WorldWideScience

Sample records for human disease gene

  1. Genes of periodontopathogens expressed during human disease.

    Science.gov (United States)

    Song, Yo-Han; Kozarov, Emil V; Walters, Sheila M; Cao, Sam Linsen; Handfield, Martin; Hillman, Jeffrey D; Progulske-Fox, Ann

    2002-12-01

    Since many bacterial genes are environmentally regulated, the screening for virulence-associated factors using classical genetic and molecular biology approaches can be biased under laboratory growth conditions of a given pathogen, because the required conditions for expression of many virulence factors may not occur during in vitro growth. Thus, technologies have been developed during the past several years to identify genes that are expressed during disease using animal models of human disease. However, animal models are not always truly representative of human disease, and with many pathogens, there is no appropriate animal model. A new technology, in vivo-induced antigen technology (IVIAT) was thus engineered and tested in our laboratory to screen for genes of pathogenic organisms induced specifically in humans, without the use of animal or artificial models of infection. This technology uses pooled sera from patients to probe for genes expressed exclusively in vivo (or ivi, in vivo-induced genes). IVIAT was originally designed for the study of Actinobacillus actinomycetemcomitans pathogenesis, but we have now extended it to other oral pathogens including Porphyromonas gingivalis. One hundred seventy-one thousand (171,000) clones from P. gingivalis strain W83 were screened and 144 were confirmed positive. Over 300,000 A. actinomycetemcomitans clones were probed, and 116 were confirmed positive using a quantitative blot assay. MAT has proven useful in identifying previously unknown in vivo-induced genes that are likely involved in virulence and are thus excellent candidates for use in diagnostic : and therapeutic strategies, including vaccine design.

  2. Reg gene family and human diseases

    Institute of Scientific and Technical Information of China (English)

    Yu-Wei Zhang; Liu-Song Ding; Mao-De Lai

    2003-01-01

    Regenerating gene (Reg or REG) family, within the superfamily of C-type lectin, is mainly involved in the liver,pancreatic, gastric and intestinal cell proliferation or differentiation. Considerable attention has focused on Reg family and its structurally related molecules. Over the last 15 years, 17 members of the Reg family have been cloned and sequenced. They have been considered as members of a conserved protein family sharing structural and some functional properties being involved in injury, inflammation,diabetes and carcinogenesis. We previously identified Reg Ⅳ as a strong candidate for a gene that was highly expressed in colorectal adenoma when compared to normal mucosa based on suppression subtractive hybridization (SSH),reverse Northern blot, semi-quantitative reverse transcriptase PCR (RT-PCR)and Northern blot. In situ hybridization results further support that overexpression of Reg Ⅳ may be an early event in colorectal carcinogenesis. We suggest that detection of Reg Ⅳ overexpression might be useful in the early diagnosis of carcinomatous transformation of adenoma.This review summarizes the roles of Reg family in diseases in the literature as well as our recent results of Reg Ⅳ in colorectal cancer. The biological properties of Reg family and its possible roles in human diseases are discussed. We particularly focus on the roles of Reg family as sensitive reactants of tissue injury, prognostic indicators of tumor survival and early biomarkers of carcinogenesis. In addition to our current understanding of Reg gene functions, we postulate that there might be relationships between Reg family and microsatellite instability, apoptosis and cancer with a poor prognosis. Investigation of the correlation between tumor Reg expression and survival rate, and analysis of the Reg gene status in human maliganancies, are required to elucidate the biologic consequences of Reg gene expression, the implications for Reg gene regulation of cell growth, tumorigenesis

  3. Mapping gene associations in human mitochondria using clinical disease phenotypes.

    Directory of Open Access Journals (Sweden)

    Curt Scharfe

    2009-04-01

    Full Text Available Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects

  4. Natural selection on genes that underlie human disease susceptibility

    Science.gov (United States)

    Blekhman, Ran; Man, Orna; Herrmann, Leslie; Boyko, Adam R.; Indap, Amit; Kosiol, Carolin; Bustamante, Carlos D.; Teshima, Kosuke M.; Przeworski, Molly

    2008-01-01

    What evolutionary forces shape genes that contribute to the risk of human disease? Do similar selective pressures act on alleles that underlie simple vs. complex disorders? [1-3]. Answers to these questions will shed light on the origin of human disorders (e.g., [4]), and help to predict the population frequencies of alleles that contribute to disease risk, with important implications for the efficient design of mapping studies [5-7]. As a first step towards addressing them, we created a hand-curated version of the Mendelian Inheritance in Man database (OMIM). We then examined selective pressures on Mendelian disease genes, genes that contribute to complex disease risk and genes known to be essential in mouse, by analyzing patterns of human polymorphism and of divergence between human and rhesus macaque. We find that Mendelian disease genes appear to be under widespread purifying selection, especially when the disease mutations are dominant (rather than recessive). In contrast, the class of genes that influence complex disease risk shows little signs of evolutionary conservation, possibly because this category includes both targets of purifying and positive selection. PMID:18571414

  5. DRUMS: a human disease related unique gene mutation search engine.

    Science.gov (United States)

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html.

  6. Human gene therapy and imaging in neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Andreas H.; Winkler, Alexandra [Max Planck-Institute for Neurological Research, Center of Molecular Medicine (CMMC) and Department of Neurology, Cologne (Germany); MPI for Neurological Research, Laboratory for Gene Therapy and Molecular Imaging, Cologne (Germany); Castro, Maria G.; Lowenstein, Pedro [University of California Los Angeles (United States). Department of Medicine

    2005-12-01

    Molecular imaging aims to assess non-invasively disease-specific biological and molecular processes in animal models and humans in vivo. Apart from precise anatomical localisation and quantification, the most intriguing advantage of such imaging is the opportunity it provides to investigate the time course (dynamics) of disease-specific molecular events in the intact organism. Further, molecular imaging can be used to address basic scientific questions, e.g. transcriptional regulation, signal transduction or protein/protein interaction, and will be essential in developing treatment strategies based on gene therapy. Most importantly, molecular imaging is a key technology in translational research, helping to develop experimental protocols which may later be applied to human patients. Over the past 20 years, imaging based on positron emission tomography (PET) and magnetic resonance imaging (MRI) has been employed for the assessment and ''phenotyping'' of various neurological diseases, including cerebral ischaemia, neurodegeneration and brain gliomas. While in the past neuro-anatomical studies had to be performed post mortem, molecular imaging has ushered in the era of in vivo functional neuro-anatomy by allowing neuroscience to image structure, function, metabolism and molecular processes of the central nervous system in vivo in both health and disease. Recently, PET and MRI have been successfully utilised together in the non-invasive assessment of gene transfer and gene therapy in humans. To assess the efficiency of gene transfer, the same markers are being used in animals and humans, and have been applied for phenotyping human disease. Here, we review the imaging hallmarks of focal and disseminated neurological diseases, such as cerebral ischaemia, neurodegeneration and glioblastoma multiforme, as well as the attempts to translate gene therapy's experimental knowledge into clinical applications and the way in which this process is being

  7. Evolutionary history of human disease genes reveals phenotypic connections and comorbidity among genetic diseases.

    Science.gov (United States)

    Park, Solip; Yang, Jae-Seong; Kim, Jinho; Shin, Young-Eun; Hwang, Jihye; Park, Juyong; Jang, Sung Key; Kim, Sanguk

    2012-01-01

    The extent to which evolutionary changes have impacted the phenotypic relationships among human diseases remains unclear. In this work, we report that phenotypically similar diseases are connected by the evolutionary constraints on human disease genes. Human disease groups can be classified into slowly or rapidly evolving classes, where the diseases in the slowly evolving class are enriched with morphological phenotypes and those in the rapidly evolving class are enriched with physiological phenotypes. Our findings establish a clear evolutionary connection between disease classes and disease phenotypes for the first time. Furthermore, the high comorbidity found between diseases connected by similar evolutionary constraints enables us to improve the predictability of the relative risk of human diseases. We find the evolutionary constraints on disease genes are a new layer of molecular connection in the network-based exploration of human diseases.

  8. Exploring the potential relevance of human-specific genes to complex disease

    Directory of Open Access Journals (Sweden)

    Cooper David N

    2011-01-01

    Full Text Available Abstract Although human disease genes generally tend to be evolutionarily more ancient than non-disease genes, complex disease genes appear to be represented more frequently than Mendelian disease genes among genes of more recent evolutionary origin. It is therefore proposed that the analysis of human-specific genes might provide new insights into the genetics of complex disease. Cross-comparison with the Human Gene Mutation Database (http://www.hgmd.org revealed a number of examples of disease-causing and disease-associated mutations in putatively human-specific genes. A sizeable proportion of these were missense polymorphisms associated with complex disease. Since both human-specific genes and genes associated with complex disease have often experienced particularly rapid rates of evolutionary change, either due to weaker purifying selection or positive selection, it is proposed that a significant number of human-specific genes may play a role in complex disease.

  9. Identification of susceptibility genes and genetic modifiers of human diseases

    Science.gov (United States)

    Abel, Kenneth; Kammerer, Stefan; Hoyal, Carolyn; Reneland, Rikard; Marnellos, George; Nelson, Matthew R.; Braun, Andreas

    2005-03-01

    The completion of the human genome sequence enables the discovery of genes involved in common human disorders. The successful identification of these genes is dependent on the availability of informative sample sets, validated marker panels, a high-throughput scoring technology, and a strategy for combining these resources. We have developed a universal platform technology based on mass spectrometry (MassARRAY) for analyzing nucleic acids with high precision and accuracy. To fuel this technology, we generated more than 100,000 validated assays for single nucleotide polymorphisms (SNPs) covering virtually all known and predicted human genes. We also established a large DNA sample bank comprised of more than 50,000 consented healthy and diseased individuals. This combination of reagents and technology allows the execution of large-scale genome-wide association studies. Taking advantage of MassARRAY"s capability for quantitative analysis of nucleic acids, allele frequencies are estimated in sample pools containing large numbers of individual DNAs. To compare pools as a first-pass "filtering" step is a tremendous advantage in throughput and cost over individual genotyping. We employed this approach in numerous genome-wide, hypothesis-free searches to identify genes associated with common complex diseases, such as breast cancer, osteoporosis, and osteoarthritis, and genes involved in quantitative traits like high density lipoproteins cholesterol (HDL-c) levels and central fat. Access to additional well-characterized patient samples through collaborations allows us to conduct replication studies that validate true disease genes. These discoveries will expand our understanding of genetic disease predisposition, and our ability for early diagnosis and determination of specific disease subtype or progression stage.

  10. Properties of human disease genes and the role of genes linked to Mendelian disorders in complex disease aetiology

    Science.gov (United States)

    Spataro, Nino; Rodríguez, Juan Antonio; Navarro, Arcadi

    2017-01-01

    Abstract Do genes presenting variation that has been linked to human disease have different biological properties than genes that have never been related to disease? What is the relationship between disease and fitness? Are the evolutionary pressures that affect genes linked to Mendelian diseases the same to those acting on genes whose variation contributes to complex disorders? The answers to these questions could shed light on the architecture of human genetic disorders and may have relevant implications when designing mapping strategies in future genetic studies. Here we show that, relative to non-disease genes, human disease (HD) genes have specific evolutionary profiles and protein network properties. Additionally, our results indicate that the mutation-selection balance renders an insufficient account of the evolutionary history of some HD genes and that adaptive selection could also contribute to shape their genetic architecture. Notably, several biological features of HD genes depend on the type of pathology (complex or Mendelian) with which they are related. For example, genes harbouring both causal variants for Mendelian disorders and risk factors for complex disease traits (Complex-Mendelian genes), tend to present higher functional relevance in the protein network and higher expression levels than genes associated only with complex disorders. Moreover, risk variants in Complex-Mendelian genes tend to present higher odds ratios than those on genes associated with the same complex disorders but with no link to Mendelian diseases. Taken together, our results suggest that genetic variation at genes linked to Mendelian disorders plays an important role in driving susceptibility to complex disease. PMID:28053046

  11. Network properties of complex human disease genes identified through genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Fredrik Barrenas

    Full Text Available BACKGROUND: Previous studies of network properties of human disease genes have mainly focused on monogenic diseases or cancers and have suffered from discovery bias. Here we investigated the network properties of complex disease genes identified by genome-wide association studies (GWAs, thereby eliminating discovery bias. PRINCIPAL FINDINGS: We derived a network of complex diseases (n = 54 and complex disease genes (n = 349 to explore the shared genetic architecture of complex diseases. We evaluated the centrality measures of complex disease genes in comparison with essential and monogenic disease genes in the human interactome. The complex disease network showed that diseases belonging to the same disease class do not always share common disease genes. A possible explanation could be that the variants with higher minor allele frequency and larger effect size identified using GWAs constitute disjoint parts of the allelic spectra of similar complex diseases. The complex disease gene network showed high modularity with the size of the largest component being smaller than expected from a randomized null-model. This is consistent with limited sharing of genes between diseases. Complex disease genes are less central than the essential and monogenic disease genes in the human interactome. Genes associated with the same disease, compared to genes associated with different diseases, more often tend to share a protein-protein interaction and a Gene Ontology Biological Process. CONCLUSIONS: This indicates that network neighbors of known disease genes form an important class of candidates for identifying novel genes for the same disease.

  12. Network properties of complex human disease genes identified through genome-wide association studies.

    Science.gov (United States)

    Barrenas, Fredrik; Chavali, Sreenivas; Holme, Petter; Mobini, Reza; Benson, Mikael

    2009-11-30

    Previous studies of network properties of human disease genes have mainly focused on monogenic diseases or cancers and have suffered from discovery bias. Here we investigated the network properties of complex disease genes identified by genome-wide association studies (GWAs), thereby eliminating discovery bias. We derived a network of complex diseases (n = 54) and complex disease genes (n = 349) to explore the shared genetic architecture of complex diseases. We evaluated the centrality measures of complex disease genes in comparison with essential and monogenic disease genes in the human interactome. The complex disease network showed that diseases belonging to the same disease class do not always share common disease genes. A possible explanation could be that the variants with higher minor allele frequency and larger effect size identified using GWAs constitute disjoint parts of the allelic spectra of similar complex diseases. The complex disease gene network showed high modularity with the size of the largest component being smaller than expected from a randomized null-model. This is consistent with limited sharing of genes between diseases. Complex disease genes are less central than the essential and monogenic disease genes in the human interactome. Genes associated with the same disease, compared to genes associated with different diseases, more often tend to share a protein-protein interaction and a Gene Ontology Biological Process. This indicates that network neighbors of known disease genes form an important class of candidates for identifying novel genes for the same disease.

  13. Mutations in inhibin and activin genes associated with human disease.

    Science.gov (United States)

    Shelling, Andrew N

    2012-08-15

    Inhibins and activins are members of the transforming growth factor (TGFβ) superfamily, that includes the TGFβs, inhibins and activins, bone morphogenetic proteins (BMPs) and growth and differentiation factors (GDFs). The family members are expressed throughout the human body, and are involved in the regulation of a range of important functions. The precise regulation of the TGFβ pathways is critical, and mutations of individual molecules or even minor alterations of signalling will have a significant affect on function, that may lead to development of disease or predisposition to the development of disease. The inhibins and activins regulate aspects of the male and female reproductive system, therefore, it is not surprising that most of the diseases associated with abnormalities of the inhibin and activin genes are focused on reproductive disorders and reproductive cancers. In this review, I highlight the role of genetic variants in the development of conditions such as premature ovarian failure, pre-eclampsia, and various reproductive cancers. Given the recent advances in human genetic research, such as genome wide association studies and next generation sequencing, it is likely that inhibins and activins will be shown to play more important roles in a range of human genetic diseases in the future.

  14. Human Disease Insight: An integrated knowledge-based platform for disease-gene-drug information.

    Science.gov (United States)

    Tasleem, Munazzah; Ishrat, Romana; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-01-01

    The scope of the Human Disease Insight (HDI) database is not limited to researchers or physicians as it also provides basic information to non-professionals and creates disease awareness, thereby reducing the chances of patient suffering due to ignorance. HDI is a knowledge-based resource providing information on human diseases to both scientists and the general public. Here, our mission is to provide a comprehensive human disease database containing most of the available useful information, with extensive cross-referencing. HDI is a knowledge management system that acts as a central hub to access information about human diseases and associated drugs and genes. In addition, HDI contains well-classified bioinformatics tools with helpful descriptions. These integrated bioinformatics tools enable researchers to annotate disease-specific genes and perform protein analysis, search for biomarkers and identify potential vaccine candidates. Eventually, these tools will facilitate the analysis of disease-associated data. The HDI provides two types of search capabilities and includes provisions for downloading, uploading and searching disease/gene/drug-related information. The logistical design of the HDI allows for regular updating. The database is designed to work best with Mozilla Firefox and Google Chrome and is freely accessible at http://humandiseaseinsight.com.

  15. Reconstructability analysis as a tool for identifying gene-gene interactions in studies of human diseases.

    Science.gov (United States)

    Shervais, Stephen; Kramer, Patricia L; Westaway, Shawn K; Cox, Nancy J; Zwick, Martin

    2010-01-01

    There are a number of common human diseases for which the genetic component may include an epistatic interaction of multiple genes. Detecting these interactions with standard statistical tools is difficult because there may be an interaction effect, but minimal or no main effect. Reconstructability analysis (RA) uses Shannon's information theory to detect relationships between variables in categorical datasets. We applied RA to simulated data for five different models of gene-gene interaction, and find that even with heritability levels as low as 0.008, and with the inclusion of 50 non-associated genes in the dataset, we can identify the interacting gene pairs with an accuracy of > or =80%. We applied RA to a real dataset of type 2 non-insulin-dependent diabetes (NIDDM) cases and controls, and closely approximated the results of more conventional single SNP disease association studies. In addition, we replicated prior evidence for epistatic interactions between SNPs on chromosomes 2 and 15.

  16. Syndrome to gene (S2G): in-silico identification of candidate genes for human diseases.

    Science.gov (United States)

    Gefen, Avitan; Cohen, Raphael; Birk, Ohad S

    2010-03-01

    The identification of genomic loci associated with human genetic syndromes has been significantly facilitated through the generation of high density SNP arrays. However, optimal selection of candidate genes from within such loci is still a tedious labor-intensive bottleneck. Syndrome to Gene (S2G) is based on novel algorithms which allow an efficient search for candidate genes in a genomic locus, using known genes whose defects cause phenotypically similar syndromes. S2G (http://fohs.bgu.ac.il/s2g/index.html) includes two components: a phenotype Online Mendelian Inheritance in Man (OMIM)-based search engine that alleviates many of the problems in the existing OMIM search engine (negation phrases, overlapping terms, etc.). The second component is a gene prioritizing engine that uses a novel algorithm to integrate information from 18 databases. When the detailed phenotype of a syndrome is inserted to the web-based software, S2G offers a complete improved search of the OMIM database for similar syndromes. The software then prioritizes a list of genes from within a genomic locus, based on their association with genes whose defects are known to underlie similar clinical syndromes. We demonstrate that in all 30 cases of novel disease genes identified in the past year, the disease gene was within the top 20% of candidate genes predicted by S2G, and in most cases--within the top 10%. Thus, S2G provides clinicians with an efficient tool for diagnosis and researchers with a candidate gene prediction tool based on phenotypic data and a wide range of gene data resources. S2G can also serve in studies of polygenic diseases, and in finding interacting molecules for any gene of choice.

  17. MORPHIN: a web tool for human disease research by projecting model organism biology onto a human integrated gene network.

    Science.gov (United States)

    Hwang, Sohyun; Kim, Eiru; Yang, Sunmo; Marcotte, Edward M; Lee, Insuk

    2014-07-01

    Despite recent advances in human genetics, model organisms are indispensable for human disease research. Most human disease pathways are evolutionally conserved among other species, where they may phenocopy the human condition or be associated with seemingly unrelated phenotypes. Much of the known gene-to-phenotype association information is distributed across diverse databases, growing rapidly due to new experimental techniques. Accessible bioinformatics tools will therefore facilitate translation of discoveries from model organisms into human disease biology. Here, we present a web-based discovery tool for human disease studies, MORPHIN (model organisms projected on a human integrated gene network), which prioritizes the most relevant human diseases for a given set of model organism genes, potentially highlighting new model systems for human diseases and providing context to model organism studies. Conceptually, MORPHIN investigates human diseases by an orthology-based projection of a set of model organism genes onto a genome-scale human gene network. MORPHIN then prioritizes human diseases by relevance to the projected model organism genes using two distinct methods: a conventional overlap-based gene set enrichment analysis and a network-based measure of closeness between the query and disease gene sets capable of detecting associations undetectable by the conventional overlap-based methods. MORPHIN is freely accessible at http://www.inetbio.org/morphin.

  18. Evaluation of high-throughput functional categorization of human disease genes

    Directory of Open Access Journals (Sweden)

    Li Jianrong

    2007-05-01

    Full Text Available Abstract Background Biological data that are well-organized by an ontology, such as Gene Ontology, enables high-throughput availability of the semantic web. It can also be used to facilitate high throughput classification of biomedical information. However, to our knowledge, no evaluation has been published on automating classifications of human diseases genes using Gene Ontology. In this study, we evaluate automated classifications of well-defined human disease genes using their Gene Ontology annotations and compared them to a gold standard. This gold standard was independently conceived by Valle's research group, and contains 923 human disease genes organized in 14 categories of protein function. Results Two automated methods were applied to investigate the classification of human disease genes into independently pre-defined categories of protein function. One method used the structure of Gene Ontology by pre-selecting 74 Gene Ontology terms assigned to 11 protein function categories. The second method was based on the similarity of human disease genes clustered according to the information-theoretic distance of their Gene Ontology annotations. Compared to the categorization of human disease genes found in the gold standard, our automated methods can achieve an overall 56% and 47% precision with 62% and 71% recall respectively. However, approximately 15% of the studied human disease genes remain without GO annotations. Conclusion Automated methods can recapitulate a significant portion of classification of the human disease genes. The method using information-theoretic distance performs slightly better on the precision with some loss in recall. For some protein function categories, such as 'hormone' and 'transcription factor', the automated methods perform particularly well, achieving precision and recall levels above 75%. In summary, this study demonstrates that for semantic webs, methods to automatically classify or analyze a majority of

  19. Locus heterogeneity disease genes encode proteins with high interconnectivity in the human protein interaction network.

    Science.gov (United States)

    Keith, Benjamin P; Robertson, David L; Hentges, Kathryn E

    2014-01-01

    Mutations in genes potentially lead to a number of genetic diseases with differing severity. These disease genes have been the focus of research in recent years showing that the disease gene population as a whole is not homogeneous, and can be categorized according to their interactions. Locus heterogeneity describes a single disorder caused by mutations in different genes each acting individually to cause the same disease. Using datasets of experimentally derived human disease genes and protein interactions, we created a protein interaction network to investigate the relationships between the products of genes associated with a disease displaying locus heterogeneity, and use network parameters to suggest properties that distinguish these disease genes from the overall disease gene population. Through the manual curation of known causative genes of 100 diseases displaying locus heterogeneity and 397 single-gene Mendelian disorders, we use network parameters to show that our locus heterogeneity network displays distinct properties from the global disease network and a Mendelian network. Using the global human proteome, through random simulation of the network we show that heterogeneous genes display significant interconnectivity. Further topological analysis of this network revealed clustering of locus heterogeneity genes that cause identical disorders, indicating that these disease genes are involved in similar biological processes. We then use this information to suggest additional genes that may contribute to diseases with locus heterogeneity.

  20. Dynamic and reversibility of heterochromatic gene silencing in human disease

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In eukaryotic organisms cellular fate and tissue specific gene expression are regulated by the activity of proteins known as transcription factors that by interacting with specific DNA sequences direct the activation or repression of target genes. The post genomic era has shown that transcription factors are not the unique key regulators of gene expression. Epigenetic mechanisms such as DNA methylation, post-translational modifications of histone proteins,remodeling of nucleosomes and expression of small regulatory RNAs also contribute to regulation of gene expression,determination of cell and tissue specificity and assurance of inheritance of gene expression levels. The relevant contribution of epigenetic mechanisms to a proper cellular function is highlighted by the effects of their deregulation that cooperate with genetic alterations to the development of various diseases and to the establishment and progression of tumors.

  1. Evolutionary dynamics of human autoimmune disease genes and malfunctioned immunological genes

    Directory of Open Access Journals (Sweden)

    Podder Soumita

    2012-01-01

    Full Text Available Abstract Background One of the main issues of molecular evolution is to divulge the principles in dictating the evolutionary rate differences among various gene classes. Immunological genes have received considerable attention in evolutionary biology as candidates for local adaptation and for studying functionally important polymorphisms. The normal structure and function of immunological genes will be distorted when they experience mutations leading to immunological dysfunctions. Results Here, we examined the fundamental differences between the genes which on mutation give rise to autoimmune or other immune system related diseases and the immunological genes that do not cause any disease phenotypes. Although the disease genes examined are analogous to non-disease genes in product, expression, function, and pathway affiliation, a statistically significant decrease in evolutionary rate has been found in autoimmune disease genes relative to all other immune related diseases and non-disease genes. Possible ways of accumulation of mutation in the three steps of the central dogma (DNA-mRNA-Protein have been studied to trace the mutational effects predisposed to disease consequence and acquiring higher selection pressure. Principal Component Analysis and Multivariate Regression Analysis have established the predominant role of single nucleotide polymorphisms in guiding the evolutionary rate of immunological disease and non-disease genes followed by m-RNA abundance, paralogs number, fraction of phosphorylation residue, alternatively spliced exon, protein residue burial and protein disorder. Conclusions Our study provides an empirical insight into the etiology of autoimmune disease genes and other immunological diseases. The immediate utility of our study is to help in disease gene identification and may also help in medicinal improvement of immune related disease.

  2. Africa: the next frontier for human disease gene discovery?

    Science.gov (United States)

    Ramsay, Michèle; Tiemessen, Caroline T; Choudhury, Ananyo; Soodyall, Himla

    2011-10-15

    The populations of Africa harbour the greatest human genetic diversity following an evolutionary history tracing its beginnings on the continent to time before the emergence of Homo sapiens. Signatures of selection are detectable as responses to ancient environments and cultural practices, modulated by more recent events including infectious epidemics, migrations, admixture and, of course, chance. The age of high-throughput biology is not passing Africa by. African-based cohort studies and networks with an African footprint are ideal springboards for disease-related genetic and genomic studies. Initiatives like HapMap, the 1000 Genomes Project, MalariaGEN, the INDEPTH network and Human Heredity and Health in Africa are catalysts to exploring African genetic diversity and its role in the spectrum from health to disease. The challenges are abundant in dissecting biological questions in the light of linguistic, cultural, geographic and political boundaries and their respective roles in shaping health-related profiles. Will studies based on African populations lead to a new wave of discovery of genetic contributors to disease?

  3. Gene Prospector: An evidence gateway for evaluating potential susceptibility genes and interacting risk factors for human diseases

    Directory of Open Access Journals (Sweden)

    Khoury Muin J

    2008-12-01

    Full Text Available Abstract Background Millions of single nucleotide polymorphisms have been identified as a result of the human genome project and the rapid advance of high throughput genotyping technology. Genetic association studies, such as recent genome-wide association studies (GWAS, have provided a springboard for exploring the contribution of inherited genetic variation and gene/environment interactions in relation to disease. Given the capacity of such studies to produce a plethora of information that may then be described in a number of publications, selecting possible disease susceptibility genes and identifying related modifiable risk factors is a major challenge. A Web-based application for finding evidence of such relationships is key to the development of follow-up studies and evidence for translational research. We developed a Web-based application that selects and prioritizes potential disease-related genes by using a highly curated and updated literature database of genetic association studies. The application, called Gene Prospector, also provides a comprehensive set of links to additional data sources. Results We compared Gene Prospector results for the query "Parkinson" with a list of 13 leading candidate genes (Top Results from a curated, specialty database for genetic associations with Parkinson disease (PDGene. Nine of the thirteen leading candidate genes from PDGene were in the top 10th percentile of the ranked list from Gene Prospector. In fact, Gene Prospector included more published genetic association studies for the 13 leading candidate genes than PDGene did. Conclusion Gene Prospector provides an online gateway for searching for evidence about human genes in relation to diseases, other phenotypes, and risk factors, and provides links to published literature and other online data sources. Gene Prospector can be accessed via http://www.hugenavigator.net/HuGENavigator/geneProspectorStartPage.do.

  4. Analysis of the robustness of network-based disease-gene prioritization methods reveals redundancy in the human interactome and functional diversity of disease-genes.

    Directory of Open Access Journals (Sweden)

    Emre Guney

    Full Text Available Complex biological systems usually pose a trade-off between robustness and fragility where a small number of perturbations can substantially disrupt the system. Although biological systems are robust against changes in many external and internal conditions, even a single mutation can perturb the system substantially, giving rise to a pathophenotype. Recent advances in identifying and analyzing the sequential variations beneath human disorders help to comprehend a systemic view of the mechanisms underlying various disease phenotypes. Network-based disease-gene prioritization methods rank the relevance of genes in a disease under the hypothesis that genes whose proteins interact with each other tend to exhibit similar phenotypes. In this study, we have tested the robustness of several network-based disease-gene prioritization methods with respect to the perturbations of the system using various disease phenotypes from the Online Mendelian Inheritance in Man database. These perturbations have been introduced either in the protein-protein interaction network or in the set of known disease-gene associations. As the network-based disease-gene prioritization methods are based on the connectivity between known disease-gene associations, we have further used these methods to categorize the pathophenotypes with respect to the recoverability of hidden disease-genes. Our results have suggested that, in general, disease-genes are connected through multiple paths in the human interactome. Moreover, even when these paths are disturbed, network-based prioritization can reveal hidden disease-gene associations in some pathophenotypes such as breast cancer, cardiomyopathy, diabetes, leukemia, parkinson disease and obesity to a greater extend compared to the rest of the pathophenotypes tested in this study. Gene Ontology (GO analysis highlighted the role of functional diversity for such diseases.

  5. Manteia, a predictive data mining system for vertebrate genes and its applications to human genetic diseases.

    Science.gov (United States)

    Tassy, Olivier; Pourquié, Olivier

    2014-01-01

    The function of genes is often evolutionarily conserved, and comparing the annotation of ortholog genes in different model organisms has proved to be a powerful predictive tool to identify the function of human genes. Here, we describe Manteia, a resource available online at http://manteia.igbmc.fr. Manteia allows the comparison of embryological, expression, molecular and etiological data from human, mouse, chicken and zebrafish simultaneously to identify new functional and structural correlations and gene-disease associations. Manteia is particularly useful for the analysis of gene lists produced by high-throughput techniques such as microarrays or proteomics. Data can be easily analyzed statistically to characterize the function of groups of genes and to correlate the different aspects of their annotation. Sophisticated querying tools provide unlimited ways to merge the information contained in Manteia along with the possibility of introducing custom user-designed biological questions into the system. This allows for example to connect all the animal experimental results and annotations to the human genome, and take advantage of data not available for human to look for candidate genes responsible for genetic disorders. Here, we demonstrate the predictive and analytical power of the system to predict candidate genes responsible for human genetic diseases.

  6. Ultrasound-targeted microbubble destruction in gene therapy: A new tool to cure human diseases

    Directory of Open Access Journals (Sweden)

    Jun Wu

    2017-06-01

    Full Text Available Human gene therapy has made significant advances in less than two decades. Within this short period of time, gene therapy has proceeded from the conceptual stage to technology development and laboratory research, and finally to clinical trials for the treatment of a variety of deadly diseases. Cardiovascular disease, cancer, and stroke are leading causes of death worldwide. Despite advances in medical, interventional, radiation and surgical treatments, the mortality rate remains high, and the need for novel therapies is great. Gene therapy provides an efficient approach to disease treatment. Notable advances in gene therapy have been made for genetic disorders, including severe combined immune deficiency, chronic granulomatus disorder, hemophilia and blindness, as well as for acquired diseases, including cancer and neurodegenerative and cardiovascular diseases. However, lack of an efficient delivery system to target cells as well as the difficulty of sustained expression of transgenes has hindered advancements in gene therapy. Ultrasound targeted microbubble destruction (UTMD is a promising approach for target-specific gene delivery, and it has been successfully investigated for the treatment of many diseases in the past decade. In this paper, we review UTMD-mediated gene delivery for the treatment of cardiovascular diseases, cancer and stroke.

  7. Significance of murine retroviral mutagenesis for identification of disease genes in human acute myeloid leukemia.

    Science.gov (United States)

    Erkeland, Stefan J; Verhaak, Roel G W; Valk, Peter J M; Delwel, Ruud; Löwenberg, Bob; Touw, Ivo P

    2006-01-15

    Retroviral insertion mutagenesis is considered a powerful tool to identify cancer genes in mice, but its significance for human cancer has remained elusive. Moreover, it has recently been debated whether common virus integrations are always a hallmark of tumor cells and contribute to the oncogenic process. Acute myeloid leukemia (AML) is a heterogeneous disease with a variable response to treatment. Recurrent cytogenetic defects and acquired mutations in regulatory genes are associated with AML subtypes and prognosis. Recently, gene expression profiling (GEP) has been applied to further risk stratify AML. Here, we show that mouse leukemia genes identified by retroviral insertion mutagenesis are more frequently differentially expressed in distinct subclasses of adult and pediatric AML than randomly selected genes or genes located more distantly from a virus integration site. The candidate proto-oncogenes showing discriminative expression in primary AML could be placed in regulatory networks mainly involved in signal transduction and transcriptional control. Our data support the validity of retroviral insertion mutagenesis in mice for human disease and indicate that combining these murine screens for potential proto-oncogenes with GEP in human AML may help to identify critical disease genes and novel pathogenetic networks in leukemia.

  8. Cross-pollination of research findings, although uncommon, may accelerate discovery of human disease genes

    Directory of Open Access Journals (Sweden)

    Duda Marlena

    2012-11-01

    Full Text Available Abstract Background Technological leaps in genome sequencing have resulted in a surge in discovery of human disease genes. These discoveries have led to increased clarity on the molecular pathology of disease and have also demonstrated considerable overlap in the genetic roots of human diseases. In light of this large genetic overlap, we tested whether cross-disease research approaches lead to faster, more impactful discoveries. Methods We leveraged several gene-disease association databases to calculate a Mutual Citation Score (MCS for 10,853 pairs of genetically related diseases to measure the frequency of cross-citation between research fields. To assess the importance of cooperative research, we computed an Individual Disease Cooperation Score (ICS and the average publication rate for each disease. Results For all disease pairs with one gene in common, we found that the degree of genetic overlap was a poor predictor of cooperation (r2=0.3198 and that the vast majority of disease pairs (89.56% never cited previous discoveries of the same gene in a different disease, irrespective of the level of genetic similarity between the diseases. A fraction (0.25% of the pairs demonstrated cross-citation in greater than 5% of their published genetic discoveries and 0.037% cross-referenced discoveries more than 10% of the time. We found strong positive correlations between ICS and publication rate (r2=0.7931, and an even stronger correlation between the publication rate and the number of cross-referenced diseases (r2=0.8585. These results suggested that cross-disease research may have the potential to yield novel discoveries at a faster pace than singular disease research. Conclusions Our findings suggest that the frequency of cross-disease study is low despite the high level of genetic similarity among many human diseases, and that collaborative methods may accelerate and increase the impact of new genetic discoveries. Until we have a better

  9. A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes

    DEFF Research Database (Denmark)

    Hansen, Kasper Lage; Hansen, Niclas Tue; Karlberg, Erik, Olof, Linnart

    2008-01-01

    Heritable diseases are caused by germ-line mutations that, despite tissuewide presence, often lead to tissue-specific pathology. Here, we make a systematic analysis of the link between tissue-specific gene expression and pathological manifestations in many human diseases and cancers. Diseases were...... to be overexpressed in the normal tissues where defects cause pathology. In contrast, cancer genes and complexes were not overexpressed in the tissues from which the tumors emanate. We specifically identified a complex involved in XY sex reversal that is testis-specific and down-regulated in ovaries. We also...... identified complexes in Parkinson disease, cardiomyopathies, and muscular dystrophy syndromes that are similarly tissue specific. Our method represents a conceptual scaffold for organism-spanning analyses and reveals an extensive list of tissue-specific draft molecular pathways, both known and unexpected...

  10. Orthologs of Human Disease Associated Genes and RNAi Analysis of Silencing Insulin Receptor Gene in Bombyx mori

    Directory of Open Access Journals (Sweden)

    Zan Zhang

    2014-10-01

    Full Text Available The silkworm, Bombyx mori L., is an important economic insect that has been domesticated for thousands of years to produce silk. It is our great interest to investigate the possibility of developing the B. mori as human disease model. We searched the orthologs of human disease associated genes in the B. mori by bi-directional best hits of BLAST and confirmed by searching the OrthoDB. In total, 5006 genes corresponding to 1612 kinds of human diseases had orthologs in the B. mori, among which, there are 25 genes associated with diabetes mellitus. Of these, we selected the insulin receptor gene of the B. mori (Bm-INSR to study its expression in different tissues and at different developmental stages and tissues. Quantitative PCR showed that Bm-INSR was highly expressed in the Malpighian tubules but expressed at low levels in the testis. It was highly expressed in the 3rd and 4th instar larvae, and adult. We knocked down Bm-INSR expression using RNA interference. The abundance of Bm-INSR transcripts were dramatically reduced to ~4% of the control level at 6 days after dsRNA injection and the RNAi-treated B. mori individuals showed apparent growth inhibition and malformation such as abnormal body color in black, which is the typical symptom of diabetic patients. Our results demonstrate that B. mori has potential use as an animal model for diabetic mellitus research.

  11. Identifying human disease genes: advances in molecular genetics and computational approaches.

    Science.gov (United States)

    Bakhtiar, S M; Ali, A; Baig, S M; Barh, D; Miyoshi, A; Azevedo, V

    2014-07-04

    The human genome project is one of the significant achievements that have provided detailed insight into our genetic legacy. During the last two decades, biomedical investigations have gathered a considerable body of evidence by detecting more than 2000 disease genes. Despite the imperative advances in the genetic understanding of various diseases, the pathogenesis of many others remains obscure. With recent advances, the laborious methodologies used to identify DNA variations are replaced by direct sequencing of genomic DNA to detect genetic changes. The ability to perform such studies depends equally on the development of high-throughput and economical genotyping methods. Currently, basically for every disease whose origen is still unknown, genetic approaches are available which could be pedigree-dependent or -independent with the capacity to elucidate fundamental disease mechanisms. Computer algorithms and programs for linkage analysis have formed the foundation for many disease gene detection projects, similarly databases of clinical findings have been widely used to support diagnostic decisions in dysmorphology and general human disease. For every disease type, genome sequence variations, particularly single nucleotide polymorphisms are mapped by comparing the genetic makeup of case and control groups. Methods that predict the effects of polymorphisms on protein stability are useful for the identification of possible disease associations, whereas structural effects can be assessed using methods to predict stability changes in proteins using sequence and/or structural information.

  12. Dog as a model in studies on human hereditary diseases and their gene therapy.

    Science.gov (United States)

    Switonski, Marek

    2014-03-01

    During the last 15 years spectacular progress has been achieved in knowledge on the dog genome organization and the molecular background of hereditary diseases in this species. A majority of canine genetic diseases have their counterparts in humans and thus dogs are considered as a very important large animal model in human biomedicine. Among canine monogenic diseases with known causative gene mutations there are two large groups classified as retinal dystrophies and lysosomal storage diseases. Specific types of these diseases are usually diagnosed in a single or several breeds. A well known disorder, restricted to a single breed, is congenital stationary night blindness described in Briards. This disease is a counterpart of Leber amaurosis in children. On the other hand, one of the most common monogenic human diseases (Duchenne muscular dystrophy), has its canine counterparts in several breeds (e.g., the Golden retriever, Beagle and German short-haired pointer). For some of the canine diseases gene therapy strategy was successfully applied, e.g., for congenital stationary night blindness, rod-cone dystrophy and muccopolysaccharydoses type I, IIIB and VII. Since phenotypic variability between the breeds is exceptionally high, the dog is an interesting model to study the molecular background of congenital malformations (e.g., dwarfism and osteoporosis imperfecta). Also disorders of sexual development (DSD), especially testicular or ovotesticular DSD (78,XX; SRY-negative), which is widely distributed across dozens of breeds, are of particular interest. Studies on the genetic background of canine cancers, a major health problem in this species, are also quite advanced. On the other hand, genetic studies on canine counterparts of major human complex diseases (e.g., obesity, the metabolic syndrome and diabetes mellitus) are still in their infancy.

  13. Diet-gene interactions and PUFA metabolism: a potential contributor to health disparities and human diseases.

    Science.gov (United States)

    Chilton, Floyd H; Murphy, Robert C; Wilson, Bryan A; Sergeant, Susan; Ainsworth, Hannah; Seeds, Michael C; Mathias, Rasika A

    2014-05-21

    The "modern western" diet (MWD) has increased the onset and progression of chronic human diseases as qualitatively and quantitatively maladaptive dietary components give rise to obesity and destructive gene-diet interactions. There has been a three-fold increase in dietary levels of the omega-6 (n-6) 18 carbon (C18), polyunsaturated fatty acid (PUFA) linoleic acid (LA; 18:2n-6), with the addition of cooking oils and processed foods to the MWD. Intense debate has emerged regarding the impact of this increase on human health. Recent studies have uncovered population-related genetic variation in the LCPUFA biosynthetic pathway (especially within the fatty acid desaturase gene (FADS) cluster) that is associated with levels of circulating and tissue PUFAs and several biomarkers and clinical endpoints of cardiovascular disease (CVD). Importantly, populations of African descent have higher frequencies of variants associated with elevated levels of arachidonic acid (ARA), CVD biomarkers and disease endpoints. Additionally, nutrigenomic interactions between dietary n-6 PUFAs and variants in genes that encode for enzymes that mobilize and metabolize ARA to eicosanoids have been identified. These observations raise important questions of whether gene-PUFA interactions are differentially driving the risk of cardiovascular and other diseases in diverse populations, and contributing to health disparities, especially in African American populations.

  14. Diet-Gene Interactions and PUFA Metabolism: A Potential Contributor to Health Disparities and Human Diseases

    Directory of Open Access Journals (Sweden)

    Floyd H. Chilton

    2014-05-01

    Full Text Available The “modern western” diet (MWD has increased the onset and progression of chronic human diseases as qualitatively and quantitatively maladaptive dietary components give rise to obesity and destructive gene-diet interactions. There has been a three-fold increase in dietary levels of the omega-6 (n-6 18 carbon (C18, polyunsaturated fatty acid (PUFA linoleic acid (LA; 18:2n-6, with the addition of cooking oils and processed foods to the MWD. Intense debate has emerged regarding the impact of this increase on human health. Recent studies have uncovered population-related genetic variation in the LCPUFA biosynthetic pathway (especially within the fatty acid desaturase gene (FADS cluster that is associated with levels of circulating and tissue PUFAs and several biomarkers and clinical endpoints of cardiovascular disease (CVD. Importantly, populations of African descent have higher frequencies of variants associated with elevated levels of arachidonic acid (ARA, CVD biomarkers and disease endpoints. Additionally, nutrigenomic interactions between dietary n-6 PUFAs and variants in genes that encode for enzymes that mobilize and metabolize ARA to eicosanoids have been identified. These observations raise important questions of whether gene-PUFA interactions are differentially driving the risk of cardiovascular and other diseases in diverse populations, and contributing to health disparities, especially in African American populations.

  15. Gene expression regulation by upstream open reading frames and human disease.

    Directory of Open Access Journals (Sweden)

    Cristina Barbosa

    Full Text Available Upstream open reading frames (uORFs are major gene expression regulatory elements. In many eukaryotic mRNAs, one or more uORFs precede the initiation codon of the main coding region. Indeed, several studies have revealed that almost half of human transcripts present uORFs. Very interesting examples have shown that these uORFs can impact gene expression of the downstream main ORF by triggering mRNA decay or by regulating translation. Also, evidence from recent genetic and bioinformatic studies implicates disturbed uORF-mediated translational control in the etiology of many human diseases, including malignancies, metabolic or neurologic disorders, and inherited syndromes. In this review, we will briefly present the mechanisms through which uORFs regulate gene expression and how they can impact on the organism's response to different cell stress conditions. Then, we will emphasize the importance of these structures by illustrating, with specific examples, how disturbed uORF-mediated translational control can be involved in the etiology of human diseases, giving special importance to genotype-phenotype correlations. Identifying and studying more cases of uORF-altering mutations will help us to understand and establish genotype-phenotype associations, leading to advancements in diagnosis, prognosis, and treatment of many human disorders.

  16. Human amniotic fluid stem cells as a model for functional studies of genes involved in human genetic diseases or oncogenesis.

    Science.gov (United States)

    Rosner, Margit; Dolznig, Helmut; Schipany, Katharina; Mikula, Mario; Brandau, Oliver; Hengstschläger, Markus

    2011-09-01

    Besides their putative usage for therapies, stem cells are a promising tool for functional studies of genes involved in human genetic diseases or oncogenesis. For this purpose induced pluripotent stem (iPS) cells can be derived from patients harbouring specific mutations. In contrast to adult stem cells, iPS cells are pluripotent and can efficiently be grown in culture. However, iPS cells are modulated due to the ectopic induction of pluripotency, harbour other somatic mutations accumulated during the life span of the source cells, exhibit only imperfectly cleared epigenetic memory of the source cell, and are often genomically instable. In addition, iPS cells from patients only allow the investigation of mutations, which are not prenatally lethal. Embryonic stem (ES) cells have a high proliferation and differentiation potential, but raise ethical issues. Human embryos, which are not transferred in the course of in vitro fertilization, because of preimplantation genetic diagnosis of a genetic defect, are still rarely donated for the establishment of ES cell lines. In addition, their usage for studies on gene functions for oncogenesis is hampered by the fact the ES cells are already tumorigenic per se. In 2003 amniotic fluid stem (AFS) cells have been discovered, which meanwhile have been demonstrated to harbour the potential to differentiate into cells of all three germ layers. Monoclonal human AFS cell lines derived from amniocenteses have a high proliferative potential, are genomically stable and are not associated with ethical controversies. Worldwide amniocenteses are performed for routine human genetic diagnosis. We here discuss how generation and banking of monoclonal human AFS cell lines with specific chromosomal aberrations or monogenic disease mutations would allow to study the functional consequences of disease causing mutations. In addition, recently a protocol for efficient and highly reproducible siRNA-mediated long-term knockdown of endogenous gene

  17. Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets.

    Science.gov (United States)

    Vinayagam, Arunachalam; Gibson, Travis E; Lee, Ho-Joon; Yilmazel, Bahar; Roesel, Charles; Hu, Yanhui; Kwon, Young; Sharma, Amitabh; Liu, Yang-Yu; Perrimon, Norbert; Barabási, Albert-László

    2016-05-03

    The protein-protein interaction (PPI) network is crucial for cellular information processing and decision-making. With suitable inputs, PPI networks drive the cells to diverse functional outcomes such as cell proliferation or cell death. Here, we characterize the structural controllability of a large directed human PPI network comprising 6,339 proteins and 34,813 interactions. This network allows us to classify proteins as "indispensable," "neutral," or "dispensable," which correlates to increasing, no effect, or decreasing the number of driver nodes in the network upon removal of that protein. We find that 21% of the proteins in the PPI network are indispensable. Interestingly, these indispensable proteins are the primary targets of disease-causing mutations, human viruses, and drugs, suggesting that altering a network's control property is critical for the transition between healthy and disease states. Furthermore, analyzing copy number alterations data from 1,547 cancer patients reveals that 56 genes that are frequently amplified or deleted in nine different cancers are indispensable. Among the 56 genes, 46 of them have not been previously associated with cancer. This suggests that controllability analysis is very useful in identifying novel disease genes and potential drug targets.

  18. An ileal Crohn's disease gene signature based on whole human genome expression profiles of disease unaffected ileal mucosal biopsies.

    Directory of Open Access Journals (Sweden)

    Tianyi Zhang

    Full Text Available Previous genome-wide expression studies have highlighted distinct gene expression patterns in inflammatory bowel disease (IBD compared to control samples, but the interpretation of these studies has been limited by sample heterogeneity with respect to disease phenotype, disease activity, and anatomic sites. To further improve molecular classification of inflammatory bowel disease phenotypes we focused on a single anatomic site, the disease unaffected proximal ileal margin of resected ileum, and three phenotypes that were unlikely to overlap: ileal Crohn's disease (ileal CD, ulcerative colitis (UC, and control patients without IBD. Whole human genome (Agilent expression profiling was conducted on two independent sets of disease-unaffected ileal samples collected from the proximal margin of resected ileum. Set 1 (47 ileal CD, 27 UC, and 25 Control non-IBD patients was used as the training set and Set 2 was subsequently collected as an independent test set (10 ileal CD, 10 UC, and 10 control non-IBD patients. We compared the 17 gene signatures selected by four different feature-selection methods to distinguish ileal CD phenotype with non-CD phenotype. The four methods yielded different but overlapping solutions that were highly discriminating. All four of these methods selected FOLH1 as a common feature. This gene is an established biomarker for prostate cancer, but has not previously been associated with Crohn's disease. Immunohistochemical staining confirmed increased expression of FOLH1 in the ileal epithelium. These results provide evidence for convergent molecular abnormalities in the macroscopically disease unaffected proximal margin of resected ileum from ileal CD subjects.

  19. Studying human disease genes in Caenorhabditis elegans: a molecular genetics laboratory project.

    Science.gov (United States)

    Cox-Paulson, Elisabeth A; Grana, Theresa M; Harris, Michelle A; Batzli, Janet M

    2012-01-01

    Scientists routinely integrate information from various channels to explore topics under study. We designed a 4-wk undergraduate laboratory module that used a multifaceted approach to study a question in molecular genetics. Specifically, students investigated whether Caenorhabditis elegans can be a useful model system for studying genes associated with human disease. In a large-enrollment, sophomore-level laboratory course, groups of three to four students were assigned a gene associated with either breast cancer (brc-1), Wilson disease (cua-1), ovarian dysgenesis (fshr-1), or colon cancer (mlh-1). Students compared observable phenotypes of wild-type C. elegans and C. elegans with a homozygous deletion in the assigned gene. They confirmed the genetic deletion with nested polymerase chain reaction and performed a bioinformatics analysis to predict how the deletion would affect the encoded mRNA and protein. Students also performed RNA interference (RNAi) against their assigned gene and evaluated whether RNAi caused a phenotype similar to that of the genetic deletion. As a capstone activity, students prepared scientific posters in which they presented their data, evaluated whether C. elegans was a useful model system for studying their assigned genes, and proposed future directions. Assessment showed gains in understanding genotype versus phenotype, RNAi, common bioinformatics tools, and the utility of model organisms.

  20. Gene mapping and leader polypeptide sequence of human glucocerebrosidase: implications for Gaucher disease.

    Science.gov (United States)

    Ginns, E I; Choudary, P V; Tsuji, S; Martin, B; Stubblefield, B; Sawyer, J; Hozier, J; Barranger, J A

    1985-01-01

    Analysis of immunologic cross-reacting material in Chinese hamster-human somatic cell hybrids allowed assignment of the structural gene for glucocerebrosidase (glucosylceramidase; beta-D-glucosyl-N-acylsphingosine glucohydrolase, EC 3.2.1.45) to chromosome 1 bands q21-q32. In situ hybridization of a radiolabeled human glucocerebrosidase cDNA to high resolution human chromosomes demonstrated that a single locus encoding glucocerebrosidase is on 1q21, adjacent to a region of chromosome 1 (1qh) abundant in structural heteromorphisms. We also have identified a hydrophobic leader polypeptide encoded by this locus, permitting a more complete description of the biosynthesis of the enzyme. These results suggest that the type-specific protein polymorphisms in Gaucher disease result from mutations at this single locus, whose segregation might be followed by linkage to visible chromosomal heteromorphisms. Images PMID:3863141

  1. Gene expression profiling to identify the toxicities and potentially relevant human disease outcomes associated with environmental heavy metal exposure.

    Science.gov (United States)

    Korashy, Hesham M; Attafi, Ibraheem M; Famulski, Konrad S; Bakheet, Saleh A; Hafez, Mohammed M; Alsaad, Abdulaziz M S; Al-Ghadeer, Abdul Rahman M

    2017-02-01

    Heavy metals are the most commonly encountered toxic substances that increase susceptibility to various diseases after prolonged exposure. We have previously shown that healthy volunteers living near a mining area had significant contamination with heavy metals associated with significant changes in the expression of some detoxifying genes, xenobiotic metabolizing enzymes, and DNA repair genes. However, alterations of most of the molecular target genes associated with diseases are still unknown. Thus, the aims of this study were to (a) evaluate the gene expression profile and (b) identify the toxicities and potentially relevant human disease outcomes associated with long-term human exposure to environmental heavy metals in mining area using microarray analysis. For this purpose, 40 healthy male volunteers who were residents of a heavy metal-polluted area (Mahd Al-Dhahab city, Saudi Arabia) and 20 healthy male volunteers who were residents of a non-heavy metal-polluted area were included in the study. Total RNA was isolated from whole blood using PAXgene Blood RNA tubes and then reversed transcribed and hybridized to the gene array using the Affymetrix U219 GeneChip. Microarray analysis showed about 2129 genes were identified and differentially altered, among which a shared set of 425 genes was differentially expressed in the heavy metal-exposed groups. Ingenuity pathway analysis revealed that the most altered gene-regulated diseases in heavy metal-exposed groups included hematological and developmental disorders and mostly renal and urological diseases. Quantitative real-time polymerase chain reaction closely matched the microarray data for some genes tested. Importantly, changes in gene-related diseases were attributed to alterations in the genes encoded for protein synthesis. Renal and urological diseases were the diseases that were most frequently associated with the heavy metal-exposed group. Therefore, there is a need for further studies to validate these

  2. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, Aurélie [Laboratory of Genetic Instability and Oncogenesis UMR8200CNRS, Institut Gustave Roussy and University Paris-Sud, Villejuif (France); Sarasin, Alain, E-mail: alain.sarasin@gustaveroussy.fr [Laboratory of Genetic Instability and Oncogenesis UMR8200CNRS, Institut Gustave Roussy and University Paris-Sud, Villejuif (France); Service de Génétique, Institut Gustave Roussy (France)

    2015-06-15

    Graphical abstract: - Highlights: • Full correction of mutation in the XPC gene by engineered nucleases. • Meganucleases and TALENs are inhibited by 5-MeC for inducing double strand breaks. • Gene therapy of XP cells is possible using homologous recombination for DSB repair. - Abstract: Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients.

  3. The regulated secretory pathway and human disease: insights from gene variants and single nucleotide polymorphisms

    Directory of Open Access Journals (Sweden)

    Stephen eSalton

    2013-08-01

    Full Text Available The regulated secretory pathway provides critical control of peptide, growth factor, and hormone release from neuroendocrine and endocrine cells, and neurons, maintaining physiological homeostasis. Propeptides and prohormones are packaged into dense core granules (DCGs, where they frequently undergo tissue-specific processing as the DCG matures. Proteins of the granin family are DCG components, and although their function is not fully understood, data suggest they are involved in DCG formation and regulated protein/peptide secretion, in addition to their role as precursors of bioactive peptides. Association of gene variation, including single nucleotide polymorphisms (SNPs, with neuropsychiatric, endocrine and metabolic diseases, has implicated specific secreted proteins and peptides in disease pathogenesis. For example, a SNP at position 196 (G/A of the human brain-derived neurotrophic factor (BDNF gene dysregulates protein processing and secretion and leads to cognitive impairment. This suggests more generally that variants identified in genes encoding secreted growth factors, peptides, hormones, and proteins involved in DCG biogenesis, protein processing, and the secretory apparatus, could provide insight into the process of regulated secretion as well as disorders that result when it is impaired.

  4. Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology.

    Science.gov (United States)

    Hu, Yang; Zhou, Wenyang; Ren, Jun; Dong, Lixiang; Wang, Yadong; Jin, Shuilin; Cheng, Liang

    2016-01-01

    Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e - 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e - 14) in GeneRIFs and GOA shows our annotation resource is very reliable.

  5. Identifying human disease genes through cross-species gene mapping of evolutionary conserved processes

    NARCIS (Netherlands)

    Poot, Martin; Badea, Alexandra; Williams, Robert W; Kas, Martien J

    2011-01-01

    BACKGROUND: Understanding complex networks that modulate development in humans is hampered by genetic and phenotypic heterogeneity within and between populations. Here we present a method that exploits natural variation in highly diverse mouse genetic reference panels in which genetic and environmen

  6. Generating Gene Ontology-Disease Inferences to Explore Mechanisms of Human Disease at the Comparative Toxicogenomics Database.

    Directory of Open Access Journals (Sweden)

    Allan Peter Davis

    Full Text Available Strategies for discovering common molecular events among disparate diseases hold promise for improving understanding of disease etiology and expanding treatment options. One technique is to leverage curated datasets found in the public domain. The Comparative Toxicogenomics Database (CTD; http://ctdbase.org/ manually curates chemical-gene, chemical-disease, and gene-disease interactions from the scientific literature. The use of official gene symbols in CTD interactions enables this information to be combined with the Gene Ontology (GO file from NCBI Gene. By integrating these GO-gene annotations with CTD's gene-disease dataset, we produce 753,000 inferences between 15,700 GO terms and 4,200 diseases, providing opportunities to explore presumptive molecular underpinnings of diseases and identify biological similarities. Through a variety of applications, we demonstrate the utility of this novel resource. As a proof-of-concept, we first analyze known repositioned drugs (e.g., raloxifene and sildenafil and see that their target diseases have a greater degree of similarity when comparing GO terms vs. genes. Next, a computational analysis predicts seemingly non-intuitive diseases (e.g., stomach ulcers and atherosclerosis as being similar to bipolar disorder, and these are validated in the literature as reported co-diseases. Additionally, we leverage other CTD content to develop testable hypotheses about thalidomide-gene networks to treat seemingly disparate diseases. Finally, we illustrate how CTD tools can rank a series of drugs as potential candidates for repositioning against B-cell chronic lymphocytic leukemia and predict cisplatin and the small molecule inhibitor JQ1 as lead compounds. The CTD dataset is freely available for users to navigate pathologies within the context of extensive biological processes, molecular functions, and cellular components conferred by GO. This inference set should aid researchers, bioinformaticists, and

  7. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease.

    Science.gov (United States)

    Dupuy, Aurélie; Sarasin, Alain

    2015-06-01

    Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients.

  8. RPE65: role in the visual cycle, human retinal disease, and gene therapy.

    Science.gov (United States)

    Cai, Xue; Conley, Shannon M; Naash, Muna I

    2009-06-01

    RPE65 is an isomerohydrolase expressed in retinal pigment epithelium. It is critical for the regeneration of the visual pigment necessary for both rod and cone-mediated vision. Mutations in human RPE65 cause Leber's congenital amaurosis and other forms of autosomal recessive retinitis pigmentosa which are associated with early-onset blindness. Several RPE65 animal models including two different mouse models and a naturally occurring canine model have been thoroughly characterized to determine the mechanisms that underlie RPE65 associated retinal dystrophies. More recently, substantial effort has gone into designing gene therapies for these diseases. Based on several encouraging reports from animal models, at least three clinical trials are currently underway for the treatment of LCA using modified AAV vectors carrying the RPE65 cDNA and have reported positive preliminary results.

  9. Use of the MLPA assay in the molecular diagnosis of gene copy number alterations in human genetic diseases.

    Science.gov (United States)

    Stuppia, Liborio; Antonucci, Ivana; Palka, Giandomenico; Gatta, Valentina

    2012-01-01

    Multiplex Ligation-dependent Probe Amplification (MLPA) assay is a recently developed technique able to evidence variations in the copy number of several human genes. Due to this ability, MLPA can be used in the molecular diagnosis of several genetic diseases whose pathogenesis is related to the presence of deletions or duplications of specific genes. Moreover, MLPA assay can also be used in the molecular diagnosis of genetic diseases characterized by the presence of abnormal DNA methylation. Due to the large number of genes that can be analyzed by a single technique, MLPA assay represents the gold standard for molecular analysis of all pathologies derived from the presence of gene copy number variation. In this review, the main applications of the MLPA technique for the molecular diagnosis of human diseases are described.

  10. Does the KIR2DS5 gene protect from some human diseases?

    Directory of Open Access Journals (Sweden)

    Izabela Nowak

    Full Text Available BACKGROUND: KIR2DS5 gene encodes an activating natural killer cell receptor whose ligand is not known. It was recently reported to affect the outcome of hematopoietic stem cell transplantation. METHODOLOGY/PRINCIPAL FINDINGS: In our studies on KIR2DS5 gene associations with human diseases, we compared the frequencies of this gene in patients and relevant controls. Typing for KIR2DS5 gene was performed by either individual or multiplex polymerase chain reactions which, when compared in the same samples, gave concordant results. We noted an apparently protective effect of KIR2DS5 gene presence in several clinical conditions, but not in others. Namely, this effect was observed in ankylosing spondylitis (p=0.003, odds ratio [OR]=0.47, confidence interval [CI]=0.28-0.79, endometriosis (p=0.03, OR=0.25, CI = 0.07-0.82 and acute rejection of kidney graft (p=0.0056, OR=0.44, CI=0.24-0.80, but not in non-small-cell lung carcinoma, rheumatoid arthritis, spontaneous abortion, or leukemia (all p>0.05. In addition, the simultaneous presence of KIR2DS5 gene and HLA-C C1 allotype exhibited an even stronger protective effect on ankylosing spondylitis (p=0.0003, OR=0.35, CI=0.19-0.65, whereas a lack of KIR2DS5 and the presence of the HLA-C C2 allotype was associated with ankylosing spondylitis (p=0.0017, OR=1.92, CI=1.28-2.89, whereas a lack of KIR2DS5 and presence of C1 allotype was associated with rheumatoid arthritis (p=0.005, OR=1.47, CI=1.13-1.92. The presence of both KIR2DS5 and C1 seemed to protect from acute kidney graft rejection (p=0.017, OR=0.47, CI=0.25-0.89, whereas lack of KIR2DS5 and presence of C2 seemed to favor rejection (p=0.0015, OR=2.13, CI=1.34-3.37. CONCLUSIONS/SIGNIFICANCE: Our results suggest that KIR2DS5 may protect from endometriosis, ankylosing spondylitis, and acute rejection of kidney graft.

  11. Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs.

    Science.gov (United States)

    Sun, Ning; Zhao, Huimin

    2014-05-01

    Sickle cell disease (SCD) is the most common human genetic disease which is caused by a single mutation of human β-globin (HBB) gene. The lack of long-term treatment makes the development of reliable cell and gene therapies highly desirable. Disease-specific patient-derived human induced pluripotent stem cells (hiPSCs) have great potential for developing novel cell and gene therapies. With the disease-causing mutations corrected in situ, patient-derived hiPSCs can restore normal cell functions and serve as a renewable autologous cell source for the treatment of genetic disorders. Here we successfully utilized transcription activator-like effector nucleases (TALENs), a recently emerged novel genome editing tool, to correct the SCD mutation in patient-derived hiPSCs. The TALENs we have engineered are highly specific and generate minimal off-target effects. In combination with piggyBac transposon, TALEN-mediated gene targeting leaves no residual ectopic sequences at the site of correction and the corrected hiPSCs retain full pluripotency and a normal karyotype. Our study demonstrates an important first step of using TALENs for the treatment of genetic diseases such as SCD, which represents a significant advance toward hiPSC-based cell and gene therapies.

  12. Human methanogen diversity and incidence in healthy and diseased colonic groups using mcrA gene analysis

    Directory of Open Access Journals (Sweden)

    Scanlan Pauline D

    2008-05-01

    Full Text Available Abstract Background The incidence and diversity of human methanogens are insufficiently characterised in the gastrointestinal tract of both health and disease. A PCR and clone library methodology targeting the mcrA gene was adopted to facilitate the two-fold aim of surveying the relative incidence of methanogens in health and disease groups and also to provide an overview of methanogen diversity in the human gastrointestinal tract. Results DNA faecal extracts (207 in total from a group of healthy controls and five gastrointestinal disease groups were investigated. Colorectal cancer, polypectomised, irritable bowel syndrome and the control group had largely equivalent numbers of individuals positive for methanogens (range 45–50%. Methanogen incidence in the inflammatory bowel disease groups was reduced, 24% for ulcerative colitis and 30% for Crohn's disease. Four unique mcrA gene restriction fragment length polymorphism profiles were identified and bioinformatic analyses revealed that the majority of all sequences (94% retrieved from libraries were 100% identical to Methanobrevibacter smithii mcrA gene. In addition, mcrA gene sequences most closely related to Methanobrevibacter oralis and members of the order Methanosarcinales were also recovered. Conclusion The mcrA gene serves as a useful biomarker for methanogen detection in the human gut and the varying trends of methanogen incidence in the human gut could serve as important indicators of intestinal function. Although Methanobrevibacter smithii is the dominant methanogen in both the distal colon of individuals in health and disease, the diversity of methanogens is greater than previously reported. In conclusion, the low incidence of methanogens in Inflammatory Bowel Disease, the functionality of the methanogens and impact of methane production in addition to competitive interactions between methanogens and other microbial groups in the human gastrointestinal tract warrants further

  13. The Association between Gene-Environment Interactions and Diseases Involving the Human GST Superfamily with SNP Variants

    Directory of Open Access Journals (Sweden)

    Antoinesha L. Hollman

    2016-03-01

    Full Text Available Exposure to environmental hazards has been associated with diseases in humans. The identification of single nucleotide polymorphisms (SNPs in human populations exposed to different environmental hazards, is vital for detecting the genetic risks of some important human diseases. Several studies in this field have been conducted on glutathione S-transferases (GSTs, a phase II detoxification superfamily, to investigate its role in the occurrence of diseases. Human GSTs consist of cytosolic and microsomal superfamilies that are further divided into subfamilies. Based on scientific search engines and a review of the literature, we have found a large amount of published articles on human GST super- and subfamilies that have greatly assisted in our efforts to examine their role in health and disease. Because of its polymorphic variations in relation to environmental hazards such as air pollutants, cigarette smoke, pesticides, heavy metals, carcinogens, pharmaceutical drugs, and xenobiotics, GST is considered as a significant biomarker. This review examines the studies on gene-environment interactions related to various diseases with respect to single nucleotide polymorphisms (SNPs found in the GST superfamily. Overall, it can be concluded that interactions between GST genes and environmental factors play an important role in human diseases.

  14. Duchenne Muscular Dystrophy Gene Expression in Normal and Diseased Human Muscle

    Science.gov (United States)

    Oronzi Scott, M.; Sylvester, J. E.; Heiman-Patterson, T.; Shi, Y.-J.; Fieles, W.; Stedman, H.; Burghes, A.; Ray, P.; Worton, R.; Fischbeck, K. H.

    1988-03-01

    A probe for the 5' end of the Duchenne muscular dystrophy (DMD) gene was used to study expression of the gene in normal human muscle, myogenic cell cultures, and muscle from patients with DMD. Expression was found in RNA from normal fetal muscle, adult cardiac and skeletal muscle, and cultured muscle after myoblast fusion. In DMD muscle, expression of this portion of the gene was also revealed by in situ RNA hybridization, particularly in regenerating muscle fibers.

  15. Gene expression and functional annotation of human choroid plexus epithelium failure in Alzheimer's disease

    NARCIS (Netherlands)

    Bergen, Arthur A; Kaing, Sovann; Ten Brink, Jacoline B; Gorgels, Theo G; Janssen, Sarah F

    2015-01-01

    BACKGROUND: Alzheimer's disease (AD) is the most common form of dementia. AD has a multifactorial disease etiology and is currently untreatable. Multiple genes and molecular mechanisms have been implicated in AD, including ß-amyloid deposition in the brain, neurofibrillary tangle accumulation of

  16. The Zebrafish Model Organism Database: new support for human disease models, mutation details, gene expression phenotypes and searching

    Science.gov (United States)

    Howe, Douglas G.; Bradford, Yvonne M.; Eagle, Anne; Fashena, David; Frazer, Ken; Kalita, Patrick; Mani, Prita; Martin, Ryan; Moxon, Sierra Taylor; Paddock, Holly; Pich, Christian; Ramachandran, Sridhar; Ruzicka, Leyla; Schaper, Kevin; Shao, Xiang; Singer, Amy; Toro, Sabrina; Van Slyke, Ceri; Westerfield, Monte

    2017-01-01

    The Zebrafish Model Organism Database (ZFIN; http://zfin.org) is the central resource for zebrafish (Danio rerio) genetic, genomic, phenotypic and developmental data. ZFIN curators provide expert manual curation and integration of comprehensive data involving zebrafish genes, mutants, transgenic constructs and lines, phenotypes, genotypes, gene expressions, morpholinos, TALENs, CRISPRs, antibodies, anatomical structures, models of human disease and publications. We integrate curated, directly submitted, and collaboratively generated data, making these available to zebrafish research community. Among the vertebrate model organisms, zebrafish are superbly suited for rapid generation of sequence-targeted mutant lines, characterization of phenotypes including gene expression patterns, and generation of human disease models. The recent rapid adoption of zebrafish as human disease models is making management of these data particularly important to both the research and clinical communities. Here, we describe recent enhancements to ZFIN including use of the zebrafish experimental conditions ontology, ‘Fish’ records in the ZFIN database, support for gene expression phenotypes, models of human disease, mutation details at the DNA, RNA and protein levels, and updates to the ZFIN single box search. PMID:27899582

  17. Screening and Characterization of Spontaneous Porcine Congenital Heart Defects for Gene Identification and Models of Human Disease

    Science.gov (United States)

    Background: Rodent models of human congenital birth defects have been instrumental for gene discovery and investigation of mechanisms of disease. However, these models are limited by their small size making practiced intervention or detailed anatomic evaluation difficult. Swine have similar anato...

  18. Transcriptional profiling of human liver identifies sex-biased genes associated with polygenic dyslipidemia and coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Yijing Zhang

    Full Text Available Sex-differences in human liver gene expression were characterized on a genome-wide scale using a large liver sample collection, allowing for detection of small expression differences with high statistical power. 1,249 sex-biased genes were identified, 70% showing higher expression in females. Chromosomal bias was apparent, with female-biased genes enriched on chrX and male-biased genes enriched on chrY and chr19, where 11 male-biased zinc-finger KRAB-repressor domain genes are distributed in six clusters. Top biological functions and diseases significantly enriched in sex-biased genes include transcription, chromatin organization and modification, sexual reproduction, lipid metabolism and cardiovascular disease. Notably, sex-biased genes are enriched at loci associated with polygenic dyslipidemia and coronary artery disease in genome-wide association studies. Moreover, of the 8 sex-biased genes at these loci, 4 have been directly linked to monogenic disorders of lipid metabolism and show an expression profile in females (elevated expression of ABCA1, APOA5 and LDLR; reduced expression of LIPC that is consistent with the lower female risk of coronary artery disease. Female-biased expression was also observed for CYP7A1, which is activated by drugs used to treat hypercholesterolemia. Several sex-biased drug-metabolizing enzyme genes were identified, including members of the CYP, UGT, GPX and ALDH families. Half of 879 mouse orthologs, including many genes of lipid metabolism and homeostasis, show growth hormone-regulated sex-biased expression in mouse liver, suggesting growth hormone might play a similar regulatory role in human liver. Finally, the evolutionary rate of protein coding regions for human-mouse orthologs, revealed by dN/dS ratio, is significantly higher for genes showing the same sex-bias in both species than for non-sex-biased genes. These findings establish that human hepatic sex differences are widespread and affect diverse cell

  19. Regional and cellular gene expression changes in human Huntington's disease brain

    OpenAIRE

    2006-01-01

    Huntington's disease (HD) pathology is well understood at a histological level but a comprehensive molecular analysis of the effect of the disease in the human brain has not previously been available. To elucidate the molecular phenotype of HD on a genome-wide scale, we compared mRNA profiles from 44 human HD brains with those from 36 unaffected controls using microarray analysis. Four brain regions were analyzed: caudate nucleus, cerebellum, prefrontal association cortex [Brodmann's area 9 (...

  20. Coexpression Analysis Reveals Key Gene Modules and Pathway of Human Coronary Heart Disease.

    Science.gov (United States)

    Tang, Yu; Ke, Zun-Ping; Peng, Yi-Gen; Cai, Ping-Tai

    2017-08-31

    Coronary heart disease is a kind of disease which causes great injury to people world-widely. Although gene expression analyses had been performed previously, to our best knowledge, systemic co-expression analysis for this disease is still lacking to date. Microarray data of coronary heart disease was downloaded from NCBI with the accession number of GSE20681. Co-expression modules were constructed by WGCNA. Besides, the connectivity degree of eigengenes was analyzed. Furthermore, GO and KEGG enrichment analysis was performed on these eigengenes in these constructed modules. A total of 11 co-expression modules were constructed by the 3,000 up-regulated genes from the 99 samples with coronary heart disease. The average number of genes in these modules was 270. The interaction analysis indicated the relative independence of gene expression in these modules. The functional enrichment analysis showed that there was a significant difference in the enriched terms and degree among these 11 modules. The results showed that module 9 and module 10 played critical roles in the occurrence of coronary disease. Pathways of hsa00190(Oxidative phosphorylation)and (hsa01130: Biosynthesis of antibiotics) were thought to be closely related to the occurrence and development of coronary heart disease. Our result demonstrated that module 9 and module 10 were the most critical modules in the occurrence of coronary heart disease. Pathways as hsa00190(Oxidative phosphorylation) and (hsa01130: Biosynthesis of antibiotics) had the potential to serve as the prognostic and predictive marker of coronary heart disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. The New Human Genetics. How Gene Splicing Helps Researchers Fight Inherited Disease.

    Science.gov (United States)

    Pines, Maya

    The science of genetics is perceived to offer hope that a large number of the 3,000 inherited diseases which afflict human beings may be prevented or controlled. This document addresses some of the advances that have been made in this field. It includes an introduction and sections on: "The Beginning of Human Genetics"; "Unlocking the Secrets of…

  2. Gene regulation and chromatin organization: relevance of cohesin mutations to human disease.

    Science.gov (United States)

    Watrin, Erwan; Kaiser, Frank J; Wendt, Kerstin S

    2016-04-01

    Consistent with the diverse roles of the cohesin complex in chromosome biology, mutations in genes encoding cohesin and its regulators are found in different types of cancer and in developmental disorders such as Cornelia de Lange Syndrome. It is so far considered that the defects caused by these mutations result from altered function of cohesin in regulating gene expression during development. Chromatin conformation analyses have established the importance of cohesin for the architecture of developmental gene clusters and in vivo studies in mouse and zebrafish demonstrated how cohesin defects lead to gene misregulation and to malformations similar to the related human syndromes. Here we present our current knowledge on cohesin's involvement in gene expression, highlighting molecular and mechanistic consequences of pathogenic mutations in the Cornelia de Lange syndrome.

  3. Gene expression profiling to identify potentially relevant disease outcomes and support human health risk assessment for carbon black nanoparticle exposure.

    Science.gov (United States)

    Bourdon, Julie A; Williams, Andrew; Kuo, Byron; Moffat, Ivy; White, Paul A; Halappanavar, Sabina; Vogel, Ulla; Wallin, Håkan; Yauk, Carole L

    2013-01-07

    New approaches are urgently needed to evaluate potential hazards posed by exposure to nanomaterials. Gene expression profiling provides information on potential modes of action and human relevance, and tools have recently become available for pathway-based quantitative risk assessment. The objective of this study was to use toxicogenomics in the context of human health risk assessment. We explore the utility of toxicogenomics in risk assessment, using published gene expression data from C57BL/6 mice exposed to 18, 54 and 162 μg Printex 90 carbon black nanoparticles (CBNP). Analysis of CBNP-perturbed pathways, networks and transcription factors revealed concomitant changes in predicted phenotypes (e.g., pulmonary inflammation and genotoxicity), that correlated with dose and time. Benchmark doses (BMDs) for apical endpoints were comparable to minimum BMDs for relevant pathway-specific expression changes. Comparison to inflammatory lung disease models (i.e., allergic airway inflammation, bacterial infection and tissue injury and fibrosis) and human disease profiles revealed that induced gene expression changes in Printex 90 exposed mice were similar to those typical for pulmonary injury and fibrosis. Very similar fibrotic pathways were perturbed in CBNP-exposed mice and human fibrosis disease models. Our synthesis demonstrates how toxicogenomic profiles may be used in human health risk assessment of nanoparticles and constitutes an important step forward in the ultimate recognition of toxicogenomic endpoints in human health risk. As our knowledge of molecular pathways, dose-response characteristics and relevance to human disease continues to grow, we anticipate that toxicogenomics will become increasingly useful in assessing chemical toxicities and in human health risk assessment. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  4. RNA Sequence Analysis of Human Huntington Disease Brain Reveals an Extensive Increase in Inflammatory and Developmental Gene Expression.

    Directory of Open Access Journals (Sweden)

    Adam Labadorf

    Full Text Available Huntington's Disease (HD is a devastating neurodegenerative disorder that is caused by an expanded CAG trinucleotide repeat in the Huntingtin (HTT gene. Transcriptional dysregulation in the human HD brain has been documented but is incompletely understood. Here we present a genome-wide analysis of mRNA expression in human prefrontal cortex from 20 HD and 49 neuropathologically normal controls using next generation high-throughput sequencing. Surprisingly, 19% (5,480 of the 28,087 confidently detected genes are differentially expressed (FDR<0.05 and are predominantly up-regulated. A novel hypothesis-free geneset enrichment method that dissects large gene lists into functionally and transcriptionally related groups discovers that the differentially expressed genes are enriched for immune response, neuroinflammation, and developmental genes. Markers for all major brain cell types are observed, suggesting that HD invokes a systemic response in the brain area studied. Unexpectedly, the most strongly differentially expressed genes are a homeotic gene set (represented by Hox and other homeobox genes, that are almost exclusively expressed in HD, a profile not widely implicated in HD pathogenesis. The significance of transcriptional changes of developmental processes in the HD brain is poorly understood and warrants further investigation. The role of inflammation and the significance of non-neuronal involvement in HD pathogenesis suggest anti-inflammatory therapeutics may offer important opportunities in treating HD.

  5. Clock genes, chronotypes and diseases

    Directory of Open Access Journals (Sweden)

    Bogdan I. Voinescu

    2009-08-01

    Full Text Available Many common diseases in humans (such as cancer, heart disease, diabetes mellitus orpsychiatric disorders, such as depression seem to be linked to disruptions of circadian cycles and toclock genes variation. It is unlikely that such diseases to be caused by a genetic variation within a singlegene. They must be influenced by complex interactions among multiple genes, as well as environmentaland lifestyle factors. Therefore, it is important to understand how the resulting perturbations in ourcircadian biology could affect our physiological processes and susceptibility to disease. Associationsbetween the polymorphisms of the main components of the circadian molecular clock, circadian type(also known as diurnal preference or chronotype and diseases are presented.

  6. Retroviruses and human disease.

    OpenAIRE

    1987-01-01

    Over the past 25 years animal retroviruses have been favoured subjects of research by virologists, oncologists, and molecular biologists. Retroviruses have given us reverse transcriptase, oncogenes, and cloning vectors that may one day be exploited for human gene therapy. They have also given us leukaemia and the acquired immune deficiency syndrome (AIDS). Kawasaki disease and tropical spastic paraparesis are thought to be associated with retrovirus infection, and other diseases such as de Qu...

  7. Genetic Mapping in Human Disease

    OpenAIRE

    Altshuler, David; Daly, Mark J; Lander, Eric S.

    2008-01-01

    Genetic mapping provides a powerful approach to identify genes and biological processes underlying any trait influenced by inheritance, including human diseases. We discuss the intellectual foundations of genetic mapping of Mendelian and complex traits in humans, examine lessons emerging from linkage analysis of Mendelian diseases and genome-wide association studies of common diseases, and discuss questions and challenges that lie ahead.

  8. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer's disease.

    Science.gov (United States)

    Berchtold, Nicole C; Coleman, Paul D; Cribbs, David H; Rogers, Joseph; Gillen, Daniel L; Cotman, Carl W

    2013-06-01

    Synapses are essential for transmitting, processing, and storing information, all of which decline in aging and Alzheimer's disease (AD). Because synapse loss only partially accounts for the cognitive declines seen in aging and AD, we hypothesized that existing synapses might undergo molecular changes that reduce their functional capacity. Microarrays were used to evaluate expression profiles of 340 synaptic genes in aging (20-99 years) and AD across 4 brain regions from 81 cases. The analysis revealed an unexpectedly large number of significant expression changes in synapse-related genes in aging, with many undergoing progressive downregulation across aging and AD. Functional classification of the genes showing altered expression revealed that multiple aspects of synaptic function are affected, notably synaptic vesicle trafficking and release, neurotransmitter receptors and receptor trafficking, postsynaptic density scaffolding, cell adhesion regulating synaptic stability, and neuromodulatory systems. The widespread declines in synaptic gene expression in normal aging suggests that function of existing synapses might be impaired, and that a common set of synaptic genes are vulnerable to change in aging and AD.

  9. Human intronless genes: Functional groups, associated diseases, evolution, and mRNA processing in absence of splicing

    Energy Technology Data Exchange (ETDEWEB)

    Grzybowska, Ewa A., E-mail: ewag@coi.waw.pl [Cancer Center Institute, Roentgena 5, 02-781 Warsaw (Poland)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Functional characteristics of intronless genes (IGs). Black-Right-Pointing-Pointer Diseases associated with IGs. Black-Right-Pointing-Pointer Origin and evolution of IGs. Black-Right-Pointing-Pointer mRNA processing without splicing. -- Abstract: Intronless genes (IGs) constitute approximately 3% of the human genome. Human IGs are essentially different in evolution and functionality from the IGs of unicellular eukaryotes, which represent the majority in their genomes. Functional analysis of IGs has revealed a massive over-representation of signal transduction genes and genes encoding regulatory proteins important for growth, proliferation, and development. IGs also often display tissue-specific expression, usually in the nervous system and testis. These characteristics translate into IG-associated diseases, mainly neuropathies, developmental disorders, and cancer. IGs represent recent additions to the genome, created mostly by retroposition of processed mRNAs with retained functionality. Processing, nuclear export, and translation of these mRNAs should be hampered dramatically by the lack of splice factors, which normally tightly cover mature transcripts and govern their fate. However, natural IGs manage to maintain satisfactory expression levels. Different mechanisms by which IGs solve the problem of mRNA processing and nuclear export are discussed here, along with their possible impact on reporter studies.

  10. Mapping of the human bradikinin B2 receptor gene and GALC gene at 14q31-32.1, the region of the Machado Joseph disease locus

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, V.T.T.; Cox, D.W. [Hospital for Sick Children, Toronto (Canada)]|[Univ. of Toronto (Canada)

    1994-09-01

    Bradykinin is a nine amino acid peptide liberated from the {alpha}2 globulin, kininogen, during inflammatory responses. Substantial evidence shows that bradikinin is involved in human inflammatory disorders. There are two types of kinin receptors: B1 and B2. The human bradikinin B2 receptor (BKRB2) gene was previously localized to chromosome 14 by somatic cell hybrids. Krabbe disease is an autosomal recessive disorder caused by deficiency of galactocerebrosidase (GALC). GALC has been previously localized to chromosome 14 at q31 by in situ hybridization. We have further defined the localization of the BKRB2 and GALC genes by physical and genetic linkage mapping. Primers were designed from the 3{prime} untranslated region of each gene. PCR was performed on human/rodent somatic cell hybrid carrying portions of chromosome 14, and on flow sorted chromosome DNA of patients with a deletion or translocation on chromosome 14. Results place the two genes between D14S48 and Pl, the same region as the Machado Joseph disease (MJD) gene. The genomic chromosome 14-specific cosmid library (DOE, Los Alamos) was screened using PCR products obtained from both sets of primers as probes. Positive clones for each gene were screened for di, tri and tetranucleotide repeats. A polymorphic CA repeat marker was obtained from the BKRB2 clones. CEPH families which show recombinants between D14S48 and Pl were typed with this marker and other published markers, which we have mapped in the region: D14S140, D14S68, D14S73, D14S67, D14S256 and D14S81. This positions BDRB2 more precisely and also provides an important map for further localization of the MJD gene.

  11. Expression of Beta-Human Chorionic Gonadotropin Genes in Renal Cell Cancer and Benign Renal Disease Tissues

    Institute of Scientific and Technical Information of China (English)

    姜永光; 曾甫清; 肖传国; 刘俊敏

    2003-01-01

    To study the expression of beta-human chorionic gonadotropin (βhCG) genes in renal cellcarcinomas (RCC) and benign renal disease tissues, nested reverse transcription-polymerase chainreaction (RT-PCR) and restriction endonuclease analysis were employed to detect the expression ofβhCG genes in 44 cases of RCC tissues and 24 cases of benign renal disease tissues. It was foundthat 52% RCC samples revealed positive for βhCG mRNA expression. Positive rate in advancedstage and poorly differentiated RCC was higher, but there was no significant difference. The posi-tive rate of βhCG mRNA expression was 54% in 24 cases of benign renal tissues, including 3 casesout of 6 polycystic kidneys, 7 cases out of 13 renal atrophies, 2 cases out of 2 oncocytomas and 1case out of 2 pyonephrotic kidneys. β7 was most frequently transcribed subtype gene independent onthe histology. These findings suggested βhCG gene transcription is not only involved in RCC but al-so in benign renal diseases.

  12. Concordance analysis of microarray studies identifies representative gene expression changes in Parkinson's disease: a comparison of 33 human and animal studies.

    Science.gov (United States)

    Oerton, Erin; Bender, Andreas

    2017-03-23

    As the popularity of transcriptomic analysis has grown, the reported lack of concordance between different studies of the same condition has become a growing concern, raising questions as to the representativeness of different study types, such as non-human disease models or studies of surrogate tissues, to gene expression in the human condition. In a comparison of 33 microarray studies of Parkinson's disease, correlation and clustering analyses were used to determine the factors influencing concordance between studies, including agreement between different tissue types, different microarray platforms, and between neurotoxic and genetic disease models and human Parkinson's disease. Concordance over all studies is low, with correlation of only 0.05 between differential gene expression signatures on average, but increases within human patients and studies of the same tissue type, rising to 0.38 for studies of human substantia nigra. Agreement of animal models, however, is dependent on model type. Studies of brain tissue from Parkinson's disease patients (specifically the substantia nigra) form a distinct group, showing patterns of differential gene expression noticeably different from that in non-brain tissues and animal models of Parkinson's disease; while comparison with other brain diseases (Alzheimer's disease and brain cancer) suggests that the mixed study types display a general signal of neurodegenerative disease. A meta-analysis of these 33 microarray studies demonstrates the greater ability of studies in humans and highly-affected tissues to identify genes previously known to be associated with Parkinson's disease. The observed clustering and concordance results suggest the existence of a 'characteristic' signal of Parkinson's disease found in significantly affected human tissues in humans. These results help to account for the consistency (or lack thereof) so far observed in microarray studies of Parkinson's disease, and act as a guide to the selection of

  13. VAV2 and VAV3 as candidate disease genes for spontaneous glaucoma in mice and humans.

    Directory of Open Access Journals (Sweden)

    Keiko Fujikawa

    Full Text Available BACKGROUND: Glaucoma is a leading cause of blindness worldwide. Nonetheless, the mechanism of its pathogenesis has not been well-elucidated, particularly at the molecular level, because of insufficient availability of experimental genetic animal models. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate that deficiency of Vav2 and Vav3, guanine nucleotides exchange factors for Rho guanosine triphosphatases, leads to an ocular phenotype similar to human glaucoma. Vav2/Vav3-deficient mice, and to a lesser degree Vav2-deficient mice, show early onset of iridocorneal angle changes and elevated intraocular pressure, with subsequent selective loss of retinal ganglion cells and optic nerve head cupping, which are the hallmarks of glaucoma. The expression of Vav2 and Vav3 tissues was demonstrated in the iridocorneal angle and retina in both mouse and human eyes. In addition, a genome-wide association study screening glaucoma susceptibility loci using single nucleotide polymorphisms analysis identified VAV2 and VAV3 as candidates for associated genes in Japanese open-angle glaucoma patients. CONCLUSIONS/SIGNIFICANCE: Vav2/Vav3-deficient mice should serve not only as a useful murine model of spontaneous glaucoma, but may also provide a valuable tool in understanding of the pathogenesis of glaucoma in humans, particularly the determinants of altered aqueous outflow and subsequent elevated intraocular pressure.

  14. Genetic polymorphism in FOXP3 gene: imbalance in regulatory T-cell role and development of human diseases

    Indian Academy of Sciences (India)

    Julie Massayo Maeda Oda; Bruna Karina Banin Hirata; Roberta Losi Guembarovski; Maria Angelica Ehara Watanabe

    2013-04-01

    The FOXP3 gene encodes a transcription factor thought to be important for the development and function of regulatory T cells (Treg cells). These cells are involved in the regulation of T cell activation and therefore are essential for normal immune homeostasis. Signals from microenvironment have a profound influence on the maintenance or progression of diseases. Thus, Tregs have an important marker protein, FOXP3, though it does not necessarily confer a Treg phenotype when expressed. FOXP3 polymorphisms that occur with high frequency in the general populations have been studied in common multifactorial human diseases. Dysfunction of FOXP3 gene product could result in lack of Treg cells and subsequently chronically activated CD4+ T cells which express increased levels of several activation markers and cytokines, resulting in some autoimmune diseases. In contrast, high Treg levels have been reported in peripheral blood, lymph nodes, and tumour specimens from patients with different types of cancer. The present study discusses the polymorphisms located in intron, exon and promoter regions of FOXP3 which have already been investigated by many researchers. FOXP3 has received considerable attention in attempts to understand the molecular aspect of Treg cells. Therefore, in the present study, the relationship between genetic polymorphism of FOXP3 in Treg-cell role and in disease development are reviewed considering the interactive effect of genetic factors.

  15. Analysis of Associations of Human BAFF Gene Polymorphisms with Autoimmune Thyroid Diseases.

    Directory of Open Access Journals (Sweden)

    Jiunn-Diann Lin

    Full Text Available The B-lymphocyte-activating factor (BAFF is associated with B-cell functions, and gene polymorphisms of the BAFF have been linked to autoimmune diseases (AIDs. In this study, we explored possible associations of two BAFF single-nucleotide polymorphisms (SNPs, rs1041569 and rs2893321, with autoimmune thyroid diseases (AITDs in an ethnic Chinese population.In total, 319 Graves' disease (GD, 83 Hashimoto's thyroiditis (HT patients, and 369 healthy controls were enrolled. Polymerase chain reaction-restriction fragment length polymorphism and direct sequencing were used to genotype rs2893321 and rs1041569.There was a significant difference in frequencies of the G allele and AG+GG genotype of rs2893321 between the GD and control groups (p = 0.013, odds ratio (OR = 0.76, and p = 0.017, OR = 0.68, respectively and between the AITD and control groups (p = 0.009, OR = 0.76, and, p = 0.014, OR = 0.69, respectively. The AA genotype of rs2893321 was associated with low titers of the thyroid-stimulating hormone receptor antibody (TSHRAb (p = 0.015 in males but not in females. The AA genotype of rs2893321 was associated with the presence of two different types of thyroid autoantibody (TAb (TSHRAb and Hashimoto's autoantibody (anti-thyroglobulin or anti-microsomal antibody in females and with that of one type in males.rs2893321 may be a susceptible genetic variant for the development of GD and AITDs. Associations of rs2893321 with susceptibility to GD and AITDs and the correlation between rs2893321 and TAb exhibit a dimorphic pattern. Additional studies with larger sample sizes are required to confirm our findings.

  16. The human endogenous retrovirus link between genes and environment in multiple sclerosis and in multifactorial diseases associating neuroinflammation.

    Science.gov (United States)

    Perron, Hervé; Lang, Alois

    2010-08-01

    Endogenous retroviruses represent about 8% of the human genome and belong to the superfamily of transposable and retrotransposable genetic elements. Altogether, these mobile genetic elements and their numerous inactivated "junk" sequences represent nearly one half of the human DNA. Nonetheless, a significant part of this "non-conventional" genome has retained potential activity. Epigenetic control is notably involved in silencing most of these genetic elements but certain environmental factors such as viruses are known to dysregulate their expression in susceptible cells. More particularly, embryonal cells with limited gene methylation are most susceptible to uncontrolled activation of these mobile genetic elements by, e.g., viral infections. In particular, certain viruses transactivate promoters from endogenous retroviral family type W (HERV-W). HERV-W RNA was first isolated in circulating viral particles (Multiple Sclerosis-associated RetroViral element, MSRV) that have been associated with the evolution and prognosis of multiple sclerosis. HERV-W elements encode a powerful immunopathogenic envelope protein (ENV) that activates a pro-inflammatory and autoimmune cascade through interaction with Toll-like receptor 4 on immune cells. This ENV protein has repeatedly been detected in MS brain lesions and may be involved in other diseases. Epigenetic factors controlling HERV-W ENV protein expression then reveal critical. This review addresses the gene-environment epigenetic interface of such HERV-W elements and its potential involvement in disease.

  17. The Association of the Immune Response Genes to Human Papillomavirus-Related Cervical Disease in a Brazilian Population

    Directory of Open Access Journals (Sweden)

    Amanda Vansan Marangon

    2013-01-01

    Full Text Available The genetic variability of the host contributes to the risk of human papillomavirus (HPV-related cervical disease. Immune response genes to HPV must be investigated to define patients with the highest risk of developing malignant disease. The aim of this study was to investigate the association of polymorphic immune response genes, namely KIR, HLA class I and II, and single-nucleotide polymorphisms (SNPs of cytokines with HPV-related cervical disease. We selected 79 non-related, admixed Brazilian women from the state of Paraná, southern region of Brazil, who were infected with high carcinogenic risk HPV and present cervical intraepithelial neoplasia grade 3 (CIN3, and 150 HPV-negative women from the same region matched for ethnicity. KIR genes were genotyped using an in-house PCR-SSP. HLA alleles were typed using a reverse sequence-specific oligonucleotide technique. SNPs of TNF −308G>A, IL6 −174G>C, IFNG +874T>A, TGFB1 +869T>C +915G>C, and IL10 −592C>A −819C>T −1082G>A were evaluated using PCR-SSP. The KIR genes were not associated with HPV, although some pairs of i(inhibitoryKIR-ligands occurred more frequently in patients, supporting a role for NK in detrimental chronic inflammatory and carcinogenesis. Some HLA haplotypes were associated with HPV. The associations of INFG and IL10 SNPs potentially reflect impaired or invalid responses in advanced lesions.

  18. Nuclear membrane protein emerin: roles in gene regulation, actin dynamics and human disease.

    Science.gov (United States)

    Wilson, Katherine L; Holaska, James M; Montes de Oca, Rocio; Tifft, Kathryn; Zastrow, Michael; Segura-Totten, Miriam; Mansharamani, Malini; Bengtsson, Luiza

    2005-01-01

    Loss of emerin, a nuclear membrane protein, causes Emery-Dreifuss muscular dystrophy (EDMD), characterized by muscle weakening, contractures of major tendons and potentially lethal cardiac conduction system defects. Emerin has a LEM-domain and therefore binds barrier-to-autointegration factor (BAF), a conserved chromatin protein essential for cell division. BAF recruits emerin to chromatin and regulates higher-order chromatin structure during nuclear assembly. Emerin also binds filaments formed by A-type lamins, mutations in which also cause EDMD. Other partners for emerin include nesprin-1alpha and transcriptional regulators such as germ cell-less (GCL). The binding affinities of these partners range from 4nM (nesprin-1alpha) to 200 nM (BAF), and are physiologically significant. Biochemical studies therefore provide a valid means to predict the properties of emerin-lamin complexes in vivo. Emerin and lamin A together form stable complexes with either BAF or GCL in vitro. BAF, however, competes with GCL for binding to emerin in vitro. These and additional partners, notably actin and nuclear myosin II, suggest disease-relevant roles for emerin in gene regulation and the mechanical interity of the nucleus.

  19. Human Lacrimal Gland Gene Expression

    Science.gov (United States)

    Aakalu, Vinay Kumar; Parameswaran, Sowmya; Maienschein-Cline, Mark; Bahroos, Neil; Shah, Dhara; Ali, Marwan; Krishnakumar, Subramanian

    2017-01-01

    Background The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas. PMID:28081151

  20. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases

    Science.gov (United States)

    Preciados, Mark; Yoo, Changwon; Roy, Deodutta

    2016-01-01

    During the development of an individual from a single cell to prenatal stages to adolescence to adulthood and through the complete life span, humans are exposed to countless environmental and stochastic factors, including estrogenic endocrine disrupting chemicals. Brain cells and neural circuits are likely to be influenced by estrogenic endocrine disruptors (EEDs) because they strongly dependent on estrogens. In this review, we discuss both environmental, epidemiological, and experimental evidence on brain health with exposure to oral contraceptives, hormonal therapy, and EEDs such as bisphenol-A (BPA), polychlorinated biphenyls (PCBs), phthalates, and metalloestrogens, such as, arsenic, cadmium, and manganese. Also we discuss the brain health effects associated from exposure to EEDs including the promotion of neurodegeneration, protection against neurodegeneration, and involvement in various neurological deficits; changes in rearing behavior, locomotion, anxiety, learning difficulties, memory issues, and neuronal abnormalities. The effects of EEDs on the brain are varied during the entire life span and far-reaching with many different mechanisms. To understand endocrine disrupting chemicals mechanisms, we use bioinformatics, molecular, and epidemiologic approaches. Through those approaches, we learn how the effects of EEDs on the brain go beyond known mechanism to disrupt the circulatory and neural estrogen function and estrogen-mediated signaling. Effects on EEDs-modified estrogen and nuclear respiratory factor 1 (NRF1) signaling genes with exposure to natural estrogen, pharmacological estrogen-ethinyl estradiol, PCBs, phthalates, BPA, and metalloestrogens are presented here. Bioinformatics analysis of gene-EEDs interactions and brain disease associations identified hundreds of genes that were altered by exposure to estrogen, phthalate, PCBs, BPA or metalloestrogens. Many genes modified by EEDs are common targets of both 17 β-estradiol (E2) and NRF1. Some of

  1. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases

    Directory of Open Access Journals (Sweden)

    Mark Preciados

    2016-12-01

    Full Text Available During the development of an individual from a single cell to prenatal stages to adolescence to adulthood and through the complete life span, humans are exposed to countless environmental and stochastic factors, including estrogenic endocrine disrupting chemicals. Brain cells and neural circuits are likely to be influenced by estrogenic endocrine disruptors (EEDs because they strongly dependent on estrogens. In this review, we discuss both environmental, epidemiological, and experimental evidence on brain health with exposure to oral contraceptives, hormonal therapy, and EEDs such as bisphenol-A (BPA, polychlorinated biphenyls (PCBs, phthalates, and metalloestrogens, such as, arsenic, cadmium, and manganese. Also we discuss the brain health effects associated from exposure to EEDs including the promotion of neurodegeneration, protection against neurodegeneration, and involvement in various neurological deficits; changes in rearing behavior, locomotion, anxiety, learning difficulties, memory issues, and neuronal abnormalities. The effects of EEDs on the brain are varied during the entire life span and far-reaching with many different mechanisms. To understand endocrine disrupting chemicals mechanisms, we use bioinformatics, molecular, and epidemiologic approaches. Through those approaches, we learn how the effects of EEDs on the brain go beyond known mechanism to disrupt the circulatory and neural estrogen function and estrogen-mediated signaling. Effects on EEDs-modified estrogen and nuclear respiratory factor 1 (NRF1 signaling genes with exposure to natural estrogen, pharmacological estrogen-ethinyl estradiol, PCBs, phthalates, BPA, and metalloestrogens are presented here. Bioinformatics analysis of gene-EEDs interactions and brain disease associations identified hundreds of genes that were altered by exposure to estrogen, phthalate, PCBs, BPA or metalloestrogens. Many genes modified by EEDs are common targets of both 17 β-estradiol (E2 and

  2. A genome-wide scan reveals important roles of DNA methylation in human longevity by regulating age-related disease genes.

    Directory of Open Access Journals (Sweden)

    Fu-Hui Xiao

    Full Text Available It is recognized that genetic factors contribute to human longevity. Besides the hypothesis of existence of longevity genes, another suggests that a lower frequency of risk alleles decreases the incidence of age-related diseases in the long-lived people. However, the latter finds no support from recent genetic studies. Considering the crucial role of epigenetic modification in gene regulation, we then hypothesize that suppressing disease-related genes in longevity individuals is likely achieved by epigenetic modification, e.g. DNA methylation. To test this hypothesis, we investigated the genome-wide methylation profile in 4 Chinese female centenarians and 4 middle-aged controls using methyl-DNA immunoprecipitation sequencing. 626 differentially methylated regions (DMRs were observed between both groups. Interestingly, genes with these DMRs were enriched in age-related diseases, including type-2 diabetes, cardiovascular disease, stroke and Alzheimer's disease. This pattern remains rather stable after including methylomes of two white individuals. Further analyses suggest that the observed DMRs likely have functional roles in regulating disease-associated gene expressions, with some genes [e.g. caspase 3 (CASP3] being down-regulated whereas the others [i.e. interleukin 1 receptor, type 2 (IL1R2] up-regulated. Therefore, our study suggests that suppressing the disease-related genes via epigenetic modification is an important contributor to human longevity.

  3. Discovering Genes Essential to the Hypothalamic Regulation of Human Reproduction Using a Human Disease Model: Adjusting to Life in the "-Omics" Era.

    Science.gov (United States)

    Stamou, M I; Cox, K H; Crowley, William F

    2015-12-01

    The neuroendocrine regulation of reproduction is an intricate process requiring the exquisite coordination of an assortment of cellular networks, all converging on the GnRH neurons. These neurons have a complex life history, migrating mainly from the olfactory placode into the hypothalamus, where GnRH is secreted and acts as the master regulator of the hypothalamic-pituitary-gonadal axis. Much of what we know about the biology of the GnRH neurons has been aided by discoveries made using the human disease model of isolated GnRH deficiency (IGD), a family of rare Mendelian disorders that share a common failure of secretion and/or action of GnRH causing hypogonadotropic hypogonadism. Over the last 30 years, research groups around the world have been investigating the genetic basis of IGD using different strategies based on complex cases that harbor structural abnormalities or single pleiotropic genes, endogamous pedigrees, candidate gene approaches as well as pathway gene analyses. Although such traditional approaches, based on well-validated tools, have been critical to establish the field, new strategies, such as next-generation sequencing, are now providing speed and robustness, but also revealing a surprising number of variants in known IGD genes in both patients and healthy controls. Thus, before the field moves forward with new genetic tools and continues discovery efforts, we must reassess what we know about IGD genetics and prepare to hold our work to a different standard. The purpose of this review is to: 1) look back at the strategies used to discover the "known" genes implicated in the rare forms of IGD; 2) examine the strengths and weaknesses of the methodologies used to validate genetic variation; 3) substantiate the role of known genes in the pathophysiology of the disease; and 4) project forward as we embark upon a widening use of these new and powerful technologies for gene discovery.

  4. Discovering Genes Essential to the Hypothalamic Regulation of Human Reproduction Using a Human Disease Model: Adjusting to Life in the "-Omics" Era.

    Science.gov (United States)

    Stamou, M I; Cox, K H; Crowley, William F

    2016-02-01

    The neuroendocrine regulation of reproduction is an intricate process requiring the exquisite coordination of an assortment of cellular networks, all converging on the GnRH neurons. These neurons have a complex life history, migrating mainly from the olfactory placode into the hypothalamus, where GnRH is secreted and acts as the master regulator of the hypothalamic-pituitary-gonadal axis. Much of what we know about the biology of the GnRH neurons has been aided by discoveries made using the human disease model of isolated GnRH deficiency (IGD), a family of rare Mendelian disorders that share a common failure of secretion and/or action of GnRH causing hypogonadotropic hypogonadism. Over the last 30 years, research groups around the world have been investigating the genetic basis of IGD using different strategies based on complex cases that harbor structural abnormalities or single pleiotropic genes, endogamous pedigrees, candidate gene approaches as well as pathway gene analyses. Although such traditional approaches, based on well-validated tools, have been critical to establish the field, new strategies, such as next-generation sequencing, are now providing speed and robustness, but also revealing a surprising number of variants in known IGD genes in both patients and healthy controls. Thus, before the field moves forward with new genetic tools and continues discovery efforts, we must reassess what we know about IGD genetics and prepare to hold our work to a different standard. The purpose of this review is to: 1) look back at the strategies used to discover the "known" genes implicated in the rare forms of IGD; 2) examine the strengths and weaknesses of the methodologies used to validate genetic variation; 3)substantiate the role of known genes in the pathophysiology of the disease; and 4) project forward as we embark upon a widening use of these new and powerful technologies for gene discovery. (Endocrine Reviews 36: 603-621, 2015).

  5. Identification of "pathologs" (disease-related genes from the RIKEN mouse cDNA dataset using human curation plus FACTS, a new biological information extraction system

    Directory of Open Access Journals (Sweden)

    Socha Luis A

    2004-04-01

    Full Text Available Abstract Background A major goal in the post-genomic era is to identify and characterise disease susceptibility genes and to apply this knowledge to disease prevention and treatment. Rodents and humans have remarkably similar genomes and share closely related biochemical, physiological and pathological pathways. In this work we utilised the latest information on the mouse transcriptome as revealed by the RIKEN FANTOM2 project to identify novel human disease-related candidate genes. We define a new term "patholog" to mean a homolog of a human disease-related gene encoding a product (transcript, anti-sense or protein potentially relevant to disease. Rather than just focus on Mendelian inheritance, we applied the analysis to all potential pathologs regardless of their inheritance pattern. Results Bioinformatic analysis and human curation of 60,770 RIKEN full-length mouse cDNA clones produced 2,578 sequences that showed similarity (70–85% identity to known human-disease genes. Using a newly developed biological information extraction and annotation tool (FACTS in parallel with human expert analysis of 17,051 MEDLINE scientific abstracts we identified 182 novel potential pathologs. Of these, 36 were identified by computational tools only, 49 by human expert analysis only and 97 by both methods. These pathologs were related to neoplastic (53%, hereditary (24%, immunological (5%, cardio-vascular (4%, or other (14%, disorders. Conclusions Large scale genome projects continue to produce a vast amount of data with potential application to the study of human disease. For this potential to be realised we need intelligent strategies for data categorisation and the ability to link sequence data with relevant literature. This paper demonstrates the power of combining human expert annotation with FACTS, a newly developed bioinformatics tool, to identify novel pathologs from within large-scale mouse transcript datasets.

  6. The linkage of chromatin remodeling to genome maintenance: contribution from a human disease gene BRIT1/MCPH1.

    Science.gov (United States)

    Peng, Guang; Lin, Shiaw-Yih

    2009-10-01

    Genomic DNA is packed into a highly condensed chromatin structure, which acts as natural barrier preventing accessibility of DNA. In various processes to maintain genomic integrity such as DNA replication, DNA repair, telomere regulation, proteins need to overcome the barrier of condensed chromatin to gain access to DNA. ATP-dependent chromatin remodeling is one of the fundamental mechanisms used by cells to relax chromatin. However, the chromatin remodeling complex does not contain intrinsic specificity for particular nuclear process, and the mechanism mediating its recruitment to DNA lesions remains to be an outstanding question. To address this question, in this review, we will discuss our current findings and future perspectives about how BRIT1/MCPH1, a human disease gene, specifies the function of chromatin remodelers and links chromatin remodeling to genome maintenance.

  7. 'A variant of uncertain significance' and the proliferation of human disease gene databases

    Directory of Open Access Journals (Sweden)

    Nelson David R

    2005-03-01

    Full Text Available Abstract The rapid accumulation of mutation data has led to the creation of nearly 300 locus-specific mutation databases. These sites may contain a few dozen to almost 20,000 mutations for a given gene. Many of the mutations are uncharacterised and have no known effects on the gene product, the 'variant of uncertain significance'. Here, the statistics of mutation distribution are examined for six different gene databases: BRCA1 and BRCA2, haemoglobin-beta (HBB, HPRT1, CFTR and TP53. The percentage of all possible point mutations for a protein (the mutation space is calculated for each gene and the question 'How much mutation data is enough?' is raised.

  8. Meta Analysis of Human AlzGene Database: Benefits and Limitations of Using C. elegans for the Study of Alzheimer's Disease and Co-morbid Conditions

    Directory of Open Access Journals (Sweden)

    Behrad Vahdati Nia

    2017-05-01

    Full Text Available Human genome-wide association studies (GWAS and linkage studies have identified 695 genes associated with Alzheimer's disease (AD, the vast majority of which are associated with late-onset AD. Although orthologs of these AD genes have been studied in several model species, orthologs in the nematode, Caenorhabditis elegans, remain incompletely identified, with orthologs to only 17 AD-related genes identified in the C. elegans database, WormBase. Therefore, we performed a comprehensive search for additional C. elegans orthologs of AD genes using well-established programs, including OrthoList, which utilizes four ontology prediction programs. We also validated 680 of the AD genes as a unique gene from the AlzGene database, including 431 genes (63% that are predicted to have orthologs in C. elegans. Another 178 human AD genes (26% were associated with one or more other neurological diseases, including amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease, and schizophrenia. Of these, there were 105 genes (59% with orthologs in C. elegans. Interestingly, three AD genes (ACE, TNF, and MTHFR were associated with all four of the other neurological diseases. The human AD genes were enriched in three major ontology pathway groups, including lipoprotein metabolism, hemostasis, and extracellular matrix organizations, as well as in pathways that are amyloid related (NOTCH signaling and associated with neural (neurotransmitter clearance and immune (advanced glycation end-product receptor signaling and TRAF6-NF-kappaB systems. Thus, the results from this study provide a potentially useful system for assessing comorbidities that may be associated with late-onset AD and other neurological conditions. The technical advantages and limitations of the ortholog searches are further discussed.

  9. IL-2R{gamma} gene microdeletion demonstrates that canine X-linked severe combined immunodeficiency is a homologue of the human disease

    Energy Technology Data Exchange (ETDEWEB)

    Henthorn, P.S.; Fimiani, V.M.; Patterson, D.F. [Univ. of Pennsylvania School of Veterinary Medicine, Philadelphia, PA (United States)] [and others

    1994-09-01

    X-linked severe combined immunodeficiency (SCID) is characterized by profound defects in cellular and humoral immunity and, in humans, is associated with mutations in the gene for the {gamma} chain of the IL-2 receptor (IL-2R{gamma}). We have examined this gene in a colony of dogs established from a single X-linked SCID carrier female. Affected dogs have a 4-bp deletion in the first exon of the IL-2R{gamma} gene, which precludes the production of a functional protein, demonstrating that the canine disease is a true homologue of human X-linked SCID. 37 refs., 3 figs.

  10. Statistical applications in nutrigenomics : analyzing multiple genes and proteins in relation to complex diseases in humans

    NARCIS (Netherlands)

    Heidema, A.G.

    2008-01-01

    Background The recent advances in technology provide the possibility to obtain large genomic datasets that contain information on large numbers of variables, while the sample sizes are moderate to small. This has lead to statistical challenges in the analysis of multiple genes and proteins in relat

  11. Gene Disease Diagnostic System

    Institute of Scientific and Technical Information of China (English)

    黄国亮; 张腾飞; 程京; 周玉祥; 刘诚迅; 金国藩; 邬敏贤; 严瑛白; 杨蓉

    2002-01-01

    Binary optics, where the optical element can be fabricated on a thin glass plate with micro-ion-etching film layer, has been widely applied in recent years. A novel optical scanning system for gene disease diagnostics described in this paper has four kinds of optical devices, including beam splitters, an array lens, an array filter and detection arrays. A software was developed to design the binary optics system using an iterative method. Two beam splitters were designed and fabricated, which can divide a beam into a 9×9 array or into a 13×13 array. The beam splitters have good diffraction efficiencies (>70%) and an even energy distribution. The gene disease diagnostic system is a portable biochip and binary optics technology. The binary optical devices in the non-confocal scanning system can raise the fluorescence detection sensitivity of the micro-array hybrid biochip.

  12. In silico mutation analysis of human beta globin gene in sickle cell disease patients

    Directory of Open Access Journals (Sweden)

    Hira Mubeen

    2016-05-01

    Conclusion: Studies suggested that there is need to maintain a primary prevention program to detect sickle cell disease at earlier stages despite having a large high risk. Preventive diagnosis and follow-up would reduce infant mortality by preventing the development of severe anemia as well as dangerous complications. In short, sickle cell disease surveillance would avert loss of life, measured as the number of years lost due to ill-health, disability or early death. [Int J Res Med Sci 2016; 4(5.000: 1673-1677

  13. Neuronal differentiation of human mesenchymal stem cells: changes in the expression of the Alzheimer's disease-related gene seladin-1.

    Science.gov (United States)

    Benvenuti, Susanna; Saccardi, Riccardo; Luciani, Paola; Urbani, Serena; Deledda, Cristiana; Cellai, Ilaria; Francini, Fabio; Squecco, Roberta; Rosati, Fabiana; Danza, Giovanna; Gelmini, Stefania; Greeve, Isabell; Rossi, Matteo; Maggi, Roberto; Serio, Mario; Peri, Alessandro

    2006-08-01

    Seladin-1 (SELective Alzheimer's Disease INdicator-1) is an anti-apoptotic gene, which is down-regulated in brain regions affected by Alzheimer's disease (AD). In addition, seladin-1 catalyzes the conversion of desmosterol into cholesterol. Disruption of cholesterol homeostasis in neurons may increase cell susceptibility to toxic agents. Because the hippocampus and the subventricular zone, which are affected in AD, are the unique regions containing stem cells with neurogenic potential in the adult brain, it might be hypothesized that this multipotent cell compartment is the predominant source of seladin-1 in normal brain. In the present study, we isolated and characterized human mesenchymal stem cells (hMSC) as a model of cells with the ability to differentiate into neurons. hMSC were then differentiated toward a neuronal phenotype (hMSC-n). These cells were thoroughly characterized and proved to be neurons, as assessed by molecular and electrophysiological evaluation. Seladin-1 expression was determined and found to be significantly reduced in hMSC-n compared to undifferentiated cells. Accordingly, the total content of cholesterol was decreased after differentiation. These original results demonstrate for the first time that seladin-1 is abundantly expressed by stem cells and appear to suggest that reduced expression in AD might be due to an altered pool of multipotent cells.

  14. Human retinal disease from AIPL1 gene mutations: foveal cone loss with minimal macular photoreceptors and rod function remaining.

    Science.gov (United States)

    Jacobson, Samuel G; Cideciyan, Artur V; Aleman, Tomas S; Sumaroka, Alexander; Roman, Alejandro J; Swider, Malgorzata; Schwartz, Sharon B; Banin, Eyal; Stone, Edwin M

    2011-01-05

    To determine the human retinal phenotype caused by mutations in the gene encoding AIPL1 (Aryl hydrocarbon receptor-interacting protein-like 1) now that there are proof-of-concept results for gene therapy success in Aipl1-deficient mice. Leber congenital amaurosis (LCA) patients (n = 10) and one patient with a later-onset retinal degeneration (RD) and AIPL1 mutations were studied by ocular examination, retinal imaging, perimetry, full-field sensitivity testing, and pupillometry. The LCA patients had severe visual acuity loss early in life, nondetectable electroretinograms (ERGs), and little or no detectable visual fields. Hallmarks of retinal degeneration were present in a wide region, including the macula and midperiphery; there was some apparent peripheral retinal sparing. Cross-sectional imaging showed foveal cone photoreceptor loss with a ring of minimally preserved paracentral photoreceptor nuclear layer. Features of retinal remodeling were present eccentric to the region of detectable photoreceptors. Full-field sensitivity was reduced by at least 2 log units, and chromatic stimuli, by psychophysics and pupillometry, revealed retained but impaired rod function. The RD patient, examined serially over two decades (ages, 45-67 years), retained an ERG in the fifth decade of life with abnormal rod and cone signals; and there was progressive loss of central and peripheral function. AIPL1-LCA, unlike some other forms of LCA with equally severe visual disturbance, shows profound loss of foveal as well as extrafoveal photoreceptors. The more unusual late-onset and slower form of AIPL1 disease may be better suited to gene augmentation therapy and is worthy of detection and further study.

  15. Inefficiency in GM2 ganglioside elimination by human lysosomal beta-hexosaminidase beta-subunit gene transfer to fibroblastic cell line derived from Sandhoff disease model mice.

    Science.gov (United States)

    Itakura, Tomohiro; Kuroki, Aya; Ishibashi, Yasuhiro; Tsuji, Daisuke; Kawashita, Eri; Higashine, Yukari; Sakuraba, Hitoshi; Yamanaka, Shoji; Itoh, Kohji

    2006-08-01

    Sandhoff disease (SD) is an autosomal recessive GM2 gangliosidosis caused by the defect of lysosomal beta-hexosaminidase (Hex) beta-subunit gene associated with neurosomatic manifestations. Therapeutic effects of Hex subunit gene transduction have been examined on Sandhoff disease model mice (SD mice) produced by the allelic disruption of Hexb gene encoding the murine beta-subunit. We demonstrate here that elimination of GM2 ganglioside (GM2) accumulated in the fibroblastic cell line derived from SD mice (FSD) did not occur when the HEXB gene only was transfected. In contrast, a significant increase in the HexB (betabeta homodimer) activity toward neutral substrates, including GA2 (asialo-GM2) and oligosaccharides carrying the terminal N-acetylglucosamine residues at their non-reducing ends (GlcNAc-oligosaccharides) was observed. Immunoblotting with anti-human HexA (alphabeta heterodimer) serum after native polyacrylamide gel electrophoresis (Native-PAGE) revealed that the human HEXB gene product could hardly form the chimeric HexA through associating with the murine alpha-subunit. However, co-introduction of the HEXA encoding the human alpha-subunit and HEXB genes caused significant corrective effect on the GM2 degradation by producing the human HexA. These results indicate that the recombinant human HexA could interspeciesly associate with the murine GM2 activator protein to degrade GM2 accumulated in the FSD cells. Thus, therapeutic effects of the recombinant human HexA isozyme but not human HEXB gene product could be evaluated by using the SD mice.

  16. Analysis of the trinucleotide CAG repeat from the human mitochondrial DNA polymerase gene in healthy and diseased individuals.

    Science.gov (United States)

    Rovio, A; Tiranti, V; Bednarz, A L; Suomalainen, A; Spelbrink, J N; Lecrenier, N; Melberg, A; Zeviani, M; Poulton, J; Foury, F; Jacobs, H T

    1999-01-01

    The human nuclear gene (POLG) for the catalytic subunit of mitochondrial DNA polymerase (DNA polymerase gamma) contains a trinucleotide CAG microsatellite repeat within the coding sequence. We have investigated the frequency of different repeat-length alleles in populations of diseased and healthy individuals. The predominant allele of 10 CAG repeats was found at a very similar frequency (approximately 88%) in both Finnish and ethnically mixed population samples, with homozygosity close to the equilibrium prediction. Other alleles of between 5 and 13 repeat units were detected, but no larger, expanded alleles were found. A series of 51 British myotonic dystrophy patients showed no significant variation from controls, indicating an absence of generalised CAG repeat instability. Patients with a variety of molecular lesions in mtDNA, including sporadic, clonal deletions, maternally inherited point mutations, autosomally transmitted mtDNA depletion and autosomal dominant multiple deletions showed no differences in POLG trinucleotide repeat-length distribution from controls. These findings rule out POLG repeat expansion as a common pathogenic mechanism in disorders characterised by mitochondrial genome instability.

  17. New insights into schizophrenia disease genes interactome in the human brain: emerging targets and therapeutic implications in the postgenomics era.

    Science.gov (United States)

    Podder, Avijit; Latha, Narayanan

    2014-12-01

    Schizophrenia, a complex neurological disorder, is comprised of interactions between multiple genetic and environmental factors wherein each of the factors individually exhibits a small effect. In this regard a network-based strategy is best suited to capture the combined effect of multiple genes with their definite pattern of interactions. Given that schizophrenia affects multiple regions of the brain, we postulated that instead of any single specific tissue, a mutual set of interactions occurs between different regions of brain in a well-defined pattern responsible for the disease phenotype. To validate, we constructed and compared tissue specific co-expression networks of schizophrenia candidate genes in twenty diverse brain tissues. As predicted, we observed a common interaction network of certain genes in all the studied brain tissues. We examined fundamental network topologies of the common network to sequester essential common candidates for schizophrenia. We also performed a gene set analysis to identify the essential biological pathways enriched by the common candidates in the network. Finally, the candidate drug targets were prioritized and scored against known available schizophrenic drugs by molecular docking studies. We distinctively identified protein kinases as the top candidates in the network that can serve as probable drug targets for the disease. Conclusively, we propose that a comprehensive study of the connectivity amongst the disease genes themselves may turn out to be more informative to understand schizophrenia disease etiology and the underlying complexity.

  18. Palaeopathology and genes: investigating the genetics of infectious diseases in excavated human skeletal remains and mummies from past populations.

    Science.gov (United States)

    Anastasiou, Evilena; Mitchell, Piers D

    2013-10-01

    The aim of this paper is to review the use of genetics in palaeomicrobiology, and to highlight the importance of understanding past diseases. Palaeomicrobiology is the study of disease pathogens in skeletal and mummified remains from archaeological contexts. It has revolutionarised our understanding of health in the past by enabling a deeper knowledge of the origins and evolution of many diseases that have shaped us as a species. Bacterial diseases explored include tuberculosis, leprosy, bubonic plague, typhoid, syphilis, endemic and epidemic typhus, trench fever, and Helicobacter pylori. Viral diseases discussed include influenza, hepatitis B, human papilloma virus (HPV), human T-cell lymphotrophic virus (HTLV-1) and human immunodeficiency virus (HIV). Parasitic diseases investigated include malaria, leishmaniasis, Chagas' disease, roundworm, whipworm, pinworm, Chinese liver fluke, fleas and lice. Through a better understanding of disease origins and their evolution, we can place into context how many infectious diseases are changing over time, and so help us estimate how they may change in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Accumulation of VH Replacement Products in IgH Genes Derived from Autoimmune Diseases and Anti-Viral Responses in Human.

    Science.gov (United States)

    Lange, Miles D; Huang, Lin; Yu, Yangsheng; Li, Song; Liao, Hongyan; Zemlin, Michael; Su, Kaihong; Zhang, Zhixin

    2014-01-01

    VH replacement refers to RAG-mediated secondary recombination of the IgH genes, which renews almost the entire VH gene coding region but retains a short stretch of nucleotides as a VH replacement footprint at the newly generated VH-DH junction. To explore the biological significance of VH replacement to the antibody repertoire, we developed a Java-based VH replacement footprint analyzer program and analyzed the distribution of VH replacement products in 61,851 human IgH gene sequences downloaded from the NCBI database. The initial assignment of the VH, DH, and JH gene segments provided a comprehensive view of the human IgH repertoire. To our interest, the overall frequency of VH replacement products is 12.1%; the frequencies of VH replacement products in IgH genes using different VH germline genes vary significantly. Importantly, the frequencies of VH replacement products are significantly elevated in IgH genes derived from different autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, and allergic rhinitis, and in IgH genes encoding various autoantibodies or anti-viral antibodies. The identified VH replacement footprints preferentially encoded charged amino acids to elongate IgH CDR3 regions, which may contribute to their autoreactivities or anti-viral functions. Analyses of the mutation status of the identified VH replacement products suggested that they had been actively involved in immune responses. These results provide a global view of the distribution of VH replacement products in human IgH genes, especially in IgH genes derived from autoimmune diseases and anti-viral immune responses.

  20. Human Environmental Disease Network

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Audouze, Karine

    2017-01-01

    During the past decades, many epidemiological, toxicological and biological studies have been performed to assess the role of environmental chemicals as potential toxicants for diverse human disorders. However, the relationships between diseases based on chemical exposure have been rarely studied...... by computational biology. We developed a human environmental disease network (EDN) to explore and suggest novel disease-disease and chemical-disease relationships. The presented scored EDN model is built upon the integration on systems biology and chemical toxicology using chemical contaminants information...

  1. Gene Therapy of Cancerous Diseases

    OpenAIRE

    Valenčáková, A.; Dziaková, A.; Hatalová, E.

    2015-01-01

    Gene therapy of cancerous diseases provides new means of curing patients with oncologic illnesses. There are several approaches in treating cancer by gene therapy. Most commonly used methods are: cancer immunogene therapy, suicide gene therapy, application of tumor-suppressor genes, antiangiogenic therapy, mesenchymal stem cells used as vectors, gene directed enzyme/prodrug therapy and bacteria used as anti-cancer agents. Cancer gene immunotherapy uses several immunologic agents for the purp...

  2. On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease.

    Science.gov (United States)

    Cooper, David N; Bacolla, Albino; Férec, Claude; Vasquez, Karen M; Kehrer-Sawatzki, Hildegard; Chen, Jian-Min

    2011-10-01

    Different types of human gene mutation may vary in size, from structural variants (SVs) to single base-pair substitutions, but what they all have in common is that their nature, size and location are often determined either by specific characteristics of the local DNA sequence environment or by higher order features of the genomic architecture. The human genome is now recognized to contain "pervasive architectural flaws" in that certain DNA sequences are inherently mutation prone by virtue of their base composition, sequence repetitivity and/or epigenetic modification. Here, we explore how the nature, location and frequency of different types of mutation causing inherited disease are shaped in large part, and often in remarkably predictable ways, by the local DNA sequence environment. The mutability of a given gene or genomic region may also be influenced indirectly by a variety of noncanonical (non-B) secondary structures whose formation is facilitated by the underlying DNA sequence. Since these non-B DNA structures can interfere with subsequent DNA replication and repair and may serve to increase mutation frequencies in generalized fashion (i.e., both in the context of subtle mutations and SVs), they have the potential to serve as a unifying concept in studies of mutational mechanisms underlying human inherited disease. © 2011 Wiley-Liss, Inc.

  3. Chromatin remodeling and human disease.

    Science.gov (United States)

    Huang, Cheng; Sloan, Emily A; Boerkoel, Cornelius F

    2003-06-01

    In the past few years, there has been a nascent convergence of scientific understanding of inherited human diseases with epigenetics. Identified epigenetic processes involved in human disease include covalent DNA modifications, covalent histone modifications, and histone relocation. Each of these processes influences chromatin structure and thereby regulates gene expression and DNA methylation, replication, recombination, and repair. The importance of these processes for nearly all aspects of normal growth and development is illustrated by the array of multi-system disorders and neoplasias caused by their dysregulation.

  4. Human Gene Therapy: Genes without Frontiers?

    Science.gov (United States)

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  5. Gene therapy for skin diseases.

    Science.gov (United States)

    Gorell, Emily; Nguyen, Ngon; Lane, Alfred; Siprashvili, Zurab

    2014-04-01

    The skin possesses qualities that make it desirable for gene therapy, and studies have focused on gene therapy for multiple cutaneous diseases. Gene therapy uses a vector to introduce genetic material into cells to alter gene expression, negating a pathological process. This can be accomplished with a variety of viral vectors or nonviral administrations. Although results are promising, there are several potential pitfalls that must be addressed to improve the safety profile to make gene therapy widely available clinically.

  6. Gene Therapy for Skin Diseases

    OpenAIRE

    2014-01-01

    The skin possesses qualities that make it desirable for gene therapy, and studies have focused on gene therapy for multiple cutaneous diseases. Gene therapy uses a vector to introduce genetic material into cells to alter gene expression, negating a pathological process. This can be accomplished with a variety of viral vectors or nonviral administrations. Although results are promising, there are several potential pitfalls that must be addressed to improve the safety profile to make gene thera...

  7. Disruption of long-range gene regulation in human genetic disease: a kaleidoscope of general principles, diverse mechanisms and unique phenotypic consequences.

    Science.gov (United States)

    Bhatia, Shipra; Kleinjan, Dirk A

    2014-07-01

    The precise control of gene expression programs is crucial for the establishment of the diverse gene activity patterns required for the correct development, patterning and differentiation of the myriad of cell types within an organism. The crucial importance of non-coding regions of the genome in the control of gene regulation is well established and depends on a diverse group of sequence fragments called cis-regulatory elements that reside in these regions. Advances in novel genome-wide techniques have greatly increased the ability to identify potential regulatory elements. In contrast, their functional characterisation and the determination of their diverse modes of action remain a major bottleneck. Greater knowledge of gene expression control is of major importance for human health as disruption of gene regulation has become recognised as a significant cause of human disease. Appreciation of the role of cis-regulatory polymorphism in natural variation and susceptibility to common disease is also growing. While novel techniques such as GWAS and NGS provide the ability to collect large genomic datasets, the challenge for the twenty-first century will be to extract the relevant sequences and how to investigate the functional consequences of disease-associated changes. Here, we review how studies of transcriptional control at selected paradigm disease gene loci have revealed general principles of cis-regulatory logic and regulatory genome organisation, yet also demonstrate how the variety of mechanisms can combine to result in unique phenotypic outcomes. Integration of these principles with the emerging wealth of genome-wide data will provide enhanced insight into the workings of our regulatory genome.

  8. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans.

    Directory of Open Access Journals (Sweden)

    Paola Di Meglio

    Full Text Available IL-23 and Th17 cells are key players in tissue immunosurveillance and are implicated in human immune-mediated diseases. Genome-wide association studies have shown that the IL23R R381Q gene variant protects against psoriasis, Crohn's disease and ankylosing spondylitis. We investigated the immunological consequences of the protective IL23R R381Q gene variant in healthy donors. The IL23R R381Q gene variant had no major effect on Th17 cell differentiation as the frequency of circulating Th17 cells was similar in carriers of the IL23R protective (A and common (G allele. Accordingly, Th17 cells generated from A and G donors produced similar amounts of Th17 cytokines. However, IL-23-mediated Th17 cell effector function was impaired, as Th17 cells from A allele carriers had significantly reduced IL-23-induced IL-17A production and STAT3 phosphorylation compared to G allele carriers. Our functional analysis of a human disease-associated gene variant demonstrates that IL23R R381Q exerts its protective effects through selective attenuation of IL-23-induced Th17 cell effector function without interfering with Th17 differentiation, and highlights its importance in the protection against IL-23-induced tissue pathologies.

  9. Gene expression profiling suggests a pathological role of human bone marrow-derived mesenchymal stem cells in aging-related skeletal diseases.

    Science.gov (United States)

    Jiang, Shih Sheng; Chen, Chung-Hsing; Tseng, Kuo-Yun; Tsai, Fang-Yu; Wang, Ming Jen; Chang, I-Shou; Lin, Jiunn-Liang; Lin, Shankung

    2011-07-01

    Aging is associated with bone loss and degenerative joint diseases, in which the aging of bone marrow-derived mesenchymal stem cell (bmMSC)[1] may play an important role. In this study, we analyzed the gene expression profiles of bmMSC from 14 donors between 36 and 74 years old, and obtained age-associated genes (in the background of osteoarthritis) and osteoarthritis-associated genes (in the background of old age). Pathway analysis of these genes suggests that alterations in glycobiology might play an important role in the aging of human bmMSC. On the other hand, antigen presentation and signaling of immune cells were the top pathways enriched by osteoarthritis-associated genes, suggesting that alteration in immunology of bmMSC might be involved in the pathogenesis of osteoarthritis. Most intriguingly, we found significant age-associated differential expression of HEXA, HEXB, CTSK, SULF1, ADAMTS5, SPP1, COL8A2, GPNMB, TNFAIP6, and RPL29; those genes have been implicated in the bone loss and the pathology of osteoporosis and osteoarthritis in aging. Collectively, our results suggest a pathological role of bmMSC in aging-related skeletal diseases, and suggest the possibility that alteration in the immunology of bmMSC might also play an important role in the etiology of adult-onset osteoarthritis.

  10. Gene therapy for gastric diseases.

    OpenAIRE

    Fumoto, Shintaro; Nishi, Junya; Nakamura, Junzo; Nishida, Koyo

    2008-01-01

    Gene therapy for gastric cancer and gastric ulcer is a rationalized strategy since various genes correlate with these diseases. Since gene expressions in non-target tissues/cells cause side effects, a selective gene delivery system targeted to the stomach and/or cancer must be developed. The route of vector transfer (direct injection, systemic, intraperitoneal, gastric serosal surface and oral administration) is an important issue which can determine efficacy and safety. Strategies for cancer...

  11. Advances in gene technology: Human genetic disorders

    Energy Technology Data Exchange (ETDEWEB)

    Scott, W.A.; Ahmad, F.; Black, S.; Schultz, J.; Whelan, W.J.

    1984-01-01

    This book discusses the papers presented at the conference on the subject of ''advances in Gene technology: Human genetic disorders''. Molecular biology of various carcinomas and inheritance of metabolic diseases is discussed and technology advancement in diagnosis of hereditary diseases is described. Some of the titles discussed are-Immunoglobulin genes translocation and diagnosis; hemophilia; oncogenes; oncogenic transformations; experimental data on mice, hamsters, birds carcinomas and sarcomas.

  12. Convergent myotonic dystrophy (DM) haplotypes on 19q13.3: Potential inconsistencies in human disease gene localization

    Energy Technology Data Exchange (ETDEWEB)

    Tsilfidis, C. [Eye Research Institute of Canada, Toronto (Canada); Whiting, E.J. [Univ. of Ottawa (Canada); Korneluk, R.G. [Univ. of Ottawa (Canada)]|[Childrens Hospital of Eastern Ontario, Ottawa (Canada)

    1994-09-01

    Myotonic dystrophy (DM) is an autosomal dominant neuromuscular disease which has been shown to be caused by an unstable trinucleotide repeat located on chromosome 19q. We have conducted extensive haplotype analysis on 103 DM chromosome using thirteen 19q13.3 loci identifying 18 RFLPs, spanning a physical distance of 1.3 Mb containing the myotonic dystrophy gene. Three major haplotypes, H1, H2 and H3, comprising 45.6% of the DM chromosomes, were observed in our population. The later two haplotypes, observed exclusively on DM chromosomes of French Canadian origin, contain a 500 kb core region that is identical. The low frequency of this core on normal chromosomes (0.8%) is consistent with a mapping of the DM gene within this region. However, the DM mutation is found 160 kb distal to the point of divergence between these two haplotypes. In contrast, the 450 kb shared by haplotypes H1 and H2 contain the DM mutation. Further, analysis of the DM region using a polymorphic microsatellite GJ-VSSM2 located 15 kb telomeric to the DM gene revealed strong allelic association of allele V on DM chromosomes (present on 6% of normal and 88.2% of DM chromosomes). The fact that allele V was found on all DM chromosomes with the three major haplotypes is indicative of their common origin and includes the two French Canadian haplotypes which share a region proximal to the DM mutation. This analysis indicates that convergent haplotypes, in the absence of a more extensive linkage disequilibrium analysis, may lead to a spurious disease gene localization.

  13. Identification of a common variant affecting human episodic memory performance using a pooled genome-wide association approach: a case study of disease gene identification.

    Science.gov (United States)

    Pawlowski, Traci L; Huentelman, Matthew J

    2011-01-01

    Genome-wide association studies (GWAS) are an important tool for discovering novel genes associated with disease or traits. Careful design of case-control groups greatly facilitates the efficacy of these studies. Here we describe a pooled GWAS study undertaken to find novel genes associated with human episodic memory performance. A genomic locus for the WW and C2 domain-containing 1 protein, KIBRA (also known as WWC1), was found to be associated with memory performance in three cognitively normal cohorts from Switzerland and the USA. This result was further supported by correlation of KIBRA genotype and differences in hippocampal activation as measured by functional magnetic resonance imaging (fMRI). These findings provide an excellent example of the application of GWAS using a pooled genomic DNA approach to successfully identify a locus with strong effects on human memory.

  14. Glu504Lys Single Nucleotide Polymorphism of Aldehyde Dehydrogenase 2 Gene and the Risk of Human Diseases

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    2015-01-01

    Full Text Available Aldehyde dehydrogenase (ALDH 2 is a mitochondrial enzyme that is known for its important role in oxidation and detoxification of ethanol metabolite acetaldehyde. ALDH2 also metabolizes other reactive aldehydes such as 4-hydroxy-2-nonenal and acrolein. The Glu504Lys single nucleotide polymorphism (SNP of ALDH2 gene, which is found in approximately 40% of the East Asian populations, causes defect in the enzyme activity of ALDH2, leading to alterations in acetaldehyde metabolism and alcohol-induced “flushing” syndrome. Evidence suggests that ALDH2 Glu504Lys SNP is a potential candidate genetic risk factor for a variety of chronic diseases such as cardiovascular disease, cancer, and late-onset Alzheimer’s disease. In addition, the association between ALDH2 Glu504Lys SNP and the development of these chronic diseases appears to be affected by the interaction between the SNP and lifestyle factors such as alcohol consumption as well as by the presence of other genetic variations.

  15. Uncovering disease-disease relationships through the incomplete human interactome

    Science.gov (United States)

    Menche, Jörg; Sharma, Amitabh; Kitsak, Maksim; Ghiassian, Susan; Vidal, Marc; Loscalzo, Joseph; Barabási, Albert-László

    2015-01-01

    According to the disease module hypothesis the cellular components associated with a disease segregate in the same neighborhood of the human interactome, the map of biologically relevant molecular interactions. Yet, given the incompleteness of the interactome and the limited knowledge of disease-associated genes, it is not obvious if the available data has sufficient coverage to map out modules associated with each disease. Here we derive mathematical conditions for the identifiability of disease modules and show that the network-based location of each disease module determines its pathobiological relationship to other diseases. For example, diseases with overlapping network modules show significant co-expression patterns, symptom similarity, and comorbidity, while diseases residing in separated network neighborhoods are clinically distinct. These tools represent an interactome-based platform to predict molecular commonalities between clinically related diseases, even if they do not share disease genes. PMID:25700523

  16. MHC Genes Linked to Autoimmune Disease.

    Science.gov (United States)

    Deitiker, Philip; Atassi, M Zouhair

    2015-01-01

    Autoimmune diseases (ADs), or autoinflammatoiy diseases, are growing in complexity as diagnoses improve and many factors escalate disease risk. Considerable genetic similarity is found among ADs, and they are frequently associated with major histocompatibility complex (MHC) genes. However, a given disease may be associated with more than one human leukocyte antigen (HLA) allotype, and a given HLA may be associated with more than one AD. The associations of non-MHC genes with AD present an additional problem, and the situation is further complicated by the role that other factors, such as age, diet, therapeutic drugs, and regional influences, play in disease. This review discusses some of the genetics and biochemistry of HLA-linked AD and inflammation, covering some of the best-studied examples and summarizing indicators for class I- and II-mediated disease. However, the scope of this review limits a detailed discussion of all known ADs.

  17. Human hedgehog interacting protein gene and lung diseases%人音猬因子相互作用蛋白基因与肺部疾病

    Institute of Scientific and Technical Information of China (English)

    过依; 程挺; 万欢英

    2013-01-01

    Human hedgehog interacting protein gene encodes human hedgehog interacting protein (HHIP).This protein is a critical regulator of the hedgehog signal pathway,which has been implicated in development,repair,and cancer in multiple tissues.HHIP plays a role in development of many diseases including lung diseases.%人音猬因子相互作用蛋白基因编码一组跨膜糖蛋白——人音猬因子相互作用蛋白,其主要功能是负反馈调节抑制Hh信号通路活性.该基因与Hh信号通路在胚胎发育、细胞分化、肿瘤形成等有关,参与了各系统疾病的发生发展.本文就其与一些肺部疾病的关系作一综述.

  18. Disease gene identification strategies for exome sequencing

    NARCIS (Netherlands)

    Gilissen, C.; Hoischen, A.; Brunner, H.G.; Veltman, J.A.

    2012-01-01

    Next generation sequencing can be used to search for Mendelian disease genes in an unbiased manner by sequencing the entire protein-coding sequence, known as the exome, or even the entire human genome. Identifying the pathogenic mutation amongst thousands to millions of genomic variants is a major c

  19. Expression profiles of muscle disease-associated genes and their isoforms during differentiation of cultured human skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Abdul-Hussein Saba

    2012-12-01

    Full Text Available Abstract Background The formation of contractile myofibrils requires the stepwise onset of expression of muscle specific proteins. It is likely that elucidation of the expression patterns of muscle-specific sarcomeric proteins is important to understand muscle disorders originating from defects in contractile sarcomeric proteins. Methods We investigated the expression profile of a panel of sarcomeric components with a focus on proteins associated with a group of congenital disorders. The analyses were performed in cultured human skeletal muscle cells during myoblast proliferation and myotube development. Results Our culture technique resulted in the development of striated myotubes and the expression of adult isoforms of the sarcomeric proteins, such as fast TnI, fast TnT, adult fast and slow MyHC isoforms and predominantly skeletal muscle rather than cardiac actin. Many proteins involved in muscle diseases, such as beta tropomyosin, slow TnI, slow MyBPC and cardiac TnI were readily detected in the initial stages of muscle cell differentiation, suggesting the possibility of an early role for these proteins as constituent of the developing contractile apparatus during myofibrillogenesis. This suggests that in disease conditions the mechanisms of pathogenesis for each of the mutated sarcomeric proteins might be reflected by altered expression patterns, and disturbed assembly of cytoskeletal, myofibrillar structures and muscle development. Conclusions In conclusion, we here confirm that cell cultures of human skeletal muscle are an appropriate tool to study developmental stages of myofibrillogenesis. The expression of several disease-associated proteins indicates that they might be a useful model system for studying the pathogenesis of muscle diseases caused by defects in specific sarcomeric constituents.

  20. Pompe disease gene therapy

    National Research Council Canada - National Science Library

    Byrne, Barry J; Falk, Darin J; Pacak, Christina A; Nayak, Sushrusha; Herzog, Roland W; Elder, Melissa E; Collins, Shelley W; Conlon, Thomas J; Clement, Nathalie; Cleaver, Brian D; Cloutier, Denise A; Porvasnik, Stacy L; Islam, Saleem; Elmallah, Mai K; Martin, Anatole; Smith, Barbara K; Fuller, David D; Lawson, Lee Ann; Mah, Cathryn S

    2011-01-01

    Pompe disease is an autosomal recessive metabolic myopathy caused by the deficiency of the lysosomal enzyme acid alpha-glucosidase and results in cellular lysosomal and cytoplasmic glycogen accumulation...

  1. Cloning and characterization of CLCN5, the human kidney chloride channel gene implicated in Dent disease (an X-linked hereditary nephrolithiasis)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, S.E.; Van Bakel, I.; Craig, I.W. [Univ. of Oxford (United Kingdom)] [and others

    1995-10-10

    Dent disease, an X-linked familial renal tubular disorder, is a form of Fanconi syndrome associated with proteinuria, hypercalciuria, nephrocalcinosis, kidney stones, and eventual renal failure. We have previously used positional cloning to identify the 3{prime} part of a novel kidney-specific gene (initially termed hClC-K2, but now referred to as CLCN5), which is deleted in patients from one pedigree segregating Dent disease. Mutations that disrupt this gene have been identified in other patients with this disorder. Here we describe the isolation and characterization of the complete open reading frame of the human CLCN5 gene, which is predicted to encode a protein of 746 amino acids, with significant homology to all known members of the ClC family of voltage-gated chloride channels. CLCN5 belongs to a distinct branch of this family, which also includes the recently identified genes CLCN3 and CLCN4. We have shown that the coding region of CLCN5 is organized into 12 exons, spanning 25-30 kb of genomic DNA, and have determined the sequence of each exon-intron boundary. The elucidation of the coding sequence and exon-intron organization of CLCN5 will both expedite the evaluation of structure/function relationships of these ion channels and facilitate the screening of other patients with renal tubular dysfunction for mutations at this locus. 31 refs., 5 figs.

  2. A variant of human paraoxonase/arylesterase (HUMPONA) gene is a risk factor for coronary artery disease.

    Science.gov (United States)

    Serrato, M; Marian, A J

    1995-12-01

    Coronary artery disease (CAD) is a complex trait caused by a number of genetic and environmental factors. Recently, paraoxonase/arylesterase (PONA) enzyme has been implicated in the pathogenesis of atherosclerosis. There is a 10-40-fold variability in the activity of this enzyme among individuals. This variability is due to the presence of an A/G polymorphism in the coding region of the gene (HUMPONA). The A and G alleles code for glutamine (A genotype) and arginine (B genotype), respectively. Individuals with A genotype have a lower enzymatic activity than those with B genotype. We determined the HUMPONA genotypes and alleles in 223 patients with angiographically documented CAD and in 247 individuals in the general population. The distribution of genotypes were in Hardy-Weinberg equilibrium in patients and in controls. Genotypes A and B were present in 120 (49%) and 28 (11%) individuals in controls and in 68 (30%) and 40 (18%) patients with CAD, respectively (chi squared= 16.5, P= 0.0003). The frequency of the A allele was 0.69 in controls and 0.56 in patients (OR= 1.7, P= 0.0001). There were no differences in the distribution of HUMPONA genotypes in the subgroups of patients with restenosis, myocardial infarction, or any of the conventional risk factors for CAD as compared with corresponding subgroups. In summary, variants of the HUMPONA gene are involved in predisposition to coronary atherosclerosis.

  3. Transfer RNA and human disease

    Directory of Open Access Journals (Sweden)

    Jamie A Abbott

    2014-06-01

    Full Text Available Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA genes are hotspots for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase, mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers, and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes. Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing. Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.

  4. Unique gene expression and MR T2 relaxometry patterns define chronic murine dextran sodium sulphate colitis as a model for connective tissue changes in human Crohn's disease.

    Directory of Open Access Journals (Sweden)

    Christine Breynaert

    Full Text Available INTRODUCTION: Chronically relapsing inflammation, tissue remodeling and fibrosis are hallmarks of inflammatory bowel diseases. The aim of this study was to investigate changes in connective tissue in a chronic murine model resulting from repeated cycles of dextran sodium sulphate (DSS ingestion, to mimic the relapsing nature of the human disease. MATERIALS AND METHODS: C57BL/6 mice were exposed to DSS in drinking water for 1 week, followed by a recovery phase of 2 weeks. This cycle of exposure was repeated for up to 3 times (9 weeks in total. Colonic inflammation, fibrosis, extracellular matrix proteins and colonic gene expression were studied. In vivo MRI T 2 relaxometry was studied as a potential non-invasive imaging tool to evaluate bowel wall inflammation and fibrosis. RESULTS: Repeated cycles of DSS resulted in a relapsing and remitting disease course, which induced a chronic segmental, transmural colitis after 2 and 3 cycles of DSS with clear induction of fibrosis and remodeling of the muscular layer. Tenascin expression mirrored its expression in Crohn's colitis. Microarray data identified a gene expression profile different in chronic colitis from that in acute colitis. Additional recovery was associated with upregulation of unique genes, in particular keratins, pointing to activation of molecular pathways for healing and repair. In vivo MRI T2 relaxometry of the colon showed a clear shift towards higher T2 values in the acute stage and a gradual regression of T2 values with increasing cycles of DSS. CONCLUSIONS: Repeated cycles of DSS exposure induce fibrosis and connective tissue changes with typical features, as occurring in Crohn's disease. Colonic gene expression analysis revealed unique expression profiles in chronic colitis compared to acute colitis and after additional recovery, pointing to potential new targets to intervene with the induction of fibrosis. In vivo T2 relaxometry is a promising non-invasive assessment of

  5. Cis-regulatory mutations in human disease.

    Science.gov (United States)

    Epstein, Douglas J

    2009-07-01

    Cis-acting regulatory sequences are required for the proper temporal and spatial control of gene expression. Variation in gene expression is highly heritable and a significant determinant of human disease susceptibility. The diversity of human genetic diseases attributed, in whole or in part, to mutations in non-coding regulatory sequences is on the rise. Improvements in genome-wide methods of associating genetic variation with human disease and predicting DNA with cis-regulatory potential are two of the major reasons for these recent advances. This review will highlight select examples from the literature that have successfully integrated genetic and genomic approaches to uncover the molecular basis by which cis-regulatory mutations alter gene expression and contribute to human disease. The fine mapping of disease-causing variants has led to the discovery of novel cis-acting regulatory elements that, in some instances, are located as far away as 1.5 Mb from the target gene. In other cases, the prior knowledge of the regulatory landscape surrounding the gene of interest aided in the selection of enhancers for mutation screening. The success of these studies should provide a framework for following up on the large number of genome-wide association studies that have identified common variants in non-coding regions of the genome that associate with increased risk of human diseases including, diabetes, autism, Crohn's, colorectal cancer, and asthma, to name a few.

  6. Genetically Modified Pig Models for Human Diseases

    Institute of Scientific and Technical Information of China (English)

    Nana Fan; Liangxue Lai

    2013-01-01

    Genetically modified animal models are important for understanding the pathogenesis of human disease and developing therapeutic strategies.Although genetically modified mice have been widely used to model human diseases,some of these mouse models do not replicate important disease symptoms or pathology.Pigs are more similar to humans than mice in anatomy,physiology,and genome.Thus,pigs are considered to be better animal models to mimic some human diseases.This review describes genetically modified pigs that have been used to model various diseases including neurological,cardiovascular,and diabetic disorders.We also discuss the development in gene modification technology that can facilitate the generation of transgenic pig models for human diseases.

  7. Curing genetic disease with gene therapy.

    Science.gov (United States)

    Williams, David A

    2014-01-01

    Development of viral vectors that allow high efficiency gene transfer into mammalian cells in the early 1980s foresaw the treatment of severe monogenic diseases in humans. The application of gene transfer using viral vectors has been successful in diseases of the blood and immune systems, albeit with several curative studies also showing serious adverse events (SAEs). In children with X-linked severe combined immunodeficiency (SCID-X1), chronic granulomatous disease, and Wiskott-Aldrich syndrome, these SAEs were caused by inappropriate activation of oncogenes. Subsequent studies have defined the vector sequences responsible for these transforming events. Members of the Transatlantic Gene Therapy Consortium [TAGTC] have collaboratively developed new vectors that have proven safer in preclinical studies and used these vectors in new clinical trials in SCID-X1. These trials have shown evidence of early efficacy and preliminary integration analysis data from the SCID-X1 trial suggest an improved safety profile.

  8. Gene therapy in ocular diseases

    Directory of Open Access Journals (Sweden)

    Singh Vijay

    2002-01-01

    Full Text Available Gene therapy is a novel form of drug delivery that enlists the synthetic machinery of the patient′s cells to produce a therapeutic agent. Genes may be delivered into cells in vitro or in vivo utilising viral or non-viral vectors. Recent technical advances have led to the demonstration of the molecular basis of various ocular diseases. Ocular disorders with the greatest potential for benefit of gene therapy include hereditary diseases such as retinitis pigmentosa, tumours such as retinoblastoma or melanoma, and acquired proliferative and neovascular retinal disorders. Gene transfer into ocular tissues has been demonstrated with growing functional success and may develop into a new therapeutic tool for clinical ophthalmology in future.

  9. PolySearch2: a significantly improved text-mining system for discovering associations between human diseases, genes, drugs, metabolites, toxins and more.

    Science.gov (United States)

    Liu, Yifeng; Liang, Yongjie; Wishart, David

    2015-07-01

    PolySearch2 (http://polysearch.ca) is an online text-mining system for identifying relationships between biomedical entities such as human diseases, genes, SNPs, proteins, drugs, metabolites, toxins, metabolic pathways, organs, tissues, subcellular organelles, positive health effects, negative health effects, drug actions, Gene Ontology terms, MeSH terms, ICD-10 medical codes, biological taxonomies and chemical taxonomies. PolySearch2 supports a generalized 'Given X, find all associated Ys' query, where X and Y can be selected from the aforementioned biomedical entities. An example query might be: 'Find all diseases associated with Bisphenol A'. To find its answers, PolySearch2 searches for associations against comprehensive collections of free-text collections, including local versions of MEDLINE abstracts, PubMed Central full-text articles, Wikipedia full-text articles and US Patent application abstracts. PolySearch2 also searches 14 widely used, text-rich biological databases such as UniProt, DrugBank and Human Metabolome Database to improve its accuracy and coverage. PolySearch2 maintains an extensive thesaurus of biological terms and exploits the latest search engine technology to rapidly retrieve relevant articles and databases records. PolySearch2 also generates, ranks and annotates associative candidates and present results with relevancy statistics and highlighted key sentences to facilitate user interpretation.

  10. Gene therapy for ischemic heart disease.

    Science.gov (United States)

    Malosky, S; Kolansky, D M

    1996-07-01

    Gene therapy techniques are being developed as potential treatments for dyslipidemias, coronary restenosis, and vein graft disease. Retroviral and now adenoviral gene delivery techniques are being studied. A human protocol for the treatment of familial hypercholesterolemia has recently been completed using ex vivo hepatic low-density lipoprotein receptor gene transfer via a retroviral vector. Work in most other areas is currently in the animal model stage. Significant progress has been made in the area of coronary restenosis, particularly in identifying target genes to reduce neointima formation, such as herpesvirus thymidine kinase and the retinoblastoma gene. Work also continues in developing strategies to decrease neointima formation in vein grafts used in coronary bypass surgery and in improving methods of myocardial protection during surgery.

  11. Expression of polarity genes in human cancer.

    Science.gov (United States)

    Lin, Wan-Hsin; Asmann, Yan W; Anastasiadis, Panos Z

    2015-01-01

    Polarity protein complexes are crucial for epithelial apical-basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function.

  12. MOLECULAR CLONING OF HUMAN NEUROTROPHIN-4 GENE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective Cloning and sequencing of the human neurotrophin-4(hNT-4) gene.Methods With the chromosomal DNA of human blood lymphocytes as template,hNT-4 coding genes were amplified by polymerase chain reaction(PCR) and recombinated into phage vector pGEM-T Easy,which were sequenced by using Sanger's single stranded DNA terminal termination method.Results The sequence of the cloned gene is completely the same as that reported in the literature(GenBank data base,M86528).Conclusion This study successfully cloning and sequenced the gene of mhNT-4,and it would be convenient for us to study the expression of mhNT-4 in eukaryote,and to continue the research on the gene therapy of Alzheimer's disease intensively.This study indicate that the hNT-4 is conservative in different races and individuals.

  13. Mutations in connexin genes and disease.

    Science.gov (United States)

    Pfenniger, Anna; Wohlwend, Annelise; Kwak, Brenda R

    2011-01-01

    Connexins are a family of transmembrane proteins that are widely expressed in the human body. Connexins play an important role in cell-cell communication and homeostasis in various tissues by forming gap junction channels, which enable a direct passage of ions or metabolites from one cell to another. Twenty-one different connexins are expressed in humans, each having distinct expression patterns and regulation properties. Knowledge on this family of proteins can be gained by making an inventory of mutations and associated diseases in human. PubMed and other relevant databases were searched. In addition, key review articles were screened for relevant original publications. Sections of representative organs were photographed and annotated. The crucial role of connexins is highlighted by the discovery of mutations in connexin genes which cause a variety of disorders such as myelin-related diseases, skin disorders, hearing loss, congenital cataract, or more complex syndromes such as the oculodendrodigital dysplasia. This review systematically addresses current knowledge on mutations in connexin genes and disease, focusing on the correlation between genetic defects, cellular phenotypes and clinical manifestations. The review of diseases caused by mutations in connexin genes highlights the essential nature of connexin function and intercellular communication in tissue homeostasis. © 2010 The Authors. European Journal of Clinical Investigation © 2010 Stichting European Society for Clinical Investigation Journal Foundation.

  14. An outbreak of acute respiratory disease caused by a virus associated RNA II gene mutation strain of human adenovirus 7 in China, 2015

    Science.gov (United States)

    Liang, Beibei; Wu, Fuli; Li, Hao; Liu, Hongbo; Sheng, Chunyu; Ma, Qiuxia; Yang, Chaojie; Xie, Jing; Li, Peng; Jia, Leili; Wang, Ligui; Du, Xinying; Qiu, Shaofu; Song, Hongbin

    2017-01-01

    Human adenovirus 7 (HAdV-7) strains are a major cause of acute respiratory disease (ARD) among adults and children, associated with fatal pneumonia. An ARD outbreak caused by HAdV-7 that involved 739 college students was reported in this article. To better understand the underlying cause of this large-scale epidemic, virus strains were isolated from infected patients and sequence variations of the whole genome sequence were detected. Evolutionary trees and alignment results indicated that the major capsid protein genes hexon and fibre were strongly conserved among serotype 7 strains in China at that time. Instead, the HAdV-7 strains presented three thymine deletions in the virus associated RNA (VA RNA) II terminal region. We also found that the mutation might lead to increased mRNA expression of an adjacent gene, L1 52/55K, and thus promoted faster growth. These findings suggest that sequence variation of VA RNA II gene was a potential cause of such a severe HAdV-7 infection and this gene should be a new-emerging factor to be monitored for better understanding of HAdV-7 infection. PMID:28225804

  15. Bioinformatics methods for identifying candidate disease genes

    NARCIS (Netherlands)

    Driel, M.A. van; Brunner, H.G.

    2006-01-01

    With the explosion in genomic and functional genomics information, methods for disease gene identification are rapidly evolving. Databases are now essential to the process of selecting candidate disease genes. Combining positional information with disease characteristics and functional information i

  16. Genes and Disease: Prader-Willi Syndrome

    Science.gov (United States)

    ... MD): National Center for Biotechnology Information (US); 1998-. Genes and Disease [Internet]. Show details National Center for ... 45K) PDF version of this title (3.8M) Gene sequence Genome view see gene locations Entrez Gene ...

  17. Phenol sulfotransferases: Candidate genes for Batten disease

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, T.P.; Probst, P.; Obermoeller, R.D. [M.D. Anderson Cancer Center, Houston, TX (United States)] [and others

    1995-06-05

    Batten disease (juvenile-onset neuronal ceroid lipofuscinosis; JNCL) is an autosomal recessive neurodegenerative disorder, characterized by the cytosomal accumulation of autofluorescent protolipopigments in neurons and other cell types. The Batten disease gene (CLN3) has not yet been identified, but has been mapped to a small region of human chromosome area 16p12.1-p11.2. We recently reported the fortuitous discovery that the cytosolic phenol sulfotransferase gene (STP) is located within this same interval of chromosome 16p. Since phenol sulfotransferase is expressed in neurons, can sulfate lipophilic phenolic compounds, and is mapped near CLN3, STP is considered as a candidate gene for Batten disease. YAC and cosmid cloning results have further substantiated the close proximity of STP and a highly related sulfotransferase (STM), encoding the catecholamine-preferring enzyme, to the CLN3 region of chromosome 16p. In this report, we summarize some of the recent progress in the identification of two phenol sulfotransferase genes (STP and STM) as positional candidate genes for Batten disease. 42 refs., 1 tab.

  18. Human gene therapy and imaging: cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Joseph C. [Stanford University School of Medicine, Department of Medicine, Stanford, CA (United States); Yla-Herttuala, Seppo [University of Kuopio, A.I.Virtanen Institute, Kuopio (Finland)

    2005-12-01

    This review discusses the basics of cardiovascular gene therapy, the results of recent human clinical trials, and the rapid progress in imaging techniques in cardiology. Improved understanding of the molecular and genetic basis of coronary heart disease has made gene therapy a potential new alternative for the treatment of cardiovascular diseases. Experimental studies have established the proof-of-principle that gene transfer to the cardiovascular system can achieve therapeutic effects. First human clinical trials provided initial evidence of feasibility and safety of cardiovascular gene therapy. However, phase II/III clinical trials have so far been rather disappointing and one of the major problems in cardiovascular gene therapy has been the inability to verify gene expression in the target tissue. New imaging techniques could significantly contribute to the development of better gene therapeutic approaches. Although the exact choice of imaging modality will depend on the biological question asked, further improvement in image resolution and detection sensitivity will be needed for all modalities as we move from imaging of organs and tissues to imaging of cells and genes. (orig.)

  19. A Variant in the BACH2 Gene Is Associated With Susceptibility to Autoimmune Addison's Disease in Humans.

    Science.gov (United States)

    Pazderska, Agnieszka; Oftedal, Bergithe E; Napier, Catherine M; Ainsworth, Holly F; Husebye, Eystein S; Cordell, Heather J; Pearce, Simon H S; Mitchell, Anna L

    2016-11-01

    Autoimmune Addison's disease (AAD) is a rare but highly heritable condition. The BACH2 protein plays a crucial role in T lymphocyte maturation, and allelic variation in its gene has been associated with a number of autoimmune conditions. We aimed to determine whether alleles of the rs3757247 single nucleotide polymorphism (SNP) in the BACH2 gene are associated with AAD. This case-control association study was performed in two phases using Taqman chemistry. In the first phase, the rs3757247 SNP was genotyped in 358 UK AAD subjects and 166 local control subjects. Genotype data were also available from 5154 healthy UK controls from the Wellcome Trust (WTCCC2) for comparison. In the second phase, the SNP was genotyped in a validation cohort comprising 317 Norwegian AAD subjects and 365 controls. The frequency of the minor T allele was significantly higher in subjects with AAD from the United Kingdom compared to both the local and WTCCC2 control cohorts (58% vs 45 and 48%, respectively) (local controls, P = 1.1 × 10(-4); odds ratio [OR], 1.68; 95% confidence interval [CI], 1.29-2.18; WTCCC2 controls, P = 1.4 × 10(-6); OR, 1.44; 95% CI, 1.23-1.69). This finding was replicated in the Norwegian validation cohort (P = .0015; OR, 1.41; 95% CI, 1.14-1.75). Subgroup analysis showed that this association is present in subjects with both isolated AAD (OR, 1.53; 95% CI, 1.22-1.92) and autoimmune polyglandular syndrome type 2 (OR, 1.37; 95% CI, 1.12-1.69) in the UK cohort, and with autoimmune polyglandular syndrome type 2 in the Norwegian cohort (OR, 1.58; 95% CI, 1.22-2.06). We have demonstrated, for the first time, that allelic variability at the BACH2 locus is associated with susceptibility to AAD. Given its association with multiple autoimmune conditions, BACH2 can be considered a "universal" autoimmune susceptibility locus.

  20. Adaptation, isolation by distance and human-mediated transport determine patterns of gene flow among populations of the disease vector Aedes taeniorhynchus in the Galapagos Islands.

    Science.gov (United States)

    Bataille, Arnaud; Cunningham, Andrew A; Cruz, Marilyn; Cedeño, Virna; Goodman, Simon J

    2011-12-01

    The black salt-marsh mosquito (Aedes taeniorhynchus) is the only native mosquito in the Galapagos Islands and potentially a major disease vector for Galapagos wildlife. Little is known about its population structure, or how its dynamics may be influenced by human presence in the archipelago. We used microsatellite data to assess the structure and patterns of A. taeniorhynchus gene flow among and within islands, to identify potential barriers to mosquito dispersal, and to investigate human-aided transport of mosquitoes across the archipelago. Our results show that inter-island migration of A. taeniorhynchus occurs frequently on an isolation by distance basis. High levels of inter-island migration were detected amongst the major ports of the archipelago, strongly suggesting the occurrence of human-aided transport of mosquitoes among islands, underlining the need for strict control measures to avoid the transport of disease vectors between islands. The prevalence of filarial nematode infection in Galapagos flightless cormorants is correlated with the population structure and migration patterns of A. taeniorhynchus, suggesting that A. taeniorhynchus is an important vector of this arthropod-borne parasite in the Galapagos Islands. Therefore mosquito population structure in Galapagos may have the potential to influence mosquito-borne parasite population dynamics, and the subsequent impacts of such pathogens on their host species in the islands.

  1. Patching genes to fight disease

    Energy Technology Data Exchange (ETDEWEB)

    Holzman, D.

    1990-09-03

    The National Institutes of Health has approved the first gene therapy experiments, one of which will try to cure cancer by bolstering the immune system. The applications of such therapy are limited, but the potential aid to people with genetic diseases is great.

  2. Rare disease relations through common genes and protein interactions.

    Science.gov (United States)

    Fernandez-Novo, Sara; Pazos, Florencio; Chagoyen, Monica

    2016-06-01

    ODCs (Orphan Disease Connections), available at http://csbg.cnb.csic.es/odcs, is a novel resource to explore potential molecular relations between rare diseases. These molecular relations have been established through the integration of disease susceptibility genes and human protein-protein interactions. The database currently contains 54,941 relations between 3032 diseases.

  3. Molecular biology of human muscle disease

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, P.W.; Epstein, H.F. (Baylor Coll. of Medicine, Houston, TX (United States))

    1991-01-01

    The molecular revolution that is transforming the entire biomedical field has had far-reaching impact in its application to inherited human muscle disease. The gene for Duchenne muscular dystrophy was one of the first cloned without knowledge of the defective protein product. This success was based upon the availability of key chromosomal aberrations that provided molecular landmarks for the disease locus. Subsequent discoveries regarding the mode of expression for this gene, the structure and localization of its protein product dystrophin, and molecular diagnosis of affected and carrier individuals constitute a paradigm for investigation of human genetics. Finding the gene for myotonic muscular dystrophy is requiring the brute force approach of cloning several million bases of DNA, identifying expressed sequences, and characterizing candidate genes. The gene that causes hypertrophic cardiomyopathy has been found serendipitously to be one of the genetic markers on chromosome 14, the {beta} myosin heavy chain.

  4. Engineering large animal models of human disease.

    Science.gov (United States)

    Whitelaw, C Bruce A; Sheets, Timothy P; Lillico, Simon G; Telugu, Bhanu P

    2016-01-01

    The recent development of gene editing tools and methodology for use in livestock enables the production of new animal disease models. These tools facilitate site-specific mutation of the genome, allowing animals carrying known human disease mutations to be produced. In this review, we describe the various gene editing tools and how they can be used for a range of large animal models of diseases. This genomic technology is in its infancy but the expectation is that through the use of gene editing tools we will see a dramatic increase in animal model resources available for both the study of human disease and the translation of this knowledge into the clinic. Comparative pathology will be central to the productive use of these animal models and the successful translation of new therapeutic strategies.

  5. Hydrodynamic IL10 Gene Transfer in Human Colon: Results from an "EX VIVO" Study with Potential Clinical Application in Crohn's Disease.

    Science.gov (United States)

    Frasson, Matteo; Sendra, Luis; Miguel, Antonio; Herrero, Maria José; Montalvá, Eva; López-Andújar, Rafael; Martínez-Pastor, Juan; Martí-Bonmatí, Luis; Granero, Eduardo García; Aliño, Salvador

    2017-08-01

    The aim of this work is to evaluate the efficacy of hydrodynamic venous IL10 gene delivery to "ex vivo" human colon segments and to determine its potential interest in Crohn's disease treatment. Twenty human colon segments were obtained from surgical resections. Hydrodynamic transfection through the main vein of the pedicle with 50 mL of hIL10 plasmid (20 μg/mL) solution was performed on 13 of them. Tissue sections were cultured and DNA, RNA, and protein copies were determined after 1, 2, and 4 days. Data obtained were compared with 6 nontransfected specimens. Finally, 1 specimen was injected with gold nanoparticles, and their distribution was examined under electron microscope. IL10 DNA levels were higher in treated tissues than in controls (P < 0.001), decreasing along time. The amount of hIL10 RNA was significantly increased in treated tissues when compared with controls (P = 0.001). The indexes of protein IL10 translation in treated groups were much higher (P < 0.001) than the basal production. The protein expression was higher in transfected tissue (10-50-fold, with respect to control tissue); this difference being established during the first hours and maintained during, at least, 4 days. With electron microscopy, we hardly observed large (15 nm) gold nanoparticles within the tissue, always in the submucosa. However, multiple small (4 nm) nanoparticles were observed within the cytoplasm of enterocytes in mucosa. Hydrodynamic procedure efficiently delivers the IL10 gene to the human colon, achieving levels of tissue protein expression high enough to mediate pharmacological effects with interest in controlling immune response in patients with Crohn's disease.

  6. Gene conversion in human rearranged immunoglobulin genes.

    Science.gov (United States)

    Darlow, John M; Stott, David I

    2006-07-01

    Over the past 20 years, many DNA sequences have been published suggesting that all or part of the V(H) segment of a rearranged immunoglobulin gene may be replaced in vivo. Two different mechanisms appear to be operating. One of these is very similar to primary V(D)J recombination, involving the RAG proteins acting upon recombination signal sequences, and this has recently been proven to occur. Other sequences, many of which show partial V(H) replacements with no addition of untemplated nucleotides at the V(H)-V(H) joint, have been proposed to occur by an unusual RAG-mediated recombination with the formation of hybrid (coding-to-signal) joints. These appear to occur in cells already undergoing somatic hypermutation in which, some authors are convinced, RAG genes are silenced. We recently proposed that the latter type of V(H) replacement might occur by homologous recombination initiated by the activity of AID (activation-induced cytidine deaminase), which is essential for somatic hypermutation and gene conversion. The latter has been observed in other species, but not in human Ig genes, so far. In this paper, we present a new analysis of sequences published as examples of the second type of rearrangement. This not only shows that AID recognition motifs occur in recombination regions but also that some sequences show replacement of central sections by a sequence from another gene, similar to gene conversion in the immunoglobulin genes of other species. These observations support the proposal that this type of rearrangement is likely to be AID-mediated rather than RAG-mediated and is consistent with gene conversion.

  7. Determinants of host susceptibility to murine respiratory syncytial virus (RSV disease identify a role for the innate immunity scavenger receptor MARCO gene in human infants

    Directory of Open Access Journals (Sweden)

    Monica High

    2016-09-01

    Interpretation: Translational integration of a genetic animal model and in vitro human studies identified a role for MARCO in human RSV disease severity. Because no RSV vaccines are approved for clinical use, genetic studies have implications for diagnosing individuals who are at risk for severe RSV disease, and disease prevention strategies (e.g. RSV antibodies.

  8. Disease-aging network reveals significant roles of aging genes in connecting genetic diseases.

    Science.gov (United States)

    Wang, Jiguang; Zhang, Shihua; Wang, Yong; Chen, Luonan; Zhang, Xiang-Sun

    2009-09-01

    One of the challenging problems in biology and medicine is exploring the underlying mechanisms of genetic diseases. Recent studies suggest that the relationship between genetic diseases and the aging process is important in understanding the molecular mechanisms of complex diseases. Although some intricate associations have been investigated for a long time, the studies are still in their early stages. In this paper, we construct a human disease-aging network to study the relationship among aging genes and genetic disease genes. Specifically, we integrate human protein-protein interactions (PPIs), disease-gene associations, aging-gene associations, and physiological system-based genetic disease classification information in a single graph-theoretic framework and find that (1) human disease genes are much closer to aging genes than expected by chance; and (2) diseases can be categorized into two types according to their relationships with aging. Type I diseases have their genes significantly close to aging genes, while type II diseases do not. Furthermore, we examine the topological characters of the disease-aging network from a systems perspective. Theoretical results reveal that the genes of type I diseases are in a central position of a PPI network while type II are not; (3) more importantly, we define an asymmetric closeness based on the PPI network to describe relationships between diseases, and find that aging genes make a significant contribution to associations among diseases, especially among type I diseases. In conclusion, the network-based study provides not only evidence for the intricate relationship between the aging process and genetic diseases, but also biological implications for prying into the nature of human diseases.

  9. Genes in congenital heart disease: atrioventricular valve formation.

    NARCIS (Netherlands)

    Joziasse, I.C.; van de Smagt, J.J.; Smith, K.; Bakkers, J.; Sieswerda, G.J.; Mulder, B.J.M.; Doevendans, P.A.

    2008-01-01

    Through the use of animal studies, many candidate genes (mainly encoding transcriptional factors and receptors) have been implicated in the development of congenital heart disease. Thus far, only a minority of these genes have been shown to carry mutations associated with congenital disease in human

  10. BTN1, the Saccharomyces cerevisiae homolog to the human Batten disease gene, is involved in phospholipid distribution

    Science.gov (United States)

    Padilla-López, Sergio; Langager, Deanna; Chan, Chun-Hung; Pearce, David A.

    2012-01-01

    SUMMARY BTN1, the yeast homolog to human CLN3 (which is defective in Batten disease), has been implicated in the regulation of vacuolar pH, potentially by modulating vacuolar-type H+-ATPase (V-ATPase) activity. However, we report that Btn1p and the V-ATPase complex do not physically interact, suggesting that any influence that Btn1p has on V-ATPase is indirect. Because membrane lipid environment plays a crucial role in the activity and function of membrane proteins, we investigated whether cells lacking BTN1 have altered membrane phospholipid content. Deletion of BTN1 (btn1-Δ) led to a decreased level of phosphatidylethanolamine (PtdEtn) in both mitochondrial and vacuolar membranes. In yeast there are two phosphatidylserine (PtdSer) decarboxylases, Psd1p and Psd2p, and these proteins are responsible for the synthesis of PtdEtn in mitochondria and Golgi-endosome, respectively. Deletion of both BTN1 and PSD1 (btn1-Δ psd1-Δ) led to a further decrease in levels of PtdEtn in ER membranes associated to mitochondria (MAMs), with a parallel increase in PtdSer. Fluorescent-labeled PtdSer (NBD-PtdSer) transport assays demonstrated that transport of NBD-PtdSer from the ER to both mitochondria and endosomes and/or vacuole is affected in btn1-Δ cells. Moreover, btn1-Δ affects the synthesis of PtdEtn by the Kennedy pathway and impairs the ability of psd1-Δ cells to restore PtdEtn to normal levels in mitochondria and vacuoles by ethanolamine addition. In summary, lack of Btn1p alters phospholipid levels and might play a role in regulating their subcellular distribution. PMID:22107873

  11. Regulation of gene expression in human tendinopathy

    Science.gov (United States)

    2011-01-01

    Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics. PMID:21539748

  12. [Learning and memory amelioration of transplantation of the neural stem cells modified with human brain-derived neurotrophic factor gene on Alzheimer disease model rat].

    Science.gov (United States)

    Zhao, Zhiying; Hu, Haitao; Feng, Gaifeng

    2005-05-01

    To investigate the memory amelioration of the Alzheimer disease (AD) model rat after being transplanted the single neural stem cells (NSC) and NSC modified with human brain-derived neurotrophic factor (hBDNF) gene. Forty SD rats were divided evenly into 4 groups randomly. The AD model rats were made by cutting unilaterally the fibria-fornix of male rats. Ten to twelve days after surgery, the genetically modified and unmodified NSC were implanted into the lateral cerebral ventricle of group III and group IV respectively. Two weeks after transplantation, the amelioration of memory impairment of the rats was detected by Morris water maze. The average escaping latency of the group III and group IV (41.84 +/- 21.76 s, 25.23 +/- 17.06 s respectively) was shorter than that of the group II (70.91 +/- 23.67 s) (P0.05). More lineal and oriented strategies were used in group IV. The behavioral amelioration of AD model rat was obtained by transplanting single NSC and hBDNF-gene-modified NSC. The effect of the NSC group modified with hBDNF gene is better than that of the group III.

  13. Development of transgenic rats producing human β-amyloid precursor protein as a model for Alzheimer's disease: Transgene and endogenous APP genes are regulated tissue-specifically

    Directory of Open Access Journals (Sweden)

    Chan Anthony WS

    2008-02-01

    Full Text Available Abstract Background Alzheimer's disease (AD is a devastating neurodegenerative disorder that affects a large and growing number of elderly individuals. In addition to idiopathic disease, AD is also associated with autosomal dominant inheritance, which causes a familial form of AD (FAD. Some instances of FAD have been linked to mutations in the β-amyloid protein precursor (APP. Although there are numerous mouse AD models available, few rat AD models, which have several advantages over mice, have been generated. Results Fischer 344 rats expressing human APP driven by the ubiquitin-C promoter were generated via lentiviral vector infection of Fischer 344 zygotes. We generated two separate APP-transgenic rat lines, APP21 and APP31. Serum levels of human amyloid-beta (Aβ40 were 298 pg/ml for hemizygous and 486 pg/ml for homozygous APP21 animals. Serum Aβ42 levels in APP21 homozygous rats were 135 pg/ml. Immunohistochemistry in brain showed that the human APP transgene was expressed in neurons, but not in glial cells. These findings were consistent with independent examination of enhanced green fluorescent protein (eGFP in the brains of eGFP-transgenic rats. APP21 and APP31 rats expressed 7.5- and 3-times more APP mRNA, respectively, than did wild-type rats. Northern blots showed that the human APP transgene, driven by the ubiquitin-C promoter, is expressed significantly more in brain, kidney and lung compared to heart and liver. A similar expression pattern was also seen for the endogenous rat APP. The unexpected similarity in the tissue-specific expression patterns of endogenous rat APP and transgenic human APP mRNAs suggests regulatory elements within the cDNA sequence of APP. Conclusion This manuscript describes the generation of APP-transgenic inbred Fischer 344 rats. These are the first human AD model rat lines generated by lentiviral infection. The APP21 rat line expresses high levels of human APP and could be a useful model for AD. Tissue

  14. Heart Disease: A Price Humans Pay for Fertility?

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_166826.html Heart Disease: A Price Humans Pay for Fertility? Study finds ... 22, 2017 (HealthDay News) -- Certain genes linked to heart disease may also improve your chances of having children, ...

  15. STATE-OF-THE-ART HUMAN GENE THERAPY: PART II. GENE THERAPY STRATEGIES AND APPLICATIONS

    OpenAIRE

    2014-01-01

    In Part I of this Review, we introduced recent advances in gene delivery technologies and explained how they have powered some of the current human gene therapy applications. In Part II, we expand the discussion on gene therapy applications, focusing on some of the most exciting clinical uses. To help readers to grasp the essence and to better organize the diverse applications, we categorize them under four gene therapy strategies: (1) gene replacement therapy for monogenic diseases, (2) gene...

  16. State-of-the-art human gene therapy: part I. Gene delivery technologies.

    Science.gov (United States)

    Wang, Dan; Gao, Guangping

    2014-01-01

    Safe and effective gene delivery is a prerequisite for successful gene therapy. In the early age of human gene therapy, setbacks due to problematic gene delivery vehicles plagued the exciting therapeutic outcome. However, gene delivery technologies rapidly evolved ever since. With the advancement of gene delivery techniques, gene therapy clinical trials surged during the past decade. As the first gene therapy product (Glybera) has obtained regulatory approval and reached clinic, human gene therapy finally realized the promise that genes can be medicines. The diverse gene delivery techniques available today have laid the foundation for gene therapy applications in treating a wide range of human diseases. Some of the most urgent unmet medical needs, such as cancer and pandemic infectious diseases, have been tackled by gene therapy strategies with promising results. Furthermore, combining gene transfer with other breakthroughs in biomedical research and novel biotechnologies opened new avenues for gene therapy. Such innovative therapeutic strategies are unthinkable until now, and are expected to be revolutionary. In part I of this review, we introduced recent development of non-viral and viral gene delivery technology platforms. As cell-based gene therapy blossomed, we also summarized the diverse types of cells and vectors employed in ex vivo gene transfer. Finally, challenges in current gene delivery technologies for human use were discussed.

  17. Identification of PAHX, a Refsum disease gene.

    Science.gov (United States)

    Mihalik, S J; Morrell, J C; Kim, D; Sacksteder, K A; Watkins, P A; Gould, S J

    1997-10-01

    Refsum disease is an autosomal recessive disorder characterized by retinitis pigmentosa, peripheral polyneuropathy, cerebellar ataxia and increased cerebrospinal fluid protein. Biochemically, the disorder is defined by two related properties: pronounced accumulation of phytanic acid and selective loss of the peroxisomal dioxygenase required for alpha-hydroxylation of phytanoyl-CoA2. Decreased phytanic-acid oxidation is also observed in human cells lacking PEX7, the receptor for the type-2 peroxisomal targetting signal (PTS2; refs 3,4), suggesting that the enzyme defective in Refsum disease is targetted to peroxisomes by a PTS2. We initially identified the human PAHX and mouse Pahx genes as expressed sequence tags (ESTs) capable of encoding PTS2 proteins. Human PAHX is targetted to peroxisomes, requires the PTS2 receptor for peroxisomal localization, interacts with the PTS2 receptor in the yeast two-hybrid assay and has intrinsic phytanoyl-CoA alpha-hydroxylase activity that requires the dioxygenase cofactor iron and cosubstrate 2-oxoglutarate. Radiation hybrid data place PAHX on chromosome 10 between the markers D10S249 and D10S466, a region previously implicated in Refsum disease by homozygosity mapping. We find that both Refsum disease patients examined are homozygous for inactivating mutations in PAHX, demonstrating that mutations in PAHX can cause Refsum disease.

  18. Effect of gene polymorphisms on periodontal diseases

    Directory of Open Access Journals (Sweden)

    Fouzia Tarannum

    2012-01-01

    Full Text Available Periodontal diseases are inflammatory diseases of supporting structures of the tooth. It results in the destruction of the supporting structures and most of the destructive processes involved are host derived. The processes leading to destruction and regeneration of the destroyed tissues are of great interest to both researchers and clinicians. The selective susceptibility of subjects for periodontitis has remained an enigma and wide varieties of risk factors have been implicated for the manifestation and progression of periodontitis. Genetic factors have been a new addition to the list of risk factors for periodontal diseases. With the availability of human genome sequence and the knowledge of the complement of the genes, it should be possible to identify the metabolic pathways involved in periodontal destruction and regeneration. Most forms of periodontitis represent a life-long account of interactions between the genome, behaviour, and environment. The current practical utility of genetic knowledge in periodontitis is limited. The information contained within the human genome can potentially lead to a better understanding of the control mechanisms modulating the production of inflammatory mediators as well as provides potential therapeutic targets for periodontal disease. Allelic variants at multiple gene loci probably influence periodontitis susceptibility.

  19. Mining disease genes using integrated protein-protein interaction and gene-gene co-regulation information.

    Science.gov (United States)

    Li, Jin; Wang, Limei; Guo, Maozu; Zhang, Ruijie; Dai, Qiguo; Liu, Xiaoyan; Wang, Chunyu; Teng, Zhixia; Xuan, Ping; Zhang, Mingming

    2015-01-01

    In humans, despite the rapid increase in disease-associated gene discovery, a large proportion of disease-associated genes are still unknown. Many network-based approaches have been used to prioritize disease genes. Many networks, such as the protein-protein interaction (PPI), KEGG, and gene co-expression networks, have been used. Expression quantitative trait loci (eQTLs) have been successfully applied for the determination of genes associated with several diseases. In this study, we constructed an eQTL-based gene-gene co-regulation network (GGCRN) and used it to mine for disease genes. We adopted the random walk with restart (RWR) algorithm to mine for genes associated with Alzheimer disease. Compared to the Human Protein Reference Database (HPRD) PPI network alone, the integrated HPRD PPI and GGCRN networks provided faster convergence and revealed new disease-related genes. Therefore, using the RWR algorithm for integrated PPI and GGCRN is an effective method for disease-associated gene mining.

  20. Molecular Pathology of Human Prion Diseases

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available Prion diseases are fatal neurodegenerative conditions in humans and animals. In this review, we summarize the molecular background of phenotypic variability, relation of prion protein (PrP to other proteins associated with neurodegenerative diseases, and pathogenesis of neuronal vulnerability. PrP exists in different forms that may be present in both diseased and non-diseased brain, however, abundant disease-associated PrP together with tissue pathology characterizes prion diseases and associates with transmissibility. Prion diseases have different etiological background with distinct pathogenesis and phenotype. Mutations of the prion protein gene are associated with genetic forms. The codon 129 polymorphism in combination with the Western blot pattern of PrP after proteinase K digestion serves as a basis for molecular subtyping of sporadic Creutzfeldt-Jakob disease. Tissue damage may result from several parallel, interacting or subsequent pathways that involve cellular systems associated with synapses, protein processing, oxidative stress, autophagy, and apoptosis.

  1. The human crystallin gene families

    Directory of Open Access Journals (Sweden)

    Wistow Graeme

    2012-12-01

    Full Text Available Abstract Crystallins are the abundant, long-lived proteins of the eye lens. The major human crystallins belong to two different superfamilies: the small heat-shock proteins (α-crystallins and the βγ-crystallins. During evolution, other proteins have sometimes been recruited as crystallins to modify the properties of the lens. In the developing human lens, the enzyme betaine-homocysteine methyltransferase serves such a role. Evolutionary modification has also resulted in loss of expression of some human crystallin genes or of specific splice forms. Crystallin organization is essential for lens transparency and mutations; even minor changes to surface residues can cause cataract and loss of vision.

  2. Monoallelic expression of the human FOXP2 speech gene.

    Science.gov (United States)

    Adegbola, Abidemi A; Cox, Gerald F; Bradshaw, Elizabeth M; Hafler, David A; Gimelbrant, Alexander; Chess, Andrew

    2015-06-02

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations.

  3. Gene Editing: A New Tool for Viral Disease.

    Science.gov (United States)

    Kennedy, Edward M; Cullen, Bryan R

    2017-01-14

    The emergence of the CRISPR/Cas system of antiviral adaptive immunity in bacteria as a facile system for gene editing in mammalian cells may well lead to gene editing becoming a novel treatment for a range of human diseases, especially those caused by deleterious germline mutations. Another potential target for gene editing are DNA viruses that cause chronic pathogenic diseases that cannot be cured by using currently available drugs. We review the current state of this field and discuss the potential advantages and problems with using a gene editing approach as a treatment for diseases caused by DNA viruses.

  4. Bioinformatics strategies for disease gene identification

    NARCIS (Netherlands)

    Driel, M.A. van

    2005-01-01

    Disease gene identification based on chromosomal localisation is sometimes difficult and often time-consuming. It requires collecting as much information on the disease as possible. Combining positional information with disease characteristics might give hints by which candidate disease genes can be

  5. Novel susceptibility genes in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Colin Noble; Elaine Nimmo; Daniel Gaya; Richard K Russell; Jack Satsangi

    2006-01-01

    The inflammatory bowel disease, Crohn's disease and ulcerative colitis, are polygenic disorders with important environmental interactions. To date, the most widely adopted approach to identifying susceptibility genes in complex diseases has involved genome wide linkage studies followed by studies of positional candidate genes in loci of interest. This review encompasses data from studies into novel candidate genes implicated in the pathogenesis of inflammatory bowel disease. Novel techniques to identify candidate genes-genome wide association studies, yeast-two hybrid screening, microarray gene expression studies and proteomic profiling,are also reviewed and their potential role in unravelling the pathogenesis of inflammatory bowel disease are discussed.

  6. Evolutionary conservation in genes underlying human psychiatric disorders

    OpenAIRE

    Lisa Michelle Ogawa; Eric Joseph Vallender

    2014-01-01

    Many psychiatric diseases observed in humans have tenuous or absent analogs in other species. Most notable among these are schizophrenia and autism. One hypothesis has posited that these diseases have arisen as a consequence of human brain evolution, for example, that the same processes that led to advances in cognition, language, and executive function also resulted in novel diseases in humans when dysfunctional. Here, the molecular evolution of the protein-coding regions of genes associated...

  7. State-of-the-art human gene therapy: part II. Gene therapy strategies and clinical applications.

    Science.gov (United States)

    Wang, Dan; Gao, Guangping

    2014-09-01

    In Part I of this Review (Wang and Gao, 2014), we introduced recent advances in gene delivery technologies and explained how they have powered some of the current human gene therapy applications. In Part II, we expand the discussion on gene therapy applications, focusing on some of the most exciting clinical uses. To help readers to grasp the essence and to better organize the diverse applications, we categorize them under four gene therapy strategies: (1) gene replacement therapy for monogenic diseases, (2) gene addition for complex disorders and infectious diseases, (3) gene expression alteration targeting RNA, and (4) gene editing to introduce targeted changes in host genome. Human gene therapy started with the simple idea that replacing a faulty gene with a functional copy can cure a disease. It has been a long and bumpy road to finally translate this seemingly straightforward concept into reality. As many disease mechanisms unraveled, gene therapists have employed a gene addition strategy backed by a deep knowledge of what goes wrong in diseases and how to harness host cellular machinery to battle against diseases. Breakthroughs in other biotechnologies, such as RNA interference and genome editing by chimeric nucleases, have the potential to be integrated into gene therapy. Although clinical trials utilizing these new technologies are currently sparse, these innovations are expected to greatly broaden the scope of gene therapy in the near future.

  8. Genes, diet and inflammatory bowel disease.

    Science.gov (United States)

    Ferguson, Lynnette R; Shelling, Andrew N; Browning, Brian L; Huebner, Claudia; Petermann, Ivonne

    2007-09-01

    Inflammatory bowel disease (IBD) arises in part from a genetic predisposition, through the inheritance of a number of contributory genetic polymorphisms. These variant forms of genes may be associated with an abnormal response to normal luminal bacteria. A consistent observation across most populations is that any of three polymorphisms of the Caspase-activated recruitment domain (CARD15) gene are more prevalent in IBD patients as compared with unaffected controls. Similar aberrant responses to bacteria are associated with variants in Autophagy-related 16-like 1 (ATG16L1) and human defensin (HBD-2, -3 and -4) genes. The defective bacterial signal in turn leads to an excessive immune response, presenting as chronic gut inflammation in susceptible individuals. Inconsistent population reports implicate the major histocompatability complex (MHC), that encodes a number of human leukocyte antigens (HLA), MHC class I chain-related gene A (MICA) or cytokines, such as tumour necrosis factor-alpha (TNF-alpha). Toll-like receptors encoded by the TLR4 or TLR9 genes may also play a role. Recent whole genome scans suggest that a rare variant in the interleukin-23 receptor (IL23R) gene may actually protect against IBD. Other implicated genes may affect mucosal cell polarity (Drosophila discs large homologue 5, DLG5) or mucosal transporter function (sodium dependent organic cation transporters, SLC22A4 and SLC22A5). A variant in ABCB1 (ATP-binding cassette subfamily B member 1) may be especially associated with increased risk of UC. While pharmacogenetics is increasingly being used to predict and optimise clinical response to therapy, nutrigenetics may have even greater potential. In many cases, IBD can be controlled through prescribing an elemental diet, which appears to act through modulating cytokine response and changing the gut microbiota. More generally, no single group of dietary items is beneficial or detrimental to all patients, and elimination diets have been used to

  9. Inflammatory Bowel Disease: Progress Towards a Gene

    Directory of Open Access Journals (Sweden)

    David A van Heel

    2000-01-01

    Full Text Available The pathogenesis of ulcerative colitis (UC and Crohn’s disease (CD is still unknown, but the importance of genetic susceptibility has been clearly shown by epidemiological data from family and twin studies. Linkage studies have identified two susceptibility loci for inflammatory bowel disease (IBD on chromosomes 12 and 16. Importantly, these linkages have been replicated by independent investigators, and studies of positional candidates within these regions continue, together with fine mapping strategies. Regions of ’suggestive’ linkage on chromosomes 1, 3, 4, 6, 7, 10, 22 and X have also been reported in individual studies. Other important candidate genes investigated include the interleukin-1 receptor antagonist, MUC3 and genes of the human leukocyte antigen (HLA system. The apparently conflicting data in different studies from around the world may be explained by ethnic differences, case mix and genetic heterogeneity. Replicated class II HLA associations include HLA DRB1*0103 and DR2 (DRB1*1502, involved in UC susceptibility, and HLA DRB1*03 and DR4 as resistance alleles for CD and UC respectively. Animal studies have provided insights from targeted mutations and quantitative trait locus analysis. The goals of continuing research include narrowing the regions of linkages and analysis of candidate genes, and possibly the application of newly developed methods using single nucleotide polymorphisms. Advances in IBD genetics hold the potential to provide knowledge about the disease pathogenesis at the molecular level, with ensuing benefits for clinical practice.

  10. Pinpointing disease genes through phenomic and genomic data fusion.

    Science.gov (United States)

    Jiang, Rui; Wu, Mengmeng; Li, Lianshuo

    2015-01-01

    Pinpointing genes involved in inherited human diseases remains a great challenge in the post-genomics era. Although approaches have been proposed either based on the guilt-by-association principle or making use of disease phenotype similarities, the low coverage of both diseases and genes in existing methods has been preventing the scan of causative genes for a significant proportion of diseases at the whole-genome level. To overcome this limitation, we proposed a rigorous statistical method called pgFusion to prioritize candidate genes by integrating one type of disease phenotype similarity derived from the Unified Medical Language System (UMLS) and seven types of gene functional similarities calculated from gene expression, gene ontology, pathway membership, protein sequence, protein domain, protein-protein interaction and regulation pattern, respectively. Our method covered a total of 7,719 diseases and 20,327 genes, achieving the highest coverage thus far for both diseases and genes. We performed leave-one-out cross-validation experiments to demonstrate the superior performance of our method and applied it to a real exome sequencing dataset of epileptic encephalopathies, showing the capability of this approach in finding causative genes for complex diseases. We further provided the standalone software and online services of pgFusion at http://bioinfo.au.tsinghua.edu.cn/jianglab/pgfusion. pgFusion not only provided an effective way for prioritizing candidate genes, but also demonstrated feasible solutions to two fundamental questions in the analysis of big genomic data: the comparability of heterogeneous data and the integration of multiple types of data. Applications of this method in exome or whole genome sequencing studies would accelerate the finding of causative genes for human diseases. Other research fields in genomics could also benefit from the incorporation of our data fusion methodology.

  11. Discovery and analysis of inflammatory disease-related genes using cDNA microarrays

    OpenAIRE

    1997-01-01

    cDNA microarray technology is used to profile complex diseases and discover novel disease-related genes. In inflammatory disease such as rheumatoid arthritis, expression patterns of diverse cell types contribute to the pathology. We have monitored gene expression in this disease state with a microarray of selected human genes of probable significance in inflammation as well as with genes expressed in peripheral human blood cells. Messenger RNA from cultured macrophages, chondrocyte cell lines...

  12. A survey of disease connections for CD4+ T cell master genes and their directly linked genes.

    Science.gov (United States)

    Li, Wentian; Espinal-Enríquez, Jesús; Simpfendorfer, Kim R; Hernández-Lemus, Enrique

    2015-12-01

    Genome-wide association studies and other genetic analyses have identified a large number of genes and variants implicating a variety of disease etiological mechanisms. It is imperative for the study of human diseases to put these genetic findings into a coherent functional context. Here we use system biology tools to examine disease connections of five master genes for CD4+ T cell subtypes (TBX21, GATA3, RORC, BCL6, and FOXP3). We compiled a list of genes functionally interacting (protein-protein interaction, or by acting in the same pathway) with the master genes, then we surveyed the disease connections, either by experimental evidence or by genetic association. Embryonic lethal genes (also known as essential genes) are over-represented in master genes and their interacting genes (55% versus 40% in other genes). Transcription factors are significantly enriched among genes interacting with the master genes (63% versus 10% in other genes). Predicted haploinsufficiency is a feature of most these genes. Disease-connected genes are enriched in this list of genes: 42% of these genes have a disease connection according to Online Mendelian Inheritance in Man (OMIM) (versus 23% in other genes), and 74% are associated with some diseases or phenotype in a Genome Wide Association Study (GWAS) (versus 43% in other genes). Seemingly, not all of the diseases connected to genes surveyed were immune related, which may indicate pleiotropic functions of the master regulator genes and associated genes.

  13. Alzheimer's disease risk genes and mechanisms of disease pathogenesis.

    Science.gov (United States)

    Karch, Celeste M; Goate, Alison M

    2015-01-01

    We review the genetic risk factors for late-onset Alzheimer's disease (AD) and their role in AD pathogenesis. More recent advances in understanding of the human genome-technologic advances in methods to analyze millions of polymorphisms in thousands of subjects-have revealed new genes associated with AD risk, including ABCA7, BIN1, CASS4, CD33, CD2AP, CELF1, CLU, CR1, DSG2, EPHA1, FERMT2, HLA-DRB5-DBR1, INPP5D, MS4A, MEF2C, NME8, PICALM, PTK2B, SLC24H4-RIN3, SORL1, and ZCWPW1. Emerging technologies to analyze the entire genome in large data sets have also revealed coding variants that increase AD risk: PLD3 and TREM2. We review the relationship between these AD risk genes and the cellular and neuropathologic features of AD. Understanding the mechanisms underlying the association of these genes with risk for disease will provide the most meaningful targets for therapeutic development to date. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Gene transfer therapy in vascular diseases.

    Science.gov (United States)

    McKay, M J; Gaballa, M A

    2001-01-01

    Somatic gene therapy of vascular diseases is a promising new field in modern medicine. Recent advancements in gene transfer technology have greatly evolved our understanding of the pathophysiologic role of candidate disease genes. With this knowledge, the expression of selective gene products provides the means to test the therapeutic use of gene therapy in a multitude of medical conditions. In addition, with the completion of genome sequencing programs, gene transfer can be used also to study the biologic function of novel genes in vivo. Novel genes are delivered to targeted tissue via several different vehicles. These vectors include adenoviruses, retroviruses, plasmids, plasmid/liposomes, and oligonucleotides. However, each one of these vectors has inherent limitations. Further investigations into developing delivery systems that not only allow for efficient, targeted gene transfer, but also are stable and nonimmunogenic, will optimize the clinical application of gene therapy in vascular diseases. This review further discusses the available mode of gene delivery and examines six major areas in vascular gene therapy, namely prevention of restenosis, thrombosis, hypertension, atherosclerosis, peripheral vascular disease in congestive heart failure, and ischemia. Although we highlight some of the recent advances in the use of gene therapy in treating vascular disease discovered primarily during the past two years, many excellent studies published during that period are not included in this review due to space limitations. The following is a selective review of practical uses of gene transfer therapy in vascular diseases. This review primarily covers work performed in the last 2 years. For earlier work, the reader may refer to several excellent review articles. For instance, Belalcazer et al. (6) reviewed general aspects of somatic gene therapy and the different vehicles used for the delivery of therapeutic genes. Gene therapy in restenosis and stimulation of

  15. Viral diseases and human evolution

    OpenAIRE

    2000-01-01

    The interaction of man with viral agents was possibly a key factor shaping human evolution, culture and civilization from its outset. Evidence of the effect of disease, since the early stages of human speciation, through pre-historical times to the present suggest that the types of viruses associated with man changed in time. As human populations progressed technologically, they grew in numbers and density. As a consequence different viruses found suitable conditions to thrive and establish l...

  16. Different level of population differentiation among human genes

    Directory of Open Access Journals (Sweden)

    Zhang Ya-Ping

    2011-01-01

    Full Text Available Abstract Background During the colonization of the world, after dispersal out of African, modern humans encountered changeable environments and substantial phenotypic variations that involve diverse behaviors, lifestyles and cultures, were generated among the different modern human populations. Results Here, we study the level of population differentiation among different populations of human genes. Intriguingly, genes involved in osteoblast development were identified as being enriched with higher FST SNPs, a result consistent with the proposed role of the skeletal system in accounting for variation among human populations. Genes involved in the development of hair follicles, where hair is produced, were also found to have higher levels of population differentiation, consistent with hair morphology being a distinctive trait among human populations. Other genes that showed higher levels of population differentiation include those involved in pigmentation, spermatid, nervous system and organ development, and some metabolic pathways, but few involved with the immune system. Disease-related genes demonstrate excessive SNPs with lower levels of population differentiation, probably due to purifying selection. Surprisingly, we find that Mendelian-disease genes appear to have a significant excessive of SNPs with high levels of population differentiation, possibly because the incidence and susceptibility of these diseases show differences among populations. As expected, microRNA regulated genes show lower levels of population differentiation due to purifying selection. Conclusion Our analysis demonstrates different level of population differentiation among human populations for different gene groups.

  17. DEGAS: de novo discovery of dysregulated pathways in human diseases.

    Directory of Open Access Journals (Sweden)

    Igor Ulitsky

    Full Text Available BACKGROUND: Molecular studies of the human disease transcriptome typically involve a search for genes whose expression is significantly dysregulated in sick individuals compared to healthy controls. Recent studies have found that only a small number of the genes in human disease-related pathways show consistent dysregulation in sick individuals. However, those studies found that some pathway genes are affected in most sick individuals, but genes can differ among individuals. While a pathway is usually defined as a set of genes known to share a specific function, pathway boundaries are frequently difficult to assign, and methods that rely on such definition cannot discover novel pathways. Protein interaction networks can potentially be used to overcome these problems. METHODOLOGY/PRINCIPAL FINDINGS: We present DEGAS (DysrEgulated Gene set Analysis via Subnetworks, a method for identifying connected gene subnetworks significantly enriched for genes that are dysregulated in specimens of a disease. We applied DEGAS to seven human diseases and obtained statistically significant results that appear to home in on compact pathways enriched with hallmarks of the diseases. In Parkinson's disease, we provide novel evidence for involvement of mRNA splicing, cell proliferation, and the 14-3-3 complex in the disease progression. DEGAS is available as part of the MATISSE software package (http://acgt.cs.tau.ac.il/matisse. CONCLUSIONS/SIGNIFICANCE: The subnetworks identified by DEGAS can provide a signature of the disease potentially useful for diagnosis, pinpoint possible pathways affected by the disease, and suggest targets for drug intervention.

  18. Prioritization of candidate disease genes by topological similarity between disease and protein diffusion profiles.

    Science.gov (United States)

    Zhu, Jie; Qin, Yufang; Liu, Taigang; Wang, Jun; Zheng, Xiaoqi

    2013-01-01

    Identification of gene-phenotype relationships is a fundamental challenge in human health clinic. Based on the observation that genes causing the same or similar phenotypes tend to correlate with each other in the protein-protein interaction network, a lot of network-based approaches were proposed based on different underlying models. A recent comparative study showed that diffusion-based methods achieve the state-of-the-art predictive performance. In this paper, a new diffusion-based method was proposed to prioritize candidate disease genes. Diffusion profile of a disease was defined as the stationary distribution of candidate genes given a random walk with restart where similarities between phenotypes are incorporated. Then, candidate disease genes are prioritized by comparing their diffusion profiles with that of the disease. Finally, the effectiveness of our method was demonstrated through the leave-one-out cross-validation against control genes from artificial linkage intervals and randomly chosen genes. Comparative study showed that our method achieves improved performance compared to some classical diffusion-based methods. To further illustrate our method, we used our algorithm to predict new causing genes of 16 multifactorial diseases including Prostate cancer and Alzheimer's disease, and the top predictions were in good consistent with literature reports. Our study indicates that integration of multiple information sources, especially the phenotype similarity profile data, and introduction of global similarity measure between disease and gene diffusion profiles are helpful for prioritizing candidate disease genes. Programs and data are available upon request.

  19. Viral diseases and human evolution

    Directory of Open Access Journals (Sweden)

    Leal Élcio de Souza

    2000-01-01

    Full Text Available The interaction of man with viral agents was possibly a key factor shaping human evolution, culture and civilization from its outset. Evidence of the effect of disease, since the early stages of human speciation, through pre-historical times to the present suggest that the types of viruses associated with man changed in time. As human populations progressed technologically, they grew in numbers and density. As a consequence different viruses found suitable conditions to thrive and establish long-lasting associations with man. Although not all viral agents cause disease and some may in fact be considered beneficial, the present situation of overpopulation, poverty and ecological inbalance may have devastating effets on human progress. Recently emerged diseases causing massive pandemics (eg., HIV-1 and HCV, dengue, etc. are becoming formidable challenges, which may have a direct impact on the fate of our species.

  20. Bioinformatics methods for identifying candidate disease genes

    Directory of Open Access Journals (Sweden)

    van Driel Marc A

    2006-06-01

    Full Text Available Abstract With the explosion in genomic and functional genomics information, methods for disease gene identification are rapidly evolving. Databases are now essential to the process of selecting candidate disease genes. Combining positional information with disease characteristics and functional information is the usual strategy by which candidate disease genes are selected. Enrichment for candidate disease genes, however, depends on the skills of the operating researcher. Over the past few years, a number of bioinformatics methods that enrich for the most likely candidate disease genes have been developed. Such in silico prioritisation methods may further improve by completion of datasets, by development of standardised ontologies across databases and species and, ultimately, by the integration of different strategies.

  1. In-silico human genomics with GeneCards

    Directory of Open Access Journals (Sweden)

    Stelzer Gil

    2011-10-01

    Full Text Available Abstract Since 1998, the bioinformatics, systems biology, genomics and medical communities have enjoyed a synergistic relationship with the GeneCards database of human genes (http://www.genecards.org. This human gene compendium was created to help to introduce order into the increasing chaos of information flow. As a consequence of viewing details and deep links related to specific genes, users have often requested enhanced capabilities, such that, over time, GeneCards has blossomed into a suite of tools (including GeneDecks, GeneALaCart, GeneLoc, GeneNote and GeneAnnot for a variety of analyses of both single human genes and sets thereof. In this paper, we focus on inhouse and external research activities which have been enabled, enhanced, complemented and, in some cases, motivated by GeneCards. In turn, such interactions have often inspired and propelled improvements in GeneCards. We describe here the evolution and architecture of this project, including examples of synergistic applications in diverse areas such as synthetic lethality in cancer, the annotation of genetic variations in disease, omics integration in a systems biology approach to kidney disease, and bioinformatics tools.

  2. Mitochondria: impaired mitochondrial translation in human disease.

    Science.gov (United States)

    Boczonadi, Veronika; Horvath, Rita

    2014-03-01

    Defects of the mitochondrial protein synthesis cause a subgroup of mitochondrial diseases, which are usually associated with decreased activities of multiple respiratory chain (RC) enzymes. The clinical presentations of these disorders are often disabling, progressive or fatal, affecting the brain, liver, skeletal muscle, heart and other organs. Currently there are no effective cures for these disorders and treatment is at best symptomatic. The diagnosis in patients with multiple respiratory chain complex defects is particularly difficult because of the massive number of nuclear genes potentially involved in intra-mitochondrial protein synthesis. Many of these genes are not yet linked to human disease. Whole exome sequencing rapidly changed the diagnosis of these patients by identifying the primary defect in DNA, and preventing the need for invasive and complex biochemical testing. Better understanding of the mitochondrial protein synthesis apparatus will help us to explore disease mechanisms and will provide clues for developing novel therapies.

  3. Human gene therapy: a brief overview of the genetic revolution.

    Science.gov (United States)

    Misra, Sanjukta

    2013-02-01

    Advances in biotechnology have brought gene therapy to the forefront of medical research. The prelude to successful gene therapy i.e. the efficient transfer and expression of a variety of human gene into target cells has already been accomplished in several systems. Safe methods have been devised to do this, using several viral and no-viral vectors. Two main approaches emerged: in vivo modification and ex vivo modification. Retrovirus, adenovirus, adeno-associated virus are suitable for gene therapeutic approaches which are based on permanent expression of the therapeutic gene. Non-viral vectors are far less efficient than viral vectors, but they have advantages due to their low immunogenicity and their large capacity for therapeutic DNA. To improve the function of non-viral vectors, the addition of viral functions such as receptor mediated uptake and nuclear translocation of DNA may finally lead to the development of an artificial virus. Gene transfer protocols have been approved for human use in inherited diseases, cancers and acquired disorders. In 1990, the first successful clinical trial of gene therapy was initiated for adenosine deaminase deficiency. Since then, the number of clinical protocols initiated worldwide has increased exponentially. Although preliminary results of these trials are somewhat disappointing, but human gene therapy dreams of treating diseases by replacing or supplementing the product of defective or introducing novel therapeutic genes. So definitely human gene therapy is an effective addition to the arsenal of approaches to many human therapies in the 21st century.

  4. DG-CST (Disease Gene Conserved Sequence Tags), a database of human–mouse conserved elements associated to disease genes

    Science.gov (United States)

    Boccia, Angelo; Petrillo, Mauro; di Bernardo, Diego; Guffanti, Alessandro; Mignone, Flavio; Confalonieri, Stefano; Luzi, Lucilla; Pesole, Graziano; Paolella, Giovanni; Ballabio, Andrea; Banfi, Sandro

    2005-01-01

    The identification and study of evolutionarily conserved genomic sequences that surround disease-related genes is a valuable tool to gain insight into the functional role of these genes and to better elucidate the pathogenetic mechanisms of disease. We created the DG-CST (Disease Gene Conserved Sequence Tags) database for the identification and detailed annotation of human–mouse conserved genomic sequences that are localized within or in the vicinity of human disease-related genes. CSTs are defined as sequences that show at least 70% identity between human and mouse over a length of at least 100 bp. The database contains CST data relative to over 1088 genes responsible for monogenetic human genetic diseases or involved in the susceptibility to multifactorial/polygenic diseases. DG-CST is accessible via the internet at http://dgcst.ceinge.unina.it/ and may be searched using both simple and complex queries. A graphic browser allows direct visualization of the CSTs and related annotations within the context of the relative gene and its transcripts. PMID:15608249

  5. Activities of Human Gene Nomenclature Committee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-16

    The objective of this project, shared between NIH and DOE, has been and remains to enable the medical genetics communities to use common names for genes that are discovered by different gene hunting groups, in different species. This effort provides consistent gene nomenclature and approved gene symbols to the community at large. This contributes to a uniform and consistent understanding of genomes, particularly the human as well as functional genomics based on comparisons between homologous genes in related species (human and mice).

  6. Recent efforts to model human diseases in vivo in Drosophila.

    Science.gov (United States)

    Pfleger, Cathie M; Reiter, Lawrence T

    2008-01-01

    Upon completion of sequencing the Drosophila genome, it was estimated that 61% of human disease-associated genes had sequence homologs in flies, and in some diseases such as cancer, the number was as high as 68%. We now know that as many as 75% of the genes associated with genetic disease have counterparts in Drosophila. Using better tools for mutation detection, association studies and whole genome analysis the number of human genes associated with genetic disease is steadily increasing. These detection efforts are outpacing the ability to assign function and understand the underlying cause of the disease at the molecular level. Drosophila models can therefore advance human disease research in a number of ways by: establishing the normal role of these gene products during development, elucidating the mechanism underlying disease pathology, and even identifying candidate therapeutic agents for the treatment of human disease. At the 49(th) Annual Drosophila Research Conference in San Diego this year, a number of labs presented their exciting findings on Drosophila models of human disease in both platform presentations and poster sessions. Here we can only briefly review some of these developments, and we apologize that we do not have the time or space to review all of the findings presented which use Drosophila to understand human disease etiology.

  7. Gene expression profiling in autoimmune diseases

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Brynskov, Jørn; Hegedüs, Laszlo

    2007-01-01

    A central issue in autoimmune disease is whether the underlying inflammation is a repeated stereotypical process or whether disease specific gene expression is involved. To shed light on this, we analysed whether genes previously found to be differentially regulated in rheumatoid arthritis (RA...

  8. Standardized phenotyping enhances Mendelian disease gene identification

    NARCIS (Netherlands)

    Vissers, L.E.L.M.; Veltman, J.A.

    2015-01-01

    Whole-exome sequencing has revolutionized the identification of genes with dominant disease-associated variants for rare clinically and genetically heterogeneous disorders, but the identification of genes with recessive disease-associated variants has been less successful. A new study now provides a

  9. Human brain disease recreated in mice

    Energy Technology Data Exchange (ETDEWEB)

    Marx, J.

    1990-12-14

    In the early 1980s, neurologist Stanley Prusiner suggested that scrapie, an apparently infectious degenerative brain disease of sheep, could be transmitted by prions, infectious particles made just of protein - and containing no nucleic acids. But prion research has come a long way since then. In 1985, the cloning of the gene encoding the prion protein proved that it does in fact exist. And the gene turned out to be widely expressed in the brains of higher organisms, a result suggesting that the prion protein has a normal brain function that can somehow be subverted, leading to brain degeneration. Then studies done during the past 2 years suggested that specific mutations in the prion gene might cause two similar human brain diseases, Gerstmann-Straeussler-Scheinker syndrome (GSS) and Creutzfelt-Jakob disease. Now, Prusiner's group at the University of California, San Francisco, has used genetic engineering techniques to recreate GSS by transplanting the mutated prion gene into mice. Not only will the animal model help neurobiologists answer the many remaining questions about prions and how they work, but it may also shed some light on other neurodegenerative diseases as well.

  10. Mapping the genetic architecture of gene expression in human liver.

    Directory of Open Access Journals (Sweden)

    Eric E Schadt

    2008-05-01

    Full Text Available Genetic variants that are associated with common human diseases do not lead directly to disease, but instead act on intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease traits has the potential to provide the functional information required to not only identify and validate the susceptibility genes that are directly affected by changes in DNA, but also to understand the molecular networks in which such genes operate and how changes in these networks lead to changes in disease traits. Toward that end, we profiled more than 39,000 transcripts and we genotyped 782,476 unique single nucleotide polymorphisms (SNPs in more than 400 human liver samples to characterize the genetic architecture of gene expression in the human liver, a metabolically active tissue that is important in a number of common human diseases, including obesity, diabetes, and atherosclerosis. This genome-wide association study of gene expression resulted in the detection of more than 6,000 associations between SNP genotypes and liver gene expression traits, where many of the corresponding genes identified have already been implicated in a number of human diseases. The utility of these data for elucidating the causes of common human diseases is demonstrated by integrating them with genotypic and expression data from other human and mouse populations. This provides much-needed functional support for the candidate susceptibility genes being identified at a growing number of genetic loci that have been identified as key drivers of disease from genome-wide association studies of disease. By using an integrative genomics approach, we highlight how the gene RPS26 and not ERBB3 is supported by our data as the most likely susceptibility gene for a novel type 1 diabetes locus recently identified in a large

  11. Ensemble positive unlabeled learning for disease gene identification.

    Directory of Open Access Journals (Sweden)

    Peng Yang

    Full Text Available An increasing number of genes have been experimentally confirmed in recent years as causative genes to various human diseases. The newly available knowledge can be exploited by machine learning methods to discover additional unknown genes that are likely to be associated with diseases. In particular, positive unlabeled learning (PU learning methods, which require only a positive training set P (confirmed disease genes and an unlabeled set U (the unknown candidate genes instead of a negative training set N, have been shown to be effective in uncovering new disease genes in the current scenario. Using only a single source of data for prediction can be susceptible to bias due to incompleteness and noise in the genomic data and a single machine learning predictor prone to bias caused by inherent limitations of individual methods. In this paper, we propose an effective PU learning framework that integrates multiple biological data sources and an ensemble of powerful machine learning classifiers for disease gene identification. Our proposed method integrates data from multiple biological sources for training PU learning classifiers. A novel ensemble-based PU learning method EPU is then used to integrate multiple PU learning classifiers to achieve accurate and robust disease gene predictions. Our evaluation experiments across six disease groups showed that EPU achieved significantly better results compared with various state-of-the-art prediction methods as well as ensemble learning classifiers. Through integrating multiple biological data sources for training and the outputs of an ensemble of PU learning classifiers for prediction, we are able to minimize the potential bias and errors in individual data sources and machine learning algorithms to achieve more accurate and robust disease gene predictions. In the future, our EPU method provides an effective framework to integrate the additional biological and computational resources for better disease

  12. Study of Human Disease Mouse Model by Gene Target%利用基因打靶技术研制人类疾病小鼠模型

    Institute of Scientific and Technical Information of China (English)

    杨晓

    2003-01-01

    The functional genomics is coming of age after the anatomy of the human genome is completed . The dramatic increase in the amount of genomic information is having a tremendous impact on biomedical research and on the way that medical treatment is processed, the major task is how to dissert the function of genes using large-scale and systematic approaches. Since genes function in the complex living creatures made of cells , the study of functional genomics will largely rely on the research of model organisms. The mouse is the closest mammalian model organism to human. Compared with other organism,mouse has many advantanges,short lifecycle,close genome size (2.5 × 109 bp in mouse vs 2.9 × 109 bp in human),available whole genome sequences and many inbred strains, easy to breed and maitain in lab. The most importantly, the genetic information of mouse gene could be modified in vivo by transgenic and gene targeting approaches.The mouse science is changing the modern biology study in general.

  13. Associating genes and protein complexes with disease via network propagation.

    Directory of Open Access Journals (Sweden)

    Oron Vanunu

    2010-01-01

    Full Text Available A fundamental challenge in human health is the identification of disease-causing genes. Recently, several studies have tackled this challenge via a network-based approach, motivated by the observation that genes causing the same or similar diseases tend to lie close to one another in a network of protein-protein or functional interactions. However, most of these approaches use only local network information in the inference process and are restricted to inferring single gene associations. Here, we provide a global, network-based method for prioritizing disease genes and inferring protein complex associations, which we call PRINCE. The method is based on formulating constraints on the prioritization function that relate to its smoothness over the network and usage of prior information. We exploit this function to predict not only genes but also protein complex associations with a disease of interest. We test our method on gene-disease association data, evaluating both the prioritization achieved and the protein complexes inferred. We show that our method outperforms extant approaches in both tasks. Using data on 1,369 diseases from the OMIM knowledgebase, our method is able (in a cross validation setting to rank the true causal gene first for 34% of the diseases, and infer 139 disease-related complexes that are highly coherent in terms of the function, expression and conservation of their member proteins. Importantly, we apply our method to study three multi-factorial diseases for which some causal genes have been found already: prostate cancer, alzheimer and type 2 diabetes mellitus. PRINCE's predictions for these diseases highly match the known literature, suggesting several novel causal genes and protein complexes for further investigation.

  14. Linking Microbiota to Human Diseases

    DEFF Research Database (Denmark)

    Wu, Hao; Tremaroli, Valentina; Bäckhed, F

    2015-01-01

    diabetes (T2D), and irritable bowel syndrome, and some animal experiments have suggested causality. However, few studies have validated causality in humans and the underlying mechanisms remain largely to be elucidated. We discuss how systems biology approaches combined with new experimental technologies......The human gut microbiota encompasses a densely populated ecosystem that provides essential functions for host development, immune maturation, and metabolism. Alterations to the gut microbiota have been observed in numerous diseases, including human metabolic diseases such as obesity, type 2...... may disentangle some of the mechanistic details in the complex interactions of diet, microbiota, and host metabolism and may provide testable hypotheses for advancing our current understanding of human-microbiota interaction....

  15. Immunoglobulin V(H) gene sequence analysis of spontaneous murine immunoglobulin secreting B-cell tumours with clinical features of human disease

    NARCIS (Netherlands)

    Zhu, D.; Arkel, C. van; King, C.A.; Meirvenne, S. van; Greef, C. de; Thielemans, K.; Radl, J.; Stevenson, F.K.

    1998-01-01

    The 5T series of multiple myelomas (MM) and Waldenstrsom's macroglobulinaemia-like lymphomas (WM), which developed spontaneously in ageing mice of the C57BL/KaLwRij strain, shows clinical and biological features that closely resemble their corresponding human diseases. In order to compare the patter

  16. Are mice pigmentary genes throwing light on humans?

    Directory of Open Access Journals (Sweden)

    Bose S

    1993-01-01

    Full Text Available In this article the rapid advances made in the molecular genetics of inherited disorders of hypo and hyperpigmentation during the past three years are reviewed. The main focus is on studies in mice as compared to homologues in humans. The main hypomelanotic diseases included are, piebaldism (white spotting due to mutations of c-KIT, PDGF and MGF genes; vitiligo (microphathalmia mice mutations of c-Kit and c-fms genes; Waardenburg syndrome (splotch locus mutations of mice PAX-3 or human Hup-2 genes; albinism (mutations of tyrosinase genes, Menkes disease (Mottled mouse, premature graying (mutations in light/brown locus/gp75/ TRP-1; Griscelli disease (mutations in TRP-1 and steel; Prader-willi and Angelman syndromes, tyrosinase-positive oculocutaneous albinism and hypomelanosis of lto (mutations of pink-eyed dilution gene/mapping to human chromosomes 15 q 11.2 - q12; and human platelet storage pool deficiency diseases due to defects in pallidin, an erythrocyte membrane protein (pallid mouse / mapping to 4.2 pallidin gene. The genetic characterization of hypermelanosis includes, neurofibromatosis 1 (Café-au-lait spots and McCune-Albright Syndrome. Rapid evolving knowledge about pigmentary genes will increase further the knowledge about these hypo and hyperpigmentary disorders.

  17. Evolutionary conservation in genes underlying human psychiatric disorders.

    Science.gov (United States)

    Ogawa, Lisa M; Vallender, Eric J

    2014-01-01

    Many psychiatric diseases observed in humans have tenuous or absent analogs in other species. Most notable among these are schizophrenia and autism. One hypothesis has posited that these diseases have arisen as a consequence of human brain evolution, for example, that the same processes that led to advances in cognition, language, and executive function also resulted in novel diseases in humans when dysfunctional. Here, the molecular evolution of the protein-coding regions of genes associated with these and other psychiatric disorders are compared among species. Genes associated with psychiatric disorders are drawn from the literature and orthologous sequences are collected from eleven primate species (human, chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, baboon, marmoset, squirrel monkey, and galago) and 34 non-primate mammalian species. Evolutionary parameters, including dN/dS, are calculated for each gene and compared between disease classes and among species, focusing on humans and primates compared to other mammals, and on large-brained taxa (cetaceans, rhinoceros, walrus, bear, and elephant) compared to their small-brained sister species. Evidence of differential selection in humans to the exclusion of non-human primates was absent, however elevated dN/dS was detected in catarrhines as a whole, as well as in cetaceans, possibly as part of a more general trend. Although this may suggest that protein changes associated with schizophrenia and autism are not a cost of the higher brain function found in humans, it may also point to insufficiencies in the study of these diseases including incomplete or inaccurate gene association lists and/or a greater role of regulatory changes or copy number variation. Through this work a better understanding of the molecular evolution of the human brain, the pathophysiology of disease, and the genetic basis of human psychiatric disease is gained.

  18. Evolutionary Conservation in Genes Underlying Human Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Lisa Michelle Ogawa

    2014-05-01

    Full Text Available Many psychiatric diseases observed in humans have tenuous or absent analogs in other species. Most notable among these are schizophrenia and autism. One hypothesis has posited that these diseases have arisen as a consequence of human brain evolution, for example, that the same processes that led to advances in cognition, language, and executive function also resulted in novel diseases in humans when dysfunctional. Here, the molecular evolution of genes associated with these and other psychiatric disorders are compared among species. Genes associated with psychiatric disorders are drawn from the literature and orthologous sequences are collected from eleven primate species (human, chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, baboon, marmoset, squirrel monkey, and galago and thirty one non-primate mammalian species. Evolutionary parameters, including dN/dS, are calculated for each gene and compared between disease classes and among species, focusing on humans and primates compared to other mammals and on large-brained taxa (cetaceans, rhinoceros, walrus, bear, and elephant compared to their small-brained sister species. Evidence of differential selection in primates supports the hypothesis that schizophrenia and autism are a cost of higher brain function. Through this work a better understanding of the molecular evolution of the human brain, the pathophysiology of disease, and the genetic basis of human psychiatric disease is gained.

  19. Metatranscriptomics of the human oral microbiome during health and disease.

    Science.gov (United States)

    Jorth, Peter; Turner, Keith H; Gumus, Pinar; Nizam, Nejat; Buduneli, Nurcan; Whiteley, Marvin

    2014-04-01

    The human microbiome plays important roles in health, but when disrupted, these same indigenous microbes can cause disease. The composition of the microbiome changes during the transition from health to disease; however, these changes are often not conserved among patients. Since microbiome-associated diseases like periodontitis cause similar patient symptoms despite interpatient variability in microbial community composition, we hypothesized that human-associated microbial communities undergo conserved changes in metabolism during disease. Here, we used patient-matched healthy and diseased samples to compare gene expression of 160,000 genes in healthy and diseased periodontal communities. We show that health- and disease-associated communities exhibit defined differences in metabolism that are conserved between patients. In contrast, the metabolic gene expression of individual species was highly variable between patients. These results demonstrate that despite high interpatient variability in microbial composition, disease-associated communities display conserved metabolic profiles that are generally accomplished by a patient-specific cohort of microbes. IMPORTANCE The human microbiome project has shown that shifts in our microbiota are associated with many diseases, including obesity, Crohn's disease, diabetes, and periodontitis. While changes in microbial populations are apparent during these diseases, the species associated with each disease can vary from patient to patient. Taking into account this interpatient variability, we hypothesized that specific microbiota-associated diseases would be marked by conserved microbial community behaviors. Here, we use gene expression analyses of patient-matched healthy and diseased human periodontal plaque to show that microbial communities have highly conserved metabolic gene expression profiles, whereas individual species within the community do not. Furthermore, disease-associated communities exhibit conserved changes

  20. Germinated Brown Rice Alters Aβ(1-42 Aggregation and Modulates Alzheimer’s Disease-Related Genes in Differentiated Human SH-SY5Y Cells

    Directory of Open Access Journals (Sweden)

    Nur Hanisah Azmi

    2015-01-01

    Full Text Available The pathogenesis of Alzheimer’s disease involves complex etiological factors, of which the deposition of beta-amyloid (Aβ protein and oxidative stress have been strongly implicated. We explored the effects of H2O2, which is a precursor for highly reactive hydroxyl radicals, on neurotoxicity and genes related to AD on neuronal cells. Candidate bioactive compounds responsible for the effects were quantified using HPLC-DAD. Additionally, the effects of germinated brown rice (GBR on the morphology of Aβ(1-42 were assessed by Transmission Electron Microscopy and its regulatory effects on gene expressions were explored. The results showed that GBR extract had several phenolic compounds and γ-oryzanol and altered the structure of Aβ(1-42 suggesting an antiamyloidogenic effect. GBR was also able to attenuate the oxidative effects of H2O2 as implied by reduced LDH release and intracellular ROS generation. Furthermore, gene expression analyses showed that the neuroprotective effects of GBR were partly mediated through transcriptional regulation of multiple genes including Presenilins, APP, BACE1, BACE2, ADAM10, Neprilysin, and LRP1. Our findings showed that GBR exhibited neuroprotective properties via transcriptional regulation of APP metabolism with potential impact on Aβ aggregation. These findings can have important implications for the management of neurodegenerative diseases like AD and are worth exploring further.

  1. Variation within the Huntington's disease gene influences normal brain structure.

    Directory of Open Access Journals (Sweden)

    Mark Mühlau

    Full Text Available Genetics of the variability of normal and diseased brain structure largely remains to be elucidated. Expansions of certain trinucleotide repeats cause neurodegenerative disorders of which Huntington's disease constitutes the most common example. Here, we test the hypothesis that variation within the IT15 gene on chromosome 4, whose expansion causes Huntington's disease, influences normal human brain structure. In 278 normal subjects, we determined CAG repeat length within the IT15 gene on chromosome 4 and analyzed high-resolution T1-weighted magnetic resonance images by the use of voxel-based morphometry. We found an increase of GM with increasing long CAG repeat and its interaction with age within the pallidum, which is involved in Huntington's disease. Our study demonstrates that a certain trinucleotide repeat influences normal brain structure in humans. This result may have important implications for the understanding of both the healthy and diseased brain.

  2. Speeding disease gene discovery by sequence based candidate prioritization

    Directory of Open Access Journals (Sweden)

    Porteous David J

    2005-03-01

    Full Text Available Abstract Background Regions of interest identified through genetic linkage studies regularly exceed 30 centimorgans in size and can contain hundreds of genes. Traditionally this number is reduced by matching functional annotation to knowledge of the disease or phenotype in question. However, here we show that disease genes share patterns of sequence-based features that can provide a good basis for automatic prioritization of candidates by machine learning. Results We examined a variety of sequence-based features and found that for many of them there are significant differences between the sets of genes known to be involved in human hereditary disease and those not known to be involved in disease. We have created an automatic classifier called PROSPECTR based on those features using the alternating decision tree algorithm which ranks genes in the order of likelihood of involvement in disease. On average, PROSPECTR enriches lists for disease genes two-fold 77% of the time, five-fold 37% of the time and twenty-fold 11% of the time. Conclusion PROSPECTR is a simple and effective way to identify genes involved in Mendelian and oligogenic disorders. It performs markedly better than the single existing sequence-based classifier on novel data. PROSPECTR could save investigators looking at large regions of interest time and effort by prioritizing positional candidate genes for mutation detection and case-control association studies.

  3. Network analysis of genes and their association with diseases.

    Science.gov (United States)

    Kontou, Panagiota I; Pavlopoulou, Athanasia; Dimou, Niki L; Pavlopoulos, Georgios A; Bagos, Pantelis G

    2016-09-15

    A plethora of network-based approaches within the Systems Biology universe have been applied, to date, to investigate the underlying molecular mechanisms of various human diseases. In the present study, we perform a bipartite, topological and clustering graph analysis in order to gain a better understanding of the relationships between human genetic diseases and the relationships between the genes that are implicated in them. For this purpose, disease-disease and gene-gene networks were constructed from combined gene-disease association networks. The latter, were created by collecting and integrating data from three diverse resources, each one with different content covering from rare monogenic disorders to common complex diseases. This data pluralism enabled us to uncover important associations between diseases with unrelated phenotypic manifestations but with common genetic origin. For our analysis, the topological attributes and the functional implications of the individual networks were taken into account and are shortly discussed. We believe that some observations of this study could advance our understanding regarding the etiology of a disease with distinct pathological manifestations, and simultaneously provide the springboard for the development of preventive and therapeutic strategies and its underlying genetic mechanisms.

  4. The Role of Nuclear Bodies in Gene Expression and Disease

    Science.gov (United States)

    Morimoto, Marie; Boerkoel, Cornelius F.

    2013-01-01

    This review summarizes the current understanding of the role of nuclear bodies in regulating gene expression. The compartmentalization of cellular processes, such as ribosome biogenesis, RNA processing, cellular response to stress, transcription, modification and assembly of spliceosomal snRNPs, histone gene synthesis and nuclear RNA retention, has significant implications for gene regulation. These functional nuclear domains include the nucleolus, nuclear speckle, nuclear stress body, transcription factory, Cajal body, Gemini of Cajal body, histone locus body and paraspeckle. We herein review the roles of nuclear bodies in regulating gene expression and their relation to human health and disease. PMID:24040563

  5. The Role of Nuclear Bodies in Gene Expression and Disease

    Directory of Open Access Journals (Sweden)

    Marie Morimoto

    2013-07-01

    Full Text Available This review summarizes the current understanding of the role of nuclear bodies in regulating gene expression. The compartmentalization of cellular processes, such as ribosome biogenesis, RNA processing, cellular response to stress, transcription, modification and assembly of spliceosomal snRNPs, histone gene synthesis and nuclear RNA retention, has significant implications for gene regulation. These functional nuclear domains include the nucleolus, nuclear speckle, nuclear stress body, transcription factory, Cajal body, Gemini of Cajal body, histone locus body and paraspeckle. We herein review the roles of nuclear bodies in regulating gene expression and their relation to human health and disease.

  6. GENE MUTATIONS, GENETIC DISEASE AND PHARMACOGENETIC GENES DISORDER

    OpenAIRE

    Ishak

    2010-01-01

    Somatic cell mutation is able to create genetic variance in a cell population and can induce cancer and tumor when gene mutations took place at repressor gene in controlling cell cycles such as p53 gene. Whereas germline cell mutation can cause genetic disease such as sickle cell anemia, breast cancer, thalassemia, parkinson’s as well as defect of biochemical pathway that influence drug-receptor interaction, which has negative effect and lead to hospitalized of patient. Most of reports mentio...

  7. Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex

    Science.gov (United States)

    King, M A; Covassin, L; Brehm, M A; Racki, W; Pearson, T; Leif, J; Laning, J; Fodor, W; Foreman, O; Burzenski, L; Chase, T H; Gott, B; Rossini, A A; Bortell, R; Shultz, L D; Greiner, D L

    2009-01-01

    Immunodeficient non-obese diabetic (NOD)-severe combined immune-deficient (scid) mice bearing a targeted mutation in the gene encoding the interleukin (IL)-2 receptor gamma chain gene (IL2rγnull) engraft readily with human peripheral blood mononuclear cells (PBMC). Here, we report a robust model of xenogeneic graft-versus-host-like disease (GVHD) based on intravenous injection of human PBMC into 2 Gy conditioned NOD-scid IL2rγnull mice. These mice develop xenogeneic GVHD consistently (100%) following injection of as few as 5 × 106 PBMC, regardless of the PBMC donor used. As in human disease, the development of xenogeneic GVHD is highly dependent on expression of host major histocompatibility complex class I and class II molecules and is associated with severely depressed haematopoiesis. Interrupting the tumour necrosis factor-α signalling cascade with etanercept, a therapeutic drug in clinical trials for the treatment of human GVHD, delays the onset and progression of disease. This model now provides the opportunity to investigate in vivo mechanisms of xenogeneic GVHD as well as to assess the efficacy of therapeutic agents rapidly. PMID:19659776

  8. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  9. Gene expression in the aging human brain: an overview.

    Science.gov (United States)

    Mohan, Adith; Mather, Karen A; Thalamuthu, Anbupalam; Baune, Bernhard T; Sachdev, Perminder S

    2016-03-01

    The review aims to provide a summary of recent developments in the study of gene expression in the aging human brain. Profiling differentially expressed genes or 'transcripts' in the human brain over the course of normal aging has provided valuable insights into the biological pathways that appear activated or suppressed in late life. Genes mediating neuroinflammation and immune system activation in particular, show significant age-related upregulation creating a state of vulnerability to neurodegenerative and neuropsychiatric disease in the aging brain. Cellular ionic dyshomeostasis and age-related decline in a host of molecular influences on synaptic efficacy may underlie neurocognitive decline in later life. Critically, these investigations have also shed light on the mobilization of protective genetic responses within the aging human brain that help determine health and disease trajectories in older age. There is growing interest in the study of pre and posttranscriptional regulators of gene expression, and the role of noncoding RNAs in particular, as mediators of the phenotypic diversity that characterizes human brain aging. Gene expression studies in healthy brain aging offer an opportunity to unravel the intricately regulated cellular underpinnings of neurocognitive aging as well as disease risk and resiliency in late life. In doing so, new avenues for early intervention in age-related neurodegenerative disease could be investigated with potentially significant implications for the development of disease-modifying therapies.

  10. Proteins aggregation and human diseases

    Science.gov (United States)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  11. Association of polymorphisms in the human IL4 and IL5 genes with atopic bronchial asthma and severity of the disease.

    Science.gov (United States)

    Freidin, Maxim B; Kobyakova, Olga S; Ogorodova, Ludmila M; Puzyrev, Valery P

    2003-01-01

    Two polymorphisms in the IL4 (G/C 3'-UTR) and IL5 (C-703T) genes were studied in a sample of families whose probands had atopic bronchial asthma (BA) (66 families, n = 183) and in a group of non-cognate individuals with the severe form of the disease (n = 34). The samples were collected from the Russian population in the city of Tomsk (Russia). Using the transmission/disequilibrium test (TDT), a significant association of allele C-703 IL5 with BA was established (TDT = 4.923, p = 0.007 +/- 0.0007). The analysis of 40 individuals with mild asthma and 49 patients with the severe form of the disease revealed a negative association of genotype GG IL4 (OR = 0.39, 95% CI = 0.15-0.99, p = 0.035), and also a trend towards a positive association of the GC IL4 genotype (OR = 2.52, 95% CI = 0.98-6.57, p = 0.052) with mild BA. There was a concordance of the clinical classification of BA severity with the 'genotype' (McNemar's chi(2) test with continuity correction constituted 0.03, d.f. = 1, p = 0.859). These results suggest that polymorphisms in the IL4 and IL5 genes contribute to the susceptibility to atopic BA and could determine the clinical course of the disease.

  12. Chagas disease and human migration

    Directory of Open Access Journals (Sweden)

    Felipe Guhl

    2000-08-01

    Full Text Available Human Chagas disease is a purely accidental occurrence. As humans came into contact with the natural foci of infection might then have become infected as a single addition to the already extensive host range of Trypanosoma cruzi that includes other primates. Thus began a process of adaptation and domiciliation to human habitations through which the vectors had direct access to abundant food as well as protection from climatic changes and predators. Our work deals with the extraction and specific amplification by polymerase chain reaction of T. cruzi DNA obtained from mummified human tissues and the positive diagnosis of Chagas disease in a series of 4,000-year-old Pre-Hispanic human mummies from the northern coast of Chile. The area has been inhabited at least for 7,000 years, first by hunters, fishers and gatherers, and then gradually by more permanent settlements. The studied specimens belonged to the Chinchorro culture, a people inhabiting the area now occupied by the modern city of Arica. These were essentially fishers with a complex religious ideology, which accounts for the preservation of their dead in the way of mummified bodies, further enhanced by the extremely dry conditions of the desert. Chinchorro mummies are, perhaps, the oldest preserved bodies known to date.

  13. Dietary methanol regulates human gene activity.

    Directory of Open Access Journals (Sweden)

    Anastasia V Shindyapina

    Full Text Available Methanol (MeOH is considered to be a poison in humans because of the alcohol dehydrogenase (ADH-mediated conversion of MeOH to formaldehyde (FA, which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD. There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling.

  14. Gene therapy: Regulations, ethics and its practicalities in liver disease

    Institute of Scientific and Technical Information of China (English)

    Xi Jin; Yi-Da Yang; You-Ming Li

    2008-01-01

    Gene therapy is a new and promising approach which opens a new door to the treatment of human diseases.By direct transfer of genetic materials to the target cells, it could exert functions on the level of genes and molecules. It is hoped to be widely used in the treatment of liver disease, especially hepatic tumors by using different vectors encoding the aim gene for anti-tumor activity by activating primary and adaptive immunity,inhibiting oncogene and angiogenesis. Despite the huge curative potential shown in animal models and some pilot clinical trials, gene therapy has been under fierce discussion since its birth in academia and the public domain because of its unexpected side effects and ethical problems. There are other challenges arising from the technique itself like vector design, administration route test and standard protocol exploration. How well we respond will decide the fate of gene therapy clinical medical practice.

  15. Human HPRT1 gene and the Lesch-Nyhan disease: Substitution of alanine for glycine and inversely in the HGprt enzyme protein.

    Science.gov (United States)

    Nguyen, Khue Vu; Naviaux, Robert K; Nyhan, William L

    2017-02-01

    Lesch-Nyhan disease (LND) is a rare X-linked inherited neurogenetic disorder of purine metabolism in which the enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt) is defective. The authors report three novel independent mutations in the coding region of the HPRT1 gene from genomic DNA of (a) a carrier sister of two male patients with LND: c.569G>C, p.G190A in exon 8; and (b) two LND affected male patients unrelated to her who had two mutations: c.648delC, p.Y216X, and c.653C>G, p.A218G in exon 9. Molecular analysis reveals the heterogeneity of genetic mutation of the HPRT1 gene responsible for the HGprt deficiency. It allows fast, accurate detection of carriers and genetic counseling.

  16. Transgenic Cotton and Disease Resistance Genes

    Institute of Scientific and Technical Information of China (English)

    RAJASEKARAN; Kanniah

    2008-01-01

    Success in conventional breeding for resistance to mycotoxin-producing or other phytopathogenic fungi is dependent on the availability of resistance gene(s) in the germplasm.Even when it is available,breeding for disease-resistant crops is very time consuming,especially in perennial crops such as

  17. Genes Causing Male Infertility in Humans

    Institute of Scientific and Technical Information of China (English)

    Lawrence C. Layman

    2002-01-01

    There are an accumulating number of identified gene mutations that cause infertility in humans. Most of the known gene mutations impair normal puberty and subsequently cause infertility by either hypothalamic /pituitary deficiency of important tropic factors to the gonad or by gonadal genes.

  18. Gentrepid V2.0: A web server for candidate disease gene prediction

    NARCIS (Netherlands)

    Ballouz, S.; Liu, J.Y.; George, R.A.; Bains, N.; Liu, A.; Oti, M.O.; Gaeta, B.; Fatkin, D.; Wouters, M.A.

    2013-01-01

    BACKGROUND: Candidate disease gene prediction is a rapidly developing area of bioinformatics research with the potential to deliver great benefits to human health. As experimental studies detecting associations between genetic intervals and disease proliferate, better bioinformatic techniques that c

  19. [From gene to disease: cystinosis

    NARCIS (Netherlands)

    Levtchenko, E.N.; Wilmer, M.J.G.; Graaf-Hess, A.C. de; Heuvel, L.P.W.J. van den; Blom, H.J.; Monnens, L.A.H.

    2004-01-01

    Cystinosis is an autosomal recessive disorder caused by an impaired transport of cystine out of lysosomes. The most severe infantile form of cystinosis starts with Fanconi syndrome at the age of 3-6 months. Untreated patients develop renal failure before the age of 10. The cystinosis gene (CTNS) map

  20. Human genetics of infectious diseases: a unified theory

    Science.gov (United States)

    Casanova, Jean-Laurent; Abel, Laurent

    2007-01-01

    Since the early 1950s, the dominant paradigm in the human genetics of infectious diseases postulates that rare monogenic immunodeficiencies confer vulnerability to multiple infectious diseases (one gene, multiple infections), whereas common infections are associated with the polygenic inheritance of multiple susceptibility genes (one infection, multiple genes). Recent studies, since 1996 in particular, have challenged this view. A newly recognised group of primary immunodeficiencies predisposing the individual to a principal or single type of infection is emerging. In parallel, several common infections have been shown to reflect the inheritance of one major susceptibility gene, at least in some populations. This novel causal relationship (one gene, one infection) blurs the distinction between patient-based Mendelian genetics and population-based complex genetics, and provides a unified conceptual frame for exploring the molecular genetic basis of infectious diseases in humans. PMID:17255931

  1. A physical map of 30,000 human genes.

    Science.gov (United States)

    Deloukas, P; Schuler, G D; Gyapay, G; Beasley, E M; Soderlund, C; Rodriguez-Tomé, P; Hui, L; Matise, T C; McKusick, K B; Beckmann, J S; Bentolila, S; Bihoreau, M; Birren, B B; Browne, J; Butler, A; Castle, A B; Chiannilkulchai, N; Clee, C; Day, P J; Dehejia, A; Dibling, T; Drouot, N; Duprat, S; Fizames, C; Fox, S; Gelling, S; Green, L; Harrison, P; Hocking, R; Holloway, E; Hunt, S; Keil, S; Lijnzaad, P; Louis-Dit-Sully, C; Ma, J; Mendis, A; Miller, J; Morissette, J; Muselet, D; Nusbaum, H C; Peck, A; Rozen, S; Simon, D; Slonim, D K; Staples, R; Stein, L D; Stewart, E A; Suchard, M A; Thangarajah, T; Vega-Czarny, N; Webber, C; Wu, X; Hudson, J; Auffray, C; Nomura, N; Sikela, J M; Polymeropoulos, M H; James, M R; Lander, E S; Hudson, T J; Myers, R M; Cox, D R; Weissenbach, J; Boguski, M S; Bentley, D R

    1998-10-23

    A map of 30,181 human gene-based markers was assembled and integrated with the current genetic map by radiation hybrid mapping. The new gene map contains nearly twice as many genes as the previous release, includes most genes that encode proteins of known function, and is twofold to threefold more accurate than the previous version. A redesigned, more informative and functional World Wide Web site (www.ncbi.nlm.nih.gov/genemap) provides the mapping information and associated data and annotations. This resource constitutes an important infrastructure and tool for the study of complex genetic traits, the positional cloning of disease genes, the cross-referencing of mammalian genomes, and validated human transcribed sequences for large-scale studies of gene expression.

  2. [Alzheimer's disease and human memory].

    Science.gov (United States)

    Eustache, F; Giffard, B; Rauchs, G; Chételat, G; Piolino, P; Desgranges, B

    2006-10-01

    Memory disorders observed in Alzheimer's disease gave rise, from the eighties, to a detailed analysis into the framework of cognitive neuropsychology which aimed at describing the deficits of very specific processes. Beyond their clinical interest, these studies contributed to the modelisation of human memory thanks to the characterization of different memory systems and their relationships. The first part of this paper gives an overview of the memory deficits in Alzheimer's disease and insists on particular cognitive phenomena. Hence, several examples are developed in the domains of semantic memory (such as hyperpriming and hypopriming effects) and autobiographical memory. Recent results highlight the existence of severe autobiographical amnesia observed in all neurodegenerative diseases, though with contrasting profiles: Ribot's gradient in Alzheimer's disease (showing that remote memories are better preserved than recent ones), reverse gradient in semantic dementia and no clear gradient in the frontal variant of frontotemporal dementia. The second part of this article presents advances in cognitive neuroscience searching to disclose the cerebral substrates of these cognitive deficits in Alzheimer's disease. The studies using functional imaging techniques are the most informative regarding this problematic. While showing the dysfunctions of an extended network, they emphasize the selectivity of cerebral damages that are at the root of very specific cognitive dysfunctions, coming close in that way to the conceptions of cognitive neuropsychology. These neuroimaging studies unravel the existence of compensatory mechanisms, which until recently were clearly missing in the literature on neurodegenerative diseases. These different researches lead to a wide conception of human memory, not just limited to simple instrumental processes (encoding, storage, retrieval), but necessarily covering models of identity and continuity of the subject, which interact in a dynamic way

  3. Candidate SNP markers of gender-biased autoimmune complications of monogenic diseases are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters

    Directory of Open Access Journals (Sweden)

    Mikhail P. Ponomarenko

    2016-04-01

    Full Text Available Some variations of human genome (for example, single nucleotide polymorphisms [SNPs] are markers of hereditary diseases and drug responses. Analysis of them can help to improve treatment. Computer-based analysis of millions of SNPs in the 1000 Genomes project makes a search for SNP markers more targeted. Here we combined two computer-based approaches: DNA sequence analysis and keyword search in databases. In the binding sites for TATA-binding protein (TBP in human gene promoters, we found candidate SNP markers of gender-biased autoimmune diseases, including rs1143627 (cachexia in rheumatoid arthritis [double prevalence among women]; rs11557611 (demyelinating diseases [thrice more prevalent among young white women than among nonwhite individuals]; rs17231520 and rs569033466 (both: atherosclerosis comorbid with related diseases [double prevalence among women]; rs563763767 (Hughes syndrome-related thrombosis [lethal during pregnancy]; rs2814778 (autoimmune diseases [excluding multiple sclerosis and rheumatoid arthritis] underlying hypergammaglobulinemia in women; rs72661131 and rs562962093 (both: preterm delivery in pregnant diabetic women; and rs35518301, rs34166473, rs34500389, rs33981098, rs33980857, rs397509430, rs34598529, rs33931746, rs281864525, and rs63750953 (all: autoimmune diseases underlying hypergammaglobulinemia in women. Validation of these predicted candidate SNP markers using the clinical standards may advance personalized medicine.

  4. Current Progress in Therapeutic Gene Editing for Monogenic Diseases.

    Science.gov (United States)

    Prakash, Versha; Moore, Marc; Yáñez-Muñoz, Rafael J

    2016-03-01

    Programmable nucleases allow defined alterations in the genome with ease-of-use, efficiency, and specificity. Their availability has led to accurate and widespread genome engineering, with multiple applications in basic research, biotechnology, and therapy. With regard to human gene therapy, nuclease-based gene editing has facilitated development of a broad range of therapeutic strategies based on both nonhomologous end joining and homology-dependent repair. This review discusses current progress in nuclease-based therapeutic applications for a subset of inherited monogenic diseases including cystic fibrosis, Duchenne muscular dystrophy, diseases of the bone marrow, and hemophilia and highlights associated challenges and future prospects.

  5. Mucin gene expression in human middle ear epithelium.

    Science.gov (United States)

    Kerschner, Joseph Edward

    2007-09-01

    To investigate the expression of recently identified human mucin genes in human middle ear epithelial (MEE) specimens from in vivo middle ear (ME) tissue and to compare this mucin gene expression with mucin gene expression in an immortalized cell culture in vitro source of human MEE. Human MEE was harvested as in vivo specimens, and human MEE cell cultures were established for in vitro experimentation. RNA was extracted from MEE and primers designed for reverse-transcription polymerase chain reaction to assess for mucin gene MUC1, MUC2, MUC3, MUC4, MUC5AC, MUC5B, MUC6, MUC7, MUC8, MUC9, MUC11, MUC12, MUC13, MUC15, MUC16, MUC18, MUC19, and MUC20 expression. Mucin gene expression in the in vivo and in vitro ME tissue was compared against tissues with known expression of the mucin genes in question. Mucin genes MUC1, MUC2, MUC3, MUC4, MUC5AC, MUC5B, MUC7, MUC8, MUC9, MUC11, MUC13, MUC15, MUC16, MUC18, MUC19, and MUC20 were identified and expressed in both the in vivo and in vitro samples of MEE. Mucin genes MUC6, MUC12, and MUC17 were not identified in either tissue samples. Many of the mucin genes that have been recently identified are expressed in human MEE. These genes are expressed in a similar manner in both in vivo and in vitro models. Understanding the mechanisms in which these genes regulate the physiology and pathophysiology of MEE will provide a more thorough understanding of the molecular mechanics of the MEE and disease conditions such as otitis media.

  6. Candidate SNP Markers of Familial and Sporadic Alzheimer's Diseases Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters

    Directory of Open Access Journals (Sweden)

    Petr Ponomarenko

    2017-07-01

    Full Text Available While year after year, conditions, quality, and duration of human lives have been improving due to the progress in science, technology, education, and medicine, only eight diseases have been increasing in prevalence and shortening human lives because of premature deaths according to the retrospective official review on the state of US health, 1990-2010. These diseases are kidney cancer, chronic kidney diseases, liver cancer, diabetes, drug addiction, poisoning cases, consequences of falls, and Alzheimer's disease (AD as one of the leading pathologies. There are familial AD of hereditary nature (~4% of cases and sporadic AD of unclear etiology (remaining ~96% of cases; i.e., non-familial AD. Therefore, sporadic AD is no longer a purely medical problem, but rather a social challenge when someone asks oneself: “What can I do in my own adulthood to reduce the risk of sporadic AD at my old age to save the years of my lifespan from the destruction caused by it?” Here, we combine two computational approaches for regulatory SNPs: Web service SNP_TATA_Comparator for sequence analysis and a PubMed-based keyword search for articles on the biochemical markers of diseases. Our purpose was to try to find answers to the question: “What can be done in adulthood to reduce the risk of sporadic AD in old age to prevent the lifespan reduction caused by it?” As a result, we found 89 candidate SNP markers of familial and sporadic AD (e.g., rs562962093 is associated with sporadic AD in the elderly as a complication of stroke in adulthood, where natural marine diets can reduce risks of both diseases in case of the minor allele of this SNP. In addition, rs768454929, and rs761695685 correlate with sporadic AD as a comorbidity of short stature, where maximizing stature in childhood and adolescence as an integral indicator of health can minimize (or even eliminate the risk of sporadic AD in the elderly. After validation by clinical protocols, these candidate SNP

  7. Candidate SNP Markers of Familial and Sporadic Alzheimer's Diseases Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters.

    Science.gov (United States)

    Ponomarenko, Petr; Chadaeva, Irina; Rasskazov, Dmitry A; Sharypova, Ekaterina; Kashina, Elena V; Drachkova, Irina; Zhechev, Dmitry; Ponomarenko, Mikhail P; Savinkova, Ludmila K; Kolchanov, Nikolay

    2017-01-01

    While year after year, conditions, quality, and duration of human lives have been improving due to the progress in science, technology, education, and medicine, only eight diseases have been increasing in prevalence and shortening human lives because of premature deaths according to the retrospective official review on the state of US health, 1990-2010. These diseases are kidney cancer, chronic kidney diseases, liver cancer, diabetes, drug addiction, poisoning cases, consequences of falls, and Alzheimer's disease (AD) as one of the leading pathologies. There are familial AD of hereditary nature (~4% of cases) and sporadic AD of unclear etiology (remaining ~96% of cases; i.e., non-familial AD). Therefore, sporadic AD is no longer a purely medical problem, but rather a social challenge when someone asks oneself: "What can I do in my own adulthood to reduce the risk of sporadic AD at my old age to save the years of my lifespan from the destruction caused by it?" Here, we combine two computational approaches for regulatory SNPs: Web service SNP_TATA_Comparator for sequence analysis and a PubMed-based keyword search for articles on the biochemical markers of diseases. Our purpose was to try to find answers to the question: "What can be done in adulthood to reduce the risk of sporadic AD in old age to prevent the lifespan reduction caused by it?" As a result, we found 89 candidate SNP markers of familial and sporadic AD (e.g., rs562962093 is associated with sporadic AD in the elderly as a complication of stroke in adulthood, where natural marine diets can reduce risks of both diseases in case of the minor allele of this SNP). In addition, rs768454929, and rs761695685 correlate with sporadic AD as a comorbidity of short stature, where maximizing stature in childhood and adolescence as an integral indicator of health can minimize (or even eliminate) the risk of sporadic AD in the elderly. After validation by clinical protocols, these candidate SNP markers may become

  8. Human Microbiota and Ophthalmic Disease.

    Science.gov (United States)

    Lu, Louise J; Liu, Ji

    2016-09-01

    The human ocular surface, consisting of the cornea and conjunctiva, is colonized by an expansive, diverse microbial community. Molecular-based methods, such as 16S rRNA sequencing, has allowed for more comprehensive and precise identification of the species composition of the ocular surface microbiota compared to traditional culture-based methods. Evidence suggests that the normal microbiota plays a protective immunological role in preventing the proliferation of pathogenic species and thus, alterations in the homeostatic microbiome may be linked to ophthalmic pathologies. Further investigation of the ocular surface microbiome, as well as the microbiome of other areas of the body such as the oral mucosa and gut, and their role in the pathophysiology of diseases is a significant, emerging field of research, and may someday enable the development of novel probiotic approaches for the treatment and prevention of ophthalmic diseases.

  9. Advanced studies on human gene ZNF322

    Institute of Scientific and Technical Information of China (English)

    LI Yongqing; WANG Yuequn; YUAN Wuzhou; DENG Yun; ZHU Chuanbing; WU Xiushan

    2007-01-01

    The human novel gene of ZNF322 is cloned from human fetal eDNA library using the primers on the basis of the ZNF322 sequence analyzed with computer.The gene is located on Chromosome 6p22.1,and encodes a protein consisting of 402 amino acid residues and containing nine tandem C2H2-type zinc-finger motifs.Northern blot result shows that the gene is expressed in all examined adult tissues.Subcellular location study indicates that ZNF322-EGFP fusion protein is distributed in the nucleus and cytoplasm.Reporter gene assays show that ZNF322 is a potential transcriptional activator.

  10. Uniparental disomy and human disease: an overview.

    Science.gov (United States)

    Yamazawa, Kazuki; Ogata, Tsutomu; Ferguson-Smith, Anne C

    2010-08-15

    Uniparental disomy (UPD) refers to the situation in which both homologues of a chromosomal region/segment have originated from only one parent. This can involve the entire chromosome or only a small segment. As a consequence of UPD, or uniparental duplication/deficiency of part of a chromosome, there are two types of developmental risk: aberrant dosage of genes regulated by genomic imprinting and homozygosity of a recessive mutation. UPD models generated by reciprocal and Robertsonian translocation heterozygote intercrosses have been a powerful tool to investigate genomic imprinting in mice, whereas novel UPD patients such as those with cystic fibrosis and Prader-Willi syndrome, triggered the clarification of recessive diseases and genomic imprinting disorders in human. Newly developed genomic technologies as well as conventional microsatellite marker methods have been contributing to the functional and mechanistic investigation of UPD, leading to not only the acquisition of clinically valuable information, but also the further clarification of diverse genetic processes and disease pathogenesis.

  11. Human Cytomegalovirus and Autoimmune Disease

    Directory of Open Access Journals (Sweden)

    Anne Halenius

    2014-01-01

    Full Text Available Human cytomegalovirus (HCMV represents a prototypic pathogenic member of the β-subgroup of the herpesvirus family. A range of HCMV features like its lytic replication in multiple tissues, the lifelong persistence through periods of latency and intermitting reactivation, the extraordinary large proteome, and extensive manipulation of adaptive and innate immunity make HCMV a high profile candidate for involvement in autoimmune disorders. We surveyed the available literature for reports on HCMV association with onset or exacerbation of autoimmune disease. A causative linkage between HCMV and systemic lupus erythematosus (SLE, systemic sclerosis (SSc, diabetes mellitus type 1, and rheumatoid arthritis (RA is suggested by the literature. However, a clear association of HCMV seroprevalence and disease could not be established, leaving the question open whether HCMV could play a coresponsible role for onset of disease. For convincing conclusions population-based prospective studies must be performed in the future. Specific immunopathogenic mechanisms by which HCMV could contribute to the course of autoimmune disease have been suggested, for example, molecular mimicry by UL94 in SSc and UL83/pp65 in SLE patients, as well as aggravation of joint inflammation by induction and expansion of CD4+/CD28− T-cells in RA patients. Further studies are needed to validate these findings and to lay the grounds for targeted therapeutic intervention.

  12. Disease Gene Prioritization Using Network and Feature

    Science.gov (United States)

    Agam, Gady; Balasubramanian, Sandhya; Xu, Jinbo; Gilliam, T. Conrad; Maltsev, Natalia; Börnigen, Daniela

    2015-01-01

    Abstract Identifying high-confidence candidate genes that are causative for disease phenotypes, from the large lists of variations produced by high-throughput genomics, can be both time-consuming and costly. The development of novel computational approaches, utilizing existing biological knowledge for the prioritization of such candidate genes, can improve the efficiency and accuracy of the biomedical data analysis. It can also reduce the cost of such studies by avoiding experimental validations of irrelevant candidates. In this study, we address this challenge by proposing a novel gene prioritization approach that ranks promising candidate genes that are likely to be involved in a disease or phenotype under study. This algorithm is based on the modified conditional random field (CRF) model that simultaneously makes use of both gene annotations and gene interactions, while preserving their original representation. We validated our approach on two independent disease benchmark studies by ranking candidate genes using network and feature information. Our results showed both high area under the curve (AUC) value (0.86), and more importantly high partial AUC (pAUC) value (0.1296), and revealed higher accuracy and precision at the top predictions as compared with other well-performed gene prioritization tools, such as Endeavour (AUC-0.82, pAUC-0.083) and PINTA (AUC-0.76, pAUC-0.066). We were able to detect more target genes (9/18/19/27) on top positions (1/5/10/20) compared to Endeavour (3/11/14/23) and PINTA (6/10/13/18). To demonstrate its usability, we applied our method to a case study for the prediction of molecular mechanisms contributing to intellectual disability and autism. Our approach was able to correctly recover genes related to both disorders and provide suggestions for possible additional candidates based on their rankings and functional annotations. PMID:25844670

  13. Aluminium and human breast diseases.

    Science.gov (United States)

    Darbre, P D; Pugazhendhi, D; Mannello, F

    2011-11-01

    The human breast is exposed to aluminium from many sources including diet and personal care products, but dermal application of aluminium-based antiperspirant salts provides a local long-term source of exposure. Recent measurements have shown that aluminium is present in both tissue and fat of the human breast but at levels which vary both between breasts and between tissue samples from the same breast. We have recently found increased levels of aluminium in noninvasively collected nipple aspirate fluids taken from breast cancer patients (mean 268 ± 28 μg/l) compared with control healthy subjects (mean 131 ± 10 μg/l) providing evidence of raised aluminium levels in the breast microenvironment when cancer is present. The measurement of higher levels of aluminium in type I human breast cyst fluids (median 150 μg/l) compared with human serum (median 6 μg/l) or human milk (median 25 μg/l) warrants further investigation into any possible role of aluminium in development of this benign breast disease. Emerging evidence for aluminium in several breast structures now requires biomarkers of aluminium action in order to ascertain whether the presence of aluminium has any biological impact. To this end, we report raised levels of proteins that modulate iron homeostasis (ferritin, transferrin) in parallel with raised aluminium in nipple aspirate fluids in vivo, and we report overexpression of mRNA for several S100 calcium binding proteins following long-term exposure of MCF-7 human breast cancer cells in vitro to aluminium chlorhydrate.

  14. Part 1: The Human Gut Microbiome in Health and Disease

    OpenAIRE

    Bull, Matthew J.; Plummer, Nigel T.

    2014-01-01

    The bacterial cells harbored within the human gastrointestinal tract (GIT) outnumber the host’s cells by a factor of 10 and the genes encoded by the bacteria resident within the GIT outnumber their host’s genes by more than 100 times. These human digestive-tract associated microbes are referred to as the gut microbiome. The human gut microbiome and its role in both health and disease has been the subject of extensive research, establishing its involvement in human metabolism, nutrition, physi...

  15. Blood type biochemistry and human disease.

    Science.gov (United States)

    Ewald, D Rose; Sumner, Susan C J

    2016-11-01

    Associations between blood type and disease have been studied since the early 1900s when researchers determined that antibodies and antigens are inherited. In the 1950s, the chemical identification of the carbohydrate structure of surface antigens led to the understanding of biosynthetic pathways. The blood type is defined by oligosaccharide structures, which are specific to the antigens, thus, blood group antigens are secondary gene products, while the primary gene products are various glycosyltransferase enzymes that attach the sugar molecules to the oligosaccharide chain. Blood group antigens are found on red blood cells, platelets, leukocytes, plasma proteins, certain tissues, and various cell surface enzymes, and also exist in soluble form in body secretions such as breast milk, seminal fluid, saliva, sweat, gastric secretions, urine, and amniotic fluid. Recent advances in technology, biochemistry, and genetics have clarified the functional classifications of human blood group antigens, the structure of the A, B, H, and Lewis determinants and the enzymes that produce them, and the association of blood group antigens with disease risks. Further research to identify differences in the biochemical composition of blood group antigens, and the relationship to risks for disease, can be important for the identification of targets for the development of nutritional intervention strategies, or the identification of druggable targets. WIREs Syst Biol Med 2016, 8:517-535. doi: 10.1002/wsbm.1355 For further resources related to this article, please visit the WIREs website.

  16. Transgenic Cotton and Disease Resistance Genes

    Institute of Scientific and Technical Information of China (English)

    RAJASEKARAN Kanniah

    2008-01-01

    @@ Success in conventional breeding for resistance to mycotoxin-producing or other phytopathogenic fungi is dependent on the availability of resistance gene(s) in the germplasm.Even when it is available,breeding for disease-resistant crops is very time consuming,especially in perennial crops such as tree nut crops,and does not lend itself ready to combat the evolution of new virulent fungal races.

  17. Genome editing for human gene therapy.

    Science.gov (United States)

    Meissner, Torsten B; Mandal, Pankaj K; Ferreira, Leonardo M R; Rossi, Derrick J; Cowan, Chad A

    2014-01-01

    The rapid advancement of genome-editing techniques holds much promise for the field of human gene therapy. From bacteria to model organisms and human cells, genome editing tools such as zinc-finger nucleases (ZNFs), TALENs, and CRISPR/Cas9 have been successfully used to manipulate the respective genomes with unprecedented precision. With regard to human gene therapy, it is of great interest to test the feasibility of genome editing in primary human hematopoietic cells that could potentially be used to treat a variety of human genetic disorders such as hemoglobinopathies, primary immunodeficiencies, and cancer. In this chapter, we explore the use of the CRISPR/Cas9 system for the efficient ablation of genes in two clinically relevant primary human cell types, CD4+ T cells and CD34+ hematopoietic stem and progenitor cells. By using two guide RNAs directed at a single locus, we achieve highly efficient and predictable deletions that ablate gene function. The use of a Cas9-2A-GFP fusion protein allows FACS-based enrichment of the transfected cells. The ease of designing, constructing, and testing guide RNAs makes this dual guide strategy an attractive approach for the efficient deletion of clinically relevant genes in primary human hematopoietic stem and effector cells and enables the use of CRISPR/Cas9 for gene therapy.

  18. MicroRNAs in Human Diseases: From Autoimmune Diseases to Skin, Psychiatric and Neurodegenerative Diseases.

    Science.gov (United States)

    Ha, Tai-You

    2011-10-01

    MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their target messenger RNAs (mRNAs). Recent studies have clearly demonstrated that miRNAs play critical roles in several biologic processes, including cell cycle, differentiation, cell development, cell growth, and apoptosis and that miRNAs are highly expressed in regulatory T (Treg) cells and a wide range of miRNAs are involved in the regulation of immunity and in the prevention of autoimmunity. It has been increasingly reported that miRNAs are associated with various human diseases like autoimmune disease, skin disease, neurological disease and psychiatric disease. Recently, the identification of mi- RNAs in skin has added a new dimension in the regulatory network and attracted significant interest in this novel layer of gene regulation. Although miRNA research in the field of dermatology is still relatively new, miRNAs have been the subject of much dermatological interest in skin morphogenesis and in regulating angiogenesis. In addition, miRNAs are moving rapidly onto center stage as key regulators of neuronal development and function in addition to important contributions to neurodegenerative disorder. Moreover, there is now compelling evidence that dysregulation of miRNA networks is implicated in the development and onset of human neruodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Tourette's syndrome, Down syndrome, depression and schizophrenia. In this review, I briefly summarize the current studies about the roles of miRNAs in various autoimmune diseases, skin diseases, psychoneurological disorders and mental stress.

  19. Unique Gene Expression and MR T2 Relaxometry Patterns Define Chronic Murine Dextran Sodium Sulphate Colitis as a Model for Connective Tissue Changes in Human Crohn’s Disease

    Science.gov (United States)

    Breynaert, Christine; Dresselaers, Tom; Perrier, Clémentine; Arijs, Ingrid; Cremer, Jonathan; Van Lommel, Leentje; Van Steen, Kristel; Ferrante, Marc; Schuit, Frans; Vermeire, Séverine; Rutgeerts, Paul; Himmelreich, Uwe; Ceuppens, Jan L.; Geboes, Karel; Van Assche, Gert

    2013-01-01

    Introduction Chronically relapsing inflammation, tissue remodeling and fibrosis are hallmarks of inflammatory bowel diseases. The aim of this study was to investigate changes in connective tissue in a chronic murine model resulting from repeated cycles of dextran sodium sulphate (DSS) ingestion, to mimic the relapsing nature of the human disease. Materials and Methods C57BL/6 mice were exposed to DSS in drinking water for 1 week, followed by a recovery phase of 2 weeks. This cycle of exposure was repeated for up to 3 times (9 weeks in total). Colonic inflammation, fibrosis, extracellular matrix proteins and colonic gene expression were studied. In vivo MRI T2 relaxometry was studied as a potential non-invasive imaging tool to evaluate bowel wall inflammation and fibrosis. Results Repeated cycles of DSS resulted in a relapsing and remitting disease course, which induced a chronic segmental, transmural colitis after 2 and 3 cycles of DSS with clear induction of fibrosis and remodeling of the muscular layer. Tenascin expression mirrored its expression in Crohn’s colitis. Microarray data identified a gene expression profile different in chronic colitis from that in acute colitis. Additional recovery was associated with upregulation of unique genes, in particular keratins, pointing to activation of molecular pathways for healing and repair. In vivo MRI T2 relaxometry of the colon showed a clear shift towards higher T2 values in the acute stage and a gradual regression of T2 values with increasing cycles of DSS. Conclusions Repeated cycles of DSS exposure induce fibrosis and connective tissue changes with typical features, as occurring in Crohn’s disease. Colonic gene expression analysis revealed unique expression profiles in chronic colitis compared to acute colitis and after additional recovery, pointing to potential new targets to intervene with the induction of fibrosis. In vivo T2 relaxometry is a promising non-invasive assessment of inflammation and fibrosis

  20. Genic insights from integrated human proteomics in GeneCards.

    Science.gov (United States)

    Fishilevich, Simon; Zimmerman, Shahar; Kohn, Asher; Iny Stein, Tsippi; Olender, Tsviya; Kolker, Eugene; Safran, Marilyn; Lancet, Doron

    2016-01-01

    GeneCards is a one-stop shop for searchable human gene annotations (http://www.genecards.org/). Data are automatically mined from ∼120 sources and presented in an integrated web card for every human gene. We report the application of recent advances in proteomics to enhance gene annotation and classification in GeneCards. First, we constructed the Human Integrated Protein Expression Database (HIPED), a unified database of protein abundance in human tissues, based on the publically available mass spectrometry (MS)-based proteomics sources ProteomicsDB, Multi-Omics Profiling Expression Database, Protein Abundance Across Organisms and The MaxQuant DataBase. The integrated database, residing within GeneCards, compares favourably with its individual sources, covering nearly 90% of human protein-coding genes. For gene annotation and comparisons, we first defined a protein expression vector for each gene, based on normalized abundances in 69 normal human tissues. This vector is portrayed in the GeneCards expression section as a bar graph, allowing visual inspection and comparison. These data are juxtaposed with transcriptome bar graphs. Using the protein expression vectors, we further defined a pairwise metric that helps assess expression-based pairwise proximity. This new metric for finding functional partners complements eight others, including sharing of pathways, gene ontology (GO) terms and domains, implemented in the GeneCards Suite. In parallel, we calculated proteome-based differential expression, highlighting a subset of tissues that overexpress a gene and subserving gene classification. This textual annotation allows users of VarElect, the suite's next-generation phenotyper, to more effectively discover causative disease variants. Finally, we define the protein-RNA expression ratio and correlation as yet another attribute of every gene in each tissue, adding further annotative information. The results constitute a significant enhancement of several Gene

  1. Roles of the Y chromosome genes in human cancers

    Directory of Open Access Journals (Sweden)

    Tatsuo Kido

    2015-06-01

    Full Text Available Male and female differ genetically by their respective sex chromosome composition, that is, XY as male and XX as female. Although both X and Y chromosomes evolved from the same ancestor pair of autosomes, the Y chromosome harbors male-specific genes, which play pivotal roles in male sex determination, germ cell differentiation, and masculinization of various tissues. Deletions or translocation of the sex-determining gene, SRY, from the Y chromosome causes disorders of sex development (previously termed as an intersex condition with dysgenic gonads. Failure of gonadal development results not only in infertility, but also in increased risks of germ cell tumor (GCT, such as gonadoblastoma and various types of testicular GCT. Recent studies demonstrate that either loss of Y chromosome or ectopic expression of Y chromosome genes is closely associated with various male-biased diseases, including selected somatic cancers. These observations suggest that the Y-linked genes are involved in male health and diseases in more frequently than expected. Although only a small number of protein-coding genes are present in the male-specific region of Y chromosome, the impacts of Y chromosome genes on human diseases are still largely unknown, due to lack of in vivo models and differences between the Y chromosomes of human and rodents. In this review, we highlight the involvement of selected Y chromosome genes in cancer development in men.

  2. Human DJ-1-specific Transcriptional Activation of Tyrosine Hydroxylase Gene*

    Science.gov (United States)

    Ishikawa, Shizuma; Taira, Takahiro; Takahashi-Niki, Kazuko; Niki, Takeshi; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M. M.

    2010-01-01

    Loss-of-function mutation in the DJ-1 gene causes a subset of familial Parkinson disease. The mechanism underlying DJ-1-related selective vulnerability in the dopaminergic pathway is, however, not known. DJ-1 has multiple functions, including transcriptional regulation, and one of transcriptional target genes for DJ-1 is the tyrosine hydroxylase (TH) gene, the product of which is a key enzyme for dopamine biosynthesis. It has been reported that DJ-1 is a neuroprotective transcriptional co-activator that sequesters a transcriptional co-repressor polypyrimidine tract-binding protein-associated splicing factor (PSF) from the TH gene promoter. In this study, we found that knockdown of human DJ-1 by small interference RNA in human dopaminergic cell lines attenuated TH gene expression and 4-dihydroxy-l-phenylalanine production but that knockdown or knock-out of mouse DJ-1 in mouse cell lines or in mice did not affect such expression and TH activity. In reporter assays using the human TH gene promoter linked to the luciferase gene, stimulation of TH promoter activity was observed in human cells, but not mouse cells, that had been transfected with DJ-1. Although human DJ-1 and mouse DJ-1 were associated either with human or with mouse PSF, TH promoter activity inhibited by PSF was restored by human DJ-1 but not by mouse DJ-1. Chromatin immunoprecipitation assays revealed that the complex of PSF with DJ-1 bound to the human but not the mouse TH gene promoter. These results suggest a novel species-specific transcriptional regulation of the TH promoter by DJ-1 and one of the mechanisms for no reduction of TH in DJ-1-knock-out mice. PMID:20938049

  3. Human proton/oligopeptide transporter (POT) genes

    DEFF Research Database (Denmark)

    Botka, C. W.; Wittig, T. W.; Graul, R. C.

    2000-01-01

    The proton-dependent oligopeptide transporters (POT) gene family currently consists of approximately 70 cloned cDNAs derived from diverse organisms. In mammals, two genes encoding peptide transporters, PepT1 and PepT2 have been cloned in several species including humans, in addition to a rat...... histidine/peptide transporter (rPHT1). Because the Candida elegans genome contains five putative POT genes, we searched the available protein and nucleic acid databases for additional mammalian/human POT genes, using iterative BLAST runs and the human expressed sequence tags (EST) database. The apparent...... human orthologue of rPHT1 (expression largely confined to rat brain and retina) was represented by numerous ESTs originating from many tissues. Assembly of these ESTs resulted in a contiguous sequence covering approximately 95% of the suspected coding region. The contig sequences and analyses revealed...

  4. Gene Expression in the Human Endolymphatic Sac

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Kirkeby, Svend; Vikeså, Jonas

    2015-01-01

    OBJECTIVES/HYPOTHESIS: The purpose of the present study is to explore, demonstrate, and describe the expression of genes related to the solute carrier (SLC) molecules of ion transporters in the human endolymphatic sac. STUDY DESIGN: cDNA microarrays and immunohistochemistry were used for analyses...... of fresh human endolymphatic sac tissue samples. METHODS: Twelve tissue samples of the human endolymphatic sac were obtained during translabyrinthine surgery for vestibular schwannoma. Microarray technology was used to investigate tissue sample expression of solute carrier family genes, using adjacent dura...... mater as control. Immunohistochemistry was used for verification of translation of selected genes, as well as localization of the specific protein within the sac. RESULTS: An extensive representation of the SLC family genes were upregulated in the human endolymphatic sac, including SLC26a4 Pendrin, SLC4...

  5. Vectors for gene therapy of skin diseases.

    Science.gov (United States)

    Pfützner, Wolfgang

    2010-08-01

    The success of gene therapy mainly depends on the gene vector (GV) responsible for the efficient transport of genetic information. The qualities of a GV have a profound influence on the method of application, the efficiency of gene transfer in the target tissue, the amount and persistence of gene expression and the potential side effects and safety risks. Clinical gene therapy studies over the past 20 years have contributed to the development and testing of different GV systems, some of which also show great potential for the treatment of skin diseases. In this review the structures, methods of application, characteristics, clinical uses and possibilities for optimization of these GV will be discussed with regard to their cutaneous applications.

  6. Current Aspect and Future Prospect of Human Gene Therapy in Childhood (Gene Therapy : Advances in Research and Treatment)

    OpenAIRE

    1996-01-01

    Almost four years have passed since the first human gene therapy for adenosine deaminase (ADA) deficiency had been performed. Gene therapy protocols for cystic fibrosis, familial hypercholesterolaemia and hemophilia B were also started during this period. In this review, we reported and discussed the current aspect and the future prospect of gene therapy for inherited disease in childhood.

  7. Conditional Lineage Ablation to Model Human Diseases

    Science.gov (United States)

    Lee, Paul; Morley, Gregory; Huang, Qian; Fischer, Avi; Seiler, Stephanie; Horner, James W.; Factor, Stephen; Vaidya, Dhananjay; Jalife, Jose; Fishman, Glenn I.

    1998-09-01

    Cell loss contributes to the pathogenesis of many inherited and acquired human diseases. We have developed a system to conditionally ablate cells of any lineage and developmental stage in the mouse by regulated expression of the diphtheria toxin A (DTA) gene by using tetracycline-responsive promoters. As an example of this approach, we targeted expression of DTA to the hearts of adult mice to model structural abnormalities commonly observed in human cardiomyopathies. Induction of DTA expression resulted in cell loss, fibrosis, and chamber dilatation. As in many human cardiomyopathies, transgenic mice developed spontaneous arrhythmias in vivo, and programmed electrical stimulation of isolated-perfused transgenic hearts demonstrated a strikingly high incidence of spontaneous and inducible ventricular tachycardia. Affected mice showed marked perturbations of cardiac gap junction channel expression and localization, including a subset with disorganized epicardial activation patterns as revealed by optical action potential mapping. These studies provide important insights into mechanisms of arrhythmogenesis and suggest that conditional lineage ablation may have wide applicability for studies of disease pathogenesis.

  8. Traffic jam: a compendium of human diseases that affect intracellular transport processes.

    Science.gov (United States)

    Aridor, M; Hannan, L A

    2000-11-01

    As sequencing of the human genome nears completion, the genes that cause many human diseases are being identified and functionally described. This has revealed that many human diseases are due to defects of intracellular trafficking. This 'Toolbox' catalogs and briefly describes these diseases.

  9. Connexin mutant embryonic stem cells and human diseases

    Institute of Scientific and Technical Information of China (English)

    Kiyomasa; Nishii; Yosaburo; Shibata; Yasushi; Kobayashi

    2014-01-01

    Intercellular communication via gap junctions allows cells within multicellular organisms to share small molecules. The effect of such interactions has been elucidated using mouse gene knockout strategies. Although several mutations in human gap junction-encoding connexin(Cx) have been described, Cx mutants in mice do not always recapitulate the human disease. Among the 20 mouse Cxs, Cx26, Cx43, and Cx45 play roles in early cardiac or placental development, and disruption of the genes results in lethality that hampers further analyses. Embryonic stem cells(ESCs) that lack Cx43 or Cx45 have made analysis feasible in both in vitro differentiated cell cultures and in vivo chimeric tissues. The success of mouse ESCs studies is leading to the use of induced pluripotent stem cells to learn more about the pathogenesis of human Cx diseases. This review summarizes the current status of mouse Cx disruption models and ESC differentiation studies, and discusses their implication for understanding human Cx diseases.

  10. Connexin mutant embryonic stem cells and human diseases.

    Science.gov (United States)

    Nishii, Kiyomasa; Shibata, Yosaburo; Kobayashi, Yasushi

    2014-11-26

    Intercellular communication via gap junctions allows cells within multicellular organisms to share small molecules. The effect of such interactions has been elucidated using mouse gene knockout strategies. Although several mutations in human gap junction-encoding connexin (Cx) have been described, Cx mutants in mice do not always recapitulate the human disease. Among the 20 mouse Cxs, Cx26, Cx43, and Cx45 play roles in early cardiac or placental development, and disruption of the genes results in lethality that hampers further analyses. Embryonic stem cells (ESCs) that lack Cx43 or Cx45 have made analysis feasible in both in vitro differentiated cell cultures and in vivo chimeric tissues. The success of mouse ESCs studies is leading to the use of induced pluripotent stem cells to learn more about the pathogenesis of human Cx diseases. This review summarizes the current status of mouse Cx disruption models and ESC differentiation studies, and discusses their implication for understanding human Cx diseases.

  11. Mitochondrial Fusion Proteins and Human Diseases

    Directory of Open Access Journals (Sweden)

    Michela Ranieri

    2013-01-01

    Full Text Available Mitochondria are highly dynamic, complex organelles that continuously alter their shape, ranging between two opposite processes, fission and fusion, in response to several stimuli and the metabolic demands of the cell. Alterations in mitochondrial dynamics due to mutations in proteins involved in the fusion-fission machinery represent an important pathogenic mechanism of human diseases. The most relevant proteins involved in the mitochondrial fusion process are three GTPase dynamin-like proteins: mitofusin 1 (MFN1 and 2 (MFN2, located in the outer mitochondrial membrane, and optic atrophy protein 1 (OPA1, in the inner membrane. An expanding number of degenerative disorders are associated with mutations in the genes encoding MFN2 and OPA1, including Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy. While these disorders can still be considered rare, defective mitochondrial dynamics seem to play a significant role in the molecular and cellular pathogenesis of more common neurodegenerative diseases, for example, Alzheimer’s and Parkinson’s diseases. This review provides an overview of the basic molecular mechanisms involved in mitochondrial fusion and focuses on the alteration in mitochondrial DNA amount resulting from impairment of mitochondrial dynamics. We also review the literature describing the main disorders associated with the disruption of mitochondrial fusion.

  12. Disease Resistance Gene Analogs (RGAs in Plants

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Sekhwal

    2015-08-01

    Full Text Available Plants have developed effective mechanisms to recognize and respond to infections caused by pathogens. Plant resistance gene analogs (RGAs, as resistance (R gene candidates, have conserved domains and motifs that play specific roles in pathogens’ resistance. Well-known RGAs are nucleotide binding site leucine rich repeats, receptor like kinases, and receptor like proteins. Others include pentatricopeptide repeats and apoplastic peroxidases. RGAs can be detected using bioinformatics tools based on their conserved structural features. Thousands of RGAs have been identified from sequenced plant genomes. High-density genome-wide RGA genetic maps are useful for designing diagnostic markers and identifying quantitative trait loci (QTL or markers associated with plant disease resistance. This review focuses on recent advances in structures and mechanisms of RGAs, and their identification from sequenced genomes using bioinformatics tools. Applications in enhancing fine mapping and cloning of plant disease resistance genes are also discussed.

  13. Disease Resistance Gene Analogs (RGAs) in Plants.

    Science.gov (United States)

    Sekhwal, Manoj Kumar; Li, Pingchuan; Lam, Irene; Wang, Xiue; Cloutier, Sylvie; You, Frank M

    2015-08-14

    Plants have developed effective mechanisms to recognize and respond to infections caused by pathogens. Plant resistance gene analogs (RGAs), as resistance (R) gene candidates, have conserved domains and motifs that play specific roles in pathogens' resistance. Well-known RGAs are nucleotide binding site leucine rich repeats, receptor like kinases, and receptor like proteins. Others include pentatricopeptide repeats and apoplastic peroxidases. RGAs can be detected using bioinformatics tools based on their conserved structural features. Thousands of RGAs have been identified from sequenced plant genomes. High-density genome-wide RGA genetic maps are useful for designing diagnostic markers and identifying quantitative trait loci (QTL) or markers associated with plant disease resistance. This review focuses on recent advances in structures and mechanisms of RGAs, and their identification from sequenced genomes using bioinformatics tools. Applications in enhancing fine mapping and cloning of plant disease resistance genes are also discussed.

  14. LINE FUSION GENES: a database of LINE expression in human genes

    Directory of Open Access Journals (Sweden)

    Park Hong-Seog

    2006-06-01

    Full Text Available Abstract Background Long Interspersed Nuclear Elements (LINEs are the most abundant retrotransposons in humans. About 79% of human genes are estimated to contain at least one segment of LINE per transcription unit. Recent studies have shown that LINE elements can affect protein sequences, splicing patterns and expression of human genes. Description We have developed a database, LINE FUSION GENES, for elucidating LINE expression throughout the human gene database. We searched the 28,171 genes listed in the NCBI database for LINE elements and analyzed their structures and expression patterns. The results show that the mRNA sequences of 1,329 genes were affected by LINE expression. The LINE expression types were classified on the basis of LINEs in the 5' UTR, exon or 3' UTR sequences of the mRNAs. Our database provides further information, such as the tissue distribution and chromosomal location of the genes, and the domain structure that is changed by LINE integration. We have linked all the accession numbers to the NCBI data bank to provide mRNA sequences for subsequent users. Conclusion We believe that our work will interest genome scientists and might help them to gain insight into the implications of LINE expression for human evolution and disease. Availability http://www.primate.or.kr/line

  15. Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections.

    Directory of Open Access Journals (Sweden)

    Ettie M Lipner

    Full Text Available Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects.

  16. [Immune response genes products in human physiology].

    Science.gov (United States)

    Khaitov, R M; Alekseev, L P

    2012-09-01

    Current data on physiological role of human immune response genes' proteomic products (antigens) are discussed. The antigens are specified by a very high level of diversity that mediates a wide specter ofphysiological functions. They actually provide integrity and biological stability of human as species. These data reveal new ideas on many pathological processes as well as drafts new approaches for prophylaxis and treatment.

  17. Gene expression profiles of the developing human retina

    Institute of Scientific and Technical Information of China (English)

    WANG Feng; LI Huiming; LIU Wenwen; XU Ping; HU Gengxi; CHENG Yidong; JIA Libin; HUANG Qian

    2004-01-01

    expression profiles between the microarray and real-time RT-PCR data. In situ hybridization revealed both expression level and cellular distribution of NNAT in retina. Finally, the chromosomal locations of 106 differentially expressed genes were also searched and one of these genes is associated with autosomal dominant cone or cone-rod dystrophy. The data from present study provide insights into understanding genetic programs during human retinal development and help identify additional retinal disease genes.

  18. Polymorphisms of the Toll-like receptors and human disease.

    Science.gov (United States)

    Schwartz, David A; Cook, Donald N

    2005-11-15

    The Toll-like receptor (TLR) family regulates both innate and adaptive immune responses. Given its broad effect on immunity, the function of TLRs in various human diseases has been investigated largely by comparing the incidence of disease among persons with different polymorphisms in the genes that participate in TLR signaling. These studies demonstrate that TLR function affects several diseases, including sepsis, immunodeficiencies, atherosclerosis, and asthma. These findings have resulted in new opportunities to study the pathogenesis of disease, identify subpopulations at greater risk of disease, and, potentially, identify novel therapeutic approaches.

  19. Quantitative Expression Analysis of APP Pathway and Tau Phosphorylation-Related Genes in the ICV STZ-Induced Non-Human Primate Model of Sporadic Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Sang-Je Park

    2015-01-01

    Full Text Available The accumulation and aggregation of misfolded proteins in the brain, such as amyloid-β (Aβ and hyperphosphorylated tau, is a neuropathological hallmark of Alzheimer’s disease (AD. Previously, we developed and validated a novel non-human primate model for sporadic AD (sAD research using intracerebroventricular administration of streptozotocin (icv STZ. To date, no characterization of AD-related genes in different brain regions has been performed. Therefore, in the current study, the expression of seven amyloid precursor protein (APP pathway-related and five tau phosphorylation-related genes was investigated by quantitative real-time PCR experiments, using two matched-pair brain samples from control and icv STZ-treated cynomolgus monkeys. The genes showed similar expression patterns within the control and icv STZ-treated groups; however, marked differences in gene expression patterns were observed between the control and icv STZ-treated groups. Remarkably, other than β-secretase (BACE1 and cyclin-dependent kinase 5 (CDK5, all the genes tested showed similar expression patterns in AD models compared to controls, with increased levels in the precuneus and occipital cortex. However, significant changes in gene expression patterns were not detected in the frontal cortex, hippocampus, or posterior cingulate. Based on these results, we conclude that APP may be cleaved via the general metabolic mechanisms of increased α- and γ-secretase levels, and that hyperphosphorylation of tau could be mediated by elevated levels of tau protein kinase, specifically in the precuneus and occipital cortex.

  20. Update of human and mouse forkhead box (FOX gene families

    Directory of Open Access Journals (Sweden)

    Jackson Brian C

    2010-06-01

    Full Text Available Abstract The forkhead box (FOX proteins are transcription factors that play complex and important roles in processes from development and organogenesis to regulation of metabolism and the immune system. There are 50 FOX genes in the human genome and 44 in the mouse, divided into 19 subfamilies. All human FOX genes have close mouse orthologues, with one exception: the mouse has a single Foxd4, whereas the human gene has undergone a recent duplication to a total of seven (FOXD4 and FOXD4L1 → FOXD4L6. Evolutionarily ancient family members can be found as far back as the fungi and metazoans. The DNA-binding domain, the forkhead domain, is an example of the winged-helix domain, and is very well conserved across the FOX family and across species, with a few notable exceptions in which divergence has created new functionality. Mutations in FOX genes have been implicated in at least four familial human diseases, and differential expression may play a role in a number of other pathologies -- ranging from metabolic disorders to autoimmunity. Furthermore, FOX genes are differentially expressed in a large number of cancers; their role can be either as an oncogene or tumour suppressor, depending on the family member and cell type. Although some drugs that target FOX gene expression or activity, notably proteasome inhibitors, appear to work well, much more basic research is needed to unlock the complex interplay of upstream and downstream interactions with FOX family transcription factors.

  1. Genomic responses in mouse models poorly mimic human inflammatory diseases.

    Science.gov (United States)

    Seok, Junhee; Warren, H Shaw; Cuenca, Alex G; Mindrinos, Michael N; Baker, Henry V; Xu, Weihong; Richards, Daniel R; McDonald-Smith, Grace P; Gao, Hong; Hennessy, Laura; Finnerty, Celeste C; López, Cecilia M; Honari, Shari; Moore, Ernest E; Minei, Joseph P; Cuschieri, Joseph; Bankey, Paul E; Johnson, Jeffrey L; Sperry, Jason; Nathens, Avery B; Billiar, Timothy R; West, Michael A; Jeschke, Marc G; Klein, Matthew B; Gamelli, Richard L; Gibran, Nicole S; Brownstein, Bernard H; Miller-Graziano, Carol; Calvano, Steve E; Mason, Philip H; Cobb, J Perren; Rahme, Laurence G; Lowry, Stephen F; Maier, Ronald V; Moldawer, Lyle L; Herndon, David N; Davis, Ronald W; Xiao, Wenzhong; Tompkins, Ronald G

    2013-02-26

    A cornerstone of modern biomedical research is the use of mouse models to explore basic pathophysiological mechanisms, evaluate new therapeutic approaches, and make go or no-go decisions to carry new drug candidates forward into clinical trials. Systematic studies evaluating how well murine models mimic human inflammatory diseases are nonexistent. Here, we show that, although acute inflammatory stresses from different etiologies result in highly similar genomic responses in humans, the responses in corresponding mouse models correlate poorly with the human conditions and also, one another. Among genes changed significantly in humans, the murine orthologs are close to random in matching their human counterparts (e.g., R(2) between 0.0 and 0.1). In addition to improvements in the current animal model systems, our study supports higher priority for translational medical research to focus on the more complex human conditions rather than relying on mouse models to study human inflammatory diseases.

  2. Genomic responses in mouse models poorly mimic human inflammatory diseases

    Science.gov (United States)

    Seok, Junhee; Warren, H. Shaw; Cuenca, Alex G.; Mindrinos, Michael N.; Baker, Henry V.; Xu, Weihong; Richards, Daniel R.; McDonald-Smith, Grace P.; Gao, Hong; Hennessy, Laura; Finnerty, Celeste C.; López, Cecilia M.; Honari, Shari; Moore, Ernest E.; Minei, Joseph P.; Cuschieri, Joseph; Bankey, Paul E.; Johnson, Jeffrey L.; Sperry, Jason; Nathens, Avery B.; Billiar, Timothy R.; West, Michael A.; Jeschke, Marc G.; Klein, Matthew B.; Gamelli, Richard L.; Gibran, Nicole S.; Brownstein, Bernard H.; Miller-Graziano, Carol; Calvano, Steve E.; Mason, Philip H.; Cobb, J. Perren; Rahme, Laurence G.; Lowry, Stephen F.; Maier, Ronald V.; Moldawer, Lyle L.; Herndon, David N.; Davis, Ronald W.; Xiao, Wenzhong; Tompkins, Ronald G.; Abouhamze, Amer; Balis, Ulysses G. J.; Camp, David G.; De, Asit K.; Harbrecht, Brian G.; Hayden, Douglas L.; Kaushal, Amit; O’Keefe, Grant E.; Kotz, Kenneth T.; Qian, Weijun; Schoenfeld, David A.; Shapiro, Michael B.; Silver, Geoffrey M.; Smith, Richard D.; Storey, John D.; Tibshirani, Robert; Toner, Mehmet; Wilhelmy, Julie; Wispelwey, Bram; Wong, Wing H

    2013-01-01

    A cornerstone of modern biomedical research is the use of mouse models to explore basic pathophysiological mechanisms, evaluate new therapeutic approaches, and make go or no-go decisions to carry new drug candidates forward into clinical trials. Systematic studies evaluating how well murine models mimic human inflammatory diseases are nonexistent. Here, we show that, although acute inflammatory stresses from different etiologies result in highly similar genomic responses in humans, the responses in corresponding mouse models correlate poorly with the human conditions and also, one another. Among genes changed significantly in humans, the murine orthologs are close to random in matching their human counterparts (e.g., R2 between 0.0 and 0.1). In addition to improvements in the current animal model systems, our study supports higher priority for translational medical research to focus on the more complex human conditions rather than relying on mouse models to study human inflammatory diseases. PMID:23401516

  3. A computational framework for the prioritization of disease-gene candidates.

    Science.gov (United States)

    Browne, Fiona; Wang, Haiying; Zheng, Huiru

    2015-01-01

    The identification of genes and uncovering the role they play in diseases is an important and complex challenge. Genome-wide linkage and association studies have made advancements in identifying genetic variants that underpin human disease. An important challenge now is to identify meaningful disease-associated genes from a long list of candidate genes implicated by these analyses. The application of gene prioritization can enhance our understanding of disease mechanisms and aid in the discovery of drug targets. The integration of protein-protein interaction networks along with disease datasets and contextual information is an important tool in unraveling the molecular basis of diseases. In this paper we propose a computational pipeline for the prioritization of disease-gene candidates. Diverse heterogeneous data including: gene-expression, protein-protein interaction network, ontology-based similarity and topological measures and tissue-specific are integrated. The pipeline was applied to prioritize Alzheimer's Disease (AD) genes, whereby a list of 32 prioritized genes was generated. This approach correctly identified key AD susceptible genes: PSEN1 and TRAF1. Biological process enrichment analysis revealed the prioritized genes are modulated in AD pathogenesis including: regulation of neurogenesis and generation of neurons. Relatively high predictive performance (AUC: 0.70) was observed when classifying AD and normal gene expression profiles from individuals using leave-one-out cross validation. This work provides a foundation for future investigation of diverse heterogeneous data integration for disease-gene prioritization.

  4. Automated discovery of functional generality of human gene expression programs.

    Directory of Open Access Journals (Sweden)

    Georg K Gerber

    2007-08-01

    Full Text Available An important research problem in computational biology is the identification of expression programs, sets of co-expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of these programs. The use of human expression data compendia for discovery of such programs presents several challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples, uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram, a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data, we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-kappaB transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to infection will be useful for guiding future biological experiments; genes from programs with low generality scores might serve as new drug targets that exhibit minimal

  5. MalaCards: A Comprehensive Automatically-Mined Database of Human Diseases.

    Science.gov (United States)

    Rappaport, Noa; Twik, Michal; Nativ, Noam; Stelzer, Gil; Bahir, Iris; Stein, Tsippi Iny; Safran, Marilyn; Lancet, Doron

    2014-09-08

    Systems medicine provides insights into mechanisms of human diseases, and expedites the development of better diagnostics and drugs. To facilitate such strategies, we initiated MalaCards, a compendium of human diseases and their annotations, integrating and often remodeling information from 64 data sources. MalaCards employs, among others, the proven automatic data-mining strategies established in the construction of GeneCards, our widely used compendium of human genes. The development of MalaCards poses many algorithmic challenges, such as disease name unification, integrated classification, gene-disease association, and disease-targeted expression analysis. MalaCards displays a Web card for each of >19,000 human diseases, with 17 sections, including textual summaries, related diseases, related genes, genetic variations and tests, and relevant publications. Also included are a powerful search engine and a variety of categorized disease lists. This unit describes two basic protocols to search and browse MalaCards effectively.

  6. Parkinson's disease and mitochondrial gene variations

    DEFF Research Database (Denmark)

    Andalib, Sasan; Vafaee, Manouchehr Seyedi; Gjedde, Albert

    2014-01-01

    Parkinson's disease (PD) is a common disorder of the central nervous system in the elderly. The pathogenesis of PD is a complex process, with genetics as an important contributing factor. This factor may stem from mitochondrial gene variations and mutations as well as from nuclear gene variations...... and mutations. More recently, a particular role of mitochondrial dysfunction has been suggested, arising from mitochondrial DNA variations or acquired mutations in PD pathogenesis. The present review summarizes and weighs the evidence in support of mitochondrial DNA (mtDNA) variations as important contributors...

  7. Duplicability of self-interacting human genes.

    LENUS (Irish Health Repository)

    Pérez-Bercoff, Asa

    2010-01-01

    BACKGROUND: There is increasing interest in the evolution of protein-protein interactions because this should ultimately be informative of the patterns of evolution of new protein functions within the cell. One model proposes that the evolution of new protein-protein interactions and protein complexes proceeds through the duplication of self-interacting genes. This model is supported by data from yeast. We examined the relationship between gene duplication and self-interaction in the human genome. RESULTS: We investigated the patterns of self-interaction and duplication among 34808 interactions encoded by 8881 human genes, and show that self-interacting proteins are encoded by genes with higher duplicability than genes whose proteins lack this type of interaction. We show that this result is robust against the system used to define duplicate genes. Finally we compared the presence of self-interactions amongst proteins whose genes have duplicated either through whole-genome duplication (WGD) or small-scale duplication (SSD), and show that the former tend to have more interactions in general. After controlling for age differences between the two sets of duplicates this result can be explained by the time since the gene duplication. CONCLUSIONS: Genes encoding self-interacting proteins tend to have higher duplicability than proteins lacking self-interactions. Moreover these duplicate genes have more often arisen through whole-genome rather than small-scale duplication. Finally, self-interacting WGD genes tend to have more interaction partners in general in the PIN, which can be explained by their overall greater age. This work adds to our growing knowledge of the importance of contextual factors in gene duplicability.

  8. Integrated Genomic and Network-Based Analyses of Complex Diseases and Human Disease Network.

    Science.gov (United States)

    Al-Harazi, Olfat; Al Insaif, Sadiq; Al-Ajlan, Monirah A; Kaya, Namik; Dzimiri, Nduna; Colak, Dilek

    2016-06-20

    A disease phenotype generally reflects various pathobiological processes that interact in a complex network. The highly interconnected nature of the human protein interaction network (interactome) indicates that, at the molecular level, it is difficult to consider diseases as being independent of one another. Recently, genome-wide molecular measurements, data mining and bioinformatics approaches have provided the means to explore human diseases from a molecular basis. The exploration of diseases and a system of disease relationships based on the integration of genome-wide molecular data with the human interactome could offer a powerful perspective for understanding the molecular architecture of diseases. Recently, subnetwork markers have proven to be more robust and reliable than individual biomarker genes selected based on gene expression profiles alone, and achieve higher accuracy in disease classification. We have applied one of these methodologies to idiopathic dilated cardiomyopathy (IDCM) data that we have generated using a microarray and identified significant subnetworks associated with the disease. In this paper, we review the recent endeavours in this direction, and summarize the existing methodologies and computational tools for network-based analysis of complex diseases and molecular relationships among apparently different disorders and human disease network. We also discuss the future research trends and topics of this promising field.

  9. Prediction of disease-gene-drug relationships following a differential network analysis.

    Science.gov (United States)

    Zickenrott, S; Angarica, V E; Upadhyaya, B B; del Sol, A

    2016-01-01

    Great efforts are being devoted to get a deeper understanding of disease-related dysregulations, which is central for introducing novel and more effective therapeutics in the clinics. However, most human diseases are highly multifactorial at the molecular level, involving dysregulation of multiple genes and interactions in gene regulatory networks. This issue hinders the elucidation of disease mechanism, including the identification of disease-causing genes and regulatory interactions. Most of current network-based approaches for the study of disease mechanisms do not take into account significant differences in gene regulatory network topology between healthy and disease phenotypes. Moreover, these approaches are not able to efficiently guide database search for connections between drugs, genes and diseases. We propose a differential network-based methodology for identifying candidate target genes and chemical compounds for reverting disease phenotypes. Our method relies on transcriptomics data to reconstruct gene regulatory networks corresponding to healthy and disease states separately. Further, it identifies candidate genes essential for triggering the reversion of the disease phenotype based on network stability determinants underlying differential gene expression. In addition, our method selects and ranks chemical compounds targeting these genes, which could be used as therapeutic interventions for complex diseases.

  10. The human microbiome in rheumatic autoimmune diseases: A comprehensive review.

    Science.gov (United States)

    Coit, Patrick; Sawalha, Amr H

    2016-09-01

    The human microbiome consists of the total diversity of microbiota and their genes. High-throughput sequencing has allowed for inexpensive and rapid evaluation of taxonomic representation and functional capability of the microbiomes of human body sites. Autoimmune and inflammatory rheumatic diseases are characterized by dysbiosis of the microbiome. Microbiome dysbiosis can be influenced by host genetics and environmental factors. Dysbiosis is also associated with shifts in certain functional pathways. The goal of this article is to provide a current and comprehensive review of the unique characteristics of the microbiome of patients with autoimmune and inflammatory rheumatic diseases, measured using high-throughput sequencing. We also highlight the need for broader studies utilizing a longitudinal approach to better understand how the human microbiome contributes to disease susceptibility, and to characterize the role of the interaction between host genetics and microbial diversity in the pathogenesis of autoimmune diseases, disease manifestations, and progression.

  11. Diet, disease and pigment variation in humans.

    Science.gov (United States)

    Khan, R; Khan, B S Razib

    2010-10-01

    There are several hypotheses which explain the de-pigmentation of humans. The most prominent environmental explanation is that reduced endogenous vitamin D production due to diminished radiation at higher latitudes had a deleterious impact on fitness. This drove de-pigmentation as an adaptive response. A model of natural selection explains the high correlations found between low vitamin D levels and ill health, as vitamin D's role in immune response has clear evolutionary implications. But recent genomic techniques have highlighted the likelihood that extreme de-pigmentation in Eurasia is a feature of the last 10,000years, not the Upper Pleistocene, when modern humans first settled northern Eurasia. Additionally the data imply two independent selection events in eastern and western Eurasia. Therefore new parameters must be added to the model of natural selection so as to explain the relatively recent and parallel adaptive responses. I propose a model of gene-culture co-evolution whereby the spread of agriculture both reduced dietary vitamin D sources and led to more powerful selection on immune response because of the rise of infectious diseases with greater population densities. This model explains the persistence of relatively dark-skinned peoples at relatively high latitudes and the existence of relatively light-skinned populations at low latitudes. It also reinforces the importance of vitamin D as a micronutrient because of the evidence of extremely powerful fitness implications in the recent human past of pigmentation. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Relationship between human telomerase gene amplification and infection of human papillomavirus in cervical disease between Uygur and Han patients in Xinjiang%新疆维吾尔族、汉族妇女宫颈病变人类染色体端粒酶基因扩增与人乳头瘤病毒感染相关性研究

    Institute of Scientific and Technical Information of China (English)

    韩英; 艾星子·艾里; 段玲; 陈志芳; 苏晶; 丁岩

    2011-01-01

    Objective To investigate the difference of human telomerase gene amplification in cervical exfoliated cells between Uygur and Hah patients with cervical diseases, and their relationship with high-risk subtypes of human papillomavirus infection.Methods Fifty Uygur and 52 Han patients with cervical diseases were detected with fluorescence in situ hybridization to compare the amplification of human telomerase gene, and human papillomavirus infection was detected.Results Human telomerase gene amplification rates were 62.00% and 51.92% in Uygur and Han patients with cervical disease.With the progression of disease, the human telomerase gene amplification rate increased significantly.There were significant differences in average human telomerase gene multiples amplification between multiple infection and single infection(P<0.05), and no significant differences among the infections of each human papillomavirus subtype in Uygur and Han patients.However,there was significant difference in the total of human telomerase gene multiple amplification between Uygur and Han patients ( P< 0.05 ).Conclusion Human telomerase gene amplification is correlated with high-risk human papillomavirus infection, and it might be a predictor of progression of cervical cancer.Multiple high-risk subtype of human papillomavirus infection may be one of causes of the high incidence of cervical cancer in Uygur patients.%目的:探讨新疆地区维吾尔族(维族)、汉族妇女宫颈病变脱落细胞中人类染色体端粒酶基因(human telomerase gene,hTERC)的表达差异及其与人乳头瘤病毒(human papillomavirus,HPV)高危亚型感染的相关性.方法:采用荧光原位杂交技术,比较50例维族和52例汉族宫颈病变患者hTERC基因扩增情况,同时检测HPV感染情况.结果:维族宫颈病变患者hTERC基因扩增率为62.00%,汉族宫颈病变hTERC基因扩增率为51.92%.随病变进展.维、汉族官颈病变患者hTERC基因扩增均明显增加.维、汉

  13. Surfactant gene polymorphisms and interstitial lung diseases

    Directory of Open Access Journals (Sweden)

    Pantelidis Panagiotis

    2001-11-01

    Full Text Available Abstract Pulmonary surfactant is a complex mixture of phospholipids and proteins, which is present in the alveolar lining fluid and is essential for normal lung function. Alterations in surfactant composition have been reported in several interstitial lung diseases (ILDs. Furthermore, a mutation in the surfactant protein C gene that results in complete absence of the protein has been shown to be associated with familial ILD. The role of surfactant in lung disease is therefore drawing increasing attention following the elucidation of the genetic basis underlying its surface expression and the proof of surfactant abnormalities in ILD.

  14. Fluid Mechanics, Arterial Disease, and Gene Expression.

    Science.gov (United States)

    Tarbell, John M; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.

  15. Correlation of microsynteny conservation and disease gene distribution in mammalian genomes

    Directory of Open Access Journals (Sweden)

    Li Xiting

    2009-11-01

    Full Text Available Abstract Background With the completion of the whole genome sequence for many organisms, investigations into genomic structure have revealed that gene distribution is variable, and that genes with similar function or expression are located within clusters. This clustering suggests that there are evolutionary constraints that determine genome architecture. However, as most of the evidence for constraints on genome evolution comes from studies on yeast, it is unclear how much of this prior work can be extrapolated to mammalian genomes. Therefore, in this work we wished to examine the constraints on regions of the mammalian genome containing conserved gene clusters. Results We first identified regions of the mouse genome with microsynteny conservation by comparing gene arrangement in the mouse genome to the human, rat, and dog genomes. We then asked if any particular gene types were found preferentially in conserved regions. We found a significant correlation between conserved microsynteny and the density of mouse orthologs of human disease genes, suggesting that disease genes are clustered in genomic regions of increased microsynteny conservation. Conclusion The correlation between microsynteny conservation and disease gene locations indicates that regions of the mouse genome with microsynteny conservation may contain undiscovered human disease genes. This study not only demonstrates that gene function constrains mammalian genome organization, but also identifies regions of the mouse genome that can be experimentally examined to produce mouse models of human disease.

  16. Disease Modeling and Gene Therapy of Copper Storage Disease in Canine Hepatic Organoids

    Directory of Open Access Journals (Sweden)

    Sathidpak Nantasanti

    2015-11-01

    Full Text Available The recent development of 3D-liver stem cell cultures (hepatic organoids opens up new avenues for gene and/or stem cell therapy to treat liver disease. To test safety and efficacy, a relevant large animal model is essential but not yet established. Because of its shared pathologies and disease pathways, the dog is considered the best model for human liver disease. Here we report the establishment of a long-term canine hepatic organoid culture allowing undifferentiated expansion of progenitor cells that can be differentiated toward functional hepatocytes. We show that cultures can be initiated from fresh and frozen liver tissues using Tru-Cut or fine-needle biopsies. The use of Wnt agonists proved important for canine organoid proliferation and inhibition of differentiation. Finally, we demonstrate that successful gene supplementation in hepatic organoids of COMMD1-deficient dogs restores function and can be an effective means to cure copper storage disease.

  17. Mutations in the human TWIST gene.

    Science.gov (United States)

    Gripp, K W; Zackai, E H; Stolle, C A

    2000-01-01

    Saethre-Chotzen syndrome is a relatively common craniosynostosis disorder with autosomal dominant inheritance. Mutations in the TWIST gene have been identified in patients with Saethre-Chotzen syndrome. The TWIST gene product is a transcription factor with DNA binding and helix-loop-helix domains. Numerous missense and nonsense mutations cluster in the functional domains, without any apparent mutational hot spot. Two novel point mutations and one novel polymorphism are included in this review. Large deletions including the TWIST gene have been identified in some patients with learning disabilities or mental retardation, which are not typically part of the Saethre-Chotzen syndrome. Comprehensive studies in patients with the clinical diagnosis of Saethre-Chotzen syndrome have demonstrated a TWIST gene abnormality in about 80%, up to 37% of which may be large deletions [Johnson et al., 1998]. The gene deletions and numerous nonsense mutations are suggestive of haploinsufficiency as the disease-causing mechanism. No genotype phenotype correlation was apparent.

  18. Human proton/oligopeptide transporter (POT) genes

    DEFF Research Database (Denmark)

    Botka, C. W.; Wittig, T. W.; Graul, R. C.

    2000-01-01

    The proton-dependent oligopeptide transporters (POT) gene family currently consists of approximately 70 cloned cDNAs derived from diverse organisms. In mammals, two genes encoding peptide transporters, PepT1 and PepT2 have been cloned in several species including humans, in addition to a rat...... the presence of several possible splice variants of hPHT1. A second closely related human EST-contig displayed high identity to a recently cloned mouse cDNA encoding cyclic adenosine monophosphate (cAMP)-inducible 1 protein (gi:4580995). This contig served to identify a PAC clone containing deduced exons...

  19. A human-specific de novo protein-coding gene associated with human brain functions.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  20. A human-specific de novo protein-coding gene associated with human brain functions.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  1. Gene regulatory networks elucidating huanglongbing disease mechanisms.

    Science.gov (United States)

    Martinelli, Federico; Reagan, Russell L; Uratsu, Sandra L; Phu, My L; Albrecht, Ute; Zhao, Weixiang; Davis, Cristina E; Bowman, Kim D; Dandekar, Abhaya M

    2013-01-01

    Next-generation sequencing was exploited to gain deeper insight into the response to infection by Candidatus liberibacter asiaticus (CaLas), especially the immune disregulation and metabolic dysfunction caused by source-sink disruption. Previous fruit transcriptome data were compared with additional RNA-Seq data in three tissues: immature fruit, and young and mature leaves. Four categories of orchard trees were studied: symptomatic, asymptomatic, apparently healthy, and healthy. Principal component analysis found distinct expression patterns between immature and mature fruits and leaf samples for all four categories of trees. A predicted protein - protein interaction network identified HLB-regulated genes for sugar transporters playing key roles in the overall plant responses. Gene set and pathway enrichment analyses highlight the role of sucrose and starch metabolism in disease symptom development in all tissues. HLB-regulated genes (glucose-phosphate-transporter, invertase, starch-related genes) would likely determine the source-sink relationship disruption. In infected leaves, transcriptomic changes were observed for light reactions genes (downregulation), sucrose metabolism (upregulation), and starch biosynthesis (upregulation). In parallel, symptomatic fruits over-expressed genes involved in photosynthesis, sucrose and raffinose metabolism, and downregulated starch biosynthesis. We visualized gene networks between tissues inducing a source-sink shift. CaLas alters the hormone crosstalk, resulting in weak and ineffective tissue-specific plant immune responses necessary for bacterial clearance. Accordingly, expression of WRKYs (including WRKY70) was higher in fruits than in leaves. Systemic acquired responses were inadequately activated in young leaves, generally considered the sites where most new infections occur.

  2. Does biodiversity protect humans against infectious disease?

    Science.gov (United States)

    Wood, Chelsea L; Lafferty, Kevin D; DeLeo, Giulio; Young, Hillary S; Hudson, Peter J; Kuris, Armand M

    2014-04-01

    Control of human infectious disease has been promoted as a valuable ecosystem service arising from the conservation of biodiversity. There are two commonly discussed mechanisms by which biodiversity loss could increase rates of infectious disease in a landscape. First, loss of competitors or predators could facilitate an increase in the abundance of competent reservoir hosts. Second, biodiversity loss could disproportionately affect non-competent, or less competent reservoir hosts, which would otherwise interfere with pathogen transmission to human populations by, for example, wasting the bites of infected vectors. A negative association between biodiversity and disease risk, sometimes called the "dilution effect hypothesis," has been supported for a few disease agents, suggests an exciting win-win outcome for the environment and society, and has become a pervasive topic in the disease ecology literature. Case studies have been assembled to argue that the dilution effect is general across disease agents. Less touted are examples in which elevated biodiversity does not affect or increases infectious disease risk for pathogens of public health concern. In order to assess the likely generality of the dilution effect, we review the association between biodiversity and public health across a broad variety of human disease agents. Overall, we hypothesize that conditions for the dilution effect are unlikely to be met for most important diseases of humans. Biodiversity probably has little net effect on most human infectious diseases but, when it does have an effect, observation and basic logic suggest that biodiversity will be more likely to increase than to decrease infectious disease risk.

  3. The Wilson disease gene: Haplotypes and mutations

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.R.; Roberts, E.A.; Cox, D.W. [Hospital for Sick Children, Toronto (Canada); Walshe, J.M. [Middlesex Hospital, London (United Kingdom)

    1994-09-01

    Wilson disease (WND) is an autosomal recessive defect of copper transport. The gene involved in WND, located on chromosome 13, has recently been shown to be a putative copper transporting P-type ATPase, designated ATP7B. The gene is highly similar to ATP7A, located on the X chromosome, which is defective in Menkes disease, another disorder of copper transport. We have available for study WND families from Canada (34 families), the United Kingdom (32 families), Japan (4 families), Iceland (3 families) and Hong Kong (2 families). We have utilized four highly polymorphic CA repeat markers (D13S296, D13S301, D13S314 and D13S316) surrounding the ATP7B locus to construct haplotypes in these families. Analysis indicates that there are many unique WND haplotypes not present on normal chromosomes and that there may be a large number of different WND mutations. We have screened the WND patients for mutations in the ATP7B gene. Fifty six patients, representing all of the identified haplotypes, have been screened using single strand conformational polymorphism (SSCP), followed by selective sequencing. To date, 19 mutations and 12 polymorphisms have been identified. All of the changes are nucleotide substitutions or small insertions/deletions and there is no evidence for larger deletions as seen in the similar gene on the X chromosome, ATP7A. Haplotypes of close markers and the ability to detect some of the mutations present in the gene allow for more reliable molecular diagnosis of presymptomatic sibs of WND patients. A reassessment of individuals previously diagnosed in the presymptomatic phase is now required, as we have have identified some heterozygotes who are biochemically indistinguishable from affected homozygotes. The identification of specific mutations will soon allow direct diagnosis of WND patients with a high level of certainty.

  4. PTPN22 gene polymorphisms in autoimmune diseases with special reference to systemic lupus erythematosus disease susceptibility

    Directory of Open Access Journals (Sweden)

    Pradhan V

    2010-01-01

    Full Text Available Systemic lupus erythematosus (SLE is a prototype autoimmune disease. SLE is a result of one or more immune mechanisms, like autoantibody production, complement activation, multiple inflammation and immune complex deposition leading to organ tissue damage. SLE affected patients are susceptible to common and opportunistic infections. There are several reports suggesting that Mycobacterium tuberculosis infection precipitates SLE in patients from endemic areas. Genetic factors and environmental factors also play an important role in the overall susceptibility to SLE pathophysiology. Recently, protein tyrosine phosphatase, non-receptor type 22 (PTPN22 gene, has been found to be associated with several autoimmune diseases like SLE, Grave′s disease and Hashimoto thyroiditis. The missense R620W polymorphism, rs 2476601, in PTPN22 gene at the nucleotide 1858 in codon 620 (620Arg > Trp has been associated with autoimmune diseases. The PTPN22 locus is also found to be responsible for development of pulmonary tuberculosis in certain populations. The PTPN22 1858C/T gene locus will be ideal to look for SLE susceptibility to tuberculosis in the Indian population. In this review, we focus on human PTPN22 gene structure and function as well as the association of PTPN22 gene polymorphisms with SLE susceptibility

  5. Biomedical Information Extraction: Mining Disease Associated Genes from Literature

    Science.gov (United States)

    Huang, Zhong

    2014-01-01

    Disease associated gene discovery is a critical step to realize the future of personalized medicine. However empirical and clinical validation of disease associated genes are time consuming and expensive. In silico discovery of disease associated genes from literature is therefore becoming the first essential step for biomarker discovery to…

  6. Biomedical Information Extraction: Mining Disease Associated Genes from Literature

    Science.gov (United States)

    Huang, Zhong

    2014-01-01

    Disease associated gene discovery is a critical step to realize the future of personalized medicine. However empirical and clinical validation of disease associated genes are time consuming and expensive. In silico discovery of disease associated genes from literature is therefore becoming the first essential step for biomarker discovery to…

  7. An STS in the human adenosine deaminase gene (located 20q12-q13. 11)

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, B.C.; States, J.C. (Wayne State Univ., Detroit, MI (United States))

    1991-09-25

    The human adenosine deaminase gene has been characterized in detail. The adenosine gene product, as part of the purine catabolic pathway, catalyzes the irreversible deamination of adenosine and deoxyadenosine. Deficiency of this activity in humans is associated with an autosomal recessive form of severe combined immunodeficiency disease. Recently, this genetic deficiency disease has been targeted for the first attempts at gene therapy in humans. Using the polymerase chain reaction (PCR), a fragment of the expected size (160 bp) was amplified from human genomic DNA.

  8. Genomics of the human carnitine acyltransferase genes

    NARCIS (Netherlands)

    van der Leij, FR; Huijkman, NCA; Boomsma, C; Kuipers, JRG; Bartelds, B

    2000-01-01

    Five genes in the human genome are known to encode different active forms of related carnitine acyltransferases: CPT1A for liver-type carnitine palmitoyltransferase I, CPT1B for muscle-type carnitine palmitoyltransferase I, CPT2 for carnitine palmitoyltransferase II, CROT for carnitine octanoyltrans

  9. Gene therapy for cardiovascular disease: the potential of VEGF.

    Science.gov (United States)

    Tiong, Alice; Freedman, Saul Benedict

    2004-04-01

    The quest for new therapeutic options and the recent exponential explosion in our knowledge of genetics have led to active interest and research into gene therapy. One area of gene therapy that has generated much debate and controversy is the use of vascular endothelial growth factor (VEGF) for therapeutic angiogenesis for palliative intent, and for the prevention of restenosis following percutaneous revascularization in coronary and peripheral arterial disease. This review highlights the development in VEGF gene therapy in the last 12 to 18 months, particularly the results from randomized, double-blind, placebo-controlled phase I and II studies that have evolved from encouraging results from animal models and early pilot studies in humans.

  10. Parasitic diseases in humans transmitted by vectors.

    Science.gov (United States)

    Cholewiński, Marcin; Derda, Monika; Hadaś, Edward

    2015-01-01

    Despite the considerable progress of medicine, parasitic diseases still pose a great threat to human health and life. Among parasitic diseases, those transmitted by vectors, mainly arthropods, play a particular role. These diseases occur most frequently in the poorest countries and affect a vast part of the human population. They include malaria, babesiosis, trypanosomiasis, leishmaniasis and filariasis. This study presents those vector-transmitted diseases that are responsible for the greatest incidence and mortality of people on a global scale. Attention is focused primarily on diseases transmitted by mosquitoes, flies, Hemiptera and ticks.

  11. Translational regulation of human p53 gene expression.

    OpenAIRE

    Fu, L.; Minden, M D; Benchimol, S

    1996-01-01

    In blast cells obtained from patients with acute myelogenous leukemia, p53 mRNA was present in all the samples examined while the expression of p53 protein was variable from patient to patient. Mutations in the p53 gene are infrequent in this disease and, hence, variable protein expression in the majority of the samples cannot be accounted for by mutation. In this study, we examined the regulation of p53 gene expression in human leukemic blasts and characterized the p53 transcripts in these c...

  12. Human Microbiome and its Association With Health and Diseases.

    Science.gov (United States)

    Althani, Asmaa A; Marei, Hany E; Hamdi, Wedad S; Nasrallah, Gheyath K; El Zowalaty, Mohamed E; Al Khodor, Souhaila; Al-Asmakh, Maha; Abdel-Aziz, Hassan; Cenciarelli, Carlo

    2016-08-01

    Human microbiota are distinct communities of microorganisms that resides at different body niches. Exploration of the human microbiome has become a reality due to the availability of powerful metagenomics and metatranscriptomic analysis technologies. Recent advances in sequencing and bioinformatics over the past decade help provide a deep insight into the nature of the host-microbial interactions and identification of potential deriver genes and pathways associated with human health, well-being, and predisposition to different diseases. In the present review, we outline recent studies devoted to elucidate the possible link between the microbiota and various type of diseases. The present review also highlights the potential utilization of microbiota as a potential therapeutic option to treat a wide array of human diseases. J. Cell. Physiol. 231: 1688-1694, 2016. © 2015 Wiley Periodicals, Inc.

  13. Assessment and Improvement of Gene Transfer into Human Hematopoietic Stem Cells

    NARCIS (Netherlands)

    D.A. Breems (Dimitri)

    1997-01-01

    textabstractThe application of somatic gene transfer as a potential treatment in human disease has progressed from speculation to reality in a short time [4,20,21,84,85,87,105,117,174]. In May 1989 the first clinical marker gene protocol took place [145], followed by the first gene therapy protocol

  14. Lessons from Genome-Wide Search for Disease-Related Genes with Special Reference to HLA-Disease Associations

    Directory of Open Access Journals (Sweden)

    Katsushi Tokunaga

    2014-02-01

    Full Text Available The relationships between diseases and genetic factors are by no means uniform. Single-gene diseases are caused primarily by rare mutations of specific genes. Although each single-gene disease has a low prevalence, there are an estimated 5000 or more such diseases in the world. In contrast, multifactorial diseases are diseases in which both genetic and environmental factors are involved in onset. These include a variety of diseases, such as diabetes and autoimmune diseases, and onset is caused by a range of various environmental factors together with a number of genetic factors. With the astonishing advances in genome analysis technology in recent years and the accumulation of data on human genome variation, there has been a rapid progress in research involving genome-wide searches for genes related to diseases. Many of these studies have led to the recognition of the importance of the human leucocyte antigen (HLA gene complex. Here, the current state and future challenges of genome-wide exploratory research into variations that are associated with disease susceptibilities and drug/therapy responses are described, mainly with reference to our own experience in this field.

  15. Prioritization of Disease Susceptibility Genes Using LSM/SVD.

    Science.gov (United States)

    Gong, Lejun; Yang, Ronggen; Yan, Qin; Sun, Xiao

    2013-12-01

    Understanding the role of genetics in diseases is one of the most important tasks in the postgenome era. It is generally too expensive and time consuming to perform experimental validation for all candidate genes related to disease. Computational methods play important roles for prioritizing these candidates. Herein, we propose an approach to prioritize disease genes using latent semantic mapping based on singular value decomposition. Our hypothesis is that similar functional genes are likely to cause similar diseases. Measuring the functional similarity between known disease susceptibility genes and unknown genes is to predict new disease susceptibility genes. Taking autism as an instance, the analysis results of the top ten genes prioritized demonstrate they might be autism susceptibility genes, which also indicates our approach could discover new disease susceptibility genes. The novel approach of disease gene prioritization could discover new disease susceptibility genes, and latent disease-gene relations. The prioritized results could also support the interpretive diversity and experimental views as computational evidence for disease researchers.

  16. Long Non-Coding RNAs and Complex Human Diseases

    Directory of Open Access Journals (Sweden)

    Changning Liu

    2013-09-01

    Full Text Available Long non-coding RNAs (lncRNAs are a heterogeneous class of RNAs that are generally defined as non-protein-coding transcripts longer than 200 nucleotides. Recently, an increasing number of studies have shown that lncRNAs can be involved in various critical biological processes, such as chromatin remodeling, gene transcription, and protein transport and trafficking. Moreover, lncRNAs are dysregulated in a number of complex human diseases, including coronary artery diseases, autoimmune diseases, neurological disorders, and various cancers, which indicates their important roles in these diseases. Here, we reviewed the current understanding of lncRNAs, including their definition and subclassification, regulatory functions, and potential roles in different types of complex human diseases.

  17. Human KATP channelopathies: diseases of metabolic homeostasis

    Science.gov (United States)

    2009-01-01

    Assembly of an inward rectifier K+ channel pore (Kir6.1/Kir6.2) and an adenosine triphosphate (ATP)-binding regulatory subunit (SUR1/SUR2A/SUR2B) forms ATP-sensitive K+ (KATP) channel heteromultimers, widely distributed in metabolically active tissues throughout the body. KATP channels are metabolism-gated biosensors functioning as molecular rheostats that adjust membrane potential-dependent functions to match cellular energetic demands. Vital in the adaptive response to (patho)physiological stress, KATP channels serve a homeostatic role ranging from glucose regulation to cardioprotection. Accordingly, genetic variation in KATP channel subunits has been linked to the etiology of life-threatening human diseases. In particular, pathogenic mutations in KATP channels have been identified in insulin secretion disorders, namely, congenital hyperinsulinism and neonatal diabetes. Moreover, KATP channel defects underlie the triad of developmental delay, epilepsy, and neonatal diabetes (DEND syndrome). KATP channelopathies implicated in patients with mechanical and/or electrical heart disease include dilated cardiomyopathy (with ventricular arrhythmia; CMD1O) and adrenergic atrial fibrillation. A common Kir6.2 E23K polymorphism has been associated with late-onset diabetes and as a risk factor for maladaptive cardiac remodeling in the community-at-large and abnormal cardiopulmonary exercise stress performance in patients with heart failure. The overall mutation frequency within KATP channel genes and the spectrum of genotype–phenotype relationships remain to be established, while predicting consequences of a deficit in channel function is becoming increasingly feasible through systems biology approaches. Thus, advances in molecular medicine in the emerging field of human KATP channelopathies offer new opportunities for targeted individualized screening, early diagnosis, and tailored therapy. PMID:20033705

  18. Bioinformatic prediction and functional characterization of human KIAA0100 gene

    OpenAIRE

    He Cui; Xi Lan; Shemin Lu; Fujun Zhang; Wanggang Zhang

    2017-01-01

    Our previous study demonstrated that human KIAA0100 gene was a novel acute monocytic leukemia-associated antigen (MLAA) gene. But the functional characterization of human KIAA0100 gene has remained unknown to date. Here, firstly, bioinformatic prediction of human KIAA0100 gene was carried out using online softwares; Secondly, Human KIAA0100 gene expression was downregulated by the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system in U937 cells...

  19. Leber congenital amaurosis: genes, proteins and disease mechanisms.

    Science.gov (United States)

    den Hollander, Anneke I; Roepman, Ronald; Koenekoop, Robert K; Cremers, Frans P M

    2008-07-01

    Leber congenital amaurosis (LCA) is the most severe retinal dystrophy causing blindness or severe visual impairment before the age of 1 year. Linkage analysis, homozygosity mapping and candidate gene analysis facilitated the identification of 14 genes mutated in patients with LCA and juvenile retinal degeneration, which together explain approximately 70% of the cases. Several of these genes have also been implicated in other non-syndromic or syndromic retinal diseases, such as retinitis pigmentosa and Joubert syndrome, respectively. CEP290 (15%), GUCY2D (12%), and CRB1 (10%) are the most frequently mutated LCA genes; one intronic CEP290 mutation (p.Cys998X) is found in approximately 20% of all LCA patients from north-western Europe, although this frequency is lower in other populations. Despite the large degree of genetic and allelic heterogeneity, it is possible to identify the causative mutations in approximately 55% of LCA patients by employing a microarray-based, allele-specific primer extension analysis of all known DNA variants. The LCA genes encode proteins with a wide variety of retinal functions, such as photoreceptor morphogenesis (CRB1, CRX), phototransduction (AIPL1, GUCY2D), vitamin A cycling (LRAT, RDH12, RPE65), guanine synthesis (IMPDH1), and outer segment phagocytosis (MERTK). Recently, several defects were identified that are likely to affect intra-photoreceptor ciliary transport processes (CEP290, LCA5, RPGRIP1, TULP1). As the eye represents an accessible and immune-privileged organ, it appears to be uniquely suitable for human gene replacement therapy. Rodent (Crb1, Lrat, Mertk, Rpe65, Rpgrip1), avian (Gucy2D) and canine (Rpe65) models for LCA and profound visual impairment have been successfully corrected employing adeno-associated virus or lentivirus-based gene therapy. Moreover, phase 1 clinical trials have been carried out in humans with RPE65 deficiencies. Apart from ethical considerations inherently linked to treating children, major

  20. DISEASES: text mining and data integration of disease-gene associations.

    Science.gov (United States)

    Pletscher-Frankild, Sune; Pallejà, Albert; Tsafou, Kalliopi; Binder, Janos X; Jensen, Lars Juhl

    2015-03-01

    Text mining is a flexible technology that can be applied to numerous different tasks in biology and medicine. We present a system for extracting disease-gene associations from biomedical abstracts. The system consists of a highly efficient dictionary-based tagger for named entity recognition of human genes and diseases, which we combine with a scoring scheme that takes into account co-occurrences both within and between sentences. We show that this approach is able to extract half of all manually curated associations with a false positive rate of only 0.16%. Nonetheless, text mining should not stand alone, but be combined with other types of evidence. For this reason, we have developed the DISEASES resource, which integrates the results from text mining with manually curated disease-gene associations, cancer mutation data, and genome-wide association studies from existing databases. The DISEASES resource is accessible through a web interface at http://diseases.jensenlab.org/, where the text-mining software and all associations are also freely available for download.

  1. Transcriptional regulation of human thromboxane synthase gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.D.; Baek, S.J.; Fleischer, T [Univ. of Maryland Medical School, Baltimore, MD (United States)] [and others

    1994-09-01

    The human thromboxane synthase (TS) gene encodes a microsomal enzyme catalyzing the conversion of prostaglandin endoperoxide into thromboxane A{sub 2}(TxA{sub 2}), a potent inducer of vasoconstriction and platelet aggregation. A deficiency in platelet TS activity results in bleeding disorders, but the underlying molecular mechanism remains to be elucidated. Increased TxA{sub 2} has been associated with many pathophysiological conditions such as cardiovascular disease, pulmonary hypertension, pre-eclampsia, and thrombosis in sickle cell patients. Since the formation of TxA{sub 2} is dependent upon TS, the regulation of TS gene expression may presumably play a crucial role in vivo. Abrogation of the regulatory mechanism in TS gene expression might contribute, in part, to the above clinical manifestations. To gain insight into TS gene regulation, a 1.7 kb promoter of the human TS gene was cloned and sequenced. RNase protection assay and 5{prime} RACE protocols were used to map the transcription initiation site to nucleotide A, 30 bp downstream from a canonical TATA box. Several transcription factor binding sites, including AP-1, PU.1, and PEA3, were identified within this sequence. Transient expression studies in HL-60 cells transfected with constructs containing various lengths (0.2 to 5.5 kb) of the TS promoter/luciferase fusion gene indicated the presence of multiple repressor elements within the 5.5 kb TS promoter. However, a lineage-specific up-regulation of TS gene expression was observed in HL-60 cells induced by TPA to differentiate along the macrophage lineage. The increase in TS transcription was not detectable until 36 hr after addition of the inducer. These results suggest that expression of the human TS gene may be regulated by a mechanism involving repression and derepression of the TS promoter.

  2. Evidence That the Enterotoxin Gene Can Be Episomal in Clostridium perfringens Isolates Associated with Non-Food-Borne Human Gastrointestinal Diseases

    OpenAIRE

    1998-01-01

    Clostridium perfringens enterotoxin (CPE) is responsible for the diarrheal and cramping symptoms of human C. perfringens type A food poisoning. CPE-producing C. perfringens isolates have also recently been associated with several non-food-borne human gastrointestinal (GI) illnesses, including antibiotic-associated diarrhea and sporadic diarrhea. The current study has used restriction fragment length polymorphism (RFLP) and pulsed-field gel electrophoresis (PFGE) analyses to compare the genoty...

  3. Transposon tagging of disease resistance genes

    Energy Technology Data Exchange (ETDEWEB)

    Michelmore, R.W. (California Univ., Davis, CA (USA). Dept. of Physics)

    1989-01-01

    We are developing a transposon mutagenesis system for lettuce to clone genes for resistance to the fungal pathogen, Bremia lactucae. Activity of heterologous transposons is being studied in transgenic plants. Southern analysis of T{sub 1} and T{sub 2} plants containing Tam3 from Antirrhinum provided ambiguous results. Multiple endonuclease digests indicated that transposition had occurred; however, in no plant were all endonuclease digests consistent with a simple excision event. Southern or PCR analysis of over 50 plans containing Ac from maize have also failed to reveal clear evidence of transposition; this is contrast to experiments by others with the same constructs who have observed high rates of Ac excision in other plant species. Nearly all of 65 T{sub 2} families containing Ac interrupting a chimeric streptomycin resistance gene (Courtesy J. Jones, Sainsbury Lab., UK) clearly segregated for streptomycin resistance. Southern analyses, however, showed no evidence of transposition, indicating restoration of a functional message by other mechanisms, possibly mRNA processing. Transgenic plants have also been generated containing CaMV 35S or hsp70 promoters fused to transposase coding sequences or a Ds element interrupting a chimeric GUS gene (Courtesy M. Lassner, UC Davis). F{sub 1} plants containing both constructs were analyzed for transposition. Only two plants containing both constructs were obtained from 48 progeny, far fewer than expected, and neither showed evidence of transposition in Southerns and GUS assays. We are currently constructing further chimeric transposase fusions. To test for the stability of the targeted disease resistance genes, 50,000 F{sub 1} plants heterozygous for three resistance genes were generated; no mutants have been identified in the 5000 so far screened.

  4. Statistical insights into major human muscular diseases.

    Science.gov (United States)

    Gupta, Shakti; Kim, Sung-Min; Wang, Yu; Dinasarapu, Ashok Reddy; Subramaniam, Shankar

    2014-07-15

    Muscular diseases lead to muscle fiber degeneration, impairment of mobility, and in some cases premature death. Many of these muscular diseases are largely idiopathic. The goal of this study was to identify biomarkers based on their functional role and possible mechanisms of pathogenesis, specific to individual muscular disease. We analyzed the muscle transcriptome from five major muscular diseases: acute quadriplegic myopathy (AQM), amyotrophic lateral sclerosis (ALS), mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), dermatomyositis (DM) and polymyositis (PM) using pairwise statistical comparison to identify uniquely regulated genes in each muscular disease. The genome-wide information encoded in the transcriptome provided biomarkers and functional insights into dysregulation in each muscular disease. The analysis showed that the dysregulation of genes in forward membrane pathway, responsible for transmitting action potential from neural excitation, is unique to AQM, while the dysregulation of myofibril genes, determinant of the mechanical properties of muscle, is unique to ALS, dysregulation of ER protein processing, responsible for correct protein folding, is unique to DM, and upregulation of immune response genes is unique to PM. We have identified biomarkers specific to each muscular disease which can be used for diagnostic purposes.

  5. Beyond membrane channelopathies: alternative mechanisms underlying complex human disease

    Institute of Scientific and Technical Information of China (English)

    Konstantinos Dean BOUDOULAS; Peter J MOHLER

    2011-01-01

    Over the past fifteen years, our understanding of the molecular mechanisms underlying human disease has flourished in large part due to the discovery of gene mutations linked with membrane ion channels and transporters. In fact, ion channel defects ("channelopathies" - the focus of this review series) have been associated with a spectrum of serious human disease phenotypes including cystic fibrosis, cardiac arrhythmia, diabetes, skeletal muscle defects, and neurological disorders. However, we now know that human disease, particularly excitable cell disease, may be caused by defects in non-ion channel polypeptides including in cellular components residing well beneath the plasma membrane. For example, over the past few years, a new class of potentially fatal cardiac arrhythmias has been linked with cytoplasmic proteins that include sub-membrane adapters such as ankyrin-B (ANK2),ankyrin-G (ANK3), and alpha-1 syntrophin, membrane coat proteins including caveolin-3 (CAV3), signaling platforms including yotiao (AKAPg), and cardiac enzymes (GPD1L). The focus of this review is to detail the exciting role of lamins, yet another class of gene products that have provided elegant new insight into human disease.

  6. Stem cell differentiation and human liver disease

    Institute of Scientific and Technical Information of China (English)

    Wen-Li Zhou; Claire N Medine; Liang Zhu; David C Hay

    2012-01-01

    Human stem cells are scalable cell populations capable of cellular differentiation.This makes them a very attractive in vitro cellular resource and in theory provides unlimited amounts of primary cells.Such an approach has the potential to improve our understanding of human biology and treating disease.In the future it may be possible to deploy novel stem cell-based approaches to treat human liver diseases.In recent years,efficient hepatic differentiation from human stem cells has been achieved by several research groups including our own.In this review we provide an overview of the field and discuss the future potential and limitations of stem cell technology.

  7. The human protein disulfide isomerase gene family

    Directory of Open Access Journals (Sweden)

    Galligan James J

    2012-07-01

    Full Text Available Abstract Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs. These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX. As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR. Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR.

  8. Forward-time simulations of human populations with complex diseases.

    Directory of Open Access Journals (Sweden)

    Bo Peng

    2007-03-01

    Full Text Available Due to the increasing power of personal computers, as well as the availability of flexible forward-time simulation programs like simuPOP, it is now possible to simulate the evolution of complex human diseases using a forward-time approach. This approach is potentially more powerful than the coalescent approach since it allows simulations of more than one disease susceptibility locus using almost arbitrary genetic and demographic models. However, the application of such simulations has been deterred by the lack of a suitable simulation framework. For example, it is not clear when and how to introduce disease mutants-especially those under purifying selection-to an evolving population, and how to control the disease allele frequencies at the last generation. In this paper, we introduce a forward-time simulation framework that allows us to generate large multi-generation populations with complex diseases caused by unlinked disease susceptibility loci, according to specified demographic and evolutionary properties. Unrelated individuals, small or large pedigrees can be drawn from the resulting population and provide samples for a wide range of study designs and ascertainment methods. We demonstrate our simulation framework using three examples that map genes associated with affection status, a quantitative trait, and the age of onset of a hypothetical cancer, respectively. Nonadditive fitness models, population structure, and gene-gene interactions are simulated. Case-control, sibpair, and large pedigree samples are drawn from the simulated populations and are examined by a variety of gene-mapping methods.

  9. Mapping and annotating obesity-related genes in pig and human genomes.

    Science.gov (United States)

    Martelli, Pier Luigi; Fontanesi, Luca; Piovesan, Damiano; Fariselli, Piero; Casadio, Rita

    2014-01-01

    Background. Obesity is a major health problem in both developed and emerging countries. Obesity is a complex disease whose etiology involves genetic factors in strong interplay with environmental determinants and lifestyle. The discovery of genetic factors and biological pathways underlying human obesity is hampered by the difficulty in controlling the genetic background of human cohorts. Animal models are then necessary to further dissect the genetics of obesity. Pig has emerged as one of the most attractive models, because of the similarity with humans in the mechanisms regulating the fat deposition. Results. We collected the genes related to obesity in humans and to fat deposition traits in pig. We localized them on both human and pig genomes, building a map useful to interpret comparative studies on obesity. We characterized the collected genes structurally and functionally with BAR+ and mapped them on KEGG pathways and on STRING protein interaction network. Conclusions. The collected set consists of 361 obesity related genes in human and pig genomes. All genes were mapped on the human genome, and 54 could not be localized on the pig genome (release 2012). Only for 3 human genes there is no counterpart in pig, confirming that this animal is a good model for human obesity studies. Obesity related genes are mostly involved in regulation and signaling processes/pathways and relevant connection emerges between obesity-related genes and diseases such as cancer and infectious diseases.

  10. MicroRNA in human cancer and chronic inflammatory diseases.

    Science.gov (United States)

    Kanwar, Jagat R; Mahidhara, Ganesh; Kanwar, Rupinder K

    2010-06-01

    MicroRNAs (miRNAs) are the non-coding RNAs that act as post-translational regulators to their complimentary messenger RNAs (mRNA). Due to their specific gene silencing property, miRNAs have been implicated in a number of cellular and developmental processes. Also, it has been proposed that a particular set of miRNA spectrum is expressed only in a particular type of tissue. Many interesting findings related to the differential expression of miRNAs in various human diseases including several types of cancers, neurodegenerative diseases and metabolic diseases have been reported. Deregulation of miRNA expression in different types of human diseases and the roles various miRNAs play as tumour suppressors as well as oncogenes, suggest their contribution to cancer and/or in other disease development. These findings have possible implications in the development of diagnostics and/or therapeutics in human malignancies. In this review, we discuss various miRNAs that are differentially expressed in human chronic inflammatory diseases, neurodegenerative diseases, cancer and the further prospective development of miRNA based diagnostics and therapeutics.

  11. Reduced penetrance in human inherited disease

    African Journals Online (AJOL)

    Rabah M. Shawky

    2014-01-31

    Jan 31, 2014 ... tant role in cellular senescence, tumorigenesis and in several diseases ... A correlation between epigenetic DNA modifications and human life span ... Most studies demonstrated that aging is associated with a relaxation in ...

  12. Identifying disease feature genes based on cellular localized gene functional modules and regulation networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Min; ZHU Jing; GUO Zheng; LI Xia; YANG Da; WANG Lei; RAO Shaoqi

    2006-01-01

    Identifying disease-relevant genes and functional modules, based on gene expression profiles and gene functional knowledge, is of high importance for studying disease mechanisms and subtyping disease phenotypes. Using gene categories of biological process and cellular component in Gene Ontology, we propose an approach to selecting functional modules enriched with differentially expressed genes, and identifying the feature functional modules of high disease discriminating abilities. Using the differentially expressed genes in each feature module as the feature genes, we reveal the relevance of the modules to the studied diseases. Using three datasets for prostate cancer, gastric cancer, and leukemia, we have demonstrated that the proposed modular approach is of high power in identifying functionally integrated feature gene subsets that are highly relevant to the disease mechanisms. Our analysis has also shown that the critical disease-relevant genes might be better recognized from the gene regulation network, which is constructed using the characterized functional modules, giving important clues to the concerted mechanisms of the modules responding to complex disease states. In addition, the proposed approach to selecting the disease-relevant genes by jointly considering the gene functional knowledge suggests a new way for precisely classifying disease samples with clear biological interpretations, which is critical for the clinical diagnosis and the elucidation of the pathogenic basis of complex diseases.

  13. Modelling Neurodegenerative Diseases Using Human Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Hall, Vanessa J.

    2016-01-01

    Neurodegenerative diseases are being modelled in-vitro using human patient-specific, induced pluripotent stem cells and transgenic embryonic stem cells to determine more about disease mechanisms, as well as to discover new treatments for patients. Current research in modelling Alzheimer’s disease......, frontotemporal dementia and Parkinson’s disease using pluripotent stem cells is described, along with the advent of gene-editing, which has been the complimentary tool for the field. Current methods used to model these diseases are predominantly dependent on 2D cell culture methods. Outcomes reveal that only...... that includes studying more complex 3D cell cultures, as well as accelerating aging of the neurons, may help to yield stronger phenotypes in the cultured cells. Thus, the use and application of pluripotent stem cells for modelling disease have already shown to be a powerful approach for discovering more about...

  14. Large Scale Gene Expression Meta-Analysis Reveals Tissue-Specific, Sex-Biased Gene Expression in Humans

    Science.gov (United States)

    Mayne, Benjamin T.; Bianco-Miotto, Tina; Buckberry, Sam; Breen, James; Clifton, Vicki; Shoubridge, Cheryl; Roberts, Claire T.

    2016-01-01

    The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analyzed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes), followed by the heart (375 genes), kidney (224 genes), colon (218 genes), and thyroid (163 genes). More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs, and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  15. Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans

    Directory of Open Access Journals (Sweden)

    Benjamin Mayne

    2016-10-01

    Full Text Available The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analysed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes, followed by the heart (375 genes, kidney (224 genes, colon (218 genes and thyroid (163 genes. More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  16. Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes.

    Science.gov (United States)

    Macdonald, Lynn E; Karow, Margaret; Stevens, Sean; Auerbach, Wojtek; Poueymirou, William T; Yasenchak, Jason; Frendewey, David; Valenzuela, David M; Giallourakis, Cosmas C; Alt, Frederick W; Yancopoulos, George D; Murphy, Andrew J

    2014-04-01

    Genetic humanization, which involves replacing mouse genes with their human counterparts, can create powerful animal models for the study of human genes and diseases. One important example of genetic humanization involves mice humanized for their Ig genes, allowing for human antibody responses within a mouse background (HumAb mice) and also providing a valuable platform for the generation of fully human antibodies as therapeutics. However, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which they were genetically humanized. Heretofore, most genetic humanizations have involved disruption of the endogenous mouse gene with simultaneous introduction of a human transgene at a new and random location (so-called KO-plus-transgenic humanization). More recent efforts have attempted to replace mouse genes with their human counterparts at the same genetic location (in situ humanization), but such efforts involved laborious procedures and were limited in size and precision. We describe a general and efficient method for very large, in situ, and precise genetic humanization using large compound bacterial artificial chromosome-based targeting vectors introduced into mouse ES cells. We applied this method to genetically humanize 3-Mb segments of both the mouse heavy and κ light chain Ig loci, by far the largest genetic humanizations ever described. This paper provides a detailed description of our genetic humanization approach, and the companion paper reports that the humoral immune systems of mice bearing these genetically humanized loci function as efficiently as those of WT mice.

  17. Expression stability of reference genes for quantitative RT-PCR of healthy and diseased pituitary tissue samples varies between humans, mice, and dogs

    NARCIS (Netherlands)

    van Rijn, Sarah J; Riemers, Frank M; van den Heuvel, Douwe; Wolfswinkel, Jeannette; Hofland, Leo; Meij, Björn P; Penning, Louis C

    2014-01-01

    Pituitary surgery generates pituitary tissue for histology, immunohistochemistry, and molecular biological research. In the last decade, the pathogenesis of pituitary adenomas has been extensively studied in humans, and to a lesser degree in dogs, and tumor oncogenesis has been studied in knock-out

  18. Phosphodiesterase 4 inhibitors augment the ability of formoterol to enhance glucocorticoid-dependent gene transcription in human airway epithelial cells: a novel mechanism for the clinical efficacy of roflumilast in severe chronic obstructive pulmonary disease.

    Science.gov (United States)

    Moodley, Thunicia; Wilson, Sylvia M; Joshi, Taruna; Rider, Christopher F; Sharma, Pawan; Yan, Dong; Newton, Robert; Giembycz, Mark A

    2013-04-01

    Post-hoc analysis of two phase III clinical studies found that the phosphodiesterase 4 (PDE4) inhibitor, roflumilast, reduced exacerbation frequency in patients with severe chronic obstructive pulmonary disease (COPD) who were taking inhaled corticosteroids (ICS) concomitantly, whereas patients not taking ICS derived no such benefit. In contrast, in two different trials also performed in patients with severe COPD, roflumilast reduced exacerbation rates in the absence of ICS, indicating that PDE4 inhibition alone is sufficient for therapeutic activity to be realized. Given that roflumilast is recommended as an "add-on" medication to patients with severe disease who will inevitably be taking a long-acting β2-adrenoceptor agonist (LABA)/ICS combination therapy, we tested the hypothesis that roflumilast augments the ability of glucocorticoids to induce genes with anti-inflammatory activity. Using a glucocorticoid response element (GRE) luciferase reporter transfected into human airway epithelial cells [both bronchial epithelium + adenovirus 12 - SV40 hybrid (BEAS-2B) cells and primary cultures], roflumilast enhanced fluticasone propionate-induced GRE-dependent transcription. Roflumilast also produced a sinistral displacement of the concentration-response curves that described the augmentation of GRE-dependent transcription by the LABA formoterol. In BEAS-2B cells and primary airway epithelia, roflumilast interacted with formoterol in a positive cooperative manner to enhance the expression of several glucocorticoid-inducible genes that have anti-inflammatory potential. We suggest that the ability of roflumilast and formoterol to interact in this way supports the concept that these drugs together may impart clinical benefit beyond that achievable by an ICS alone, a PDE4 inhibitor alone, or an ICS/LABA combination therapy. Roflumilast may, therefore, be especially effective in patients with severe COPD.

  19. Protein Misfolding and Human Disease

    DEFF Research Database (Denmark)

    Gregersen, Niels; Bross, Peter Gerd; Vang, Søren

    2006-01-01

    phenylketonuria, Parkinson's disease, α-1-antitrypsin deficiency, familial neurohypophyseal diabetes insipidus, and short-chain acyl-CoA dehydrogenase deficiency. Despite the differences, an emerging paradigm suggests that the cellular effects of protein misfolding provide a common framework that may contribute......Protein misfolding is a common event in living cells. In young and healthy cells, the misfolded protein load is disposed of by protein quality control (PQC) systems. In aging cells and in cells from certain individuals with genetic diseases, the load may overwhelm the PQC capacity, resulting...... in accumulation of misfolded proteins. Dependent on the properties of the protein and the efficiency of the PQC systems, the accumulated protein may be degraded or assembled into toxic oligomers and aggregates. To illustrate this concept, we discuss a number of very different protein misfolding diseases including...

  20. Human transporter database: comprehensive knowledge and discovery tools in the human transporter genes.

    Directory of Open Access Journals (Sweden)

    Adam Y Ye

    Full Text Available Transporters are essential in homeostatic exchange of endogenous and exogenous substances at the systematic, organic, cellular, and subcellular levels. Gene mutations of transporters are often related to pharmacogenetics traits. Recent developments in high throughput technologies on genomics, transcriptomics and proteomics allow in depth studies of transporter genes in normal cellular processes and diverse disease conditions. The flood of high throughput data have resulted in urgent need for an updated knowledgebase with curated, organized, and annotated human transporters in an easily accessible way. Using a pipeline with the combination of automated keywords query, sequence similarity search and manual curation on transporters, we collected 1,555 human non-redundant transporter genes to develop the Human Transporter Database (HTD (http://htd.cbi.pku.edu.cn. Based on the extensive annotations, global properties of the transporter genes were illustrated, such as expression patterns and polymorphisms in relationships with their ligands. We noted that the human transporters were enriched in many fundamental biological processes such as oxidative phosphorylation and cardiac muscle contraction, and significantly associated with Mendelian and complex diseases such as epilepsy and sudden infant death syndrome. Overall, HTD provides a well-organized interface to facilitate research communities to search detailed molecular and genetic information of transporters for development of personalized medicine.

  1. Human transporter database: comprehensive knowledge and discovery tools in the human transporter genes.

    Science.gov (United States)

    Ye, Adam Y; Liu, Qing-Rong; Li, Chuan-Yun; Zhao, Min; Qu, Hong

    2014-01-01

    Transporters are essential in homeostatic exchange of endogenous and exogenous substances at the systematic, organic, cellular, and subcellular levels. Gene mutations of transporters are often related to pharmacogenetics traits. Recent developments in high throughput technologies on genomics, transcriptomics and proteomics allow in depth studies of transporter genes in normal cellular processes and diverse disease conditions. The flood of high throughput data have resulted in urgent need for an updated knowledgebase with curated, organized, and annotated human transporters in an easily accessible way. Using a pipeline with the combination of automated keywords query, sequence similarity search and manual curation on transporters, we collected 1,555 human non-redundant transporter genes to develop the Human Transporter Database (HTD) (http://htd.cbi.pku.edu.cn). Based on the extensive annotations, global properties of the transporter genes were illustrated, such as expression patterns and polymorphisms in relationships with their ligands. We noted that the human transporters were enriched in many fundamental biological processes such as oxidative phosphorylation and cardiac muscle contraction, and significantly associated with Mendelian and complex diseases such as epilepsy and sudden infant death syndrome. Overall, HTD provides a well-organized interface to facilitate research communities to search detailed molecular and genetic information of transporters for development of personalized medicine.

  2. Inflammatory bowel disease gene discovery. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-09

    The ultimate goal of this project is to identify the human gene(s) responsible for the disorder known as IBD. The work was planned in two phases. The desired products resulting from Phase 1 were BAC clone(s) containing the genetic marker(s) identified by gene/Networks, Inc. as potentially linked to IBD, plasmid subclones of those BAC(s), and new genetic markers developed from these plasmid subclones. The newly developed markers would be genotyped by gene/Networks, Inc. to ascertain evidence for linkage or non-linkage of IBD to this region. If non-linkage was indicated, the project would move to investigation of other candidate chromosomal regions. Where linkage was indicated, the project would move to Phase 2, in which a physical map of the candidate region(s) would be developed. The products of this phase would be contig(s) of BAC clones in the region exhibiting linkage to IBD, as well as plasmic subclones of the BACs and further genetic marker development. There would also be continued genotyping with new polymorphic markers during this phase. It was anticipated that clones identified and developed during these two phases would provide the physical resources for eventual disease gene discovery.

  3. Exploring human disease using the Rat Genome Database

    Directory of Open Access Journals (Sweden)

    Mary Shimoyama

    2016-10-01

    Full Text Available Rattus norvegicus, the laboratory rat, has been a crucial model for studies of the environmental and genetic factors associated with human diseases for over 150 years. It is the primary model organism for toxicology and pharmacology studies, and has features that make it the model of choice in many complex-disease studies. Since 1999, the Rat Genome Database (RGD; http://rgd.mcw.edu has been the premier resource for genomic, genetic, phenotype and strain data for the laboratory rat. The primary role of RGD is to curate rat data and validate orthologous relationships with human and mouse genes, and make these data available for incorporation into other major databases such as NCBI, Ensembl and UniProt. RGD also provides official nomenclature for rat genes, quantitative trait loci, strains and genetic markers, as well as unique identifiers. The RGD team adds enormous value to these basic data elements through functional and disease annotations, the analysis and visual presentation of pathways, and the integration of phenotype measurement data for strains used as disease models. Because much of the rat research community focuses on understanding human diseases, RGD provides a number of datasets and software tools that allow users to easily explore and make disease-related connections among these datasets. RGD also provides comprehensive human and mouse data for comparative purposes, illustrating the value of the rat in translational research. This article introduces RGD and its suite of tools and datasets to researchers – within and beyond the rat community – who are particularly interested in leveraging rat-based insights to understand human diseases.

  4. Exploring human disease using the Rat Genome Database

    Science.gov (United States)

    Laulederkind, Stanley J. F.; De Pons, Jeff; Nigam, Rajni; Smith, Jennifer R.; Tutaj, Marek; Petri, Victoria; Hayman, G. Thomas; Wang, Shur-Jen; Ghiasvand, Omid; Thota, Jyothi; Dwinell, Melinda R.

    2016-01-01

    ABSTRACT Rattus norvegicus, the laboratory rat, has been a crucial model for studies of the environmental and genetic factors associated with human diseases for over 150 years. It is the primary model organism for toxicology and pharmacology studies, and has features that make it the model of choice in many complex-disease studies. Since 1999, the Rat Genome Database (RGD; http://rgd.mcw.edu) has been the premier resource for genomic, genetic, phenotype and strain data for the laboratory rat. The primary role of RGD is to curate rat data and validate orthologous relationships with human and mouse genes, and make these data available for incorporation into other major databases such as NCBI, Ensembl and UniProt. RGD also provides official nomenclature for rat genes, quantitative trait loci, strains and genetic markers, as well as unique identifiers. The RGD team adds enormous value to these basic data elements through functional and disease annotations, the analysis and visual presentation of pathways, and the integration of phenotype measurement data for strains used as disease models. Because much of the rat research community focuses on understanding human diseases, RGD provides a number of datasets and software tools that allow users to easily explore and make disease-related connections among these datasets. RGD also provides comprehensive human and mouse data for comparative purposes, illustrating the value of the rat in translational research. This article introduces RGD and its suite of tools and datasets to researchers – within and beyond the rat community – who are particularly interested in leveraging rat-based insights to understand human diseases. PMID:27736745

  5. Physiochemical basis of human degenerative disease

    Directory of Open Access Journals (Sweden)

    Zeliger Harold I.

    2015-03-01

    Full Text Available The onset of human degenerative diseases in humans, including type 2 diabetes, cardiovascular disease, neurological disorders, neurodevelopmental disease and neurodegenerative disease has been shown to be related to exposures to persistent organic pollutants, including polychlorinated biphenyls, chlorinated pesticides, polybrominated diphenyl ethers and others, as well as to polynuclear aromatic hydrocarbons, phthalates, bisphenol-A and other aromatic lipophilic species. The onset of these diseases has also been related to exposures to transition metal ions. A physiochemical mechanism for the onset of degenerative environmental disease dependent upon exposure to a combination of lipophilic aromatic hydrocarbons and transition metal ions is proposed here. The findings reported here also, for the first time, explain why aromatic hydrocarbons exhibit greater toxicity than aliphatic hydrocarbons of equal carbon numbers.

  6. Human Echinococcosis: A Neglected Disease

    Directory of Open Access Journals (Sweden)

    António Menezes da Silva

    2010-01-01

    Full Text Available Echinococcosis is among the most neglected parasitic diseases. Development of new drugs and other treatment modalities receives very little attention, if any. In most developed countries, Cystic Echinococcosis (CE is an imported disease of very low incidence and prevalence and is found almost exclusively in migrants from endemic regions. In endemic regions, predominantly settings with limited resources, patient numbers are high. Whole communities do not have access to appropriate treatment. The choice of treatment modalities is limited because of poor infrastructure and shortage of equipment and drugs. In this context, CE meets the criteria for a neglected disease. Furthermore, the terminology related to the designations around the parasite, its evolution and some therapeutic procedures is not uniform and sometimes inappropriate terms and wrong designations are used based on incorrect concepts. Although all of us know the different aspects of the disease it is pertinent to remember some important points and, above all, to clarify some aspects concerning the hydatid cyst's nomenclature in order to understand better the therapeutic options in the liver locations, particularly the different surgical approaches.

  7. Genomic discovery of potent chromatin insulators for human gene therapy.

    Science.gov (United States)

    Liu, Mingdong; Maurano, Matthew T; Wang, Hao; Qi, Heyuan; Song, Chao-Zhong; Navas, Patrick A; Emery, David W; Stamatoyannopoulos, John A; Stamatoyannopoulos, George

    2015-02-01

    Insertional mutagenesis and genotoxicity, which usually manifest as hematopoietic malignancy, represent major barriers to realizing the promise of gene therapy. Although insulator sequences that block transcriptional enhancers could mitigate or eliminate these risks, so far no human insulators with high functional potency have been identified. Here we describe a genomic approach for the identification of compact sequence elements that function as insulators. These elements are highly occupied by the insulator protein CTCF, are DNase I hypersensitive and represent only a small minority of the CTCF recognition sequences in the human genome. We show that the elements identified acted as potent enhancer blockers and substantially decreased the risk of tumor formation in a cancer-prone animal model. The elements are small, can be efficiently accommodated by viral vectors and have no detrimental effects on viral titers. The insulators we describe here are expected to increase the safety of gene therapy for genetic diseases.

  8. Copper induces the expression of cholesterogenic genes in human macrophages.

    Science.gov (United States)

    Svensson, Per Arne; Englund, Mikael C O; Markström, Emilia; Ohlsson, Bertil G; Jernås, Margareta; Billig, Håkan; Torgerson, Jarl S; Wiklund, Olov; Carlsson, Lena M S; Carlsson, Björn

    2003-07-01

    Accumulation of lipids and cholesterol by macrophages and subsequent transformation into foam cells are key features in development of atherosclerosis. Serum copper concentrations have been shown to be associated with cardiovascular disease. However, the mechanism behind the proatherogenic effect of copper is not clear. We used DNA microarrays to define the changes in gene expression profile in response to copper exposure of human macrophages. Expression monitoring by DNA microarray revealed 91 genes that were regulated. Copper increased the expression of seven cholesterogenic genes (3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) synthase, IPP isomerase, squalene synthase, squalene epoxidase, methyl sterol oxidase, H105e3 mRNA and sterol-C5-desaturase) and low-density lipoprotein receptor (LDL-R), and decreased the expression of CD36 and lipid binding proteins. The expression of LDL-R and HMG CoA reductase was also investigated using real time PCR. The expression of both of these genes was increased after copper treatment of macrophages (Pmechanism for the association between copper and atherosclerosis. The effect of copper on cholesterogenic genes may also have implications for liver steatosis in early stages of Wilson's disease.

  9. Mapping genes on human chromosome 20

    Energy Technology Data Exchange (ETDEWEB)

    Keith, T.; Phipps, P.; Serino, K. [Collaborative Research, Inc., Waltham, MA (United States)] [and others

    1994-09-01

    While a substantial number of genes have been physically localized to human chromosome 20, few have been genetically mapped. In the process of developing a genetic linkage map of chromosome 20, we have mapped microsatellite polymorphisms associated with six genes. Three of these had highly informative polymorphisms (greater than 0.70) that were originally identified by other investigators. These include avian sarcoma oncogene homolog (SRC), ribophorin II (RPN2), and phosphoenolpyruvate carboxykinase (PCK1). Polymorphisms associated with two genes were determined following a screen of their DNA sequences in GenBank. These include dinucleotide polymorphisms in introl II of cystatin c (CST3) and in the promoter region of neuroendocrine convertase 2 (NEC2) with heterozygosities of 0.52 and 0.54, respectively. A sixth gene, prodynorphin (PDYN) was mapped following the identification of a dinucleotide repeat polymorphism (heterozygosity of 0.35) in a cosmid subclone from a YAC homologous to the original phage clone. CA-positive cosmid subclones from a YAC for an additional gene, guanine nucleotide binding protein, alpha (GNAS10), have been identified and sequencing is in progress. Similar efforts were utilized to identify a microsatellite polymorphism from a half-YAC cloned by W. Brown and localized by FISH to 20pter. This polymorphism is highly informative, with a heterozygosity of 0.83, and serves to delimit the genetic map of the short arm of this chromosome.

  10. [Primary human demodicosis. A disease sui generis].

    Science.gov (United States)

    Hsu, C-K; Zink, A; Wei, K-J; Dzika, E; Plewig, G; Chen, W

    2015-03-01

    Human Demodex mites (Demodex folliculorum and Demodex brevis) are unique in that they are an obligate human ectoparasite that can inhabit the pilosebaceous unit lifelong without causing obvious host immune response in most cases. The mode of symbiosis between humans and human Demodex mites is unclear, while the pathogenicity of human Demodex mites in many inflammatory skin diseases is now better understood. Primary human demodicosis is a skin disease sui generis not associated with local or systemic immunosuppression. Diagnosis is often underestimated and differentiation from folliculitis, papulopustular rosacea and perioral dermatitis is not always straightforward. Dependent on the morphology and degree of inflammation, the clinical manifestations can be classified into spinulate, papulopustular, nodulocystic, crustic and fulminant demodicosis. Therapy success can be achieved only with acaricides/arachidicides. The effective doses, optimal regimen and antimicrobial resistance remain to be determined.

  11. Transgenic rabbits as therapeutic protein bioreactors and human disease models.

    Science.gov (United States)

    Fan, Jianglin; Watanabe, Teruo

    2003-09-01

    Genetically modified laboratory animals provide a powerful approach for studying gene expression and regulation and allow one to directly examine structure-function and cause-and-effect relationships in pathophysiological processes. Today, transgenic mice are available as a research tool in almost every research institution. On the other hand, the development of a relatively large mammalian transgenic model, transgenic rabbits, has provided unprecedented opportunities for investigators to study the mechanisms of human diseases and has also provided an alternative way to produce therapeutic proteins to treat human diseases. Transgenic rabbits expressing human genes have been used as a model for cardiovascular disease, AIDS, and cancer research. The recombinant proteins can be produced from the milk of transgenic rabbits not only at lower cost but also on a relatively large scale. One of the most promising and attractive recombinant proteins derived from transgenic rabbit milk, human alpha-glucosidase, has been successfully used to treat the patients who are genetically deficient in this enzyme. Although the pronuclear microinjection is still the major and most popular method for the creation of transgenic rabbits, recent progress in gene targeting and animal cloning has opened new avenues that should make it possible to produce transgenic rabbits by somatic cell nuclear transfer in the future. Based on a computer-assisted search of the studies of transgenic rabbits published in the English literature here, we introduce to the reader the achievements made thus far with transgenic rabbits, with emphasis on the application of these rabbits as human disease models and live bioreactors for producing human therapeutic proteins and on the recent progress in cloned rabbits.

  12. Global biogeography of human infectious diseases.

    Science.gov (United States)

    Murray, Kris A; Preston, Nicholas; Allen, Toph; Zambrana-Torrelio, Carlos; Hosseini, Parviez R; Daszak, Peter

    2015-10-13

    The distributions of most infectious agents causing disease in humans are poorly resolved or unknown. However, poorly known and unknown agents contribute to the global burden of disease and will underlie many future disease risks. Existing patterns of infectious disease co-occurrence could thus play a critical role in resolving or anticipating current and future disease threats. We analyzed the global occurrence patterns of 187 human infectious diseases across 225 countries and seven epidemiological classes (human-specific, zoonotic, vector-borne, non-vector-borne, bacterial, viral, and parasitic) to show that human infectious diseases exhibit distinct spatial grouping patterns at a global scale. We demonstrate, using outbreaks of Ebola virus as a test case, that this spatial structuring provides an untapped source of prior information that could be used to tighten the focus of a range of health-related research and management activities at early stages or in data-poor settings, including disease surveillance, outbreak responses, or optimizing pathogen discovery. In examining the correlates of these spatial patterns, among a range of geographic, epidemiological, environmental, and social factors, mammalian biodiversity was the strongest predictor of infectious disease co-occurrence overall and for six of the seven disease classes examined, giving rise to a striking congruence between global pathogeographic and "Wallacean" zoogeographic patterns. This clear biogeographic signal suggests that infectious disease assemblages remain fundamentally constrained in their distributions by ecological barriers to dispersal or establishment, despite the homogenizing forces of globalization. Pathogeography thus provides an overarching context in which other factors promoting infectious disease emergence and spread are set.

  13. Loss of Bloom syndrome protein destabilizes human gene cluster architecture.

    Science.gov (United States)

    Killen, Michael W; Stults, Dawn M; Adachi, Noritaka; Hanakahi, Les; Pierce, Andrew J

    2009-09-15

    Bloom syndrome confers strong predisposition to malignancy in multiple tissue types. The Bloom syndrome patient (BLM) protein defective in the disease biochemically functions as a Holliday junction dissolvase and human cells lacking functional BLM show 10-fold elevated rates of sister chromatid exchange. Collectively, these phenomena suggest that dysregulated mitotic recombination drives the genomic instability underpinning the development of cancer in these individuals. Here we use physical analysis of the highly repeated, highly self-similar human ribosomal RNA gene clusters as sentinel biomarkers for dysregulated homologous recombination to demonstrate that loss of BLM protein function causes a striking increase in spontaneous molecular level genomic restructuring. Analysis of single-cell derived sub-clonal populations from wild-type human cell lines shows that gene cluster architecture is ordinarily very faithfully preserved under mitosis, but is so unstable in cell lines derived from BLMs as to make gene cluster architecture in different sub-clonal populations essentially unrecognizable one from another. Human cells defective in a different RecQ helicase, the WRN protein involved in the premature aging Werner syndrome, do not exhibit the gene cluster instability (GCI) phenotype, indicating that the BLM protein specifically, rather than RecQ helicases generally, holds back this recombination-mediated genomic instability. An ataxia-telangiectasia defective cell line also shows elevated rDNA GCI, although not to the extent of BLM defective cells. Genomic restructuring mediated by dysregulated recombination between the abundant low-copy repeats in the human genome may prove to be an important additional mechanism of genomic instability driving the initiation and progression of human cancer.

  14. Genome-wide prediction and analysis of human tissue-selective genes using microarray expression data

    OpenAIRE

    Teng Shaolei; Yang Jack Y; Wang Liangjiang

    2013-01-01

    Abstract Background Understanding how genes are expressed specifically in particular tissues is a fundamental question in developmental biology. Many tissue-specific genes are involved in the pathogenesis of complex human diseases. However, experimental identification of tissue-specific genes is time consuming and difficult. The accurate predictions of tissue-specific gene targets could provide useful information for biomarker development and drug target identification. Results In this study,...

  15. Functional annotation and identification of candidate disease genes by computational analysis of normal tissue gene expression data.

    Directory of Open Access Journals (Sweden)

    Laura Miozzi

    Full Text Available BACKGROUND: High-throughput gene expression data can predict gene function through the "guilt by association" principle: coexpressed genes are likely to be functionally associated. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed publicly available expression data on normal human tissues. The analysis is based on the integration of data obtained with two experimental platforms (microarrays and SAGE and of various measures of dissimilarity between expression profiles. The building blocks of the procedure are the Ranked Coexpression Groups (RCG, small sets of tightly coexpressed genes which are analyzed in terms of functional annotation. Functionally characterized RCGs are selected by means of the majority rule and used to predict new functional annotations. Functionally characterized RCGs are enriched in groups of genes associated to similar phenotypes. We exploit this fact to find new candidate disease genes for many OMIM phenotypes of unknown molecular origin. CONCLUSIONS/SIGNIFICANCE: We predict new functional annotations for many human genes, showing that the integration of different data sets and coexpression measures significantly improves the scope of the results. Combining gene expression data, functional annotation and known phenotype-gene associations we provide candidate genes for several genetic diseases of unknown molecular basis.

  16. A Human "eFP" Browser for Generating Gene Expression Anatograms.

    Science.gov (United States)

    Patel, Rohan V; Hamanishi, Erin T; Provart, Nicholas J

    2016-01-01

    Transcriptomic studies help to further our understanding of gene function. Human transcriptomic studies tend to focus on a particular subset of tissue types or a particular disease state; however, it is possible to collate into a compendium multiple studies that have been profiled using the same expression analysis platform to provide an overview of gene expression levels in many different tissues or under different conditions. In order to increase the knowledge and understanding we gain from such studies, intuitive visualization of gene expression data in such a compendium can be useful. The Human eFP ("electronic Fluorescent Pictograph") Browser presented here is a tool for intuitive visualization of large human gene expression data sets on pictographic representations of the human body as gene expression "anatograms". Pictographic representations for new data sets may be generated easily. The Human eFP Browser can also serve as a portal to other gene-specific information through link-outs to various online resources.

  17. Assessing the human gut microbiota in metabolic diseases.

    Science.gov (United States)

    Karlsson, Fredrik; Tremaroli, Valentina; Nielsen, Jens; Bäckhed, Fredrik

    2013-10-01

    Recent findings have demonstrated that the gut microbiome complements our human genome with at least 100-fold more genes. In contrast to our Homo sapiens-derived genes, the microbiome is much more plastic, and its composition changes with age and diet, among other factors. An altered gut microbiota has been associated with several diseases, including obesity and diabetes, but the mechanisms involved remain elusive. Here we discuss factors that affect the gut microbiome, how the gut microbiome may contribute to metabolic diseases, and how to study the gut microbiome. Next-generation sequencing and development of software packages have led to the development of large-scale sequencing efforts to catalog the human microbiome. Furthermore, the use of genetically engineered gnotobiotic mouse models may increase our understanding of mechanisms by which the gut microbiome modulates host metabolism. A combination of classical microbiology, sequencing, and animal experiments may provide further insights into how the gut microbiota affect host metabolism and physiology.

  18. Diagnosis of human heritable diseases--laboratory approaches and outcomes.

    Science.gov (United States)

    Dowton, S B; Slaugh, R A

    1995-05-01

    Detection of mutant human genes is rapidly becoming an integral part of clinical practice. Human disease may arise by genetic deletion, insertion, fusion, point mutation, or amplification of unstable sequences. Such changes in structure may occur in germ cells or somatically. Rapid advances in understanding the complex nuclear and mitochondrial genomes necessitates deployment of a variety of methods to identify aberrant genes. These techniques include polymerase chain reaction, Southern transfer, and allele-specific hybridization studies, as well as methods to unmask mismatches between mutant and normal sequences. Development of protein truncation tests has added a vehicle for assessing larger DNA segments for mutations that cause premature translational termination. Linkage analysis remains an important tool where direct assay of disease-causing mutations is not possible. Considerations of confidentiality, informed consent, and insurability are important whenever genetic testing is used. These issues will assume increasing importance as presymptomatic testing for heritable predispositions emerges for common conditions.

  19. The SPINK gene family and celiac disease susceptibility

    NARCIS (Netherlands)

    Wapenaar, Martin C.; Monsuur, Alienke J.; Poell, Jos; Slot, Ruben Van 't; Meijer, Jos W. R.; Meijer, Gerrit A.; Mulder, Chris J.; Mearin, Maria Luisa; Wijmenga, Cisca

    The gene family of serine protease inhibitors of the Kazal type (SPINK) are functional and positional candidate genes for celiac disease (CD). Our aim was to assess the gut mucosal gene expression and genetic association of SPINK1, -2, -4, and -5 in the Dutch CD population. Gene expression was

  20. Gene expression analysis uncovers novel hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells.

    Science.gov (United States)

    Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J Fah; Cho, Michael H; Mancini, John D; Lao, Taotao; Thibault, Derek M; Litonjua, Augusto A; Bakke, Per S; Gulsvik, Amund; Lomas, David A; Beaty, Terri H; Hersh, Craig P; Anderson, Christopher; Geigenmuller, Ute; Raby, Benjamin A; Rennard, Stephen I; Perrella, Mark A; Choi, Augustine M K; Quackenbush, John; Silverman, Edwin K

    2013-05-01

    Hedgehog interacting protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis.

  1. Genes that affect brain structure and function identified by rare variant analyses of Mendelian neurologic disease

    Science.gov (United States)

    Karaca, Ender; Harel, Tamar; Pehlivan, Davut; Jhangiani, Shalini N.; Gambin, Tomasz; Akdemir, Zeynep Coban; Gonzaga-Jauregui, Claudia; Erdin, Serkan; Bayram, Yavuz; Campbell, Ian M.; Hunter, Jill V.; Atik, Mehmed M.; Van Esch, Hilde; Yuan, Bo; Wiszniewski, Wojciech; Isikay, Sedat; Yesil, Gozde; Yuregir, Ozge O.; Bozdogan, Sevcan Tug; Aslan, Huseyin; Aydin, Hatip; Tos, Tulay; Aksoy, Ayse; De Vivo, Darryl C.; Jain, Preti; Geckinli, B. Bilge; Sezer, Ozlem; Gul, Davut; Durmaz, Burak; Cogulu, Ozgur; Ozkinay, Ferda; Topcu, Vehap; Candan, Sukru; Cebi, Alper Han; Ikbal, Mevlit; Gulec, Elif Yilmaz; Gezdirici, Alper; Koparir, Erkan; Ekici, Fatma; Coskun, Salih; Cicek, Salih; Karaer, Kadri; Koparir, Asuman; Duz, Mehmet Bugrahan; Kirat, Emre; Fenercioglu, Elif; Ulucan, Hakan; Seven, Mehmet; Guran, Tulay; Elcioglu, Nursel; Yildirim, Mahmut Selman; Aktas, Dilek; Alikaşifoğlu, Mehmet; Ture, Mehmet; Yakut, Tahsin; Overton, John D.; Yuksel, Adnan; Ozen, Mustafa; Muzny, Donna M.; Adams, David R.; Boerwinkle, Eric; Chung, Wendy K.; Gibbs, Richard A.; Lupski, James R

    2015-01-01

    Development of the human nervous system involves complex interactions between fundamental cellular processes and requires a multitude of genes, many of which remain to be associated with human disease. We applied whole exome sequencing to 128 mostly consanguineous families with neurogenetic disorders that often included brain malformations. Rare variant analyses for both single nucleotide variant (SNV) and copy number variant (CNV) alleles allowed for identification of 45 novel variants in 43 known disease genes, 41 candidate genes, and CNVs in 10 families, with an overall potential molecular cause identified in >85% of families studied. Among the candidate genes identified, we found PRUNE, VARS, and DHX37 in multiple families, and homozygous loss of function variants in AGBL2, SLC18A2, SMARCA1, UBQLN1, and CPLX1. Neuroimaging and in silico analysis of functional and expression proximity between candidate and known disease genes allowed for further understanding of genetic networks underlying specific types of brain malformations. PMID:26539891

  2. Molecular basis of telomere dysfunction in human genetic diseases.

    Science.gov (United States)

    Sarek, Grzegorz; Marzec, Paulina; Margalef, Pol; Boulton, Simon J

    2015-11-01

    Mutations in genes encoding proteins required for telomere structure, replication, repair and length maintenance are associated with several debilitating human genetic disorders. These complex telomere biology disorders (TBDs) give rise to critically short telomeres that affect the homeostasis of multiple organs. Furthermore, genome instability is often a hallmark of telomere syndromes, which are associated with increased cancer risk. Here, we summarize the molecular causes and cellular consequences of disease-causing mutations associated with telomere dysfunction.

  3. Impact of Statins on Gene Expression in Human Lung Tissues.

    Directory of Open Access Journals (Sweden)

    Jérôme Lane

    Full Text Available Statins are 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors that alter the synthesis of cholesterol. Some studies have shown a significant association of statins with improved respiratory health outcomes of patients with asthma, chronic obstructive pulmonary disease and lung cancer. Here we hypothesize that statins impact gene expression in human lungs and may reveal the pleiotropic effects of statins that are taking place directly in lung tissues. Human lung tissues were obtained from patients who underwent lung resection or transplantation. Gene expression was measured on a custom Affymetrix array in a discovery cohort (n = 408 and two replication sets (n = 341 and 282. Gene expression was evaluated by linear regression between statin users and non-users, adjusting for age, gender, smoking status, and other covariables. The results of each cohort were combined in a meta-analysis and biological pathways were studied using Gene Set Enrichment Analysis. The discovery set included 141 statin users. The lung mRNA expression levels of eighteen and three genes were up-regulated and down-regulated in statin users (FDR < 0.05, respectively. Twelve of the up-regulated genes were replicated in the first replication set, but none in the second (p-value < 0.05. Combining the discovery and replication sets into a meta-analysis improved the significance of the 12 up-regulated genes, which includes genes encoding enzymes and membrane proteins involved in cholesterol biosynthesis. Canonical biological pathways altered by statins in the lung include cholesterol, steroid, and terpenoid backbone biosynthesis. No genes encoding inflammatory, proteases, pro-fibrotic or growth factors were altered by statins, suggesting that the direct effect of statin in the lung do not go beyond its antilipidemic action. Although more studies are needed with specific lung cell types and different classes and doses of statins, the improved health outcomes and survival

  4. Suitability of endogenous reference genes for gene expression studies with human intraocular endothelial cells

    Directory of Open Access Journals (Sweden)

    Wei Ruoxin

    2013-02-01

    Full Text Available Abstract Background The use of quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR has become widely applied as a method to measure transcript abundance. In order to be reflective of biological processes during health and disease this method is dependent on normalisation of data against stable endogenous controls. However, these genes can vary in their stability in different cell types. The importance of reference gene validation for a particular cell type is now well recognised and is an important step in any gene expression study. Results Cultured primary human choroidal and retinal endothelial cells were treated with the immunostimulant polyinosinic: polycytidylic acid or untreated. qRT-PCR was used to quantify the expression levels of 10 commonly used endogenous control genes, TBP, HPRT1, GAPDH, GUSB, PPIA, RPLP0, B2M, 18S rRNA, PGK1 and ACTB. Three different mathematical algorithms, GeNorm, NormFinder, and BestKeeper were used to analyse gene stability to give the most representative validation. In choroidal endothelial cells the most stable genes were ranked as HPRT1 and GUSB by GeNorm and NormFinder and HPRT1 and PPIA by BestKeeper. In retinal endothelial cells the most stable genes ranked were TBP and PGK1 by GeNorm and NormFinder and HPRT1 by BestKeeper. The least stable gene for both cell types was 18S with all 3 algorithms. Conclusions We have identified the most stable endogenous control genes in intraocular endothelial cells. It is suggested future qRT-PCR studies using these cells would benefit from adopting the genes identified in this study as the most appropriate endogenous control genes.

  5. Impact of cigarette smoke on the human and mouse lungs: a gene-expression comparison study.

    Directory of Open Access Journals (Sweden)

    Mathieu C Morissette

    Full Text Available Cigarette smoke is well known for its adverse effects on human health, especially on the lungs. Basic research is essential to identify the mechanisms involved in the development of cigarette smoke-related diseases, but translation of new findings from pre-clinical models to the clinic remains difficult. In the present study, we aimed at comparing the gene expression signature between the lungs of human smokers and mice exposed to cigarette smoke to identify the similarities and differences. Using human and mouse whole-genome gene expression arrays, changes in gene expression, signaling pathways and biological functions were assessed. We found that genes significantly modulated by cigarette smoke in humans were enriched for genes modulated by cigarette smoke in mice, suggesting a similar response of both species. Sixteen smoking-induced genes were in common between humans and mice including six newly reported to be modulated by cigarette smoke. In addition, we identified a new conserved pulmonary response to cigarette smoke in the induction of phospholipid metabolism/degradation pathways. Finally, the majority of biological functions modulated by cigarette smoke in humans were also affected in mice. Altogether, the present study provides information on similarities and differences in lung gene expression response to cigarette smoke that exist between human and mouse. Our results foster the idea that animal models should be used to study the involvement of pathways rather than single genes in human diseases.

  6. The human gut microbiome impacts health and disease.

    Science.gov (United States)

    Ehrlich, Stanislav Dusko

    2016-01-01

    The human gut microbiome can now be characterized in unprecedented detail by an approach based on high-throughput sequencing of total stool DNA, that we name quantitative metagenomics. Central to the approach is a catalog that lists all the genes of intestinal microbes that are known - 9.9 millions, identified by the analysis of 1267 stool samples. Beyond the gene list, genetic units that carry them begun to be known; many of these correspond to bacterial species that were never isolated and cultured yet. Quantitative metagenomics allows developing powerful algorithms to diagnose a disease, monitor patients and identify individuals at risk to progress towards a disease. This lays ground for developing new approaches to better restore and even preserve the health by modulation of the altered microbiome, which contributes to promote or aggravate a disease.

  7. Dissecting cis regulation of gene expression in human metabolic tissues.

    Directory of Open Access Journals (Sweden)

    Radu Dobrin

    Full Text Available Complex diseases such as obesity and type II diabetes can result from a failure in multiple organ systems including the central nervous system and tissues involved in partitioning and disposal of nutrients. Studying the genetics of gene expression in tissues that are involved in the development of these diseases can provide insights into how these tissues interact within the context of disease. Expression quantitative trait locus (eQTL studies identify mRNA expression changes linked to proximal genetic signals (cis eQTLs that have been shown to affect disease. Given the high impact of recent eQTL studies, it is important to understand what role sample size and environment plays in identification of cis eQTLs. Here we show in a genotyped obese human population that the number of cis eQTLs obey precise scaling laws as a function of sample size in three profiled tissues, i.e. omental adipose, subcutaneous adipose and liver. Also, we show that genes (or transcripts with cis eQTL associations detected in a small population are detected at approximately 90% rate in the largest population available for our study, indicating that genes with strong cis acting regulatory elements can be identified with relatively high confidence in smaller populations. However, by increasing the sample size we allow for better detection of weaker and more distantly located cis-regulatory elements. Yet, we determined that the number of tissue specific cis eQTLs saturates in a modestly sized cohort while the number of cis eQTLs common to all tissues fails to reach a maximum value. Understanding the power laws that govern the number and specificity of eQTLs detected in different tissues, will allow a better utilization of genetics of gene expression to inform the molecular mechanism underlying complex disease traits.

  8. Integrating host gene expression and the microbiome to explore disease pathogenesis.

    Science.gov (United States)

    Byrd, Allyson L; Segre, Julia A

    2015-04-08

    In a recent study, rich clinical assessment and longitudinal study design are combined with host gene expression and microbial sequencing analyses to develop a framework for exploring disease etiology and outcomes in the context of human inflammatory disease.See related article: http://dx.doi.org/10.1186/s13059-015-0637-x.

  9. DiseaseMeth version 2.0: a major expansion and update of the human disease methylation database

    Science.gov (United States)

    Xiong, Yichun; Wei, Yanjun; Gu, Yue; Zhang, Shumei; Lyu, Jie; Zhang, Bin; Chen, Chuangeng; Zhu, Jiang; Wang, Yihan; Liu, Hongbo; Zhang, Yan

    2017-01-01

    The human disease methylation database (DiseaseMeth, http://bioinfo.hrbmu.edu.cn/diseasemeth/) is an interactive database that aims to present the most complete collection and annotation of aberrant DNA methylation in human diseases, especially various cancers. Recently, the high-throughput microarray and sequencing technologies have promoted the production of methylome data that contain comprehensive knowledge of human diseases. In this DiseaseMeth update, we have increased the number of samples from 3610 to 32 701, the number of diseases from 72 to 88 and the disease–gene associations from 216 201 to 679 602. DiseaseMeth version 2.0 provides an expanded comprehensive list of disease–gene associations based on manual curation from experimental studies and computational identification from high-throughput methylome data. Besides the data expansion, we also updated the search engine and visualization tools. In particular, we enhanced the differential analysis tools, which now enable online automated identification of DNA methylation abnormalities in human disease in a case-control or disease–disease manner. To facilitate further mining of the disease methylome, three new web tools were developed for cluster analysis, functional annotation and survival analysis. DiseaseMeth version 2.0 should be a useful resource platform for further understanding the molecular mechanisms of human diseases. PMID:27899673

  10. The human T cell receptor alpha variable (TRAV) genes.

    Science.gov (United States)

    Scaviner, D; Lefranc, M P

    2000-01-01

    'Human T Cell Receptor Alpha Variable (TRAV) Genes', the eighth report of the 'IMGT Locus in Focus' section, comprises four tables: (1) 'Number of human germline TRAV genes at 14q11 and potential repertoire'; (2) 'Human germline TRAV genes at 14q11'; (3) 'Human TRAV allele table', and (4) 'Correspondence between the different human TRAV gene nomenclatures'. These tables are available at the IMGT Marie-Paule page of IMGT, the international ImMunoGeneTics database (http://imgt.cines.fr:8104) created by Marie-Paule Lefranc, Université Montpellier II, CNRS, France. Copyright 2000 S. Karger AG, Basel

  11. Evolutionary signatures amongst disease genes permit novel methods for gene prioritization and construction of informative gene-based networks.

    Directory of Open Access Journals (Sweden)

    Nolan Priedigkeit

    2015-02-01

    Full Text Available Genes involved in the same function tend to have similar evolutionary histories, in that their rates of evolution covary over time. This coevolutionary signature, termed Evolutionary Rate Covariation (ERC, is calculated using only gene sequences from a set of closely related species and has demonstrated potential as a computational tool for inferring functional relationships between genes. To further define applications of ERC, we first established that roughly 55% of genetic diseases posses an ERC signature between their contributing genes. At a false discovery rate of 5% we report 40 such diseases including cancers, developmental disorders and mitochondrial diseases. Given these coevolutionary signatures between disease genes, we then assessed ERC's ability to prioritize known disease genes out of a list of unrelated candidates. We found that in the presence of an ERC signature, the true disease gene is effectively prioritized to the top 6% of candidates on average. We then apply this strategy to a melanoma-associated region on chromosome 1 and identify MCL1 as a potential causative gene. Furthermore, to gain global insight into disease mechanisms, we used ERC to predict molecular connections between 310 nominally distinct diseases. The resulting "disease map" network associates several diseases with related pathogenic mechanisms and unveils many novel relationships between clinically distinct diseases, such as between Hirschsprung's disease and melanoma. Taken together, these results demonstrate the utility of molecular evolution as a gene discovery platform and show that evolutionary signatures can be used to build informative gene-based networks.

  12. Connexin37: a potential modifier gene of inflammatory disease.

    Science.gov (United States)

    Chanson, Marc; Kwak, Brenda R

    2007-08-01

    There is an increasing appreciation of the importance of gap junction proteins (connexins) in modulating the severity of inflammatory diseases. Multiple epidemiological gene association studies have detected a link between a single nucleotide polymorphism in the human connexin37 (Cx37) gene and coronary artery disease or myocardial infarction in various populations. This C1019T polymorphism causes a proline-to-serine substitution (P319S) in the regulatory C terminal tail of Cx37, a protein that is expressed in the vascular endothelium as well as in monocytes and macrophages. Indeed, these three cell types are key players in atherogenesis. In the early phases of atherosclerosis, blood monocytes are recruited to the sites of injury in response to chemotactic factors. Monocytes adhere to the dysfunctional endothelium and transmigrate across endothelial cells to penetrate the arterial intima. In the intima, monocytes proliferate, mature, and accumulate lipids to progress into macrophage foam cells. This review focuses on Cx37 and its impact on the cellular and molecular events underlying tissue function, with particular emphasis of the contribution of the C1019T polymorphism in atherosclerosis. We will also discuss evidence for a potential mechanism by which allelic variants of Cx37 are differentially predictive of increased risk for inflammatory diseases.

  13. Decorin gene expression and its regulation in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Velez-DelValle, Cristina; Marsch-Moreno, Meytha; Castro-Munozledo, Federico [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico); Kuri-Harcuch, Walid, E-mail: walidkuri@gmail.com [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico)

    2011-07-22

    Highlights: {yields} We showed that cultured human diploid epidermal keratinocytes express and synthesize decorin. {yields} Decorin is found intracytoplasmic in suprabasal cells of cultures and in human epidermis. {yields} Decorin mRNA expression in cHEK is regulated by pro-inflammatory and proliferative cytokines. {yields} Decorin immunostaining of psoriatic lesions showed a lower intensity and altered intracytoplasmic arrangements. -- Abstract: In various cell types, including cancer cells, decorin is involved in regulation of cell attachment, migration and proliferation. In skin, decorin is seen in dermis, but not in keratinocytes. We show that decorin gene (DCN) is expressed in the cultured keratinocytes, and the protein is found in the cytoplasm of differentiating keratinocytes and in suprabasal layers of human epidermis. RT-PCR experiments showed that DCN expression is regulated by pro-inflammatory and proliferative cytokines. Our data suggest that decorin should play a significant role in keratinocyte terminal differentiation, cutaneous homeostasis and dermatological diseases.

  14. Gene expression analysis approach to establish possible links between Parkinson's disease, cancer and cardiovascular diseases.

    Science.gov (United States)

    Karim, Sajjad; Mirza, Zeenat; Kamal, Mohammad A; Abuzenadah, Adel M; Al-Qahtani, Mohammed H

    2014-01-01

    Non-communicable chronic diseases have been apparently established as threat to human health, and are currently the world's main killer. Cardiovascular diseases (CVD), cancer, diabetes and neurodegenerative diseases are collectively amounting to more than 60% of non-communicable disease burden across world. Tremendous advancements in healthcare enabled us to fight several health problems primarily infectious diseases. However, this increased longevity where in many cases an individual suffers from several such chronic diseases simultaneously, making treatment complex. Finding whether diseases can coexist in an individual by chance or there exists a possible association between them is vital. Our goal is to establish possible existing link among CVD, cancer and Parkinson's disease (PD) for better understanding of the associated molecular network. In this study, we integrated multiple dataset retrieved from the National Centre for Biotechnology Information's Gene Expression Omnibus database, and took a systems-biology approach to compare and distinguish the molecular network associated with PD, cancer and CVD. We identified 230, 308 and 1619 differentially expressed genes for CVD, cancer and PD dataset respectively using cut off p value2. We integrated these data with known pathways using Ingenuity Pathway Analysis tool and found following common pathways associated with all three diseases to be most affected; epithelial adherens junction signaling, remodelling of epithelial adherens junctions, role of BRCA1 in DNA damage response, sphingomyelin metabolism, 3- phosphoinositide biosynthesis, acute myeloid leukemia signaling, type I diabetes mellitus signaling, agrin interactions at neuromuscular junction, role of IL-17A in arthritis, and antigen presentation pathways. In conclusion, CVD, cancer and PD appear tightly associated at molecular level.

  15. The complement system in human cardiometabolic disease.

    Science.gov (United States)

    Hertle, E; Stehouwer, C D A; van Greevenbroek, M M J

    2014-10-01

    The complement system has been implicated in obesity, fatty liver, diabetes and cardiovascular disease (CVD). Complement factors are produced in adipose tissue and appear to be involved in adipose tissue metabolism and local inflammation. Thereby complement links adipose tissue inflammation to systemic metabolic derangements, such as low-grade inflammation, insulin resistance and dyslipidaemia. Furthermore, complement has been implicated in pathophysiological mechanisms of diet- and alcohol induced liver damage, hyperglycaemia, endothelial dysfunction, atherosclerosis and fibrinolysis. In this review, we summarize current evidence on the role of the complement system in several processes of human cardiometabolic disease. C3 is the central component in complement activation, and has most widely been studied in humans. C3 concentrations are associated with insulin resistance, liver dysfunction, risk of the metabolic syndrome, type 2 diabetes and CVD. C3 can be activated by the classical, the lectin and the alternative pathway of complement activation; and downstream activation of C3 activates the terminal pathway. Complement may also be activated via extrinsic proteases of the coagulation, fibrinolysis and the kinin systems. Studies on the different complement activation pathways in human cardiometabolic disease are limited, but available evidence suggests that they may have distinct roles in processes underlying cardiometabolic disease. The lectin pathway appeared beneficial in some studies on type 2 diabetes and CVD, while factors of the classical and the alternative pathway were related to unfavourable cardiometabolic traits. The terminal complement pathway was also implicated in insulin resistance and liver disease, and appears to have a prominent role in acute and advanced CVD. The available human data suggest a complex and potentially causal role for the complement system in human cardiometabolic disease. Further, preferably longitudinal studies are needed to

  16. Pluripotent Stem Cells for Gene Therapy of Degenerative Muscle Diseases.

    Science.gov (United States)

    Loperfido, Mariana; Steele-Stallard, Heather B; Tedesco, Francesco Saverio; VandenDriessche, Thierry

    2015-01-01

    Human pluripotent stem cells represent a unique source for cell-based therapies and regenerative medicine. The intrinsic features of these cells such as their easy accessibility and their capacity to be expanded indefinitely overcome some limitations of conventional adult stem cells. Furthermore, the possibility to derive patient-specific induced pluripotent stem (iPS) cells in combination with the current development of gene modification methods could be used for autologous cell therapies of some genetic diseases. In particular, muscular dystrophies are considered to be a good candidate due to the lack of efficacious therapeutic treatments for patients to date, and in view of the encouraging results arising from recent preclinical studies. Some hurdles, including possible genetic instability and their efficient differentiation into muscle progenitors through vector/transgene-free methods have still to be overcome or need further optimization. Additionally, engraftment and functional contribution to muscle regeneration in pre-clinical models need to be carefully assessed before clinical translation. This review offers a summary of the advanced methods recently developed to derive muscle progenitors from pluripotent stem cells, as well as gene therapy by gene addition and gene editing methods using ZFNs, TALENs or CRISPR/Cas9. We have also discussed the main issues that need to be addressed for successful clinical translation of genetically corrected patient-specific pluripotent stem cells in autologous transplantation trials for skeletal muscle disorders.

  17. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes...

  18. Reference gene alternatives to Gapdh in rodent and human heart failure gene expression studies

    Directory of Open Access Journals (Sweden)

    Levy Finn Olav

    2010-03-01

    Full Text Available Abstract Background Quantitative real-time RT-PCR (RT-qPCR is a highly sensitive method for mRNA quantification, but requires invariant expression of the chosen reference gene(s. In pathological myocardium, there is limited information on suitable reference genes other than the commonly used Gapdh mRNA and 18S ribosomal RNA. Our aim was to evaluate and identify suitable reference genes in human failing myocardium, in rat and mouse post-myocardial infarction (post-MI heart failure and across developmental stages in fetal and neonatal rat myocardium. Results The abundance of Arbp, Rpl32, Rpl4, Tbp, Polr2a, Hprt1, Pgk1, Ppia and Gapdh mRNA and 18S ribosomal RNA in myocardial samples was quantified by RT-qPCR. The expression variability of these transcripts was evaluated by the geNorm and Normfinder algorithms and by a variance component analysis method. Biological variability was a greater contributor to sample variability than either repeated reverse transcription or PCR reactions. Conclusions The most stable reference genes were Rpl32, Gapdh and Polr2a in mouse post-infarction heart failure, Polr2a, Rpl32 and Tbp in rat post-infarction heart failure and Rpl32 and Pgk1 in human heart failure (ischemic disease and cardiomyopathy. The overall most stable reference genes across all three species was Rpl32 and Polr2a. In rat myocardium, all reference genes tested showed substantial variation with developmental stage, with Rpl4 as was most stable among the tested genes.

  19. Human genetic variation and the gut microbiome in disease.

    Science.gov (United States)

    Hall, Andrew Brantley; Tolonen, Andrew C; Xavier, Ramnik J

    2017-08-21

    Taxonomic and functional changes to the composition of the gut microbiome have been implicated in multiple human diseases. Recent microbiome genome-wide association studies reveal that variants in many human genes involved in immunity and gut architecture are associated with an altered composition of the gut microbiome. Although many factors can affect the microbial organisms residing in the gut, a number of recent findings support the hypothesis that certain host genetic variants predispose an individual towards microbiome dysbiosis. This condition, in which the normal microbiome population structure is disturbed, is a key feature in disorders of metabolism and immunity.

  20. Recent genetic discoveries implicating ion channels in human cardiovascular diseases.

    Science.gov (United States)

    George, Alfred L

    2014-04-01

    The term 'channelopathy' refers to human genetic disorders caused by mutations in genes encoding ion channels or their interacting proteins. Recent advances in this field have been enabled by next-generation DNA sequencing strategies such as whole exome sequencing with several intriguing and unexpected discoveries. This review highlights important discoveries implicating ion channels or ion channel modulators in cardiovascular disorders including cardiac arrhythmia susceptibility, cardiac conduction phenotypes, pulmonary and systemic hypertension. These recent discoveries further emphasize the importance of ion channels in the pathophysiology of human disease and as important druggable targets.

  1. Chromosomal mapping, gene structure and characterization of the human and murine RAB27B gene

    Directory of Open Access Journals (Sweden)

    Huxley Clare

    2001-02-01

    Full Text Available Abstract Background Rab GTPases are regulators of intracellular membrane traffic. The Rab27 subfamily consists of Rab27a and Rab27b. Rab27a has been recently implicated in Griscelli Disease, a disease combining partial albinism with severe immunodeficiency. Rab27a plays a key role in the function of lysosomal-like organelles such as melanosomes in melanocytes and lytic granules in cytotoxic T lymphocytes. Little is known about Rab27b. Results The human RAB27B gene is organised in six exons, spanning about 69 kb in the chromosome 18q21.1 region. Exon 1 is non-coding and is separated from the others by 49 kb of DNA and exon 6 contains a long 3' untranslated sequence (6.4 kb. The mouse Rab27b cDNA shows 95% identity with the human cDNA at the protein level and maps to mouse chromosome 18. The mouse mRNA was detected in stomach, large intestine, spleen and eye by RT-PCR, and in heart, brain, spleen and kidney by Northern blot. Transient over-expression of EGF-Rab27b fusion protein in cultured melanocytes revealed that Rab27b is associated with melanosomes, as observed for EGF-Rab27a. Conclusions Our results indicate that the Rab27 subfamily of Ras-like GTPases is highly conserved in mammals. There is high degree of conservation in sequence and gene structure between RAB27A and RAB27B genes. Exogenous expression of Rab27b in melanocytes results in melanosomal association as observed for Rab27a, suggesting the two Rab27 proteins are functional homologues. As with RAB27A in Griscelli Disease, RAB27B may be also associated with human disease mapping to chromosome 18.

  2. Injury, inflammation and the emergence of human specific genes

    Science.gov (United States)

    2016-07-12

    indistinguishable.6 Interestingly, just as we noted the expression of human -specific genes in human immune cells (Table 1), Long and colleagues noted the wide...nervous system, it presumably alters a7AChR activities on human cognition and memory . In other examples, the human antimicrobial defensins are highly...genes in circulating and resident human immune cells can be studied in mice after the transplantation and engraft- ment of human hemato-lymphoid immune

  3. Prioritizing genes for X-linked diseases using population exome data.

    Science.gov (United States)

    Ge, Xiaoyan; Kwok, Pui-Yan; Shieh, Joseph T C

    2015-02-01

    Many new disease genes can be identified through high-throughput sequencing. Yet, variant interpretation for the large amounts of genomic data remains a challenge given variation of uncertain significance and genes that lack disease annotation. As clinically significant disease genes may be subject to negative selection, we developed a prediction method that measures paucity of non-synonymous variation in the human population to infer gene-based pathogenicity. Integrating human exome data of over 6000 individuals from the NHLBI Exome Sequencing Project, we tested the utility of the prediction method based on the ratio of non-synonymous to synonymous substitution rates (dN/dS) on X-chromosome genes. A low dN/dS ratio characterized genes associated with childhood disease and outcome. Furthermore, we identify new candidates for diseases with early mortality and demonstrate intragenic localized patterns of variants that suggest pathogenic hotspots. Our results suggest that intrahuman substitution analysis is a valuable tool to help prioritize novel disease genes in sequence interpretation.

  4. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.

    Science.gov (United States)

    Liu, Ying; Deng, Wenbin

    2016-05-01

    With the technology of reprogramming somatic cells by introducing defined transcription factors that enables the generation of "induced pluripotent stem cells (iPSCs)" with pluripotency comparable to that of embryonic stem cells (ESCs), it has become possible to use this technology to produce various cells and tissues that have been difficult to obtain from living bodies. This advancement is bringing forth rapid progress in iPSC-based disease modeling, drug screening, and regenerative medicine. More and more studies have demonstrated that phenotypes of adult-onset neurodegenerative disorders could be rather faithfully recapitulated in iPSC-derived neural cell cultures. Moreover, despite the adult-onset nature of the diseases, pathogenic phenotypes and cellular abnormalities often exist in early developmental stages, providing new "windows of opportunity" for understanding mechanisms underlying neurodegenerative disorders and for discovering new medicines. The cell reprogramming technology enables a reverse engineering approach for modeling the cellular degenerative phenotypes of a wide range of human disorders. An excellent example is the study of the human neurodegenerative disease amyotrophic lateral sclerosis (ALS) using iPSCs. ALS is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), culminating in muscle wasting and death from respiratory failure. The iPSC approach provides innovative cell culture platforms to serve as ALS patient-derived model systems. Researchers have converted iPSCs derived from ALS patients into MNs and various types of glial cells, all of which are involved in ALS, to study the disease. The iPSC technology could be used to determine the role of specific genetic factors to track down what's wrong in the neurodegenerative disease process in the "disease-in-a-dish" model. Meanwhile, parallel experiments of targeting the same specific genes in human ESCs could also be performed to control

  5. Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics

    DEFF Research Database (Denmark)

    Mootha, Vamsi K; Lepage, Pierre; Miller, Kathleen;

    2003-01-01

    Identifying the genes responsible for human diseases requires combining information about gene position with clues about biological function. The recent availability of whole-genome data sets of RNA and protein expression provides powerful new sources of functional insight. Here we illustrate how...

  6. A computational method based on the integration of heterogeneous networks for predicting disease-gene associations.

    Directory of Open Access Journals (Sweden)

    Xingli Guo

    Full Text Available The identification of disease-causing genes is a fundamental challenge in human health and of great importance in improving medical care, and provides a better understanding of gene functions. Recent computational approaches based on the interactions among human proteins and disease similarities have shown their power in tackling the issue. In this paper, a novel systematic and global method that integrates two heterogeneous networks for prioritizing candidate disease-causing genes is provided, based on the observation that genes causing the same or similar diseases tend to lie close to one another in a network of protein-protein interactions. In this method, the association score function between a query disease and a candidate gene is defined as the weighted sum of all the association scores between similar diseases and neighbouring genes. Moreover, the topological correlation of these two heterogeneous networks can be incorporated into the definition of the score function, and finally an iterative algorithm is designed for this issue. This method was tested with 10-fold cross-validation on all 1,126 diseases that have at least a known causal gene, and it ranked the correct gene as one of the top ten in 622 of all the 1,428 cases, significantly outperforming a state-of-the-art method called PRINCE. The results brought about by this method were applied to study three multi-factorial disorders: breast cancer, Alzheimer disease and diabetes mellitus type 2, and some suggestions of novel causal genes and candidate disease-causing subnetworks were provided for further investigation.

  7. Developmental gene expression profiles of the human pathogen Schistosoma japonicum

    Science.gov (United States)

    Gobert, Geoffrey N; Moertel, Luke; Brindley, Paul J; McManus, Donald P

    2009-01-01

    Background The schistosome blood flukes are complex trematodes and cause a chronic parasitic disease of significant public health importance worldwide, schistosomiasis. Their life cycle is characterised by distinct parasitic and free-living phases involving mammalian and snail hosts and freshwater. Microarray analysis was used to profile developmental gene expression in the Asian species, Schistosoma japonicum. Total RNAs were isolated from the three distinct environmental phases of the lifecycle – aquatic/snail (eggs, miracidia, sporocysts, cercariae), juvenile (lung schistosomula and paired but pre-egg laying adults) and adult (paired, mature males and egg-producing females, both examined separately). Advanced analyses including ANOVA, principal component analysis, and hierarchal clustering provided a global synopsis of gene expression relationships among the different developmental stages of the schistosome parasite. Results Gene expression profiles were linked to the major environmental settings through which the developmental stages of the fluke have to adapt during the course of its life cycle. Gene ontologies of the differentially expressed genes revealed a wide range of functions and processes. In addition, stage-specific, differentially expressed genes were identified that were involved in numerous biological pathways and functions including calcium signalling, sphingolipid metabolism and parasite defence. Conclusion The findings provide a comprehensive database of gene expression in an important human pathogen, including transcriptional changes in genes involved in evasion of the host immune response, nutrient acquisition, energy production, calcium signalling, sphingolipid metabolism, egg production and tegumental function during development. This resource should help facilitate the identification and prioritization of new anti-schistosome drug and vaccine targets for the control of schistosomiasis. PMID:19320991

  8. Developmental gene expression profiles of the human pathogen Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    McManus Donald P

    2009-03-01

    Full Text Available Abstract Background The schistosome blood flukes are complex trematodes and cause a chronic parasitic disease of significant public health importance worldwide, schistosomiasis. Their life cycle is characterised by distinct parasitic and free-living phases involving mammalian and snail hosts and freshwater. Microarray analysis was used to profile developmental gene expression in the Asian species, Schistosoma japonicum. Total RNAs were isolated from the three distinct environmental phases of the lifecycle – aquatic/snail (eggs, miracidia, sporocysts, cercariae, juvenile (lung schistosomula and paired but pre-egg laying adults and adult (paired, mature males and egg-producing females, both examined separately. Advanced analyses including ANOVA, principal component analysis, and hierarchal clustering provided a global synopsis of gene expression relationships among the different developmental stages of the schistosome parasite. Results Gene expression profiles were linked to the major environmental settings through which the developmental stages of the fluke have to adapt during the course of its life cycle. Gene ontologies of the differentially expressed genes revealed a wide range of functions and processes. In addition, stage-specific, differentially expressed genes were identified that were involved in numerous biological pathways and functions including calcium signalling, sphingolipid metabolism and parasite defence. Conclusion The findings provide a comprehensive database of gene expression in an important human pathogen, including transcriptional changes in genes involved in evasion of the host immune response, nutrient acquisition, energy production, calcium signalling, sphingolipid metabolism, egg production and tegumental function during development. This resource should help facilitate the identification and prioritization of new anti-schistosome drug and vaccine targets for the control of schistosomiasis.

  9. Linking Genes to Cardiovascular Diseases: Gene Action and Gene-Environment Interactions.

    Science.gov (United States)

    Pasipoularides, Ares

    2015-12-01

    A unique myocardial characteristic is its ability to grow/remodel in order to adapt; this is determined partly by genes and partly by the environment and the milieu intérieur. In the "post-genomic" era, a need is emerging to elucidate the physiologic functions of myocardial genes, as well as potential adaptive and maladaptive modulations induced by environmental/epigenetic factors. Genome sequencing and analysis advances have become exponential lately, with escalation of our knowledge concerning sometimes controversial genetic underpinnings of cardiovascular diseases. Current technologies can identify candidate genes variously involved in diverse normal/abnormal morphomechanical phenotypes, and offer insights into multiple genetic factors implicated in complex cardiovascular syndromes. The expression profiles of thousands of genes are regularly ascertained under diverse conditions. Global analyses of gene expression levels are useful for cataloging genes and correlated phenotypes, and for elucidating the role of genes in maladies. Comparative expression of gene networks coupled to complex disorders can contribute insights as to how "modifier genes" influence the expressed phenotypes. Increasingly, a more comprehensive and detailed systematic understanding of genetic abnormalities underlying, for example, various genetic cardiomyopathies is emerging. Implementing genomic findings in cardiology practice may well lead directly to better diagnosing and therapeutics. There is currently evolving a strong appreciation for the value of studying gene anomalies, and doing so in a non-disjointed, cohesive manner. However, it is challenging for many-practitioners and investigators-to comprehend, interpret, and utilize the clinically increasingly accessible and affordable cardiovascular genomics studies. This survey addresses the need for fundamental understanding in this vital area.

  10. Genome-Wide Associations of Gene Expression Variation in Humans.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  11. Genome-wide associations of gene expression variation in humans.

    Directory of Open Access Journals (Sweden)

    Barbara E Stranger

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  12. Epigenetic signature and enhancer activity of the human APOE gene

    Science.gov (United States)

    Yu, Chang-En; Cudaback, Eiron; Foraker, Jessica; Thomson, Zachary; Leong, Lesley; Lutz, Franziska; Gill, James Anthony; Saxton, Aleen; Kraemer, Brian; Navas, Patrick; Keene, C. Dirk; Montine, Thomas; Bekris, Lynn M.

    2013-01-01

    The human apolipoprotein E (APOE) gene plays an important role in lipid metabolism. It has three common genetic variants, alleles ɛ2/ɛ3/ɛ4, which translate into three protein isoforms of apoE2, E3 and E4. These isoforms can differentially influence total serum cholesterol levels; therefore, APOE has been linked with cardiovascular disease. Additionally, its ɛ4 allele is strongly associated with the risk of Alzheimer's disease (AD), whereas the ɛ2 allele appears to have a modest protective effect for AD. Despite decades of research having illuminated multiple functional differences among the three apoE isoforms, the precise mechanisms through which different APOE alleles modify diseases risk remain incompletely understood. In this study, we examined the genomic structure of APOE in search for properties that may contribute novel biological consequences to the risk of disease. We identify one such element in the ɛ2/ɛ3/ɛ4 allele-carrying 3′-exon of APOE. We show that this exon is imbedded in a well-defined CpG island (CGI) that is highly methylated in the human postmortem brain. We demonstrate that this APOE CGI exhibits transcriptional enhancer/silencer activity. We provide evidence that this APOE CGI differentially modulates expression of genes at the APOE locus in a cell type-, DNA methylation- and ɛ2/ɛ3/ɛ4 allele-specific manner. These findings implicate a novel functional role for a 3′-exon CGI and support a modified mechanism of action for APOE in disease risk, involving not only the protein isoforms but also an epigenetically regulated transcriptional program at the APOE locus driven by the APOE CGI. PMID:23892237

  13. The implications of relationships between human diseases and metabolic subpathways.

    Directory of Open Access Journals (Sweden)

    Xia Li

    Full Text Available One of the challenging problems in the etiology of diseases is to explore the relationships between initiation and progression of diseases and abnormalities in local regions of metabolic pathways. To gain insight into such relationships, we applied the "k-clique" subpathway identification method to all disease-related gene sets. For each disease, the disease risk regions of metabolic pathways were then identified and considered as subpathways associated with the disease. We finally built a disease-metabolic subpathway network (DMSPN. Through analyses based on network biology, we found that a few subpathways, such as that of cytochrome P450, were highly connected with many diseases, and most belonged to fundamental metabolisms, suggesting that abnormalities of fundamental metabolic processes tend to cause more types of diseases. According to the categories of diseases and subpathways, we tested the clustering phenomenon of diseases and metabolic subpathways in the DMSPN. The results showed that both disease nodes and subpathway nodes displayed slight clustering phenomenon. We also tested correlations between network topology and genes within disease-related metabolic subpathways, and found that within a disease-related subpathway in the DMSPN, the ratio of disease genes and the ratio of tissue-specific genes significantly increased as the number of diseases caused by the subpathway increased. Surprisingly, the ratio of essential genes significantly decreased and the ratio of housekeeping genes remained relatively unchanged. Furthermore, the coexpression levels between disease genes and other types of genes were calculated for each subpathway in the DMSPN. The results indicated that those genes intensely influenced by disease genes, including essential genes and tissue-specific genes, might be significantly associated with the disease diversity of subpathways, suggesting that different kinds of genes within a disease-related subpathway may play

  14. Identification of Genes Involved in the Early Stages of Alzheimer Disease Using a Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Barati

    2016-07-01

    Full Text Available Alzheimer disease is one form of dementia in old age. Alzheimer disease, the incurable disease, which is usually in the seventh decade of human life, shows its symptoms. The disease may be present for years without clinical symptoms. The current study identified the genes with altered expression in patients with Alzheimer disease. The important sequence of each gene in Alzheimer disease was found and introduced as a biomarker of this disease. The present study used microarray libraries related to Alzheimer disease. Finally, the data were weighted using 10 data mining methods, including methods such as support vector machine (SVM, deviation, information gain ratio and the Gini coefficient. Sequences with least two algorithm weights above 0.5 were selected as the most important sequences. Then, a neural network algorithm (neural net, auto multilayer perceptron and perceptron was run on 11 data bases from the weighted perceptron algorithm, resulting in a careful 97% best performance.

  15. Molecular clocks and the human condition: approaching their characterization in human physiology and disease.

    Science.gov (United States)

    Fitzgerald, G A; Yang, G; Paschos, G K; Liang, X; Skarke, C

    2015-09-01

    Molecular clockworks knit together diverse biological networks and compelling evidence from model systems infers their importance in metabolism, immunological and cardiovascular function. Despite this and the diurnal variation in many aspects of human physiology and the phenotypic expression of disease, our understanding of the role and importance of clock function and dysfunction in humans is modest. There are tantalizing hints of connection across the translational divide and some correlative evidence of gene variation and human disease but most of what we know derives from forced desynchrony protocols in controlled environments. We now have the ability to monitor quantitatively ex vivo or in vivo the genome, metabolome, proteome and microbiome of humans in the wild. Combining this capability, with the power of mobile telephony and the evolution of remote sensing, affords a new opportunity for deep phenotyping, including the characterization of diurnal behaviour and the assessment of the impact of the clock on approved drug function.

  16. Molecular functions of human endogenous retroviruses in health and disease.

    Science.gov (United States)

    Suntsova, Maria; Garazha, Andrew; Ivanova, Alena; Kaminsky, Dmitry; Zhavoronkov, Alex; Buzdin, Anton

    2015-10-01

    Human endogenous retroviruses (HERVs) and related genetic elements form 504 distinct families and occupy ~8% of human genome. Recent success of high-throughput experimental technologies facilitated understanding functional impact of HERVs for molecular machinery of human cells. HERVs encode active retroviral proteins, which may exert important physiological functions in the body, but also may be involved in the progression of cancer and numerous human autoimmune, neurological and infectious diseases. The spectrum of related malignancies includes, but not limits to, multiple sclerosis, psoriasis, lupus, schizophrenia, multiple cancer types and HIV. In addition, HERVs regulate expression of the neighboring host genes and modify genomic regulatory landscape, e.g., by providing regulatory modules like transcription factor binding sites (TFBS). Indeed, recent bioinformatic profiling identified ~110,000 regulatory active HERV elements, which formed at least ~320,000 human TFBS. These and other peculiarities of HERVs might have played an important role in human evolution and speciation. In this paper, we focus on the current progress in understanding of normal and pathological molecular niches of HERVs, on their implications in human evolution, normal physiology and disease. We also review the available databases dealing with various aspects of HERV genetics.

  17. A global evolutionary and metabolic analysis of human obesity gene risk variants.

    Science.gov (United States)

    Castillo, Joseph J; Hazlett, Zachary S; Orlando, Robert A; Garver, William S

    2017-09-05

    It is generally accepted that the selection of gene variants during human evolution optimized energy metabolism that now interacts with our obesogenic environment to increase the prevalence of obesity. The purpose of this study was to perform a global evolutionary and metabolic analysis of human obesity gene risk variants (110 human obesity genes with 127 nearest gene risk variants) identified using genome-wide association studies (GWAS) to enhance our knowledge of early and late genotypes. As a result of determining the mean frequency of these obesity gene risk variants in 13 available populations from around the world our results provide evidence for the early selection of ancestral risk variants (defined as selection before migration from Africa) and late selection of derived risk variants (defined as selection after migration from Africa). Our results also provide novel information for association of these obesity genes or encoded proteins with diverse metabolic pathways and other human diseases. The overall results indicate a significant differential evolutionary pattern for the selection of obesity gene ancestral and derived risk variants proposed to optimize energy metabolism in varying global environments and complex association with metabolic pathways and other human diseases. These results are consistent with obesity genes that encode proteins possessing a fundamental role in maintaining energy metabolism and survival during the course of human evolution. Copyright © 2017. Published by Elsevier B.V.

  18. Bacterial Human Virulence Genes across Diverse Habitats As Assessed by In silico Analysis of Environmental Metagenomes

    DEFF Research Database (Denmark)

    Søborg, Ditte A; Hendriksen, Niels B; Kilian, Mogens

    2016-01-01

    and glacial ice. Homologs to 16 bacterial human virulence genes, involved in urinary tract infections, gastrointestinal diseases, skin diseases, and wound and systemic infections, showed global ubiquity. A principal component analysis did not demonstrate clear trends across the metagenomes with respect...... to occurrence and frequency of observed gene homologs. Full-length (>95%) homologs of several virulence genes were identified, and translated sequences of the environmental and clinical genes were up to 50-100% identical. Furthermore, phylogenetic analyses indicated deep branching positions of some...

  19. Gene prioritization for livestock diseases by data integration

    DEFF Research Database (Denmark)

    Jiang, Li; Sørensen, Peter; Thomsen, Bo Stjerne

    2012-01-01

    with quantitative traits and diseases in livestock species. The approach uses ortholog mapping and integrates information on disease or trait phenotypes, gene-associated phenotypes, and protein-protein interactions. It was used for ranking all known genes present in the cattle genome for their potential roles...... candidate genes in any livestock species........ Our study provides a general framework for prioritizing genes associated with various complex traits in different species. To our knowledge this is the first time that gene expression, ortholog mapping, protein interactions, and biomedical text data have been integrated systematically for ranking...

  20. Conceptual thinking for in silico prioritization of candidate disease genes.

    Science.gov (United States)

    Tiffin, Nicki

    2011-01-01

    Prioritization of most likely etiological genes entails predicting and defining a set of characteristics that are most likely to fit the underlying disease gene and scoring candidates according to their fit to this "perfect disease gene" profile. This requires a full understanding of the disease phenotype, characteristics, and any available data on the underlying genetics of the disease. Public databases provide enormous and ever-growing amounts of information that can be relevant to the prioritization of etiological genes. Computational approaches allow this information to be retrieved in an automated and exhaustive way and can therefore facilitate the comprehensive mining of this information, including its combination with sets of empirically generated data, in the process of identifying most likely candidate disease genes.

  1. Advances in chromatin remodeling and human disease.

    Science.gov (United States)

    Cho, Kyoung Sang; Elizondo, Leah I; Boerkoel, Cornelius F

    2004-06-01

    Epigenetic factors alter phenotype without changing genotype. A primary molecular mechanism underlying epigenetics is the alteration of chromatin structure by covalent DNA modifications, covalent histone modifications, and nucleosome reorganization. Remodeling of chromatin structure regulates DNA methylation, replication, recombination, and repair as well as gene expression. As these functions would predict, dysfunction of the proteins that remodel chromatin causes an array of multi-system disorders and neoplasias. Insights from these diseases suggest that during embryonic and fetal life, environmental distortions of chromatin remodeling encode a 'molecular memory' that predispose the individual to diseases in adulthood.

  2. Modeling human muscle disease in zebrafish

    OpenAIRE

    Guyon, Jeffrey R.; Steffen, Leta S; Howell, Melanie H.; Pusack, Timothy J; Lawrence, Chris; Kunkel, Louis M

    2007-01-01

    Modeling human muscle disease in zebrafish correspondence: Corresponding author. Children's Hospital Boston, Enders Bldg, Rm 570, 300 Longwood Ave Boston, MA 02115. Tel.: +1 617 355 7576. (Kunkel, Louis M.) (Kunkel, Louis M.) Program in Genomics and Howard Hughes Medical Institute at Children's Hospital Boston - Boston--> , MA 02115--> - UNITED STATES (Guyon, Jeffrey R.) Program in Genomics a...

  3. The Impact of Evolutionary Driving Forces on Human Complex Diseases: A Population Genetics Approach

    Directory of Open Access Journals (Sweden)

    Amr T. M. Saeb

    2016-01-01

    Full Text Available Investigating the molecular evolution of human genome has paved the way to understand genetic adaptation of humans to the environmental changes and corresponding complex diseases. In this review, we discussed the historical origin of genetic diversity among human populations, the evolutionary driving forces that can affect genetic diversity among populations, and the effects of human movement into new environments and gene flow on population genetic diversity. Furthermore, we presented the role of natural selection on genetic diversity and complex diseases. Then we reviewed the disadvantageous consequences of historical selection events in modern time and their relation to the development of complex diseases. In addition, we discussed the effect of consanguinity on the incidence of complex diseases in human populations. Finally, we presented the latest information about the role of ancient genes acquired from interbreeding with ancient hominids in the development of complex diseases.

  4. Global Identification of Disease Associated Genes in Fragile X Cells

    Science.gov (United States)

    2016-08-01

    AWARD NUMBER: W81XWH-15-1-0204 TITLE: Global Identification of Disease-Associated Genes in Fragile X Cells PRINCIPAL INVESTIGATOR: Wenyi Feng...Global Identification of Disease-Associated Genes in Fragile X Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0204 GRANT1171 2389... genes in fragile X cells compared to normal cells. o What was accomplished under these goals? Below I list the experiments and conclusions for each goal

  5. PXR- and CAR-mediated herbal effect on human diseases.

    Science.gov (United States)

    Xu, Chenshu; Huang, Min; Bi, Huichang

    2016-09-01

    The pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are two members of the nuclear receptor superfamily that regulate a broad range of genes involved in drug metabolism and transport. A variety of naturally occurring compounds present in herbal medicines were identified as ligands of PXR and CAR. Recently, accumulative evidences have revealed the PXR- and CAR-mediated herbal effect against multiple human diseases, including inflammatory bowel disease (IBD), cholestatic liver disease, and jaundice. The current review summarized the recent progress in identifying the expanding libraries of herbal medicine as ligands for PXR and CAR. Moreover, the potential for herbal medicines as promising therapeutic agents which were mainly regulated through PXR/CAR signaling pathways was also discussed. The discovery of herbal medicines as modulators of PXR and CAR, and their PXR- and CAR-mediated effect on human diseases will provide a basis for rational drug design, and eventually be explored as a novel therapeutic approach against human diseases. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.

  6. Prion disease induced alterations in gene expression in spleen and brain prior to clinical symptoms

    Directory of Open Access Journals (Sweden)

    Hyeon O Kim

    2008-09-01

    Full Text Available Hyeon O Kim1, Greg P Snyder1, Tyler M Blazey1, Richard E Race2, Bruce Chesebro2, Pamela J Skinner11Department of Veterinary and Biomedical Sciences, University of Minnesota, USA; 2NIH Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, USAAbstract: Prion diseases are fatal neurodegenerative disorders that affect animals and humans. There is a need to gain understanding of prion disease pathogenesis and to develop diagnostic assays to detect prion diseases prior to the onset of clinical symptoms. The goal of this study was to identify genes that show altered expression early in the disease process in the spleen and brain of prion disease-infected mice. Using Affymetrix microarrays, we identified 67 genes that showed increased expression in the brains of prion disease-infected mice prior to the onset of clinical symptoms. These genes function in many cellular processes including immunity, the endosome/lysosome system, hormone activity, and the cytoskeleton. We confirmed a subset of these gene expression alterations using other methods and determined the time course in which these changes occur. We also identified 14 genes showing altered expression prior to the onset of clinical symptoms in spleens of prion disease infected mice. Interestingly, four genes, Atp1b1, Gh, Anp32a, and Grn, were altered at the very early time of 46 days post-infection. These gene expression alterations provide insights into the molecular mechanisms underlying prion disease pathogenesis and may serve as surrogate markers for the early detection and diagnosis of prion disease.Keywords: prion disease, microarrays, gene expression

  7. Gene-Environment Interactions in the Development of Complex Disease Phenotypes

    Directory of Open Access Journals (Sweden)

    Kenneth Olden

    2008-03-01

    Full Text Available The lack of knowledge about the earliest events in disease development is due to the multi-factorial nature of disease risk. This information gap is the consequence of the lack of appreciation for the fact that most diseases arise from the complex interactions between genes and the environment as a function of the age or stage of development of the individual. Whether an environmental exposure causes illness or not is dependent on the efficiency of the so-called “environmental response machinery” (i.e., the complex of metabolic pathways that can modulate response to environmental perturbations that one has inherited. Thus, elucidating the causes of most chronic diseases will require an understanding of both the genetic and environmental contribution to their etiology. Unfortunately, the exploration of the relationship between genes and the environment has been hampered in the past by the limited knowledge of the human genome, and by the inclination of scientists to study disease development using experimental models that consider exposure to a single environmental agent. Rarely in the past were interactions between multiple genes or between genes and environmental agents considered in studies of human disease etiology. The most critical issue is how to relate exposure-disease association studies to pathways and mechanisms. To understand how genes and environmental factors interact to perturb biological pathways to cause injury or disease, scientists will need tools with the capacity to monitor the global expression of thousands of genes, proteins and metabolites simultaneously. The generation of such data in multiple species can be used to identify conserved and functionally significant genes and pathways involved in geneenvironment interactions. Ultimately, it is this knowledge that will be used to guide agencies such as the U.S. Department of Health and Human Services in decisions regarding biomedical research funding

  8. [Human prion diseases in the Czech Republic].

    Science.gov (United States)

    Rohan, Z; Rusina, R; Marešová, M; Matěj, R

    2015-09-01

    Human prion diseases are a group of very rare diseases with a unique pathogenesis and, due to an inauspicious prognosis and unavailability of therapy, with fatal consequences. The etiopathogenetic background is the presence of pathologically misfolded prion protein, highly resistant to denaturation, the aggregation and presence of which in the brain tissue causes irreversible neuronal damage. The most frequent prion disease in humans is Creutzfeldt-Jakob disease (CJD) which occurs in sporadic, hereditary/familial, or acquired/infectious/iatrogenic forms. A new form of CJD, variant CJD, is considered to be linked to dietary exposure to beef products from cattle infected with bovine spongiform encephalopathy (BSE) and to infection via blood transfusion. The clinical picture of these diseases is characterized by a rapidly progressing dementia, cerebellar and extrapyramidal symptoms, and rather specific MRI, EEG, and CSF findings. Clinically, the diagnosis is described as possible or probable prion disease and needs to be confirmed by neuropathological or immunological investigation of the brain tissue. Epidemiological data from the Czech Republic spanning the last decade are presented.

  9. Subtle changes among presymptomatic carriers of the Huntington's disease gene

    OpenAIRE

    S. Kirkwood; Siemers, E.; Hodes, M; Conneally, P; Christian, J.; Foroud, T

    2000-01-01

    OBJECTIVES—To compare the neurological and psychometric characteristics of presymptomatic gene carriers and non-gene carriers who are at risk for developing Huntington's disease so as to characterise early signs of disease and to identify markers of neurological function that could be used to assess the impact of experimental therapies on the progression of disease, even among those who are clinically presymptomatic.
METHODS—A sample of people at risk for Huntington's dis...

  10. Genomic disorders: A window into human gene and genome evolution

    Science.gov (United States)

    Carvalho, Claudia M. B.; Zhang, Feng; Lupski, James R.

    2010-01-01

    Gene duplications alter the genetic constitution of organisms and can be a driving force of molecular evolution in humans and the great apes. In this context, the study of genomic disorders has uncovered the essential role played by the genomic architecture, especially low copy repeats (LCRs) or segmental duplications (SDs). In fact, regardless of the mechanism, LCRs can mediate or stimulate rearrangements, inciting genomic instability and generating dynamic and unstable regions prone to rapid molecular evolution. In humans, copy-number variation (CNV) has been implicated in common traits such as neuropathy, hypertension, color blindness, infertility, and behavioral traits including autism and schizophrenia, as well as disease susceptibility to HIV, lupus nephritis, and psoriasis among many other clinical phenotypes. The same mechanisms implicated in the origin of genomic disorders may also play a role in the emergence of segmental duplications and the evolution of new genes by means of genomic and gene duplication and triplication, exon shuffling, exon accretion, and fusion/fission events. PMID:20080665

  11. THE CLONING OF HUMAN NEUROTROPHIN-3 GENE

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    In the present study, we have cloned the gene of human neurotrophin-3 (hNT-3) from the genomic DNA of white blood cells (WBC) by polymerase chain reaction (PCR). The amplification products were cloned into pUC19 and sequenced. Genomic sequence comparison of the cloned fragment and the reported hNT-3 (GenBank M61180) reveals 7 base differences: 1 in the signal peptide, 3 in the prepro peptide, and 3 in the mature hNT-3. Except the 2 varied bases (16th, T to G; 285th, A to C) in the signal peptide and pro-sequence resulted in the change of their encoded amino-acids (Tyr→Asp; Gln→His), the other varied bases have no influence on their respective encoded amino-acids, and all the changes have no influence on the open reading frame (ORF) of the hNT-3.

  12. Transgenic knockout mice with exclusively human sickle hemoglobinand sickle cell disease

    Energy Technology Data Exchange (ETDEWEB)

    Paszty, C.; Brion, C.; Manci, E.; Witkowska, E.; Stevens, M.; Narla, M.; Rubin, E.

    1997-06-13

    To create mice expressing exclusively human sicklehemoglobin (HbS), transgenic mice expressing human alpha-, gamma-, andbeta[S]-globin were generated and bred with knockout mice that haddeletions of the murine alpha- and beta-globin genes. These sickle cellmice have the major features (irreversibly sickled red cells, anemia,multiorgan pathology) found in humans with sickle cell disease and, assuch, represent a useful in vivo system to accelerate the development ofimproved therapies for this common genetic disease.

  13. Identification of valid reference genes for the normalization of RT qPCR gene expression data in human brain tissue

    Directory of Open Access Journals (Sweden)

    Ravid Rivka

    2008-05-01

    Full Text Available Abstract Background Studies of gene expression in post mortem human brain can contribute to understanding of the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD, Parkinson's disease (PD and dementia with Lewy bodies (DLB. Quantitative real-time PCR (RT qPCR is often used to analyse gene expression. The validity of results obtained using RT qPCR is reliant on accurate data normalization. Reference genes are generally used to normalize RT qPCR data. Given that expression of some commonly used reference genes is altered in certain conditions, this study aimed to establish which reference genes were stably expressed in post mortem brain tissue from individuals with AD, PD or DLB. Results The present study investigated the expression stability of 8 candidate reference genes, (ubiquitin C [UBC], tyrosine-3-monooxygenase [YWHAZ], RNA polymerase II polypeptide [RP II], hydroxymethylbilane synthase [HMBS], TATA box binding protein [TBP], β-2-microglobulin [B2M], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], and succinate dehydrogenase complex-subunit A, [SDHA] in cerebellum and medial temporal gyrus of 6 AD, 6 PD, 6 DLB subjects, along with 5 matched controls using RT qPCR (TaqMan® Gene Expression Assays. Gene expression stability was analysed using geNorm to rank the candidate genes in order of decreasing stability in each disease group. The optimal number of genes recommended for accurate data normalization in each disease state was determined by pairwise variation analysis. Conclusion This study identified validated sets of mRNAs which would be appropriate for the normalization of RT qPCR data when studying gene expression in brain tissue of AD, PD, DLB and control subjects.

  14. Candidate genes expressed in human islets and their role in the pathogenesis of type 1 diabetes

    DEFF Research Database (Denmark)

    Storling, Joachim; Brorsson, Caroline Anna

    2013-01-01

    In type 1 diabetes (T1D), the insulin-producing β cells are destroyed by an immune-mediated process leading to complete insulin deficiency. There is a strong genetic component in T1D. Genes located in the human leukocyte antigen (HLA) region are the most important genetic determinants of disease...... exposure to proinflammatory cytokines highlighting that these genes may be involved in the response of β cells to immune attack. In this review, the compiling evidence that many of the candidate genes are expressed in islets and β cells will be presented. Further, we perform the first systematic human...... islet expression analysis of all genes located in 50 T1D-associated GWAS loci using a published RNA sequencing dataset. We find that 336 out of 857 genes are expressed in human islets and that many of these interact in protein networks. Finally, the potential pathogenetic roles of some candidate genes...

  15. Gene expression and functional annotation of the human and mouse choroid plexus epithelium.

    Directory of Open Access Journals (Sweden)

    Sarah F Janssen

    Full Text Available BACKGROUND: The choroid plexus epithelium (CPE is a lobed neuro-epithelial structure that forms the outer blood-brain barrier. The CPE protrudes into the brain ventricles and produces the cerebrospinal fluid (CSF, which is crucial for brain homeostasis. Malfunction of the CPE is possibly implicated in disorders like Alzheimer disease, hydrocephalus or glaucoma. To study human genetic diseases and potential new therapies, mouse models are widely used. This requires a detailed knowledge of similarities and differences in gene expression and functional annotation between the species. The aim of this study is to analyze and compare gene expression and functional annotation of healthy human and mouse CPE. METHODS: We performed 44k Agilent microarray hybridizations with RNA derived from laser dissected healthy human and mouse CPE cells. We functionally annotated and compared the gene expression data of human and mouse CPE using the knowledge database Ingenuity. We searched for common and species specific gene expression patterns and function between human and mouse CPE. We also made a comparison with previously published CPE human and mouse gene expression data. RESULTS: Overall, the human and mouse CPE transcriptomes are very similar. Their major functionalities included epithelial junctions, transport, energy production, neuro-endocrine signaling, as well as immunological, neurological and hematological functions and disorders. The mouse CPE presented two additional functions not found in the human CPE: carbohydrate metabolism and a more extensive list of (neural developmental functions. We found three genes specifically expressed in the mouse CPE compared to human CPE, being ACE, PON1 and TRIM3 and no human specifically expressed CPE genes compared to mouse CPE. CONCLUSION: Human and mouse CPE transcriptomes are very similar, and display many common functionalities. Nonetheless, we also identified a few genes and pathways which suggest that the CPE

  16. Genetic control of human brain transcript expression in Alzheimer disease.

    Science.gov (United States)

    Webster, Jennifer A; Gibbs, J Raphael; Clarke, Jennifer; Ray, Monika; Zhang, Weixiong; Holmans, Peter; Rohrer, Kristen; Zhao, Alice; Marlowe, Lauren; Kaleem, Mona; McCorquodale, Donald S; Cuello, Cindy; Leung, Doris; Bryden, Leslie; Nath, Priti; Zismann, Victoria L; Joshipura, Keta; Huentelman, Matthew J; Hu-Lince, Diane; Coon, Keith D; Craig, David W; Pearson, John V; Heward, Christopher B; Reiman, Eric M; Stephan, Dietrich; Hardy, John; Myers, Amanda J

    2009-04-01

    We recently surveyed the relationship between the human brain transcriptome and genome in a series of neuropathologically normal postmortem samples. We have now analyzed additional samples with a confirmed pathologic diagnosis of late-onset Alzheimer disease (LOAD; final n = 188 controls, 176 cases). Nine percent of the cortical transcripts that we analyzed had expression profiles correlated with their genotypes in the combined cohort, and approximately 5% of transcripts had SNP-transcript relationships that could distinguish LOAD samples. Two of these transcripts have been previously implicated in LOAD candidate-gene SNP-expression screens. This study shows how the relationship between common inherited genetic variants and brain transcript expression can be used in the study of human brain disorders. We suggest that studying the transcriptome as a quantitative endo-phenotype has greater power for discovering risk SNPs influencing expression than the use of discrete diagnostic categories such as presence or absence of disease.

  17. CRISPR-mediated genome editing and human diseases

    Directory of Open Access Journals (Sweden)

    Liquan Cai

    2016-12-01

    Full Text Available CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats technology has emerged as a powerful technology for genome editing and is now widely used in basic biomedical research to explore gene function. More recently, this technology has been increasingly applied to the study or treatment of human diseases, including Barth syndrome effects on the heart, Duchenne muscular dystrophy, hemophilia, β-Thalassemia, and cystic fibrosis. CRISPR/Cas9 (CRISPR-associated protein 9 genome editing has been used to correct disease-causing DNA mutations ranging from a single base pair to large deletions in model systems ranging from cells in vitro to animals in vivo. In addition to genetic diseases, CRISPR/Cas9 gene editing has also been applied in immunology-focused applications such as the targeting of C-C chemokine receptor type 5, the programmed death 1 gene, or the creation of chimeric antigen receptors in T cells for purposes such as the treatment of the acquired immune deficiency syndrome (AIDS or promoting anti-tumor immunotherapy. Furthermore, this technology has been applied to the genetic manipulation of domesticated animals with the goal of producing biologic medical materials, including molecules, cells or organs, on a large scale. Finally, CRISPR/Cas9 has been teamed with induced pluripotent stem (iPS cells to perform multiple tissue engineering tasks including the creation of disease models or the preparation of donor-specific tissues for transplantation. This review will explore the ways in which the use of CRISPR/Cas9 is opening new doors to the treatment of human diseases.

  18. A human gut microbial gene catalogue established by metagenomic sequencing

    DEFF Research Database (Denmark)

    dos Santos, Marcelo Bertalan Quintanilha; Sicheritz-Pontén, Thomas; Nielsen, Henrik Bjørn

    2010-01-01

    , from faecal samples of 124 European individuals. The gene set, ,150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes......To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence...

  19. Systematic analysis, comparison, and integration of disease based human genetic association data and mouse genetic phenotypic information

    Directory of Open Access Journals (Sweden)

    Wang S Alex

    2010-01-01

    Full Text Available Abstract Background The genetic contributions to human common disorders and mouse genetic models of disease are complex and often overlapping. In common human diseases, unlike classical Mendelian disorders, genetic factors generally have small effect sizes, are multifactorial, and are highly pleiotropic. Likewise, mouse genetic models of disease often have pleiotropic and overlapping phenotypes. Moreover, phenotypic descriptions in the literature in both human and mouse are often poorly characterized and difficult to compare directly. Methods In this report, human genetic association results from the literature are summarized with regard to replication, disease phenotype, and gene specific results; and organized in the context of a systematic disease ontology. Similarly summarized mouse genetic disease models are organized within the Mammalian Phenotype ontology. Human and mouse disease and phenotype based gene sets are identified. These disease gene sets are then compared individually and in large groups through dendrogram analysis and hierarchical clustering analysis. Results Human disease and mouse phenotype gene sets are shown to group into disease and phenotypically relevant groups at both a coarse and fine level based on gene sharing. Conclusion This analysis provides a systematic and global perspective on the genetics of common human disease as compared to itself and in the context of mouse genetic models of disease.

  20. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions.

    Directory of Open Access Journals (Sweden)

    Soumya Raychaudhuri

    2009-06-01

    Full Text Available Translating a set of disease regions into insight about pathogenic mechanisms requires not only the ability to identify the key disease genes within them, but also the biological relationships among those key genes. Here we describe a statistical method, Gene Relationships Among Implicated Loci (GRAIL, that takes a list of disease regions and automatically assesses the degree of relatedness of implicated genes using 250,000 PubMed abstracts. We first evaluated GRAIL by assessing its ability to identify subsets of highly related genes in common pathways from validated lipid and height SNP associations from recent genome-wide studies. We then tested GRAIL, by assessing its ability to separate true disease regions from many false positive disease regions in two separate practical applications in human genetics. First, we took 74 nominally associated Crohn's disease SNPs and applied GRAIL to identify a subset of 13 SNPs with highly related genes. Of these, ten convincingly validated in follow-up genotyping; genotyping results for the remaining three were inconclusive. Next, we applied GRAIL to 165 rare deletion events seen in schizophrenia cases (less than one-third of which are contributing to disease risk. We demonstrate that GRAIL is able to identify a subset of 16 deletions containing highly related genes; many of these genes are expressed in the central nervous system and play a role in neuronal synapses. GRAIL offers a statistically robust approach to identifying functionally related genes from across multiple disease regions--that likely represent key disease pathways. An online version of this method is available for public use (http://www.broad.mit.edu/mpg/grail/.

  1. Inherited retinal diseases in dogs: advances in gene/mutation discovery.

    Science.gov (United States)

    Miyadera, Keiko

    1. Inherited retinal diseases (RDs) are vision-threatening conditions affecting humans as well as many domestic animals. Through many years of clinical studies of the domestic dog population, a wide array of RDs has been phenotypically characterized. Extensive effort to map the causative gene and to identify the underlying mutation followed. Through candidate gene, linkage analysis, genome-wide association studies, and more recently, by means of next-generation sequencing, as many as 31 mutations in 24 genes have been identified as the underlying cause for canine RDs. Most of these genes have been associated with human RDs providing opportunities to study their roles in the disease pathogenesis and in normal visual function. The canine model has also contributed in developing new treatments such as gene therapy which has been clinically applied to human patients. Meanwhile, with increasing knowledge of the molecular architecture of RDs in different subpopulations of dogs, the conventional understanding of RDs as a simple monogenic disease is beginning to change. Emerging evidence of modifiers that alters the disease outcome is complicating the interpretation of DNA tests. In this review, advances in the gene/mutation discovery approaches and the emerging genetic complexity of canine RDs are discussed.

  2. Human lagochilascariasis-A rare helminthic disease.

    Directory of Open Access Journals (Sweden)

    Dulcinea Maria Barbosa Campos

    2017-06-01

    Full Text Available Lagochilascariasis is a parasitic disease caused by a helminth of the order Ascaroidea, genus Lagochilascaris that comprises 6 species, among which only Lagochilascaris minor Leiper, 1909, is implicated in the human form of the disease. It is remarkable that the majority of cases of human lagochilascariasis in the Americas have been reported in Brazil. The natural definitive hosts of this parasite seem to be wild felines and canines. Lagochilascariasis is mostly a chronic human disease that can persist for several years, in which the parasite burrows into the subcutaneous tissues of the neck, paranasal sinuses, and mastoid. L. minor exhibits remarkable ability to migrate through the tissues of its hosts, destroying even bone tissue. Fatal cases have been described in which the parasite was found in the lungs or central nervous system. Treatment is often palliative, with recurrence of lesions. This paper summarizes the main features of the disease and its etiologic agent, including prevalence, life cycle, clinical course, and treatment.

  3. Heartworm disease in animals and humans.

    Science.gov (United States)

    McCall, John W; Genchi, Claudio; Kramer, Laura H; Guerrero, Jorge; Venco, Luigi

    2008-01-01

    Heartworm disease due to Dirofilaria immitis continues to cause severe disease and even death in dogs and other animals in many parts of the world, even though safe, highly effective and convenient preventatives have been available for the past two decades. Moreover, the parasite and vector mosquitoes continue to spread into areas where they have not been reported previously. Heartworm societies have been established in the USA and Japan and the First European Dirofilaria Days (FEDD) Conference was held in Zagreb, Croatia, in February of 2007. These organizations promote awareness, encourage research and provide updated guidelines for the diagnosis, treatment and prevention of heartworm disease. The chapter begins with a review of the biology and life cycle of the parasite. It continues with the prevalence and distribution of the disease in domestic and wild animals, with emphasis on more recent data on the spreading of the disease and the use of molecular biology techniques in vector studies. The section on pathogenesis and immunology also includes a discussion of the current knowledge of the potential role of the Wolbachia endosymbiont in inflammatory and immune responses to D. immitis infection, diagnostic use of specific immune responses to the bacteria, immunomodulatory activity and antibiotic treatment of infected animals. Canine, feline and ferret heartworm disease are updated with regard to the clinical presentation, diagnosis, prevention, therapy and management of the disease, with special emphasis on the recently described Heartworm Associated Respiratory Disease (HARD) Syndrome in cats. The section devoted to heartworm infection in humans also includes notes on other epizootic filariae, particularly D. repens in humans in Europe. The chapter concludes with a discussion on emerging strategies in heartworm treatment and control, highlighting the potential role of tetracycline antibiotics in adulticidal therapy.

  4. CARD15 gene and the classification of Crohn's disease

    NARCIS (Netherlands)

    Murillo, L; Crusius, JBA; van Bodegraven, AA; Alizadeh, BZ; Pena, AS

    2002-01-01

    An insertion mutation at nucleotide 3020 (3020insC) in the CARD15 gene, originally reported as NOD2, has been strongly associated with Crohn's disease. The CARD15 G2722C missense mutation was also shown to be associated with this disease. We studied 130 Dutch Crohn's disease patients, with a median

  5. Gene Editing and Genetic Lung Disease. Basic Research Meets Therapeutic Application.

    Science.gov (United States)

    Alapati, Deepthi; Morrisey, Edward E

    2017-03-01

    Although our understanding of the genetics and pathology of congenital lung diseases such as surfactant protein deficiency, cystic fibrosis, and alpha-1 antitrypsin deficiency is extensive, treatment options are lacking. Because the lung is a barrier organ in direct communication with the external environment, targeted delivery of gene corrective technologies to the respiratory system via intratracheal or intranasal routes is an attractive option for therapy. CRISPR/Cas9 gene-editing technology is a promising approach to repairing or inactivating disease-causing mutations. Recent reports have provided proof of concept by using CRISPR/Cas9 to successfully repair or inactivate mutations in animal models of monogenic human diseases. Potential pulmonary applications of CRISPR/Cas9 gene editing include gene correction of monogenic diseases in pre- or postnatal lungs and ex vivo gene editing of patient-specific airway stem cells followed by autologous cell transplant. Strategies to enhance gene-editing efficiency and eliminate off-target effects by targeting pulmonary stem/progenitor cells and the assessment of short-term and long-term effects of gene editing are important considerations as the field advances. If methods continue to advance rapidly, CRISPR/Cas9-mediated gene editing may provide a novel opportunity to correct monogenic diseases of the respiratory system.

  6. FORGE Canada Consortium: outcomes of a 2-year national rare-disease gene-discovery project.

    Science.gov (United States)

    Beaulieu, Chandree L; Majewski, Jacek; Schwartzentruber, Jeremy; Samuels, Mark E; Fernandez, Bridget A; Bernier, Francois P; Brudno, Michael; Knoppers, Bartha; Marcadier, Janet; Dyment, David; Adam, Shelin; Bulman, Dennis E; Jones, Steve J M; Avard, Denise; Nguyen, Minh Thu; Rousseau, Francois; Marshall, Christian; Wintle, Richard F; Shen, Yaoqing; Scherer, Stephen W; Friedman, Jan M; Michaud, Jacques L; Boycott, Kym M

    2014-06-01

    Inherited monogenic disease has an enormous impact on the well-being of children and their families. Over half of the children living with one of these conditions are without a molecular diagnosis because of the rarity of the disease, the marked clinical heterogeneity, and the reality that there are thousands of rare diseases for which causative mutations have yet to be identified. It is in this context that in 2010 a Canadian consortium was formed to rapidly identify mutations causing a wide spectrum of pediatric-onset rare diseases by using whole-exome sequencing. The FORGE (Finding of Rare Disease Genes) Canada Consortium brought together clinicians and scientists from 21 genetics centers and three science and technology innovation centers from across Canada. From nation-wide requests for proposals, 264 disorders were selected for study from the 371 submitted; disease-causing variants (including in 67 genes not previously associated with human disease; 41 of these have been genetically or functionally validated, and 26 are currently under study) were identified for 146 disorders over a 2-year period. Here, we present our experience with four strategies employed for gene discovery and discuss FORGE's impact in a number of realms, from clinical diagnostics to the broadening of the phenotypic spectrum of many diseases to the biological insight gained into both disease states and normal human development. Lastly, on the basis of this experience, we discuss the way forward for rare-disease genetic discovery both in Canada and internationally.

  7. Single and Multiple Gene Manipulations in Mouse Models of Human Cancer

    Science.gov (United States)

    Lehman, Heather L; Stairs, Douglas B

    2015-01-01

    Mouse models of human cancer play a critical role in understanding the molecular and cellular mechanisms of tumorigenesis. Advances continue to be made in modeling human disease in a mouse, though the relevance of a mouse model often relies on how closely it is able to mimic the histologic, molecular, and physiologic characteristics of the respective human cancer. A classic use of a genetically engineered mouse in studying cancer is through the overexpression or deletion of a gene. However, the manipulation of a single gene often falls short of mimicking all the characteristics of the carcinoma in humans; thus a multiple gene approach is needed. Here we review genetic mouse models of cancers and their abilities to recapitulate human carcinoma with single versus combinatorial approaches with genes commonly involved in cancer. PMID:26380553

  8. Nucleotide Base Variation of Blast Disease Resistance Gene Pi33 in Rice Selected Broad Genetic Background

    OpenAIRE

    DWINITA WIKAN UTAMI; KALIA BARNITA; SITI YURIAH; IDA HANARIDA

    2011-01-01

    Rice is one of the most important crops for human beings, thus increasing productivity are continually persecuted. Blast disease can reduce the rate of productivity of rice cultivation. Therefore, the program of blast disease-resistant varieties needs to do effectively. One of broad-spectrum blast disease-resistant gene is Pi33. This study was aimed to identify the variation in the sequence of nucleotide bases of Pi33 gene in five interspesific lines which derived from Bio46 (IR64/Oryza rufip...

  9. An atlas of tissue-specific conserved coexpression for functional annotation and disease gene prediction.

    Science.gov (United States)

    Piro, Rosario Michael; Ala, Ugo; Molineris, Ivan; Grassi, Elena; Bracco, Chiara; Perego, Gian Paolo; Provero, Paolo; Di Cunto, Ferdinando

    2011-11-01

    Gene coexpression relationships that are phylogenetically conserved between human and mouse have been shown to provide important clues about gene function that can be efficiently used to identify promising candidate genes for human hereditary disorders. In the past, such approaches have considered mostly generic gene expression profiles that cover multiple tissues and organs. The individual genes of multicellular organisms, however, can participate in different transcriptional programs, operating at scales as different as single-cell types, tissues, organs, body regions or the entire organism. Therefore, systematic analysis of tissue-specific coexpression could be, in principle, a very powerful strategy to dissect those functional relationships among genes that emerge only in particular tissues or organs. In this report, we show that, in fact, conserved coexpression as determined from tissue-specific and condition-specific data sets can predict many functional relationships that are not detected by analyzing heterogeneous microarray data sets. More importantly, we find that, when combined with disease networks, the simultaneous use of both generic (multi-tissue) and tissue-specific conserved coexpression allows a more efficient prediction of human disease genes than the use of generic conserved coexpression alone. Using this strategy, we were able to identify high-probability candidates for 238 orphan disease loci. We provide proof of concept that this combined use of generic and tissue-specific conserved coexpression can be very useful to prioritize the mutational candidates obtained from deep-sequencing projects, even in the case of genetic disorders as heterogeneous as XLMR.

  10. Network-based association of hypoxia-responsive genes with cardiovascular diseases

    Science.gov (United States)

    Wang, Rui-Sheng; Oldham, William M.; Loscalzo, Joseph

    2014-10-01

    Molecular oxygen is indispensable for cellular viability and function. Hypoxia is a stress condition in which oxygen demand exceeds supply. Low cellular oxygen content induces a number of molecular changes to activate regulatory pathways responsible for increasing the oxygen supply and optimizing cellular metabolism under limited oxygen conditions. Hypoxia plays critical roles in the pathobiology of many diseases, such as cancer, heart failure, myocardial ischemia, stroke, and chronic lung diseases. Although the complicated associations between hypoxia and cardiovascular (and cerebrovascular) diseases (CVD) have been recognized for some time, there are few studies that investigate their biological link from a systems biology perspective. In this study, we integrate hypoxia genes, CVD genes, and the human protein interactome in order to explore the relationship between hypoxia and cardiovascular diseases at a systems level. We show that hypoxia genes are much closer to CVD genes in the human protein interactome than that expected by chance. We also find that hypoxia genes play significant bridging roles in connecting different cardiovascular diseases. We construct a hypoxia-CVD bipartite network and find several interesting hypoxia-CVD modules with significant gene ontology similarity. Finally, we show that hypoxia genes tend to have more CVD interactors in the human interactome than in random networks of matching topology. Based on these observations, we can predict novel genes that may be associated with CVD. This network-based association study gives us a broad view of the relationships between hypoxia and cardiovascular diseases and provides new insights into the role of hypoxia in cardiovascular biology.

  11. Functions of NOD-like receptors (NLRs in human diseases

    Directory of Open Access Journals (Sweden)

    Yifei eZhong

    2013-10-01

    Full Text Available Nucleotide-binding and oligomerization domain (NOD-like receptors (NLRs are highly conserved cytosolic pattern recognition receptors that perform critical functions in surveying the intracellular environment for the presence of infection, noxious substances, and metabolic perturbations. Sensing of these danger signals by NLRs leads to their oligomerization into large macromolecular scaffolds and the rapid deployment of effector signaling cascades to restore homeostasis. While some NLRs operate by recruiting and activating inflammatory caspases into inflammasomes, others trigger inflammation via alternative routes including the NF-κB, MAPK and IRF pathways. The critical role of NLRs in development and physiology is demonstrated by their clear implications in human diseases. Mutations in the genes encoding NLRP3 or NLRP12 lead to hereditary periodic fever syndromes, while mutations in CARD15 that encodes NOD2 are linked to Crohn’s disease or Blau’s syndrome. Genome-wide association studies (GWAS have identified a number of risk alleles encompassing NLR genes in a host of diseases including allergic rhinitis, multiple sclerosis, inflammatory bowel disease, asthma, multi-bacillary leprosy, vitiligo, early-onset menopause, and bone density loss in elderly women. Animal models have allowed the characterization of underlying effector mechanisms in a number of cases. In this review, we highlight the functions of NLRs in health and disease and discuss how the characterization of their molecular mechanisms provides new insights into therapeutic strategies for the management of inflammatory pathologies.

  12. Current status of gene therapy for motor neuron disease

    Institute of Scientific and Technical Information of China (English)

    Xingkai An; Rong Peng; Shanshan Zhao

    2006-01-01

    OBJECTIVE: Although the etiology and pathogenesis of motor neuron disease is still unknown, there are many hypotheses on motor neuron mitochondrion, cytoskeleton structure and functional injuries. Thus, gene therapy of motor neuron disease has become a hot topic to apply in viral vector, gene delivery and basic gene techniques.DATA SOURCES: The related articles published between January 2000 and October 2006 were searched in Medline database and ISl database by computer using the keywords "motor neuron disease, gene therapy", and the language is limited to English. Meanwhile, the related references of review were also searched by handiwork. STUDY SELECTION: Original articles and referred articles in review were chosen after first hearing, then the full text which had new ideas were found, and when refer to the similar study in the recent years were considered first.DATA EXTRACTION: Among the 92 related articles, 40 ones were accepted, and 52 were excluded because of repetitive study or reviews.DATA SYNTHESIS: The viral vectors of gene therapy for motor neuron disease include adenoviral, adeno-associated viral vectors, herpes simplex virus type 1 vectors and lentiviral vectors. The delivery of them can be achieved by direct injection into the brain, or by remote delivery after injection vectors into muscle or peripheral nerves, or by ex vivo gene transfer. The viral vectors of gene therapy for motor neuron disease have been successfully developed, but the gene delivery of them is hampered by some difficulties. The RNA interference and neuroprotection are the main technologies for gene-based therapy in motor neuron disease. CONCLUSION : The RNA interference for motor neuron disease has succeeded in animal models, and the neuroprotection also does. But, there are still a lot of questions for gene therapy in the clinical treatment of motor neuron disease.

  13. Design of retrovirus vectors for transfer and expression of the human. beta. -globin gene

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.D.; Bender, M.A.; Harris, E.A.S.; Kaleko, M.; Gelinas, R.E.

    1988-11-01

    Regulated expression of the human ..beta..-globin gene has been demonstrated in cultured murine erythroleukemia cells and in mice after retrovirus-mediated gene transfer. However, the low titer of recombinant viruses described to date results in relatively inefficient gene transfer, which limits their usefulness for animal studies and for potential gene therapy in humans for diseases involving defective ..beta..-globin genes. The authors found regions that interfered with virus production within intron 2 of the ..beta..-globin gene and on both sides of the gene. The flanking regions could be removed, but intron 2 was required for ..beta..-globin expression. Inclusion of ..beta..-globin introns necessitates an antisense orientation of the gene within the retrovirus vector. However, they found no effect of the antisense ..beta..-globin transcription on virus production. A region downstream of the ..beta..-globin gene that stimulates expression of the gene in transgenic mice was included in the viruses without detrimental effects on virus titer. Virus titers of over 10/sup 6/ CFU/ml were obtained with the final vector design, which retained the ability to direct regulated expression of human ..beta..-globin in murine erythroleukemia cells. The vector also allowed transfer and expression of the human ..beta..-globin gene in hematopoietic cells (CFU-S cells) in mice.

  14. Unsolved issues related to human mitochondrial diseases.

    Science.gov (United States)

    Lombès, Anne; Auré, Karine; Bellanné-Chantelot, Christine; Gilleron, Mylène; Jardel, Claude

    2014-05-01

    Human mitochondrial diseases, defined as the diseases due to a mitochondrial oxidative phosphorylation defect, represent a large group of very diverse diseases with respect to phenotype and genetic causes. They present with many unsolved issues, the comprehensive analysis of which is beyond the scope of this review. We here essentially focus on the mechanisms underlying the diversity of targeted tissues, which is an important component of the large panel of these diseases phenotypic expression. The reproducibility of genotype/phenotype expression, the presence of modifying factors, and the potential causes for the restricted pattern of tissular expression are reviewed. Special emphasis is made on heteroplasmy, a specific feature of mitochondrial diseases, defined as the coexistence within the cell of mutant and wild type mitochondrial DNA molecules. Its existence permits unequal segregation during mitoses of the mitochondrial DNA populations and consequently heterogeneous tissue distribution of the mutation load. The observed tissue distributions of recurrent human mitochondrial DNA deleterious mutations are diverse but reproducible for a given mutation demonstrating that the segregation is not a random process. Its extent and mechanisms remain essentially unknown despite recent advances obtained in animal models.

  15. Regulatory systems for hypoxia-inducible gene expression in ischemic heart disease gene therapy.

    Science.gov (United States)

    Kim, Hyun Ah; Rhim, Taiyoun; Lee, Minhyung

    2011-07-18

    Ischemic heart diseases are caused by narrowed coronary arteries that decrease the blood supply to the myocardium. In the ischemic myocardium, hypoxia-responsive genes are up-regulated by hypoxia-inducible factor-1 (HIF-1). Gene therapy for ischemic heart diseases uses genes encoding angiogenic growth factors and anti-apoptotic proteins as therapeutic genes. These genes increase blood supply into the myocardium by angiogenesis and protect cardiomyocytes from cell death. However, non-specific expression of these genes in normal tissues may be harmful, since growth factors and anti-apoptotic proteins may induce tumor growth. Therefore, tight gene regulation is required to limit gene expression to ischemic tissues, to avoid unwanted side effects. For this purpose, various gene expression strategies have been developed for ischemic-specific gene expression. Transcriptional, post-transcriptional, and post-translational regulatory strategies have been developed and evaluated in ischemic heart disease animal models. The regulatory systems can limit therapeutic gene expression to ischemic tissues and increase the efficiency of gene therapy. In this review, recent progresses in ischemic-specific gene expression systems are presented, and their applications to ischemic heart diseases are discussed.

  16. Chasing Genes in Alzheimers's and Parkinsons's Disease

    NARCIS (Netherlands)

    A.M. Bertoli Avella (Aida)

    2004-01-01

    textabstractAlzheimer’s disease (AD), the most common type of dementia and Parkinson’s disease (PD), the most common movement disorder are both neurodegenerative adult-onset diseases characterized by progressive loss of specifi c neuronal populations and accumulation of intraneuronal inclusions. The

  17. The role of formins in human disease.

    Science.gov (United States)

    DeWard, Aaron D; Eisenmann, Kathryn M; Matheson, Stephen F; Alberts, Arthur S

    2010-02-01

    Formins are a conserved family of proteins that play key roles in cytoskeletal remodeling. They nucleate and processively elongate non-branched actin filaments and also modulate microtubule dynamics. Despite their significant contributions to cell biology and development, few studies have directly implicated formins in disease pathogenesis. This review highlights the roles of formins in cell division, migration, immunity, and microvesicle formation in the context of human disease. In addition, we discuss the importance of controlling formin activity and protein expression to maintain cell homeostasis.

  18. Human papillomavirus-associated diseases and cancers

    Institute of Scientific and Technical Information of China (English)

    Lan Yang; Jianbo Zhu Co-first author; Xiaoyue Song; Yan Qi; Xiaobin Cui; Feng Li 

    2015-01-01

    Human papilomaviruses (HPVs) have been detected in cervical cancer cels and skin papiloma cels, which have a variety of types, including low-risk and high-risk types. HPV genome replication requires the host cel’s DNA synthesis machinery, and HPVs encode proteins that maintain diferentiated epithelial cels in a replication-competent state. HPV types are tissue-specific and generaly produce diferent types of le-sions, either benign or malignant. This review examines diferent HPV types and their associated diseases and presents therapeutic options for the treatment of HPV-positive diseases.

  19. Translational control of gene expression and disease

    NARCIS (Netherlands)

    Calkhoven, Cornelis F; Müller, Christine; Leutz, Achim

    2002-01-01

    In the past decade, translational control has been shown to be crucial in the regulation of gene expression. Research in this field has progressed rapidly, revealing new control mechanisms and adding constantly to the list of translationally regulated genes. There is accumulating evidence that trans

  20. Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease.

    Science.gov (United States)

    Burdge, Graham C; Lillycrop, Karen A

    2010-08-21

    There is considerable evidence for induction of differential risk of noncommunicable diseases in humans by variation in the quality of the early life environment. Studies in animal models show that induction and stability of induced changes in the phenotype of the offspring involve altered epigenetic regulation by DNA methylation and covalent modifications of histones. These findings indicate that such epigenetic changes are highly gene specific and function at the level of individual CpG dinucleotides. Interventions using supplementation with folic acid or methyl donors during pregnancy, or folic acid after weaning, alter the phenotype and epigenotype induced by maternal dietary constraint during gestation. This suggests a possible means for reducing risk of induced noncommunicable disease, although the design and conduct of such interventions may require caution. The purpose of this review is to discuss recent advances in understanding the mechanism that underlies the early life origins of disease and to place these studies in a broader life-course context.

  1. Mutation analysis of the MCHR1 gene in human obesity

    DEFF Research Database (Denmark)

    Wermter, Anne-Kathrin; Reichwald, Kathrin; Büch, Thomas

    2005-01-01

    The importance of the melanin-concentrating hormone (MCH) system for regulation of energy homeostasis and body weight has been demonstrated in rodents. We analysed the human MCH receptor 1 gene (MCHR1) with respect to human obesity....

  2. Karyotypic analysis of gene transformed human keratinocyte line

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    @@ INTRODUCTION In order to solve the difficult problem of long term in vitro culture of human keratinocytes, the technique of gene transfer was utilized to transform human keratinocytes with simian virus 40 (SV40).

  3. Brain molecular aging, promotion of neurological disease and modulation by sirtuin 5 longevity gene polymorphism.

    Science.gov (United States)

    Glorioso, Christin; Oh, Sunghee; Douillard, Gaelle Guilloux; Sibille, Etienne

    2011-02-01

    Mechanisms determining characteristic age-of-onset for neurological diseases are largely unknown. Normal brain aging associates with robust and progressive transcriptome changes ("molecular aging"), but the intersection with disease pathways is mostly uncharacterized. Here, using cross-cohort microarray analysis of four human brain areas, we show that neurological disease pathways largely overlap with molecular aging and that subjects carrying a newly-characterized low-expressing polymorphism in a putative longevity gene (Sirtuin5; SIRT5(prom2)) have older brain molecular ages. Specifically, molecular aging was remarkably conserved across cohorts and brain areas, and included numerous developmental and transcription-regulator genes. Neurological disease-associated genes were highly overrepresented within age-related genes and changed almost unanimously in pro-disease directions, together suggesting an underlying genetic "program" of aging that progressively promotes disease. To begin testing this putative pathway, we developed and used an age-biosignature to assess five candidate longevity gene polymorphisms' association with molecular aging rates. Most robustly, aging was accelerated in cingulate, but not amygdala, of subjects carrying a SIRT5 promoter polymorphism (+9 years, p=0.004), in concordance with cingulate-specific decreased SIRT5 expression. This effect was driven by a set of core transcripts (+24 years, p=0.0004), many of which were mitochondrial, including Parkinson's disease genes, PINK-1 and DJ-1/PARK7, hence suggesting that SIRT5(prom2) may represent a risk factor for mitochondrial dysfunction-related diseases, including Parkinson's, through accelerated molecular aging of disease-related genes. Based on these results we speculate that a "common mechanism" may underlie age-of-onset across several neurological diseases. Confirming this pathway and its regulation by common genetic variants would provide new strategies for predicting, delaying, and

  4. Genetics and Genomics of Single-Gene Cardiovascular Diseases: Common Hereditary Cardiomyopathies as Prototypes of Single-Gene Disorders.

    Science.gov (United States)

    Marian, Ali J; van Rooij, Eva; Roberts, Robert

    2016-12-27

    This is the first of 2 review papers on genetics and genomics appearing as part of the series on "omics." Genomics pertains to all components of an organism's genes, whereas genetics involves analysis of a specific gene or genes in the context of heredity. The paper provides introductory comments, describes the basis of human genetic diversity, and addresses the phenotypic consequences of genetic variants. Rare variants with large effect sizes are responsible for single-gene disorders, whereas complex polygenic diseases are typically due to multiple genetic variants, each exerting a modest effect size. To illustrate the clinical implications of genetic variants with large effect sizes, 3 common forms of hereditary cardiomyopathies are discussed as prototypic examples of single-gene disorders, including their genetics, clinical manifestations, pathogenesis, and treatment. The genetic basis of complex traits is discussed in a separate paper. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  5. Concordance of gene expression in human protein complexes reveals tissue specificity and pathology

    DEFF Research Database (Denmark)

    Börnigen, Daniela; Pers, Tune Hannes; Thorrez, Lieven

    2013-01-01

    Disease-causing variants in human genes usually lead to phenotypes specific to only a few tissues. Here, we present a method for predicting tissue specificity based on quantitative deregulation of protein complexes. The underlying assumption is that the degree of coordinated expression among...... proteins in a complex within a given tissue may pinpoint tissues that will be affected by a mutation in the complex and coordinated expression may reveal the complex to be active in the tissue. We identified known disease genes and their protein complex partners in a high-quality human interactome. Each...... susceptibility gene's tissue involvement was ranked based on coordinated expression with its interaction partners in a non-disease global map of human tissue-specific expression. The approach demonstrated high overall area under the curve (0.78) and was very successfully benchmarked against a random model...

  6. The top skin-associated genes: a comparative analysis of human and mouse skin transcriptomes.

    Science.gov (United States)

    Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Homey, Bernhard; Zlotnik, Albert; Hevezi, Peter

    2014-06-01

    The mouse represents a key model system for the study of the physiology and biochemistry of skin. Comparison of skin between mouse and human is critical for interpretation and application of data from mouse experiments to human disease. Here, we review the current knowledge on structure and immunology of mouse and human skin. Moreover, we present a systematic comparison of human and mouse skin transcriptomes. To this end, we have recently used a genome-wide database of human gene expression to identify genes highly expressed in skin, with no, or limited expression elsewhere - human skin-associated genes (hSAGs). Analysis of our set of hSAGs allowed us to generate a comprehensive molecular characterization of healthy human skin. Here, we used a similar database to generate a list of mouse skin-associated genes (mSAGs). A comparative analysis between the top human (n=666) and mouse (n=873) skin-associated genes (SAGs) revealed a total of only 30.2% identity between the two lists. The majority of shared genes encode proteins that participate in structural and barrier functions. Analysis of the top functional annotation terms revealed an overlap for morphogenesis, cell adhesion, structure, and signal transduction. The results of this analysis, discussed in the context of published data, illustrate the diversity between the molecular make up of skin of both species and grants a probable explanation, why results generated in murine in vivo models often fail to translate into the human.

  7. [Human hantavirus diseases - still neglected zoonoses?].

    Science.gov (United States)

    Vrbovská, V; Chalupa, P; Straková, P; Hubálek, Z; Rudolf, I

    2015-10-01

    Hantavirus disease is the most common rodent-borne viral infection in the Czech Republic, with a mean annual incidence of 0.02 cases per 100 000 population and specific antibodies detected in 1% of the human population. Four hantaviruses (Puumala, Dobrava-Belgrade, Tula, and Seewis) circulate in this country, of which Puumala virus (responsible for a mild form of hemorrhagic fever with renal syndrome called nephropathia epidemica) and Dobrava-Belgrade virus (causing haemorrhagic fever with renal syndrome) have been proven to cause human disease. The aim of this study is to provide a comprehensive review of the hantaviruses occurring in the Czech Republic, based on the literature published during the past three decades, including their geographical distribution and clinical symptoms. The recent detection of Tula virus in an immunocompromised person as well as reports of Seoul virus infections in Europe highlight the possible emergence of neglected hantavirus infections in the foreseeable future.

  8. Bioinformatic prediction and functional characterization of human KIAA0100 gene

    Directory of Open Access Journals (Sweden)

    He Cui

    2017-02-01

    Full Text Available Our previous study demonstrated that human KIAA0100 gene was a novel acute monocytic leukemia-associated antigen (MLAA gene. But the functional characterization of human KIAA0100 gene has remained unknown to date. Here, firstly, bioinformatic prediction of human KIAA0100 gene was carried out using online softwares; Secondly, Human KIAA0100 gene expression was downregulated by the clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated (Cas 9 system in U937 cells. Cell proliferation and apoptosis were next evaluated in KIAA0100-knockdown U937 cells. The bioinformatic prediction showed that human KIAA0100 gene was located on 17q11.2, and human KIAA0100 protein was located in the secretory pathway. Besides, human KIAA0100 protein contained a signalpeptide, a transmembrane region, three types of secondary structures (alpha helix, extended strand, and random coil , and four domains from mitochondrial protein 27 (FMP27. The observation on functional characterization of human KIAA0100 gene revealed that its downregulation inhibited cell proliferation, and promoted cell apoptosis in U937 cells. To summarize, these results suggest human KIAA0100 gene possibly comes within mitochondrial genome; moreover, it is a novel anti-apoptotic factor related to carcinogenesis or progression in acute monocytic leukemia, and may be a potential target for immunotherapy against acute monocytic leukemia.

  9. Transcriptome Profiling in Human Diseases: New Advances and Perspectives

    Directory of Open Access Journals (Sweden)

    Amelia Casamassimi

    2017-07-01

    Full Text Available In the last decades, transcriptome profiling has been one of the most utilized approaches to investigate human diseases at the molecular level. Through expression studies, many molecular biomarkers and therapeutic targets have been found for several human pathologies. This number is continuously increasing thanks to total RNA sequencing. Indeed, this new technology has completely revolutionized transcriptome analysis allowing the quantification of gene expression levels and allele-specific expression in a single experiment, as well as to identify novel genes, splice isoforms, fusion transcripts, and to investigate the world of non-coding RNA at an unprecedented level. RNA sequencing has also been employed in important projects, like ENCODE (Encyclopedia of the regulatory elements and TCGA (The Cancer Genome Atlas, to provide a snapshot of the transcriptome of dozens of cell lines and thousands of primary tumor specimens. Moreover, these studies have also paved the way to the development of data integration approaches in order to facilitate management and analysis of data and to identify novel disease markers and molecular targets to use in the clinics. In this scenario, several ongoing clinical trials utilize transcriptome profiling through RNA sequencing strategies as an important instrument in the diagnosis of numerous human pathologies.

  10. Estrogen receptor polymorphisms: significance to human physiology, disease and therapy.

    Science.gov (United States)

    Figtree, Gemma A; Noonan, Jonathon E; Bhindi, Ravinay; Collins, Peter

    2009-01-01

    Other than its well-recognized effects on reproductive physiology, estrogen has important actions in a wide variety of other body systems with important examples including bone, blood vessels and the heart. These effects are seen in both females and males. Investigators have hypothesized those genetic variants in the genes coding for estrogen signaling proteins may cause variable sensitivity to the hormone and influence an individual's estrogen-sensitive phenotypes. The most obvious candidate genes are the estrogen receptors alpha and (ERalpha and beta). However, the regulation of these genes is complex and not well understood. Furthermore, their coding exons, and regulatory sequences are dispersed across large segments of the genome. A number of common polymorphisms have been identified in both ERalpha and ERbeta, with variable degrees of evidence of their direct biological significance and their association with human disease. The identification of genetic variations associated with altered estrogen response is of potential public health importance. Insights may be gained into the pathogenesis of estrogen sensitive diseases such as osteoporosis, breast cancer and cardiovascular disease contributing to the development and application of newer therapies for these disorders. Furthermore, genetic variants that alter sensitivity to estrogen may affect both therapeutic and harmful responses to exogenous estrogen administered in the form of the oral contraceptive pill or hormone replacement therapy. This clinical significance has led to the publication of a number of patents which will be reviewed.

  11. Ocular gene therapy: an evaluation of recombinant adeno-associated virus-mediated gene therapy interventions for the treatment of ocular disease.

    Science.gov (United States)

    Roy, Kamolika; Stein, Linda; Kaushal, Shalesh

    2010-08-01

    Both gene replacement therapy and alteration of host gene expression are playing increasingly important roles in the treatment of ocular diseases. Ocular gene therapy may provide alternatives to current treatments for eye diseases that are either greatly invasive and thus run the risk of complications, that offer only short-term relief from disease symptoms, or that are unable to directly treat vision loss. The success of three separate phase I clinical trials investigating a gene therapy intervention for the treatment of the retinal degenerative disorder Leber's congenital amaurosis (LCA) has unveiled the therapeutic potential of gene therapy. Preliminary results have demonstrated ocular gene transfer, using nonpathogenic recombinant adeno-associated viral (rAAV) vectors specifically, to be a safe, effective, and long-term treatment for LCA, a previously untreatable disorder. Nonpathogenic rAAV vectors offer the potential for long-term treatment. Many of the genes implicated in human ocular diseases have been identified, and animal models for such diseases have been developed, which have greatly facilitated the application of experimental rAAV-mediated gene therapy. This review highlights the key features of rAAV-mediated gene therapy that make it the most suitable gene therapy treatment approach for ocular diseases. Furthermore, it summarizes the current progress of rAAV-mediated gene therapy interventions/applications for a wide variety of ophthalmologic disorders.

  12. Lipidomics of human brain aging and Alzheimer's disease pathology.

    Science.gov (United States)

    Naudí, Alba; Cabré, Rosanna; Jové, Mariona; Ayala, Victoria; Gonzalo, Hugo; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2015-01-01

    Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context. © 2015 Elsevier Inc. All rights reserved.

  13. PARK1 gene mutation of autosomal dominant Parkinson's disease family

    Institute of Scientific and Technical Information of China (English)

    Ligang Jiang; Guohua Hu; Qiuhui Chen; Ying Zhang; Xinyu Hu; Jia Fan; Lifeng Liu; Rui Guo; Yajuan Sun; Yixhi Zhang

    2011-01-01

    Studies have shown that PARK1 gene is associated with the autosomal dominant inheritance of Parkinson's disease.PARK1 gene contains two mutation sites, namely Ala30Pro and AIa53Thr, which are located on exons 3 and 4, respectively.However, the genetic loci of the pathogenic genes remain unclear.In this study, blood samples were collected from 11 members of a family with high prevalence of Parkinson's disease, including four affected cases, five suspected cases,and two non-affected cases.Point mutation screening of common mutation sites on PARK1 gene exon 4 was conducted using PCR, to determine the genetic loci of the causative gene for Parkinson's disease.Gene identification and sequencing results showed that a T base deletion mutation was observed in the PARK1 gene exon 4 of all 11 collected samples.It was confirmed that the PARKf gene exon 4 gene mutation is an important pathogenic mutation for Parkinson's disease.

  14. The role of chemerin in human disease

    Directory of Open Access Journals (Sweden)

    Magdalena Stojek

    2017-02-01

    Full Text Available Adipose tissue is not merely a storage depot of triacylglycerols but also a major endocrine organ. Its cells, including adipocytes, synthesize and secrete a range of biologically active molecules termed adipokines. Adipokines that display the properties of cytokines are often called adipocytokines. In recent years there has been increasing interest in a new adipokine called chemerin. Chemerin is a protein synthesized mostly by the adipose tissue and the liver as inactive pre-pro-chemerin. After the intracellular hydrolytic cutting off of the 20-amino-acid N-terminal polypeptide, it is secreted into the bloodstream as inactive pro-chemerin. Biologically active chemerin is then derived from pro-chemerin after cleavage of the C-terminal fragment by serum proteases involved in inflammation, coagulation and fibrinolysis. Proteolytic cleavage leads to formation of several chemerin-derived peptides, both biologically active (often with opposing functions and inactive.Within the last decade, there has been a growing number of publications regarding the role of chemerin in human disease. It seems to be implicated in the inflammatory response, metabolic syndrome, cardiovascular disease and alimentary tract disorders. The article presents the most recent information on the role of chemerin in human disease, and specifically alimentary tract disorders. The available evidence suggests that chemerin is an important link between adipose tissue mass, metabolic processes, the immune system and inflammation, and therefore plays a major role in human pathophysiology.

  15. Chromosome locations of genes encoding human signal transduction adapter proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2)

    DEFF Research Database (Denmark)

    Huebner, K; Kastury, K; Druck, T;

    1994-01-01

    Abnormalities due to chromosomal aberration or point mutation in gene products of growth factor receptors or in ras gene products, which lie on the same signaling pathway, can cause disease in animals and humans. Thus, it can be important to determine chromosomal map positions of genes encoding "...

  16. Expression of Alzheimer's disease risk genes in ischemic brain degeneration.

    Science.gov (United States)

    Ułamek-Kozioł, Marzena; Pluta, Ryszard; Januszewski, Sławomir; Kocki, Janusz; Bogucka-Kocka, Anna; Czuczwar, Stanisław J

    2016-12-01

    We review the Alzheimer-related expression of genes following brain ischemia as risk factors for late-onset of sporadic Alzheimer's disease and their role in Alzheimer's disease ischemia-reperfusion pathogenesis. More recent advances in understanding ischemic etiology of Alzheimer's disease have revealed dysregulation of Alzheimer-associated genes including amyloid protein precursor, β-secretase, presenilin 1 and 2, autophagy, mitophagy and apoptosis. We review the relationship between these genes dysregulated by brain ischemia and the cellular and neuropathological characteristics of Alzheimer's disease. Here we summarize the latest studies supporting the theory that Alzheimer-related genes play an important role in ischemic brain injury and that ischemia is a needful and leading supplier to the onset and progression of sporadic Alzheimer's disease. Although the exact molecular mechanisms of ischemic dependent neurodegenerative disease and neuronal susceptibility finally are unknown, a downregulated expression of neuronal defense genes like alfa-secretase in the ischemic brain makes the neurons less able to resist injury. The recent challenge is to find ways to raise the adaptive reserve of the brain to overcome such ischemic-associated deficits and support and/or promote neuronal survival. Understanding the mechanisms underlying the association of these genes with risk for Alzheimer's disease will provide the most meaningful targets for therapeutic development to date. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Positional cloning of disease genes on chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Doggett, N. [Los Alamos National Lab., NM (United States); Bruening, M. [Leiden Univ. (Netherlands); Callen, D. [Adelaide Women`s and Children`s Hospital, North Adelaide, South Australia (Australia); Gardiner, M. [University Coll., London (United Kingdom); Lerner, T. [Massachusetts General Hospital, Boston, MA (United States)

    1996-04-01

    The project seeks to elucidate the molecular basis of an important genetic disease (Batten`s disease) by molecular cloning of the affected gene by utilizing an overlapping clone map of chromosome 16. Batten disease (also known as juvenile neuronal ceroid lipofuscinosis) is a recessively inherited neurodegenerative disorder of childhood characterized by progressive loss of vision, seizures, and psychomoter disturbances. The Batten disease gene was genetically mapped to the chromosome region 16p 12.1 in close linkage with the genetic markers D16S299 and D16S298. Exon amplification of a cosmid containing D16S298 yielded a candidate gene that was disrupted by a 1 kb genomic deletion in all patients containing the most common haplotype for the disease. Two separate deletions and a point mutation altering a splice site in three unrelated families have confirmed the gene as the Batten disease gene. The disease gene encodes a novel 438 amino acid membrane binding protein of unknown function.

  18. From gene to disease; hypophosphataemic rickets and the PHEX gene

    NARCIS (Netherlands)

    Jansen, M; van Dael, C.M.L.; Verrijn Stuart, A.A.; van der Hout, A.H.; Rump, P.

    2006-01-01

    X-linked hypophosphataemic rickets is associated with mutations in the PHEX gene on the short arm of the X chromosome, encoding a membrane-bound endoprotease which is predominantly expressed in osteoblasts. Defective PHEX function leaves phosphaturic peptides such as FGF23 uncleaved, enabling these

  19. An integrated catalog of reference genes in the human gut microbiome

    DEFF Research Database (Denmark)

    Li, Junhua; Jia, Huijue; Cai, Xianghang

    2014-01-01

    Many analyses of the human gut microbiome depend on a catalog of reference genes. Existing catalogs for the human gut microbiome are based on samples from single cohorts or on reference genomes or protein sequences, which limits coverage of global microbiome diversity. Here we combined 249 newly...... signatures. This expanded catalog should facilitate quantitative characterization of metagenomic, metatranscriptomic and metaproteomic data from the gut microbiome to understand its variation across populations in human health and disease....

  20. Gene expression endophenotypes: a novel approach for gene discovery in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ertekin-Taner Nilüfer

    2011-05-01

    Full Text Available Abstract Uncovering the underlying genetic component of any disease is key to the understanding of its pathophysiology and may open new avenues for development of therapeutic strategies and biomarkers. In the past several years, there has been an explosion of genome-wide association studies (GWAS resulting in the discovery of novel candidate genes conferring risk for complex diseases, including neurodegenerative diseases. Despite this success, there still remains a substantial genetic component for many complex traits and conditions that is unexplained by the GWAS findings. Additionally, in many cases, the mechanism of action of the newly discovered disease risk variants is not inherently obvious. Furthermore, a genetic region with multiple genes may be identified via GWAS, making it difficult to discern the true disease risk gene. Several alternative approaches are proposed to overcome these potential shortcomings of GWAS, including the use of quantitative, biologically relevant phenotypes. Gene expression levels represent an important class of endophenotypes. Genetic linkage and association studies that utilize gene expression levels as endophenotypes determined that the expression levels of many genes are under genetic influence. This led to the postulate that there may exist many genetic variants that confer disease risk via modifying gene expression levels. Results from the handful of genetic studies which assess gene expression level endophenotypes in conjunction with disease risk suggest that this combined phenotype approach may both increase the power for gene discovery and lead to an enhanced understanding of their mode of action. This review summarizes the evidence in support of gene expression levels as promising endophenotypes in the discovery and characterization of novel candidate genes for complex diseases, which may also represent a novel approach in the genetic studies of Alzheimer's and other neurodegenerative diseases.

  1. Genes, inflammation, and age-related diseases

    OpenAIRE

    Trompet, Stella

    2010-01-01

    The general objective of this thesis was to investigate associations between genetic variants involved in inflammation and epigenetics and age-related diseases in an elderly cohort to get more insights in the patho-physiological mechanisms involved in age-related diseases, like cardiovascular disease, cognitive decline and cancer. For all analyses we used data of the participants of the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER). We have shown that subjects carrying gen...

  2. Alzheimer's Disease: A Pathogenetic Autoimmune Disorder Caused by Herpes Simplex in a Gene-Dependent Manner

    Directory of Open Access Journals (Sweden)

    C. J. Carter

    2010-01-01

    Full Text Available Herpes simplex is implicated in Alzheimer's disease and viral infection produces Alzheimer's disease like pathology in mice. The virus expresses proteins containing short contiguous amino acid stretches (5–9aa “vatches” = viralmatches homologous to APOE4, clusterin, PICALM, and complement receptor 1, and to over 100 other gene products relevant to Alzheimer's disease, which are also homologous to proteins expressed by other pathogens implicated in Alzheimer's disease. Such homology, reiterated at the DNA level, suggests that gene association studies have been tracking infection, as well as identifying key genes, demonstrating a role for pathogens as causative agents. Vatches may interfere with the function of their human counterparts, acting as dummy ligands, decoy receptors, or via interactome interference. They are often immunogenic, and antibodies generated in response to infection may target their human counterparts, producing protein knockdown, or generating autoimmune responses that may kill the neurones in which the human homologue resides, a scenario supported by immune activation in Alzheimer's disease. These data may classify Alzheimer's disease as an autoimmune disorder created by pathogen mimicry of key Alzheimer's disease-related proteins. It may well be prevented by vaccination and regular pathogen detection and elimination, and perhaps stemmed by immunosuppression or antibody adsorption-related therapies.

  3. Gene-environment interactions in sporadic Parkinson's disease.

    Science.gov (United States)

    Benmoyal-Segal, Liat; Soreq, Hermona

    2006-06-01

    Much has been learned in recent years about the genetics of familial Parkinson's disease. However, far less is known about those malfunctioning genes which contribute to the emergence and/or progression of the vast majority of cases, the 'sporadic Parkinson's disease', which is the focus of our current review. Drastic differences in the reported prevalence of Parkinson's disease in different continents and countries suggest ethnic and/or environmental-associated multigenic contributions to this disease. Numerous association studies showing variable involvement of multiple tested genes in these distinct locations support this notion. Also, variable increases in the risk of Parkinson's disease due to exposure to agricultural insecticides indicate complex gene-environment interactions, especially when genes involved in protection from oxidative stress are explored. Further consideration of the brain regions damaged in Parkinson's disease points at the age-vulnerable cholinergic-dopaminergic balance as being involved in the emergence of sporadic Parkinson's disease in general and in the exposure-induced risks in particular. More specifically, the chromosome 7 ACHE/PON1 locus emerges as a key region controlling this sensitive balance, and animal model experiments are compatible with this concept. Future progress in the understanding of the genetics of sporadic Parkinson's disease depends on globally coordinated, multileveled studies of gene-environment interactions.

  4. Bioinformatics Assisted Gene Discovery and Annotation of Human Genome

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    As the sequencing stage of human genome project is near the end, the work has begun for discovering novel genes from genome sequences and annotating their biological functions. Here are reviewed current major bioinformatics tools and technologies available for large scale gene discovery and annotation from human genome sequences. Some ideas about possible future development are also provided.

  5. Structure and chromosomal localization of the gene encoding the human myelin protein zero (MPZ)

    Energy Technology Data Exchange (ETDEWEB)

    Hayasaka, Kiyoshi; Himoro, Masato; Takada, Goro (Akita Univ. School of Medicine, Akita (Japan)); Wang, Yimin; Takata, Mizuho; Minoshima, Shinsei; Shimizu, Nobuyoshi; Miura, Masayuki; Uyemura, Keiichi (Keio Univ. School of Medicine, Tokyo (Japan))

    1993-09-01

    The authors describe the cloning, characterization, and chromosomal mapping of the human myelin protein zero (MPZ) gene (a structural protein of myelin and an adhesive glycoprotein of the immunoglobulin superfamily). The gene is about 7 kb long and consists of six exons corresponding of the functional domains. All exon-intron junction sequences conform to the GT/AG rule. The 5[prime]-flanking region of the gene has a TA-rich element (TATA-like box), two CAAT boxes, and a single defined transcription initiation site detected by the primer extension method. The gene for human MPZ was assigned to chromosome 1q22-q23 by spot blot hybridization of flow-sorted human chromosomes and fluorescence in situ hybridization. The localization of the MPZ gene coincides with the locus for Charcot-Marie-Tooth disease type 1B, determined by linkage analysis. 20 refs., 3 figs., 1 tab.

  6. Alzheimer's Disease: Genes, pathogenesis and risk prediction

    NARCIS (Netherlands)

    K. Sleegers (Kristel); C.M. van Duijn (Cock)

    2001-01-01

    textabstractWith the aging of western society the contribution to morbidity of diseases of the elderly, such as dementia, will increase exponentially. Thorough preventative and curative strategies are needed to constrain the increasing prevalence of these disabling diseases. Better understanding of

  7. Genes, inflammation, and age-related diseases

    NARCIS (Netherlands)

    Trompet, Stella

    2010-01-01

    The general objective of this thesis was to investigate associations between genetic variants involved in inflammation and epigenetics and age-related diseases in an elderly cohort to get more insights in the patho-physiological mechanisms involved in age-related diseases, like cardiovascular diseas

  8. Exploring matrix factorization techniques for significant genes identification of Alzheimer’s disease microarray gene expression data

    Directory of Open Access Journals (Sweden)

    Hu Xiaohua

    2011-07-01

    Full Text Available Abstract Background The wide use of high-throughput DNA microarray technology provide an increasingly detailed view of human transcriptome from hundreds to thousands of genes. Although biomedical researchers typically design microarray experiments to explore specific biological contexts, the relationships between genes are hard to identified because they are complex and noisy high-dimensional data and are often hindered by low statistical power. The main challenge now is to extract valuable biological information from the colossal amount of data to gain insight into biological processes and the mechanisms of human disease. To overcome the challenge requires mathematical and computational methods that are versatile enough to capture the underlying biological features and simple enough to be applied efficiently to large datasets. Methods Unsupervised machine learning approaches provide new and efficient analysis of gene expression profiles. In our study, two unsupervised knowledge-based matrix factorization methods, independent component analysis (ICA and nonnegative matrix factorization (NMF are integrated to identify significant genes and related pathways in microarray gene expression dataset of Alzheimer’s disease. The advantage of these two approaches is they can be performed as a biclustering method by which genes and conditions can be clustered simultaneously. Furthermore, they can group genes into different categories for identifying related diagnostic pathways and regulatory networks. The difference between these two method lies in ICA assume statistical independence of the expression modes, while NMF need positivity constrains to generate localized gene expression profiles. Results In our work, we performed FastICA and non-smooth NMF methods on DNA microarray gene expression data of Alzheimer’s disease respectively. The simulation results shows that both of the methods can clearly classify severe AD samples from control samples, and

  9. Glucocerebrosidase 2 gene deletion rescues type 1 Gaucher disease

    OpenAIRE

    Mistry, Pramod K.; LIU, Jun; Sun, Li; Chuang, Wei-Lien; Yuen, Tony; Yang, Ruhua; Lu, Ping; Zhang, Kate; Li, Jianhua; Keutzer, Joan; Stachnik, Agnes; Mennone, Albert; Boyer, James L; Jain, Dhanpat; Brady, Roscoe O

    2014-01-01

    Type 1 Gaucher disease (GD1) is a rare autosomal recessive disorder caused by inherited mutations in the glucocerebrosidase (GBA1) gene. This disease results in a marked accumulation of glycosphingolipid substrates, causing visceromegaly, cytopenia, and osteopenia. Here, we have rescued this clinical phenotype in GD1 mice by genetically deleting Gba2, a gene encoding a downstream extralysosomal enzyme, GBA2. We also report that sphingosine production in GD1 patients may contribute to the low-...

  10. Gene-environment interaction in atopic diseases

    DEFF Research Database (Denmark)

    Kahr, Niklas; Naeser, Vibeke; Stensballe, Lone Graff

    2015-01-01

    INTRODUCTION: The development of atopic diseases early in life suggests an important role of perinatal risk factors. OBJECTIVES: To study whether early-life exposures modify the genetic influence on atopic diseases in a twin population. METHODS: Questionnaire data on atopic diseases from 850....... Significant predictors of atopic diseases were identified with logistic regression and subsequently tested for genetic effect modification using variance components analysis. RESULTS: After multivariable adjustment, prematurity (gestational age below 32 weeks) [odds ratio (OR) = 1.93, confidence interval (CI...... stratified by exposure status showed no significant change in the heritability of asthma according to the identified risk factors. CONCLUSION: In this population-based study of children, there was no evidence of genetic effect modification of atopic diseases by several identified early-life risk factors...

  11. Evaluation of the GeneXpert for Human Monkeypox Diagnosis

    Science.gov (United States)

    Li, Daniel; Wilkins, Kimberly; McCollum, Andrea M.; Osadebe, Lynda; Kabamba, Joelle; Nguete, Beatrice; Likafi, Toutou; Balilo, Marcel Pie; Lushima, Robert Shongo; Malekani, Jean; Damon, Inger K.; Vickery, Michael C. L.; Pukuta, Elisabeth; Nkawa, Frida; Karhemere, Stomy; Tamfum, Jean-Jacques Muyembe; Okitolonda, Emile Wemakoy; Li, Yu; Reynolds, Mary G.

    2017-01-01

    Monkeypox virus (MPXV), a zoonotic orthopoxvirus (OPX), is endemic in the Democratic Republic of Congo (DRC). Currently, diagnostic assays for human monkeypox (MPX) focus on real-time quantitative polymerase chain reaction (PCR) assays, which are typically performed in sophisticated laboratory settings. Herein, we evaluated the accuracy and utility of a multiplex MPX assay using the GeneXpert platform, a portable rapid diagnostic device that may serve as a point-of-care test to diagnose infections in endemic areas. The multiplex MPX/OPX assay includes a MPX-specific PCR test, OPX-generic PCR test, and an internal control PCR test. In total, 164 diagnostic specimens (50 crusts and 114 vesicular swabs) were collected from suspected MPX cases in Tshuapa Province, DRC, under national surveillance guidelines. The specimens were tested with the GeneXpert MPX/OPX assay and an OPX PCR assay at the Institut National de Recherche Biomedicale (INRB) in Kinshasa. Aliquots of each specimen were tested in parallel with a MPX-specific PCR assay at the Centers for Disease Control and Prevention. The results of the MPX PCR were used as the gold standard for all analyses. The GeneXpert MPX/OPX assay performed at INRB had a sensitivity of 98.8% and specificity of 100%. The GeneXpert assay performed well with both crust and vesicle samples. The GeneXpert MPX/OPX test incorporates a simple methodology that performs well in both laboratory and field conditions, suggesting its viability as a diagnostic platform that may expand and expedite current MPX detection capabilities. PMID:27994107

  12. Genetic and epigenetic changes of genes on chromosome 3 in human urogenital tumors

    Directory of Open Access Journals (Sweden)

    Gordiyuk V. V.

    2011-02-01

    Full Text Available Numerous disorders of genes and alterations of their expression are observed on a short arm of human chromosome 3, particularly in 3p14, 3p21, 3p24 compact regions in epithelial tumors. These aberrations affect the key biological processes specific for cancerogenesis. Such genes or their products could be used for diagnostics and prognosis of cancer. Genetical and epigenetical changes of a number of genes on chromosome 3 in human urogenital cancer, their role in cellular processes and signal pathways and perspectives as molecular markers of cancer diseases are analyzed in the review

  13. Effects of Aging and Anatomic Location on Gene Expression in Human Retina

    Directory of Open Access Journals (Sweden)

    Hui eCai

    2012-05-01

    Full Text Available Objective: To determine the effects of age and topographic location on gene expression in human neural retina.Methods: Macular and peripheral neural retina RNA were isolated from human donor eyes for DNA microarray and quantitative RT-PCR analyses.Results: Total RNA integrity from human donors was preserved. Hierarchical clustering analysis demonstrates that the gene expression profiles of young, old, macula and peripheral retina cluster into four distinct groups. Genes which are highly expressed in macular, peripheral, young or old retina were identified, including inhibitors of Wnt Signaling Pathway (DKK1, FZD10 and SFRP2 which are preferably expressed in the periphery. Conclusions: The transcriptome of the human retina is affected by age and topographic location. Wnt pathway inhibitors in the periphery may maintain peripheral retinal cells in an undifferentiated state. Understanding the effects of age and topographic location on gene expression may lead to the development of new therapeutic interventions for age-related eye diseases.

  14. [Collaborative study on regulatory science for facilitating clinical development of gene therapy products for genetic diseases].

    Science.gov (United States)

    Uchida, Eriko; Igarashi, Yuka; Sato, Yoji

    2014-01-01

    Gene therapy products are expected as innovative medicinal products for intractable diseases such as life-threatening genetic diseases and cancer. Recently, clinical developments by pharmaceutical companies are accelerated in Europe and the United States, and the first gene therapy product in advanced countries was approved for marketing authorization by the European Commission in 2012. On the other hand, more than 40 clinical studies for gene therapy have been completed or ongoing in Japan, most of them are conducted as clinical researches by academic institutes, and few clinical trials have been conducted for approval of gene therapy products. In order to promote the development of gene therapy products, revision of the current guideline and/or preparation of concept paper to address the evaluation of the quality and safety of gene therapy products are necessary and desired to clearly show what data should be submitted before First-in-Human clinical trials of novel gene therapy products. We started collaborative study with academia and regulatory agency to promote regulatory science toward clinical development of gene therapy products for genetic diseases based on lentivirus and adeno-associated virus vectors; National Center for Child Health and Development (NCCHD), Nippon Medical School and PMDA have been joined in the task force. At first, we are preparing pre-draft of the revision of the current gene therapy guidelines in this project.

  15. [Hereditary haemochromatosis: novel genes, novel diseases and hepcidin

    NARCIS (Netherlands)

    Bergmans, J.P.; Kemna, E.H.J.M.; Janssen, M.C.; Jacobs, E.M.G.; Stalenhoef, A.F.H.; Marx, J.J.M.; Swinkels, D.W.

    2007-01-01

    Since the discovery of the HFE gene of hereditary haemochromatosis in 1996 several new genetic defects have been identified, enabling explanation of the cause and variety of this disease. To date, at least 5 major types of hereditary haemochromatosis have been recognised. All these genes encode for

  16. Glycogen Storage Disease Type Ia in Canines: A Model for Human Metabolic and Genetic Liver Disease

    Directory of Open Access Journals (Sweden)

    Andrew Specht

    2011-01-01

    Full Text Available A canine model of Glycogen storage disease type Ia (GSDIa is described. Affected dogs are homozygous for a previously described M121I mutation resulting in a deficiency of glucose-6-phosphatase-α. Metabolic, clinicopathologic, pathologic, and clinical manifestations of GSDIa observed in this model are described and compared to those observed in humans. The canine model shows more complete recapitulation of the clinical manifestations seen in humans including “lactic acidosis”, larger size, and longer lifespan compared to other animal models. Use of this model in preclinical trials of gene therapy is described and briefly compared to the murine model. Although the canine model offers a number of advantages for evaluating potential therapies for GSDIa, there are also some significant challenges involved in its use. Despite these challenges, the canine model of GSDIa should continue to provide valuable information about the potential for generating curative therapies for GSDIa as well as other genetic hepatic diseases.

  17. Beyond the zebrafish: diverse fish species for modeling human disease

    Directory of Open Access Journals (Sweden)

    Manfred Schartl

    2014-02-01

    Full Text Available In recent years, zebrafish, and to a lesser extent medaka, have become widely used small animal models for human diseases. These organisms have convincingly demonstrated the usefulness of fish for improving our understanding of the molecular and cellular mechanisms leading to pathological conditions, and for the development of new diagnostic and therapeutic tools. Despite the usefulness of zebrafish and medaka in the investigation of a wide spectrum of traits, there is evidence to suggest that other fish species could be better suited for more targeted questions. With the emergence of new, improved sequencing technologies that enable genomic resources to be generated with increasing efficiency and speed, the potential of non-mainstream fish species as disease models can now be explored. A key feature of these fish species is that the pathological condition that they model is often related to specific evolutionary adaptations. By exploring these adaptations, new disease-causing and disease-modifier genes might be identified; thus, diverse fish species could be exploited to better understand the complexity of disease processes. In addition, non-mainstream fish models could allow us to study the impact of environmental factors, as well as genetic variation, on complex disease phenotypes. This Review will discuss the opportunities that such fish models offer for current and future biomedical research.

  18. Humanized Mouse Model of Ebola Virus Disease Mimics the Immune Responses in Human Disease.

    Science.gov (United States)

    Bird, Brian H; Spengler, Jessica R; Chakrabarti, Ayan K; Khristova, Marina L; Sealy, Tara K; Coleman-McCray, JoAnn D; Martin, Brock E; Dodd, Kimberly A; Goldsmith, Cynthia S; Sanders, Jeanine; Zaki, Sherif R; Nichol, Stuart T; Spiropoulou, Christina F

    2016-03-01

    Animal models recapitulating human Ebola virus disease (EVD) are critical for insights into virus pathogenesis. Ebola virus (EBOV) isolates derived directly from human specimens do not, without adaptation, cause disease in immunocompetent adult rodents. Here, we describe EVD in mice engrafted with human immune cells (hu-BLT). hu-BLT mice developed EVD following wild-type EBOV infection. Infection with high-dose EBOV resulted in rapid, lethal EVD with high viral loads, alterations in key human antiviral immune cytokines and chemokines, and severe histopathologic findings similar to those shown in the limited human postmortem data available. A dose- and donor-dependent clinical course was observed in hu-BLT mice infected with lower doses of either Mayinga (1976) or Makona (2014) isolates derived from human EBOV cases. Engraftment of the human cellular immune system appeared to be essential for the observed virulence, as nonengrafted mice did not support productive EBOV replication or develop lethal disease. hu-BLT mice offer a unique model for investigating the human immune response in EVD and an alternative animal model for EVD pathogenesis studies and therapeutic screening.

  19. Human Genome Sequencing in Health and Disease

    Science.gov (United States)

    Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.

    2013-01-01

    Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing