WorldWideScience

Sample records for human dna increase

  1. No increased sperm DNA fragmentation index in semen containing human papillomavirus or herpesvirus

    DEFF Research Database (Denmark)

    Kaspersen, Maja Døvling; Bungum, Mona; Fedder, Jens

    2013-01-01

    It remains unknown whether human papillomaviruses (HPVs) or human herpesviruses (HHVs) in semen affect sperm DNA integrity. We investigated whether the presence of these viruses in semen was associated with an elevated sperm DNA fragmentation index. Semen from 76 sperm donors was examined by a PCR......-based hybridization array that identifies all HHVs and 35 of the most common HPVs. Sperm DNA integrity was determined by the sperm chromatin structure assay. HPVs or HHVs, or both, were found in 57% of semen samples; however, sperm DNA fragmentation index was not increased in semen containing these viruses....

  2. High Glucose-Induced Oxidative Stress Increases the Copy Number of Mitochondrial DNA in Human Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Ghada Al-Kafaji

    2013-01-01

    Full Text Available Oxidative damage to mitochondrial DNA (mtDNA has been linked to the pathogenicity of diabetic nephropathy. We tested the hypothesis that mtDNA copy number may be increased in human mesangial cells in response to high glucose-induced reactive oxygen species (ROS to compensate for damaged mtDNA. The effect of manganese superoxide dismutase mimetic (MnTBAP on glucose-induced mtDNA copy number was also examined. The copy number of mtDNA was determined by real-time PCR in human mesangial cells cultured in 5 mM glucose, 25 mM glucose, and mannitol (osmotic control, as well as in cells cultured in 25 mM glucose in the presence and absence of 200 μM MnTBAP. Intracellular ROS was assessed by confocal microscopy and flow cytometry in human mesangial cells. The copy number of mtDNA was significantly increased when human mesangial cells were incubated with 25 mM glucose compared to 5 mM glucose and mannitol. In addition, 25 mM glucose rapidly generated ROS in the cells, which was not detected in 5 mM glucose. Furthermore, mtDNA copy number was significantly decreased and maintained to normal following treatment of cells with 25 mM glucose and MnTBAP compared to 25 mM glucose alone. Inclusion of MnTBAP during 25 mM glucose incubation inhibited mitochondrial superoxide in human mesangial cells. Increased mtDNA copy number in human mesangial cells by high glucose could contribute to increased mitochondrial superoxide, and prevention of mtDNA copy number could have potential in retarding the development of diabetic nephropathy.

  3. Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium β-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Korzeneva, Inna B., E-mail: inna.korzeneva@molgen.vniief.ru [Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190, Sarov, 37 Mira ave., Nizhniy Novgorod Region (Russian Federation); Kostuyk, Svetlana V.; Ershova, Liza S. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, 115478 Moscow, 1 Moskvorechye str. (Russian Federation); Osipov, Andrian N. [Federal Medial and Biological Center named after Burnazyan of the Federal Medical and Biological Agency (FMBTz named after Burnazyan of FMBA), Moscow (Russian Federation); State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Zhivopisnaya, 46, Moscow, 123098 (Russian Federation); Zhuravleva, Veronika F.; Pankratova, Galina V. [Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190, Sarov, 37 Mira ave., Nizhniy Novgorod Region (Russian Federation); Porokhovnik, Lev N.; Veiko, Natalia N. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, 115478 Moscow, 1 Moskvorechye str. (Russian Federation)

    2015-09-15

    Highlights: • The chronic exposure to low-dose IR induces DSBs in human lymphocytes (TM index). • Exposure to IR decreases the level of human circulating DNA (cfDNA index). • IR induces an increase of DNase1 activity (DNase1 index) in plasma. • IR induces an increase of the level of antibodies to DNA (Ab DNA index) in plasma. • The ratio cfDNA/(DNase 1 × Ab DNA × TM) is a potential marker of human exposure to IR. - Abstract: The blood plasma of healthy people contains cell-fee (circulating) DNA (cfDNA). Apoptotic cells are the main source of the cfDNA. The cfDNA concentration increases in case of the organism’s cell death rate increase, for example in case of exposure to high-dose ionizing radiation (IR). The objects of the present research are the blood plasma and blood lymphocytes of people, who contacted occupationally with the sources of external gamma/neutron radiation or internal β-radiation of tritium N = 176). As the controls (references), blood samples of people, who had never been occupationally subjected to the IR sources, were used (N = 109). With respect to the plasma samples of each donor there were defined: the cfDNA concentration (the cfDNA index), DNase1 activity (the DNase1 index) and titre of antibodies to DNA (the Ab DNA index). The general DNA damage in the cells was defined (using the Comet assay, the tail moment (TM) index). A chronic effect of the low-dose ionizing radiation on a human being is accompanied by the enhancement of the DNA damage in lymphocytes along with a considerable cfDNA content reduction, while the DNase1 content and concentration of antibodies to DNA (Ab DNA) increase. All the aforementioned changes were also observed in people, who had not worked with the IR sources for more than a year. The ratio cfDNA/(DNase1 × Ab DNA × TM) is proposed to be used as a marker of the chronic exposure of a person to the external low-dose IR. It was formulated the assumption that the joint analysis of the cfDNA, DNase1, Ab

  4. Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium β-radiation.

    Science.gov (United States)

    Korzeneva, Inna B; Kostuyk, Svetlana V; Ershova, Liza S; Osipov, Andrian N; Zhuravleva, Veronika F; Pankratova, Galina V; Porokhovnik, Lev N; Veiko, Natalia N

    2015-09-01

    The blood plasma of healthy people contains cell-fee (circulating) DNA (cfDNA). Apoptotic cells are the main source of the cfDNA. The cfDNA concentration increases in case of the organism's cell death rate increase, for example in case of exposure to high-dose ionizing radiation (IR). The objects of the present research are the blood plasma and blood lymphocytes of people, who contacted occupationally with the sources of external gamma/neutron radiation or internal β-radiation of tritium N = 176). As the controls (references), blood samples of people, who had never been occupationally subjected to the IR sources, were used (N = 109). With respect to the plasma samples of each donor there were defined: the cfDNA concentration (the cfDNA index), DNase1 activity (the DNase1 index) and titre of antibodies to DNA (the Ab DNA index). The general DNA damage in the cells was defined (using the Comet assay, the tail moment (TM) index). A chronic effect of the low-dose ionizing radiation on a human being is accompanied by the enhancement of the DNA damage in lymphocytes along with a considerable cfDNA content reduction, while the DNase1 content and concentration of antibodies to DNA (Ab DNA) increase. All the aforementioned changes were also observed in people, who had not worked with the IR sources for more than a year. The ratio cfDNA/(DNase1×Ab DNA × TM) is proposed to be used as a marker of the chronic exposure of a person to the external low-dose IR. It was formulated the assumption that the joint analysis of the cfDNA, DNase1, Ab DNA and TM values may provide the information about the human organism's cell resistivity to chronic exposure to the low-dose IR and about the development of the adaptive response in the organism that is aimed, firstly, at the effective cfDNA elimination from the blood circulation, and, secondly - at survival of the cells, including the cells with the damaged DNA. Copyright © 2015. Published by Elsevier B.V.

  5. Increased levels of unscheduled DNA synthesis in UV-irradiated human fibroblasts pretreated with sodium butyrate

    International Nuclear Information System (INIS)

    Williams, J.I.; Friedberg, E.C.

    1982-01-01

    Pretreatment of growing normal and xeroderma pigmentosum (XP) human fibroblasts with sodium butyrate at concentrations of 5-20 mM results in increased levels of DNA repair synthesis measured by autoradiography after exposure of the cells to 254 nm UV radiation in the fluence range 0-25 J/m 2 . The phenomenon manifests as an increased extent and an increased initial rate of unscheduled DNA synthesis (UDS). This experimental result is not due to an artifact of autoradiography related to cell size. Xeroderma pigmentosum cells from complementation groups A, C, D and E and XP variant cells all exhibit increases in the levels of UV-induced UDS in response to sodium butyrate proportional to those observed with normal cells. These UDS increases associated with butyrate pretreatment correlate with demonstrable changes in intracellular thymidine pool size and suggest that sodium butyrate enhances uptake of exogenous radiolabeled thymidine during UV-induced repair synthesis by reducing endogenous levels of thymidine. (author)

  6. Increasing Nucleosome Occupancy Is Correlated with an Increasing Mutation Rate so Long as DNA Repair Machinery Is Intact

    Science.gov (United States)

    Taylor, Jared F.; Khattab, Omar S.; Chen, Yu-Han; Chen, Yumay; Jacobsen, Steven E.; Wang, Ping H.

    2015-01-01

    Deciphering the multitude of epigenomic and genomic factors that influence the mutation rate is an area of great interest in modern biology. Recently, chromatin has been shown to play a part in this process. To elucidate this relationship further, we integrated our own ultra-deep sequenced human nucleosomal DNA data set with a host of published human genomic and cancer genomic data sets. Our results revealed, that differences in nucleosome occupancy are associated with changes in base-specific mutation rates. Increasing nucleosome occupancy is associated with an increasing transition to transversion ratio and an increased germline mutation rate within the human genome. Additionally, cancer single nucleotide variants and microindels are enriched within nucleosomes and both the coding and non-coding cancer mutation rate increases with increasing nucleosome occupancy. There is an enrichment of cancer indels at the theoretical start (74 bp) and end (115 bp) of linker DNA between two nucleosomes. We then hypothesized that increasing nucleosome occupancy decreases access to DNA by DNA repair machinery and could account for the increasing mutation rate. Such a relationship should not exist in DNA repair knockouts, and we thus repeated our analysis in DNA repair machinery knockouts to test our hypothesis. Indeed, our results revealed no correlation between increasing nucleosome occupancy and increasing mutation rate in DNA repair knockouts. Our findings emphasize the linkage of the genome and epigenome through the nucleosome whose properties can affect genome evolution and genetic aberrations such as cancer. PMID:26308346

  7. Increasing Nucleosome Occupancy Is Correlated with an Increasing Mutation Rate so Long as DNA Repair Machinery Is Intact.

    Directory of Open Access Journals (Sweden)

    Puya G Yazdi

    Full Text Available Deciphering the multitude of epigenomic and genomic factors that influence the mutation rate is an area of great interest in modern biology. Recently, chromatin has been shown to play a part in this process. To elucidate this relationship further, we integrated our own ultra-deep sequenced human nucleosomal DNA data set with a host of published human genomic and cancer genomic data sets. Our results revealed, that differences in nucleosome occupancy are associated with changes in base-specific mutation rates. Increasing nucleosome occupancy is associated with an increasing transition to transversion ratio and an increased germline mutation rate within the human genome. Additionally, cancer single nucleotide variants and microindels are enriched within nucleosomes and both the coding and non-coding cancer mutation rate increases with increasing nucleosome occupancy. There is an enrichment of cancer indels at the theoretical start (74 bp and end (115 bp of linker DNA between two nucleosomes. We then hypothesized that increasing nucleosome occupancy decreases access to DNA by DNA repair machinery and could account for the increasing mutation rate. Such a relationship should not exist in DNA repair knockouts, and we thus repeated our analysis in DNA repair machinery knockouts to test our hypothesis. Indeed, our results revealed no correlation between increasing nucleosome occupancy and increasing mutation rate in DNA repair knockouts. Our findings emphasize the linkage of the genome and epigenome through the nucleosome whose properties can affect genome evolution and genetic aberrations such as cancer.

  8. Isolation and characterization of the human uracil DNA glycosylase gene

    International Nuclear Information System (INIS)

    Vollberg, T.M.; Siegler, K.M.; Cool, B.L.; Sirover, M.A.

    1989-01-01

    A series of anti-human placental uracil DNA glycosylase monoclonal antibodies was used to screen a human placental cDNA library in phage λgt11. Twenty-seven immunopositive plaques were detected and purified. One clone containing a 1.2-kilobase (kb) human cDNA insert was chosen for further study by insertion into pUC8. The resultant recombinant plasmid selected by hybridization a human placental mRNA that encoded a 37-kDa polypeptide. This protein was immunoprecipitated specifically by an anti-human placenta uracil DNA glycosylase monoclonal antibody. RNA blot-hybridization (Northern) analysis using placental poly(A) + RNA or total RNA from four different human fibroblast cell strains revealed a single 1.6-kb transcript. Genomic blots using DNA from each cell strain digested with either EcoRI or PstI revealed a complex pattern of cDNA-hydridizing restriction fragments. The genomic analysis for each enzyme was highly similar in all four human cell strains. In contrast, a single band was observed when genomic analysis was performed with the identical DNA digests with an actin gene probe. During cell proliferation there was an increase in the level of glycosylase mRNA that paralleled the increase in uracil DNA glycosylase enzyme activity. The isolation of the human uracil DNA glycosylase gene permits an examination of the structure, organization, and expression of a human DNA repair gene

  9. Cells Lacking mtDNA Display Increased dNTP Pools upon DNA Damage

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    Imbalanced dNTP pools are highly mutagenic due to a deleterious effect on DNA polymerase fidelity. Mitochondrial DNA defects, including mutations and deletions, are commonly found in a wide variety of different cancer types. In order to further study the interconnection between dNTP pools...... and mitochondrial function we have examined the effect of DNA damage on dNTP pools in cells deficient of mtDNA. We show that DNA damage induced by UV irradiation, in a dose corresponding to LD50, induces an S phase delay in different human osteosarcoma cell lines. The UV pulse also has a destabilizing effect...... shows that normal mitochondrial function is prerequisite for retaining stable dNTP pools upon DNA damage. Therefore it is likely that mitochondrial deficiency defects may cause an increase in DNA mutations by disrupting dNTP pool balance....

  10. Cloning of the cDNA for human 12-lipoxygenase

    International Nuclear Information System (INIS)

    Izumi, T.; Hoshiko, S.; Radmark, O.; Samuelsson, B.

    1990-01-01

    A full-length cDNA clone encoding 12-lipoxygenase was isolated from a human platelet cDNA library by using a cDNA for human reticulocyte 15-lipoxygenase as probe for the initial screening. The cDNA had an open reading frame encoding 662 amino acid residues with a calculated molecular weight of 75,590. Three independent clones revealed minor heterogeneities in their DNA sequences. Thus, in three positions of the deduced amino acid sequence, there is a choice between two different amino acids. The deduced sequence from the clone plT3 showed 65% identity with human reticulocyte 15-lipoxygenase and 42% identity with human leukocyte 5-lipoxygenase. The 12-lipoxygenase cDNA recognized a 3.0-kilobase mRNA species in platelets and human erythroleukemia cells (HEL cells). Phorbol 12-tetradecanoyl 13-acetate induced megakaryocytic differentiation of HEL cells and 12-lipoxygenase activity and increased mRNA for 12-lipoxygenase. The identity of the cloned 12-lipoxygenase was assured by expression in a mammalian cell line (COS cells). Human platelet 12-lipoxygenase has been difficult to purify to homogeneity. The cloning of this cDNA will increase the possibilities to elucidate the structure and function of this enzyme

  11. PFGE analysis of DNA double-strand breaks and DNA repair process in human osteosarcoma cells irradiated by X-ray

    International Nuclear Information System (INIS)

    Cao Jianping; Majima, H.; Yamaguchi, C.

    2000-01-01

    Objective: To study the induction of DNA double-strand breaks (DSBs) in human osteosarcoma cells irradiated by X-ray, the DNA DSBs repair process and the tumour cell radiosensitivity. Methods: Two cell lines of human osteosarcoma, Rho0 and 143. B were used. Initial DNA damage of DSBs by X-ray irradiation was measured using clamped homogeneous electrical field (CHEF) electrophoresis. Results: X-ray-induced DNA DSBs of human osteosarcoma cells after CHEF-electrophoresis increased linearly with the irradiation dose between 0 and 50 Gy. The repair of DNA DSBs in human osteosarcoma cells increased with the post-irradiation incubation time. In contrast to 14.3B cell line at the same dose point, much more DNA DSBs were induced in Rho0 cell line after X-ray irradiation. Conclusion: CHEF pulsed-field gel electrophoresis (PEGE) is a sensitive method for the determination of radiation-induced DNA DSBs in high molecular weight DNA of human osteosarcoma cells. Radiation-induced DNA DSBs of osteosarcoma increase with the dose in a linear manner. After incubation, both Rho0 cell line and 143. B cell line can repair the DNA DSBs. Between two cell lines of human osteosarcoma, Rho0 and 143.B, Rho0 cell line is more sensitive to ionizing radiation than 143.B line

  12. Human DNA polymerase delta double-mutant D316A;E318A interferes with DNA mismatch repair in vitro

    DEFF Research Database (Denmark)

    Liu, Dekang; Frederiksen, Jane H.; Liberti, Sascha Emilie

    2017-01-01

    DNA mismatch repair (MMR) is a highly-conserved DNA repair mechanism, whose primary role is to remove DNA replication errors preventing them from manifesting as mutations, thereby increasing the overall genome stability. Defects in MMR are associated with increased cancer risk in humans and other...... organisms. Here, we characterize the interaction between MMR and a proofreading-deficient allele of the human replicative DNA polymerase delta, PolδD316A;E318A, which has a higher capacity for strand displacement DNA synthesis than wild type Polδ. Human cell lines overexpressing PolδD316A;E318A display...

  13. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Kostyuk, Svetlana; Smirnova, Tatiana; Kameneva, Larisa; Porokhovnik, Lev; Speranskij, Anatolij; Ershova, Elizaveta; Stukalov, Sergey; Izevskaya, Vera; Veiko, Natalia

    2015-01-01

    Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA) and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci). As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR), PCNA (FACS)) and antiapoptotic genes (BCL2 (RT-PCR and FACS), BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR)). Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs). Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR), in the level of fatty acid binding protein FABP4 (FACS analysis) and in the level of fat (Oil Red O). GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose-derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.

  14. The persistence of human DNA in soil following surface decomposition.

    Science.gov (United States)

    Emmons, Alexandra L; DeBruyn, Jennifer M; Mundorff, Amy Z; Cobaugh, Kelly L; Cabana, Graciela S

    2017-09-01

    Though recent decades have seen a marked increase in research concerning the impact of human decomposition on the grave soil environment, the fate of human DNA in grave soil has been relatively understudied. With the purpose of supplementing the growing body of literature in forensic soil taphonomy, this study assessed the relative persistence of human DNA in soil over the course of decomposition. Endpoint PCR was used to assess the presence or absence of human nuclear and mitochondrial DNA, while qPCR was used to evaluate the quantity of human DNA recovered from the soil beneath four cadavers at the University of Tennessee's Anthropology Research Facility (ARF). Human nuclear DNA from the soil was largely unrecoverable, while human mitochondrial DNA was detectable in the soil throughout all decomposition stages. Mitochondrial DNA copy abundances were not significantly different between decomposition stages and were not significantly correlated to soil edaphic parameters tested. There was, however, a significant positive correlation between mitochondrial DNA copy abundances and the human associated bacteria, Bacteroides, as estimated by 16S rRNA gene abundances. These results show that human mitochondrial DNA can persist in grave soil and be consistently detected throughout decomposition. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  15. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Svetlana Kostyuk

    2015-01-01

    Full Text Available Background. Cell free DNA (cfDNA circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Principal Findings. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci. As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR, PCNA (FACS and antiapoptotic genes (BCL2 (RT-PCR and FACS, BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR. Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs. Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR, in the level of fatty acid binding protein FABP4 (FACS analysis and in the level of fat (Oil Red O. Conclusions. GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose—derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.

  16. Spontaneous unscheduled DNA synthesis in human lymphocytes

    International Nuclear Information System (INIS)

    Forell, B.; Myers, L.S. Jr.; Norman, A.

    1979-01-01

    The rate of spontaneous unscheduled DNA synthesis in human lymphocytes was estimated from measurements of tritiated thymidine incorporation into double-stranded DNA (ds-DNA) during incubation of cells in vitro. The contribution of scheduled DNA synthesis to the observed incorporation was reduced by inhibiting replication with hydroxyurea and by separating freshly replicated single-stranded DNA (ss-DNA) from repaired ds-DNA by column chromatography. The residual contribution of scheduled DNA synthesis was estimated by observing effects on thymidine incorporation of: (a) increasing the rate of production of apurinic sites, and alternatively, (b) increasing the number of cells in S-phase. Corrections based on estimates of endogenous pool size were also made. The rate of spontaneous unscheduled DNA synthesis is estimated to be 490 +- 120 thymidine molecules incorporated per cell per hour. These results compare favorably with estimates made from rates of depurination and depyrimidination of DNA, measured in molecular systems if we assume thymidine is incorporated by a short patch mechanism which incorporates an average of four bases per lesion

  17. Human Genome Research: Decoding DNA

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Human Genome Research: Decoding DNA Resources with of the DNA double helix during April 2003. James D. Watson, Francis Crick, and Maurice Wilkins were company Celera announced the completion of a "working draft" reference DNA sequence of the human

  18. Sperm DNA fragmentation affects epigenetic feature in human male pronucleus.

    Science.gov (United States)

    Rajabi, H; Mohseni-Kouchesfehani, H; Eslami-Arshaghi, T; Salehi, M

    2018-02-01

    To evaluate whether the sperm DNA fragmentation affects male pronucleus epigenetic factors, semen analysis was performed and DNA fragmentation was assessed by the method of sperm chromatin structure assay (SCSA). Human-mouse interspecies fertilisation was used to create human male pronucleus. Male pronucleus DNA methylation and H4K12 acetylation were evaluated by immunostaining. Results showed a significant positive correlation between the level of sperm DNA fragmentation and DNA methylation in male pronuclei. In other words, an increase in DNA damage caused an upsurge in DNA methylation. In the case of H4K12 acetylation, no correlation was detected between DNA damage and the level of histone acetylation in the normal group, but results for the group in which male pronuclei were derived from sperm cells with DNA fragmentation, increased DNA damage led to a decreased acetylation level. Sperm DNA fragmentation interferes with the active demethylation process and disrupts the insertion of histones into the male chromatin in the male pronucleus, following fertilisation. © 2017 Blackwell Verlag GmbH.

  19. Electromagnetic noise inhibits radiofrequency radiation-induced DNA damage and reactive oxygen species increase in human lens epithelial cells

    Science.gov (United States)

    Wu, Wei; Wang, KaiJun; Ni, Shuang; Ye, PanPan; Yu, YiBo; Ye, Juan; Sun, LiXia

    2008-01-01

    Purpose The goal of this study was to investigate whether superposing of electromagnetic noise could block or attenuate DNA damage and intracellular reactive oxygen species (ROS) increase of cultured human lens epithelial cells (HLECs) induced by acute exposure to 1.8 GHz radiofrequency field (RF) of the Global System for Mobile Communications (GSM). Methods An sXc-1800 RF exposure system was used to produce a GSM signal at 1.8 GHz (217 Hz amplitude-modulated) with the specific absorption rate (SAR) of 1, 2, 3, and 4 W/kg. After 2 h of intermittent exposure, the ROS level was assessed by the fluorescent probe, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). DNA damage to HLECs was examined by alkaline comet assay and the phosphorylated form of histone variant H2AX (γH2AX) foci formation assay. Results After exposure to 1.8 GHz RF for 2 h, HLECs exhibited significant intracellular ROS increase in the 2, 3, and 4 W/kg groups. RF radiation at the SAR of 3 W/kg and 4 W/kg could induce significant DNA damage, examined by alkaline comet assay, which was used to detect mainly single strand breaks (SSBs), while no statistical difference in double strand breaks (DSBs), evaluated by γH2AX foci, was found between RF exposure (SAR: 3 and 4 W/kg) and sham exposure groups. When RF was superposed with 2 μT electromagnetic noise could block RF-induced ROS increase and DNA damage. Conclusions DNA damage induced by 1.8 GHz radiofrequency field for 2 h, which was mainly SSBs, may be associated with the increased ROS production. Electromagnetic noise could block RF-induced ROS formation and DNA damage. PMID:18509546

  20. Oxidized DNA induces an adaptive response in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kostyuk, Svetlana V., E-mail: svet.kostyuk@gmail.com [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Tabakov, Viacheslav J.; Chestkov, Valerij V.; Konkova, Marina S.; Glebova, Kristina V.; Baydakova, Galina V.; Ershova, Elizaveta S.; Izhevskaya, Vera L. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Baranova, Ancha, E-mail: abaranov@gmu.edu [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Center for the Study of Chronic Metabolic Diseases, School of System Biology, George Mason University, Fairfax, VA 22030 (United States); Veiko, Natalia N. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation)

    2013-07-15

    Highlights: • We describe the effects of gDNAOX on human fibroblasts cultivated in serum withdrawal conditions. • gDNAOX evokes an adaptive response in human fibroblasts. • gDNAOX increases the survival rates in serum starving cell populations. • gDNAOX enhances the survival rates in cell populations irradiated at 1.2 Gy dose. • gDNAOX up-regulates NRF2 and inhibits NF-kappaB-signaling. - Abstract: Cell-free DNA (cfDNA) released from dying cells contains a substantial proportion of oxidized nucleotides, thus, forming cfDNA{sup OX}. The levels of cfDNA{sup OX} are increased in the serum of patients with chronic diseases. Oxidation of DNA turns it into a stress signal. The samples of genomic DNA (gDNA) oxidized by H{sub 2}O{sub 2}in vitro (gDNA{sup OX}) induce effects similar to that of DNA released from damaged cells. Here we describe the effects of gDNA{sup OX} on human fibroblasts cultivated in the stressful conditions of serum withdrawal. In these cells, gDNA{sup OX} evokes an adaptive response that leads to an increase in the rates of survival in serum starving cell populations as well as in populations irradiated at the dose of 1.2 Gy. These effects are not seen in control populations of fibroblasts treated with non-modified gDNA. In particular, the exposure to gDNA{sup OX} leads to a decrease in the expression of the proliferation marker Ki-67 and an increase in levels of PSNA, a decrease in the proportion of subG1- and G2/M cells, a decrease in proportion of cells with double strand breaks (DSBs). Both gDNA{sup OX} and gDNA suppress the expression of DNA sensors TLR9 and AIM2 and up-regulate nuclear factor-erythroid 2 p45-related factor 2 (NRF2), while only gDNA{sup OX} inhibits NF-κB signaling. gDNA{sup OX} is a model for oxidized cfDNA{sup OX} that is released from the dying tumor cells and being carried to the distant organs. The systemic effects of oxidized DNA have to be taken into account when treating tumors. In particular, the damaged DNA

  1. Transient p53 suppression increases reprogramming of human fibroblasts without affecting apoptosis and DNA damage

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Aabech; Holst, Bjørn; Tümer, Zeynep

    2014-01-01

    The discovery of human-induced pluripotent stem cells (iPSCs) has sparked great interest in the potential treatment of patients with their own in vitro differentiated cells. Recently, knockout of the Tumor Protein 53 (p53) gene was reported to facilitate reprogramming but unfortunately also led...... to genomic instability. Here, we report that transient suppression of p53 during nonintegrative reprogramming of human fibroblasts leads to a significant increase in expression of pluripotency markers and overall number of iPSC colonies, due to downstream suppression of p21, without affecting apoptosis...... and DNA damage. Stable iPSC lines generated with or without p53 suppression showed comparable expression of pluripotency markers and methylation patterns, displayed normal karyotypes, contained between 0 and 5 genomic copy number variations and produced functional neurons in vitro. In conclusion...

  2. Cisplatin-resistant cells express increased levels of a factor that recognizes damaged DNA

    International Nuclear Information System (INIS)

    Chu, G.; Chang, E.

    1990-01-01

    Cancer treatment with the drug cisplatin is often thwarted by the emergence of drug-resistant cells. To study this phenomenon, the authors identified two independent cellular factors that recognize cisplatin-damaged DNA. One of the two factors, designated XPE binding factor, is deficient in complementation group E of xeroderma pigmentosum, an inherited disease characterized by defective repair of DNA damaged by ultraviolet radiation, cisplatin, and other agents. Human tumor cell lines selected for resistance to cisplatin showed more efficient DNA repair and increased expression of XPE binding factor. These results suggest that XPE binding factor may be responsible, at least in part, for the development of cisplatin resistance in human tumors and that the mechanism may be increased DNA repair

  3. The future of human DNA vaccines.

    Science.gov (United States)

    Li, Lei; Saade, Fadi; Petrovsky, Nikolai

    2012-12-31

    DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including "epigenetics" and "omics" approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage

    DEFF Research Database (Denmark)

    Syljuåsen, Randi G; Sørensen, Claus Storgaard; Hansen, Lasse Tengbjerg

    2005-01-01

    by increased amounts of nonextractable RPA protein, formation of single-stranded DNA, and induction of DNA strand breaks. Moreover, these responses were prevented by siRNA-mediated downregulation of Cdk2 or the replication initiation protein Cdc45, or by addition of the CDK inhibitor roscovitine. We propose...

  5. Human mitochondrial DNA (mtDNA) types in Malaysia

    International Nuclear Information System (INIS)

    Lian, L.H.; Koh, C.L.; Lim, M.E.

    2000-01-01

    Each human cell contains hundreds of mitochondria and thousands of double-stranded circular mtDNA. The delineation of human mtDNA variation and genetics over the past decade has provided unique and often startling insights into human evolution, degenerative diseases, and aging. Each mtDNA of 16,569 base pairs, encodes 13 polypeptides essential to the enzymes of the mitochondrial energy generating pathway, plus the necessary tRNAs and rRNAs. The highly polymorphic noncoding D-(displacement) loop region, also called the control region, is approximately 1.2 kb long. It contains two well-characterized hypervariable (HV-) regions, HV1 and HV2. MtDNA identification is usually based on these sequence differences. According to the TWTGDAM (Technical Working Group for DNA Analysis Methods), the minimum requirement for a mtDNA database for HV1 is from positions 16024 to 16365 and for HV2, from positions 00073 to 00340. The targeted Malaysian population subgroups for this study were mainly the Malays, Chinese, Indians, and indigenous Ibans, Bidayuhs, Kadazan-Dusuns, and Bajaus. Research methodologies undertaken included DNA extraction of samples from unrelated individuals, amplification of the specific regions via the polymerase chain reaction (PCR), and preparation of template DNA for sequencing by using an automated DNA sequencer. Sufficient nucleotide sequence data were generated from the mtDNA analysis. When the sequences were analyzed, sequence variations were found to be caused by nucleotide substitutions, insertions, and deletions. Of the three causes of the sequence variations, nucleotide substitutions (86.1%) accounted for the vast majority of polymorphism. It is noted that transitions (83.5%) were predominant when compared to the significantly lower frequencies of transversions (2.6%). Insertions (0.9%) and deletions (13.0%) were rather rare and found only in HV2. The data generated will also form the basis of a Malaysian DNA sequence database of mtDNA D

  6. Ginsenoside Rg3 induces DNA damage in human osteosarcoma cells and reduces MNNG-induced DNA damage and apoptosis in normal human cells.

    Science.gov (United States)

    Zhang, Yue-Hui; Li, Hai-Dong; Li, Bo; Jiang, Sheng-Dan; Jiang, Lei-Sheng

    2014-02-01

    Panax ginseng is a Chinese medicinal herb. Ginsenosides are the main bioactive components of P. ginseng, and ginsenoside Rg3 is the primary ginsenoside. Ginsenosides can potently kill various types of cancer cells. The present study was designed to evaluate the potential genotoxicity of ginsenoside Rg3 in human osteosarcoma cells and the protective effect of ginsenoside Rg3 with respect to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced DNA damage and apoptosis in a normal human cell line (human fibroblasts). Four human osteosarcoma cell lines (MG-63, OS732, U-2OS and HOS cells) and a normal human cell line (human fibroblasts) were employed to investigate the cytotoxicity of ginsenosides Rg3 by MTT assay. Alkaline comet assay and γH2AX focus staining were used to detect the DNA damage in MG-63 and U-2OS cells. The extent of cell apoptosis was determined by flow cytometry and a DNA ladder assay. Our results demonstrated that the cytotoxicity of ginsenoside Rg3 was dose-dependent in the human osteosarcoma cell lines, and MG-63 and U-2OS cells were the most sensitive to ginsenoside Rg3. As expected, compared to the negative control, ginsenoside Rg3 significantly increased DNA damage in a concentration-dependent manner. In agreement with the comet assay data, the percentage of γH2AX-positive MG-63 and U-2OS cells indicated that ginsenoside Rg3 induced DNA double-strand breaks in a concentration-dependent manner. The results also suggest that ginsenoside Rg3 reduces the extent of MNNG-induced DNA damage and apoptosis in human fibroblasts.

  7. DNA repair of UV photoproducts and mutagenesis in human mitochondrial DNA

    International Nuclear Information System (INIS)

    Pascucci, B.; Dogliotti, E.; Versteegh, A.; Hoffen, A. van; Zeeland, A.A. van; Mullenders, L.H.F.

    1997-01-01

    The induction and repair of DNA photolesions and mutations in the mitochondrial (mt) DNA of human cells in culture were analysed after cell exposure to UV-C light. The level of induction of cyclobutane pyrimidine dimers (CPD) in mitochondrial and nuclear DNA was comparable, while a higher frequency of pyrimidine (6-4) pyrimidone photoproducts (6-4 PP) was detected in mitochondrial than in nuclear DNA. Besides the known defect in CPD removal, mitochondria were shown to be deficient also in the excision of 6-4 PP. The effects of repair-defective conditions for the two major UV photolesions on mutagensis was assessed by analysing the frequency and spectrum of spontaneous and UV-induced mutations by restriction site mutation (RSM) method in a restriction endonuclease site, NciI (5'CCCGG3') located within the coding sequence of the mitochondrial gene for tRNA Leu . The spontaneous mutation frequency and spectrum at the NciI site of mitochondrial DNA was very similar to the RSM background mutation frequency (approximately 10 -5 ) and type (predominantly GC > AT transitions at GL 1 ) of the NciI site). Conversely, an approximately tenfold increase over background mutation frequency was recorded after cell exposure to 20 J/m 2 . In this case, the majority of mutations were C > T transitions preferentially located on the non-transcribed DNA strand at C 1 and C 2 of the NciI site. This mutation spectrum is expected by UV mutagenesis. This is the first evidence of induction of mutations in mitochondrial DNA by treatment of human cells with a carcinogen. (author)

  8. DNA translocation by human uracil DNA glycosylase: the case of single-stranded DNA and clustered uracils.

    Science.gov (United States)

    Schonhoft, Joseph D; Stivers, James T

    2013-04-16

    Human uracil DNA glycosylase (hUNG) plays a central role in DNA repair and programmed mutagenesis of Ig genes, requiring it to act on sparsely or densely spaced uracil bases located in a variety of contexts, including U/A and U/G base pairs, and potentially uracils within single-stranded DNA (ssDNA). An interesting question is whether the facilitated search mode of hUNG, which includes both DNA sliding and hopping, changes in these different contexts. Here we find that hUNG uses an enhanced local search mode when it acts on uracils in ssDNA, and also, in a context where uracils are densely clustered in duplex DNA. In the context of ssDNA, hUNG performs an enhanced local search by sliding with a mean sliding length larger than that of double-stranded DNA (dsDNA). In the context of duplex DNA, insertion of high-affinity abasic product sites between two uracil lesions serves to significantly extend the apparent sliding length on dsDNA from 4 to 20 bp and, in some cases, leads to directionally biased 3' → 5' sliding. The presence of intervening abasic product sites mimics the situation where hUNG acts iteratively on densely spaced uracils. The findings suggest that intervening product sites serve to increase the amount of time the enzyme remains associated with DNA as compared to nonspecific DNA, which in turn increases the likelihood of sliding as opposed to falling off the DNA. These findings illustrate how the search mechanism of hUNG is not predetermined but, instead, depends on the context in which the uracils are located.

  9. DNA methylation and healthy human aging.

    Science.gov (United States)

    Jones, Meaghan J; Goodman, Sarah J; Kobor, Michael S

    2015-12-01

    The process of aging results in a host of changes at the cellular and molecular levels, which include senescence, telomere shortening, and changes in gene expression. Epigenetic patterns also change over the lifespan, suggesting that epigenetic changes may constitute an important component of the aging process. The epigenetic mark that has been most highly studied is DNA methylation, the presence of methyl groups at CpG dinucleotides. These dinucleotides are often located near gene promoters and associate with gene expression levels. Early studies indicated that global levels of DNA methylation increase over the first few years of life and then decrease beginning in late adulthood. Recently, with the advent of microarray and next-generation sequencing technologies, increases in variability of DNA methylation with age have been observed, and a number of site-specific patterns have been identified. It has also been shown that certain CpG sites are highly associated with age, to the extent that prediction models using a small number of these sites can accurately predict the chronological age of the donor. Together, these observations point to the existence of two phenomena that both contribute to age-related DNA methylation changes: epigenetic drift and the epigenetic clock. In this review, we focus on healthy human aging throughout the lifetime and discuss the dynamics of DNA methylation as well as how interactions between the genome, environment, and the epigenome influence aging rates. We also discuss the impact of determining 'epigenetic age' for human health and outline some important caveats to existing and future studies. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  10. Endangered species: mitochondrial DNA loss as a mechanism of human disease.

    Science.gov (United States)

    Herrera, Alan; Garcia, Iraselia; Gaytan, Norma; Jones, Edith; Maldonado, Alicia; Gilkerson, Robert

    2015-06-01

    Human mitochondrial DNA (mtDNA) is a small maternally inherited DNA, typically present in hundreds of copies in a single human cell. Thus, despite its small size, the mitochondrial genome plays a crucial role in the metabolic homeostasis of the cell. Our understanding of mtDNA genotype-phenotype relationships is derived largely from studies of the classical mitochondrial neuromuscular diseases, in which mutations of mtDNA lead to compromised mitochondrial bioenergetic function, with devastating pathological consequences. Emerging research suggests that loss, rather than mutation, of mtDNA plays a major role across a range of prevalent human diseases, including diabetes mellitus, cardiovascular disease, and aging. Here, we examine the 'rules' of mitochondrial genetics and function, the clinical settings in which loss of mtDNA is an emerging pathogenic mechanism, and explore mtDNA damage and its consequences for the organellar network and cell at large. As extranuclear genetic material arrayed throughout the cell to support metabolism, mtDNA is increasingly implicated in a host of disease conditions, opening a range of exciting questions regarding mtDNA and its role in cellular homeostasis.

  11. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    Science.gov (United States)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  12. Genome-wide, Single-Cell DNA Methylomics Reveals Increased Non-CpG Methylation during Human Oocyte Maturation

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2017-07-01

    Full Text Available The establishment of DNA methylation patterns in oocytes is a highly dynamic process marking gene-regulatory events during fertilization, embryonic development, and adulthood. However, after epigenetic reprogramming in primordial germ cells, how and when DNA methylation is re-established in developing human oocytes remains to be characterized. Here, using single-cell whole-genome bisulfite sequencing, we describe DNA methylation patterns in three different maturation stages of human oocytes. We found that while broad-scale patterns of CpG methylation have been largely established by the immature germinal vesicle stage, localized changes continue into later development. Non-CpG methylation, on the other hand, undergoes a large-scale, generalized remodeling through the final stage of maturation, with the net overall result being the accumulation of methylation as oocytes mature. The role of the genome-wide, non-CpG methylation remodeling in the final stage of oocyte maturation deserves further investigation.

  13. DNA and bone structure preservation in medieval human skeletons.

    Science.gov (United States)

    Coulson-Thomas, Yvette M; Norton, Andrew L; Coulson-Thomas, Vivien J; Florencio-Silva, Rinaldo; Ali, Nadir; Elmrghni, Samir; Gil, Cristiane D; Sasso, Gisela R S; Dixon, Ronald A; Nader, Helena B

    2015-06-01

    Morphological and ultrastructural data from archaeological human bones are scarce, particularly data that have been correlated with information on the preservation of molecules such as DNA. Here we examine the bone structure of macroscopically well-preserved medieval human skeletons by transmission electron microscopy and immunohistochemistry, and the quantity and quality of DNA extracted from these skeletons. DNA technology has been increasingly used for analyzing physical evidence in archaeological forensics; however, the isolation of ancient DNA is difficult since it is highly degraded, extraction yields are low and the co-extraction of PCR inhibitors is a problem. We adapted and optimised a method that is frequently used for isolating DNA from modern samples, Chelex(®) 100 (Bio-Rad) extraction, for isolating DNA from archaeological human bones and teeth. The isolated DNA was analysed by real-time PCR using primers targeting the sex determining region on the Y chromosome (SRY) and STR typing using the AmpFlSTR(®) Identifiler PCR Amplification kit. Our results clearly show the preservation of bone matrix in medieval bones and the presence of intact osteocytes with well preserved encapsulated nuclei. In addition, we show how effective Chelex(®) 100 is for isolating ancient DNA from archaeological bones and teeth. This optimised method is suitable for STR typing using kits aimed specifically at degraded and difficult DNA templates since amplicons of up to 250bp were successfully amplified. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Enterolactone: A novel radiosensitizer for human breast cancer cell lines through impaired DNA repair and increased apoptosis

    International Nuclear Information System (INIS)

    Bigdeli, Bahareh; Goliaei, Bahram; Masoudi-Khoram, Nastaran; Jooyan, Najmeh; Nikoofar, Alireza; Rouhani, Maryam; Haghparast, Abbas; Mamashli, Fatemeh

    2016-01-01

    human breast cancer. • Enterolactone pretreatment enhances radiation induced apoptosis. • Enterolactone pretreatment impairs repair of radiation-induced DNA damages. • Chromosomal aberrations increases in cells receiving enterolactone and X-ray. • Micronuclei formation is elevated after combined treatment with enterolactone.

  15. Enterolactone: A novel radiosensitizer for human breast cancer cell lines through impaired DNA repair and increased apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Bigdeli, Bahareh, E-mail: bhr.bigdeli@ut.ac.ir [Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, 16th Azar St., Enghelab Sq., Tehran (Iran, Islamic Republic of); Goliaei, Bahram, E-mail: goliaei@ut.ac.ir [Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, 16th Azar St., Enghelab Sq., Tehran (Iran, Islamic Republic of); Masoudi-Khoram, Nastaran, E-mail: n.masoudi@alumni.ut.ac.ir [Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, 16th Azar St., Enghelab Sq., Tehran (Iran, Islamic Republic of); Jooyan, Najmeh, E-mail: n.jooyan@ut.ac.ir [Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, 16th Azar St., Enghelab Sq., Tehran (Iran, Islamic Republic of); Nikoofar, Alireza, E-mail: nikoofar@iums.ac.ir [Department of Radiotherapy, Iran University of Medical Sciences (IUMS), Shahid Hemmat Highway, Tehran (Iran, Islamic Republic of); Rouhani, Maryam, E-mail: rouhani@iasbs.ac.ir [Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Yousef Sobouti Blvd., Gava Zang, Zanjan (Iran, Islamic Republic of); Haghparast, Abbas, E-mail: Haghparast@sbmu.ac.ir [Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjo St., Evin, Tehran (Iran, Islamic Republic of); Mamashli, Fatemeh, E-mail: mamashli@ut.ac.ir [Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, 16th Azar St., Enghelab Sq., Tehran (Iran, Islamic Republic of)

    2016-12-15

    human breast cancer. • Enterolactone pretreatment enhances radiation induced apoptosis. • Enterolactone pretreatment impairs repair of radiation-induced DNA damages. • Chromosomal aberrations increases in cells receiving enterolactone and X-ray. • Micronuclei formation is elevated after combined treatment with enterolactone.

  16. The Conjugative Relaxase TrwC Promotes Integration of Foreign DNA in the Human Genome.

    Science.gov (United States)

    González-Prieto, Coral; Gabriel, Richard; Dehio, Christoph; Schmidt, Manfred; Llosa, Matxalen

    2017-06-15

    Bacterial conjugation is a mechanism of horizontal DNA transfer. The relaxase TrwC of the conjugative plasmid R388 cleaves one strand of the transferred DNA at the oriT gene, covalently attaches to it, and leads the single-stranded DNA (ssDNA) into the recipient cell. In addition, TrwC catalyzes site-specific integration of the transferred DNA into its target sequence present in the genome of the recipient bacterium. Here, we report the analysis of the efficiency and specificity of the integrase activity of TrwC in human cells, using the type IV secretion system of the human pathogen Bartonella henselae to introduce relaxase-DNA complexes. Compared to Mob relaxase from plasmid pBGR1, we found that TrwC mediated a 10-fold increase in the rate of plasmid DNA transfer to human cells and a 100-fold increase in the rate of chromosomal integration of the transferred DNA. We used linear amplification-mediated PCR and plasmid rescue to characterize the integration pattern in the human genome. DNA sequence analysis revealed mostly reconstituted oriT sequences, indicating that TrwC is active and recircularizes transferred DNA in human cells. One TrwC-mediated site-specific integration event was detected, proving that TrwC is capable of mediating site-specific integration in the human genome, albeit with very low efficiency compared to the rate of random integration. Our results suggest that TrwC may stabilize the plasmid DNA molecules in the nucleus of the human cell, probably by recircularization of the transferred DNA strand. This stabilization would increase the opportunities for integration of the DNA by the host machinery. IMPORTANCE Different biotechnological applications, including gene therapy strategies, require permanent modification of target cells. Long-term expression is achieved either by extrachromosomal persistence or by integration of the introduced DNA. Here, we studied the utility of conjugative relaxase TrwC, a bacterial protein with site

  17. Delayed repair of DNA single-strand breaks does not increase cytogenetic damage

    International Nuclear Information System (INIS)

    Morgan, W.F.; Djordjevic, M.C.; Jostes, R.F.; Pantelias, G.E.

    1985-01-01

    DNA damage and cytogenetic effects of ionizing radiation were investigated in Chinese hamster ovary (CHO) cells and unstimulated human peripheral blood lymphocytes. DNA damage and repair were analysed by alkaline elution under conditions that predominantly measured DNA single-strand breaks (ssb). X-radiation (2.5 Gy) induced ssb in both CHO cells and unstimulated lymphocytes, and the breaks were repaired within 30 and 90 min, respectively. This rapid repair was delayed by the poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide (3AB). The cytogenetic effects of the 3AB-induced delay in DNA repair were examined by analysing sister chromatid exchange (SCE) frequency in CHO cells and fragmentation of prematurely condensed chromosomes (PCC) in unstimulated human lymphocytes after 2.5 Gy of X-rays. Although 3AB delayed the rejoining of DNA ssb, this delay did not result in increased cytogenetic damage manifested as either SCE or fragmentation of PCC. These results indicate that the rapidly rejoining DNA ssb are not important in the production of chromosome damage. (author)

  18. Quantification and presence of human ancient DNA in burial place ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... burial place remains of Turkey using real time ... DNA was isolaled from fossil bone tissue remains with Bio Robot EZ1 and ... the increase in the amount of DNA as it is amplified. The ... species or human blood in this work.

  19. DNA repair synthesis in human fibroblasts requires DNA polymerase delta

    International Nuclear Information System (INIS)

    Nishida, C.; Reinhard, P.; Linn, S.

    1988-01-01

    When UV-irradiated cultured diploid human fibroblasts were permeabilized with Brij-58 then separated from soluble material by centrifugation, conservative DNA repair synthesis could be restored by a soluble factor obtained from the supernatant of similarly treated HeLa cells. Extensive purification of this factor yielded a 10.2 S, 220,000-dalton polypeptide with the DNA polymerase and 3'- to 5'-exonuclease activities reported for DNA polymerase delta II. Monoclonal antibody to KB cell DNA polymerase alpha, while binding to HeLa DNA polymerase alpha, did not bind to the HeLa DNA polymerase delta. Moreover, at micromolar concentrations N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate (BuPdGTP) and 2-(p-n-butylanilino)-2'-deoxyadenosine 5'-triphosphate (BuAdATP) were potent inhibitors of DNA polymerase alpha, but did not inhibit the DNA polymerase delta. Neither purified DNA polymerase alpha nor beta could promote repair DNA synthesis in the permeabilized cells. Furthermore, under conditions which inhibited purified DNA polymerase alpha by greater than 90%, neither monoclonal antibodies to DNA polymerase alpha, BuPdGTP, nor BuAdATP was able to inhibit significantly the DNA repair synthesis mediated by the DNA polymerase delta. Thus, it appears that a major portion of DNA repair synthesis induced by UV irradiation might be catalyzed by DNA polymerase delta. When xeroderma pigmentosum human diploid fibroblasts were utilized, DNA repair synthesis dependent upon ultraviolet light could be restored by addition of both T4 endonuclease V and DNA polymerase delta, but not by addition of either one alone

  20. Inhibiting DNA-PKCS radiosensitizes human osteosarcoma cells

    International Nuclear Information System (INIS)

    Mamo, Tewodros; Mladek, Ann C.; Shogren, Kris L.; Gustafson, Carl; Gupta, Shiv K.; Riester, Scott M.; Maran, Avudaiappan; Galindo, Mario; Wijnen, Andre J. van; Sarkaria, Jann N.; Yaszemski, Michael J.

    2017-01-01

    Osteosarcoma survival rate has not improved over the past three decades, and the debilitating side effects of the surgical treatment suggest the need for alternative local control approaches. Radiotherapy is largely ineffective in osteosarcoma, indicating a potential role for radiosensitizers. Blocking DNA repair, particularly by inhibiting the catalytic subunit of DNA-dependent protein kinase (DNA-PK CS ), is an attractive option for the radiosensitization of osteosarcoma. In this study, the expression of DNA-PK CS in osteosarcoma tissue specimens and cell lines was examined. Moreover, the small molecule DNA-PK CS inhibitor, KU60648, was investigated as a radiosensitizing strategy for osteosarcoma cells in vitro. DNA-PK CS was consistently expressed in the osteosarcoma tissue specimens and cell lines studied. Additionally, KU60648 effectively sensitized two of those osteosarcoma cell lines (143B cells by 1.5-fold and U2OS cells by 2.5-fold). KU60648 co-treatment also altered cell cycle distribution and enhanced DNA damage. Cell accumulation at the G2/M transition point increased by 55% and 45%, while the percentage of cells with >20 γH2AX foci were enhanced by 59% and 107% for 143B and U2OS cells, respectively. These results indicate that the DNA-PK CS inhibitor, KU60648, is a promising radiosensitizing agent for osteosarcoma. - Highlights: • DNA-PKcs is consistently expressed in human osteosarcoma tissue and cell lines. • The DNA-PKcs inhibitor, KU60648, effectively radiosensitizes osteosarcoma cells. • Combining KU60648 with radiation increases G2/M accumulation and DNA damage.

  1. Mechanism of Error-Free DNA Replication Past Lucidin-Derived DNA Damage by Human DNA Polymerase κ.

    Science.gov (United States)

    Yockey, Oliver P; Jha, Vikash; Ghodke, Pratibha P; Xu, Tianzuo; Xu, Wenyan; Ling, Hong; Pradeepkumar, P I; Zhao, Linlin

    2017-11-20

    DNA damage impinges on genetic information flow and has significant implications in human disease and aging. Lucidin-3-O-primeveroside (LuP) is an anthraquinone derivative present in madder root, which has been used as a coloring agent and food additive. LuP can be metabolically converted to genotoxic compound lucidin, which subsequently forms lucidin-specific N 2 -2'-deoxyguanosine (N 2 -dG) and N 6 -2'-deoxyadenosine (N 6 -dA) DNA adducts. Lucidin is mutagenic and carcinogenic in rodents but has low carcinogenic risks in humans. To understand the molecular mechanism of low carcinogenicity of lucidin in humans, we performed DNA replication assays using site-specifically modified oligodeoxynucleotides containing a structural analogue (LdG) of lucidin-N 2 -dG DNA adduct and determined the crystal structures of DNA polymerase (pol) κ in complex with LdG-bearing DNA and an incoming nucleotide. We examined four human pols (pol η, pol ι, pol κ, and Rev1) in their efficiency and accuracy during DNA replication with LdG; these pols are key players in translesion DNA synthesis. Our results demonstrate that pol κ efficiently and accurately replicates past the LdG adduct, whereas DNA replication by pol η, pol ι is compromised to different extents. Rev1 retains its ability to incorporate dCTP opposite the lesion albeit with decreased efficiency. Two ternary crystal structures of pol κ illustrate that the LdG adduct is accommodated by pol κ at the enzyme active site during insertion and postlesion-extension steps. The unique open active site of pol κ allows the adducted DNA to adopt a standard B-form for accurate DNA replication. Collectively, these biochemical and structural data provide mechanistic insights into the low carcinogenic risk of lucidin in humans.

  2. Non-B DNA-forming sequences and WRN deficiency independently increase the frequency of base substitution in human cells

    DEFF Research Database (Denmark)

    Bacolla, Albino; Wang, Guliang; Jain, Aklank

    2011-01-01

    Although alternative DNA secondary structures (non-B DNA) can induce genomic rearrangements, their associated mutational spectra remain largely unknown. The helicase activity of WRN, which is absent in the human progeroid Werner syndrome, is thought to counteract this genomic instability. We dete...

  3. Human diseases associated with defective DNA repair

    International Nuclear Information System (INIS)

    Friedberg, E.C.; Ehmann, U.K.; Williams, J.I.

    1979-01-01

    The observations on xeroderma pigmentosum (XP) cells in culture were the first indications of defective DNA repair in association with human disease. Since then, a wealth of information on DNA repair in XP, and to a lesser extent in other diseases, has accumulated in the literature. Rather than clarifying the understanding of DNA repair mechanisms in normal cells and of defective DNA repair in human disease, the literature suggests an extraordinary complexity of both of the phenomena. In this review a number of discrete human diseases are considered separately. An attempt was made to systematically describe the pertinent clinical features and cellular and biochemical defects in these diseases, with an emphasis on defects in DNA metabolism, particularly DNA repair. Wherever possible observations have been correlated and unifying hypotheses presented concerning the nature of the basic defect(s) in these diseases. Discussions of the following diseases are presented: XP, ataxia telangiectasia; Fanconi's anemia; Hutchinson-Gilford progeria syndrome; Bloom's syndrome, Cockayne's syndrome; Down's syndrome; retinoblastoma; chronic lymphocytic leukemia; and other miscellaneous human diseases with possble DNA repair defects

  4. Human circulating ribosomal DNA content significantly increases while circulating satellite III (1q12) content decreases under chronic occupational exposure to low-dose gamma- neutron and tritium beta-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Korzeneva, Inna B., E-mail: inna.korzeneva@molgen.vniief.ru [Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190 Sarov, 37 Mira ave., Nizhniy Novgorod Region (Russian Federation); Kostuyk, Svetlana V. [Research Centre for Medical Genetics, 115478 Moscow, 1 Moskvorechye str. (Russian Federation); Ershova, Elizaveta S. [Research Centre for Medical Genetics, 115478 Moscow, 1 Moskvorechye str. (Russian Federation); V. A. Negovsky Research Institute of General Reanimatology, Moscow, 107031 (Russian Federation); Skorodumova, Elena N.; Zhuravleva, Veronika F.; Pankratova, Galina V.; Volkova, Irina V.; Stepanova, Elena V. [Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190 Sarov, 37 Mira ave., Nizhniy Novgorod Region (Russian Federation); Porokhovnik, Lev N. [Research Centre for Medical Genetics, 115478 Moscow, 1 Moskvorechye str. (Russian Federation); Veiko, Natalia N. [Research Centre for Medical Genetics, 115478 Moscow, 1 Moskvorechye str. (Russian Federation); V. A. Negovsky Research Institute of General Reanimatology, Moscow, 107031 (Russian Federation)

    2016-09-15

    Highlights: • A transcribed region of human ribosomal repeat is resistant to double-strand breaks in the environment of a raised endonuclease activity. • Hybridization-based techniques are preferable for the analysis of damaged and/or oxidized genomic fragments, rather than the qRT-PCR method. • A chronic exposure to the low-dose IR induces an elevation of the rDNA content in the human circulating cfDNA as compared to cellular DNA. • An exposure to IR entails a decrease of the level of the human circulating satellite III (1q12) as compared to cellular DNA (RsatIII index). • The RrDNA/RsatIII ratio is a potential marker of a chronic IR individual exposure. - Abstract: A single exposure to ionizing radiation (IR) results in an elevated cell-free DNA (cfDNA) content in the blood plasma. In this case, the cfDNA concentration can be a marker of the cell death in the organism. However, a chronic exposure to a low-dose IR enhances both the endonuclease activity and titer of antibodies to DNA in blood plasma, resulting in a decrease of the total concentration of circulating cfDNA in exposed people. In this case, the total cfDNA concentration should not be considered as a marker of the cell death in an exposed body. We assumed that a pool of the cfDNA circulating in the exposed people contains DNA fragments, which are resistant to a double-strand break formation in the environment of the elevated plasma endonuclease activity, and can be accumulated in the blood plasma. In order to test this hypothesis, we studied the content of GC-rich sequences (69%GC) of the transcribed region of human ribosomal repeat (rDNA), as well as the content of AT-rich repeat (63%AT) of satellite III (1q12) in the cfDNA samples obtained from 285 individuals. We have found that a chronic exposure to gamma-neutron radiation (N = 88) and tritium β-radiation (N = 88) evokes an increase of the rDNA content (RrDNA index) and a decrease of the satellite III content (RsatIII index) in the

  5. Human circulating ribosomal DNA content significantly increases while circulating satellite III (1q12) content decreases under chronic occupational exposure to low-dose gamma- neutron and tritium beta-radiation

    International Nuclear Information System (INIS)

    Korzeneva, Inna B.; Kostuyk, Svetlana V.; Ershova, Elizaveta S.; Skorodumova, Elena N.; Zhuravleva, Veronika F.; Pankratova, Galina V.; Volkova, Irina V.; Stepanova, Elena V.; Porokhovnik, Lev N.; Veiko, Natalia N.

    2016-01-01

    Highlights: • A transcribed region of human ribosomal repeat is resistant to double-strand breaks in the environment of a raised endonuclease activity. • Hybridization-based techniques are preferable for the analysis of damaged and/or oxidized genomic fragments, rather than the qRT-PCR method. • A chronic exposure to the low-dose IR induces an elevation of the rDNA content in the human circulating cfDNA as compared to cellular DNA. • An exposure to IR entails a decrease of the level of the human circulating satellite III (1q12) as compared to cellular DNA (RsatIII index). • The RrDNA/RsatIII ratio is a potential marker of a chronic IR individual exposure. - Abstract: A single exposure to ionizing radiation (IR) results in an elevated cell-free DNA (cfDNA) content in the blood plasma. In this case, the cfDNA concentration can be a marker of the cell death in the organism. However, a chronic exposure to a low-dose IR enhances both the endonuclease activity and titer of antibodies to DNA in blood plasma, resulting in a decrease of the total concentration of circulating cfDNA in exposed people. In this case, the total cfDNA concentration should not be considered as a marker of the cell death in an exposed body. We assumed that a pool of the cfDNA circulating in the exposed people contains DNA fragments, which are resistant to a double-strand break formation in the environment of the elevated plasma endonuclease activity, and can be accumulated in the blood plasma. In order to test this hypothesis, we studied the content of GC-rich sequences (69%GC) of the transcribed region of human ribosomal repeat (rDNA), as well as the content of AT-rich repeat (63%AT) of satellite III (1q12) in the cfDNA samples obtained from 285 individuals. We have found that a chronic exposure to gamma-neutron radiation (N = 88) and tritium β-radiation (N = 88) evokes an increase of the rDNA content (RrDNA index) and a decrease of the satellite III content (RsatIII index) in the

  6. Nucleotide sequence preservation of human mitochondrial DNA

    International Nuclear Information System (INIS)

    Monnat, R.J. Jr.; Loeb, L.A.

    1985-01-01

    Recombinant DNA techniques have been used to quantitate the amount of nucleotide sequence divergence in the mitochondrial DNA population of individual normal humans. Mitochondrial DNA was isolated from the peripheral blood lymphocytes of five normal humans and cloned in M13 mp11; 49 kilobases of nucleotide sequence information was obtained from 248 independently isolated clones from the five normal donors. Both between- and within-individual differences were identified. Between-individual differences were identified in approximately = to 1/200 nucleotides. In contrast, only one within-individual difference was identified in 49 kilobases of nucleotide sequence information. This high degree of mitochondrial nucleotide sequence homogeneity in human somatic cells is in marked contrast to the rapid evolutionary divergence of human mitochondrial DNA and suggests the existence of mechanisms for the concerted preservation of mammalian mitochondrial DNA sequences in single organisms

  7. Continued colonization of the human genome by mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Miria Ricchetti

    2004-09-01

    Full Text Available Integration of mitochondrial DNA fragments into nuclear chromosomes (giving rise to nuclear DNA sequences of mitochondrial origin, or NUMTs is an ongoing process that shapes nuclear genomes. In yeast this process depends on double-strand-break repair. Since NUMTs lack amplification and specific integration mechanisms, they represent the prototype of exogenous insertions in the nucleus. From sequence analysis of the genome of Homo sapiens, followed by sampling humans from different ethnic backgrounds, and chimpanzees, we have identified 27 NUMTs that are specific to humans and must have colonized human chromosomes in the last 4-6 million years. Thus, we measured the fixation rate of NUMTs in the human genome. Six such NUMTs show insertion polymorphism and provide a useful set of DNA markers for human population genetics. We also found that during recent human evolution, Chromosomes 18 and Y have been more susceptible to colonization by NUMTs. Surprisingly, 23 out of 27 human-specific NUMTs are inserted in known or predicted genes, mainly in introns. Some individuals carry a NUMT insertion in a tumor-suppressor gene and in a putative angiogenesis inhibitor. Therefore in humans, but not in yeast, NUMT integrations preferentially target coding or regulatory sequences. This is indeed the case for novel insertions associated with human diseases and those driven by environmental insults. We thus propose a mutagenic phenomenon that may be responsible for a variety of genetic diseases in humans and suggest that genetic or environmental factors that increase the frequency of chromosome breaks provide the impetus for the continued colonization of the human genome by mitochondrial DNA.

  8. Repair of DNA-polypeptide crosslinks by human excision nuclease

    Science.gov (United States)

    Reardon, Joyce T.; Sancar, Aziz

    2006-03-01

    DNA-protein crosslinks are relatively common DNA lesions that form during the physiological processing of DNA by replication and recombination proteins, by side reactions of base excision repair enzymes, and by cellular exposure to bifunctional DNA-damaging agents such as platinum compounds. The mechanism by which pathological DNA-protein crosslinks are repaired in humans is not known. In this study, we investigated the mechanism of recognition and repair of protein-DNA and oligopeptide-DNA crosslinks by the human excision nuclease. Under our assay conditions, the human nucleotide excision repair system did not remove a 16-kDa protein crosslinked to DNA at a detectable level. However, 4- and 12-aa-long oligopeptides crosslinked to the DNA backbone were recognized by some of the damage recognition factors of the human excision nuclease with moderate selectivity and were excised from DNA at relatively efficient rates. Our data suggest that, if coupled with proteolytic degradation of the crosslinked protein, the human excision nuclease may be the major enzyme system for eliminating protein-DNA crosslinks from the genome. damage recognition | nucleotide excision repair

  9. Cloning of the human androgen receptor cDNA

    International Nuclear Information System (INIS)

    Govindan, M.V.; Burelle, M.; Cantin, C.; Kabrie, C.; Labrie, F.; Lachance, Y.; Leblanc, G.; Lefebvre, C.; Patel, P.; Simard, J.

    1988-01-01

    The authors discuss how in order to define the functional domains of the human androgen receptor, complementary DNA (cDNA) clones encoding the human androgen receptor (hAR) have been isolated from a human testis λgtll cDNA library using synthetic oligonnucleotide probes, homologous to segments of the human glucocorticoid, estradiol and progesterone receptors. The cDNA clones corresponding to the human glucocorticoid, estradiol and progesterone receptors were eliminated after cross-hybridization with their respective cDNA probes and/or after restriction mapping of the cDNA clones. The remaining cDNA clones were classified into different groups after analysis by restriction digestion and cross-hybridization. Two of the largest cDNA clones from each group were inserted into an expression vector in both orientations. The linearized plasmids were used as templates in in vitro transcription with T7 RNA polymerase. Subsequent in vitro translation of the purified transcripts in rabbit reticulocyte lysate followed by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) permitted the characterization of the encoded polyeptides. The expressed proteins larger than 30,000 Da were analyzed for their ability to bind tritium-labelled dihydrotestosterone ([ 3 H] DHT) with high affinity and specificity

  10. Cellular radiosensitivity and DNA damage in primary human fibroblasts

    International Nuclear Information System (INIS)

    Wurm, R.; Burnet, N.G.; Duggal, N.

    1994-01-01

    To evaluate the relationship between radiation-induced cell survival and DNA damage in primary human fibroblasts to decide whether the initial or residual DNA damage levels are more predictive of normal tissue cellular radiosensitivity. Five primary human nonsyndromic and two primary ataxia telangiectasia fibroblast strains grown in monolayer were studied. Cell survival was assessed by clonogenic assay. Irradiation was given at high dose rate (HDR) 1-2 Gy/min. DNA damage was measured in stationary phase cells and expressed as fraction released from the well by pulsed-field gel electrophoresis (PFGE). For initial damage, cells were embedded in agarose and irradiated at HDR on ice. Residual DNA damage was measured in monolayer by allowing a 4-h repair period after HDR irradiation. Following HDR irradiation, cell survival varied between SF 2 0.025 to 0.23. Measurement of initial DNA damage demonstrated linear induction up to 30 Gy, with small differences in the slope of the dose-response curve between strains. No correlation between cell survival and initial damage was found. Residual damage increased linearly up to 80 Gy with a variation in slope by a factor of 3.2. Cell survival correlated with the slope of the dose-response curves for residual damage of the different strains (p = 0.003). The relationship between radiation-induced cell survival and DNA damage in primary human fibroblasts of differing radiosensitivity is closest with the amount of DNA damage remaining after repair. If assays of DNA damage are to be used as predictors of normal tissue response to radiation, residual DNA damage provides the most likely correlation with cell survival. 52 refs., 5 figs., 2 tabs

  11. Human Parvovirus B19 Utilizes Cellular DNA Replication Machinery for Viral DNA Replication.

    Science.gov (United States)

    Zou, Wei; Wang, Zekun; Xiong, Min; Chen, Aaron Yun; Xu, Peng; Ganaie, Safder S; Badawi, Yomna; Kleiboeker, Steve; Nishimune, Hiroshi; Ye, Shui Qing; Qiu, Jianming

    2018-03-01

    Human parvovirus B19 (B19V) infection of human erythroid progenitor cells (EPCs) induces a DNA damage response and cell cycle arrest at late S phase, which facilitates viral DNA replication. However, it is not clear exactly which cellular factors are employed by this single-stranded DNA virus. Here, we used microarrays to systematically analyze the dynamic transcriptome of EPCs infected with B19V. We found that DNA metabolism, DNA replication, DNA repair, DNA damage response, cell cycle, and cell cycle arrest pathways were significantly regulated after B19V infection. Confocal microscopy analyses revealed that most cellular DNA replication proteins were recruited to the centers of viral DNA replication, but not the DNA repair DNA polymerases. Our results suggest that DNA replication polymerase δ and polymerase α are responsible for B19V DNA replication by knocking down its expression in EPCs. We further showed that although RPA32 is essential for B19V DNA replication and the phosphorylated forms of RPA32 colocalized with the replicating viral genomes, RPA32 phosphorylation was not necessary for B19V DNA replication. Thus, this report provides evidence that B19V uses the cellular DNA replication machinery for viral DNA replication. IMPORTANCE Human parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red cell aplasia. In fetuses, B19V infection can result in nonimmune hydrops fetalis and fetal death. These clinical manifestations of B19V infection are a direct outcome of the death of human erythroid progenitors that host B19V replication. B19V infection induces a DNA damage response that is important for cell cycle arrest at late S phase. Here, we analyzed dynamic changes in cellular gene expression and found that DNA metabolic processes are tightly regulated during B19V infection. Although genes involved in cellular DNA replication were downregulated overall, the cellular DNA replication machinery was tightly

  12. Elucidation of the mechanism of X-ray induced DNA duplication observed in human Gorlin cells

    International Nuclear Information System (INIS)

    Nomura, J.; Suzuki, N.; Kita, K.; Sugaya, S.

    2004-01-01

    A phenomenon in which DNA synthesis level increases rapidly after x-ray irradiation has found out in the cells which originate in Gorlin patients. A gene, by which an expression level changes after x-ray irradiation, is searched in the human Gorlin cells by the mRNA differential display method. The DNA synthesis level decreases in normal human cell after x-ray irradiation of 2 Gy dose, but increases twice in the Gorlin cell. Expression levels of gene SMT3A, however decrease clearly in the Gorlin cells after the irradiation. The relations between expression levels of gene SMT3M, a protein like ubichitin, and DNA synthesis levels are searched. DNA synthesis activity in normal human cells, which are treated by antisese oligonucleotide and suppressed expression of the genes SMT3A, increases after x-ray irradiation. An increase of the DNA synthesis level after the irradiation is not a phenomenon in particular cells, but indicates the possibility of general phenomena in normal human cells. It is reported that the gene SMT3A combines with a glycosylase which operates in DNA repairing process. The protein modification of gene SMT3A indicates a possibility for controlling of stress protection mechanism in the cells. (M. Suetake)

  13. UV stimulation of DNA-mediated transformation of human cells

    International Nuclear Information System (INIS)

    van Duin, M.; Westerveld, A.; Hoeijmakers, J.H.

    1985-01-01

    Irradiation of dominant marker DNA with UV light (150 to 1,000 J/m2) was found to stimulate the transformation of human cells by this marker from two- to more than fourfold. This phenomenon is also displayed by xeroderma pigmentosum cells, which are deficient in the excision repair of UV-induced pyrimidine dimers in the DNA. Also, exposure to UV of the transfected (xeroderma pigmentosum) cells enhanced the transfection efficiency. Removal of the pyrimidine dimers from the DNA by photoreactivating enzyme before transfection completely abolished the stimulatory effect, indicating that dimer lesions are mainly responsible for the observed enhancement. A similar stimulation of the transformation efficiency is exerted by 2-acetoxy-2-acetylaminofluorene modification of the DNA. These findings suggest that lesions which are targets for the excision repair pathway induce the increase in transformation frequency. The stimulation was found to be independent of sequence homology between the irradiated DNA and the host chromosomal DNA. Therefore, the increase of the transformation frequency is not caused by a mechanism inducing homologous recombination between these two DNAs. UV treatment of DNA before transfection did not have a significant effect on the amount of DNA integrated into the xeroderma pigmentosum genome

  14. Caffeine and human DNA metabolism: the magic and the mystery

    International Nuclear Information System (INIS)

    Kaufmann, William K.; Heffernan, Timothy P.; Beaulieu, Lea M.; Doherty, Sharon; Frank, Alexandra R.; Zhou Yingchun; Bryant, Miriam F.; Zhou Tong; Luche, Douglas D.; Nikolaishvili-Feinberg, Nana; Simpson, Dennis A.; Cordeiro-Stone, Marila

    2003-01-01

    The ability of caffeine to reverse cell cycle checkpoint function and enhance genotoxicity after DNA damage was examined in telomerase-expressing human fibroblasts. Caffeine reversed the ATM-dependent S and G2 checkpoint responses to DNA damage induced by ionizing radiation (IR), as well as the ATR- and Chk1-dependent S checkpoint response to ultraviolet radiation (UVC). Remarkably, under conditions in which IR-induced G2 delay was reversed by caffeine, IR-induced G1 arrest was not. Incubation in caffeine did not increase the percentage of cells entering the S phase 6-8 h after irradiation; ATM-dependent phosphorylation of p53 and transactivation of p21 Cip1/Waf1 post-IR were resistant to caffeine. Caffeine alone induced a concentration- and time-dependent inhibition of DNA synthesis. It inhibited the entry of human fibroblasts into S phase by 70-80% regardless of the presence or absence of wildtype ATM or p53. Caffeine also enhanced the inhibition of cell proliferation induced by UVC in XP variant fibroblasts. This effect was reversed by expression of DNA polymerase η, indicating that translesion synthesis of UVC-induced pyrimidine dimers by DNA pol η protects human fibroblasts against UVC genotoxic effects even when other DNA repair functions are compromised by caffeine

  15. Caffeine and human DNA metabolism: the magic and the mystery

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, William K.; Heffernan, Timothy P.; Beaulieu, Lea M.; Doherty, Sharon; Frank, Alexandra R.; Zhou Yingchun; Bryant, Miriam F.; Zhou Tong; Luche, Douglas D.; Nikolaishvili-Feinberg, Nana; Simpson, Dennis A.; Cordeiro-Stone, Marila

    2003-11-27

    The ability of caffeine to reverse cell cycle checkpoint function and enhance genotoxicity after DNA damage was examined in telomerase-expressing human fibroblasts. Caffeine reversed the ATM-dependent S and G2 checkpoint responses to DNA damage induced by ionizing radiation (IR), as well as the ATR- and Chk1-dependent S checkpoint response to ultraviolet radiation (UVC). Remarkably, under conditions in which IR-induced G2 delay was reversed by caffeine, IR-induced G1 arrest was not. Incubation in caffeine did not increase the percentage of cells entering the S phase 6-8 h after irradiation; ATM-dependent phosphorylation of p53 and transactivation of p21{sup Cip1/Waf1} post-IR were resistant to caffeine. Caffeine alone induced a concentration- and time-dependent inhibition of DNA synthesis. It inhibited the entry of human fibroblasts into S phase by 70-80% regardless of the presence or absence of wildtype ATM or p53. Caffeine also enhanced the inhibition of cell proliferation induced by UVC in XP variant fibroblasts. This effect was reversed by expression of DNA polymerase {eta}, indicating that translesion synthesis of UVC-induced pyrimidine dimers by DNA pol {eta} protects human fibroblasts against UVC genotoxic effects even when other DNA repair functions are compromised by caffeine.

  16. Brain cDNA clone for human cholinesterase

    International Nuclear Information System (INIS)

    McTiernan, C.; Adkins, S.; Chatonnet, A.; Vaughan, T.A.; Bartels, C.F.; Kott, M.; Rosenberry, T.L.; La Du, B.N.; Lockridge, O.

    1987-01-01

    A cDNA library from human basal ganglia was screened with oligonucleotide probes corresponding to portions of the amino acid sequence of human serum cholinesterase. Five overlapping clones, representing 2.4 kilobases, were isolated. The sequenced cDNA contained 207 base pairs of coding sequence 5' to the amino terminus of the mature protein in which there were four ATG translation start sites in the same reading frame as the protein. Only the ATG coding for Met-(-28) lay within a favorable consensus sequence for functional initiators. There were 1722 base pairs of coding sequence corresponding to the protein found circulating in human serum. The amino acid sequence deduced from the cDNA exactly matched the 574 amino acid sequence of human serum cholinesterase, as previously determined by Edman degradation. Therefore, our clones represented cholinesterase rather than acetylcholinesterase. It was concluded that the amino acid sequences of cholinesterase from two different tissues, human brain and human serum, were identical. Hybridization of genomic DNA blots suggested that a single gene, or very few genes coded for cholinesterase

  17. Mitochondrial outer membrane permeabilization increases reactive oxygen species production and decreases mean sperm velocity but is not associated with DNA fragmentation in human sperm.

    Science.gov (United States)

    Treulen, F; Uribe, P; Boguen, R; Villegas, J V

    2016-02-01

    Does induction of mitochondrial outer membrane permeabilization (MOMP) in vitro affect specific functional parameters of human spermatozoa? Our findings show that MOMP induction increases intracellular reactive oxygen species (ROS) and decreases mean sperm velocity but does not alter DNA integrity. MOMP in somatic cells is related to a variety of apoptotic traits, such as alteration of mitochondrial membrane potential (ΔΨm), and increase in ROS production and DNA fragmentation. Although the presence of these apoptotic features has been reported in spermatozoa, to date the effects of MOMP on sperm function and DNA integrity have not been analysed. The study included spermatozoa from fertile donors. Motile sperm were obtained using the swim-up method. The highly motile sperm were collected and diluted with human tubal fluid to a final cell concentration of 5 × 10(6) ml(-1). To induce MOMP, selected sperm were treated at 37°C for 4 h with a mimetic of a Bcl-2 pro-apoptotic protein, ABT-737. MOMP was evaluated by relocating of cytochrome c. In addition, the effect of ABT-737 on mitochondrial inner membrane permeabilization was assessed using the calcein-AM/cobalt chloride method. In turn, ΔΨm was evaluated with JC-1 staining, intracellular ROS production with dihydroethidium, sperm motility was analysed by computer-assisted sperm analysis and DNA fragmentation by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) assay. Measurements were performed by flow cytometry. MOMP was associated with ΔΨm dissipation (P < 0.05), increased ROS production (P < 0.05) and decreased mean sperm velocity (P < 0.05), but it was not associated with DNA fragmentation. MOMP did not induce a large increase in ROS, which could explain the negligible effect of MOMP on sperm DNA fragmentation under our experimental conditions. The study was carried out in vitro using highly motile sperm, selected by swim-up, from healthy donors. The results obtained in this

  18. Dihydrocoumarin, an HDAC Inhibitor, Increases DNA Damage Sensitivity by Inhibiting Rad52

    Directory of Open Access Journals (Sweden)

    Chin-Chuan Chen

    2017-12-01

    Full Text Available Effective DNA repair enables cancer cells to survive DNA damage induced by chemotherapeutic or radiotherapeutic treatments. Therefore, inhibiting DNA repair pathways is a promising therapeutic strategy for increasing the efficacy of such treatments. In this study, we found that dihydrocoumarin (DHC, a flavoring agent, causes deficiencies in double-stand break (DSB repair and prolonged DNA damage checkpoint recovery in yeast. Following DNA damage, Rad52 recombinase was revealed to be inhibited by DHC, which results in deficiencies in DSB repair and prolonged DNA damage checkpoint recovery. The deletion of RPD3, a class I histone deacetylase (HDAC, was found to mimic DHC-induced suppression of Rad52 expression, suggesting that the HDAC inhibitor activity of DHC is critical to DSB repair and DNA damage sensitivity. Overall, our findings delineate the regulatory mechanisms of DHC in DSB repair and suggest that it might potentially be used as an inhibitor of the DNA repair pathway in human cells.

  19. UV-induced DNA-binding proteins in human cells

    International Nuclear Information System (INIS)

    Glazer, P.M.; Greggio, N.A.; Metherall, J.E.; Summers, W.C.

    1989-01-01

    To investigate the response of human cells to DNA-damaging agents such as UV irradiation, the authors examined nuclear protein extracts of UV-irradiated HeLa cells for the presence of DNA-binding proteins. Electrophoretically separated proteins were transferred to a nitrocellulose filter that was subsequently immersed in a binding solution containing radioactively labeled DNA probes. Several DNA-binding proteins were induced in HeLa cells after UV irradiation. These included proteins that bind predominantly double-stranded DNA and proteins that bind both double-stranded and single-stranded DNA. The binding proteins were induced in a dose-dependent manner by UV light. Following a dose of 12 J/m 2 , the binding proteins in the nuclear extracts increased over time to a peak in the range of 18 hr after irradiation. Experiments with metabolic inhibitors (cycloheximide and actinomycin D) revealed that de novo synthesis of these proteins is not required for induction of the binding activities, suggesting that the induction is mediated by protein modification

  20. Cloning and functional expression of a human pancreatic islet glucose-transporter cDNA

    International Nuclear Information System (INIS)

    Permutt, M.A.; Koranyi, L.; Keller, K.; Lacy, P.E.; Scharp, D.W.; Mueckler, M.

    1989-01-01

    Previous studies have suggested that pancreatic islet glucose transport is mediated by a high-K m , low-affinity facilitated transporter similar to that expressed in liver. To determine the relationship between islet and liver glucose transporters, liver-type glucose-transporter cDNA clones were isolated from a human liver cDNA library. The liver-type glucose-transporter cDNA clone hybridized to mRNA transcripts of the same size in human liver and pancreatic islet RNA. A cDNA library was prepared from purified human pancreatic islet tissue and screened with human liver-type glucose-transporter cDNA. The authors isolated two overlapping cDNA clones encompassing 2600 base pairs, which encode a pancreatic islet protein identical in sequence to that of the putative liver-type glucose-transporter protein. Xenopus oocytes injected with synthetic mRNA transcribed from a full-length cDNA construct exhibited increased uptake of 2-deoxyglucose, confirming the functional identity of the clone. These cDNA clones can now be used to study regulation of expression of the gene and to assess the role of inherited defects in this gene as a candidate for inherited susceptibility to non-insulin-dependent diabetes mellitus

  1. Islet expression of the DNA repair enzyme 8-oxoguanosine DNA glycosylase (Ogg1 in human type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Yoon Kun-Ho

    2002-04-01

    Full Text Available Abstract Background It has become increasingly clear that β-cell failure plays a critical role in the pathogenesis of type 2 diabetes. Free-radical mediated β-cell damage has been intensively studied in type 1 diabetes, but not in human type 2 diabetes. Therefore, we studied the protein expression of the DNA repair enzyme Ogg1 in pancreases from type 2 diabetics. Ogg1 was studied because it is the major enzyme involved in repairing 7,8-dihydro-8-oxoguanosine DNA adducts, a lesion previously observed in a rat model of type 2 diabetes. Moreover, in a gene expression screen, Ogg1 was over-expressed in islets from a human type 2 diabetic. Methods Immunofluorescent staining of Ogg1 was performed on pancreatic specimens from healthy controls and patients with diabetes for 2–23 years. The intensity and islet area stained for Ogg1 was evaluated by semi-quantitative scoring. Results Both the intensity and the area of islet Ogg1 staining were significantly increased in islets from the type 2 diabetic subjects compared to the healthy controls. A correlation between increased Ogg1 fluorescent staining intensity and duration of diabetes was also found. Most of the staining observed was cytoplasmic, suggesting that mitochondrial Ogg1 accounts primarily for the increased Ogg1 expression. Conclusion We conclude that oxidative stress related DNA damage may be a novel important factor in the pathogenesis of human type 2 diabetes. An increase of Ogg1 in islet cell mitochondria is consistent with a model in which hyperglycemia and consequent increased β-cell oxidative metabolism lead to DNA damage and the induction of Ogg1 expression.

  2. Capacity of ultraviolet-induced DNA repair in human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Hiroji

    1987-04-01

    A DNA repair abnormality is likely related to an increased incidence of neoplasms in several autosomal recessive diseases such as xeroderma pigmentosum, Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. In human glioma cells, however, there are only a few reports on DNA repair. In this study, an ultraviolet (UV)-induced DNA repair was examined systematically in many human glioma cells. Two human malignant glioma cell lines (MMG-851, U-251-MG) and 7 human glioma cell strains (4, benign; 3, malignant) of short term culture, in which glial fibrillary acidic protein (GFAP) staining were positive, were used. To investigate the capacity of DNA repair, UV sensitivity was determined by colony formation; excision repair by autoradiography and Cytosine Arabinoside (Ara-C) assay; and post-replication repair by the joining rate of newly synthesized DNA. As a result, the colony-forming abilities of malignant glioma cell lines were lower than those of normal human fibroblasts, but no difference was found between two malignant glioma cell lines. The excision repair of the malignant group (2 cell lines and 3 cell strains) was apparently lower than that of the benign group (4 cell strains). In two malignant glioma cell lines, the excision repair of MMG-851 was lower than that of U-251-MG, and the post-replication repair of MMG-851 was higher than that of U-251-MG. These results were considered to correspond well with colony-forming ability. The results indicate that there are some differences in each human malignant glioma cell in its UV-induced DNA repair mechanism, and that the excision repair of the malignant glioma cells is apparently lower than that of the benign glioma cells. These findings may be useful for diagnosis and treatment.

  3. Disruption of mitochondrial DNA replication in Drosophila increases mitochondrial fast axonal transport in vivo.

    Directory of Open Access Journals (Sweden)

    Rehan M Baqri

    Full Text Available Mutations in mitochondrial DNA polymerase (pol gamma cause several progressive human diseases including Parkinson's disease, Alper's syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol gamma leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol gamma deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol gamma-alpha mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases.

  4. Fidelity and mutational spectrum of Pfu DNA polymerase on a human mitochondrial DNA sequence.

    Science.gov (United States)

    André, P; Kim, A; Khrapko, K; Thilly, W G

    1997-08-01

    The study of rare genetic changes in human tissues requires specialized techniques. Point mutations at fractions at or below 10(-6) must be observed to discover even the most prominent features of the point mutational spectrum. PCR permits the increase in number of mutant copies but does so at the expense of creating many additional mutations or "PCR noise". Thus, each DNA sequence studied must be characterized with regard to the DNA polymerase and conditions used to avoid interpreting a PCR-generated mutation as one arising in human tissue. The thermostable DNA polymerase derived from Pyrococcus furiosus designated Pfu has the highest fidelity of any DNA thermostable polymerase studied to date, and this property recommends it for analyses of tissue mutational spectra. Here, we apply constant denaturant capillary electrophoresis (CDCE) to separate and isolate the products of DNA amplification. This new strategy permitted direct enumeration and identification of point mutations created by Pfu DNA polymerase in a 96-bp low melting domain of a human mitochondrial sequence despite the very low mutant fractions generated in the PCR process. This sequence, containing part of the tRNA glycine and NADH dehydrogenase subunit 3 genes, is the target of our studies of mitochondrial mutagenesis in human cells and tissues. Incorrectly synthesized sequences were separated from the wild type as mutant/wild-type heteroduplexes by sequential enrichment on CDCE. An artificially constructed mutant was used as an internal standard to permit calculation of the mutant fraction. Our study found that the average error rate (mutations per base pair duplication) of Pfu was 6.5 x 10(-7), and five of its more frequent mutations (hot spots) consisted of three transversions (GC-->TA, AT-->TA, and AT-->CG), one transition (AT-->GC), and one 1-bp deletion (in an AAAAAA sequence). To achieve an even higher sensitivity, the amount of Pfu-induced mutants must be reduced.

  5. Evaluating Digital PCR for the Quantification of Human Genomic DNA: Accessible Amplifiable Targets.

    Science.gov (United States)

    Kline, Margaret C; Romsos, Erica L; Duewer, David L

    2016-02-16

    Polymerase chain reaction (PCR) multiplexed assays perform best when the input quantity of template DNA is controlled to within about a factor of √2. To help ensure that PCR assays yield consistent results over time and place, results from methods used to determine DNA quantity need to be metrologically traceable to a common reference. Many DNA quantitation systems can be accurately calibrated with solutions of DNA in aqueous buffer. Since they do not require external calibration, end-point limiting dilution technologies, collectively termed "digital PCR (dPCR)", have been proposed as suitable for value assigning such DNA calibrants. The performance characteristics of several commercially available dPCR systems have recently been documented using plasmid, viral, or fragmented genomic DNA; dPCR performance with more complex materials, such as human genomic DNA, has been less studied. With the goal of providing a human genomic reference material traceably certified for mass concentration, we are investigating the measurement characteristics of several dPCR systems. We here report results of measurements from multiple PCR assays, on four human genomic DNAs treated with four endonuclease restriction enzymes using both chamber and droplet dPCR platforms. We conclude that dPCR does not estimate the absolute number of PCR targets in a given volume but rather the number of accessible and amplifiable targets. While enzymatic restriction of human genomic DNA increases accessibility for some assays, in well-optimized PCR assays it can reduce the number of amplifiable targets and increase assay variability relative to uncut sample.

  6. Increased levels of mitochondrial DNA copy number in patients with vitiligo.

    Science.gov (United States)

    Vaseghi, H; Houshmand, M; Jadali, Z

    2017-10-01

    Oxidative stress is known to be involved in the pathogenesis of autoimmune diseases such as vitiligo. Evidence suggests that the human mitochondrial DNA copy number (mtDNAcn) is vulnerable to damage mediated by oxidative stress. The purpose of this study was to examine and compare peripheral blood mtDNAcn and oxidative DNA damage byproducts (8-hydroxy-2-deoxyguanosine; 8-OHdG) in patients with vitiligo and healthy controls (HCs). The relative mtDNAcn and the oxidative damage (formation of 8-OHdG in mtDNA) of each sample were determined by real-time quantitative PCR. Blood samples were obtained from 56 patients with vitiligo and 46 HCs. The mean mtDNAcn and the degree of mtDNA damage were higher in patients with vitiligo than in HCs. These data suggest that increase in mtDNAcn and oxidative DNA damage may be involved in the pathogenesis of vitiligo. © 2017 British Association of Dermatologists.

  7. ISFG: recommendations regarding the use of non-human (animal) DNA in forensic genetic investigations.

    Science.gov (United States)

    Linacre, A; Gusmão, L; Hecht, W; Hellmann, A P; Mayr, W R; Parson, W; Prinz, M; Schneider, P M; Morling, N

    2011-11-01

    The use of non-human DNA typing in forensic science investigations, and specifically that from animal DNA, is ever increasing. The term animal DNA in this document refers to animal species encountered in a forensic science examination but does not include human DNA. Non-human DNA may either be: the trade and possession of a species, or products derived from a species, which is contrary to legislation; as evidence where the crime is against a person or property; instances of animal cruelty; or where the animal is the offender. The first instance is addressed by determining the species present, and the other scenarios can often be addressed by assigning a DNA sample to a particular individual organism. Currently there is little standardization of methodologies used in the forensic analysis of animal DNA or in reporting styles. The recommendations in this document relate specifically to animal DNA that is integral to a forensic science investigation and are not relevant to the breeding of animals for commercial purposes. This DNA commission was formed out of discussions at the International Society for Forensic Genetics 23rd Congress in Buenos Aires to outline recommendations on the use of non-human DNA in a forensic science investigation. Due to the scope of non-human DNA typing that is possible, the remit of this commission is confined to animal DNA typing only. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Assessment of okadaic acid effects on cytotoxicity, DNA damage and DNA repair in human cells.

    Science.gov (United States)

    Valdiglesias, Vanessa; Méndez, Josefina; Pásaro, Eduardo; Cemeli, Eduardo; Anderson, Diana; Laffon, Blanca

    2010-07-07

    Okadaic acid (OA) is a phycotoxin produced by several types of dinoflagellates causing diarrheic shellfish poisoning (DSP) in humans. Symptoms induced by DSP toxins are mainly gastrointestinal, but the intoxication does not appear to be fatal. Despite this, this toxin presents a potential threat to human health even at concentrations too low to induce acute toxicity, since previous animal studies have shown that OA has very potent tumour promoting activity. However, its concrete action mechanism has not been described yet and the results reported with regard to OA cytotoxicity and genotoxicity are often contradictory. In the present study, the genotoxic and cytotoxic effects of OA on three different types of human cells (peripheral blood leukocytes, HepG2 hepatoma cells, and SHSY5Y neuroblastoma cells) were evaluated. Cells were treated with a range of OA concentrations in the presence and absence of S9 fraction, and MTT test and Comet assay were performed in order to evaluate cytotoxicity and genotoxicity, respectively. The possible effects of OA on DNA repair were also studied by means of the DNA repair competence assay, using bleomycin as DNA damage inductor. Treatment with OA in absence of S9 fraction induced not statistically significant decrease in cell viability and significant increase in DNA damage in all cell types at the highest concentrations investigated. However, only SHSY5Y cells showed OA induced genotoxic and cytotoxic effects in presence of S9 fraction. Furthermore, we found that OA can induce modulations in DNA repair processes when exposure was performed prior to BLM treatment, in co-exposure, or during the subsequent DNA repair process. Copyright 2010 Elsevier B.V. All rights reserved.

  9. DNA methylation-based variation between human populations.

    Science.gov (United States)

    Kader, Farzeen; Ghai, Meenu

    2017-02-01

    Several studies have proved that DNA methylation affects regulation of gene expression and development. Epigenome-wide studies have reported variation in methylation patterns between populations, including Caucasians, non-Caucasians (Blacks), Hispanics, Arabs, and numerous populations of the African continent. Not only has DNA methylation differences shown to impact externally visible characteristics, but is also a potential biomarker for underlying racial health disparities between human populations. Ethnicity-related methylation differences set their mark during early embryonic development. Genetic variations, such as single-nucleotide polymorphisms and environmental factors, such as age, dietary folate, socioeconomic status, and smoking, impacts DNA methylation levels, which reciprocally impacts expression of phenotypes. Studies show that it is necessary to address these external influences when attempting to differentiate between populations since the relative impacts of these factors on the human methylome remain uncertain. The present review summarises several reported attempts to establish the contribution of differential DNA methylation to natural human variation, and shows that DNA methylation could represent new opportunities for risk stratification and prevention of several diseases amongst populations world-wide. Variation of methylation patterns between human populations is an exciting prospect which inspires further valuable research to apply the concept in routine medical and forensic casework. However, trans-generational inheritance needs to be quantified to decipher the proportion of variation contributed by DNA methylation. The future holds thorough evaluation of the epigenome to understand quantification, heritability, and the effect of DNA methylation on phenotypes. In addition, methylation profiling of the same ethnic groups across geographical locations will shed light on conserved methylation differences in populations.

  10. Origin of DNA in human serum and usefulness of serum as a material for DNA typing.

    Science.gov (United States)

    Takayama, T; Yamada, S; Watanabe, Y; Hirata, K; Nagai, A; Nakamura, I; Bunai, Y; Ohya, I

    2001-06-01

    The aims of this study were to clarify the origin of DNA in human serum and to investigate whether serum is a material available for DNA typing in routine forensic practice. Blood was donated from 10 healthy adult volunteers and stored for up to 8 days, at 4 degrees C and at room temperature. The serum DNA concentration at zero time was in the range of 5.6 to 21.8 ng/ml with a mean of 12.2+/-1.6 ng/ml. The concentrations increased with storage time. On agarose gel electrophoresis, all serum samples showed ladder patterns and the size of each band was an integer multiple of approximately 180 bp considered to be characteristic of apoptosis. DNA typing from DNA released by apoptosis was possible. Exact DNA typing of D1S80, HLA DQA1, PM, CSF1PO, TPOX, TH01 and vWA was possible for each sample. These results indicate that serum contains fragmented DNA derived from apoptosis of leukocytes, especially neutrophils, and that fragmented DNA is an appropriate material for DNA typing.

  11. Apple Flavonoids Suppress Carcinogen-Induced DNA Damage in Normal Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Vazhappilly Cijo George

    2017-01-01

    Full Text Available Scope. Human neoplastic transformation due to DNA damage poses an increasing global healthcare concern. Maintaining genomic integrity is crucial for avoiding tumor initiation and progression. The present study aimed to investigate the efficacy of an apple flavonoid fraction (AF4 against various carcinogen-induced toxicity in normal human bronchial epithelial cells and its mechanism of DNA damage response and repair processes. Methods and Results. AF4-pretreated cells were exposed to nicotine-derived nitrosamine ketones (NNK, NNK acetate (NNK-Ae, methotrexate (MTX, and cisplatin to validate cytotoxicity, total reactive oxygen species, intracellular antioxidants, DNA fragmentation, and DNA tail damage. Furthermore, phosphorylated histone (γ-H2AX and proteins involved in DNA damage (ATM/ATR, Chk1, Chk2, and p53 and repair (DNA-PKcs and Ku80 mechanisms were evaluated by immunofluorescence and western blotting, respectively. The results revealed that AF4-pretreated cells showed lower cytotoxicity, total ROS generation, and DNA fragmentation along with consequent inhibition of DNA tail moment. An increased level of γ-H2AX and DNA damage proteins was observed in carcinogen-treated cells and that was significantly (p≤0.05 inhibited in AF4-pretreated cells, in an ATR-dependent manner. AF4 pretreatment also facilitated the phosphorylation of DNA-PKcs and thus initiation of repair mechanisms. Conclusion. Apple flavonoids can protect in vitro oxidative DNA damage and facilitate repair mechanisms.

  12. Sequence of human protamine 2 cDNA

    Energy Technology Data Exchange (ETDEWEB)

    Domenjoud, L; Fronia, C; Uhde, F; Engel, W [Universitaet Goettingen (West Germany)

    1988-08-11

    The authors report the cloning and sequencing of a cDNA clone for human protamine 2 (hp2), isolated from a human testis cDNA library cloned in the vector {lambda}-gt11. A 66mer oligonucleotide, that corresponds to an amino acid sequence which is highly conserved between hp2 and mouse protamine 2 (mp2) served as hybridization probe. The homology between the amino acid sequence deduced from our cDNA and the published amino acid sequence for hp2 is 100%.

  13. Quantitative analysis of gene-specific DNA damage in human spermatozoa

    International Nuclear Information System (INIS)

    Sawyer, Dennis E.; Mercer, Belinda G.; Wiklendt, Agnieszka M.; Aitken, R. John

    2003-01-01

    Recent studies have suggested that human spermatozoa are highly susceptible to DNA damage induced by oxidative stress. However, a detailed analysis of the precise nature of this damage and the extent to which it affects the mitochondrial and nuclear genomes has not been reported. To induce DNA damage, human spermatozoa were treated in vitro with hydrogen peroxide (H 2 O 2 ; 0-5 mM) or iron (as Fe(II)SO 4 , 0-500 μM). Quantitative PCR (QPCR) was used to measure DNA damage in individual nuclear genes (hprt, β-pol and β-globin) and mitochondrial DNA. Single strand breaks were also assessed by alkaline gel electrophoresis. H 2 O 2 was found to be genotoxic toward spermatozoa at concentrations as high as 1.25 mM, but DNA damage was not detected in these cells with lower concentrations of H 2 O 2 . The mitochondrial genome of human spermatozoa was significantly (P 2 O 2 -induced DNA damage than the nuclear genome. However, both nDNA and mtDNA in human spermatozoa were significantly (P<0.001) more resistant to damage than DNA from a variety of cell lines of germ cell and myoblastoid origin. Interestingly, significant DNA damage was also not detected in human spermatozoa treated with iron. These studies report, for the first time, quantitative measurements of DNA damage in specific genes of male germ cells, and challenge the commonly held belief that human spermatozoa are particularly vulnerable to DNA damage

  14. DNA excision repair in permeable human fibroblasts

    International Nuclear Information System (INIS)

    Kaufmann, W.K.; Bodell, W.J.; Cleaver, J.E.

    1983-01-01

    U.v. irradiation of confluent human fibroblasts activated DNA repair, aspects of which were characterized in the cells after they were permeabilized. Incubation of intact cells for 20 min between irradiation and harvesting was necessary to obtain a maximum rate of reparative DNA synthesis. Cells harvested immediately after irradiation before repair was initiated displayed only a small stimulation of DNA synthesis, indicating that permeable cells have a reduced capacity to recognize pyrimidine dimers and activate repair. The distribution of sizes of DNA strands labeled during 10 min of reparative DNA synthesis resembled that of parental DNA. However, during a 60-min incubation of permeable cells at 37 degrees C, parental DNA and DNA labeled by reparative DNA synthesis were both cleaved to smaller sizes. Cleavage also occurred in unirradiated cells, indicating that endogenous nuclease was active during incubation. Repair patches synthesized in permeable cells displayed increased sensitivity to digestion by micrococcal nuclease. However, the change in sensitivity during a chase with unlabeled DNA precursors was small, suggesting that reassembly of nucleosome structure at sites of repair was impaired. To examine whether this deficiency was due to a preponderance of incomplete or unligated repair patches, 3H-labeled (repaired) DNA was purified, then digested with exonuclease III and nuclease S1 to probe for free 3' ends and single-stranded regions. About 85% of the [3H]DNA synthesized during a 10-min pulse resisted digestion, suggesting that a major fraction of the repair patches that were filled were also ligated. U.v. light-activated DNA synthesis in permeable cells, therefore, appears to represent the continuation of reparative gap-filling at sites of excision repair activated within intact cells. Gap-filling and ligation were comparatively efficient processes in permeable cells

  15. Preservation and rapid purification of DNA from decomposing human tissue samples.

    Science.gov (United States)

    Sorensen, Amy; Rahman, Elizabeth; Canela, Cassandra; Gangitano, David; Hughes-Stamm, Sheree

    2016-11-01

    One of the key features to be considered in a mass disaster is victim identification. However, the recovery and identification of human remains are sometimes complicated by harsh environmental conditions, limited facilities, loss of electricity and lack of refrigeration. If human remains cannot be collected, stored, or identified immediately, bodies decompose and DNA degrades making genotyping more difficult and ultimately decreasing DNA profiling success. In order to prevent further DNA damage and degradation after collection, tissue preservatives may be used. The goal of this study was to evaluate three customized (modified TENT, DESS, LST) and two commercial DNA preservatives (RNAlater and DNAgard ® ) on fresh and decomposed human skin and muscle samples stored in hot (35°C) and humid (60-70% relative humidity) conditions for up to three months. Skin and muscle samples were harvested from the thigh of three human cadavers placed outdoors for up to two weeks. In addition, the possibility of purifying DNA directly from the preservative solutions ("free DNA") was investigated in order to eliminate lengthy tissue digestion processes and increase throughput. The efficiency of each preservative was evaluated based on the quantity of DNA recovered from both the "free DNA" in solution and the tissue sample itself in conjunction with the quality and completeness of downstream STR profiles. As expected, DNA quantity and STR success decreased with time of decomposition. However, a marked decrease in DNA quantity and STR quality was observed in all samples after the bodies entered the bloat stage (approximately six days of decomposition in this study). Similar amounts of DNA were retrieved from skin and muscle samples over time, but slightly more complete STR profiles were obtained from muscle tissue. Although higher amounts of DNA were recovered from tissue samples than from the surrounding preservative, the average number of reportable alleles from the "free DNA" was

  16. A DNA Vaccine Protects Human Immune Cells against Zika Virus Infection in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Guohua Yi

    2017-11-01

    Full Text Available A DNA vaccine encoding prM and E protein has been shown to induce protection against Zika virus (ZIKV infection in mice and monkeys. However, its effectiveness in humans remains undefined. Moreover, identification of which immune cell types are specifically infected in humans is unclear. We show that human myeloid cells and B cells are primary targets of ZIKV in humanized mice. We also show that a DNA vaccine encoding full length prM and E protein protects humanized mice from ZIKV infection. Following administration of the DNA vaccine, humanized DRAG mice developed antibodies targeting ZIKV as measured by ELISA and neutralization assays. Moreover, following ZIKV challenge, vaccinated animals presented virtually no detectable virus in human cells and in serum, whereas unvaccinated animals displayed robust infection, as measured by qRT-PCR. Our results utilizing humanized mice show potential efficacy for a targeted DNA vaccine against ZIKV in humans.

  17. The blood DNA virome in 8,000 humans.

    Directory of Open Access Journals (Sweden)

    Ahmed Moustafa

    2017-03-01

    Full Text Available The characterization of the blood virome is important for the safety of blood-derived transfusion products, and for the identification of emerging pathogens. We explored non-human sequence data from whole-genome sequencing of blood from 8,240 individuals, none of whom were ascertained for any infectious disease. Viral sequences were extracted from the pool of sequence reads that did not map to the human reference genome. Analyses sifted through close to 1 Petabyte of sequence data and performed 0.5 trillion similarity searches. With a lower bound for identification of 2 viral genomes/100,000 cells, we mapped sequences to 94 different viruses, including sequences from 19 human DNA viruses, proviruses and RNA viruses (herpesviruses, anelloviruses, papillomaviruses, three polyomaviruses, adenovirus, HIV, HTLV, hepatitis B, hepatitis C, parvovirus B19, and influenza virus in 42% of the study participants. Of possible relevance to transfusion medicine, we identified Merkel cell polyomavirus in 49 individuals, papillomavirus in blood of 13 individuals, parvovirus B19 in 6 individuals, and the presence of herpesvirus 8 in 3 individuals. The presence of DNA sequences from two RNA viruses was unexpected: Hepatitis C virus is revealing of an integration event, while the influenza virus sequence resulted from immunization with a DNA vaccine. Age, sex and ancestry contributed significantly to the prevalence of infection. The remaining 75 viruses mostly reflect extensive contamination of commercial reagents and from the environment. These technical problems represent a major challenge for the identification of novel human pathogens. Increasing availability of human whole-genome sequences will contribute substantial amounts of data on the composition of the normal and pathogenic human blood virome. Distinguishing contaminants from real human viruses is challenging.

  18. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    International Nuclear Information System (INIS)

    Hansson, J.; Keyse, S.M.; Lindahl, T.; Wood, R.D.

    1991-01-01

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurements of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links

  19. Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia HL-60 cells.

    Science.gov (United States)

    Wu, Lung-Yuan; Lu, Hsu-Feng; Chou, Yu-Cheng; Shih, Yung-Luen; Bau, Da-Tian; Chen, Jaw-Chyun; Hsu, Shu-Chun; Chung, Jing-Gung

    2015-01-01

    Numerous evidences have shown that plant flavonoids (naturally occurring substances) have been reported to have chemopreventive activities and protect against experimental carcinogenesis. Kaempferol, one of the flavonoids, is widely distributed in fruits and vegetables, and may have cancer chemopreventive properties. However, the precise underlying mechanism regarding induced DNA damage and suppressed DNA repair system are poorly understood. In this study, we investigated whether kaempferol induced DNA damage and affected DNA repair associated protein expression in human leukemia HL-60 cells in vitro. Percentages of viable cells were measured via a flow cytometry assay. DNA damage was examined by Comet assay and DAPI staining. DNA fragmentation (ladder) was examined by DNA gel electrophoresis. The changes of protein levels associated with DNA repair were examined by Western blotting. Results showed that kaempferol dose-dependently decreased the viable cells. Comet assay indicated that kaempferol induced DNA damage (Comet tail) in a dose-dependent manner and DAPI staining also showed increased doses of kaempferol which led to increased DNA condensation, these effects are all of dose-dependent manners. Western blotting indicated that kaempferol-decreased protein expression associated with DNA repair system, such as phosphate-ataxia-telangiectasia mutated (p-ATM), phosphate-ataxia-telangiectasia and Rad3-related (p-ATR), 14-3-3 proteins sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK), O(6)-methylguanine-DNA methyltransferase (MGMT), p53 and MDC1 protein expressions, but increased the protein expression of p-p53 and p-H2AX. Protein translocation was examined by confocal laser microscopy, and we found that kaempferol increased the levels of p-H2AX and p-p53 in HL-60 cells. Taken together, in the present study, we found that kaempferol induced DNA damage and suppressed DNA repair and inhibited DNA repair associated protein expression in HL-60

  20. DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure

    International Nuclear Information System (INIS)

    Focke, Frauke; Schuermann, David; Kuster, Niels; Schaer, Primo

    2010-01-01

    Extremely low frequency electromagnetic fields (ELF-EMFs) were reported to affect DNA integrity in human cells with evidence based on the Comet assay. These findings were heavily debated for two main reasons; the lack of reproducibility, and the absence of a plausible scientific rationale for how EMFs could damage DNA. Starting out from a replication of the relevant experiments, we performed this study to clarify the existence and explore origin and nature of ELF-EMF induced DNA effects. Our data confirm that intermittent (but not continuous) exposure of human primary fibroblasts to a 50 Hz EMF at a flux density of 1 mT induces a slight but significant increase of DNA fragmentation in the Comet assay, and we provide first evidence for this to be caused by the magnetic rather than the electric field. Moreover, we show that EMF-induced responses in the Comet assay are dependent on cell proliferation, suggesting that processes of DNA replication rather than the DNA itself may be affected. Consistently, the Comet effects correlated with a reduction of actively replicating cells and a concomitant increase of apoptotic cells in exposed cultures, whereas a combined Fpg-Comet test failed to produce evidence for a notable contribution of oxidative DNA base damage. Hence, ELF-EMF induced effects in the Comet assay are reproducible under specific conditions and can be explained by minor disturbances in S-phase processes and occasional triggering of apoptosis rather than by the generation of DNA damage.

  1. DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure

    Energy Technology Data Exchange (ETDEWEB)

    Focke, Frauke; Schuermann, David [Institute of Biochemistry and Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel (Switzerland); Kuster, Niels [IT' IS Foundation, Zeughausstrasse 43, CH-8004 Zurich (Switzerland); Schaer, Primo, E-mail: primo.schaer@unibas.ch [Institute of Biochemistry and Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel (Switzerland)

    2010-01-05

    Extremely low frequency electromagnetic fields (ELF-EMFs) were reported to affect DNA integrity in human cells with evidence based on the Comet assay. These findings were heavily debated for two main reasons; the lack of reproducibility, and the absence of a plausible scientific rationale for how EMFs could damage DNA. Starting out from a replication of the relevant experiments, we performed this study to clarify the existence and explore origin and nature of ELF-EMF induced DNA effects. Our data confirm that intermittent (but not continuous) exposure of human primary fibroblasts to a 50 Hz EMF at a flux density of 1 mT induces a slight but significant increase of DNA fragmentation in the Comet assay, and we provide first evidence for this to be caused by the magnetic rather than the electric field. Moreover, we show that EMF-induced responses in the Comet assay are dependent on cell proliferation, suggesting that processes of DNA replication rather than the DNA itself may be affected. Consistently, the Comet effects correlated with a reduction of actively replicating cells and a concomitant increase of apoptotic cells in exposed cultures, whereas a combined Fpg-Comet test failed to produce evidence for a notable contribution of oxidative DNA base damage. Hence, ELF-EMF induced effects in the Comet assay are reproducible under specific conditions and can be explained by minor disturbances in S-phase processes and occasional triggering of apoptosis rather than by the generation of DNA damage.

  2. DNA repair processes and their impairment in some human diseases

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1977-01-01

    Some human diseases show enhanced sensitivity to the action of environmental mutagens, and among these several are known which are defective in the repair of damaged DNA. Xeroderma pigmentosum (XP) is mainly defective in excision repair of a large variety of damaged DNA bases caused by ultraviolet light and chemical mutagens. XP involves at least 6 distinct groups, some of which may lack cofactors required for excising damage from chromatin. As a result of these defects the sensitivity of XP cells to many mutagens is increased 5- to 10-fold. Ataxia telangiectasia and Fanconi's anemia may similarly involve defects in repair of certain DNA base damage or cross-links, respectively. But most of these and other mutagen-sensitive diseases only show increases of about 2-fold in sensitivity to mutagens, and the biochemical defects in the diseases may be more complex and less directly involved in DNA repair than in XP. (Auth.)

  3. Titanium dioxide nanoparticles activate the ATM-Chk2 DNA damage response in human dermal fibroblasts

    Science.gov (United States)

    Prasad, Raju Y.; Chastain, Paul D.; Nikolaishvili-Feinberg, Nana; Smeester, Lisa M.; Kaufmann, William K.; Fry, Rebecca C.

    2013-01-01

    The use of nanoparticles in consumer products increases their prevalence in the environment and the potential risk to human health. Although recent studies have shown in vivo and in vitro toxicity of titanium dioxide nanoparticles (nano-TiO2), a more detailed view of the underlying mechanisms of this response needs to be established. Here the effects of nano-TiO2 on the DNA damage response and DNA replication dynamics were investigated in human dermal fibroblasts. Specifically, the relationship between nano-TiO2 and the DNA damage response pathways regulated by ATM/Chk2 and ATR/Chk1 were examined. The results show increased phosphorylation of H2AX, ATM, and Chk2 after exposure. In addition, nano-TiO2 inhibited the overall rate of DNA synthesis and frequency of replicon initiation events in DNA combed fibers. Taken together, these results demonstrate that exposure to nano-TiO2 activates the ATM/Chk2 DNA damage response pathway. PMID:22770119

  4. No evidence of Neandertal mtDNA contribution to early modern humans.

    Directory of Open Access Journals (Sweden)

    David Serre

    2004-03-01

    Full Text Available The retrieval of mitochondrial DNA (mtDNA sequences from four Neandertal fossils from Germany, Russia, and Croatia has demonstrated that these individuals carried closely related mtDNAs that are not found among current humans. However, these results do not definitively resolve the question of a possible Neandertal contribution to the gene pool of modern humans since such a contribution might have been erased by genetic drift or by the continuous influx of modern human DNA into the Neandertal gene pool. A further concern is that if some Neandertals carried mtDNA sequences similar to contemporaneous humans, such sequences may be erroneously regarded as modern contaminations when retrieved from fossils. Here we address these issues by the analysis of 24 Neandertal and 40 early modern human remains. The biomolecular preservation of four Neandertals and of five early modern humans was good enough to suggest the preservation of DNA. All four Neandertals yielded mtDNA sequences similar to those previously determined from Neandertal individuals, whereas none of the five early modern humans contained such mtDNA sequences. In combination with current mtDNA data, this excludes any large genetic contribution by Neandertals to early modern humans, but does not rule out the possibility of a smaller contribution.

  5. DNA repair in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Lechner, J.F.; Grafstrom, R.C.; Harris, C.C.

    1982-01-01

    The purpose of this investigation was to compare the response of human cell types (bronchial epithelial cells and fibroblasts and skin fibroblasts) to various DNA damaging agents. Repair of DNA single strand breaks (SSB) induced by 5 krads of X-ray was similar for all cell types; approximately 90% of the DNA SSB were rejoined within one hour. During excision repair of DNA damage from u.v.-radiation, the frequencies of DNA SSB as estimated by the alkaline elution technique, were similar in all cell types. Repair replication as measured by BND cellulose chromatography was also similar in epithelial and fibroblastic cells after u.v.-irradiation. Similar levels of SSB were also observed in epithelial and fibroblastic cells after exposure to chemical carcinogens: 7,12-dimethylbenz[a]anthracene; benzo[a]pyrene diol epoxide (BPDE); or N-methyl-N-nitro-N-nitrosoguanidine. Significant repair replication of BPDE-induced DNA damage was detected in both bronchial epithelial and fibroblastic cells, although the level in fibroblasts was approximately 40% of that in epithelial cells. The pulmonary carcinogen asbestos did not damage DNA. DNA-protein crosslinks induced by formaldehyde were rapidly removed in bronchial cells. Further, epithelial and fibroblastic cells, which were incubated with formaldehyde and the polymerase inhibitor combination of cytosine arabinoside and hydroxyurea, accumulated DNA SSB at approximately equal frequencies. These results should provide a useful background for further investigations of the response of human bronchial cells to various DNA damaging agents

  6. Amplification of a transcriptionally active DNA sequence in the human brain

    International Nuclear Information System (INIS)

    Yakovlev, A.G.; Sazonov, A.E.; Spunde, A.Ya.; Gindilis, V.M.

    1986-01-01

    The authors present their findings of tissue-specific amplification of a DNA fragment actively transcribed in the human brain. This genome fragment was found in the library complement of cDNA of the human brain and evidently belongs to a new class of moderate repetitions of DNA with an unstable copying capacity in the human genome. The authors isolated total cell RNA from various human tissues (brain, placenta), and rat tissues (brain, liver), by the method of hot phenol extraction with guanidine thiocynate. The poly(A + ) RNA fraction was isolated by chromatography. Synthesis of cDNA was done on a matrix of poly(A + ) RNA of human brain. The cDNA obtained was cloned in plasmid pBR322 for the PstI site using (dC/dG) sequences synthesized on the 3' ends of the vector molecule and cDNA respectively. In cloning 75 ng cDNA, the authors obtained approximately 10 5 recombinant. This library was analyzed by the hybridization method on columns with two radioactive ( 32 P) probes: the total cDNA preparation and the total nuclear DNA from the human brain. The number of copies of the cloned DNA fragment in the genome was determined by dot hybridization. Restricting fragments of human and rat DNA genomes homologous to the cloned cDNA were identified on radio-autographs. In each case, 10 micrograms of EcoRI DNA hydrolyzate was fractionated in 1% agarose gel. The probe was also readied with RNA samples fractionated in agarose gel with formaldehyde and transferred to a nitrocellulose filter under weak vacuum. The filter was hybridized with 0.1 micrograms DNA pAG 02, labeled with ( 32 P) to a specific activity of 0.5-1 x 10 9 counts/min x microgram. The autograph was exposed with amplifying screens at -70 0 C for 2 days

  7. Scintillometric determination of DNA repair in human cell lines. A critical appraisal

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, V.; Zantedeschi, A.; Levis, A.G. (Padua Univ. (Italy). Ist. di Biologica Animale); Nuzzo, F.; Stefanini, M. (Consiglio Nazionale delle Ricerche, Pavia (Italy). Ist. di Genetica Biochimica ed Evoluzionistica); Abbondandolo, A.; Bonatti, S.; Fiorio, R.; Mazzaccaro, A. (Consiglio Nazionale delle Ricerche, Pisa (Italy). Ist. di Mutagenesi e Differenziamento); Capelli, E. (Pavia Univ. (Italy). Ist. di Genetica)

    1982-04-01

    The ability of a variety of chemical and physical agents to stimulate DNA repair synthesis in human cell cultures was tested by a simplified scintillometric procedure, with the use of hydroxyurea (HU) to suppress DNA replicative synthesis. After incubation with (/sup 3/H)thymidine, the radioactivity incorporated into DNA was determined in controls (C) and treated (T) cultures and in the corresponding HU series (Csub(HU), Tsub(HU)). The ratios Tsub(HU)/Csub(HU) and Tsub(HU)/T:Csub(HU)/C, indicating absolute and relative increases of DNA radioactivity, were calculated. When both ratios were significantly higher than 1, they were taken as indices of DNA repair stimulation.

  8. Cloning human DNA repair genes

    International Nuclear Information System (INIS)

    Jeggo, P.A.; Carr, A.M.; Lehmann, A.R.

    1994-01-01

    Many human genes involved in the repair of UV damage have been cloned using different procedures and they have been of great value in assisting the understanding of the mechanism of nucleotide excision-repair. Genes involved in repair of ionizing radiation damage have proved more difficult to isolate. Positional cloning has localized the XRCC5 gene to a small region of chromosome 2q33-35, and a series of yeast artificial chromosomes covering this region have been isolated. Very recent work has shown that the XRCC5 gene encodes the 80 kDa subunit of the Ku DNA-binding protein. The Ku80 gene also maps to this region. Studies with fission yeast have shown that radiation sensitivity can result not only from defective DNA repair but also from abnormal cell cycle control following DNA damage. Several genes involved in this 'check-point' control in fission yeast have been isolated and characterized in detail. It is likely that a similar checkpoint control mechanism exists in human cells. (author)

  9. Defining Driver DNA Methylation Changes in Human Cancer

    Directory of Open Access Journals (Sweden)

    Gerd P. Pfeifer

    2018-04-01

    Full Text Available Human malignant tumors are characterized by pervasive changes in the patterns of DNA methylation. These changes include a globally hypomethylated tumor cell genome and the focal hypermethylation of numerous 5′-cytosine-phosphate-guanine-3′ (CpG islands, many of them associated with gene promoters. It has been challenging to link specific DNA methylation changes with tumorigenesis in a cause-and-effect relationship. Some evidence suggests that cancer-associated DNA hypomethylation may increase genomic instability. Promoter hypermethylation events can lead to silencing of genes functioning in pathways reflecting hallmarks of cancer, including DNA repair, cell cycle regulation, promotion of apoptosis or control of key tumor-relevant signaling networks. A convincing argument for a tumor-driving role of DNA methylation can be made when the same genes are also frequently mutated in cancer. Many of the most commonly hypermethylated genes encode developmental transcription factors, the methylation of which may lead to permanent gene silencing. Inactivation of such genes will deprive the cells in which the tumor may initiate from the option of undergoing or maintaining lineage differentiation and will lock them into a perpetuated stem cell-like state thus providing an additional window for cell transformation.

  10. DNA Sequences Proximal to Human Mitochondrial DNA Deletion Breakpoints Prevalent in Human Disease Form G-quadruplexes, a Class of DNA Structures Inefficiently Unwound by the Mitochondrial Replicative Twinkle Helicase*

    Science.gov (United States)

    Bharti, Sanjay Kumar; Sommers, Joshua A.; Zhou, Jun; Kaplan, Daniel L.; Spelbrink, Johannes N.; Mergny, Jean-Louis; Brosh, Robert M.

    2014-01-01

    Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the “Pattern Finder” G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase. PMID:25193669

  11. Highly sensitive detection of human IgG using a novel bio-barcode assay combined with DNA chip technology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhenbao [Central South University, School of Pharmaceutical Sciences (China); Zhou, Bo, E-mail: zhoubo1771@163.com [The Affiliated Zhongda Hospital of Southeast University, Department of Gerontology (China); Wang, Haiqing; Lu, Feng; Liu, Tianjun; Song, Cunxian; Leng, Xigang, E-mail: lengxigyky@163.com [Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College (China)

    2013-09-15

    A simple and ultrasensitive detection of human IgG based on signal amplification using a novel bio-barcode assay and DNA chip technology was developed. The sensing platform was a sandwich system made up of antibody-modified magnetic microparticles (Ab-MMPs)/human IgG/Cy3-labeled single-stranded DNA and antibody-modified gold nanoparticles (Cy3-ssDNA-Ab-AuNPs). The MMPs (2.5 {mu}m in diameter) modified with mouse anti-human IgG monoclonal-antibodies could capture human IgG and further be separated and enriched via a magnetic field. The AuNPs (13 nm in diameter) conjugated with goat anti-human IgG polyclonal-antibodies and Cy3-ssDNA could further combine with the human IgG/Ab-MMP complex. The Cy3-ssDNA on AuNPs was then released by TCEP to hybridize with the DNA chip, thus generating a detectable signal by the fluorescence intensity of Cy3. In order to improve detection sensitivity, a three-level cascaded signal amplification was developed: (1) The MMP enrichment as the first-level; (2) Large quantities of Cy3-ssDNA on AuNPs as the second-level; (3) The Cy3-ssDNA conjugate with DNA chip as the third-level. The highly sensitive technique showed an increased response of the fluorescence intensity to the increased concentration of human IgG through a detection range from 1 pg mL{sup -1} to 10 ng mL{sup -1}. This sensing technique could not only improve the detection sensitivity for the low concentration of human IgG but also present a robust and efficient signal amplification model. The detection method has good stability, specificity, and reproducibility and could be applied in the detection of human IgG in the real samples.

  12. Highly sensitive detection of human IgG using a novel bio-barcode assay combined with DNA chip technology

    Science.gov (United States)

    Liu, Zhenbao; Zhou, Bo; Wang, Haiqing; Lu, Feng; Liu, Tianjun; Song, Cunxian; Leng, Xigang

    2013-09-01

    A simple and ultrasensitive detection of human IgG based on signal amplification using a novel bio-barcode assay and DNA chip technology was developed. The sensing platform was a sandwich system made up of antibody-modified magnetic microparticles (Ab-MMPs)/human IgG/Cy3-labeled single-stranded DNA and antibody-modified gold nanoparticles (Cy3-ssDNA-Ab-AuNPs). The MMPs (2.5 μm in diameter) modified with mouse anti-human IgG monoclonal-antibodies could capture human IgG and further be separated and enriched via a magnetic field. The AuNPs (13 nm in diameter) conjugated with goat anti-human IgG polyclonal-antibodies and Cy3-ssDNA could further combine with the human IgG/Ab-MMP complex. The Cy3-ssDNA on AuNPs was then released by TCEP to hybridize with the DNA chip, thus generating a detectable signal by the fluorescence intensity of Cy3. In order to improve detection sensitivity, a three-level cascaded signal amplification was developed: (1) The MMP enrichment as the first-level; (2) Large quantities of Cy3-ssDNA on AuNPs as the second-level; (3) The Cy3-ssDNA conjugate with DNA chip as the third-level. The highly sensitive technique showed an increased response of the fluorescence intensity to the increased concentration of human IgG through a detection range from 1 pg mL-1 to 10 ng mL-1. This sensing technique could not only improve the detection sensitivity for the low concentration of human IgG but also present a robust and efficient signal amplification model. The detection method has good stability, specificity, and reproducibility and could be applied in the detection of human IgG in the real samples.

  13. Highly sensitive detection of human IgG using a novel bio-barcode assay combined with DNA chip technology

    International Nuclear Information System (INIS)

    Liu, Zhenbao; Zhou, Bo; Wang, Haiqing; Lu, Feng; Liu, Tianjun; Song, Cunxian; Leng, Xigang

    2013-01-01

    A simple and ultrasensitive detection of human IgG based on signal amplification using a novel bio-barcode assay and DNA chip technology was developed. The sensing platform was a sandwich system made up of antibody-modified magnetic microparticles (Ab-MMPs)/human IgG/Cy3-labeled single-stranded DNA and antibody-modified gold nanoparticles (Cy3-ssDNA-Ab-AuNPs). The MMPs (2.5 μm in diameter) modified with mouse anti-human IgG monoclonal-antibodies could capture human IgG and further be separated and enriched via a magnetic field. The AuNPs (13 nm in diameter) conjugated with goat anti-human IgG polyclonal-antibodies and Cy3-ssDNA could further combine with the human IgG/Ab-MMP complex. The Cy3-ssDNA on AuNPs was then released by TCEP to hybridize with the DNA chip, thus generating a detectable signal by the fluorescence intensity of Cy3. In order to improve detection sensitivity, a three-level cascaded signal amplification was developed: (1) The MMP enrichment as the first-level; (2) Large quantities of Cy3-ssDNA on AuNPs as the second-level; (3) The Cy3-ssDNA conjugate with DNA chip as the third-level. The highly sensitive technique showed an increased response of the fluorescence intensity to the increased concentration of human IgG through a detection range from 1 pg mL −1 to 10 ng mL −1 . This sensing technique could not only improve the detection sensitivity for the low concentration of human IgG but also present a robust and efficient signal amplification model. The detection method has good stability, specificity, and reproducibility and could be applied in the detection of human IgG in the real samples

  14. Radioresistant DNA synthesis in cells of patients showing increased chromosomal sensitivity to ionizing radiation

    International Nuclear Information System (INIS)

    Barenfeld, L.S.; Pleskach, N.M.; Bildin, V.N.; Prokofjeva, V.V.; Mikhelson, V.M.

    1986-01-01

    The rate of DNA synthesis after γ-irradiation was studied either by analysis of the steady-state distribution of daughter [ 3 H]DNA in alkaline sucrose gradients or by direct assay of the amount of [ 3 H]thymidine incorporated into DNA of fibroblasts derived from a normal donor (LCH882) and from Down's syndrome (LCH944), Werner's syndrome (WS1LE) and xeroderma pigmentosum (XP2LE) patients with chromosomal sensitivity to ionizing radiation. Doses of γ-irradiation that markedly inhibited the rate of DNA synthesis in normal human cells caused almost no inhibition of DNA synthesis in the cells from the affected individuals. The radioresistant DNA synthesis in Down's syndrome cells was mainly due to a much lower inhibition of replicon initiation than that in normal cells; these cells were also more resistant to damage that inhibited replicon elongation. Our data suggest that radioresistant DNA synthesis may be an intrinsic feature of all genetic disorders showing increased radiosensitivity in terms of chromosome aberrations. (orig.)

  15. DNA repair in PHA stimulated human lymphocytes

    International Nuclear Information System (INIS)

    Catena, C.; Mattoni, A.

    1984-01-01

    Damage an repair of radiation induced DNA strand breaks were measured by alkaline lysis and hydroxyapatite chromatography. PHA stimulated human lymphocytes show that the rejoining process is complete within the first 50 min., afterwords secondary DNA damage and chromatid aberration. DNA repair, in synchronized culture, allows to evaluate individual repair capacity and this in turn can contribute to the discovery of individual who, although they do not demonstrate apparent clinical signs, are carriers of DNA repair deficiency. Being evident that a correlation exists between DNA repair capacity and carcinogenesis, the possibility of evaluating the existent relationship between DNA repair and survival in tumor cells comes therefore into discussion

  16. Efficiency and Fidelity of Human DNA Polymerases λ and β during Gap-Filling DNA Synthesis

    Science.gov (United States)

    Brown, Jessica A.; Pack, Lindsey R.; Sanman, Laura E.; Suo, Zucai

    2010-01-01

    The base excision repair (BER) pathway coordinates the replacement of 1 to 10 nucleotides at sites of single-base lesions. This process generates DNA substrates with various gap sizes which can alter the catalytic efficiency and fidelity of a DNA polymerase during gap-filling DNA synthesis. Here, we quantitatively determined the substrate specificity and base substitution fidelity of human DNA polymerase λ (Pol λ), an enzyme proposed to support the known BER DNA polymerase β (Pol β), as it filled 1- to 10-nucleotide gaps at 1-nucleotide intervals. Pol λ incorporated a correct nucleotide with relatively high efficiency until the gap size exceeded 9 nucleotides. Unlike Pol λ, Pol β did not have an absolute threshold on gap size as the catalytic efficiency for a correct dNTP gradually decreased as the gap size increased from 2 to 10 nucleotides and then recovered for non-gapped DNA. Surprisingly, an increase in gap size resulted in lower polymerase fidelity for Pol λ, and this downregulation of fidelity was controlled by its non-enzymatic N-terminal domains. Overall, Pol λ was up to 160-fold more error-prone than Pol β, thereby suggesting Pol λ would be more mutagenic during long gap-filling DNA synthesis. In addition, dCTP was the preferred misincorporation for Pol λ and its N-terminal domain truncation mutants. This nucleotide preference was shown to be dependent upon the identity of the adjacent 5′-template base. Our results suggested that both Pol λ and Pol β would catalyze nucleotide incorporation with the highest combination of efficiency and accuracy when the DNA substrate contains a single-nucleotide gap. Thus, Pol λ, like Pol β, is better suited to catalyze gap-filling DNA synthesis during short-patch BER in vivo, although, Pol λ may play a role in long-patch BER. PMID:20961817

  17. Androgen receptor function links human sexual dimorphism to DNA methylation.

    Directory of Open Access Journals (Sweden)

    Ole Ammerpohl

    Full Text Available Sex differences are well known to be determinants of development, health and disease. Epigenetic mechanisms are also known to differ between men and women through X-inactivation in females. We hypothesized that epigenetic sex differences may also result from sex hormone functions, in particular from long-lasting androgen programming. We aimed at investigating whether inactivation of the androgen receptor, the key regulator of normal male sex development, is associated with differences of the patterns of DNA methylation marks in genital tissues. To this end, we performed large scale array-based analysis of gene methylation profiles on genomic DNA from labioscrotal skin fibroblasts of 8 males and 26 individuals with androgen insensitivity syndrome (AIS due to inactivating androgen receptor gene mutations. By this approach we identified differential methylation of 167 CpG loci representing 162 unique human genes. These were significantly enriched for androgen target genes and low CpG content promoter genes. Additional 75 genes showed a significant increase of heterogeneity of methylation in AIS compared to a high homogeneity in normal male controls. Our data show that normal and aberrant androgen receptor function is associated with distinct patterns of DNA-methylation marks in genital tissues. These findings support the concept that transcription factor binding to the DNA has an impact on the shape of the DNA methylome. These data which derived from a rare human model suggest that androgen programming of methylation marks contributes to sexual dimorphism in the human which might have considerable impact on the manifestation of sex-associated phenotypes and diseases.

  18. Ionizing Radiation-Induced DNA Damage and Its Repair in Human Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dizdaroglu, Miral

    1999-05-12

    DNA damage in mammalian chromatin in vitro and in cultured mammalian cells including human cells was studied. In the first phase of these studies, a cell culture laboratory was established. Necessary equipment including an incubator, a sterile laminar flow hood and several centrifuges was purchased. We have successfully grown several cell lines such as murine hybridoma cells, V79 cells and human K562 leukemia cells. This was followed by the establishment of a methodology for the isolation of chromatin from cells. This was a very important step, because a routine and successful isolation of chromatin was a prerequisite for the success of the further studies in this project, the aim of which was the measurement of DNA darnage in mammalian chromatin in vitro and in cultured cells. Chromatin isolation was accomplished using a slightly modified procedure of the one described by Mee & Adelstein (1981). For identification and quantitation of DNA damage in cells, analysis of chromatin was preferred over the analysis of "naked DNA" for the following reasons: i. DNA may not be extracted efficiently from nucleoprotein in exposed cells, due to formation of DNA-protein cross-links, ii. the extractability of DNA is well known to decrease with increasing doses of radiation, iii. portions of DNA may not be extracted due to fragmentation, iv. unextracted DNA may contain a significant portion of damaged DNA bases and DNA-protein cross-links. The technique of gas chromatography/mass spectrometry (GC/MS), which was used in the present project, permits the identification and quantitation of modified DNA bases in chromatin in the presence of proteins without the necessity of first isolating DNA from chromatin. This has been demonstrated previously by the results from our laboratory and by the results obtained during the course of the present project. The quality of isolated chromatin was tested by measurement of its content of DNA, proteins, and RNA, by analysis of its protein

  19. Ionizing Radiation-Induced DNA Damage and Its Repair in Human Cells

    International Nuclear Information System (INIS)

    Dizdaroglu, Miral

    1999-01-01

    DNA damage in mammalian chromatin in vitro and in cultured mammalian cells including human cells was studied. In the first phase of these studies, a cell culture laboratory was established. Necessary equipment including an incubator, a sterile laminar flow hood and several centrifuges was purchased. We have successfully grown several cell lines such as murine hybridoma cells, V79 cells and human K562 leukemia cells. This was followed by the establishment of a methodology for the isolation of chromatin from cells. This was a very important step, because a routine and successful isolation of chromatin was a prerequisite for the success of the further studies in this project, the aim of which was the measurement of DNA darnage in mammalian chromatin in vitro and in cultured cells. Chromatin isolation was accomplished using a slightly modified procedure of the one described by Mee ampersand Adelstein (1981). For identification and quantitation of DNA damage in cells, analysis of chromatin was preferred over the analysis of ''naked DNA'' for the following reasons: i. DNA may not be extracted efficiently from nucleoprotein in exposed cells, due to formation of DNA-protein cross-links, ii. the extractability of DNA is well known to decrease with increasing doses of radiation, iii. portions of DNA may not be extracted due to fragmentation, iv. unextracted DNA may contain a significant portion of damaged DNA bases and DNA-protein cross-links. The technique of gas chromatography/mass spectrometry (GC/MS), which was used in the present project, permits the identification and quantitation of modified DNA bases in chromatin in the presence of proteins without the necessity of first isolating DNA from chromatin. This has been demonstrated previously by the results from our laboratory and by the results obtained during the course of the present project. The quality of isolated chromatin was tested by measurement of its content of DNA, proteins, and RNA, by analysis of its protein

  20. DNA Methylation Landscapes of Human Fetal Development

    NARCIS (Netherlands)

    Slieker, Roderick C.; Roost, Matthias S.; van Iperen, Liesbeth; Suchiman, H. Eka D; Tobi, Elmar W.; Carlotti, Françoise; de Koning, Eelco J P; Slagboom, P. Eline; Heijmans, Bastiaan T.; Chuva de Sousa Lopes, Susana M.

    2015-01-01

    Remodelling the methylome is a hallmark of mammalian development and cell differentiation. However, current knowledge of DNA methylation dynamics in human tissue specification and organ development largely stems from the extrapolation of studies in vitro and animal models. Here, we report on the DNA

  1. Human tissue factor: cDNA sequence and chromosome localization of the gene

    International Nuclear Information System (INIS)

    Scarpati, E.M.; Wen, D.; Broze, G.J. Jr.; Miletich, J.P.; Flandermeyer, R.R.; Siegel, N.R.; Sadler, J.E.

    1987-01-01

    A human placenta cDNA library in λgt11 was screened for the expression of tissue factor antigens with rabbit polyclonal anti-human tissue factor immunoglobulin G. Among 4 million recombinant clones screened, one positive, λHTF8, expressed a protein that shared epitopes with authentic human brain tissue factor. The 1.1-kilobase cDNA insert of λHTF8 encoded a peptide that contained the amino-terminal protein sequence of human brain tissue factor. Northern blotting identified a major mRNA species of 2.2 kilobases and a minor species of ∼ 3.2 kilobases in poly(A) + RNA of placenta. Only 2.2-kilobase mRNA was detected in human brain and in the human monocytic U937 cell line. In U937 cells, the quantity of tissue factor mRNA was increased several fold by exposure of the cells to phorbol 12-myristate 13-acetate. Additional cDNA clones were selected by hybridization with the cDNA insert of λHTF8. These overlapping isolates span 2177 base pairs of the tissue factor cDNA sequence that includes a 5'-noncoding region of 75 base pairs, an open reading frame of 885 base pairs, a stop codon, a 3'-noncoding region of 1141 base pairs, and a poly(a) tail. The open reading frame encodes a 33-kilodalton protein of 295 amino acids. The predicted sequence includes a signal peptide of 32 or 34 amino acids, a probable extracellular factor VII binding domain of 217 or 219 amino acids, a transmembrane segment of 23 acids, and a cytoplasmic tail of 21 amino acids. There are three potential glycosylation sites with the sequence Asn-X-Thr/Ser. The 3'-noncoding region contains an inverted Alu family repetitive sequence. The tissue factor gene was localized to chromosome 1 by hybridization of the cDNA insert of λHTF8 to flow-sorted human chromosomes

  2. Increased sensitivity of UV-repair-deficient human cells to DNA bound platinum products which unlike thymine dimers are not recognised by an endonuclease extracted from Micrococcus luteus

    Energy Technology Data Exchange (ETDEWEB)

    Fraval, H N.A.; Rawlings, C J; Roberts, J J [Institute of Cancer Research, Royal Cancer Hospital, Pollards Wood Research Station, Chalfont St. Giles, Bucks, UK

    1978-07-01

    The response of human cells in culture to cis platinum (II) diammine dichloride (cis Pt(II)) induced DNA damage has been studied. The survival data, measured as a function of cis Pt(II) dose were similar in a normal cell line (Human foetal lung) compared to a UV-sensitive, thymine dimer excision repair-deficient cell line (Xeroderma pigmentatosum). However, there was a marked difference between the two cell lines when binding to DNA was plotted against dose of cis Pt(II) given for 1 h. When these findings were expressed as cell survival versus binding to DNA, a 4.1-fold difference between the slopes of the survival curves for the two cell lines was obtained. These findings are consistent with the notion that normal cells are able to excise cis Pt(II) induced damage from their genome and thus increase their ability to survive as compared to excision deficient cells. An endonuclease preparation from Micrococcus luteus is able to recognise UV damage in DNA, but did not recognise cis Pt(II) induced damage. These results possibly indicate differences in the pathways of repair of damage caused by the two agents.

  3. Human Chromosome 7: DNA Sequence and Biology

    OpenAIRE

    Scherer, Stephen W.; Cheung, Joseph; MacDonald, Jeffrey R.; Osborne, Lucy R.; Nakabayashi, Kazuhiko; Herbrick, Jo-Anne; Carson, Andrew R.; Parker-Katiraee, Layla; Skaug, Jennifer; Khaja, Razi; Zhang, Junjun; Hudek, Alexander K.; Li, Martin; Haddad, May; Duggan, Gavin E.

    2003-01-01

    DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate gene...

  4. The single-strand DNA binding activity of human PC4 preventsmutagenesis and killing by oxidative DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jen-Yeu; Sarker, Altaf Hossain; Cooper, Priscilla K.; Volkert, Michael R.

    2004-02-01

    Human positive cofactor 4 (PC4) is a transcriptional coactivator with a highly conserved single-strand DNA (ssDNA) binding domain of unknown function. We identified PC4 as a suppressor of the oxidative mutator phenotype of the Escherichia coli fpg mutY mutant and demonstrate that this suppression requires its ssDNA binding activity. Yeast mutants lacking their PC4 ortholog Sub1 are sensitive to hydrogen peroxide and exhibit spontaneous and peroxide induced hypermutability. PC4 expression suppresses the peroxide sensitivity of the yeast sub l{Delta} mutant, suggesting that the human protein has a similar function. A role for yeast and human proteins in DNA repair is suggested by the demonstration that Sub1 acts in a peroxide-resistance pathway involving Rad2 and by the physical interaction of PC4 with the human Rad2 homolog XPG. We show XPG recruits PC4 to a bubble-containing DNA substrate with resulting displacement of XPG and formation of a PC4-DNA complex. We discuss the possible requirement for PC4 in either global or transcription-coupled repair of oxidative DNA damage to mediate the release of XPG bound to its substrate.

  5. Characterization and immunological identification of cDNA clones encoding two human DNA topoisomerase II isozymes

    International Nuclear Information System (INIS)

    Chung, T.D.Y.; Drake, F.H.; Tan, K.B.; Per, S.R.; Crooke, S.T.; Mirabelli, C.K.

    1989-01-01

    Several DNA topoisomerase II partial cDNA clones obtained from a human Raji-HN2 cDNA library were sequenced and two classes of nucleotide sequences were found. One member of the first class, SP1, was identical to an internal fragment of human HeLa cell Topo II cDNA described earlier. A member of the second class, SP11, shared extensive nucleotide (75%) and predicted peptide (92%) sequence similarities with the first two-thirds of HeLa Topo II. Each class of cDNAs hybridized to unique, nonoverlapping restriction enzyme fragments of genomic DNA from several human cell lines. Synthetic 24-mer oligonucleotide probes specific for each cDNA class hybridized to 6.5-kilobase mRNAs; furthermore, hybridization of probe specific for one class was not blocked by probe specific for the other. Antibodies raised against a synthetic SP1-encoded dodecapeptide specifically recognized the 170-kDa form of Topo II, while antibodies raised against the corresponding SP11-encoded dodecapeptide, or a second unique SP11-encoded tridecapeptide, selectively recognized the 180-kDa form of Topo II. These data provide genetic and immunochemical evidence for two Topo II isozymes

  6. Adenovirus 36 DNA in human adipose tissue.

    Science.gov (United States)

    Ponterio, E; Cangemi, R; Mariani, S; Casella, G; De Cesare, A; Trovato, F M; Garozzo, A; Gnessi, L

    2015-12-01

    Recent studies have suggested a possible correlation between obesity and adenovirus 36 (Adv36) infection in humans. As information on adenoviral DNA presence in human adipose tissue are limited, we evaluated the presence of Adv36 DNA in adipose tissue of 21 adult overweight or obese patients. Total DNA was extracted from adipose tissue biopsies. Virus detection was performed using PCR protocols with primers against specific Adv36 fiber protein and the viral oncogenic E4orf1 protein nucleotide sequences. Sequences were aligned with the NCBI database and phylogenetic analyses were carried out with MEGA6 software. Adv36 DNA was found in four samples (19%). This study indicates that some individuals carry Adv36 in the visceral adipose tissue. Further studies are needed to determine the specific effect of Adv36 infection on adipocytes, the prevalence of Adv36 infection and its relationship with obesity in the perspective of developing a vaccine that could potentially prevent or mitigate infection.

  7. Use of avidin-biotin-peroxidase complex for measurement of UV lesions in human DNA by microELISA

    Energy Technology Data Exchange (ETDEWEB)

    Leipold, B [Technischen Universitaet Muenchen (Germany, F.R.). Dermatologische Klinik; Remy, W [Max-Planck-Institut fuer Biochemie, Muenchen (Germany, F.R.)

    1984-02-10

    The avidin/biotin system was introduced into the standard enzyme-linked immunosorbent assay (ELISA) to increase its sensitivity for detecting UV lesions in human DNA. Goat anti-rabbit IgG-peroxidase used in the standard ELISA as second antibody was replaced by biotinylated goat anti-rabbit IgG plus the avidin-biotin-peroxidase complex (ABC) reagent. Sensitivity of detection of plate-fixed UV-DNA-antibody complexes was increased about 8-fold and photolesions in human DNA samples irradiated with as low a dose as 1 J/m/sup 2/ UVC or a suberythermal dose of UVB light could be detected.

  8. Ancient pathogen DNA in human teeth and petrous bones

    DEFF Research Database (Denmark)

    Margaryan, Ashot; Hansen, Henrik B.; Rasmussen, Simon

    2018-01-01

    Recent ancient DNA (aDNA) studies of human pathogens have provided invaluable insights into their evolutionary history and prevalence in space and time. Most of these studies were based on DNA extracted from teeth or postcranial bones. In contrast, no pathogen DNA has been reported from the petro...

  9. DNA damage in human lymphocytes due to synergistic interaction between ionizing radiation and pesticide

    International Nuclear Information System (INIS)

    Kim, J. K.; Lee, K. H.; Lee, B. H.; Chun, K. J.

    2001-01-01

    Biological risks may arise from the possibility of the synergistic interaction between harmful factors such as ionizing radiation and pesticide. The effect of pesticide on radiation-induced DNA damage in human in human blood lymphocytes was evaluated by the single cell gel electrophoresis (SCGE) assay. The lymphocytes, with or without pretreatment of the pesticide, were exposed to 2.0 Gy of gamma ray. Significantly increased tail moment, which was a marker of DNA strand breaks in SCGE assay, showed an excellent dose-response relationship. The present study confirms that the pesticide has the cytotoxic effect on lymphocytes and that it interacts synergistically with ionizing radiationon DNA damage, as well

  10. Genotoxic thresholds, DNA repair, and susceptibility in human populations

    International Nuclear Information System (INIS)

    Jenkins, Gareth J.S.; Zair, Zoulikha; Johnson, George E.; Doak, Shareen H.

    2010-01-01

    It has been long assumed that DNA damage is induced in a linear manner with respect to the dose of a direct acting genotoxin. Thus, it is implied that direct acting genotoxic agents induce DNA damage at even the lowest of concentrations and that no 'safe' dose range exists. The linear (non-threshold) paradigm has led to the one-hit model being developed. This 'one hit' scenario can be interpreted such that a single DNA damaging event in a cell has the capability to induce a single point mutation in that cell which could (if positioned in a key growth controlling gene) lead to increased proliferation, leading ultimately to the formation of a tumour. There are many groups (including our own) who, for a decade or more, have argued, that low dose exposures to direct acting genotoxins may be tolerated by cells through homeostatic mechanisms such as DNA repair. This argument stems from the existence of evolutionary adaptive mechanisms that allow organisms to adapt to low levels of exogenous sources of genotoxins. We have been particularly interested in the genotoxic effects of known mutagens at low dose exposures in human cells and have identified for the first time, in vitro genotoxic thresholds for several mutagenic alkylating agents (Doak et al., 2007). Our working hypothesis is that DNA repair is primarily responsible for these thresholded effects at low doses by removing low levels of DNA damage but becoming saturated at higher doses. We are currently assessing the roles of base excision repair (BER) and methylguanine-DNA methyltransferase (MGMT) for roles in the identified thresholds (Doak et al., 2008). This research area is currently important as it assesses whether 'safe' exposure levels to mutagenic chemicals can exist and allows risk assessment using appropriate safety factors to define such exposure levels. Given human variation, the mechanistic basis for genotoxic thresholds (e.g. DNA repair) has to be well defined in order that susceptible individuals are

  11. Quantitation of the repair of gamma-radiation-induced double-strand DNA breaks in human fibroblasts

    International Nuclear Information System (INIS)

    Woods, W.G.

    1981-01-01

    The quantitation and repair of double-strand DNA breaks in human fibroblasts has been determined using a method involving the nondenaturing elution of DNA from a filter. DNA from cells from two human fibroblast lines exposed to γ-radiation from 0 to 10000 rad showed increasing retention on a filter with decreasing radiation dose, and the data suggest a linear relationship between double-strand breaks induced and radiation dose. The ability of normal human fibroblasts to repair double-strand breaks with various doses of radiation was demonstrated, with a tsub(1/2) of 10 min for repair of 5000 rad exposure and 39 min for repair of 10000 rad damage. The kinetics of the DNA rejoining were not linear and suggest that, as in the repair of single-strand breaks, both an initial fast and a later slow mechanism may be involved. (Auth.)

  12. Cloning, sequencing, and expression of cDNA for human β-glucuronidase

    International Nuclear Information System (INIS)

    Oshima, A.; Kyle, J.W.; Miller, R.D.

    1987-01-01

    The authors report here the cDNA sequence for human placental β-glucuronidase (β-D-glucuronoside glucuronosohydrolase, EC 3.2.1.31) and demonstrate expression of the human enzyme in transfected COS cells. They also sequenced a partial cDNA clone from human fibroblasts that contained a 153-base-pair deletion within the coding sequence and found a second type of cDNA clone from placenta that contained the same deletion. Nuclease S1 mapping studies demonstrated two types of mRNAs in human placenta that corresponded to the two types of cDNA clones isolated. The NH 2 -terminal amino acid sequence determined for human spleen β-glucuronidase agreed with that inferred from the DNA sequence of the two placental clones, beginning at amino acid 23, suggesting a cleaved signal sequence of 22 amino acids. When transfected into COS cells, plasmids containing either placental clone expressed an immunoprecipitable protein that contained N-linked oligosaccharides as evidenced by sensitivity to endoglycosidase F. However, only transfection with the clone containing the 153-base-pair segment led to expression of human β-glucuronidase activity. These studies provide the sequence for the full-length cDNA for human β-glucuronidase, demonstrate the existence of two populations of mRNA for β-glucuronidase in human placenta, only one of which specifies a catalytically active enzyme, and illustrate the importance of expression studies in verifying that a cDNA is functionally full-length

  13. Structure of human DNA polymerase iota and the mechanism of DNA synthesis.

    Science.gov (United States)

    Makarova, A V; Kulbachinskiy, A V

    2012-06-01

    Cellular DNA polymerases belong to several families and carry out different functions. Highly accurate replicative DNA polymerases play the major role in cell genome replication. A number of new specialized DNA polymerases were discovered at the turn of XX-XXI centuries and have been intensively studied during the last decade. Due to the special structure of the active site, these enzymes efficiently perform synthesis on damaged DNA but are characterized by low fidelity. Human DNA polymerase iota (Pol ι) belongs to the Y-family of specialized DNA polymerases and is one of the most error-prone enzymes involved in DNA synthesis. In contrast to other DNA polymerases, Pol ι is able to use noncanonical Hoogsteen interactions for nucleotide base pairing. This allows it to incorporate nucleotides opposite various lesions in the DNA template that impair Watson-Crick interactions. Based on the data of X-ray structural analysis of Pol ι in complexes with various DNA templates and dNTP substrates, we consider the structural peculiarities of the Pol ι active site and discuss possible mechanisms that ensure the unique behavior of the enzyme on damaged and undamaged DNA.

  14. DHX9 helicase is involved in preventing genomic instability induced by alternatively structured DNA in human cells.

    Science.gov (United States)

    Jain, Aklank; Bacolla, Albino; Del Mundo, Imee M; Zhao, Junhua; Wang, Guliang; Vasquez, Karen M

    2013-12-01

    Sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures in the human genome have been implicated in stimulating genomic instability. Previously, we found that a naturally occurring intra-molecular triplex (H-DNA) caused genetic instability in mammals largely in the form of DNA double-strand breaks. Thus, it is of interest to determine the mechanism(s) involved in processing H-DNA. Recently, we demonstrated that human DHX9 helicase preferentially unwinds inter-molecular triplex DNA in vitro. Herein, we used a mutation-reporter system containing H-DNA to examine the relevance of DHX9 activity on naturally occurring H-DNA structures in human cells. We found that H-DNA significantly increased mutagenesis in small-interfering siRNA-treated, DHX9-depleted cells, affecting mostly deletions. Moreover, DHX9 associated with H-DNA in the context of supercoiled plasmids. To further investigate the role of DHX9 in the recognition/processing of H-DNA, we performed binding assays in vitro and chromatin immunoprecipitation assays in U2OS cells. DHX9 recognized H-DNA, as evidenced by its binding to the H-DNA structure and enrichment at the H-DNA region compared with a control region in human cells. These composite data implicate DHX9 in processing H-DNA structures in vivo and support its role in the overall maintenance of genomic stability at sites of alternatively structured DNA.

  15. Structure and mechanism of human DNA polymerase [eta

    Energy Technology Data Exchange (ETDEWEB)

    Biertümpfel, Christian; Zhao, Ye; Kondo, Yuji; Ramón-Maiques, Santiago; Gregory, Mark; Lee, Jae Young; Masutani, Chikahide; Lehmann, Alan R.; Hanaoka, Fumio; Yang, Wei (Sussex); (NIH); (Gakushuin); (Osaka)

    2010-11-03

    The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase {eta} (Pol{eta}), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Pol{eta} at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol{eta} acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol{eta} orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Pol{eta} missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Pol{eta} in replicating through D loop and DNA fragile sites.

  16. Transient expression and activity of human DNA polymerase iota in loach embryos.

    Science.gov (United States)

    Makarova, Irina V; Kazakov, Andrey A; Makarova, Alena V; Khaidarova, Nella V; Kozikova, Larisa V; Nenasheva, Valentina V; Gening, Leonid V; Tarantul, Vyacheslav Z; Andreeva, Ludmila E

    2012-02-01

    Human DNA polymerase iota (Pol ι) is a Y-family DNA polymerase with unusual biochemical properties and not fully understood functions. Pol ι preferentially incorporates dGTP opposite template thymine. This property can be used to monitor Pol ι activity in the presence of other DNA polymerases, e.g. in cell extracts of tissues and tumors. We have now confirmed the specificity and sensitivity of the method of Pol ι activity detection in cell extracts using an animal model of loach Misgurnus fossilis embryos transiently expressing human Pol ι. The overexpression of Pol ι was shown to be accompanied by an increase in abnormalities in development and the frequency of pycnotic nuclei in fish embryos. Further analysis of fish embryos with constitutive or regulated Pol ι expression may provide insights into Pol ι functions in vertebrate animals.

  17. Human circulating ribosomal DNA content significantly increases while circulating satellite III (1q12) content decreases under chronic occupational exposure to low-dose gamma- neutron and tritium beta-radiation.

    Science.gov (United States)

    Korzeneva, Inna B; Kostuyk, Svetlana V; Ershova, Elizaveta S; Skorodumova, Elena N; Zhuravleva, Veronika F; Pankratova, Galina V; Volkova, Irina V; Stepanova, Elena V; Porokhovnik, Lev N; Veiko, Natalia N

    A single exposure to ionizing radiation (IR) results in an elevated cell-free DNA (cfDNA) content in the blood plasma. In this case, the cfDNA concentration can be a marker of the cell death in the organism. However, a chronic exposure to a low-dose IR enhances both the endonuclease activity and titer of antibodies to DNA in blood plasma, resulting in a decrease of the total concentration of circulating cfDNA in exposed people. In this case, the total cfDNA concentration should not be considered as a marker of the cell death in an exposed body. We assumed that a pool of the cfDNA circulating in the exposed people contains DNA fragments, which are resistant to a double-strand break formation in the environment of the elevated plasma endonuclease activity, and can be accumulated in the blood plasma. In order to test this hypothesis, we studied the content of GC-rich sequences (69%GC) of the transcribed region of human ribosomal repeat (rDNA), as well as the content of AT-rich repeat (63%AT) of satellite III (1q12) in the cfDNA samples obtained from 285 individuals. We have found that a chronic exposure to gamma-neutron radiation (N=88) and tritium β-radiation (N=88) evokes an increase of the rDNA content (RrDNA index) and a decrease of the satellite III content (RsatIII index) in the circulating cfDNA as compared with the cfDNA of non-exposed people (N=109). Such index that simultaneously displays both the increase of rDNA content and decrease of satellite III content in the cfDNA (RrDNA/RsatIII) can be recommended as a marker of chronic processes in the body that involve the elevated cell death rate and/or increased blood plasma endonuclease activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. DNA damage and repair in human skin in situ

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Gange, R.W.; Freeman, S.E.; Sutherland, J.C.

    1987-01-01

    Understanding the molecular and cellular origins of sunlight-induced skin cancers in man requires knowledge of the damages inflicted on human skin during sunlight exposure, as well as the ability of cells in skin to repair or circumvent such damage. Although repair has been studied extensively in procaryotic and eucaryotic cells - including human cells in culture - there are important differences between repair by human skin cells in culture and human skin in situ: quantitative differences in rates of repair, as well as qualitative differences, including the presence or absence of repair mechanisms. Quantitation of DNA damage and repair in human skin required the development of new approaches for measuring damage at low levels in nanogram quantities of non-radioactive DNA. The method allows for analysis of multiple samples and the resulting data should be related to behavior of the DNA molecules by analytic expressions. Furthermore, it should be possible to assay a variety of lesions using the same methodology. The development of new analysis methods, new technology, and new biochemical probes for the study of DNA damage and repair are described. 28 refs., 4 figs

  19. DNA damage and repair in human skin in situ

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, B.M.; Gange, R.W.; Freeman, S.E.; Sutherland, J.C.

    1987-01-01

    Understanding the molecular and cellular origins of sunlight-induced skin cancers in man requires knowledge of the damages inflicted on human skin during sunlight exposure, as well as the ability of cells in skin to repair or circumvent such damage. Although repair has been studied extensively in procaryotic and eucaryotic cells - including human cells in culture - there are important differences between repair by human skin cells in culture and human skin in situ: quantitative differences in rates of repair, as well as qualitative differences, including the presence or absence of repair mechanisms. Quantitation of DNA damage and repair in human skin required the development of new approaches for measuring damage at low levels in nanogram quantities of non-radioactive DNA. The method allows for analysis of multiple samples and the resulting data should be related to behavior of the DNA molecules by analytic expressions. Furthermore, it should be possible to assay a variety of lesions using the same methodology. The development of new analysis methods, new technology, and new biochemical probes for the study of DNA damage and repair are described. 28 refs., 4 figs.

  20. Screening Test for Shed Skin Cells by Measuring the Ratio of Human DNA to Staphylococcus epidermidis DNA.

    Science.gov (United States)

    Nakanishi, Hiroaki; Ohmori, Takeshi; Hara, Masaaki; Takahashi, Shirushi; Kurosu, Akira; Takada, Aya; Saito, Kazuyuki

    2016-05-01

    A novel screening method for shed skin cells by detecting Staphylococcus epidermidis (S. epidermidis), which is a resident bacterium on skin, was developed. Staphylococcus epidermidis was detected using real-time PCR. Staphylococcus epidermidis was detected in all 20 human skin surface samples. Although not present in blood and urine samples, S. epidermidis was detected in 6 of 20 saliva samples, and 5 of 18 semen samples. The ratio of human DNA to S. epidermidisDNA was significantly smaller in human skin surface samples than in saliva and semen samples in which S. epidermidis was detected. Therefore, although skin cells could not be identified by detecting only S. epidermidis, they could be distinguished by measuring the S. epidermidis to human DNA ratio. This method could be applied to casework touch samples, which suggests that it is useful for screening whether skin cells and human DNA are present on potential evidentiary touch samples. © 2016 American Academy of Forensic Sciences.

  1. DNA damage in human germ cell exposed to the some food additives in vitro.

    Science.gov (United States)

    Pandir, Dilek

    2016-08-01

    The use of food additives has increased enormously in modern food technology but they have adverse effects in human healthy. The aim of this study was to investigate the DNA damage of some food additives such as citric acid (CA), benzoic acid (BA), brilliant blue (BB) and sunset yellow (SY) which were investigated in human male germ cells using comet assay. The sperm cells were incubated with different concentrations of these food additives (50, 100, 200 and 500 μg/mL) for 1 h at 32 °C. The results showed for CA, BA, BB and SY a dose dependent increase in tail DNA%, tail length and tail moment in human sperm when compared to control group. When control values were compared in the studied parameters in the treatment concentrations, SY was found to exhibit the highest level of DNA damage followed by BB > BA > CA. However, none of the food additives affected the tail DNA%, tail length and tail moment at 50 and 100 μg/mL. At 200 μg/mL of SY, the tail DNA% and tail length of sperm were 95.80 ± 0.28 and 42.56 ± 4.66, for BB the values were 95.06 ± 2.30 and 39.56 ± 3.78, whereas for BA the values were 89.05 ± 2.78 and 31.50 ± 0.71, for CA the values were 88.59 ± 6.45 and 13.59 ± 2.74, respectively. However, only the highest concentration of the used food additives significantly affected the studied parameters of sperm DNA. The present results indicate that SY and BB are more harmful than BA and CA to human sperm in vitro.

  2. Modulation of Mitochondrial DNA Copy Number to Induce Hepatocytic Differentiation of Human Amniotic Epithelial Cells.

    Science.gov (United States)

    Vaghjiani, Vijesh; Cain, Jason E; Lee, William; Vaithilingam, Vijayaganapathy; Tuch, Bernard E; St John, Justin C

    2017-10-15

    Mitochondrial deoxyribonucleic acid (mtDNA) copy number is tightly regulated during pluripotency and differentiation. There is increased demand of cellular adenosine triphosphate (ATP) during differentiation for energy-intensive cell types such as hepatocytes and neurons to meet the cell's functional requirements. During hepatocyte differentiation, mtDNA copy number should be synchronously increased to generate sufficient ATP through oxidative phosphorylation. Unlike bone marrow mesenchymal cells, mtDNA copy number failed to increase by 28 days of differentiation of human amniotic epithelial cells (hAEC) into hepatocyte-like cells (HLC) despite their expression of some end-stage hepatic markers. This was due to higher levels of DNA methylation at exon 2 of POLGA, the mtDNA-specific replication factor. Treatment with a DNA demethylation agent, 5-azacytidine, resulted in increased mtDNA copy number, reduced DNA methylation at exon 2 of POLGA, and reduced hepatic gene expression. Depletion of mtDNA followed by subsequent differentiation did not increase mtDNA copy number, but reduced DNA methylation at exon 2 of POLGA and increased expression of hepatic and pluripotency genes. We encapsulated hAEC in barium alginate microcapsules and subsequently differentiated them into HLC. Encapsulation resulted in no net increase of mtDNA copy number but a significant reduction in DNA methylation of POLGA. RNAseq analysis showed that differentiated HLC express hepatocyte-specific genes but also increased expression of inflammatory interferon genes. Differentiation in encapsulated cells showed suppression of inflammatory genes as well as increased expression of genes associated with hepatocyte function pathways and networks. This study demonstrates that an increase in classical hepatic gene expression can be achieved in HLC through encapsulation, although they fail to effectively regulate mtDNA copy number.

  3. Chromium reduces the in vitro activity and fidelity of DNA replication mediated by the human cell DNA synthesome

    International Nuclear Information System (INIS)

    Dai Heqiao; Liu Jianying; Malkas, Linda H.; Catalano, Jennifer; Alagharu, Srilakshmi; Hickey, Robert J.

    2009-01-01

    Hexavalent chromium Cr(VI) is known to be a carcinogenic metal ion, with a complicated mechanism of action. It can be found within our environment in soil and water contaminated by manufacturing processes. Cr(VI) ion is readily taken up by cells, and is recognized to be both genotoxic and cytotoxic; following its reduction to the stable trivalent form of the ion, chromium(Cr(III)), within cells. This form of the ion is known to impede the activity of cellular DNA polymerase and polymerase-mediated DNA replication. Here, we report the effects of chromium on the activity and fidelity of the DNA replication process mediated by the human cell DNA synthesome. The DNA synthesome is a functional multiprotein complex that is fully competent to carry-out each phase of the DNA replication process. The IC 50 of Cr(III) toward the activity of DNA synthesome-associated DNA polymerases α, δ and ε is 15, 45 and 125 μM, respectively. Cr(III) inhibits synthesome-mediated DNA synthesis (IC 50 = 88 μM), and significantly reduces the fidelity of synthesome-mediated DNA replication. The mutation frequency induced by the different concentrations of Cr(III) ion used in our assays ranges from 2-13 fold higher than that which occurs spontaneously, and the types of mutations include single nucleotide substitutions, insertions, and deletions. Single nucleotide substitutions are the predominant type of mutation, and they occur primarily at GC base-pairs. Cr(III) ion produces a lower number of transition and a higher number of transversion mutations than occur spontaneously. Unlike Cr(III), Cr(VI) ion has little effect on the in vitro DNA synthetic activity and fidelity of the DNA synthesome, but does significantly inhibit DNA synthesis in intact cells. Cell growth and proliferation is also arrested by increasing concentrations of Cr(VI) ion. Our studies provide evidence indicating that the chromium ion induced decrease in the fidelity and activity of synthesome mediated DNA replication

  4. Increased mRNA expression of a laminin-binding protein in human colon carcinoma: Complete sequence of a full-length cDNA encoding the protein

    International Nuclear Information System (INIS)

    Yow, Hsiukang; Wong, Jau Min; Chen, Hai Shiene; Lee, C.; Steele, G.D. Jr.; Chen, Lanbo

    1988-01-01

    Reliable markers to distinguish human colon carcinoma from normal colonic epithelium are needed particularly for poorly differentiated tumors where no useful marker is currently available. To search for markers the authors constructed cDNA libraries from human colon carcinoma cell lines and screened for clones that hybridize to a greater degree with mRNAs of colon carcinomas than with their normal counterparts. Here they report one such cDNA clone that hybridizes with a 1.2-kilobase (kb) mRNA, the level of which is ∼9-fold greater in colon carcinoma than in adjacent normal colonic epithelium. Blot hybridization of total RNA from a variety of human colon carcinoma cell lines shows that the level of this 1.2-kb mRNA in poorly differentiated colon carcinomas is as high as or higher than that in well-differentiated carcinomas. Molecular cloning and complete sequencing of cDNA corresponding to the full-length open reading frame of this 1.2-kb mRNA unexpectedly show it to contain all the partial cDNA sequence encoding 135 amino acid residues previously reported for a human laminin receptor. The deduced amino acid sequence suggests that this putative laminin-binding protein from human colon carcinomas consists of 295 amino acid residues with interesting features. There is an unusual C-terminal 70-amino acid segment, which is trypsin-resistant and highly negatively charged

  5. The nucleotide sequence of human transition protein 1 cDNA

    Energy Technology Data Exchange (ETDEWEB)

    Luerssen, H; Hoyer-Fender, S; Engel, W [Universitaet Goettingen (West Germany)

    1988-08-11

    The authors have screened a human testis cDNA library with an oligonucleotide of 81 mer prepared according to a part of the published nucleotide sequence of the rat transition protein TP 1. They have isolated a cDNA clone with the length of 441 bp containing the coding region of 162 bp for human transition protein 1. There is about 84% homology in the coding region of the sequence compared to rat. The human cDNA-clone encodes a polypeptide of 54 amino acids of which 7 are different to that of rat.

  6. Human FEN1 Expression and Solubility Patterson in DNA Replication and Repair

    National Research Council Canada - National Science Library

    Carrier, Richard

    1999-01-01

    .... I show that human FEN1 mRNA and protein levels increase in a cell cycle-dependent manner, with peak mRNA and protein levels attained coincident with S phase DNA replication in both primary and transformed cells...

  7. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.

    Science.gov (United States)

    Makarova, Alena V; Grabow, Corinn; Gening, Leonid V; Tarantul, Vyacheslav Z; Tahirov, Tahir H; Bessho, Tadayoshi; Pavlov, Youri I

    2011-01-31

    Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+) ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA"). We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.

  8. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.

    Directory of Open Access Journals (Sweden)

    Alena V Makarova

    2011-01-01

    Full Text Available Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+ ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA". We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.

  9. Phosphorylation of human INO80 is involved in DNA damage tolerance

    International Nuclear Information System (INIS)

    Kato, Dai; Waki, Mayumi; Umezawa, Masaki; Aoki, Yuka; Utsugi, Takahiko; Ohtsu, Masaya; Murakami, Yasufumi

    2012-01-01

    Highlights: ► Depletion of hINO80 significantly reduced PCNA ubiquitination. ► Depletion of hINO80 significantly reduced nuclear dots intensity of RAD18 after UV irradiation. ► Western blot analyses showed phosphorylated hINO80 C-terminus. ► Overexpression of phosphorylation mutant hINO80 reduced PCNA ubiquitination. -- Abstract: Double strand breaks (DSBs) are the most serious type of DNA damage. DSBs can be generated directly by exposure to ionizing radiation or indirectly by replication fork collapse. The DNA damage tolerance pathway, which is conserved from bacteria to humans, prevents this collapse by overcoming replication blockages. The INO80 chromatin remodeling complex plays an important role in the DNA damage response. The yeast INO80 complex participates in the DNA damage tolerance pathway. The mechanisms regulating yINO80 complex are not fully understood, but yeast INO80 complex are necessary for efficient proliferating cell nuclear antigen (PCNA) ubiquitination and for recruitment of Rad18 to replication forks. In contrast, the function of the mammalian INO80 complex in DNA damage tolerance is less clear. Here, we show that human INO80 was necessary for PCNA ubiquitination and recruitment of Rad18 to DNA damage sites. Moreover, the C-terminal region of human INO80 was phosphorylated, and overexpression of a phosphorylation-deficient mutant of human INO80 resulted in decreased ubiquitination of PCNA during DNA replication. These results suggest that the human INO80 complex, like the yeast complex, was involved in the DNA damage tolerance pathway and that phosphorylation of human INO80 was involved in the DNA damage tolerance pathway. These findings provide new insights into the DNA damage tolerance pathway in mammalian cells.

  10. DNA ligase III is involved in a DNA-PK independent pathway of NHEJ in human cells

    International Nuclear Information System (INIS)

    Wang, H.; Perrault, A.R.; Qin, W.; Wang, H.; Iliakis, G.

    2003-01-01

    Full text: Double strand breaks (DSB) induced by ionizing radiation (IR) and other cytotoxic agents in the genome of higher eukaryotes are thought to be repaired either by homologous recombination repair (HRR), or non-homologous endjoining (NHEJ). We previously reported the operation of two components of NHEJ in vivo: a DNA-PK dependent component that operates with fast kinetics (D-NHEJ), and a DNA-PK independent component that acts as a backup (basic or B-NHEJ) and operates with kinetics an order of magnitude slower. To gain further insight into the mechanisms of B-NHEJ, we investigated DNA endjoining in extracts 180BR, a human cell line deficient in DNA ligase IV, using an in vitro plasmid-based DNA endjoining assay. An anti DNA ligase III antibody inhibited almost completely DNA endjoining activity in these extracts. On the other hand, an anti DNA ligase I antibody had no measurable effect in DNA endjoining activity. Immunodepletion of DNA ligase III from 180BR cell extracts abolished the DNA endjoining activity, which could be restored by addition of purified human DNA ligase IIIb. Full-length DNA ligase III bound to double stranded DNA and stimulated DNA endjoining in both intermolecular and intramolecular ligation. Furthermore, fractionation of HeLa cell extracts demonstrated the presence of an activity stimulating the function of DNA ligase III. Based on these observations we propose that DNA ligase III is the ligase operating in B-NHEJ

  11. DNA damage in human lymphocytes exposed to four food additives in vitro.

    Science.gov (United States)

    Yilmaz, Serkan; Unal, Fatma; Yüzbaşıoğlu, Deniz; Celik, Mustafa

    2014-11-01

    In vitro genotoxic effects of antioxidant additives, such as citric acid (CA) and phosphoric acid (PA) and their combination, as well as antimicrobial additives, such as benzoic acid (BA) and calcium propionate (CP), on human lymphocytes were determined using alkaline single-cell gel electrophoresis. There was a significant increase in the DNA damage in human lymphocytes after 1 h of in vitro exposure to CA, PA, BA and CP (200, 25-200, 50-500, 50-1000 μg/mL, respectively). The combination of CA and PA significantly increased the mean tail intensity at all the concentrations used (25-200 μg/mL) and significantly increased the mean tail length mainly after higher concentrations (100 and 200 μg/mL). Data in this study showed that the concentrations of food additives used induce DNA damage and PA was the most genotoxic and CA was less genotoxic additives among them. © The Author(s) 2012.

  12. Increased oxidative DNA damage in mononuclear leukocytes in vitiligo

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, Lisa [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy)]. E-mail: lisag@pharm.unifi.it; Bellandi, Serena [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Pitozzi, Vanessa [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Fabbri, Paolo [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Dolara, Piero [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Moretti, Silvia [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy)

    2004-11-22

    Vitiligo is an acquired pigmentary disorder of the skin of unknown aetiology. The autocytotoxic hypothesis suggests that melanocyte impairment could be related to increased oxidative stress. Evidences have been reported that in vitiligo oxidative stress might also be present systemically. We used the comet assay (single cell alkaline gel electrophoresis) to evaluate DNA strand breaks and DNA base oxidation, measured as formamidopyrimidine DNA glycosylase (FPG)-sensitive sites, in peripheral blood cells from patients with active vitiligo and healthy controls. The basal level of oxidative DNA damage in mononuclear leukocytes was increased in vitiligo compared to normal subjects, whereas DNA strand breaks (SBs) were not changed. This alteration was not accompanied by a different capability to respond to in vitro oxidative challenge. No differences in the basal levels of DNA damage in polymorphonuclear leukocytes were found between patients and healthy subjects. Thus, this study supports the hypothesis that in vitiligo a systemic oxidative stress exists, and demonstrates for the first time the presence of oxidative alterations at the nuclear level. The increase in oxidative DNA damage shown in the mononuclear component of peripheral blood leukocytes from vitiligo patients was not particularly severe. However, these findings support an adjuvant role of antioxidant treatment in vitiligo.

  13. Increased oxidative DNA damage in mononuclear leukocytes in vitiligo

    International Nuclear Information System (INIS)

    Giovannelli, Lisa; Bellandi, Serena; Pitozzi, Vanessa; Fabbri, Paolo; Dolara, Piero; Moretti, Silvia

    2004-01-01

    Vitiligo is an acquired pigmentary disorder of the skin of unknown aetiology. The autocytotoxic hypothesis suggests that melanocyte impairment could be related to increased oxidative stress. Evidences have been reported that in vitiligo oxidative stress might also be present systemically. We used the comet assay (single cell alkaline gel electrophoresis) to evaluate DNA strand breaks and DNA base oxidation, measured as formamidopyrimidine DNA glycosylase (FPG)-sensitive sites, in peripheral blood cells from patients with active vitiligo and healthy controls. The basal level of oxidative DNA damage in mononuclear leukocytes was increased in vitiligo compared to normal subjects, whereas DNA strand breaks (SBs) were not changed. This alteration was not accompanied by a different capability to respond to in vitro oxidative challenge. No differences in the basal levels of DNA damage in polymorphonuclear leukocytes were found between patients and healthy subjects. Thus, this study supports the hypothesis that in vitiligo a systemic oxidative stress exists, and demonstrates for the first time the presence of oxidative alterations at the nuclear level. The increase in oxidative DNA damage shown in the mononuclear component of peripheral blood leukocytes from vitiligo patients was not particularly severe. However, these findings support an adjuvant role of antioxidant treatment in vitiligo

  14. Human ribonuclease H1 resolves R-loops and thereby enables progression of the DNA replication fork.

    Science.gov (United States)

    Parajuli, Shankar; Teasley, Daniel C; Murali, Bhavna; Jackson, Jessica; Vindigni, Alessandro; Stewart, Sheila A

    2017-09-15

    Faithful DNA replication is essential for genome stability. To ensure accurate replication, numerous complex and redundant replication and repair mechanisms function in tandem with the core replication proteins to ensure DNA replication continues even when replication challenges are present that could impede progression of the replication fork. A unique topological challenge to the replication machinery is posed by RNA-DNA hybrids, commonly referred to as R-loops. Although R-loops play important roles in gene expression and recombination at immunoglobulin sites, their persistence is thought to interfere with DNA replication by slowing or impeding replication fork progression. Therefore, it is of interest to identify DNA-associated enzymes that help resolve replication-impeding R-loops. Here, using DNA fiber analysis, we demonstrate that human ribonuclease H1 (RNH1) plays an important role in replication fork movement in the mammalian nucleus by resolving R-loops. We found that RNH1 depletion results in accumulation of RNA-DNA hybrids, slowing of replication forks, and increased DNA damage. Our data uncovered a role for RNH1 in global DNA replication in the mammalian nucleus. Because accumulation of RNA-DNA hybrids is linked to various human cancers and neurodegenerative disorders, our study raises the possibility that replication fork progression might be impeded, adding to increased genomic instability and contributing to disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Chemosensitivity of primary human fibroblasts with defective unhooking of DNA interstrand cross-links

    International Nuclear Information System (INIS)

    Clingen, Peter H.; Arlett, Colin F.; Hartley, John A.; Parris, Christopher N.

    2007-01-01

    Xeroderma pigmentosum (XP) is characterised by defects in nucleotide excision repair, ultraviolet (UV) radiation sensitivity and increased skin carcinoma. Compared to other complementation groups, XP-F patients show relatively mild cutaneous symptoms. DNA interstrand cross-linking agents are a highly cytotoxic class of DNA damage induced by common cancer chemotherapeutics such as cisplatin and nitrogen mustards. Although the XPF-ERCC1 structure-specific endonuclease is required for the repair of ICLs cellular sensitivity of primary human XP-F cells has not been established. In clonogenic survival assays, primary fibroblasts from XP-F patients were moderately sensitive to both UVC and HN2 compared to normal cells (2- to 3-fold and 3- to 5-fold, respectively). XP-A fibroblasts were considerably more sensitive to UVC (10- to 12-fold) but not sensitive to HN2. The sensitivity of XP-F fibroblasts to HN2 correlated with the defective incision or 'unhooking' step of ICL repair. Using the comet assay, XP-F cells exhibited only 20% residual unhooking activity over 24 h. Over the same time, normal and XP-A cells unhooked greater than 95% and 62% of ICLs, respectively. After HN2 treatment, ICL-associated DNA double-strand breaks (DSBs) are detected by pulse field gel electrophoresis in dividing cells. Induction and repair of DNA DSBs was normal in XP-F fibroblasts. These findings demonstrate that in primary human fibroblasts, XPF is required for the unhooking of ICLs and not for the induction or repair of ICL-associated DNA DSBs induced by HN2. In terms of cancer chemotherapy, people with mild DNA repair defects affecting ICL repair may be more prevalent in the general population than expected. Since cellular sensitivity of primary human fibroblasts usually reflects clinical sensitivity such patients with cancer would be at risk of increased toxicity

  16. Cloning and expression of a cDNA encoding human sterol carrier protein 2

    International Nuclear Information System (INIS)

    Yamamoto, Ritsu; Kallen, C.B.; Babalola, G.O.; Rennert, H.; Strauss, J.F. III; Billheimer, J.T.

    1991-01-01

    The authors report the cloning and expression of a cDNA encoding human sterol carrier protein 2 (SCP 2 ). The 1.3-kilobase (kb) cDNA contains an open reading frame which encompasses a 143-amino acid sequence which is 89% identical to the rat SCP 2 amino acid sequence. The deduced amino acid sequence of the polypeptide reveals a 20-residue amino-terminal leader sequence in front of the mature polypeptide, which contains a carboxyl-terminal tripeptide (Ala-Lys-Leu) related to the peroxisome targeting sequence. The expressed cDNA in COS-7 cells yields a 15.3-kDa polypeptide and increased amounts of a 13.2-kDa polypeptide, both reacting with a specific rabbit antiserum to rat liver SCP 2 . The cDNA insert hybridizes with 3.2- and 1.8-kb mRNA species in human liver poly(A) + RNA. In human fibroblasts and placenta the 1.8-kb mRNA was most abundant. Southern blot analysis suggests either that there are multiple copies of the SCP 2 gene in the human genome or that the SCP 2 gene is very large. Coexpression of the SCP 2 cDNA with expression vectors for cholesterol side-chain cleavage enzyme and adrenodoxin resulted in a 2.5-fold enhancement of progestin synthesis over that obtained with expression of the steroidogenic enzyme system alone. These findings are concordant with the notion that SCP 2 plays a role in regulating steroidogenesis, among other possible functions

  17. Genome-Wide Prediction of DNA Methylation Using DNA Composition and Sequence Complexity in Human.

    Science.gov (United States)

    Wu, Chengchao; Yao, Shixin; Li, Xinghao; Chen, Chujia; Hu, Xuehai

    2017-02-16

    DNA methylation plays a significant role in transcriptional regulation by repressing activity. Change of the DNA methylation level is an important factor affecting the expression of target genes and downstream phenotypes. Because current experimental technologies can only assay a small proportion of CpG sites in the human genome, it is urgent to develop reliable computational models for predicting genome-wide DNA methylation. Here, we proposed a novel algorithm that accurately extracted sequence complexity features (seven features) and developed a support-vector-machine-based prediction model with integration of the reported DNA composition features (trinucleotide frequency and GC content, 65 features) by utilizing the methylation profiles of embryonic stem cells in human. The prediction results from 22 human chromosomes with size-varied windows showed that the 600-bp window achieved the best average accuracy of 94.7%. Moreover, comparisons with two existing methods further showed the superiority of our model, and cross-species predictions on mouse data also demonstrated that our model has certain generalization ability. Finally, a statistical test of the experimental data and the predicted data on functional regions annotated by ChromHMM found that six out of 10 regions were consistent, which implies reliable prediction of unassayed CpG sites. Accordingly, we believe that our novel model will be useful and reliable in predicting DNA methylation.

  18. Human inherited diseases with altered mechanisms for DNA repair and mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cleaver, J.E.

    1977-01-01

    A variety of human diseases involving clinical symptoms of increased cancer risk, and disorders of the central nervous system, and of hematopoietic, immunological, ocular, and cutaneous tissues and embryological development have defects in biochemical pathways for excision repair of damaged DNA. Excision repair has multiple branches by which damaged nucleotides, bases, and cross-links are excised and requires cofactors that control the access of repair enzymes to damage in DNA in chromatin. Diseases in which repair defects are a consistent feature of their biochemistry include xeroderma pigmentosum, ataxia telangiectasia and Fanconi's anemia.

  19. Links between DNA methylation and nucleosome occupancy in the human genome.

    Science.gov (United States)

    Collings, Clayton K; Anderson, John N

    2017-01-01

    DNA methylation is an epigenetic modification that is enriched in heterochromatin but depleted at active promoters and enhancers. However, the debate on whether or not DNA methylation is a reliable indicator of high nucleosome occupancy has not been settled. For example, the methylation levels of DNA flanking CTCF sites are higher in linker DNA than in nucleosomal DNA, while other studies have shown that the nucleosome core is the preferred site of methylation. In this study, we make progress toward understanding these conflicting phenomena by implementing a bioinformatics approach that combines MNase-seq and NOMe-seq data and by comprehensively profiling DNA methylation and nucleosome occupancy throughout the human genome. The results demonstrated that increasing methylated CpG density is correlated with nucleosome occupancy in the total genome and within nearly all subgenomic regions. Features with elevated methylated CpG density such as exons, SINE-Alu sequences, H3K36-trimethylated peaks, and methylated CpG islands are among the highest nucleosome occupied elements in the genome, while some of the lowest occupancies are displayed by unmethylated CpG islands and unmethylated transcription factor binding sites. Additionally, outside of CpG islands, the density of CpGs within nucleosomes was shown to be important for the nucleosomal location of DNA methylation with low CpG frequencies favoring linker methylation and high CpG frequencies favoring core particle methylation. Prominent exceptions to the correlations between methylated CpG density and nucleosome occupancy include CpG islands marked by H3K27me3 and CpG-poor heterochromatin marked by H3K9me3, and these modifications, along with DNA methylation, distinguish the major silencing mechanisms of the human epigenome. Thus, the relationship between DNA methylation and nucleosome occupancy is influenced by the density of methylated CpG dinucleotides and by other epigenomic components in chromatin.

  20. Chromosomal location of the human gene for DNA polymerase β

    International Nuclear Information System (INIS)

    McBride, O.W.; Zmudzka, B.Z.; Wilson, S.H.

    1987-01-01

    Inhibition studies indicate that DNA polymerase β has a synthetic role in DNA repair after exposure of mammalian cells to some types of DNA-damaging agents. The primary structure of the enzyme is highly conserved in vertebrates, and nearly full-length cDNAs for the enzyme were recently cloned from mammalian cDNA libraries. Southern blot analysis of DNA from a panel of human-rodent somatic cell hybrids, using portions of the cDNA as probe, indicates that the gene for human DNA polymerase β is single copy and located on the short arm or proximal long arm of chromosome 8 (8pter-8q22). A restriction fragment length polymorphism (RFLP) was detected in normal individuals by using a probe from the 5' end of the cDNA, and this RFLP probably is due to an insertion or duplication of DNA in 20-25% of the population. This restriction site can be used as one marker for chromosome 8 genetic linkage studies and for family studies of traits potentially involving this DNA repair gene

  1. Human DNA quantification and sample quality assessment: Developmental validation of the PowerQuant(®) system.

    Science.gov (United States)

    Ewing, Margaret M; Thompson, Jonelle M; McLaren, Robert S; Purpero, Vincent M; Thomas, Kelli J; Dobrowski, Patricia A; DeGroot, Gretchen A; Romsos, Erica L; Storts, Douglas R

    2016-07-01

    Quantification of the total amount of human DNA isolated from a forensic evidence item is crucial for DNA normalization prior to short tandem repeat (STR) DNA analysis and a federal quality assurance standard requirement. Previous commercial quantification methods determine the total human DNA and total human male DNA concentrations, but provide limited information about the condition of the DNA sample. The PowerQuant(®) System includes targets for quantification of total human and total human male DNA as well as targets for evaluating whether the human DNA is degraded and/or PCR inhibitors are present in the sample. A developmental validation of the PowerQuant(®) System was completed, following SWGDAM Validation Guidelines, to evaluate the assay's specificity, sensitivity, precision and accuracy, as well as the ability to detect degraded DNA or PCR inhibitors. In addition to the total human DNA and total human male DNA concentrations in a sample, data from the degradation target and internal PCR control (IPC) provide a forensic DNA analyst meaningful information about the quality of the isolated human DNA and the presence of PCR inhibitors in the sample that can be used to determine the most effective workflow and assist downstream interpretation. Copyright © 2016 The Author(s). Published by Elsevier Ireland Ltd.. All rights reserved.

  2. In situ enzymology of DNA replication and ultraviolet-induced DNA repair synthesis in permeable human cells

    International Nuclear Information System (INIS)

    Dresler, S.; Frattini, M.G.; Robinson-Hill, R.M.

    1988-01-01

    Using permeable diploid human fibroblasts, the authors have studied the deoxyribonucleoside triphosphate concentration dependences of ultraviolet- (UV-) induced DNA repair synthesis and semiconservative DNA replication. In both cell types (AG1518 and IMR-90) examined, the apparent K m values for dCTP, dGTP, and dTTP for DNA replication were between 1.2 and 2.9 μM. For UV-induced DNA repair synthesis, the apparent K m values were substantially lower, ranging from 0.11 to 0.44 μM for AG1518 cells and from 0.06 to 0.24 μM for IMR-90 cells. Recent data implicate DNA polymerase δ in UV-induced repair synthesis and suggest that DNA polymerases α and δ are both involved in semiconservative replication. They measured K m values for dGTP and dTTP for polymerases α and δ, for comparison with the values for replication and repair synthesis. The deoxyribonucleotide K m values for DNA polymerase δ are much greater than the K m values for UV-induced repair synthesis, suggesting that when polymerase δ functions in DNA repair, its characteristics are altered substantially either by association with accessory proteins or by direct posttranslational modification. In contrast, the deoxyribonucleotide binding characteristics of the DNA replication machinery differ little from those of the isolated DNA polymerases. The K m values for UV-induced repair synthesis are 5-80-fold lower than deoxyribonucleotide concentrations that have been reported for intact cultured diploid human fibroblasts. For replication, however, the K m for dGTP is only slightly lower than the average cellular dGTP concentration that has been reported for exponentially growing human fibroblasts. This finding is consistent with the concept that nucleotide compartmentation is required for the attainment of high rates of DNA replication in vivo

  3. Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis

    DEFF Research Database (Denmark)

    Levring, Trine B; Kongsbak-Wismann, Martin; Rode, Anna Kathrine Obelitz

    2015-01-01

    . The aim of this study was to elucidate why activated human T cells require exogenous Cys2 in order to proliferate. We activated purified naïve human CD4+ T cells and found that glutathione (GSH) levels and DNA synthesis were dependent on Cys2 and increased in parallel with increasing concentrations of Cys......Adaptive immune responses require activation and expansion of antigen-specific T cells. Whereas early T cell activation is independent of exogenous cystine (Cys2), T cell proliferation is dependent of Cys2. However, the exact roles of Cys2 in T cell proliferation still need to be determined...... for the activity of ribonucleotide reductase (RNR), the enzyme responsible for generation of the deoxyribonucleotide DNA building blocks. In conclusion, we show that activated human T cells require exogenous Cys2 to proliferate and that this is partly explained by the fact that Cys2 is required for production...

  4. Extrachromosomal circles of satellite repeats and 5S ribosomal DNA in human cells

    Directory of Open Access Journals (Sweden)

    Cohen Sarit

    2010-03-01

    Full Text Available Abstract Background Extrachomosomal circular DNA (eccDNA is ubiquitous in eukaryotic organisms and was detected in every organism tested, including in humans. A two-dimensional gel electrophoresis facilitates the detection of eccDNA in preparations of genomic DNA. Using this technique we have previously demonstrated that most of eccDNA consists of exact multiples of chromosomal tandemly repeated DNA, including both coding genes and satellite DNA. Results Here we report the occurrence of eccDNA in every tested human cell line. It has heterogeneous mass ranging from less than 2 kb to over 20 kb. We describe eccDNA homologous to human alpha satellite and the SstI mega satellite. Moreover, we show, for the first time, circular multimers of the human 5S ribosomal DNA (rDNA, similar to previous findings in Drosophila and plants. We further demonstrate structures that correspond to intermediates of rolling circle replication, which emerge from the circular multimers of 5S rDNA and SstI satellite. Conclusions These findings, and previous reports, support the general notion that every chromosomal tandem repeat is prone to generate eccDNA in eukryoric organisms including humans. They suggest the possible involvement of eccDNA in the length variability observed in arrays of tandem repeats. The implications of eccDNA on genome biology may include mechanisms of centromere evolution, concerted evolution and homogenization of tandem repeats and genomic plasticity.

  5. Preliminary perspectives on DNA collection in anti-human trafficking efforts.

    Science.gov (United States)

    Katsanis, Sara H; Kim, Joyce; Minear, Mollie A; Chandrasekharan, Subhashini; Wagner, Jennifer K

    2014-01-01

    Forensic DNA methodologies have potential applications in the investigation of human trafficking cases. DNA and relationship testing may be useful for confirmation of biological relationship claims in immigration, identification of trafficked individuals who are missing persons, and family reunification of displaced individuals after mass disasters and conflicts. As these applications rely on the collection of DNA from non-criminals and potentially vulnerable individuals, questions arise as to how to address the ethical challenges of collection, security, and privacy of collected samples and DNA profiles. We administered a survey targeted to victims' advocates to gain preliminary understanding of perspectives regarding human trafficking definitions, DNA and sex workers, and perceived trust of authorities potentially involved in DNA collection. We asked respondents to consider the use of DNA for investigating adoption fraud, sex trafficking, and post-conflict child soldier cases. We found some key differences in perspectives on defining what qualifies as "trafficking." When we varied terminology between "sex worker" and "sex trafficking victim" we detected differences in perception on which authorities can be trusted. Respondents were supportive of the hypothetical models proposed to collect DNA. Most were favorable of DNA specimens being controlled by an authority outside of law enforcement. Participants voiced concerns focused on privacy, misuse of DNA samples and data, unintentional harms, data security, and infrastructure. These preliminary data indicate that while there is perceived value in programs to use DNA for investigating cases of human trafficking, these programs may need to consider levels of trust in authorities as their logistics are developed and implemented.

  6. Cloning and sequencing of cDNA encoding human DNA topoisomerase II and localization of the gene to chromosome region 17q21-22

    International Nuclear Information System (INIS)

    Tsai-Pflugfelder, M.; Liu, L.F.; Liu, A.A.; Tewey, K.M.; Whang-Peng, J.; Knutsen, T.; Huebner, K.; Croce, C.M.; Wang, J.C.

    1988-01-01

    Two overlapping cDNA clones encoding human DNA topoisomerase II were identified by two independent methods. In one, a human cDNA library in phage λ was screened by hybridization with a mixed oligonucleotide probe encoding a stretch of seven amino acids found in yeast and Drosophila DNA topoisomerase II; in the other, a different human cDNA library in a λgt11 expression vector was screened for the expression of antigenic determinants that are recognized by rabbit antibodies specific to human DNA topoisomerase II. The entire coding sequences of the human DNA topoisomerase II gene were determined from these and several additional clones, identified through the use of the cloned human TOP2 gene sequences as probes. Hybridization between the cloned sequences and mRNA and genomic DNA indicates that the human enzyme is encoded by a single-copy gene. The location of the gene was mapped to chromosome 17q21-22 by in situ hybridization of a cloned fragment to metaphase chromosomes and by hybridization analysis with a panel of mouse-human hybrid cell lines, each retaining a subset of human chromosomes

  7. Detection and repair of a UV-induced photosensitive lesion in the DNA of human cells

    International Nuclear Information System (INIS)

    Francis, A.A.; Regan, J.D.

    1986-01-01

    Irradiation with UV light results in damage to the DNA of human cells. The most numerous lesions are pyrimidine dimers; however, other lesions are known to occur and may contribute to the overall deleterious effect of UV irradiation. The authors have observed evidence of a UV-induced lesion other than pyrimidine dimers in the DNA of human cells by measuring DNA strand breaks induced by irradiating with 313-nm light following UV (254-nm) irradiation. The data suggest that, in normal cells, the lesion responsible for this effect is rapidly repaired or altered; whereas, in xeroderma pigmentosum variant cells it seems to remain unchanged. Some change apparently occurs in the DNA of xeroderma pigmentosum group A cells which results in an increase in photolability. These data indicate a deficiency in DNA repair of xeroderma pigmentosum variant cells as well as in xeroderma pigmentosum group A cells. (Auth.)

  8. Comparing different post-mortem human samples as DNA sources for downstream genotyping and identification.

    Science.gov (United States)

    Calacal, Gayvelline C; Apaga, Dame Loveliness T; Salvador, Jazelyn M; Jimenez, Joseph Andrew D; Lagat, Ludivino J; Villacorta, Renato Pio F; Lim, Maria Cecilia F; Fortun, Raquel D R; Datar, Francisco A; De Ungria, Maria Corazon A

    2015-11-01

    The capability of DNA laboratories to perform genotyping procedures from post-mortem remains, including those that had undergone putrefaction, continues to be a challenge in the Philippines, a country characterized by very humid and warm conditions all year round. These environmental conditions accelerate the decomposition of human remains that were recovered after a disaster and those that were left abandoned after a crime. When considerable tissue decomposition of human remains has taken place, there is no other option but to extract DNA from bone and/or teeth samples. Routinely, femur shafts are obtained from recovered bodies for human identification because the calcium matrix protects the DNA contained in the osteocytes. In the Philippines, there is difficulty in collecting femur samples after natural disasters or even human-made disasters, because these events are usually characterized by a large number of fatalities. Identification of casualties is further delayed by limitation in human and material resources. Hence, it is imperative to test other types of biological samples that are easier to collect, transport, process and store. We analyzed DNA that were obtained from body fluid, bone marrow, muscle tissue, clavicle, femur, metatarsal, patella, rib and vertebral samples from five recently deceased untreated male cadavers and seven male human remains that were embalmed, buried for ∼ 1 month and then exhumed. The bodies had undergone different environmental conditions and were in various stages of putrefaction. A DNA extraction method utilizing a detergent-washing step followed by an organic procedure was used. The utility of bone marrow and vitreous fluid including bone marrow and vitreous fluid that was transferred on FTA(®) cards and subjected to autosomal STR and Y-STR DNA typing were also evaluated. DNA yield was measured and the presence or absence of PCR inhibitors in DNA extracts was assessed using Plexor(®)HY. All samples were amplified using

  9. DNA polymerase η modulates replication fork progression and DNA damage responses in platinum-treated human cells

    Science.gov (United States)

    Sokol, Anna M.; Cruet-Hennequart, Séverine; Pasero, Philippe; Carty, Michael P.

    2013-11-01

    Human cells lacking DNA polymerase η (polη) are sensitive to platinum-based cancer chemotherapeutic agents. Using DNA combing to directly investigate the role of polη in bypass of platinum-induced DNA lesions in vivo, we demonstrate that nascent DNA strands are up to 39% shorter in human cells lacking polη than in cells expressing polη. This provides the first direct evidence that polη modulates replication fork progression in vivo following cisplatin and carboplatin treatment. Severe replication inhibition in individual platinum-treated polη-deficient cells correlates with enhanced phosphorylation of the RPA2 subunit of replication protein A on serines 4 and 8, as determined using EdU labelling and immunofluorescence, consistent with formation of DNA strand breaks at arrested forks in the absence of polη. Polη-mediated bypass of platinum-induced DNA lesions may therefore represent one mechanism by which cancer cells can tolerate platinum-based chemotherapy.

  10. Prototype Systems Containing Human Cytochrome P450 for High-Throughput Real-Time Detection of DNA Damage by Compounds That Form DNA-Reactive Metabolites.

    Science.gov (United States)

    Brito Palma, Bernardo; Fisher, Charles W; Rueff, José; Kranendonk, Michel

    2016-05-16

    The formation of reactive metabolites through biotransformation is the suspected cause of many adverse drug reactions. Testing for the propensity of a drug to form reactive metabolites has increasingly become an integral part of lead-optimization strategy in drug discovery. DNA reactivity is one undesirable facet of a drug or its metabolites and can lead to increased risk of cancer and reproductive toxicity. Many drugs are metabolized by cytochromes P450 in the liver and other tissues, and these reactions can generate hard electrophiles. These hard electrophilic reactive metabolites may react with DNA and may be detected in standard in vitro genotoxicity assays; however, the majority of these assays fall short due to the use of animal-derived organ extracts that inadequately represent human metabolism. The current study describes the development of bacterial systems that efficiently detect DNA-damaging electrophilic reactive metabolites generated by human P450 biotransformation. These assays use a GFP reporter system that detects DNA damage through induction of the SOS response and a GFP reporter to control for cytotoxicity. Two human CYP1A2-competent prototypes presented here have appropriate characteristics for the detection of DNA-damaging reactive metabolites in a high-throughput manner. The advantages of this approach include a short assay time (120-180 min) with real-time measurement, sensitivity to small amounts of compound, and adaptability to a microplate format. These systems are suitable for high-throughput assays and can serve as prototypes for the development of future enhanced versions.

  11. Detection of extracellular genomic DNA scaffold in human thrombus

    DEFF Research Database (Denmark)

    Oklu, Rahmi; Albadawi, Hassan; Watkins, Michael T

    2012-01-01

    into thrombus remodeling. MATERIALS AND METHODS: Ten human thrombus samples were collected during cases of thrombectomy and open surgical repair of abdominal aortic aneurysms (five samples 1 y old). Additionally, an acute murine hindlimb ischemia model was created to evaluate...... thrombus samples in mice. Human sections were immunostained for the H2A/H2B/DNA complex, myeloperoxidase, fibrinogen, and von Willebrand factor. Mouse sections were immunostained with the H2A antibody. All samples were further evaluated after hematoxylin and eosin and Masson trichrome staining. RESULTS......: An extensive network of extracellular histone/DNA complex was demonstrated in the matrix of human ex vivo thrombus. This network is present throughout the highly cellular acute thrombus. However, in chronic thrombi, detection of the histone/DNA network was predominantly in regions of low collagen content...

  12. Quantification and presence of human ancient DNA in burial place ...

    African Journals Online (AJOL)

    Quantification and presence of human ancient DNA in burial place remains of Turkey using real time polymerase chain reaction. ... A published real-time PCR assay, which allows for the combined analysis of nuclear or ancient DNA and mitochondrial DNA, was modified. This approach can be used for recovering DNA from ...

  13. Induction of Mitochondrial DNA Deletion by Ionizing Radiation in Human Lung Fibroblast IMR-90 Cells

    International Nuclear Information System (INIS)

    Eom, Hyeon Soo; Jung, U Hee; Park, Hae Ran; Jo, Sung Kee

    2009-01-01

    Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging and also contributes to their unfavorable effects in cultured cells and animal tissues. This study was conducted to investigate the effect of ionizing radiation (IR) on mtDNA deletion and the involvement of reactive oxygen species (ROS) in this process in human lung fibroblast (IMR-90) cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated with 137 Cs -rays and the intracellular ROS level was determined by 2',7'-dichlorofluorescein diacetate (DCFH-DA) and mtDNA common deletion (4977bp) was detected by nested PCR. Old cells at PD 55 and H 2 O 2 -treated young cells were compared as the positive control. IR increased the intracellular ROS level and mtDNA 4977 bp deletion in IMR-90 cells dose-dependently. The increases of ROS level and mtDNA deletion were also observed in old cells and H 2 O 2 -treated young cells. To confirm the increased ROS level is essential for mtDNA deletion in irradiated cells, the effects of N-acetylcysteine (NAC) on IRinduced ROS and mtDNA deletion were examined. 5 mM NAC significantly attenuated the IR-induced ROS increase and mtDNA deletion. These results suggest that IR induces the mtDNA deletion and this process is mediated by ROS in IMR-90 cells

  14. DNA repair in human cells

    International Nuclear Information System (INIS)

    Regan, J.D.; Carrier, W.L.; Kusano, I.; Furuno-Fukushi, I.; Dunn, W.C. Jr.; Francis, A.A.; Lee, W.H.

    1982-01-01

    Our primary objective is to elucidate the molecular events in human cells when cellular macromolecules such as DNA are damaged by radiation or chemical agents. We study and characterize (i) the sequence of DNA repair events, (ii) the various modalities of repair, (iii) the genetic inhibition of repair due to mutation, (iv) the physiological inhibition of repair due to mutation, (v) the physiological inhibition of repair due to biochemical inhibitors, and (vi) the genetic basis of repair. Our ultimate goals are to (i) isolate and analyze the repair component of the mutagenic and/or carcinogenic event in human cells, and (ii) elucidate the magnitude and significance of this repair component as it impinges on the practical problems of human irradiation or exposure to actual or potential chemical mutagens and carcinogens. The significance of these studies lies in (i) the ubiquitousness of repair (most organisms, including man, have several complex repair systems), (ii) the belief that mutagenic and carcinogenic events may arise only from residual (nonrepaired) lesions or that error-prone repair systems may be the major induction mechanisms of the mutagenic or carcinogenic event, and (iii) the clear association of repair defects and highly carcinogenic disease states in man [xeroderma pigmentosum (XP)

  15. Effects of Olive Metabolites on DNA Cleavage Mediated by Human Type II Topoisomerases

    Science.gov (United States)

    2016-01-01

    Several naturally occurring dietary polyphenols with chemopreventive or anticancer properties are topoisomerase II poisons. To identify additional phytochemicals that enhance topoisomerase II-mediated DNA cleavage, a library of 341 Mediterranean plant extracts was screened for activity against human topoisomerase IIα. An extract from Phillyrea latifolia L., a member of the olive tree family, displayed high activity against the human enzyme. On the basis of previous metabolomics studies, we identified several polyphenols (hydroxytyrosol, oleuropein, verbascoside, tyrosol, and caffeic acid) as potential candidates for topoisomerase II poisons. Of these, hydroxytyrosol, oleuropein, and verbascoside enhanced topoisomerase II-mediated DNA cleavage. The potency of these olive metabolites increased 10–100-fold in the presence of an oxidant. Hydroxytyrosol, oleuropein, and verbascoside displayed hallmark characteristics of covalent topoisomerase II poisons. (1) The activity of the metabolites was abrogated by a reducing agent. (2) Compounds inhibited topoisomerase II activity when they were incubated with the enzyme prior to the addition of DNA. (3) Compounds were unable to poison a topoisomerase IIα construct that lacked the N-terminal domain. Because hydroxytyrosol, oleuropein, and verbascoside are broadly distributed across the olive family, extracts from the leaves, bark, and fruit of 11 olive tree species were tested for activity against human topoisomerase IIα. Several of the extracts enhanced enzyme-mediated DNA cleavage. Finally, a commercial olive leaf supplement and extra virgin olive oils pressed from a variety of Olea europea subspecies enhanced DNA cleavage mediated by topoisomerase IIα. Thus, olive metabolites appear to act as topoisomerase II poisons in complex formulations intended for human dietary consumption. PMID:26132160

  16. Increased DNA-repair in spleen cells of M. Hodgkin

    International Nuclear Information System (INIS)

    Frischauf, H.; Neumann, E.; Howanietz, L.; Dolejs, I.; Tuschl, H.; Altmann, H.

    1974-11-01

    In spleen cells of control patients and cells of Morbus Hodgkin, DNA-repair after gamma- and UV-irradiation was determined measuring the incorporated 3H-thymidine activity in the DNA. Additionally, the ratio of labeled cells compared to non-labeled cells and the grains per cell were evaluated by autoradiographic investigations. DNA-content per cell was measured using pulsecytophotometry. A significant increase of DNA-repair capacity after gamma-irradiation was found by density gradient centrifugation in alkaline sucrose. The same trend could be shown by investigations of unscheduled DNA-synthesis using autoradiographic method. (author)

  17. Cloning and characterization of the human colipase cDNA

    International Nuclear Information System (INIS)

    Lowe, M.E.; Rosenblum, J.L.; McEwen, P.; Strauss, A.W.

    1990-01-01

    Pancreatic lipase hydrolyzes dietary triglycerides to monoglycerides and fatty acids. In the presence of bile salts, the activity of pancreatic lipase is markedly decreased. The activity can be restored by the addition of colipase, a low molecular weight protein secreted by the pancreas. The action of pancreatic lipase in the gut lumen is dependent upon its interaction with colipase. As a first step in elucidating the molecular events governing the interaction of lipase and colipase with each other and with fatty acids, a cDNA encoding human colipase was isolated from a λgt11 cDNA library with a rabbit polyclonal anti-human colipase antibody. The full-length 525 bp cDNA contained an open reading frame encoding 112 amino acids, including a 17 amino acid signal peptide. The predicted sequence contains 100% of the published protein sequence for human colipase determined by chemical methods, but predicts the presence of five additional NH 2 -terminal amino acids and four additional COOH-terminal amino acids. Comparison of the predicted protein sequence with the known sequences of colipase from other species reveals regions of extensive identity. The authors report, for the first time, a cDNA for colipase. The cDNA predicts a human procolipase an suggests that there may also be processing at the COOH-terminus. The regions of identity with colipase from other species will aid in defining the interaction with lipase and lipids through site-specific mutagenesis

  18. DNA fragmentation and cytotoxicity by recombinant human tumor necrosis factor in L929 fibroblast cells

    International Nuclear Information System (INIS)

    Kosaka, T.; Kuwabara, M.; Koide, F.

    1992-01-01

    Induction of cell DNA fragmentation by treatment of recombinant human Tumor Necrosis Factor alpha (rhTNF alpha) was examined by using mouse L929 cells derived from mouse fibroblast cells. The amount of DNA fragments derived from rhTNF alpha-treated cells, detected by alkaline elution technique, was smaller than that derived from X-irradiated cells. The rhTNF alpha caused the DNA fragmentation depending on its incubation time and concentration. The DNA damage caused by rhTNF alpha treatment correlated with its cytotoxicity. This result suggested that the DNA fragmentation is one of causes of cell death. The treatment with proteinase K of DNA obtained from rhTNF alpha-treated cells did not increase the amount of DNA fragmentation, which indicates that rhTNF alpha causes DNA-fragmentation but not DNA-protein cross-linking

  19. DNA damage in cultured human skin fibroblasts exposed to excimer laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rimoldi, D.; Miller, A.C.; Freeman, S.E.; Samid, D. (Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD (USA))

    1991-06-01

    Ultraviolet excimer lasers are being considered for use in a variety of refractive and therapeutic procedures, the long-term biologic consequences of which are unknown. The effect of sublethal doses of 193-nm laser radiation on cellular DNA was examined in cultured human skin fibroblasts. In contrast to 248 nm, treatments with the 193-nm laser radiation below 70 J/m2 did not cause significant pyrimidine dimer formation in the skin cells. This was indicated by the lack of excision repair activities (unscheduled DNA synthesis assay), and further demonstrated by direct analysis of pyrimidine dimers in DNA from irradiated cells. However, a low level of unscheduled DNA synthesis could be detected following irradiation at 193 nm with 70 J/m2. Both the 193-nm and 248-nm radiation were able to induce chromosomal aberrations, as indicated by a micronucleus assay. A dose-dependent increase in micronuclei frequency was observed 48 and 72 h after laser irradiation. These results indicate that exposure of actively replicating human skin fibroblasts to sublethal doses of either 193- or 248-nm laser radiation can result in genotoxicity.

  20. NEIL2 protects against oxidative DNA damage induced by sidestream smoke in human cells.

    Directory of Open Access Journals (Sweden)

    Altaf H Sarker

    Full Text Available Secondhand smoke (SHS is a confirmed lung carcinogen that introduces thousands of toxic chemicals into the lungs. SHS contains chemicals that have been implicated in causing oxidative DNA damage in the airway epithelium. Although DNA repair is considered a key defensive mechanism against various environmental attacks, such as cigarette smoking, the associations of individual repair enzymes with susceptibility to lung cancer are largely unknown. This study investigated the role of NEIL2, a DNA glycosylase excising oxidative base lesions, in human lung cells treated with sidestream smoke (SSS, the main component of SHS. To do so, we generated NEIL2 knockdown cells using siRNA-technology and exposed them to SSS-laden medium. Representative SSS chemical compounds in the medium were analyzed by mass spectrometry. An increased production of reactive oxygen species (ROS in SSS-exposed cells was detected through the fluorescent detection and the induction of HIF-1α. The long amplicon-quantitative PCR (LA-QPCR assay detected significant dose-dependent increases of oxidative DNA damage in the HPRT gene of cultured human pulmonary fibroblasts (hPF and BEAS-2B epithelial cells exposed to SSS for 24 h. These data suggest that SSS exposure increased oxidative stress, which could contribute to SSS-mediated toxicity. siRNA knockdown of NEIL2 in hPF and HEK 293 cells exposed to SSS for 24 h resulted in significantly more oxidative DNA damage in HPRT and POLB than in cells with control siRNA. Taken together, our data strongly suggest that decreased repair of oxidative DNA base lesions due to an impaired NEIL2 expression in non-smokers exposed to SSS would lead to accumulation of mutations in genomic DNA of lung cells over time, thus contributing to the onset of SSS-induced lung cancer.

  1. Flow cytofluorometric assay of human whole blood leukocyte DNA degradation in response to Yersinia pestis and Staphylococcus aureus

    Science.gov (United States)

    Kravtsov, Alexander L.; Grebenyukova, Tatyana P.; Bobyleva, Elena V.; Golovko, Elena M.; Malyukova, Tatyana A.; Lyapin, Mikhail N.; Kostyukova, Tatyana A.; Yezhov, Igor N.; Kuznetsov, Oleg S.

    2001-05-01

    Human leukocytes containing less than 2C DNA per cell (damaged or dead cells) were detected and quantified by flow cytometry and DNA-specific staining with ethidium bromide and mithramycin in whole blood infected with Staphylococcus aureus or Yersinia pestis. Addition of live S. aureus to the blood (100 microbe cells per one leukocyte) resulted in rapid degradation of leukocyte DNA within 3 to 6 hours of incubation at 37 degree(s)C. However, only about 50 percent cells were damaged and the leukocytes with the intact genetic apparatus could be found in the blood for a period up to 24 hours. The leukocyte injury was preceded by an increase of DNA per cell content (as compared to the normal one) that was likely to be connected with the active phagocytosis of S. aureus by granulocytes (2C DNA of diploid phagocytes plus the all bacterial DNA absorbed). In response to the same dose of actively growing (at 37 degree(s)C) virulent Y. pestis cells, no increase in DNA content per cell could be observed in the human blood leukocytes. The process of the leukocyte DNA degradation started after a 6-hour incubation, and between 18 to 24 hours of incubation about 90 percent leukocytes (phagocytes and lymphocytes) lost their specific DNA fluorescence. These results demonstrated a high potential of flow cytometry in comparative analysis in vitro of the leukocyte DNA degradation process in human blood in response to bacteria with various pathogenic properties. They agree with the modern idea of an apoptotic mechanism of immunosuppression in plague.

  2. Identification of DNA repair genes in the human genome

    International Nuclear Information System (INIS)

    Hoeijmakers, J.H.J.; van Duin, M.; Westerveld, A.; Yasui, A.; Bootsma, D.

    1986-01-01

    To identify human DNA repair genes we have transfected human genomic DNA ligated to a dominant marker to excision repair deficient xeroderma pigmentosum (XP) and CHO cells. This resulted in the cloning of a human gene, ERCC-1, that complements the defect of a UV- and mitomycin-C sensitive CHO mutant 43-3B. The ERCC-1 gene has a size of 15 kb, consists of 10 exons and is located in the region 19q13.2-q13.3. Its primary transcript is processed into two mRNAs by alternative splicing of an internal coding exon. One of these transcripts encodes a polypeptide of 297 aminoacids. A putative DNA binding protein domain and nuclear location signal could be identified. Significant AA-homology is found between ERCC-1 and the yeast excision repair gene RAD10. 58 references, 6 figures, 1 table

  3. Sequence of a cloned cDNA encoding human ribosomal protein S11

    Energy Technology Data Exchange (ETDEWEB)

    Lott, J B; Mackie, G A

    1988-02-11

    The authors have isolated a cloned cDNA that encodes human ribosomal protein (rp) S11 by screening a human fibroblast cDNA library with a labelled 204 bp DNA fragment encompassing residues 212-416 of pRS11, a rat rp Sll cDNA clone. The human rp S11 cloned cDNA consists of 15 residues of the 5' leader, the entire coding sequence and all 51 residues of the 3' untranslated region. The predicted amino acid sequence of 158 residues is identical to rat rpS11. The nucleotide sequence in the coding region differs, however, from that in rat in the first position in two codons and in the third position in 44 codons.

  4. Radiation-induced DNA damage and repair in radiosensitive and radioresistant human tumour cells measured by field inversion gel electrophoresis

    International Nuclear Information System (INIS)

    Smeets, M.F.M.A.; Mooren, E.H.M.; Begg, A.C.

    1993-01-01

    Radiation-induced DNA damage induction and repair was measured in two human squamous carcinoma cell lines with differing radiosensitivities. Experiments were carried out with field inversion gel electrophoresis (FIGE), adapted to measure DNA double strand break (DSB) induction and repair in unlabelled cells. The sensitivity of the method was increased by introducing a hybridization membrane into the agarose gel. Damaged DNA accumulated on one spot on the membrane resulting in high local concentrations. This DNA was quantified using radioactively-labelled total human DNA as a probe. Radiosensitivity differences at physiological temperatures could not be explained by differences in either induction or repair of DNA damage as measured by pulsed field gel electrophoresis. (author)

  5. mtDNA variation predicts population size in humans and reveals a major Southern Asian chapter in human prehistory.

    Science.gov (United States)

    Atkinson, Quentin D; Gray, Russell D; Drummond, Alexei J

    2008-02-01

    The relative timing and size of regional human population growth following our expansion from Africa remain unknown. Human mitochondrial DNA (mtDNA) diversity carries a legacy of our population history. Given a set of sequences, we can use coalescent theory to estimate past population size through time and draw inferences about human population history. However, recent work has challenged the validity of using mtDNA diversity to infer species population sizes. Here we use Bayesian coalescent inference methods, together with a global data set of 357 human mtDNA coding-region sequences, to infer human population sizes through time across 8 major geographic regions. Our estimates of relative population sizes show remarkable concordance with the contemporary regional distribution of humans across Africa, Eurasia, and the Americas, indicating that mtDNA diversity is a good predictor of population size in humans. Plots of population size through time show slow growth in sub-Saharan Africa beginning 143-193 kya, followed by a rapid expansion into Eurasia after the emergence of the first non-African mtDNA lineages 50-70 kya. Outside Africa, the earliest and fastest growth is inferred in Southern Asia approximately 52 kya, followed by a succession of growth phases in Northern and Central Asia (approximately 49 kya), Australia (approximately 48 kya), Europe (approximately 42 kya), the Middle East and North Africa (approximately 40 kya), New Guinea (approximately 39 kya), the Americas (approximately 18 kya), and a second expansion in Europe (approximately 10-15 kya). Comparisons of relative regional population sizes through time suggest that between approximately 45 and 20 kya most of humanity lived in Southern Asia. These findings not only support the use of mtDNA data for estimating human population size but also provide a unique picture of human prehistory and demonstrate the importance of Southern Asia to our recent evolutionary past.

  6. Mercuric dichloride induces DNA damage in human salivary gland tissue cells and lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Katharina; Kroemer, Susanne [University of Regensburg, Regensburg (Germany); Sassen, Andrea [University of Regensburg, Department of Pathology, Regensburg (Germany); Staudenmaier, Rainer [Technical University of Munich, Department of Otorhinolaryngology, Head and Neck Surgery, Munich (Germany); Reichl, Franz-Xaver [University of Munich, Institute of Pharmacology and Toxicology, Munich (Germany); Harreus, Ulrich [University of Munich, Department of Otorhinolaryngology, Head and Neck Surgery, Munich (Germany); Hagen, Rudolf; Kleinsasser, Norbert [University of Wuerzburg, Department of Otorhinolaryngology, Head and Neck Surgery, Wuerzburg (Germany)

    2007-11-15

    Amalgam is still one of the most frequently used dental filling materials. However, the possible adverse effects especially that of the mercuric component have led to continued controversy. Considering that mercury may be released from amalgam fillings into the oral cavity and also reach the circulating blood after absorption and resorption, it eventually may contribute to tumorigenesis in a variety of target cells. The present investigation focuses on genotoxic effects below a cytotoxic dose level of mercuric dichloride (HgCl{sub 2}) in human samples of salivary glands and lymphocytes to elucidate a possible role in tumor initiation. DNA migration due to single strand breaks, alkali labile sites and incomplete excision repair was quantified with the aid of the single cell microgel electrophoresis (Comet) assay. The concepts of Olive Tail Moment, percentage of DNA in the Tail and Tail Length were used as measures of DNA damage. To control for cytotoxic effects, the trypan blue exclusion test was applied. Human samples of the parotid salivary gland and lymphocytes of ten donors were exposed to HgCl{sub 2} concentrations from 1 to 50 {mu}M. N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and dimethyl sulfoxide (DMSO) served as controls. Increasing dose-dependent DNA migration could be demonstrated after exposure to HgCl{sub 2} in cells of the salivary glands and lymphocytes. In both cell types a significant increase in DNA migration could be shown starting from HgCl{sub 2} concentrations of 5 {mu}M in comparison to the negative control. The viability of the cell systems was not affected except at the highest concentration (50 {mu}M) tested. These data indicate genotoxic effects of mercuric dichloride in human salivary glands and lymphocytes at concentrations not leading to cytotoxic effects or cell death. Consequently, a contributory role in oral salivary gland tumor initiation warrants further investigation. (orig.)

  7. Role of DNA lesions and DNA repair in mutagenesis by carcinogens in diploid human fibroblasts

    International Nuclear Information System (INIS)

    Maher, V.M.; McCormick, J.J.

    1986-01-01

    The authors investigated the cytotoxicity, mutagenicity, and transforming activity of carcinogens and radiation in diploid human fibroblasts, using cells which differ in their DNA repair capacity. The results indicate that cell killing and induction of mutations are correlated with the number of specific lesions remaining unrepaired in the cells at a particular time posttreatment. DNA excision repair acts to eliminate potentially cytotoxic and mutagenic (and transforming) damage from DNA before these can be converted into permanent cellular effects. Normal human fibroblasts were derived from skin biopsies or circumcision material. Skin fibroblasts from xeroderma pigmentosum (XP) patients provided cells deficient in nucleotide excision repair of pyrimidine dimers or DNA adducts formed by bulky ring structures. Cytotoxicity was determined from loss of ability to form a colony. The genetic marker used was resistance to 6-thioguanine (TG). Transformation was measured by determining the frequency of anchorage-independent cells

  8. Identification of person and quantification of human DNA recovered from mosquitoes (Culicidae).

    Science.gov (United States)

    Curic, Goran; Hercog, Rajna; Vrselja, Zvonimir; Wagner, Jasenka

    2014-01-01

    Mosquitoes (Culicidae) are widespread insects and can be important in forensic context as a source of human DNA. In order to establish the quantity of human DNA in mosquitoes' gut after different post-feeding interval and for how long after taking a bloodmeal the human donor could be identified, 174 blood-engorged mosquitoes (subfamily Anophelinae and Culicinae) were captured, kept alive and sacrificed at 8h intervals. Human DNA was amplified using forensic PCR kits (Identifiler, MiniFiler, and Quantifiler). A full DNA profiles were obtained from all Culicinae mosquitoes (74/74) up to 48 h and profiling was successful up to 88 h after a bloodmeal. Duration of post-feeding interval had a significant negative effect on the possibility of obtaining a full profile (pfeeding interval. Culicinae mosquitoes are a suitable source of human DNA for forensic STR kits more than three days after a bloodmeal. Human DNA recovered from mosquito can be used for matching purposes and could be useful in revealing spatial and temporal relation of events that took place at the crime scene. Therefore, mosquitoes at the crime scene, dead or alive, could be a valuable piece of forensic evidence. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Identification of a mammalian nuclear factor and human cDNA-encoded proteins that recognize DNA containing apurinic sites

    International Nuclear Information System (INIS)

    Lenz, J.; Okenquist, S.A.; LoSardo, J.E.; Hamilton, K.K.; Doetsch, P.W.

    1990-01-01

    Damage to DNA can have lethal or mutagenic consequences for cells unless it is detected and repaired by cellular proteins. Repair depends on the ability of cellular factors to distinguish the damaged sites. Electrophoretic binding assays were used to identify a factor from the nuclei of mammalian cells that bound to DNA containing apurinic sites. A binding assay based on the use of β-galactosidase fusion proteins was subsequently used to isolate recombinant clones of human cDNAs that encoded apurinic DNA-binding proteins. Two distinct human cDNAs were identified that encoded proteins that bound apurinic DNA preferentially over undamaged, methylated, or UV-irradiated DNA. These approaches may offer a general method for the detection of proteins that recognize various types of DNA damage and for the cloning of genes encoding such proteins

  10. Association between high risk papillomavirus DNA and nitric oxide release in the human uterine cervix.

    Science.gov (United States)

    Rahkola, Paivi; Mikkola, Tomi S; Ylikorkala, Olavi; Vaisanen-Tommiska, Mervi

    2009-08-01

    Local cervical factors may determine the outcome of human papillomavirus (HPV) infection. Nitric oxide (NO) may be one such factor, since it is produced by uterine cervical cells and it takes part in both immunological and carcinogenic reactions. We studied the association between the presence of cervical high risk (hr) HPV DNA and NO in the cervical canal in women. High risk HPV DNA status was assessed from 328 women by using a specific DNA test and the release of cervical NO was assessed as nitrate/nitrite in cervical fluid. Cervical NO was then compared between women showing different status of hr HPV DNA and different cytological and histological findings. High risk HPV DNA was present in 175/328 (53%) women. The cervical NO release in women with hr HPV DNA was 90% higher compared to hr HPV DNA negative women (poral contraception, intrauterine devices, or signs of bacterial vaginosis or candida infection. Cytologically healthy epithelium and epithelium with mild cytological or histological changes showed elevated NO release if hr HPV DNA was present. The presence of hr HPV DNA is associated with an increased release of NO in the human uterine cervix. The clinical significance of this phenomenon remains open.

  11. HMGB1-mediated DNA bending: Distinct roles in increasing p53 binding to DNA and the transactivation of p53-responsive gene promoters.

    Science.gov (United States)

    Štros, Michal; Kučírek, Martin; Sani, Soodabeh Abbasi; Polanská, Eva

    2018-03-01

    HMGB1 is a chromatin-associated protein that has been implicated in many important biological processes such as transcription, recombination, DNA repair, and genome stability. These functions include the enhancement of binding of a number of transcription factors, including the tumor suppressor protein p53, to their specific DNA-binding sites. HMGB1 is composed of two highly conserved HMG boxes, linked to an intrinsically disordered acidic C-terminal tail. Previous reports have suggested that the ability of HMGB1 to bend DNA may explain the in vitro HMGB1-mediated increase in sequence-specific DNA binding by p53. The aim of this study was to reinvestigate the importance of HMGB1-induced DNA bending in relationship to the ability of the protein to promote the specific binding of p53 to short DNA duplexes in vitro, and to transactivate two major p53-regulated human genes: Mdm2 and p21/WAF1. Using a number of HMGB1 mutants, we report that the HMGB1-mediated increase in sequence-specific p53 binding to DNA duplexes in vitro depends very little on HMGB1-mediated DNA bending. The presence of the acidic C-terminal tail of HMGB1 and/or the oxidation of the protein can reduce the HMGB1-mediated p53 binding. Interestingly, the induction of transactivation of p53-responsive gene promoters by HMGB1 requires both the ability of the protein to bend DNA and the acidic C-terminal tail, and is promoter-specific. We propose that the efficient transactivation of p53-responsive gene promoters by HMGB1 depends on complex events, rather than solely on the promotion of p53 binding to its DNA cognate sites. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Therapeutic touch affects DNA synthesis and mineralization of human osteoblasts in culture.

    Science.gov (United States)

    Jhaveri, Ankur; Walsh, Stephen J; Wang, Yatzen; McCarthy, MaryBeth; Gronowicz, Gloria

    2008-11-01

    Complementary and alternative medicine (CAM) techniques are commonly used in hospitals and private medical facilities; however, the effectiveness of many of these practices has not been thoroughly studied in a scientific manner. Developed by Dr. Dolores Krieger and Dora Kunz, Therapeutic Touch is one of these CAM practices and is a highly disciplined five-step process by which a practitioner can generate energy through their hands to promote healing. There are numerous clinical studies on the effects of TT but few in vitro studies. Our purpose was to determine if Therapeutic Touch had any effect on osteoblast proliferation, differentiation, and mineralization in vitro. TT was performed twice a week for 10 min each on human osteoblasts (HOBs) and on an osteosarcoma-derived cell line, SaOs-2. No significant differences were found in DNA synthesis, assayed by [(3)H]-thymidine incorporation at 1 or 2 weeks for SaOs-2 or 1 week for HOBs. However, after four TT treatments in 2 weeks, TT significantly (p = 0.03) increased HOB DNA synthesis compared to controls. Immunocytochemistry for Proliferating Cell Nuclear Antigen (PCNA) confirmed these data. At 2 weeks in differentiation medium, TT significantly increased mineralization in HOBs (p = 0.016) and decreased mineralization in SaOs-2 (p = 0.0007), compared to controls. Additionally, Northern blot analysis indicated a TT-induced increase in mRNA expression for Type I collagen, bone sialoprotein, and alkaline phosphatase in HOBs and a decrease of these bone markers in SaOs-2 cells. In conclusion, Therapeutic Touch appears to increase human osteoblast DNA synthesis, differentiation and mineralization, and decrease differentiation and mineralization in a human osteosarcoma-derived cell line. (c) 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Fluoride enhances transfection activity of carbonate apatite by increasing cytoplasmic stability of plasmid DNA

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, E.H., E-mail: md.ezharul.hoque@med.monash.edu.my [Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan (Malaysia)

    2011-06-17

    Highlights: {yields} Cytoplasmic stability of plasmid DNA is enhanced by fluoride incorporation into carbonate apatite carrier. {yields} Fluoridated carbonate apatite promotes a robust increase in transgene expression. {yields} Controlled dissolution of fluoridated carbonate apatite in endosomal acidic environment might buffer the endosomes and prevent degradation of the released DNA. -- Abstract: Intracellular delivery of a functional gene or a nucleic acid sequence to specifically knockdown a harmful gene is a potential approach to precisely treat a critical human disease. The intensive efforts in the last few decades led to the development of a number of viral and non-viral synthetic vectors. However, an ideal delivery tool in terms of the safety and efficacy has yet to be established. Recently, we have developed pH-sensing inorganic nanocrystals of carbonate apatite for efficient and cell-targeted delivery of gene and gene-silencing RNA. Here we show that addition of very low level of fluoride to the particle-forming medium facilitates a robust increase in transgene expression following post-incubation of the particles with HeLa cells. Confocal microscopic observation and Southern blotting prove the cytoplasmic existence of plasmid DNA delivered by likely formed fluoridated carbonate apatite particles while degradation of plasmid DNA presumably by cytoplasmic nucleases was noticed following delivery with apatite particles alone. The beneficial role of fluoride in enhancing carbonate apatite-mediated gene expression might be due to the buffering potential of generated fluoridated apatite in endosomal acidic environment, thereby increasing the half-life of delivered plasmid DNA.

  14. Fluoride enhances transfection activity of carbonate apatite by increasing cytoplasmic stability of plasmid DNA

    International Nuclear Information System (INIS)

    Chowdhury, E.H.

    2011-01-01

    Highlights: → Cytoplasmic stability of plasmid DNA is enhanced by fluoride incorporation into carbonate apatite carrier. → Fluoridated carbonate apatite promotes a robust increase in transgene expression. → Controlled dissolution of fluoridated carbonate apatite in endosomal acidic environment might buffer the endosomes and prevent degradation of the released DNA. -- Abstract: Intracellular delivery of a functional gene or a nucleic acid sequence to specifically knockdown a harmful gene is a potential approach to precisely treat a critical human disease. The intensive efforts in the last few decades led to the development of a number of viral and non-viral synthetic vectors. However, an ideal delivery tool in terms of the safety and efficacy has yet to be established. Recently, we have developed pH-sensing inorganic nanocrystals of carbonate apatite for efficient and cell-targeted delivery of gene and gene-silencing RNA. Here we show that addition of very low level of fluoride to the particle-forming medium facilitates a robust increase in transgene expression following post-incubation of the particles with HeLa cells. Confocal microscopic observation and Southern blotting prove the cytoplasmic existence of plasmid DNA delivered by likely formed fluoridated carbonate apatite particles while degradation of plasmid DNA presumably by cytoplasmic nucleases was noticed following delivery with apatite particles alone. The beneficial role of fluoride in enhancing carbonate apatite-mediated gene expression might be due to the buffering potential of generated fluoridated apatite in endosomal acidic environment, thereby increasing the half-life of delivered plasmid DNA.

  15. An Improved Methodology to Overcome Key Issues in Human Fecal Metagenomic DNA Extraction

    Directory of Open Access Journals (Sweden)

    Jitendra Kumar

    2016-12-01

    Full Text Available Microbes are ubiquitously distributed in nature, and recent culture-independent studies have highlighted the significance of gut microbiota in human health and disease. Fecal DNA is the primary source for the majority of human gut microbiome studies. However, further improvement is needed to obtain fecal metagenomic DNA with sufficient amount and good quality but low host genomic DNA contamination. In the current study, we demonstrate a quick, robust, unbiased, and cost-effective method for the isolation of high molecular weight (>23 kb metagenomic DNA (260/280 ratio >1.8 with a good yield (55.8 ± 3.8 ng/mg of feces. We also confirm that there is very low human genomic DNA contamination (eubacterial: human genomic DNA marker genes = 227.9:1 in the human feces. The newly-developed method robustly performs for fresh as well as stored fecal samples as demonstrated by 16S rRNA gene sequencing using 454 FLX+. Moreover, 16S rRNA gene analysis indicated that compared to other DNA extraction methods tested, the fecal metagenomic DNA isolated with current methodology retains species richness and does not show microbial diversity biases, which is further confirmed by qPCR with a known quantity of spike-in genomes. Overall, our data highlight a protocol with a balance between quality, amount, user-friendliness, and cost effectiveness for its suitability toward usage for culture-independent analysis of the human gut microbiome, which provides a robust solution to overcome key issues associated with fecal metagenomic DNA isolation in human gut microbiome studies.

  16. Induction of Mitochondrial DNA Deletion by Ionizing Radiation in Human Lung Fibroblast IMR-90 Cells

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Hyeon Soo; Jung, U Hee; Park, Hae Ran; Jo, Sung Kee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-06-15

    Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging and also contributes to their unfavorable effects in cultured cells and animal tissues. This study was conducted to investigate the effect of ionizing radiation (IR) on mtDNA deletion and the involvement of reactive oxygen species (ROS) in this process in human lung fibroblast (IMR-90) cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated with {sup 137}Cs -rays and the intracellular ROS level was determined by 2',7'-dichlorofluorescein diacetate (DCFH-DA) and mtDNA common deletion (4977bp) was detected by nested PCR. Old cells at PD 55 and H{sub 2}O{sub 2}-treated young cells were compared as the positive control. IR increased the intracellular ROS level and mtDNA 4977 bp deletion in IMR-90 cells dose-dependently. The increases of ROS level and mtDNA deletion were also observed in old cells and H{sub 2}O{sub 2}-treated young cells. To confirm the increased ROS level is essential for mtDNA deletion in irradiated cells, the effects of N-acetylcysteine (NAC) on IRinduced ROS and mtDNA deletion were examined. 5 mM NAC significantly attenuated the IR-induced ROS increase and mtDNA deletion. These results suggest that IR induces the mtDNA deletion and this process is mediated by ROS in IMR-90 cells.

  17. Evaluating droplet digital PCR for the quantification of human genomic DNA: converting copies per nanoliter to nanograms nuclear DNA per microliter.

    Science.gov (United States)

    Duewer, David L; Kline, Margaret C; Romsos, Erica L; Toman, Blaza

    2018-05-01

    The highly multiplexed polymerase chain reaction (PCR) assays used for forensic human identification perform best when used with an accurately determined quantity of input DNA. To help ensure the reliable performance of these assays, we are developing a certified reference material (CRM) for calibrating human genomic DNA working standards. To enable sharing information over time and place, CRMs must provide accurate and stable values that are metrologically traceable to a common reference. We have shown that droplet digital PCR (ddPCR) limiting dilution end-point measurements of the concentration of DNA copies per volume of sample can be traceably linked to the International System of Units (SI). Unlike values assigned using conventional relationships between ultraviolet absorbance and DNA mass concentration, entity-based ddPCR measurements are expected to be stable over time. However, the forensic community expects DNA quantity to be stated in terms of mass concentration rather than entity concentration. The transformation can be accomplished given SI-traceable values and uncertainties for the number of nucleotide bases per human haploid genome equivalent (HHGE) and the average molar mass of a nucleotide monomer in the DNA polymer. This report presents the considerations required to establish the metrological traceability of ddPCR-based mass concentration estimates of human nuclear DNA. Graphical abstract The roots of metrological traceability for human nuclear DNA mass concentration results. Values for the factors in blue must be established experimentally. Values for the factors in red have been established from authoritative source materials. HHGE stands for "haploid human genome equivalent"; there are two HHGE per diploid human genome.

  18. Silencing of the pentose phosphate pathway genes influences DNA replication in human fibroblasts.

    Science.gov (United States)

    Fornalewicz, Karolina; Wieczorek, Aneta; Węgrzyn, Grzegorz; Łyżeń, Robert

    2017-11-30

    Previous reports and our recently published data indicated that some enzymes of glycolysis and the tricarboxylic acid cycle can affect the genome replication process by changing either the efficiency or timing of DNA synthesis in human normal cells. Both these pathways are connected with the pentose phosphate pathway (PPP pathway). The PPP pathway supports cell growth by generating energy and precursors for nucleotides and amino acids. Therefore, we asked if silencing of genes coding for enzymes involved in the pentose phosphate pathway may also affect the control of DNA replication in human fibroblasts. Particular genes coding for PPP pathway enzymes were partially silenced with specific siRNAs. Such cells remained viable. We found that silencing of the H6PD, PRPS1, RPE genes caused less efficient enterance to the S phase and decrease in efficiency of DNA synthesis. On the other hand, in cells treated with siRNA against G6PD, RBKS and TALDO genes, the fraction of cells entering the S phase was increased. However, only in the case of G6PD and TALDO, the ratio of BrdU incorporation to DNA was significantly changed. The presented results together with our previously published studies illustrate the complexity of the influence of genes coding for central carbon metabolism on the control of DNA replication in human fibroblasts, and indicate which of them are especially important in this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Oxidative DNA damage and repair in skeletal muscle of humans exposed to high-altitude hypoxia

    International Nuclear Information System (INIS)

    Lundby, Carsten; Pilegaard, Henriette; Hall, Gerrit van; Sander, Mikael; Calbet, Jose; Loft, Steffen; Moeller, Peter

    2003-01-01

    Recent research suggests that high-altitude hypoxia may serve as a model for prolonged oxidative stress in healthy humans. In this study, we investigated the consequences of prolonged high-altitude hypoxia on the basal level of oxidative damage to nuclear DNA in muscle cells, a major oxygen-consuming tissue. Muscle biopsies from seven healthy humans were obtained at sea level and after 2 and 8 weeks of hypoxia at 4100 m.a.s.l. We found increased levels of strand breaks and endonuclease III-sensitive sites after 2 weeks of hypoxia, whereas oxidative DNA damage detected by formamidopyrimidine DNA glycosylase (FPG) protein was unaltered. The expression of 8-oxoguanine DNA glycosylase 1 (OGG1), determined by quantitative RT-PCR of mRNA levels did not significantly change during high-altitude hypoxia, although the data could not exclude a minor upregulation. The expression of heme oxygenase-1 (HO-1) was unaltered by prolonged hypoxia, in accordance with the notion that HO-1 is an acute stress response protein. In conclusion, our data indicate high-altitude hypoxia may serve as a good model for oxidative stress and that antioxidant genes are not upregulated in muscle tissue by prolonged hypoxia despite increased generation of oxidative DNA damage

  20. Nuclear DNA damage-triggered NLRP3 inflammasome activation promotes UVB-induced inflammatory responses in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Tatsuya, E-mail: tatsuya.hasegawa@to.shiseido.co.jp; Nakashima, Masaya; Suzuki, Yoshiharu

    2016-08-26

    Ultraviolet (UV) radiation in sunlight can result in DNA damage and an inflammatory reaction of the skin commonly known as sunburn, which in turn can lead to cutaneous tissue disorders. However, little has been known about how UV-induced DNA damage mediates the release of inflammatory mediators from keratinocytes. Here, we show that UVB radiation intensity-dependently increases NLRP3 gene expression and IL-1β production in human keratinocytes. Knockdown of NLRP3 with siRNA suppresses UVB-induced production of not only IL-1β, but also other inflammatory mediators, including IL-1α, IL-6, TNF-α, and PGE{sub 2}. In addition, inhibition of DNA damage repair by knockdown of XPA, which is a major component of the nucleotide excision repair system, causes accumulation of cyclobutane pyrimidine dimer (CPD) and activation of NLRP3 inflammasome. In vivo immunofluorescence analysis confirmed that NLRP3 expression is also elevated in UV-irradiated human epidermis. Overall, our findings indicate that UVB-induced DNA damage initiates NLRP3 inflammasome activation, leading to release of various inflammatory mediators from human keratinocytes. - Highlights: • UVB radiation induces NLRP3 inflammasome activation in human keratinocytes. • NLRP3 knockdown suppresses production of UVB-induced inflammatory mediators. • UVB-induced DNA damage triggers NLRP3 inflammasome activation. • NLRP3 expression in human epidermis is elevated in response to UV radiation.

  1. Nuclear DNA damage-triggered NLRP3 inflammasome activation promotes UVB-induced inflammatory responses in human keratinocytes

    International Nuclear Information System (INIS)

    Hasegawa, Tatsuya; Nakashima, Masaya; Suzuki, Yoshiharu

    2016-01-01

    Ultraviolet (UV) radiation in sunlight can result in DNA damage and an inflammatory reaction of the skin commonly known as sunburn, which in turn can lead to cutaneous tissue disorders. However, little has been known about how UV-induced DNA damage mediates the release of inflammatory mediators from keratinocytes. Here, we show that UVB radiation intensity-dependently increases NLRP3 gene expression and IL-1β production in human keratinocytes. Knockdown of NLRP3 with siRNA suppresses UVB-induced production of not only IL-1β, but also other inflammatory mediators, including IL-1α, IL-6, TNF-α, and PGE_2. In addition, inhibition of DNA damage repair by knockdown of XPA, which is a major component of the nucleotide excision repair system, causes accumulation of cyclobutane pyrimidine dimer (CPD) and activation of NLRP3 inflammasome. In vivo immunofluorescence analysis confirmed that NLRP3 expression is also elevated in UV-irradiated human epidermis. Overall, our findings indicate that UVB-induced DNA damage initiates NLRP3 inflammasome activation, leading to release of various inflammatory mediators from human keratinocytes. - Highlights: • UVB radiation induces NLRP3 inflammasome activation in human keratinocytes. • NLRP3 knockdown suppresses production of UVB-induced inflammatory mediators. • UVB-induced DNA damage triggers NLRP3 inflammasome activation. • NLRP3 expression in human epidermis is elevated in response to UV radiation.

  2. Understanding human DNA sequence variation.

    Science.gov (United States)

    Kidd, K K; Pakstis, A J; Speed, W C; Kidd, J R

    2004-01-01

    Over the past century researchers have identified normal genetic variation and studied that variation in diverse human populations to determine the amounts and distributions of that variation. That information is being used to develop an understanding of the demographic histories of the different populations and the species as a whole, among other studies. With the advent of DNA-based markers in the last quarter century, these studies have accelerated. One of the challenges for the next century is to understand that variation. One component of that understanding will be population genetics. We present here examples of many of the ways these new data can be analyzed from a population perspective using results from our laboratory on multiple individual DNA-based polymorphisms, many clustered in haplotypes, studied in multiple populations representing all major geographic regions of the world. These data support an "out of Africa" hypothesis for human dispersal around the world and begin to refine the understanding of population structures and genetic relationships. We are also developing baseline information against which we can compare findings at different loci to aid in the identification of loci subject, now and in the past, to selection (directional or balancing). We do not yet have a comprehensive understanding of the extensive variation in the human genome, but some of that understanding is coming from population genetics.

  3. A magnetic bead-based method for concentrating DNA from human urine for downstream detection.

    Science.gov (United States)

    Bordelon, Hali; Russ, Patricia K; Wright, David W; Haselton, Frederick R

    2013-01-01

    Due to the presence of PCR inhibitors, PCR cannot be used directly on most clinical samples, including human urine, without pre-treatment. A magnetic bead-based strategy is one potential method to collect biomarkers from urine samples and separate the biomarkers from PCR inhibitors. In this report, a 1 mL urine sample was mixed within the bulb of a transfer pipette containing lyophilized nucleic acid-silica adsorption buffer and silica-coated magnetic beads. After mixing, the sample was transferred from the pipette bulb to a small diameter tube, and captured biomarkers were concentrated using magnetic entrainment of beads through pre-arrayed wash solutions separated by small air gaps. Feasibility was tested using synthetic segments of the 140 bp tuberculosis IS6110 DNA sequence spiked into pooled human urine samples. DNA recovery was evaluated by qPCR. Despite the presence of spiked DNA, no DNA was detectable in unextracted urine samples, presumably due to the presence of PCR inhibitors. However, following extraction with the magnetic bead-based method, we found that ∼50% of spiked TB DNA was recovered from human urine containing roughly 5×10(3) to 5×10(8) copies of IS6110 DNA. In addition, the DNA was concentrated approximately ten-fold into water. The final concentration of DNA in the eluate was 5×10(6), 14×10(6), and 8×10(6) copies/µL for 1, 3, and 5 mL urine samples, respectively. Lyophilized and freshly prepared reagents within the transfer pipette produced similar results, suggesting that long-term storage without refrigeration is possible. DNA recovery increased with the length of the spiked DNA segments from 10±0.9% for a 75 bp DNA sequence to 42±4% for a 100 bp segment and 58±9% for a 140 bp segment. The estimated LOD was 77 copies of DNA/µL of urine. The strategy presented here provides a simple means to achieve high nucleic acid recovery from easily obtained urine samples, which does not contain inhibitors of PCR.

  4. The study of human Y chromosome variation through ancient DNA.

    Science.gov (United States)

    Kivisild, Toomas

    2017-05-01

    High throughput sequencing methods have completely transformed the study of human Y chromosome variation by offering a genome-scale view on genetic variation retrieved from ancient human remains in context of a growing number of high coverage whole Y chromosome sequence data from living populations from across the world. The ancient Y chromosome sequences are providing us the first exciting glimpses into the past variation of male-specific compartment of the genome and the opportunity to evaluate models based on previously made inferences from patterns of genetic variation in living populations. Analyses of the ancient Y chromosome sequences are challenging not only because of issues generally related to ancient DNA work, such as DNA damage-induced mutations and low content of endogenous DNA in most human remains, but also because of specific properties of the Y chromosome, such as its highly repetitive nature and high homology with the X chromosome. Shotgun sequencing of uniquely mapping regions of the Y chromosomes to sufficiently high coverage is still challenging and costly in poorly preserved samples. To increase the coverage of specific target SNPs capture-based methods have been developed and used in recent years to generate Y chromosome sequence data from hundreds of prehistoric skeletal remains. Besides the prospects of testing directly as how much genetic change in a given time period has accompanied changes in material culture the sequencing of ancient Y chromosomes allows us also to better understand the rate at which mutations accumulate and get fixed over time. This review considers genome-scale evidence on ancient Y chromosome diversity that has recently started to accumulate in geographic areas favourable to DNA preservation. More specifically the review focuses on examples of regional continuity and change of the Y chromosome haplogroups in North Eurasia and in the New World.

  5. Enhanced capacity of DNA repair in human cytomegalovirus-infected cells

    International Nuclear Information System (INIS)

    Nishiyama, Y.; Rapp, F.

    1981-01-01

    Plaque formation in Vero cells by UV-irradiated herpes simplex virus was enhanced by infection with human cytomegalovirus (HCMV), UV irradiation, or treatment with methylmethanesulfonate. Preinfection of Vero cells with HCMV enhanced reactivation of UV-irradiated herpes simplex virus more significantly than did treatment with UV or methylmethanesulfonate alone. A similar enhancement by HCMV was observed in human embryonic fibroblasts, but not in xeroderma pigmentosum (XP12BE) cells. It was also found that HCMV infection enhanced hydroxyurea-resistant DNA synthesis induced by UV light or methylmethanesulfonate. Alkaline sucrose gradient sedimentation analysis revealed an enhanced rate of synthesis of all size classes of DNA in UV-irradiated HCMV-infected Vero cells. However, HCMV infection did not induce repairable lesions in cellular DNA and did not significantly inhibit host cell DNA synthesis, unlike UV or methylmethanesulfonate. These results indicate that HCMV enhanced DNA repair capacity in the host cells without producing detectable lesions in cellular DNA and without inhibiting DNA synthesis. This repair appeared to be error proof for UV-damaged herpes simplex virus DNA when tested with herpes simplex virus thymidine kinase-negative mutants

  6. DNA-mediated gene transfer into human diploid fibroblasts derived from normal and ataxia-telangiectasia donors: parameters for DNA transfer and properties of DNA transformants

    International Nuclear Information System (INIS)

    Debenham, P.G.; Webb, M.B.T.; Masson, W.K.; Cox, R.

    1984-01-01

    An investigation was made of the feasibility of DNA-mediated gene transfer into human diploid fibroblasts derived from patients with the radiation sensitive syndrome ataxia-telangiectasia (A-T) and from a normal donor. Although they are markedly different in their growth characteristics, both normal and A-T strains give similar frequencies for DNA transfer in a model system using the recombinant plasmid pSV2-gpt. pSV2-gpt DNA transformants arise with a frequency between 10 -5 and 10 -4 per viable cell. Analysis of such transformants, although possible, is severely handicapped by the limited clonal life span of diploid human cells. Despite these problems it may be concluded that diploid human fibroblasts are competent recipients for DNA-mediated gene transfer and the putative repair deficiency of A-T does not markedly effect the efficiency of this process. (author)

  7. Analysis of mtDNA hypervariable region II for increasing the ...

    African Journals Online (AJOL)

    aghomotsegin

    2015-03-11

    2014.10.003. Jones DA (1972). Blood samples: probability of discrimination Journal of. Forensic Science Society. 12:355-358. Kraytsberg Y, Schwartz M, Brown TA (2004). Recombination of Human. Mitochondrial DNA. Science.

  8. Involvement of DNA polymerase δ in DNA repair synthesis in human fibroblasts at late times after ultraviolet irradiation

    International Nuclear Information System (INIS)

    Dresler, S.L.; Gowans, B.J.; Robinson-Hill, R.M.; Hunting, D.J.

    1988-01-01

    DNA repair synthesis following UV irradiation of confluent human fibroblasts has a biphasic time course with an early phase of rapid nucleotide incorporation and a late phase of much slower nucleotide incorporation. The biphasic nature of this curve suggests that two distinct DNA repair systems may be operative. Previous studies have specifically implicated DNA polymerase δ as the enzyme involved in DNA repair synthesis occurring immediately after UV damage. In this paper, the authors describe studies of DNA polymerase involvement in DNA repair synthesis in confluent human fibroblasts at late times after UV irradiation. Late UV-induced DNA repair synthesis in both intact and permeable cells was found to be inhibited by aphidicolin, indicating the involvement of one of the aphidicolin-sensitive DNA polymerases, α or δ. In permeable cells, the process was further analyzed by using the nucleotide analogue (butylphenyl)-2'-deoxyguanosine 5'-triphosphate, which inhibits DNA polymerase α several hundred times more strongly than it inhibits DNA polymerase δ. The (butylphenyl)-2'-deoxyguanosine 5'-triphosphate inhibition curve for late UV-induced repair synthesis was very similar to that for polymerase δ. It appears that repair synthesis at late time after UV irradiation, like repair synthesis at early times, is mediated by DNA polymerase δ

  9. The DNA methylome of human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Li, Yingrui; Zhu, Jingde; Tian, Geng

    2010-01-01

    DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per...... strand), we report a comprehensive (92.62%) methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC) from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found...... research and confirms new sequencing technology as a paradigm for large-scale epigenomics studies....

  10. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells.

    Science.gov (United States)

    Bursomanno, Sara; Beli, Petra; Khan, Asif M; Minocherhomji, Sheroy; Wagner, Sebastian A; Bekker-Jensen, Simon; Mailand, Niels; Choudhary, Chunaram; Hickson, Ian D; Liu, Ying

    2015-01-01

    SUMOylation is a form of post-translational modification involving covalent attachment of SUMO (Small Ubiquitin-like Modifier) polypeptides to specific lysine residues in the target protein. In human cells, there are four SUMO proteins, SUMO1-4, with SUMO2 and SUMO3 forming a closely related subfamily. SUMO2/3, in contrast to SUMO1, are predominantly involved in the cellular response to certain stresses, including heat shock. Substantial evidence from studies in yeast has shown that SUMOylation plays an important role in the regulation of DNA replication and repair. Here, we report a proteomic analysis of proteins modified by SUMO2 in response to DNA replication stress in S phase in human cells. We have identified a panel of 22 SUMO2 targets with increased SUMOylation during DNA replication stress, many of which play key functions within the DNA replication machinery and/or in the cellular response to DNA damage. Interestingly, POLD3 was found modified most significantly in response to a low dose aphidicolin treatment protocol that promotes common fragile site (CFS) breakage. POLD3 is the human ortholog of POL32 in budding yeast, and has been shown to act during break-induced recombinational repair. We have also shown that deficiency of POLD3 leads to an increase in RPA-bound ssDNA when cells are under replication stress, suggesting that POLD3 plays a role in the cellular response to DNA replication stress. Considering that DNA replication stress is a source of genome instability, and that excessive replication stress is a hallmark of pre-neoplastic and tumor cells, our characterization of SUMO2 targets during a perturbed S-phase should provide a valuable resource for future functional studies in the fields of DNA metabolism and cancer biology. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro.

    Directory of Open Access Journals (Sweden)

    Geoffry N De Iuliis

    Full Text Available BACKGROUND: In recent times there has been some controversy over the impact of electromagnetic radiation on human health. The significance of mobile phone radiation on male reproduction is a key element of this debate since several studies have suggested a relationship between mobile phone use and semen quality. The potential mechanisms involved have not been established, however, human spermatozoa are known to be particularly vulnerable to oxidative stress by virtue of the abundant availability of substrates for free radical attack and the lack of cytoplasmic space to accommodate antioxidant enzymes. Moreover, the induction of oxidative stress in these cells not only perturbs their capacity for fertilization but also contributes to sperm DNA damage. The latter has, in turn, been linked with poor fertility, an increased incidence of miscarriage and morbidity in the offspring, including childhood cancer. In light of these associations, we have analyzed the influence of RF-EMR on the cell biology of human spermatozoa in vitro. PRINCIPAL FINDINGS: Purified human spermatozoa were exposed to radio-frequency electromagnetic radiation (RF-EMR tuned to 1.8 GHz and covering a range of specific absorption rates (SAR from 0.4 W/kg to 27.5 W/kg. In step with increasing SAR, motility and vitality were significantly reduced after RF-EMR exposure, while the mitochondrial generation of reactive oxygen species and DNA fragmentation were significantly elevated (P<0.001. Furthermore, we also observed highly significant relationships between SAR, the oxidative DNA damage bio-marker, 8-OH-dG, and DNA fragmentation after RF-EMR exposure. CONCLUSIONS: RF-EMR in both the power density and frequency range of mobile phones enhances mitochondrial reactive oxygen species generation by human spermatozoa, decreasing the motility and vitality of these cells while stimulating DNA base adduct formation and, ultimately DNA fragmentation. These findings have clear implications

  12. Forensic DNA Phenotyping: Predicting human appearance from crime scene material for investigative purposes.

    Science.gov (United States)

    Kayser, Manfred

    2015-09-01

    Forensic DNA Phenotyping refers to the prediction of appearance traits of unknown sample donors, or unknown deceased (missing) persons, directly from biological materials found at the scene. "Biological witness" outcomes of Forensic DNA Phenotyping can provide investigative leads to trace unknown persons, who are unidentifiable with current comparative DNA profiling. This intelligence application of DNA marks a substantially different forensic use of genetic material rather than that of current DNA profiling presented in the courtroom. Currently, group-specific pigmentation traits are already predictable from DNA with reasonably high accuracies, while several other externally visible characteristics are under genetic investigation. Until individual-specific appearance becomes accurately predictable from DNA, conventional DNA profiling needs to be performed subsequent to appearance DNA prediction. Notably, and where Forensic DNA Phenotyping shows great promise, this is on a (much) smaller group of potential suspects, who match the appearance characteristics DNA-predicted from the crime scene stain or from the deceased person's remains. Provided sufficient funding being made available, future research to better understand the genetic basis of human appearance will expectedly lead to a substantially more detailed description of an unknown person's appearance from DNA, delivering increased value for police investigations in criminal and missing person cases involving unknowns. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Comparison of DNA extraction methods for human gut microbial community profiling.

    Science.gov (United States)

    Lim, Mi Young; Song, Eun-Ji; Kim, Sang Ho; Lee, Jangwon; Nam, Young-Do

    2018-03-01

    The human gut harbors a vast range of microbes that have significant impact on health and disease. Therefore, gut microbiome profiling holds promise for use in early diagnosis and precision medicine development. Accurate profiling of the highly complex gut microbiome requires DNA extraction methods that provide sufficient coverage of the original community as well as adequate quality and quantity. We tested nine different DNA extraction methods using three commercial kits (TianLong Stool DNA/RNA Extraction Kit (TS), QIAamp DNA Stool Mini Kit (QS), and QIAamp PowerFecal DNA Kit (QP)) with or without additional bead-beating step using manual or automated methods and compared them in terms of DNA extraction ability from human fecal sample. All methods produced DNA in sufficient concentration and quality for use in sequencing, and the samples were clustered according to the DNA extraction method. Inclusion of bead-beating step especially resulted in higher degrees of microbial diversity and had the greatest effect on gut microbiome composition. Among the samples subjected to bead-beating method, TS kit samples were more similar to QP kit samples than QS kit samples. Our results emphasize the importance of mechanical disruption step for a more comprehensive profiling of the human gut microbiome. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  14. R-loops and initiation of DNA replication in human cells: a missing link?

    Directory of Open Access Journals (Sweden)

    Rodrigo eLombraña

    2015-04-01

    Full Text Available The unanticipated widespread occurrence of stable hybrid DNA/RNA structures (R-loops in human cells and the increasing evidence of their involvement in several human malignancies have invigorated the research on R-loop biology in recent years. Here we propose that physiological R-loop formation at CpG island promoters can contribute to DNA replication origin specification at these regions, the most efficient replication initiation sites in mammalian cells. Quite likely, this occurs by the strand-displacement reaction activating the formation of G-quadruplex structures that target the Origin Recognition Complex (ORC in the single-stranded conformation. In agreement with this, we found that R-loops co-localize with the ORC within the same CpG island region in a significant fraction of these efficient replication origins, precisely at the position displaying the highest density of G4 motifs. This scenario builds on the connection between transcription and replication in human cells and suggests that R-loop dysregulation at CpG island promoter-origins might contribute to the phenotype of DNA replication abnormalities and loss of genome integrity detected in cancer cells.

  15. Defining functional DNA elements in the human genome

    Science.gov (United States)

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P.; Bernstein, Bradley E.; Kundaje, Anshul; Marinov, Georgi K.; Ward, Lucas D.; Birney, Ewan; Crawford, Gregory E.; Dekker, Job; Dunham, Ian; Elnitski, Laura L.; Farnham, Peggy J.; Feingold, Elise A.; Gerstein, Mark; Giddings, Morgan C.; Gilbert, David M.; Gingeras, Thomas R.; Green, Eric D.; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D.; Myers, Richard M.; Pazin, Michael J.; Ren, Bing; Stamatoyannopoulos, John A.; Weng, Zhiping; White, Kevin P.; Hardison, Ross C.

    2014-01-01

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. PMID:24753594

  16. DNA Repair in Human Pluripotent Stem Cells Is Distinct from That in Non-Pluripotent Human Cells

    Science.gov (United States)

    Luo, Li Z.; Park, Sang-Won; Bates, Steven E.; Zeng, Xianmin; Iverson, Linda E.; O'Connor, Timothy R.

    2012-01-01

    The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use. PMID:22412831

  17. Quadruplexes of human telomere DNA

    Czech Academy of Sciences Publication Activity Database

    Vorlíčková, Michaela; Chládková, Jana; Kejnovská, Iva; Kypr, Jaroslav

    2007-01-01

    Roč. 24, č. 6 (2007), s. 710 ISSN 0739-1102. [The 15th Conversation . 19.06.2007-23.06.2007, Albany] R&D Projects: GA ČR(CZ) GA204/07/0057; GA AV ČR(CZ) IAA100040701 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA tetraplex * human telomere * CD spectroscopy Subject RIV: BO - Biophysics

  18. Polycyclic aromatic hydrocarbon-DNA adducts in cervix of women infected with carcinogenic human papillomavirus types: An immunohistochemistry study

    International Nuclear Information System (INIS)

    Pratt, M. Margaret; Sirajuddin, Paul; Poirier, Miriam C.; Schiffman, Mark; Glass, Andrew G.; Scott, David R.; Rush, Brenda B.; Olivero, Ofelia A.; Castle, Philip E.

    2007-01-01

    Among women infected with carcinogenic human papillomavirus (HPV), there is a two- to five-fold increased risk of cervical precancer and cancer in women who smoke compared to those who do not smoke. Because tobacco smoke contains carcinogenic polycyclic aromatic hydrocarbons (PAHs), it was of interest to examine human cervical tissue for PAH-DNA adduct formation. Here, we measured PAH-DNA adduct formation in cervical biopsies collected in follow-up among women who tested positive for carcinogenic HPV at baseline. A semi-quantitative immunohistochemistry (IHC) method using antiserum elicited against DNA modified with r7,t8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) was used to measure nuclear PAH-DNA adduct formation. Cultured human cervical keratinocytes exposed to 0, 0.153, or 0.331 μM BPDE showed dose-dependent increases in r7,t8,t9-trihydroxy-c-10-(N 2 deoxyguanosyl)-7,8,9, 10-tetrahydro-benzo[a]pyrene (BPdG) adducts. For BPdG adduct analysis, paraffin-embedded keratinocytes were stained by IHC with analysis of nuclear color intensity by Automated Cellular Imaging System (ACIS) and, in parallel cultures, extracted DNA was assayed by quantitative BPDE-DNA chemiluminescence immunoassay (CIA). For paraffin-embedded samples from carcinogenic HPV-infected women, normal-appearing cervical squamous epithelium suitable for scoring was found in samples from 75 of the 114 individuals, including 29 cases of cervical precancer or cancer and 46 controls. With a lower limit of detection of 20 adducts/10 8 nucleotides, detectable PAH-DNA adduct values ranged from 25 to 191/10 8 nucleotides, with a median of 75/10 8 nucleotides. PAH-DNA adduct values above 150/10 8 nucleotides were found in eight samples, and in three samples adducts were non-detectable. There was no correlation between PAH-DNA adduct formation and either smoking or case status. Therefore, PAH-DNA adduct formation as measured by this methodology did not appear related to the increased risk

  19. Polycyclic aromatic hydrocarbon-DNA adducts in cervix of women infected with carcinogenic human papillomavirus types: An immunohistochemistry study

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, M. Margaret [Carcinogen-DNA Interactions Section, LCBG, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD (United States)], E-mail: prattm@mail.nih.gov; Sirajuddin, Paul; Poirier, Miriam C. [Carcinogen-DNA Interactions Section, LCBG, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD (United States); Schiffman, Mark [Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD (United States); Glass, Andrew G.; Scott, David R.; Rush, Brenda B. [Northwest Kaiser Permanente, Portland, OR (United States); Olivero, Ofelia A. [Carcinogen-DNA Interactions Section, LCBG, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD (United States); Castle, Philip E. [Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD (United States)

    2007-11-01

    Among women infected with carcinogenic human papillomavirus (HPV), there is a two- to five-fold increased risk of cervical precancer and cancer in women who smoke compared to those who do not smoke. Because tobacco smoke contains carcinogenic polycyclic aromatic hydrocarbons (PAHs), it was of interest to examine human cervical tissue for PAH-DNA adduct formation. Here, we measured PAH-DNA adduct formation in cervical biopsies collected in follow-up among women who tested positive for carcinogenic HPV at baseline. A semi-quantitative immunohistochemistry (IHC) method using antiserum elicited against DNA modified with r7,t8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) was used to measure nuclear PAH-DNA adduct formation. Cultured human cervical keratinocytes exposed to 0, 0.153, or 0.331 {mu}M BPDE showed dose-dependent increases in r7,t8,t9-trihydroxy-c-10-(N{sup 2}deoxyguanosyl)-7,8,9, 10-tetrahydro-benzo[a]pyrene (BPdG) adducts. For BPdG adduct analysis, paraffin-embedded keratinocytes were stained by IHC with analysis of nuclear color intensity by Automated Cellular Imaging System (ACIS) and, in parallel cultures, extracted DNA was assayed by quantitative BPDE-DNA chemiluminescence immunoassay (CIA). For paraffin-embedded samples from carcinogenic HPV-infected women, normal-appearing cervical squamous epithelium suitable for scoring was found in samples from 75 of the 114 individuals, including 29 cases of cervical precancer or cancer and 46 controls. With a lower limit of detection of 20 adducts/10{sup 8} nucleotides, detectable PAH-DNA adduct values ranged from 25 to 191/10{sup 8} nucleotides, with a median of 75/10{sup 8} nucleotides. PAH-DNA adduct values above 150/10{sup 8} nucleotides were found in eight samples, and in three samples adducts were non-detectable. There was no correlation between PAH-DNA adduct formation and either smoking or case status. Therefore, PAH-DNA adduct formation as measured by this methodology did not appear

  20. Perinatal transmission of human papilomavirus DNA

    Directory of Open Access Journals (Sweden)

    Serafini Eduardo P

    2009-06-01

    Full Text Available Abstract The purpose was to study the perinatal transmission of human papillomavirus DNA (HPV-DNA in 63 mother-newborn pairs, besides looking at the epidemiological factors involved in the viral DNA transmission. The following sampling methods were used: (1 in the pregnant woman, when was recruited, in cervix and clinical lesions of the vagina, vulva and perineal region; (2 in the newborn, (a buccal, axillary and inguinal regions; (b nasopharyngeal aspirate, and (c cord blood; (3 in the children, buccal was repeated in the 4th week and 6th and 12th month of life. HPV-DNA was identified using two methodologies: multiplex PCR (PGMY09 and MY11 primers and nested-PCR (genotypes 6/11, 16, 18, 31, 33, 42, 52 and 58. Perinatal transmission was considered when concordance was found in type-specific HPV between mother/newborn or mother/child. HPV-DNA genital was detected in 49 pregnant women submitted to delivery. Eleven newborns (22.4%, n = 11/49 were HPV-DNA positive. In 8 cases (16.3%, n = 8/49 there was type specific HPV concordance between mother/newborn samples. At the end of the first month of life three children (6.1%, n = 3/49 became HPV-DNA positive, while two remained positive from birth. In 3 cases (100%, n = 3/3 there was type specific HPV concordance between mother/newborn samples. In the 6th month, a child (2%, n = 1/49 had become HPV-DNA positive between the 1st and 6th month of life, and there was type specific HPV concordance of mother/newborn samples. All the HPV-DNA positive children (22.4%, n = 11/49 at birth and at the end first month of life (6.1%, n = 3/49 became HPV-DNA negative at the age of 6 months. The HPV-DNA positive child (2%, n = 1/49 from 1st to the 6th month of life became HPV-DNA negative between the 6th and 12th month of life and one child had anogenital warts. In the twelfth month all (100%, n = 49/49 the children studied were HPV-DNA negative. A positive and significant correlation was observed between perinatal

  1. Predicting DNA-binding proteins and binding residues by complex structure prediction and application to human proteome.

    Directory of Open Access Journals (Sweden)

    Huiying Zhao

    Full Text Available As more and more protein sequences are uncovered from increasingly inexpensive sequencing techniques, an urgent task is to find their functions. This work presents a highly reliable computational technique for predicting DNA-binding function at the level of protein-DNA complex structures, rather than low-resolution two-state prediction of DNA-binding as most existing techniques do. The method first predicts protein-DNA complex structure by utilizing the template-based structure prediction technique HHblits, followed by binding affinity prediction based on a knowledge-based energy function (Distance-scaled finite ideal-gas reference state for protein-DNA interactions. A leave-one-out cross validation of the method based on 179 DNA-binding and 3797 non-binding protein domains achieves a Matthews correlation coefficient (MCC of 0.77 with high precision (94% and high sensitivity (65%. We further found 51% sensitivity for 82 newly determined structures of DNA-binding proteins and 56% sensitivity for the human proteome. In addition, the method provides a reasonably accurate prediction of DNA-binding residues in proteins based on predicted DNA-binding complex structures. Its application to human proteome leads to more than 300 novel DNA-binding proteins; some of these predicted structures were validated by known structures of homologous proteins in APO forms. The method [SPOT-Seq (DNA] is available as an on-line server at http://sparks-lab.org.

  2. DNA damage and methylation induced by glyphosate in human peripheral blood mononuclear cells (in vitro study).

    Science.gov (United States)

    Kwiatkowska, Marta; Reszka, Edyta; Woźniak, Katarzyna; Jabłońska, Ewa; Michałowicz, Jaromir; Bukowska, Bożena

    2017-07-01

    Glyphosate is a very important herbicide that is widely used in the agriculture, and thus the exposure of humans to this substance and its metabolites has been noted. The purpose of this study was to assess DNA damage (determination of single and double strand-breaks by the comet assay) as well as to evaluate DNA methylation (global DNA methylation and methylation of p16 (CDKN2A) and p53 (TP53) promoter regions) in human peripheral blood mononuclear cells (PBMCs) exposed to glyphosate. PBMCs were incubated with the compound studied at concentrations ranging from 0.1 to 10 mM for 24 h. The study has shown that glyphosate induced DNA lesions, which were effectively repaired. However, PBMCs were unable to repair completely DNA damage induced by glyphosate. We also observed a decrease in global DNA methylation level at 0.25 mM of glyphosate. Glyphosate at 0.25 mM and 0.5 mM increased p53 promoter methylation, while it did not induce statistically significant changes in methylation of p16 promoter. To sum up, we have shown for the first time that glyphosate (at high concentrations from 0.5 to 10 mM) may induce DNA damage in leucocytes such as PBMCs and cause DNA methylation in human cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. PCR-Free Enrichment of Mitochondrial DNA from Human Blood and Cell Lines for High Quality Next-Generation DNA Sequencing.

    Directory of Open Access Journals (Sweden)

    Meetha P Gould

    Full Text Available Recent advances in sequencing technology allow for accurate detection of mitochondrial sequence variants, even those in low abundance at heteroplasmic sites. Considerable sequencing cost savings can be achieved by enriching samples for mitochondrial (relative to nuclear DNA. Reduction in nuclear DNA (nDNA content can also help to avoid false positive variants resulting from nuclear mitochondrial sequences (numts. We isolate intact mitochondrial organelles from both human cell lines and blood components using two separate methods: a magnetic bead binding protocol and differential centrifugation. DNA is extracted and further enriched for mitochondrial DNA (mtDNA by an enzyme digest. Only 1 ng of the purified DNA is necessary for library preparation and next generation sequence (NGS analysis. Enrichment methods are assessed and compared using mtDNA (versus nDNA content as a metric, measured by using real-time quantitative PCR and NGS read analysis. Among the various strategies examined, the optimal is differential centrifugation isolation followed by exonuclease digest. This strategy yields >35% mtDNA reads in blood and cell lines, which corresponds to hundreds-fold enrichment over baseline. The strategy also avoids false variant calls that, as we show, can be induced by the long-range PCR approaches that are the current standard in enrichment procedures. This optimization procedure allows mtDNA enrichment for efficient and accurate massively parallel sequencing, enabling NGS from samples with small amounts of starting material. This will decrease costs by increasing the number of samples that may be multiplexed, ultimately facilitating efforts to better understand mitochondria-related diseases.

  4. Disruption of Maternal DNA Repair Increases Sperm-DerivedChromosomal Aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Essers, Jeroun; Kanaar, Roland; Wyrobek,Andrew J.

    2007-02-07

    The final weeks of male germ cell differentiation occur in aDNA repair-deficient environment and normal development depends on theability of the egg to repair DNA damage in the fertilizing sperm. Geneticdisruption of maternal DNA double-strand break repair pathways in micesignificantly increased the frequency of zygotes with chromosomalstructural aberrations after paternal exposure to ionizing radiation.These findings demonstrate that radiation-induced DNA sperm lesions arerepaired after fertilization by maternal factors and suggest that geneticvariation in maternal DNA repair can modulate the risk of early pregnancylosses and of children with chromosomal aberrations of paternalorigin.

  5. Arsenic exposure from drinking water is associated with decreased gene expression and increased DNA methylation in peripheral blood

    Energy Technology Data Exchange (ETDEWEB)

    Ameer, Syeda Shegufta [Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund (Sweden); Engström, Karin [Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund (Sweden); Institute of Environmental Medicine, Unit of Metals & Health, Karolinska Institutet, Stockholm (Sweden); Hossain, Mohammad Bakhtiar [Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund (Sweden); Concha, Gabriela [Science Department, Risk Benefit Assessment Unit, National Food Agency, Uppsala (Sweden); Vahter, Marie [Institute of Environmental Medicine, Unit of Metals & Health, Karolinska Institutet, Stockholm (Sweden); Broberg, Karin, E-mail: Karin.broberg@ki.se [Institute of Environmental Medicine, Unit of Metals & Health, Karolinska Institutet, Stockholm (Sweden)

    2017-04-15

    Background: Exposure to inorganic arsenic increases the risk of cancer and non-malignant diseases. Inefficient arsenic metabolism is a marker for susceptibility to arsenic toxicity. Arsenic may alter gene expression, possibly by altering DNA methylation. Objectives: To elucidate the associations between arsenic exposure, gene expression, and DNA methylation in peripheral blood, and the modifying effects of arsenic metabolism. Methods: The study participants, women from the Andes, Argentina, were exposed to arsenic via drinking water. Arsenic exposure was assessed as the sum of arsenic metabolites in urine (U-As), using high performance liquid-chromatography hydride-generation inductively-coupled-plasma-mass-spectrometry, and arsenic metabolism efficiency was assessed by the urinary fractions (%) of the individual metabolites. Genome-wide gene expression (N = 80 women) and DNA methylation (N = 93; 80 overlapping with gene expression) in peripheral blood were measured using Illumina DirectHyb HumanHT-12 v4.0 and Infinium Human-Methylation 450K BeadChip, respectively. Results: U-As concentrations, ranging 10–1251 μg/L, was associated with decreased gene expression: 64% of the top 1000 differentially expressed genes were down-regulated with increasing U-As. U-As was also associated with hypermethylation: 87% of the top 1000 CpGs were hypermethylated with increasing U-As. The expression of six genes and six individual CpG sites were significantly associated with increased U-As concentration. Pathway analyses revealed enrichment of genes related to cell death and cancer. The pathways differed somewhat depending on arsenic metabolism efficiency. We found no overlap between arsenic-related gene expression and DNA methylation for individual genes. Conclusions: Increased arsenic exposure was associated with lower gene expression and hypermethylation in peripheral blood, but with no evident overlap. - Highlights: • Women exposed to inorganic arsenic were studied for

  6. The Human L1 Element Causes DNA Double-Strand Breaks in Breast Cancer

    Science.gov (United States)

    2006-08-01

    cancer is complex. However, defects in DNA repair genes in the double-strand break repair pathway are cancer predisposing. My lab has characterized...a new potentially important source of double-strand breaks (DSBs) in human cells and are interested in characterizing which DNA repair genes act on...this particular source of DNA damage. Selfish DNA accounts for 45% of the human genome. We have recently demonstrated that one particular selfish

  7. Smoking cessation reverses DNA double-strand breaks in human mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Mari Ishida

    Full Text Available OBJECTIVE: Cigarette smoking is a major risk factor for atherosclerotic cardiovascular disease, which is responsible for a significant proportion of smoking-related deaths. However, the precise mechanism whereby smoking induces this pathology has not been fully delineated. Based on observation of DNA double-strand breaks (DSBs, the most harmful type of DNA damage, in atherosclerotic lesions, we hypothesized that there is a direct association between smoking and DSBs. The goal of this study was to investigate whether smoking induces DSBs and smoking cessation reverses DSBs in vivo through examination of peripheral mononuclear cells (MNCs. APPROACH AND RESULTS: Immunoreactivity of oxidative modification of DNA and DSBs were increased in human atherosclerotic lesions but not in the adjacent normal area. DSBs in human MNCs isolated from the blood of volunteers can be detected as cytologically visible "foci" using an antibody against the phosphorylated form of the histone H2AX (γ-H2AX. Young healthy active smokers (n = 15 showed increased γ-H2AX foci number when compared with non-smokers (n = 12 (foci number/cell: median, 0.37/cell; interquartile range [IQR], 0.31-0.58 vs. 4.36/cell; IQR, 3.09-7.39, p<0.0001. Smoking cessation for 1 month reduced the γ-H2AX foci number (median, 4.44/cell; IQR, 4.36-5.24 to 0.28/cell; IQR, 0.12-0.53, p<0.05. A positive correlation was noted between γ-H2AX foci number and exhaled carbon monoxide levels (r = 0.75, p<0.01. CONCLUSIONS: Smoking induces DSBs in human MNCs in vivo, and importantly, smoking cessation for 1 month resulted in a decrease in DSBs to a level comparable to that seen in non-smokers. These data reinforce the notion that the cigarette smoking induces DSBs and highlight the importance of smoking cessation.

  8. Sickle erythrocytes inhibit human endothelial cell DNA synthesis

    International Nuclear Information System (INIS)

    Weinstein, R.; Zhou, M.A.; Bartlett-Pandite, A.; Wenc, K.

    1990-01-01

    Patients with sickle cell anemia experience severe vascular occlusive phenomena including acute pain crisis and cerebral infarction. Obstruction occurs at both the microvascular and the arterial level, and the clinical presentation of vascular events is heterogeneous, suggesting a complex etiology. Interaction between sickle erythrocytes and the endothelium may contribute to vascular occlusion due to alteration of endothelial function. To investigate this hypothesis, human vascular endothelial cells were overlaid with sickle or normal erythrocytes and stimulated to synthesize DNA. The erythrocytes were sedimented onto replicate monolayers by centrifugation for 10 minutes at 17 g to insure contact with the endothelial cells. Incorporation of 3H-thymidine into endothelial cell DNA was markedly inhibited during contact with sickle erythrocytes. This inhibitory effect was enhanced more than twofold when autologous sickle plasma was present during endothelial cell labeling. Normal erythrocytes, with or without autologous plasma, had a modest effect on endothelial cell DNA synthesis. When sickle erythrocytes in autologous sickle plasma were applied to endothelial monolayers for 1 minute, 10 minutes, or 1 hour and then removed, subsequent DNA synthesis by the endothelial cells was inhibited by 30% to 40%. Although adherence of sickle erythrocytes to the endothelial monolayers was observed under these experimental conditions, the effect of sickle erythrocytes on endothelial DNA synthesis occurred in the absence of significant adherence. Hence, human endothelial cell DNA synthesis is partially inhibited by contact with sickle erythrocytes. The inhibitory effect of sickle erythrocytes occurs during a brief (1 minute) contact with the endothelial monolayers, and persists for at least 6 hours of 3H-thymidine labeling

  9. Detection of DNA fingerprints of cultivated rice by hybridization with a human minisatellite DNA probe

    International Nuclear Information System (INIS)

    Dallas, J.F.

    1988-01-01

    A human minisatellite DNA probe detects several restriction fragment length polymorphisms in cultivars of Asian and African rice. Certain fragments appear to be inherited in a Mendelian fashion and may represent unlinked loci. The hybridization patterns appear to be cultivar-specific and largely unchanged after the regeneration of plants from tissue culture. The results suggest that these regions of the rice genome may be used to generate cultivar-specific DNA fingerprints. The demonstration of similarity between a human minisatellite sequence and polymorphic regions in the rice genome suggests that such regions also occur in the genomes of many other plant species

  10. A magnetic bead-based method for concentrating DNA from human urine for downstream detection.

    Directory of Open Access Journals (Sweden)

    Hali Bordelon

    Full Text Available Due to the presence of PCR inhibitors, PCR cannot be used directly on most clinical samples, including human urine, without pre-treatment. A magnetic bead-based strategy is one potential method to collect biomarkers from urine samples and separate the biomarkers from PCR inhibitors. In this report, a 1 mL urine sample was mixed within the bulb of a transfer pipette containing lyophilized nucleic acid-silica adsorption buffer and silica-coated magnetic beads. After mixing, the sample was transferred from the pipette bulb to a small diameter tube, and captured biomarkers were concentrated using magnetic entrainment of beads through pre-arrayed wash solutions separated by small air gaps. Feasibility was tested using synthetic segments of the 140 bp tuberculosis IS6110 DNA sequence spiked into pooled human urine samples. DNA recovery was evaluated by qPCR. Despite the presence of spiked DNA, no DNA was detectable in unextracted urine samples, presumably due to the presence of PCR inhibitors. However, following extraction with the magnetic bead-based method, we found that ∼50% of spiked TB DNA was recovered from human urine containing roughly 5×10(3 to 5×10(8 copies of IS6110 DNA. In addition, the DNA was concentrated approximately ten-fold into water. The final concentration of DNA in the eluate was 5×10(6, 14×10(6, and 8×10(6 copies/µL for 1, 3, and 5 mL urine samples, respectively. Lyophilized and freshly prepared reagents within the transfer pipette produced similar results, suggesting that long-term storage without refrigeration is possible. DNA recovery increased with the length of the spiked DNA segments from 10±0.9% for a 75 bp DNA sequence to 42±4% for a 100 bp segment and 58±9% for a 140 bp segment. The estimated LOD was 77 copies of DNA/µL of urine. The strategy presented here provides a simple means to achieve high nucleic acid recovery from easily obtained urine samples, which does not contain inhibitors of PCR.

  11. Use of a D17Z1 oligonucleotide probe for human DNA quantitation prior to PCR analysis of polymorphic DNA markers

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, S.; Alavaren, M.; Varlaro, J. [Roche Molecular Systems, Alameda, CA (United States)] [and others

    1994-09-01

    The alpha-satellite DNA locus D17Z1 contains primate-specific sequences which are repeated several hundred times per chromosome 17. A probe that was designed to hybridize to a subset of the D17Z1 sequence can be used for very sensitive and specific quantitation of human DNA. Sample human genomic DNA is immobilized on nylon membrane using a slot blot apparatus, and then hybridized with a biotinylated D17Z1 oligonucleotide probe. The subsequent binding of streptavidin-horseradish peroxidase to the bound probe allows for either calorimetric (TMB) or chemiluminescent (ECL) detection. Signals obtained for sample DNAs are then compared to the signals obtained for a series of human DNA standards. For either detection method, forty samples can be quantitated in less than two hours, with a sensitivity of 150 pg. As little as 20 pg of DNA can be quantitated when using chemiluminescent detection with longer film exposures. PCR analysis of several VNTR and STR markers has indicated that optimal typing results are generally obtained within a relatively narrow range of input DNA quantities. Too much input DNA can lead to PCR artifacts such as preferential amplification of smaller alleles, non-specific amplification products, and exaggeration of the DNA synthesis slippage products that are seen with STR markers. Careful quantitation of human genomic DNA prior to PCR can avoid or minimize these problems and ultimately give cleaner, more unambiguous PCR results.

  12. Genome-wide DNA methylation analyses in the brain reveal four differentially methylated regions between humans and non-human primates

    Directory of Open Access Journals (Sweden)

    Wang Jinkai

    2012-08-01

    Full Text Available Abstract Background The highly improved cognitive function is the most significant change in human evolutionary history. Recently, several large-scale studies reported the evolutionary roles of DNA methylation; however, the role of DNA methylation on brain evolution is largely unknown. Results To test if DNA methylation has contributed to the evolution of human brain, with the use of MeDIP-Chip and SEQUENOM MassARRAY, we conducted a genome-wide analysis to identify differentially methylated regions (DMRs in the brain between humans and rhesus macaques. We first identified a total of 150 candidate DMRs by the MeDIP-Chip method, among which 4 DMRs were confirmed by the MassARRAY analysis. All 4 DMRs are within or close to the CpG islands, and a MIR3 repeat element was identified in one DMR, but no repeat sequence was observed in the other 3 DMRs. For the 4 DMR genes, their proteins tend to be conserved and two genes have neural related functions. Bisulfite sequencing and phylogenetic comparison among human, chimpanzee, rhesus macaque and rat suggested several regions of lineage specific DNA methylation, including a human specific hypomethylated region in the promoter of K6IRS2 gene. Conclusions Our study provides a new angle of studying human brain evolution and understanding the evolutionary role of DNA methylation in the central nervous system. The results suggest that the patterns of DNA methylation in the brain are in general similar between humans and non-human primates, and only a few DMRs were identified.

  13. Kinetic Analysis of the Bypass of a Bulky DNA Lesion Catalyzed by Human Y-family DNA Polymerases

    Science.gov (United States)

    Sherrer, Shanen M.; Sanman, Laura E.; Xia, Cynthia X.; Bolin, Eric R.; Malik, Chanchal K.; Efthimiopoulos, Georgia; Basu, Ashis K.; Suo, Zucai

    2012-01-01

    1-Nitropyrene (1-NP), a mutagen and potential carcinogen, is the most abundant nitro polyaromatic hydrocarbon in diesel exhaust, which reacts with DNA to form predominantly N-(deoxyguanosin-8-yl)-1-aminopyrene (dGAP). If not repaired, this DNA lesion is presumably bypassed in vivo by any of human Y-family DNA polymerases kappa (hPolκ), iota (hPolτ), eta (hPolη), and Rev1 (hRev1). Our running start assays demonstrated that each of these enzymes was indeed capable of traversing a site-specifically placed dGAP on a synthetic DNA template but hRev1 was stopped after lesion bypass. The time required to bypass 50% of the dGAP sites (t50bypass ) encountered by hPolη, hPolκ and hPolτ was determined to be 2.5 s, 4.1 s, and 106.5 s, respectively. The efficiency order of catalyzing translesion synthesis of dGAP (hPolη > hPolκ > hPolτ >> hRev1) is the same as the order for these human Y-family enzymes to elongate undamaged DNA. Although hPolη bypassed dGAP efficiently, replication by both hPolκ and hPolτ was strongly stalled at the lesion site and at a site immediately downstream from dGAP. By employing pre-steady state kinetic methods, a kinetic basis was established for polymerase pausing at these DNA template sites. Besides efficiency of bypass, the fidelity of those low-fidelity polymerases at these pause sites was also significantly decreased. Thus, if the translesion DNA synthesis of dGAP in vivo is catalyzed by a human Y-family DNA polymerase, e.g. hPolη, the process is certainly mutagenic. PMID:22324639

  14. Encoded novel forms of HSP70 or a cytolytic protein increase DNA vaccine potency.

    Science.gov (United States)

    Garrod, Tamsin; Grubor-Bauk, Branka; Yu, Stanley; Gargett, Tessa; Gowans, Eric J

    2014-01-01

    In humans, DNA vaccines have failed to demonstrate the equivalent levels of immunogenicity that were shown in smaller animals. Previous studies have encoded adjuvants, predominantly cytokines, within these vaccines in an attempt to increase antigen-specific immune responses. However, these strategies have lacked breadth of innate immune activation and have led to disappointing results in clinical trials. Damage associated molecular patterns (DAMPs) have been identified as pattern recognition receptor (PRR) agonists. DAMPs can bind to a wide range of PRRs on dendritic cells (DCs) and thus our studies have aimed to utilize this characteristic to act as an adjuvant in a DNA vaccine approach. Specifically, HSP70 has been identified as a DAMP, but has been limited by its lack of accessibility to PRRs in and on DCs. Here, we discuss the promising results achieved with the inclusion of membrane-bound or secreted HSP70 into a DNA vaccine encoding HIV gag as the model immunogen.

  15. DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity

    International Nuclear Information System (INIS)

    Kim, Hak Jae; Kim, Jin Ho; Chie, Eui Kyu; Da Young, Park; Kim, In Ah; Kim, Il Han

    2012-01-01

    Histone modifications and DNA methylation are two major factors in epigenetic phenomenon. Unlike the histone deacetylase inhibitors, which are known to exert radiosensitizing effects, there have only been a few studies thus far concerning the role of DNA methyltransferase (DNMT) inhibitors as radiosensitizers. The principal objective of this study was to evaluate the effects of DNMT inhibitors on the radiosensitivity of human cancer cell lines, and to elucidate the mechanisms relevant to that process. A549 (lung cancer) and U373MG (glioblastoma) cells were exposed to radiation with or without six DNMT inhibitors (5-azacytidine, 5-aza-2'-deoxycytidine, zebularine, hydralazine, epigallocatechin gallate, and psammaplin A) for 18 hours prior to radiation, after which cell survival was evaluated via clonogenic assays. Cell cycle and apoptosis were analyzed via flow cytometry. Expressions of DNMT1, 3A/3B, and cleaved caspase-3 were detected via Western blotting. Expression of γH2AX, a marker of radiation-induced DNA double-strand break, was examined by immunocytochemistry. Pretreatment with psammaplin A, 5-aza-2'-deoxycytidine, and zebularine radiosensitized both A549 and U373MG cells. Pretreatment with psammaplin A increased the sub-G1 fraction of A549 cells, as compared to cells exposed to radiation alone. Prolongation of γH2AX expression was observed in the cells treated with DNMT inhibitors prior to radiation as compared with those treated by radiation alone. Psammaplin A, 5-aza-2'-deoxycytidine, and zebularine induce radiosensitivity in both A549 and U373MG cell lines, and suggest that this effect might be associated with the inhibition of DNA repair

  16. Polycyclic Aromatic Hydrocarbon (PAH Exposure and DNA Adduct Semi-Quantitation in Archived Human Tissues

    Directory of Open Access Journals (Sweden)

    M. Margaret Pratt

    2011-06-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are combustion products of organic materials, mixtures of which contain multiple known and probable human carcinogens. PAHs occur in indoor and outdoor air, as well as in char-broiled meats and fish. Human exposure to PAHs occurs by inhalation, ingestion and topical absorption, and subsequently formed metabolites are either rendered hydrophilic and excreted, or bioactivated and bound to cellular macromolecules. The formation of PAH-DNA adducts (DNA binding products, considered a necessary step in PAH-initiated carcinogenesis, has been widely studied in experimental models and has been documented in human tissues. This review describes immunohistochemistry (IHC studies, which reveal localization of PAH-DNA adducts in human tissues, and semi-quantify PAH-DNA adduct levels using the Automated Cellular Imaging System (ACIS. These studies have shown that PAH-DNA adducts concentrate in: basal and supra-basal epithelium of the esophagus, cervix and vulva; glandular epithelium of the prostate; and cytotrophoblast cells and syncitiotrophoblast knots of the placenta. The IHC photomicrographs reveal the ubiquitous nature of PAH-DNA adduct formation in human tissues as well as PAH-DNA adduct accumulation in specific, vulnerable, cell types. This semi-quantative method for PAH-DNA adduct measurement could potentially see widespread use in molecular epidemiology studies.

  17. The effects of metal ion PCR inhibitors on results obtained with the Quantifiler(®) Human DNA Quantification Kit.

    Science.gov (United States)

    Combs, Laura Gaydosh; Warren, Joseph E; Huynh, Vivian; Castaneda, Joanna; Golden, Teresa D; Roby, Rhonda K

    2015-11-01

    Forensic DNA samples may include the presence of PCR inhibitors, even after extraction and purification. Studies have demonstrated that metal ions, co-purified at specific concentrations, inhibit DNA amplifications. Metal ions are endogenous to sample types, such as bone, and can be introduced from environmental sources. In order to examine the effect of metal ions as PCR inhibitors during quantitative real-time PCR, 2800 M DNA was treated with 0.0025-18.750 mM concentrations of aluminum, calcium, copper, iron, nickel, and lead. DNA samples, both untreated and metal-treated, were quantified using the Quantifiler(®) Human DNA Quantification Kit. Quantification cycle (Cq) values for the Quantifiler(®) Human DNA and internal PCR control (IPC) assays were measured and the estimated concentrations of human DNA were obtained. Comparisons were conducted between metal-treated and control DNA samples to determine the accuracy of the quantification estimates and to test the efficacy of the IPC inhibition detection. This kit is most resistant to the presence of calcium as compared to all metals tested; the maximum concentration tested does not affect the amplification of the IPC or quantification of the sample. This kit is most sensitive to the presence of aluminum; concentrations greater than 0.0750 mM negatively affected the quantification, although the IPC assay accurately assessed the presence of PCR inhibition. The Quantifiler(®) Human DNA Quantification Kit accurately quantifies human DNA in the presence of 0.5000 mM copper, iron, nickel, and lead; however, the IPC does not indicate the presence of PCR inhibition at this concentration of these metals. Unexpectedly, estimates of DNA quantity in samples treated with 18.750 mM copper yielded values in excess of the actual concentration of DNA in the samples; fluorescence spectroscopy experiments indicated this increase was not a direct interaction between the copper metal and 6-FAM dye used to label the probe that

  18. The Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer

    International Nuclear Information System (INIS)

    Meng, Erhong; Hanna, Ann; Samant, Rajeev S.; Shevde, Lalita A.

    2015-01-01

    Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homologous recombination repair). Aberrant activation of the Hedgehog (Hh) signaling pathway is a feature of many cancer types. The Hh pathway has been documented to be indispensable for epithelial-mesenchymal transition, invasion and metastasis, cancer stemness, and chemoresistance. The functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the activity of GLI can interfere with almost all DNA repair types in human cancer, indicating that Hh/GLI functions may play an important role in enabling tumor cells to survive lethal types of DNA damage induced by chemotherapy and radiotherapy. Thus, Hh signaling presents an important therapeutic target to overcome DNA repair-enabled multi-drug resistance and consequently increase chemotherapeutic response in the treatment of cancer

  19. The Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Erhong; Hanna, Ann; Samant, Rajeev S.; Shevde, Lalita A., E-mail: lsamant@uab.edu [Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, WTI320D, 1824 6th Avenue South, Birmingham, AL 35233 (United States)

    2015-07-21

    Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homologous recombination repair). Aberrant activation of the Hedgehog (Hh) signaling pathway is a feature of many cancer types. The Hh pathway has been documented to be indispensable for epithelial-mesenchymal transition, invasion and metastasis, cancer stemness, and chemoresistance. The functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the activity of GLI can interfere with almost all DNA repair types in human cancer, indicating that Hh/GLI functions may play an important role in enabling tumor cells to survive lethal types of DNA damage induced by chemotherapy and radiotherapy. Thus, Hh signaling presents an important therapeutic target to overcome DNA repair-enabled multi-drug resistance and consequently increase chemotherapeutic response in the treatment of cancer.

  20. Human Papilloma Viral DNA Replicates as a Stable Episome in Cultured Epidermal Keratinocytes

    Science.gov (United States)

    Laporta, Robert F.; Taichman, Lorne B.

    1982-06-01

    Human papilloma virus (HPV) is poorly understood because systems for its growth in tissue culture have not been developed. We report here that cultured human epidermal keratinocytes could be infected with HPV from plantar warts and that the viral DNA persisted and replicated as a stable episome. There were 50-200 copies of viral DNA per cell and there was no evidence to indicate integration of viral DNA into the cellular genome. There was also no evidence to suggest that viral DNA underwent productive replication. We conclude that cultured human epidermal keratinocytes may be a model for the study of certain aspects of HPV biology.

  1. Quantitation of Human Papillomavirus DNA in Plasma of Oropharyngeal Carcinoma Patients

    International Nuclear Information System (INIS)

    Cao Hongbin; Banh, Alice; Kwok, Shirley; Shi Xiaoli; Wu, Simon; Krakow, Trevor; Khong, Brian; Bavan, Brindha; Bala, Rajeev; Pinsky, Benjamin A.; Colevas, Dimitrios; Pourmand, Nader; Koong, Albert C.; Kong, Christina S.; Le, Quynh-Thu

    2012-01-01

    Purpose: To determine whether human papillomavirus (HPV) DNA can be detected in the plasma of patients with HPV-positive oropharyngeal carcinoma (OPC) and to monitor its temporal change during radiotherapy. Methods and Materials: We used polymerase chain reaction to detect HPV DNA in the culture media of HPV-positive SCC90 and VU147T cells and the plasma of SCC90 and HeLa tumor-bearing mice, non-tumor-bearing controls, and those with HPV-negative tumors. We used real-time quantitative polymerase chain reaction to quantify the plasma HPV DNA in 40 HPV-positive OPC, 24 HPV-negative head-and-neck cancer patients and 10 non-cancer volunteers. The tumor HPV status was confirmed by p16 INK4a staining and HPV16/18 polymerase chain reaction or HPV in situ hybridization. A total of 14 patients had serial plasma samples for HPV DNA quantification during radiotherapy. Results: HPV DNA was detectable in the plasma samples of SCC90- and HeLa-bearing mice but not in the controls. It was detected in 65% of the pretreatment plasma samples from HPV-positive OPC patients using E6/7 quantitative polymerase chain reaction. None of the HPV-negative head-and-neck cancer patients or non-cancer controls had detectable HPV DNA. The pretreatment plasma HPV DNA copy number correlated significantly with the nodal metabolic tumor volume (assessed using 18 F-deoxyglucose positron emission tomography). The serial measurements in 14 patients showed a rapid decline in HPV DNA that had become undetectable at radiotherapy completion. In 3 patients, the HPV DNA level had increased to a discernable level at metastasis. Conclusions: Xenograft studies indicated that plasma HPV DNA is released from HPV-positive tumors. Circulating HPV DNA was detectable in most HPV-positive OPC patients. Thus, plasma HPV DNA might be a valuable tool for identifying relapse.

  2. Environmental exposure to human carcinogens in teenagers and the association with DNA damage

    International Nuclear Information System (INIS)

    Franken, Carmen; Koppen, Gudrun; Lambrechts, Nathalie; Govarts, Eva; Bruckers, Liesbeth; Den Hond, Elly; Loots, Ilse; Nelen, Vera; Sioen, Isabelle; Nawrot, Tim S.; Baeyens, Willy; Van Larebeke, Nicolas; Boonen, Francis; Ooms, Daniëlla; Wevers, Mai; Jacobs, Griet; Covaci, Adrian; Schettgen, Thomas; Schoeters, Greet

    2017-01-01

    Background: We investigated whether human environmental exposure to chemicals that are labeled as (potential) carcinogens leads to increased (oxidative) damage to DNA in adolescents. Material and methods: Six hundred 14–15-year-old youngsters were recruited all over Flanders (Belgium) and in two areas with important industrial activities. DNA damage was assessed by alkaline and formamidopyrimidine DNA glycosylase (Fpg) modified comet assays in peripheral blood cells and analysis of urinary 8-hydroxydeoxyguanosine (8-OHdG) levels. Personal exposure to potentially carcinogenic compounds was measured in urine, namely: chromium, cadmium, nickel, 1-hydroxypyrene as a proxy for exposure to other carcinogenic polycyclic aromatic hydrocarbons (PAHs), t,t-muconic acid as a metabolite of benzene, 2,5-dichlorophenol (2,5-DCP), organophosphate pesticide metabolites, and di(2-ethylhexyl) phthalate (DEHP) metabolites. In blood, arsenic, polychlorinated biphenyl (PCB) congeners 118 and 156, hexachlorobenzene (HCB), dichlorodiphenyltrichloroethane (DDT) and perfluorooctanoic acid (PFOA) were analyzed. Levels of methylmercury (MeHg) were measured in hair. Multiple linear regression models were used to establish exposure-response relationships. Results: Biomarkers of exposure to PAHs and urinary chromium were associated with higher levels of both 8-OHdG in urine and DNA damage detected by the alkaline comet assay. Concentrations of 8-OHdG in urine increased in relation with increasing concentrations of urinary t,t-muconic acid, cadmium, nickel, 2,5-DCP, and DEHP metabolites. Increased concentrations of PFOA in blood were associated with higher levels of DNA damage measured by the alkaline comet assay, whereas DDT was associated in the same direction with the Fpg-modified comet assay. Inverse associations were observed between blood arsenic, hair MeHg, PCB 156 and HCB, and urinary 8-OHdG. The latter exposure biomarkers were also associated with higher fish intake. Urinary nickel

  3. Environmental exposure to human carcinogens in teenagers and the association with DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Franken, Carmen, E-mail: carmen.franken@vito.be [Flemish Institute for Technological Research (VITO), Mol (Belgium); Department of Biomedical Sciences, University of Antwerp, Antwerp (Belgium); Koppen, Gudrun; Lambrechts, Nathalie; Govarts, Eva [Flemish Institute for Technological Research (VITO), Mol (Belgium); Bruckers, Liesbeth [Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt (Belgium); Den Hond, Elly [Flemish Institute for Technological Research (VITO), Mol (Belgium); Loots, Ilse [Political and Social Sciences, University of Antwerp, Antwerp (Belgium); Nelen, Vera [Provincial Institute for Hygiene, Antwerp (Belgium); Sioen, Isabelle [Department of Public Health, Ghent University, Ghent (Belgium); Department of Food Safety and Food Quality, Ghent University, Ghent (Belgium); Nawrot, Tim S. [Centre for Environmental Sciences, Hasselt University, Diepenbeek (Belgium); Department of Public Health & Primary Care, Leuven University, Leuven (Belgium); Baeyens, Willy [Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels (Belgium); Van Larebeke, Nicolas [Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels (Belgium); Department of Radiotherapy and Experimental Cancerology, Ghent University, Ghent (Belgium); Boonen, Francis; Ooms, Daniëlla; Wevers, Mai; Jacobs, Griet [Flemish Institute for Technological Research (VITO), Mol (Belgium); Covaci, Adrian [Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp (Belgium); Schettgen, Thomas [Department of Occupational and Social Medicine, RWTH Aachen University, Aachen (Germany); Schoeters, Greet [Flemish Institute for Technological Research (VITO), Mol (Belgium); Department of Biomedical Sciences, University of Antwerp, Antwerp (Belgium); University of Southern Denmark, Institute of Public Health, Department of Environmental Medicine, Odense (Denmark)

    2017-01-15

    Background: We investigated whether human environmental exposure to chemicals that are labeled as (potential) carcinogens leads to increased (oxidative) damage to DNA in adolescents. Material and methods: Six hundred 14–15-year-old youngsters were recruited all over Flanders (Belgium) and in two areas with important industrial activities. DNA damage was assessed by alkaline and formamidopyrimidine DNA glycosylase (Fpg) modified comet assays in peripheral blood cells and analysis of urinary 8-hydroxydeoxyguanosine (8-OHdG) levels. Personal exposure to potentially carcinogenic compounds was measured in urine, namely: chromium, cadmium, nickel, 1-hydroxypyrene as a proxy for exposure to other carcinogenic polycyclic aromatic hydrocarbons (PAHs), t,t-muconic acid as a metabolite of benzene, 2,5-dichlorophenol (2,5-DCP), organophosphate pesticide metabolites, and di(2-ethylhexyl) phthalate (DEHP) metabolites. In blood, arsenic, polychlorinated biphenyl (PCB) congeners 118 and 156, hexachlorobenzene (HCB), dichlorodiphenyltrichloroethane (DDT) and perfluorooctanoic acid (PFOA) were analyzed. Levels of methylmercury (MeHg) were measured in hair. Multiple linear regression models were used to establish exposure-response relationships. Results: Biomarkers of exposure to PAHs and urinary chromium were associated with higher levels of both 8-OHdG in urine and DNA damage detected by the alkaline comet assay. Concentrations of 8-OHdG in urine increased in relation with increasing concentrations of urinary t,t-muconic acid, cadmium, nickel, 2,5-DCP, and DEHP metabolites. Increased concentrations of PFOA in blood were associated with higher levels of DNA damage measured by the alkaline comet assay, whereas DDT was associated in the same direction with the Fpg-modified comet assay. Inverse associations were observed between blood arsenic, hair MeHg, PCB 156 and HCB, and urinary 8-OHdG. The latter exposure biomarkers were also associated with higher fish intake. Urinary nickel

  4. FXR silencing in human colon cancer by DNA methylation and KRAS signaling.

    Science.gov (United States)

    Bailey, Ann M; Zhan, Le; Maru, Dipen; Shureiqi, Imad; Pickering, Curtis R; Kiriakova, Galina; Izzo, Julie; He, Nan; Wei, Caimiao; Baladandayuthapani, Veerabhadran; Liang, Han; Kopetz, Scott; Powis, Garth; Guo, Grace L

    2014-01-01

    Farnesoid X receptor (FXR) is a bile acid nuclear receptor described through mouse knockout studies as a tumor suppressor for the development of colon adenocarcinomas. This study investigates the regulation of FXR in the development of human colon cancer. We used immunohistochemistry of FXR in normal tissue (n = 238), polyps (n = 32), and adenocarcinomas, staged I-IV (n = 43, 39, 68, and 9), of the colon; RT-quantitative PCR, reverse-phase protein array, and Western blot analysis in 15 colon cancer cell lines; NR1H4 promoter methylation and mRNA expression in colon cancer samples from The Cancer Genome Atlas; DNA methyltransferase inhibition; methyl-DNA immunoprecipitation (MeDIP); bisulfite sequencing; and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) knockdown assessment to investigate FXR regulation in colon cancer development. Immunohistochemistry and quantitative RT-PCR revealed that expression and function of FXR was reduced in precancerous lesions and silenced in a majority of stage I-IV tumors. FXR expression negatively correlated with phosphatidylinositol-4, 5-bisphosphate 3 kinase signaling and the epithelial-to-mesenchymal transition. The NR1H4 promoter is methylated in ~12% colon cancer The Cancer Genome Atlas samples, and methylation patterns segregate with tumor subtypes. Inhibition of DNA methylation and KRAS silencing both increased FXR expression. FXR expression is decreased early in human colon cancer progression, and both DNA methylation and KRAS signaling may be contributing factors to FXR silencing. FXR potentially suppresses epithelial-to-mesenchymal transition and other oncogenic signaling cascades, and restoration of FXR activity, by blocking silencing mechanisms or increasing residual FXR activity, represents promising therapeutic options for the treatment of colon cancer.

  5. Detecting multiple DNA human profile from a mosquito blood meal.

    Science.gov (United States)

    Rabêlo, K C N; Albuquerque, C M R; Tavares, V B; Santos, S M; Souza, C A; Oliveira, T C; Moura, R R; Brandão, L A C; Crovella, S

    2016-08-26

    Criminal traces commonly found at crime scenes may present mixtures from two or more individuals. The scene of the crime is important for the collection of various types of traces in order to find the perpetrator of the crime. Thus, we propose that hematophagous mosquitoes found at crime scenes can be used to perform genetic testing of human blood and aid in suspect investigation. The aim of the study was to obtain a single Aedes aegypti mosquito profile from a human DNA mixture containing genetic materials of four individuals. We also determined the effect of blood acquisition time by setting time intervals of 24, 48, and 72 h after the blood meal. STR loci and amelogenin were analyzed, and the results showed that human DNA profiles could be obtained from hematophagous mosquitos at 24 h following the blood meal. It is possible that hematophagous mosquitoes can be used as biological remains at the scene of the crime, and can be used to detect human DNA profiles of up to four individuals.

  6. MMS exposure promotes increased MtDNA mutagenesis in the presence of replication-defective disease-associated DNA polymerase γ variants.

    Science.gov (United States)

    Stumpf, Jeffrey D; Copeland, William C

    2014-10-01

    Mitochondrial DNA (mtDNA) encodes proteins essential for ATP production. Mutant variants of the mtDNA polymerase cause mutagenesis that contributes to aging, genetic diseases, and sensitivity to environmental agents. We interrogated mtDNA replication in Saccharomyces cerevisiae strains with disease-associated mutations affecting conserved regions of the mtDNA polymerase, Mip1, in the presence of the wild type Mip1. Mutant frequency arising from mtDNA base substitutions that confer erythromycin resistance and deletions between 21-nucleotide direct repeats was determined. Previously, increased mutagenesis was observed in strains encoding mutant variants that were insufficient to maintain mtDNA and that were not expected to reduce polymerase fidelity or exonuclease proofreading. Increased mutagenesis could be explained by mutant variants stalling the replication fork, thereby predisposing the template DNA to irreparable damage that is bypassed with poor fidelity. This hypothesis suggests that the exogenous base-alkylating agent, methyl methanesulfonate (MMS), would further increase mtDNA mutagenesis. Mitochondrial mutagenesis associated with MMS exposure was increased up to 30-fold in mip1 mutants containing disease-associated alterations that affect polymerase activity. Disrupting exonuclease activity of mutant variants was not associated with increased spontaneous mutagenesis compared with exonuclease-proficient alleles, suggesting that most or all of the mtDNA was replicated by wild type Mip1. A novel subset of C to G transversions was responsible for about half of the mutants arising after MMS exposure implicating error-prone bypass of methylated cytosines as the predominant mutational mechanism. Exposure to MMS does not disrupt exonuclease activity that suppresses deletions between 21-nucleotide direct repeats, suggesting the MMS-induce mutagenesis is not explained by inactivated exonuclease activity. Further, trace amounts of CdCl2 inhibit mtDNA replication but

  7. Wavelength dependence of pyrimidine dimer formation in DNA of human skin irradiated in situ with ultraviolet light

    International Nuclear Information System (INIS)

    Freeman, S.E.; Hacham, H.; Gange, R.W.; Maytum, D.J.; Sutherland, J.C.; Sutherland, B.M.

    1989-01-01

    The UV components of sunlight are believed to be a major cause of human skin caner, and DNA is though to be the principal molecular target. Alterations of the intensity and wavelength distribution of solar UV radiation reaching the surface of the earth, for example by depletion of stratospheric ozone, will change the effectiveness of solar radiation in damaging DNA in human skin. Evaluation of the magnitude of such effects requires knowledge of the altered sunlight spectrum and of the action spectrum for damaging DNA in human skin. The authors have determined an action spectrum for the frequency of pyrimidine dimer formation induced in the DNA of human skin per unit dose of UV incident on the skin surface. The peak of this action spectrum is near 300 nm and decreases rapidly at both longer and shorter wavelengths. The decrease in the action spectrum for wavelengths <300 nm is attributed to the absorption of the upper layers of the skin. Convolution of the dimer action spectrum with the solar spectra corresponding to a solar angle of 40 degree under current levels of stratospheric ozone and those for 50% ozone depletion, indicate about a 2.5-fold increase in dimer formation. If the action spectrum for DNA damage that results in skin cancer resembles that for dimer induction in skin, these results suggest that a 50% decrease in stratospheric ozone would increase the incidence of nonmelanoma skin cancers among white males in Seattle, Washington, by 7.5- to 8-fold, to a higher incidence than is presently seen in the corresponding population of Albuquerque, New Mexico

  8. Distinct kinetics of human DNA ligases I, IIIalpha, IIIbeta, and IV reveal direct DNA sensing ability and differential physiological functions in DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi; Ballin, Jeff D.; Della-Maria, Julie; Tsai, Miaw-Sheue; White, Elizabeth J.; Tomkinson, Alan E.; Wilson, Gerald M.

    2009-05-11

    The three human LIG genes encode polypeptides that catalyze phosphodiester bond formation during DNA replication, recombination and repair. While numerous studies have identified protein partners of the human DNA ligases (hLigs), there has been little characterization of the catalytic properties of these enzymes. In this study, we developed and optimized a fluorescence-based DNA ligation assay to characterize the activities of purified hLigs. Although hLigI joins DNA nicks, it has no detectable activity on linear duplex DNA substrates with short, cohesive single-strand ends. By contrast, hLigIII{beta} and the hLigIII{alpha}/XRCC1 and hLigIV/XRCC4 complexes are active on both nicked and linear duplex DNA substrates. Surprisingly, hLigIV/XRCC4, which is a key component of the major non-homologous end joining (NHEJ) pathway, is significantly less active than hLigIII on a linear duplex DNA substrate. Notably, hLigIV/XRCC4 molecules only catalyze a single ligation event in the absence or presence of ATP. The failure to catalyze subsequent ligation events reflects a defect in the enzyme-adenylation step of the next ligation reaction and suggests that, unless there is an in vivo mechanism to reactivate DNA ligase IV/XRCC4 following phosphodiester bond formation, the cellular NHEJ capacity will be determined by the number of adenylated DNA ligaseIV/XRCC4 molecules.

  9. Single Cell Analysis of Human RAD18-Dependent DNA Post-Replication Repair by Alkaline Bromodeoxyuridine Comet Assay

    Science.gov (United States)

    Mórocz, Mónika; Gali, Himabindu; Raskó, István; Downes, C. Stephen; Haracska, Lajos

    2013-01-01

    Damage to DNA can block replication progression resulting in gaps in the newly synthesized DNA. Cells utilize a number of post-replication repair (PRR) mechanisms such as the RAD18 controlled translesion synthesis or template switching to overcome the discontinuities formed opposite the DNA lesions and to complete DNA replication. Gaining more insights into the role of PRR genes promotes better understanding of DNA damage tolerance and of how their malfunction can lead to increased genome instability and cancer. However, a simple and efficient method to characterise gene specific PRR deficiencies at a single cell level has not been developed. Here we describe the so named BrdU comet PRR assay to test the contribution of human RAD18 to PRR at a single cell level, by which we kinetically characterized the consequences of the deletion of human RAD18 on the replication of UV-damaged DNA. Moreover, we demonstrate the capability of our method to evaluate PRR at a single cell level in unsynchronized cell population. PMID:23936422

  10. Differentiation of Human Induced Pluripotent or Embryonic Stem Cells Decreases the DNA Damage Repair by Homologous Recombination

    Directory of Open Access Journals (Sweden)

    Kalpana Mujoo

    2017-11-01

    Full Text Available The nitric oxide (NO-cyclic GMP pathway contributes to human stem cell differentiation, but NO free radical production can also damage DNA, necessitating a robust DNA damage response (DDR to ensure cell survival. How the DDR is affected by differentiation is unclear. Differentiation of stem cells, either inducible pluripotent or embryonic derived, increased residual DNA damage as determined by γ-H2AX and 53BP1 foci, with increased S-phase-specific chromosomal aberration after exposure to DNA-damaging agents, suggesting reduced homologous recombination (HR repair as supported by the observation of decreased HR-related repair factor foci formation (RAD51 and BRCA1. Differentiated cells also had relatively increased fork stalling and R-loop formation after DNA replication stress. Treatment with NO donor (NOC-18, which causes stem cell differentiation has no effect on double-strand break (DSB repair by non-homologous end-joining but reduced DSB repair by HR. Present studies suggest that DNA repair by HR is impaired in differentiated cells.

  11. Unscheduled synthesis of DNA and poly(ADP-ribose) in human fibroblasts following DNA damage

    International Nuclear Information System (INIS)

    McCurry, L.S.; Jacobson, M.K.

    1981-01-01

    Unscheduled DNA synthesis has been measured in human fibroblasts under conditions of reduced rates of conversion of NAD to poly)ADP-ribose). Cells heterozygous for the xeroderma pigmentosum genotype showed normal rates of uv induced unscheduled DNA synthesis under conditions in which the rate of poly(ADP-ribose) synthesis was one-half the rate of normal cells. The addition of theophylline, a potent inhibitor of poly(ADP-ribose) polymerase, to the culture medium of normal cells blocked over 90% of the conversion of NAD to poly(ADP-ribose) following treatment with uv or N-methyl-N'-nitro-N-nitro-soguanidine but did not affect the rate of unscheduled DNA synthesis

  12. Targeting telomerase and DNA repair in human cancers

    International Nuclear Information System (INIS)

    Prakash Hande, M.

    2014-01-01

    Telomerase reactivation is essential for telomere maintenance in human cancer cells ensuring indefinite proliferation. Targeting telomere homeostasis has become one of the promising strategies in the therapeutic management of tumours. One major potential drawback, however, is the time lag between telomerase inhibition and critically shortened telomeres triggering cell death, allowing cancer cells to acquire drug resistance. Numerous studies over the last decade have highlighted the role of DNA repair proteins such as Poly (ADP-Ribose) Polymerase-1 (PARP-1), and DNA-dependent protein kinase (DNA-PKcs) in the maintenance of telomere homoeostasis. Dysfunctional telomeres, resulting from the loss of telomeric DNA repeats or the loss of function of telomere-associated proteins trigger DNA damage responses similar to that observed for double strand breaks. We have been working on unravelling such synthetic lethality in cancer cells and this talk would be on one such recently concluded study that demonstrates that inhibition of DNA repair pathways, i.e., NHEJ pathway and that of telomerase could be an alternative strategy to enhance anti-tumour effects and circumvent the possibility of drug resistance. (author)

  13. Mouse but not human embryonic stem cells are deficient in rejoining of ionizing radiation-induced DNA double-strand breaks.

    Science.gov (United States)

    Bañuelos, C A; Banáth, J P; MacPhail, S H; Zhao, J; Eaves, C A; O'Connor, M D; Lansdorp, P M; Olive, P L

    2008-09-01

    Mouse embryonic stem (mES) cells will give rise to all of the cells of the adult mouse, but they failed to rejoin half of the DNA double-strand breaks (dsb) produced by high doses of ionizing radiation. A deficiency in DNA-PK(cs) appears to be responsible since mES cells expressed strand breaks more rapidly. Consistent with more rapid dsb rejoining, H2AX(-/-) mES cells also expressed 6 times more DNA-PK(cs) than wild-type mES cells. Similar results were obtained for ATM(-/-) mES cells. Differentiation of mES cells led to an increase in DNA-PK(cs), an increase in dsb rejoining rate, and a decrease in Ku70/80. Unlike mouse ES, human ES cells were proficient in rejoining of dsb and expressed high levels of DNA-PK(cs). These results confirm the importance of homologous recombination in the accurate repair of double-strand breaks in mES cells, they help explain the chromosome abnormalities associated with deficiencies in H2AX and ATM, and they add to the growing list of differences in the way rodent and human cells deal with DNA damage.

  14. Repair of human DNA: radiation and chemical damage in normal and xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Regan, J.D.; Setlow, R.B.

    1976-01-01

    We present the experimental evidence we have gathered, using a particular assay for DNA repair in human cells, the photolysis of bromodeoxyuridine (BrdUrd) incorporated during repair. This assay characterizes the sequence of repair events that occur in human cells after radiation, both ultraviolet and ionizing, and permits an estimation of the size of the average repaired region after these physical insults to DNA. We will discuss chemical insults to DNA and attempt to liken the repair processes after chemical damages of various kinds to those repair processes that occur in human DNA after damage from physical agents. We will also show results indicating that, under certain conditions, repair events resembling those seen after uv-irradiation can be observed in normal human cells after ionizing radiation. Furthermore the XP cells, defective in the repair of uv-induced DNA damage, show defective repair of these uv-like DNA lesions induced by ionizing radiation

  15. DNA synthesis in vitro in human fibroblast preparations

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, W.K.

    1983-01-01

    When confluent cultures of human fibroblasts were ultraviolet irradiated and either permeabilized or lysed, three types of DNA synthesis were subsequently observed during incubation in vitro: (A) a low level of DNA replication, which ceased after 15-30 min incubation at 37/sup 0/C; (B) radiation-dependent reparative gap-filling, which also ceased after 15 min at 37/sup 0/C; and (C) radiation-independent DNA synthesis, which was not semiconservative and proceeded at a linear rate for 1 hr at 37/sup 0/C. Normal and xeroderma pigmentosum fibroblasts displayed different rates of radiation-dependent reparative gap-filling after lysis but similar rates of radiation-independent DNA synthesis. The rates of DNA replication and radiation-independent DNA synthesis were less in the permeable cell system than in the lysed cell system, whereas radiation-dependent reparative gap-filling was the same in both. Preparations of permeable and lysed cells activated radiation-dependent reparative gap-filling at about 15% of the rate estimated for intact cells. No radiation-dependent DNA strand breaks, as assayed by alkaline elution, were observed in the lysed cell preparation. Some radiation-dependent breaks were observed in the permeable cell preparation, but radiation-dependent DNA breakage was less than that seen in intact cells. This inability to incise DNA at damaged sites could account for the low rate of activation of reparative gap-filling in vitro. DNA strand breaks were produced in fibroblast preparations nonspecifically during lysis or permeabilization and incubation in vitro, and this breakage of DNA probably was responsible for the radiation-independent DNA synthesis.

  16. Human cultured cells are capable to incorporate isolated plant mitochondria loaded with exogenous DNA

    Directory of Open Access Journals (Sweden)

    Laktionov P. P.

    2012-07-01

    Full Text Available Aim. To investigate the possibility of human cultured cells to incorporate isolated mitochondria together with exogenous DNA introduced into organelles. Methods. Two approaches were used for this purpose, fluorescent labelling of mitochondria and/or DNA with subsequent analysis of the cells subjected to incubation by microscopy or by quantitative PCR. Results. We have shown that human cultured cells lines, HeLa and HUVEC, are capable to uptake isolated plant mitochondria and that this process depends on the incubation time and concentration of organelles present in medium. The incorporated mitochondria can serve as vehicles to deliver exogenous DNA into human cells, this DNA is then distributed in different cell compartments. Conclusions. These results are preliminary and need further investigations, including testing the possibility of human cells to incorporate the mitochondria of human or animal origin and creating genetic construction which could provide certain selectivity or stability of the transferred exogenous DNA upon cell uptake of the mitochondria as vectors.

  17. Enhanced transfection efficiency of human embryonic stem cells by the incorporation of DNA liposomes in extracellular matrix.

    Science.gov (United States)

    Villa-Diaz, Luis G; Garcia-Perez, Jose L; Krebsbach, Paul H

    2010-12-01

    Because human embryonic stem (hES) cells can differentiate into virtually any cell type in the human body, these cells hold promise for regenerative medicine. The genetic manipulation of hES cells will enhance our understanding of genes involved in early development and will accelerate their potential use and application for regenerative medicine. The objective of this study was to increase the transfection efficiency of plasmid DNA into hES cells by modifying a standard reverse transfection (RT) protocol of lipofection. We hypothesized that immobilization of plasmid DNA in extracellular matrix would be a more efficient method for plasmid transfer due to the affinity of hES cells for substrates such as Matrigel and to the prolonged exposure of cells to plasmid DNA. Our results demonstrate that this modification doubled the transfection efficiency of hES cells and the generation of clonal cell lines containing a piece of foreign DNA stably inserted in their genomes compared to results obtained with standard forward transfection. In addition, treatment with dimethyl sulfoxide further increased the transfection efficiency of hES cells. In conclusion, modifications to the RT protocol of lipofection result in a significant and robust increase in the transfection efficiency of hES cells.

  18. Molecular cloning and nucleotide sequence of cDNA for human liver arginase

    International Nuclear Information System (INIS)

    Haraguchi, Y.; Takiguchi, M.; Amaya, Y.; Kawamoto, S.; Matsuda, I.; Mori, M.

    1987-01-01

    Arginase (EC3.5.3.1) catalyzes the last step of the urea cycle in the liver of ureotelic animals. Inherited deficiency of the enzyme results in argininemia, an autosomal recessive disorder characterized by hyperammonemia. To facilitate investigation of the enzyme and gene structures and to elucidate the nature of the mutation in argininemia, the authors isolated cDNA clones for human liver arginase. Oligo(dT)-primed and random primer human liver cDNA libraries in λ gt11 were screened using isolated rat arginase cDNA as a probe. Two of the positive clones, designated λ hARG6 and λ hARG109, contained an overlapping cDNA sequence with an open reading frame encoding a polypeptide of 322 amino acid residues (predicted M/sub r/, 34,732), a 5'-untranslated sequence of 56 base pairs, a 3'-untranslated sequence of 423 base pairs, and a poly(A) segment. Arginase activity was detected in Escherichia coli cells transformed with the plasmid carrying λ hARG6 cDNA insert. RNA gel blot analysis of human liver RNA showed a single mRNA of 1.6 kilobases. The predicted amino acid sequence of human liver arginase is 87% and 41% identical with those of the rat liver and yeast enzymes, respectively. There are several highly conserved segments among the human, rat, and yeast enzymes

  19. Distinct functions of human RecQ helicases during DNA replication.

    Science.gov (United States)

    Urban, Vaclav; Dobrovolna, Jana; Janscak, Pavel

    2017-06-01

    DNA replication is the most vulnerable process of DNA metabolism in proliferating cells and therefore it is tightly controlled and coordinated with processes that maintain genomic stability. Human RecQ helicases are among the most important factors involved in the maintenance of replication fork integrity, especially under conditions of replication stress. RecQ helicases promote recovery of replication forks being stalled due to different replication roadblocks of either exogenous or endogenous source. They prevent generation of aberrant replication fork structures and replication fork collapse, and are involved in proper checkpoint signaling. The essential role of human RecQ helicases in the genome maintenance during DNA replication is underlined by association of defects in their function with cancer predisposition. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. RPA physically interacts with the human DNA glycosylase NEIL1 to regulate excision of oxidative DNA base damage in primer-template structures.

    Science.gov (United States)

    Theriot, Corey A; Hegde, Muralidhar L; Hazra, Tapas K; Mitra, Sankar

    2010-06-04

    The human DNA glycosylase NEIL1, activated during the S-phase, has been shown to excise oxidized base lesions in single-strand DNA substrates. Furthermore, our previous work demonstrating functional interaction of NEIL1 with PCNA and flap endonuclease 1 (FEN1) suggested its involvement in replication-associated repair. Here we show interaction of NEIL1 with replication protein A (RPA), the heterotrimeric single-strand DNA binding protein that is essential for replication and other DNA transactions. The NEIL1 immunocomplex isolated from human cells contains RPA, and its abundance in the complex increases after exposure to oxidative stress. NEIL1 directly interacts with the large subunit of RPA (K(d) approximately 20 nM) via the common interacting interface (residues 312-349) in NEIL1's disordered C-terminal region. RPA inhibits the base excision activity of both wild-type NEIL1 (389 residues) and its C-terminal deletion CDelta78 mutant (lacking the interaction domain) for repairing 5-hydroxyuracil (5-OHU) in a primer-template structure mimicking the DNA replication fork. This inhibition is reduced when the damage is located near the primer-template junction. Contrarily, RPA moderately stimulates wild-type NEIL1 but not the CDelta78 mutant when 5-OHU is located within the duplex region. While NEIL1 is inhibited by both RPA and Escherichia coli single-strand DNA binding protein, only inhibition by RPA is relieved by PCNA. These results showing modulation of NEIL1's activity on single-stranded DNA substrate by RPA and PCNA support NEIL1's involvement in repairing the replicating genome. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Study of microtip-based extraction and purification of DNA from human samples for portable devices

    Science.gov (United States)

    Fotouhi, Gareth

    recovery of DNA to 45% efficiency. Furthermore, the 225°C-cured PEI-coated microtips recover more DNA than gold-coated microtips when the surface is washed. Heat-cured (225°C) PEI-coated microtips are used for the recovery of human genomic DNA from whole blood. A washing protocol is developed to remove inhibiting particles bound to the PEI-coated microtip surface after DNA extraction. From 1.25 muL of whole blood, an average of 1.83 ng of human genomic DNA is captured, purified, and released using a 225°C-cured PEI-coated microtip in less than 30 minutes. The extracted DNA is profiled by short tandem repeat analysis (STR). For forensic and medical applications, genomic DNA is extracted from dried samples using heat-cured PEI-coated microtips that are integrated into an automated device. DNA extraction from dried samples is critical for forensics. The use of dried samples in the medical field is increasing because dried samples are convenient for storage, biosafety, and contamination. The main challenge is the time required to properly extract DNA in a purified form. Typically, a 1 hour incubation period is required to complete this process. Overnight incubation is sometimes necessary. To address this challenge, a pre-extraction washing step is investigated to remove inhibiting particles from dried blood spots (DBS) before DNA is released from dried form into solution for microtip extraction. The developed protocol is expanded to extract DNA from a variety of dried samples including nasal swabs, buccal swabs, and other forensic samples. In comparison to a commercial kit, the microtip-based extraction reduced the processing time from 1.5 hours to 30 minutes or less with an equivalent concentration of extracted DNA from dried blood spots. The developed assay will benefit genetic studies on newborn screening, forensic investigation, and POC diagnostics.

  2. DNA methylation of amino acid transporter genes in the human placenta.

    Science.gov (United States)

    Simner, C; Novakovic, B; Lillycrop, K A; Bell, C G; Harvey, N C; Cooper, C; Saffery, R; Lewis, R M; Cleal, J K

    2017-12-01

    Placental transfer of amino acids via amino acid transporters is essential for fetal growth. Little is known about the epigenetic regulation of amino acid transporters in placenta. This study investigates the DNA methylation status of amino acid transporters and their expression across gestation in human placenta. BeWo cells were treated with 5-aza-2'-deoxycytidine to inhibit methylation and assess the effects on amino acid transporter gene expression. The DNA methylation levels of amino acid transporter genes in human placenta were determined across gestation using DNA methylation array data. Placental amino acid transporter gene expression across gestation was also analysed using data from publically available Gene Expression Omnibus data sets. The expression levels of these transporters at term were established using RNA sequencing data. Inhibition of DNA methylation in BeWo cells demonstrated that expression of specific amino acid transporters can be inversely associated with DNA methylation. Amino acid transporters expressed in term placenta generally showed low levels of promoter DNA methylation. Transporters with little or no expression in term placenta tended to be more highly methylated at gene promoter regions. The transporter genes SLC1A2, SLC1A3, SLC1A4, SLC7A5, SLC7A11 and SLC7A10 had significant changes in enhancer DNA methylation across gestation, as well as gene expression changes across gestation. This study implicates DNA methylation in the regulation of amino acid transporter gene expression. However, in human placenta, DNA methylation of these genes remains low across gestation and does not always play an obvious role in regulating gene expression, despite clear evidence for differential expression as gestation proceeds. Copyright © 2017. Published by Elsevier Ltd.

  3. Fidelity and Mutational Spectrum of Pfu DNA Polymerase on a Human Mitochondrial DNA Sequence

    Science.gov (United States)

    André, Paulo; Kim, Andrea; Khrapko, Konstantin; Thilly, William G.

    1997-01-01

    The study of rare genetic changes in human tissues requires specialized techniques. Point mutations at fractions at or below 10−6 must be observed to discover even the most prominent features of the point mutational spectrum. PCR permits the increase in number of mutant copies but does so at the expense of creating many additional mutations or “PCR noise”. Thus, each DNA sequence studied must be characterized with regard to the DNA polymerase and conditions used to avoid interpreting a PCR-generated mutation as one arising in human tissue. The thermostable DNA polymerase derived from Pyrococcus furiosus designated Pfu has the highest fidelity of any DNA thermostable polymerase studied to date, and this property recommends it for analyses of tissue mutational spectra. Here, we apply constant denaturant capillary electrophoresis (CDCE) to separate and isolate the products of DNA amplification. This new strategy permitted direct enumeration and identification of point mutations created by Pfu DNA polymerase in a 96-bp low melting domain of a human mitochondrial sequence despite the very low mutant fractions generated in the PCR process. This sequence, containing part of the tRNA glycine and NADH dehydrogenase subunit 3 genes, is the target of our studies of mitochondrial mutagenesis in human cells and tissues. Incorrectly synthesized sequences were separated from the wild type as mutant/wild-type heteroduplexes by sequential enrichment on CDCE. An artificially constructed mutant was used as an internal standard to permit calculation of the mutant fraction. Our study found that the average error rate (mutations per base pair duplication) of Pfu was 6.5 × 10−7, and five of its more frequent mutations (hot spots) consisted of three transversions (GC → TA, AT → TA, and AT → CG), one transition (AT → GC), and one 1-bp deletion (in an AAAAAA sequence). To achieve an even higher sensitivity, the amount of Pfu-induced mutants must be

  4. Comparative Study of Seven Commercial Kits for Human DNA Extraction from Urine Samples Suitable for DNA Biomarker-Based Public Health Studies

    Science.gov (United States)

    El Bali, Latifa; Diman, Aurélie; Bernard, Alfred; Roosens, Nancy H. C.; De Keersmaecker, Sigrid C. J.

    2014-01-01

    Human genomic DNA extracted from urine could be an interesting tool for large-scale public health studies involving characterization of genetic variations or DNA biomarkers as a result of the simple and noninvasive collection method. These studies, involving many samples, require a rapid, easy, and standardized extraction protocol. Moreover, for practicability, there is a necessity to collect urine at a moment different from the first void and to store it appropriately until analysis. The present study compared seven commercial kits to select the most appropriate urinary human DNA extraction procedure for epidemiological studies. DNA yield has been determined using different quantification methods: two classical, i.e., NanoDrop and PicoGreen, and two species-specific real-time quantitative (q)PCR assays, as DNA extracted from urine contains, besides human, microbial DNA also, which largely contributes to the total DNA yield. In addition, the kits giving a good yield were also tested for the presence of PCR inhibitors. Further comparisons were performed regarding the sampling time and the storage conditions. Finally, as a proof-of-concept, an important gene related to smoking has been genotyped using the developed tools. We could select one well-performing kit for the human DNA extraction from urine suitable for molecular diagnostic real-time qPCR-based assays targeting genetic variations, applicable to large-scale studies. In addition, successful genotyping was possible using DNA extracted from urine stored at −20°C for several months, and an acceptable yield could also be obtained from urine collected at different moments during the day, which is particularly important for public health studies. PMID:25365790

  5. Comparative study of seven commercial kits for human DNA extraction from urine samples suitable for DNA biomarker-based public health studies.

    Science.gov (United States)

    El Bali, Latifa; Diman, Aurélie; Bernard, Alfred; Roosens, Nancy H C; De Keersmaecker, Sigrid C J

    2014-12-01

    Human genomic DNA extracted from urine could be an interesting tool for large-scale public health studies involving characterization of genetic variations or DNA biomarkers as a result of the simple and noninvasive collection method. These studies, involving many samples, require a rapid, easy, and standardized extraction protocol. Moreover, for practicability, there is a necessity to collect urine at a moment different from the first void and to store it appropriately until analysis. The present study compared seven commercial kits to select the most appropriate urinary human DNA extraction procedure for epidemiological studies. DNA yield has been determined using different quantification methods: two classical, i.e., NanoDrop and PicoGreen, and two species-specific real-time quantitative (q)PCR assays, as DNA extracted from urine contains, besides human, microbial DNA also, which largely contributes to the total DNA yield. In addition, the kits giving a good yield were also tested for the presence of PCR inhibitors. Further comparisons were performed regarding the sampling time and the storage conditions. Finally, as a proof-of-concept, an important gene related to smoking has been genotyped using the developed tools. We could select one well-performing kit for the human DNA extraction from urine suitable for molecular diagnostic real-time qPCR-based assays targeting genetic variations, applicable to large-scale studies. In addition, successful genotyping was possible using DNA extracted from urine stored at -20°C for several months, and an acceptable yield could also be obtained from urine collected at different moments during the day, which is particularly important for public health studies.

  6. Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome

    Science.gov (United States)

    Sassa, Akira; Kamoshita, Nagisa; Kanemaru, Yuki; Honma, Masamitsu; Yasui, Manabu

    2015-01-01

    Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were site-specifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem 7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion of mutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem 8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo. PMID:26559182

  7. Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome.

    Science.gov (United States)

    Sassa, Akira; Kamoshita, Nagisa; Kanemaru, Yuki; Honma, Masamitsu; Yasui, Manabu

    2015-01-01

    Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were site-specifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem 7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion of mutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem 8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo.

  8. GHK and DNA: Resetting the Human Genome to Health

    Directory of Open Access Journals (Sweden)

    Loren Pickart

    2014-01-01

    Full Text Available During human aging there is an increase in the activity of inflammatory, cancer promoting, and tissue destructive genes plus a decrease in the activity of regenerative and reparative genes. The human blood tripeptide GHK possesses many positive effects but declines with age. It improves wound healing and tissue regeneration (skin, hair follicles, stomach and intestinal linings, and boney tissue, increases collagen and glycosaminoglycans, stimulates synthesis of decorin, increases angiogenesis, and nerve outgrowth, possesses antioxidant and anti-inflammatory effects, and increases cellular stemness and the secretion of trophic factors by mesenchymal stem cells. Recently, GHK has been found to reset genes of diseased cells from patients with cancer or COPD to a more healthy state. Cancer cells reset their programmed cell death system while COPD patients’ cells shut down tissue destructive genes and stimulate repair and remodeling activities. In this paper, we discuss GHK’s effect on genes that suppress fibrinogen synthesis, the insulin/insulin-like system, and cancer growth plus activation of genes that increase the ubiquitin-proteasome system, DNA repair, antioxidant systems, and healing by the TGF beta superfamily. A variety of methods and dosages to effectively use GHK to reset genes to a healthier state are also discussed.

  9. Photosensitized UVA-Induced Cross-Linking between Human DNA Repair and Replication Proteins and DNA Revealed by Proteomic Analysis

    Science.gov (United States)

    2016-01-01

    Long wavelength ultraviolet radiation (UVA, 320–400 nm) interacts with chromophores present in human cells to induce reactive oxygen species (ROS) that damage both DNA and proteins. ROS levels are amplified, and the damaging effects of UVA are exacerbated if the cells are irradiated in the presence of UVA photosensitizers such as 6-thioguanine (6-TG), a strong UVA chromophore that is extensively incorporated into the DNA of dividing cells, or the fluoroquinolone antibiotic ciprofloxacin. Both DNA-embedded 6-TG and ciprofloxacin combine synergistically with UVA to generate high levels of ROS. Importantly, the extensive protein damage induced by these photosensitizer+UVA combinations inhibits DNA repair. DNA is maintained in intimate contact with the proteins that effect its replication, transcription, and repair, and DNA–protein cross-links (DPCs) are a recognized reaction product of ROS. Cross-linking of DNA metabolizing proteins would compromise these processes by introducing physical blocks and by depleting active proteins. We describe a sensitive and statistically rigorous method to analyze DPCs in cultured human cells. Application of this proteomics-based analysis to cells treated with 6-TG+UVA and ciprofloxacin+UVA identified proteins involved in DNA repair, replication, and gene expression among those most vulnerable to cross-linking under oxidative conditions. PMID:27654267

  10. Defective repair of UV-damaged DNA in human tumor and SV40-transformed human cells but not in adenovirus-transformed human cells

    International Nuclear Information System (INIS)

    Rainbow, A.J.

    1989-01-01

    The DNA repair capacities of five human tumor cell lines, one SV40-transformed human cell line and one adenovirus-transformed human cell line were compared with that of normal human fibroblasts using a sensitive host cell reactivation (HCR) technique. Unirradiated and UV-irradiated suspensions of adenovirus type 2 (Ad 2) were assayed for their ability to form viral structural antigens (Vag) in the various cell types using immunofluorescent staining. The survival of Vag formation for UV-irradiated Ad 2 was significantly reduced in all the human tumor cell lines and the SV40-transformed human line compared to the normal human fibroblasts, but was apparently normal in the adenovirus-transformed human cells. D 0 values for the UV survival of Ad 2 Vag synthesis in the tumor and virally transformed lines expressed as a percentage of that obtained on normal fibroblast strains were used as a measure of DNA repair capacity. Percent HCR values ranged from 26 to 53% in the tumor cells. These results indicate a deficiency in the repair of UV-induced DNA damage associated with human tumorigenesis and the transformation of human cells by SV40 but not the transformation of human cells by adenovirus. (author)

  11. Human parvovirus B19: a mechanistic overview of infection and DNA replication

    Science.gov (United States)

    Luo, Yong; Qiu, Jianming

    2015-01-01

    Human parvovirus B19 (B19V) is a human pathogen that belongs to genus Erythroparvovirus of the Parvoviridae family, which is composed of a group of small DNA viruses with a linear single-stranded DNA genome. B19V mainly infects human erythroid progenitor cells and causes mild to severe hematological disorders in patients. However, recent clinical studies indicate that B19V also infects nonerythroid lineage cells, such as myocardial endothelial cells, and may be associated with other disease outcomes. Several cell culture systems, including permissive and semipermissive erythroid lineage cells, nonpermissive human embryonic kidney 293 cells and recently reported myocardial endothelial cells, have been used to study the mechanisms underlying B19V infection and B19V DNA replication. This review aims to summarize recent advances in B19V studies with a focus on the mechanisms of B19V tropism specific to different cell types and the cellular pathways involved in B19V DNA replication including cellular signaling transduction and cell cycle arrest. PMID:26097496

  12. The DNA methylome of human peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Yingrui Li

    2010-11-01

    Full Text Available DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per strand, we report a comprehensive (92.62% methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found that 68.4% of CpG sites and 80% displayed allele-specific expression (ASE. These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic research and confirms new sequencing technology as a paradigm for large-scale epigenomics studies.

  13. Prospects for DNA methods to measure human heritable mutation rates

    International Nuclear Information System (INIS)

    Mendelsohn, M.L.

    1985-01-01

    A workshop cosponsored by ICPEMC and the US Department of Energy was held in Alta, Utah, December 9-13, 1984 to examine the extent to which DNA-oriented methods might provide new approaches to the important but intractable problem of measuring mutation rates in control and exposed human populations. The workshop identified and analyzed six DNA methods for detection of human heritable mutation, including several created at the meeting, and concluded that none of the methods combine sufficient feasibility and efficiency to be recommended for general application. 8 refs

  14. Oxytetracycline induces DNA damage and epigenetic changes: a possible risk for human and animal health?

    Science.gov (United States)

    Gallo, Adriana; Landi, Rosaria; Rubino, Valentina; Di Cerbo, Alessandro; Giovazzino, Angela; Palatucci, Anna Teresa; Centenaro, Sara; Guidetti, Gianandrea; Canello, Sergio; Cortese, Laura; Ruggiero, Giuseppina; Alessandrini, Andrea; Terrazzano, Giuseppe

    2017-01-01

    Oxytetracycline (OTC), which is largely employed in zootechnical and veterinary practices to ensure wellness of farmed animals, is partially absorbed within the gastrointestinal tract depositing in several tissues. Therefore, the potential OTC toxicity is relevant when considering the putative risk derived by the entry and accumulation of such drug in human and pet food chain supply. Despite scientific literature highlights several OTC-dependent toxic effects on human and animal health, the molecular mechanisms of such toxicity are still poorly understood. Here, we evaluated DNA damages and epigenetic alterations by quantitative reverse transcription polymerase chain reaction, quantitative polymerase chain reaction, chromatin immuno-precipitation and Western blot analysis. We observed that human peripheral blood mononuclear cells (PBMCs) expressed DNA damage features (activation of ATM and p53, phosphorylation of H2AX and modifications of histone H3 methylation of lysine K4 in the chromatin) after the in vitro exposure to OTC. These changes are linked to a robust inflammatory response indicated by an increased expression of Interferon (IFN)- γ and type 1 superoxide dismutase (SOD1). Our data reveal an unexpected biological in vitro activity of OTC able to modify DNA and chromatin in cultured human PBMC. In this regard, OTC presence in foods of animal origin could represent a potential risk for both the human and animal health.

  15. Human RAD50 makes a functional DNA-binding complex.

    Science.gov (United States)

    Kinoshita, Eri; van Rossum-Fikkert, Sari; Sanchez, Humberto; Kertokalio, Aryandi; Wyman, Claire

    2015-06-01

    The MRE11-RAD50-NBS1 (MRN) complex has several distinct functions in DNA repair including important roles in both non-homologous end-joining (NHEJ) and homologous recombination (HR). The biochemical activities of MR(N) have been well characterized implying specific functional roles for the components. The arrangement of proteins in the complex implies interdependence of their biochemical activities making it difficult to separate specific functions. We obtained purified human RAD50 and observed that it binds ATP, undergoes ATP-dependent conformational changes as well as having ATPase activity. Scanning force microscopy analysis clearly showed that RAD50 binds DNA although not as oligomers. RAD50 alone was not functional in tethering DNA molecules. ATP increased formation of RAD50 multimers which were however globular lacking extended coiled coils, in contrast to the MR complex where ATP induced oligomers have obvious coiled coils protruding from a central domain. These results suggest that MRE11 is important in maintaining the structural arrangement of RAD50 in the protein complex and perhaps has a role in reinforcing proper alignment of the coiled coils in the ATP-bound state. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  16. Human papillomavirus DNA in aerodigestive squamous carcinomas ...

    African Journals Online (AJOL)

    A series of 10 oesophageal and 10 laryngeal squamous carcinomas was examined by means of immuno cytochemistry and in situ DNA hybridisation to demonstrate human papillomavirus (HPV) infection. Changes in the epithelium adjacent to the carcinoma were found in 5 of 10 oesophageal and 7 of 10 laryngeal ...

  17. Recombinant methods for screening human DNA excision repair proficiency

    International Nuclear Information System (INIS)

    Athas, W.F.

    1988-01-01

    A method for measuring DNA excision repair in response to ultraviolet radiation (UV)-induced DNA damage has been developed, validated, and field-tested in cultured human lymphocytes. The methodology is amenable to population-based screening and should facilitate future epidemiologic studies seeking to investigate associations between excision repair proficiency and cancer susceptibility. The impetus for such endeavors derives from the belief that the high incidence of skin cancer in the genetic disorder xeroderma pigmentosum (XP) primarily is a result of the reduced capacity of patients cells to repair UV-induced DNA damage. For assay, UV-irradiated non-replicating recombinant plasmid DNA harboring a chloramphenicol acetyltransferase (CAT) indicator gene is introduced into lymphocytes using DEAE-dextran short-term transfection conditions. Exposure to UV induces transcriptionally-inactivating DNA photoproducts in the plasmid DNA which inactivate CAT gene expression. Excision repair of the damaged CAT gene is monitored indirectly as a function of reactivated CAT enzyme activity following a 40 hour repair/expression incubation period

  18. Increased levels of etheno-DNA adducts and genotoxicity biomarkers of long-term exposure to pure diesel engine exhaust.

    Science.gov (United States)

    Shen, Meili; Bin, Ping; Li, Haibin; Zhang, Xiao; Sun, Xin; Duan, Huawei; Niu, Yong; Meng, Tao; Dai, Yufei; Gao, Weimin; Yu, Shanfa; Gu, Guizhen; Zheng, Yuxin

    2016-02-01

    Etheno-DNA adducts are biomarkers for assessing oxidative stress. In this study, the aim was to detect the level of etheno-DNA adducts and explore the relationship between the etheno-DNA adducts and genotoxicity biomarkers of the diesel engine exhaust (DEE)-exposed workers. We recruited 86 diesel engine testing workers with long-term exposure to DEE and 99 non-DEE-exposed workers. The urinary mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and etheno-DNA adducts (εdA and εdC) were detected by HPLC-MS/MS and UPLC-MS/MS, respectively. Genotoxicity biomarkers were also evaluated by comet assay and cytokinesis-block micronucleus assay. The results showed that urinary εdA was significantly higher in the DEE-exposed workers (p<0.001), exhibited 2.1-fold increase compared with the non-DEE-exposed workers. The levels of urinary OH-PAHs were positively correlated with the level of εdA among all the study subjects (p<0.001). Moreover, we found that the increasing level of εdA was significantly associated with the increased olive tail moment, percentage of tail DNA, or frequency of micronucleus in the study subjects (p<0.01). No significant association was observed between the εdC level and any measured genotoxicity biomarkers. In summary, εdA could serve as an indicator for DEE exposure in the human population. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The prevalence of human cytomegalovirus DNA in gliomas of Brazilian patients

    Directory of Open Access Journals (Sweden)

    Renata Fragelli Fonseca

    2012-11-01

    Full Text Available Members of the Herpesviridae family have been implicated in a number of tumours in humans. At least 75% of the human population has had contact with cytomegalovirus (HCMV. In this work, we screened 75 Brazilian glioma biopsies for the presence of HCMV DNA sequences. HCMV DNA was detected in 36% (27/75 of the biopsies. It is possible that HCMV could be a co-factor in the evolution of brain tumours.

  20. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation

    Science.gov (United States)

    Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)

    2000-01-01

    Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.

  1. Photoreactivation and other ultraviolet/visible light effects on DNA in human skin

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Blackett, A.D.; Feng, N.I.; Freeman, S.E.; Ogut, E.S.; Gange, R.W.; Sutherland, J.C.

    1985-01-01

    Wavelengths of light present in sunlight, sunlamps, and fluorescent and incandescent lamps induce changes in human skin DNA in a multiplicity of reactions. UVB and UVA exposures can induce damage in DNA as well as can the inducement of tanning to protect against such damage. Longer wavelength ultraviolet radiation can mediate enzymatic (or perhaps nonenzymatic) reversal of dimers. None of the action spectra, kinetics, or other characteristics of such reactions are known. Elucidation of their properties will provide essential information to allow evaluation of the interaction of light with human skin DNA

  2. Radiosensitivity evaluation of Human tumor cell lines by detecting 4977bp deletion in mitochondrial DNA

    International Nuclear Information System (INIS)

    Zhang Yipei

    2009-01-01

    Objective: To explore the feasibility of determining radiosensitivity of human tumor cell lines in vitro using the assay of mtDNA4977bp deletion. Methods: Three human tumor cell lines were selected in this study, HepG 2 , EC-9706 and MCF-7. The surviving fraction(SF), the ratio of mtDNA4977bp deletion and DNA damage were detected by MTT assay and nested PCR technique respectively. Results: MTT assay: The SF of HepG 2 and EC-9706 after irradiated by 2, 4and 8Gy was lower significantly than that of MCF-7, which showed that the radiosensitivity of HepG 2 and EC-9706 was higher than that of MCF-7. But there was no statistical difference of SF between HepG 2 and EC-9706. PCR method:The differences on mtDNA 4977bp deletion in mitochondrial DNA among HepG 2 , EC-9706 and MCF-7 were not significant after 1Gy and 4Gy γ-ray irradiation. The ratio of 4977bp deletion in mitochondrial DNA of HepG 2 and EC-9706 increased while that of MCF-7 decreased after 8Gy irradiation. The ratio of mtDNA 4977bp deletion of HepG 2 and EC-9706 was higher significantly than that of MCF-7, which implies that the radiosensitivity of HepG 2 and EC-9706 was higher than that of MCF -7. Conclusion: As a new biological marker, mtDNA4977bp deletion may be hopeful to evaluate the radiosensitivity of tumor cells more objectively and exactly. (authors)

  3. Transfection with extracellularly UV-damaged DNA induces human and rat cells to express a mutator phenotype towards parvovirus H-1

    International Nuclear Information System (INIS)

    Dinsart, C.; Cornelis, J.J.; Klein, B.; van der Eb, A.J.; Rommelaere, J.

    1984-01-01

    Human and rat cells transfected with UV-irradiated linear double-stranded DNA from calf thymus displayed a mutator activity. This phenotype was identified by growing a lytic thermosensitive single-stranded DNA virus (parvovirus H-1) in those cells and determining viral reversion frequencies. Likewise, exogenous UV-irradiated closed circular DNAs, either double-stranded (simian virus 40) or single-stranded (phi X174), enhanced the ability of recipient cells to mutate parvovirus H-1. The magnitude of mutator activity expression increased along with the number of UV lesions present in the inoculated DNA up to a saturation level. Unirradiated DNA displayed little inducing capacity, irrespective of whether it was single or double stranded. Deprivation of a functional replication origin did not impede UV-irradiated simian virus 40 DNA from providing rat and human cells with a mutator function. Our data suggest that in mammalian cells a trans-acting mutagenic signal might be generated from UV-irradiated DNA without the necessity for damaged DNA to replicate

  4. Human FAN1 promotes strand incision in 5'-flapped DNA complexed with RPA.

    Science.gov (United States)

    Takahashi, Daisuke; Sato, Koichi; Hirayama, Emiko; Takata, Minoru; Kurumizaka, Hitoshi

    2015-09-01

    Fanconi anaemia (FA) is a human infantile recessive disorder. Seventeen FA causal proteins cooperatively function in the DNA interstrand crosslink (ICL) repair pathway. Dual DNA strand incisions around the crosslink are critical steps in ICL repair. FA-associated nuclease 1 (FAN1) is a DNA structure-specific endonuclease that is considered to be involved in DNA incision at the stalled replication fork. Replication protein A (RPA) rapidly assembles on the single-stranded DNA region of the stalled fork. However, the effect of RPA on the FAN1-mediated DNA incision has not been determined. In this study, we purified human FAN1, as a bacterially expressed recombinant protein. FAN1 exhibited robust endonuclease activity with 5'-flapped DNA, which is formed at the stalled replication fork. We found that FAN1 efficiently promoted DNA incision at the proper site of RPA-coated 5'-flapped DNA. Therefore, FAN1 possesses the ability to promote the ICL repair of 5'-flapped DNA covered by RPA. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  5. DNA methylation in human fibroblasts following DNA damage and repair

    International Nuclear Information System (INIS)

    Kastan, M.B.

    1984-01-01

    Methylation of deoxycytidine (dCyd) incorporated by DNA excision repair synthesis in human diploid fibroblasts following damage with ultraviolet radiation (UV), N-methyl-N-nitrosourea, or N-acetoxy-2-acetylaminofluorene was studied utilizing [6- 3 H]dCyd to label repaired DNA specifically and high performance liquid chromatographic analysis to quantify the percentage of deoxycytidine converted to 5-methyldeoxycytidine (m 5 dCyd). In confluent, nondividing cells, methylation in repair patches induced by all three agents is slow and incomplete. Whereas after DNA replication a level of 3.4% m 5 dCyd is reached in less than 2 hours, following UV-stimulated repair synthesis in confluent cells it takes about 3 days to reach a level of approx.2.0% m 5 dCyd in the repair patch. This undermethylation of repair patches occurs throughout the genome. In cells from cultures in logarithmic-phase growth, m 5 dCyd formation in UV-induced repair patches occurs faster and to a greater extent, reaching a level of approx.2.7% in 10-20 hours. Pre-existing hypomethylated repair patches in confluent cells are methylated further when the cells are stimulated to divide; however, the repair patch may still not be fully methylated before cell division occurs. Thus DNA damage and repair may lead to heritable loss of methylation at some sites. The distribution within chromatin of m 5 dCyd in repair patches was also investigated. Over a wide range of extents of digestion by staphylococcal nuclease or deoxyribonuclease I, the level of hypomethylation in repaired DNA in nuclease sensitive and resistant regions of chromatin was constant relative to the genomic level of methylation in these regions. Similar conclusions were reached in experiments with isolated mononucleosomes

  6. cDNA cloning of human DNA topoisomerase I. Catalytic activity of a 67.7-kDa carboxyl-terminal fragment

    International Nuclear Information System (INIS)

    D'Arpa, P.; Machlin, P.S.; Ratrie, H. III; Rothfield, N.F.; Cleveland, D.W.; Earnshaw, W.C.

    1988-01-01

    cDNA clones encoding human topoisomerase I were isolated from an expression vector library (λgt11) screened with autoimmune anti-topoisomerase I serum. One of these clones has been expressed as a fusion protein comprised of a 32-kDa fragment of the bacterial TrpE protein linked to 67.7 kDa of protein encoded by the cDNA. Three lines of evidence indicate that the cloned cDNA encodes topoisomerase I. (i) Proteolysis maps of the fusion protein and human nuclear topoisomerase I are essentially identical. (ii) The fusion protein relaxes supercoiled DNA, an activity that can be immunoprecipitated by anti-topoisomerase I serum. (iii) Sequence analysis has revealed that the longest cDNA clone (3645 base pairs) encodes a protein of 765 amino acids that shares 42% identity with Saccharomyces cerevisiae topoisomerase I. The sequence data also show that the catalytically active 67.7-kDa fragment is comprised of the carboxyl terminus

  7. TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts.

    Science.gov (United States)

    Bernstein, Diana L; Le Lay, John E; Ruano, Elena G; Kaestner, Klaus H

    2015-05-01

    Current strategies to alter disease-associated epigenetic modifications target ubiquitously expressed epigenetic regulators. This approach does not allow specific genes to be controlled in specific cell types; therefore, tools to selectively target epigenetic modifications in the desired cell type and strategies to more efficiently correct aberrant gene expression in disease are needed. Here, we have developed a method for directing DNA methylation to specific gene loci by conjugating catalytic domains of DNA methyltransferases (DNMTs) to engineered transcription activator-like effectors (TALEs). We demonstrated that these TALE-DNMTs direct DNA methylation specifically to the targeted gene locus in human cells. Further, we determined that minimizing direct nucleotide sequence repeats within the TALE moiety permits efficient lentivirus transduction, allowing easy targeting of primary cell types. Finally, we demonstrated that directed DNA methylation with a TALE-DNMT targeting the CDKN2A locus, which encodes the cyclin-dependent kinase inhibitor p16, decreased CDKN2A expression and increased replication of primary human fibroblasts, as intended. Moreover, overexpression of p16 in these cells reversed the proliferative phenotype, demonstrating the specificity of our epigenetic targeting. Together, our results demonstrate that TALE-DNMTs can selectively target specific genes and suggest that this strategy has potential application for the development of locus-specific epigenetic therapeutics.

  8. Molecular cloning and characterization of human papilloma virus DNA derived from a laryngeal papilloma.

    OpenAIRE

    Gissmann, L; Diehl, V; Schultz-Coulon, H J; zur Hausen, H

    1982-01-01

    Papilloma virus DNA from a laryngeal papilloma was cloned in phage lambda L 47 and characterized after cleavage with different restriction enzymes. Hybridization with the DNAs of human papilloma virus types 1, 2, 3, 4, 5, and 8 showed no homology under stringent hybridization conditions. Human papilloma virus type 6 DNA, however, was partially identical to laryngeal papilloma virus DNA; different restriction enzyme fragments hybridizing with the other DNA were identified on each genome. The d...

  9. Increasing global participation in genetics research through DNA barcoding.

    Science.gov (United States)

    Adamowicz, Sarah J; Steinke, Dirk

    2015-12-01

    DNA barcoding--the sequencing of short, standardized DNA regions for specimen identification and species discovery--has promised to facilitate rapid access to biodiversity knowledge by diverse users. Here, we advance our opinion that increased global participation in genetics research is beneficial, both to scientists and for science, and explore the premise that DNA barcoding can help to democratize participation in genetics research. We examine publication patterns (2003-2014) in the DNA barcoding literature and compare trends with those in the broader, related domain of genomics. While genomics is the older and much larger field, the number of nations contributing to the published literature is similar between disciplines. Meanwhile, DNA barcoding exhibits a higher pace of growth in the number of publications as well as greater evenness among nations in their proportional contribution to total authorships. This exploration revealed DNA barcoding to be a highly international discipline, with growing participation by researchers in especially biodiverse nations. We briefly consider several of the challenges that may hinder further participation in genetics research, including access to training and molecular facilities as well as policy relating to the movement of genetic resources.

  10. Multiple distinct stimuli increase measured nucleosome occupancy around human promoters.

    Directory of Open Access Journals (Sweden)

    Chuong D Pham

    Full Text Available Nucleosomes can block access to transcription factors. Thus the precise localization of nucleosomes relative to transcription start sites and other factor binding sites is expected to be a critical component of transcriptional regulation. Recently developed microarray approaches have allowed the rapid mapping of nucleosome positions over hundreds of kilobases (kb of human genomic DNA, although these approaches have not yet been widely used to measure chromatin changes associated with changes in transcription. Here, we use custom tiling microarrays to reveal changes in nucleosome positions and abundance that occur when hormone-bound glucocorticoid receptor (GR binds to sites near target gene promoters in human osteosarcoma cells. The most striking change is an increase in measured nucleosome occupancy at sites spanning ∼1 kb upstream and downstream of transcription start sites, which occurs one hour after addition of hormone, but is lost at 4 hours. Unexpectedly, this increase was seen both on GR-regulated and GR-non-regulated genes. In addition, the human SWI/SNF chromatin remodeling factor (a GR co-activator was found to be important for increased occupancy upon hormone treatment and also for low nucleosome occupancy without hormone. Most surprisingly, similar increases in nucleosome occupancy were also seen on both regulated and non-regulated promoters during differentiation of human myeloid leukemia cells and upon activation of human CD4+ T-cells. These results indicate that dramatic changes in chromatin structure over ∼2 kb of human promoters may occur genomewide and in response to a variety of stimuli, and suggest novel models for transcriptional regulation.

  11. Estimation and quantification of human DNA in dental calculus: A pilot study.

    Science.gov (United States)

    Singh, Udita; Goel, Saurabh

    2017-01-01

    Identification using DNA has proved its accuracy multiple times in the field of forensic investigations. Investigators usually rely on either teeth or bone as the DNA reservoirs. However, there are instances where the skeletal or dental remains are not available or not preserved properly. Moreover, due to religious beliefs, the family members of the dead do not allow the investigating team to damage the remains for the sole purpose of identification. To investigate the presence of human DNA in dental calculus and to quantify the amount, if present. This prospective single-blinded pilot study included twenty subjects selected from the patients visiting a dental college. The samples of dental calculus were collected from the thickest portion of calculus deposited on the lingual surfaces of mandibular incisors. These samples were decontaminated and subjected to gel electrophoresis for DNA extraction. DNA was found in 85% cases. The amount of DNA varied from 21 to 37 μg/ml of dental calculus. Dental calculus is a rich reservoir of human DNA.

  12. Infrared A radiation promotes survival of human melanocytes carrying ultraviolet radiation-induced DNA damage.

    Science.gov (United States)

    Kimeswenger, Susanne; Schwarz, Agatha; Födinger, Dagmar; Müller, Susanne; Pehamberger, Hubert; Schwarz, Thomas; Jantschitsch, Christian

    2016-06-01

    The link between solar radiation and melanoma is still elusive. Although infrared radiation (IR) accounts for over 50% of terrestrial solar energy, its influence on human skin is not well explored. There is increasing evidence that IR influences the expression patterns of several molecules independently of heat. A previous in vivo study revealed that pretreatment with IR might promote the development of UVR-induced non-epithelial skin cancer and possibly of melanoma in mice. To expand on this, the aim of the present study was to evaluate the impact of IR on UVR-induced apoptosis and DNA repair in normal human epidermal melanocytes. The balance between these two effects is a key factor of malignant transformation. Human melanocytes were exposed to physiologic doses of IR and UVR. Compared to cells irradiated with UVR only, simultaneous exposure to IR significantly reduced the apoptotic rate. However, IR did not influence the repair of UVR-induced DNA damage. IR partly reversed the pro-apoptotic effects of UVR via modification of the expression and activity of proteins mainly of the extrinsic apoptotic pathway. In conclusion, IR enhances the survival of melanocytes carrying UVR-induced DNA damage and thereby might contribute to melanomagenesis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Genomic Mapping of Human DNA provides Evidence of Difference in Stretch between AT and GC rich regions

    Science.gov (United States)

    Reifenberger, Jeffrey; Dorfman, Kevin; Cao, Han

    Human DNA is a not a polymer consisting of a uniform distribution of all 4 nucleic acids, but rather contains regions of high AT and high GC content. When confined, these regions could have different stretch due to the extra hydrogen bond present in the GC basepair. To measure this potential difference, human genomic DNA was nicked with NtBspQI, labeled with a cy3 like fluorophore at the nick site, stained with YOYO, loaded into a device containing an array of nanochannels, and imaged. Over 473,000 individual molecules of DNA, corresponding to roughly 30x coverage of a human genome, were collected and aligned to the human reference. Based on the known AT/GC content between aligned pairs of labels, the stretch was measured for regions of similar size but different AT/GC content. We found that regions of high GC content were consistently more stretched than regions of high AT content between pairs of labels varying in size between 2.5 kbp and 500 kbp. We measured that for every 1% increase in GC content there was roughly a 0.06% increase in stretch. While this effect is small, it is important to take into account differences in stretch between AT and GC rich regions to improve the sensitivity of detection of structural variations from genomic variations. NIH Grant: R01-HG006851.

  14. Lack of evidence from HPLC 32P-post-labelling for tamoxifen-DNA adducts in the human endometrium.

    Science.gov (United States)

    Carmichael, P L; Sardar, S; Crooks, N; Neven, P; Van Hoof, I; Ugwumadu, A; Bourne, T; Tomas, E; Hellberg, P; Hewer, A J; Phillips, D H

    1999-02-01

    Tamoxifen is associated with an increased incidence of endometrial cancer in women. It is also a potent carcinogen in rat liver and forms covalent DNA adducts in this tissue. A previous study exploring DNA adducts in human endometria, utilizing thin layer chromatography 32P-postlabelling, found no evidence for adducts in tamoxifen-treated women [Carmichael,P.L., Ugwumadu,A.H.N., Neven,P., Hewer,A.J., Poon,G.K. and Phillips,D.H. (1996) Cancer Res., 56, 1475-1479]. However, subsequent work utilizing HPLC 32P-post-labelling [Hemminki,K., Ranjaniemi,H., Lindahl,B. and Moberger,B. (1996) Cancer Res., 56, 4374-4377] suggested that very low levels could be detected. We have sought to investigate this question further by reproducing the HPLC methodology at two centres, and analysing endometrial DNA from 20 patients treated with 20 mg/day tamoxifen for between 22 and 65 months. Liver DNA isolated from tamoxifen-treated rats was used as a positive control. We found no convincing evidence for tamoxifen-derived DNA adducts in human endometrium. HPLC elution profiles of post-labelled DNA from tamoxifen-treated women were indistinguishable from those obtained with DNA from 14 untreated women and from six women taking toremifene, an analogue of tamoxifen.

  15. Mitochondrial targeting of human O6-methylguanine DNA methyltransferase protects against cell killing by chemotherapeutic alkylating agents.

    Science.gov (United States)

    Cai, Shanbao; Xu, Yi; Cooper, Ryan J; Ferkowicz, Michael J; Hartwell, Jennifer R; Pollok, Karen E; Kelley, Mark R

    2005-04-15

    DNA repair capacity of eukaryotic cells has been studied extensively in recent years. Mammalian cells have been engineered to overexpress recombinant nuclear DNA repair proteins from ectopic genes to assess the impact of increased DNA repair capacity on genome stability. This approach has been used in this study to specifically target O(6)-methylguanine DNA methyltransferase (MGMT) to the mitochondria and examine its impact on cell survival after exposure to DNA alkylating agents. Survival of human hematopoietic cell lines and primary hematopoietic CD34(+) committed progenitor cells was monitored because the baseline repair capacity for alkylation-induced DNA damage is typically low due to insufficient expression of MGMT. Increased DNA repair capacity was observed when K562 cells were transfected with nuclear-targeted MGMT (nucl-MGMT) or mitochondrial-targeted MGMT (mito-MGMT). Furthermore, overexpression of mito-MGMT provided greater resistance to cell killing by 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU) than overexpression of nucl-MGMT. Simultaneous overexpression of mito-MGMT and nucl-MGMT did not enhance the resistance provided by mito-MGMT alone. Overexpression of either mito-MGMT or nucl-MGMT also conferred a similar level of resistance to methyl methanesulfonate (MMS) and temozolomide (TMZ) but simultaneous overexpression in both cellular compartments was neither additive nor synergistic. When human CD34(+) cells were infected with oncoretroviral vectors that targeted O(6)-benzylguanine (6BG)-resistant MGMT (MGMT(P140K)) to the nucleus or the mitochondria, committed progenitors derived from infected cells were resistant to 6BG/BCNU or 6BG/TMZ. These studies indicate that mitochondrial or nuclear targeting of MGMT protects hematopoietic cells against cell killing by BCNU, TMZ, and MMS, which is consistent with the possibility that mitochondrial DNA damage and nuclear DNA damage contribute equally to alkylating agent-induced cell killing during chemotherapy.

  16. Transformation of ultraviolet-irradiated human fibroblasts by simian virus 40 is enhanced by cellular DNA repair functions

    International Nuclear Information System (INIS)

    Hall, J.D.

    1981-01-01

    Human fibroblasts irradiated with ultraviolet light were either tested for survival (colony formation) or infected with simian virus 40 and examined for transformation (foci formation). For normal cell cultures, the fractions of surviving colonies which were also transformed increased with increasing irradiation dose. In contrast, little increase in the transformation of ultraviolet-irradiated repair-deficient (xeroderma pigmentosum and xeroderma pigmentosum variant) cells was observed. Similar experiments with xeroderma pigmentosum variant cells treated with caffeine following irradiation indicated that, under these conditions, the deficient cells produced more transformants among the survivors of ultraviolet irradiation than did unirradiated cells. These results suggest (1) that DNA repair functions, not DNA damage per se, are required for enhanced viral transformation in normal cells; (2) that functions involved in excision repair and functions needed for replication of ultraviolet-damaged DNA appear necessary for this stimulation; and (3) that blocking DNA replication in ultraviolet-irradiated xeroderma pigmentosum variant cells by caffeine enhances viral transformation. (Auth.)

  17. cDNA cloning, sequence analysis, and chromosomal localization of the gene for human carnitine palmitoyltransferase

    International Nuclear Information System (INIS)

    Finocchiaro, G.; Taroni, F.; Martin, A.L.; Colombo, I.; Tarelli, G.T.; DiDonato, S.; Rocchi, M.

    1991-01-01

    The authors have cloned and sequenced a cDNA encoding human liver carnitine palmitoyltransferase an inner mitochondrial membrane enzyme that plays a major role in the fatty acid oxidation pathway. Mixed oligonucleotide primers whose sequences were deduced from one tryptic peptide obtained from purified CPTase were used in a polymerase chain reaction, allowing the amplification of a 0.12-kilobase fragment of human genomic DNA encoding such a peptide. A 60-base-pair (bp) oligonucleotide synthesized on the basis of the sequence from this fragment was used for the screening of a cDNA library from human liver and hybridized to a cDNA insert of 2255 bp. This cDNA contains an open reading frame of 1974 bp that encodes a protein of 658 amino acid residues including 25 residues of an NH 2 -terminal leader peptide. The assignment of this open reading frame to human liver CPTase is confirmed by matches to seven different amino acid sequences of tryptic peptides derived from pure human CPTase and by the 82.2% homology with the amino acid sequence of rat CPTase. The NH 2 -terminal region of CPTase contains a leucine-proline motif that is shared by carnitine acetyl- and octanoyltransferases and by choline acetyltransferase. The gene encoding CPTase was assigned to human chromosome 1, region 1q12-1pter, by hybridization of CPTase cDNA with a DNA panel of 19 human-hanster somatic cell hybrids

  18. Human β satellite DNA: Genomic organization and sequence definition of a class of highly repetitive tandem DNA

    International Nuclear Information System (INIS)

    Waye, J.S.; Willard, H.F.

    1989-01-01

    The authors describe a class of human repetitive DNA, called β satellite, that, at a most fundamental level, exists as tandem arrays of diverged ∼68-base-pair monomer repeat units. The monomer units are organized as distinct subsets, each characterized by a multimeric higher-order repeat unit that is tandemly reiterated and represents a recent unit of amplification. They have cloned, characterized, and determined the sequence of two β satellite higher-order repeat units: one located on chromosome 9, the other on the acrocentric chromosomes (13, 14, 15, 21, and 22) and perhaps other sites in the genome. Analysis by pulsed-field gel electrophoresis reveals that these tandem arrays are localized in large domains that are marked by restriction fragment length polymorphisms. In total, β-satellite sequences comprise several million base pairs of DNA in the human genome. Analysis of this DNA family should permit insights into the nature of chromosome-specific and nonspecific modes of satellite DNA evolution and provide useful tools for probing the molecular organization and concerted evolution of the acrocentric chromosomes

  19. Raman Spectroscopy of DNA Packaging in Individual Human Sperm Cells distinguishes Normal from Abnormal Cells

    Energy Technology Data Exchange (ETDEWEB)

    Huser, T; Orme, C; Hollars, C; Corzett, M; Balhorn, R

    2009-03-09

    Healthy human males produce sperm cells of which about 25-40% have abnormal head shapes. Increases in the percentage of sperm exhibiting aberrant sperm head morphologies have been correlated with male infertility, and biochemical studies of pooled sperm have suggested that sperm with abnormal shape may contain DNA that has not been properly repackaged by protamine during spermatid development. We have used micro-Raman spectroscopy to obtain Raman spectra from individual human sperm cells and examined how differences in the Raman spectra of sperm chromatin correlate with cell shape. We show that Raman spectra of individual sperm cells contain vibrational marker modes that can be used to assess the efficiency of DNA-packaging for each cell. Raman spectra obtained from sperm cells with normal shape provide evidence that DNA in these sperm is very efficiently packaged. We find, however, that the relative protein content per cell and DNA packaging efficiencies are distributed over a relatively wide range for sperm cells with both normal and abnormal shape. These findings indicate that single cell Raman spectroscopy should be a valuable tool in assessing the quality of sperm cells for in-vitro fertilization.

  20. A Portrait of Ribosomal DNA Contacts with Hi-C Reveals 5S and 45S rDNA Anchoring Points in the Folded Human Genome.

    Science.gov (United States)

    Yu, Shoukai; Lemos, Bernardo

    2016-12-31

    Ribosomal RNAs (rRNAs) account for >60% of all RNAs in eukaryotic cells and are encoded in the ribosomal DNA (rDNA) arrays. The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1, whereas the 45S rDNA array resides on the short arm of five human acrocentric chromosomes. The 45S rDNA gives origin to the nucleolus, the nuclear organelle that is the site of ribosome biogenesis. Intriguingly, 5S and 45S rDNA arrays exhibit correlated copy number variation in lymphoblastoid cells (LCLs). Here we examined the genomic architecture and repeat content of the 5S and 45S rDNA arrays in multiple human genome assemblies (including PacBio MHAP assembly) and ascertained contacts between the rDNA arrays and the rest of the genome using Hi-C datasets from two human cell lines (erythroleukemia K562 and lymphoblastoid cells). Our analyses revealed that 5S and 45S arrays each have thousands of contacts in the folded genome, with rDNA-associated regions and genes dispersed across all chromosomes. The rDNA contact map displayed conserved and disparate features between two cell lines, and pointed to specific chromosomes, genomic regions, and genes with evidence of spatial proximity to the rDNA arrays; the data also showed a lack of direct physical interaction between the 5S and 45S rDNA arrays. Finally, the analysis identified an intriguing organization in the 5S array with Alu and 5S elements adjacent to one another and organized in opposite orientation along the array. Portraits of genome folding centered on the ribosomal DNA array could help understand the emergence of concerted variation, the control of 5S and 45S expression, as well as provide insights into an organelle that contributes to the spatial localization of human chromosomes during interphase. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma.

    Science.gov (United States)

    Zamboni, Camila G; Kozielski, Kristen L; Vaughan, Hannah J; Nakata, Maisa M; Kim, Jayoung; Higgins, Luke J; Pomper, Martin G; Green, Jordan J

    2017-10-10

    Hepatocellular carcinoma (HCC) is the third most deadly cancer in the US, with a meager 5-year survival rate of effective and cancer-specific DNA delivery to human HCC using biodegradable poly(beta-amino ester) (PBAE) nanoparticles (NPs). Varied PBAE NP formulations were evaluated for transfection efficacy and cytotoxicity to a range of human HCC cells as well as healthy human hepatocytes. To address HCC heterogeneity, nine different sources of human HCC cells were utilized. The polymeric NPs composed of 2-((3-aminopropyl)amino) ethanol end-modified poly(1,5-pentanediol diacrylate-co-3-amino-1-propanol) ('536') at a 25 polymer-to-DNA weight-to-weight ratio led to high transfection efficacy to all of the liver cancer lines, but not to hepatocytes. Each individual HCC line had a significantly higher percentage of exogenous gene expression than the healthy liver cells (Peffective DNA transfection in vivo. PBAE-based NPs enabled high and preferential DNA delivery to HCC cells, sparing healthy hepatocytes. These biodegradable and liver cancer-selective NPs are a promising technology to deliver therapeutic genes to liver cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Involvement of DNA topoisomerase I in transcription of human ribosomal RNA genes

    International Nuclear Information System (INIS)

    Zhang, H.; Wang, J.C.; Liu, L.F.

    1988-01-01

    Treatment of HeLa cells with a DNA topoisomerase I-specific inhibitor, camptothecin, results in rapid cessation of the synthesis of the 45S rRNA precursor. The inhibition of rRNA synthesis is reversible following drug removal and correlates with the presence of camptothecin-trapped topoisomerase I-DNA abortive complexes, which can be detected as topoisomerase I-linked DNA breaks upon lysis with sodium dodecyl sulfate. These breaks were found to be concentrated within the transcribed region of human rRNA genes. No such sites can be detected in the inactive human rRNA genes in mouse-human hybrid cells, suggesting a preferential association of topoisomerase I with actively transcribed genes. The distribution of RNA polymerase molecules along the transcription unit of human rRNA genes in camptothecin-treated HeLa cells, as assayed by nuclear run-on transcription, shows a graded decrease of the RNA polymerase density toward the 3' end of the transcription unit; the density is minimally affected near the 5' start of the transcription unit. These results suggest that DNA topoisomerase I is normally involved in the elongation step of transcription, especially when the transcripts are long, and that camptothecin interferes with this role

  3. LEDGF/p75 Deficiency Increases Deletions at the HIV-1 cDNA Ends.

    Science.gov (United States)

    Bueno, Murilo T D; Reyes, Daniel; Llano, Manuel

    2017-09-15

    Processing of unintegrated linear HIV-1 cDNA by the host DNA repair system results in its degradation and/or circularization. As a consequence, deficient viral cDNA integration generally leads to an increase in the levels of HIV-1 cDNA circles containing one or two long terminal repeats (LTRs). Intriguingly, impaired HIV-1 integration in LEDGF/p75-deficient cells does not result in a correspondent increase in viral cDNA circles. We postulate that increased degradation of unintegrated linear viral cDNA in cells lacking the lens epithelium-derived growth factor (LEDGF/p75) account for this inconsistency. To evaluate this hypothesis, we characterized the nucleotide sequence spanning 2-LTR junctions isolated from LEDGF/p75-deficient and control cells. LEDGF/p75 deficiency resulted in a significant increase in the frequency of 2-LTRs harboring large deletions. Of note, these deletions were dependent on the 3' processing activity of integrase and were not originated by aberrant reverse transcription. Our findings suggest a novel role of LEDGF/p75 in protecting the unintegrated 3' processed linear HIV-1 cDNA from exonucleolytic degradation.

  4. Repair of DNA in replicated and unreplicated portions of the human genome

    International Nuclear Information System (INIS)

    Waters, R.

    1979-01-01

    Portions of the human genome that have replicated after ultraviolet light irradiation and those that remain unreplicated have both been examined for the distribution of pyrimidine dimers and the extent of repair replication following their removal. The data indicate that the number of unrepaired dimers and the extent of repair replication seen after their excision are equal in the replicated and unreplicated DNA. Furthermore, the daughter strand of replicated DNA is larger than the average interdimer distance found in the parental strand. Hence, DNA replication in normal human fibroblasts is clearly capable of getting past pyrimidine dimers, and a preferential repair of such lesions in DNA that is about to be or has been replicated does not operate to any visible extent in these cells. (author)

  5. Locus Reference Genomic sequences: An improved basis for describing human DNA variants

    KAUST Repository

    Dalgleish, Raymond; Flicek, Paul; Cunningham, Fiona; Astashyn, Alex; Tully, Raymond E; Proctor, Glenn; Chen, Yuan; McLaren, William M; Larsson, Pontus; Vaughan, Brendan W; Bé roud, Christophe; Dobson, Glen; Lehvä slaiho, Heikki; Taschner, Peter EM; den Dunnen, Johan T; Devereau, Andrew; Birney, Ewan; Brookes, Anthony J; Maglott, Donna R

    2010-01-01

    As our knowledge of the complexity of gene architecture grows, and we increase our understanding of the subtleties of gene expression, the process of accurately describing disease-causing gene variants has become increasingly problematic. In part, this is due to current reference DNA sequence formats that do not fully meet present needs. Here we present the Locus Reference Genomic (LRG) sequence format, which has been designed for the specifi c purpose of gene variant reporting. The format builds on the successful National Center for Biotechnology Information (NCBI) RefSeqGene project and provides a single-fi le record containing a uniquely stable reference DNA sequence along with all relevant transcript and protein sequences essential to the description of gene variants. In principle, LRGs can be created for any organism, not just human. In addition, we recognize the need to respect legacy numbering systems for exons and amino acids and the LRG format takes account of these. We hope that widespread adoption of LRGs - which will be created and maintained by the NCBI and the European Bioinformatics Institute (EBI) - along with consistent use of the Human Genome Variation Society (HGVS)- approved variant nomenclature will reduce errors in the reporting of variants in the literature and improve communication about variants aff ecting human health. Further information can be found on the LRG web site (http://www.lrg-sequence.org). 2010 Dalgleish et al.; licensee BioMed Central Ltd.

  6. Locus Reference Genomic sequences: An improved basis for describing human DNA variants

    KAUST Repository

    Dalgleish, Raymond

    2010-04-15

    As our knowledge of the complexity of gene architecture grows, and we increase our understanding of the subtleties of gene expression, the process of accurately describing disease-causing gene variants has become increasingly problematic. In part, this is due to current reference DNA sequence formats that do not fully meet present needs. Here we present the Locus Reference Genomic (LRG) sequence format, which has been designed for the specifi c purpose of gene variant reporting. The format builds on the successful National Center for Biotechnology Information (NCBI) RefSeqGene project and provides a single-fi le record containing a uniquely stable reference DNA sequence along with all relevant transcript and protein sequences essential to the description of gene variants. In principle, LRGs can be created for any organism, not just human. In addition, we recognize the need to respect legacy numbering systems for exons and amino acids and the LRG format takes account of these. We hope that widespread adoption of LRGs - which will be created and maintained by the NCBI and the European Bioinformatics Institute (EBI) - along with consistent use of the Human Genome Variation Society (HGVS)- approved variant nomenclature will reduce errors in the reporting of variants in the literature and improve communication about variants aff ecting human health. Further information can be found on the LRG web site (http://www.lrg-sequence.org). 2010 Dalgleish et al.; licensee BioMed Central Ltd.

  7. Interspecies hybridization on DNA resequencing microarrays: efficiency of sequence recovery and accuracy of SNP detection in human, ape, and codfish mitochondrial DNA genomes sequenced on a human-specific MitoChip

    Directory of Open Access Journals (Sweden)

    Carr Steven M

    2007-09-01

    Full Text Available Abstract Background Iterative DNA "resequencing" on oligonucleotide microarrays offers a high-throughput method to measure intraspecific biodiversity, one that is especially suited to SNP-dense gene regions such as vertebrate mitochondrial (mtDNA genomes. However, costs of single-species design and microarray fabrication are prohibitive. A cost-effective, multi-species strategy is to hybridize experimental DNAs from diverse species to a common microarray that is tiled with oligonucleotide sets from multiple, homologous reference genomes. Such a strategy requires that cross-hybridization between the experimental DNAs and reference oligos from the different species not interfere with the accurate recovery of species-specific data. To determine the pattern and limits of such interspecific hybridization, we compared the efficiency of sequence recovery and accuracy of SNP identification by a 15,452-base human-specific microarray challenged with human, chimpanzee, gorilla, and codfish mtDNA genomes. Results In the human genome, 99.67% of the sequence was recovered with 100.0% accuracy. Accuracy of SNP identification declines log-linearly with sequence divergence from the reference, from 0.067 to 0.247 errors per SNP in the chimpanzee and gorilla genomes, respectively. Efficiency of sequence recovery declines with the increase of the number of interspecific SNPs in the 25b interval tiled by the reference oligonucleotides. In the gorilla genome, which differs from the human reference by 10%, and in which 46% of these 25b regions contain 3 or more SNP differences from the reference, only 88% of the sequence is recoverable. In the codfish genome, which differs from the reference by > 30%, less than 4% of the sequence is recoverable, in short islands ≥ 12b that are conserved between primates and fish. Conclusion Experimental DNAs bind inefficiently to homologous reference oligonucleotide sets on a re-sequencing microarray when their sequences differ by

  8. Human cytomegalovirus uracil DNA glycosylase associates with ppUL44 and accelerates the accumulation of viral DNA

    Directory of Open Access Journals (Sweden)

    Dixon Melissa

    2005-07-01

    Full Text Available Abstract Background Human cytomegalovirus UL114 encodes a uracil-DNA glycosylase homolog that is highly conserved in all characterized herpesviruses that infect mammals. Previous studies demonstrated that the deletion of this nonessential gene delays significantly the onset of viral DNA synthesis and results in a prolonged replication cycle. The gene product, pUL114, also appears to be important in late phase DNA synthesis presumably by introducing single stranded breaks. Results A series of experiments was performed to formally assign the observed phenotype to pUL114 and to characterize the function of the protein in viral replication. A cell line expressing pUL114 complemented the observed phenotype of a UL114 deletion virus in trans, confirming that the observed defects were the result of a deficiency in this gene product. Stocks of recombinant viruses without elevated levels of uracil were produced in the complementing cells; however they retained the phenotype of poor growth in normal fibroblasts suggesting that poor replication was unrelated to uracil content of input genomes. Recombinant viruses expressing epitope tagged versions of this gene demonstrated that pUL114 was expressed at early times and that it localized to viral replication compartments. This protein also coprecipitated with the DNA polymerase processivity factor, ppUL44 suggesting that these proteins associate in infected cells. This apparent interaction did not appear to require other viral proteins since ppUL44 could recruit pUL114 to the nucleus in uninfected cells. An analysis of DNA replication kinetics revealed that the initial rate of DNA synthesis and the accumulation of progeny viral genomes were significantly reduced compared to the parent virus. Conclusion These data suggest that pUL114 associates with ppUL44 and that it functions as part of the viral DNA replication complex to increase the efficiency of both early and late phase viral DNA synthesis.

  9. cDNA library construction of two human Demodexspecies.

    Science.gov (United States)

    Niu, DongLing; Wang, RuiLing; Zhao, YaE; Yang, Rui; Hu, Li; Lei, YuYang; Dan, WeiChao

    2017-06-01

    The research of Demodex, a type of pathogen causing various dermatoses in animals and human beings, is lacking at RNA level. This study aims at extracting RNA and constructing cDNA library for Demodex. First, P. cuniculiand D. farinaewere mixed to establish homogenization method for RNA extraction. Second, D. folliculorumand D. breviswere collected and preserved in Trizol, which were mixed with D. farinaerespectively to extract RNA. Finally, cDNA library was constructed and its quality was assessed. The results indicated that for D. folliculorum& D. farinae, the recombination rate of cDNA library was 90.67% and the library titer was 7.50 × 104 pfu/ml. 17 of the 59 positive clones were predicted to be of D. folliculorum; For D. brevis& D. farinae, the recombination rate was 90.96% and the library titer was 7.85 x104 pfu/ml. 40 of the 59 positive clones were predicted to be of D. brevis. Further detection by specific primers demonstrated that mtDNA cox1, cox3and ATP6 detected from cDNA libraries had 96.52%-99.73% identities with the corresponding sequences in GenBank. In conclusion, the cDNA libraries constructed for Demodexmixed with D. farinaewere successful and could satisfy the requirements for functional genes detection.

  10. Deficiency of the DNA repair protein nibrin increases the basal but not the radiation induced mutation frequency in vivo

    International Nuclear Information System (INIS)

    Wessendorf, Petra; Vijg, Jan; Nussenzweig, André; Digweed, Martin

    2014-01-01

    Highlights: • lacZ mutant frequencies measured in vivo in mouse models of radiosensitive Nijmegen Breakage Syndrome. • Spontaneous mutation frequencies are increased in lymphatic tissue due to Nbn mutation. • Single base transitions, not deletions, dominate the mutation spectrum. • Radiation induced mutation frequencies are not increased due to Nbn mutation. - Abstract: Nibrin (NBN) is a member of a DNA repair complex together with MRE11 and RAD50. The complex is associated particularly with the repair of DNA double strand breaks and with the regulation of cell cycle check points. Hypomorphic mutation of components of the complex leads to human disorders characterised by radiosensitivity and increased tumour occurrence, particularly of the lymphatic system. We have examined here the relationship between DNA damage, mutation frequency and mutation spectrum in vitro and in vivo in mouse models carrying NBN mutations and a lacZ reporter plasmid. We find that NBN mutation leads to increased spontaneous DNA damage in fibroblasts in vitro and high basal mutation rates in lymphatic tissue of mice in vivo. The characteristic mutation spectrum is dominated by single base transitions rather than the deletions and complex rearrangements expected after abortive repair of DNA double strand breaks. We conclude that in the absence of wild type nibrin, the repair of spontaneous errors, presumably arising during DNA replication, makes a major contribution to the basal mutation rate. This applies also to cells heterozygous for an NBN null mutation. Mutation frequencies after irradiation in vivo were not increased in mice with nibrin mutations as might have been expected considering the radiosensitivity of NBS patient cells in vitro. Evidently apoptosis is efficient, even in the absence of wild type nibrin

  11. Deficiency of the DNA repair protein nibrin increases the basal but not the radiation induced mutation frequency in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wessendorf, Petra [Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany); Vijg, Jan [Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461 (United States); Nussenzweig, André [Laboratory of Genome Integrity, National Cancer Institute, National Institute of Health, 37 Convent Drive, Room 1106, Bethesda, MD 20892 (United States); Digweed, Martin, E-mail: martin.digweed@charite.de [Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)

    2014-11-15

    Highlights: • lacZ mutant frequencies measured in vivo in mouse models of radiosensitive Nijmegen Breakage Syndrome. • Spontaneous mutation frequencies are increased in lymphatic tissue due to Nbn mutation. • Single base transitions, not deletions, dominate the mutation spectrum. • Radiation induced mutation frequencies are not increased due to Nbn mutation. - Abstract: Nibrin (NBN) is a member of a DNA repair complex together with MRE11 and RAD50. The complex is associated particularly with the repair of DNA double strand breaks and with the regulation of cell cycle check points. Hypomorphic mutation of components of the complex leads to human disorders characterised by radiosensitivity and increased tumour occurrence, particularly of the lymphatic system. We have examined here the relationship between DNA damage, mutation frequency and mutation spectrum in vitro and in vivo in mouse models carrying NBN mutations and a lacZ reporter plasmid. We find that NBN mutation leads to increased spontaneous DNA damage in fibroblasts in vitro and high basal mutation rates in lymphatic tissue of mice in vivo. The characteristic mutation spectrum is dominated by single base transitions rather than the deletions and complex rearrangements expected after abortive repair of DNA double strand breaks. We conclude that in the absence of wild type nibrin, the repair of spontaneous errors, presumably arising during DNA replication, makes a major contribution to the basal mutation rate. This applies also to cells heterozygous for an NBN null mutation. Mutation frequencies after irradiation in vivo were not increased in mice with nibrin mutations as might have been expected considering the radiosensitivity of NBS patient cells in vitro. Evidently apoptosis is efficient, even in the absence of wild type nibrin.

  12. Ultraviolet irradiation produces cytotoxic synergy and increased DNA interstrand crosslinking with cis- and trans-diamminedichloroplatinum(II)

    International Nuclear Information System (INIS)

    Swinnen, L.J.; Erickson, L.C.

    1989-01-01

    The excision-repair mechanism responsible for the removal of UV-induced thymine dimers may also play a role in the repair of cis-diamminedichloroplatinum(II) (cis-DDP)-induced DNA adducts in both bacteria and mammalian cells. It was hypothesized that UV dimers and cis-DDP adducts, when present simultaneously, might compete for a common repair system. Colony survival assays were performed in HT-29 human colon carcinoma cells exposed either to cis-DDP alone or to cis-DDP immediately followed by UV exposure. Progressively greater cytotoxic synergy with both increasing UV dose and cis-DDP dose was observed, to a point of saturation beyond which further toxicity was purely additive. An approximate doubling in DNA crosslink frequency, relative to cis-DDP alone, was found in cells exposed to cis-DDP plus UV. Since cis-DDP produces both inter- and intrastrand DNA crosslinks similar studies were performed with trans-DDP, which is incapable of producing intrastrand crosslinks, but does produce interstrand crosslinks. Cytotoxic synergy and increased interstrand crosslinking again resulted from the addition of UV exposure, but not to the same extent as seen with cis-DDP. (author)

  13. Construction and confirmation of the plasmid of human mitochondrial DNA 4977 bp deletion induced by ionizing radiation

    International Nuclear Information System (INIS)

    Chen Xiaosui; Zhou Lijun; Wang Yuxiao; Qu Jia; Feng Jiangbing; Lu Xue; Chen Deqing; Liu Qingjie

    2006-01-01

    Objective: To construct a stable plasmid that spanning deleted human mitochondrial DNA (mtDNA) 4977 bp induced by ionizing radiation and another one for control DNA fragment, in order to use in the human mitochondrial genome study in the future. Methods: The peripheral blood, which had no mtDNA 4977 bp deletion found in previous study, was exposed to 10 Gy 60 Co γ-rays in vitro. The total cell DNA was extracted and PCR was carried out: a nest-PCR of three-round PCR was used for the mtDNA 4977 bp deletion and one- round regular PCR was used for the control ND1 gene. The PCR products were used for transfection by electroporation and the positive clones were obtained after screening. The plasmid DNA was isolated and sequenced after enzymatic digestion and purification. The sequence result was BLASTed with the human mitochondrial genome. Results: The sizes of PCR products for the flanked 4977 bp deletion and the ND1 gene were similar with those predicted according to GeneBank. The sequences for the positive clones were above 99 per cent homologous with the human mitochondrial genome after BLASTed. Conclusion: The plasmids for deleted human mtDNA 4977 bp and control DNA fragment have been constructed successfully, and they could be used in the quality and quantity studies on human mtDNA 4977 bp deletion. (authors)

  14. Collaborating functions of BLM and DNA topoisomerase I in regulating human rDNA transcription

    Energy Technology Data Exchange (ETDEWEB)

    Grierson, Patrick M. [Department of Microbiology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210 (United States); Acharya, Samir, E-mail: samir.acharya@osumc.edu [Department of Microbiology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210 (United States); Groden, Joanna [Department of Microbiology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210 (United States)

    2013-03-15

    Bloom's syndrome (BS) is an inherited disorder caused by loss of function of the recQ-like BLM helicase. It is characterized clinically by severe growth retardation and cancer predisposition. BLM localizes to PML nuclear bodies and to the nucleolus; its deficiency results in increased intra- and inter-chromosomal recombination, including hyper-recombination of rDNA repeats. Our previous work has shown that BLM facilitates RNA polymerase I-mediated rRNA transcription in the nucleolus (Grierson et al., 2012 [18]). This study uses protein co-immunoprecipitation and in vitro transcription/translation (IVTT) to identify a direct interaction of DNA topoisomerase I with the C-terminus of BLM in the nucleolus. In vitro helicase assays demonstrate that DNA topoisomerase I stimulates BLM helicase activity on a nucleolar-relevant RNA:DNA hybrid, but has an insignificant effect on BLM helicase activity on a control DNA:DNA duplex substrate. Reciprocally, BLM enhances the DNA relaxation activity of DNA topoisomerase I on supercoiled DNA substrates. Our study suggests that BLM and DNA topoisomerase I function coordinately to modulate RNA:DNA hybrid formation as well as relaxation of DNA supercoils in the context of nucleolar transcription.

  15. Collaborating functions of BLM and DNA topoisomerase I in regulating human rDNA transcription

    International Nuclear Information System (INIS)

    Grierson, Patrick M.; Acharya, Samir; Groden, Joanna

    2013-01-01

    Bloom's syndrome (BS) is an inherited disorder caused by loss of function of the recQ-like BLM helicase. It is characterized clinically by severe growth retardation and cancer predisposition. BLM localizes to PML nuclear bodies and to the nucleolus; its deficiency results in increased intra- and inter-chromosomal recombination, including hyper-recombination of rDNA repeats. Our previous work has shown that BLM facilitates RNA polymerase I-mediated rRNA transcription in the nucleolus (Grierson et al., 2012 [18]). This study uses protein co-immunoprecipitation and in vitro transcription/translation (IVTT) to identify a direct interaction of DNA topoisomerase I with the C-terminus of BLM in the nucleolus. In vitro helicase assays demonstrate that DNA topoisomerase I stimulates BLM helicase activity on a nucleolar-relevant RNA:DNA hybrid, but has an insignificant effect on BLM helicase activity on a control DNA:DNA duplex substrate. Reciprocally, BLM enhances the DNA relaxation activity of DNA topoisomerase I on supercoiled DNA substrates. Our study suggests that BLM and DNA topoisomerase I function coordinately to modulate RNA:DNA hybrid formation as well as relaxation of DNA supercoils in the context of nucleolar transcription

  16. Long livestock farming history and human landscape shaping revealed by lake sediment DNA.

    Science.gov (United States)

    Giguet-Covex, Charline; Pansu, Johan; Arnaud, Fabien; Rey, Pierre-Jérôme; Griggo, Christophe; Gielly, Ludovic; Domaizon, Isabelle; Coissac, Eric; David, Fernand; Choler, Philippe; Poulenard, Jérôme; Taberlet, Pierre

    2014-01-01

    The reconstruction of human-driven, Earth-shaping dynamics is important for understanding past human/environment interactions and for helping human societies that currently face global changes. However, it is often challenging to distinguish the effects of the climate from human activities on environmental changes. Here we evaluate an approach based on DNA metabarcoding used on lake sediments to provide the first high-resolution reconstruction of plant cover and livestock farming history since the Neolithic Period. By comparing these data with a previous reconstruction of erosive event frequency, we show that the most intense erosion period was caused by deforestation and overgrazing by sheep and cowherds during the Late Iron Age and Roman Period. Tracking plants and domestic mammals using lake sediment DNA (lake sedDNA) is a new, promising method for tracing past human practices, and it provides a new outlook of the effects of anthropogenic factors on landscape-scale changes.

  17. Butachlor induced dissipation of mitochondrial membrane potential, oxidative DNA damage and necrosis in human peripheral blood mononuclear cells

    International Nuclear Information System (INIS)

    Dwivedi, Sourabh; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Musarrat, Javed

    2012-01-01

    Highlights: ► Butachlor exhibited strong binding affinity with DNA and produced 8-oxodG adducts. ► Butachlor induced DNA strand breaks and micronuclei formation in PBMN cells. ► Butachlor induced ROS and dissipation of mitochondrial membrane potential in cells. ► Butachlor resulted in cell cycle arrest and eventually caused cellular necrosis. -- Abstract: Butachlor is a systemic herbicide widely applied on rice, tea, wheat, beans and other crops; however, it concurrently exerts toxic effects on beneficial organisms like earthworms, aquatic invertebrates and other non-target animals including humans. Owing to the associated risk to humans, this chloroacetanilide class of herbicide was investigated with the aim to assess its potential for the (i) interaction with DNA, (ii) mitochondria membrane damage and DNA strand breaks and (iii) cell cycle arrest and necrosis in butachlor treated human peripheral blood mononuclear (PBMN) cells. Fluorescence quenching data revealed the binding constant (Ka = 1.2 × 10 4 M −1 ) and binding capacity (n = 1.02) of butachlor with ctDNA. The oxidative potential of butachlor was ascertained based on its capacity of inducing reactive oxygen species (ROS) and substantial amounts of promutagenic 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) adducts in DNA. Also, the discernible butachlor dose-dependent reduction in fluorescence intensity of a cationic dye rhodamine (Rh-123) and increased fluorescence intensity of 2′,7′-dichlorodihydro fluorescein diacetate (DCFH-DA) in treated cells signifies decreased mitochondrial membrane potential (ΔΨm) due to intracellular ROS generation. The comet data revealed significantly greater Olive tail moment (OTM) values in butachlor treated PBMN cells vs untreated and DMSO controls. Treatment of cultured PBMN cells for 24 h resulted in significantly increased number of binucleated micronucleated (BNMN) cells with a dose dependent reduction in the nuclear division index (NDI). The flow

  18. The role of DNA polymerase ζ in translesion synthesis across bulky DNA adducts and cross-links in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Tetsuya, E-mail: suzukite@hiroshima-u.ac.jp [Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Grúz, Petr; Honma, Masamitsu [Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Adachi, Noritaka [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Nohmi, Takehiko [Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan)

    2016-09-15

    Highlights: • Human cells knockout (KO) and expressing catalytically dead (CD) variant of DNA polymerase ζ (Pol ζ) have been established by gene targeting techniques with Nalm-6 cells. • Both Pol ζ KO and CD cells displayed prolonged cell cycle and higher incidence of micronucleus formation than the wild-type cells in the absence of exogenous genotoxic treatments. • Pol ζ protects human cells from genotoxic stresses that induce bulky DNA lesions and cross-links. • Pol ζ plays quite limited roles in protection against strand-breaks in DNA. - Abstract: Translesion DNA synthesis (TLS) is a cellular defense mechanism against genotoxins. Defects or mutations in specialized DNA polymerases (Pols) involved in TLS are believed to result in hypersensitivity to various genotoxic stresses. Here, DNA polymerase ζ (Pol ζ)-deficient (KO: knockout) and Pol ζ catalytically dead (CD) human cells were established and their sensitivity towards cytotoxic activities of various genotoxins was examined. The CD cells were engineered by altering the DNA sequence encoding two amino acids essential for the catalytic activity of Pol ζ, i.e., D2781 and D2783, to alanines. Both Pol ζ KO and CD cells displayed a prolonged cell cycle and higher incidence of micronuclei formation than the wild-type (WT) cells in the absence of exogenous genotoxic treatments, and the order of abnormality was CD > KO > WT cells. Both KO and CD cells exhibited higher sensitivity towards the killing effects of benzo[a]pyrene diol epoxide, mitomycin C, potassium bromate, N-methyl-N′-nitro-N-nitrosoguanidine, and ultraviolet C irradiation than WT cells, and there were no differences between the sensitivities of KO and CD cells. Interestingly, neither KO nor CD cells were sensitive to the cytotoxic effects of hydrogen peroxide. Since KO and CD cells displayed similar sensitivities to the genotoxins, we employed only KO cells to further examine their sensitivity to other genotoxic agents. KO cells were

  19. The role of DNA polymerase ζ in translesion synthesis across bulky DNA adducts and cross-links in human cells

    International Nuclear Information System (INIS)

    Suzuki, Tetsuya; Grúz, Petr; Honma, Masamitsu; Adachi, Noritaka; Nohmi, Takehiko

    2016-01-01

    Highlights: • Human cells knockout (KO) and expressing catalytically dead (CD) variant of DNA polymerase ζ (Pol ζ) have been established by gene targeting techniques with Nalm-6 cells. • Both Pol ζ KO and CD cells displayed prolonged cell cycle and higher incidence of micronucleus formation than the wild-type cells in the absence of exogenous genotoxic treatments. • Pol ζ protects human cells from genotoxic stresses that induce bulky DNA lesions and cross-links. • Pol ζ plays quite limited roles in protection against strand-breaks in DNA. - Abstract: Translesion DNA synthesis (TLS) is a cellular defense mechanism against genotoxins. Defects or mutations in specialized DNA polymerases (Pols) involved in TLS are believed to result in hypersensitivity to various genotoxic stresses. Here, DNA polymerase ζ (Pol ζ)-deficient (KO: knockout) and Pol ζ catalytically dead (CD) human cells were established and their sensitivity towards cytotoxic activities of various genotoxins was examined. The CD cells were engineered by altering the DNA sequence encoding two amino acids essential for the catalytic activity of Pol ζ, i.e., D2781 and D2783, to alanines. Both Pol ζ KO and CD cells displayed a prolonged cell cycle and higher incidence of micronuclei formation than the wild-type (WT) cells in the absence of exogenous genotoxic treatments, and the order of abnormality was CD > KO > WT cells. Both KO and CD cells exhibited higher sensitivity towards the killing effects of benzo[a]pyrene diol epoxide, mitomycin C, potassium bromate, N-methyl-N′-nitro-N-nitrosoguanidine, and ultraviolet C irradiation than WT cells, and there were no differences between the sensitivities of KO and CD cells. Interestingly, neither KO nor CD cells were sensitive to the cytotoxic effects of hydrogen peroxide. Since KO and CD cells displayed similar sensitivities to the genotoxins, we employed only KO cells to further examine their sensitivity to other genotoxic agents. KO cells were

  20. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences.

    Science.gov (United States)

    Wagner Mackenzie, Brett; Waite, David W; Taylor, Michael W

    2015-01-01

    The human gut contains dense and diverse microbial communities which have profound influences on human health. Gaining meaningful insights into these communities requires provision of high quality microbial nucleic acids from human fecal samples, as well as an understanding of the sources of variation and their impacts on the experimental model. We present here a systematic analysis of commonly used microbial DNA extraction methods, and identify significant sources of variation. Five extraction methods (Human Microbiome Project protocol, MoBio PowerSoil DNA Isolation Kit, QIAamp DNA Stool Mini Kit, ZR Fecal DNA MiniPrep, phenol:chloroform-based DNA isolation) were evaluated based on the following criteria: DNA yield, quality and integrity, and microbial community structure based on Illumina amplicon sequencing of the V4 region of bacterial and archaeal 16S rRNA genes. Our results indicate that the largest portion of variation within the model was attributed to differences between subjects (biological variation), with a smaller proportion of variation associated with DNA extraction method (technical variation) and intra-subject variation. A comprehensive understanding of the potential impact of technical variation on the human gut microbiota will help limit preventable bias, enabling more accurate diversity estimates.

  1. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences

    Directory of Open Access Journals (Sweden)

    Brett eWagner Mackenzie

    2015-02-01

    Full Text Available The human gut contains dense and diverse microbial communities which have profound influences on human health. Gaining meaningful insights into these communities requires provision of high quality microbial nucleic acids from human fecal samples, as well as an understanding of the sources of variation and their impacts on the experimental model. We present here a systematic analysis of commonly used microbial DNA extraction methods, and identify significant sources of variation. Five extraction methods (Human Microbiome Project protocol, MoBio PowerSoil DNA Isolation Kit, QIAamp DNA Stool Mini Kit, ZR Fecal DNA MiniPrep, phenol:chloroform-based DNA isolation were evaluated based on the following criteria: DNA yield, quality and integrity, and microbial community structure based on Illumina amplicon sequencing of the V4 region of bacterial and archaeal 16S rRNA genes. Our results indicate that the largest portion of variation within the model was attributed to differences between subjects (biological variation, with a smaller proportion of variation associated with DNA extraction method (technical variation and intra-subject variation. A comprehensive understanding of the potential impact of technical variation on the human gut microbiota will help limit preventable bias, enabling more accurate diversity estimates.

  2. More on contamination: the use of asymmetric molecular behavior to identify authentic ancient human DNA

    DEFF Research Database (Denmark)

    Malmström, Helena; Svensson, Emma M; Gilbert, M Thomas P

    2007-01-01

    concerning the authenticity of such data. Although several methods have been developed to the purpose of authenticating ancient DNA (aDNA) results, while they are useful in faunal research, most of the methods have proven complicated to apply to ancient human DNA. Here, we investigate in detail...... the reliability of one of the proposed criteria, that of appropriate molecular behavior. Using real-time polymerase chain reaction (PCR) and pyrosequencing, we have quantified the relative levels of authentic aDNA and contaminant human DNA sequences recovered from archaeological dog and cattle remains. In doing...

  3. Isolation and characterization of cDNA clones for human erythrocyte β-spectrin

    International Nuclear Information System (INIS)

    Prchal, J.T.; Morley, B.J.; Yoon, S.H.; Coetzer, T.L.; Palek, J.; Conboy, J.G.; Kan, Y.W.

    1987-01-01

    Spectrin is an important structural component of the membrane skeleton that underlies and supports the erythrocyte plasma membrane. It is composed of nonidentical α (M/sub r/ 240,000) and β (M/sub r/ 220,000) subunits, each of which contains multiple homologous 106-amino acid segments. The authors report here the isolation and characterization of a human erythroid-specific β-spectrin cDNA clone that encodes parts of the β-9 through β-12 repeat segments. This cDNA was used as a hybridization probe to assign the β-spectrin gene to human chromosome 14 and to begin molecular analysis of the gene and its mRNA transcripts. RNA transfer blot analysis showed that the reticulocyte β-spectrin mRNA is 7.8 kilobases in length. Southern blot analysis of genomic DNA revealed the presence of restriction fragment length polymorphisms (RFLPs) within the β-spectrin gene locus. The isolation of human spectrin cDNA probes and the identification of closely linked RFLPs will facilitate analysis of mutant spectrin genes causing congenital hemolytic anemias associated with quantitative and qualitative spectrin abnormalities

  4. Role of DNA lesions and repair in the transformation of human cells

    International Nuclear Information System (INIS)

    Maher, V.M.; McCormick, J.J.

    1987-01-01

    Results of studies on the transformation of diploid human fibroblasts in culture into tumor-forming cells by exposure to chemical carcinogens or radiation indicate that such transformation is multi-stepped process that at least one step, acquisition of anchorage independence, occurs as a mutagenic event. Studies comparing normal-repairing human cells with DNA repair-deficient cells, such as those derived from cancer-prone xeroderma pigmentosum patients, indicate that excision repair in human fibroblasts is essentially an error-free process that the ability to excise potentially cytotoxic, mutagenic, or transforming lesions induced DNA by carcinogens determines their ultimate biological consequences. Cells deficient in excision repair are abnormally sensitive to these agents. Studies with cells treated at various times in the cell cycle show that there is a certain limited amount of time available for DNA repair between the initial exposure and the onset of the cellular event responsible for mutation induction and transformation to anchorage independence. The data suggest that DNA replication on a template containing unexcised lesions (photoproducts, adducts) is the critical event

  5. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans.

    Directory of Open Access Journals (Sweden)

    Anthony E Civitarese

    2007-03-01

    Full Text Available Caloric restriction without malnutrition extends life span in a range of organisms including insects and mammals and lowers free radical production by the mitochondria. However, the mechanism responsible for this adaptation are poorly understood.The current study was undertaken to examine muscle mitochondrial bioenergetics in response to caloric restriction alone or in combination with exercise in 36 young (36.8 +/- 1.0 y, overweight (body mass index, 27.8 +/- 0.7 kg/m(2 individuals randomized into one of three groups for a 6-mo intervention: Control, 100% of energy requirements; CR, 25% caloric restriction; and CREX, caloric restriction with exercise (CREX, 12.5% CR + 12.5% increased energy expenditure (EE. In the controls, 24-h EE was unchanged, but in CR and CREX it was significantly reduced from baseline even after adjustment for the loss of metabolic mass (CR, -135 +/- 42 kcal/d, p = 0.002 and CREX, -117 +/- 52 kcal/d, p = 0.008. Participants in the CR and CREX groups had increased expression of genes encoding proteins involved in mitochondrial function such as PPARGC1A, TFAM, eNOS, SIRT1, and PARL (all, p < 0.05. In parallel, mitochondrial DNA content increased by 35% +/- 5% in the CR group (p = 0.005 and 21% +/- 4% in the CREX group (p < 0.004, with no change in the control group (2% +/- 2%. However, the activity of key mitochondrial enzymes of the TCA (tricarboxylic acid cycle (citrate synthase, beta-oxidation (beta-hydroxyacyl-CoA dehydrogenase, and electron transport chain (cytochrome C oxidase II was unchanged. DNA damage was reduced from baseline in the CR (-0.56 +/- 0.11 arbitrary units, p = 0.003 and CREX (-0.45 +/- 0.12 arbitrary units, p = 0.011, but not in the controls. In primary cultures of human myotubes, a nitric oxide donor (mimicking eNOS signaling induced mitochondrial biogenesis but failed to induce SIRT1 protein expression, suggesting that additional factors may regulate SIRT1 content during CR.The observed increase in

  6. DNA alkylation lesions and their repair in human cells: modification of the comet assay with 3-methyladenine DNA glycosylase (AlkD).

    Science.gov (United States)

    Hašplová, Katarína; Hudecová, Alexandra; Magdolénová, Zuzana; Bjøras, Magnar; Gálová, Eliška; Miadoková, Eva; Dušinská, Mária

    2012-01-05

    3-methyladenine DNA glycosylase (AlkD) belongs to a new family of DNA glycosylases; it initiates repair of cytotoxic and promutagenic alkylated bases (its main substrates being 3-methyladenine and 7-methylguanine). The modification of the comet assay (single cell gel electrophoresis) using AlkD enzyme thus allows assessment of specific DNA alkylation lesions. The resulting baseless sugars are alkali-labile, and under the conditions of the alkaline comet assay they appear as DNA strand breaks. The alkylating agent methyl methanesulfonate (MMS) was used to induce alkylation lesions and to optimize conditions for the modified comet assay method with AlkD on human lymphoblastoid (TK6) cells. We also studied cellular and in vitro DNA repair of alkylated bases in DNA in TK6 cells after treatment with MMS. Results from cellular repair indicate that 50% of DNA alkylation is repaired in the first 60 min. The in vitro repair assay shows that while AlkD recognises most alkylation lesions after 60 min, a cell extract from TK6 cells recognises most of the MMS-induced DNA adducts already in the first 15 min of incubation, with maximum detection of lesions after 60 min' incubation. Additionally, we tested the in vitro repair capacity of human lymphocyte extracts from 5 individuals and found them to be able to incise DNA alkylations in the same range as AlkD. The modification of the comet assay with AlkD can be useful for in vitro and in vivo genotoxicity studies to detect alkylation damage and repair and also for human biomonitoring and molecular epidemiology studies. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: Evidence for differential gene expression

    International Nuclear Information System (INIS)

    Kim, Sunyoung; Baltimore, D.; Byrn, R.; Groopman, J.

    1989-01-01

    The kinetics of retroviral DNA and RNA synthesis are parameters vital to understanding viral growth, especially for human immunodeficiency virus (HIV), which encodes several of its own regulatory genes. The authors have established a single-cycle growth condition for HIV in H9 cells, a human CD4 + lymphocyte line. The full-length viral linear DNA is first detectable by 4 h postinfection. During a one-step growth of HIV, amounts of viral DNA gradually increase until 8 to 12 h postinfection and then decrease. The copy number of unintegrated viral DNA is not extraordinarily high even at its peak. Most strikingly, there is a temporal program of RNA accumulation: the earliest RNA is greatly enriched in the 2-kilobase subgenomic mRNA species, while the level of 9.2-kilobase RNA which is both genomic RNA and mRNA remains low until after 24 h of infection. Virus production begins at about 24 h postinfection. Thus, viral DNA synthesis is as rapid as for other retroviruses, but viral RNA synthesis involves temporal alteration in the species that accumulate, presumably as a consequence of viral regulatory genes

  8. DNA Damage Induction and Repair Evaluated in Human Lymphocytes Irradiated with X-Rays an Neutrons

    International Nuclear Information System (INIS)

    Niedzwiedz, W.; Cebulska-Wasilewska, A.

    2000-12-01

    The objective of this study was to evaluate the kinetic of the DNA damage induction and their subsequent repair in human lymphocytes exposed to various types of radiation. PBLs cells were isolated from the whole blood of two young healthy male subjects and one skin cancer patient, and than exposed to various doses of low LET X-rays and high LET neutrons from 252 Cf source. To evaluate the DNA damage we have applied the single cell get electrophoresis technique (SCGE) also known as the comet assay. In order to estimate the repair efficiency, cells, which had been irradiated with a certain dose, were incubated at 37 o C for various periods of time (0 to 60 min). The kinetic of DNA damage recovery was investigated by an estimation of residual DNA damage persisted at cells after various times of post-irradiation incubation (5, 10, 15, 30 and 60 min). We observed an increase of the DNA damage (reported as a Tail DNA and Tail moment parameters) in linear and linear-quadratic manner, with increasing doses of X-rays and 252 Cf neutrons, respectively. Moreover, for skin cancer patient (Code 3) at whole studied dose ranges the higher level of the DNA damage was observed comparing to health subjects (Code 1 and 2), however statistically insignificant (for Tail DNA p=0.056; for Tail moment p=0.065). In case of the efficiency of the DNA damage repair it was observed that after 1 h of post-irradiation incubation the DNA damage induced with both, neutrons and X-rays had been significantly reduced (from 65% to 100 %). Furthermore, in case of skin cancer patient we observed lover repair efficiency of X-rays induced DNA damage. After irradiation with neutrons within first 30 min, the Tail DNA and Tail moment decreased of about 50%. One hour after irradiation, almost 70% of residual and new formed DNA damage was still observed. In this case, the level of unrepaired DNA damage may represent the fraction of the double strand breaks as well as more complex DNA damage (i.e.-DNA or DNA

  9. Human FEN1 Expression and Solubility Patterson in DNA Replication and Repair

    National Research Council Canada - National Science Library

    Carrier, Richard

    1999-01-01

    Flap endo-/exonuclease (FEN1) is a highly conserved protein shown to be one of 10 essential human proteins required for the production of form I DNA following DNA replication from the simian virus 40 (SV40...

  10. Impact of DNA mismatch repair system alterations on human fertility and related treatments.

    Science.gov (United States)

    Hu, Min-hao; Liu, Shu-yuan; Wang, Ning; Wu, Yan; Jin, Fan

    2016-01-01

    DNA mismatch repair (MMR) is one of the biological pathways, which plays a critical role in DNA homeostasis, primarily by repairing base-pair mismatches and insertion/deletion loops that occur during DNA replication. MMR also takes part in other metabolic pathways and regulates cell cycle arrest. Defects in MMR are associated with genomic instability, predisposition to certain types of cancers and resistance to certain therapeutic drugs. Moreover, genetic and epigenetic alterations in the MMR system demonstrate a significant relationship with human fertility and related treatments, which helps us to understand the etiology and susceptibility of human infertility. Alterations in the MMR system may also influence the health of offspring conceived by assisted reproductive technology in humans. However, further studies are needed to explore the specific mechanisms by which the MMR system may affect human infertility. This review addresses the physiological mechanisms of the MMR system and associations between alterations of the MMR system and human fertility and related treatments, and potential effects on the next generation.

  11. Increased mitochondrial DNA deletions and copy number in transfusion-dependent thalassemia

    Science.gov (United States)

    Calloway, Cassandra

    2016-01-01

    BACKGROUND. Iron overload is the primary cause of morbidity in transfusion-dependent thalassemia. Increase in iron causes mitochondrial dysfunction under experimental conditions, but the occurrence and significance of mitochondrial damage is not understood in patients with thalassemia. METHODS. Mitochondrial DNA (mtDNA) to nuclear DNA copy number (Mt/N) and frequency of the common 4977-bp mitochondrial deletion (ΔmtDNA4977) were quantified using a quantitative PCR assay on whole blood samples from 38 subjects with thalassemia who were receiving regular transfusions. RESULTS. Compared with healthy controls, Mt/N and ΔmtDNA4977 frequency were elevated in thalassemia (P = 0.038 and P 15 mg/g dry-weight or splenectomy, with the highest levels observed in subjects who had both risk factors (P = 0.003). Myocardial iron (MRI T2* 40/1 × 107 mtDNA, respectively (P = 0.025). Subjects with Mt/N values below the group median had significantly lower Matsuda insulin sensitivity index (5.76 ± 0.53) compared with the high Mt/N group (9.11 ± 0.95, P = 0.008). CONCLUSION. Individuals with transfusion-dependent thalassemia demonstrate age-related increase in mtDNA damage in leukocytes. These changes are markedly amplified by splenectomy and are associated with extrahepatic iron deposition. Elevated mtDNA damage in blood cells may predict the risk of iron-associated organ damage in thalassemia. FUNDING. This project was supported by Children’s Hospital & Research Center Oakland Institutional Research Award and by the National Center for Advancing Translational Sciences, NIH, through UCSF-CTSI grant UL1 TR000004. PMID:27583305

  12. Artificial Intelligence, DNA Mimicry, and Human Health.

    Science.gov (United States)

    Stefano, George B; Kream, Richard M

    2017-08-14

    The molecular evolution of genomic DNA across diverse plant and animal phyla involved dynamic registrations of sequence modifications to maintain existential homeostasis to increasingly complex patterns of environmental stressors. As an essential corollary, driver effects of positive evolutionary pressure are hypothesized to effect concerted modifications of genomic DNA sequences to meet expanded platforms of regulatory controls for successful implementation of advanced physiological requirements. It is also clearly apparent that preservation of updated registries of advantageous modifications of genomic DNA sequences requires coordinate expansion of convergent cellular proofreading/error correction mechanisms that are encoded by reciprocally modified genomic DNA. Computational expansion of operationally defined DNA memory extends to coordinate modification of coding and previously under-emphasized noncoding regions that now appear to represent essential reservoirs of untapped genetic information amenable to evolutionary driven recruitment into the realm of biologically active domains. Additionally, expansion of DNA memory potential via chemical modification and activation of noncoding sequences is targeted to vertical augmentation and integration of an expanded cadre of transcriptional and epigenetic regulatory factors affecting linear coding of protein amino acid sequences within open reading frames.

  13. Study of terahertz-radiation-induced DNA damage in human blood leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Angeluts, A A; Esaulkov, M N; Kosareva, O G; Solyankin, P M; Shkurinov, A P [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Gapeyev, A B; Pashovkin, T N [Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region (Russian Federation); Matyunin, S N [Section of Applied Problems at the Presidium of the Russian Academy of Sciences, Moscow (Russian Federation); Nazarov, M M [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation); Cherkasova, O P [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-03-28

    We have carried out the studies aimed at assessing the effect of terahertz radiation on DNA molecules in human blood leukocytes. Genotoxic testing of terahertz radiation was performed in three different oscillation regimes, the blood leukocytes from healthy donors being irradiated for 20 minutes with the mean intensity of 8 – 200 μW cm{sup -2} within the frequency range of 0.1 – 6.5 THz. Using the comet assay it is shown that in the selected regimes such radiation does not induce a direct DNA damage in viable human blood leukocytes. (biophotonics)

  14. Signatures of Climatic Change In Human Mitochondrial Dna From Europe

    Science.gov (United States)

    Richards, M. B.; Macaulay, V. A.; Torroni, A.; Bandelt, H.-J.

    Founder analysis is an approach to analysing non-recombining DNA sequence data, such as variation in the mitochondrial DNA (mtDNA), which aims at identifying and dating migrations into new territory. We applied the approach to about 4,000 human mtDNA sequences from Europe and the Near East, in order to estimate the proportion of modern lineages whose ancestors arrived at various times during the continent's past. We found that the major signal dates to about 15,000 years ago, at the time of rewarming following the Last Glacial Maximum (LGM). There is little or no archaeological evidence for immigration into Europe at this time, and the record indicates that at least parts of southern Europe remained populated during the LGM. Therefore, we interpret this signal as the trace of a bottleneck at the time of the LGM, as a result of the retreat from northern Europe during the peak of the glaciation, followed by a re-expansion from one or more refugial zones. Immigration episodes then figure at the beginning of the Early Upper Palaeolithic, during the Middle Upper Palaeolithic, and with the Neolithic. The impact of the latter on the composition of the European mtDNA pool was evidently rather minor. This result implies that climate is likely to have been a major force shaping human demographic history in Europe.

  15. Ancient DNA and the rewriting of human history: be sparing with Occam's razor.

    Science.gov (United States)

    Haber, Marc; Mezzavilla, Massimo; Xue, Yali; Tyler-Smith, Chris

    2016-01-11

    Ancient DNA research is revealing a human history far more complex than that inferred from parsimonious models based on modern DNA. Here, we review some of the key events in the peopling of the world in the light of the findings of work on ancient DNA.

  16. DNA damage responses in human induced pluripotent stem cells and embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Olga Momcilovic

    2010-10-01

    Full Text Available Induced pluripotent stem (iPS cells have the capability to undergo self-renewal and differentiation into all somatic cell types. Since they can be produced through somatic cell reprogramming, which uses a defined set of transcription factors, iPS cells represent important sources of patient-specific cells for clinical applications. However, before these cells can be used in therapeutic designs, it is essential to understand their genetic stability.Here, we describe DNA damage responses in human iPS cells. We observe hypersensitivity to DNA damaging agents resulting in rapid induction of apoptosis after γ-irradiation. Expression of pluripotency factors does not appear to be diminished after irradiation in iPS cells. Following irradiation, iPS cells activate checkpoint signaling, evidenced by phosphorylation of ATM, NBS1, CHEK2, and TP53, localization of ATM to the double strand breaks (DSB, and localization of TP53 to the nucleus of NANOG-positive cells. We demonstrate that iPS cells temporary arrest cell cycle progression in the G(2 phase of the cell cycle, displaying a lack of the G(1/S cell cycle arrest similar to human embryonic stem (ES cells. Furthermore, both cell types remove DSB within six hours of γ-irradiation, form RAD51 foci and exhibit sister chromatid exchanges suggesting homologous recombination repair. Finally, we report elevated expression of genes involved in DNA damage signaling, checkpoint function, and repair of various types of DNA lesions in ES and iPS cells relative to their differentiated counterparts.High degrees of similarity in DNA damage responses between ES and iPS cells were found. Even though reprogramming did not alter checkpoint signaling following DNA damage, dramatic changes in cell cycle structure, including a high percentage of cells in the S phase, increased radiosensitivity and loss of DNA damage-induced G(1/S cell cycle arrest, were observed in stem cells generated by induced pluripotency.

  17. Human SIRT6 promotes DNA end resection through CtIP deacetylation

    DEFF Research Database (Denmark)

    Kaidi, Abderrahmane; Weinert, Brian T; Choudhary, Chunaram

    2010-01-01

    SIRT6 belongs to the sirtuin family of protein lysine deacetylases, which regulate aging and genome stability. We found that human SIRT6 has a role in promoting DNA end resection, a crucial step in DNA double-strand break (DSB) repair by homologous recombination. SIRT6 depletion impaired the accu...

  18. DNA structure in human RNA polymerase II promoters

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Chauvin, Yves

    1998-01-01

    with a very low level of sequence similarity. The sequences, which include both TATA-containing and TATA-less promoters, are aligned by hidden Markov models. Using three different models of sequence-derived DNA bendability, the aligned promoters display a common structural profile with bendability being low...... protein in a manner reminiscent of DNA in a nucleosome. This notion is further supported by the finding that the periodic bendability is caused mainly by the complementary triplet pairs CAG/CTG and GGC/GCC, which previously have been found to correlate with nucleosome positioning. We present models where......The fact that DNA three-dimensional structure is important for transcriptional regulation begs the question of whether eukaryotic promoters contain general structural features independently of what genes they control. We present an analysis of a large set of human RNA polymerase II promoters...

  19. Does aerobic exercises induce mtDNA mutation in human blood ...

    African Journals Online (AJOL)

    The aim of this study was to determine the effect of eight weeks aerobic training on mitochondrial DNA (mtDNA) mutation in human blood leucocytes. Twenty untrained healthy students (training group: n =10, age = 20.7±1.5 yrs, weight = 67.7±10 kg, BF% = 17.5±7.35 & control group: n =10, age = 21±1.3 yrs, weight ...

  20. Introduction to Special Issue: The Human, Human Rights and DNA Identity Tests

    DEFF Research Database (Denmark)

    Vaisman, Noa

    2018-01-01

    might these new ways of imagining the subject shape present and future human rights law and practice? The papers examine a variety of scientific technologies—personalized medicine and organ transplant, mitochondrial DNA replacement, and scaffolds and regenerative medicine—and their implications for our......This special issue examines the diverse realities created by the intersection of emerging technologies, new scientific knowledge, and the human being. It engages with two key questions: how is the human being shaped and constructed in new ways through advances in science and technology? and how...... conceptualization of the human subject. Each is then followed by a commentary that both brings to light new dimensions of the original paper and presents a new theoretical take on the topic. Together these papers offer a serious challenge to the vision of the human subject at the root of human rights law. Instead...

  1. Accelerated repair and reduced mutagenicity of DNA damage induced by cigarette smoke in human bronchial cells transfected with E.coli formamidopyrimidine DNA glycosylase.

    Directory of Open Access Journals (Sweden)

    Mara Foresta

    Full Text Available Cigarette smoke (CS is associated to a number of pathologies including lung cancer. Its mutagenic and carcinogenic effects are partially linked to the presence of reactive oxygen species and polycyclic aromatic hydrocarbons (PAH inducing DNA damage. The bacterial DNA repair enzyme formamidopyrimidine DNA glycosylase (FPG repairs both oxidized bases and different types of bulky DNA adducts. We investigated in vitro whether FPG expression may enhance DNA repair of CS-damaged DNA and counteract the mutagenic effects of CS in human lung cells. NCI-H727 non small cell lung carcinoma cells were transfected with a plasmid vector expressing FPG fused to the Enhanced Green Fluorescent Protein (EGFP. Cells expressing the fusion protein EGFP-FPG displayed accelerated repair of adducts and DNA breaks induced by CS condensate. The mutant frequencies induced by low concentrations of CS condensate to the Na(+K(+-ATPase locus (oua(r were significantly reduced in cells expressing EGFP-FPG. Hence, expression of the bacterial DNA repair protein FPG stably protects human lung cells from the mutagenic effects of CS by improving cells' capacity to repair damaged DNA.

  2. Persistent Amplification of DNA Damage Signal Involved in Replicative Senescence of Normal Human Diploid Fibroblasts

    Directory of Open Access Journals (Sweden)

    Masatoshi Suzuki

    2012-01-01

    Full Text Available Foci of phosphorylated histone H2AX and ATM are the surrogate markers of DNA double strand breaks. We previously reported that the residual foci increased their size after irradiation, which amplifies DNA damage signals. Here, we addressed whether amplification of DNA damage signal is involved in replicative senescence of normal human diploid fibroblasts. Large phosphorylated H2AX foci (>1.5 μm diameter were specifically detected in presenescent cells. The frequency of cells with large foci was well correlated with that of cells positive for senescence-associated β-galactosidase staining. Hypoxic cell culture condition extended replicative life span of normal human fibroblast, and we found that the formation of large foci delayed in those cells. Our immuno-FISH analysis revealed that large foci partially localized at telomeres in senescent cells. Importantly, large foci of phosphorylated H2AX were always colocalized with phosphorylated ATM foci. Furthermore, Ser15-phosphorylated p53 showed colocalization with the large foci. Since the treatment of senescent cells with phosphoinositide 3-kinase inhibitor, wortmannin, suppressed p53 phosphorylation, it is suggested that amplification of DNA damage signaling sustains persistent activation of ATM-p53 pathway, which is essential for replicative senescence.

  3. DNA amplification is rare in normal human cells

    International Nuclear Information System (INIS)

    Wright, J.A.; Watt, F.M.; Hudson, D.L.; Stark, G.R.; Smith, H.S.; Hancock, M.C.

    1990-01-01

    Three types of normal human cells were selected in tissue culture with three drugs without observing a single amplification event from a total of 5 x 10 8 cells. No drug-resistant colonies were observed when normal foreskin keratinocytes were selected with N-(phosphonacetyl)-L-aspartate or with hydroxyurea or when normal mammary epithelial cells were selected with methotrexate. Some slightly resistant colonies with limited potential for growth were obtained when normal diploid fibroblast cells derived from fetal lung were selected with methotrexate or hydroxyurea but careful copy-number analysis of the dihydrofolate reductase and ribonucleotide reductase genes revealed no evidence of amplification. The rarity of DNA amplification in normal human cells contrasts strongly with the situation in tumors and in established cell lines, where amplification of onogenes and of genes mediating drug resistance is frequent. The results suggest that tumors and cell lines have acquired the abnormal ability to amplify DNA with high frequency

  4. Higher-Density Culture in Human Embryonic Stem Cells Results in DNA Damage and Genome Instability

    Directory of Open Access Journals (Sweden)

    Kurt Jacobs

    2016-03-01

    Full Text Available Human embryonic stem cells (hESC show great promise for clinical and research applications, but their well-known proneness to genomic instability hampers the development to their full potential. Here, we demonstrate that medium acidification linked to culture density is the main cause of DNA damage and genomic alterations in hESC grown on feeder layers, and this even in the short time span of a single passage. In line with this, we show that increasing the frequency of the medium refreshments minimizes the levels of DNA damage and genetic instability. Also, we show that cells cultured on laminin-521 do not present this increase in DNA damage when grown at high density, although the (long-term impact on their genomic stability remains to be elucidated. Our results explain the high levels of genome instability observed over the years by many laboratories worldwide, and show that the development of optimal culture conditions is key to solving this problem.

  5. A ruthenium polypyridyl intercalator stalls DNA replication forks, radiosensitizes human cancer cells and is enhanced by Chk1 inhibition

    Science.gov (United States)

    Gill, Martin R.; Harun, Siti Norain; Halder, Swagata; Boghozian, Ramon A.; Ramadan, Kristijan; Ahmad, Haslina; Vallis, Katherine A.

    2016-08-01

    Ruthenium(II) polypyridyl complexes can intercalate DNA with high affinity and prevent cell proliferation; however, the direct impact of ruthenium-based intercalation on cellular DNA replication remains unknown. Here we show the multi-intercalator [Ru(dppz)2(PIP)]2+ (dppz = dipyridophenazine, PIP = 2-(phenyl)imidazo[4,5-f][1,10]phenanthroline) immediately stalls replication fork progression in HeLa human cervical cancer cells. In response to this replication blockade, the DNA damage response (DDR) cell signalling network is activated, with checkpoint kinase 1 (Chk1) activation indicating prolonged replication-associated DNA damage, and cell proliferation is inhibited by G1-S cell-cycle arrest. Co-incubation with a Chk1 inhibitor achieves synergistic apoptosis in cancer cells, with a significant increase in phospho(Ser139) histone H2AX (γ-H2AX) levels and foci indicating increased conversion of stalled replication forks to double-strand breaks (DSBs). Normal human epithelial cells remain unaffected by this concurrent treatment. Furthermore, pre-treatment of HeLa cells with [Ru(dppz)2(PIP)]2+ before external beam ionising radiation results in a supra-additive decrease in cell survival accompanied by increased γ-H2AX expression, indicating the compound functions as a radiosensitizer. Together, these results indicate ruthenium-based intercalation can block replication fork progression and demonstrate how these DNA-binding agents may be combined with DDR inhibitors or ionising radiation to achieve more efficient cancer cell killing.

  6. Human DNA repair and recombination genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs

  7. UV light-induced DNA synthesis arrest in HeLa cells is associated with changes in phosphorylation of human single-stranded DNA-binding protein

    International Nuclear Information System (INIS)

    Carty, M.P.; Zernik-Kobak, M.; McGrath, S.; Dixon, K.

    1994-01-01

    We show that DNA replication activity in extracts of human HeLa cells decreases following UV irradiation. Alterations in replication activity in vitro parallel the UV-induced block in cell cycle progression of these cells in culture. UV irradiation also induces specific changes in the pattern of phosphorylation of the 34 kDa subunit of a DNA replication protein, human single-stranded DNA-binding protein (hSSB). The appearance of a hyperphosphorylated form of hSSB correlates with reduced in vitro DNA replication activity in extracts of UV-irradiated cells. Replication activity can be restored to these extracts in vitro by addition of purified hSSB. These results suggest that UV-induced DNA synthesis arrest may be mediated in part through phosphorylation-related alterations in the activity of hSSB, an essential component of the DNA replication apparatus. (Author)

  8. Structural and functional analyses of DNA-sensing and immune activation by human cGAS.

    Science.gov (United States)

    Kato, Kazuki; Ishii, Ryohei; Goto, Eiji; Ishitani, Ryuichiro; Tokunaga, Fuminori; Nureki, Osamu

    2013-01-01

    The detection of cytosolic DNA, derived from pathogens or host cells, by cytosolic receptors is essential for appropriate host immune responses. Cyclic GMP-AMP synthase (cGAS) is a newly identified cytosolic DNA receptor that produces cyclic GMP-AMP, which activates stimulator of interferon genes (STING), resulting in TBK1-IRF3 pathway activation followed by the production of type I interferons. Here we report the crystal structure of human cGAS. The structure revealed that a cluster of lysine and arginine residues forms the positively charged DNA binding surface of human cGAS, which is important for the STING-dependent immune activation. A structural comparison with other previously determined cGASs and our functional analyses suggested that a conserved zinc finger motif and a leucine residue on the DNA binding surface are crucial for the DNA-specific immune response of human cGAS, consistent with previous work. These structural features properly orient the DNA binding to cGAS, which is critical for DNA-induced cGAS activation and STING-dependent immune activation. Furthermore, we showed that the cGAS-induced activation of STING also involves the activation of the NF-κB and IRF3 pathways. Our results indicated that cGAS is a DNA sensor that efficiently activates the host immune system by inducing two distinct pathways.

  9. Structural and functional analyses of DNA-sensing and immune activation by human cGAS.

    Directory of Open Access Journals (Sweden)

    Kazuki Kato

    Full Text Available The detection of cytosolic DNA, derived from pathogens or host cells, by cytosolic receptors is essential for appropriate host immune responses. Cyclic GMP-AMP synthase (cGAS is a newly identified cytosolic DNA receptor that produces cyclic GMP-AMP, which activates stimulator of interferon genes (STING, resulting in TBK1-IRF3 pathway activation followed by the production of type I interferons. Here we report the crystal structure of human cGAS. The structure revealed that a cluster of lysine and arginine residues forms the positively charged DNA binding surface of human cGAS, which is important for the STING-dependent immune activation. A structural comparison with other previously determined cGASs and our functional analyses suggested that a conserved zinc finger motif and a leucine residue on the DNA binding surface are crucial for the DNA-specific immune response of human cGAS, consistent with previous work. These structural features properly orient the DNA binding to cGAS, which is critical for DNA-induced cGAS activation and STING-dependent immune activation. Furthermore, we showed that the cGAS-induced activation of STING also involves the activation of the NF-κB and IRF3 pathways. Our results indicated that cGAS is a DNA sensor that efficiently activates the host immune system by inducing two distinct pathways.

  10. Quantifying the Number of Independent Organelle DNA Insertions in Genome Evolution and Human Health.

    Science.gov (United States)

    Hazkani-Covo, Einat; Martin, William F

    2017-05-01

    Fragments of organelle genomes are often found as insertions in nuclear DNA. These fragments of mitochondrial DNA (numts) and plastid DNA (nupts) are ubiquitous components of eukaryotic genomes. They are, however, often edited out during the genome assembly process, leading to systematic underestimation of their frequency. Numts and nupts, once inserted, can become further fragmented through subsequent insertion of mobile elements or other recombinational events that disrupt the continuity of the inserted sequence relative to the genuine organelle DNA copy. Because numts and nupts are typically identified through sequence comparison tools such as BLAST, disruption of insertions into smaller fragments can lead to systematic overestimation of numt and nupt frequencies. Accurate identification of numts and nupts is important, however, both for better understanding of their role during evolution, and for monitoring their increasingly evident role in human disease. Human populations are polymorphic for 141 numt loci, five numts are causal to genetic disease, and cancer genomic studies are revealing an abundance of numts associated with tumor progression. Here, we report investigation of salient parameters involved in obtaining accurate estimates of numt and nupt numbers in genome sequence data. Numts and nupts from 44 sequenced eukaryotic genomes reveal lineage-specific differences in the number, relative age and frequency of insertional events as well as lineage-specific dynamics of their postinsertional fragmentation. Our findings outline the main technical parameters influencing accurate identification and frequency estimation of numts in genomic studies pertinent to both evolution and human health. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens.

    Science.gov (United States)

    van der Veen, Stijn; Tang, Christoph M

    2015-02-01

    During colonization and disease, bacterial pathogens must survive the onslaught of the host immune system. A key component of the innate immune response is the generation of reactive oxygen and nitrogen species by phagocytic cells, which target and disrupt pathogen molecules, particularly DNA, and the base excision repair (BER) pathway is the most important mechanism for the repair of such oxidative DNA damage. In this Review, we discuss how the human-specific pathogens Mycobacterium tuberculosis, Helicobacter pylori and Neisseria meningitidis have evolved specialized mechanisms of DNA repair, particularly their BER pathways, compared with model organisms such as Escherichia coli. This specialization in DNA repair is likely to reflect the distinct niches occupied by these important human pathogens in the host.

  12. Evaluation of methods for the extraction and purification of DNA from the human microbiome.

    Directory of Open Access Journals (Sweden)

    Sanqing Yuan

    Full Text Available DNA extraction is an essential step in all cultivation-independent approaches to characterize microbial diversity, including that associated with the human body. A fundamental challenge in using these approaches has been to isolate DNA that is representative of the microbial community sampled.In this study, we statistically evaluated six commonly used DNA extraction procedures using eleven human-associated bacterial species and a mock community that contained equal numbers of those eleven species. These methods were compared on the basis of DNA yield, DNA shearing, reproducibility, and most importantly representation of microbial diversity. The analysis of 16S rRNA gene sequences from a mock community showed that the observed species abundances were significantly different from the expected species abundances for all six DNA extraction methods used.Protocols that included bead beating and/or mutanolysin produced significantly better bacterial community structure representation than methods without both of them. The reproducibility of all six methods was similar, and results from different experimenters and different times were in good agreement. Based on the evaluations done it appears that DNA extraction procedures for bacterial community analysis of human associated samples should include bead beating and/or mutanolysin to effectively lyse cells.

  13. A rapid and efficient DNA extraction protocol from fresh and frozen human blood samples.

    Science.gov (United States)

    Guha, Pokhraj; Das, Avishek; Dutta, Somit; Chaudhuri, Tapas Kumar

    2018-01-01

    Different methods available for extraction of human genomic DNA suffer from one or more drawbacks including low yield, compromised quality, cost, time consumption, use of toxic organic solvents, and many more. Herein, we aimed to develop a method to extract DNA from 500 μL of fresh or frozen human blood. Five hundred microliters of fresh and frozen human blood samples were used for standardization of the extraction procedure. Absorbance at 260 and 280 nm, respectively, (A 260 /A 280 ) were estimated to check the quality and quantity of the extracted DNA sample. Qualitative assessment of the extracted DNA was checked by Polymerase Chain reaction and double digestion of the DNA sample. Our protocol resulted in average yield of 22±2.97 μg and 20.5±3.97 μg from 500 μL of fresh and frozen blood, respectively, which were comparable to many reference protocols and kits. Besides yielding bulk amount of DNA, our protocol is rapid, economical, and avoids toxic organic solvents such as Phenol. Due to unaffected quality, the DNA is suitable for downstream applications. The protocol may also be useful for pursuing basic molecular researches in laboratories having limited funds. © 2017 Wiley Periodicals, Inc.

  14. Genotoxic effect and antigen binding characteristics of SLE auto-antibodies to peroxynitrite-modified human DNA.

    Science.gov (United States)

    Khan, Md Asad; Alam, Khursheed; Mehdi, Syed Hassan; Rizvi, M Moshahid A

    2017-12-01

    Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease characterized by auto-antibodies against native deoxyribonucleic acid after modification and is one of the reasons for the development of SLE. Here, we have evaluated the structural perturbations in human placental DNA by peroxynitrite using spectroscopy, thermal denaturation and high-performance liquid chromatography (HPLC). Peroxynitrite is a powerful potent bi-functional oxidative/nitrative agent that is produced both endogenously and exogenously. In experimental animals, the peroxynitrite-modified DNA was found to be highly immunogenic. The induced antibodies showed cross-reactions with different types of DNA and nitrogen bases that were modified with peroxynitrite by inhibition ELISA. The antibody activity was inhibited by approximately 89% with its immunogen as the inhibitor. The antigen-antibodies interaction between induced antibodies with peroxynitrite-modified DNA showed retarded mobility as compared to the native form. Furthermore, significantly increased binding was also observed in SLE autoantibodies with peroxynitrite-modified DNA than native form. Moreover, DNA isolated from lymphocyte of SLE patients revealed significant recognition of anti-peroxynitrite-modified DNA immunoglobulin G (IgG). Our data indicates that DNA modified with peroxynitrite presents unique antigenic determinants that may induce autoantibody response in SLE. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Effects of direct-to-consumer advertising and clinical guidelines on appropriate use of human papillomavirus DNA tests.

    Science.gov (United States)

    Price, Rebecca Anhang; Frank, Richard G; Cleary, Paul D; Goldie, Sue J

    2011-02-01

    Both clinical guidelines and direct-to-consumer (DTC) advertising influence the use of new health care technologies, but little is known about their relative effects. The introduction of a cervical cancer screening test in 2000 offered a unique opportunity to assess the 2 strategies. To evaluate the effects of clinical guidelines and a targeted DTC advertising campaign on overall and appropriate use of human papillomavirus (HPV) DNA tests. Quasi-experimental study using difference-in-differences analysis. Data were MarketScan private insurance claims for 500,000 women aged 21 to 64 enrolled at least 12 consecutive months from January 2001 through December 2005. Both clinical guidelines and DTC advertising were associated with increases in overall HPV DNA test use. DTC advertising was associated with a statistically significant increase in HPV DNA test use in 2 groups of DTC cities (+5.57%, P advertising was associated with comparable increases in the probability of appropriate and inappropriate use of the HPV DNA test in primary screening. Clinical guideline releases from the American College of Obstetricians and Gynecologists, and by a cosponsored panel, were associated with greater increases in HPV DNA tests for appropriate primary screening than for inappropriate primary screening (β = 0.3347, P advertising was associated with increased overall use of a cervical cancer screening test, whereas clinical guidelines were differentially associated with increased appropriate use. These findings suggest distinct influences of consumer marketing and professional guidelines on the use of health care products and services.

  16. Unscheduled DNA synthesis in human hair follicles after in vitro exposure to 11 chemicals: comparison with unscheduled DNA synthesis in rat hepatocytes.

    Science.gov (United States)

    van Erp, Y H; Koopmans, M J; Heirbaut, P R; van der Hoeven, J C; Weterings, P J

    1992-06-01

    A new method is described to investigate unscheduled DNA synthesis (UDS) in human tissue after exposure in vitro: the human hair follicle. A histological technique was applied to assess cytotoxicity and UDS in the same hair follicle cells. UDS induction was examined for 11 chemicals and the results were compared with literature findings for UDS in rat hepatocytes. Most chemicals inducing UDS in rat hepatocytes raised DNA repair at comparable concentrations in the hair follicle. However, 1 of 9 chemicals that gave a positive response in the rat hepatocyte UDS test, 2-acetylaminofluorene, failed to induce DNA repair in the hair follicle. Metabolizing potential of hair follicle cells was shown in experiments with indirectly acting compounds, i.e., benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene and dimethylnitrosamine. The results support the conclusion that the test in its present state is valuable as a screening assay for the detection of unscheduled DNA synthesis. Moreover, the use of human tissues may result in a better extrapolation to man.

  17. Postmortem study of stable carbon isotope ratios in human cerebellar DNA: preliminary results

    International Nuclear Information System (INIS)

    Slatkin, D.N.; Irsa, A.P.; Friedman, L.

    1978-01-01

    It is observed that 13 C/ 12 C ratios in tissue specimens removed postmortem in the United States and Canada are significantly different from corresponding ratios in European specimens. On the basis of this information, measurements of carbon isotope ratios in DNA isolated from cerebella of native-born and European-born North Americans are in progress with the goal of estimating the average lifetime rate of DNA turnover in human neurons. Preliminary results from twenty postmortem examinations are consistent with the hypothesis that a significant proportion of human cerebellar DNA is renewed during the lifetime of an individual

  18. Biflorin induces cytotoxicity by DNA interaction in genetically different human melanoma cell lines.

    Science.gov (United States)

    Ralph, Ana Carolina Lima; Calcagno, Danielle Queiroz; da Silva Souza, Luciana Gregório; de Lemos, Telma Leda Gomes; Montenegro, Raquel Carvalho; de Arruda Cardoso Smith, Marília; de Vasconcellos, Marne Carvalho

    2016-08-01

    Cancer is a public health problem and the second leading cause of death worldwide. The incidence of cutaneous melanoma has been notably increasing, resulting in high aggressiveness and poor survival rates. Taking into account the antitumor activity of biflorin, a substance isolated from Capraria biflora L. roots that is cytotoxic in vitro and in vivo, this study aimed to demonstrate the action of biflorin against three established human melanoma cell lines that recapitulate the molecular landscape of the disease in terms of genetic alterations and mutations, such as the TP53, NRAS and BRAF genes. The results presented here indicate that biflorin reduces the viability of melanoma cell lines by DNA interactions. Biflorin causes single and double DNA strand breaks, consequently inhibiting cell cycle progression, replication and DNA repair and promoting apoptosis. Our data suggest that biflorin could be considered as a future therapeutic option for managing melanoma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Absence of specificity in inhibition of DNA repair replication by DNA-binding agents, cocarcinogens, and steroids in human cells

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Painter, R.B.

    1975-01-01

    Although many chemicals, including cocarcinogens, DNA-binding agents, and steroids, inhibit repair replication of ultraviolet-induced damage to DNA in human lymphocytes and proliferating cells in culture, none of these chemicals is specific. Our results show that all the chemicals we tested inhibit normal DNA synthesis as much as or more than they inhibit repair replication. There is thus no evidence in our results to support the hypothesis that cocarcinogens are specific inhibitors of DNA repair or that any of the chemicals studied might be useful adjuncts to tumor therapy merely because of specific inhibition of radiation repair mechanisms

  20. Human B cells fail to secrete type I interferons upon cytoplasmic DNA exposure.

    Science.gov (United States)

    Gram, Anna M; Sun, Chenglong; Landman, Sanne L; Oosenbrug, Timo; Koppejan, Hester J; Kwakkenbos, Mark J; Hoeben, Rob C; Paludan, Søren R; Ressing, Maaike E

    2017-11-01

    Most cells are believed to be capable of producing type I interferons (IFN I) as part of an innate immune response against, for instance, viral infections. In macrophages, IFN I is potently induced upon cytoplasmic exposure to foreign nucleic acids. Infection of these cells with herpesviruses leads to triggering of the DNA sensors interferon-inducible protein 16 (IFI16) and cyclic GMP-AMP (cGAMP) synthase (cGAS). Thereby, the stimulator of interferon genes (STING) and the downstream molecules TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) are sequentially activated culminating in IFN I secretion. Human gamma-herpesviruses, such as Epstein-Barr virus (EBV), exploit B cells as a reservoir for persistent infection. In this study, we investigated whether human B cells, similar to macrophages, engage the cytoplasmic DNA sensing pathway to induce an innate immune response. We found that the B cells fail to secrete IFN I upon cytoplasmic DNA exposure, although they express the DNA sensors cGAS and IFI16 and the signaling components TBK1 and IRF3. In primary human B lymphocytes and EBV-negative B cell lines, this deficiency is explained by a lack of detectable levels of the central adaptor protein STING. In contrast, EBV-transformed B cell lines did express STING, yet both these lines as well as STING-reconstituted EBV-negative B cells did not produce IFN I upon dsDNA or cGAMP stimulation. Our combined data show that the cytoplasmic DNA sensing pathway is dysfunctional in human B cells. This exemplifies that certain cell types cannot induce IFN I in response to cytoplasmic DNA exposure providing a potential niche for viral persistence. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Cdc45-induced loading of human RPA onto single-stranded DNA.

    Science.gov (United States)

    Szambowska, Anna; Tessmer, Ingrid; Prus, Piotr; Schlott, Bernhard; Pospiech, Helmut; Grosse, Frank

    2017-04-07

    Cell division cycle protein 45 (Cdc45) is an essential component of the eukaryotic replicative DNA helicase. We found that human Cdc45 forms a complex with the single-stranded DNA (ssDNA) binding protein RPA. Moreover, it actively loads RPA onto nascent ssDNA. Pull-down assays and surface plasmon resonance studies revealed that Cdc45-bound RPA complexed with ssDNA in the 8-10 nucleotide binding mode, but dissociated when RPA covered a 30-mer. Real-time analysis of RPA-ssDNA binding demonstrated that Cdc45 catalytically loaded RPA onto ssDNA. This placement reaction required physical contacts of Cdc45 with the RPA70A subdomain. Our results imply that Cdc45 controlled stabilization of the 8-nt RPA binding mode, the subsequent RPA transition into 30-mer mode and facilitated an ordered binding to ssDNA. We propose that a Cdc45-mediated loading guarantees a seamless deposition of RPA on newly emerging ssDNA at the nascent replication fork. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Replication of UV-irradiated DNA in human cell extracts: Evidence for mutagenic bypass of pyrimidine dimers

    International Nuclear Information System (INIS)

    Thomas, D.C.; Kunkel, T.A.

    1993-01-01

    The authors have examined the efficiency and fidelity of simian virus 40-origin-dependent replication of UV-irradiated double-stranded DNA in extracts of human cells. Using as a mutational target the α-complementation domain of the Escherichia coli lacZ gene in bacteriophage M13mp2DNA, replication of undamaged DNA in HeLa cell extracts was highly accurate, whereas replication of DNA irradiated with UV light (280-320 nm) was both less efficient and less accurate. Replication was inhibited by irradiation in a dose-dependent manner. Nonetheless, covalently closed, monomer-length circular products were generated that were resistant to digestion by Dpn I, showing that they resulted from semiconservative replication. These products were incised by T4 endonuclease V, whereas the undamaged replication products were not, suggesting that pyrimidine dimers were bypassed during replication. When replicated, UV-irradiated DNA was used to transfect an E. coli α-complementation host strain to score mutant M13mp2 plaques, the mutant plaque frequency was substantially higher than that obtained with either unirradiated, replicated DNA, or unreplicated, UV-irradiated DNA. Both the increased mutagenicity and the inhibition of replication associated with UV irradiation were reversed by treatment of the irradiated DNA with photolyase before replication. Sequence analysis of mutants resulting from replication of UV-irradiated DNA demonstrated that most mutants contained C → T transition errors at dipyrimidine sites. A few mutants contained 1-nt frameshift errors or tandem double CC → TT substitutions. The data are consistent with the interpretation that pyrimidine dimers are bypassed during replication by the multiprotein replication apparatus in human cell extracts and that this bypass is mutagenic primarily via misincorporation of dAMP opposite a cytosine (or uracil) in the dimer. 56 refs., 2 figs., 3 tabs

  3. DNA rearrangements from γ-irradiated normal human fibroblasts preferentially occur in transcribed regions of the genome

    International Nuclear Information System (INIS)

    Forrester, H.B.; Radford, I.R.

    2003-01-01

    Full text: DNA rearrangement events leading to chromosomal aberrations are central to ionizing radiation-induced cell death. Although DNA double-strand breaks are probably the lesion that initiates formation of chromosomal aberrations, little is understood about the molecular mechanisms that generate and modulate DNA rearrangement. Examination of the sequences that flank sites of DNA rearrangement may provide information regarding the processes and enzymes involved in rearrangement events. Accordingly, we developed a method using inverse PCR that allows the detection and sequencing of putative radiation-induced DNA rearrangements in defined regions of the human genome. The method can detect single copies of a rearrangement event that has occurred in a particular region of the genome and, therefore, DNA rearrangement detection does not require survival and continued multiplication of the affected cell. Ionizing radiation-induced DNA rearrangements were detected in several different regions of the genome of human fibroblast cells that were exposed to 30 Gy of γ-irradiation and then incubated for 24 hours at 37 deg C. There was a 3- to 5-fold increase in the number of products amplified from irradiated as compared with control cells in the target regions 5' to the C-MYC, CDKN1A, RB1, and FGFR2 genes. Sequences were examined from 121 DNA rearrangements. Approximately half of the PCR products were derived from possible inter-chromosomal rearrangements and the remainder were from intra-chromosomal events. A high proportion of the sequences that rearranged with target regions were located in genes, suggesting that rearrangements may occur preferentially in transcribed regions. Eighty-four percent of the sequences examined by reverse transcriptase PCR were from transcribed sequences in IMR-90 cells. The distribution of DNA rearrangements within the target regions is non-random and homology occurs between the sequences involved in rearrangements in some cases but is not

  4. Protection by quercetin and quercetin-rich fruit juice against induction of oxidative DNA damage and formation of BPDE-DNA adducts in human lymphocytes

    NARCIS (Netherlands)

    Wilms, L.C.; Hollman, P.C.H.; Boots, A.W.; Kleinjans, J.C.S.

    2005-01-01

    Flavonoids are claimed to protect against cardiovascular disease, certain forms of cancer and ageing, possibly by preventing initial DNA damage. Therefore, we investigated the protective effects of the flavonoid quercetin against the formation of oxidative DNA damage and bulky DNA adducts in human

  5. Mass spectrometry-based cDNA profiling as a potential tool for human body fluid identification.

    Science.gov (United States)

    Donfack, Joseph; Wiley, Anissa

    2015-05-01

    Several mRNA markers have been exhaustively evaluated for the identification of human venous blood, saliva, and semen in forensic genetics. As new candidate human body fluid specific markers are discovered, evaluated, and reported in the scientific literature, there is an increasing trend toward determining the ideal markers for cDNA profiling of body fluids of forensic interest. However, it has not been determined which molecular genetics-based technique(s) should be utilized to assess the performance of these markers. In recent years, only a few confirmatory, mRNA/cDNA-based methods have been evaluated for applications in body fluid identification. The most frequently described methods tested to date include quantitative polymerase chain reaction (qPCR) and capillary electrophoresis (CE). However these methods, in particular qPCR, often favor narrow multiplex PCR due to the availability of a limited number of fluorescent dyes/tags. In an attempt to address this technological constraint, this study explored matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) for human body fluid identification via cDNA profiling of venous blood, saliva, and semen. Using cDNA samples at 20pg input phosphoglycerate kinase 1 (PGK1) amounts, body fluid specific markers for the candidate genes were amplified in their corresponding body fluid (i.e., venous blood, saliva, or semen) and absent in the remaining two (100% specificity). The results of this study provide an initial indication that MALDI-TOF MS is a potential fluorescent dye-free alternative method for body fluid identification in forensic casework. However, the inherent issues of low amounts of mRNA, and the damage caused to mRNA by environmental exposures, extraction processes, and storage conditions are important factors that significantly hinder the implementation of cDNA profiling into forensic casework. Published by Elsevier Ireland Ltd.

  6. Complex forms of mitochondrial DNA in human B cells transformed by Epstein-Barr virus (EBV)

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Christiansen, C; Zeuthen, J

    1983-01-01

    Human lymphocytes and lymphoid cell lines were analyzed for the presence of complex forms of mitochondrial DNA (mtDNA) by electron microscopy. A high frequency (9%-14.5%) of catenated dimers, circular dimers, or oligomers were found in samples from Epstein-Barr-virus-(EBV) transformed lymphoblast......Human lymphocytes and lymphoid cell lines were analyzed for the presence of complex forms of mitochondrial DNA (mtDNA) by electron microscopy. A high frequency (9%-14.5%) of catenated dimers, circular dimers, or oligomers were found in samples from Epstein-Barr-virus-(EBV) transformed...

  7. Rearrangement of a common cellular DNA domain on chromosome 4 in human primary liver tumors

    International Nuclear Information System (INIS)

    Pasquinelli, C.; Garreau, F.; Bougueleret, L.; Cariani, E.; Thiers, V.; Croissant, O.; Hadchouel, M.; Tiollais, P.; Brechot, C.; Grzeschik, K.H.

    1988-01-01

    Hepatitis B virus (HBV) DNA integration has been shown to occur frequently in human hepatocellular carcinomas. The authors have investigated whether common cellular DNA domains might be rearranged, possibly by HBV integration, in human primary liver tumors. Unique cellular DNA sequences adjacent to an HBV integration site were isolated from a patient with hepatitis B surface antigen-positive hepatocellular carcinoma. These probes detected rearrangement of this cellular region of chromosomal DNA in 3 of 50 additional primary liver tumors studied. Of these three tumor samples, two contained HBV DNA, without an apparent link between the viral DNA and the rearranged allele; HBV DNA sequences were not detected in the third tumor sample. By use of a panel of somatic cell hybrids, these unique cellular DNA sequences were shown to be located on chromosome 4. Therefore, this region of chromosomal DNA might be implicated in the formation of different tumors at one step of liver cell transformation, possible related to HBV integration

  8. Exonuclease of human DNA polymerase gamma disengages its strand displacement function.

    Science.gov (United States)

    He, Quan; Shumate, Christie K; White, Mark A; Molineux, Ian J; Yin, Y Whitney

    2013-11-01

    Pol γ, the only DNA polymerase found in human mitochondria, functions in both mtDNA repair and replication. During mtDNA base-excision repair, gaps are created after damaged base excision. Here we show that Pol γ efficiently gap-fills except when the gap is only a single nucleotide. Although wild-type Pol γ has very limited ability for strand displacement DNA synthesis, exo(-) (3'-5' exonuclease-deficient) Pol γ has significantly high activity and rapidly unwinds downstream DNA, synthesizing DNA at a rate comparable to that of the wild-type enzyme on a primer-template. The catalytic subunit Pol γA alone, even when exo(-), is unable to synthesize by strand displacement, making this the only known reaction of Pol γ holoenzyme that has an absolute requirement for the accessory subunit Pol γB. © 2013. Published by Elsevier B.V.

  9. Potent protection of gallic acid against DNA oxidation: Results of human and animal experiments

    International Nuclear Information System (INIS)

    Ferk, Franziska; Chakraborty, Asima; Jaeger, Walter; Kundi, Michael; Bichler, Julia; Misik, Miroslav; Wagner, Karl-Heinz; Grasl-Kraupp, Bettina; Sagmeister, Sandra; Haidinger, Gerald; Hoelzl, Christine; Nersesyan, Armen; Dusinska, Maria; Simic, Tatjana; Knasmueller, Siegfried

    2011-01-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a constituent of plant derived foods, beverages and herbal remedies. We investigated its DNA protective properties in a placebo controlled human intervention trial in single cell gel electrophoresis experiments. Supplementation of drinking water with GA (12.8 mg/person/d) for three days led to a significant reduction of DNA migration attributable to oxidised pyrimidines (endonuclease III sensitive sites) and oxidised purines (formamidopyrimidine glycosylase sensitive sites) in lymphocytes of healthy individuals by 75% and 64% respectively. Also DNA damage caused by treatment of the cells with reactive oxygen species (ROS) was reduced after GA consumption (by 41%). These effects were paralleled by an increase of the activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase and glutathion-S-transferase-π) and a decrease of intracellular ROS concentrations in lymphocytes, while no alterations of the total antioxidant capacity (TAC), of malondialdehyde levels in serum and of the urinary excretion of isoprostanes were found. Experiments with rats showed that GA reduces oxidatively damaged DNA in lymphocytes, liver, colon and lungs and protects these organs against γ-irradiation-induced strand breaks and formation of oxidatively damaged DNA-bases. Furthermore, the number of radiation-induced preneoplastic hepatic foci was decreased by 43% after oral administration of the phenolic. Since we did not find alterations of the TAC in plasma and lipid peroxidation of cell membranes but intracellular effects it is likely that the antioxidant properties of GA seen in vivo are not due to direct scavenging of radicals but rather to indirect mechanisms (e.g. protection against ROS via activation of transcription factors). As the amount of GA used in the intervention trial is similar to the daily intake in Middle Europe (18 mg/person/day), our findings indicate that it may contribute to prevention of formation

  10. Potent protection of gallic acid against DNA oxidation: Results of human and animal experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ferk, Franziska; Chakraborty, Asima [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria); Jaeger, Walter [Department of Clinical Pharmacy and Diagnostic, University of Vienna, Vienna (Austria); Kundi, Michael [Institute of Environmental Health, Center for Public Health, Medical University of Vienna, A-1090 Vienna (Austria); Bichler, Julia; Misik, Miroslav [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria); Wagner, Karl-Heinz [Department of Nutritional Sciences, University of Vienna, 1090 Vienna (Austria); Grasl-Kraupp, Bettina; Sagmeister, Sandra [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria); Haidinger, Gerald [Department of Epidemiology, Center for Public Health, Medical University of Vienna, A-1090 Vienna (Austria); Hoelzl, Christine; Nersesyan, Armen [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria); Dusinska, Maria [Health Effect Laboratory, Center for Ecological Economics, Norwegian Institute for Air Research, NO-2027 Kjeller (Norway); Simic, Tatjana [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria); Knasmueller, Siegfried, E-mail: siegfried.knasmueller@meduniwien.ac.at [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria)

    2011-10-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a constituent of plant derived foods, beverages and herbal remedies. We investigated its DNA protective properties in a placebo controlled human intervention trial in single cell gel electrophoresis experiments. Supplementation of drinking water with GA (12.8 mg/person/d) for three days led to a significant reduction of DNA migration attributable to oxidised pyrimidines (endonuclease III sensitive sites) and oxidised purines (formamidopyrimidine glycosylase sensitive sites) in lymphocytes of healthy individuals by 75% and 64% respectively. Also DNA damage caused by treatment of the cells with reactive oxygen species (ROS) was reduced after GA consumption (by 41%). These effects were paralleled by an increase of the activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase and glutathion-S-transferase-{pi}) and a decrease of intracellular ROS concentrations in lymphocytes, while no alterations of the total antioxidant capacity (TAC), of malondialdehyde levels in serum and of the urinary excretion of isoprostanes were found. Experiments with rats showed that GA reduces oxidatively damaged DNA in lymphocytes, liver, colon and lungs and protects these organs against {gamma}-irradiation-induced strand breaks and formation of oxidatively damaged DNA-bases. Furthermore, the number of radiation-induced preneoplastic hepatic foci was decreased by 43% after oral administration of the phenolic. Since we did not find alterations of the TAC in plasma and lipid peroxidation of cell membranes but intracellular effects it is likely that the antioxidant properties of GA seen in vivo are not due to direct scavenging of radicals but rather to indirect mechanisms (e.g. protection against ROS via activation of transcription factors). As the amount of GA used in the intervention trial is similar to the daily intake in Middle Europe (18 mg/person/day), our findings indicate that it may contribute to prevention of

  11. [Correlation between PMI and DNA degradation of costicartilage and dental pulp cells in human being].

    Science.gov (United States)

    Long, Ren; Wang, Wei-ping; Xiong, Ping

    2005-08-01

    To probe the correlation between the postmortem interval (PMI) and the DNA degradation of costicartilage and dental pulp cells in human being after death, and to seek a new method for estimating PMI. The image cytometry was used to measure the DNA degradation under different ambient temperatures (30-35 degrees C, 15-20 degrees C) in 0-15 days after death. The average DNA content of two kinds of tissue was degradated with the prolongation of PMI. But there was a plateau period of 0-4 days for dental pulp cells of human being in 15-20 degrees C. There was a high negative correlativity PPMI. PMI could be estimated accurately according to the DNA degradation of costicartilage and dental pulp cells in human being after death.

  12. Sites of instability in the human TCF3 (E2A) gene adopt G-quadruplex DNA structures in vitro

    Science.gov (United States)

    Williams, Jonathan D.; Fleetwood, Sara; Berroyer, Alexandra; Kim, Nayun; Larson, Erik D.

    2015-01-01

    The formation of highly stable four-stranded DNA, called G-quadruplex (G4), promotes site-specific genome instability. G4 DNA structures fold from repetitive guanine sequences, and increasing experimental evidence connects G4 sequence motifs with specific gene rearrangements. The human transcription factor 3 (TCF3) gene (also termed E2A) is subject to genetic instability associated with severe disease, most notably a common translocation event t(1;19) associated with acute lymphoblastic leukemia. The sites of instability in TCF3 are not randomly distributed, but focused to certain sequences. We asked if G4 DNA formation could explain why TCF3 is prone to recombination and mutagenesis. Here we demonstrate that sequences surrounding the major t(1;19) break site and a region associated with copy number variations both contain G4 sequence motifs. The motifs identified readily adopt G4 DNA structures that are stable enough to interfere with DNA synthesis in physiological salt conditions in vitro. When introduced into the yeast genome, TCF3 G4 motifs promoted gross chromosomal rearrangements in a transcription-dependent manner. Our results provide a molecular rationale for the site-specific instability of human TCF3, suggesting that G4 DNA structures contribute to oncogenic DNA breaks and recombination. PMID:26029241

  13. Human placental Na+, K+-ATPase α subunit: cDNA cloning, tissue expression, DNA polymorphism, and chromosomal localization

    International Nuclear Information System (INIS)

    Chehab, F.F.; Kan, Y.W.; Law, M.L.; Hartz, J.; Kao, F.T.; Blostein, R.

    1987-01-01

    A 2.2-kilobase clone comprising a major portion of the coding sequence of the Na + , K + -ATPase α subunit was cloned from human placenta and its sequence was identical to that encoding the α subunit of human kidney and HeLa cells. Transfer blot analysis of the mRNA products of the Na + , K + -ATPase gene from various human tissues and cell lines revealed only one band (≅ 4.7 kilobases) under low and high stringency washing conditions. The levels of expression in the tissues were intestine > placenta > liver > pancreas, and in the cell lines the levels were human erythroleukemia > butyrate-induced colon > colon > brain > HeLa cells. mRNA was undetectable in reticulocytes, consistent with the authors failure to detect positive clones in a size-selected ( > 2 kilobases) λgt11 reticulocyte cDNA library. DNA analysis revealed by a polymorphic EcoRI band and chromosome localization by flow sorting and in situ hybridization showed that the α subunit is on the short is on the short arm (band p11-p13) of chromosome 1

  14. Insights into the processes behind the contamination of degraded human teeth and bone samples with exogenous sources of DNA

    DEFF Research Database (Denmark)

    Gilbert, M. T. P.; Hansen, Anders J.; Willerslev, E.

    2006-01-01

    A principal problem facing human DNA studies that use old and degraded remains is contamination from other sources of human DNA. In this study we have attempted to contaminate deliberately bones and teeth sampled from a medieval collection excavated in Trondheim, Norway, in order to investigate......, prior to assaying for the residual presence of the handler's DNA. Surprisingly, although our results suggest that a large proportion of the teeth were contaminated with multiple sources of human DNA prior to our investigation, we were unable to contaminate the samples with further human DNA. One...

  15. Human sperm sex chromosome disomy and sperm DNA damage assessed by the neutral comet assay.

    Science.gov (United States)

    McAuliffe, M E; Williams, P L; Korrick, S A; Dadd, R; Marchetti, F; Martenies, S E; Perry, M J

    2014-10-10

    Is there an association between human sperm sex chromosome disomy and sperm DNA damage? An increase in human sperm XY disomy was associated with higher comet extent; however, there was no other consistent association of sex chromosome disomies with DNA damage. There is limited published research on the association between sex chromosome disomy and sperm DNA damage and the findings are not consistent across studies. We conducted a cross-sectional study of 190 men (25% ever smoker, 75% never smoker) from subfertile couples presenting at the Massachusetts General Hospital Fertility Clinic from January 2000 to May 2003. Multiprobe fluorescence in situ hybridization for chromosomes X, Y and 18 was used to determine XX, YY, XY and total sex chromosome disomy in sperm nuclei using an automated scoring method. The neutral comet assay was used to measure sperm DNA damage, as reflected by comet extent, percentage DNA in the comet tail, and tail distributed moment. Univariate and multiple linear regression models were constructed with sex chromosome disomy (separate models for each of the four disomic conditions) as the independent variable, and DNA damage parameters (separate models for each measure of DNA damage) as the dependent variable. Men with current or past smoking history had significantly greater comet extent (µm: regression coefficients with 95% CI) [XX18: 15.17 (1.98, 28.36); YY18: 14.68 (1.50, 27.86); XY18: 15.41 (2.37, 28.45); Total Sex Chromosome Disomy: 15.23 (2.09, 28.38)], and tail distributed moment [XX18: 3.01 (0.30, 5.72); YY18: 2.95 (0.24, 5.67); XY18: 3.04 (0.36, 5.72); Total Sex Chromosome Disomy: 3.10 (0.31, 5.71)] than men who had never smoked. In regression models adjusted for age and smoking, there was a positive association between XY disomy and comet extent. For an increase in XY disomy from 0.56 to 1.47% (representing the 25th to 75th percentile), there was a mean increase of 5.08 µm in comet extent. No other statistically significant

  16. Long-Term Stability of Human Genomic and Human Papillomavirus DNA Stored in BD SurePath and Hologic PreservCyt Liquid-Based Cytology Media

    Science.gov (United States)

    Agreda, Patricia M.; Beitman, Gerard H.; Gutierrez, Erin C.; Harris, James M.; Koch, Kristopher R.; LaViers, William D.; Leitch, Sharon V.; Maus, Courtney E.; McMillian, Ray A.; Nussbaumer, William A.; Palmer, Marcus L. R.; Porter, Michael J.; Richart, Gregory A.; Schwab, Ryan J.

    2013-01-01

    We evaluated the effect of storage at 2 to 8°C on the stability of human genomic and human papillomavirus (HPV) DNA stored in BD SurePath and Hologic PreservCyt liquid-based cytology media. DNA retained the ability to be extracted and PCR amplified for more than 2.5 years in both medium types. Prior inability to detect DNA in archived specimens may have been due to failure of the extraction method to isolate DNA from fixed cells. PMID:23678069

  17. Effects of microbial DNA on human DNA profiles generated using the PowerPlex® 16 HS system.

    Science.gov (United States)

    Dembinski, Gina M; Picard, Christine J

    2017-11-01

    Most crime scenes are not sterile and therefore may be contaminated with environmental DNA, especially if a decomposing body is found. Collecting biological evidence from this individual will yield DNA samples mixed with microbial DNA. This also becomes important if postmortem swabs are collected from sexually assaulted victims. Although genotyping kits undergo validation tests, including bacterial screens, they do not account for the diverse microbial load during decomposition. We investigated the effect of spiking human DNA samples with known concentrations of DNA from 17 microbe species associated with decomposition on DNA profiles produced using the Promega PowerPlex ® HS system. Two species, Bacillus subtilis and Mycobacterium smegmatis, produced an extraneous allele at the TPOX locus. When repeated with the PowerPlex ® Fusion kit, the extra allele no longer amplified with these two species. This experiment demonstrates that caution should be exhibited if microbial load is high and the PowerPlex ® 16HS system is used. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  18. Higher-order human telomeric G-quadruplex DNA metalloenzymes enhance enantioselectivity in the Diels-Alder reaction.

    Science.gov (United States)

    Li, Yinghao; Jia, Guoqing; Wang, Changhao; Cheng, Mingpan; Li, Can

    2015-03-02

    Short human telomeric (HT) DNA sequences form single G-quadruplex (G4 ) units and exhibit structure-based stereocontrol for a series of reactions. However, for more biologically relevant higher-order HT G4 -DNAs (beyond a single G4 unit), the catalytic performances are unknown. Here, we found that higher-order HT G4 -DNA copper metalloenzymes (two or three G4 units) afford remarkably higher enantioselectivity (>90 % ee) and a five- to sixfold rate increase, compared to a single G4 unit, for the Diels-Alder reaction. Electron paramagnetic resonance (EPR) and enzymatic kinetic studies revealed that the distinct catalytic function between single and higher-order G4 -DNA copper metalloenzymes can be attributed to different Cu(II) coordination environments and substrate specificity. Our finding suggests that, like protein enzymes and ribozymes, higher-order structural organization is crucial for G4 -DNA-based catalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ultraviolet-induced DNA excision repair in human B and T lymphocytes. II

    International Nuclear Information System (INIS)

    Yew, F.F.-H.; Johnson, R.T.

    1979-01-01

    Despite their great sensitivity to ultraviolet light purified human B and T lymphocytes are capable of complete repair provided that the ultraviolet dose does not exceed 0.5 Jm -2 . Their capacity to repair, as measured by the restoration of DNA supercoiling in preparations of nucleoids, and their survival are significantly increased in the presence of deoxyribonucleosides. Certain agents which inhibit semi-conservative DNA synthesis (hydroxyurea, 1-β-D-arabino-furanosylcytosine (arafCyt) either stop or delay the repair process in lymphocytes. The effect of hydroxyurea is eventually overcome spontaneously, but changes in the sedimentation behaviour of ultraviolet-irradiated nucleoids caused by arafCyt can only be neutralized by addition of deoxycytidine. The effective inhibition of repair by arafCyt permits the detection of extremely small amounts of ultraviolet damage and also the estimation of when repair is complete. (Auth.)

  20. Pre-steady-state fluorescence analysis of damaged DNA transfer from human DNA glycosylases to AP endonuclease APE1.

    Science.gov (United States)

    Kuznetsova, Alexandra A; Kuznetsov, Nikita A; Ishchenko, Alexander A; Saparbaev, Murat K; Fedorova, Olga S

    2014-10-01

    DNA glycosylases remove the modified, damaged or mismatched bases from the DNA by hydrolyzing the N-glycosidic bonds. Some enzymes can further catalyze the incision of a resulting abasic (apurinic/apyrimidinic, AP) site through β- or β,δ-elimination mechanisms. In most cases, the incision reaction of the AP-site is catalyzed by special enzymes called AP-endonucleases. Here, we report the kinetic analysis of the mechanisms of modified DNA transfer from some DNA glycosylases to the AP endonuclease, APE1. The modified DNA contained the tetrahydrofurane residue (F), the analogue of the AP-site. DNA glycosylases AAG, OGG1, NEIL1, MBD4(cat) and UNG from different structural superfamilies were used. We found that all DNA glycosylases may utilise direct protein-protein interactions in the transient ternary complex for the transfer of the AP-containing DNA strand to APE1. We hypothesize a fast "flip-flop" exchange mechanism of damaged and undamaged DNA strands within this complex for monofunctional DNA glycosylases like MBD4(cat), AAG and UNG. Bifunctional DNA glycosylase NEIL1 creates tightly specific complex with DNA containing F-site thereby efficiently competing with APE1. Whereas APE1 fast displaces other bifunctional DNA glycosylase OGG1 on F-site thereby induces its shifts to undamaged DNA regions. Kinetic analysis of the transfer of DNA between human DNA glycosylases and APE1 allows us to elucidate the critical step in the base excision repair pathway. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Construction of a T7 Human Lung Cancer cDNA Library

    Directory of Open Access Journals (Sweden)

    Wentao YUE

    2008-10-01

    Full Text Available Background and objective Currently, only a limited numbers of tumor markers for non small lung cancer (NSCLC diagnosis, new biomarker, such as serum autoantibody may improve the early detection of lung cancer. Our objective is construction human lung squamous carcinoma and adenocarcinoma T7 phage display cDNA library from the tissues of NSCLC patients. Methods mRNA was isolated from a pool of total RNA extract from NSCLC tissues obtained from 5 adenocarcinomas and 5 squamous carcinomas, and then mRNA was reverse transcribed into double stranded cDNA. After digestion, the cDNA was inserted into T7Select 10-3 vector. The phage display cDNA library was constructed by package reaction in vitro and plate proliferation. Plaque assay and PCR were used to evaluate the library.Results Two T7 phage display cDNA library were established. Plaque assay show the titer of lung squamas carcinoma library was 1.8×106 pfu, and the adenocarcinoma library was 5×106 pfu. The phage titer of the amplified library were 3.2×1010 pfu/mL and 2.5×1010 pfu/mL. PCR amplification of random plaque show insert ratio were 100% (24/24 in adenocarcinoma library and 95.8% in human lung squamas carcinoma library (23/24. Insert range from 300 bp to 1 500 bp. Conclusion Two phage display cDNA library from NSCLC were constructed.

  2. Pyrimidine dimer sites associated with the daughter DNA strands in uv-irradiated human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, A R; Kirk-Bell, S [Sussex Univ., Brighton (UK)

    1978-03-01

    Pyrimidine dimer sites associated with the newly-synthesized DNA were detected during post-replication repair of DNA in uv-irradiated human fibroblasts. These pyrimidine dimer sites were inferred from a decrease in the molecular weight of pulse-labelled DNA after treatment with an extract of Micrococcus luteus containing uv-specific endonuclease activity. In DNA synthesized immediately after irradiation, the frequency of these daughter strand dimer sites was 7 to 20% of that in the parental DNA. Such sites were found in fibroblasts from normal donors and from xeroderma pigmentosum patients (with defects in excision-repair or post-replication repair). They were excised from the DNA of normal cells. As the time between uv irradiation and pulse-labelling was increased, the frequency of dimer sites associated with the labelled DNA decreased. If the pulse-label was delivered 6 h after irradiation of normal cells or excision-defective xeroderma pigmentosum cells, no dimer sites were detected in the labelled DNA. It has usually been assumed that daughter-strand dimer sites were the result of recombinational exchanges. The assay procedure used in these experiments and in similar experiments of others did not distinguish between labelled DNA containing pyrimidine dimers within the labelled section, and labelled DNA which did not contain pyrimidine dimers but was attached to unlabelled DNA which did contain dimers. The latter structures would arise during normal replication immediately following uv irradiation of mammalian cells. Calculations are presented which suggest that a significant proportion and conceivably all of the dimer sites associated with the daughter strands may have arisen in this way, rather than from recombinational exchanges as has been generally assumed.

  3. Pyrimidine dimer sites associated with the daughter DNA strands in UV-irradiated human fibroblasts

    International Nuclear Information System (INIS)

    Lehmann, A.R.; Kirk-Bell, S.

    1978-01-01

    Pyrimidine dimer sites associated with the newly-synthesized DNA were detected during post-replication repair of DNA in UV-irradiated human fibroblasts. These pyrimidine dimer sites were inferred from a decrease in the molecular weight of pulse-labelled DNA after treatment with an extract of Micrococcus luteus containing UV-specific endonuclease activity. In DNA synthesized immediately after irradiation the frequency of these daughter strand dimer sites was 7-20% of that in the parental DNA. Such sites were found in fibroblasts from normal donors and from xeroderma pigmentosum patients (with defects in excision-repair or post-replication repair). They were excised from the DNA of normal cells. As the time between UV-irradiation and pulse-labelling was increased, the frequency of dimer sites associated with the labelled DNA decreased. If the pulse-label was delivered 6 h after irradiation of normal cells or excision-defective xeroderma pigmentosum cells, no dimer sites were detected in the labelled DNA. It has usually been assumed that daughter-strand dimer sites were the result of recombinational exchanges. The assay procedure used in these experiments and in similar experiments of others did not distinguish between labelled DNA containing pyrimidine dimers within the labelled section, and labelled DNA which did not contain pyrimidine dimers but was attached to unlabelled DNA which did contain dimers. The latter structures would arise during normal replication immediately following UV-irradiation of mammalian cells. Calculations are presented which suggest that a significant proportion and conceivably all of the dimer sites associated with the daughter strands may have arisen in this way, rather than from recombinational exchanges as has been generally assumed. (author)

  4. Fragment Length of Circulating Tumor DNA.

    Science.gov (United States)

    Underhill, Hunter R; Kitzman, Jacob O; Hellwig, Sabine; Welker, Noah C; Daza, Riza; Baker, Daniel N; Gligorich, Keith M; Rostomily, Robert C; Bronner, Mary P; Shendure, Jay

    2016-07-01

    Malignant tumors shed DNA into the circulation. The transient half-life of circulating tumor DNA (ctDNA) may afford the opportunity to diagnose, monitor recurrence, and evaluate response to therapy solely through a non-invasive blood draw. However, detecting ctDNA against the normally occurring background of cell-free DNA derived from healthy cells has proven challenging, particularly in non-metastatic solid tumors. In this study, distinct differences in fragment length size between ctDNAs and normal cell-free DNA are defined. Human ctDNA in rat plasma derived from human glioblastoma multiforme stem-like cells in the rat brain and human hepatocellular carcinoma in the rat flank were found to have a shorter principal fragment length than the background rat cell-free DNA (134-144 bp vs. 167 bp, respectively). Subsequently, a similar shift in the fragment length of ctDNA in humans with melanoma and lung cancer was identified compared to healthy controls. Comparison of fragment lengths from cell-free DNA between a melanoma patient and healthy controls found that the BRAF V600E mutant allele occurred more commonly at a shorter fragment length than the fragment length of the wild-type allele (132-145 bp vs. 165 bp, respectively). Moreover, size-selecting for shorter cell-free DNA fragment lengths substantially increased the EGFR T790M mutant allele frequency in human lung cancer. These findings provide compelling evidence that experimental or bioinformatic isolation of a specific subset of fragment lengths from cell-free DNA may improve detection of ctDNA.

  5. Comparison of the effects of the synthetic pyrethroid Metofluthrin and phenobarbital on CYP2B form induction and replicative DNA synthesis in cultured rat and human hepatocytes

    International Nuclear Information System (INIS)

    Hirose, Yukihiro; Nagahori, Hirohisa; Yamada, Tomoya; Deguchi, Yoshihito; Tomigahara, Yoshitaka; Nishioka, Kazuhiko; Uwagawa, Satoshi; Kawamura, Satoshi; Isobe, Naohiko; Lake, Brian G.; Okuno, Yasuyoshi

    2009-01-01

    High doses of Metofluthrin (MTF) have been shown to produce liver tumours in rats by a mode of action (MOA) involving activation of the constitutive androstane receptor leading to liver hypertrophy, induction of cytochrome P450 (CYP) forms and increased cell proliferation. The aim of this study was to compare the effects of MTF with those of the known rodent liver tumour promoter phenobarbital (PB) on the induction CYP2B forms and replicative DNA synthesis in cultured rat and human hepatocytes. Treatment with 50 μM MTF and 50 μM PB for 72 h increased CYP2B1 mRNA levels in male Wistar rat hepatocytes and CYP2B6 mRNA levels in human hepatocytes. Replicative DNA synthesis was determined by incorporation of 5-bromo-2'-deoxyuridine over the last 24 h of a 48 h treatment period. Treatment with 10-1000 μM MTF and 100-500 μM PB resulted in significant increases in replicative DNA synthesis in rat hepatocytes. While replicative DNA synthesis was increased in human hepatocytes treated with 5-50 ng/ml epidermal growth factor or 5-100 ng/ml hepatocyte growth factor, treatment with MTF and PB had no effect. These results demonstrate that while both MTF and PB induce CYP2B forms in both species, MTF and PB only induced replicative DNA synthesis in rat and not in human hepatocytes. These results provide further evidence that the MOA for MTF-induced rat liver tumour formation is similar to that of PB and some other non-genotoxic CYP2B form inducers and that the key event of increased cell proliferation would not occur in human liver

  6. Comparison of the effects of the synthetic pyrethroid Metofluthrin and phenobarbital on CYP2B form induction and replicative DNA synthesis in cultured rat and human hepatocytes.

    Science.gov (United States)

    Hirose, Yukihiro; Nagahori, Hirohisa; Yamada, Tomoya; Deguchi, Yoshihito; Tomigahara, Yoshitaka; Nishioka, Kazuhiko; Uwagawa, Satoshi; Kawamura, Satoshi; Isobe, Naohiko; Lake, Brian G; Okuno, Yasuyoshi

    2009-04-05

    High doses of Metofluthrin (MTF) have been shown to produce liver tumours in rats by a mode of action (MOA) involving activation of the constitutive androstane receptor leading to liver hypertrophy, induction of cytochrome P450 (CYP) forms and increased cell proliferation. The aim of this study was to compare the effects of MTF with those of the known rodent liver tumour promoter phenobarbital (PB) on the induction CYP2B forms and replicative DNA synthesis in cultured rat and human hepatocytes. Treatment with 50 microM MTF and 50 microM PB for 72 h increased CYP2B1 mRNA levels in male Wistar rat hepatocytes and CYP2B6 mRNA levels in human hepatocytes. Replicative DNA synthesis was determined by incorporation of 5-bromo-2'-deoxyuridine over the last 24 h of a 48 h treatment period. Treatment with 10-1000 microM MTF and 100-500 microM PB resulted in significant increases in replicative DNA synthesis in rat hepatocytes. While replicative DNA synthesis was increased in human hepatocytes treated with 5-50 ng/ml epidermal growth factor or 5-100 ng/ml hepatocyte growth factor, treatment with MTF and PB had no effect. These results demonstrate that while both MTF and PB induce CYP2B forms in both species, MTF and PB only induced replicative DNA synthesis in rat and not in human hepatocytes. These results provide further evidence that the MOA for MTF-induced rat liver tumour formation is similar to that of PB and some other non-genotoxic CYP2B form inducers and that the key event of increased cell proliferation would not occur in human liver.

  7. Styl RFLP recognized by a human IRBP cDNA localized to chromosome 10

    Energy Technology Data Exchange (ETDEWEB)

    Chin, K S; Mathew, C G.P.; Fong, S L; Bridges, C D; Ponder, B A.J.

    1988-02-25

    A 2184 bp cDNA (H.4 IRBP) encoding human interstitial retinol-biding protein isolated from a human retina cDNA library in lambdagt10 by screening with a bovine IRBP cDNA probe. Styl identifies a 2-allele polymorphism with bands at 2.3 kb (Cl) and 1.95 kb (C2) and invariant bands at 1.1, 1.0 and 0.8kb. Codominant segregation was observed in two informative families. The RFLP was mapped to chromosome 10 using somatic cell hybrids. In situ hybridization suggests regional assignments near p11.2 -q11.2 with a secondary site of hybridization at q24-25.

  8. DNA Damage Reduces the Quality, but Not the Quantity of Human Papillomavirus 16 E1 and E2 DNA Replication.

    Science.gov (United States)

    Bristol, Molly L; Wang, Xu; Smith, Nathan W; Son, Minkyeong P; Evans, Michael R; Morgan, Iain M

    2016-06-22

    Human papillomaviruses (HPVs) are causative agents in almost all cervical carcinomas. HPVs are also causative agents in head and neck cancer, the cases of which are increasing rapidly. Viral replication activates the DNA damage response (DDR) pathway; associated proteins are recruited to replication foci, and this pathway may serve to allow for viral genome amplification. Likewise, HPV genome double-strand breaks (DSBs) could be produced during replication and could lead to linearization and viral integration. Many studies have shown that viral integration into the host genome results in unregulated expression of the viral oncogenes, E6 and E7, promoting HPV-induced carcinogenesis. Previously, we have demonstrated that DNA-damaging agents, such as etoposide, or knocking down viral replication partner proteins, such as topoisomerase II β binding protein I (TopBP1), does not reduce the level of DNA replication. Here, we investigated whether these treatments alter the quality of DNA replication by HPV16 E1 and E2. We confirm that knockdown of TopBP1 or treatment with etoposide does not reduce total levels of E1/E2-mediated DNA replication; however, the quality of replication is significantly reduced. The results demonstrate that E1 and E2 continue to replicate under genomically-stressed conditions and that this replication is mutagenic. This mutagenesis would promote the formation of substrates for integration of the viral genome into that of the host, a hallmark of cervical cancer.

  9. DNA Damage Reduces the Quality, but Not the Quantity of Human Papillomavirus 16 E1 and E2 DNA Replication

    Directory of Open Access Journals (Sweden)

    Molly L. Bristol

    2016-06-01

    Full Text Available Human papillomaviruses (HPVs are causative agents in almost all cervical carcinomas. HPVs are also causative agents in head and neck cancer, the cases of which are increasing rapidly. Viral replication activates the DNA damage response (DDR pathway; associated proteins are recruited to replication foci, and this pathway may serve to allow for viral genome amplification. Likewise, HPV genome double-strand breaks (DSBs could be produced during replication and could lead to linearization and viral integration. Many studies have shown that viral integration into the host genome results in unregulated expression of the viral oncogenes, E6 and E7, promoting HPV-induced carcinogenesis. Previously, we have demonstrated that DNA-damaging agents, such as etoposide, or knocking down viral replication partner proteins, such as topoisomerase II β binding protein I (TopBP1, does not reduce the level of DNA replication. Here, we investigated whether these treatments alter the quality of DNA replication by HPV16 E1 and E2. We confirm that knockdown of TopBP1 or treatment with etoposide does not reduce total levels of E1/E2-mediated DNA replication; however, the quality of replication is significantly reduced. The results demonstrate that E1 and E2 continue to replicate under genomically-stressed conditions and that this replication is mutagenic. This mutagenesis would promote the formation of substrates for integration of the viral genome into that of the host, a hallmark of cervical cancer.

  10. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase

    Science.gov (United States)

    Roldán-Arjona, Teresa; Wei, Ying-Fei; Carter, Kenneth C.; Klungland, Arne; Anselmino, Catherine; Wang, Rui-Ping; Augustus, Meena; Lindahl, Tomas

    1997-01-01

    The major mutagenic base lesion in DNA caused by exposure to reactive oxygen species is 8-hydroxyguanine (8-oxo-7,8-dihydroguanine). In bacteria and Saccharomyces cerevisiae, this damaged base is excised by a DNA glycosylase with an associated lyase activity for chain cleavage. We have cloned, sequenced, and expressed a human cDNA with partial sequence homology to the relevant yeast gene. The encoded 47-kDa human enzyme releases free 8-hydroxyguanine from oxidized DNA and introduces a chain break in a double-stranded oligonucleotide specifically at an 8-hydroxyguanine residue base paired with cytosine. Expression of the human protein in a DNA repair-deficient E. coli mutM mutY strain partly suppresses its spontaneous mutator phenotype. The gene encoding the human enzyme maps to chromosome 3p25. These results show that human cells have an enzyme that can initiate base excision repair at mutagenic DNA lesions caused by active oxygen. PMID:9223306

  11. False-positive Human Papillomavirus DNA tests in cervical screening

    DEFF Research Database (Denmark)

    Rebolj, Matejka; Pribac, Igor; Lynge, Elsebeth

    2011-01-01

    Based on data from randomised controlled trials (RCT) on primary cervical screening, it has been reported that the problem of more frequent false-positive tests in Human Papillomavirus (HPV) DNA screening compared to cytology could be overcome. However, these reports predominantly operated...

  12. The DNA-damage response in human biology and disease

    DEFF Research Database (Denmark)

    Jackson, Stephen P; Bartek, Jiri

    2009-01-01

    , signal its presence and mediate its repair. Such responses, which have an impact on a wide range of cellular events, are biologically significant because they prevent diverse human diseases. Our improving understanding of DNA-damage responses is providing new avenues for disease management....

  13. Asynchronous DNA replication within the human β-globin gene locus

    International Nuclear Information System (INIS)

    Epner, E.; Forrester, W.C.; Groudine, M.

    1988-01-01

    The timing of DNA replication of the human β-globin gene locus has been studied by blot hybridization of newly synthesized BrdUrd-substituted DNA from cells in different stages of the S phase. Using probes that span >120 kilobases across the human β-globin gene locus, the authors show that the majority of this domain replicates in early S phase in the human erythroleukemia cell line K562 and in middle-to-late S phase in the lymphoid cell line Manca. However, in K562 cells three small regions display a strikingly different replication pattern than adjacent sequences. These islands, located in the inter-γ-globin gene region and approximately 20 kilobases 5' to the ε-globin gene and 20 kilobases 3' to the β-globin gene, replicate later and throughout S phase. A similar area is also present in the α-globin gene region in K562 cells. They suggest that these regions may represent sites of termination of replication forks

  14. Effect of human cell malignancy on activity of DNA polymerase iota.

    Science.gov (United States)

    Kazakov, A A; Grishina, E E; Tarantul, V Z; Gening, L V

    2010-07-01

    An increased level of mutagenesis, partially caused by imbalanced activities of error prone DNA polymerases, is a key symptom of cell malignancy. To clarify the possible role of incorrect DNA polymerase iota (Pol iota) function in increased frequency of mutations in mammalian cells, the activity of this enzyme in extracts of cells of different mouse organs and human eye (melanoma) and eyelid (basal-cell skin carcinoma) tumor cells was studied. Both Mg2+, considered as the main activator of the enzyme reaction of in vivo DNA replication, and Mn2+, that activates homogeneous Pol iota preparations in experiments in vitro more efficiently compared to all other bivalent cations, were used as cofactors of the DNA polymerase reaction in these experiments. In the presence of Mg2+, the enzyme was active only in cell extracts of mouse testicles and brain, whereas in the presence of Mn2+ the activity of Pol iota was found in all studied normal mouse organs. It was found that in cell extracts of both types of malignant tumors (basal-cell carcinoma and melanoma) Pol iota activity was observed in the presence of either Mn2+ or Mg2+. Manganese ions activated Pol iota in both cases, though to a different extent. In the presence of Mn2+ the Pol iota activity in the basal-cell carcinoma exceeded 2.5-fold that in control cells (benign tumors from the same eyelid region). In extracts of melanoma cells in the presence of either cation, the level of the enzyme activity was approximately equal to that in extracts of cells of surrounding tumor-free tissues as well as in eyes removed after traumas. The distinctive feature of tissue malignancy (in basal-cell carcinoma and in melanoma) was the change in DNA synthesis revealed as Mn2+-activated continuation of DNA synthesis after incorrect incorporation of dG opposite dT in the template by Pol iota. Among cell extracts of different normal mouse organs, only those of testicles exhibited a similar feature. This similarity can be explained by

  15. Effects of Direct-to-Consumer Advertising and Clinical Guidelines on Appropriate Use of Human Papillomavirus DNA Tests

    Science.gov (United States)

    2011-01-01

    Background Both clinical guidelines and direct-to-consumer (DTC) advertising influence use of new health care technologies, but little is known about their relative effects. The introduction of a cervical cancer screening test in 2000 offered a unique opportunity to assess the two strategies. Objective To evaluate the effects of clinical guidelines and a targeted DTC advertising campaign on overall and appropriate use of human papillomavirus (HPV) DNA tests. Research Design Quasi-experimental study using difference-in-differences analysis. Data were MarketScan private insurance claims for 500,000 women ages 21 to 64 enrolled at least 12 consecutive months from January 2001 through December 2005. Results Both clinical guidelines and DTC advertising were associated with increases in overall HPV DNA test use. DTC advertising was associated with a statistically significant increase in HPV DNA test use in two groups of DTC cities (+5.57 percent, padvertising was associated with comparable increases in the probability of appropriate and inappropriate use of the HPV DNA test in primary screening. Clinical guideline releases from the American College of Obstetricians and Gynecologists, and by a co-sponsored panel, were associated with greater increases in HPV DNA tests for appropriate primary screening than for inappropriate primary screening (β=0.3347, padvertising was associated with increased overall use of a cervical cancer screening test, while clinical guidelines were differentially associated with increased appropriate use. These findings suggest distinct influences of consumer marketing and professional guidelines on the use of health care products and services. PMID:21150798

  16. Acrolein- and 4-Aminobiphenyl-DNA adducts in human bladder mucosa and tumor tissue and their mutagenicity in human urothelial cells.

    Science.gov (United States)

    Lee, Hyun-Wook; Wang, Hsiang-Tsui; Weng, Mao-wen; Hu, Yu; Chen, Wei-sheng; Chou, David; Liu, Yan; Donin, Nicholas; Huang, William C; Lepor, Herbert; Wu, Xue-Ru; Wang, Hailin; Beland, Frederick A; Tang, Moon-shong

    2014-06-15

    Tobacco smoke (TS) is a major cause of human bladder cancer (BC). Two components in TS, 4-aminobiphenyl (4-ABP) and acrolein, which also are environmental contaminants, can cause bladder tumor in rat models. Their role in TS related BC has not been forthcoming. To establish the relationship between acrolein and 4-ABP exposure and BC, we analyzed acrolein-deoxyguanosine (dG) and 4-ABP-DNA adducts in normal human urothelial mucosa (NHUM) and bladder tumor tissues (BTT), and measured their mutagenicity in human urothelial cells. We found that the acrolein-dG levels in NHUM and BTT are 10-30 fold higher than 4-ABP-DNA adduct levels and that the acrolein-dG levels in BTT are 2 fold higher than in NHUM. Both acrolein-dG and 4-ABP-DNA adducts are mutagenic; however, the former are 5 fold more mutagenic than the latter. These two types of DNA adducts induce different mutational signatures and spectra. We found that acrolein inhibits nucleotide excision and base excision repair and induces repair protein degradation in urothelial cells. Since acrolein is abundant in TS, inhaled acrolein is excreted into urine and accumulates in the bladder and because acrolein inhibits DNA repair and acrolein-dG DNA adducts are mutagenic, we propose that acrolein is a major bladder carcinogen in TS.

  17. Lesion Orientation of O4-Alkylthymidine Influences Replication by Human DNA Polymerase η

    OpenAIRE

    O’Flaherty, D. K.; Patra, A.; Su, Y.; Guengerich, F. P.; Egli, M.; Wilds, C. J.

    2016-01-01

    DNA lesions that elude repair may undergo translesion synthesis catalyzed by Y-family DNA polymerases. O4-Alkylthymidines, persistent adducts that can result from carcinogenic agents, may be encountered by DNA polymerases. The influence of lesion orientation around the C4-O4 bond on processing by human DNA polymerase η (hPol η) was studied for oligonucleotides containing O4-methylthymidine, O4-ethylthymidine, and analogs restricting the O4-methylene group in an anti-orientation. Primer extens...

  18. (Pheo)melanin photosensitizes UVA-induced DNA damage in cultured human melanocytes

    NARCIS (Netherlands)

    Wenczl, E.; Schans, G.P. van der; Roza, L.; Kolb, R.M.; Timmerman, A.J.; Smit, N.P.M.; Pavel, S.; Schothorst, A.A.

    1998-01-01

    The question of whether melanins are photoprotecting and/or photosensitizing in human skin cells continues to be debated. To evaluate the role of melanin upon UVA irradiation, DNA single-strand breaks (ssb) were measured in human melanocytes differing only in the amount of pigment produced by

  19. The Over-expression of the β2 Catalytic Subunit of the Proteasome Decreases Homologous Recombination and Impairs DNA Double-Strand Break Repair in Human Cells

    Directory of Open Access Journals (Sweden)

    Anita Collavoli

    2011-01-01

    Full Text Available By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB. This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p.

  20. DNA typing of Calliphorids collected from human corpses in Malaysia.

    Science.gov (United States)

    Kavitha, R; Tan, T C; Lee, H L; Nazni, W A; Sofian-Azirun, M

    2013-03-01

    Estimation of post-mortem interval (PMI) is crucial for time of death determination. The advent of DNA-based identification techniques forensic entomology saw the beginning of a proliferation of molecular studies into forensically important Calliphoridae (Diptera). The use of DNA to characterise morphologically indistinguishable immature calliphorids was recognised as a valuable molecular tool with enormous practical utility. The local entomofauna in most cases is important for the examination of entomological evidences. The survey of the local entomofauna has become a fundamental first step in forensic entomological studies, because different geographical distributions, seasonal and environmental factors may influence the decomposition process and the occurrence of different insect species on corpses. In this study, calliphorids were collected from 13 human corpses recovered from indoors, outdoors and aquatic conditions during the post-mortem examination by pathologists from the government hospitals in Malaysia. Only two species, Chrysomya megacephala and Chrysomya rufifacies were recovered from human corpses. DNA sequencing was performed to study the mitochondrial encoded COI gene and to evaluate the suitability of the 1300 base pairs of COI fragments for identification of blow fly species collected from real crime scene. The COI gene from blow fly specimens were sequenced and deposited in GenBank to expand local databases. The sequenced COI gene was useful in identifying calliphorids retrieved from human corpses.

  1. DNA methyl transferases are differentially expressed in the human anterior eye segment.

    Science.gov (United States)

    Bonnin, Nicolas; Belville, Corinne; Chiambaretta, Frédéric; Sapin, Vincent; Blanchon, Loïc

    2014-08-01

    DNA methylation is an epigenetic mark involved in the control of genes expression. Abnormal epigenetic events have been reported in human pathologies but weakly documented in eye diseases. The purpose of this study was to establish DNMT mRNA and protein expression levels in the anterior eye segment tissues and their related (primary or immortalized) cell cultures as a first step towards future in vivo and in vitro methylomic studies. Total mRNA was extracted from human cornea, conjunctiva, anterior lens capsule, trabeculum and related cell cultures (cornea epithelial, trabecular meshwork, keratocytes for primary cells; and HCE, Chang, B-3 for immortalized cells). cDNA was quantified by real-time PCR using specific primers for DNMT1, 2, 3A, 3B and 3L. Immunolocalization assays were carried out on human cornea using specific primary antibodies for DNMT1, 2 and 3A, 3B and 3L. All DNMT transcripts were detected in human cornea, conjunctiva, anterior lens capsule, trabeculum and related cells but showed statistically different expression patterns between tissues and cells. DNMT2 protein presented a specific and singular expression pattern in corneal endothelium. This study produced the first inventory of the expression patterns of DNMTs in human adult anterior eye segment. Our research highlights that DNA methylation cannot be ruled out as a way to bring new insights into well-known ocular diseases. In addition, future DNA methylation studies using various cells as experimental models need to be conducted with attention to approach the results analysis from a global tissue perspective. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  2. Link between DNA damage and centriole disengagement/reduplication in untransformed human cells.

    Science.gov (United States)

    Douthwright, Stephen; Sluder, Greenfield

    2014-10-01

    The radiation and radiomimetic drugs used to treat human tumors damage DNA in both cancer cells and normal proliferating cells. Centrosome amplification after DNA damage is well established for transformed cell types but is sparsely reported and not fully understood in untransformed cells. We characterize centriole behavior after DNA damage in synchronized untransformed human cells. One hour treatment of S phase cells with the radiomimetic drug, Doxorubicin, prolongs G2 by at least 72 h, though 14% of the cells eventually go through mitosis in that time. By 72 h after DNA damage we observe a 52% incidence of centriole disengagement plus a 10% incidence of extra centrioles. We find that either APC/C or Plk activities can disengage centrioles after DNA damage, though they normally work in concert. All disengaged centrioles are associated with γ-tubulin and maturation markers and thus, should in principle be capable of reduplicating and organizing spindle poles. The low incidence of reduplication of disengaged centrioles during G2 is due to the p53-dependent expression of p21 and the consequent loss of Cdk2 activity. We find that 26% of the cells going through mitosis after DNA damage contain disengaged or extra centrioles. This could produce genomic instability through transient or persistent spindle multipolarity. Thus, for cancer patients the use of DNA damaging therapies raises the chances of genomic instability and evolution of transformed characteristics in proliferating normal cell populations. © 2014 Wiley Periodicals, Inc.

  3. Direct radiocarbon dating and DNA analysis of the Darra-i-Kur (Afghanistan) human temporal bone.

    Science.gov (United States)

    Douka, Katerina; Slon, Viviane; Stringer, Chris; Potts, Richard; Hübner, Alexander; Meyer, Matthias; Spoor, Fred; Pääbo, Svante; Higham, Tom

    2017-06-01

    The temporal bone discovered in the 1960s from the Darra-i-Kur cave in Afghanistan is often cited as one of the very few Pleistocene human fossils from Central Asia. Here we report the first direct radiocarbon date for the specimen and the genetic analyses of DNA extracted and sequenced from two areas of the bone. The new radiocarbon determination places the find to ∼4500 cal BP (∼2500 BCE) contradicting an assumed Palaeolithic age of ∼30,000 years, as originally suggested. The DNA retrieved from the specimen originates from a male individual who carried mitochondrial DNA of the modern human type. The petrous part yielded more endogenous ancient DNA molecules than the squamous part of the same bone. Molecular dating of the Darra-i-Kur mitochondrial DNA sequence corroborates the radiocarbon date and suggests that the specimen is younger than previously thought. Taken together, the results consolidate the fact that the human bone is not associated with the Pleistocene-age deposits of Darra-i-Kur; instead it is intrusive, possibly re-deposited from upper levels dating to much later periods (Neolithic). Despite its Holocene age, the Darra-i-Kur specimen is, so far, the first and only ancient human from Afghanistan whose DNA has been sequenced. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. DNA-protective effects of sumach (Rhus coriaria L.), a common spice: Results of human and animal studies

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Asima; Ferk, Franziska; Simic, Tatjana [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna (Austria); Brantner, Adelheid [Institute of Pharmacognosy, University of Graz, Universitaetsplatz 4/I, A-8010 Graz (Austria); Dusinska, Maria [Center for Ecological Economics, Norwegian Institute for Air Research, Instituttveien 18, NO-2027 Kjeller (Norway); Kundi, Michael [Institute of Environmental Health, Center for Public Health, Medical Unviversity of Vienna (Austria); Hoelzl, Christine; Nersesyan, Armen [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna (Austria); Knasmueller, Siegfried [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna (Austria)], E-mail: siegfried.knasmueller@meduniwien.ac.at

    2009-02-10

    Sumach (Rhus coriaria L.) is widely used as a spice. The aim of this study was the investigation of its DNA-protective effects in humans and animals. Prevention of the formation of strand breaks and oxidized DNA bases as well as the protection against H{sub 2}O{sub 2}- and ({+-})-anti-benzo[a]pyrene-7,8-dihydro-diol-9,10-epoxide (BPDE)-induced DNA-damage were monitored in human lymphocytes in a placebo controlled trial (N = 8/group) with ethanolic extract of sumach (3.0 g/day, 3 days) in single cell gel electrophoresis assays. Furthermore, DNA-protective effects of sumach were monitored in different inner organs of rats under identical conditions. No alteration of DNA-migration was detectable in human lymphocytes under standard conditions, but a decrease of the tail-lengths due to formation of oxidized purines and pyrimidines (52% and 36%) was found with lesion-specific enzymes. Also damage caused by H{sub 2}O{sub 2} and BPDE was significantly reduced by 30% and 69%, respectively. The later effect may be due to induction of glutathione S-transferase (GST). After the intervention, the overall GST (CDNB) activity in plasma was increased by 40%, GST-{alpha} by 52% and GST-{pi} by 26% (ELISA). The antioxidant effects of extract are probably due to scavenging which was observed in in vitro experiments, which also indicated that gallic acid is the active principle of sumach. The animal experiments showed that sumach also causes protection in inner organs. Supplementation of the drinking water (0.02 g/kg per animal) decreased the formation of oxidized DNA bases in colon, liver, lung and lymphocytes; also after {gamma}-irradiation pronounced effects were seen.

  5. Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans.

    Science.gov (United States)

    Efstathiou, S; Minson, A C; Field, H J; Anderson, J R; Wildy, P

    1986-02-01

    Herpes simplex virus-specific DNA sequences have been detected by Southern hybridization analysis in both central and peripheral nervous system tissues of latently infected mice. We have detected virus-specific sequences corresponding to the junction fragment but not the genomic termini, an observation first made by Rock and Fraser (Nature [London] 302:523-525, 1983). This "endless" herpes simplex virus DNA is both qualitatively and quantitatively stable in mouse neural tissue analyzed over a 4-month period. In addition, examination of DNA extracted from human trigeminal ganglia has shown herpes simplex virus DNA to be present in an "endless" form similar to that found in the mouse model system. Further restriction enzyme analysis of latently infected mouse brainstem and human trigeminal DNA has shown that this "endless" herpes simplex virus DNA is present in all four isomeric configurations.

  6. Linkage of DNA Methylation Quantitative Trait Loci to Human Cancer Risk

    Directory of Open Access Journals (Sweden)

    Holger Heyn

    2014-04-01

    Full Text Available Epigenetic regulation and, in particular, DNA methylation have been linked to the underlying genetic sequence. DNA methylation quantitative trait loci (meQTL have been identified through significant associations between the genetic and epigenetic codes in physiological and pathological contexts. We propose that interrogating the interplay between polymorphic alleles and DNA methylation is a powerful method for improving our interpretation of risk alleles identified in genome-wide association studies that otherwise lack mechanistic explanation. We integrated patient cancer risk genotype data and genome-scale DNA methylation profiles of 3,649 primary human tumors, representing 13 solid cancer types. We provide a comprehensive meQTL catalog containing DNA methylation associations for 21% of interrogated cancer risk polymorphisms. Differentially methylated loci harbor previously reported and as-yet-unidentified cancer genes. We suggest that such regulation at the DNA level can provide a considerable amount of new information about the biology of cancer-risk alleles.

  7. DNA-binding determinants promoting NHEJ by human Polμ.

    Science.gov (United States)

    Martin, Maria Jose; Juarez, Raquel; Blanco, Luis

    2012-12-01

    Non-homologous end-joining (NHEJ), the preferred pathway to repair double-strand breaks (DSBs) in higher eukaryotes, relies on a collection of molecular tools to process the broken ends, including specific DNA polymerases. Among them, Polµ is unique as it can catalyze DNA synthesis upon connection of two non-complementary ends. Here, we demonstrate that this capacity is intrinsic to Polµ, not conferred by other NHEJ factors. To understand the molecular determinants of its specific function in NHEJ, the interaction of human Polµ with DNA has been directly visualized by electromobility shift assay and footprinting assays. Stable interaction with a DNA gap requires the presence of a recessive 5'-P, thus orienting the catalytic domain for primer and nucleotide binding. Accordingly, recognition of the 5'-P is crucial to align the two DNA substrates of the NHEJ reaction. Site-directed mutagenesis demonstrates the relevance of three specific residues (Lys(249), Arg(253) and Arg(416)) in stabilizing the primer strand during end synapsis, allowing a range of microhomology-induced distortions beneficial for NHEJ. Moreover, our results suggest that the Polµ BRCT domain, thought to be exclusively involved in interaction with NHEJ core factors, has a direct role in binding the DNA region neighbor to the 5'-P, thus boosting Polµ-mediated NHEJ reactions.

  8. The pathological consequences of impaired genome integrity in humans; disorders of the DNA replication machinery.

    Science.gov (United States)

    O'Driscoll, Mark

    2017-01-01

    Accurate and efficient replication of the human genome occurs in the context of an array of constitutional barriers, including regional topological constraints imposed by chromatin architecture and processes such as transcription, catenation of the helical polymer and spontaneously generated DNA lesions, including base modifications and strand breaks. DNA replication is fundamentally important for tissue development and homeostasis; differentiation programmes are intimately linked with stem cell division. Unsurprisingly, impairments of the DNA replication machinery can have catastrophic consequences for genome stability and cell division. Functional impacts on DNA replication and genome stability have long been known to play roles in malignant transformation through a variety of complex mechanisms, and significant further insights have been gained from studying model organisms in this context. Congenital hypomorphic defects in components of the DNA replication machinery have been and continue to be identified in humans. These disorders present with a wide range of clinical features. Indeed, in some instances, different mutations in the same gene underlie different clinical presentations. Understanding the origin and molecular basis of these features opens a window onto the range of developmental impacts of suboptimal DNA replication and genome instability in humans. Here, I will briefly overview the basic steps involved in DNA replication and the key concepts that have emerged from this area of research, before switching emphasis to the pathological consequences of defects within the DNA replication network; the human disorders. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  9. Dysregulated human Tyrosyl-DNA phosphodiesterase I acts as cellular toxin

    Science.gov (United States)

    Cuya, Selma M.; Comeaux, Evan Q.; Wanzeck, Keith; Yoon, Karina J.; van Waardenburg, Robert C.A.M.

    2016-01-01

    Tyrosyl-DNA phosphodiesterase I (TDP1) hydrolyzes the drug-stabilized 3’phospho-tyrosyl bond formed between DNA topoisomerase I (TOPO1) and DNA. TDP1-mediated hydrolysis uses a nucleophilic histidine (Hisnuc) and a general acid/base histidine (Hisgab). A Tdp1Hisgab to Arg mutant identified in patients with the autosomal recessive neurodegenerative disease SCAN1 causes stabilization of the TDP1-DNA intermediate. Based on our previously reported Hisgab-substitutions inducing yeast toxicity (Gajewski et al. J. Mol. Biol. 415, 741-758, 2012), we propose that converting TDP1 into a cellular poison by stabilizing the covalent enzyme-DNA intermediate is a novel therapeutic strategy for cancer treatment. Here, we analyzed the toxic effects of two TDP1 catalytic mutants in HEK293 cells. Expression of human Tdp1HisnucAla and Tdp1HisgabAsn mutants results in stabilization of the covalent TDP1-DNA intermediate and induces cytotoxicity. Moreover, these mutants display reduced in vitro catalytic activity compared to wild type. Co-treatment of Tdp1mutant with topotecan shows more than additive cytotoxicity. Overall, these results support the hypothesis that stabilization of the TDP1-DNA covalent intermediate is a potential anti-cancer therapeutic strategy. PMID:27893431

  10. Inhibition of DNA repair in ultraviolet-irradiated human cells by hydroxyurea

    International Nuclear Information System (INIS)

    Francis, A.A.; Carrier, W.L.; Smith, D.P.; Regan, J.D.; Blevins, R.D.

    1979-01-01

    The effect on DNA repair in ultraviolet-irradiated human skin fibroblasts by hydroxyurea has been examined in this study using three independent methods for measuring DNA repair: the 5-bromodeoxyuridine photolysis assay which measures DNA repair replication, chromatographic measurement of thymine-containing dimers, and measurement of specific ultraviolet-endonuclease-sensitive sites in irradiated DNA. Little effect on hydroxyurea was observed at the concentration of 2mM, which is often used to inhibit semiconservative DNA synthesis; however, 10 mM hydroxyurea resulted in marked inhibition (65-70%) of excision repair. This inhibition was accompanied by a possible doubling in the size of the repaired region. The accumulation of large numbers of single-strand breaks following ultraviolet irradiation and hydroxyurea incubation seen by other investigators was not observed with the normal skin fibroblasts used in this study. A comparison of hydroxyurea effects on the different DNA repair assays indicates inhibition of one step in DNA repair also results in varying degrees of inhibition of other steps as well. (Auth.)

  11. Inhibition of DNA repair in ultraviolet-irradiated human cells by hydroxyurea

    Energy Technology Data Exchange (ETDEWEB)

    Francis, A.A. (Oak Ridge National Lab., TN); Blevins, R.D.; Carrier, W.L.; Smith, D.P.; Regan, J.D.

    1979-01-01

    The effect on DNA repair in ultraviolet-irradiated human skin fibroblasts by hydroxyurea has been examined in this study using three independent methods for measuring DNA repair: the 5-bromodeoxyuridine photolysis assay which measures DNA repair replication, chromatographic measurement of thymine-containing dimers, and measurement of specific ultraviolet-endonuclease-sensitive sites in irradiated DNA. Little effect of hydroxyurea was observed at the concentration of 2 mM, which is often used to inhibit semiconservative DNA synthesis; however, 10 mM hydroxyurea resulted in marked inhibition (65 to 70%) of excision repair. This inhibition was accompanied by a possible doubling in the size of the repaired region. The accumulation of large numbers of single-strand breaks following ultraviolet irradiation and hydroxyurea incubation seen by other investigators was not observed with the normal skin fibroblasts used in this study. A comparison of hydroxyurea effects on the different DNA repair assays indicates inhibition of one step in DNA repair also results in varying degrees of inhibition of other steps as well.

  12. A UV-resistant mutant without an increased repair synthesis activity, established from a UV-sensitive human clonal cell line

    International Nuclear Information System (INIS)

    Suzuki, N.

    1984-01-01

    When cells of a human clonal cell line, RSa, with high sensitivity to UV lethality, were treated with the mutagen, ethyl methanesulfonate, a variant cell strain, UVr-1, was established as a mutant resistant to 254-nm far-ultraviolet radiation (UV). Cell proliferation studies showed that UVr-1 cells survived and actively proliferated at doses of UV-irradiation that greatly suppressed the proliferation of RSa cells. Colony-formation assays also confirmed the increased resistance of UVr-1 cells to UV. The recovery from a UV-induced inhibition in DNA synthesis, as [methyl- 3 H]thymidine uptake into cellular DNA, was more pronounced in UVr-1 cells than in RSa cells. Nevertheless, there was no significant difference in the activity of UV-induced DNA repair synthesis in either cell line, as estimated by the extent of unscheduled DNA synthesis and DNA repair replication. These characteristics of UVr-1 cells are discussed in the light of a previously reported UV-resistant variant, UVr-10, which had an increased DNA repair synthesis activity. (Auth.)

  13. Microbial DNA fingerprinting of human fingerprints: dynamic colonization of fingertip microflora challenges human host inferences for forensic purposes.

    Science.gov (United States)

    Tims, Sebastian; van Wamel, Willem; Endtz, Hubert P; van Belkum, Alex; Kayser, Manfred

    2010-09-01

    Human fingertip microflora is transferred to touched objects and may provide forensically relevant information on individual hosts, such as on geographic origins, if endogenous microbial skin species/strains would be retrievable from physical fingerprints and would carry geographically restricted DNA diversity. We tested the suitability of physical fingerprints for revealing human host information, with geographic inference as example, via microbial DNA fingerprinting. We showed that the transient exogenous fingertip microflora is frequently different from the resident endogenous bacteria of the same individuals. In only 54% of the experiments, the DNA analysis of the transient fingertip microflora allowed the detection of defined, but often not the major, elements of the resident microflora. Although we found microbial persistency in certain individuals, time-wise variation of transient and resident microflora within individuals was also observed when resampling fingerprints after 3 weeks. While microbial species differed considerably in their frequency spectrum between fingerprint samples from volunteers in Europe and southern Asia, there was no clear geographic distinction between Staphylococcus strains in a cluster analysis, although bacterial genotypes did not overlap between both continental regions. Our results, though limited in quantity, clearly demonstrate that the dynamic fingerprint microflora challenges human host inferences for forensic purposes including geographic ones. Overall, our results suggest that human fingerprint microflora is too dynamic to allow for forensic marker developments for retrieving human information.

  14. Detection of human papillomavirus DNA in urine. A review of the literature.

    Science.gov (United States)

    Vorsters, A; Micalessi, I; Bilcke, J; Ieven, M; Bogers, J; Van Damme, P

    2012-05-01

    The detection of human papillomavirus (HPV) DNA in urine, a specimen easily obtained by a non-invasive self-sampling method, has been the subject of a considerable number of studies. This review provides an overview of 41 published studies; assesses how different methods and settings may contribute to the sometimes contradictory outcomes; and discusses the potential relevance of using urine samples in vaccine trials, disease surveillance, epidemiological studies, and specific settings of cervical cancer screening. Urine sampling, storage conditions, sample preparation, DNA extraction, and DNA amplification may all have an important impact on HPV DNA detection and the form of viral DNA that is detected. Possible trends in HPV DNA prevalence in urine could be inferred from the presence of risk factors or the diagnosis of cervical lesions. HPV DNA detection in urine is feasible and may become a useful tool but necessitates further improvement and standardization.

  15. Cell-free assay measuring repair DNA synthesis in human fibroblasts

    International Nuclear Information System (INIS)

    Ciarrocchi, G.; Linn, S.

    1978-01-01

    Osmotic disruption of confluent cultured human fibroblasts that have been irradiated or exposed to chemical carcinogens allows the specific measurement of repair DNA synthesis using dTTP as a precursor. Fibroblasts similarly prepared from various xeroderma pigmentosum cell lines show the deficiencies of uv-induced DNA synthesis predicted from in vivo studies, while giving normal responses to methylmethanesulfonate. A pyrimidine-dimer-specific enzyme, T4 endonuclease V, stimulated the rate of uv-induced repair synthesis with normal and xeroderma pigmentosum cell lines. This system should prove useful for identifying agents that induce DNA repair, and cells that respond abnormally to such induction. It should also be applicable to an in vitro complementation assay with repair-defective cells and proteins obtained from repair-proficient cells. Finally, by using actively growing fibroblasts and thymidine in the system, DNA replication can be measured and studied in vitro

  16. Developing a Bacteroides System for Function-Based Screening of DNA from the Human Gut Microbiome.

    Science.gov (United States)

    Lam, Kathy N; Martens, Eric C; Charles, Trevor C

    2018-01-01

    Functional metagenomics is a powerful method that allows the isolation of genes whose role may not have been predicted from DNA sequence. In this approach, first, environmental DNA is cloned to generate metagenomic libraries that are maintained in Escherichia coli, and second, the cloned DNA is screened for activities of interest. Typically, functional screens are carried out using E. coli as a surrogate host, although there likely exist barriers to gene expression, such as lack of recognition of native promoters. Here, we describe efforts to develop Bacteroides thetaiotaomicron as a surrogate host for screening metagenomic DNA from the human gut. We construct a B. thetaiotaomicron-compatible fosmid cloning vector, generate a fosmid clone library using DNA from the human gut, and show successful functional complementation of a B. thetaiotaomicron glycan utilization mutant. Though we were unable to retrieve the physical fosmid after complementation, we used genome sequencing to identify the complementing genes derived from the human gut microbiome. Our results demonstrate that the use of B. thetaiotaomicron to express metagenomic DNA is promising, but they also exemplify the challenges that can be encountered in the development of new surrogate hosts for functional screening. IMPORTANCE Human gut microbiome research has been supported by advances in DNA sequencing that make it possible to obtain gigabases of sequence data from metagenomes but is limited by a lack of knowledge of gene function that leads to incomplete annotation of these data sets. There is a need for the development of methods that can provide experimental data regarding microbial gene function. Functional metagenomics is one such method, but functional screens are often carried out using hosts that may not be able to express the bulk of the environmental DNA being screened. We expand the range of current screening hosts and demonstrate that human gut-derived metagenomic libraries can be

  17. Microbial Degradation of Forensic Samples of Biological Origin: Potential Threat to Human DNA Typing.

    Science.gov (United States)

    Dash, Hirak Ranjan; Das, Surajit

    2018-02-01

    Forensic biology is a sub-discipline of biological science with an amalgam of other branches of science used in the criminal justice system. Any nucleated cell/tissue harbouring DNA, either live or dead, can be used as forensic exhibits, a source of investigation through DNA typing. These biological materials of human origin are rich source of proteins, carbohydrates, lipids, trace elements as well as water and, thus, provide a virtuous milieu for the growth of microbes. The obstinate microbial growth augments the degradation process and is amplified with the passage of time and improper storage of the biological materials. Degradation of these biological materials carriages a huge challenge in the downstream processes of forensic DNA typing technique, such as short tandem repeats (STR) DNA typing. Microbial degradation yields improper or no PCR amplification, heterozygous peak imbalance, DNA contamination from non-human sources, degradation of DNA by microbial by-products, etc. Consequently, the most precise STR DNA typing technique is nullified and definite opinion can be hardly given with degraded forensic exhibits. Thus, suitable precautionary measures should be taken for proper storage and processing of the biological exhibits to minimize their decaying process by micro-organisms.

  18. Detection of human papillomavirus DNA with in situ hybridisation in ...

    African Journals Online (AJOL)

    present study was undertaken to determine the prevalence of human papillomavirus (HPV) DNA in oral squamous carcinoma in the west of the Northern ... Immunocytochemistry for viral antigen was negative in all the specimens. HPV-18 was ...

  19. Sensitization of human cells by inhibitors of DNA synthesis following the action of DNA-damaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Filatov, M.V.; Noskin, L.A. (Leningrad Inst. of Nuclear Physics, Gatchina (USSR))

    1983-08-01

    Inhibitors of DNA synthesis 1-..beta..-arabinofuranosylcytosine (Ac) and hydroxyurea (Hu) taken together drastically sensitized human cells to the killing effect of DNA-damaging agents. For UV-irradiation this sensitization depended on the cells' ability for excision repair. By using viscoelastometric methods of measurement of double-strand breaks (DSB) in the genome, it was established that the first DSB were generated after incubation of the damaged cells in the mixture of inhibitors at about the same dose when sensitization appeared. A scheme is proposed to describe molecular events associated with the phenomenon studied. 35 refs.

  20. Transferrin-polycation-mediated introduction of DNA into human leukemic cells: Stimulation by agents that affect the survival of transfected DNA or modulate transferrin receptor levels

    International Nuclear Information System (INIS)

    Cotten, M.; Laengle-Rouault, F.; Kirlappos, H.; Wagner, E.; Mechtler, K.; Zenke, M.; Beug, H.; Birnstiel, M.L.

    1990-01-01

    The authors have subverted a receptor-mediated endocytosis event to transport genes into human leukemic cells. By coupling the natural iron-delivery protein transferrin to the DNA-binding polycations polylysine or protamine, they have created protein conjugates that bind nucleic acids and carry them into the cell during the normal transferrin cycle. They demonstrate here that this procedure is useful for a human leukemic cell line. They enhanced the rate of gene delivery by (i) increasing the transferrin receptor density through treatment of the cells with the cell permeable iron chelator desferrioxamine, (ii) interfering with the synthesis of heme with succinyl acetone treatment, or (iii) stimulating the degradation of heme with cobalt chloride treatment. Consistent with gene delivery as an endocytosis event, they show that the subsequent expression in K-562 cells of a gene included in the transported DNA depends upon the cellular presence of the lysosomotropic agent chloroquine. By contrast, monensin blocks transferrinfection, as does incubation of the cells at 18 degree C

  1. [Whole Genome Sequencing of Human mtDNA Based on Ion Torrent PGM™ Platform].

    Science.gov (United States)

    Cao, Y; Zou, K N; Huang, J P; Ma, K; Ping, Y

    2017-08-01

    To analyze and detect the whole genome sequence of human mitochondrial DNA (mtDNA) by Ion Torrent PGM™ platform and to study the differences of mtDNA sequence in different tissues. Samples were collected from 6 unrelated individuals by forensic postmortem examination, including chest blood, hair, costicartilage, nail, skeletal muscle and oral epithelium. Amplification of whole genome sequence of mtDNA was performed by 4 pairs of primer. Libraries were constructed with Ion Shear™ Plus Reagents kit and Ion Plus Fragment Library kit. Whole genome sequencing of mtDNA was performed using Ion Torrent PGM™ platform. Sanger sequencing was used to determine the heteroplasmy positions and the mutation positions on HVⅠ region. The whole genome sequence of mtDNA from all samples were amplified successfully. Six unrelated individuals belonged to 6 different haplotypes. Different tissues in one individual had heteroplasmy difference. The heteroplasmy positions and the mutation positions on HVⅠ region were verified by Sanger sequencing. After a consistency check by the Kappa method, it was found that the results of mtDNA sequence had a high consistency in different tissues. The testing method used in present study for sequencing the whole genome sequence of human mtDNA can detect the heteroplasmy difference in different tissues, which have good consistency. The results provide guidance for the further applications of mtDNA in forensic science. Copyright© by the Editorial Department of Journal of Forensic Medicine

  2. Evidence of authentic DNA from Danish Viking Age skeletons untouched by humans for 1,000 years.

    Directory of Open Access Journals (Sweden)

    Linea Melchior

    Full Text Available BACKGROUND: Given the relative abundance of modern human DNA and the inherent impossibility for incontestable proof of authenticity, results obtained on ancient human DNA have often been questioned. The widely accepted rules regarding ancient DNA work mainly affect laboratory procedures, however, pre-laboratory contamination occurring during excavation and archaeological-/anthropological handling of human remains as well as rapid degradation of authentic DNA after excavation are major obstacles. METHODOLOGY/PRINCIPAL FINDINGS: We avoided some of these obstacles by analyzing DNA from ten Viking Age subjects that at the time of sampling were untouched by humans for 1,000 years. We removed teeth from the subjects prior to handling by archaeologists and anthropologists using protective equipment. An additional tooth was removed after standard archaeological and anthropological handling. All pre-PCR work was carried out in a "clean- laboratory" dedicated solely to ancient DNA work. Mitochondrial DNA was extracted and overlapping fragments spanning the HVR-1 region as well as diagnostic sites in the coding region were PCR amplified, cloned and sequenced. Consistent results were obtained with the "unhandled" teeth and there was no indication of contamination, while the latter was the case with half of the "handled" teeth. The results allowed the unequivocal assignment of a specific haplotype to each of the subjects, all haplotypes being compatible in their character states with a phylogenetic tree drawn from present day European populations. Several of the haplotypes are either infrequent or have not been observed in modern Scandinavians. The observation of haplogroup I in the present study (<2% in modern Scandinavians supports our previous findings of a pronounced frequency of this haplogroup in Viking and Iron Age Danes. CONCLUSION: The present work provides further evidence that retrieval of ancient human DNA is a possible task provided adequate

  3. Evidence of authentic DNA from Danish Viking Age skeletons untouched by humans for 1,000 years.

    Science.gov (United States)

    Melchior, Linea; Kivisild, Toomas; Lynnerup, Niels; Dissing, Jørgen

    2008-05-28

    Given the relative abundance of modern human DNA and the inherent impossibility for incontestable proof of authenticity, results obtained on ancient human DNA have often been questioned. The widely accepted rules regarding ancient DNA work mainly affect laboratory procedures, however, pre-laboratory contamination occurring during excavation and archaeological-/anthropological handling of human remains as well as rapid degradation of authentic DNA after excavation are major obstacles. We avoided some of these obstacles by analyzing DNA from ten Viking Age subjects that at the time of sampling were untouched by humans for 1,000 years. We removed teeth from the subjects prior to handling by archaeologists and anthropologists using protective equipment. An additional tooth was removed after standard archaeological and anthropological handling. All pre-PCR work was carried out in a "clean- laboratory" dedicated solely to ancient DNA work. Mitochondrial DNA was extracted and overlapping fragments spanning the HVR-1 region as well as diagnostic sites in the coding region were PCR amplified, cloned and sequenced. Consistent results were obtained with the "unhandled" teeth and there was no indication of contamination, while the latter was the case with half of the "handled" teeth. The results allowed the unequivocal assignment of a specific haplotype to each of the subjects, all haplotypes being compatible in their character states with a phylogenetic tree drawn from present day European populations. Several of the haplotypes are either infrequent or have not been observed in modern Scandinavians. The observation of haplogroup I in the present study (Viking and Iron Age Danes. The present work provides further evidence that retrieval of ancient human DNA is a possible task provided adequate precautions are taken and well-considered sampling is applied.

  4. Fine resolution mapping of double-strand break sites for human ribosomal DNA units

    Directory of Open Access Journals (Sweden)

    Bernard J. Pope

    2016-12-01

    Full Text Available DNA breakage arises during a variety of biological processes, including transcription, replication and genome rearrangements. In the context of disease, extensive fragmentation of DNA has been described in cancer cells and during early stages of neurodegeneration (Stephens et al., 2011 Stephens et al. (2011 [5]; Blondet et al., 2001 Blondet et al. (2001 [1]. Stults et al. (2009 Stults et al. (2009 [6] reported that human rDNA gene clusters are hotspots for recombination and that rDNA restructuring is among the most common chromosomal alterations in adult solid tumours. As such, analysis of rDNA regions is likely to have significant prognostic and predictive value, clinically. Tchurikov et al. (2015a, 2016 Tchurikov et al. (2015a, 2016 [7,9] have made major advances in this direction, reporting that sites of human genome double-strand breaks (DSBs occur frequently at sites in rDNA that are tightly linked with active transcription - the authors used a RAFT (rapid amplification of forum termini protocol that selects for blunt-ended sites. They reported the relative frequency of these rDNA DSBs within defined co-ordinate ‘windows’ of varying size and made these data (as well as the relevant ‘raw’ sequencing information available to the public (Tchurikov et al., 2015b. Assay designs targeting rDNA DSB hotspots will benefit greatly from the publication of break sites at greater resolution. Here, we re-analyse public RAFT data and make available rDNA DSB co-ordinates to the single-nucleotide level.

  5. Depletion of Human DNA in Spiked Clinical Specimens for Improvement of Sensitivity of Pathogen Detection by Next-Generation Sequencing

    OpenAIRE

    Hasan, Mohammad R.; Rawat, Arun; Tang, Patrick; Jithesh, Puthen V.; Thomas, Eva; Tan, Rusung; Tilley, Peter

    2016-01-01

    Next-generation sequencing (NGS) technology has shown promise for the detection of human pathogens from clinical samples. However, one of the major obstacles to the use of NGS in diagnostic microbiology is the low ratio of pathogen DNA to human DNA in most clinical specimens. In this study, we aimed to develop a specimen-processing protocol to remove human DNA and enrich specimens for bacterial and viral DNA for shotgun metagenomic sequencing. Cerebrospinal fluid (CSF) and nasopharyngeal aspi...

  6. Effect of 3-aminobenzamide on the rate of ligation during repair of alkylated DNA in human fibroblasts

    International Nuclear Information System (INIS)

    Morgan, W.F.; Cleaver, J.E.

    1983-01-01

    3-Aminobenzamide, an inhibitor of polyadenosine diphosphoribose polymerase, produced rapid reversible changes in single-strand break frequencies in DNA from primary human fibroblasts damaged by alkylating agents, but it did not cause such changes in the DNA of cells damaged by ultraviolet light. The increase in single-strand peak frequencies was not due to an accumulation of blocked repair sites, such as occurs with DNA polymerase inhibitors, but to a delay in the rejoining of induced breaks. 3-Aminobenzamide increases the net break frequency that results from a dynamic balance between excision and ligation. This balance appears to be regulated at the ligation step by adenosine diphosphate ribosylation, which is rapidly altered by addition or removal of 3-aminobenzamide. The rapidity with which strand break frequencies change in the presence of 3-aminobenzamide implies that individual strand breaks resulting from excision at any time after exposure have a lifetime of no more than about 30 min in the cell

  7. UV-stimulation of DNA-mediated transformation of human cells.

    NARCIS (Netherlands)

    M. van Duin (Mark); A. Westerveld (Andries); J.H.J. Hoeijmakers (Jan)

    1985-01-01

    textabstractIrradiation of dominant marker DNA with UV light (150 to 1,000 J/m2) was found to stimulate the transformation of human cells by this marker from two- to more than fourfold. This phenomenon is also displayed by xeroderma pigmentosum cells (complementation groups A and F), which are

  8. Lethality and the depression on DNA synthesis in UV-irradiated normal human and xeroderma pigmentosum cells

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K. (Kobe Univ. (Japan). School of Medicine)

    1983-12-01

    Ultraviolet radiation suppresses the semiconservative DNA replication in mammalian cells. The rate of DNA synthesis is initially depressed and later recovers after low doses of UV radiation in human cells. Such a response is more sensitive to UV radiation in cells derived from patients with xeroderma pigmentosum (XP) than that in normal human cells. The relative rate of DNA synthesis is not always correlated with cell survival because, unlike cell survival, the dose-response curve of the relative rate of DNA synthesis shows the biphasic nature of the sensitivity. In the experiments reported herein, the total amount (not the rate) of DNA synthesized during a long interval of incubation which covers the period of inhibition and recovery (but not longer than one generation time) after irradiation with various doses of UV radiation was examined in normal human and XP cells, and was found to be well correlated with cell survival in all the cells tested.

  9. Ribosomal RNA Genes Contribute to the Formation of Pseudogenes and Junk DNA in the Human Genome.

    Science.gov (United States)

    Robicheau, Brent M; Susko, Edward; Harrigan, Amye M; Snyder, Marlene

    2017-02-01

    Approximately 35% of the human genome can be identified as sequence devoid of a selected-effect function, and not derived from transposable elements or repeated sequences. We provide evidence supporting a known origin for a fraction of this sequence. We show that: 1) highly degraded, but near full length, ribosomal DNA (rDNA) units, including both 45S and Intergenic Spacer (IGS), can be found at multiple sites in the human genome on chromosomes without rDNA arrays, 2) that these rDNA sequences have a propensity for being centromere proximal, and 3) that sequence at all human functional rDNA array ends is divergent from canonical rDNA to the point that it is pseudogenic. We also show that small sequence strings of rDNA (from 45S + IGS) can be found distributed throughout the genome and are identifiable as an "rDNA-like signal", representing 0.26% of the q-arm of HSA21 and ∼2% of the total sequence of other regions tested. The size of sequence strings found in the rDNA-like signal intergrade into the size of sequence strings that make up the full-length degrading rDNA units found scattered throughout the genome. We conclude that the displaced and degrading rDNA sequences are likely of a similar origin but represent different stages in their evolution towards random sequence. Collectively, our data suggests that over vast evolutionary time, rDNA arrays contribute to the production of junk DNA. The concept that the production of rDNA pseudogenes is a by-product of concerted evolution represents a previously under-appreciated process; we demonstrate here its importance. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. YNK1, the yeast homolog of human metastasis suppressor NM23, is required for repair of UV radiation- and etoposide-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Yang Mengmeng; Jarrett, Stuart G.; Craven, Rolf [Department of Molecular and Biomedical Pharmacology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 (United States); Kaetzel, David M. [Department of Molecular and Biomedical Pharmacology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 (United States)], E-mail: dmkaetz@uky.edu

    2009-01-15

    In humans, NM23-H1 is a metastasis suppressor whose expression is reduced in metastatic melanoma and breast carcinoma cells, and which possesses the ability to inhibit metastatic growth without significant impact on the transformed phenotype. NM23-H1 exhibits three enzymatic activities in vitro, each with potential to maintain genomic stability, a 3'-5' exonuclease and two kinases, nucleoside diphosphate kinase (NDPK), and protein histidine kinase. Herein we have investigated the potential contributions of NM23 proteins to DNA repair in the yeast, Saccharomyces cerevisiae, which contains a single NM23 homolog, YNK1. Ablation of YNK1 delayed repair of UV- and etoposide-induced nuclear DNA damage by 3-6 h. However, YNK1 had no impact upon the kinetics of MMS-induced DNA repair. Furthermore, YNK1 was not required for repair of mitochondrial DNA damage. To determine whether the nuclear DNA repair deficit manifested as an increase in mutation frequency, the CAN1 forward assay was employed. An YNK1 deletion was associated with increased mutation rates following treatment with either UV (2.6x) or MMS (1.6x). Mutation spectral analysis further revealed significantly increased rates of base substitution and frameshift mutations following UV treatment in the ynk1{delta} strain. This study indicates a novel role for YNK1 in DNA repair in yeast, and suggests an anti-mutator function that may contribute to the metastasis suppressor function of NM23-H1 in humans.

  11. YNK1, the yeast homolog of human metastasis suppressor NM23, is required for repair of UV radiation- and etoposide-induced DNA damage

    International Nuclear Information System (INIS)

    Yang Mengmeng; Jarrett, Stuart G.; Craven, Rolf; Kaetzel, David M.

    2009-01-01

    In humans, NM23-H1 is a metastasis suppressor whose expression is reduced in metastatic melanoma and breast carcinoma cells, and which possesses the ability to inhibit metastatic growth without significant impact on the transformed phenotype. NM23-H1 exhibits three enzymatic activities in vitro, each with potential to maintain genomic stability, a 3'-5' exonuclease and two kinases, nucleoside diphosphate kinase (NDPK), and protein histidine kinase. Herein we have investigated the potential contributions of NM23 proteins to DNA repair in the yeast, Saccharomyces cerevisiae, which contains a single NM23 homolog, YNK1. Ablation of YNK1 delayed repair of UV- and etoposide-induced nuclear DNA damage by 3-6 h. However, YNK1 had no impact upon the kinetics of MMS-induced DNA repair. Furthermore, YNK1 was not required for repair of mitochondrial DNA damage. To determine whether the nuclear DNA repair deficit manifested as an increase in mutation frequency, the CAN1 forward assay was employed. An YNK1 deletion was associated with increased mutation rates following treatment with either UV (2.6x) or MMS (1.6x). Mutation spectral analysis further revealed significantly increased rates of base substitution and frameshift mutations following UV treatment in the ynk1Δ strain. This study indicates a novel role for YNK1 in DNA repair in yeast, and suggests an anti-mutator function that may contribute to the metastasis suppressor function of NM23-H1 in humans

  12. Detection of mitochondrial DNA deletions in human cells induced by ionizing radiation

    International Nuclear Information System (INIS)

    Liu, Qing-Jie; Feng, Jiang-Bin; Lu, Xue; Li, Yu-Wen; Chen, De-Qing

    2008-01-01

    Full text: Purpose: To screen the novel mitochondrial DNA (mt DNA) deletions induced by ionizing radiation, and analyze the several kinds of mt DNA deletions, known as 3895 bp, 889 bp, 7436 bp or 4934 bp deletions. Methods: Long-range PCR with two pairs of primers, which could amplify the whole human mitochondrial genome, was used to analyze the lymphoblastoid cell line before and after exposed to 10 Gy 60 Co γ-rays. The limited condition PCR was used to certify the possible mt DNA deletion showed by long-range PCR. The PCR products were purified, cloned, sequenced and the sequence result were BLASTed. Regular PCR or nest-PCR were used to analyze the 3895 bp, 889 bp, 7436 bp or 4934 bp deletions before and after radiation exposure. The final PCR products were purified, sequenced and BALSTed on standard human mitochondrial genome sequence database. Results: (1) The predicted bands of mt DNA were observed on the control cell lines, and the possible mt DNA deletions were also detected on the irradiated cell lines. The deletions were certified by the limited condition PCR. The sequence BLAST results of the cloned PCR products showed that two kinds of deletions, 7455 bp deletion (nt 475-7929 in heavy strand) and 9225 bp deletion (nt 7714-369 in heavy strand), which were between two 8 bp direct repeats. Further bioinformatics analysis showed that the two deletions were novel deletions. (2) The 889 bp and 3895 bp deletion were not detected for the cell line samples not exposed to 60 Co γ-rays. The 889 bp and 3895 bp deletions were detected on samples exposed to 10 Gy 60 Co γ-rays. The BALST results showed that the 889 bp and 3895 deletions flanked nt 11688 bp-12576, nt 548 bp-4443, respectively. The 7436 bp deletion levels were not changed much before and after irradiation. (3) The 4934 bp deletions had the same pattern as 7436 bp deletion, but it could induced by radiation. Conclusions: Ionizing radiation could induce the human lymphoblastoid two novel mt DNA

  13. Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Anthony Skipper

    2016-01-01

    Full Text Available Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium.  Although there have been numerous studies examining the effects of cadmium in animal models and a few case studies involving communities where cadmium contamination has occurred, its molecular mechanisms of action are not fully elucidated. In this research, we hypothesized that oxidative stress plays a key role in cadmium chloride-induced toxicity, DNA damage, and apoptosis of human liver carcinoma (HepG2 cells. To test our hypothesis, cell viability was determined by MTT assay. Lipid hydroperoxide content stress was estimated by lipid peroxidation assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay. The result of MTT assay indicated that cadmium chloride induces toxicity to HepG2 cells in a concentration-dependent manner, showing a 48 hr-LD50 of 3.6 µg/mL. Data generated from lipid peroxidation assay resulted in a significant (p < 0.05 increase of hydroperoxide production, specifically at the highest concentration tested. Data obtained from the Comet assay indicated that cadmium chloride causes DNA damage in HepG2 cells in a concentration-dependent manner. A strong concentration-response relationship (p < 0.05 was recorded between annexin V positive cells and cadmium chloride exposure. In summary, these in vitro studies provide clear evidence that cadmium chloride induces oxidative stress, DNA damage, and programmed cell death in human liver carcinoma (HepG2 cells.

  14. The Degree of Radiation-Induced DNA Strand Breaks Is Altered by Acute Sleep Deprivation and Psychological Stress and Is Associated with Cognitive Performance in Humans.

    Science.gov (United States)

    Moreno-Villanueva, Maria; von Scheven, Gudrun; Feiveson, Alan; Bürkle, Alexander; Wu, Honglu; Goel, Namni

    2018-03-27

    Sleep deprivation is associated with impaired immune responses, cancer, and morbidity and mortality, and can degrade cognitive performance, although individual differences exist in such responses. Sleep deprivation induces DNA strand breaks and DNA base oxidation in animals, and psychological stress is associated with increased DNA damage in humans. It remains unknown whether sleep deprivation or psychological stress in humans affects DNA damage response from environmental stressors, and whether these responses predict cognitive performance during sleep deprivation. Sixteen healthy adults (ages 29-52;mean age±SD, 36.4±7.1 years;7 women) participated in a 5-day experiment involving two 8 hour time-in-bed [TIB] baseline nights, followed by 39 hours total sleep deprivation (TSD), and two 8-10 hour TIB recovery nights. A modified Trier Social Stress Test was conducted on the day after TSD. Psychomotor Vigilance Tests measured behavioral attention. DNA damage was assessed in blood cells collected at 5 time points, and blood cells were irradiated ex-vivo. TSD, alone or in combination with psychological stress, did not induce significant increases in DNA damage. By contrast, radiation-induced DNA damage decreased significantly in response to TSD, but increased back to baseline when combined with psychological stress. Cognitively-vulnerable individuals had more radiation-induced DNA strand breaks before TSD, indicating their greater sensitivity to DNA damage from environmental stressors. Our results provide novel insights into the molecular consequences of sleep deprivation, psychological stress, and performance vulnerability. They are important for situations involving sleep loss, radiation exposure and cognitive deficits, including cancer therapy, environmental toxicology, and space medicine.

  15. Dating human DNA with the 14C bomb peak

    Energy Technology Data Exchange (ETDEWEB)

    Kutschera, Walter; Liebl, Jakob; Steier, Peter [VERA Laboratory, University of Vienna, Vienna (Austria)

    2013-07-01

    In 1963 the limited nuclear test ban treaty stopped nuclear weapons testing in the atmosphere. By then the addition from bomb-produced {sup 14}C had doubled the {sup 14}C content of the atmosphere. Through the CO{sub 2} cycle this excess exchanged with the hydrosphere and biosphere leading to a rapidly decreasing {sup 14}C level in the atmosphere. Today we are almost back to the pre-nuclear level. As a consequence all people on Earth who lived during the second half of the 20th century were exposed to this rapidly changing {sup 14}C signal. A few years ago, a group at the Department of Cell and Molecular Biology of the Karolinska Institute in Stockholm started to use the {sup 14}C bomb peak signal in DNA to determine retrospectively the age of cells from various parts of the human body (brain, heart, fat). In a collaboration with this group, we have studied the age of olfactory bulb neurons in the human brain. For this investigation, {sup 14}C AMS measurements were developed at VERA for very small carbon samples in the range from 2 to 4 micrograms. In the presentation the general concept of {sup 14}C bomb peak dating of human DNA and several applications are discussed.

  16. Unscheduled DNA synthesis in human skin after in vitro ultraviolet-excimer laser ablation

    International Nuclear Information System (INIS)

    Green, H.A.; Margolis, R.; Boll, J.; Kochevar, I.E.; Parrish, J.A.; Oseroff, A.R.

    1987-01-01

    DNA damage repaired by the excision repair system and measured as unscheduled DNA synthesis (UDS) was assessed in freshly excised human skin after 193 and 248 nm ultraviolet (UV)-excimer laser ablative incisions. Laser irradiation at 248 nm induced DNA damage throughout a zone of cells surrounding the ablated and heat-damaged area. In contrast, with 193 nm irradiation UDS was not detected in cells adjacent to the ablated area, even though DNA strongly absorbs this wavelength. Our results suggest that the lack of UDS after 193 nm irradiation is due to: ''shielding'' of DNA by the cellular interstitium, membrane, and cytoplasm, DNA damage that is not repaired by excision repair, or thermal effects that either temporarily or permanently inhibit the excision repair processes

  17. Ex vivo irradiation of human blood to determine DNA damage using molecular techniques

    International Nuclear Information System (INIS)

    Montes, Angel; Agapito, Juan

    2014-01-01

    Biological dosimetry is the assessment of absorbed dose in individuals exposed to ionizing radiation from blood samples based on the radiation induced damage in cellular DNA. The aim of this study was to determine the damage in the DNA through the assessment of an experimental ex vivo assay using irradiated samples of human blood cells. For this purpose, blood samples were irradiated at low doses (<100 mGy) considering the following parameters: blood volume (3mL), temperature (37 °C) and incubation time (0.5, 2, 4, 8 and 24 h). Dose values were: 0, 12.5, 25 and 50 mGy using Cesium -137 gamma rays at 662 keV and a dose rate of 38.46 mGy/h. The qualitative damage in the genomic DNA was determined using agarose gel electrophoresis and polymerase chain reaction (PCR) for the p53 gene in a sequence of 133 pb of exon 7, related to the protein that acts in the cell repair process. The results of the qualitative analysis showed no degradation of genomic DNA; also an increase in the DNA concentration was observed up to the fourth hour of incubation, finding maximum values for all doses in the two samples. As a conclusion, the effects of ionizing radiation at doses used in this experiment do not generate a detectable damage, by means of molecular techniques such as those used in the present study. (authors).

  18. Generation of Novel Chimeric Mice with Humanized Livers by Using Hemizygous cDNA-uPA/SCID Mice.

    Directory of Open Access Journals (Sweden)

    Chise Tateno

    Full Text Available We have used homozygous albumin enhancer/promoter-driven urokinase-type plasminogen activator/severe combined immunodeficient (uPA/SCID mice as hosts for chimeric mice with humanized livers. However, uPA/SCID mice show four disadvantages: the human hepatocytes (h-heps replacement index in mouse liver is decreased due to deletion of uPA transgene by homologous recombination, kidney disorders are likely to develop, body size is small, and hemizygotes cannot be used as hosts as more frequent homologous recombination than homozygotes. To solve these disadvantages, we have established a novel host strain that has a transgene containing albumin promoter/enhancer and urokinase-type plasminogen activator cDNA and has a SCID background (cDNA-uPA/SCID. We applied the embryonic stem cell technique to simultaneously generate a number of transgenic lines, and found the line with the most appropriate levels of uPA expression-not detrimental but with a sufficiently damaged liver. We transplanted h-heps into homozygous and hemizygous cDNA-uPA/SCID mice via the spleen, and monitored their human albumin (h-alb levels and body weight. Blood h-alb levels and body weight gradually increased in the hemizygous cDNA-uPA/SCID mice and were maintained until they were approximately 30 weeks old. By contrast, blood h-alb levels and body weight in uPA/SCID chimeric mice decreased from 16 weeks of age onwards. A similar decrease in body weight was observed in the homozygous cDNA-uPA/SCID genotype, but h-alb levels were maintained until they were approximately 30 weeks old. Microarray analyses revealed identical h-heps gene expression profiles in homozygous and hemizygous cDNA-uPA/SCID mice were identical to that observed in the uPA/SCID mice. Furthermore, like uPA/SCID chimeric mice, homozygous and hemizygous cDNA-uPA/SCID chimeric mice were successfully infected with hepatitis B virus and C virus. These results indicate that hemizygous cDNA-uPA/SCID mice may be novel and

  19. Generation of Novel Chimeric Mice with Humanized Livers by Using Hemizygous cDNA-uPA/SCID Mice.

    Science.gov (United States)

    Tateno, Chise; Kawase, Yosuke; Tobita, Yoshimi; Hamamura, Satoko; Ohshita, Hiroki; Yokomichi, Hiroshi; Sanada, Harumi; Kakuni, Masakazu; Shiota, Akira; Kojima, Yuha; Ishida, Yuji; Shitara, Hiroshi; Wada, Naoko A; Tateishi, Hiromi; Sudoh, Masayuki; Nagatsuka, Shin-Ichiro; Jishage, Kou-Ichi; Kohara, Michinori

    2015-01-01

    We have used homozygous albumin enhancer/promoter-driven urokinase-type plasminogen activator/severe combined immunodeficient (uPA/SCID) mice as hosts for chimeric mice with humanized livers. However, uPA/SCID mice show four disadvantages: the human hepatocytes (h-heps) replacement index in mouse liver is decreased due to deletion of uPA transgene by homologous recombination, kidney disorders are likely to develop, body size is small, and hemizygotes cannot be used as hosts as more frequent homologous recombination than homozygotes. To solve these disadvantages, we have established a novel host strain that has a transgene containing albumin promoter/enhancer and urokinase-type plasminogen activator cDNA and has a SCID background (cDNA-uPA/SCID). We applied the embryonic stem cell technique to simultaneously generate a number of transgenic lines, and found the line with the most appropriate levels of uPA expression-not detrimental but with a sufficiently damaged liver. We transplanted h-heps into homozygous and hemizygous cDNA-uPA/SCID mice via the spleen, and monitored their human albumin (h-alb) levels and body weight. Blood h-alb levels and body weight gradually increased in the hemizygous cDNA-uPA/SCID mice and were maintained until they were approximately 30 weeks old. By contrast, blood h-alb levels and body weight in uPA/SCID chimeric mice decreased from 16 weeks of age onwards. A similar decrease in body weight was observed in the homozygous cDNA-uPA/SCID genotype, but h-alb levels were maintained until they were approximately 30 weeks old. Microarray analyses revealed identical h-heps gene expression profiles in homozygous and hemizygous cDNA-uPA/SCID mice were identical to that observed in the uPA/SCID mice. Furthermore, like uPA/SCID chimeric mice, homozygous and hemizygous cDNA-uPA/SCID chimeric mice were successfully infected with hepatitis B virus and C virus. These results indicate that hemizygous cDNA-uPA/SCID mice may be novel and useful hosts for

  20. Developmental validation of the Quantifiler(®) HP and Trio Kits for human DNA quantification in forensic samples.

    Science.gov (United States)

    Holt, Allison; Wootton, Sharon Chao; Mulero, Julio J; Brzoska, Pius M; Langit, Emanuel; Green, Robert L

    2016-03-01

    The quantification of human genomic DNA is a necessary first step in the DNA casework sample analysis workflow. DNA quantification determines optimal sample input amounts for subsequent STR (short tandem repeat) genotyping procedures, as well as being a useful screening tool to identify samples most likely to provide probative genotypic evidence. To better mesh with the capabilities of newest-generation STR analysis assays, the Quantifiler(®) HP and Quantifiler(®) Trio DNA Quantification Kits were designed for greater detection sensitivity and more robust performance with samples that contain PCR inhibitors or degraded DNA. The new DNA quantification kits use multiplex TaqMan(®) assay-based fluorescent probe technology to simultaneously quantify up to three human genomic targets, allowing samples to be assessed for total human DNA, male contributor (i.e., Y-chromosome) DNA, as well as a determination of DNA degradation state. The Quantifiler HP and Trio Kits use multiple-copy loci to allow for significantly improved sensitivity compared to earlier-generation kits that employ single-copy target loci. The kits' improved performance provides better predictive ability for results with downstream, newest-generation STR assays, and their shortened time-to-result allows more efficient integration into the forensic casework analysis workflow. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Identification of DNA methylation changes associated with human gastric cancer

    Directory of Open Access Journals (Sweden)

    Park Jung-Hoon

    2011-12-01

    Full Text Available Abstract Background Epigenetic alteration of gene expression is a common event in human cancer. DNA methylation is a well-known epigenetic process, but verifying the exact nature of epigenetic changes associated with cancer remains difficult. Methods We profiled the methylome of human gastric cancer tissue at 50-bp resolution using a methylated DNA enrichment technique (methylated CpG island recovery assay in combination with a genome analyzer and a new normalization algorithm. Results We were able to gain a comprehensive view of promoters with various CpG densities, including CpG Islands (CGIs, transcript bodies, and various repeat classes. We found that gastric cancer was associated with hypermethylation of 5' CGIs and the 5'-end of coding exons as well as hypomethylation of repeat elements, such as short interspersed nuclear elements and the composite element SVA. Hypermethylation of 5' CGIs was significantly correlated with downregulation of associated genes, such as those in the HOX and histone gene families. We also discovered long-range epigenetic silencing (LRES regions in gastric cancer tissue and identified several hypermethylated genes (MDM2, DYRK2, and LYZ within these regions. The methylation status of CGIs and gene annotation elements in metastatic lymph nodes was intermediate between normal and cancerous tissue, indicating that methylation of specific genes is gradually increased in cancerous tissue. Conclusions Our findings will provide valuable data for future analysis of CpG methylation patterns, useful markers for the diagnosis of stomach cancer, as well as a new analysis method for clinical epigenomics investigations.

  2. cDNA cloning of rat and human medium chain acyl-CoA dehydrogenase (MCAD)

    International Nuclear Information System (INIS)

    Matsubara, Y.; Kraus, J.P.; Rosenberg, L.E.; Tanaka, K.

    1986-01-01

    MCAD is one of three mitochondrial flavoenzymes which catalyze the first step in the β-oxidation of straight chain fatty acids. It is a tetramer with a subunit Mr of 45 kDa. MCAD is synthesized in the cytosol as a 49 kDa precursor polypeptide (pMCAD), imported into mitochondria, and cleaved to the mature form. Genetic deficiency of MCAD causes recurrent episodes of hypoglycemic coma accompanied by medium chain dicarboxylic aciduria. Employing a novel approach, the authors now report isolation of partial rat and human cDNA clones encoding pMCAD. mRNA encoding pMCAD was purified to near homogeneity by polysome immunoadsorption using polyclonal monospecific antibody. Single-stranded [ 32 P]labeled cDNA probe was synthesized using the enriched mRNA as template, and was used to screen directly 16,000 colonies from a total rat liver cDNA library constructed in pBR322. One clone (600 bp) was detected by in situ hybridization. Hybrid-selected translation with this cDNA yielded a 49 kDa polypeptide indistinguishable in size from rat pMCAD and immunoprecipitable with anti-MCAD antibody. Using the rat cDNA as probe, 43,000 colonies from a human liver cDNA library were screened. Four identical positive clones (400 bp) were isolated and positively identified by hybrid-selected translation and immunoprecipitation. The sizes of rat and human mRNAs encoding pMCAD were 2.2 kb and 2.4 kb, respectively, as determined by Northern blotting

  3. Characterization of human glioblastoma cell lines in vitro and their xenografts in nude mice by DNA fingerprinting

    DEFF Research Database (Denmark)

    Türeci, O; Fischer, H; Lagoda, P

    1990-01-01

    Human gliomas were grown as permanent tissue cultures and xenografts in nude mice. DNA fingerprint patterns from two human gliomas were established using two different hypervariable multilocus probes [( GTG]5 and 33.15). In general the cell lines investigated showed an overall stability in the DNA...... fingerprint pattern. However, differences in the DNA fingerprint patterns were shown to occur depending upon the above mentioned parameters....

  4. Increased rate of repair of ultraviolet-induced DNA strand breaks in mitogen stimulated lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, S.M.; Lavin, M.F.; Jennings, P.A. (Queensland Univ., St. Lucia (Australia). Dept. of Biochemistry; Queensland Univ., St. Lucia (Australia). Dept. of Veterinary Pathology; Queensland Univ. St. Lucia (Australia). Dept. of Public Health)

    1982-05-01

    Previous results have shown that phytohaemagglutinin-stimulated bovine lymphocytes exhibit a peak of ultraviolet-induced DNA repair synthesis 3 to 4 days after addition of mitogen. The level of repair synthesis was approximately tenfold higher than that in unstimulated lymphocytes. These studies have been extended to examine the rate of repair of strand breaks in U.V.-irradiated bovine lymphocytes. The extent of breakage of DNA was shown to be the same in mitogen-stimulated and unstimulated lymphocytes from two breeds of cattle, when determined by sedimentation of nucleoids on sucrose gradients. However, in mitogen-stimulated cells the time taken to repair DNA strand breaks was 6 hours compared with 12 hours in stationary phase lymphocytes after a U.V. dose of 5 J/m/sup 2/. These results suggest that the increased rate of repair of strand breaks is due to the induction of enzymes involved at the post-incision stage of DNA repair. Thus the increased level of repair synthesis observed in earlier work correlates with an increased rate of repair of DNA strand breaks in phytohaemagglutinin-stimulated bovine lymphocytes.

  5. Increased rate of repair of ultraviolet-induced DNA strand breaks in mitogen stimulated lymphocytes

    International Nuclear Information System (INIS)

    Hamlet, S.M.; Lavin, M.F.; Jennings, P.A.; Queensland Univ., St. Lucia; Queensland Univ. St. Lucia

    1982-01-01

    Previous results have shown that phytohaemagglutinin-stimulated bovine lymphocytes exhibit a peak of ultraviolet-induced DNA repair synthesis 3 to 4 days after addition of mitogen. The level of repair synthesis was approximately tenfold higher than that in unstimulated lymphocytes. These studies have been extended to examine the rate of repair of strand breaks in U.V.-irradiated bovine lymphocytes. The extent of breakage of DNA was shown to be the same in mitogen-stimulated and unstimulated lymphocytes from two breeds of cattle, when determined by sedimentation of nucleoids on sucrose gradients. However, in mitogen-stimulated cells the time taken to repair DNA strand breaks was 6 hours compared with 12 hours in stationary phase lymphocytes after a U.V. dose of 5 J/m 2 . These results suggest that the increased rate of repair of strand breaks is due to the induction of enzymes involved at the post-incision stage of DNA repair. Thus the increased level of repair synthesis observed in earlier work correlates with an increased rate of repair of DNA strand breaks in phytohaemagglutinin-stimulated bovine lymphocytes. (author)

  6. Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.

    Science.gov (United States)

    Hirsch, Matthew L; Fagan, B Matthew; Dumitru, Raluca; Bower, Jacquelyn J; Yadav, Swati; Porteus, Matthew H; Pevny, Larysa H; Samulski, R Jude

    2011-01-01

    Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.

  7. Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Matthew L Hirsch

    Full Text Available Human embryonic stem cells (hESCs are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.

  8. Repair of O6-methylguanine adducts in human telomeric G-quadruplex DNA by O6-alkylguanine-DNA alkyltransferase

    Science.gov (United States)

    Hellman, Lance M.; Spear, Tyler J.; Koontz, Colton J.; Melikishvili, Manana; Fried, Michael G.

    2014-01-01

    O6-alkylguanine-DNA alkyltransferase (AGT) is a single-cycle DNA repair enzyme that removes pro-mutagenic O6-alkylguanine adducts from DNA. Its functions with short single-stranded and duplex substrates have been characterized, but its ability to act on other DNA structures remains poorly understood. Here, we examine the functions of this enzyme on O6-methylguanine (6mG) adducts in the four-stranded structure of the human telomeric G-quadruplex. On a folded 22-nt G-quadruplex substrate, binding saturated at 2 AGT:DNA, significantly less than the ∼5 AGT:DNA found with linear single-stranded DNAs of similar length, and less than the value found with the telomere sequence under conditions that inhibit quadruplex formation (4 AGT:DNA). Despite these differences, AGT repaired 6mG adducts located within folded G-quadruplexes, at rates that were comparable to those found for a duplex DNA substrate under analogous conditions. Repair was kinetically biphasic with the amplitudes of rapid and slow phases dependent on the position of the adduct within the G-quadruplex: in general, adducts located in the top or bottom tetrads of a quadruplex stack exhibited more rapid-phase repair than did adducts located in the inner tetrad. This distinction may reflect differences in the conformational dynamics of 6mG residues in G-quadruplex DNAs. PMID:25080506

  9. Detection of human DNA polymorphisms with a simplified denaturing gradient gel electrophoresis technique

    International Nuclear Information System (INIS)

    Noll, W.W.; Collins, M.

    1987-01-01

    Single base pair differences between otherwise identical DNA molecules can result in altered melting behavior detectable by denaturing gradient gel electrophoresis. The authors have developed a simplified procedure for using denaturing gradient gel electrophoresis to detect base pair changes in genomic DNA. Genomic DNA is digested with restriction enzymes and hybridized in solution to labeled single-stranded probe DNA. The excess probe is then hybridized to complementary phage M13 template DNA, and the reaction mixture is electrophoresed on a denaturing gradient gel. Only the genomic DNA probe hybrids migrate into the gel. Differences in hybrid mobility on the gel indicate base pair changes in the genomic DNA. They have used this technique to identify two polymorphic sites within a 1.2-kilobase region of human chromosome 20. This approach should greatly facilitate the identification of DNA polymorphisms useful for gene linkage studies and the diagnosis of genetic diseases

  10. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues

    International Nuclear Information System (INIS)

    Prody, C.A.; Zevin-Sonkin, D.; Gnatt, A.; Goldberg, O.; Soreq, H.

    1987-01-01

    To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase and Torpedo electric organ true acetylcholinesterase. Using these probes, the authors isolated several cDNA clones from λgt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. In RNA blots of poly(A) + RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These finding demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species

  11. Long Terminal Repeat Circular DNA as Markers of Active Viral Replication of Human T Lymphotropic Virus-1 in Vivo

    Directory of Open Access Journals (Sweden)

    James M Fox

    2016-03-01

    Full Text Available Clonal expansion of human T-lymphotropic virus type-1 (HTLV-1 infected cells in vivo is well documented. Unlike human immunodeficiency virus type 1 (HIV-1, HTLV-1 plasma RNA is sparse. The contribution of the “mitotic” spread of HTLV-1 compared with infectious spread of the virus to HTLV-1 viral burden in established infection is uncertain. Since extrachromosomal long terminal repeat (LTR DNA circles are indicators of viral replication in HIV-1 carriers with undetectable plasma HIV RNA, we hypothesised that HTLV-1 LTR circles could indicate reverse transcriptase (RT usage and infectious activity. 1LTR and 2LTR DNA circles were measured in HTLV-1 cell lines and peripheral blood mononuclear cells (PBMC of asymptomatic carriers (ACs and patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP or adult T cell leukaemia/lymphoma (ATLL. 1LTR DNA circles were detected in 14/20 patients at a mean of 1.38/100 PBMC but did not differentiate disease status nor correlate with HTLV-1 DNA copies. 2LTR DNA circles were detected in 30/31 patients and at higher concentrations in patients with HTLV-1-associated diseases, independent of HTLV-1 DNA load. In an incident case the 2LTR DNA circle concentration increased 2.1 fold at the onset of HAM/TSP compared to baseline. Detectable and fluctuating levels of HTLV-1 DNA circles in patients indicate viral RT usage and virus replication. Our results indicate HTLV-1 viral replication capacity is maintained in chronic infection and may be associated with disease onset.

  12. Bona fide colour: DNA prediction of human eye and hair colour from ancient and contemporary skeletal remains

    NARCIS (Netherlands)

    J. Draus-Barini (Jolanta); S. Walsh (Susan); E. Pośpiech (Ewelina); T. Kupiec (Tomasz); H. Głab (Henryk); W. Branicki (Wojciech); M.H. Kayser (Manfred)

    2013-01-01

    textabstractBackground: DNA analysis of ancient skeletal remains is invaluable in evolutionary biology for exploring the history of species, including humans. Contemporary human bones and teeth, however, are relevant in forensic DNA analyses that deal with the identification of perpetrators, missing

  13. Structural basis for the inhibition of human alkyladenine DNA glycosylase (AAG) by 3,N4-ethenocytosine-containing DNA.

    Science.gov (United States)

    Lingaraju, Gondichatnahalli M; Davis, C Ainsley; Setser, Jeremy W; Samson, Leona D; Drennan, Catherine L

    2011-04-15

    Reactive oxygen and nitrogen species, generated by neutrophils and macrophages in chronically inflamed tissues, readily damage DNA, producing a variety of potentially genotoxic etheno base lesions; such inflammation-related DNA damage is now known to contribute to carcinogenesis. Although the human alkyladenine DNA glycosylase (AAG) can specifically bind DNA containing either 1,N(6)-ethenoadenine (εA) lesions or 3,N(4)-ethenocytosine (εC) lesions, it can only excise εA lesions. AAG binds very tightly to DNA containing εC lesions, forming an abortive protein-DNA complex; such binding not only shields εC from repair by other enzymes but also inhibits AAG from acting on other DNA lesions. To understand the structural basis for inhibition, we have characterized the binding of AAG to DNA containing εC lesions and have solved a crystal structure of AAG bound to a DNA duplex containing the εC lesion. This study provides the first structure of a DNA glycosylase in complex with an inhibitory base lesion that is induced endogenously and that is also induced upon exposure to environmental agents such as vinyl chloride. We identify the primary cause of inhibition as a failure to activate the nucleotide base as an efficient leaving group and demonstrate that the higher binding affinity of AAG for εC versus εA is achieved through formation of an additional hydrogen bond between Asn-169 in the active site pocket and the O(2) of εC. This structure provides the basis for the design of AAG inhibitors currently being sought as an adjuvant for cancer chemotherapy.

  14. INDUCTION OF DNA STRAND BREAKS BY TRIHALOMETHANES IN PRIMARY HUMAN LUNG EPITHELIAL CELLS

    Science.gov (United States)

    Abstract Trihalomethanes (TEMs) are disinfection by-products and suspected human carcinogens present in chlorinated drinking water. Previous studies have shown that many THMs induce sister chromatid exchanges and DNA strand breaks in human peripheral blood lymphocyte...

  15. cDNA cloning, mRNA distribution and heterogeneity, chromosomal location, and RFLP analysis of human osteopontin (OPN)

    DEFF Research Database (Denmark)

    Young, M F; Kerr, J M; Termine, J D

    1990-01-01

    A human osteopontin (OP) cDNA was isolated from a library made from primary cultures of human bone cells. The distribution of osteopontin mRNA in human tissues was investigated by Northern analysis and showed that the human message was predominant in cultures of bone cells and in decidua cells...... osteopontin cDNA indicated that the gene is a single copy with an approximate length of 5.4-8.2 kb....

  16. Nonspecific amplification of human DNA by Streptococcus pneumoniae LytA primer

    Directory of Open Access Journals (Sweden)

    Helen Hencida Thangamony

    2018-01-01

    Full Text Available Background: Determination of various analytical parameters is essential for the validation of primers used for in-house nucleic acid amplification tests. While standardising a high-resolution melt analysis (HRMA for detection of Streptococcus pneumoniae in acute pyogenic meningitis, we encountered non-specific amplification of certain base pair sequences of human DNA by Centers for Disease Control & Prevention, USA recommended S. pneumoniae LytA primer. Materials and Methods: HRMA was standardised using DNA extracted from an ATCC strain of S. pneumoniae using SP LytA F373 primer and Type-it HRMTM polymerase chain reaction kit in Rotor-Gene Q Thermal Cycler according to the manufacturer's instructions. Specificity of the primers was determined in dry and wet laboratory experiments against diverse related and unrelated microbial pathogens by HRMA and on DNA extracted from unspiked clinical samples negative for SP DNA. Sensitivity was determined by calculating lower limit of detection threshold in experiments with spiked samples. The amplicon from spiked experiments was sequenced and analysed through Gene Bank. Results: Our dry/wet laboratory experiments showed two separate curves and different Tm values indicating certain non-specific amplification by the primer. Basic Local Alignment Search Tool (BLAST analysis of the amplicon obtained in the spiked experiment showed sequences of human chromosome 20 associated with Homo sapiens protein tyrosine phosphatase, receptor type T gene. The problem was resolved by stopping the reaction at 30th Ct cycle and observing the Tm values. Conclusion: Since HRMA is done without a specific probe, one should be aware of non-specific amplifications while using primers for HRMA of human clinical samples.

  17. Recovery of latent fingerprints and DNA on human skin.

    Science.gov (United States)

    Färber, Doris; Seul, Andrea; Weisser, Hans-Joachim; Bohnert, Michael

    2010-11-01

    The project "Latent Fingerprints and DNA on Human Skin" was the first systematic research in Europe dealing with detection of fingerprints and DNA left by offenders on the skin of corpses. One thousand samples gave results that allow general statements on the materials and methods used. The tests were carried out according to a uniform trial structure. Fingerprints were deposited by natural donors on corpses. The latent fingerprints were treated with magnetic powder or black fingerprint powder. Afterward, they were lifted with silicone casting material (Isomark(®)) or gelatine foil. All lifts were swabbed to recover DNA. It was possible to visualize comparable and identifiable fingerprints on the skin of corpses (16%). In the same categories, magnetic powder (18.4%) yielded better results than black fingerprint powder (13.6%). The number of comparable and identifiable fingerprints decreased on the lifts (12.7%). Isomark(®) (14.9%) was the better lifting material in comparison with gelatine foil (10.1%). In one-third of the samples, DNA could be extracted from the powdered and lifted latents. Black fingerprint powder delivered the better result with a rate of 2.2% for full DNA profiles and profiles useful for exclusion in comparison with 1.8% for the magnetic powder traces. Isomark(®) (3.1%) yielded better results than gelatine foil (0.6%). © 2010 American Academy of Forensic Sciences.

  18. Persistent organic pollutants alter DNA methylation during human adipocyte differentiation

    NARCIS (Netherlands)

    Dungen, van den Myrthe W.; Murk, Albertinka J.; Gils-Kok, van Dieuwertje; Steegenga, Wilma T.

    2017-01-01

    Ubiquitous persistent organic pollutants (POPs) can accumulate in humans where they might influence differentiation of adipocytes. The aim of this study was to investigate whether DNA methylation is one of the underlying mechanisms by which POPs affect adipocyte differentiation, and to what

  19. Goatpoxvirus ATPase activity is increased by dsDNA and decreased by zinc ion.

    Science.gov (United States)

    Lee, Ming-Liang; Hsu, Wei-Li; Wang, Chi-Young; Chen, Hui-Yu; Lin, Fong-Yuan; Chang, Ming-Huang; Chang, Hong-You; Wong, Min-Liang; Chan, Kun-Wei

    2016-10-01

    Viral-encoded ATPase can act as a part of molecular motor in genome packaging of DNA viruses, such as vaccinia virus and adenovirus, by ATP hydrolysis and interaction with DNA. Poxviral ATPase (also called A32) is involved in genomic double-stranded DNA (dsDNA) encapsidation, and inhibition of the expression of A32 causes formation of immature virions lacking viral DNA. However, the role of A32 in goatpoxvirus genome packaging and its dsDNA binding property are not known. In this study, purified recombinant goatpoxvirus A32 protein (rA32) was examined for its dsDNA binding property as well as the effect of dsDNA on ATP hydrolysis. We found that rA32 could bind dsDNA, and its ATPase activity was significant increased with dsDNA binding. Effects of magnesium and calcium ions on ATP hydrolysis were investigated also. The ATPase activity was dramatically enhanced by dsDNA in the presence of Mg(2+); in contrast, ATPase function was not altered by Ca(2+). Furthermore, the enzyme activity of rA32 was completely blocked by Zn(2+). Regarding DNA-protein interaction, the rA32-ATP-Mg(2+) showed lower dsDNA binding affinity than that of rA32-ATP-Ca(2+). The DNA-protein binding was stronger in the presence of zinc ion. Our results implied that A32 may play a role in viral genome encapsidation and DNA condensation.

  20. Circulating mitochondrial DNA as biomarker linking environmental chemical exposure to early preclinical lesions elevation of mtDNA in human serum after exposure to carcinogenic halo-alkane-based pesticides.

    Directory of Open Access Journals (Sweden)

    Lygia T Budnik

    Full Text Available There is a need for a panel of suitable biomarkers for detection of environmental chemical exposure leading to the initiation or progression of degenerative diseases or potentially, to cancer. As the peripheral blood may contain increased levels of circulating cell-free DNA in diseased individuals, we aimed to evaluate this DNA as effect biomarker recognizing vulnerability after exposure to environmental chemicals. We recruited 164 individuals presumably exposed to halo-alkane-based pesticides. Exposure evaluation was based on human biomonitoring analysis; as biomarker of exposure parent halo-methanes, -ethanes and their metabolites, as well as the hemoglobin-adducts methyl valine and hydroxyl ethyl valine in blood were used, complemented by expert evaluation of exposure and clinical intoxication symptoms as well as a questionnaire. Assessment showed exposures to halo alkanes in the concentration range being higher than non-cancer reference doses (RfD but (mostly lower than the occupational exposure limits. We quantified circulating DNA in serum from 86 individuals with confirmed exposure to off-gassing halo-alkane pesticides (in storage facilities or in home environment and 30 non-exposed controls, and found that exposure was significantly associated with elevated serum levels of circulating mitochondrial DNA (in size of 79 bp, mtDNA-79, p = 0.0001. The decreased integrity of mtDNA (mtDNA-230/mtDNA-79 in exposed individuals implicates apoptotic processes (p = 0.015. The relative amounts of mtDNA-79 in serum were positively associated with the lag-time after intoxication to these chemicals (r = 0.99, p<0.0001. Several months of post-exposure the specificity of this biomarker increased from 30% to 97% in patients with intoxication symptoms. Our findings indicate that mitochondrial DNA has a potential to serve as a biomarker recognizing vulnerable risk groups after exposure to toxic/carcinogenic chemicals.

  1. DNA Damage, Mutagenesis and Cancer

    Directory of Open Access Journals (Sweden)

    Ashis K. Basu

    2018-03-01

    Full Text Available A large number of chemicals and several physical agents, such as UV light and γ-radiation, have been associated with the etiology of human cancer. Generation of DNA damage (also known as DNA adducts or lesions induced by these agents is an important first step in the process of carcinogenesis. Evolutionary processes gave rise to DNA repair tools that are efficient in repairing damaged DNA; yet replication of damaged DNA may take place prior to repair, particularly when they are induced at a high frequency. Damaged DNA replication may lead to gene mutations, which in turn may give rise to altered proteins. Mutations in an oncogene, a tumor-suppressor gene, or a gene that controls the cell cycle can generate a clonal cell population with a distinct advantage in proliferation. Many such events, broadly divided into the stages of initiation, promotion, and progression, which may occur over a long period of time and transpire in the context of chronic exposure to carcinogens, can lead to the induction of human cancer. This is exemplified in the long-term use of tobacco being responsible for an increased risk of lung cancer. This mini-review attempts to summarize this wide area that centers on DNA damage as it relates to the development of human cancer.

  2. Exonuclease 1 and its versatile roles in DNA repair

    DEFF Research Database (Denmark)

    Keijzers, Guido; Liu, Dekang; Rasmussen, Lene Juel

    2016-01-01

    Exonuclease 1 (EXO1) is a multifunctional 5' → 3' exonuclease and a DNA structure-specific DNA endonuclease. EXO1 plays roles in DNA replication, DNA mismatch repair (MMR) and DNA double-stranded break repair (DSBR) in lower and higher eukaryotes and contributes to meiosis, immunoglobulin...... maturation, and micro-mediated end-joining in higher eukaryotes. In human cells, EXO1 is also thought to play a role in telomere maintenance. Mutations in the human EXO1 gene correlate with increased susceptibility to some cancers. This review summarizes recent studies on the enzymatic functions...

  3. DNA damage response and role of shelterin complex in human peripheral blood mononuclear cells exposed to gamma radiation

    International Nuclear Information System (INIS)

    Saini, Divyalakshmi; Das, Birajalaxmi

    2013-01-01

    Telomeres are the DNA protein structures that cap the ends of linear DNA. It consists of short repetitive DNA sequences (TTAGGG)n and specialized telomere binding proteins. There are six telomeric proteins (TRF1, TRF2, TIN2, TERF2, PTOP and POT1) called as shelterin complex/telosome which maintains telomere integrity. The function of this 'telosome' is to protect the natural ends of the chromosomes from being recognized as artificial DNA breaks, thereby preventing chromosome end-to-end fusions. DNA Damage Response (DDR) induced by radiation and its interaction with telomeric protein complex is poorly understood in human PBMCs at G 0 stage. Alterations in either telomeric DNA or telomere binding proteins can impair the function of the telosome, which may lead to senescence or apoptosis. Ionizing radiation which induces a plethora of DNA lesions in human cell may also alter the expression of telomere associated proteins. In the present study, we have made an attempt to study the DNA damage response of telomere proteins in human peripheral blood mononuclear cells exposed to gamma radiation. Venous blood samples were collected from eight random healthy volunteers and PBMCs were separated. Dose response as well as time point kinetics study was carried out at transcription as well as protein level. PBMCs were irradiated at various doses between 10 cGy to 2.0 Gy at a dose rate of 1.0 Gy/min. Total RNA was isolated for gene expression analysis at 0 hour and 4 hours respectively. cDNA was prepared and transcriptional pattern as studied using real time q-PCR where Taqman probes were used. Time point kinetics of transcriptional pattern of TRF1, TRF2, TIN2, TERF2, PTOP and POT1 was carried out at 0 min, 15 min, 30 min, 60 min, and 120 min for two different doses (1.0 Gy and 2.0 Gy). Dose response and time point kinetics of TRF2 was studied at similar doses using confocal microscopy. Our results revealed that at 2.0 Gy there was a two fold increase at the level of transcription

  4. Human induced pluripotent cells resemble embryonic stem cells demonstrating enhanced levels of DNA repair and efficacy of nonhomologous end-joining

    Energy Technology Data Exchange (ETDEWEB)

    Fan Jinshui; Robert, Carine [Department of Radiation Oncology, University of Maryland School of Medicine, 655 West Baltimore Street, BRB 7-023A, Baltimore, MD 21201 (United States); Jang, Yoon-Young; Liu Hua; Sharkis, Saul; Baylin, Stephen Bruce [Johns Hopkins University School of Medicine, Department of Oncology, Baltimore, MD 21231-1000 (United States); Rassool, Feyruz Virgilia, E-mail: frassool@som.umaryland.edu [Department of Radiation Oncology, University of Maryland School of Medicine, 655 West Baltimore Street, BRB 7-023A, Baltimore, MD 21201 (United States)

    2011-08-01

    Highlights: {yields} iPSC and hESC demonstrate a similar cell cycle profile, with increased S phase cells and decreased G0/G1. {yields} iPSC and hESC increased ROS and decreased DSBs, compared with differentiated parental cells. {yields} iPSC and hESC demonstrate elevated DSB repair activity, including nonhomologous end-joining, compared with differentiated parental cells. {yields} iPSC however show a partial apoptotic response to DNA damage, compared to hESC. {yields} DNA damage responses may constitute important markers for the efficacy of iPSC reprogramming. - Abstract: To maintain the integrity of the organism, embryonic stem cells (ESC) need to maintain their genomic integrity in response to DNA damage. DNA double strand breaks (DSBs) are one of the most lethal forms of DNA damage and can have disastrous consequences if not repaired correctly, leading to cell death, genomic instability and cancer. How human ESC (hESC) maintain genomic integrity in response to agents that cause DSBs is relatively unclear. Adult somatic cells can be induced to 'dedifferentiate' into induced pluripotent stem cells (iPSC) and reprogram into cells of all three germ layers. Whether iPSC have reprogrammed the DNA damage response is a critical question in regenerative medicine. Here, we show that hESC demonstrate high levels of endogenous reactive oxygen species (ROS) which can contribute to DNA damage and may arise from high levels of metabolic activity. To potentially counter genomic instability caused by DNA damage, we find that hESC employ two strategies: First, these cells have enhanced levels of DNA repair proteins, including those involved in repair of DSBs, and they demonstrate elevated nonhomologous end-joining (NHEJ) activity and repair efficacy, one of the main pathways for repairing DSBs. Second, they are hypersensitive to DNA damaging agents, as evidenced by a high level of apoptosis upon irradiation. Importantly, iPSC, unlike the parent cells they are derived

  5. Human induced pluripotent cells resemble embryonic stem cells demonstrating enhanced levels of DNA repair and efficacy of nonhomologous end-joining

    International Nuclear Information System (INIS)

    Fan Jinshui; Robert, Carine; Jang, Yoon-Young; Liu Hua; Sharkis, Saul; Baylin, Stephen Bruce; Rassool, Feyruz Virgilia

    2011-01-01

    Highlights: → iPSC and hESC demonstrate a similar cell cycle profile, with increased S phase cells and decreased G0/G1. → iPSC and hESC increased ROS and decreased DSBs, compared with differentiated parental cells. → iPSC and hESC demonstrate elevated DSB repair activity, including nonhomologous end-joining, compared with differentiated parental cells. → iPSC however show a partial apoptotic response to DNA damage, compared to hESC. → DNA damage responses may constitute important markers for the efficacy of iPSC reprogramming. - Abstract: To maintain the integrity of the organism, embryonic stem cells (ESC) need to maintain their genomic integrity in response to DNA damage. DNA double strand breaks (DSBs) are one of the most lethal forms of DNA damage and can have disastrous consequences if not repaired correctly, leading to cell death, genomic instability and cancer. How human ESC (hESC) maintain genomic integrity in response to agents that cause DSBs is relatively unclear. Adult somatic cells can be induced to 'dedifferentiate' into induced pluripotent stem cells (iPSC) and reprogram into cells of all three germ layers. Whether iPSC have reprogrammed the DNA damage response is a critical question in regenerative medicine. Here, we show that hESC demonstrate high levels of endogenous reactive oxygen species (ROS) which can contribute to DNA damage and may arise from high levels of metabolic activity. To potentially counter genomic instability caused by DNA damage, we find that hESC employ two strategies: First, these cells have enhanced levels of DNA repair proteins, including those involved in repair of DSBs, and they demonstrate elevated nonhomologous end-joining (NHEJ) activity and repair efficacy, one of the main pathways for repairing DSBs. Second, they are hypersensitive to DNA damaging agents, as evidenced by a high level of apoptosis upon irradiation. Importantly, iPSC, unlike the parent cells they are derived from, mimic hESC in their ROS levels

  6. Duplex Alu Screening for Degraded DNA of Skeletal Human Remains

    Directory of Open Access Journals (Sweden)

    Fabian Haß

    2017-10-01

    Full Text Available The human-specific Alu elements, belonging to the class of Short INterspersed Elements (SINEs, have been shown to be a powerful tool for population genetic studies. An earlier study in this department showed that it was possible to analyze Alu presence/absence in 3000-year-old skeletal human remains from the Bronze Age Lichtenstein cave in Lower Saxony, Germany. We developed duplex Alu screening PCRs with flanking primers for two Alu elements, each combined with a single internal Alu primer. By adding an internal primer, the approximately 400–500 bp presence signals of Alu elements can be detected within a range of less than 200 bp. Thus, our PCR approach is suited for highly fragmented ancient DNA samples, whereas NGS analyses frequently are unable to handle repetitive elements. With this analysis system, we examined remains of 12 individuals from the Lichtenstein cave with different degrees of DNA degradation. The duplex PCRs showed fully informative amplification results for all of the chosen Alu loci in eight of the 12 samples. Our analysis system showed that Alu presence/absence analysis is possible in samples with different degrees of DNA degradation and it reduces the amount of valuable skeletal material needed by a factor of four, as compared with a singleplex approach.

  7. Epitopes of human testis-specific lactate dehydrogenase deduced from a cDNA sequence

    International Nuclear Information System (INIS)

    Millan, J.L.; Driscoll, C.E.; LeVan, K.M.; Goldberg, E.

    1987-01-01

    The sequence and structure of human testis-specific L-lactate dehydrogenase [LDHC 4 , LDHX; (L)-lactate:NAD + oxidoreductase, EC 1.1.1.27] has been derived from analysis of a complementary DNA (cDNA) clone comprising the complete protein coding region of the enzyme. From the deduced amino acid sequence, human LDHC 4 is as different from rodent LDHC 4 (73% homology) as it is from human LDHA 4 (76% homology) and porcine LDHB 4 (68% homology). Subunit homologies are consistent with the conclusion that the LDHC gene arose by at least two independent duplication events. Furthermore, the lower degree of homology between mouse and human LDHC 4 and the appearance of this isozyme late in evolution suggests a higher rate of mutation in the mammalian LDHC genes than in the LDHA and -B genes. Comparison of exposed amino acid residues of discrete anti-genic determinants of mouse and human LDHC 4 reveals significant differences. Knowledge of the human LDHC 4 sequence will help design human-specific peptides useful in the development of a contraceptive vaccine

  8. DNA repair synthesis in human skin exposed to ultraviolet radiation used in PUVA (psoralen and UV-A) therapy for psoriasis

    International Nuclear Information System (INIS)

    Bishop, S.C.

    1979-01-01

    The ultraviolet radiation used in psoralen and UV-A (PUVA) therapy stimulated DNA repair activity in normal human skin and in the uninvolved skin from psoriatic patients. The activity detected by autoradiography increased linearly with exposure time. No stimulation was observed when the UV-B component was removed from the incident radiation by filtration through glass. Therefore UV-B damage to DNA was found responsible for the activity detected following exposure to the unfiltered PUVA light source. (author)

  9. STR analysis of human DNA from maggots fed on decomposing bodies: Assessment of the time period for successful analysis

    Directory of Open Access Journals (Sweden)

    Daniel Gachuiri Njau

    2016-09-01

    Full Text Available Frequently, forensic entomology is applied in the use of insect maggots for the identification of specimens or remains of humans. Maggot crop analysis could be valuable in criminal investigations when maggots are found at a crime scene and a corpse is absent. Human short tandem repeat (STR has previously been used to support the association of maggots to a specific corpse but not in the period at which the body has been decomposing. The aim of this research was to assess the time period for successful STR analyses of human DNA from third instar maggots (Protophormia terraenovae obtained from decomposing human corpses as well as to investigate the human DNA turnover and degradation in the maggot crop after they are removed from food and/or are fed on a beef (a new/different food source. Results showed that the amount of human DNA recovered from maggots decreased with time in all cases. For maggots fed on beef, the human DNA could only be recovered up to day two and up to day four for the starved maggots. STR analyses of human DNA from maggots’ crop content using 16 loci generated profiles that matched those of reference samples although some of the alleles were not amplifiable therefore generating partial profiles for the samples starved for 4 days and those fed on beef. This may be due to nuclease activity present in the gut of larvae that may have caused degradation of DNA and consequently reduction in DNA yield. It was possible to identify the decomposing body using STRs as markers.

  10. Induction of a systemic lupus erythematosus-like disease in mice by a common human anti-DNA idiotype

    International Nuclear Information System (INIS)

    Mendlovic, S.; Brocke, S.; Meshorer, A.; Mozes, E.; Shoenfeld, Y.; Bakimer, R.; Ben-Bassat, M.

    1988-01-01

    Systemic lupus erythematosus (SLE) is considered to be the quintessential autoimmune disease. It has not been possible to induce SLE in animal models by DNA immunization or by challenge with anti-DNA antibodies. The authors report a murine model of SLE-like disease induced by immunization of C3H.SW female mice with a common human monoclonal anti-DNA idiotype (16/6 idiotype). Following a booster injection with the 16/6 idiotype, high levels of murine anti-16/6 and anti-anti-16/6 antibodies (associated with anti-DNA activity) were detected in the sera of the immunized mice. Elevated titers of autoantibodies reacting with DNA, poly(I), poly(dT), ribonucleoprotein, autoantigens [Sm, SS-A (Ro), and SS-B (La)], and cardiolipin were noted. The serological findings were associated with increased erythrocyte sedimentation rate, leukopenia, proteinuria, immune complex deposition in the glomerular mesangium, and sclerosis of the glomeruli. The immune complexes in the kidneys were shown to contain the 16/6 idiotype. This experimental SLE-like model may be used to elucidate the mechanisms underlying SLE

  11. Cytotoxic and DNA-damaging properties of glyphosate and Roundup in human-derived buccal epithelial cells.

    Science.gov (United States)

    Koller, Verena J; Fürhacker, Maria; Nersesyan, Armen; Mišík, Miroslav; Eisenbauer, Maria; Knasmueller, Siegfried

    2012-05-01

    Glyphosate (G) is the largest selling herbicide worldwide; the most common formulations (Roundup, R) contain polyoxyethyleneamine as main surfactant. Recent findings indicate that G exposure may cause DNA damage and cancer in humans. Aim of this investigation was to study the cytotoxic and genotoxic properties of G and R (UltraMax) in a buccal epithelial cell line (TR146), as workers are exposed via inhalation to the herbicide. R induced acute cytotoxic effects at concentrations > 40 mg/l after 20 min, which were due to membrane damage and impairment of mitochondrial functions. With G, increased release of extracellular lactate dehydrogenase indicative for membrane damage was observed at doses > 80 mg/l. Both G and R induced DNA migration in single-cell gel electrophoresis assays at doses > 20 mg/l. Furthermore, an increase of nuclear aberrations that reflect DNA damage was observed. The frequencies of micronuclei and nuclear buds were elevated after 20-min exposure to 10-20 mg/l, while nucleoplasmatic bridges were only enhanced by R at the highest dose (20 mg/l). R was under all conditions more active than its active principle (G). Comparisons with results of earlier studies with lymphocytes and cells from internal organs indicate that epithelial cells are more susceptible to the cytotoxic and DNA-damaging properties of the herbicide and its formulation. Since we found genotoxic effects after short exposure to concentrations that correspond to a 450-fold dilution of spraying used in agriculture, our findings indicate that inhalation may cause DNA damage in exposed individuals.

  12. Unscheduled DNA synthesis in human skin after in vitro ultraviolet-excimer laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Green, H.A.; Margolis, R.; Boll, J.; Kochevar, I.E.; Parrish, J.A.; Oseroff, A.R.

    1987-08-01

    DNA damage repaired by the excision repair system and measured as unscheduled DNA synthesis (UDS) was assessed in freshly excised human skin after 193 and 248 nm ultraviolet (UV)-excimer laser ablative incisions. Laser irradiation at 248 nm induced DNA damage throughout a zone of cells surrounding the ablated and heat-damaged area. In contrast, with 193 nm irradiation UDS was not detected in cells adjacent to the ablated area, even though DNA strongly absorbs this wavelength. Our results suggest that the lack of UDS after 193 nm irradiation is due to: ''shielding'' of DNA by the cellular interstitium, membrane, and cytoplasm, DNA damage that is not repaired by excision repair, or thermal effects that either temporarily or permanently inhibit the excision repair processes.

  13. Stable radioresistance in ataxia-telangiectasia cells containing DNA from normal human cells

    International Nuclear Information System (INIS)

    Kapp, L.N.; Painter, R.B.

    1989-01-01

    SV40-transformed ataxia-telangiectasia (AT) cells were transfected with a cosmid containing a normal human DNA library and selectable marker, the neo gene, which endows successfully transformed mammalian cells with resistance to the antibiotic G418. Cells from this line were irradiated with 50 Gy of X-rays and fused with non-transfected AT cells. Among the G418-resistant colonies recovered was one stably resistant to radiation. Resistance to ionizing radiation of both primary transfectant line and its fusion derivative was intermediate between that of AT cells and normal cells, as assayed by colony-forming ability and measurement of radiation-induced G 2 chromatic aberrations; both cell lines retained AT-like radioresistant DNA synthesis. Results suggest that, because radioresistance in transfected cells was not as great as in normal human cells, two hallmarks of AT, radiosensitivity and radioresistant DNA synthesis, may still be the result of a single defective AT gene. (author)

  14. Homologous subfamilies of human alphoid repetitive DNA on different nucleolus organizing chromosomes

    International Nuclear Information System (INIS)

    Joergensen, A.L.; Bostock, C.J.; Bak, A.L.

    1987-01-01

    The organization of alphoid repeated sequences on human nucleolus-organizing (NOR) chromosomes 13, 21, and 22 has been investigated. Analysis of hybridization of alphoid DNA probes to Southern transfers of restriction enzyme-digested DNA fragments from hybrid cells containing single human chromosomes shows that chromosomes 13 and 21 share one subfamily of alphoid repeats, whereas a different subfamily may be held in common by chromosomes 13 and 22. The sequences of cloned 680-base-pair EcoRI fragments of the alphoid DNA from chromosomes 13 and 21 show that the basic unit of this subfamily is indistinguishable on each chromosome. The sequence of cloned 1020-base-pair Xba I fragments from chromosome 22 is related to, but distinguishable from, that of the 680-base-pair EcoRI alphoid subfamily of chromosomes 13 and 21. These results suggest that, at some point after they originated and were homogenized, different subfamilies of alphoid sequences must have exchanged between chromosomes 13 and 21 and separately between chromosomes 13 and 22

  15. High quality DNA from human papillomavirus (HPV for PCR/RFLPs

    Directory of Open Access Journals (Sweden)

    Denise Wanderlei-Silva

    2005-01-01

    Full Text Available The analysis of DNA in clinical samples for a secure diagnostic has become indispensable nowadays. Techniques approaching isolation of high molecular weigth DNA of HPV could lead to efficient amplification and early clinical diagnosis of the virus DNA by PCR (polymerase chain reaction. We describe a fast, non-toxical, efficient and cheap method for DNA isolation of human papilloma virus (HPV from cervical smears using guanidine (DNAzol solution. A 450 bp DNA band correponding to the late region (L1 of the virus genome was detected by PCR, showing that the DNAzol extraction soluction generated a good viral DNA yield. The electrophoretic pattern after digestion with restriction endonucleases (RFLPs/PCR revealed the predominance of HPV-16 and HPV-33 in the samples from the State of Alagoas, Brazil.A detecção de DNA em amostras clínicas visando um diagnóstico mais seguro vem se tornando uma prática comum em laboratórios de análise clínica. Metodologias que objetivem o isolamento de DNA de alto peso molecular de HPV podem levar a uma amplificação precisa e diagnose precoce do DNA do vírus por PCR (reação de polimerase em cadeia. Nós descrevemos um método para o isolamento do DNA do vírus do papiloma humano de amostras cervicais utilizando o detergente guanidina (solução DNAzol. O método foi rápido, não-tóxico e eficiente. Uma banda de DNA de 450 pb correspondente à região tardia (L1 do genoma viral foi detectada por PCR, mostrando que a extração com DNAzol gerou quantidade suficiente de DNA para análise. O padrão eletroforético, após digestão com endonucleases de restrição (RFLPs/PCR, revelou predominância de HPV 16 e HPV-33 nas amostras no Estado de Alagoas, Brasil.

  16. Nucleotide sequence of a cDNA coding for the amino-terminal region of human prepro. alpha. 1(III) collagen

    Energy Technology Data Exchange (ETDEWEB)

    Toman, P D; Ricca, G A [Rorer Biotechnology, Inc., Springfield, VA (USA); de Crombrugghe, B [National Institutes of Health, Bethesda, MD (USA)

    1988-07-25

    Type III Collagen is synthesized in a variety of tissues as a precursor macromolecule containing a leader sequence, a N-propeptide, a N-telopeptide, the triple helical region, a C-telopeptide, and C-propeptide. To further characterize the human type III collagen precursor, a human placental cDNA library was constructed in gt11 using an oligonucleotide derived from a partial cDNA sequence corresponding to the carboxy-terminal part of the 1(III) collagen. A cDNA was identified which contains the leader sequence, the N-propeptide and N-telopeptide regions. The DNA sequence of these regions are presented here. The triple helical, C-telopeptide and C-propeptide amino acid sequence for human type III collagen has been determined previously. A comparison of the human amino acid sequence with mouse, chicken, and calf sequence shows 81%, 81%, and 92% similarity, respectively. At the DNA level, the sequence similarity between human and mouse or chicken type III collagen sequences in this area is 82% and 77%, respectively.

  17. Pretreatment with mixed-function oxidase inducers increases the sensitivity of the hepatocyte/DNA repair assay

    International Nuclear Information System (INIS)

    Shaddock, J.G.; Heflich, R.H.; McMillan, D.C.; Hinson, J.A.; Casciano, D.A.

    1989-01-01

    A recent National Toxicology Program evaluation indicates that the rat hepatocyte/DNA repair assay has a high false-negative rate and that it is insensitive to some genotoxic hepatocarcinogens as well as other species and organ-specific carcinogens. In this study, the authors examined whether the sensitivity of the hepatocyte/DNA repair assay might be increased through animal pretreatment with various hepatic mixed-function oxidase inducers, i.e., Aroclor 1254, phenobarbital, and 3,3',4,4'-tetrachloroazobenzene (TCAB). The effects on unscheduled DNA synthesis (UDS), a measured of DNA damage and repair, were studied in cultures exposed to known and/or potential carcinogens that had been evaluated as negative or questionable or that produced conflicting results with hepatocytes isolated from uninduced animals. 4,4'-Oxydianiline, 1-nitropy-rene, and TCAB produced concentration-dependent increases in UDS in hepatocytes from rats pretreated with Aroclor 1254. 4,4'-Oxydianiline and TCAB also induced a dose-dependent increase in DNA repair in hepatocytes from rats pretreated with phenobarbital, whereas 1-nitropyrene was negative. These data indicate that the limited sensitivity to chemical carcinogens displayed by the hepatocyte/DNA repair assay may be increased by using hepatocytes isolated from animals exposed to hepatic mixed-function oxidase inducers

  18. Pretreatment with mixed-function oxidase inducers increases the sensitivity of the hepatocyte/DNA repair assay

    Energy Technology Data Exchange (ETDEWEB)

    Shaddock, J.G.; Heflich, R.H.; McMillan, D.C.; Hinson, J.A.; Casciano, D.A. (National Center for Toxicological Research, Jefferson, AK (USA) Univ. of Arkansas for Medical Sciences, Little Rock (USA))

    1989-01-01

    A recent National Toxicology Program evaluation indicates that the rat hepatocyte/DNA repair assay has a high false-negative rate and that it is insensitive to some genotoxic hepatocarcinogens as well as other species and organ-specific carcinogens. In this study, the authors examined whether the sensitivity of the hepatocyte/DNA repair assay might be increased through animal pretreatment with various hepatic mixed-function oxidase inducers, i.e., Aroclor 1254, phenobarbital, and 3,3{prime},4,4{prime}-tetrachloroazobenzene (TCAB). The effects on unscheduled DNA synthesis (UDS), a measured of DNA damage and repair, were studied in cultures exposed to known and/or potential carcinogens that had been evaluated as negative or questionable or that produced conflicting results with hepatocytes isolated from uninduced animals. 4,4{prime}-Oxydianiline, 1-nitropy-rene, and TCAB produced concentration-dependent increases in UDS in hepatocytes from rats pretreated with Aroclor 1254. 4,4{prime}-Oxydianiline and TCAB also induced a dose-dependent increase in DNA repair in hepatocytes from rats pretreated with phenobarbital, whereas 1-nitropyrene was negative. These data indicate that the limited sensitivity to chemical carcinogens displayed by the hepatocyte/DNA repair assay may be increased by using hepatocytes isolated from animals exposed to hepatic mixed-function oxidase inducers.

  19. Complete cDNA sequence coding for human docking protein

    Energy Technology Data Exchange (ETDEWEB)

    Hortsch, M; Labeit, S; Meyer, D I

    1988-01-11

    Docking protein (DP, or SRP receptor) is a rough endoplasmic reticulum (ER)-associated protein essential for the targeting and translocation of nascent polypeptides across this membrane. It specifically interacts with a cytoplasmic ribonucleoprotein complex, the signal recognition particle (SRP). The nucleotide sequence of cDNA encoding the entire human DP and its deduced amino acid sequence are given.

  20. Cloning and cDNA sequence of the dihydrolipoamide dehydrogenase component of human α-ketoacid dehydrogenase complexes

    International Nuclear Information System (INIS)

    Pons, G.; Raefsky-Estrin, C.; Carothers, D.J.; Pepin, R.A.; Javed, A.A.; Jesse, B.W.; Ganapathi, M.K.; Samols, D.; Patel, M.S.

    1988-01-01

    cDNA clones comprising the entire coding region for human dihydrolipoamide dehydrogenase have been isolated from a human liver cDNA library. The cDNA sequence of the largest clone consisted of 2082 base pairs and contained a 1527-base open reading frame that encodes a precursor dihydrolipoamide dehydrogenase of 509 amino acid residues. The first 35-amino acid residues of the open reading frame probably correspond to a typical mitochondrial import leader sequence. The predicted amino acid sequence of the mature protein, starting at the residue number 36 of the open reading frame, is almost identical (>98% homology) with the known partial amino acid sequence of the pig heart dihydrolipoamide dehydrogenase. The cDNA clone also contains a 3' untranslated region of 505 bases with an unusual polyadenylylation signal (TATAAA) and a short poly(A) track. By blot-hybridization analysis with the cDNA as probe, two mRNAs, 2.2 and 2.4 kilobases in size, have been detected in human tissues and fibroblasts, whereas only one mRNA (2.4 kilobases) was detected in rat tissues

  1. Sequence and transcription analysis of the human cytomegalovirus DNA polymerase gene

    International Nuclear Information System (INIS)

    Kouzarides, T.; Bankier, A.T.; Satchwell, S.C.; Weston, K.; Tomlinson, P.; Barrell, B.G.

    1987-01-01

    DNA sequence analysis has revealed that the gene coding for the human cytomegalovirus (HCMV) DNA polymerase is present within the long unique region of the virus genome. Identification is based on extensive amino acid homology between the predicted HCMV open reading frame HFLF2 and the DNA polymerase of herpes simplex virus type 1. The authors present here a 5280 base-pair DNA sequence containing the HCMV pol gene, along with the analysis of transcripts encoded within this region. Since HCMV pol also shows homology to the predicted Epstein-Barr virus pol, they were able to analyze the extent of homology between the DNA polymerases of three distantly related herpes viruses, HCMV, Epstein-Barr virus, and herpes simplex virus. The comparison shows that these DNA polymerases exhibit considerable amino acid homology and highlights a number of highly conserved regions; two such regions show homology to sequences within the adenovirus type 2 DNA polymerase. The HCMV pol gene is flanked by open reading frames with homology to those of other herpes viruses; upstream, there is a reading frame homologous to the glycoprotein B gene of herpes simplex virus type I and Epstein-Barr virus, and downstream there is a reading frame homologous to BFLF2 of Epstein-Barr virus

  2. A Preliminary Study: Human Fibroid Stro-1+/CD44+ Stem Cells Isolated From Uterine Fibroids Demonstrate Decreased DNA Repair and Genomic Integrity Compared to Adjacent Myometrial Stro-1+/CD44+ Cells.

    Science.gov (United States)

    Prusinski Fernung, Lauren E; Al-Hendy, Ayman; Yang, Qiwei

    2018-01-01

    Although uterine fibroids (UFs) continue to place a major burden on female reproductive health, the mechanisms behind their origin remain undetermined. Normal myometrial stem cells may be transformed into tumor-initiating stem cells, causing UFs, due to unknown causes of somatic mutations in MED12, found in up to 85% of sporadically formed UFs. It is well established in other tumor types that defective DNA repair increases the risk of such tumorigenic somatic mutations, mechanisms not yet studied in UFs. To examine the putative cause(s) of this stem cell transformation, we analyzed DNA repair within stem cells from human UFs compared to those from adjacent myometrium to determine whether DNA repair in fibroid stem cells is compromised. Human fibroid (F) and adjacent myometrial (Myo) stem cells were isolated from fresh tissues, and gene expression relating to DNA repair was analyzed. Fibroid stem cells differentially expressed DNA repair genes related to DNA double- (DSBs) and single-strand breaks. DNA damage was measured using alkaline comet assay. Additionally, DNA DSBs were induced in these stem cells and DNA DSB repair evaluated (1) by determining changes in phosphorylation of DNA DSB-related proteins and (2) by determining differences in γ-H2AX foci formation and relative DNA repair protein RAD50 expression. Overall, F stem cells demonstrated increased DNA damage and altered DNA repair gene expression and signaling, suggesting that human F stem cells demonstrate impaired DNA repair. Compromised F stem cell DNA repair may contribute to further mutagenesis and, consequently, further growth and propagation of UF tumors.

  3. Cerebellar oxidative DNA damage and altered DNA methylation in the BTBR T+tf/J mouse model of autism and similarities with human post mortem cerebellum.

    Directory of Open Access Journals (Sweden)

    Svitlana Shpyleva

    Full Text Available The molecular pathogenesis of autism is complex and involves numerous genomic, epigenomic, proteomic, metabolic, and physiological alterations. Elucidating and understanding the molecular processes underlying the pathogenesis of autism is critical for effective clinical management and prevention of this disorder. The goal of this study is to investigate key molecular alterations postulated to play a role in autism and their role in the pathophysiology of autism. In this study we demonstrate that DNA isolated from the cerebellum of BTBR T+tf/J mice, a relevant mouse model of autism, and from human post-mortem cerebellum of individuals with autism, are both characterized by an increased levels of 8-oxo-7-hydrodeoxyguanosine (8-oxodG, 5-methylcytosine (5mC, and 5-hydroxymethylcytosine (5hmC. The increase in 8-oxodG and 5mC content was associated with a markedly reduced expression of the 8-oxoguanine DNA-glycosylase 1 (Ogg1 and increased expression of de novo DNA methyltransferases 3a and 3b (Dnmt3a and Dnmt3b. Interestingly, a rise in the level of 5hmC occurred without changes in the expression of ten-eleven translocation expression 1 (Tet1 and Tet2 genes, but significantly correlated with the presence of 8-oxodG in DNA. This finding and similar elevation in 8-oxodG in cerebellum of individuals with autism and in the BTBR T+tf/J mouse model warrant future large-scale studies to specifically address the role of OGG1 alterations in pathogenesis of autism.

  4. Chromosomal instability mediated by non-B DNA: cruciform conformation and not DNA sequence is responsible for recurrent translocation in humans.

    Science.gov (United States)

    Inagaki, Hidehito; Ohye, Tamae; Kogo, Hiroshi; Kato, Takema; Bolor, Hasbaira; Taniguchi, Mariko; Shaikh, Tamim H; Emanuel, Beverly S; Kurahashi, Hiroki

    2009-02-01

    Chromosomal aberrations have been thought to be random events. However, recent findings introduce a new paradigm in which certain DNA segments have the potential to adopt unusual conformations that lead to genomic instability and nonrandom chromosomal rearrangement. One of the best-studied examples is the palindromic AT-rich repeat (PATRR), which induces recurrent constitutional translocations in humans. Here, we established a plasmid-based model that promotes frequent intermolecular rearrangements between two PATRRs in HEK293 cells. In this model system, the proportion of PATRR plasmid that extrudes a cruciform structure correlates to the levels of rearrangement. Our data suggest that PATRR-mediated translocations are attributable to unusual DNA conformations that confer a common pathway for chromosomal rearrangements in humans.

  5. Relationship between DNA replication and DNA repair in human lymphocytes proliferating in vitro in the presence and in absence of mutagen

    International Nuclear Information System (INIS)

    Szyfter, K.; Wielgosz, M.Sz.; Kujawski, M.; Jaloszynski, P.; Zajaczek, S.

    1995-01-01

    The effects of mutagens on DNA replication and DNA repair were studied in peripheral blood lymphocytes (PBL) obtained from 21 healthy subjects, 2 samples from healthy heterozygote of ''Xeroderma pigmentosum'' (XP) and 2 samples from patient with clinically recognised XP. Inter-individual variations were found in DNA replication and in the level of spontaneous DNA repair measured under standard culture condition. Exposure of human PBL proliferating in vitro to B(a)P was followed by a partial inhibition of replicative DNA synthesis in all subjects and by an induction of DNA repair in healthy subjects. In XP patients DNA repair synthesis remained at the level attributed to spontaneous DNA repair. The response to mutagen varied individually. Results were analysed statistically. It was established that the studied indices of DNA synthesis correlate well with each other. The highest correlation was found between the levels of spontaneous and B(a)P-induced DNA repair. It is concluded that the level of spontaneous DNA repair is predictive for an estimation of cells ability to repair DNA damage. Inter-individual variations in the inhibition of DNA replication and in DNA repair synthesis are also dependent on the type of mutagen as shown by effects of other mutagens. Different effects of mutagen exposure on the inhibition of DNA replicative synthesis and induction of DNA repair can be explained by genetically controlled differences in the activity of enzymes responsible for mutagen processing and lesion removal. (author). 37 refs, 2 figs, 2 tabs

  6. Proceedings of the relevance of mass spectrometry to DNA sequence determination: Research needs for the Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, C.G.; Smith, R.D. (Pacific Northwest Lab., Richland, WA (USA)); Smith, L.M. (Wisconsin Univ., Madison, WI (USA))

    1990-11-01

    A workshop was sponsored for the US Department of Energy (DOE), Office of Health and Environmental Research by Pacific Northwest Laboratory, April 4--5, 1990, in Seattle, Washington, to examine the potential role of mass spectrometry in the joint DOE/National Institutes of Health (NIH) Human Genome Program. The workshop was occasioned by recent developments in mass spectrometry that are providing new levels for selectivity, sensitivity, and, in particular, new methods of ionization appropriate for large biopolymers such as DNA. During discussions, three general mass spectrometric approaches to the determination of DNA sequence were considered: (1) the mass spectrometric detection of isotopic labels from DNA sequencing mixtures separated using gel electrophoresis, (2) the direct mass spectrometric analysis from direct ionization of unfractionated sequencing mixtures where the measured mass of the constituents functions to identify and order the base sequence (replacing separation by gel electrophoresis), and (3) an approach in which a single highly charged molecular ion of a large DNA segment produced is rapidly sequenced in an ion cyclotron resonance ion trap. The consensus of the workshop was that, on the basis of the new developments, mass spectrometry has the potential to provide the substantial increases in sequencing speed required for the Human Genome Program. 66 refs., 3 tabs.

  7. Cloning of the cDNA and gene for a human D2 dopamine receptor

    International Nuclear Information System (INIS)

    Grady, D.K.; Makam, H.; Stofko, R.E.; Bunzow, J.R.; Civelli, O.; Marchionni, M.A.; Alfano, M.; Frothingham, L.; Fischer, J.B.; Burke-Howie, K.J.; Server, A.C.

    1989-01-01

    A clone encoding a human D 2 dopamine receptor was isolated from a pituitary cDNA library and sequenced. The deduced protein sequence is 96% identical with that of the cloned rat receptor with one major difference: the human receptor contains an additional 29 amino acids in its putative third cytoplasmic loop. Southern blotting demonstrated the presence of only one human D 2 receptor gene. Two overlapping phage containing the gene were isolated and characterized. DNA sequence analysis of these clones showed that the coding sequence is interrupted by six introns and that the additional amino acids present in the human pituitary receptor are encoded by a single exon of 87 base pairs. The involvement of this sequence in alternative splicing and its biological significance are discussed

  8. Transfer of Chinese hamster DNA repair gene(s) into repair-deficient human cells (Xeroderma pigmentosum)

    International Nuclear Information System (INIS)

    Karentz, D.; Cleaver, J.E.

    1985-01-01

    Transfer of repair genes by DNA transfection into repair-deficient Xeroderma pigmentosum (XP) cells has thus far been unsuccessful, presenting an obstacle to cloning XP genes. The authors chose an indirect route to transfer repair genes in chromosome fragments. DNA repair-competent (UV resistant) hybrid cell lines were established by PEG-mediated fusions of DNA repair-deficient (UV sensitive) human fibroblasts (XP12RO) with wild type Chinese hamster (CHO) cells (AA8). CHO cells were exposed to 5 Krad X-rays prior to fusions, predisposing hybrid cells to lose CHO chromosome fragments preferentially. Repair-competent hybrids were selected by periodic exposures to UV light. Secondary and tertiary hybrid cell lines were developed by fusion of X-irradiated hybrids to XP12RO. The hybrid cell lines exhibit resistance to UV that is comparable to that of CHO cells and they are proficient at repair replication after UV exposure. Whole cell DNA-DNA hybridizations indicate that the hybrids have greater homology to CHO DNA than is evident between XP12RO and CHO. These observations indicate that CHO DNA sequences which can function in repair of UV-damaged DNA in human cells have been transferred into the genome of the repair-deficient XP12RO cells

  9. Oxidative damage of mitochondrial and nuclear DNA induced by ionizing radiation in human hepatoblastoma cells

    International Nuclear Information System (INIS)

    Morales, Albert; Miranda, Merce; Sanchez-Reyes, Alberto; Biete, Alberto; Fernandez-Checa, Jose C.

    1998-01-01

    Purpose: Since reactive oxygen species (ROS) act as mediators of radiation-induced cellular damage, the aim of our studies was to determine the effects of ionizing radiation on the regulation of hepatocellular reduced glutathione (GSH), survival and integrity of nuclear and mitochondrial DNA (mtDNA) in human hepatoblastoma cells (Hep G2) depleted of GSH prior to radiation. Methods and Materials: GSH, oxidized glutathione (GSSG), and generation of ROS were determined in irradiated (50-500 cGy) Hep G2 cells. Clonogenic survival, nuclear DNA fragmentation, and integrity of mtDNA were assessed in cells depleted of GSH prior to radiation. Results: Radiation of Hep G2 cells (50-400 cGy) resulted in a dose-dependent generation of ROS, an effect accompanied by a decrease of reduced GSH, ranging from a 15% decrease for 50 cGy to a 25% decrease for 400 cGy and decreased GSH/GSSG from a ratio of 17 to a ratio of 7 for controls and from 16 to 6 for diethyl maleate (DEM)-treated cells. Depletion of GSH prior to radiation accentuated the increase of ROS by 40-50%. The depletion of GSH by radiation was apparent in different subcellular sites, being particularly significant in mitochondria. Furthermore, depletion of nuclear GSH to 50-60% of initial values prior to irradiation (400 cGy) resulted in DNA fragmentation and apoptosis. Consequently, the survival of Hep G2 to radiation was reduced from 25% of cells not depleted of GSH to 10% of GSH-depleted cells. Fitting the survival rate of cells as a function of GSH using a theoretical model confirmed cellular GSH as a key factor in determining intrinsic sensitivity of Hep G2 cells to radiation. mtDNA displayed an increased susceptibility to the radiation-induced loss of integrity compared to nuclear DNA, an effect that was potentiated by GSH depletion in mitochondria (10-15% intact mtDNA in GSH-depleted cells vs. 25-30% of repleted cells). Conclusion: GSH plays a critical protective role in maintaining nuclear and mtDNA functional

  10. Joint Estimation of Contamination, Error and Demography for Nuclear DNA from Ancient Humans

    Science.gov (United States)

    Slatkin, Montgomery

    2016-01-01

    When sequencing an ancient DNA sample from a hominin fossil, DNA from present-day humans involved in excavation and extraction will be sequenced along with the endogenous material. This type of contamination is problematic for downstream analyses as it will introduce a bias towards the population of the contaminating individual(s). Quantifying the extent of contamination is a crucial step as it allows researchers to account for possible biases that may arise in downstream genetic analyses. Here, we present an MCMC algorithm to co-estimate the contamination rate, sequencing error rate and demographic parameters—including drift times and admixture rates—for an ancient nuclear genome obtained from human remains, when the putative contaminating DNA comes from present-day humans. We assume we have a large panel representing the putative contaminant population (e.g. European, East Asian or African). The method is implemented in a C++ program called ‘Demographic Inference with Contamination and Error’ (DICE). We applied it to simulations and genome data from ancient Neanderthals and modern humans. With reasonable levels of genome sequence coverage (>3X), we find we can recover accurate estimates of all these parameters, even when the contamination rate is as high as 50%. PMID:27049965

  11. Modifications of alkaline microgel electrophoresis for sensitive detection of DNA damage

    International Nuclear Information System (INIS)

    Singh, N.P.; Stephens, R.E.; Schneider, E.L.

    1994-01-01

    The alkaline microgel electrophoresis technique was modified to achieve a substantial increase in sensitivity for the detection of radiation-induced DNA damage in human lymphocytes. This increased sensitivity was achieved through: (1) the addition of free radical scavengers to the electrophoresis solution to reduce DNA damage generated during alkaline unwinding and electrophoresis; (2) the modification of the electrophoresis unit to achieve a more uniform electric field; (3) the use of YOYO-1, a DNA dye, producing fluorescence 500-fold more intense than ethidium bromide; and (4) the introduction of an image analysis system for the quantitation of DNA migration. In human lymphocytes, these modifications have resulted in an increased sensitivity of several fold, allowing the detection of DNA damage in the range of 50 mGy. (author)

  12. DNA markers for forensic identification of non-human biological traces

    NARCIS (Netherlands)

    Wesselink, M.

    2018-01-01

    In this thesis, DNA markers are described that enable forensically relevant classification of three groups of non-human biological traces: fungi (Chapter 1), domestic cats (Chapters 2, 3 an d 4) and birch trees (Chapters 5 and 6). Because the forensic questions associated with these traces require

  13. Alu polymerase chain reaction: A method for rapid isolation of human-specific sequences from complex DNA sources

    International Nuclear Information System (INIS)

    Nelson, D.L.; Ledbetter, S.A.; Corbo, L.; Victoria, M.F.; Ramirez-Solis, R.; Webster, T.D.; Ledbetter, D.H.; Caskey, C.T.

    1989-01-01

    Current efforts to map the human genome are focused on individual chromosomes or smaller regions and frequently rely on the use of somatic cell hybrids. The authors report the application of the polymerase chain reaction to direct amplification of human DNA from hybrid cells containing regions of the human genome in rodent cell backgrounds using primers directed to the human Alu repeat element. They demonstrate Alu-directed amplification of a fragment of the human HPRT gene from both hybrid cell and cloned DNA and identify through sequence analysis the Alu repeats involved in this amplification. They also demonstrate the application of this technique to identify the chromosomal locations of large fragments of the human X chromosome cloned in a yeast artificial chromosome and the general applicability of the method to the preparation of DNA probes from cloned human sequences. The technique allows rapid gene mapping and provides a simple method for the isolation and analysis of specific chromosomal regions

  14. Defects of mtDNA Replication Impaired Mitochondrial Biogenesis During Trypanosoma cruzi Infection in Human Cardiomyocytes and Chagasic Patients: The Role of Nrf1/2 and Antioxidant Response

    Science.gov (United States)

    Wan, Xianxiu; Gupta, Shivali; Zago, Maria P.; Davidson, Mercy M.; Dousset, Pierre; Amoroso, Alejandro; Garg, Nisha Jain

    2012-01-01

    Background Mitochondrial dysfunction is a key determinant in chagasic cardiomyopathy development in mice; however, its relevance in human Chagas disease is not known. We determined if defects in mitochondrial biogenesis and dysregulation of peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1)–regulated transcriptional pathways constitute a mechanism or mechanisms underlying mitochondrial oxidative-phosphorylation (OXPHOS) deficiency in human Chagas disease. Methods and Results We utilized human cardiomyocytes and left-ventricular tissue from chagasic and other cardiomyopathy patients and healthy donors (n>6/group). We noted no change in citrate synthase activity, yet mRNA and/or protein levels of subunits of the respiratory complexes were significantly decreased in Trypanosoma cruzi–infected cardiomyocytes (0 to 24 hours) and chagasic hearts. We observed increased mRNA and decreased nuclear localization of PGC-1-coactivated transcription factors, yet the expression of genes for PPARγ-regulated fatty acid oxidation and nuclear respiratory factor (NRF1/2)–regulated mtDNA replication and transcription machinery was enhanced in infected cardiomyocytes and chagasic hearts. The D-loop formation was normal or higher, but mtDNA replication and mtDNA content were decreased by 83% and 40% to 65%, respectively. Subsequently, we noted that reactive oxygen species (ROS), oxidative stress, and mtDNA oxidation were significantly increased, yet NRF1/2-regulated antioxidant gene expression remained compromised in infected cardiomyocytes and chagasic hearts. Conclusions The replication of mtDNA was severely compromised, resulting in a significant loss of mtDNA and expression of OXPHOS genes in T cruzi–infected cardiomyocytes and chagasic hearts. Our data suggest increased ROS generation and selective functional incapacity of NRF2-mediated antioxidant gene expression played a role in the defects in mtDNA replication and unfitness of mtDNA for

  15. Pre-Steady State Kinetic Investigation of the Incorporation of Anti-Hepatitis B Nucleotide Analogs Catalyzed by Non-Canonical Human DNA Polymerases

    Science.gov (United States)

    Brown, Jessica A.; Pack, Lindsey R.; Fowler, Jason D.; Suo, Zucai

    2011-01-01

    Antiviral nucleoside analogs have been developed to inhibit the enzymatic activities of the hepatitis B virus (HBV) polymerase, thereby preventing the replication and production of HBV. However, the usage of these analogs can be limited by drug toxicity because the 5′-triphosphates of these nucleoside analogs (nucleotide analogs) are potential substrates for human DNA polymerases to incorporate into host DNA. Although they are poor substrates for human replicative DNA polymerases, it remains to be established whether these nucleotide analogs are substrates for the recently discovered human X- and Y-family DNA polymerases. Using pre-steady state kinetic techniques, we have measured the substrate specificity values for human DNA polymerases β, λ, η, ι, κ, and Rev1 incorporating the active forms of the following anti-HBV nucleoside analogs approved for clinical use: adefovir, tenofovir, lamivudine, telbivudine, and entecavir. Compared to the incorporation of a natural nucleotide, most of the nucleotide analogs were incorporated less efficiently (2 to >122,000) by the six human DNA polymerases. In addition, the potential for entecavir and telbivudine, two drugs which possess a 3′-hydroxyl, to become embedded into human DNA was examined by primer extension and DNA ligation assays. These results suggested that telbivudine functions as a chain terminator while entecavir was efficiently extended by the six enzymes and was a substrate for human DNA ligase I. Our findings suggested that incorporation of anti-HBV nucleotide analogs catalyzed by human X- and Y-family polymerases may contribute to clinical toxicity. PMID:22132702

  16. Comparison of commercially-available preservatives for maintaining the integrity of bacterial DNA in human milk.

    Science.gov (United States)

    Lackey, Kimberly A; Williams, Janet E; Price, William J; Carrothers, Janae M; Brooker, Sarah L; Shafii, Bahman; McGuire, Mark A; McGuire, Michelle K

    2017-10-01

    Inhibiting changes to bacteria in human milk between sample collection and analysis is necessary for unbiased characterization of the milk microbiome. Although cold storage is considered optimal, alternative preservation is sometimes necessary. The objective of this study was to compare the effectiveness of several commercially-available preservatives with regard to maintaining bacterial DNA in human milk for delayed microbiome analysis. Specifically, we compared Life Technologies' RNAlater® stabilization solution, Biomatrica's DNAgard® Saliva, Advanced Instruments' Broad Spectrum Microtabs II™, and Norgen Biotek Corporation's Milk DNA Preservation and Isolation Kit. Aliquots of 8 pools of human milk were treated with each preservative. DNA was extracted immediately and at 1, 2, 4, and 6wk, during which time milk was held at 37°C. The V1-V3 region of the bacterial 16S rRNA gene was amplified and sequenced. Changes in bacterial community structure and diversity over time were evaluated. Comparable to other studies, the most abundant genera were Streptococcus (33.3%), Staphylococcus (14.0%), Dyella (6.3%), Pseudomonas (3.0%), Veillonella (2.5%), Hafnia (2.0%), Prevotella (1.7%), Rhodococcus (1.6%), and Granulicatella (1.4%). Overall, use of Norgen's Milk DNA Preservation and Isolation Kit best maintained the consistency of the bacterial community structure. Total DNA, diversity, and evenness metrics were also highest in samples preserved with this method. When collecting human milk for bacterial community analysis in field conditions where cold storage is not available, our results suggest that Norgen's Milk DNA Preservation and Isolation Kit may be a useful method, at least for a period of 2weeks. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Molecular cloning and mammalian expression of human beta 2-glycoprotein I cDNA

    DEFF Research Database (Denmark)

    Kristensen, Torsten; Schousboe, Inger; Boel, Espen

    1991-01-01

    Human β2-glycoprotein (β2gpI) cDNA was isolated from a liver cDNA library and sequenced. The cDNA encoded a 19-residue hydrophobic signal peptide followed by the mature β2gpI of 326 amino acid residues. In liver and in the hepatoma cell line HepG2 there are two mRNA species of about 1.4 and 4.3 kb......, respectively, hybridizing specifically with the β2gpI cDNA. Upon isoelectric focusing, recombinant β2gpI obtained from expression of β2gpI cDNA in baby hamster kidney cells showed the same pattern of bands as β2gpI isolated from plasma, and at least 5 polypeptides were visible...

  18. Assay for Epstein--Barr virus based on stimulation of DNA systhesis in mixed leukocytes from human umbilical cord blood

    International Nuclear Information System (INIS)

    Robinson, J.; Miller, G.

    1975-01-01

    Relationships between the rate of DNA synthesis in cultured human umbilical cord leukocytes and the multiplicity of added Epstein-Barr virus (EBV) were studied. At low multiplicities of approximately 0.1 transforming units/cell (approximately 10 physical particles/cell), inoculated cultures demonstrated increased rates of DNA synthesis, by comparison to uninoculated cultures, 3 days after inoculation. Stimulation of DNA synthesis was evident at progressively longer intervals after inoculations of 10-fold dilutions of virus. The rate of DNA synthesis, determined by short [ 3 H]thymidine pulses, reflected as small as twofold changes in multiplicity and thus can serve as a quantitative assay for the virus. Changes in the rate of DNA synthesis were evident before increases in cell number or alteration in morphology. Stimulation of DNA synthesis in umbilical cord leukocytes was inhibited by treatment of EBV with antibody and also in graded fashion, by progressive doses of uv irradiation to the virus. Induction of DNA synthesis by EBV was serum dependent. Estimates of the number of cells transformed were obtained by extrapolation from a standard curve relating known numbers of transformed cells to [ 3 H]thymidine incorporation and also by cloning cells after exposure to virus. At the low multiplicities of infection used in these experiments approximately 0.04 to 0.002 of the total cellular population was transformed. The high efficiency of cell transformation by EBV by comparison to other DNA tumor viruses is emphasized

  19. O6-methylguanine DNA methyltransferase in human fetal tissues: fetal and maternal factors

    International Nuclear Information System (INIS)

    D'Ambrosio, S.M.; Samuel, M.J.; Dutta-Choudhury, T.A.; Wani, A.A.

    1986-01-01

    O 6 -Methylguanine methyltransferase (O 6 -MT) was measured and compared in extracts of 7 human fetal tissues obtained from 21 different fetal specimens as a function of fetal age and race, and maternal smoking and drug usage. Activity was determined from the proteinase-K solubilized radioactivity transferred from the DNA to the O 6 -MT. S9 homogenates were incubated with a heat depurinated [ 3 H]-methylnitrosourea alkylated DNA. Liver exhibited the highest activity followed by kidney, lung, small intestine, large intestine, skin and brain. Each of the tissues exhibited a 3- to 5-fold level of interindividual variation of O 6 -MT. There did not appear to be any significant difference of O 6 -MT in the tissues obtained from mothers who smoked cigarettes during pregnancy. Also, fetal race and age did not appear to account for the level of variation of O 6 -MT. The fetal tissues obtained from an individual using phenobarbital and smoking exhibited 4-fold increases in O 6 -MT activity. The tissues obtained from another individual on kidney dialysis were 2- to 3-fold higher than the normal population. These data suggest that the variation in human O 6 -MT can not be explained by racial or smoking factors, but may be modulated by certain drugs

  20. Cloning and expression of a human kidney cDNA for an α2-adrenergic receptor subtype

    International Nuclear Information System (INIS)

    Regan, J.W.; Kobilka, T.S.; Yang-Feng, T.L.; Caron, M.G.; Lefkowitz, R.J.; Kobilka, B.K.

    1988-01-01

    An α 2 -adrenergic receptor subtype has been cloned from a human kidney cDNA library using the gene for the human platelet α 2 -adrenergic receptor as a probe. The deduced amino acid sequence resembles the human platelet α 2 -adrenergic receptor and is consistent with the structure of other members of he family of guanine nucleotide-binding protein-coupled receptors. The cDNA was expressed in a mammalian cell line (COS-7), and the α 2 -adrenergic ligand [ 3 H]rauwolscine was bound. Competition curve analysis with a variety of adrenergic ligands suggests that this cDNA clone represents the α 2 B-adrenergic receptor. The gene for this receptor is on human chromosome 4, whereas the gene for the human platelet α 2 -adrenergic receptor (α 2 A) lies on chromosome 10. This ability to express the receptor in mammalian cells, free of other adrenergic receptor subtypes, should help in developing more selective α-adrenergic ligands

  1. Production of DNA Double Strand Breaks in Human Cells due to Acute Exposure to Tritiated Water (HTO)

    International Nuclear Information System (INIS)

    Gonen, R.; German, U.; Alfassi, Z. B.; Priel, E.

    2014-01-01

    a significant increase in H2AX phosphorylation in primary human fibroblasts. Thus, immunostaining of D 3 -H2AX may represent a sensitive biomarker of exposure. The scientific literature contains practically no information about the effect of acute exposure from HTO on the integrity of the DNA, and the present work presents some preliminary results on this subject. The investigation on the formation of the Double Strand Breaks was done by the detection of the phosphorylated histone, D 3 H2AX. For this research we used Human malignant osteoblast MG-63 cells, and normal peripheral blood lymphocytes

  2. IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes.

    Science.gov (United States)

    Almine, Jessica F; O'Hare, Craig A J; Dunphy, Gillian; Haga, Ismar R; Naik, Rangeetha J; Atrih, Abdelmadjid; Connolly, Dympna J; Taylor, Jordan; Kelsall, Ian R; Bowie, Andrew G; Beard, Philippa M; Unterholzner, Leonie

    2017-02-13

    Many human cells can sense the presence of exogenous DNA during infection though the cytosolic DNA receptor cyclic GMP-AMP synthase (cGAS), which produces the second messenger cyclic GMP-AMP (cGAMP). Other putative DNA receptors have been described, but whether their functions are redundant, tissue-specific or integrated in the cGAS-cGAMP pathway is unclear. Here we show that interferon-γ inducible protein 16 (IFI16) cooperates with cGAS during DNA sensing in human keratinocytes, as both cGAS and IFI16 are required for the full activation of an innate immune response to exogenous DNA and DNA viruses. IFI16 is also required for the cGAMP-induced activation of STING, and interacts with STING to promote STING phosphorylation and translocation. We propose that the two DNA sensors IFI16 and cGAS cooperate to prevent the spurious activation of the type I interferon response.

  3. I-motif DNA structures are formed in the nuclei of human cells

    Science.gov (United States)

    Zeraati, Mahdi; Langley, David B.; Schofield, Peter; Moye, Aaron L.; Rouet, Romain; Hughes, William E.; Bryan, Tracy M.; Dinger, Marcel E.; Christ, Daniel

    2018-06-01

    Human genome function is underpinned by the primary storage of genetic information in canonical B-form DNA, with a second layer of DNA structure providing regulatory control. I-motif structures are thought to form in cytosine-rich regions of the genome and to have regulatory functions; however, in vivo evidence for the existence of such structures has so far remained elusive. Here we report the generation and characterization of an antibody fragment (iMab) that recognizes i-motif structures with high selectivity and affinity, enabling the detection of i-motifs in the nuclei of human cells. We demonstrate that the in vivo formation of such structures is cell-cycle and pH dependent. Furthermore, we provide evidence that i-motif structures are formed in regulatory regions of the human genome, including promoters and telomeric regions. Our results support the notion that i-motif structures provide key regulatory roles in the genome.

  4. DNA Delivery and Genomic Integration into Mammalian Target Cells through Type IV A and B Secretion Systems of Human Pathogens

    Directory of Open Access Journals (Sweden)

    Dolores L. Guzmán-Herrador

    2017-08-01

    Full Text Available We explore the potential of bacterial secretion systems as tools for genomic modification of human cells. We previously showed that foreign DNA can be introduced into human cells through the Type IV A secretion system of the human pathogen Bartonella henselae. Moreover, the DNA is delivered covalently attached to the conjugative relaxase TrwC, which promotes its integration into the recipient genome. In this work, we report that this tool can be adapted to other target cells by using different relaxases and secretion systems. The promiscuous relaxase MobA from plasmid RSF1010 can be used to deliver DNA into human cells with higher efficiency than TrwC. MobA also promotes DNA integration, albeit at lower rates than TrwC. Notably, we report that DNA transfer to human cells can also take place through the Type IV secretion system of two intracellular human pathogens, Legionella pneumophila and Coxiella burnetii, which code for a distantly related Dot/Icm Type IV B secretion system. This suggests that DNA transfer could be an intrinsic ability of this family of secretion systems, expanding the range of target human cells. Further analysis of the DNA transfer process showed that recruitment of MobA by Dot/Icm was dependent on the IcmSW chaperone, which may explain the higher DNA transfer rates obtained. Finally, we observed that the presence of MobA negatively affected the intracellular replication of C. burnetii, suggesting an interference with Dot/Icm translocation of virulence factors.

  5. Efficient Sleeping Beauty DNA Transposition From DNA Minicircles

    Directory of Open Access Journals (Sweden)

    Nynne Sharma

    2013-01-01

    Full Text Available DNA transposon-based vectors have emerged as new potential delivery tools in therapeutic gene transfer. Such vectors are now showing promise in hematopoietic stem cells and primary human T cells, and clinical trials with transposon-engineered cells are on the way. However, the use of plasmid DNA as a carrier of the vector raises safety concerns due to the undesirable administration of bacterial sequences. To optimize vectors based on the Sleeping Beauty (SB DNA transposon for clinical use, we examine here SB transposition from DNA minicircles (MCs devoid of the bacterial plasmid backbone. Potent DNA transposition, directed by the hyperactive SB100X transposase, is demonstrated from MC donors, and the stable transfection rate is significantly enhanced by expressing the SB100X transposase from MCs. The stable transfection rate is inversely related to the size of circular donor, suggesting that a MC-based SB transposition system benefits primarily from an increased cellular uptake and/or enhanced expression which can be observed with DNA MCs. DNA transposon and transposase MCs are easily produced, are favorable in size, do not carry irrelevant DNA, and are robust substrates for DNA transposition. In accordance, DNA MCs should become a standard source of DNA transposons not only in therapeutic settings but also in the daily use of the SB system.

  6. Isolation and characterization of human cDNA clones encoding the α and the α' subunits of casein kinase II

    International Nuclear Information System (INIS)

    Lozeman, F.J.; Litchfield, D.W.; Piening, C.; Takio, Koji; Walsh, K.A.; Krebs, E.G.

    1990-01-01

    Casein kinase II is a widely distributed protein serine/threonine kinase. The holoenzyme appears to be a tetramer, containing two α or α' subunits (or one of each) and two β subunits. Complementary DNA clones encoding the subunits of casein kinase II were isolated from a human T-cell λgt 10 library using cDNA clones isolated from Drosophila melanogasten. One of the human cDNA clones (hT4.1) was 2.2 kb long, including a coding region of 1176 bp preceded by 156 bp (5' untranslated region) and followed by 871 bp (3' untranslated region). The hT4.1 close was nearly identical in size and sequence with a cDNA clone from HepG2 human hepatoma cultured cells. Another of the human T-cell cDNA clones (hT9.1) was 1.8 kb long, containing a coding region of 1053 bp preceded by 171 by (5' untranslated region) and followed by 550 bp (3' untranslated region). Amino acid sequences deduced from these two cDNA clones were about 85% identical. Most of the difference between the two encoded polypeptides was in the carboxy-terminal region, but heterogeneity was distributed throughout the molecules. Partial amino acid sequence was determined in a mixture of α and α' subunits from bovine lung casein kinase II. The bovine sequences aligned with the 2 human cDNA-encoded polypeptides with only 2 discrepancies out of 535 amino acid positions. This confirmed that the two human T-cell cDNA clones encoded the α and α' subunits of casein kinase II. These studies show that there are two distinct catalytic subunits for casein II (α and α') and that the sequence of these subunits is largely conserved between the bovine and the human

  7. Characterization of the cDNA encoding human nucleophosmin and studies of its role in normal and abnormal growth

    International Nuclear Information System (INIS)

    Chan, Waiyee; Liu, Qingrong; Borjigin, J.; Busch, H.; Rennert, O.M.; Tease, L.A.; Chan, Puikwong

    1989-01-01

    A cDNA encoding human nucleophosmin (protein B23) was obtained by screening a human placental cDNA library in δgtll first with monoclonal antibody to rat nucleophosmin and then with confirmed partial cDNA of human nucleophosmin as probes. The cDNA had 1,311 bp with a coding sequence encoding a protein of 294 amino acids. The identity of the cDNA was confirmed by the presence of encoded amino acid sequences identical with those determined by sequencing pure rat nucleophosmin (a total of 138 amino acids). The most striking feature of the sequence is an acidic cluster located in the middle of the molecule. The cluster consists of 26 Asp/Glu and 1 Phe and Ala. Comparison of human nucleophosmin and Xenopus nucleolar protein NO38 shows 64.3% sequence identity. The N-terminal 130 amino acids of human nucleophosmin also bear 50% identity with that of Xenopus nucleoplasmin. Northern blot analysis of rat liver total RNA with a partial nucleophosmin cDNA as probe demonstrated a homogeneous mRNA band of about 1.6 kb. Similar observations were made in hypertrophic rat liver and Novikoff hepatoma. When the protein levels were compared with Western blot immunoassays, Navikoff hepatoma showed 20 times more nucleophosmin, while only about 5 times more nucleophosmin was observed in hypertrophic rat liver than in unstimulated normal liver

  8. DNA-mediated strand displacement facilitates sensitive electronic detection of antibodies in human serums.

    Science.gov (United States)

    Dou, Baoting; Yang, Jianmei; Shi, Kai; Yuan, Ruo; Xiang, Yun

    2016-09-15

    We describe here the development of a sensitive and convenient electronic sensor for the detection of antibodies in human serums. The sensor is constructed by self-assembly formation of a mixed monolayer containing the small molecule epitope conjugated double stranded DNA probes on gold electrode. The target antibody binds the epitope on the dsDNA probe and lowers the melting temperature of the duplex, which facilitates the displacement of the antibody-linked strand of the duplex probe by an invading methylene blue-tagged single stranded DNA (MB-ssDNA) through the strand displacement reaction and leads to the capture of many MB-ssDNA on the sensor surface. Subsequent electrochemical oxidation of the methylene blue labels results in amplified current response for sensitive monitoring of the antibodies. The antibody assay conditions are optimized and the sensor exhibits a linear range between 1.0 and 25.0nM with a detection limit of 0.67nM for the target antibody. The sensor is also selective and can be employed to detect the target antibodies in human serum samples. With the advantages of using small molecule epitope as the antibody recognition element over traditional antigen, the versatile manipulability of the DNA probes and the unique properties of the electrochemical transduction technique, the developed sensor thus hold great potential for simple and sensitive detection of different antibodies and other proteins in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Human DNA Extraction by Two Extraction Methods for Forensic Typification from Human Feces on FTA Paper

    Directory of Open Access Journals (Sweden)

    Shirleny Monserrat Sandoval-Arias

    2014-11-01

    Full Text Available The identification of suspects in criminal investigations has been facilitated since DNA test are executed on different samples. The application of this technology for forensic typification from human fecal samples still presents complications therefore this research evaluated two DNA extraction protocols with modifications to determine that of major efficiency. Organic extractions and extractions using the commercial kit “IQTM DNA Casework Sample Kit for Maxwell ® 16” on FTA portions of 4cm2 and 1cm2 impregnated with feces from the same individual were done to accomplish the objective. In all the assays the results were useful, however; the best forensic typification (by the electropherogram characteristics was obtained by using the commercial kit in an area of 1 cm2 of FTA paper impregnated in a 1:4 dilution.

  10. Discovery of human inversion polymorphisms by comparative analysis of human and chimpanzee DNA sequence assemblies.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available With a draft genome-sequence assembly for the chimpanzee available, it is now possible to perform genome-wide analyses to identify, at a submicroscopic level, structural rearrangements that have occurred between chimpanzees and humans. The goal of this study was to investigate chromosomal regions that are inverted between the chimpanzee and human genomes. Using the net alignments for the builds of the human and chimpanzee genome assemblies, we identified a total of 1,576 putative regions of inverted orientation, covering more than 154 mega-bases of DNA. The DNA segments are distributed throughout the genome and range from 23 base pairs to 62 mega-bases in length. For the 66 inversions more than 25 kilobases (kb in length, 75% were flanked on one or both sides by (often unrelated segmental duplications. Using PCR and fluorescence in situ hybridization we experimentally validated 23 of 27 (85% semi-randomly chosen regions; the largest novel inversion confirmed was 4.3 mega-bases at human Chromosome 7p14. Gorilla was used as an out-group to assign ancestral status to the variants. All experimentally validated inversion regions were then assayed against a panel of human samples and three of the 23 (13% regions were found to be polymorphic in the human genome. These polymorphic inversions include 730 kb (at 7p22, 13 kb (at 7q11, and 1 kb (at 16q24 fragments with a 5%, 30%, and 48% minor allele frequency, respectively. Our results suggest that inversions are an important source of variation in primate genome evolution. The finding of at least three novel inversion polymorphisms in humans indicates this type of structural variation may be a more common feature of our genome than previously realized.

  11. Effect of DNA polymerase inhibitors on DNA repair in intact and permeable human fibroblasts: Evidence that DNA polymerases δ and β are involved in DNA repair synthesis induced by N-methyl-N'-nitro-N-nitrosoguanidine

    International Nuclear Information System (INIS)

    Hammond, R.A.; Miller, M.R.; McClung, J.K.

    1990-01-01

    The involvement of DNA polymerases α, β, and δ in DNA repair synthesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was investigated in human fibroblasts (HF). The effects of anti-(DNA polymerase α) monoclonal antibody, (p-n-butylphenyl)deoxyguanosine triphosphate (BuPdGTP), dideoxythymidine triphosphate (ddTTP), and aphidicolin on MNNG-induced DNA repair synthesis were investigated to dissect the roles of the different DNA polymerases. A subcellular system (permeable cells), in which DNA repair synthesis and DNA replication were differentiated by CsCl gradient centrifugation of BrdUMP density-labeled DNA, was used to examine the effects of the polymerase inhibitors. Another approach investigated the effects of several of these inhibitors of MNNG-induced DNA repair synthesis in intact cells by measuring the amount of [ 3 H]thymidine incorporated into repair DNA as determined by autoradiography and quantitation with an automated video image analysis system. In permeable cells, MNNG-induced DNA repair synthesis was inhibited 56% by 50 μg of aphidicolin/mL, 6% by 10 μM BuPdGTP, 13% by anti-(DNA polymerse α) monoclonal antibodies, and 29% by ddTTP. In intact cells, MNNG-induced DNA repair synthesis was inhibited 57% by 50 μg of aphidicolin/mL and was not significantly inhibited by microinjecting anti-(DNA polymerase α) antibodies into HF nuclei. These results indicate that both DNA polymerase δ and β are involved in repairing DNA damage caused by MNNG

  12. Comparison of five DNA quantification methods

    DEFF Research Database (Denmark)

    Nielsen, Karsten; Mogensen, Helle Smidt; Hedman, Johannes

    2008-01-01

    Six commercial preparations of human genomic DNA were quantified using five quantification methods: UV spectrometry, SYBR-Green dye staining, slot blot hybridization with the probe D17Z1, Quantifiler Human DNA Quantification kit and RB1 rt-PCR. All methods measured higher DNA concentrations than...... Quantification kit in two experiments. The measured DNA concentrations with Quantifiler were 125 and 160% higher than expected based on the manufacturers' information. When the Quantifiler human DNA standard (Raji cell line) was replaced by the commercial human DNA preparation G147A (Promega) to generate the DNA...... standard curve in the Quantifiler Human DNA Quantification kit, the DNA quantification results of the human DNA preparations were 31% higher than expected based on the manufacturers' information. The results indicate a calibration problem with the Quantifiler human DNA standard for its use...

  13. An Improved Methodology to Overcome Key Issues in Human Fecal Metagenomic DNA Extraction

    DEFF Research Database (Denmark)

    Kumar, Jitendra; Kumar, Manoj; Gupta, Shashank

    2016-01-01

    Microbes are ubiquitously distributed in nature, and recent culture-independent studies have highlighted the significance of gut microbiota in human health and disease. Fecal DNA is the primary source for the majority of human gut microbiome studies. However, further improvement is needed to obta...

  14. The small molecule calactin induces DNA damage and apoptosis in human leukemia cells.

    Science.gov (United States)

    Lee, Chien-Chih; Lin, Yi-Hsiung; Chang, Wen-Hsin; Wu, Yang-Chang; Chang, Jan-Gowth

    2012-09-01

    We purified calactin from the roots of the Chinese herb Asclepias curassavica L. and analyzed its biologic effects in human leukemia cells. Our results showed that calactin treatment caused DNA damage and resulted in apoptosis. Increased phosphorylation levels of Chk2 and H2AX were observed and were reversed by the DNA damage inhibitor caffeine in calactin-treated cells. In addition, calactin treatment showed that a decrease in the expression of cell cycle regulatory proteins Cyclin B1, Cdk1, and Cdc25C was consistent with a G2/M phase arrest. Furthermore, calactin induced extracellular signal-regulated kinase (ERK) phosphorylation, activation of caspase-3, caspase-8, and caspase-9, and PARP cleavage. Pretreatment with the ERK inhibitor PD98059 significantly blocked the loss of viability in calactin-treated cells. It is indicated that calactin-induced apoptosis may occur through an ERK signaling pathway. Our data suggest that calactin is a potential anticancer compound.

  15. The profiles of gamma-H2AX along with ATM/DNA-PKcs activation in the lymphocytes and granulocytes of rat and human blood exposed to gamma rays.

    Science.gov (United States)

    Wang, Jing; Yin, Lina; Zhang, Junxiang; Zhang, Yaping; Zhang, Xuxia; Ding, Defang; Gao, Yun; Li, Qiang; Chen, Honghong

    2016-08-01

    Establishing a rat model suitable for γ-H2AX biodosimeter studies has important implications for dose assessment of internal radionuclide contamination in humans. In this study, γ-H2AX, p-ATM and p-DNA-PKcs foci were enumerated using immunocytofluorescence method, and their protein levels were measured by Western blot in rat blood lymphocytes and granulocytes exposed to γ-rays compared with human blood lymphocytes and granulocytes. It was found that DNA double-strand break repair kinetics and linear dose responses in rat lymphocytes were similar to those observed in the human counterparts. Moreover, radiation induced clear p-ATM and p-DNA-PKcs foci formation and an increase in ratio of co-localization of p-ATM or p-DNA-PKcs with γ-H2AX foci in rat lymphocytes similar to those of human lymphocytes. The level of γ-H2AX protein in irradiated rat and human lymphocytes was significantly reduced by inhibitors of ATM and DNA-PKcs. Surprisingly, unlike human granulocytes, rat granulocytes with DNA-PKcs deficiency displayed a rapid accumulation, but delayed disappearance of γ-H2AX foci with essentially no change from 10 h to 48 h post-irradiation. Furthermore, inhibition of ATM activity in rat granulocytes also decreased radiation-induced γ-H2AX foci formation. In comparison, human granulocytes showed no response to irradiation regarding γ-H2AX, p-ATM or p-DNA-PKcs foci. Importantly, incidence of γ-H2AX foci in lymphocytes after total-body radiation of rats was consistent with that of in vitro irradiation of rat lymphocytes. These findings show that rats are a useful in vivo model for validation of γ-H2AX biodosimetry for dose assessment in humans. ATM and DNA-PKcs participate together in DSB repair in rat lymphocytes similar to that of human lymphocytes. Further, rat granulocytes, which have the characteristic of delayed disappearance of γ-H2AX foci in response to radiation, may be a useful experimental system for biodosimetry studies.

  16. The profiles of gamma-H2AX along with ATM/DNA-PKcs activation in the lymphocytes and granulocytes of rat and human blood exposed to gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Yin, Lina; Zhang, Junxiang; Zhang, Yaping; Zhang, Xuxia; Ding, Defang; Gao, Yun; Li, Qiang; Chen, Honghong [Fudan University, Department of Radiation Biology, Institute of Radiation Medicine, Shanghai (China)

    2016-08-15

    Establishing a rat model suitable for γ-H2AX biodosimeter studies has important implications for dose assessment of internal radionuclide contamination in humans. In this study, γ-H2AX, p-ATM and p-DNA-PKcs foci were enumerated using immunocytofluorescence method, and their protein levels were measured by Western blot in rat blood lymphocytes and granulocytes exposed to γ-rays compared with human blood lymphocytes and granulocytes. It was found that DNA double-strand break repair kinetics and linear dose responses in rat lymphocytes were similar to those observed in the human counterparts. Moreover, radiation induced clear p-ATM and p-DNA-PKcs foci formation and an increase in ratio of co-localization of p-ATM or p-DNA-PKcs with γ-H2AX foci in rat lymphocytes similar to those of human lymphocytes. The level of γ-H2AX protein in irradiated rat and human lymphocytes was significantly reduced by inhibitors of ATM and DNA-PKcs. Surprisingly, unlike human granulocytes, rat granulocytes with DNA-PKcs deficiency displayed a rapid accumulation, but delayed disappearance of γ-H2AX foci with essentially no change from 10 h to 48 h post-irradiation. Furthermore, inhibition of ATM activity in rat granulocytes also decreased radiation-induced γ-H2AX foci formation. In comparison, human granulocytes showed no response to irradiation regarding γ-H2AX, p-ATM or p-DNA-PKcs foci. Importantly, incidence of γ-H2AX foci in lymphocytes after total-body radiation of rats was consistent with that of in vitro irradiation of rat lymphocytes. These findings show that rats are a useful in vivo model for validation of γ-H2AX biodosimetry for dose assessment in humans. ATM and DNA-PKcs participate together in DSB repair in rat lymphocytes similar to that of human lymphocytes. Further, rat granulocytes, which have the characteristic of delayed disappearance of γ-H2AX foci in response to radiation, may be a useful experimental system for biodosimetry studies. (orig.)

  17. The profiles of gamma-H2AX along with ATM/DNA-PKcs activation in the lymphocytes and granulocytes of rat and human blood exposed to gamma rays

    International Nuclear Information System (INIS)

    Wang, Jing; Yin, Lina; Zhang, Junxiang; Zhang, Yaping; Zhang, Xuxia; Ding, Defang; Gao, Yun; Li, Qiang; Chen, Honghong

    2016-01-01

    Establishing a rat model suitable for γ-H2AX biodosimeter studies has important implications for dose assessment of internal radionuclide contamination in humans. In this study, γ-H2AX, p-ATM and p-DNA-PKcs foci were enumerated using immunocytofluorescence method, and their protein levels were measured by Western blot in rat blood lymphocytes and granulocytes exposed to γ-rays compared with human blood lymphocytes and granulocytes. It was found that DNA double-strand break repair kinetics and linear dose responses in rat lymphocytes were similar to those observed in the human counterparts. Moreover, radiation induced clear p-ATM and p-DNA-PKcs foci formation and an increase in ratio of co-localization of p-ATM or p-DNA-PKcs with γ-H2AX foci in rat lymphocytes similar to those of human lymphocytes. The level of γ-H2AX protein in irradiated rat and human lymphocytes was significantly reduced by inhibitors of ATM and DNA-PKcs. Surprisingly, unlike human granulocytes, rat granulocytes with DNA-PKcs deficiency displayed a rapid accumulation, but delayed disappearance of γ-H2AX foci with essentially no change from 10 h to 48 h post-irradiation. Furthermore, inhibition of ATM activity in rat granulocytes also decreased radiation-induced γ-H2AX foci formation. In comparison, human granulocytes showed no response to irradiation regarding γ-H2AX, p-ATM or p-DNA-PKcs foci. Importantly, incidence of γ-H2AX foci in lymphocytes after total-body radiation of rats was consistent with that of in vitro irradiation of rat lymphocytes. These findings show that rats are a useful in vivo model for validation of γ-H2AX biodosimetry for dose assessment in humans. ATM and DNA-PKcs participate together in DSB repair in rat lymphocytes similar to that of human lymphocytes. Further, rat granulocytes, which have the characteristic of delayed disappearance of γ-H2AX foci in response to radiation, may be a useful experimental system for biodosimetry studies. (orig.)

  18. Isolation of an insulin-like growth factor II cDNA with a unique 5' untranslated region from human placenta

    International Nuclear Information System (INIS)

    Shen, Shujane; Daimon, Makoto; Wang, Chunyeh; Ilan, J.; Jansen, M.

    1988-01-01

    Human insulin-like growth factor II (IGF-II) cDNA from a placental library was isolated and sequenced. The 5' untranslated region (5'-UTR) sequence of this cDNA differs completely from that of adult human liver and has considerable base sequence identity to the same region of an IGF-II cDNA of a rat liver cell line, BRL-3A. Human placental poly(A) + RNA was probed with either the 5'-UTR of the isolated human placental IGF-II cDNA or the 5'-UTR of the IGF-II cDNA obtained from adult human liver. No transcripts were detected by using the 5'-UTR of the adult liver IGF-II as the probe. In contrast, three transcripts of 6.0, 3.2, and 2.2 kilobases were detected by using the 5'-UTR of the placental IGF-II cDNA as the probe or the probe from the coding sequence. A fourth IGF-II transcript of 4.9 kilobases presumably containing a 5'-UTR consisting of a base sequence dissimilar to that of either IGF-II 5'-UTR was apparent. Therefore, IGF-II transcripts detected may be products of alternative splicing as their 5'-UTR sequence is contained within the human IGF-II gene or they may be a consequence of alternative promoter utilization in placenta

  19. DNA and Law Enforcement in the European Union: Tools and Human Rights Protection

    Directory of Open Access Journals (Sweden)

    Helena Soleto Muñoz

    2014-01-01

    Full Text Available Since its first successful use in criminal investigations in the 1980s, DNA has become a widely used and valuable tool to identify offenders and to acquit innocent persons. For a more beneficial use of the DNA-related data possessed, the Council of the European Union adopted Council Decisions 2008/615 and 2008/616 establishing a mechanism for a direct automated search in national EU Member States’ DNA databases. The article reveals the complications associated with the regulation on the use of DNA for criminal investigations as it is regulated by both EU and national legislation which results in a great deal of variations. It also analyses possible violations of and limitations to human rights when collecting DNA samples, as well as their analysis, use and storage.

  20. Increased sensitivity of DNA damage response-deficient cells to stimulated microgravity-induced DNA lesions.

    Directory of Open Access Journals (Sweden)

    Nan Li

    Full Text Available Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG. In this study we used mouse embryonic stem (MES and mouse embryonic fibroblast (MEF cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced DNA double strand breaks (DSBs in Rad9-/- MES and Mdc1-/- MEF cells but not in their corresponding wild type cells. A similar pattern of DNA single strand break or modifications was also observed in Rad9-/- MES. As the exposure to SMG was prolonged, Rad9-/- MES cells adapted to the SMG disturbance by reducing the induced DNA lesions. The induced DNA lesions in Rad9-/- MES were due to SMG-induced reactive oxygen species (ROS. Interestingly, Mdc1-/- MEF cells were only partially adapted to the SMG disturbance. That is, the induced DNA lesions were reduced over time, but did not return to the control level while ROS returned to a control level. In addition, ROS was only partially responsible for the induced DNA lesions in Mdc1-/- MEF cells. Taken together, these data suggest that SMG is a weak genomic DNA stress and can aggravate genomic instability in cells with DNA damage response (DDR defects.