now ViaCyte) reported successful development of glucose-responsive islet-like structures after implantation of pancreatic endoderm (PE) derived from human embryonic stem cells (hESC) into immune-deficient mice. Our objective was to determine whether implantation of hESC-derived pancreatic endoderm from Novocell into athymic nude rats results in development of viable glucose-responsive pancreatic endocrine tissue. Athymic nude rats were implanted with PE derived from hESC either via implantation into the epididymal fat pads or by subcutaneous implantation into TheraCyte encapsulation devices for 20 wk. Blood glucose, weight, and human insulin/C-peptide secretion were monitored by weekly blood draws. Graft β-cell function was assessed by a glucose tolerance test, and graft morphology was assessed by immunohistochemistry and immunofluorescence. At 20 wk postimplantation, epididymal fat-implanted PE progressed to develop islet-like structures in 50% of implants, with a mean β-cell fractional area of 0.8 ± 0.3%. Human C-peptide and insulin were detectable, but at very low levels (C-peptide = 50 ± 26 pmol/l and insulin = 15 ± 7 pmol/l); however, there was no increase in human C-peptide/insulin levels after glucose challenge. There was no development of viable pancreatic tissue or meaningful secretory function when human PE was implanted in the TheraCyte encapsulation devices. These data confirm that islet-like structures develop from hESC differentiated to PE by the protocol developed by NovoCell. However, the extent of endocrine cell formation and secretory function is not yet sufficient to be clinically relevant.

  15. Three-dimensional epithelial tissues generated from human embryonic stem cells.

    Science.gov (United States)

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A

    2009-11-01

    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  16. Gene expression response to EWS–FLI1 in mouse embryonic cartilage

    Directory of Open Access Journals (Sweden)

    Miwa Tanaka

    2014-12-01

    Full Text Available Ewing's sarcoma is a rare bone tumor that affects children and adolescents. We have recently succeeded to induce Ewing's sarcoma-like small round cell tumor in mice by expression of EWS–ETS fusion genes in murine embryonic osteochondrogenic progenitors. The Ewing's sarcoma precursors are enriched in embryonic superficial zone (eSZ cells of long bone. To get insights into the mechanisms of Ewing's sarcoma development, gene expression profiles between EWS–FLI1-sensitive eSZ cells and EWS–FLI1-resistant embryonic growth plate (eGP cells were compared using DNA microarrays. Gene expression of eSZ and eGP cells (total, 30 samples was evaluated with or without EWS–FLI1 expression 0, 8 or 48 h after gene transduction. Our data provide useful information for gene expression responses to fusion oncogenes in human sarcoma.

  17. Making new kidneys: On the road from science fiction to science fact.

    Science.gov (United States)

    Volovelsky, Oded; Kopan, Raphael

    2016-12-01

    Allogenic kidney transplantation use is limited because of a shortage of kidney organ donors and the risks associated with a long-term immunosuppression. An emerging treatment prospect is autologous transplants of ex vivo produced human kidneys. Here we will review the research advances in this area. The creation of human induced pluripotent cells (iPSCs) from somatic cells and the emergence of several differentiation protocols that are able to convert iPSCs cells into self-organizing kidney organoids are two large steps toward assembling a human kidney in vitro. Several groups have successfully generated urine-producing kidney organoids upon transplantation in a mouse host. Additional advances in culturing nephron progenitors in vitro may provide another source for kidney engineering, and the emergence of genome editing technology will facilitate correction of congenital mutations. Basic research into the development of metanephric kidneys and iPSC differentiation protocols, the therapeutic use of iPSCs, along with emergence of new technologies such as CRISPR/Cas9 genome editing have accelerated a trend that may prove transformative in the treatment of ESRD and congenital kidney disorders.

  18. System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation

    DEFF Research Database (Denmark)

    Rigbolt, Kristoffer T.G.; Prokhorova, Tatyana; Akimov, Vyacheslav

    2011-01-01

    by feeder cells. We profiled 6521 proteins and 23,522 phosphorylation sites, of which almost 50% displayed dynamic changes in phosphorylation status during 24 hours of differentiation. These data are a resource for studies of the events associated with the maintenance of hESC pluripotency and those...... of the matching sequence motif. In addition to identifying previously unknown phosphorylation sites on factors associated with differentiation, such as kinases and transcription factors, we observed dynamic phosphorylation of DNA methyltransferases (DNMTs). We found a specific interaction of DNMTs during early......To elucidate cellular events underlying the pluripotency of human embryonic stem cells (hESCs), we performed parallel quantitative proteomic and phosphoproteomic analyses of hESCs during differentiation initiated by a diacylglycerol analog or transfer to media that had not been conditioned...

  19. Enhanced Differentiation of Human Embryonic Stem Cells Toward Definitive Endoderm on Ultrahigh Aspect Ratio Nanopillars

    DEFF Research Database (Denmark)

    Rasmussen, Camilla Holzmann; Reynolds, Paul M.; Petersen, Dorthe Roenn

    2016-01-01

    highlighted that the properties of the physical environment, such as substrate stiffness, affect cellular behavior. Here, mass-produced, injection molded polycarbonate nanopillars are presented, where the surface mechanical properties, i.e., stiffness, can be controlled by the geometric design...... of the ultrahigh aspect ratio nanopillars (stiffness can be reduced by 25.000X). It is found that tall nanopillars, yielding softer surfaces, significantly enhance the induction of defi nitive endoderm cells from pluripotent human embryonic stem cells, resulting in more consistent differentiation of a pure...... population compared to planar control. By contrast, further differentiation toward the pancreatic endoderm is less successful on “soft” pillars when compared to “stiff ” pillars or control, indicating differential cues during the different stages of differentiation. To accompany the mechanical properties...

  20. Development of human nervous tissue upon differentiation of embryonic stem cells in three-dimensional culture.

    Science.gov (United States)

    Preynat-Seauve, Olivier; Suter, David M; Tirefort, Diderik; Turchi, Laurent; Virolle, Thierry; Chneiweiss, Herve; Foti, Michelangelo; Lobrinus, Johannes-Alexander; Stoppini, Luc; Feki, Anis; Dubois-Dauphin, Michel; Krause, Karl Heinz

    2009-03-01

    Researches on neural differentiation using embryonic stem cells (ESC) require analysis of neurogenesis in conditions mimicking physiological cellular interactions as closely as possible. In this study, we report an air-liquid interface-based culture of human ESC. This culture system allows three-dimensional cell expansion and neural differentiation in the absence of added growth factors. Over a 3-month period, a macroscopically visible, compact tissue developed. Histological coloration revealed a dense neural-like neural tissue including immature tubular structures. Electron microscopy, immunochemistry, and electrophysiological recordings demonstrated a dense network of neurons, astrocytes, and oligodendrocytes able to propagate signals. Within this tissue, tubular structures were niches of cells resembling germinal layers of human fetal brain. Indeed, the tissue contained abundant proliferating cells expressing markers of neural progenitors. Finally, the capacity to generate neural tissues on air-liquid interface differed for different ESC lines, confirming variations of their neurogenic potential. In conclusion, this study demonstrates in vitro engineering of a human neural-like tissue with an organization that bears resemblance to early developing brain. As opposed to previously described methods, this differentiation (a) allows three-dimensional organization, (b) yields dense interconnected neural tissue with structurally and functionally distinct areas, and (c) is spontaneously guided by endogenous developmental cues.

  1. Repair of UV-induced DNA damage and its inhibition by etoposide in Sf9 insect cells: comparison with human cells

    International Nuclear Information System (INIS)

    Chandna, Sudhir; Dwarakanath, B.S.; Moorthy, Ganesh; Jain, Charu

    2004-01-01

    In the present investigation, the kinetics of DNA repair in a lepidopteran cell line Sf9 (derived from the ovaries of Spodoptera frugiperda) following UV-irradiation was compared with the responses in a human embryonic kidney cell. DNA repair was studied by analyzing the kinetics of induction and removal of repair related strand breaks using the alkaline single cell gel electrophoresis and Halo assays. Since topoisomerases play important roles in the cellular responses to UV-induced damage, the effects of etoposideon DNA repair kinetics was also studied

  2. Vitamin K2 biosynthetic enzyme, UBIAD1 is essential for embryonic development of mice.

    Science.gov (United States)

    Nakagawa, Kimie; Sawada, Natsumi; Hirota, Yoshihisa; Uchino, Yuri; Suhara, Yoshitomo; Hasegawa, Tomoka; Amizuka, Norio; Okamoto, Tadashi; Tsugawa, Naoko; Kamao, Maya; Funahashi, Nobuaki; Okano, Toshio

    2014-01-01

    UbiA prenyltransferase domain containing 1 (UBIAD1) is a novel vitamin K2 biosynthetic enzyme screened and identified from the human genome database. UBIAD1 has recently been shown to catalyse the biosynthesis of Coenzyme Q10 (CoQ10) in zebrafish and human cells. To investigate the function of UBIAD1 in vivo, we attempted to generate mice lacking Ubiad1, a homolog of human UBIAD1, by gene targeting. Ubiad1-deficient (Ubiad1(-/-)) mouse embryos failed to survive beyond embryonic day 7.5, exhibiting small-sized body and gastrulation arrest. Ubiad1(-/-) embryonic stem (ES) cells failed to synthesize vitamin K2 but were able to synthesize CoQ9, similar to wild-type ES cells. Ubiad1(+/-) mice developed normally, exhibiting normal growth and fertility. Vitamin K2 tissue levels and synthesis activity were approximately half of those in the wild-type, whereas CoQ9 tissue levels and synthesis activity were similar to those in the wild-type. Similarly, UBIAD1 expression and vitamin K2 synthesis activity of mouse embryonic fibroblasts prepared from Ubiad1(+/-) E15.5 embryos were approximately half of those in the wild-type, whereas CoQ9 levels and synthesis activity were similar to those in the wild-type. Ubiad1(-/-) mouse embryos failed to be rescued, but their embryonic lifespans were extended to term by oral administration of MK-4 or CoQ10 to pregnant Ubiad1(+/-) mice. These results suggest that UBIAD1 is responsible for vitamin K2 synthesis but may not be responsible for CoQ9 synthesis in mice. We propose that UBIAD1 plays a pivotal role in embryonic development by synthesizing vitamin K2, but may have additional functions beyond the biosynthesis of vitamin K2.

  3. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Hence, an anticancer agent conjugated to them may render more toxicity in cancer cells due to higher uptake. ... It acts by inducing apoptosis through G2/M phase arrest and encouragingly, is much less toxic to nontumorigenic human embryonic kidney (HEK-293T) and mouse embryonic fibroblast (NIH 3T3) cell lines in vitro ...

  4. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    Science.gov (United States)

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  5. Four decades of kidney transplantation in Cuba.

    Science.gov (United States)

    Alfonzo, Jorge P

    2013-01-01

    This article describes the background, beginnings, development, evolution and outcomes of kidney transplantation in Cuba. Nephrology as a medical specialty in Cuba began in 1962 and was formalized in 1966. Conditions were created to implement renal replacement therapy (including transplants), bring nephrology care to the entire country and train human resources who would assume this responsibility, making Cuba one of the first countries with a comprehensive program for renal patient care. After three unsuccessful cadaveric-donor kidney transplantations in 1968-69, the ensuing history of kidney transplantation can be summarized in the following three stages. 1970-1975: In January 1970, cadaveric-donor kidney transplantation began at the Nephrology Institute. That year, 17 kidney transplantations were performed; four of these patients lived with functional kidneys for 15-25 years; 10-year graft survival was 23.5% (Kaplan-Meier survival curve); HLA typing began in 1974. By December 1975, 170 grafts had been done in three hospitals. 1976-1985: Seven transplantation centers performed 893 grafts during this period. HLA-DR typing was introduced in 1976 and the National Histocompatibility Laboratory Network was founded in 1978. The first related living-donor kidney transplantation was done in 1979. 1986-2011: The National Kidney Transplantation Coordinating Center and the National Kidney Transplantation Program were created in 1986; the first combined kidney-pancreas transplantation was performed the same year. In 1990, cyclosporine and the Cuban monoclonal antibody IOR-T3 were introduced for immunosuppression to prevent rejection, as were other Cuban products (hepatitis B vaccine and recombinant human erythropoietin) for transplant patients. By December 2011, the cumulative number of transplants was 4636 (384 from related living donors). With over 40 years of experience, kidney transplantation is now well established in Cuba; it is free and universally accessible, on the

  6. Synthesis and characterization of folate-poly(ethylene glycol ...

    African Journals Online (AJOL)

    Jane

    2011-07-04

    Jul 4, 2011 ... Cell lines, culture and viability assays. Human embryonic kidney cell line (293T), human colonic cancer cell line (LoVo), human lung adenocarcinoma epithelial cell line. (A549) and human cervical carcinoma cells (Hela) were cultured in. Dulbecco's modified eagle medium (DMEM, Gibco BRL, Paris,.

  7. Critical concentrations of cadmium in human liver and kidney measured by prompt-gamma neutron activation

    International Nuclear Information System (INIS)

    Cohn, S.H.; Vartsky, D.; Yasumura, S.; Zanzi, I.; Ellis, K.J.

    1979-01-01

    Few data exist on Cd metabolism in human beings. In particular, data are needed on the role of parameters such as age, sex, weight, diet, smoking habits, and state of health. Prompt-gamma neutron activation analysis (PGNAA) provides the only currently available means for measuring in vivo levels of liver and kidney Cd. The method employs an 85 Ci, 235 Pu,Be neutron source and a gamma ray detection system consisting of two Ge(Li) detector. The dose delivered to the liver and left kidney is 666 mrem (detection limit is 1.4 μg/g Cd in the liver and 2.0 mg Cd for one kidney). Absolute levels of Cd in the kidney and concentrations of Cd in the liver were measured in vivo in twenty healthy adult males using 238 Pu,Be neutron sources. Organ Cd levels of smokers were significantly elevated above those of nonsmokers. Biological half-time for Cd in the body was estimated to be 15.7 yr. Cigarette smoking was estimated to result in the absorption of 1.9 μg of Cd per pack. No relationship was bound between body stores of Cd (liver and kidney) and Cd or β-microglobulin levels in urine and blood. Currently the above neutron activation facility is being mounted on a 34-ft mobile trailer unit. This unit will be used to monitor levels of Cd in industrial workers. It is anticipated that critically important data, particularly on industrially exposed workers, will provide a better basis for determining critical concentrations and for the setting or revision of standards for industrial and environmental Cd pollution

  8. Comparison of Gene Expression in Human Embryonic Stem Cells, hESC-Derived Mesenchymal Stem Cells and Human Mesenchymal Stem Cells.

    Science.gov (United States)

    Barbet, Romain; Peiffer, Isabelle; Hatzfeld, Antoinette; Charbord, Pierre; Hatzfeld, Jacques A

    2011-01-01

    We present a strategy to identify developmental/differentiation and plasma membrane marker genes of the most primitive human Mesenchymal Stem Cells (hMSCs). Using sensitive and quantitative TaqMan Low Density Arrays (TLDA) methodology, we compared the expression of 381 genes in human Embryonic Stem Cells (hESCs), hESC-derived MSCs (hES-MSCs), and hMSCs. Analysis of differentiation genes indicated that hES-MSCs express the sarcomeric muscle lineage in addition to the classical mesenchymal lineages, suggesting they are more primitive than hMSCs. Transcript analysis of membrane antigens suggests that IL1R1(low), BMPR1B(low), FLT4(low), LRRC32(low), and CD34 may be good candidates for the detection and isolation of the most primitive hMSCs. The expression in hMSCs of cytokine genes, such as IL6, IL8, or FLT3LG, without expression of the corresponding receptor, suggests a role for these cytokines in the paracrine control of stem cell niches. Our database may be shared with other laboratories in order to explore the considerable clinical potential of hES-MSCs, which appear to represent an intermediate developmental stage between hESCs and hMSCs.

  9. Electrophysiological properties of neurosensory progenitors derived from human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Karina Needham

    2014-01-01

    Full Text Available In severe cases of sensorineural hearing loss where the numbers of auditory neurons are significantly depleted, stem cell-derived neurons may provide a potential source of replacement cells. The success of such a therapy relies upon producing a population of functional neurons from stem cells, to enable precise encoding of sound information to the brainstem. Using our established differentiation assay to produce sensory neurons from human stem cells, patch-clamp recordings indicated that all neurons examined generated action potentials and displayed both transient sodium and sustained potassium currents. Stem cell-derived neurons reliably entrained to stimuli up to 20 pulses per second (pps, with 50% entrainment at 50 pps. A comparison with cultured primary auditory neurons indicated similar firing precision during low-frequency stimuli, but significant differences after 50 pps due to differences in action potential latency and width. The firing properties of stem cell-derived neurons were also considered relative to time in culture (31–56 days and revealed no change in resting membrane potential, threshold or firing latency over time. Thus, while stem cell-derived neurons did not entrain to high frequency stimulation as effectively as mammalian auditory neurons, their electrical phenotype was stable in culture and consistent with that reported for embryonic auditory neurons.

  10. Human Anti-Oxidation Protein A1M—A Potential Kidney Protection Agent in Peptide Receptor Radionuclide Therapy

    Directory of Open Access Journals (Sweden)

    Jonas Ahlstedt

    2015-12-01

    Full Text Available Peptide receptor radionuclide therapy (PRRT has been in clinical use for 15 years to treat metastatic neuroendocrine tumors. PRRT is limited by reabsorption and retention of the administered radiolabeled somatostatin analogues in the proximal tubule. Consequently, it is essential to develop and employ methods to protect the kidneys during PRRT. Today, infusion of positively charged amino acids is the standard method of kidney protection. Other methods, such as administration of amifostine, are still under evaluation and show promising results. α1-microglobulin (A1M is a reductase and radical scavenging protein ubiquitously present in plasma and extravascular tissue. Human A1M has antioxidation properties and has been shown to prevent radiation-induced in vitro cell damage and protect non-irradiated surrounding cells. It has recently been shown in mice that exogenously infused A1M and the somatostatin analogue octreotide are co-localized in proximal tubules of the kidney after intravenous infusion. In this review we describe the current situation of kidney protection during PRRT, discuss the necessity and implications of more precise dosimetry and present A1M as a new, potential candidate for renal protection during PRRT and related targeted radionuclide therapies.

  11. Organ slices as an in vitro test system for drug metabolism in human liver, lung and kidney

    NARCIS (Netherlands)

    Olinga, Peter; de Jager, M.H; Meijer, D.K F; Groothuis, Geny; Merema, M.T.

    1999-01-01

    Metabolism of xenobiotics occurs mainly in the liver, but in addition, the lungs and kidneys may contribute considerably. The choice of the animal species during drug development as a predictive model for the human condition is often inadequate due to large interspecies differences. Therefore, a

  12. High-throughput identification of small molecules that affect human embryonic vascular development

    NARCIS (Netherlands)

    Vazão, Helena; Rosa, Susana; Barata, Tânia; Costa, Ricardo; Pitrez, Patrícia R.; Honório, Inês; De Vries, Margreet R.; Papatsenko, Dimitri; Benedito, Rui; Saris, Daniel; Khademhosseini, Ali; Quax, Paul H.A.; Pereira, Carlos F.; Mercader, Nadia; Fernandes, Hugo; Ferreira, Lino

    2017-01-01

    Birth defects, which are in part caused by exposure to environmental chemicals and pharmaceutical drugs, affect 1 in every 33 babies born in the United States each year. The current standard to screen drugs that affect embryonic development is based on prenatal animal testing; however, this approach

  13. Transgenic expression of human heme oxygenase-1 in pigs confers resistance against xenograft rejection during ex vivo perfusion of porcine kidneys.

    Science.gov (United States)

    Petersen, Björn; Ramackers, Wolf; Lucas-Hahn, Andrea; Lemme, Erika; Hassel, Petra; Queisser, Anna-Lisa; Herrmann, Doris; Barg-Kues, Brigitte; Carnwath, Joseph W; Klose, Johannes; Tiede, Andreas; Friedrich, Lars; Baars, Wiebke; Schwinzer, Reinhard; Winkler, Michael; Niemann, Heiner

    2011-01-01

    The major immunological hurdle to successful porcine-to-human xenotransplantation is the acute vascular rejection (AVR), characterized by endothelial cell (EC) activation and perturbation of coagulation. Heme oxygenase-1 (HO-1) and its derivatives have anti-apoptotic, anti-inflammatory effects and protect against reactive oxygen species, rendering HO-1 a promising molecule to control AVR. Here, we report the production and characterization of pigs transgenic for human heme oxygenase-1 (hHO-1) and demonstrate significant protection in porcine kidneys against xenograft rejection in ex vivo perfusion with human blood and transgenic porcine aortic endothelial cells (PAEC) in a TNF-α-mediated apoptosis assay. Transgenic and non-transgenic PAEC were tested in a TNF-α-mediated apoptosis assay. Expression of adhesion molecules (ICAM-1, VCAM-1, and E-selectin) was measured by real-time PCR. hHO-1 transgenic porcine kidneys were perfused with pooled and diluted human AB blood in an ex vivo perfusion circuit. MHC class-II up-regulation after induction with IFN-γ was compared between wild-type and hHO-1 transgenic PAEC. Cloned hHO-1 transgenic pigs expressed hHO-1 in heart, kidney, liver, and in cultured ECs and fibroblasts. hHO-1 transgenic PAEC were protected against TNF-α-mediated apoptosis. Real-time PCR revealed reduced expression of adhesion molecules like ICAM-1, VCAM-1, and E-selectin. These effects could be abrogated by the incubation of transgenic PAECs with the specific HO-1 inhibitor zinc protoporphorine IX (Zn(II)PPIX, 20 μm). IFN-γ induced up-regulation of MHC class-II molecules was significantly reduced in PAECs from hHO-1 transgenic pigs. hHO-1 transgenic porcine kidneys could successfully be perfused with diluted human AB-pooled blood for a maximum of 240 min (with and without C1 inh), while in wild-type kidneys, blood flow ceased after ∼60 min. Elevated levels of d-Dimer and TAT were detected, but no significant consumption of fibrinogen and

  14. Conditional ablation of glycogen synthase kinase 3β in postnatal mouse kidney.

    Science.gov (United States)

    Ge, Yan; Si, Jin; Tian, Li; Zhuang, Shougang; Dworkin, Lance D; Gong, Rujun

    2011-01-01

    Glycogen synthase kinase (GSK)3 is a ubiquitously expressed serine/threonine kinase existing in two isoforms, namely GSK3α and GSK3β. Aside from the long-recognized role in insulin signal transduction and glycogen biosynthesis, GSK3β has been recently coined as a master control molecule in nuclear factor-κB activation and inflammatory kidney injury. Nevertheless, previous studies are less conclusive because they relied greatly on small molecule inhibitors, which lack selectivity and barely distinguish between the GSK3 isoforms. In addition, early embryonic lethality after global knockout of GSK3β precludes interrogation of the biological role of GSK3β in the adult kidney. To circumvent these issues, the Cre/loxP system was used to generate a conditional knockout mouse model in which the GSK3β gene was specifically deleted in kidney cortical tubules at postnatal mature stage. Kidney-specific ablation of GSK3β resulted in a phenotype no different from control littermates. Knockout mice (KO) were viable and exhibited normal development and normal kidney physiology in terms of kidney function, urine albumin excretion, and urine-concentrating ability. It is noteworthy that apart from normal glomerular and tubulointerstitial morphology, the kidneys from KO demonstrated more glycogen accumulation in the renal cortical tubules as assessed by both periodic acid-Schiff staining for light microscopy and direct biochemical assay, consistent with an elevated glycogen synthetic activity as evidenced by diminished inhibitory phosphorylation of glycogen synthase that occurred subsequent to GSK3β ablation. This finding was further validated by electron microscopic observations of increased deposition of glycogen particles in the renal tubules of KO, suggesting that GSK3α could not fully compensate for the loss of GSK3β in regulating glycogen metabolism in the kidney. Collectively, our study suggests that kidney-specific ablation of GSK3β barely affects kidney function

  15. The archetype enhancer of simian virus 40 DNA is duplicated during virus growth in human cells and rhesus monkey kidney cells but not in green monkey kidney cells

    International Nuclear Information System (INIS)

    O'Neill, Frank J.; Greenlee, John E.; Carney, Helen

    2003-01-01

    Archetype SV40, obtained directly from its natural host, is characterized by a single 72-bp enhancer element. In contrast, SV40 grown in cell culture almost invariably exhibits partial or complete duplication of the enhancer region. This distinction has been considered important in studies of human tumor material, since SV40-associated tumor isolates have been described having a single enhancer region, suggesting natural infection as opposed to possible contamination by laboratory strains of virus. However, the behavior of archetypal SV40 in cultured cells has never been methodically studied. In this study we reengineered nonarchetypal 776-SV40 to contain a single 72-bp enhancer region and used this reengineered archetypal DNA to transfect a number of simian and human cell lines. SV40 DNA recovered from these cells was analyzed by restriction endonuclease analysis, PCR, and DNA sequencing. Reengineered archetype SV40 propagated in green monkey TC-7 or BSC-1 kidney cells remained without enhancer region duplication even after extensive serial virus passage. Archetype SV40 grown in all but one of the rhesus or human cell lines initially appeared exclusively archetypal. However, when virus from these cell types was transferred to green monkey cells, variants with partial enhancer duplication appeared after as little as a single passage. These findings suggest (1) that virus with a single 72-bp enhancer may persist in cultured cells of simian and human origin; (2) that variants with partially duplicated enhancer regions may arise within cell lines in quantities below limits of detection; (3) that these variants may enjoy a selective advantage in cell types other than those from which they arose (e.g., green monkey kidney cells); and (4) that certain cell lines may support a selective growth advantage for the variants without supporting their formation. Our data indicate that enhancer duplication may also occur in human as well as rhesus kidney cells. Thus, detection of

  16. Identification of differential gene expression patterns in human arteries from patients with chronic kidney disease

    DEFF Research Database (Denmark)

    Stubbe, Jane; Skov, Vibe; Thiesson, Helle Charlotte

    2018-01-01

    BACKGROUND: Uremia accelerates atherosclerosis but little is known about affected pathways in human vasculature. This study aimed to identify differentially expressed arterial transcripts in patients with chronic kidney disease (CKD) Methods: Global mRNA expression was estimated by microarray...... hybridization in iliac arteries (n=14) from renal transplant recipients and compared with renal arteries from healthy living kidney donors (n=19) in study 1. Study 2 compared non-atherosclerotic internal mammary arteries (IMA) from five patients with elevated plasma creatinine levels and age and gender matched...... controls with normal levels. Western blotting and immunohistochemistry for selected proteins was performed on a subset of study 1 samples. RESULTS: 15 gene transcripts with fold changes (FC)>1.05 were significantly different between the two groups in study 1, with false discovery rates (FDR) of

  17. Dynamic expression of calretinin in embryonic and early fetal human cortex

    Directory of Open Access Journals (Sweden)

    Miriam eGonzalez-Gomez

    2014-06-01

    Full Text Available Calretinin (CR is one of the earliest neurochemical markers in human corticogenesis. In embryos from Carnegie stages (CS 17 to 23, calbindin (CB and CR stain opposite poles of the incipient cortex suggesting early regionalization: CB marks the neuroepithelium of the medial boundary of the cortex with the choroid plexus (cortical hem. By contrast, CR is confined to the subventricular zone (SVZ of the lateral and caudal ganglionic eminences at the pallial-subpallial boundary (PSB, or antihem, from where CR+/Tbr1- neurons migrate toward piriform cortex and amygdala as a component of the lateral cortical stream. At CS 19, columns of CR+ cells arise in the rostral cortex, and contribute at CS 20 to the monolayer of horizontal Tbr1+/CR+ and GAD+ cells in the preplate. At CS 21, the pioneer cortical plate appears as a radial aggregation of CR+/Tbr1+ neurons, which cover the entire future neocortex and extend the first corticofugal axons. CR expression in early human corticogenesis is thus not restricted to interneurons, but is also present in the first excitatory projection neurons of the cortex. At CS 21/22, the cortical plate is established following a lateral to medial gradient, when Tbr1+/CR- neurons settle within the pioneer cortical plate, and thus separate superficial and deep pioneer neurons. CR+ pioneer neurons disappear shortly after the formation of the cortical plate. Reelin+ Cajal-Retzius cells begin to express CR around CS21 (7/8 PCW. At CS 21-23, the CR+ SVZ at the PSB is the source of CR+ interneurons migrating into the cortical SVZ. In turn, CB+ interneurons migrate from the subpallium into the intermediate zone following the fibers of the internal capsule. Early CR+ and CB+ interneurons thus have different origins and migratory routes. CR+ cell populations in the embryonic telencephalon take part in a complex sequence of events not analyzed so far in other mammalian species, which may represent a distinctive trait of the initial steps

  18. Central vagal sensory and motor connections: human embryonic and fetal development.

    Science.gov (United States)

    Cheng, Gang; Zhou, Xiangtian; Qu, Jia; Ashwell, Ken W S; Paxinos, G

    2004-07-30

    The embryonic and fetal development of the nuclear components and pathways of vagal sensorimotor circuits in the human has been studied using Nissl staining and carbocyanine dye tracing techniques. Eight fetal brains ranging from 8 to 28 weeks of development had DiI (1,1'-dioctadecyl-3,3,3',3' tetramethylindocarbocyanine perchlorate) inserted into either the thoracic vagus nerve at the level of the sternal angle (two specimens of 8 and 9 weeks of gestation) or into vagal rootlets at the surface of the medulla (at all other ages), while a further five were used for study of cytoarchitectural development. The first central labeling resulting from peripheral application of DiI to the thoracic vagus nerve was seen at 8 weeks. By 9 weeks, labeled bipolar cells at the ventricular surface around the sulcus limitans (sl) were seen after DiI application to the thoracic vagus nerve. Subnuclear organization as revealed by both Nissl staining and carbocyanine dye tracing was found to be advanced at a relatively early fetal age, with afferent segregation in the medial Sol apparent at 13 weeks and subnuclear organization of efferent magnocellular divisions of dorsal motor nucleus of vagus nerve noticeable at the same stage. The results of the present study also confirm that vagal afferents are distributed to the dorsomedial subnuclei of the human nucleus of the solitary tract, with particular concentrations of afferent axons in the gelatinosus subnucleus. These vagal afferents appeared to have a restricted zone of termination from quite early in development (13 weeks) suggesting that there is no initial exuberance in the termination field of vagal afferents in the developing human nucleus of the solitary tract. On the other hand, the first suggestion of afferents invading 10N from the medial Sol was not seen until 20 weeks and was not well developed until 24 weeks, suggesting that direct monosynaptic connections between the sensory and effector components of the vagal

  19. Disruption of murine mp29/Syf2/Ntc31 gene results in embryonic lethality with aberrant checkpoint response.

    Directory of Open Access Journals (Sweden)

    Chia-Hsin Chen

    Full Text Available Human p29 is a putative component of spliceosomes, but its role in pre-mRNA is elusive. By siRNA knockdown and stable overexpression, we demonstrated that human p29 is involved in DNA damage response and Fanconi anemia pathway in cultured cells. In this study, we generated p29 knockout mice (mp29(GT/GT using the mp29 gene trap embryonic stem cells to study the role of mp29 in DNA damage response in vivo. Interruption of mp29 at both alleles resulted in embryonic lethality. Embryonic abnormality occurred as early as E6.5 in mp29(GT/GT mice accompanied with decreased mRNA levels of α-tubulin and Chk1. The reduction of α-tubulin and Chk1 mRNAs is likely due to an impaired post-transcriptional event. An aberrant G2/M checkpoint was found in mp29 gene trap embryos when exposed to aphidicolin and UV light. This embryonic lethality was rescued by crossing with mp29 transgenic mice. Additionally, the knockdown of zfp29 in zebrafish resulted in embryonic death at 72 hours of development postfertilization (hpf. A lower level of acetylated α-tubulin was also observed in zfp29 morphants. Together, these results illustrate an indispensable role of mp29 in DNA checkpoint response during embryonic development.

  20. A small molecule-based strategy for endothelial differentiation and three-dimensional morphogenesis from human embryonic stem cells.

    Science.gov (United States)

    Geng, Yijie; Feng, Bradley

    2016-07-01

    The emerging models of human embryonic stem cell (hESC) self-organizing organoids provide a valuable in vitro platform for studying self-organizing processes that presumably mimic in vivo human developmental events. Here we report that through a chemical screen, we identified two novel and structurally similar small molecules BIR1 and BIR2 which robustly induced the self-organization of a balloon-shaped three-dimensional structure when applied to two-dimensional adherent hESC cultures in the absence of growth factors. Gene expression analyses and functional assays demonstrated an endothelial identity of this balloon-like structure, while cell surface marker analyses revealed a VE-cadherin(+)CD31(+)CD34(+)KDR(+)CD43(-) putative endothelial progenitor population. Furthermore, molecular marker labeling and morphological examinations characterized several other distinct DiI-Ac-LDL(+) multi-cellular modules and a VEGFR3(+) sprouting structure in the balloon cultures that likely represented intermediate structures of balloon-formation.

  1. A small molecule-based strategy for endothelial differentiation and three-dimensional morphogenesis from human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Yijie Geng

    2016-07-01

    Full Text Available The emerging models of human embryonic stem cell (hESC self-organizing organoids provide a valuable in vitro platform for studying self-organizing processes that presumably mimic in vivo human developmental events. Here we report that through a chemical screen, we identified two novel and structurally similar small molecules BIR1 and BIR2 which robustly induced the self-organization of a balloon-shaped three-dimensional structure when applied to two-dimensional adherent hESC cultures in the absence of growth factors. Gene expression analyses and functional assays demonstrated an endothelial identity of this balloon-like structure, while cell surface marker analyses revealed a VE-cadherin+CD31+CD34+KDR+CD43− putative endothelial progenitor population. Furthermore, molecular marker labeling and morphological examinations characterized several other distinct DiI-Ac-LDL+ multi-cellular modules and a VEGFR3+ sprouting structure in the balloon cultures that likely represented intermediate structures of balloon-formation.

  2. High-Throughput Screening Enhances Kidney Organoid Differentiation from Human Pluripotent Stem Cells and Enables Automated Multidimensional Phenotyping.

    Science.gov (United States)

    Czerniecki, Stefan M; Cruz, Nelly M; Harder, Jennifer L; Menon, Rajasree; Annis, James; Otto, Edgar A; Gulieva, Ramila E; Islas, Laura V; Kim, Yong Kyun; Tran, Linh M; Martins, Timothy J; Pippin, Jeffrey W; Fu, Hongxia; Kretzler, Matthias; Shankland, Stuart J; Himmelfarb, Jonathan; Moon, Randall T; Paragas, Neal; Freedman, Benjamin S

    2018-05-15

    Organoids derived from human pluripotent stem cells are a potentially powerful tool for high-throughput screening (HTS), but the complexity of organoid cultures poses a significant challenge for miniaturization and automation. Here, we present a fully automated, HTS-compatible platform for enhanced differentiation and phenotyping of human kidney organoids. The entire 21-day protocol, from plating to differentiation to analysis, can be performed automatically by liquid-handling robots, or alternatively by manual pipetting. High-content imaging analysis reveals both dose-dependent and threshold effects during organoid differentiation. Immunofluorescence and single-cell RNA sequencing identify previously undetected parietal, interstitial, and partially differentiated compartments within organoids and define conditions that greatly expand the vascular endothelium. Chemical modulation of toxicity and disease phenotypes can be quantified for safety and efficacy prediction. Screening in gene-edited organoids in this system reveals an unexpected role for myosin in polycystic kidney disease. Organoids in HTS formats thus establish an attractive platform for multidimensional phenotypic screening. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. The kidneys in the Bible: what happened?

    Science.gov (United States)

    Eknoyan, Garabed

    2005-12-01

    The kidneys, always used in the plural (kelayot), are mentioned more than 30 times in the Bible. In the Pentateuch, the kidneys are cited 11 times in the detailed instructions given for the sacrificial offering of animals at the altar. Whereas those instructions were for purification ceremonies at the Temple, sacrificial offerings were made subsequently in seeking divine intervention for the relief of medical problems. In the books of the Bible that follow the Pentateuch, mostly in Jeremiah and Psalms, the human kidneys are cited figuratively as the site of temperament, emotions, prudence, vigor, and wisdom. In five instances, they are mentioned as the organs examined by God to judge an individual. They are cited either before or after but always in conjunction with the heart as mirrors of the psyche of the person examined. There is also reference to the kidneys as the site of divine punishment for misdemeanors, committed or perceived, particularly in the book of Job, whose suffering and ailments are legendary. In the first vernacular versions of the Bible in English, the translators elected to use the term "reins" instead of kidneys in differentiating the metaphoric uses of human kidneys from that of their mention as anatomic organs of sacrificial animals burned at the altar. This initial effort at linguistic purity or gentility has progressed further in recent versions of the Bible, in which the reins are now replaced by the soul or the mind. The erosion may have begun in the centuries that followed the writing of the Bible, when recognition of the kidneys as excretory organs deprived them of the ancient aura of mysterious organs hidden deep in the body but accessible to the look of God. At approximately the same time, Greek analytical philosophy argued that the brain, which is never mentioned in the Bible, was the most divine and sacred part of the body. This argument gained ground in the past century, when the functions of the brain were elucidated, and

  4. Transcriptome variations among human embryonic stem cell lines are associated with their differentiation propensity.

    Directory of Open Access Journals (Sweden)

    Changbin Sun

    Full Text Available Human embryonic stem cells (hESCs have the potential to form any cell type in the body, making them attractive cell sources in drug screening, regenerative medicine, disease and developmental processes modeling. However, not all hESC lines have the equal potency to generate desired cell types in vitro. Significant variations have been observed for the differentiation efficiency of various human ESC lines. The precise underpinning molecular mechanisms are still unclear. In this work, we compared transcriptome variations of four hESC lines H7, HUES1, HUES8 and HUES9. We found that hESC lines have different gene expression profiles, and these differentially expressed genes (DEGs are significantly enriched in developmental processes, such as ectodermal, mesodermal and endodermal development. The enrichment difference between hESC lines was consistent with its lineage bias. Among these DEGs, some pluripotency factors and genes involved in signaling transduction showed great variations as well. The pleiotropic functions of these genes in controlling hESC identity and early lineage specification, implicated that different hESC lines may utilize distinct balance mechanisms to maintain pluripotent state. When the balance is broken in a certain environment, gene expression variation between them could impact on their different lineage specification behavior.

  5. A novel chemical-defined medium with bFGF and N2B27 supplements supports undifferentiated growth in human embryonic stem cells

    International Nuclear Information System (INIS)

    Liu Yanxia; Song Zhihua; Zhao Yang; Qin Han; Cai Jun; Zhang Hong; Yu Tianxin; Jiang Siming; Wang Guangwen; Ding Mingxiao; Deng Hongkui

    2006-01-01

    Traditionally, undifferentiated human embryonic stem cells (hESCs) are maintained on mouse embryonic fibroblast (MEF) cells or on matrigel with an MEF-conditioned medium (CM), which hampers the clinical applications of hESCs due to the contamination by animal pathogens. Here we report a novel chemical-defined medium using DMEM/F12 supplemented with N2, B27, and basic fibroblast growth factor (bFGF) [termed NBF]. This medium can support prolonged self-renewal of hESCs. hESCs cultured in NBF maintain an undifferentiated state and normal karyotype, are able to form embryoid bodies in vitro, and differentiate into three germ layers and extraembryonic cells. Furthermore, we find that hESCs cultured in NBF possess a low apoptosis rate and a high proliferation rate compared with those cultured in MEF-CM. Our findings provide a novel, simplified chemical-defined culture medium suitable for further therapeutic applications and developmental studies of hESCs

  6. Dynamics of the transcriptome response of cultured human embryonic stem cells to ionizing radiation exposure

    International Nuclear Information System (INIS)

    Sokolov, Mykyta V.; Panyutin, Irina V.; Panyutin, Igor G.; Neumann, Ronald D.

    2011-01-01

    One of the key consequences of exposure of human cells to genotoxic agents is the activation of DNA damage responses (DDR). While the mechanisms underpinning DDR in fully differentiated somatic human cells have been studied extensively, molecular signaling events and pathways involved in DDR in pluripotent human embryonic stem cells (hESC) remain largely unexplored. We studied changes in the human genome-wide transcriptome of H9 hESC line following exposures to 1 Gy of gamma-radiation at 2 h and 16 h post-irradiation. Quantitative real-time PCR was performed to verify the expression data for a subset of genes. In parallel, the cell growth, DDR kinetics, and expression of pluripotency markers in irradiated hESC were monitored. The changes in gene expression in hESC after exposure to ionizing radiation (IR) are substantially different from those observed in somatic human cell lines. Gene expression patterns at 2 h post-IR showed almost an exclusively p53-dependent, predominantly pro-apoptotic, signature with a total of only 30 up-regulated genes. In contrast, the gene expression patterns at 16 h post-IR showed 354 differentially expressed genes, mostly involved in pro-survival pathways, such as increased expression of metallothioneins, ubiquitin cycle, and general metabolism signaling. Cell growth data paralleled trends in gene expression changes. DDR in hESC followed the kinetics reported for human somatic differentiated cells. The expression of pluripotency markers characteristic of undifferentiated hESC was not affected by exposure to IR during the time course of our analysis. Our data on dynamics of transcriptome response of irradiated hESCs may provide a valuable tool to screen for markers of IR exposure of human cells in their most naive state; thus unmasking the key elements of DDR; at the same time, avoiding the complexity of interpreting distinct cell type-dependent genotoxic stress responses of terminally differentiated cells.

  7. Dynamics of the transcriptome response of cultured human embryonic stem cells to ionizing radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Mykyta V., E-mail: sokolovm@mail.nih.gov [Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 (United States); Panyutin, Irina V., E-mail: ipanyutinv@mail.nih.gov [Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 (United States); Panyutin, Igor G., E-mail: igorp@helix.nih.gov [Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 (United States); Neumann, Ronald D., E-mail: rneumann@mail.nih.gov [Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 (United States)

    2011-05-10

    One of the key consequences of exposure of human cells to genotoxic agents is the activation of DNA damage responses (DDR). While the mechanisms underpinning DDR in fully differentiated somatic human cells have been studied extensively, molecular signaling events and pathways involved in DDR in pluripotent human embryonic stem cells (hESC) remain largely unexplored. We studied changes in the human genome-wide transcriptome of H9 hESC line following exposures to 1 Gy of gamma-radiation at 2 h and 16 h post-irradiation. Quantitative real-time PCR was performed to verify the expression data for a subset of genes. In parallel, the cell growth, DDR kinetics, and expression of pluripotency markers in irradiated hESC were monitored. The changes in gene expression in hESC after exposure to ionizing radiation (IR) are substantially different from those observed in somatic human cell lines. Gene expression patterns at 2 h post-IR showed almost an exclusively p53-dependent, predominantly pro-apoptotic, signature with a total of only 30 up-regulated genes. In contrast, the gene expression patterns at 16 h post-IR showed 354 differentially expressed genes, mostly involved in pro-survival pathways, such as increased expression of metallothioneins, ubiquitin cycle, and general metabolism signaling. Cell growth data paralleled trends in gene expression changes. DDR in hESC followed the kinetics reported for human somatic differentiated cells. The expression of pluripotency markers characteristic of undifferentiated hESC was not affected by exposure to IR during the time course of our analysis. Our data on dynamics of transcriptome response of irradiated hESCs may provide a valuable tool to screen for markers of IR exposure of human cells in their most naive state; thus unmasking the key elements of DDR; at the same time, avoiding the complexity of interpreting distinct cell type-dependent genotoxic stress responses of terminally differentiated cells.

  8. The developmental programme for genesis of the entire kidney is recapitulated in Wilms tumour

    Science.gov (United States)

    Anaka, Matthew R.; Morison, Ian M.; Reeve, Anthony E.

    2017-01-01

    Wilms tumour (WT) is an embryonal tumour that recapitulates kidney development. The normal kidney is formed from two distinct embryological origins: the metanephric mesenchyme (MM) and the ureteric bud (UB). It is generally accepted that WT arises from precursor cells in the MM; however whether UB-equivalent structures participate in tumorigenesis is uncertain. To address the question of the involvement of UB, we assessed 55 Wilms tumours for the molecular features of MM and UB using gene expression profiling, immunohistochemsitry and immunofluorescence. Expression profiling primarily based on the Genitourinary Molecular Anatomy Project data identified molecular signatures of the UB and collecting duct as well as those of the proximal and distal tubules in the triphasic histology group. We performed immunolabeling for fetal kidneys and WTs. We focused on a central epithelial blastema pattern which is the characteristic of triphasic histology characterized by UB-like epithelial structures surrounded by MM and MM-derived epithelial structures, evoking the induction/aggregation phase of the developing kidney. The UB-like epithelial structures and surrounding MM and epithelial structures resembling early glomerular epithelium, proximal and distal tubules showed similar expression patterns to those of the developing kidney. These observations indicate WTs can arise from a precursor cell capable of generating the entire kidney, such as the cells of the intermediate mesoderm from which both the MM and UB are derived. Moreover, this provides an explanation for the variable histological features of mesenchymal to epithelial differentiation seen in WT. PMID:29040332

  9. Use of RUNX2 Expression to Identify Osteogenic Progenitor Cells Derived from Human Embryonic Stem Cells

    Science.gov (United States)

    Zou, Li; Kidwai, Fahad K.; Kopher, Ross A.; Motl, Jason; Kellum, Cory A.; Westendorf, Jennifer J.; Kaufman, Dan S.

    2015-01-01

    Summary We generated a RUNX2-yellow fluorescent protein (YFP) reporter system to study osteogenic development from human embryonic stem cells (hESCs). Our studies demonstrate the fidelity of YFP expression with expression of RUNX2 and other osteogenic genes in hESC-derived osteoprogenitor cells, as well as the osteogenic specificity of YFP signal. In vitro studies confirm that the hESC-derived YFP+ cells have similar osteogenic phenotypes to osteoprogenitor cells generated from bone-marrow mesenchymal stem cells. In vivo studies demonstrate the hESC-derived YFP+ cells can repair a calvarial defect in immunodeficient mice. Using the engineered hESCs, we monitored the osteogenic development and explored the roles of osteogenic supplements BMP2 and FGF9 in osteogenic differentiation of these hESCs in vitro. Taken together, this reporter system provides a novel system to monitor the osteogenic differentiation of hESCs and becomes useful to identify soluble agents and cell signaling pathways that mediate early stages of human bone development. PMID:25680477

  10. Use of RUNX2 Expression to Identify Osteogenic Progenitor Cells Derived from Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Li Zou

    2015-02-01

    Full Text Available We generated a RUNX2-yellow fluorescent protein (YFP reporter system to study osteogenic development from human embryonic stem cells (hESCs. Our studies demonstrate the fidelity of YFP expression with expression of RUNX2 and other osteogenic genes in hESC-derived osteoprogenitor cells, as well as the osteogenic specificity of YFP signal. In vitro studies confirm that the hESC-derived YFP+ cells have similar osteogenic phenotypes to osteoprogenitor cells generated from bone-marrow mesenchymal stem cells. In vivo studies demonstrate the hESC-derived YFP+ cells can repair a calvarial defect in immunodeficient mice. Using the engineered hESCs, we monitored the osteogenic development and explored the roles of osteogenic supplements BMP2 and FGF9 in osteogenic differentiation of these hESCs in vitro. Taken together, this reporter system provides a novel system to monitor the osteogenic differentiation of hESCs and becomes useful to identify soluble agents and cell signaling pathways that mediate early stages of human bone development.

  11. Balanced steady state free precession for arterial spin labeling MRI: Initial experience for blood flow mapping in human brain, retina, and kidney.

    Science.gov (United States)

    Park, Sung-Hong; Wang, Danny J J; Duong, Timothy Q

    2013-09-01

    We implemented pseudo-continuous ASL (pCASL) with 2D and 3D balanced steady state free precession (bSSFP) readout for mapping blood flow in the human brain, retina, and kidney, free of distortion and signal dropout, which are typically observed in the most commonly used echo-planar imaging acquisition. High resolution functional brain imaging in the human visual cortex was feasible with 3D bSSFP pCASL. Blood flow of the human retina could be imaged with pCASL and bSSFP in conjunction with a phase cycling approach to suppress the banding artifacts associated with bSSFP. Furthermore, bSSFP based pCASL enabled us to map renal blood flow within a single breath hold. Control and test-retest experiments suggested that the measured blood flow values in retina and kidney were reliable. Because there is no specific imaging tool for mapping human retina blood flow and the standard contrast agent technique for mapping renal blood flow can cause problems for patients with kidney dysfunction, bSSFP based pCASL may provide a useful tool for the diagnosis of retinal and renal diseases and can complement existing imaging techniques. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Derivation of mouse embryonic stem cell lines from tyrosine hydroxylase reporter mice crossed with a human SNCA transgenic mouse model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Margarita Chumarina

    2017-03-01

    Full Text Available Mouse embryonic stem cell (mESC lines were derived by crossing heterozygous transgenic (tg mice expressing green fluorescent protein (GFP under the control of the rat tyrosine hydroxylase (TH promoter, with homozygous alpha-synuclein (aSYN mice expressing human mutant SNCAA53T under the control of the mouse Prion promoter (MoPrP, or wildtype (WT mice. The expression of GFP and human aSYN was validated by immunocytochemistry in midbrain neuron cultures upon differentiation of mESC lines using stromal cell-derived inducing activity. These mESC lines can help to study the impact of human aSYN expression in neurons and oligodendrocytes, and also trace GFP-expressing midbrain neurons.

  13. Generation of an ASS1 heterozygous knockout human embryonic stem cell line, WAe001-A-13, using CRISPR/Cas9

    Directory of Open Access Journals (Sweden)

    Fang Yuan

    2018-01-01

    Full Text Available The ASS1 gene encodes argininosuccinate synthetase-1, a cytosolic enzyme with a critical role in the urea cycle. Mutations are found in all ASS1 exons and cause the autosomal recessive disorder citrullinemia. Using CRISPR/Cas9-editing, we established the WAe001-A-13 cell line, which was heterozygous for an ASS1 mutation, from the human embryonic stem cell line H1. The WAe001-A-13 cell line maintained the pluripotent phenotype, the ability to differentiate into all three germ layers and a normal karyotype.

  14. Wnt Signaling in Kidney Development and Disease.

    Science.gov (United States)

    Wang, Yongping; Zhou, Chengji J; Liu, Youhua

    2018-01-01

    Wnt signal cascade is an evolutionarily conserved, developmental pathway that regulates embryogenesis, injury repair, and pathogenesis of human diseases. It is well established that Wnt ligands transmit their signal via canonical, β-catenin-dependent and noncanonical, β-catenin-independent mechanisms. Mounting evidence has revealed that Wnt signaling plays a key role in controlling early nephrogenesis and is implicated in the development of various kidney disorders. Dysregulations of Wnt expression cause a variety of developmental abnormalities and human diseases, such as congenital anomalies of the kidney and urinary tract, cystic kidney, and renal carcinoma. Multiple Wnt ligands, their receptors, and transcriptional targets are upregulated during nephron formation, which is crucial for mediating the reciprocal interaction between primordial tissues of ureteric bud and metanephric mesenchyme. Renal cysts are also associated with disrupted Wnt signaling. In addition, Wnt components are important players in renal tumorigenesis. Activation of Wnt/β-catenin is instrumental for tubular repair and regeneration after acute kidney injury. However, sustained activation of this signal cascade is linked to chronic kidney diseases and renal fibrosis in patients and experimental animal models. Mechanistically, Wnt signaling controls a diverse array of biologic processes, such as cell cycle progression, cell polarity and migration, cilia biology, and activation of renin-angiotensin system. In this chapter, we have reviewed recent findings that implicate Wnt signaling in kidney development and diseases. Targeting this signaling may hold promise for future treatment of kidney disorders in patients. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Identification of SSEA-1 expressing enhanced reprogramming (SEER) cells in porcine embryonic fibroblasts

    DEFF Research Database (Denmark)

    Li, Dong; Secher, Jan Ole Bertelsen; Juhl, Morten

    2017-01-01

    Previous research has shown that a subpopulation of cells within cultured human dermal fibroblasts, termed multilineage-differentiating stress enduring (Muse) cells, are preferentially reprogrammed into induced pluripotent stem cells. However, controversy exists over whether these cells...... are the only cells capable of being reprogrammed from a heterogeneous population of fibroblasts. Similarly, there is little research to suggest such cells may exist in embryonic tissues or other species. To address if such a cell population exists in pigs, we investigated porcine embryonic fibroblast...... populations (pEFs) and identified heterogeneous expression of several key cell surface markers. Strikingly, we discovered a small population of stage-specific embryonic antigen 1 positive cells (SSEA-1+) in Danish Landrace and Göttingen minipig pEFs, which were absent in the Yucatan pEFs. Furthermore...

  16. Generation of functional podocytes from human induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Osele Ciampi

    2016-07-01

    Full Text Available Generating human podocytes in vitro could offer a unique opportunity to study human diseases. Here, we describe a simple and efficient protocol for obtaining functional podocytes in vitro from human induced pluripotent stem cells. Cells were exposed to a three-step protocol, which induced their differentiation into intermediate mesoderm, then into nephron progenitors and, finally, into mature podocytes. After differentiation, cells expressed the main podocyte markers, such as synaptopodin, WT1, α-Actinin-4, P-cadherin and nephrin at the protein and mRNA level, and showed the low proliferation rate typical of mature podocytes. Exposure to Angiotensin II significantly decreased the expression of podocyte genes and cells underwent cytoskeleton rearrangement. Cells were able to internalize albumin and self-assembled into chimeric 3D structures in combination with dissociated embryonic mouse kidney cells. Overall, these findings demonstrate the establishment of a robust protocol that, mimicking developmental stages, makes it possible to derive functional podocytes in vitro.

  17. Ethics, Justice and the Sale of Kidneys for Transplantation Purposes

    Directory of Open Access Journals (Sweden)

    M Slabbert

    2010-08-01

    Full Text Available Living kidney donor transplantations are complex; add to that financial compensation to the donor and one enters an ethical maze. Debates on whether the buying and selling of kidneys should be allowed are mainly between utilitarians, deontologists and virtue ethicists as legal transplants are more common in the Western world. The pros and cons of each theory in relation to the sale of human organs are analysed, after which the foundational principles for all bio-ethical judgments; beneficence, non-maleficence, autonomy and justice are also scrutinised in seeking to justify the sale of human kidneys for transplantation purposes in a country with a human rights culture.

  18. Making new kidneys – On the road from science fiction to science fact

    Science.gov (United States)

    Volovelsky, Oded; Kopan, Raphael

    2017-01-01

    Purpose of Review Allogenic kidney transplantation use is limited due to a shortage of kidney organ donors and the risks associated with a long-term immunosuppression. An emerging treatment prospect is autologous transplants of ex-vivo produced human kidneys. Here we will review the research advances in this area. Recent findings The creation of human induced pluripotent cells (iPSCs) from somatic cells and the emergence of several differentiation protocols that are able to convert iPSCs cells into self-organizing kidney organoids are two large steps towards assembling a human kidney in vitro. Several groups have successfully generated urine-producing kidney organoids upon transplantation in a mouse host. Additional advances in culturing nephron progenitors in vitro may provide another source for kidney engineering, and the emergence of genome editing technology will facilitate correction of congenital mutations. Summary Basic research into the development of metanephric kidneys and iPSC differentiation protocols, the therapeutic use of iPSCs, along with emergence of new technologies such as CRISPR/Cas9 genome editing have accelerated a trend that may prove transformative in the treatment of ESRD as well as congenital kidney disorders. PMID:27805946

  19. Safety paradigm: genetic evaluation of therapeutic grade human embryonic stem cells.

    Science.gov (United States)

    Stephenson, Emma; Ogilvie, Caroline Mackie; Patel, Heema; Cornwell, Glenda; Jacquet, Laureen; Kadeva, Neli; Braude, Peter; Ilic, Dusko

    2010-12-06

    The use of stem cells for regenerative medicine has captured the imagination of the public, with media attention contributing to rising expectations of clinical benefits. Human embryonic stem cells (hESCs) are the best model for capital investment in stem cell therapy and there is a clear need for their robust genetic characterization before scaling-up cell expansion for that purpose. We have to be certain that the genome of the starting material is stable and normal, but the limited resolution of conventional karyotyping is unable to give us such assurance. Advanced molecular cytogenetic technologies such as array comparative genomic hybridization for identifying chromosomal imbalances, and single nucleotide polymorphism analysis for identifying ethnic background and loss of heterozygosity should be introduced as obligatory diagnostic tests for each newly derived hESC line before it is deposited in national stem cell banks. If this new quality standard becomes a requirement, as we are proposing here, it would facilitate and accelerate the banking process, since end-users would be able to select the most appropriate line for their particular application, thus improving efficiency and streamlining the route to manufacturing therapeutics. The pharmaceutical industry, which may use hESC-derived cells for drug screening, should not ignore their genomic profile as this may risk misinterpretation of results and significant waste of resources.

  20. Microvesicle transfer of kinin B1-receptors is a novel inflammatory mechanism in vasculitis.

    Science.gov (United States)

    Kahn, Robin; Mossberg, Maria; Ståhl, Anne-Lie; Johansson, Karl; Lopatko Lindman, Ingrid; Heijl, Caroline; Segelmark, Mårten; Mörgelin, Matthias; Leeb-Lundberg, L M Fredrik; Karpman, Diana

    2017-01-01

    During vasculitis, activation of the kinin system induces inflammation, whereby the kinin B1-receptor is expressed and activated after ligand binding. Additionally, activated blood cells release microvesicles into the circulation. Here we determined whether leukocyte-derived microvesicles bear B1-kinin receptors during vasculitis, and if microvesicles transfer functional B1-receptors to recipient cells, thus promoting inflammation. By flow cytometry, plasma from patients with vasculitis were found to contain high levels of leukocyte-derived microvesicles bearing B1-receptors. Importantly, renal biopsies from two patients with vasculitis showed leukocyte-derived microvesicles bearing B1-receptors docking on glomerular endothelial cells providing in vivo relevance. Microvesicles derived from B1-receptor-transfected human embryonic kidney cells transferred B1-receptors to wild-type human embryonic kidney cells, lacking the receptor, and to glomerular endothelial cells. The transferred B1-receptors induced calcium influx after B1-receptor agonist stimulation: a response abrogated by a specific B1-receptor antagonist. Microvesicles derived from neutrophils also transferred B1-receptors to wild-type human embryonic kidney cells and induced calcium influx after stimulation. Thus, we found a novel mechanism by which microvesicles transfer functional receptors and promote kinin-associated inflammation. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  1. Oncogenic roles of TOPK and MELK, and effective growth suppression by small molecular inhibitors in kidney cancer cells.

    Science.gov (United States)

    Kato, Taigo; Inoue, Hiroyuki; Imoto, Seiya; Tamada, Yoshinori; Miyamoto, Takashi; Matsuo, Yo; Nakamura, Yusuke; Park, Jae-Hyun

    2016-04-05

    T-lymphokine-activated killer cell-originated protein kinase (TOPK) and maternal embryonic leucine zipper kinase (MELK) have been reported to play critical roles in cancer cell proliferation and maintenance of stemness. In this study, we investigated possible roles of TOPK and MELK in kidney cancer cells and found their growth promotive effect as well as some feedback mechanism between these two molecules. Interestingly, the blockade of either of these two kinases effectively caused downregulation of forkhead box protein M1 (FOXM1) activity which is known as an oncogenic transcriptional factor in various types of cancer cells. Small molecular compound inhibitors against TOPK (OTS514) and MELK (OTS167) effectively suppressed the kidney cancer cell growth, and the combination of these two compounds additively worked and showed the very strong growth suppressive effect on kidney cancer cells. Collectively, our results suggest that both TOPK and MELK are promising molecular targets for kidney cancer treatment and that dual blockade of OTS514 and OTS167 may bring additive anti-tumor effects with low risk of side effects.

  2. Metaplasia of the parietal layer of Bowman's capsule. A histopathological survey of the human kidney

    OpenAIRE

    Haensly, William E.; Lee, J.C.

    1986-01-01

    Human kidney sections taken at autopsy were examined to determine the incidence of metaplasia of the Bowman's parietal epithelium. Autopsy records were consulted to determine if there was any correlation between clinical disease, histopathological changes in organ systems and metaplasia of Bowman's capsule. The sections represented both sexes in 9 age groups from 2 to 87 years. The sections were fixed in neutral formalin, embedded in paraffin, sectioned at 6 pm...

  3. Restoration of heart functions using human embryonic stem cells derived heart muscle cells.

    Science.gov (United States)

    Gepstein, Lior; Kehat, Izhak

    2005-02-01

    Extract: Recent advances in molecular and cellular biology and specifically in the areas of stem cell biology and tissue engineering have paved the way for the development of a new field in biomedicine, regenerative medicine. This exciting approach seeks to develop new biological solutions, using the mobilization of endogenous stem cells or delivery of exogenous cells to replace or modify the function of diseased, absent, or malfunctioning tissue. The adult heart represents an attractive candidate for these emerging technologies, since adult cardiomyocytes have limited regenerative capacity. Thus, any significant heart cell loss or dysfunction, such as occurs during heart attack, is mostly irreversible and may lead to the development of progressive heart failure, one of the leading causes of world-wide morbidity and mortality. Similarly, dysfunction of the specialized electrical conduction system within the heart may result in inefficient rhythm initiation or impulse conduction, leading to significant slowing of the heart rate, usually requiring the implantation of a permanent electronic pacemaker. Replacement of the dysfunctional myocardium (heart muscle) by implantation of external heart muscle cells is emerging as a novel paradigm for restoration of the myocardial electromechanical properties, but has been significantly hampered by the paucity of cell sources for human heart cells and by the relatively limited evidence for functional integration between grafted and host cells. The recently described human embryonic stem cell (hESC) lines may provide a possible solution for the aforementioned cell sourcing problem.

  4. The cysteines of the extracellular loop are crucial for trafficking of human organic cation transporter 2 to the plasma membrane and are involved in oligomerization.

    Science.gov (United States)

    Brast, Sabine; Grabner, Alexander; Sucic, Sonja; Sitte, Harald H; Hermann, Edwin; Pavenstädt, Hermann; Schlatter, Eberhard; Ciarimboli, Giuliano

    2012-03-01

    Human organic cation transporter 2 (hOCT2) is involved in transport of many endogenous and exogenous organic cations, mainly in kidney and brain cells. Because the quaternary structure of transmembrane proteins plays an essential role for their cellular trafficking and function, we investigated whether hOCT2 forms oligomeric complexes, and if so, which part of the transporter is involved in the oligomerization. A yeast 2-hybrid mating-based split-ubiquitin system (mbSUS), fluorescence resonance energy transfer, Western blot analysis, cross-linking experiments, immunofluorescence, and uptake measurements of the fluorescent organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium were applied to human embryonic kidney 293 (HEK293) cells transfected with hOCT2 and partly also to freshly isolated human proximal tubules. The role of cysteines for oligomerization and trafficking of the transporter to the plasma membranes was investigated in cysteine mutants of hOCT2. hOCT2 formed oligomers both in the HEK293 expression system and in native human kidneys. The cysteines of the large extracellular loop are important to enable correct folding, oligomeric assembly, and plasma membrane insertion of hOCT2. Mutation of the first and the last cysteines of the loop at positions 51 and 143 abolished oligomer formation. Thus, the cysteines of the extracellular loop are important for correct trafficking of the transporter to the plasma membrane and for its oligomerization.

  5. Three-dimensional neuroepithelial culture from human embryonic stem cells and its use for quantitative conversion to retinal pigment epithelium.

    Directory of Open Access Journals (Sweden)

    Yu Zhu

    Full Text Available A goal in human embryonic stem cell (hESC research is the faithful differentiation to given cell types such as neural lineages. During embryonic development, a basement membrane surrounds the neural plate that forms a tight, apico-basolaterally polarized epithelium before closing to form a neural tube with a single lumen. Here we show that the three-dimensional epithelial cyst culture of hESCs in Matrigel combined with neural induction results in a quantitative conversion into neuroepithelial cysts containing a single lumen. Cells attain a defined neuroepithelial identity by 5 days. The neuroepithelial cysts naturally generate retinal epithelium, in part due to IGF-1/insulin signaling. We demonstrate the utility of this epithelial culture approach by achieving a quantitative production of retinal pigment epithelial (RPE cells from hESCs within 30 days. Direct transplantation of this RPE into a rat model of retinal degeneration without any selection or expansion of the cells results in the formation of a donor-derived RPE monolayer that rescues photoreceptor cells. The cyst method for neuroepithelial differentiation of pluripotent stem cells is not only of importance for RPE generation but will also be relevant to the production of other neuronal cell types and for reconstituting complex patterning events from three-dimensional neuroepithelia.

  6. Dopaminergic Immunofluorescence Studies in Kidney Tissue.

    Science.gov (United States)

    Gildea, J J; Van Sciver, R E; McGrath, H E; Kemp, B A; Jose, P A; Carey, R M; Felder, R A

    2017-01-01

    The kidney is a highly integrated system of specialized differentiated cells that are responsible for fluid and electrolyte balance in the body. While much of today's research focuses on isolated nephron segments or cells from nephron segments grown in tissue culture, an often overlooked technique that can provide a unique view of many cell types in the kidney is slice culture. Here, we describe techniques that use freshly excised kidney tissue from rats to perform a variety of experiments shortly after isolating the tissue. By slicing the rat kidney in a "bread loaf" format, multiple studies can be performed on slices from the same tissue in parallel. Cryosectioning and staining of the tissue allow for the evaluation of physiological or biochemical responses in a wide variety of specific nephron segments. The procedures described within this chapter can also be extended to human or mouse kidney tissue.

  7. Tributyltin induces G2/M cell cycle arrest via NAD(+)-dependent isocitrate dehydrogenase in human embryonic carcinoma cells.

    Science.gov (United States)

    Asanagi, Miki; Yamada, Shigeru; Hirata, Naoya; Itagaki, Hiroshi; Kotake, Yaichiro; Sekino, Yuko; Kanda, Yasunari

    2016-04-01

    Organotin compounds, such as tributyltin (TBT), are well-known endocrine-disrupting chemicals (EDCs). We have recently reported that TBT induces growth arrest in the human embryonic carcinoma cell line NT2/D1 at nanomolar levels by inhibiting NAD(+)-dependent isocitrate dehydrogenase (NAD-IDH), which catalyzes the irreversible conversion of isocitrate to α-ketoglutarate. However, the molecular mechanisms by which NAD-IDH mediates TBT toxicity remain unclear. In the present study, we examined whether TBT at nanomolar levels affects cell cycle progression in NT2/D1 cells. Propidium iodide staining revealed that TBT reduced the ratio of cells in the G1 phase and increased the ratio of cells in the G2/M phase. TBT also reduced cell division cycle 25C (cdc25C) and cyclin B1, which are key regulators of G2/M progression. Furthermore, apigenin, an inhibitor of NAD-IDH, mimicked the effects of TBT. The G2/M arrest induced by TBT was abolished by NAD-IDHα knockdown. Treatment with a cell-permeable α-ketoglutarate analogue recovered the effect of TBT, suggesting the involvement of NAD-IDH. Taken together, our data suggest that TBT at nanomolar levels induced G2/M cell cycle arrest via NAD-IDH in NT2/D1 cells. Thus, cell cycle analysis in embryonic cells could be used to assess cytotoxicity associated with nanomolar level exposure of EDCs.

  8. Derivation of HVR1, HVR2 and HVR3 human embryonic stem cell lines from IVF embryos after preimplantation genetic diagnosis (PGD) for monogenic disorder

    OpenAIRE

    Abdelkrim Hmadcha; Yolanda Aguilera; Maria Dolores Lozano-Arana; Nuria Mellado; Javier Sánchez; Cristina Moya; Luis Sánchez-Palazón; Jose Palacios; Guillermo Antiñolo; Bernat Soria

    2016-01-01

    From 106 human blastocyts donate for research after in vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD) for monogenetic disorder, 3 human embryonic stem cells (hESCs) HVR1, HVR2 and HVR3 were successfully derived. HVR1 was assumed to be genetically normal, HVR2 carrying Becker muscular dystrophy and HVR3 Hemophilia B. Despite the translocation t(9;15)(q34.3;q14) detected in HVR2, all the 3 cell lines were characterised in vitro and in vivo as normal hESCs lines and were r...

  9. Human mesenchymal stem cells alter macrophage phenotype and promote regeneration via homing to the kidney following ischemia-reperfusion injury

    NARCIS (Netherlands)

    Wise, Andrea F; Williams, Timothy M; Kiewiet, Mensiena B G; Payne, Natalie L; Siatskas, Christopher; Samuel, Chrishan S; Ricardo, Sharon D

    2014-01-01

    Mesenchymal stem cells (MSCs) ameliorate injury and accelerate repair in many organs, including the kidney, although the reparative mechanisms and interaction with macrophages have not been elucidated. This study investigated the reparative potential of human bone marrow-derived MSCs and traced

  10. Wnt/β-catenin signaling promotes self-renewal and inhibits the primed state transition in naïve human embryonic stem cells.

    Science.gov (United States)

    Xu, Zhuojin; Robitaille, Aaron M; Berndt, Jason D; Davidson, Kathryn C; Fischer, Karin A; Mathieu, Julie; Potter, Jennifer C; Ruohola-Baker, Hannele; Moon, Randall T

    2016-10-18

    In both mice and humans, pluripotent stem cells (PSCs) exist in at least two distinct states of pluripotency, known as the naïve and primed states. Our understanding of the intrinsic and extrinsic factors that enable PSCs to self-renew and to transition between different pluripotent states is important for understanding early development. In mouse embryonic stem cells (mESCs), Wnt proteins stimulate mESC self-renewal and support the naïve state. In human embryonic stem cells (hESCs), Wnt/β-catenin signaling is active in naïve-state hESCs and is reduced or absent in primed-state hESCs. However, the role of Wnt/β-catenin signaling in naïve hESCs remains largely unknown. Here, we demonstrate that inhibition of the secretion of Wnts or inhibition of the stabilization of β-catenin in naïve hESCs reduces cell proliferation and colony formation. Moreover, we show that addition of recombinant Wnt3a partially rescues cell proliferation in naïve hESCs caused by inhibition of Wnt secretion. Notably, inhibition of Wnt/β-catenin signaling in naïve hESCs did not cause differentiation. Instead, it induced primed hESC-like proteomic and metabolic profiles. Thus, our results suggest that naïve hESCs secrete Wnts that activate autocrine or paracrine Wnt/β-catenin signaling to promote efficient self-renewal and inhibit the transition to the primed state.

  11. Tubule-Derived Wnts Are Required for Fibroblast Activation and Kidney Fibrosis.

    Science.gov (United States)

    Zhou, Dong; Fu, Haiyan; Zhang, Lu; Zhang, Ke; Min, Yali; Xiao, Liangxiang; Lin, Lin; Bastacky, Sheldon I; Liu, Youhua

    2017-08-01

    Cell-cell communication via Wnt ligands is necessary in regulating embryonic development and has been implicated in CKD. Because Wnt ligands are ubiquitously expressed, the exact cellular source of the Wnts involved in CKD remains undefined. To address this issue, we generated two conditional knockout mouse lines in which Wntless (Wls), a dedicated cargo receptor that is obligatory for Wnt secretion, was selectively ablated in tubular epithelial cells or interstitial fibroblasts. Blockade of Wnt secretion by genetic deletion of Wls in renal tubules markedly inhibited myofibroblast activation and reduced renal fibrosis after unilateral ureteral obstruction. This effect associated with decreased activation of β -catenin and downstream gene expression and preserved tubular epithelial integrity. In contrast, fibroblast-specific deletion of Wls exhibited little effect on the severity of renal fibrosis after obstructive or ischemia-reperfusion injury. In vitro , incubation of normal rat kidney fibroblasts with tubule-derived Wnts promoted fibroblast proliferation and activation. Furthermore, compared with kidney specimens from patients without CKD, biopsy specimens from patients with CKD also displayed increased expression of multiple Wnt proteins, predominantly in renal tubular epithelium. These results illustrate that tubule-derived Wnts have an essential role in promoting fibroblast activation and kidney fibrosis via epithelial-mesenchymal communication. Copyright © 2017 by the American Society of Nephrology.

  12. Kidneys From α1,3-Galactosyltransferase Knockout/Human Heme Oxygenase-1/Human A20 Transgenic Pigs Are Protected From Rejection During Ex Vivo Perfusion With Human Blood.

    Science.gov (United States)

    Ahrens, Hellen E; Petersen, Björn; Ramackers, Wolf; Petkov, Stoyan; Herrmann, Doris; Hauschild-Quintern, Janet; Lucas-Hahn, Andrea; Hassel, Petra; Ziegler, Maren; Baars, Wiebke; Bergmann, Sabine; Schwinzer, Reinhard; Winkler, Michael; Niemann, Heiner

    2015-07-01

    Multiple modifications of the porcine genome are required to prevent rejection after pig-to-primate xenotransplantation. Here, we produced pigs with a knockout of the α1,3-galactosyltransferase gene (GGTA1-KO) combined with transgenic expression of the human anti-apoptotic/anti-inflammatory molecules heme oxygenase-1 and A20, and investigated their xenoprotective properties. The GGTA1-KO/human heme oxygenase-1 (hHO-1)/human A20 (hA20) transgenic pigs were produced in a stepwise approach using zinc finger nuclease vectors targeting the GGTA1 gene and a Sleeping Beauty vector coding for hA20. Two piglets were analyzed by quantitative reverse-transcription polymerase chain reaction, flow cytometry, and sequencing. The biological function of the genetic modifications was tested in a (51)Chromium release assay and by ex vivo kidney perfusions with human blood. Disruption of the GGTA1 gene by deletion of few basepairs was demonstrated in GGTA1-KO/hHO-1/hA20 transgenic pigs. The hHO-1 and hA20 mRNA expression was confirmed by quantitative reverse-transcription polymerase chain reaction. Ex vivo perfusion of 2 transgenic kidneys was feasible for the maximum experimental time of 240 minutes without symptoms of rejection. Results indicate that GGTA1-KO/hHO-1/hA20 transgenic pigs are a promising model to alleviate rejection and ischemia-reperfusion damage in porcine xenografts and could serve as a background for further genetic modifications toward the production of a donor pig that is clinically relevant for xenotransplantation.

  13. A homozygous Keap1-knockout human embryonic stem cell line generated using CRISPR/Cas9 mediates gene targeting

    Directory of Open Access Journals (Sweden)

    So-Jung Kim

    2017-03-01

    Full Text Available Kelch-like ECH-associated protein 1 (keap1 is a cysteine-rich protein that interacts with transcription factor Nrf2 in a redox-sensitive manner, leading to the degradation of Nrf2 (Kim et al., 2014a. Disruption of Keap1 results in the induction of Nrf2-related signaling pathways involving the expression of a set of anti-oxidant and anti-inflammatory genes. We generated biallelic mutants of the Keap1 gene using a CRISPR-Cas9 genome editing method in the H9 human embryonic stem cell (hESC. The Keap1 homozygous-knockout H9 cell line retained normal morphology, gene expression, and in vivo differentiation potential.

  14. [Ethical aspects of human embryonic stem cell use and commercial umbilical cord blood stem cell banking. Ethical reflections on the occasion of the regulation of the European Council and Parliament on advanced therapy medicinal products].

    Science.gov (United States)

    Virt, G

    2010-01-01

    The regulation of the European Council and Parliament on advanced therapy medicinal products also includes therapies with human embryonic stem cells. The use of these stem cells is controversially and heavily discussed. Contrary to the use of adult stem cells, medical and ethical problems concerning the use of human embryonic stem cells persists, because this use is based on the destruction of human life at the very beginning. The regulation foresees, therefore, subsidiarity within the European Member States. Although there are no ethical problems in principle with the use of stem cells from the umbilical cord blood, there are social ethical doubts with the banking of these stem cells for autologous use without any currently foreseeable medical advantage by commercial blood banks. Also in this case subsidiarity is valid.

  15. Derivation of novel genetically diverse human embryonic stem cell lines.

    Science.gov (United States)

    Stefanova, Valentina T; Grifo, James A; Hansis, Christoph

    2012-06-10

    Human embryonic stem cells (hESCs) have the potential to revolutionize many biomedical fields ranging from basic research to disease modeling, regenerative medicine, drug discovery, and toxicity testing. A multitude of hESC lines have been derived worldwide since the first 5 lines by Thomson et al. 13 years ago, but many of these are poorly characterized, unavailable, or do not represent desired traits, thus making them unsuitable for application purposes. In order to provide the scientific community with better options, we have derived 12 new hESC lines at New York University from discarded genetically normal and abnormal embryos using the latest techniques. We examined the genetic status of the NYUES lines in detail as well as their molecular and cellular features and DNA fingerprinting profile. Furthermore, we differentiated our hESCs into the tissues most affected by a specific condition or into clinically desired cell types. To our knowledge, a number of characteristics of our hESCs have not been previously reported, for example, mutation for alpha thalassemia X-linked mental retardation syndrome, linkage to conditions with a genetic component such as asthma or poor sperm morphology, and novel combinations of ethnic backgrounds. Importantly, all of our undifferentiated euploid female lines tested to date did not show X chromosome inactivation, believed to result in superior potency. We continue to derive new hESC lines and add them to the NIH registry and other registries. This should facilitate the use of our hESCs and lead to advancements for patient-benefitting applications.

  16. Characterising the developmental profile of human embryonic stem cell-derived medium spiny neuron progenitors and assessing mature neuron function using a CRISPR-generated human DARPP-32WT/eGFP-AMP reporter line.

    Science.gov (United States)

    Hunt, C P J; Pouton, C W; Haynes, J M

    2017-06-01

    In the developing ventral telencephalon, cells of the lateral ganglionic eminence (LGE) give rise to all medium spiny neurons (MSNs). This development occurs in response to a highly orchestrated series of morphogenetic stimuli that pattern the resultant neurons as they develop. Striatal MSNs are characterised by expression of dopamine receptors, dopamine-and cyclic AMP-regulated phosphoprotein (DARPP32) and the neurotransmitter GABA. In this study, we demonstrate that fine tuning Wnt and hedgehog (SHH) signaling early in human embryonic stem cell differentiation can induce a subpallial progenitor molecular profile. Stimulation of TGFβ signaling pathway by activin-A further supports patterning of progenitors to striatal precursors which adopt an LGE-specific gene signature. Moreover, we report that these MSNs also express markers associated with mature neuron function (cannabinoid, adenosine and dopamine receptors). To facilitate live-cell identification we generated a human embryonic stem cell line using CRISPR-mediated gene editing at the DARPP32 locus (DARPP32 WT/eGFP-AMP-LacZ ). The addition of dopamine to MSNs either increased, decreased or had no effect on intracellular calcium, indicating the presence of multiple dopamine receptor subtypes. In summary, we demonstrate greater control over early fate decisions using activin-A, Wnt and SHH to direct differentiation into MSNs. We also generate a DARPP32 reporter line that enables deeper pharmacological profiling and interrogation of complex receptor interactions in human MSNs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. How the embryonic chick brain twists

    OpenAIRE

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Forsch, Nickolas; Taber, Larry A.

    2016-01-01

    During early development, the tubular embryonic chick brain undergoes a combination of progressive ventral bending and rightward torsion, one of the earliest organ-level left–right asymmetry events in development. Existing evidence suggests that bending is caused by differential growth, but the mechanism for the predominantly rightward torsion of the embryonic brain tube remains poorly understood. Here, we show through a combination of in vitro experiments, a physical model of the embryonic m...

  18. 42 CFR 410.48 - Kidney disease education services.

    Science.gov (United States)

    2010-10-01

    ... 410.48 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... on how the kidneys work and what happens when the kidneys fail. (ii) Understanding if remaining... outcomes assessments serve to assess the program's effectiveness in meeting the communication needs of...

  19. Amino acid sequence and posttranslational modifications of human factor VIIa from plasma and transfected baby hamster kidney cells

    International Nuclear Information System (INIS)

    Thim, L.; Bjoern, S.; Christensen, M.; Nicolaisen, E.M.; Lund-Hansen, T.; Pedersen, A.H.; Hedner, U.

    1988-01-01

    Blood coagulation factor VII is a vitamin K dependent glycoprotein which in its activated form, factor VII a , participates in the coagulation process by activating factor X and/or factor IX in the presence of Ca 2+ and tissue factor. Three types of potential posttranslational modifications exist in the human factor VII a molecule, namely, 10 γ-carboxylated, N-terminally located glutamic acid residues, 1 β-hydroxylated aspartic acid residue, and 2 N-glycosylated asparagine residues. In the present study, the amino acid sequence and posttranslational modifications of recombinant factor VII a as purified from the culture medium of a transfected baby hamster kidney cell line have been compared to human plasma factor VII a . By use of HPLC, amino acid analysis, peptide mapping, and automated Edman degradation, the protein backbone of recombinant factor VII a was found to be identical with human factor VII a . Asparagine residues 145 and 322 were found to be fully N-glycosylated in human plasma factor VII a . In the recombinant factor VII a , asparagine residue 322 was fully glycosylated whereas asparagine residue 145 was only partially (approximately 66%) glycosylated. Besides minor differences in the sialic acid and fucose contents, the overall carbohydrate compositions were nearly identical in recombinant factor VII a and human plasma factor VII a . These results show that factor VII a as produced in the transfected baby hamster kidney cells is very similar to human plasma factor VII a and that this cell line thus might represent an alternative source for human factor VII a

  20. Experiment list: SRX367328 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available nology) || sirna transfection=siCTL http://dbarchive.bio...=HEK293T cell || cell line=Human Embryonic Kidney 293 cells || chip antibody=CDK9 || chip antibody details=2316S (Cell Signaling Tech

  1. Embryonic miRNA profiles of normal and ectopic pregnancies.

    Directory of Open Access Journals (Sweden)

    Francisco Dominguez

    Full Text Available Our objective was to investigate the miRNA profile of embryonic tissues in ectopic pregnancies (EPs and controlled abortions (voluntary termination of pregnancy; VTOP. Twenty-three patients suffering from tubal EP and twenty-nine patients with a normal ongoing pregnancy scheduled for a VTOP were recruited. Embryonic tissue samples were analyzed by miRNA microarray and further validated by real time PCR. Microarray studies showed that four miRNAs were differentially downregulated (hsa-mir-196b, hsa-mir-30a, hsa-mir-873, and hsa-mir-337-3p and three upregulated (hsa-mir-1288, hsa-mir-451, and hsa-mir-223 in EP compared to control tissue samples. Hsa-miR-196, hsa-miR-223, and hsa-miR-451 were further validated by real time PCR in a wider population of EP and control samples. We also performed a computational analysis to identify the gene targets and pathways which might be modulated by these three differentially expressed miRNAs. The most significant pathways found were the mucin type O-glycan biosynthesis and the ECM-receptor-interaction pathways. We also checked that the dysregulation of these three miRNAs was able to alter the expression of the gene targets in the embryonic tissues included in these pathways such as GALNT13 and ITGA2 genes. In conclusion, analysis of miRNAs in ectopic and eutopic embryonic tissues shows different expression patterns that could modify pathways which are critical for correct implantation, providing new insights into the understanding of ectopic implantation in humans.

  2. Expression of the vitamin D receptor, 25-hydroxylases, 1alpha-hydroxylase and 24-hydroxylase in the human kidney and renal clear cell cancer

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Andersen, Claus B.; Nielsen, John E

    2010-01-01

    The vitamin D receptor (VDR), CYP27B1 and CYP24A1 are expressed in the human kidney, but the segmental expression of the 25-hydroxylases is unknown. A comprehensive analysis of CYP2R1, CYP27A1, CYP27B1, VDR and CYP24A1 expression in normal kidney and renal clear cell cancer (CCc) would reveal...

  3. EDA-containing fibronectin increases proliferation of embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Noelia Losino

    Full Text Available Embryonic stem cells (ESC need a set of specific factors to be propagated. They can also grow in conditioned medium (CM derived from a bovine granulosa cell line BGC (BGC-CM, a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA(+. Here, we investigated if the FN EDA(+ isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA(-, and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC's proliferation rate. Here we showed for the first time that this FN isoform enhances ESC's proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy.

  4. Methylation and Transcripts Expression at the Imprinted GNAS Locus in Human Embryonic and Induced Pluripotent Stem Cells and Their Derivatives

    Directory of Open Access Journals (Sweden)

    Virginie Grybek

    2014-09-01

    Full Text Available Data from the literature indicate that genomic imprint marks are disturbed in human pluripotent stem cells (PSCs. GNAS is an imprinted locus that produces one biallelic (Gsα and four monoallelic (NESP55, GNAS-AS1, XLsα, and A/B transcripts due to differential methylation of their promoters (DMR. To document imprinting at the GNAS locus in PSCs, we studied GNAS locus DMR methylation and transcript (NESP55, XLsα, and A/B expression in human embryonic stem cells (hESCs and human induced pluripotent stem cells (hiPSCs derived from two human fibroblasts and their progenies. Results showed that (1 methylation at the GNAS locus DMRs is DMR and cell line specific, (2 changes in allelic transcript expression can be independent of a change in allele-specific DNA methylation, and (3 interestingly, methylation at A/B DMR is correlated with A/B transcript expression. These results indicate that these models are valuable to study the mechanisms controlling GNAS methylation, factors involved in transcript expression, and possibly mechanisms involved in the pathophysiology of pseudohypoparathyroidism type 1B.

  5. Analysed cap mesenchyme track data from live imaging of mouse kidney development

    Directory of Open Access Journals (Sweden)

    James G. Lefevre

    2016-12-01

    Full Text Available This article provides detailed information on manually tracked cap mesenchyme cells from timelapse imaging of multiple ex vivo embryonic mouse kidneys. Cells were imaged for up to 18 h at 15 or 20 min intervals, and multiple cell divisions were tracked. Positional data is supplemented with a range of information including the relative location of the closest ureteric tip and a correction for drift due to bulk movement and tip growth. A subset of tracks were annotated to indicate the presence of processes attached to the ureteric epithelium. The calculations used for drift correction are described, as are the main methods used in the analysis of this data for the purpose of describing cap cell motility. The outcomes of this analysis are discussed in “Cap mesenchyme cell swarming during kidney development is influenced by attraction, repulsion, and adhesion to the ureteric tip” (A.N. Combes, J.G. Lefevre, S. Wilson, N.A. Hamilton, M.H. Little, 2016 [1].

  6. Generation of a human embryonic stem cell line, NERCe003-A-1, with lentivirus vector-mediated inducible CTNNB1 overexpression

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2018-04-01

    Full Text Available The human embryonic stem cell (hESC line NERCe003-A-1 was generated by introducing lentiviral-vector–mediated tetracycline-inducible β-catenin expression into a normal hESC line, NERCe003-A. The resulting cell line can overexpress the β-catenin protein, encoded by the CTNNB1 gene, after exposure to doxycycline (Dox. CTNNB1 gene expression was confirmed by quantitative PCR (qPCR and immunofluorescence assays. Further characterization confirmed that the NERCe003-A-1 cell line expresses typical pluripotency markers and has the ability to form the three germ layers both in vitro and in vivo.

  7. Gene Expression in the Normal Adult Human Kidney Assessed by Complementary DNA Microarray

    OpenAIRE

    Higgins, John P.T.; Wang, Lingli; Kambham, Neeraja; Montgomery, Kelli; Mason, Veronica; Vogelmann, Stefanie U.; Lemley, Kevin V.; Brown, Patrick O.; Brooks, James D.; van de Rijn, Matt

    2004-01-01

    The kidney is a highly specialized organ with a complex, stereotyped architecture and a great diversity of functions and cell types. Because the microscopic organization of the nephron, the functional unit of the kidney, has a consistent relationship to the macroscopic anatomy of the kidney, knowledge of the characteristic patterns of gene expression in different compartments of the kidney could provide insight into the functions and functional organization of the normal nephron. We studied g...

  8. Refined mapping of a quantitative trait locus on chromosome 1 responsible for mouse embryonic death.

    Directory of Open Access Journals (Sweden)

    Magalie Vatin

    Full Text Available Recurrent spontaneous abortion (RSA is defined as the loss of three or more consecutive pregnancies during the first trimester of embryonic intrauterine development. This kind of human infertility is frequent among the general population since it affects 1 to 5% of women. In half of the cases the etiology remains unelucidated. In the present study, we used interspecific recombinant congenic mouse strains (IRCS in the aim to identify genes responsible for embryonic lethality. Applying a cartographic approach using a genotype/phenotype association, we identified a minimal QTL region, of about 6 Mb on chromosome 1, responsible for a high rate of embryonic death (∼30%. Genetic analysis suggests that the observed phenotype is linked to uterine dysfunction. Transcriptomic analysis of the uterine tissue revealed a preferential deregulation of genes of this region compared to the rest of the genome. Some genes from the QTL region are associated with VEGF signaling, mTOR signaling and ubiquitine/proteasome-protein degradation pathways. This work may contribute to elucidate the molecular basis of a multifactorial and complex human disorder as RSA.

  9. Endothelial marker-expressing stromal cells are critical for kidney formation.

    Science.gov (United States)

    Mukherjee, Elina; Maringer, Katherine; Papke, Emily; Bushnell, Daniel; Schaefer, Caitlin; Kramann, Rafael; Ho, Jacqueline; Humphreys, Benjamin D; Bates, Carlton; Sims-Lucas, Sunder

    2017-09-01

    Kidneys are highly vascularized and contain many distinct vascular beds. However, the origins of renal endothelial cells and roles of the developing endothelia in the formation of the kidney are unclear. We have shown that the Foxd1-positive renal stroma gives rise to endothelial marker-expressing progenitors that are incorporated within a subset of peritubular capillaries; however, the significance of these cells is unclear. The purpose of this study was to determine whether deletion of Flk1 in the Foxd1 stroma was important for renal development. To that end, we conditionally deleted Flk1 (critical for endothelial cell development) in the renal stroma by breeding-floxed Flk1 mice ( Flk1 fl/fl ) with Foxd1cre mice to generate Foxd1cre; Flk1 fl/fl ( Flk1 ST-/- ) mice. We then performed FACsorting, histological, morphometric, and metabolic analyses of Flk1 ST-/- vs. control mice. We confirmed decreased expression of endothelial markers in the renal stroma of Flk1 ST-/- kidneys via flow sorting and immunostaining, and upon interrogation of embryonic and postnatal Flk1 ST-/- mice, we found they had dilated peritubular capillaries. Three-dimensional reconstructions showed reduced ureteric branching and fewer nephrons in developing Flk1 ST-/- kidneys vs. Juvenile Flk1 ST-/- kidneys displayed renal papillary hypoplasia and a paucity of collecting ducts. Twenty-four-hour urine collections revealed that postnatal Flk1 ST-/- mice had urinary-concentrating defects. Thus, while lineage-tracing revealed that the renal cortical stroma gave rise to a small subset of endothelial progenitors, these Flk1-expressing stromal cells are critical for patterning the peritubular capillaries. Also, loss of Flk1 in the renal stroma leads to nonautonomous-patterning defects in ureteric lineages. Copyright © 2017 the American Physiological Society.

  10. miR-373 is regulated by TGFβ signaling and promotes mesendoderm differentiation in human Embryonic Stem Cells

    Science.gov (United States)

    Rosa, Alessandro; Papaioannou, Marilena D.; Krzyspiak, Joanna E.; Brivanlou, Ali H.

    2014-01-01

    MicroRNAs (miRNAs) belonging to the evolutionary conserved miR-302 family play important functions in Embryonic Stem Cells (ESCs). The expression of some members, such as the human miR-302 and mouse miR-290 clusters, is regulated by ESC core transcription factors. However, whether miRNAs act downstream of signaling pathways involved in human ESC pluripotency remains unknown. The maintenance of pluripotency in hESCs is under the control of the TGFβ pathway. Here, we show that inhibition of the Activin/Nodal branch of this pathway affects the expression of a subset of miRNAs in hESCs. Among them, we found miR-373, a member of the miR-302 family. Proper levels of miR-373 are crucial for the maintenance of hESC pluripotency, since its overexpression leads to differentiation towards the mesendodermal lineage. Among miR-373 predicted targets, involved in TGFβ signaling, we validated the Nodal inhibitor Lefty. Our work suggests a crucial role for the interplay between miRNAs and signaling pathways in ESCs. PMID:24709321

  11. Nonmuscle myosin IIA and IIB differentially contribute to intrinsic and directed migration of human embryonic lung fibroblasts.

    Science.gov (United States)

    Kuragano, Masahiro; Murakami, Yota; Takahashi, Masayuki

    2018-03-25

    Nonmuscle myosin II (NMII) plays an essential role in directional cell migration. In this study, we investigated the roles of NMII isoforms (NMIIA and NMIIB) in the migration of human embryonic lung fibroblasts, which exhibit directionally persistent migration in an intrinsic manner. NMIIA-knockdown (KD) cells migrated unsteadily, but their direction of migration was approximately maintained. By contrast, NMIIB-KD cells occasionally reversed their direction of migration. Lamellipodium-like protrusions formed in the posterior region of NMIIB-KD cells prior to reversal of the migration direction. Moreover, NMIIB KD led to elongation of the posterior region in migrating cells, probably due to the lack of load-bearing stress fibers in this area. These results suggest that NMIIA plays a role in steering migration by maintaining stable protrusions in the anterior region, whereas NMIIB plays a role in maintenance of front-rear polarity by preventing aberrant protrusion formation in the posterior region. These distinct functions of NMIIA and NMIIB might promote intrinsic and directed migration of normal human fibroblasts. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Transcriptional profiling of MEF2-regulated genes in human neural progenitor cells derived from embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Shing Fai Chan

    2015-03-01

    Full Text Available The myocyte enhancer factor 2 (MEF2 family of transcription factors is highly expressed in the brain and constitutes a key determinant of neuronal survival, differentiation, and synaptic plasticity. However, genome-wide transcriptional profiling of MEF2-regulated genes has not yet been fully elucidated, particularly at the neural stem cell stage. Here we report the results of microarray analysis comparing mRNAs isolated from human neural progenitor/stem cells (hNPCs derived from embryonic stem cells expressing a control vector versus progenitors expressing a constitutively-active form of MEF2 (MEF2CA, which increases MEF2 activity. Microarray experiments were performed using the Illumina Human HT-12 V4.0 expression beadchip (GEO#: GSE57184. By comparing vector-control cells to MEF2CA cells, microarray analysis identified 1880 unique genes that were differentially expressed. Among these genes, 1121 genes were up-regulated and 759 genes were down-regulated. Our results provide a valuable resource for identifying transcriptional targets of MEF2 in hNPCs.

  13. Generation of a heterozygous knockout human embryonic stem cell line for the OCIAD1 locus using CRISPR/CAS9 mediated targeting: BJNhem20-OCIAD1-CRISPR-20

    Directory of Open Access Journals (Sweden)

    Deeti K. Shetty

    2016-03-01

    Full Text Available Ovarian carcinoma immuno-reactive antigen domain containing 1(OCIAD1 single copy was knocked out generating an OCIAD1 heterozygous knockout human embryonic stem line named BJNhem20-OCIAD1-CRISPR-20. The line was generated using CRISPR-Cas9D10A double nickase knockout strategy (Mali et al., 2013.

  14. Increasing access to kidney transplantation in countries with limited resources: the Indian experience with kidney paired donation.

    Science.gov (United States)

    Kute, Vivek B; Vanikar, Aruna V; Shah, Pankaj R; Gumber, Manoj R; Patel, Himanshu V; Engineer, Divyesh P; Modi, Pranjal R; Shah, Veena R; Trivedi, Hargovind L

    2014-10-01

    According to the Indian chronic kidney disease registry, in 2010 only 2% of end stage kidney disease patients were managed with kidney transplantation, 37% were managed with dialysis and 61% were treated conservatively without renal replacement therapy. In countries like India, where a well-organized deceased donor kidney transplantation program is not available, living donor kidney transplantation is the major source of organs for kidney transplantation. The most common reason to decline a donor for directed living donation is ABO incompatibility, which eliminates up to one third of the potential living donor pool. Because access to transplantation with human leukocyte antigen (HLA)-desensitization protocols and ABO incompatible transplantation is very limited due to high costs and increased risk of infections from more intense immunosuppression, kidney paired donation (KPD) promises hope to a growing number of end stage kidney disease patients. KPD is a rapidly growing and cost-effective living donor kidney transplantation strategy for patients who are incompatible with their healthy, willing living donor. In principle, KPD is feasible for any centre that performs living donor kidney transplantation. In transplant centres with a large living donor kidney transplantation program KPD does not require extra infrastructure, decreases waiting time, avoids transplant tourism and prevents commercial trafficking. Although KPD is still underutilized in India, it has been performed more frequently in recent times. To substantially increase donor pool and transplant rates, transplant centres should work together towards a national KPD program and frame a uniform acceptable allocation policy. © 2014 Asian Pacific Society of Nephrology.

  15. Importance of the pluripotency factor LIN28 in the mammalian nucleolus during early embryonic development.

    Science.gov (United States)

    Vogt, Edgar J; Meglicki, Maciej; Hartung, Kristina Ilka; Borsuk, Ewa; Behr, Rüdiger

    2012-12-01

    The maternal nucleolus is required for proper activation of the embryonic genome (EGA) and early embryonic development. Nucleologenesis is characterized by the transformation of a nucleolar precursor body (NPB) to a mature nucleolus during preimplantation development. However, the function of NPBs and the involved molecular factors are unknown. We uncover a novel role for the pluripotency factor LIN28, the biological significance of which was previously demonstrated in the reprogramming of human somatic cells to induced pluripotent stem (iPS) cells. Here, we show that LIN28 accumulates at the NPB and the mature nucleolus in mouse preimplantation embryos and embryonic stem cells (ESCs), where it colocalizes with the nucleolar marker B23 (nucleophosmin 1). LIN28 has nucleolar localization in non-human primate (NHP) preimplantation embryos, but is cytoplasmic in NHP ESCs. Lin28 transcripts show a striking decline before mouse EGA, whereas LIN28 protein localizes to NPBs at the time of EGA. Following knockdown with a Lin28 morpholino, the majority of embryos arrest between the 2- and 4-cell stages and never develop to morula or blastocyst. Lin28 morpholino-injected embryos arrested at the 2-cell stage were not enriched with nucleophosmin at presumptive NPB sites, indicating that functional NPBs were not assembled. Based on these results, we propose that LIN28 is an essential factor of nucleologenesis during early embryonic development.

  16. Of mice and men: divergence of gene expression patterns in kidney.

    Directory of Open Access Journals (Sweden)

    Lydie Cheval

    Full Text Available Since the development of methods for homologous gene recombination, mouse models have played a central role in research in renal pathophysiology. However, many published and unpublished results show that mice with genetic changes mimicking human pathogenic mutations do not display the human phenotype. These functional differences may stem from differences in gene expression between mouse and human kidneys. However, large scale comparison of gene expression networks revealed conservation of gene expression among a large panel of human and mouse tissues including kidneys. Because renal functions result from the spatial integration of elementary processes originating in the glomerulus and the successive segments constituting the nephron, we hypothesized that differences in gene expression profiles along the human and mouse nephron might account for different behaviors. Analysis of SAGE libraries generated from the glomerulus and seven anatomically defined nephron segments from human and mouse kidneys allowed us to identify 4644 pairs of gene orthologs expressed in either one or both species. Quantitative analysis shows that many transcripts are present at different levels in the two species. It also shows poor conservation of gene expression profiles, with less than 10% of the 4644 gene orthologs displaying a higher conservation of expression profiles than the neutral expectation (p<0.05. Accordingly, hierarchical clustering reveals a higher degree of conservation of gene expression patterns between functionally unrelated kidney structures within a given species than between cognate structures from the two species. Similar findings were obtained for sub-groups of genes with either kidney-specific or housekeeping functions. Conservation of gene expression at the scale of the whole organ and divergence at the level of its constituting sub-structures likely account for the fact that although kidneys assume the same global function in the two species

  17. Organizing Organoids: Stem Cells Branch Out.

    Science.gov (United States)

    Davies, Jamie A

    2017-12-07

    In this issue of Cell Stem Cell, Taguchi and Nishinakamura (2017) describe a carefully optimized method for making a branch-competent ureteric bud, a tissue fundamental to kidney development, from mouse embryonic stem cells and human induced pluripotent stem cells. The work illuminates embryology and has important implications for making more realistic kidney organoids. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Experiment list: SRX367330 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available nology) || sirna transfection=siBrd4 http://dbarchive.bi...=HEK293T cell || cell line=Human Embryonic Kidney 293 cells || chip antibody=CDK9 || chip antibody details=2316S (Cell Signaling Tech

  19. Comparative study of human embryonic stem cells (hESC and human induced pluripotent stem cells (hiPSC as a treatment for retinal dystrophies

    Directory of Open Access Journals (Sweden)

    Marina Riera

    2016-01-01

    Full Text Available Retinal dystrophies (RD are major causes of familial blindness and are characterized by progressive dysfunction of photoreceptor and/or retinal pigment epithelium (RPE cells. In this study, we aimed to evaluate and compare the therapeutic effects of two pluripotent stem cell (PSC-based therapies. We differentiated RPE from human embryonic stem cells (hESCs or human-induced pluripotent stem cells (hiPSCs and transplanted them into the subretinal space of the Royal College of Surgeons (RCS rat. Once differentiated, cells from either source of PSC resembled mature RPE in their morphology and gene expression profile. Following transplantation, both hESC- and hiPSC-derived cells maintained the expression of specific RPE markers, lost their proliferative capacity, established tight junctions, and were able to perform phagocytosis of photoreceptor outer segments. Remarkably, grafted areas showed increased numbers of photoreceptor nuclei and outer segment disk membranes. Regardless of the cell source, human transplants protected retina from cell apoptosis, glial stress and accumulation of autofluorescence, and responded better to light stimuli. Altogether, our results show that hESC- and hiPSC-derived cells survived, migrated, integrated, and functioned as RPE in the RCS rat retina, providing preclinical evidence that either PSC source could be of potential benefit for treating RD.

  20. Comparative study of human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) as a treatment for retinal dystrophies

    Science.gov (United States)

    Riera, Marina; Fontrodona, Laura; Albert, Silvia; Ramirez, Diana Mora; Seriola, Anna; Salas, Anna; Muñoz, Yolanda; Ramos, David; Villegas-Perez, Maria Paz; Zapata, Miguel Angel; Raya, Angel; Ruberte, Jesus; Veiga, Anna; Garcia-Arumi, Jose

    2016-01-01

    Retinal dystrophies (RD) are major causes of familial blindness and are characterized by progressive dysfunction of photoreceptor and/or retinal pigment epithelium (RPE) cells. In this study, we aimed to evaluate and compare the therapeutic effects of two pluripotent stem cell (PSC)-based therapies. We differentiated RPE from human embryonic stem cells (hESCs) or human-induced pluripotent stem cells (hiPSCs) and transplanted them into the subretinal space of the Royal College of Surgeons (RCS) rat. Once differentiated, cells from either source of PSC resembled mature RPE in their morphology and gene expression profile. Following transplantation, both hESC- and hiPSC-derived cells maintained the expression of specific RPE markers, lost their proliferative capacity, established tight junctions, and were able to perform phagocytosis of photoreceptor outer segments. Remarkably, grafted areas showed increased numbers of photoreceptor nuclei and outer segment disk membranes. Regardless of the cell source, human transplants protected retina from cell apoptosis, glial stress and accumulation of autofluorescence, and responded better to light stimuli. Altogether, our results show that hESC- and hiPSC-derived cells survived, migrated, integrated, and functioned as RPE in the RCS rat retina, providing preclinical evidence that either PSC source could be of potential benefit for treating RD. PMID:27006969

  1. Progranulin serum levels in human kidney transplant recipients: A longitudinal study.

    Science.gov (United States)

    Nicoletto, Bruna Bellincanta; Pedrollo, Elis Forcellini; Carpes, Larissa Salomoni; Coloretti, Natália Gomes; Krolikowski, Thaiana Cirino; Souza, Gabriela Corrêa; Gonçalves, Luiz Felipe Santos; Manfro, Roberto Ceratti; Canani, Luis Henrique

    2018-01-01

    The adipokine progranulin has metabolic proprieties, playing a role in obesity and insulin resistance. Its levels seems to be dependent of renal function, since higher progranulin concentration is observed in patients with end-stage kidney disease. However, the effect of kidney transplantation on progranulin remains unknown. To assess the serum progranulin levels in kidney transplant recipients before and after kidney transplantation. Forty-six prospective kidney transplant recipients were included in this longitudinal study. They were evaluated before transplantation and at three and twelve months after transplantation. Clinical, anthropometric and laboratorial measurements were assessed. Progranulin was determined with enzyme-linked immunosorbent assays. Serum progranulin significantly decreased in the early period after transplantation (from 72.78 ± 2.86 ng/mL before transplantation to 40.65 ± 1.49 ng/mL at three months; pProgranulin was associated with waist circumference and fasting plasma glucose after adjusted for age, gender, study period, glomerular filtration rate, interleukin-6, high sensitivity C reactive protein and adiponectin. Progranulin serum levels are increased before transplantation and a reduction is observed in the early period after transplantation, possibly attributed to an improvement in renal function. At one year after transplantation, an increment in progranulin is observed, seems to be independent of glomerular filtration, and remained significantly lower than before transplantation.

  2. Reading First Coordinates from the Nephrogenic Zone in Human Fetal Kidney.

    Science.gov (United States)

    Minuth, Will W

    2018-01-01

    While substantial information is available on organ anlage and the primary formation of nephrons, molecular mechanisms acting during the late development of the human kidney have received an astonishing lack of attention. In healthy newborn babies, nephrogenesis takes place unnoticed until birth. Upon delivery, morphogenetic activity in the nephrogenic zone decreases, and the stem cell niches aligned beyond the organ capsule vanish by an unknown signal. However, this signal also plays a key role in preterm and low birth weight babies. Although they are born in a phase of active nephrogenesis, pathological findings illustrate that they evolve to a high incidence oligonephropathy and prematurity of renal parenchyma. Different extra- and intrauterine influences seem to be responsible, but independent from chemical nature, all of them culminate in the nephrogenic zone. One assumes that the marred development is caused either by an overshoot of metabolites, misleading signaling of morphogens, unbalanced synthesis of extracellular matrix or restricted contact between mesenchymal and epithelial stem cells. Even more surprising is that there is only a few vague morphological information of the nephrogenic zone in the human fetal kidney available and ultrastructural data is severely lacking. On this account, the first coordinates were determined by optical microscopy and morphometry. Without claiming to be complete, generated results made it possible to create schematic illustrations true to scale for orientation. It will help graduating students, young pediatricians, pathologists, and scientists working in the field of biomedicine to interpret professionally the nephrogenic zone and contained niches. © 2017 S. Karger AG, Basel.

  3. New kidney physiopathology concepts acquired from a quantitative kidney function examination: the 197Hg uptake test

    International Nuclear Information System (INIS)

    Raynaud, C.; Ricard, S.; Knipper, M.

    1976-01-01

    The kidney function of 331 ureter obstruction cases, of which 112 unilateral, was studied by the radioactive Hg renal uptake test. The results obtained call for the following remarks: kidneys deprived of activity by a chronic ureteral obstacle retain a minimal function representing about a quarter the normal value, which seems not to improve after removal of the obstacle. Apart from these cases, conservation surgery in unilateral ureter obstructions is followed by a significant kidney function improvement on the operated side in more than one case in three. In 43% of ureter obstructions considered as unilateral the functional value of both kidneys is impaired. The main features of human compensatory kidney hypertrophy are beginning to emerge: it develops on the less affected kidney and it settles in and regresses slowly. Moreover the results reported show that it adapts to keep the total function at a fixed value in a given subject. Five exceptions to this rule however developed a compensatory hypertrophy significantly higher than expected after surgery, as through a new limit had been established after the operation. These exceptional cases are very interesting from both a practical and theoretical viewpoint [fr

  4. Higher-Density Culture in Human Embryonic Stem Cells Results in DNA Damage and Genome Instability

    Directory of Open Access Journals (Sweden)

    Kurt Jacobs

    2016-03-01

    Full Text Available Human embryonic stem cells (hESC show great promise for clinical and research applications, but their well-known proneness to genomic instability hampers the development to their full potential. Here, we demonstrate that medium acidification linked to culture density is the main cause of DNA damage and genomic alterations in hESC grown on feeder layers, and this even in the short time span of a single passage. In line with this, we show that increasing the frequency of the medium refreshments minimizes the levels of DNA damage and genetic instability. Also, we show that cells cultured on laminin-521 do not present this increase in DNA damage when grown at high density, although the (long-term impact on their genomic stability remains to be elucidated. Our results explain the high levels of genome instability observed over the years by many laboratories worldwide, and show that the development of optimal culture conditions is key to solving this problem.

  5. Are human embryos Kantian persons?: Kantian considerations in favor of embryonic stem cell research.

    Science.gov (United States)

    Manninen, Bertha Alvarez

    2008-01-31

    One argument used by detractors of human embryonic stem cell research (hESCR) invokes Kant's formula of humanity, which proscribes treating persons solely as a means to an end, rather than as ends in themselves. According to Fuat S. Oduncu, for example, adhering to this imperative entails that human embryos should not be disaggregated to obtain pluripotent stem cells for hESCR. Given that human embryos are Kantian persons from the time of their conception, killing them to obtain their cells for research fails to treat them as ends in themselves. This argument assumes two points that are rather contentious given a Kantian framework. First, the argument assumes that when Kant maintains that humanity must be treated as an end in itself, he means to argue that all members of the species Homo sapiens must be treated as ends in themselves; that is, that Kant regards personhood as co-extensive with belonging to the species Homo sapiens. Second, the argument assumes that the event of conception is causally responsible for the genesis of a Kantian person and that, therefore, an embryo is a Kantian person from the time of its conception. In this paper, I will present challenges against these two assumptions by engaging in an exegetical study of some of Kant's works. First, I will illustrate that Kant did not use the term "humanity" to denote a biological species, but rather the capacity to set ends according to reason. Second, I will illustrate that it is difficult given a Kantian framework to denote conception (indeed any biological event) as causally responsible for the creation of a person. Kant ascribed to a dualistic view of human agency, and personhood, according to him, was derived from the supersensible capacity for reason. To argue that a Kantian person is generated due to the event of conception ignores Kant's insistence in various aspects of his work that it is not possible to understand the generation of a person qua a physical operation. Finally, I will end the

  6. Are human embryos Kantian persons?: Kantian considerations in favor of embryonic stem cell research

    Directory of Open Access Journals (Sweden)

    Manninen Bertha

    2008-01-01

    Full Text Available Abstract One argument used by detractors of human embryonic stem cell research (hESCR invokes Kant's formula of humanity, which proscribes treating persons solely as a means to an end, rather than as ends in themselves. According to Fuat S. Oduncu, for example, adhering to this imperative entails that human embryos should not be disaggregated to obtain pluripotent stem cells for hESCR. Given that human embryos are Kantian persons from the time of their conception, killing them to obtain their cells for research fails to treat them as ends in themselves. This argument assumes two points that are rather contentious given a Kantian framework. First, the argument assumes that when Kant maintains that humanity must be treated as an end in itself, he means to argue that all members of the species Homo sapiens must be treated as ends in themselves; that is, that Kant regards personhood as co-extensive with belonging to the species Homo sapiens. Second, the argument assumes that the event of conception is causally responsible for the genesis of a Kantian person and that, therefore, an embryo is a Kantian person from the time of its conception. In this paper, I will present challenges against these two assumptions by engaging in an exegetical study of some of Kant's works. First, I will illustrate that Kant did not use the term "humanity" to denote a biological species, but rather the capacity to set ends according to reason. Second, I will illustrate that it is difficult given a Kantian framework to denote conception (indeed any biological event as causally responsible for the creation of a person. Kant ascribed to a dualistic view of human agency, and personhood, according to him, was derived from the supersensible capacity for reason. To argue that a Kantian person is generated due to the event of conception ignores Kant's insistence in various aspects of his work that it is not possible to understand the generation of a person qua a physical

  7. La protection réelle de l’embryon The real protection of the embryo

    Directory of Open Access Journals (Sweden)

    Cosimo Marco Mazzoni

    2009-04-01

    Full Text Available Tutelle réelle de l’embryon signifie protection effective sur la base du droit positif en vigueur. L’étude cherche à affirmer que l’embryon humain est un objet sous tutelle, établi par l’ordre juridique. Elle conteste que l’embryon soit titulaire de droits subjectifs et donc qu’il puisse acquérir la qualification juridique de personne. La signification du terme de vie est conceptuellement différente au sens biologique et au sens juridique. Les Codes civils européens assignent la capacité juridique au fœtus qui est né vivant. Avant cet instant, le système juridique est en mesure d’accorder une protection à l’embryon toutefois différente de la norme qui protège la vie humaine de la personne déjà née. Bref, la protection de l’embryon est indépendante de sa qualification comme sujet.Real protection means effective protection through existing positive law. The article attempts to demonstrate that the embryo is an object entitled to a safeguards attributed by the law to human life as such. It denies that the embryo has subjective rights and therefore can acquire the legal qualification of subject of law or a person. The meaning of the concept of life is different, be it from the biological or legal point of view. European civil codes give legal capacity to the foetus who was born alive. Before this moment, the legal system has the possibility to give protection to the embryo but this protection is different from the norm protecting human life of an already born person. Consequently the protection of the embryo is independent from the qualification of the embryo as a subject.

  8. Analysis of mitochondrial function and localisation during human embryonic stem cell differentiation in vitro.

    Directory of Open Access Journals (Sweden)

    Andrew B J Prowse

    Full Text Available Human embryonic stem cell (hESC derivatives show promise as viable cell therapy options for multiple disorders in different tissues. Recent advances in stem cell biology have lead to the reliable production and detailed molecular characterisation of a range of cell-types. However, the role of mitochondria during differentiation has yet to be fully elucidated. Mitochondria mediate a cells response to altered energy requirements (e.g. cardiomyocyte contraction and, as such, the mitochondrial phenotype is likely to change during the dynamic process of hESC differentiation. We demonstrate that manipulating mitochondrial biogenesis alters mesendoderm commitment. To investigate mitochondrial localisation during early lineage specification of hESCs we developed a mitochondrial reporter line, KMEL2, in which sequences encoding the green fluorescent protein (GFP are targeted to the mitochondria. Differentiation of KMEL2 lines into the three germ layers showed that the mitochondria in these differentiated progeny are GFP positive. Therefore, KMEL2 hESCs facilitate the study of mitochondria in a range of cell types and, importantly, permit real-time analysis of mitochondria via the GFP tag.

  9. Renal denervation and hypertension - The need to investigate unintended effects and neural control of the human kidney.

    Science.gov (United States)

    Grisk, Olaf

    2017-05-01

    Increased renal sympathetic nerve activity (RSNA) is present in human and experimental forms of arterial hypertension. Experimental denervation studies showed that renal nerves contribute to the development of hypertension. Clinical trials provided equivocal results on the antihypertensive efficacy of renal denervation in patients spurring discussions on technical aspects of renal denervation and further research on the role of renal nerves for the regulation of kidney function as well as the pathophysiology of hypertension. This review summarizes recent findings on adrenoceptor expression and function in the human kidney, adrenoceptor-dependent regulation of sodium chloride transport in the distal nephron, experimental data on chronic RSNA and the development of high arterial pressure and consequences of renal denervation that may limit its antihypertensive efficacy. Future research needs to reduce the gap between our knowledge on neural control of renal function in animals vs. humans to facilitate translation of experimental animal data to humans. More experimental studies on the temporal relationship between RSNA and arterial pressure in the chronic setting are needed to better define the pathogenetic role of heightened RSNA in different forms of arterial hypertension in order to improve the rational basis for renal denervation in antihypertensive therapy. Finally, research on unintended consequences of renal denervation including but not limited to reinnervation and denervation supersensitivity needs to be intensified to further assess the potential of renal denervation to slow the progression of renal disease and hypertension. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury.

    Science.gov (United States)

    Keirstead, Hans S; Nistor, Gabriel; Bernal, Giovanna; Totoiu, Minodora; Cloutier, Frank; Sharp, Kelly; Steward, Oswald

    2005-05-11

    Demyelination contributes to loss of function after spinal cord injury, and thus a potential therapeutic strategy involves replacing myelin-forming cells. Here, we show that transplantation of human embryonic stem cell (hESC)-derived oligodendrocyte progenitor cells (OPCs) into adult rat spinal cord injuries enhances remyelination and promotes improvement of motor function. OPCs were injected 7 d or 10 months after injury. In both cases, transplanted cells survived, redistributed over short distances, and differentiated into oligodendrocytes. Animals that received OPCs 7 d after injury exhibited enhanced remyelination and substantially improved locomotor ability. In contrast, when OPCs were transplanted 10 months after injury, there was no enhanced remyelination or locomotor recovery. These studies document the feasibility of predifferentiating hESCs into functional OPCs and demonstrate their therapeutic potential at early time points after spinal cord injury.

  11. Efficient derivation of multipotent neural stem/progenitor cells from non-human primate embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Hiroko Shimada

    Full Text Available The common marmoset (Callithrix jacchus is a small New World primate that has been used as a non-human primate model for various biomedical studies. We previously demonstrated that transplantation of neural stem/progenitor cells (NS/PCs derived from mouse and human embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs promote functional locomotor recovery of mouse spinal cord injury models. However, for the clinical application of such a therapeutic approach, we need to evaluate the efficacy and safety of pluripotent stem cell-derived NS/PCs not only by xenotransplantation, but also allotransplantation using non-human primate models to assess immunological rejection and tumorigenicity. In the present study, we established a culture method to efficiently derive NS/PCs as neurospheres from common marmoset ESCs. Marmoset ESC-derived neurospheres could be passaged repeatedly and showed sequential generation of neurons and astrocytes, similar to that of mouse ESC-derived NS/PCs, and gave rise to functional neurons as indicated by calcium imaging. Although marmoset ESC-derived NS/PCs could not differentiate into oligodendrocytes under default culture conditions, these cells could abundantly generate oligodendrocytes by incorporating additional signals that recapitulate in vivo neural development. Moreover, principal component analysis of microarray data demonstrated that marmoset ESC-derived NS/PCs acquired similar gene expression profiles to those of fetal brain-derived NS/PCs by repeated passaging. Therefore, marmoset ESC-derived NS/PCs may be useful not only for accurate evaluation by allotransplantation of NS/PCs into non-human primate models, but are also applicable to analysis of iPSCs established from transgenic disease model marmosets.

  12. Inhibition of Sirt1 promotes neural progenitors toward motoneuron differentiation from human embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun; Wang, Jing [Department of Neurology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191 (China); Clinical Stem Cell Center, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191 (China); Chen, Guian [Clinical Stem Cell Center, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191 (China); Reproductive Medical Center, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191 (China); Fan, Dongsheng, E-mail: dsfan@yahoo.cn [Department of Neurology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191 (China); Clinical Stem Cell Center, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191 (China); Deng, Min, E-mail: dengmin1706@yahoo.com.cn [Department of Neurology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191 (China); Clinical Stem Cell Center, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191 (China)

    2011-01-14

    Research highlights: {yields} Nicotinamide inhibit Sirt1. {yields} MASH1 and Ngn2 activation. {yields} Increase the expression of HB9. {yields} Motoneurons formation increases significantly. -- Abstract: Several protocols direct human embryonic stem cells (hESCs) toward differentiation into functional motoneurons, but the efficiency of motoneuron generation varies based on the human ESC line used. We aimed to develop a novel protocol to increase the formation of motoneurons from human ESCs. In this study, we tested a nuclear histone deacetylase protein, Sirt1, to promote neural precursor cell (NPC) development during differentiation of human ESCs into motoneurons. A specific inhibitor of Sirt1, nicotinamide, dramatically increased motoneuron formation. We found that about 60% of the cells from the total NPCs expressed HB9 and {beta}III-tubulin, commonly used motoneuronal markers found in neurons derived from ESCs following nicotinamide treatment. Motoneurons derived from ESC expressed choline acetyltransferase (ChAT), a positive marker of mature motoneuron. Moreover, we also examined the transcript levels of Mash1, Ngn2, and HB9 mRNA in the differentiated NPCs treated with the Sirt1 activator resveratrol (50 {mu}M) or inhibitor nicotinamide (100 {mu}M). The levels of Mash1, Ngn2, and HB9 mRNA were significantly increased after nicotinamide treatment compared with control groups, which used the traditional protocol. These results suggested that increasing Mash1 and Ngn2 levels by inhibiting Sirt1 could elevate HB9 expression, which promotes motoneuron differentiation. This study provides an alternative method for the production of transplantable motoneurons, a key requirement in the development of hESC-based cell therapy in motoneuron disease.

  13. Inhibition of Sirt1 promotes neural progenitors toward motoneuron differentiation from human embryonic stem cells

    International Nuclear Information System (INIS)

    Zhang, Yun; Wang, Jing; Chen, Guian; Fan, Dongsheng; Deng, Min

    2011-01-01

    Research highlights: → Nicotinamide inhibit Sirt1. → MASH1 and Ngn2 activation. → Increase the expression of HB9. → Motoneurons formation increases significantly. -- Abstract: Several protocols direct human embryonic stem cells (hESCs) toward differentiation into functional motoneurons, but the efficiency of motoneuron generation varies based on the human ESC line used. We aimed to develop a novel protocol to increase the formation of motoneurons from human ESCs. In this study, we tested a nuclear histone deacetylase protein, Sirt1, to promote neural precursor cell (NPC) development during differentiation of human ESCs into motoneurons. A specific inhibitor of Sirt1, nicotinamide, dramatically increased motoneuron formation. We found that about 60% of the cells from the total NPCs expressed HB9 and βIII-tubulin, commonly used motoneuronal markers found in neurons derived from ESCs following nicotinamide treatment. Motoneurons derived from ESC expressed choline acetyltransferase (ChAT), a positive marker of mature motoneuron. Moreover, we also examined the transcript levels of Mash1, Ngn2, and HB9 mRNA in the differentiated NPCs treated with the Sirt1 activator resveratrol (50 μM) or inhibitor nicotinamide (100 μM). The levels of Mash1, Ngn2, and HB9 mRNA were significantly increased after nicotinamide treatment compared with control groups, which used the traditional protocol. These results suggested that increasing Mash1 and Ngn2 levels by inhibiting Sirt1 could elevate HB9 expression, which promotes motoneuron differentiation. This study provides an alternative method for the production of transplantable motoneurons, a key requirement in the development of hESC-based cell therapy in motoneuron disease.

  14. International Meeting on Cholinesterases (5th) Held in Madras, India on 24-28 September, 1994.

    Science.gov (United States)

    1994-09-01

    found that hydrolysis of thioesters deviated from simple Michaelis-Menten model. Kinetics was triphasic , displaying complexities of both BuChE and ACHE...of recombinant human acetylcholinesterase (rHuAChE) produced by human embryonic kidney cell line (293) in a fixed-bed reactor (1) was investigated at

  15. Hydroxychloroquine susceptibility determination of Coxiella burnetii in human embryonic lung (HEL) fibroblast cells.

    Science.gov (United States)

    Angelakis, Emmanouil; Khalil, Jacques Bou; Le Bideau, Marion; Perreal, Celine; La Scola, Bernard; Raoult, Didier

    2017-07-01

    Coxiella burnetii, the causative agent of Q fever, survives and replicates in the acidic environment of monocytes/macrophages; hydroxychloroquine, through alkalinisation of the acidic vacuoles, is critical for the management of Q fever. In this study, a collection of C. burnetii strains isolated from human samples was tested to evaluate the in vitro minimum inhibitory concentrations (MICs) of doxycycline and hydroxychloroquine. Serial two-fold dilutions of doxycycline (0.25-8 mg/L) and hydroxychloroquine (0.25-4 mg/L) were added to C. burnetii-infected human embryonic lung (HEL) fibroblast cells after 48 h of incubation, in duplicate. DNA was detected by C. burnetii-specific semi-quantitative PCR with primers and probes designed for amplification of the IS1111 and IS30A spacers. A total of 29 C. burnetii isolates obtained from 29 patients were tested. Doxycycline MICs ranged from 0.25 mg/L to 0.5 mg/L and hydroxychloroquine MICs from 0.25 mg/L to >4 mg/L. Four C. burnetii stains had hydroxychloroquine MICs ≤ 1 mg/L. The concentration of hydroxychloroquine was associated with a significant decrease in C. burnetii DNA copies in HEL cells based on linear regression analysis (P= 0.01). Recommended serum concentrations of hydroxychloroquine significantly reduced the growth of C. burnetii. Moreover, some C. burnetii strains presented hydroxychloroquine MICs below the recommended serum concentrations, indicating that, for these cases, hydroxychloroquine treatment alone may even be effective. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  16. Which bank? A guardian model for regulation of embryonic stem cell research in Australia.

    Science.gov (United States)

    McLennan, A

    2007-08-01

    In late 2005 the Legislation Review: Prohibition of Human Cloning Act 2002 (Cth) and the Research Involving Human Embryos Act 2002 (Cth) recommended the establishment of an Australian stem cell bank. This article aims to address a lack of discussion of issues surrounding stem cell banking by suggesting possible answers to the questions of whether Australia should establish a stem cell bank and what its underlying philosophy and functions should be. Answers are developed through an analysis of regulatory, scientific and intellectual property issues relating to embryonic stem cell research in the United Kingdom, United States and Australia. This includes a detailed analysis of the United Kingdom Stem Cell Bank. It is argued that a "guardian" model stem cell bank should be established in Australia. This bank would aim to promote the maximum public benefit from human embryonic stem cell research by providing careful regulatory oversight and addressing ethical issues, while also facilitating research by addressing practical scientific concerns and intellectual property issues.

  17. The transcriptomes of novel marmoset monkey embryonic stem cell lines reflect distinct genomic features.

    Science.gov (United States)

    Debowski, Katharina; Drummer, Charis; Lentes, Jana; Cors, Maren; Dressel, Ralf; Lingner, Thomas; Salinas-Riester, Gabriela; Fuchs, Sigrid; Sasaki, Erika; Behr, Rüdiger

    2016-07-07

    Embryonic stem cells (ESCs) are useful for the study of embryonic development. However, since research on naturally conceived human embryos is limited, non-human primate (NHP) embryos and NHP ESCs represent an excellent alternative to the corresponding human entities. Though, ESC lines derived from naturally conceived NHP embryos are still very rare. Here, we report the generation and characterization of four novel ESC lines derived from natural preimplantation embryos of the common marmoset monkey (Callithrix jacchus). For the first time we document derivation of NHP ESCs derived from morula stages. We show that quantitative chromosome-wise transcriptome analyses precisely reflect trisomies present in both morula-derived ESC lines. We also demonstrate that the female ESC lines exhibit different states of X-inactivation which is impressively reflected by the abundance of the lncRNA X inactive-specific transcript (XIST). The novel marmoset ESC lines will promote basic primate embryo and ESC studies as well as preclinical testing of ESC-based regenerative approaches in NHP.

  18. Restricted intra-embryonic origin of bona fide hematopoietic stem cells in the chicken

    NARCIS (Netherlands)

    Yvernogeau, Laurent; Robin, Catherine

    2017-01-01

    Hematopoietic stem cells (HSCs), which are responsible for blood cell production, are generated during embryonic development. Human and chicken embryos share features that position the chicken as a reliable and accessible alternative model to study developmental hematopoiesis. However, the existence

  19. Kidney transplant

    Science.gov (United States)

    ... always take your medicine as directed. Alternative Names Renal transplant; Transplant - kidney Patient Instructions Kidney removal - discharge Images Kidney anatomy Kidney - blood and urine flow Kidneys Kidney transplant - ...

  20. Physiological oxygen prevents frequent silencing of the DLK1-DIO3 cluster during human embryonic stem cells culture.

    Science.gov (United States)

    Xie, Pingyuan; Sun, Yi; Ouyang, Qi; Hu, Liang; Tan, Yueqiu; Zhou, Xiaoying; Xiong, Bo; Zhang, Qianjun; Yuan, Ding; Pan, Yi; Liu, Tiancheng; Liang, Ping; Lu, Guangxiu; Lin, Ge

    2014-02-01

    Genetic and epigenetic alterations are observed in long-term culture (>30 passages) of human embryonic stem cells (hESCs); however, little information is available in early cultures. Through a large-scale gene expression analysis between initial-passage hESCs (ihESCs, cell derivatives, possibly through attenuation of the expression and phosphorylation of p53. Furthermore, we demonstrated that 5% oxygen, instead of the commonly used 20% oxygen, is required for preserving the expression of the DLK1-DIO3 cluster. Overall, the data suggest that active expression of the DLK1-DIO3 cluster represents a new biomarker for epigenetic stability of hESCs and indicates the importance of using a proper physiological oxygen level during the derivation and culture of hESCs. © AlphaMed Press.