WorldWideScience

Sample records for human dermal microvessel

  1. Lipopolysaccharide-induced apoptosis in transformed bovine brain endothelial cells and human dermal microvessel endothelial cells: the role of JNK.

    Science.gov (United States)

    Karahashi, Hisae; Michelsen, Kathrin S; Arditi, Moshe

    2009-06-01

    Stimulation of transformed bovine brain endothelial cells (TBBEC) with LPS leads to apoptosis while human microvessel endothelial cells (HMEC) need the presence of cycloheximide (CHX) with LPS to induce apoptosis. To investigate the molecular mechanism of LPS-induced apoptosis in HMEC or TBBEC, we analyzed the involvement of MAPK and PI3K in TBBEC and HMEC. LPS-induced apoptosis in TBBEC was hallmarked by the activation of caspase 3, caspase 6, and caspase 8 after the stimulation of LPS, followed by poly(ADP-ribose) polymerase cleavage and lactate dehydrogenase release. We also observed DNA cleavage determined by TUNEL staining in TBBEC treated with LPS. Herbimycin A, a tyrosine kinase inhibitor, and SP600125, a JNK inhibitor, suppressed the activation of caspases and lactate dehydrogenase release. Moreover, a PI3K inhibitor (LY294002) suppressed activation of caspases and combined treatment with both SP600125 and LY294002 completely inhibited the activation of caspases. These results suggest that the JNK signaling pathway through the tyrosine kinase and PI3K pathways is involved in the induction of apoptosis in LPS-treated TBBEC. On the other hand, we observed sustained JNK activation in HMEC treated with LPS and CHX, and neither ERK1/2 nor AKT were activated. The addition of SP600125 suppressed phosphorylation of JNK and the activation of caspase 3 in HMEC treated with LPS and CHX. These results suggest that JNK plays an important role in the induction of apoptosis in endothelial cells.

  2. Dermal absorption of chlorpyrifos in human volunteers

    NARCIS (Netherlands)

    Meuling, W.J.; Ravensberg, L.C.; Roza, L.; Hemmen, J.J. van

    2005-01-01

    Objective: The methods and results are described of a study on the dermal absorption of chlorpyrifos (CPF) in humans established via urinary excretion of the metabolite 3,5,6-trichloro-2-pyridinol (TCP). Methods: Two dermal, single, doses of CPF were applied in two study groups (A and B) each

  3. In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse

    OpenAIRE

    2000-01-01

    We have identified conditions for forming cultured human umbilical vein endothelial cells (HUVEC) into tubes within a three-dimensional gel that on implantation into immunoincompetent mice undergo remodeling into complex microvessels lined by human endothelium. HUVEC suspended in mixed collagen/fibronectin gels organize into cords with early lumena by 24 h and then apoptose. Twenty-hour constructs, s.c. implanted in immunodeficient mice, display HUVEC-lined thin-walled microvessels within the...

  4. Sirtinol treatment reduces inflammation in human dermal microvascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Angela Orecchia

    Full Text Available Histone deacetylases (HDAC are key enzymes in the epigenetic control of gene expression. Recently, inhibitors of class I and class II HDAC have been successfully employed for the treatment of different inflammatory diseases such as rheumatoid arthritis, colitis, airway inflammation and asthma. So far, little is known so far about a similar therapeutic effect of inhibitors specifically directed against sirtuins, the class III HDAC. In this study, we investigated the expression and localization of endogenous sirtuins in primary human dermal microvascular endothelial cells (HDMEC, a cell type playing a key role in the development and maintenance of skin inflammation. We then examined the biological activity of sirtinol, a specific sirtuin inhibitor, in HDMEC response to pro-inflammatory cytokines. We found that, even though sirtinol treatment alone affected only long-term cell proliferation, it diminishes HDMEC inflammatory responses to tumor necrosis factor (TNFα and interleukin (IL-1β. In fact, sirtinol significantly reduced membrane expression of adhesion molecules in TNFã- or IL-1β-stimulated cells, as well as the amount of CXCL10 and CCL2 released by HDMEC following TNFα treatment. Notably, sirtinol drastically decreased monocyte adhesion on activated HDMEC. Using selective inhibitors for Sirt1 and Sirt2, we showed a predominant involvement of Sirt1 inhibition in the modulation of adhesion molecule expression and monocyte adhesion on activated HDMEC. Finally, we demonstrated the in vivo expression of Sirt1 in the dermal vessels of normal and psoriatic skin. Altogether, these findings indicated that sirtuins may represent a promising therapeutic target for the treatment of inflammatory skin diseases characterized by a prominent microvessel involvement.

  5. Site-specific rectocele repair with dermal graft augmentation: comparison of porcine dermal xenograft (Pelvicol) and human dermal allograft.

    Science.gov (United States)

    Biehl, Roger C; Moore, Robert D; Miklos, John R; Kohli, Neeraj; Anand, Indu S; Mattox, T Fleming

    2008-01-01

    This study is a retrospective chart review comparing 195 women who underwent rectocele repair with either a porcine dermal xenograft or human allogenic cadaveric dermal graft augmentation over a two year period. A site-specific defect repair was completed prior to augmentation with the graft. Examinations were performed preoperatively and postoperatively using the pelvic organ prolapse quantification system. Questionnaires were used to assess constipation and dyspareunia. De novo dyspareunia and cure rates for constipation and dyspareunia were not statistically different between the two groups. Site-specific fascial rectocele repairs with xenograft or allograft augmentation were found to have similar complication rates as well as objective and subjective cure rates.

  6. Human Dermal Stem/Progenitor Cell-Derived Conditioned Medium Improves Senescent Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Ji-Yong Jung

    2015-08-01

    Full Text Available Adult skin stem cells are recognized as potential therapeutics to rejuvenate aged skin. We previously demonstrated that human dermal stem/progenitor cells (hDSPCs with multipotent capacity could be enriched from human dermal fibroblasts using collagen type IV. However, the effects of hDSPCs on cellular senescence remain to be elucidated. In the present study, we investigated whether conditioned medium (CM collected from hDSPC cultures (hDSPC-CM exhibits beneficial effects on senescent fibroblasts. We found that hDSPC-CM promoted proliferation and decreased the expression level of senescence-associated β-galactosidase in senescent fibroblasts. In addition, p53 phosphorylation and p21 expression were significantly reduced in senescent fibroblasts treated with hDSPC-CM. hDSPC-CM restored the expression levels of collagen type I, collagen type III, and tissue inhibitor of metalloproteinase, and antagonized the increase of matrix metalloproteinase 1 expression. Finally, we demonstrated that hDSPC-CM significantly reduced reactive oxygen species levels by specifically up-regulating the expression level of superoxide dismutase 2. Taken together, these data suggest that hDSPC-CM can be applied as a potential therapeutic agent for improving human aged skin.

  7. Generation of human induced pluripotent stem cells from dermal fibroblasts

    OpenAIRE

    2008-01-01

    The generation of patient-specific pluripotent stem cells has the potential to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. Technologies including somatic cell nuclear transfer and cell fusion might generate such cells but are hindered by issues that might prevent them from being used clinically. Here, we describe methods to use dermal fibroblasts easily obtained from an individual human to generate human induced pluripotent stem (iPS) cells by ...

  8. Human acellular dermal wound matrix: evidence and experience.

    Science.gov (United States)

    Kirsner, Robert S; Bohn, Greg; Driver, Vickie R; Mills, Joseph L; Nanney, Lillian B; Williams, Marie L; Wu, Stephanie C

    2015-12-01

    A chronic wound fails to complete an orderly and timely reparative process and places patients at increased risk for wound complications that negatively impact quality of life and require greater health care expenditure. The role of extracellular matrix (ECM) is critical in normal and chronic wound repair. Not only is ECM the largest component of the dermal skin layer, but also ECM proteins provide structure and cell signalling that are necessary for successful tissue repair. Chronic wounds are characterised by their inflammatory and proteolytic environment, which degrades the ECM. Human acellular dermal matrices, which provide an ECM scaffold, therefore, are being used to treat chronic wounds. The ideal human acellular dermal wound matrix (HADWM) would support regenerative healing, providing a structure that could be repopulated by the body's cells. Experienced wound care investigators and clinicians discussed the function of ECM, the evidence related to a specific HADWM (Graftjacket(®) regenerative tissue matrix, Wright Medical Technology, Inc., licensed by KCI USA, Inc., San Antonio, TX), and their clinical experience with this scaffold. This article distills these discussions into an evidence-based and practical overview for treating chronic lower extremity wounds with this HADWM. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  9. Dermal Lipogenesis Inhibits Adiponectin Production in Human Dermal Fibroblasts while Exogenous Adiponectin Administration Prevents against UVA-Induced Dermal Matrix Degradation in Human Skin.

    Science.gov (United States)

    Fang, Chien-Liang; Huang, Ling-Hung; Tsai, Hung-Yueh; Chang, Hsin-I

    2016-07-14

    Adiponectin is one of the most abundant adipokines from the subcutaneous fat, and regulates multiple activities through endocrine, paracrine, or autocrine mechanisms. However, its expression in adipogenic induced fibroblasts, and the potential role in photoaging has not been determined. Here, human dermal fibroblasts, Hs68, were presented as a cell model of dermal lipogenesis through stimulation of adipogenic differentiation medium (ADM). Similar to other studies in murine pre-adipocyte models (i.e., 3T3-L1), Hs68 fibroblasts showed a tendency to lipogenesis based on lipid accumulation, triglyceride formation, and the expressions of PPAR-γ, lipoprotein lipase (LPL), and FABP4 mRNA. As expected, ADM-treated fibroblasts displayed a reduction on adiponectin expression. Next, we emphasized the photoprotective effects of adiponectin against UVA-induced damage in Hs68 fibroblasts. UVA radiation can downregulate cell adhesion strength and elastic modulus of Hs68 fibroblasts. Moreover, UVA radiation could induce the mRNA expressions of epidermal growth factor receptor (EGFR), adiponectin receptor 1 (AdipoR1), matrix metalloproteinase-1 (MMP-1), MMP-3, and cyclooxygenase-2 (COX-2), but downregulate the mRNA expressions of type I and type III collagen. On the other hand, post-treatment of adiponectin can partially overcome UVA-induced reduction in the cell adhesion strength of Hs68 fibroblasts through the activation of AdipoR1 and the suppression of EGF-R. In addition, post-treatment of adiponectin indicated the increase of type III collagen and elastin mRNA expression and the decrease of MMP-1 and MMP-3 mRNA expression, but a limited degree of recovery of elastic modulus on UVA-irradiated Hs68 fibroblasts. Overall, these results suggest that dermal lipogenesis may inhibit the expression of adiponectin while exogenous adiponectin administration prevents against UVA-induced dermal matrix degradation in Hs68 fibroblasts.

  10. Abdominal wall repair with human acellular dermal autograft

    Directory of Open Access Journals (Sweden)

    Roel E. Genders

    2011-12-01

    Full Text Available Repair of abdominal wall defects in the presence of contamination or infection is a significant problem. The loss of tissue warrants enforcement of the abdominal wall, preferably by autologous material. However, autologous repair often requires extensive surgery. This paper presents a review of available literature of placement of an acellular human dermis to repair an abdominal fascia defect, in contaminated as well as in non-contaminated surgical fields. It is illustrated with a case report that describes the successful reconstruction of an infected abdominal wall defect with a human acellular dermis allograft. A systematic literature review was undertaken with searches performed in the Pubmed and Cochrane databases for the period up till March 2009, using the search terms Alloderm [Substance Name], Hernia [Mesh] and the key words acellular dermis, acellular dermal matrix, human acellular dermal allograft and abdominal wall defect. To assess methodological quality, each article was subjected to a modification of the methodological index for non-randomized studies (MINORS according to Slim et al. Two items from the original index were not included because none of the studies selected had an unbiased assessment of the study end points and in none of the studies was a prospective calculation of the study size performed. Seventeen studies were included in the review. Data were extracted regarding study design, number of patients, surgical technique, followup period, contaminated or non-contaminated area of the fascia defect, mortality and morbidity (hemorrhage, seroma, wound dehiscence, infection of the operative procedure, the longterm results (removal of the graft, reherniation and bulging and level of evidencey. A total of 169 short-term complications and 151 longterm complications occurred after 643 surgical procedures reconstructing both contaminated and clean abdominal wall defects by implantation of an HADA. Human acellular dermal allograft

  11. Effect of microemulsions on cell viability of human dermal fibroblasts

    Science.gov (United States)

    Li, Juyi; Mironava, Tatsiana; Simon, Marcia; Rafailovich, Miriam; Garti, Nissim

    Microemulsions are optically clear, thermostable and isotropic mixture consisting of water, oil and surfactants. Their advantages of ease preparation, spontaneous formation, long-term stability and enhanced solubility of bioactive materials make them great potentials as vehicles in food and pharmaceutical applications. In this study, comparative in vitro cytotoxicity tests were performed to select a best formulation of microemulsion with the least toxicity for human dermal fibroblasts. Three different kinds of oils and six different kinds of surfactants were used to form microemulsions by different ratios. The effect of oil type and surfactant type as well as their proportions on cell proliferation and viability were tested.

  12. A new model for preclinical testing of dermal substitutes for human skin reconstruction.

    Science.gov (United States)

    Hartmann-Fritsch, Fabienne; Biedermann, Thomas; Braziulis, Erik; Meuli, Martin; Reichmann, Ernst

    2013-05-01

    Currently, acellular dermal substitutes used for skin reconstruction are usually covered with split-thickness skin grafts. The goal of this study was to develop an animal model in which such dermal substitutes can be tested under standardized conditions using a bioengineered dermo-epidermal skin graft for coverage. Bioengineered grafts consisting of collagen type I hydrogels with incorporated human fibroblasts and human keratinocytes seeded on these gels were produced. Two different dermal substitutes, namely Matriderm(®), and an acellular collagen type I hydrogel, were applied onto full-thickness skin wounds created on the back of immuno-incompetent rats. As control, no dermal substitute was used. As coverage for the dermal substitutes either the bioengineered grafts were used, or, as controls, human split-thickness skin or neonatal rat epidermis were used. Grafts were excised 21 days post-transplantation. Histology and immunofluorescence was performed to investigate survival, epidermis formation, and vascularization of the grafts. The bioengineered grafts survived on all tested dermal substitutes. Epidermis formation and vascularization were comparable to the controls. We could successfully use human bioengineered grafts to test different dermal substitutes. This novel model can be used to investigate newly designed dermal substitutes in detail and in a standardized way.

  13. Generation of human induced pluripotent stem cells from dermal fibroblasts.

    Science.gov (United States)

    Lowry, W E; Richter, L; Yachechko, R; Pyle, A D; Tchieu, J; Sridharan, R; Clark, A T; Plath, K

    2008-02-26

    The generation of patient-specific pluripotent stem cells has the potential to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. Technologies including somatic cell nuclear transfer and cell fusion might generate such cells but are hindered by issues that might prevent them from being used clinically. Here, we describe methods to use dermal fibroblasts easily obtained from an individual human to generate human induced pluripotent stem (iPS) cells by ectopic expression of the defined transcription factors KLF4, OCT4, SOX2, and C-MYC. The resultant cell lines are morphologically indistinguishable from human embryonic stem cells (HESC) generated from the inner cell mass of a human preimplantation embryo. Consistent with these observations, human iPS cells share a nearly identical gene-expression profile with two established HESC lines. Importantly, DNA fingerprinting indicates that the human iPS cells were derived from the donor material and are not a result of contamination. Karyotypic analyses demonstrate that reprogramming of human cells by defined factors does not induce, or require, chromosomal abnormalities. Finally, we provide evidence that human iPS cells can be induced to differentiate along lineages representative of the three embryonic germ layers indicating the pluripotency of these cells. Our findings are an important step toward manipulating somatic human cells to generate an unlimited supply of patient-specific pluripotent stem cells. In the future, the use of defined factors to change cell fate may be the key to routine nuclear reprogramming of human somatic cells.

  14. Human dermal exposure to galaxolide from personal care products.

    Science.gov (United States)

    Correia, P; Cruz, A; Santos, L; Alves, A

    2013-06-01

    Musks are synthetic fragrances applied on personal care and household products as fixatives, by retarding the release of other fragrances with higher volatility. Galaxolide is the most used polycyclic musk since the 90th decade, and it has been detected in several environmental and biological matrices, particularly in human tissues and fluids. For exposure assessment purposes, large-monitoring data need to be obtained and rapid but reliable analytical techniques are requested. The main objective of this study is to develop and validate a new and fast analytical methodology to quantify galaxolide in personal care products and to apply this method to real matrices like skin care products (creams and lotions), shower products (soap bar), hair care products (shampoo and hair conditioner) and oral care products (toothpaste), to evaluate the human dermal exposure risk. A dispersive solid-phase extraction is proposed, using QuEChERS methodology, followed by HPLC with fluorescence detection. Some extraction parameters were studied, like the ratio of sample/solvent amounts, the homogenization time, the salt addition effect and the used sorbents. The validation parameters of the developed method were the following: a linearity range of 0.005-1.002 mg kg⁻¹ sample, a limit of detection of 0.001 mg kg⁻¹ sample, repeatability between 0.7% and 11.3% (variation coefficient of six standard injections), an intermediate precision of 2.5% (variation coefficient of six independent analysis of the same sample), mean recoveries ranging from 65% (soap bar) to 95% (body cream) and 3% of global uncertainty in most of the working range. The time of analysis, including the extraction steps, is 60 min, allowing a throughput of 4 samples h⁻¹ . Galaxolide was detected in all of the seven analysed products in concentrations ranging from 0.04 ± 0.01 mg kg⁻¹ sample (toothpaste) to 280.78 ± 8.19 mg kg⁻¹ sample (perfumed body cream), which may correspond to a significant estimated

  15. In vitro dermal absorption of decabromodiphenyl ethane in rat and human skin

    Data.gov (United States)

    U.S. Environmental Protection Agency — In vitro dermal absorption of decabromodiphenyl ethane in rat and human skin. This dataset is associated with the following publication: Knudsen, G., J.M. Sanders,...

  16. CTRP6 inhibits fibrogenesis in TGF-β1-stimulated human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Rong-hui, E-mail: fan_ronghuixa@163.com [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Zhu, Xiu-mei; Sun, Yao-wen [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Peng, Hui-zi [Department of Cosmetology Plastic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061 (China); Wu, Hang-li; Gao, Wen-jie [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China)

    2016-07-08

    Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF-β1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expression of ECM in TGF-β1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF-β1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF-β1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. -- Highlights: •CTRP6 expression was decreased in scar tissues and TGF-β1-treated dermal fibroblasts. •CTRP6 inhibits TGF-β1-induced the proliferation of dermal fibroblasts. •CTRP6 inhibits expression of collagen type I and α-SMA. •CTRP6 inhibits the activation of TGF-β1/Smad3 signaling pathway in dermal fibroblasts.

  17. Role of Age-Associated Alterations of the Dermal Extracellular Matrix Microenvironment in Human Skin Aging

    OpenAIRE

    Quan, Taihao; Fisher, Gary J.

    2015-01-01

    Human skin is largely composed of a collagen-rich connective tissue, which provides structural and functional support. The collagen-rich connective tissue is produced, organized, and maintained by dermal fibroblasts. During aging, dermal collagen fibrils undergo progressive loss and fragmentation, leading to thin and structurally weakened skin. Age-related alterations of collagen fibrils impairs skin structure and function and creates a tissue microenvironment that promotes age-related skin d...

  18. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells.

    Science.gov (United States)

    Mitchell, Ryan W; On, Ngoc H; Del Bigio, Marc R; Miller, Donald W; Hatch, Grant M

    2011-05-01

    The blood-brain barrier (BBB), formed by the brain capillary endothelial cells, provides a protective barrier between the systemic blood and the extracellular environment of the CNS. Passage of fatty acids from the blood to the brain may occur either by diffusion or by proteins that facilitate their transport. Currently several protein families have been implicated in fatty acid transport. The focus of the present study was to identify the fatty acid transport proteins (FATPs) expressed in the brain microvessel endothelial cells and characterize their involvement in fatty acid transport across an in vitro BBB model. The major fatty acid transport proteins expressed in human brain microvessel endothelial cells (HBMEC), mouse capillaries and human grey matter were FATP-1, -4 and fatty acid binding protein 5 and fatty acid translocase/CD36. The passage of various radiolabeled fatty acids across confluent HBMEC monolayers was examined over a 30-min period in the presence of fatty acid free albumin in a 1 : 1 molar ratio. The apical to basolateral permeability of radiolabeled fatty acids was dependent upon both saturation and chain length of the fatty acid. Knockdown of various fatty acid transport proteins using siRNA significantly decreased radiolabeled fatty acid transport across the HBMEC monolayer. Our findings indicate that FATP-1 and FATP-4 are the predominant fatty acid transport proteins expressed in the BBB based on human and mouse expression studies. While transport studies in HBMEC monolayers support their involvement in fatty acid permeability, fatty acid translocase/CD36 also appears to play a prominent role in transport of fatty acids across HBMEC.

  19. Protective effect of oat bran extracts on human dermal fibroblast injury induced by hydrogen peroxide

    Institute of Scientific and Technical Information of China (English)

    Bing FENG; Lai-ji MA; Jin-jing YAO; Yun FANG; Yan-ai MEI; Shao-min WEI

    2013-01-01

    Oat contains different components that possess antioxidant properties;no study to date has addressed the antioxidant effect of the extract of oat bran on the cellular level.Therefore,the present study focuses on the investigation of the protective effect of oat bran extract by enzymatic hydrolysates on human dermal fibroblast injury induced by hydrogen peroxide(H2O2).Kjeldahl determination,phenol-sulfuric acid method,and high-performance liquid chromatography(HPLC)analysis indicated that the enzymatic products of oat bran contain a protein amount of 71.93%,of which 97.43% are peptides with a molecular range from 438.56 to 1301.01 Da.Assays for 1,1-diphenyl-2-picrylhydrazyl(DPPH)radical scavenging activity indicate that oat peptide-rich extract has a direct and concentration-dependent antioxidant activity.3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT)colorimetric assay and the TdT-mediated digoxigenin-dUTP nick-end labeling(TUNEL)assay for apoptosis showed that administration of H2O2 in human dermal fibroblasts caused cell damage and apoptosis.Pre-incubation of human dermal fibroblasts with the Oatp for 24 h markedly inhibited human dermal fibroblast injury induced by H2O2,but application oat peptides with H2O2 at same time did not.Pre-treatment of human dermal fibroblasts with Oatp significantly reversed the H2O2-induced decrease of superoxide dismutase(SOD)and the inhibition of malondialdehyde(MDA).The results demonstrate that oat peptides possess antioxidant activity and are effective against H2O2-induced human dermal fibroblast injury by the enhanced activity of SOD and decrease in MDA level.Our results suggest that oat bran will have the potential to be further explored as an antioxidant functional food in the prevention of aging-related skin injury.

  20. Coverage of Megaprosthesis with Human Acellular Dermal Matrix after Ewing's Sarcoma Resection: A Case Report

    Directory of Open Access Journals (Sweden)

    Robert M. Whitfield

    2011-01-01

    Full Text Available A 23-year-old female with Ewing's Sarcoma underwent tibial resection and skeletal reconstruction using proximal tibial allograft prosthetic reconstruction with distal femur endoprosthetic reconstruction and rotating hinge. Human acellular dermal matrix, (Alloderm, LifeCell, Branchburg, NJ, USA, was used to wrap the skeletal reconstruction. Soft tissue reconstruction was completed with a rotational gastrocnemius muscle flap and skin graft. Despite prolonged immobilization, the patient quickly regained full range of motion of her skeletal reconstruction. Synthetic mesh, tapes and tubes are used to perform capsule reconstruction of megaprosthesis. This paper describes the role of human acellular dermal matrix in capsule reconstruction around a megaprosthesis.

  1. Coverage of Megaprosthesis with Human Acellular Dermal Matrix after Ewing's Sarcoma Resection: A Case Report.

    Science.gov (United States)

    Whitfield, Robert M; Rinard, Jeremy; King, David

    2011-01-01

    A 23-year-old female with Ewing's Sarcoma underwent tibial resection and skeletal reconstruction using proximal tibial allograft prosthetic reconstruction with distal femur endoprosthetic reconstruction and rotating hinge. Human acellular dermal matrix, (Alloderm, LifeCell, Branchburg, NJ, USA), was used to wrap the skeletal reconstruction. Soft tissue reconstruction was completed with a rotational gastrocnemius muscle flap and skin graft. Despite prolonged immobilization, the patient quickly regained full range of motion of her skeletal reconstruction. Synthetic mesh, tapes and tubes are used to perform capsule reconstruction of megaprosthesis. This paper describes the role of human acellular dermal matrix in capsule reconstruction around a megaprosthesis.

  2. Role of Age-Associated Alterations of the Dermal Extracellular Matrix Microenvironment in Human Skin Aging

    Science.gov (United States)

    Quan, Taihao; Fisher, Gary J

    2015-01-01

    Human skin is largely composed of a collagen-rich connective tissue, which provides structural and functional support. The collagen-rich connective tissue is produced, organized, and maintained by dermal fibroblasts. During aging, dermal collagen fibrils undergo progressive loss and fragmentation, leading to thin and structurally weakened skin. Age-related alterations of collagen fibrils impairs skin structure and function and creates a tissue microenvironment that promotes age-related skin diseases, such as delayed wound healing and skin cancer development. This review describes cellular mechanisms that give rise to self-perpetuating, collagen fibril fragmentation that creates an age-associated dermal microenvironment (AADM), which contributes to decline of human skin function. PMID:25660807

  3. Correlation between the expression of estrogen receptor beta 1 and microvessel density in human thyroid tumor and its clinical significance

    Directory of Open Access Journals (Sweden)

    Dong-ling JIN

    2011-06-01

    Full Text Available Objective To explore the difference in expression of estrogen receptor beta 1(ERβ1 in different histological types of thyroid carcinoma,and to investigate the correlation between the ERβ1 expression and microvessel density(MVD in human thyroid carcinoma tissue.Methods Among 163 paraffin-embedded samples,collected from Jan.2004 to Dec.2009,107 were follicular differentiated thyroid carcinoma [59 cases of papillary thyroid carcinoma(PTC and 48 cases of follicular thyroid carcinoma(FTC],and 56 were thyroid adenoma.Another 10 cases of normal thyroid tissue,pathologically testified,were enrolled as control.Immunohistochemistry was used to evaluate the expressions of ERβ1 and CD31,and the positive results of CD31 were used to calculate MVD of tissues.The expression status and localization of ERβ1 and CD31 in the thyroid tissue were observed,the expression levels of ERβ1 in different histological types of thyroid carcinoma were compared.The correlation between cervical lymph node metastasis of cancer cells and ERβ1 expression and MVD was analyzed,and the correlation between ERβ1 and MVD was also observed.Results CD31 was mainly expressed in vascular endothelial cells in each type of thyroid tissues,while ERβ1 in both follicular epithelial cells and vascular endothelial cells.In different types such as normal thyroid tissue,thyroid adenoma tissue and thyroid carcinoma tissue,the positive expression rate of ERβ1 was 80%,48.2% and 29.8%,respectively(P < 0.05,with mean value of gray level of 116.22±14.23,130.08±17.51,146.26±18.13,respectively(P < 0.05.The expression level of ERβ1 was significantly lower in the cancer cells with higher metastasis and strong infiltration than in those with lower metastasis and weaker infiltration(P < 0.05,and MVD was significant higher in thyroid carcinoma with lymph node metastasis than in those without lymph node metastasis.MVD was notablely lower in thyroid carcinoma tissue with ERβ1 expression than in those

  4. Improved epidermal barrier formation in human skin models by chitosan modulated dermal matrices

    Science.gov (United States)

    Mieremet, Arnout; Rietveld, Marion; Absalah, Samira; van Smeden, Jeroen

    2017-01-01

    Full thickness human skin models (FTMs) contain an epidermal and a dermal equivalent. The latter is composed of a collagen dermal matrix which harbours fibroblasts. Current epidermal barrier properties of FTMs do not fully resemble that of native human skin (NHS), which makes these human skin models less suitable for barrier related studies. To further enhance the resemblance of NHS for epidermal morphogenesis and barrier formation, we modulated the collagen dermal matrix with the biocompatible polymer chitosan. Herein, we report that these collagen-chitosan FTMs (CC-FTMs) possess a well-organized epidermis and maintain both the early and late differentiation programs as in FTMs. Distinctively, the epidermal cell activation is reduced in CC-FTMs to levels observed in NHS. Dermal-epidermal interactions are functional in both FTM types, based on the formation of the basement membrane. Evaluation of the barrier structure by the organization of the extracellular lipid matrix of the stratum corneum revealed an elongated repeat distance of the long periodicity phase. The ceramide composition exhibited a higher resemblance of the NHS, based on the carbon chain-length distribution and subclass profile. The inside-out barrier functionality indicated by the transepidermal water loss is significantly improved in the CC-FTMs. The expression of epidermal barrier lipid processing enzymes is marginally affected, although more restricted to a single granular layer. The novel CC-FTM resembles the NHS more closely, which makes them a promising tool for epidermal barrier related studies. PMID:28333992

  5. Human amniotic fluid derived cells can competently substitute dermal fibroblasts in a tissue-engineered dermo-epidermal skin analog

    NARCIS (Netherlands)

    Hartmann-Fritsch, Fabienne; Hosper, Nynke; Luginbuehl, Joachim; Biedermann, Thomas; Reichmann, Ernst; Meuli, Martin

    Human amniotic fluid comprises cells with high differentiation capacity, thus representing a potential cell source for skin tissue engineering. In this experimental study, we investigated the ability of human amniotic fluid derived cells to substitute dermal fibroblasts and support epidermis

  6. Direct induction of chondrogenic cells from human dermal fibroblast culture by defined factors.

    Directory of Open Access Journals (Sweden)

    Hidetatsu Outani

    Full Text Available The repair of large cartilage defects with hyaline cartilage continues to be a challenging clinical issue. We recently reported that the forced expression of two reprogramming factors (c-Myc and Klf4 and one chondrogenic factor (SOX9 can induce chondrogenic cells from mouse dermal fibroblast culture without going through a pluripotent state. We here generated induced chondrogenic (iChon cells from human dermal fibroblast (HDF culture with the same factors. We developed a chondrocyte-specific COL11A2 promoter/enhancer lentiviral reporter vector to select iChon cells. The human iChon cells expressed marker genes for chondrocytes but not fibroblasts, and were derived from non-chondrogenic COL11A2-negative cells. The human iChon cells formed cartilage but not tumors in nude mice. This approach could lead to the preparation of cartilage directly from skin in human, without going through pluripotent stem cells.

  7. Protective Effect of Strawberry Extract against Inflammatory Stress Induced in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Massimiliano Gasparrini

    2017-01-01

    Full Text Available A protracted pro-inflammatory state is a major contributing factor in the development, progression and complication of the most common chronic pathologies. Fruit and vegetables represent the main sources of dietary antioxidants and their consumption can be considered an efficient tool to counteract inflammatory states. In this context an evaluation of the protective effects of strawberry extracts on inflammatory stress induced by E. coli LPS on human dermal fibroblast cells was performed in terms of viability assays, ROS and nitrite production and biomarkers of oxidative damage of the main biological macromolecules. The results demonstrated that strawberry extracts exerted an anti-inflammatory effect on LPS-treated cells, through an increase in cell viability, and the reduction of ROS and nitrite levels, and lipid, protein and DNA damage. This work showed for the first time the potential health benefits of strawberry extract against inflammatory and oxidative stress in LPS-treated human dermal fibroblast cells.

  8. Ultraviolet-B Protective Effect of Flavonoids from Eugenia caryophylata on Human Dermal Fibroblast Cells

    OpenAIRE

    Patwardhan, Juilee; Bhatt, Purvi

    2015-01-01

    Background: The exposure of skin to ultraviolet-B (UV-B) radiations leads to deoxyribonucleic acid (DNA) damage and can induce production of free radicals which imbalance the redox status of the cell and lead to increased oxidative stress. Clove has been traditionally used for its analgesic, anti-inflammatory, anti-microbial, anti-viral, and antiseptic effects. Objective: To evaluate the UV-B protective activity of flavonoids from Eugenia caryophylata (clove) buds on human dermal fibroblast c...

  9. Exogenous arachidonic acid mediates permeability of human brain microvessel endothelial cells through prostaglandin E2 activation of EP3 and EP4 receptors.

    Science.gov (United States)

    Dalvi, Siddhartha; Nguyen, Hieu H; On, Ngoc; Mitchell, Ryan W; Aukema, Harold M; Miller, Donald W; Hatch, Grant M

    2015-12-01

    The blood-brain barrier, formed by microvessel endothelial cells, is the restrictive barrier between the brain parenchyma and the circulating blood. Arachidonic acid (ARA; 5,8,11,14-cis-eicosatetraenoic acid) is a conditionally essential polyunsaturated fatty acid [20:4(n-6)] and is a major constituent of brain lipids. The current study examined the transport processes for ARA in confluent monolayers of human brain microvascular endothelial cells (HBMEC). Addition of radioactive ARA to the apical compartment of HBMEC cultured on Transwell(®) inserts resulted in rapid incorporation of radioactivity into the basolateral medium. Knock down of fatty acid transport proteins did not alter ARA passage into the basolateral medium as a result of the rapid generation of prostaglandin E2 (PGE2 ), an eicosanoid known to facilitate opening of the blood-brain barrier. Permeability following ARA or PGE2 exposure was confirmed by an increased movement of fluorescein-labeled dextran from apical to basolateral medium. ARA-mediated permeability was attenuated by specific cyclooxygenase-2 inhibitors. EP3 and EP4 receptor antagonists attenuated the ARA-mediated permeability of HBMEC. The results indicate that ARA increases permeability of HBMEC monolayers likely via increased production of PGE2 which acts upon EP3 and EP4 receptors to mediate permeability. These observations may explain the rapid influx of ARA into the brain previously observed upon plasma infusion with ARA. The blood-brain barrier, formed by microvessel endothelial cells, is a restrictive barrier between the brain parenchyma and the circulating blood. Radiolabeled arachidonic acid (ARA) movement across, and monolayer permeability in the presence of ARA, was examined in confluent monolayers of primary human brain microvessel endothelial cells (HBMECs) cultured on Transwell(®) plates. Incubation of HBMECs with ARA resulted in a rapid increase in HBMEC monolayer permeability. The mechanism was mediated, in part

  10. Recombinant human erythropoietin alpha improves the efficacy of radiotherapy of a human tumor xenograft, affecting tumor cells and microvessels

    Energy Technology Data Exchange (ETDEWEB)

    Loevey, J. [Dept. of Radiotherapy, National Inst. of Oncology, Budapest (Hungary); Bereczky, B.; Gilly, R.; Kenessey, I.; Raso, E.; Simon, E.; Timar, J. [Dept. of Tumor Progression, National Inst. of Oncology, Budapest (Hungary); Dobos, J. [Dept. of Tumor Progression, National Inst. of Oncology, Budapest (Hungary); National Koranyi Inst. of TBC and Pulmonology, Budapest (Hungary); Vago, A. [Central Lab., National Inst. of Oncology, Budapest (Hungary); Kasler, M. [Head and Neck Surgery, National Inst. of Oncology, Budapest (Hungary); Doeme, B. [National Koranyi Inst. of TBC and Pulmonology, Budapest (Hungary); Tovari, J. [National Koranyi Inst. of TBC and Pulmonology, Budapest (Hungary); 1. Inst. of Pathology and Experimental Cancer Research, Semmelweis Univ., Budapest (Hungary)

    2008-01-15

    Background and purpose: tumor-induced anemia often occurs in cancer patients, and is corrected by recombinant human erythropoietins (rHuEPOs). Recent studies indicated that, besides erythroid progenitor cells, tumor and endothelial cells express erythropoietin receptor (EPOR) as well; therefore, rHuEPO may affect their functions. Here, the effect of rHuEPO{alpha} on irradiation in EPOR-positive human squamous cell carcinoma xenograft was tested. Material and methods: A431 tumor-bearing SCID mice were treated from the tumor implantation with rHuEPO{alpha} at human-equivalent dose. Xenografts were irradiated (5 Gy) on day 14, and the final tumor mass was measured on day 22. The systemic effects of rHuEPO{alpha} on the hemoglobin level, on tumor-associated blood vessels and on hypoxia-inducible factor-(HIF-)1{alpha} expression of the tumor xenografts were monitored. The proliferation, apoptosis and clonogenic capacity of A431 cancer cells treated with rHuEPO{alpha} and irradiation were also tested in vitro. Results: in vitro, rHuEPO{alpha} treatment alone did not modify the proliferation of EPOR-positive A431 tumor cells but enhanced the effect of irradiation on proliferation, apoptosis and clonogenic capacity. In vivo, rHuEPO{alpha} administration compensated the tumor-induced anemia in SCID mice and decreased tumoral HIF-1{alpha} expression but had no effect on tumor growth. At the same time rHuEPO{alpha} treatment significantly increased the efficacy of radiotherapy in vivo (tumor weight of 23.9 {+-} 4.7 mg and 34.9 {+-} 4.6 mg, respectively), mediated by increased tumoral blood vessel destruction. Conclusion: rHuEPO{alpha} treatment may modulate the efficacy of cancer radiotherapy not only by reducing systemic hypoxia and tumoral HIF-1{alpha} expression, but also by destroying tumoral vessels. (orig.)

  11. IFN-Dependent and -Independent Reduction in West Nile Virus Infectivity in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Lisa I. Hoover

    2014-03-01

    Full Text Available Although dermal fibroblasts are one of the first cell types exposed to West Nile virus (WNV during a blood meal by an infected mosquito, little is known about WNV replication within this cell type. Here, we demonstrate that neuroinvasive, WNV-New York (WNV-NY, and nonneuroinvasive, WNV-Australia (WNV-AUS60 strains are able to infect and replicate in primary human dermal fibroblasts (HDFs. However, WNV-AUS60 replication and spread within HDFs was reduced compared to that of WNV-NY due to an interferon (IFN-independent reduction in viral infectivity early in infection. Additionally, replication of both strains was constrained late in infection by an IFN-β-dependent reduction in particle infectivity. Overall, our data indicates that human dermal fibroblasts are capable of supporting WNV replication; however, the low infectivity of particles produced from HDFs late in infection suggests that this cell type likely plays a limited role as a viral reservoir in vivo.

  12. Replacement of animal-derived collagen matrix by human fibroblast-derived dermal matrix for human skin equivalent products.

    Science.gov (United States)

    El Ghalbzouri, Abdoelwaheb; Commandeur, Suzan; Rietveld, Marion H; Mulder, Aat A; Willemze, Rein

    2009-01-01

    Reconstructed human skin equivalents (HSEs) are representative models of human skin and widely used for research purposes and clinical applications. Traditional methods to generate HSEs are based on the seeding of human keratinocytes onto three-dimensional human fibroblast-populated non-human collagen matrices. Current HSEs have a limited lifespan of approximately 8 weeks, rendering them unsuitable for long-term studies. Here we present a new generation of HSEs being fully composed of human components and which can be cultured up to 20 weeks. This model is generated on a primary human fibroblast-derived dermal matrix. Pro-collagen type I secretion by human fibroblasts stabilized during long-term culture, providing a continuous and functional human dermal matrix. In contrast to rat-tail collagen-based HSEs, the present fibroblast-derived matrix-based HSEs contain more continuity in the number of viable cell layers in long-term cultures. In addition, these new skin models exhibit normal differentiation and proliferation, based on expression of K10/K15, and K16/K17, respectively. Detection of collagen types IV and VII and laminin 332 was confined to the epidermal-dermal junction, as in native skin. The presence of hemidesmosomes and anchoring fibrils was demonstrated by electron microscopy. Finally, we show that the presented HSE contained a higher concentration of the normal moisturizing factor compared to rat-tail collagen-based skin models, providing a further representation of functional normal human skin in vitro. This study, therefore, demonstrates the role of the dermal microenvironment on epidermal regeneration and lifespan in vitro.

  13. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo [NovaCell Technology Inc., Pohang, Kyungbuk 790-784 (Korea, Republic of); Kim, So Young [Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Department of Convergence Medicine and Pharmaceutical Biosciences, Graduate School, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Jang, Hwan-Hee [Functional Food and Nutrition Division, Department of Agrofood Resources, Rural Development Administration, Suwon 441-853 (Korea, Republic of); Ryu, Sung Ho [Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 790-784 (Korea, Republic of); Kim, Beom Joon [Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Department of Convergence Medicine and Pharmaceutical Biosciences, Graduate School, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Taehoon G., E-mail: taehoon@novacelltech.com [NovaCell Technology Inc., Pohang, Kyungbuk 790-784 (Korea, Republic of)

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer We identify a function of the YIGSR peptide to enhance collagen synthesis in Hs27. Black-Right-Pointing-Pointer YIGSR peptide enhanced collagen type 1 synthesis both of gene and protein levels. Black-Right-Pointing-Pointer There were no changes in cell proliferation and MMP-1 level in YIGSR treatment. Black-Right-Pointing-Pointer The YIGSR effect on collagen synthesis mediated activation of FAK, pyk2 and ERK. Black-Right-Pointing-Pointer The YIGSR-induced FAK and ERK activation was modulated by FAK and MEK inhibitors. -- Abstract: The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the {beta}1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67 kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate

  14. Citicoline induces angiogenesis improving survival of vascular/human brain microvessel endothelial cells through pathways involving ERK1/2 and insulin receptor substrate-1

    Directory of Open Access Journals (Sweden)

    Krupinski Jerzy

    2012-12-01

    Full Text Available Abstract Background Citicoline is one of the neuroprotective agents that have been used as a therapy in stroke patients. There is limited published data describing the mechanisms through which it acts. Methods We used in vitro angiogenesis assays: migration, proliferation, differentiation into tube-like structures in Matrigel™ and spheroid development assays in human brain microvessel endothelial cells (hCMEC/D3. Western blotting was performed on protein extraction from hCMEC/D3 stimulated with citicoline. An analysis of citicoline signalling pathways was previously studied using a Kinexus phospho-protein screening array. A staurosporin/calcium ionophore-induced apoptosis assay was performed by seeding hCMEC/D3 on to glass coverslips in serum poor medium. In a pilot in vivo study, transient MCAO in rats was carried out with and without citicoline treatment (1000 mg/Kg applied at the time of occlusion and subsequently every 3 days until euthanasia (21 days. Vascularity of the stroke-affected regions was examined by immunohistochemistry. Results Citicoline presented no mitogenic and chemotactic effects on hCMEC/D3; however, it significantly increased wound recovery, the formation of tube-like structures in Matrigel™ and enhanced spheroid development and sprouting. Citicoline induced the expression of phospho-extracellular-signal regulated kinase (ERK-1/2. Kinexus assays showed an over-expression of insulin receptor substrate-1 (IRS-1. Knock-down of IRS-1 with targeted siRNA in our hCMEC/D3 inhibited the pro-angiogenic effects of citicoline. The percentage of surviving cells was higher in the presence of citicoline. Citicoline treatment significantly increased the numbers of new, active CD105-positive microvessels following MCAO. Conclusions The findings demonstrate both a pro-angiogenic and protective effect of citicoline on hCMEC/D3 in vitro and following middle cerebral artery occlusion (MCAO in vivo.

  15. Citicoline induces angiogenesis improving survival of vascular/human brain microvessel endothelial cells through pathways involving ERK1/2 and insulin receptor substrate-1.

    Science.gov (United States)

    Krupinski, Jerzy; Abudawood, Manal; Matou-Nasri, Sabine; Al-Baradie, Raid; Petcu, Eugen Bogdan; Justicia, Carlos; Planas, Anna; Liu, Donghui; Rovira, Norma; Grau-Slevin, Marta; Secades, Julio; Slevin, Mark

    2012-12-10

    Citicoline is one of the neuroprotective agents that have been used as a therapy in stroke patients. There is limited published data describing the mechanisms through which it acts. We used in vitro angiogenesis assays: migration, proliferation, differentiation into tube-like structures in Matrigel™ and spheroid development assays in human brain microvessel endothelial cells (hCMEC/D3). Western blotting was performed on protein extraction from hCMEC/D3 stimulated with citicoline. An analysis of citicoline signalling pathways was previously studied using a Kinexus phospho-protein screening array. A staurosporin/calcium ionophore-induced apoptosis assay was performed by seeding hCMEC/D3 on to glass coverslips in serum poor medium. In a pilot in vivo study, transient MCAO in rats was carried out with and without citicoline treatment (1000 mg/Kg) applied at the time of occlusion and subsequently every 3 days until euthanasia (21 days). Vascularity of the stroke-affected regions was examined by immunohistochemistry. Citicoline presented no mitogenic and chemotactic effects on hCMEC/D3; however, it significantly increased wound recovery, the formation of tube-like structures in Matrigel™ and enhanced spheroid development and sprouting. Citicoline induced the expression of phospho-extracellular-signal regulated kinase (ERK)-1/2. Kinexus assays showed an over-expression of insulin receptor substrate-1 (IRS-1). Knock-down of IRS-1 with targeted siRNA in our hCMEC/D3 inhibited the pro-angiogenic effects of citicoline. The percentage of surviving cells was higher in the presence of citicoline. Citicoline treatment significantly increased the numbers of new, active CD105-positive microvessels following MCAO. The findings demonstrate both a pro-angiogenic and protective effect of citicoline on hCMEC/D3 in vitro and following middle cerebral artery occlusion (MCAO) in vivo.

  16. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Malpass, Gloria E., E-mail: gloria.malpass@gmail.com [Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States); Arimilli, Subhashini, E-mail: sarimill@wakehealth.edu [Department of Microbiology and Immunology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States); Prasad, G.L., E-mail: prasadg@rjrt.com [R and D Department, R.J. Reynolds Tobacco Company, Winston-Salem, NC 27102 (United States); Howlett, Allyn C., E-mail: ahowlett@wakehealth.edu [Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States)

    2014-09-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. - Highlights: • Tobacco product preparations (TPPs) alter gene expression in dermal fibroblasts. • Some immediate early genes critical to the inflammatory process are affected. • Different TPPs produce differential responses in certain pro-inflammatory genes.

  17. Allogeneic human dermal fibroblasts are viable in peripheral blood mononuclear co-culture

    Directory of Open Access Journals (Sweden)

    Restu Syamsul Hadi

    2015-12-01

    Full Text Available BACKGROUND Transplanted allogeneic dermal fibroblasts retain stem cell subpopulations, and are easily isolated, expanded and stored using standard techniques. Their potential for regenerative therapy of chronic wounds should be evaluated. The aim of this study was to determine allogeneic fibroblast viability in the presence of peripheral blood mononuclear cells (PBMC. METHODS In this experimental study, fibroblasts were isolated from foreskin explants, expanded in the presence of serum, and stored using slow-freezing. We used one intervention group of allogeneic fibroblasts co-cultured with PBMC and 2 control groups of separate fibroblast and PBMC cultures.Fibroblasts were characterized by their collagen secretion and octamer-binding transcription factor 4 (OCT4 expression. Viability was evaluated using water soluble tetrazolium-1 (WST-1 proliferation assay. Absorbances were measured at 450 nm. Data analysis was performed by student’s paired t-test. RESULTS Dermal fibroblasts were shown to secrete collagen, express OCT4, be recoverable after cryopreservation, and become attached to the culture dish in a co-culture with PBMC. Co-cultured and control fibroblasts had no significantly different cell viabilities (p>0.05. Calculated viable cell numbers increased 1.8 and 5.1- fold, respectively, at days 2 and 4 in vitro. Both groups showed comparable doubling times at days 2 and 4 in vitro. PBMC did not interfere with allogeneic fibroblast viability and proliferative capacity CONCLUSIONS Allogeneic fibroblasts remain viable and proliferate in the presence of host PBMC. Future research should evaluate allogeneic human dermal fibroblast competency in clinical settings. Dermal fibroblasts are a potential source for cell therapy in chronic wound management.

  18. Allogeneic human dermal fibroblasts are viable in peripheral blood mononuclear co-culture

    Directory of Open Access Journals (Sweden)

    Restu Syamsul Hadi

    2014-08-01

    Full Text Available Background Transplanted allogeneic dermal fibroblasts retain stem cell subpopulations, and are easily isolated, expanded and stored using standard techniques. Their potential for regenerative therapy of chronic wounds should be evaluated. The aim of this study was to determine allogeneic fibroblast viability in the presence of peripheral blood mononuclear cells (PBMC. Methods In this experimental study, fibroblasts were isolated from foreskin explants, expanded in the presence of serum, and stored using slow-freezing. We used one intervention group of allogeneic fibroblasts co-cultured with PBMC and 2 control groups of separate fibroblast and PBMC cultures.Fibroblasts were characterized by their collagen secretion and octamer-binding transcription factor 4 (OCT4 expression. Viability was evaluated using water soluble tetrazolium-1 (WST-1 proliferation assay. Absorbances were measured at 450 nm. Data analysis was performed by student’s paired t-test. Results Dermal fibroblasts were shown to secrete collagen, express OCT4, be recoverable after cryopreservation, and become attached to the culture dish in a co-culture with PBMC. Co-cultured and control fibroblasts had no significantly different cell viabilities (p>0.05. Calculated viable cell numbers increased 1.8 and 5.1-fold, respectively, at days 2 and 4 in vitro. Both groups showed comparable doubling times at days 2 and 4 in vitro. PBMC did not interfere with allogeneic fibroblast viability and proliferative capacity Conclusions Allogeneic fibroblasts remain viable and proliferate in the presence of host PBMC. Future research should evaluate allogeneic human dermal fibroblast competency in clinical settings. Dermal fibroblasts are a potential source for cell therapy in chronic wound management.

  19. Human dermal stem/progenitor cell-derived conditioned medium ameliorates ultraviolet a-induced damage of normal human dermal fibroblasts.

    Directory of Open Access Journals (Sweden)

    Joong Hyun Shim

    Full Text Available Adult skin stem cells are considered an attractive cell resource for therapeutic potential in aged skin. We previously reported that multipotent human dermal stem/progenitor cells (hDSPCs can be enriched from (normal human dermal fibroblasts (NHDFs using collagen type IV. However, the beneficial effects of hDSPCs on aged skin remain to be elucidated. In the present study, we analyzed the growth factors secreted from hDSPCs in conditioned medium (CM derived from hDSPCs (hDSPC-CM and found that hDSPCs secreted higher levels of bFGF, IGFBP-1, IGFBP-2, HGF, VEGF and IGF-1 compared with non-hDSPCs. We then investigated whether hDSPC-CM has an effect on ultraviolet A (UVA-irradiated NHDFs. Real-time RT-PCR analysis revealed that the treatment of UVA-irradiated NHDFs with hDSPC-CM significantly antagonized the UVA-induced up-regulation of the MMP1 and the UVA-induced down-regulation of the collagen types I, IV and V and TIMP1 mRNA expressions. Furthermore, a scratch wound healing assay showed that hDSPC-CM enhanced the migratory properties of UVA-irradiated NHDFs. hDSPC-CM also significantly reduced the number of the early and late apoptotic cell population in UVA-irradiated NHDFs. Taken together, these data suggest that hDSPC-CM can exert some beneficial effects on aged skin and may be used as a therapeutic agent to improve skin regeneration and wound healing.

  20. Asiaticoside induces cell proliferation and collagen synthesis in human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Linda Yulianti

    2015-08-01

    Full Text Available Asiatiocoside, a saponin component isolated from Centella asiatica can improve wound healing by promoting the proliferation of human dermal fibroblasts (HDF and synthesis of collagen. The skin-renewing cells and type I and III collagen synthesis decrease with aging, resulting in the reduction of skin elasticity and delayed wound healing. Usage of natural active compounds from plants in wound healing should be evaluated and compared to retinoic acid as an active agent that regulates wound healing. The aim of this study was to compare and evaluate the effect of asiaticoside and retinoic acid to induce greater cell proliferation and type I and III collagen synthesis in human dermal fibroblast. Methods Laboratory experiments were conducted using human dermal fibroblasts (HDF isolated from human foreskin explants. Seven passages of HDF were treated with asiaticoside and retinoic acid at several doses and incubated for 24 and 48 hours. Cell viability in all groups was tested with the MTT assay to assess HDF proliferation. Type I and III collagen synthesis was examined using the respective ELISA kits. Analysis of variance was performed to compare the treatment groups. Results Asiaticoside had significantly stronger effects on HDF proliferation than retinoic acid (p<0.05. The type III collagen production was significantly greater induction with asiaticoside compared to retinoic acid (p<0.05. Conclusion Asiaticoside induces HDF proliferation and type I and III collagen synthesis in a time- and dose-dependent pattern. Asiaticoside has a similar effect as retinoic acid on type I and type III collagen synthesis.

  1. Human cadaveric dermal matrix for management of challenging surgical defects on the scalp.

    Science.gov (United States)

    Stebbins, William G; Hanke, C William; Petersen, Jeffrey

    2011-03-01

    Biologic scaffolds have shown promise in patients unable to tolerate prolonged surgical closure or extensive wound care, but there has been little research in the field of Mohs micrographic surgery (MMS) on human cadaveric dermis in this capacity. To evaluate the utility of human cadaveric dermis as a means of decreasing operative time, minimizing postoperative wound care, and improving aesthetic outcomes in selected patients with deep surgical defects, including those with exposed bone. Fourteen patients (8 men, 6 women) with deep postoperative defects after MMS were treated with a cadaveric dermal allograft as part or all of their postoperative wound management. Allograft placement was well tolerated, with high satisfaction levels relating to minimal postoperative wound care and aesthetic outcome. Significantly shorter operative times were noted in all patients than with primary closure or grafting. In patients with significant comorbidities, inability to tolerate extended surgical repairs, or inability to perform extensive wound care, human cadaveric dermal allografts can decrease operative time and minimize wound care complexity while providing an excellent aesthetic outcome in many cases. Shorter healing times than expected were also noted in a number of patients. The authors have indicated no significant interest with commercial supporters. © 2011 by the American Society for Dermatologic Surgery, Inc.

  2. Gene expression in response to cyclic mechanical stretch in primary human dermal fibroblasts.

    Science.gov (United States)

    Reichenbach, Maria; Reimann, Kerstin; Reuter, Hendrik

    2014-12-01

    The human dermal skin is permanently exposed to mechanical stress, for instance during facial expression, which might cause wrinkles with age. Cyclic mechanical stretching of cells results in cellular and cytoskeleton alignment perpendicular to the stretch direction regulating cellular response. With gene expression profiling it was aimed to identify the differentially expressed genes associated with the regulation of the cytoskeleton to investigate the stretch-induced cell alignment mechanism. Here, the transcription activity of the genome in response to cyclic mechanical stress was measured using DNA microarray technology with Agilent SurePrint G3 Human GE 8x60k Microarrays, based on the overall measurement of the mRNA. Gene expression was measured at the beginning of the alignment process showing first reoriented cells after 5 h stretching and at the end after 24 h, where nearly all cells are aligned. Gene expression data of control vs. stretched primary human dermal fibroblasts after 5 h and 24 h demonstrated the regulation of differentially expressed genes associated with metabolism, differentiation and morphology and were deposited at http://www.ncbi.nlm.nih.gov/geo with the accession number GSE58389.

  3. The chromene sargachromanol E inhibits ultraviolet A-induced ageing of skin in human dermal fibroblasts.

    Science.gov (United States)

    Kim, J-A; Ahn, B-N; Kong, C-S; Kim, S-K

    2013-05-01

    Skin ageing is influenced by environmental factors such as ultraviolet (UV) radiation. The effects of UV radiation on skin functions should be investigated using human in vitro models to understand the mechanisms of skin ageing. Additionally, marine algae provide a valuable source for identifying and extracting biologically active substances. In this study, sargachromanol E was isolated from a marine brown alga, Sargassum horneri, and its inhibitory effect on skin ageing was investigated using UVA-irradiated dermal fibroblasts. Formation of intracellular reactive oxygen species (ROS), lipid peroxidation and protein oxidation induced by UVA irradiation were investigated in UVA-irradiated human dermal fibroblasts. The levels of matrix metalloproteinases (MMPs) were determined by reverse-transcriptase polymerase chain reaction and Western blot analysis. Sargachromanol E did not exhibit any significant cytotoxicity or phototoxicity in UVA-exposed dermal fibroblasts. Additionally, sargachromanol E suppressed intracellular formation of ROS, membrane protein oxidation, lipid peroxidation and expression of collagenases such as MMP-1, MMP-2 and MMP-9, all of which are caused by UVA exposure. It was further found that these inhibitions were related to an increase in the expression of the tissue inhibitor of metalloproteinase (TIMP) genes, TIMP1 and TIMP2. Moreover, we have shown that the transcriptional activation of activator protein 1 (AP-1) signalling caused by UVA irradiation was inhibited by treatment with sargachromanol E. This study suggests that UVA irradiation modulates MMP expression via the transcriptional activation of AP-1 signalling, whereas treatment with sargachromanol E protected cell damage caused by UVA irradiation. © 2013 The Authors. BJD © 2013 British Association of Dermatologists.

  4. Clinical Performance of a Dermal Filler Containing Natural Glycolic Acid and a Polylactic Acid Polymer: Results of a Clinical Trial in Human Immunodeficiency Virus Subjects with Facial Lipoatrophy

    OpenAIRE

    Tagle, Jorge M.; Macchetto, Pedro Cervantes; Durán Páramo, Rosa Margarita

    2010-01-01

    Lipoatrophy is a condition that affects certain individuals, most commonly those who are infected with the human immunodeficiency virus.1–3 Injectable fillers are used for the treatment of these dermal contour deformities to smooth dermal depressions formed by the loss of volume. These dermal fillers (also known as soft tissue augmentation devices) can correct contour deformities caused by lipoatrophy in patients who are human immunodeficiency virus positive or negative. The product used in t...

  5. No Identical “Mesenchymal Stem Cells” at Different Times and Sites: Human Committed Progenitors of Distinct Origin and Differentiation Potential Are Incorporated as Adventitial Cells in Microvessels

    Directory of Open Access Journals (Sweden)

    Benedetto Sacchetti

    2016-06-01

    Full Text Available A widely shared view reads that mesenchymal stem/stromal cells (“MSCs” are ubiquitous in human connective tissues, can be defined by a common in vitro phenotype, share a skeletogenic potential as assessed by in vitro differentiation assays, and coincide with ubiquitous pericytes. Using stringent in vivo differentiation assays and transcriptome analysis, we show that human cell populations from different anatomical sources, regarded as “MSCs” based on these criteria and assumptions, actually differ widely in their transcriptomic signature and in vivo differentiation potential. In contrast, they share the capacity to guide the assembly of functional microvessels in vivo, regardless of their anatomical source, or in situ identity as perivascular or circulating cells. This analysis reveals that muscle pericytes, which are not spontaneously osteochondrogenic as previously claimed, may indeed coincide with an ectopic perivascular subset of committed myogenic cells similar to satellite cells. Cord blood-derived stromal cells, on the other hand, display the unique capacity to form cartilage in vivo spontaneously, in addition to an assayable osteogenic capacity. These data suggest the need to revise current misconceptions on the origin and function of so-called “MSCs,” with important applicative implications. The data also support the view that rather than a uniform class of “MSCs,” different mesoderm derivatives include distinct classes of tissue-specific committed progenitors, possibly of different developmental origin.

  6. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Sivapragasam Gothai

    2016-03-01

    Full Text Available Background/Aim: Wounds are the outcome of injuries to the skin that interrupt the soft tissue. Healing of a wound is a complex and long-drawn-out process of tissue repair and remodeling in response to injury. A large number of plants are used by folklore traditions for treatment of cuts, wounds and burns. Moringa oleifera is an herb used as traditional folk medicine for the treatment of various skin wounds and associated diseases. The underlying mechanisms of wound healing activity of ethyl acetate fraction of M. oleifera leaves extract are completely unknown. Methods: In the current study, ethyl acetate fraction of Moringa oleifera leaves was investigated for its efficacy on cell viability, proliferation and migration (wound closure rate in human normal dermal fibroblast cells. Results: Results revealed that lower concentration (12.5 and micro;g/ml, 25 and micro;g/ml, and 50 and micro;g/ml of ethyl acetate fraction of M. oleifera leaves showed remarkable proliferative and migratory effect on normal human dermal fibroblasts. Conclusion: The present study suggested that ethyl acetate fraction of M. oleifera leaves might be a potential therapeutic agent for skin wound healing by promoting fibroblast proliferation and migration through increasing the wound closure rate corroborating its traditional use. [J Intercult Ethnopharmacol 2016; 5(1.000: 1-6

  7. Differentiation of human multipotent dermal fibroblasts into islet-like cell clusters

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2010-06-01

    Full Text Available Abstract Background We have previously obtained a clonal population of cells from human foreskin that is able to differentiate into mesodermal, ectodermal and endodermal progenies. It is of great interest to know whether these cells could be further differentiated into functional insulin-producing cells. Results Sixty-one single-cell-derived dermal fibroblast clones were established from human foreskin by limiting dilution culture. Of these, two clones could be differentiated into neuron-, adipocyte- or hepatocyte-like cells under certain culture conditions. In addition, those two clones were able to differentiate into islet-like clusters under pancreatic induction. Insulin, glucagon and somatostatin were detectable at the mRNA and protein levels after induction. Moreover, the islet-like clusters could release insulin in response to glucose in vitro. Conclusions This is the first study to demonstrate that dermal fibroblasts can differentiate into insulin-producing cells without genetic manipulation. This may offer a safer cell source for future stem cell-based therapies.

  8. Effects of Panax ginseng extract on human dermal fibroblast proliferation and collagen synthesis.

    Science.gov (United States)

    Lee, Geum-Young; Park, Kang-Gyun; Namgoong, Sik; Han, Seung-Kyu; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung

    2016-03-01

    Current studies of Panax ginseng (or Korean ginseng) have demonstrated that it has various biological effects, including angiogenesis, immunostimulation, antimicrobial and anti-inflammatory effects. Therefore, we hypothesised that P. ginseng may also play an important role in wound healing. However, few studies have been conducted on the wound-healing effects of P. ginseng. Thus, the purpose of this in vitro pilot study was to determine the effects of P. ginseng on the activities of fibroblasts, which are key wound-healing cells. Cultured human dermal fibroblasts were treated with one of six concentrations of P. ginseng: 0, 1, 10 and 100 ng/ml and 1 and 10 µg/ml. Cell proliferation was determined 3 days post-treatment using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay, and collagen synthesis was evaluated by the collagen type I carboxy-terminal propeptide method. Cell proliferation levels and collagen synthesis were compared among the groups. The 10 ng/ml to 1 µg/ml P. ginseng treatments significantly increased cell proliferation, and the 1 ng/ml to 1 µg/ml concentrations significantly increased collagen synthesis. The maximum effects for both parameters were observed at 10 ng/ml. P. ginseng stimulated human dermal fibroblast proliferation and collagen synthesis at an optimal concentration of 10 ng/ml. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  9. Nanomolar aluminum induces expression of the inflammatory systemic biomarker C-reactive protein (CRP) in human brain microvessel endothelial cells (hBMECs).

    Science.gov (United States)

    Alexandrov, Peter N; Kruck, Theodore P A; Lukiw, Walter J

    2015-11-01

    C-reactive protein (CRP; also known as pentraxin 1, PTX1), a 224 amino acid soluble serum protein organized into a novel pentameric ring-shaped structure, is a highly sensitive pathogenic biomarker for systemic inflammation. High CRP levels are found in practically every known inflammatory state, and elevated CRP levels indicate an increased risk for several common age-related human degenerative disorders, including cardiovascular disease, cancer, diabetes, and Alzheimer's disease (AD). While the majority of CRP is synthesized in the liver for secretion into the systemic circulation, it has recently been discovered that an appreciable amount of CRP is synthesized in highly specialized endothelial cells that line the vasculature of the brain and central nervous system (CNS). These highly specialized cells, the major cell type lining the human CNS vasculature, are known as human brain microvessel endothelial cells (hBMECs). In the current pilot study we examined (i) CRP levels in human serum obtained from AD and age-matched control patients; and (ii) analyzed the effects of nanomolar aluminum sulfate on CRP expression in primary hBMECs. The three major findings in this short communication are: (i) that CRP is up-regulated in AD serum; (ii) that CRP serum levels increased in parallel with AD progression; and (iii) for the first time show that nanomolar aluminum potently up-regulates CRP expression in hBMECs to many times its 'basal abundance'. The results suggest that aluminum-induced CRP may in part contribute to a pathophysiological state associated with a chronic systemic inflammation of the human vasculature.

  10. Human amniotic fluid derived cells can competently substitute dermal fibroblasts in a tissue-engineered dermo-epidermal skin analog

    NARCIS (Netherlands)

    Hartmann-Fritsch, Fabienne; Hosper, Nynke; Luginbuehl, Joachim; Biedermann, Thomas; Reichmann, Ernst; Meuli, Martin

    2013-01-01

    Human amniotic fluid comprises cells with high differentiation capacity, thus representing a potential cell source for skin tissue engineering. In this experimental study, we investigated the ability of human amniotic fluid derived cells to substitute dermal fibroblasts and support epidermis formati

  11. SSeCKS/AKAP12 induces repulsion between human prostate cancer and microvessel endothelial cells through the activation of Semaphorin 3F.

    Science.gov (United States)

    Xie, Wen; Su, Wei; Zhang, Lijuan; Shang, Qingkun; Su, Bing

    2017-09-02

    Metastasis remains the primary cause of prostate cancer related death. Cancer cells need to contact endothelial cells and disrupt endothelial junctions to cross the endothelium for invasion and metastasis. The suppression of heterotypic repulsion between cancer and endothelial cells allows cancer cells to invade into the surrounding tissue. Here, we demonstrate that SSeCKS/AKAP12 induced repulsion between human prostate cancer and microvessel endothelial cells, which was mediated by an angiogenesis inhibitor Semaphorin 3F. Moreover, we examined AKAP12 and Semaphorin 3F mRNA expression in 42 prostate cancer and 30 benign prostatic hyperplasia tissue samples, and found that the expression of AKAP12 and Semaphorin 3F mRNA was inversely associated with the degree of aggressiveness of prostate cancer cells and tissues. An ordinal logistic regression analysis indicates that there is a positive association between the expression of AKAP12 and Semaphorin 3F in prostate cancer, suggesting that the activation of Semaphorin 3F by SSeCKS/AKAP12 may be involved in prostate cancer progression and metastasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Role of Age-Associated Alterations of the Dermal Extracellular Matrix Microenvironment in Human Skin Aging: A Mini-Review.

    Science.gov (United States)

    Quan, Taihao; Fisher, Gary J

    2015-01-01

    Human skin is largely composed of a collagen-rich connective tissue, which provides structural and functional support. The collagen-rich connective tissue is produced, organized, and maintained by dermal fibroblasts. During aging, dermal collagen fibrils undergo progressive loss and fragmentation, leading to thin and structurally weakened skin. Age-related alterations of collagen fibrils impairs skin structure and function and creates a tissue microenvironment that promotes age-related skin diseases, such as delayed wound healing and skin cancer development. This mini-review describes cellular mechanisms that give rise to self-perpetuating, collagen fibril fragmentation that creates an age-associated dermal microenvironment, which contributes to decline of human skin function.

  13. Diffusion profile of macromolecules within and between human skin layers for (trans)dermal drug delivery.

    Science.gov (United States)

    Römgens, Anne M; Bader, Dan L; Bouwstra, Joke A; Baaijens, Frank P T; Oomens, Cees W J

    2015-10-01

    Delivering a drug into and through the skin is of interest as the skin can act as an alternative drug administration route for oral delivery. The development of new delivery methods, such as microneedles, makes it possible to not only deliver small molecules into the skin, which are able to pass the outer layer of the skin in therapeutic amounts, but also macromolecules. To provide insight into the administration of these molecules into the skin, the aim of this study was to assess the transport of macromolecules within and between its various layers. The diffusion coefficients in the epidermis and several locations in the papillary and reticular dermis were determined for fluorescein dextran of 40 and 500 kDa using a combination of fluorescent recovery after photobleaching experiments and finite element analysis. The diffusion coefficient was significantly higher for 40 kDa than 500 kDa dextran, with median values of 23 and 9 µm(2)/s in the dermis, respectively. The values only marginally varied within and between papillary and reticular dermis. For the 40 kDa dextran, the diffusion coefficient in the epidermis was twice as low as in the dermis layers. The adopted method may be used for other macromolecules, which are of interest for dermal and transdermal drug delivery. The knowledge about diffusion in the skin is useful to optimize (trans)dermal drug delivery systems to target specific layers or cells in the human skin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Dermal absorption and skin damage following hydrofluoric acid exposure in an ex vivo human skin model.

    Science.gov (United States)

    Dennerlein, Kathrin; Kiesewetter, Franklin; Kilo, Sonja; Jäger, Thomas; Göen, Thomas; Korinth, Gintautas; Drexler, Hans

    2016-04-25

    The wide industrial use of hydrofluoric acid (HF) poses a high risk for accidental dermal exposure. Despite local and systemic hazards associated with HF, information on percutaneous penetration and tissue damage is rare. In the present ex vivo study, the dermal absorption of HF (detected in terms of fluoride ions) was quantified and the skin damaging potential as a function of concentration and exposure duration was assessed. Percutaneous penetration of HF (c=5, 30, and 50%) at 3 exposure durations (3, 5, and 10 min) was investigated in a static diffusion cell model using freshly excised human skin. Alterations of skin were histologically evaluated. HF rapidly penetrated through skin under formation of a considerable intradermal reservoir (∼ 13-67% of total absorbed fluoride). Histologically, epidermal alterations were detected already after exposure to 5% HF for 3 min. The degree of skin damage increased with rising concentration and exposure duration leading to coagulation necrosis. For HF concentrations of ≥ 30%, skin damage progressed into deeper skin layers. Topically applied HF concentration was the principal parameter determining HF induced skin effects. The intradermal HF retention capacity associated with progression and prolongation of HF induced skin effects must be considered in the review of skin decontamination procedures.

  15. Correlations of 3T DCE-MRI Quantitative Parameters with Microvessel Density in a Human-Colorectal-Cancer Xenograft Mouse Model

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sung Jun; An, Chan Sik; Koom, Woong Sub; Song, Ho Taek; Suh, Jin Suck [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2011-11-15

    To investigate the correlation between quantitative dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) parameters and microvascular density (MVD) in a human-colon-cancer xenograft mouse model using 3 Tesla MRI. A human-colon-cancer xenograft model was produced by subcutaneously inoculating 1 X 106 DLD-1 human-colon-cancer cells into the right hind limbs of 10 mice. The tumors were allowed to grow for two weeks and then assessed using MRI. DCE-MRI was performed by tail vein injection of 0.3 mmol/kg of gadolinium. A region of interest (ROI) was drawn at the midpoints along the z-axes of the tumors, and a Tofts model analysis was performed. The quantitative parameters (Ktrans, Kep and Ve) from the whole transverse ROI and the hotspot ROI of the tumor were calculated. Immunohistochemical microvessel staining was performed and analyzed according to Weidner's criteria at the corresponding MRI sections. Additional Hematoxylin and Eosin staining was performed to evaluate tumor necrosis. The Mann-Whitney test and Spearman's rho correlation analysis were performed to prove the existence of a correlation between the quantitative parameters, necrosis, and MVD. Whole transverse ROI of the tumor showed no significant relationship between the MVD values and quantitative DCE-MRI parameters. In the hotspot ROI, there was a difference in MVD between low and high group of Ktrans and Kep that had marginally statistical significance (ps = 0.06 and 0.07, respectively). Also, Ktrans and Kep were found to have an inverse relationship with MVD (r -0.61, p = 0.06 in Ktrans; r = -0.60, p = 0.07 in Kep). Quantitative analysis of T1-weighted DCE-MRI using hotspot ROI may provide a better histologic match than whole transverse section ROI. Within the hotspots, Ktrans and Kep tend to have a reverse correlation with MVD in this colon cancer mouse model.

  16. CYCLOSPORIN A AFFECTS THE PROLIFERATION PROCESS IN NORMAL HUMAN DERMAL FIBROBLASTS.

    Science.gov (United States)

    Janikowska, Grazyna; Janikowsk, Tomasz; Pyka, Alina; Wilczok, Adam; Mazurek, Urszula

    2016-01-01

    Cyclosporin A is an immunosuppressant drug that is used not only in solid transplant rejection, but also in moderate and severe forms of psoriasis, pyoderma, lupus or arthritis. Serious side effects of the drug such as skin cancer or gingival hyperplasia probably start with the latent proliferation process. Little is known about the influence of cyclosporin A on molecular signaling in epidermal tissue. Thus, the aim of this study was to estimate the influence of cyclosporin A on the process of proliferation in normal human dermal fibroblasts. Fibroblasts were cultured in a liquid growth medium in standard conditions. Cyclosporin A was added to the culture after the confluence state. Survival and proliferation tests on human dermal fibroblast cells were performed. Total RNA was extracted from fibroblasts, based on which cDNA and cRNA were synthesized. The obtained cRNA was hybridized with the expression microarray HGU-133A_2.0. Statistical analysis of 2734 mRNAs was performed by the use of GeneSpring 13.0 software and only results with p cyclosporin A) was performed to lower the number of statistically significant results from 679 to 66, and less. Between statistically and biologically significant mRNAs down-regulated were EGRJ, BUBIB, MKI67, CDK1, TTK, E2F8, TPX2, however, the INSIG1, FOSL1, HMOX1 were up-regulated. The experiment data revealed that cyclosporin A up-regulated FOSL1 in the first 24 h, afterwards down-regulating its expression. The HMOX1 gene was up-regulated in the first stage of the experiment (CsA 8 h), however, after the next 16 h of culture time its expression was down-regulated (CsA 24 h), to finally increased in the later time period. The results indicate that cyclosporin A had a significant effect on proliferation in normal human dermal fibroblasts through the changes in the expression of genes related to the cell cycle and transcription regulation process.

  17. Antioxidant effects of the sarsaparilla via scavenging of reactive oxygen species and induction of antioxidant enzymes in human dermal fibroblasts.

    Science.gov (United States)

    Park, Gunhyuk; Kim, Tae-mi; Kim, Jeong Hee; Oh, Myung Sook

    2014-07-01

    Ultraviolet (UV) radiation from sunlight causes distinct changes in collagenous skin tissues as a result of the breakdown of collagen, a major component of the extracellular matrix. UV irradiation downregulates reactive oxygen species (ROS)-elimination pathways, thereby promoting the production of ROS, which are implicated in skin aging. Smilax glabra Roxb (sarsaparilla) has been used in folk medicine because of its many effects. However, no study on the protective effects of sarsaparilla root (SR) on human dermal fibroblasts has been reported previously. Here, we investigated the protective effect of SR against oxidative stress in dermal fibroblasts. SR significantly inhibited oxidative damage and skin-aging factor via mitogen-activated protein kinase signaling pathways. Also, SR decreased Ca(2+) and ROS, mitochondrial membrane potential, dysfunction, and increased glutathione, NAD(P)H dehydrogenase and heme oxygenase-1. These results demonstrate that SR can protect dermal fibroblasts against UVB-induced skin aging via antioxidant effects.

  18. S-arylcysteine-keratin adducts as biomarkers of human dermal exposure to aromatic hydrocarbons.

    Science.gov (United States)

    Kang-Sickel, Juei-Chuan C; Fox, Donii D; Nam, Tae-Gyu; Jayaraj, Karupiah; Ball, Louise M; French, John E; Klapper, David G; Gold, Avram; Nylander-French, Leena A

    2008-04-01

    To measure biomarkers of skin exposure to ubiquitous industrial and environmental aromatic hydrocarbons, we sought to develop an ELISA to quantitate protein adducts of metabolites of benzene and naphthalene in the skin of exposed individuals. We hypothesized that electrophilic arene oxides formed by CYP isoforms expressed in the human skin react with nucleophilic sites on keratin, the most abundant protein in the stratum corneum that is synthesized de novo during keratinocyte maturation and differentiation. The sulfhydryl groups of cysteines in the head region of the keratin proteins 1 (K1) and 10 (K10) are likely targets. The following synthetic S-arylcysteines were incorporated into 10-mer head sequences of K1 [GGGRFSS( S-aryl-C)GG] and K10 [GGGG( S-aryl-C)GGGGG] to form the predicted immunogenic epitopes for antibody production for ELISA: S-phenylcysteine-K1 (SPK1), S-phenylcysteine-K10 (SPK10), S-(1-naphthyl)cysteine-K1 (1NK1), S-(1-naphthyl)cysteine-K10 (1NK10), S-(2-naphthyl)cysteine-K1 (2NK1), and S-(2-naphthyl)cysteine-K10 (2NK10). Analysis by ELISA was chosen based on its high throughput and sensitivity, and low cost. The synthetic modified oligopeptides, available in quantity, served both as immunogens and as chemical standards for quantitative ELISA. Polyclonal rabbit antibodies produced against the naphthyl-modified keratins reacted with their respective antigens with threshold sensitivities of 15-31 ng/mL and high specificity over a linear range up to 500 ng/mL. Anti- S-phenylcysteine antibodies were not sufficiently specific or sensitive toward the target antigens for use in ELISA under our experimental conditions. In dermal tape-strip samples collected from 13 individuals exposed to naphthalene-containing jet fuel, naphthyl-conjugated peptides were detected at levels from 0.343 +/- 0.274 to 2.34 +/- 1.61 pmol adduct/microg keratin but were undetectable in unexposed volunteers. This is the first report of adducts of naphthalene (or of any polycyclic

  19. Genotoxicity assessment of reactive and disperse textile dyes using human dermal equivalent (3D cell culture system).

    Science.gov (United States)

    Leme, Daniela Morais; Primo, Fernando Lucas; Gobo, Graciely Gomides; da Costa, Cleber Rafael Vieira; Tedesco, Antonio Claudio; de Oliveira, Danielle Palma

    2015-01-01

    Thousands of dyes are marketed daily for different purposes, including textile dyeing. However, there are several studies reporting attributing to dyes deleterious human effects such as DNA damage. Humans may be exposed to toxic dyes through either ingestion of contaminated waters or dermal contact with colored garments. With respect to dermal exposure, human skin equivalents are promising tools to assess in vitro genotoxicity of dermally applied chemicals using a three-dimensional (3D) model to mimic tissue behavior. This study investigated the sensitivity of an in-house human dermal equivalent (DE) for detecting genotoxicity of textile dyes. Two azo (reactive green 19 [RG19] and disperse red 1[DR1]) dyes and one anthraquinone (reactive blue 2 [RB2]) dye were analyzed. RG19 was genotoxic for DE in a dose-responsive manner, whereas RB2 and DR1 were nongenotoxic under the conditions tested. These findings are not in agreement with previous genotoxicological assessment of these dyes carried out using two-dimensional (2D) cell cultures, which showed that DR1 was genotoxic in human hepatoma cells (HepG2) and RG19 was nongenotoxic for normal human dermal fibroblasts (NHDF). These discrepant results probably may be due to differences between metabolic activities of each cell type (organ-specific genotoxicity, HepG2 and fibroblasts) and the test setup systems used in each study (fibroblasts cultured at 2D and three-dimensional [3D] culture systems). Genotoxicological assessment of textile dyes in context of organ-specific genotoxicity and using in vitro models that more closely resemble in vivo tissue architecture and physiology may provide more reliable estimates of genotoxic potential of these chemicals.

  20. Cellular characterization of human dermal fibroblasts, focus on mitochondria and maple syrup urine disease

    DEFF Research Database (Denmark)

    Fernandez-Guerra, Paula

    and functions are expressed in HDFs’ culture environment. Studies of molecular disease mechanisms often point to the involvement of mitochondria. Mitochondria are involved in the regulation of cell cycle and programmed cell death as well as cellular stress responses because they are the main producers......Cell phenotyping of human dermal fibroblasts (HDFs) from patients with inherited metabolic diseases (IMDs) provide invaluable information for diagnosis, disease aetiology, predicting prognosis, and monitoring of treatments. HDFs possess the genetic composition of patients and many pathways...... of reactive oxygen species (ROS). Advances in technology help the study of complex situations with large amount of data, like cellular phenotyping in cell culture. Image cytometry is an emerging technique that combines morphological information and fluorescent intensity data from single cells. We defined...

  1. Human amniotic fluid derived cells can competently substitute dermal fibroblasts in a tissue-engineered dermo-epidermal skin analog

    OpenAIRE

    2013-01-01

    PURPOSE: Human amniotic fluid comprises cells with high differentiation capacity, thus representing a potential cell source for skin tissue engineering. In this experimental study, we investigated the ability of human amniotic fluid derived cells to substitute dermal fibroblasts and support epidermis formation and stratification in a humanized animal model. METHODS: Dermo-epidermal skin grafts with either amniocytes or with fibroblasts in the dermis were compared in a rat model. Full-thicknes...

  2. Paracoccidioides brasiliensis interacts with dermal dendritic cells and keratinocytes in human skin and oral mucosa lesions.

    Science.gov (United States)

    Silva, Wellington Luiz Ferreira da; Pagliari, Carla; Duarte, Maria Irma Seixas; Sotto, Mirian N

    2016-05-01

    Paracoccidioidomycosis (PCM) is a systemic disease caused by the fungus Paracoccidioides brasiliensis and Paracoccidioides lutzii. In PCM the skin and oral mucosa are often affected. Dendritic cells and keratinocytes of the integument play a role in innate and adaptive immune response against pathogens, due to their function as antigen presenting cells. Aiming to verify the interaction of P. brasiliensis with these cell populations, we studied 52 skin and 47 oral mucosa samples taken from patients with proven diagnosis of PCM. The biopsies were subjected to immunohistochemical and/or immunofluorescence staining with anti-factor XIIIa (marker of dermal dendrocytes), anti-CD207 (marker of mature Langerhans cells), anti-pan cytokeratins (AE1-AE3) and anti-P. brasiliensis antibodies. Analyses with confocal laser microscopy were also performed for better visualization of the interaction between keratinocytes and the fungi. In sum, 42% of oral mucosa samples displayed yeast forms in Factor XIIIa dermal dendrocytes cytoplasm. Langerhans cells in skin and oral mucosa samples did not show yeast cells in their cytoplasm. In sum, 54% of skin and 60% of mucosal samples displayed yeast cells in the cytoplasm of keratinocytes. The parasitism of keratinocytes may represent a possible mechanism of evasion of the fungus to local immune mechanisms. Factor XIIIa dendrocytes and keratinocytes may be acting as antigen-presenting cells to fulfill the probably impaired function of Langerhans cells in skin and oral mucosa of human PCM. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Brugia malayi infective larvae fail to activate Langerhans cells and dermal dendritic cells in human skin.

    Science.gov (United States)

    Cotton, R N; McDonald-Fleming, R; Boyd, A; Spates, K; Nutman, T B; Tolouei Semnani, R

    2015-02-01

    Filarial infection in humans is initiated when a mosquito deposits third-stage parasite larvae (L3) in the skin. Langerhans cells (LCs) and dermal dendritic cells (DDCs) are the first cells that the parasite encounters, and L3s must evade these highly effective antigen-presenting cells to establish infection. To assess LC and DDC responses to L3 in human skin, we employed three models of increasing physiologic relevance: in vitro-generated LCs, epidermal blister explants and full-thickness human skin sections. In vitro-generated LCs expressed TLR1-10 and robustly produced IL-6 and TNF-α in response to PolyI:C, but pre-exposure to L3s did not alter inflammatory cytokine production or TLR expression. L3s did not modulate expression of LC markers CDH1, CD207, or CD1a, or the regulatory products TSLP or IDO in epidermal explants or in vitro-generated LC. LC, CD14+ DDC, CD1c+ DC and CD141+ DC from human skin sections were analysed by flow cytometry. While PolyI:C potently induced CCL22 production in LC, CD1c+ DC, and CD141+ DC, and IL-10 production in LC, L3s did not modulate the numbers of or cytokine production by any skin DC subset. L3s broadly failed to activate or modulate LCs or DDCs, suggesting filarial larvae expertly evade APC detection in human skin.

  4. The vascular renin-angiotensin system contributes to blunted vasodilation induced by transient high pressure in human adipose microvessels.

    Science.gov (United States)

    Durand, Matthew J; Phillips, Shane A; Widlansky, Michael E; Otterson, Mary F; Gutterman, David D

    2014-07-01

    Increased intraluminal pressure can reduce endothelial function in resistance arterioles; however, the mechanism of this impairment is unknown. The purpose of this study was to determine the effect of local renin-angiotensin system inhibition on the pressure-induced blunting of endothelium-dependent vasodilation in human adipose arterioles. Arterioles (100-200 μm) were dissected from fresh adipose surgical specimens, cannulated onto glass micropipettes, pressurized to an intraluminal pressure of 60 mmHg, and constricted with endothelin-1. Vasodilation to ACh was assessed at 60 mmHg and again after a 30-min exposure to an intraluminal pressure of 150 mmHg. The vasodilator response to ACh was significantly reduced in vessels exposed to 150 mmHg. Exposure of the vessels to the superoxide scavenger polyethylene glycol-SOD (100 U/ml), the ANG II type 1 receptor antagonist losartan (10(-6) mol/l), or the angiotensin-converting enzyme inhibitor captopril (10(-5) mol/l) prevented the pressure-induced reduction in ACh-dependent vasodilation observed in untreated vessels. High intraluminal pressure had no effect on papaverine-induced vasodilation or ANG II sensitivity. Increased intraluminal pressure increased dihydroethidium fluorescence in cannulated vessels, which could be prevented by polyethylene glycol-SOD or losartan treatment and endothelial denudation. These data indicate that high intraluminal pressure can increase vascular superoxide and reduce nitric oxide-mediated vasodilation via activation of the vascular renin-angiotensin system. This study provides evidence showing that the local renin-angiotensin system in the human microvasculature may be pressure sensitive and contribute to endothelial dysfunction after acute bouts of hypertension.

  5. Modulation of cGMP by human HO-1 retrovirus gene transfer in pulmonary microvessel endothelial cells.

    Science.gov (United States)

    Abraham, Nader G; Quan, Shuo; Mieyal, Paul A; Yang, Liming; Burke-Wolin, Theresa; Mingone, Christopher J; Goodman, Alvin I; Nasjletti, Alberto; Wolin, Michael S

    2002-11-01

    Carbon monoxide (CO) stimulates guanylate cyclase (GC) and increases guanosine 3',5'-cyclic monophosphate (cGMP) levels. We transfected rat-lung pulmonary endothelial cells with a retrovirus-mediated human heme oxygenase (hHO)-1 gene. Pulmonary cells that expressed hHO-1 exhibited a fourfold increase in HO activity associated with decreases in the steady-state levels of heme and cGMP without changes in soluble GC (sGC) and endothelial nitric oxide synthase (NOS) proteins or basal nitrite production. Heme elicited significant increases in CO production and intracellular cGMP levels in both pulmonary endothelial and pulmonary hHO-1-expressing cells. N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOS, significantly decreased cGMP levels in heme-treated pulmonary endothelial cells but not heme-treated hHO-1-expressing cells. In the presence of exogenous heme, CO and cGMP levels in hHO-1-expressing cells exceeded the corresponding levels in pulmonary endothelial cells. Acute exposure of endothelial cells to SnCl2, which is an inducer of HO-1, increased cGMP levels, whereas chronic exposure decreased heme and cGMP levels. These results indicate that prolonged overexpression of HO-1 ultimately decreases sGC activity by limiting the availability of cellular heme. Heme activates sGC and enhances cGMP levels via a mechanism that is largely insensitive to NOS inhibition.

  6. Influence of mechanical stimulation on human dermal fibroblasts derived from different body sites.

    Science.gov (United States)

    Kuang, Ruixia; Wang, Zhiguo; Xu, Quanchen; Liu, Su; Zhang, Weidong

    2015-01-01

    Mechanical stimulation is highly associated with pathogenesis of human hypertrophic scar. Although much work has focused on the influence of mechanical stress on fibroblast populations from various tissues and organs in the human body, their effects on cultured dermal fibroblasts by the area of the body have not been as well studied. In this study, cultures of skin fibroblasts from two different body sites were subjected to cyclic mechanical stimulation with a 10% stretching amplitude at a frequency of 0.1 Hz for 24, 36 and 48 hours, respectively, and thereafter harvested for experimental assays. Fibroblasts from scapular upper back skin, subjected to mechanical loads for 36 and 48 hours, respectively, were observed to proliferate at a higher rate and reach confluent more rapidly during in vitro culturing, had higher expression levels of mRNA and protein production of integrin β1, p130Cas and TGF β1 versus those from medial side of upper arm. These data indicate that skin fibroblasts, with regard to originated body sites studied in the experiments, display a diversity of mechanotransduction properties and biochemical reactions in response to applied mechanical stress, which contributes to the increased susceptibility to hypertrophic scars formation at certain areas of human body characterized by higher skin and muscle tension.

  7. Effect of UVA Fluence Rate on Indicators of Oxidative Stress in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    James D. Hoerter, Christopher S. Ward, Kyle D. Bale, Admasu N. Gizachew, Rachelle Graham, Jaclyn Reynolds, Melanie E. Ward, Chesca Choi, Jean-Leonard Kagabo, Michael Sauer, Tara Kuipers, Timothy Hotchkiss, Nate Banner, Renee A. Chellson, Theresa Ohaeri, L

    2008-01-01

    Full Text Available During the course of a day human skin is exposed to solar UV radiation that fluctuates in fluence rate within the UVA (290-315 nm and UVB (315-400 nm spectrum. Variables affecting the fluence rate reaching skin cells include differences in UVA and UVB penetrating ability, presence or absence of sunscreens, atmospheric conditions, and season and geographical location where the exposure occurs. Our study determined the effect of UVA fluence rate in solar-simulated (SSR and tanning-bed radiation (TBR on four indicators of oxidative stress---protein oxidation, glutathione, heme oxygenase-1, and reactive oxygen species--in human dermal fibroblasts after receiving equivalent UVA and UVB doses. Our results show that the higher UVA fluence rate in TBR increases the level of all four indicators of oxidative stress. In sequential exposures when cells are exposed first to SSR, the lower UVA fluence rate in SSR induces a protective response that protects against oxidative stress following a second exposure to a higher UVA fluence rate. Our studies underscore the important role of UVA fluence rate in determining how human skin cells respond to a given dose of radiation containing both UVA and UVB radiation.

  8. Androgen receptor accelerates premature senescence of human dermal papilla cells in association with DNA damage.

    Directory of Open Access Journals (Sweden)

    Yi-Chien Yang

    Full Text Available The dermal papilla, located in the hair follicle, expresses androgen receptor and plays an important role in hair growth. Androgen/Androgen receptor actions have been implicated in the pathogenesis of androgenetic alopecia, but the exact mechanism is not well known. Recent studies suggest that balding dermal papilla cells exhibit premature senescence, upregulation of p16(INK4a, and nuclear expression of DNA damage markers. To investigate whether androgen/AR signaling influences the premature senescence of dermal papilla cells, we first compared frontal scalp dermal papilla cells of androgenetic alopecia patients with matched normal controls and observed that premature senescence is more prominent in the dermal papilla cells of androgenetic alopecia patients. Exposure of androgen induced premature senescence in dermal papilla cells from non-balding frontal and transitional zone of balding scalp follicles but not in beard follicles. Overexpression of the AR promoted androgen-induced premature senescence in association with p16(INK4a upregulation, whereas knockdown of the androgen receptor diminished the effects of androgen. An analysis of γ-H2AX expression in response to androgen/androgen receptor signaling suggested that DNA damage contributes to androgen/androgen receptor-accelerated premature senescence. These results define androgen/androgen receptor signaling as an accelerator of premature senescence in dermal papilla cells and suggest that the androgen/androgen receptor-mediated DNA damage-p16(INK4a axis is a potential therapeutic target in the treatment of androgenetic alopecia.

  9. Evaluation of functions and tissue compatibility of poly (D,L-lactic-co-glycolic acid) seeded with human dermal fibroblasts.

    Science.gov (United States)

    Yang, Won-Sun; Roh, Hye-Won; Lee, Won Kyu; Ryu, Gyu Ha

    2006-01-01

    In tissue engineering and wound-healing applications, dermal substitutes are used to provide fibroblasts with the mechanical support for their growth and then to facilitate the skin formation. In this study, three-dimensional porous poly(lactic-co-glycolic acid) (PLGA) 65/35 scaffolds were prepared and then the composites of the scaffolds and human fetal dermal fibroblasts were fabricated as a tissue-engineered dermal substitute. The function and tissue compatibility of the artificial dermal substitute were evaluated at the levels of gene expression (by RT-PCR) and protein expression (total collagen quantities), as well as by histological and immunohistochemical analysis. The PCR products indicated that the mRNA of type-I collagen, mainly secreted by the fibroblasts onto the PLGA scaffolds, was clearly expressed after 4 weeks. The amount of total collagen synthesized from the cells was shown to increase gradually during the initial culture period and slightly decreased afterwards. After 8 weeks of culture, the fibroblasts were well attached and migrated entirely throughout the pores of the PLGA scaffold with normal function. Furthermore, the positively stained type-I collagen was intensively detected throughout the pores. These results suggest that the function and tissue compatibility may be important criteria in evaluating an artificial tissue-engineered skin.

  10. Human Keratinocyte Growth and Differentiation on Acellular Porcine Dermal Matrix in relation to Wound Healing Potential

    Directory of Open Access Journals (Sweden)

    Robert Zajicek

    2012-01-01

    Full Text Available A number of implantable biomaterials derived from animal tissues are now used in modern surgery. Xe-Derma is a dry, sterile, acellular porcine dermis. It has a remarkable healing effect on burns and other wounds. Our hypothesis was that the natural biological structure of Xe-Derma plays an important role in keratinocyte proliferation and formation of epidermal architecture in vitro as well as in vivo. The bioactivity of Xe-Derma was studied by a cell culture assay. We analyzed growth and differentiation of human keratinocytes cultured in vitro on Xe-Derma, and we compared the results with formation of neoepidermis in the deep dermal wounds treated with Xe-Derma. Keratinocytes cultured on Xe-Derma submerged in the culture medium achieved confluence in 7–10 days. After lifting the cultures to the air-liquid interface, the keratinocytes were stratified and differentiated within one week, forming an epidermis with basal, spinous, granular, and stratum corneum layers. Immunohistochemical detection of high-molecular weight cytokeratins (HMW CKs, CD29, p63, and involucrin confirmed the similarity of organization and differentiation of the cultured epidermal cells to the normal epidermis. The results suggest that the firm natural structure of Xe-Derma stimulates proliferation and differentiation of human primary keratinocytes and by this way improves wound healing.

  11. Complete artificial saliva alters expression of proinflammatory cytokines in human dermal fibroblasts.

    Science.gov (United States)

    Malpass, Gloria E; Arimilli, Subhashini; Prasad, Gaddamanugu L; Howlett, Allyn C

    2013-07-01

    Complete artificial saliva (CAS) is a saliva substitute often used as a vehicle for test articles, including smokeless tobacco products. In the course of a study employing normal adult human dermal fibroblasts (HDFa) as a model in vitro, we discovered that CAS as a vehicle introduced a significant change in the expression of proinflammatory cytokines. To determine the effects of CAS on gene expression, real-time quantitative reverse-transcriptase PCR gene array analysis was used. Results indicate that robust changes in the expression of the proinflammatory cytokine interleukin 8 (IL8) and the vascular cell adhesion molecule 1 (VCAM1) occur within 5h of exposure to CAS. To determine whether CAS also alters cytokine release into the culture media, cytometric bead array assays for human inflammatory cytokines were performed. Analysis shows that CAS induced the release of IL8 and IL6. This study focused on determining which components in CAS were responsible for the proinflammatory response in HDFa. The following components were investigated: α-amylase, lysozyme, acid phosphatase, and urea. Results demonstrated that enzymatically active α-amylase induced gene expression for proinflammatory cytokines IL8, IL6, tumor necrosis factor-α, and IL1α and for VCAM1. Therefore, it is important to carefully evaluate the "vehicle effects" of CAS and its components in in vitro toxicology research.

  12. Platelet-Rich Fibrin Lysate Can Ameliorate Dysfunction of Chronically UVA-Irradiated Human Dermal Fibroblasts.

    Science.gov (United States)

    Wirohadidjojo, Yohanes Widodo; Budiyanto, Arief; Soebono, Hardyanto

    2016-09-01

    To determine whether platelet-rich fibrin lysate (PRF-L) could restore the function of chronically ultraviolet-A (UVA)-irradiated human dermal fibroblasts (HDFs), we isolated and sub-cultured HDFs from six different human foreskins. HDFs were divided into two groups: those that received chronic UVA irradiation (total dosages of 10 J cm⁻²) and those that were not irradiated. We compared the proliferation rates, collagen deposition, and migration rates between the groups and between chronically UVA-irradiated HDFs in control and PRF-L-treated media. Our experiment showed that chronic UVA irradiation significantly decreased (p<0.05) the proliferation rates, migration rates, and collagen deposition of HDFs, compared to controls. Compared to control media, chronically UVA-irradiated HDFs in 50% PRF-L had significantly increased proliferation rates, migration rates, and collagen deposition (p<0.05), and the migration rates and collagen deposition of chronically UVA-irradiated HDFs in 50% PRF-L were equal to those of normal fibroblasts. Based on this experiment, we concluded that PRF-L is a good candidate material for treating UVA-induced photoaging of skin, although the best method for its clinical application remains to be determined.

  13. Apigenin prevents ultraviolet-B radiation induced cyclobutane pyrimidine dimers formation in human dermal fibroblasts.

    Science.gov (United States)

    Britto, S Mary; Shanthakumari, D; Agilan, B; Radhiga, T; Kanimozhi, G; Prasad, N Rajendra

    2017-09-01

    Exposure to solar ultraviolet-B (UVB) radiation leads to the formation of cyclobutane pyrimidine dimers (CPDs). We investigated the protective effect of apigenin against UVB-induced CPDs formation in human dermal fibroblasts cells (HDFa). For this purpose, HDFa cells were treated with apigenin (15μM) prior to UVB irradiation (20mJ/cm(2)); DNA damage and subsequent molecular end points were observed. Exposure to UVB radiation increased significant CPDs formation in HDFa cells and the frequencies of CPDs were reduced by treatment with apigenin (15μM). UVB-induced CPDs downregulates the expression of nucleotide excision repair (NER) genes such as xeroderma pigmentosum complementation group C, B, G and F (XPC, XPB, XPG and XPF), transcription factor II human (TFIIH) and excision repair cross-complementation group 1 (ERCC1) in HDFa cells. Conversely, apigenin treatment restored UVB-induced loss of NER proteins in HDFa cells, which indicates its preventive effect against CPDs formation. Besides, single low dose UVB-exposure induced nuclear fragmentation, apoptotic frequency and apoptotic proteins expression (Bax and Caspase-3) have been prevented by the apigenin pretreatment. Furthermore, apigenin exhibits strong UV absorbance property and showed 10.08 SPF value. Thus, apigenin can protect skin cells against UVB-induced CPDs formation probably through its sunscreen effect. Hence, apigenin can be considered as an effective protective agent against UV induced skin damages. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Gene Signature of Human Oral Mucosa Fibroblasts: Comparison with Dermal Fibroblasts and Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Keiko Miyoshi

    2015-01-01

    Full Text Available Oral mucosa is a useful material for regeneration therapy with the advantages of its accessibility and versatility regardless of age and gender. However, little is known about the molecular characteristics of oral mucosa. Here we report the first comparative profiles of the gene signatures of human oral mucosa fibroblasts (hOFs, human dermal fibroblasts (hDFs, and hOF-derived induced pluripotent stem cells (hOF-iPSCs, linking these with biological roles by functional annotation and pathway analyses. As a common feature of fibroblasts, both hOFs and hDFs expressed glycolipid metabolism-related genes at higher levels compared with hOF-iPSCs. Distinct characteristics of hOFs compared with hDFs included a high expression of glycoprotein genes, involved in signaling, extracellular matrix, membrane, and receptor proteins, besides a low expression of HOX genes, the hDFs-markers. The results of the pathway analyses indicated that tissue-reconstructive, proliferative, and signaling pathways are active, whereas senescence-related genes in p53 pathway are inactive in hOFs. Furthermore, more than half of hOF-specific genes were similarly expressed to those of hOF-iPSC genes and might be controlled by WNT signaling. Our findings demonstrated that hOFs have unique cellular characteristics in specificity and plasticity. These data may provide useful insight into application of oral fibroblasts for direct reprograming.

  15. Platelet-Rich Fibrin Lysate Can Ameliorate Dysfunction of Chronically UVA-Irradiated Human Dermal Fibroblasts

    Science.gov (United States)

    Budiyanto, Arief; Soebono, Hardyanto

    2016-01-01

    To determine whether platelet-rich fibrin lysate (PRF-L) could restore the function of chronically ultraviolet-A (UVA)-irradiated human dermal fibroblasts (HDFs), we isolated and sub-cultured HDFs from six different human foreskins. HDFs were divided into two groups: those that received chronic UVA irradiation (total dosages of 10 J cm-2) and those that were not irradiated. We compared the proliferation rates, collagen deposition, and migration rates between the groups and between chronically UVA-irradiated HDFs in control and PRF-L-treated media. Our experiment showed that chronic UVA irradiation significantly decreased (p<0.05) the proliferation rates, migration rates, and collagen deposition of HDFs, compared to controls. Compared to control media, chronically UVA-irradiated HDFs in 50% PRF-L had significantly increased proliferation rates, migration rates, and collagen deposition (p<0.05), and the migration rates and collagen deposition of chronically UVA-irradiated HDFs in 50% PRF-L were equal to those of normal fibroblasts. Based on this experiment, we concluded that PRF-L is a good candidate material for treating UVA-induced photoaging of skin, although the best method for its clinical application remains to be determined. PMID:27401663

  16. Granulocyte macrophage colony stimulating factor (GM-CSF biological actions on human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    S Montagnani

    2009-12-01

    Full Text Available Fibroblasts are involved in all pathologies characterized by increased ExtraCellularMatrix synthesis, from wound healing to fibrosis. Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF is a cytokine isolated as an hemopoietic growth factor but recently indicated as a differentiative agent on endothelial cells. In this work we demonstrated the expression of the receptor for GM-CSF (GMCSFR on human normal skin fibroblasts from healthy subjects (NFPC and on a human normal fibroblast cell line (NHDF and we try to investigate the biological effects of this cytokine. Human normal fibroblasts were cultured with different doses of GM-CSF to study the effects of this factor on GMCSFR expression, on cell proliferation and adhesion structures. In addition we studied the production of some Extra-Cellular Matrix (ECM components such as Fibronectin, Tenascin and Collagen I. The growth rate of fibroblasts from healthy donors (NFPC is not augmented by GM-CSF stimulation in spite of increased expression of the GM-CSFR. On the contrary, the proliferation of normal human dermal fibroblasts (NHDF cell line seems more influenced by high concentration of GM-CSF in the culture medium. The adhesion structures and the ECM components appear variously influenced by GM-CSF treatment as compared to fibroblasts cultured in basal condition, but newly only NHDF cells are really induced to increase their synthesis activity. We suggest that the in vitro treatment with GM-CSF can shift human normal fibroblasts towards a more differentiated state, due or accompanied by an increased expression of GM-CSFR and that such “differentiation” is an important event induced by such cytokine.

  17. Human skin gene expression: Natural (trans) resveratrol versus five resveratrol analogs for dermal applications.

    Science.gov (United States)

    Lephart, Edwin D; Andrus, Merritt B

    2017-09-01

    Resveratrol (RV) is a polyphenolic compound naturally produced by plants. Polyphenolic compounds incorporated into medicinal products are beneficial but, RV is rapidly metabolized with an associated decline in biological activity. This study tested RV as the standard and compared five structurally modified RV analogs: butyrate, isobutyrate, palmitoate, acetate, and diacetate (to improve functionality) at 1% concentration(s) for 24 h in epiderm full thickness cultures by gene array/qPCR mRNA analysis. When silent mating type information regulation 2 homolog 1, extracellular elements (collagen1A1, 3A1, 4A1; elastin, tissue inhibitor of matrix metalloproteinase 1, fibrillin 1 laminin beta1 and matrix metalloproteinase 9), anti-aging and aging genes, inflammatory biomarkers (interleukin-1A [IL1A], IL1R2, IL-6 and IL-8), nerve growth factor, and the antioxidants (proliferating cell nuclear antigen, catalase, superoxide dismutase and metallothionein 1H/2H) were evaluated, ranking each from highest-to-lowest for gene expression: butyrate > isobutyrate > diacetate > acetate > palmitoate. This study showed that the butyrate and isobutyrate analogs are more biologically active compared to resveratrol and have potential use in topical applications to improve dermal and other health applications. Impact statement Resveratrol has been reported to have a wide variety of health benefits but its rapid metabolism especially after oral ingestion results in very low bioavailability. Notably, the first human skin gene expression study of resveratrol was not published until 2014. The purpose of this study was to determine if increased stability and biological activity could be obtained by modifying the chemical structure of natural (trans) resveratrol and quantifying human gene expression by qPCR of skin biomarkers that enhance dermal health. Five resveratrol analogs were synthesized that increased their lipophilic index to enhance tissue penetration and augment

  18. Healing rates for challenging rotator cuff tears utilizing an acellular human dermal reinforcement graft

    Science.gov (United States)

    Agrawal, Vivek

    2012-01-01

    Purpose: This study presents a retrospective case series of the clinical and structural outcomes (1.5 T MRI) of arthroscopic rotator cuff repair with acellular human dermal graft reinforcement performed by a single surgeon in patients with large, massive, and previously repaired rotator cuff tears. Materials and Methods: Fourteen patients with mean anterior to posterior tear size 3.87 ± 0.99 cm (median 4 cm, range 2.5–6 cm) were enrolled in the study and were evaluated for structural integrity using a high-field (1.5 T) MRI at an average of 16.8 months after surgery. The Constant-Murley scores, the Flexilevel Scale of Shoulder Function (Flex SF), scapular plane abduction, and strength were analyzed. Results: MRI results showed that the rotator cuff repair was intact in 85.7% (12/14) of the patients studied. Two patients had a Sugaya Type IV recurrent tear (2 of 14; 14.3%), which were both less than 1 cm. The Constant score increased from a preoperative mean of 49.72 (range 13–74) to a postoperative mean of 81.07 (range 45–92) (P value = 0.009). Flexilevel Scale of Shoulder Function (Flex SF) Score normalized to a 100-point scale improved from a preoperative mean of 53.69 to a postoperative mean of 79.71 (P value = 0.003). The Pain Score improved from a preoperative mean of 7.73 to a postoperative mean of 13.57 (P value = 0.008). Scapular plane abduction improved from a preoperative mean of 113.64° to a postoperative mean of 166.43° (P value = 0.010). The strength subset score improved from a preoperative mean of 1.73 kg to a postoperative mean of 7.52 kg (P value = 0.006). Conclusions: This study presents a safe and effective technique that may help improve the healing rates of large, massive, and revision rotator cuff tears with the use of an acellular human dermal allograft. This technique demonstrated favorable structural healing rates and statistically improved functional outcomes in the near term. Level of Evidence: 4. Retrospective case series. PMID

  19. Application of dermal microdialysis for the determination of bioavailability of clobetasol propionate applied to the skin of human subjects

    DEFF Research Database (Denmark)

    Au, W L; Skinner, M F; Benfeldt, E

    2012-01-01

    Dermal microdialysis was used to assess the bioavailability of a topical corticosteroid, clobetasol propionate, following application onto the skin of human subjects. The penetration of clobetasol propionate from a 4% m/v ethanolic solution applied onto 4 sites on one forearm of healthy human...... drug of interest. Furthermore, the study clearly demonstrated the application of dermal microdialysis as a valuable tool to assess the bioavailability/bioequivalence of clobetasol propionate penetration into the skin following topical application....... volunteers was studied. A lipid emulsion, Intralipid®, was used as the perfusate and linear microdialysis probes with a 2-kDa cutoff were inserted intradermally at the designated sites. The results indicated that Intralipid could be used as a suitable perfusate for in vivo microdialysis of this lipophilic...

  20. Increased dermal mast cell prevalence and susceptibility to development of basal cell carcinoma in humans

    DEFF Research Database (Denmark)

    Grimbaldeston, Michele A; Skov, Lone; Finlay-Jones, John J;

    2002-01-01

    Exposure to ultraviolet B (UVB) radiation (280-320 nm) is the primary etiologic factor associated with the development of basal cell carcinoma (BCC). The outgrowth of these keratinocyte-derived skin lesions is enhanced by the ability of UVB to impair an immune response that would otherwise......, display variations in dermal mast cell prevalence. In a study of Danish and South Australian BCC patients and control subjects, one 4-mm punch biopsy of non-sun-exposed buttock skin was sampled from each participant. This skin site was investigated to avoid any changes in mast cell prevalence caused...... dermal area (expressed as mast cells per square millimeter). This technique enabled us to detect heterogeneity of dermal mast cell prevalence in buttock skin between individuals and provided evidence of an association between high dermal mast cell prevalence and BCC development in two diverse populations...

  1. Human acellular dermal matrix for repair of abdominal wall defects: review of clinical experience and experimental data.

    Science.gov (United States)

    Holton, Luther H; Kim, Daniel; Silverman, Ronald P; Rodriguez, Eduardo D; Singh, Navin; Goldberg, Nelson H

    2005-01-01

    The use of prosthetic mesh for the tension-free repair of incisional hernias has been shown to be more effective than primary suture repair. Unfortunately, prosthetic materials can be a suboptimal choice in a variety of clinical scenarios. In general, prosthetic materials should not be implanted into sites with known contamination or infection because they lack an endogenous vascular network and are thus incapable of clearing bacteria. This is of particular relevance to the repair of recurrent hernias, which are often refractory to repair because of indolent bacterial colonization that weakens the site and retards appropriate healing. Although fascia lata grafts and muscle flaps can be employed for tension-free hernia repairs, they carry the potential for significant donor site morbidity. Recently, a growing number of clinicians have used human acellular dermal matrix as a graft material for the tension-free repair of ventral hernias. This material has been shown to become revascularized in both animal and human subjects. Once repopulated with a vascular network, this graft material is theoretically capable of clearing bacteria, a property not found in prosthetic graft materials. Unlike autologous materials such as fascial grafts and muscle flaps, acellular dermal matrix can be used without subjecting the patient to additional morbidity in the form of donor site complications. This article presents a thorough review of the current literature, describing the properties of human acellular dermal matrix and discussing both animal and human studies of its clinical performance. In addition to the review of previously published clinical experiences, we discuss our own preliminary results with the use of acellular dermal matrix for ventral hernia repair in 46 patients.

  2. Immunopotentiator from Pantoea agglomerans 1 (IP-PA1) Promotes Murine Hair Growth and Human Dermal Papilla Cell Gene Expression.

    Science.gov (United States)

    Wakame, Koji; Okawa, Hiroshi; Komatsu, Ken-Ich; Nakata, Akifumi; Sato, Keisuke; Ingawa, Hiroyuki; Kohchi, Chie; Nishizawa, Takashi; Soma, Gen-Ichiro

    2016-07-01

    The lipopolysaccharide (LPS)-like compound derived from Pantoea agglomerans (immunopotentiator from Pantoea agglomerans 1 (IP-PA1)) has been used not only as dietary supplement or cosmetic for humans, but also by Japanese veterinarians as an anti-tumor, anti-allergy, "keep a fine coat of fur" and hair growth-promoting functional food for dogs and cats. In the present study, we focused on the hair growth-promoting effects of IP-PA1 on a hair-shaved animal model and its mechanism of action. We also investigated its potential on gene expression after stimulating human dermal papilla cells with IP-PA1. The hair on the back of a C3H/HeN mouse was shaved and IP-PA1 was orally administered or applied to the skin. The status of hair growth was observed and recorded for 14 days. Skin was collected and histological tissue examination was performed with respect to hair growth status using hematoxylin and eosin staining. After IP-PA1 administration (2 and 10 μg/ml) to human dermal papilla cell culture system for 24 h, fibroblast growth factor-7 (FGF-7) and vascular endothelial growth factor (VEGF) mRNA expression were measured using real-time polymerase chain reaction (PCR) analysis. IP-PA1, when given orally, showed a tendency to promote hair growth in mice. In addition, skin application also significantly promoted hair growth, while histopathological examinations further demonstrated hair elongation from dermal papilla cells. In the human dermal papilla cell culture system, significant FGF-7 and VEGF mRNA expressions were observed (p<0.05). An underlying mechanism of gene expression by which IP-PA1 promotes hair growth was suggested to be different from that of medicine and traditional hair tonics, such as minoxidil and adenosine. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Cordyceps militaris Extract Protects Human Dermal Fibroblasts against Oxidative Stress-Induced Apoptosis and Premature Senescence

    Directory of Open Access Journals (Sweden)

    Jun Myoung Park

    2014-09-01

    Full Text Available Oxidative stress induced by reactive oxygen species (ROS is the major cause of degenerative disorders including aging and disease. In this study, we investigated whether Cordyceps militaris extract (CME has in vitro protective effects on hydrogen peroxide-induced oxidative stress in human dermal fibroblasts (HDFs. Our results showed that the 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity of CME was increased in a dose-dependent manner. We found that hydrogen peroxide treatment in HDFs increased ROS generation and cell death as compared with the control. However, CME improved the survival of HDFs against hydrogen peroxide-induced oxidative stress via inhibition of intracellular ROS production. CME treatment inhibited hydrogen peroxide-induced apoptotic cell death and apoptotic nuclear condensation in HDFs. In addition, CME prevented hydrogen peroxide-induced SA-β-gal-positive cells suggesting CME could inhibit oxidative stress-induced premature senescence. Therefore, these results suggest that CME might have protective effects against oxidative stress-induced premature senescence via scavenging ROS.

  4. Cordyceps militaris Extract Protects Human Dermal Fibroblasts against Oxidative Stress-Induced Apoptosis and Premature Senescence

    Science.gov (United States)

    Park, Jun Myoung; Lee, Jong Seok; Lee, Ki Rim; Ha, Suk-Jin; Hong, Eock Kee

    2014-01-01

    Oxidative stress induced by reactive oxygen species (ROS) is the major cause of degenerative disorders including aging and disease. In this study, we investigated whether Cordyceps militaris extract (CME) has in vitro protective effects on hydrogen peroxide-induced oxidative stress in human dermal fibroblasts (HDFs). Our results showed that the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of CME was increased in a dose-dependent manner. We found that hydrogen peroxide treatment in HDFs increased ROS generation and cell death as compared with the control. However, CME improved the survival of HDFs against hydrogen peroxide-induced oxidative stress via inhibition of intracellular ROS production. CME treatment inhibited hydrogen peroxide-induced apoptotic cell death and apoptotic nuclear condensation in HDFs. In addition, CME prevented hydrogen peroxide-induced SA-β-gal-positive cells suggesting CME could inhibit oxidative stress-induced premature senescence. Therefore, these results suggest that CME might have protective effects against oxidative stress-induced premature senescence via scavenging ROS. PMID:25230212

  5. Cryptomphalus aspersa Mollusc Egg Extract Promotes Regenerative Effects in Human Dermal Papilla Stem Cells

    Directory of Open Access Journals (Sweden)

    María Teresa Alameda

    2017-02-01

    Full Text Available The aim of this study was to test, by an in vitro approach, whether a natural extract derived from eggs of the mollusc Cryptomphalus aspersa (e-CAF that seems to present regenerative properties, can enhance the mobilization of human hair dermal papilla cells (HHDPCs and play a role on tissue repair and regeneration. We have tested HHDPCs proliferation by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium-bromide (MTT assay; cell migration by using a wound healing assay, as well as the modulation of the expression of cytoskeletal (F-actin and vimentin and cell adhesion to the extracellular matrix (ECM (vinculin and P-FAK proteins. We also explored whether e-CAF could lead HHDPCs to keratinocytes and/or fibroblasts by evaluating the expression of specific markers. We have compared these e-CAF effects with those induced by TGFβ1, implicated in regulation of cell proliferation and migration. e-CAF promotes proliferation and migration of HDDPCs cells in a time- and dose-dependent manner; it also increases the migratory behavior and the expression of adhesion molecules. These results support the fact that e-CAF could play a role on skin regeneration and be used for the prevention or repair of damaged tissue, either due to external causes or as a result of cutaneous aging.

  6. Effects of Composition of Iron-Cross-Linked Alginate Hydrogels for Cultivation of Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Ikuko Machida-Sano

    2012-01-01

    Full Text Available We investigated the suitability of ferric-ion-cross-linked alginates (Fe-alginate with various proportions of L-guluronic acid (G and D-mannuronic acid (M residues as a culture substrate for human dermal fibroblasts. High-G and high-M Fe-alginate gels showed comparable efficacy in promoting initial cell adhesion and similar protein adsorption capacities, but superior cell proliferation was observed on high-G than on high-M Fe-alginate as culture time progressed. During immersion in culture medium, high-G Fe-alginate showed little change in gel properties in terms of swelling and polymer content, but the properties of high-M Fe-alginate gel were altered due to loss of ion cross-linking. However, the degree of cell proliferation on high-M Fe-alginate gel was improved after it had been stabilized by immersion in culture medium until no further changes occurred. These results suggest that the mode of cross-linkage between ferric ions and alginate differs depending on alginate composition and that the major factor giving rise to differences in cell growth on the two types of Fe-alginate films is gel stability during culture, rather than swelling of the original gel, polymer content, or protein adsorption ability. Our findings may be useful for extending the application of Fe-alginate to diverse biomedical fields.

  7. Wound healing potential of Spirulina platensis extracts on human dermal fibroblast cells

    Science.gov (United States)

    Syarina, Pauzi Nur Aimi; Karthivashan, Govindarajan; Abas, Faridah; Arulselvan, Palanisamy; Fakurazi, Sharida

    2015-01-01

    Blue-green alga (Spirulina platensis) is a well renowned nutri-supplement due to its high nutritional and medicinal properties. The aim of this study was to examine the wound healing efficiency of Spirulina platensis at various solvent extracts using in vitro scratch assay on human dermal fibroblast cells (HDF). Various gradient solvent extracts (50 μg/ml of methanolic, ethanolic and aqueous extracts) from Spirulina platensis were treated on HDF cells to acquire its wound healing properties through scratch assay and in this investigation we have used allantoin, as a positive control to compare efficacy among the phytoextracts. Interestingly, aqueous extract were found to stimulate proliferation and migration of HDF cells at given concentrations and enhanced closure rate of wound area within 24 hours after treatment. Methanolic and ethanolic extracts have shown proliferative effect, however these extracts did not aid in the migration and closure of wound area when compared to aqueous extract. Based on phytochemical profile of the plant extracts analyzed by LC-MS/MS, it was shown that compounds supposedly involved in accelerating wound healing are cinnamic acid, narigenin, kaempferol, temsirolimus, phosphatidylserine isomeric derivatives and sulphoquinovosyl diacylglycerol. Our findings concluded that blue-green algae may pose potential biomedical application to treat various chronic wounds especially in diabetes mellitus patients. PMID:27004048

  8. Wound healing potential of Spirulina platensis extracts on human dermal fibroblast cells.

    Science.gov (United States)

    Syarina, Pauzi Nur Aimi; Karthivashan, Govindarajan; Abas, Faridah; Arulselvan, Palanisamy; Fakurazi, Sharida

    2015-01-01

    Blue-green alga (Spirulina platensis) is a well renowned nutri-supplement due to its high nutritional and medicinal properties. The aim of this study was to examine the wound healing efficiency of Spirulina platensis at various solvent extracts using in vitro scratch assay on human dermal fibroblast cells (HDF). Various gradient solvent extracts (50 μg/ml of methanolic, ethanolic and aqueous extracts) from Spirulina platensis were treated on HDF cells to acquire its wound healing properties through scratch assay and in this investigation we have used allantoin, as a positive control to compare efficacy among the phytoextracts. Interestingly, aqueous extract were found to stimulate proliferation and migration of HDF cells at given concentrations and enhanced closure rate of wound area within 24 hours after treatment. Methanolic and ethanolic extracts have shown proliferative effect, however these extracts did not aid in the migration and closure of wound area when compared to aqueous extract. Based on phytochemical profile of the plant extracts analyzed by LC-MS/MS, it was shown that compounds supposedly involved in accelerating wound healing are cinnamic acid, narigenin, kaempferol, temsirolimus, phosphatidylserine isomeric derivatives and sulphoquinovosyl diacylglycerol. Our findings concluded that blue-green algae may pose potential biomedical application to treat various chronic wounds especially in diabetes mellitus patients.

  9. Photocytotoxicity in human dermal fibroblasts elicited by permanent makeup inks containing titanium dioxide.

    Science.gov (United States)

    Wamer, Wayne G; Yin, Jun-Jie

    2011-01-01

    Titanium dioxide (TiO2) is a pigment widely used in decorative tattoo and permanent makeup inks. However, little is known about the risks associated with its presence in these products. We have developed an in vitro assay to identify inks containing TiO2 that are cytotoxic and/or photocytotoxic. The presence of TiO2 in ten permanent makeup inks was established by X-ray fluorescence. Using X-ray diffraction, we found that seven inks contained predominately TiO2 (anatase), the more photocatalytically active crystalline form of TiO2. The remaining inks contained predominately TiO2 (rutile). To identify cytotoxic and/or photocytotoxic inks, human dermal fibroblasts were incubated for 18 h in media containing inks or pigments isolated from inks. Fibroblasts were then irradiated with 10 J/cm2 UVA radiation combined with 45 J/cm2 visible light for determining photocytotoxicity, or kept in the dark for determining cytotoxicity. Toxicity was assessed as inhibition of colony formation. No inks were cytotoxic. However eight inks, and the pigments isolated from these inks, were photocytotoxic. Using ESR, we found that most pigments from photocytotoxic inks generated hydroxyl radicals when photoexcited with UV radiation. Therefore, the possibility of photocytotoxicity should be considered when evaluating the safety of permanent makeup inks containing TiO2.

  10. Effects of extremely low-frequency magnetotherapy on proliferation of human dermal fibroblasts.

    Science.gov (United States)

    Pasi, Francesca; Sanna, Samuele; Paolini, Alessandro; Alquati, Marco; Lascialfari, Alessandro; Corti, Maurizio Enrico; Liberto, Riccardo Di; Cialdai, Francesca; Monici, Monica; Nano, Rosanna

    2016-01-01

    Extremely low-frequency electromagnetic fields (ELF-EMFs) applied in magnetotherapy have frequency lower than 100 Hz and magnetic field intensity ranging from 0.1 to 20 mT. For many years, the use of magnetotherapy in clinics has been increasing because of its beneficial effects in many processes, e.g., skin diseases, inflammation and bone disorders. However, the understanding of the microscopic mechanisms governing such processes is still lacking and the results of the studies on the effects of ELF-EMFs are controversial because effects derive from different conditions and from intrinsic responsiveness of different cell types.In the present study, we studied the biological effects of 1.5 h exposure of human dermal fibroblasts to EMFs with frequencies of 5 and 50 Hz and intensity between 0.25 and 1.6 mT. Our data showed that the magnetic treatment did not produce changes in cell viability, but gave evidence of a sizeable decrease in proliferation at 24 h after treatment. In addition, immunofluorescence experiments displayed an increase in tubulin expression that could foreshadow changes in cell motility or morphology. The decrease in proliferation with unchanged viability and increase in tubulin expression could be consistent with the triggering of a transdifferentiation process after the exposure to ELF-EMFs.

  11. Blood flow and permeability in microvessels

    Science.gov (United States)

    Sugihara-Seki, Masako; Fu, Bingmei M.

    2005-07-01

    The mechanics of blood flow in microvessels and microvessel permeability are reviewed. In the first part, characteristics of blood flow in vivo and in vitro are described from a fluid-mechanical point of view, and mathematical models for blood flow in microvessels are presented. Possible causes of the increased flow resistance obtained in vivo compared to in vitro are examined, including the effects of irregularities of vessel lumen, the presence of endothelial surface glycocalyx and white blood cells. In the second part, the ultrastructural pathways and mechanisms whereby endothelial cells and the clefts between the cells modulate microvessel permeability to water and solutes are introduced. Previous and current models for microvessel permeability to water and solutes are reviewed. These models examine the role of structural components of interendothelial cleft, such as junction strands and surface glycocalyx, in the determination of water and solute transport across the microvessel walls. Transport models in the tissue space surrounding the microvessel are also described.

  12. A Two Dimensional Infinite Element Model to Study Temperature Distribution in Human Dermal Regions due to Tumors

    Directory of Open Access Journals (Sweden)

    K. R. pardasani

    2005-01-01

    Full Text Available In this study, a two dimensional infinite element model has been developed to study thermal effect in human dermal regions due to tumors. This model incorporates the effect of blood mass flow rate, metabolic heat generation and thermal conductivity of the tissues.The dermal region is divided into three natural layers, namely, epidermis, dermis and subdermal tissues. A uniformly perfused tumor is assumed to be present in the dermis. The domain is assumed to be finite along the depth and infinite along the breadth. The whole dermis region involving tumor is modelled with the help of triangular finite elements to incorporate the geometry of the region. These elements are surrounded by infinite domain elements along the breadth. Appropriate boundary conditions has been incorporated. A computer program has been developed to obtain the numerical results.

  13. Induction of hair follicle regeneration in rat ear by mi-croencapsulated human hair dermal papilla cells

    Institute of Scientific and Technical Information of China (English)

    LIN Chang-min; LI Yu; JI Ying-chang; HUANG Keng; CAI Xiang-na; LI Guo-qiang

    2009-01-01

    Objective: To induce hair follicle regeneration in rat ear by microencapsulated dermal papillae (DP) cells.Methods: Intact dermal papillae were obtained from human scalp follicles which were digested with collagenase I. The human hair DP cells were encapsulated with alginate-polylysine-alginate (APA) by a high-voltage electric field droplet generator. The diameters of the DP cell microcapsules were optimized by regulating the voltage, the distance be-tween the needle head and the solution surface and the injection speed. Then DP cell microencapsulations were xenotransplanted into ears of 20 SD rats with a novel method. One rat was killed every week at the postoperative 2-12 weeks and the implantation sites were biopsied for histo-logical observation.Results: The DP cell microencapsulations were found in a group of round, smooth and transparent microcapsules under a phase-contrast microscope. The optimal combina-tion of parameters to obtain 0.4 mm DP cell microcapsules was voltage 7.0 kV, injection speed 55 mm/h, and distance 10mm. After 4-12 weeks, 18 of 20 DP cell microcapsule implan-tations had produced high-density hair. Histological obser-vation indicated that both large follicles and sebaceous gland structures were formed in the rat ear within 3-12 weeks.Conclusions: These findings show that the DP cell microencapsulation maintain the capacity for initiating the follicle regeneration and can be considered as a substitute for fresh isolated dermal papillae.

  14. Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin.

    Science.gov (United States)

    Hwang, Eunson; Park, Sang-Yong; Yin, Chang Shik; Kim, Hee-Taek; Kim, Yong Min; Yi, Tae Hoo

    2017-01-01

    Human skin undergoes distinct changes throughout the aging process, based on both intrinsic and extrinsic factors. In a process called photoaging, UVB irradiation leads to upregulation of matrix metalloproteinase-1, which then causes collagen degradation and premature aging. Mixtures of medicinal plants have traditionally been used as drugs in oriental medicine. Based on the previously reported antioxidant properties of Panax ginseng Meyer and Crataegus pinnatifida, we hypothesized that the mixture of P. ginseng Meyer and C. pinnatifida (GC) would have protective effects against skin aging. Anti-aging activity was examined both in human dermal fibroblasts under UVB irradiation by using Western blot analysis and in healthy human skin by examining noninvasive measurements. In vitro studies showed that GC improved procollagen type I expression and diminished matrix metalloproteinase-1 secretion. Based on noninvasive measurements, skin roughness values, including total roughness (R1), maximum roughness (R2), smoothness depth and average roughness (R3), and global photodamage scores were improved by GC application. Moreover, GC ameliorated the high values of smoothness depth (R4), which means that GC reduced loss of skin moisture. These results suggest that GC can prevent aging by inhibiting wrinkle formation and increasing moisture in the human skin.

  15. Pretreatment of Ferulic Acid Protects Human Dermal Fibroblasts against Ultraviolet A Irradiation

    Science.gov (United States)

    Hahn, Hyung Jin; Kim, Ki Bbeum; Bae, Seunghee; Choi, Byung Gon; An, Sungkwan

    2016-01-01

    Background Approximately 90%~99% of ultraviolet A (UVA) ray reaches the Earth's surface. The deeply penetrating UVA rays induce the formation of reactive oxygen species (ROS), which results in oxidative stress such as photoproducts, senescence, and cell death. Thus, UVA is considered a primary factor that promotes skin aging. Objective Researchers investigated whether pretreatment with ferulic acid protects human dermal fibroblasts (HDFs) against UVA-induced cell damages. Methods HDF proliferation was analyzed using the water-soluble tetrazolium salt assay. Cell cycle distribution and intracellular ROS levels were assessed by flow cytometric analysis. Senescence was evaluated using a senescence-associated β-galactosidase assay, while Gadd45α promoter activity was analyzed through a luciferase assay. The expression levels of superoxide dismutase 1 (SOD1), catalase (CAT), xeroderma pigmentosum complementation group A and C, matrix metalloproteinase 1 and 3, as well as p21 and p16 were measured using quantitative real-time polymerase chain reaction. Results Inhibition of proliferation and cell cycle arrest were detected in cells that were irradiated with UVA only. Pretreatment with ferulic acid significantly increased the proliferation and cell cycle progression in HDFs. Moreover, ferulic acid pretreatment produced antioxidant effects such as reduced DCF intensity, and affected SOD1 and CAT mRNA expression. These effects were also demonstrated in the analysis of cell senescence, promoter activity, expression of senescent markers, and DNA repair. Conclusion These results demonstrate that ferulic acid exerts protective effects on UVA-induced cell damages via anti-oxidant and stress-inducible cellular mechanisms in HDFs. PMID:27904274

  16. Chondrogenesis of human infrapatellar fat pad stem cells on acellular dermal matrix

    Directory of Open Access Journals (Sweden)

    Ken eYe

    2016-01-01

    Full Text Available Acellular dermal matrix (ADM has been in clinical use for decades in numerous surgical applications. The ability for ADM to promote cellular repopulation and revascularisation, and tissue regeneration is well documented. Adipose stem cells have the ability to differentiate into mesenchymal tissue types, including bone and cartilage. The aim of this study was to investigate the potential interaction between ADM and adipose stem cells in vitro using TGFβ3 and BMP6.Human infrapatellar fat pad derived adipose stem cells (IPFP-ASC were cultured with ADM derived from rat dermis under chondrogenic (TGFβ3 and BMP6 in vitro for 2 and 4 weeks. Histology, qPCR and immunohistochemistry were performed to assess for markers of chondrogenesis (collagen Type II, SOX9 and proteoglycans. At 4 weeks, cell-scaffold constructs displayed cellular changes consistent with chondrogenesis, with evidence of stratification of cell layers and development of a hyaline-like cartilage layer superficially which stained positively for collagen Type II and proteoglycans. Significant cell-matrix interaction was seen between the cartilage layer and the ADM itself with seamless integration between each layer. Real time qPCR showed significantly increases of COL2A1, SOX9, and ACAN gene expression over 4 weeks when compared to control. COL1A2 gene expression remained unchanged over 4 weeks.We believe the principles which make ADM versatile and successful for tissue regeneration are application to cartilage regeneration. This study demonstrates in vitro the ability for IPFP-ASCs to undergo chondrogenesis, infiltrate and interact with ADM. These outcomes serve as a platform for in vivo modelling of ADM for cartilage repair.

  17. Increased dermal mast cell prevalence and susceptibility to development of basal cell carcinoma in humans

    DEFF Research Database (Denmark)

    Grimbaldeston, Michele A; Skov, Lone; Finlay-Jones, John J

    2002-01-01

    Exposure to ultraviolet B (UVB) radiation (280-320 nm) is the primary etiologic factor associated with the development of basal cell carcinoma (BCC). The outgrowth of these keratinocyte-derived skin lesions is enhanced by the ability of UVB to impair an immune response that would otherwise...... by sun exposure. Two sections (4 microm) per biopsy were immunohistochemically stained for detection of histamine-containing dermal mast cells. Computer-generated image analysis evaluated dermal mast cell prevalence in both sections by quantifying the total number of mast cells according to the total...

  18. Investigation of the effect of hydration on dermal collagen in ex vivo human skin tissue using second harmonic generation microscopy

    Science.gov (United States)

    Samatham, Ravikant; Wang, Nicholas K.; Jacques, Steven L.

    2016-02-01

    Effect of hydration on the dermal collagen structure in human skin was investigated using second harmonic generation microscopy. Dog ears from the Mohs micrographic surgery department were procured for the study. Skin samples with subject aged between 58-90 years old were used in the study. Three dimensional Multiphoton (Two-photon and backward SHG) control data was acquired from the skin samples. After the control measurement, the skin tissue was either soaked in deionized water for 2 hours (Hydration) or kept at room temperature for 2 hours (Desiccation), and SHG data was acquired. The data was normalized for changes in laser power and detector gain. The collagen signal per unit volume from the dermis was calculated. The desiccated skin tissue gave higher backward SHG compared to respective control tissue, while hydration sample gave a lower backward SHG. The collagen signal decreased with increase in hydration of the dermal collagen. Hydration affected the packing of the collagen fibrils causing a change in the backward SHG signal. In this study, the use of multiphoton microscopy to study the effect of hydration on dermal structure was demonstrated in ex vivo tissue.

  19. Early escharectomy and concurrent composite skin grafting over human acellular dermal matrix scaffold for covering deep facial burns.

    Science.gov (United States)

    Tang, Bing; Zhu, Bin; Liang, Yue-Ying; Bi, Liang-Kuan; Chen, Bin; Hu, Zhi-Cheng; Zhang, Kai; Zhu, Jia-Yuan

    2011-04-01

    Although escharectomy and full-thickness skin autografting have been widely used to treat deep facial burns, the clinical outcomes remain unacceptable. Composite razor-thin skin grafting over acellular dermal matrix scaffold has been used successfully in repairing burns of the trunk and limbs, but its use in covering deep facial burns has rarely been reported. In this study, the authors investigated the clinical outcomes of early escharectomy and concurrent composite razor-thin skin autografting and acellular dermal matrix scaffold for treating deep facial burns. Patients with deep facial burns (n = 16) involving 8 to 30 percent of the total body surface area received early escharectomy by postburn day 3 and concurrent, one-stage, large, razor-thin skin autografting on top of human acellular dermal matrix scaffold. Wound dressings were changed on postoperative days 7, 9, and 12 to examine the survival of skin autografts. Patients were followed up for 12 months to evaluate their facial profiles. The take rate of composite skin autografts was 97.3 percent at postoperative day 12. At the follow-up visit, the skin autografts appeared normal in color, with soft texture and good elasticity. The skin junctures showed little scarring. The patients exhibited a chubby facial appearance and abundant expression, except for one patient with microstomia and two patients with ectropion who required further plastic surgical interventions. Early escharectomy and concurrent composite razor-thin skin autografting on top of acellular dermal matrix scaffold constitute an effective and favorable option for covering deep facial burns, especially for patients with limited donor sites.

  20. TCDD induces dermal accumulation of keratinocyte-derived matrix metalloproteinase-10 in an organotypic model of human skin

    Energy Technology Data Exchange (ETDEWEB)

    De Abrew, K. Nadira [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Thomas-Virnig, Christina L.; Rasmussen, Cathy A. [Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States); Bolterstein, Elyse A. [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Schlosser, Sandy J. [Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States); Allen-Hoffmann, B. Lynn, E-mail: blallenh@wisc.edu [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States)

    2014-05-01

    The epidermis of skin is the first line of defense against the environment. A three dimensional model of human skin was used to investigate tissue-specific phenotypes induced by the environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Continuous treatment of organotypic cultures of human keratinocytes with TCDD resulted in intracellular spaces between keratinocytes of the basal and immediately suprabasal layers as well as thinning of the basement membrane, in addition to the previously reported hyperkeratinization. These tissue remodeling events were preceded temporally by changes in expression of the extracellular matrix degrading enzyme, matrix metalloproteinase-10 (MMP-10). In organotypic cultures MMP-10 mRNA and protein were highly induced following TCDD treatment. Q-PCR and immunoblot results from TCDD-treated monolayer cultures, as well as indirect immunofluorescence and immunoblot analysis of TCDD-treated organotypic cultures, showed that MMP-10 was specifically contributed by the epidermal keratinocytes but not the dermal fibroblasts. Keratinocyte-derived MMP-10 protein accumulated over time in the dermal compartment of organotypic cultures. TCDD-induced epidermal phenotypes in organotypic cultures were attenuated by the keratinocyte-specific expression of tissue inhibitor of metalloproteinase-1, a known inhibitor of MMP-10. These studies suggest that MMP-10 and possibly other MMP-10-activated MMPs are responsible for the phenotypes exhibited in the basement membrane, the basal keratinocyte layer, and the cornified layer of TCDD-treated organotypic cultures. Our studies reveal a novel mechanism by which the epithelial–stromal microenvironment is altered in a tissue-specific manner thereby inducing structural and functional pathology in the interfollicular epidermis of human skin. - Highlights: • TCDD causes hyperkeratosis and basement membrane changes in a model of human skin. • TCDD induces MMP-10 expression in organotypic cultures

  1. 人脑小动脉玻璃样变细胞外间质免疫组化研究%Immunohistochemical study of hyalinosis of microvessels in the human brain

    Institute of Scientific and Technical Information of China (English)

    张微微

    2003-01-01

    Aim Immumohistochemical method was used to study 8 patients with hyalinosis of microvessels,to explore pathogenic mechanism of hyalinosis of microvessels in the human brain.Methods Autopsy material was obtained from 8 patients with morphological signs of hyalinosis of intracerebral microvessels identified with haematoxylin eosin stain.Eight cases(5 males,3 females,28- 80 years of age) without signs of brain pathology were used as controls;four of them died of heart diseases and four from malignant tumours.These cases have been used as controls in two parallel studies: Binswanger' encephalopathy and congophilic angiopathy.Immumohistochemical ABC method with collagens type I,II,IV,VI,actin,ulex,factor VIII,CD-34,glucose transporter 1 antidoby were used to study 8 cases with hyalinosis of microvessels and 8 cases without encephalopathy.Results collagens type I,II,IV,VI were stacked at middle layer and external layer of microvessels vascular wall abnormally.Basal layer components,collagen type IV and laminin mostly stacked at basement membrane of blood vessel and smooth muscle layer of middle layer.Conclusion Degeneration of smooth muscle cells of the media and deposition of collagens and other substances probably reduce the capacity of hyaline arterioles to respond to neurogenic and metabolic influences, thereby jeopardizing their ability to modulate cerebral blood flow.%目的采用免疫组化对 8例老年脑小动脉玻璃样变病例的小动脉管壁结构进行了研究,探索老年微小血管玻璃样变性的发病机制.方法尸解材料来自 8例经 HE染色鉴别具有脑内小动脉玻璃样变的病例 (Binswanger病 3例,多发性脑梗死 5例 ).男 6例,女 2例,年龄 66~ 99岁.对照组: 8例,均无脑病理学改变,男 5例,女 3例, 4例死于心脏病, 4例死于恶性肿瘤,年龄 28~ 80岁.采用免疫组化 ABC法及胶原 I、 II、 IV、 VI型,肌动蛋白,心中无层蛋白, VIII因子, CD-34,葡萄糖载体 I抗体对 8例病理

  2. Biotransformation and toxicokinetics of the insect repellent IR3535® in male and female human subjects after dermal exposure.

    Science.gov (United States)

    Broschard, Thomas H; Bohlmann, Anja M; Konietzny, Stefan; Schauer, Ute M D; Dekant, Wolfgang

    2013-04-26

    The absorption and excretion of the insect repellent IR3535(®) was studied in human subjects (five males and five females) after dermal application of approx. 3g of a formulation containing 20% IR3535(®), i.e. the amounts of IR3535(®) applied were between 1.94 and 3.4 mmol/person (418-731 mg/person). Blood and urinary concentrations of IR3535(®) and its only metabolite, IR3535(®)-free acid, were determined over time. In plasma, concentrations of the parent compound IR3535(®) were at or below the limit of quantification (0.037 μmol/L). IR3535(®)-free acid peaked in plasma samples 2-6h after dermal application. Cmax mean values were 5.7 μmol/L in males, 3.0 μmol/L in females and 4.2 μmol/L in all volunteers. Mean AUC values were 41.6, 24.5 and 33.9 μmolL(-1)h in males, females and all subjects, respectively. In urine samples from all human subjects, both IR3535(®) and IR3535(®)-free acid were detectable, however, only very small amounts of IR3535(®) were found. Concentrations of IR3535(®)-free acid were several thousand-fold higher than the parent compound and peaked at the first two sampling points (4h and 8h after dermal application). Overall, IR3535(®) and IR3535(®)-free acid excreted with urine over 48 h representing 13.3 ± 3.05% of the dose applied. Since IR3535(®) is rapidly and extensively metabolized, and IR3535(®)-free acid has a low molecular weight and high water solubility, it is expected that urinary excretion of IR3535(®)-free acid and IR3535(®) represents the total extent of absorption of IR3535(®) in humans. Based on the results of this study, the skin penetration rate of IR3535(®) is 13.3% in humans after dermal application.

  3. Amelogenin is phagocytized and induces changes in integrin configuration, gene expression and proliferation of cultured normal human dermal fibroblasts

    DEFF Research Database (Denmark)

    Almqvist, Sofia; Werthén, Maria; Johansson, Anna

    2010-01-01

    or down-regulation of genes, of which most are involved in cellular growth, migration and differentiation. The effect of amelogenin was exemplified by increased proliferation over 7 days. In conclusion, the beneficial effects of amelogenin on wound healing are possibly conducted by stimulating fibroblast......Fibroblasts are central in wound healing by expressing important mediators and producing and remodelling extracellular matrix (ECM) components. This study aimed at elucidating possible mechanisms of action of the ECM protein amelogenin on normal human dermal fibroblasts (NHDF). Amelogenin at 100...... signalling, proliferation and migration via integrin interactions. It is hypothesized that amelogenin stimulates wound healing by providing connective tissue cells with a temporary extracellular matrix....

  4. Ultraviolet A Enhances Cathepsin L Expression and Activity via JNK Pathway in Human Dermal Fibroblasts

    Science.gov (United States)

    Xu, Qing-Fang; Zheng, Yue; Chen, Jian; Xu, Xin-Ya; Gong, Zi-Jian; Huang, Yun-Fen; Lu, Chun; Maibach, Howard I; Lai, Wei

    2016-01-01

    Background: Cathepsin L (CatL) is a cysteine protease with strong matrix degradation activity that contributes to photoaging. Mannose phosphate-independent sorting pathways mediate ultraviolet A (UVA)-induced alternate trafficking of CatL. Little is known about signaling pathways involved in the regulation of UVA-induced CatL expression and activity. This study aims to investigate whether a single UVA irradiation affects CatL expression and activity and whether mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1) pathway is involved in the regulation of UVA-induced CatL expression and activity in human dermal fibroblasts (HDFs). Methods: Primary HDFs were exposed to UVA. Cell proliferation was determined by a cell counting kit. UVA-induced CatL production and activity were studied with quantitative real-time reverse transcription polymerase chain reaction (RT-PCR), Western blotting, and fluorimetric assay in cell lysates collected on three consecutive days after irradiation. Time courses of UVA-activated JNK and p38MAPK signaling were examined by Western blotting. Effects of MAPK inhibitors and knockdown of Jun and Fos on UVA-induced CatL expression and activity were investigated by RT-PCR, Western blotting, and fluorimetric assay. Data were analyzed by one-way analysis of variance. Results: UVA significantly increased CatL gene expression, protein abundance, and enzymatic activity for three consecutive days after irradiation (F = 83.11, 56.14, and 71.19, respectively; all P < 0.05). Further investigation demonstrated phosphorylation of JNK and p38MAPK activated by UVA. Importantly, inactivation of JNK pathway significantly decreased UVA-induced CatL expression and activity, which were not affected by p38MAPK inhibition. Moreover, knockdown of Jun and Fos significantly attenuated basal and UVA-induced CatL expression and activity. Conclusions: UVA enhances CatL production and activity in HDFs, probably by activating JNK and downstreaming AP-1. These

  5. Ultraviolet A Enhances Cathepsin L Expression and Activity via JNK Pathway in Human Dermal Fibroblasts

    Institute of Scientific and Technical Information of China (English)

    Qing-Fang Xu; Yue Zheng; Jian Chen; Xin-Ya Xu; Zi-Jian Gong; Yun-Fen Huang; Chun Lu

    2016-01-01

    Background:Cathepsin L (CatL) is a cysteine protease with strong matrix degradation activity that contributes to photoaging.Mannose phosphate-independent sorting pathways mediate ultraviolet A (UVA)-induced alternate trafficking of CatL.Little is known about signaling pathways involved in the regulation of UVA-induced CatL expression and activity.This study aims to investigate whether a single UVA irradiation affects CatL expression and activity and whether mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1) pathway is involved in the regulation of UVA-induced CatL expression and activity in human dermal fibroblasts (HDFs).Methods:Primary HDFs were exposed to UVA.Cell proliferation was determined by a cell counting kit.UVA-induced CatL production and activity were studied with quantitative real-time reverse transcription polymerase chain reaction (RT-PCR),Western blotting,and fluorimetric assay in cell lysates collected on three consecutive days after irradiation.Time courses of UVA-activated JNK and p38MAPK signaling were examined by Western blotting.Effects ofMAPK inhibitors and knockdown of Jun and Fos on UVA-induced CatL expression and activity were investigated by RT-PCR,Western blotting,and fluorimetric assay.Data were analyzed by one-way analysis of variance.Results:UVA significantly increased CatL gene expression,protein abundance,and enzymatic activity for three consecutive days after irradiation (F =83.11,56.14,and 71.19,respectively;all P < 0.05).Further investigation demonstrated phosphorylation of JNK and p38MAPK activated by UVA.Importantly,inactivation of JNK pathway significantly decreased UVA-induced CatL expression and activity,which were not affected by p38MAPK inhibition.Moreover,knockdown of Jun and Fos significantly attenuated basal and UVA-induced CatL expression and activity.Conclusions:UVA enhances CatL production and activity in HDFs,probably by activating JNK and downstreaming AP-1.These findings provide a new possible

  6. Salidroside protects against premature senescence induced by ultraviolet B irradiation in human dermal fibroblasts.

    Science.gov (United States)

    Mao, G-X; Xing, W-M; Wen, X-L; Jia, B-B; Yang, Z-X; Wang, Y-Z; Jin, X-Q; Wang, G-F; Yan, J

    2015-06-01

    Salidroside, the predominant component of a Chinese herbal medicine, Rhodiola rosea L., becomes an attractive bio-agent due to its multifunction. Although it is well proposed that this herbal medicine may have photoprotective effect according to the folk hearsay, the direct supportive experimental evidences linking the drug with skin ageing have rarely been reported so far. The study was conducted to investigate the photoprotective role of salidrosdie and its related mechanisms in vitro. First, a premature senescence model induced by UVB irradiation (250 mJ cm(-2)) in human dermal fibroblasts (HDFs) was established, and senescent phenotypes were evaluated by cell morphology, cell proliferation, senescence-associated beta-galactosidase (SA-β-gal) activity and cell cycle distribution. Then the photoprotective effect of salidroside was investigated. Cells were pre-treated with various doses of salidroside (1, 5 and 10 μM) followed by the sublethal dosage of UVB exposure and then were harvested for various detections, including senescence-associated phenotypes and molecules, alteration of oxidative stress, matrix metalloproteinase-1 (MMP-1) secretion and inflammatory response. Pre-treatment of salidroside dose dependently reversed the senescent state of HDFs induced by UVB as evidenced by elevated cell viability, decreased SA-β-gal activity and relieving of G1/G0 cell cycle arrest. UVB-induced increased protein expression of cyclin-dependent kinase (CDK) inhibitors p21(WAF) (1) and p16(INK) (4) was also repressed by salidrosdie treatment in a dose-dependent manner. Meanwhile, the increment of malondialdehyde (MDA) level in UVB-irradiated HDFs was inhibited upon salidroside treatment. Additionally, salidroside significantly attenuated UVB-induced synthesis of MMP-1 as well as the production of IL-6 and TNF-α in HDFs. Our data provided the evidences for the protective role of salidroside against UVB-induced premature senescence in HDFs probably via its anti

  7. Dermal Substitutes Support the Growth of Human Skin-Derived Mesenchymal Stromal Cells: Potential Tool for Skin Regeneration

    Science.gov (United States)

    Jeremias, Talita da Silva; Machado, Rafaela Grecco; Visoni, Silvia Beatriz Coutinho; Pereima, Maurício José; Leonardi, Dilmar Francisco; Trentin, Andrea Gonçalves

    2014-01-01

    New strategies for skin regeneration are needed in order to provide effective treatment for cutaneous wounds and disease. Mesenchymal stem cells (MSCs) are an attractive source of cells for tissue engineering because of their prolonged self-renewal capacity, multipotentiality, and ability to release active molecules important for tissue repair. In this paper, we show that human skin-derived mesenchymal stromal cells (SD-MSCs) display similar characteristics to the multipotent MSCs. We also evaluate their growth in a three-dimensional (3D) culture system with dermal substitutes (Integra and Pelnac). When cultured in monolayers, SD-MSCs expressed mesenchymal markers, such as CD105, Fibronectin, and α-SMA; and neural markers, such as Nestin and βIII-Tubulin; at transcriptional and/or protein level. Integra and Pelnac equally supported the adhesion, spread and growth of human SD-MSCs in 3D culture, maintaining the MSC characteristics and the expression of multilineage markers. Therefore, dermal substitutes support the growth of mesenchymal stromal cells from human skin, promising an effective tool for tissue engineering and regenerative technology. PMID:24586857

  8. Perilla frutescens leaves extract ameliorates ultraviolet radiation-induced extracellular matrix damage in human dermal fibroblasts and hairless mice skin.

    Science.gov (United States)

    Bae, Jung-Soo; Han, Mira; Shin, Hee Soon; Kim, Min-Kyoung; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2017-01-04

    Perilla frutescens (L.) Britt. (Lamiaceae) is a traditional herb that is consumed in East Asian countries as a traditional medicine. This traditional herb has been documented for centuries to treat various diseases such as depression, allergies, inflammation and asthma. However, the effect of Perilla frutescens on skin has not been characterized well. The present study aimed to investigate the effect of Perilla frutescens leaves extract (PLE) on ultraviolet radiation-induced extracellular matrix damage in human dermal fibroblasts and hairless mice skin. Human dermal fibroblasts and Skh-1 hairless mice were irradiated with UV and treated with PLE. Protein and mRNA levels of various target molecules were analyzed by western blotting and quantitative RT-PCR, respectively. Histological changes of mouse skin were analyzed by H&E staining. To elucidate underlying mechanism of PLE, activator protein-1 (AP-1) DNA binding assay and the measurement of reactive oxygen species (ROS) were performed. PLE significantly inhibited basal and UV-induced MMP-1 and MMP-3 expression dose-dependently, and also decreased UV-induced phosphorylation of extracellular signal-regulated kinases and c-Jun N-terminal kinases. This inhibitory effects of PLE on MMP-1 and MMP-3 were mediated by reduction of ROS generation and AP-1 DNA binding activity induced by UV. Furthermore, PLE promoted type I procollagen production irrespective of UV irradiation. In the UV-irradiated animal model, PLE significantly reduced epidermal skin thickness and MMP-13 expression induced by UV. Our results demonstrate that PLE has the protective effect against UV-induced dermal matrix damage. Therefore, we suggest that PLE can be a potential agent for prevention of skin aging. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Isolation of fungi belonging to the genera Geotrichum and Trichosporum from human dermal lesions.

    Science.gov (United States)

    Restrepo, A; De Uribe, L

    1976-08-30

    Isolates of Geotrichum and Trichosporum spp. obtained from patients with a variety of dermal lesions were studied. Among 2,202 cases examined, microorganisms of these genera were recovered from 100 (4,5%); there were 38 isolated of Geotrichum- and 62 of Trichosporum- spp. Most isolations were obtained from nails: 52 cases. The species most frequently found were T. beigelii (25 cases) and G. candidum (30 cases). In 50 of the patients, these fungi were isolated in pure culture, in an additional 40 Trichosporum spp. were found. Mixed cultures with C. albicans were observed in 28 patients, with other Candida spp. in 16 and with dermatophytes in 6. Among the patients whose isolations occurred in pure cultures, the number of colonies recovered was large in 20 cases, 1 with Geotrichum candidum - 19 with Trichosporum (16 T. beigelii, 3 T. capitatum). The relationship between the isolated yeast-like fungi and the dermal lesion was considered to be direct in these 20 patients.

  10. Dermal uptake of phthalates from clothing: comparison of model to human participant results

    DEFF Research Database (Denmark)

    Morrison, Glenn; Weschler, Charles J.; Bekö, Gabriel

    2016-01-01

    In this research, we extend a model of transdermal uptake of phthalates to include a layer of clothing. When compared with experimental results, this model better estimates dermal uptake of diethylphthalate (DEP) and di-n-butylphthalate (DnBP) than a previous model. It also demonstrates that upta...... the cotton-phthalate system will be challenging until data on partition coefficients are quantified for other combinations of SVOCs, fabric materials and environmental conditions....

  11. Low-Dose UVA Radiation-Induced Adaptive Response in Cultured Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Zhongrong Liu

    2012-01-01

    Full Text Available Objective. To investigate the mechanism of the adaptive response induced by low-dose ultraviolet A (UVA radiation. Methods. Cultured dermal fibroblasts were irradiated by a lethal dose of UVA (86.4 J/cm2 with preirradiation of single or repetitive low dose of UVA (7.2 J/cm2. Alterations of cellular morphology were observed by light microscope and electron microscope. Cell cycle and cellular apoptosis were assayed by flow cytometer. The extent of DNA damage was determined by single-cell gel electrophoresis (SCGE. Results. The cultured dermal fibroblasts, with pretreatment of single or repetitive irradiation of 7.2 J/cm2 UVA relieved toxic reaction of cellular morphology and arrest of cell cycle, decreased apoptosis ratio, reduced DNA chain breakage, and accelerated DNA repair caused by subsequent 86.4 J/cm2 UVA irradiation. Compared with nonpretreatment groups, all those differences were significant (P<0.01 or P<0.05. Conclusions. The adaptation reaction might depend on the accumulated dose of low-dose UVA irradiation. Low-dose UVA radiation might induce adaptive response that may protect cultured dermal fibroblasts from the subsequent challenged dose of UVA damage. The duration and protective capability of the adaptive reaction might be related to the accumulated dose of low-dose UVA Irradiation.

  12. Galvanic microparticles increase migration of human dermal fibroblasts in a wound-healing model via reactive oxygen species pathway.

    Science.gov (United States)

    Tandon, Nina; Cimetta, Elisa; Villasante, Aranzazu; Kupferstein, Nicolette; Southall, Michael D; Fassih, Ali; Xie, Junxia; Sun, Ying; Vunjak-Novakovic, Gordana

    2014-01-01

    Electrical signals have been implied in many biological mechanisms, including wound healing, which has been associated with transient electrical currents not present in intact skin. One method to generate electrical signals similar to those naturally occurring in wounds is by supplementation of galvanic particles dispersed in a cream or gel. We constructed a three-layered model of skin consisting of human dermal fibroblasts in hydrogel (mimic of dermis), a hydrogel barrier layer (mimic of epidermis) and galvanic microparticles in hydrogel (mimic of a cream containing galvanic particles applied to skin). Using this model, we investigated the effects of the properties and amounts of Cu/Zn galvanic particles on adult human dermal fibroblasts in terms of the speed of wound closing and gene expression. The collected data suggest that the effects on wound closing are due to the ROS-mediated enhancement of fibroblast migration, which is in turn mediated by the BMP/SMAD signaling pathway. These results imply that topical low-grade electric currents via microparticles could enhance wound healing.

  13. Galvanic microparticles increase migration of human dermal fibroblasts in a wound-healing model via reactive oxygen species pathway

    Science.gov (United States)

    Tandon, Nina; Cimetta, Elisa; Villasante, Aranzazu; Kupferstein, Nicolette; Southall, Michael D.; Fassih, Ali; Xie, Junxia; Sun, Ying; Vunjak-Novakovic, Gordana

    2015-01-01

    Electrical signals have been implied in many biological mechanisms, including wound healing, which has been associated with transient electrical currents not present in intact skin. One method to generate electrical signals similar to those naturally occurring in wounds is by supplementation of galvanic particles dispersed in a cream or gel. We constructed a three-layered model of skin consisting of human dermal fibroblasts in hydrogel (mimic of dermis), a hydrogel barrier layer (mimic of epidermis) and galvanic microparticles in hydrogel (mimic of a cream containing galvanic particles applied to skin). Using this model, we investigated the effects of the properties and amounts of Cu/Zn galvanic particles on adult human dermal fibroblasts in terms of the speed of wound closing and gene expression. The collected data suggest that the effects on wound closing are due to the ROS-mediated enhancement of fibroblast migration, which is in turn mediated by the BMP/SMAD signaling pathway. These results imply that topical low-grade electric currents via microparticles could enhance wound healing. PMID:24113575

  14. Assessment of dermal absorption of DEET-containing insect repellent and oxybenzone-containing sunscreen using human urinary metabolites.

    Science.gov (United States)

    Yiin, Lih-Ming; Tian, Jia-Ni; Hung, Chien-Che

    2015-05-01

    Mutual enhancement of dermal absorption of N,N-diethyl-m-toluamide (DEET) and oxybenzone (OBZ) has been reported recently with DEET and OBZ being active ingredients of insect repellent and sunscreen, respectively. To assess the reported enhancing effect directly, we used human urinary metabolites as biomarkers; besides, we also sought to determine the best way for concurrent use of these two products without extra absorption of either. Four dermal application methods were used: DEET only (S1), OBZ only (S2), DEET on top of OBZ (S3), and OBZ on top of DEET (S4). Among the study methods, there was a significant difference (p = 0.013), which was attributed to the difference between S1 and S4, suggesting that applying OBZ over DEET on the skin lead to significantly higher absorption of DEET. Using both products in reverse order, (S3) did not result in extra DEET absorption significantly. As for OBZ permeation, no significant difference was observed among the methods. In summary, the enhancement of DEET absorption is confirmed for OBZ being applied over DEET on the skin; should concurrent use of both be necessary, applying sunscreen (OBZ) first and then insect repellent (DEET) with a 15-min interval is recommended.

  15. Dermal uptake and percutaneous penetration of ten flame retardants in a human skin ex vivo model.

    Science.gov (United States)

    Frederiksen, Marie; Vorkamp, Katrin; Jensen, Niels Martin; Sørensen, Jens Ahm; Knudsen, Lisbeth E; Sørensen, Lars S; Webster, Thomas F; Nielsen, Jesper B

    2016-11-01

    The dermal uptake and percutaneous penetration of ten organic flame retardants was measured using an ex vivo human skin model. The studied compounds were DBDPE, BTBPE, TBP-DBPE, EH-TBB, BEH-TEBP, α, β and γ-HBCDD as well as syn- and anti-DDC-CO. Little or none of the applied flame retardants was recovered in either type of the receptor fluids used (physiological and worst-case). However, significant fractions were recovered in the skin depot, particularly in the upper skin layers. The primary effect of the worst-case receptor fluid was deeper penetration into the skin. The recovered mass was used to calculate lower- and upper-bound permeability coefficients kp. Despite large structural variation between the studied compounds, a clear, significant decreasing trend of kp was observed with increasing log Kow. The results indicate that the dermis may provide a significant barrier for these highly lipophilic compounds. However, based on our results, dermal uptake should be considered in exposure assessments, though it may proceed in a time-lagged manner compared to less hydrophobic compounds.

  16. Valproic Acid Induces Hair Regeneration in Murine Model and Activates Alkaline Phosphatase Activity in Human Dermal Papilla Cells

    Science.gov (United States)

    Lee, Soung-Hoon; Yoon, Juyong; Shin, Seung Ho; Zahoor, Muhamad; Kim, Hyoung Jun; Park, Phil June; Park, Won-Seok; Min, Do Sik; Kim, Hyun-Yi; Choi, Kang-Yell

    2012-01-01

    Background Alopecia is the common hair loss problem that can affect many people. However, current therapies for treatment of alopecia are limited by low efficacy and potentially undesirable side effects. We have identified a new function for valproic acid (VPA), a GSK3β inhibitor that activates the Wnt/β-catenin pathway, to promote hair re-growth in vitro and in vivo. Methodology/ Principal Findings Topical application of VPA to male C3H mice critically stimulated hair re-growth and induced terminally differentiated epidermal markers such as filaggrin and loricrin, and the dermal papilla marker alkaline phosphatase (ALP). VPA induced ALP in human dermal papilla cells by up-regulating the Wnt/β-catenin pathway, whereas minoxidil (MNX), a drug commonly used to treat alopecia, did not significantly affect the Wnt/β-catenin pathway. VPA analogs and other GSK3β inhibitors that activate the Wnt/β-catenin pathway such as 4-phenyl butyric acid, LiCl, and BeCl2 also exhibited hair growth-promoting activities in vivo. Importantly, VPA, but not MNX, successfully stimulate hair growth in the wounds of C3H mice. Conclusions/ Significance Our findings indicate that small molecules that activate the Wnt/β-catenin pathway, such as VPA, can potentially be developed as drugs to stimulate hair re-growth. PMID:22506014

  17. Valproic acid induces hair regeneration in murine model and activates alkaline phosphatase activity in human dermal papilla cells.

    Directory of Open Access Journals (Sweden)

    Soung-Hoon Lee

    Full Text Available BACKGROUND: Alopecia is the common hair loss problem that can affect many people. However, current therapies for treatment of alopecia are limited by low efficacy and potentially undesirable side effects. We have identified a new function for valproic acid (VPA, a GSK3β inhibitor that activates the Wnt/β-catenin pathway, to promote hair re-growth in vitro and in vivo. METHODOLOGY/ PRINCIPAL FINDINGS: Topical application of VPA to male C3H mice critically stimulated hair re-growth and induced terminally differentiated epidermal markers such as filaggrin and loricrin, and the dermal papilla marker alkaline phosphatase (ALP. VPA induced ALP in human dermal papilla cells by up-regulating the Wnt/β-catenin pathway, whereas minoxidil (MNX, a drug commonly used to treat alopecia, did not significantly affect the Wnt/β-catenin pathway. VPA analogs and other GSK3β inhibitors that activate the Wnt/β-catenin pathway such as 4-phenyl butyric acid, LiCl, and BeCl(2 also exhibited hair growth-promoting activities in vivo. Importantly, VPA, but not MNX, successfully stimulate hair growth in the wounds of C3H mice. CONCLUSIONS/ SIGNIFICANCE: Our findings indicate that small molecules that activate the Wnt/β-catenin pathway, such as VPA, can potentially be developed as drugs to stimulate hair re-growth.

  18. Mitochondrial tolerance to single and repeat exposure to simulated sunlight in human epidermal and dermal skin cells.

    Science.gov (United States)

    Kelly, J; Murphy, J E J

    2016-12-01

    Sunlight represents the primary threat to mitochondrial integrity in skin given the unique nature of the mitochondrial genome and its proximity to the electron transport chain. The accumulation of mitochondrial DNA (mtDNA) mutations is a key factor in many human pathologies and this is linked to key roles of mitochondrial function in terms of energy production and cell regulation. The main objective of this study was to evaluate solar radiation induced changes in mitochondrial integrity, function and dynamics in human skin cells using a Q-Sun solar simulator to deliver a close match to the intensity of summer sunlight. Spontaneously immortalised human skin epidermal keratinocytes (HaCaT) and Human Dermal Fibroblasts (HDFn) were divided into two groups. Group A were irradiated once and Group B twice 7days apart and evaluated using cell survival, viability and mitochondrial membrane potential (MMP) and mass at 1, 4 and 7days post one exposure for Group A and 1, 4, 7 and 14days post second exposure for Group B. Viability and survival of HaCaT and HDFn cells decreased after repeat exposure to Simulated Sunlight Irradiation (SSI) with no recovery. HDFn cells showed no loss in MMP after one or two exposures to SSI compared to HaCaT cells which showed a periodic loss of MMP after one exposure with a repeat exposure causing a dramatic decrease from which cells did not recover. Mitochondrial Mass in exposed HDFn cells was consistent with control after one or two exposures to SSI; however mitochondrial mass was significantly decreased in HaCaT cells. Data presented here suggests that mitochondria in epidermal cells are more sensitive to sunlight damage compared to mitochondria in dermal cells, despite their origin, confirming a skin layer specific sensitivity to sunlight, but not as expected. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Topically applied vitamin C increases the density of dermal papillae in aged human skin

    Directory of Open Access Journals (Sweden)

    Koop Urte

    2004-09-01

    Full Text Available Abstract Background The influence of ageing on the density of the functional entities of the papillae containing nutritive capillaries, here in terms as the papillary index, and the effect of topically applied vitamin C were investigated by confocal laser scanning microscopy (CLSM in vivo. Methods The age dependency of the papillary index was determined by CLSM on 3 different age groups. Additionally, we determined the effect of a topical cream containing 3% vitamin C against the vehicle alone using daily applications for four months on the volar forearm of 33 women. Results There were significant decreases in the papillary index showing a clear dependency on age. Topical vitamin C resulted in a significant increase of the density of dermal papillae from 4 weeks onward compared to its vehicle. Reproducibility was determined in repeated studies. Conclusions Vitamin C has the potential to enhance the density of dermal papillae, perhaps through the mechanism of angiogenesis. Topical vitamin C may have therapeutical effects for partial corrections of the regressive structural changes associated with the aging process.

  20. TCDD induces dermal accumulation of keratinocyte-derived matrix metalloproteinase-10 in an organotypic model of human skin.

    Science.gov (United States)

    De Abrew, K Nadira; Thomas-Virnig, Christina L; Rasmussen, Cathy A; Bolterstein, Elyse A; Schlosser, Sandy J; Allen-Hoffmann, B Lynn

    2014-05-01

    The epidermis of skin is the first line of defense against the environment. A three dimensional model of human skin was used to investigate tissue-specific phenotypes induced by the environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Continuous treatment of organotypic cultures of human keratinocytes with TCDD resulted in intracellular spaces between keratinocytes of the basal and immediately suprabasal layers as well as thinning of the basement membrane, in addition to the previously reported hyperkeratinization. These tissue remodeling events were preceded temporally by changes in expression of the extracellular matrix degrading enzyme, matrix metalloproteinase-10 (MMP-10). In organotypic cultures MMP-10 mRNA and protein were highly induced following TCDD treatment. Q-PCR and immunoblot results from TCDD-treated monolayer cultures, as well as indirect immunofluorescence and immunoblot analysis of TCDD-treated organotypic cultures, showed that MMP-10 was specifically contributed by the epidermal keratinocytes but not the dermal fibroblasts. Keratinocyte-derived MMP-10 protein accumulated over time in the dermal compartment of organotypic cultures. TCDD-induced epidermal phenotypes in organotypic cultures were attenuated by the keratinocyte-specific expression of tissue inhibitor of metalloproteinase-1, a known inhibitor of MMP-10. These studies suggest that MMP-10 and possibly other MMP-10-activated MMPs are responsible for the phenotypes exhibited in the basement membrane, the basal keratinocyte layer, and the cornified layer of TCDD-treated organotypic cultures. Our studies reveal a novel mechanism by which the epithelial-stromal microenvironment is altered in a tissue-specific manner thereby inducing structural and functional pathology in the interfollicular epidermis of human skin.

  1. Aromatic DNA adducts in human white blood cells and skin after dermal application of coal tar

    Energy Technology Data Exchange (ETDEWEB)

    Godschalk, R.W.L.; Ostertag, J.U.; Moonen, E.J.C.; Neumann, H.A.M.; Kleinjans, J.C.S.; Schooten, F.J. van [University of Maastricht, Maastricht (Netherlands). Dept. of Health Risk Analysis and Toxicology

    1998-09-01

    A group of eczema patients topically treated with coal tar (CT) ointments was used as a model population to examine the applicability of DNA adducts in white blood cell (WBC) subpopulations as a measure of dermal exposure to polycyclic aromatic hydrocarbons (PAHs). Aromatic DNA adducts were examined by {sup 32}P-postlabeling in exposed skin and WBC subsets, and urinary excretion of PAH metabolites was determined to assess the whole-body burden. The median urinary excretion of 1-hydroxypyrene and 3-hydroxybenzo(a)pyrene was 0.39 and 0.01 {mu}mol/mol creatinine respectively, before the dermal application of CT ointments. After treatment for 1 week, these levels increased to 139.7 and 1.18 {mu}mol/mol creatinine respectively, indicating that considerable amounts of PAHs were absorbed. Median aromatic DNA adduct levels were significantly increased in skin from 2.9 adduct/10{sup 8} nucleotides before treatment to 63.3 adducts/10{sup 8} nt after treatment with CT, in monocytes from 0.28 to 0.86 adducts/10{sup 8} nt, in lymphocytes from 0.33 to 0.89 adducts/10{sup 8} nt and in granulocytes from 0.28 to 0.54 adducts/10{sup 8} nt. A week after stopping the CT treatment, the DNA adduct levels in monocytes and granulocytes were reduced to 0.38 and 0.38 adducts/10{sup 8} nt respectively, whereas the adduct levels in lymphocytes remained enhanced. Total DNA adduct levels in skin correlated with the adduct levels in monocytes and lymphocytes. Excretion of urinary metabolites during the first week of treatment was correlated with the percentage of the skin surface treated with CT ointment and decreased within a week after the cessation of treatment. 3-Hydroxybenzo(a)pyrene excretion, correlated with the levels of DNA adducts in skin that comigrated with benzo(a)pyrene-diol-epoxide-DNA. This study indicates that the DNA adduct levels in mononuclear WBCs can possibly be used as a surrogate for skin DNA after dermal exposure to PAHs. 34 refs., 4 figs., 1 tab.

  2. Comparison of Effects on Gene Expression Activity of Low-Molecular-Weight Lychee Fruit Polyphenol (Oligonol®, Adenosine, and Minoxidil in Human Dermal Papilla Cells

    Directory of Open Access Journals (Sweden)

    Koji Wakame

    2017-06-01

    Full Text Available Background: Oligonol® (OLG is a functional food product and ingredient for cosmetics derived from a lychee fruit polyphenol. It has been reported to act on the skin as an anti-inflammatory and prevent UVB-induced skin damage. Aim: In this study, with the aim of exploring new functionalities of OLG on the scalp, we investigated the effect of OLG on human dermal papilla cells by comparing with adenosine and minoxidil at the genetic level. Method: OLG, adenosine, and minoxidil were applied to human dermal papilla cell lines for 24 h, after which VEGF, FGF-7, WNT5a, and WNT10a mRNA expressions were measured by real-time PCR analysis. Additionally, using DNA microarrays, we investigated the effect on 205 inflammation-related genes. Result: Consequently, in human dermal papilla cell lines, FGF-7 and WNT10a mRNA expression were observed in 100 µg/mL OLG-supplemented cells. The results of the DNA microarray analysis showed that 10 genes were suppressed by OLG. Conclusions: OLG may be expected to affect function of human dermal papilla cell by regulating the expression of genes related to cell proliferation and inflammation.

  3. Platelet-rich plasma stimulates human dermal fibroblast proliferation via a Ras-dependent extracellular signal-regulated kinase 1/2 pathway.

    Science.gov (United States)

    Hara, Tomoya; Kakudo, Natsuko; Morimoto, Naoki; Ogawa, Takeshi; Lai, Fangyuan; Kusumoto, Kenji

    2016-12-01

    Platelet-rich plasma (PRP) contains a high concentration of several growth factors and contributes to soft-tissue engineering and wound healing. However, the effect of PRP on human dermal fibroblast proliferation and responses is unknown. This was investigated in the present study using PRP prepared from the whole human blood using the double-spin method. Human dermal fibroblast cultures were established from skin samples collected during plastic surgery. Platelet concentration and growth factor levels in PRP were estimated, and a cell proliferation assay was carried out after PRP treatment. The role of Ras-dependent extracellular signal-regulated kinase (ERK)1/2 in the effects of PRP was investigated in human dermal fibroblasts by suppressing ERK1/2 expression with an inhibitor or by short interfering (si)RNA-mediated knockdown, and assessing ERK1/2 phosphorylation by western blotting as well as proliferation in PRP-treated cells. We found that PRP stimulated human dermal fibroblast proliferation, which was suppressed by ERK1/2 inhibitor treatment (P < 0.01). ERK1/2 phosphorylation was increased in the presence of PRP, while siRNA-mediated knockdown of ERK1/2 blocked cell proliferation normally induced by PRP treatment (P < 0.01). These results demonstrate that PRP induces human dermal fibroblast proliferation via activation of ERK1/2 signaling. Our findings provide a basis for the development of agents that can promote wound healing and can be applied to soft-tissue engineering.

  4. Large-scaled metabolic profiling of human dermal fibroblasts derived from pseudoxanthoma elasticum patients and healthy controls.

    Directory of Open Access Journals (Sweden)

    Patricia Kuzaj

    Full Text Available Mutations in the ABC transporter ABCC6 were recently identified as cause of Pseudoxanthoma elasticum (PXE, a rare genetic disorder characterized by progressive mineralization of elastic fibers. We used an untargeted metabolic approach to identify biochemical differences between human dermal fibroblasts from healthy controls and PXE patients in an attempt to find a link between ABCC6 deficiency, cellular metabolic alterations and disease pathogenesis. 358 compounds were identified by mass spectrometry covering lipids, amino acids, peptides, carbohydrates, nucleotides, vitamins and cofactors, xenobiotics and energy metabolites. We found substantial differences in glycerophospholipid composition, leucine dipeptides, and polypeptides as well as alterations in pantothenate and guanine metabolism to be significantly associated with PXE pathogenesis. These findings can be linked to extracellular matrix remodeling and increased oxidative stress, which reflect characteristic hallmarks of PXE. Our study could facilitate a better understanding of biochemical pathways involved in soft tissue mineralization.

  5. Sterilization-Induced Changes in Surface Topography of Biodegradable POSS-PCLU and the Cellular Response of Human Dermal Fibroblasts.

    Science.gov (United States)

    Yildirimer, Lara; Seifalian, Alexander M

    2015-06-01

    The field of tissue engineering is rapidly evolving, generating numerous biodegradable materials suited as regeneration platforms. Material sterility is of fundamental importance for clinical translation; however, a few studies have systematically researched the effects of different sterilization methods on biodegradable materials. Here, we exposed a novel bioabsorbable nanocomposite based on a poly(ɛ-caprolactone urea) urethane backbone integrating polyhedral oligomeric silsesquioxane nanoparticles (POSS-PCLU) to autoclave, microwave, antibiotics, and 70% ethanol sterilization and systematically correlated differences in material characteristics to the attachment, viability, proliferative capacity, and shape of human dermal fibroblasts (HDFa). Nanotopographical profiling of autoclaved or microwaved surfaces revealed relatively deep nano-grooves, increasing total surface area, roughness, and hydrophobicity, which resulted in significantly fewer adherent cells. Antibiotics or 70% ethanol-treated surfaces displayed shallower nano-grooves, a more hydrophilic character, and significantly greater cellular adhesion (ppostproduction processing tool to enhance cytocompatibility of tissue engineering scaffolds.

  6. Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yanfu [Department of Burn and Plastic Surgery, Burns Institute, First Hospital Affiliated to General Hospital of PLA, Beijing (China); Chai, Jiake, E-mail: cjk304@126.com [Department of Burn and Plastic Surgery, Burns Institute, First Hospital Affiliated to General Hospital of PLA, Beijing (China); Sun, Tianjun; Li, Dongjie; Tao, Ran [Department of Burn and Plastic Surgery, Burns Institute, First Hospital Affiliated to General Hospital of PLA, Beijing (China)

    2011-10-07

    Highlights: {yields} Mesenchymal stem cells (MSCs) are potential seed cells for tissue-engineered skin. {yields} Tissue-derived umbilical cord MSCs (UCMSCs) can readily be isolated in vitro. {yields} We induce UCMSCs to differentiate into dermal fibroblasts via conditioned medium. {yields} Collagen type I and collagen type III mRNA level was higher in differentiated cells. {yields} UCMSCs-derived fibroblast-like cells strongly express fibroblast-specific protein. -- Abstract: Tissue-derived umbilical cord mesenchymal stem cells (UCMSCs) can be readily obtained, avoid ethical or moral constraints, and show excellent pluripotency and proliferation potential. UCMSCs are considered to be a promising source of stem cells in regenerative medicine. In this study, we collected newborn umbilical cord tissue under sterile conditions and isolated UCMSCs through a tissue attachment method. UCMSC cell surface markers were examined using flow cytometry. On the third passage, UCMSCs were induced to differentiate into dermal fibroblasts in conditioned induction media. The induction results were detected using immunofluorescence with a fibroblast-specific monoclonal antibody and real time PCR for type I and type III collagen. UCMSCs exhibited a fibroblast-like morphology and reached 90% confluency 14 to 18 days after primary culture. Cultured UCMSCs showed strong positive staining for CD73, CD29, CD44, CD105, and HLA-I, but not CD34, CD45, CD31, or HLA-DR. After differentiation, immunostaining for collagen type I, type III, fibroblast-specific protein, vimentin, and desmin were all strongly positive in induced cells, and staining was weak or negative in non-induced cells; total transcript production of collagen type I and collagen type III mRNA was higher in induced cells than in non-induced cells. These results demonstrate that UCMSCs can be induced to differentiate into fibroblasts with conditioned induction media and, in turn, could be used as seed cells for tissue

  7. UVA causes dual inactivation of cathepsin B and L underlying lysosomal dysfunction in human dermal fibroblasts.

    Science.gov (United States)

    Lamore, Sarah D; Wondrak, Georg T

    2013-06-05

    Cutaneous exposure to chronic solar UVA-radiation is a causative factor in photocarcinogenesis and photoaging. Recently, we have identified the thiol-dependent cysteine-protease cathepsin B as a novel UVA-target undergoing photo-oxidative inactivation upstream of autophagic-lysosomal dysfunction in fibroblasts. In this study, we examined UVA effects on a wider range of cathepsins and explored the occurrence of UVA-induced cathepsin inactivation in other cultured skin cell types. In dermal fibroblasts, chronic exposure to non-cytotoxic doses of UVA caused pronounced inactivation of the lysosomal cysteine-proteases cathepsin B and L, effects not observed in primary keratinocytes and occurring only to a minor extent in primary melanocytes. In order to determine if UVA-induced lysosomal impairment requires single or dual inactivation of cathepsin B and/or L, we used a genetic approach (siRNA) to selectively downregulate enzymatic activity of these target cathepsins. Monitoring an established set of protein markers (including LAMP1, LC3-II, and p62) and cell ultrastructural changes detected by electron microscopy, we observed that only dual genetic antagonism (targeting both CTSB and CTSL expression) could mimic UVA-induced autophagic-lysosomal alterations, whereas single knockdown (targeting CTSB or CTSL only) did not display 'UVA-mimetic' effects failing to reproduce the UVA-induced phenotype. Taken together, our data demonstrate that chronic UVA inhibits both cathepsin B and L enzymatic activity and that dual inactivation of both enzymes is a causative factor underlying UVA-induced impairment of lysosomal function in dermal fibroblasts.

  8. Hair growth-promoting effect of Geranium sibiricum extract in human dermal papilla cells and C57BL/6 mice.

    Science.gov (United States)

    Boisvert, William A; Yu, Miri; Choi, Youngbin; Jeong, Gi Hee; Zhang, Yi-Lin; Cho, Sunghun; Choi, Changsun; Lee, Sanghyun; Lee, Bog-Hieu

    2017-02-13

    Geranium sibiricum L. has been used as a medicinal plant to treat diarrhea, bacterial infection, and cancer in Bulgaria, Peru, and Korea. However, its hair growth-promoting effect was not investigated so far. This study examined the effects of Geranium sibiricum L. extract (GSE) on hair growth, using in vitro and in vivo models. Antioxidant, proliferation and migration assay of GSE was performed with human dermal papilla cells (hDPCs). Hair-growth promoting effect was measured in animal model. Relative expression of interleukin-1, vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor beta 1 was determined by real time RT-PCR. Expression of Ki-67 and stem cell factor were analyzed by immunohistochemistry. GSE treatment proliferated and migrated human dermal papilla cells (hDPCs) more than treatment of 10 μM minoxidil. GSE significantly stimulated the expression of Ki-67 protein and the mRNA levels of hepatocyte growth factor and vascular endothelial growth factor in hDPCs. Topical application of 1,000 ppm GSE for 3 weeks promoted more significant hair growth on shaved C57BL/6 mice than did 5% minoxidil. The histological morphology of hair follicles demonstrated an active anagen phase with the induction of stem cell factor. GSE treatment significantly reduced the number of mast cells and the expression of transforming growth factor beta 1 in mouse skin tissues. These results demonstrated that GSE promotes hair growth in vitro and in vivo by regulating growth factors and the cellular response.

  9. Transcriptional regulation of proteoglycans and glycosaminoglycan chain-synthesizing glycosyltransferases by UV irradiation in cultured human dermal fibroblasts.

    Science.gov (United States)

    Shin, Jeong-Eun; Oh, Jang-Hee; Kim, Yeon Kyung; Jung, Ji-Yong; Chung, Jin Ho

    2011-03-01

    Various kinds of glycosaminoglycans (GAGs) and proteoglycans (PGs) have been known to be involved in structural and space-filling functions, as well as many physiological regulations in skin. To investigate ultraviolet (UV) radiation-mediated regulation of GAGs and PGs in cultured human dermal fibroblasts, transcriptional changes of many types of PGs and GAG chain-synthesizing enzymes at 18 hr after 75 mJ/cm(2) of UV irradiation were examined using quantitative real-time polymerase chain reaction methods. Hyaluronic acid synthase (HAS)-1, -2, and -3 and hyaluronidase-2 mRNA expressions were significantly increased by UV irradiation. Expressions of lumican, fibromodulin, osteoglycin, syndecan-2, perlecan, agrin, versican, decorin, and biglycan were significantly decreased by UV irradiation, while syndecan-1 was increased. Expressions of GAG chain-synthesizing glycosyltransferases, xylosyltransferase-1, β1,3-glucuronyltransferase-1, β1,4-galactosyltransferase-2, -4, exostosin-1, chondroitin polymerizing factor, and chondroitin sulfate synthase-3 were significantly reduced, whereas those of β1,3-galactosyltransferase-6, β1,4-galactosyltransferase-3, -7, β-1,3-N-acetylglucosaminyltran sferase-2, and -7 were increased by UV irradiation. Heparanase-1 mRNA expression was increased, but that of heparanase-2 was reduced by UV irradiation. Time-course investigation of representative genes showed consistent results. In conclusion, UV irradiation may increase hyaluronic acid production through HAS induction, and decrease other GAG productions through downregulation of PG core proteins and GAG chain-synthesizing glycosyltransferases in cultured human dermal fibroblasts.

  10. Bryostatin and its synthetic analog, picolog rescue dermal fibroblasts from prolonged stress and contribute to survival and rejuvenation of human skin equivalents.

    Science.gov (United States)

    Khan, Tapan K; Wender, Paul A; Alkon, Daniel L

    2017-06-07

    Skin health is associated with the day-to-day activity of fibroblasts. The primary function of fibroblasts is to synthesize structural proteins, such as collagen, extracellular matrix proteins, and other proteins that support the structural integrity of the skin and are associated with younger, firmer, and more elastic skin that is better able to resist and recover from injury. At sub-nanomolar concentrations (0.03-0.3 nM), bryostatin-1 and its synthetic analog, picolog (0.1-10 nM) sustained the survival and activation of human dermal fibroblasts cultured under the stressful condition of prolonged serum deprivation. Bryostatin-1 treatment stabilized human skin equivalents (HSEs), a bioengineered combination of primary human skin cells (keratinocytes and dermal fibroblasts) on an extracellular matrix composed of mainly collagen. Fibroblasts activated by bryostatin-1 protected the structural integrity of HSEs. Bryostatin-1 and picolog prolonged activation of Erk in fibroblasts to promote cell survival. Chronic stress promotes the progression of apoptosis. Dermal fibroblasts constitutively express all components of Fas associated apoptosis, including caspase-8, an initiator enzyme of apoptosis. Prolong bryostatin-1 treatment reduced apoptosis by decreasing caspase-8 and protected dermal fibroblasts. Our data suggest that bryostatin-1 and picolog could be useful in anti-aging skincare, and could have applications in tissue engineering and regenerative medicine. © 2017 Wiley Periodicals, Inc.

  11. Identification of key genes induced by platelet-rich plasma in human dermal papilla cells using bioinformatics methods

    Science.gov (United States)

    Shen, Haiyan; Cheng, Hanxiao; Chen, Haihua; Zhang, Jufang

    2016-01-01

    Dermal papilla cells (DPCs) are located at the base of hair follicles, and are known to induce hair follicle regeneration. Platelet-rich plasma (PRP) functions in hair follicle regeneration. To investigate the influence of PRP on DPCs, the present study analyzed RNA-seq data of human hair dermal papilla cells (HHDPCs) that were treated or untreated by PRP. The data included in the RNA-seq were from two normal and two treated HHDPC samples. Following identification by Cuffdiff software, differentially expressed genes (DEGs) underwent enrichment analyses, and protein-protein interaction networks were constructed using Cytoscape software. Additionally, transcription factor (TF)-DEG and TF-long non-coding RNA (lncRNA) regulatory networks were constructed. A total of 178 differentially expressed lncRNA were screened, 365 were upregulated and 142 were downregulated. Notably, upregulated cyclin dependent kinase 1 (CDK1) (degree=76), polo-like kinase 1 (PLK1) (degree=65), cell division cycle 20 (degree=50), cyclin B1 (degree=49), aurora kinase B (degree=47), cyclin dependent kinase 2 (degree=46) and downregulated v-myc avian myelocytomatosis viral oncogene homolog (MYC) (degree=12) had higher degrees in networks. In addition, CCAAT/enhancer binding protein β, E2F transcription factor 1 (E2F1), early growth response 1 and MYC may be key TFs for their target genes, and were enriched in pathways associated with the cell cycle. They may also be involved in cell proliferation via various interactions with other genes, for example CDK1-PLK1 and E2F1→CDK1. These dysregulated genes induced by PRP may affect proliferation of HHDPCs. PMID:27922680

  12. Profibrillin-1 Maturation by Human Dermal Fibroblasts: Proteolytic Processing and Molecular Chaperones

    Science.gov (United States)

    Wallis, Debra D.; Putnam, Elizabeth A.; Cretoiu, Jill S.; Carmical, Sonya G.; Cao, Shi-Nian; Thomas, Gary; Milewicz, Dianna M.

    2006-01-01

    Fibrillin-1 is synthesized as a proprotein that undergoes proteolytic processing in the unique C-terminal domain by a member of the PACE/furin family of endoproteases. This family of endoproteases is active in the trans-Golgi network (TGN), but metabolic labeling studies have been controversial as to whether profibrillin-1 is processed intracellularly or after secretion. This report provides evidence that profibrillin-1 processing is not an intracellular event. Bafilomycin A1 and incubation of dermal fibroblasts at 22°C were used to block secretion in the TGN to confirm that profibrillin-1 processing did not occur in this compartment. Profibrillin-1 immunoprecipitation studies revealed that two endoplasmic reticulum-resident molecular chaperones, BiP and GRP94, interacted with profibrillin-1. To determine the proprotein convertase responsible for processing profibrillin-1, a specific inhibitor of furin, α-1-antitrypsin, Portland variant, was both expressed in the cells and added to cells exogenously. In both cases, the inhibitor blocked the processing of profibrillin-1, providing evidence that furin is the enzyme responsible for profibrillin-1 processing. These studies delineate the secretion and proteolytic processing of profibrillin-1, and identify the proteins that interact with profibrillin-1 in the secretory pathway. PMID:14523997

  13. Assessment of in vitro human dermal absorption studies on pesticides to determine default values, opportunities for read-across and influence of dilution on absorption.

    Science.gov (United States)

    Aggarwal, M; Battalora, M; Fisher, P; Hüser, A; Parr-Dobrzanski, R; Soufi, M; Mostert, V; Strupp, C; Whalley, P; Wiemann, C; Billington, R

    2014-04-01

    Dermal absorption is an integral part of non-dietary human safety risk assessments for agrochemicals. Typically, dermal absorption data for agrochemical active substances are generated from the undiluted formulation concentrate and its spray dilutions. European Food Safety Authority (EFSA) guidance, which combines highly conservative default values, very limited opportunities for read-across from existing data and other overly conservative conclusions, was the driver for this assessment. To investigate the reliability of the EFSA guidance, a homogeneous data-set of 190 GLP and OECD guideline compliant in vitro human skin studies, chosen to match the test method preferred by EU data requirements, was evaluated. These studies represented a wide range of active substances, formulation types, and concentrations. In alignment with EFSA guidance on human exposure assessment, a conservative estimate of absorption (95th percentile) was chosen to define defaults, which were also based on the EFSA worst-case assumption that all material in skin, excluding the first two tape strips, is absorbed. The analysis supports dermal absorption defaults of 6% for liquid concentrates, 2% for solid concentrates, and 30% for all spray dilutions, irrespective of the active substance concentration. Relatively high dermal absorption values for organic solvent-based formulations, compared to water-based or solid concentrates, support their use as worst-case surrogate data for read-across to other formulation types. The current review also shows that dermal absorption of sprays does not increase linearly with increasing dilution, and provides a novel, science-based option for extrapolation from existing data. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Clinical performance of a dermal filler containing natural glycolic Acid and a polylactic Acid polymer: results of a clinical trial in human immunodeficiency virus subjects with facial lipoatrophy.

    Science.gov (United States)

    Tagle, Jorge M; Macchetto, Pedro Cervantes; Durán Páramo, Rosa Margarita

    2010-02-01

    Lipoatrophy is a condition that affects certain individuals, most commonly those who are infected with the human immunodeficiency virus.(1-3) Injectable fillers are used for the treatment of these dermal contour deformities to smooth dermal depressions formed by the loss of volume. These dermal fillers (also known as soft tissue augmentation devices) can correct contour deformities caused by lipoatrophy in patients who are human immunodeficiency virus positive or negative. The product used in this study is a patented, second-generation, injectable, dermal collagen stimulator that combines glycolic acid and polylactic acid. The glycolic acid used is not a polymer, but rather an acid derived from sugar cane. Its chemical structure corresponds to that of an alpha-hydroxy acid. Glycolic acid is a well-characterized agent that is present in a number of cosmetic products. Polylactic acid is a synthetic, biocompatible, biodegradable, inert, synthetic polymer from the poly a-hydroxy-acid family that is believed to stimulate fibroblasts to produce more collagen, thus increasing facial volume. Together, polylactic acid and glycolic acid act in concert to 1) stimulate collagen production and 2) hydrate the outer layers of the skin. A multicenter, clinical investigation authorized by the Mexican Secretariat of Health was conducted between September 20, 2002, and September 19, 2004. This clinical study was conducted in male patients between 32 and 60 years of age with lipoatrophy as a result of highly active antiretroviral therapy for human immunodeficiency virus infection. The study objective was to measure the improvement of contour deformities after the injection of a dermal collagen stimulator containing glycolic acid and polylactic acid. In addition to safety, this dermal filler was assessed when used to correct volume deformities caused by lipoatrophy in subjects who are human immunodeficiency virus positive. Thirty male subjects participated and were treated as follows

  15. Effects of Prisma® Skin dermal regeneration device containing glycosaminoglycans on human keratinocytes and fibroblasts.

    Science.gov (United States)

    Belvedere, Raffaella; Bizzarro, Valentina; Parente, Luca; Petrella, Francesco; Petrella, Antonello

    2017-08-10

    Prisma® Skin is a new pharmaceutical device developed by Mediolanum Farmaceutici S.p.a. It includes alginates, hyaluronic acid and mainly mesoglycan. The latter is a natural glycosaminoglycan preparation containing chondroitin sulfate, dermatan sulfate, heparan sulfate and heparin and it is used in the treatment of vascular disease. Glycosaminoglycans may contribute to the re-epithelialization in the skin wound healing, as components of the extracellular matrix. Here we describe, for the first time, the effects of Prisma® Skin in in vitro cultures of adult epidermal keratinocytes and dermal fibroblasts. Once confirmed the lack of cytotoxicity by mesoglycan and Prisma® Skin, we have shown the increase of S and G2 phases of fibroblasts cell cycle distribution. We further report the strong induction of cell migration rate and invasion capability on both cell lines, two key processes of wound repair. In support of these results, we found significant cytoskeletal reorganization, following the treatments with mesoglycan and Prisma® Skin, as confirmed by the formation of F-actin stress fibers. Additionally, together with a significant reduction of E-cadherin, keratinocytes showed an increase of CD44 expression and the translocation of ezrin to the plasma membrane, suggesting the involvement of CD44/ERM (ezrin-radixin-moesin) pathway in the induction of the analyzed processes. Furthermore, as showed by immunofluorescence assay, fibroblasts treated with mesoglycan and Prisma® Skin exhibited the increase of Fibroblast Activated Protein α and a remarkable change in shape and orientation, two common features of reactive stromal fibroblasts. In all experiments Prisma® Skin was slightly more potent than mesoglycan. In conclusion, based on these findings we suggest that Prisma® Skin may be able to accelerate the healing process in venous skin ulcers, principally enhancing re-epithelialization and granulation processes.

  16. Raman and infrared spectroscopy differentiate senescent from proliferating cells in a human dermal fibroblast 3D skin model.

    Science.gov (United States)

    Eberhardt, Katharina; Matthäus, Christian; Winter, Doreen; Wiegand, Cornelia; Hipler, Uta-Christina; Diekmann, Stephan; Popp, Jürgen

    2017-08-15

    Senescent cells contribute to tissue aging and dysfunction. Therefore, detecting senescent cells in skin is of interest for skin tumor diagnostics and therapy. Here, we studied the transition into senescence of human dermal fibroblasts (HDFs) in a three-dimensional (3D) human fibroblast-derived matrix (FDM). Senescent and proliferating cells were imaged by Raman spectroscopy (RS) and Fourier transform infrared (FTIR) spectroscopy. The obtained averaged spectra were analyzed using PLS-LDA. For these 3D cultured cells, RS and FTIR could clearly distinguish senescent from proliferating cells. For both techniques, we detected senescence-associated alterations in almost all cellular macromolecules. Furthermore, we identified different biochemical properties of 3D compared to two-dimensional (2D) cultured cells, indicating that cells in their natural, skin-like 3D environment act differently than in (2D) cell cultivations in vitro. Compared to 2D cultured cells, cells grown in 3D models displayed a sharper contrast between the proliferating and senescent state, also affecting the abundance of biomolecules including nucleic acids. The training accuracies of both vibrational spectroscopic techniques were >96%, demonstrating the suitability of these label-free measurements for detecting these cellular states in 3D skin models.

  17. Chum salmon egg extracts induce upregulation of collagen type I and exert antioxidative effects on human dermal fibroblast cultures

    Directory of Open Access Journals (Sweden)

    Yoshino A

    2016-08-01

    Full Text Available Atsushi Yoshino,1 Natalia Polouliakh,1–3 Akira Meguro,1 Masaki Takeuchi,1,4 Tatsukata Kawagoe,1 Nobuhisa Mizuki1 1Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 2Sony Computer Science Laboratories Inc., Fundamental Research Laboratories, 3Systems Biology Institute, Tokyo, Japan; 4Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA Abstract: Components of fish roe possess antioxidant and antiaging activities, making them potentially very beneficial natural resources. Here, we investigated chum salmon eggs (CSEs as a source of active ingredients, including vitamins, unsaturated fatty acids, and proteins. We incubated human dermal fibroblast cultures for 48 hours with high and low concentrations of CSE extracts and analyzed changes in gene expression. Cells treated with CSE extract showed concentration-dependent upregulation of collagen type I genes and of multiple antioxidative genes, including OXR1, TXNRD1, and PRDX family genes. We further conducted in silico phylogenetic footprinting analysis of promoter regions. These results suggested that transcription factors such as acute myeloid leukemia-1a and cyclic adenosine monophosphate response element-binding protein may be involved in the observed upregulation of antioxidative genes. Our results support the idea that CSEs are strong candidate sources of antioxidant materials and cosmeceutically effective ingredients. Keywords: fish egg, antiaging, gene expression analysis, antioxidative gene, phylogenetic footprinting analysis

  18. Gastrodia elata Blume Extract Modulates Antioxidant Activity and Ultraviolet A-Irradiated Skin Aging in Human Dermal Fibroblast Cells.

    Science.gov (United States)

    Song, Eunju; Chung, Haeyon; Shim, Eugene; Jeong, Jung-Ky; Han, Bok-Kyung; Choi, Hyuk-Joon; Hwang, Jinah

    2016-11-01

    Gastrodia elata Blume (GEB), a traditional herbal medicine, has been used to treat a wide range of neurological disorders (e.g., paralysis and stroke) and skin problems (e.g., atopic dermatitis and eczema) in oriental medicine. This study was designed to investigate the antioxidant ability of GEB and its antiaging effect on human dermal fibroblast cells (HDF). The total phenolic and flavonoid contents of GEB were 21.8 and 0.43 mg/g dry weight (DW), respectively. The ergothioneine content of GEB was 0.41 mg/mL DW. The DPPH and ABTS radical scavenging activities of GEB at 5 and 10 mg/mL approximately ranged between 31% and 44%. The superoxide dismutase activity of GEB at 10 and 25 mg/mL was 57% and 76%, respectively. GEB increased procollagen type 1 (PC1) production and inhibited matrix metalloproteinase-1 (MMP-1) production and elastase-1 activity in UVA-irradiated HDF. PC1 messenger RNA (mRNA) levels decreased upon UVA irradiation, but recovered in response to high doses of GEB in HDF. On the contrary, GEB significantly decreased MMP-1 and elastase-1 mRNA levels, which were markedly induced in UVA-irradiated HDF. Collectively, these results suggest that GEB has sufficient antioxidant ability to prevent the signs of skin aging in UVA-irradiated human skin cells, suggesting its potential as a natural antiaging product.

  19. Human volunteer study on the inhalational and dermal absorption of N-methyl-2-pyrrolidone (NMP) from the vapour phase.

    Science.gov (United States)

    Bader, Michael; Wrbitzky, Renate; Blaszkewicz, Meinolf; Schäper, Michael; van Thriel, Christoph

    2008-01-01

    N-Methyl-2-pyrrolidone (NMP) is a versatile organic solvent frequently used for surface cleaning such as paint stripping or graffiti removal. Liquid NMP is rapidly absorbed through the skin but dermal vapour phase absorption might also play an important role for the uptake of the solvent. This particular aspect was investigated in an experimental study with 16 volunteers exposed to 80 mg/m(3) NMP for 8 h under either whole-body, i.e. inhalational plus dermal, or dermal-only conditions. Additionally, the influence of moderate physical workload on the uptake of NMP was studied. The urinary concentrations of NMP and its metabolites 5-hydroxy-N-methyl-2-pyrrolidone (5-HNMP) and 2-hydroxy-N-methylsuccinimide (2-HMSI) were followed for 48 h and analysed by gas chromatography-mass spectrometry (GC-MS). Percutaneous uptake delayed the elimination peak times and the apparent biological half-lives of NMP and 5-HNMP. Under resting conditions, dermal-only exposure resulted in the elimination of 71 +/- 8 mg NMP equivalents as compared to 169 +/- 15 mg for whole-body exposure. Moderate workload yielded 79 +/- 8 mg NMP (dermal-only) and 238 +/- 18 mg (whole-body). Thus, dermal absorption from the vapour phase may contribute significantly to the total uptake of NMP, e.g. from workplace atmospheres. As the concentration of airborne NMP does not reflect the body dose, biomonitoring should be carried out for surveillance purposes.

  20. A Pilot Study of the Photoprotective Effects of Strawberry-Based Cosmetic Formulations on Human Dermal Fibroblasts

    Science.gov (United States)

    Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Yuliett; Afrin, Sadia; Alvarez-Suarez, José Miguel; Gonzàlez-Paramàs, Ana Maria; Santos-Buelga, Celestino; Bompadre, Stefano; Quiles, José Luis; Mezzetti, Bruno; Giampieri, Francesca

    2015-01-01

    Strawberry polyphenols have been extensively studied over the last two decades for their beneficial properties. Recently, their possible use in ameliorating skin conditions has also been proposed; however, their role in preventing UVA-induced damage in cosmetic formulation has not yet been investigated. Skin is constantly exposed to several environmental stressors, such as UVA radiation, that induce oxidative stress, inflammation and cell death via the production of reactive oxygen species (ROS). In the present study, we assessed the potential photoprotective capacity of different strawberry-based formulations, enriched with nanoparticles of Coenzyme Q10 and with sun protection factor 10 (SPF10), in human dermal fibroblasts (HuDe) exposed to UVA radiation. We confirmed that strawberries are a very rich source of polyphenols, anthocyanins and vitamins, and possess high total antioxidant capacity. We also showed that strawberry extracts (25 μg/mL–1 mg/mL) exert a noticeable photoprotection in HuDe, increasing cell viability in a dose-dependent way, and that these effects are potentiated by the presence of CoQ10red (100 μg/mL). We have demonstrated for the first time that the topical use of strawberry extract may provide good photoprotection, even if more in-depth studies are strongly encouraged in order to evaluate the cellular and molecular effects of strawberry protection. PMID:26247940

  1. A Pilot Study of the Photoprotective Effects of Strawberry-Based Cosmetic Formulations on Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Massimiliano Gasparrini

    2015-08-01

    Full Text Available Strawberry polyphenols have been extensively studied over the last two decades for their beneficial properties. Recently, their possible use in ameliorating skin conditions has also been proposed; however, their role in preventing UVA-induced damage in cosmetic formulation has not yet been investigated. Skin is constantly exposed to several environmental stressors, such as UVA radiation, that induce oxidative stress, inflammation and cell death via the production of reactive oxygen species (ROS. In the present study, we assessed the potential photoprotective capacity of different strawberry-based formulations, enriched with nanoparticles of Coenzyme Q10 and with sun protection factor 10 (SPF10, in human dermal fibroblasts (HuDe exposed to UVA radiation. We confirmed that strawberries are a very rich source of polyphenols, anthocyanins and vitamins, and possess high total antioxidant capacity. We also showed that strawberry extracts (25 μg/mL–1 mg/mL exert a noticeable photoprotection in HuDe, increasing cell viability in a dose-dependent way, and that these effects are potentiated by the presence of CoQ10red (100 μg/mL. We have demonstrated for the first time that the topical use of strawberry extract may provide good photoprotection, even if more in-depth studies are strongly encouraged in order to evaluate the cellular and molecular effects of strawberry protection.

  2. Arctiin induces an UVB protective effect in human dermal fibroblast cells through microRNA expression changes.

    Science.gov (United States)

    Lee, Ghang Tai; Cha, Hwa Jun; Lee, Kwang Sik; Lee, Kun Kook; Hong, Jin Tae; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan; Bae, Seunghee

    2014-03-01

    Ultraviolet (UV) radiation induces severe alterations in the molecular and cellular components of normal human dermal fibroblast (NHDF) cells by disrupting many intracellular transduction cascades. Although UV responses have been well documented at the genome and proteome levels, UV protective effects have not been elucidated at these levels. The aim of the present study was to demonstrate that arctiin, a phytochemical isolated from the plant Arctium lappa, induced a protective effect against UVB radiation by changing microRNA (miRNA) expression profiles. Using flow cytometry, and water-soluble tetrazolium salt (WST-1)-based cell viability, wound healing, and DNA repair assays we showed that pretreatment with arctiin prior to UVB irradiation reduced UVB-induced apoptosis, cell migration defects, and DNA damage in NHDF cells. It was also found that arctiin‑induced UVB protection is associated with altered miRNA expression profiles. Bioinformatic analysis revealed that the deregulated miRNAs were functionally involved in mitogen-activated protein kinase (MAPK) signaling and cancer signaling pathways. The results suggest that arctiin acts as a UVB protective agent by altering specific miRNA expression in NHDF cells.

  3. Glycyrrhizic acid (GA), a triterpenoid saponin glycoside alleviates ultraviolet-B irradiation-induced photoaging in human dermal fibroblasts.

    Science.gov (United States)

    Afnan, Quadri; Adil, Mushtaq Dar; Nissar-Ul, Ashraf; Rafiq, Ahmad Rather; Amir, Hussian Faridi; Kaiser, Peerzada; Gupta, Vijay Kumar; Vishwakarma, Ram; Tasduq, Sheikh Abdullah

    2012-05-15

    Glycyrrhizic acid (GA), a triterpenoid saponin glycoside from the roots and rhizomes of licorice is used in traditional and modern medicine for the treatment of numerous medical conditions including skin diseases and beauty care product. In the present study, we investigated the effect of GA against ultraviolet B (UVB) irradiation-induced photoaging in human dermal fibroblasts (HDFs) and its possible mechanism of action. HDFs were subjected to photoaging by sub-toxic dose of UVB (10 mj/cm(2)) irradiation. Cell viability, matrix metalloproteinase 1 (MMP1), pro-collagen 1, cellular and nuclear morphology, cell cycle, intracellular reactive oxygen species (ROS), caspase 3 and hyaluronidase inhibition assays were performed. Western blotting was used to evaluate the expression of NF-kappa B (NF-κB) and cytochrome-C proteins. GA treatment significantly inhibited photoaging. It achieved this by reducing ROS, NF-κB, cytochrome c, caspase 3 levels and inhibiting hyaluronidase enzyme. The main mechanism seems to be, most likely by blocking MMP1 activation by modulating NF-κB signaling. These findings may be useful for development of natural and safe photoprotective agents against UVB irradiation. Copyright © 2012 Elsevier GmbH. All rights reserved.

  4. Boron nitride nanotube-mediated stimulation modulates F/G-actin ratio and mechanical properties of human dermal fibroblasts

    Science.gov (United States)

    Ricotti, Leonardo; das Neves, Ricardo Pires; Ciofani, Gianni; Canale, Claudio; Nitti, Simone; Mattoli, Virgilio; Mazzolai, Barbara; Ferreira, Lino; Menciassi, Arianna

    2014-02-01

    F/G-actin ratio modulation is known to have an important role in many cell functions and in the regulation of specific cell behaviors. Several attempts have been made in the latest decades to finely control actin production and polymerization, in order to promote certain cell responses. In this paper we demonstrate the possibility of modulating F/G-actin ratio and mechanical properties of normal human dermal fibroblasts by using boron nitride nanotubes dispersed in the culture medium and by stimulating them with ultrasound transducers. Increasing concentrations of nanotubes were tested with the cells, without any evidence of cytotoxicity up to 10 μg/ml concentration of nanoparticles. Cells treated with nanoparticles and ultrasound stimulation showed a significantly higher F/G-actin ratio in comparison with the controls, as well as a higher Young's modulus. Assessment of Cdc42 activity revealed that actin nucleation/polymerization pathways, involving Rho GTPases, are probably influenced by nanotube-mediated stimulation, but they do not play a primary role in the significant increase of F/G-actin ratio of treated cells, such effect being mainly due to actin overexpression.

  5. A comparative study on the possible cytotoxic effects of different nanostructured lipid carrier (NLC) compositions in human dermal fibroblasts.

    Science.gov (United States)

    Brugè, Francesca; Damiani, Elisabetta; Marcheggiani, Fabio; Offerta, Alessia; Puglia, Carmelo; Tiano, Luca

    2015-11-30

    Nanostructured lipid carriers (NLC) are widely used for topical delivery of active ingredients into the skin for both local and systemic treatment. But concerns have been raised regarding their potential nanotoxicity. To understand the role of NLC composition in terms of cytotoxicity and pro-oxidant effects, we investigated cell viability and intracellular levels of ROS (reactive oxygen species) production in human dermal fibroblasts (HDF) incubated with five NLC formulations differing in their solid lipid composition. HDF and NLC were also exposed to UVA irradiation in order to evaluate the behavior of NLC under realistic environmental conditions which might promote their instability. Using the Guava via-count assay, all nanoparticles, except for those formulated with Compritol 888 ATO, showed a significant decrease in live cells and a parallel increase in apoptotic or dead cells compared to the control, either before and/or after UVA irradiation (18 J/cm(2)). NLC formulated with Geleol™ Mono Diglycerides resulted the most cytotoxic. A similar trend was also observed when intracellular ROS levels were measured in HDF incubated with NLC: there was increased ROS content compared to the control, further exacerbated following UVA. NLC formulated with Dynasan 118 were particularly susceptible to UVA exposure. The results indicate which could be the most suitable candidates for formulating NLC that are biocompatible and non-cytotoxic even when exposed to UVA and hence help direct future choices during the formulation strategies of these delivery systems. Of those tested, Compritol 888 ATO appears to be the best choice.

  6. Matrix metalloproteinase-1 inhibitory activities of Morinda citrifolia seed extract and its constituents in UVA-irradiated human dermal fibroblasts.

    Science.gov (United States)

    Masuda, Megumi; Murata, Kazuya; Naruto, Shunsuke; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki

    2012-01-01

    The objective of this study was to examine whether a 50% ethanolic extract (MCS-ext) of the seeds of Morinda citrifolia (noni) and its constituents have matrix metalloproteinase-1 (MMP-1) inhibitory activity in UVA-irradiated normal human dermal fibroblasts (NHDFs). The MCS-ext (10 μg/mL) inhibited MMP-1 secretion from UVA-irradiated NHDFs, without cytotoxic effects, at 48 h after UV exposure. The ethyl acetate-soluble fraction of MCS-ext was the most potent inhibitor of MMP-1 secretion. Among the constituents of the fraction, a lignan, 3,3'-bisdemethylpinoresinol (1), inhibited the MMP-1 secretion at a concentration of 0.3 μM without cytotoxic effects. Furthermore, 1 (0.3 μM) reduced the level of intracellular MMP-1 expression. Other constituents, namely americanin A (2), quercetin (3) and ursolic acid (4), were inactive. To elucidate inhibition mechanisms of MMP-1 expression and secretion, the effect of 1 on mitogen-activated protein kinases (MAPKs) phosphorylation was examined. Western blot analysis revealed that 1 (0.3 μM) reduced the phosphorylations of p38 and c-Jun-N-terminal kinase (JNK). These results suggested that 1 suppresses intracellular MMP-1 expression, and consequent secretion from UVA-irradiated NHDFs, by down-regulation of MAPKs phosphorylation.

  7. Polyphenol-Rich Strawberry Extract Protects Human Dermal Fibroblasts against Hydrogen Peroxide Oxidative Damage and Improves Mitochondrial Functionality

    Directory of Open Access Journals (Sweden)

    Francesca Giampieri

    2014-06-01

    Full Text Available Strawberry bioactive compounds are widely known to be powerful antioxidants. In this study, the antioxidant and anti-aging activities of a polyphenol-rich strawberry extract were evaluated using human dermal fibroblasts exposed to H2O2. Firstly, the phenol and flavonoid contents of strawberry extract were studied, as well as the antioxidant capacity. HPLC-DAD analysis was performed to determine the vitamin C and β-carotene concentration, while HPLC-DAD/ESI-MS analysis was used for anthocyanin identification. Strawberry extract presented a high antioxidant capacity, and a relevant concentration of vitamins and phenolics. Pelargonidin- and cyanidin-glycosides were the most representative anthocyanin components of the fruits. Fibroblasts incubated with strawberry extract and stressed with H2O2 showed an increase in cell viability, a smaller intracellular amount of ROS, and a reduction of membrane lipid peroxidation and DNA damage. Strawberry extract was also able to improve mitochondrial functionality, increasing the basal respiration of mitochondria and to promote a regenerative capacity of cells after exposure to pro-oxidant stimuli. These findings confirm that strawberries possess antioxidant properties and provide new insights into the beneficial role of strawberry bioactive compounds on protecting skin from oxidative stress and aging.

  8. Role of surface modification in zinc oxide nanoparticles and its toxicity assessment toward human dermal fibroblast cells

    Directory of Open Access Journals (Sweden)

    Ramasamy M

    2014-08-01

    Full Text Available Mohankandhasamy Ramasamy,1 Minakshi Das,1 Seong Soo A An,1 Dong Kee Yi2 1Division of Bionanotechnology, Gachon University, Seongnam, 2Department of Chemistry, Myongji University, Yongin, South Korea Abstract: The wide-scale applications of zinc oxide (ZnO nanoparticles (NPs in ­photocatalysts, gas sensors, and cosmetics may cause toxicity to humans and environments. Therefore, the aim of the present study was to reduce the toxicity of ZnO NPs by coating them with a silica (SiO2 layer, which could be used in human applications, such as cosmetic preparations. The sol–gel method was used to synthesize core ZnO with SiO2-shelled NPs (SiO2/ZnO NPs with varying degrees of coating. Diverse studies were performed to analyze the toxicity of NPs against cells in a dose- and time-dependent manner. To ensure the decreased toxicity of the produced SiO2/ZnO NPs, cytotoxicity in membrane damage and/or intracellular reactive oxygen species (ROS were assessed by employing 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, lactate dehydrogenase, 2',7'-dichlorofluorescin, and lipid peroxide estimations. The cores of ZnO NPs exhibited cytotoxicity over time, regardless of shell thickness. Nevertheless, the thicker SiO2/ZnO NPs revealed reduced enzyme leakage, decreased peroxide production, and less oxidative stress than their bare ZnO NPs or thinner SiO2/ZnO NPs. Therefore, thicker SiO2/ZnO NPs moderated the toxicity of ZnO NPs by restricting free radical formation and the release of zinc ions, and decreasing surface contact with cells. Keywords: zinc oxide, silica coating, photostability, human dermal fibroblast, membrane damage, oxidative stress

  9. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium.

    Directory of Open Access Journals (Sweden)

    Ryuhei Hayashi

    Full Text Available Induced pluripotent stem (iPS cells can be established from somatic cells. However, there is currently no established strategy to generate corneal epithelial cells from iPS cells. In this study, we investigated whether corneal epithelial cells could be differentiated from iPS cells. We tested 2 distinct sources: human adult dermal fibroblast (HDF-derived iPS cells (253G1 and human adult corneal limbal epithelial cells (HLEC-derived iPS cells (L1B41. We first established iPS cells from HLEC by introducing the Yamanaka 4 factors. Corneal epithelial cells were successfully induced from the iPS cells by the stromal cell-derived inducing activity (SDIA differentiation method, as Pax6(+/K12(+ corneal epithelial colonies were observed after prolonged differentiation culture (12 weeks or later in both the L1B41 and 253G1 iPS cells following retinal pigment epithelial and lens cell induction. Interestingly, the corneal epithelial differentiation efficiency was higher in L1B41 than in 253G1. DNA methylation analysis revealed that a small proportion of differentially methylated regions still existed between L1B41 and 253G1 iPS cells even though no significant difference in methylation status was detected in the specific corneal epithelium-related genes such as K12, K3, and Pax6. The present study is the first to demonstrate a strategy for corneal epithelial cell differentiation from human iPS cells, and further suggests that the epigenomic status is associated with the propensity of iPS cells to differentiate into corneal epithelial cells.

  10. Biomechanical properties of four dermal substitutes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-an; NING Fang-gang; ZHAO Nan-ming

    2007-01-01

    @@ Many kinds of cell-free dermal substitutes have been developed during the past several years, however,their biomechanical properties, including hysteresis,stress relaxation, creep, and non-linear stress-strain, are still unknown. In this study, we tested these biomechanical characteristics of four dermal substitutes,and compared them with those of fresh human skin (FHS).

  11. The pharmacokinetics and metabolism of 14C/13C-labeled ortho-phenylphenol formation following dermal application to human volunteers.

    Science.gov (United States)

    Timchalk, C; Selim, S; Sangha, G; Bartels, M J

    1998-08-01

    1. The pharmacokinetics and metabolism of uniformly labeled 14C/13C-ortho-phenylphenol (OPP) were followed in six human male volunteers given a single 8 h dermal dose of 6 microg OPP/kg body weight formulated as a 0.4% (w/v) solution in isopropyl alcohol. The application site was covered with a non-occlusive dome allowing free movement of air, but preventing the loss of radioactivity due to physical contact. At 8 h post-exposure the non-occlusive dome was removed, the dose site was wiped with isopropyl alcohol containing swabs and the skin surface repeatedly stripped with tape. Blood specimens, urine, and feces were collected from each volunteer over a 5 day post-exposure period and were analyzed for radioactivity and metabolites (urine only). 2. Following dermal application, peak plasma levels of radioactivity were obtained within 4 h post-exposure and rapidly declined with virtually all of the absorbed dose rapidly excreted into the urine within 24 h post-exposure. A one-compartment pharmacokinetic model was used to describe the time-course of OPP absorption and clearance in male human volunteers. Approximately 43% of the dermally applied dose was absorbed through the skin with an average absorption half-life of 10 h. Once absorbed the renal clearance of OPP was rapid with an average half-life of 0.8 h. The rate limiting step for renal clearance was the relatively slower rate of dermal absorption; therefore the pharmacokinetics of OPP in humans was described by a 'flip-flop' single compartment model. Overall, the pharmacokinetics were similar between individuals, and the model parameters were in excellent agreement with the experimental data. 3. Approximately 73% of the total urinary radioactivity was accounted for as free OPP, OPP-sulfate and OPP-glucuronide conjugates. The sulfate conjugate was the major metabolite (approximately 69%). Therefore, total urinary OPP equivalents (acid-labile conjugates+free OPP) can be used to estimate the systemically absorbed

  12. Homogeneous Inflammatory Gene Profiles Induced in Human Dermal Fibroblasts in Response to the Three Main Species of Borrelia burgdorferi sensu lato

    Science.gov (United States)

    Meddeb, Mariam; Carpentier, Wassila; Cagnard, Nicolas; Nadaud, Sophie; Grillon, Antoine; Barthel, Cathy; De Martino, Sylvie Josiane; Jaulhac, Benoît; Boulanger, Nathalie

    2016-01-01

    In Lyme borreliosis, the skin is the key site for bacterial inoculation by the infected tick and for cutaneous manifestations. We previously showed that different strains of Borrelia burgdorferi sensu stricto isolated from tick and from different clinical stages of the Lyme borreliosis (erythema migrans, and acrodermatitis chronica atrophicans) elicited a very similar transcriptional response in normal human dermal fibroblasts. In this study, using whole transcriptome microarray chips, we aimed to compare the transcriptional response of normal human dermal fibroblasts stimulated by 3 Borrelia burgdorferi sensu lato strains belonging to 3 main pathogenic species (B. afzelii, B. garinii and B. burgdorferi sensu stricto) in order to determine whether “species-related” inflammatory pathways could be identified. The three Borrelia strains tested exhibited similar transcriptional profiles, and no species-specific fingerprint of transcriptional changes in fibroblasts was observed. Conversely, a common core of chemokines/cytokines (CCL2, CXCL1, CXCL2, CXCL6, CXCL10, IL-6, IL-8) and interferon-related genes was stimulated by all the 3 strains. Dermal fibroblasts appear to play a key role in the cutaneous infection with Borrelia, inducing a homogeneous inflammatory response, whichever Borrelia species was involved. PMID:27706261

  13. Characterization of Skin Aging-Associated Secreted Proteins (SAASP) Produced by Dermal Fibroblasts Isolated from Intrinsically Aged Human Skin.

    Science.gov (United States)

    Waldera Lupa, Daniel M; Kalfalah, Faiza; Safferling, Kai; Boukamp, Petra; Poschmann, Gereon; Volpi, Elena; Götz-Rösch, Christine; Bernerd, Francoise; Haag, Laura; Huebenthal, Ulrike; Fritsche, Ellen; Boege, Fritz; Grabe, Niels; Tigges, Julia; Stühler, Kai; Krutmann, Jean

    2015-08-01

    Most molecular hallmarks of cellular senescence have been identified in studies of cells aged in vitro by driving them into replicative or stress-induced senescence. Comparatively, less is known about the characteristic features of cells that have aged in vivo. Here we provide a systematic molecular analysis of normal human dermal fibroblasts (NHDFs) that were isolated from intrinsically aged human skin of young versus middle aged versus old donors. Intrinsically aged NHDFs in culture exhibited more frequently nuclear foci positive for p53 binding protein 1 and promyelocytic leukemia protein reminiscent of 'DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS)'. Formation of such foci was neither accompanied by increased DNA double strand breaks, nor decreased cell viability, nor telomere shortening. However, it was associated with the development of a secretory phenotype, indicating incipient cell senescence. By quantitative analysis of the entire secretome present in conditioned cell culture supernatant, combined with a multiplex cytokine determination, we identified 998 proteins secreted by intrinsically aged NHDFs in culture. Seventy of these proteins exhibited an age-dependent secretion pattern and were accordingly denoted 'skin aging-associated secreted proteins (SAASP)'. Systematic comparison of SAASP with the classical senescence-associated secretory phenotype (SASP) revealed that matrix degradation as well as proinflammatory processes are common aspects of both conditions. However, secretion of 27 proteins involved in the biological processes of 'metabolism' and 'adherens junction interactions' was unique for NHDFs isolated from intrinsically aged skin. In conclusion, fibroblasts isolated from intrinsically aged skin exhibit some, but not all, molecular hallmarks of cellular senescence. Most importantly, they secrete a unique pattern of proteins that is distinct from the canonical SASP and might reflect specific processes of skin aging.

  14. Preventive Effects of Epigallocatechin-3-O-Gallate against Replicative Senescence Associated with p53 Acetylation in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Dong-Wook Han

    2012-01-01

    Full Text Available Considering the various pharmacological activities of epigallocatechin-3-O-gallate (EGCG including anticancer, and anti-inflammatory, antidiabetic, and so forth, relatively less attention has been paid to the antiaging effect of EGCG on primary cells. In this study, the preventive effects of EGCG against serial passage-induced senescence were investigated in primary cells including rat vascular smooth muscle cells (RVSMCs, human dermal fibroblasts (HDFs, and human articular chondrocytes (HACs. The involvement of Sirt1 and acetylated p53 was examined as an underlying mechanism for the senescence preventive activity of EGCG in HDFs. All cells were employed with the initial passage number (PN between 3 and 7. For inducing senescence, the cells were serially passaged at the predetermined times and intervals in the absence or presence of EGCG (50 or 100 μM. Serial passage-induced senescence in RVSMCs and HACs was able to be significantly prevented at 50 μM EGCG, while in HDFs, 100 μM EGCG could significantly prevent senescence and recover their cell cycle progression close to the normal level. Furthermore, EGCG was found to prevent serial passage- and H2O2-induced senescence in HDFs by suppressing p53 acetylation, but the Sirt1 activity was unaffected. In addition, proliferating HDFs showed similar cellular uptake of FITC-conjugated EGCG into the cytoplasm with their senescent counterparts but different nuclear translocation of it from them, which would partly account for the differential responses to EGCG in proliferating versus senescent cells. Taking these results into consideration, it is suggested that EGCG may be exploited to craft strategies for the development of an antiaging or age-delaying agent.

  15. Deletion of Porcn in mice leads to multiple developmental defects and models human focal dermal hypoplasia (Goltz syndrome.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available BACKGROUND: Focal Dermal Hypoplasia (FDH is a genetic disorder characterized by developmental defects in skin, skeleton and ectodermal appendages. FDH is caused by dominant loss-of-function mutations in X-linked PORCN. PORCN orthologues in Drosophila and mice encode endoplasmic reticulum proteins required for secretion and function of Wnt proteins. Wnt proteins play important roles in embryo development, tissue homeostasis and stem cell maintenance. Since features of FDH overlap with those seen in mouse Wnt pathway mutants, FDH likely results from defective Wnt signaling but molecular mechanisms by which inactivation of PORCN affects Wnt signaling and manifestations of FDH remain to be elucidated. RESULTS: We introduced intronic loxP sites and a neomycin gene in the mouse Porcn locus for conditional inactivation. Porcn-ex3-7flox mice have no apparent developmental defects, but chimeric mice retaining the neomycin gene (Porcn-ex3-7Neo-flox have limb, skin, and urogenital abnormalities. Conditional Porcn inactivation by EIIa-driven or Hprt-driven Cre recombinase results in increased early embryonic lethality. Mesenchyme-specific Prx-Cre-driven inactivation of Porcn produces FDH-like limb defects, while ectodermal Krt14-Cre-driven inactivation produces thin skin, alopecia, and abnormal dentition. Furthermore, cell-based assays confirm that human PORCN mutations reduce WNT3A secretion. CONCLUSIONS: These data indicate that Porcn inactivation in the mouse produces a model for human FDH and that phenotypic features result from defective WNT signaling in ectodermal- and mesenchymal-derived structures.

  16. Evaluation of human skin tests for potential dermal irritant and contact sensitizing products: a position paper

    NARCIS (Netherlands)

    Loveren H van; Jong WH de; Garssen J; LPI

    1998-01-01

    Prediction of human cutaneous irritation and sensitization in view of hazard identification has primarily relied on the use of laboratory animals. Such studies in laboratory animals have been very instrumental in the detection of potential contact sensitizing agents. There are however many uncertain

  17. Dermal uptake of Tetrabromobisphenol A TBBPA by female Wistar Han rat and human skin

    Science.gov (United States)

    TBBPA, a brominated analog of Bisphenol A, is the highest production volume brominated flame retardant in production and human exposure is ubiquitous. Although the major route of exposure to TBBPA is oral uptake, skin penetration is possible. In the studies presented here, the de...

  18. Differential response of human adipose tissue-derived mesenchymal stem cells, dermal fibroblasts, and keratinocytes to burn wound exudates: potential role of skin-specific chemokine CCL27.

    Science.gov (United States)

    van den Broek, Lenie J; Kroeze, Kim L; Waaijman, Taco; Breetveld, Melanie; Sampat-Sardjoepersad, Shakun C; Niessen, Frank B; Middelkoop, Esther; Scheper, Rik J; Gibbs, Susan

    2014-01-01

    Many cell-based regenerative medicine strategies toward tissue-engineered constructs are currently being explored. Cell-cell interactions and interactions with different biomaterials are extensively investigated, whereas very few studies address how cultured cells will interact with soluble wound-healing mediators that are present within the wound bed after transplantation. The aim of this study was to determine how adipose tissue-derived mesenchymal stem cells (ASC), dermal fibroblasts, and keratinocytes will react when they come in contact with the deep cutaneous burn wound bed. Burn wound exudates isolated from deep burn wounds were found to contain many cytokines, including chemokines and growth factors related to inflammation and wound healing. Seventeen mediators were identified by ELISA (concentration range 0.0006-9 ng/mg total protein), including the skin-specific chemokine CCL27. Burn wound exudates activated both ASC and dermal fibroblasts, but not keratinocytes, to increase secretion of CXCL1, CXCL8, CCL2, and CCL20. Notably, ASC but not fibroblasts or keratinocytes showed significant increased secretion of vascular endothelial growth factor (5-fold) and interleukin-6 (253-fold), although when the cells were incorporated in bi-layered skin substitute (SS) these differences were less pronounced. A similar discrepancy between ASC and dermal fibroblast mono-cultures was observed when recombinant human-CCL27 was used instead of burn wound exudates. Although CCL27 did not stimulate the secretion of any of the wound-healing mediators by keratinocytes, these cells, in contrast to ASC or dermal fibroblasts, showed increased proliferation and migration. Taken together, these results indicate that on transplantation, keratinocytes are primarily activated to promote wound closure. In contrast, dermal fibroblasts and, in particular, ASC respond vigorously to factors present in the wound bed, leading to increased secretion of angiogenesis/granulation tissue formation

  19. Inflammation determines the pro-adhesive properties of high extracellular d-glucose in human endothelial cells in vitro and rat microvessels in vivo.

    Directory of Open Access Journals (Sweden)

    Verónica Azcutia

    Full Text Available BACKGROUND: Hyperglycemia is acknowledged as an independent risk factor for developing diabetes-associated atherosclerosis. At present, most therapeutic approaches are targeted at a tight glycemic control in diabetic patients, although this fails to prevent macrovascular complications of the disease. Indeed, it remains highly controversial whether or not the mere elevation of extracellular D-glucose can directly promote vascular inflammation, which favors early pro-atherosclerotic events. METHODS AND FINDINGS: In the present work, increasing extracellular D-glucose from 5.5 to 22 mmol/L was neither sufficient to induce intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 expression, analyzed by flow cytometry, nor to promote leukocyte adhesion to human umbilical vein endothelial cells (HUVEC in vitro, measured by flow chamber assays. Interestingly, the elevation of D-glucose levels potentiated ICAM-1 and VCAM-1 expression and leukocyte adhesion induced by a pro-inflammatory stimulus, such as interleukin (IL-1beta (5 ng/mL. In HUVEC, high D-glucose augmented the activation of extracellular signal-regulated kinase 1/2 (ERK 1/2 and nuclear transcription factor-kappaB (NF-kappaB elicited by IL-1beta, measured by Western blot and electromobility shift assay (EMSA, respectively, but had no effect by itself. Both ERK 1/2 and NF-kappaB were necessary for VCAM-1 expression, but not for ICAM-1 expression. In vivo, leukocyte trafficking was evaluated in the rat mesenteric microcirculation by intravital microscopy. In accordance with the in vitro data, the acute intraperitoneal injection of D-glucose increased leukocyte rolling flux, adhesion and migration, but only when IL-1beta was co-administered. CONCLUSIONS: These results indicate that the elevation of extracellular D-glucose levels is not sufficient to promote vascular inflammation, and they highlight the pivotal role of a pro-inflammatory environment in diabetes, as

  20. Lipo-PGE1 suppresses collagen production in human dermal fibroblasts via the ERK/Ets-1 signaling pathway.

    Science.gov (United States)

    Yang, Yoolhee; Kim, Hee Jung; Woo, Kyong-Je; Cho, Daeho; Bang, Sa Ik

    2017-01-01

    Dysregulation of collagen production contributes to various pathological processes, including tissue fibrosis as well as impaired wound healing. Lipo-prostaglandin E1 (Lipo-PGE1), a lipid microsphere-incorporated prostaglandin E1, is used as a vasodilator for the treatment of peripheral vascular diseases. Lipo-PGE1 was recently shown to enhance human dermal fibroblast (HDF) migration and in vivo wound healing. No published study has characterized the role of Lipo-PGE1 in collagen regulation in HDFs. Here, we investigated the cellular signaling mechanism by which Lipo-PGE1 regulates collagen in HDFs. Collagen production was evaluated by the Sircol collagen assay, Western blot analysis of type I collagen and real time PCR. Unexpectedly, Lipo-PGE1 decreased mRNA expression of collagen 1A1, 1A2, and 3A1. Lipo-PGE1 markedly inhibited type I collagen and total soluble collagen production. In addition, Lipo-PGE1 inhibited transforming growth factor-β-induced collagen expression via Smad2 phosphorylation. To further investigate whether extracellular signal-regulated kinase (ERK)/Ets-1 signaling, a crucial pathway in collagen regulation, is involved in Lipo-PGE1-inhibited collagen production, cells were pretreated with an ERK-specific inhibitor, PD98059, prior to the addition of Lipo-PGE1. Lipo-PGE1-inhibited collagen mRNA expression and total soluble collagen production were recovered by pretreatment with PD98059. Moreover, Lipo-PGE1 directly induced the phosphorylation of ERK. Furthermore, silencing of Ets-1 recovered Lipo-PGE1-inhibited collagen production and PD98059 blocked Lipo-PGE1-enhanced Ets-1 expression. The present study reveals an important role for Lipo-PGE1 as a negative regulator of collagen gene expression and production via ERK/Ets-1 signaling. These results suggest that Lipo-PGE1 could potentially be a therapeutic target in diseases with deregulated collagen turnover.

  1. The Effect of Botulinum Toxin Type A on Expression Profiling of Long Noncoding RNAs in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Ying-ying Miao

    2017-01-01

    Full Text Available Objective. This study was aimed at analyzing the expressions of long noncoding RNAs (lncRNAs in Botulinum Toxin Type A (BoNTA treated human dermal fibroblasts (HDFs in vitro. Methods. We used RNA sequencing to characterize the lncRNAs and mRNAs transcriptome in the control and BoNTA treated group, in conjunction with application of GO (gene ontology analysis and KEGG (kyoto encyclopedia of genes and genomes analysis to delineate the alterations in gene expression. We also obtained quantitative real time polymerase chain reaction (qRT-PCR to confirm some differentially expressed genes. Results. Numerous differentially expressed genes were observed by microarrays between the two groups. qRT-PCR confirmed the changes of six lncRNAs (RP11-517C16.2-001, FR271872, LOC283352, RP11-401E9.3, FGFR3P, and XXbac-BPG16N22.5 and nine mRNAs (NOS2, C13orf15, FOS, FCN2, SPINT1, PLAC8, BIRC5, NOS2, and COL19A1. Farther studies indicated that the downregulating effect of BoNTA on the expression of FGFR3P was time-related and the dosage of BoNTA at a range from 2.5 U/106 cells to 7.5 U/106 cells increased the expression of FGFR3P and COL19A1 in HDFs as well. Conclusion. The expression profiling of lncRNAs was visibly changed in BoNTA treated HDFs. Further studies should focus on several lncRNAs to investigate their functions in BoNTA treated HDFs and the underlying mechanisms.

  2. Analysis of the microRNA expression profile of normal human dermal papilla cells treated with 5α-dihydrotestosterone.

    Science.gov (United States)

    Lee, Myung Joo; Cha, Hwa Jun; Lim, Kyung Mi; Lee, Ok-Kyu; Bae, Seunghee; Kim, Chun-Ho; Lee, Kee-Ho; Lee, Yu Na; Ahn, Kyu Joong; An, Sungkwan

    2015-07-01

    Clinical evidence has demonstrated that the accumulation of 5α-dihydrotestosterone (DHT) in dermal papilla cells (DPCs) is implicated in androgenetic alopecia. Whether this accumulation in DHT may have direct cellular effects leading to androgenetic alopecia remains to be elucidated. The present study aimed to determine whether DHT affects cell growth, cell cycle arrest, cell death, senescence and the induction of reactive oxygen species (ROS), and whether these effects are mediated by microRNA (miRNA)-dependent mechanisms. The cell viability and cell cycle were determined, levels of ROS were examined and senescence-associated β-galactosidase assays were performed in normal human DPCs (nHDPCs). Furthermore, miRNA expression profiling was performed using an miRNA microarray to determine whether changes in the expression levels of miRNA were associated with the cellular effects of DHT. The results revealed that DHT decreased cell growth by inducing cell death and G2 cell cycle arrest, and by increasing the production of ROS and senescence in the nHDPCs. In addition, 55 miRNAs were upregulated and 6 miRNAs were downregulated in the DHT-treated nHDPCs. Bioinformatic analysis demonstrated that the putative target genes of these upregulated and downregulated miRNAs were involved in cell growth, cell cycle arrest, cell death, senescence and the production of ROS. Specifically, the target genes of five highly upregulated and downregulated miRNAs were identified and were associated with the aforementioned effects of DHT. These results demonstrated that the expression of miRNA was altered in the DHT-treated nHDPCs and suggest the potential mechanisms of DHT-induced cell growth repression, cell cycle arrest, cell death, senescence and induction of ROS.

  3. Control of neonatal human dermal fibroblast migration on poly(lactic-co-glycolic acid)-coated surfaces by electrotaxis.

    Science.gov (United States)

    Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Seo, Hyok Jin; Koo, Min-Ah; You, Kyung Eun; Kim, Dohyun; Park, Jong-Chul

    2017-03-01

    Many types of cells respond to applied direct current electric fields (dcEFs) by directional cell migration, a phenomenon called galvanotaxis or electrotaxis. In this study, electrotaxis was used to control cell migration. We designed a new electrotaxis incubator and chamber system to facilitate long-term (> 12 h) observation and to allow for alterations to the direction of the current. Poly(lactic-co-glycolic acid) (PLGA) was coated onto surfaces to mimic a commonly used tissue-engineering scaffolding environment. Neonatal human dermal fibroblasts (nHDFs) were grown on PLGA-coated surfaces and exposed to EFs at increasing currents in the range 0-1 V/cm. These cells migrated toward the cathode during 3 h of dcEF stimulation; however, the migration speed decreased with increasing electric fields. Cells exposed to dcEFs in the range 1-2 V/cm showed no changes to migration speed or x forward migration indices (xFMIs) and the cells continued to move toward the cathode. nHDFs showed directional migration towards the cathode in direct current (dc) EFs (1 V/cm) and they moved in the opposite direction when the polarity of the dcEF was reversed. Reorganization of the actin cytoskeleton and polarization of the Golgi apparatus were evaluated by immunostaining, which showed that the actin cytoskeleton elongated towards the cathode and the Golgi apparatus polarized in the direction of the dcEF. This study revealed that cell migration could potentially be controlled on PLGA scaffolds through electrotaxis. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Epigallocatechin-3-gallate regulates cell growth, cell cycle and phosphorylated nuclear factor-KB in human dermal fibroblasts

    Institute of Scientific and Technical Information of China (English)

    Dong-Wook HAN; Mi Hee LEE; Hak Hee KIM; Suong-Hyu HYON; Jong-Chul PARK

    2011-01-01

    Aim: To investigate the effects of (-)epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, on cell growth, cell cycle and phosphorylated nuclear factor-kB (pNF-KB) expression in neonatal human dermal fibroblasts (nHDFs).Methods: The proliferation and cell-cycle of nHDFs were determined using WST-8 cell growth assay and flow cytometry, respectively. The apoptosis was examined using DNA ladder and Annexin V-FITC assays. The expression levels of pNF-kB and cell cycle-related genes and proteins in nHDFs were measured using cDNA microarray analyses and Western blot. The cellular uptake of EGCG was examined using fluorescence (FITC)-Iabeled EGCG (FITC-EGCG) in combination with confocal microscopy.Results: The effect of EGCG on the growth of nHDFs depended on the concentration tested. At a low concentration (200 μmol/L), EGCG resulted in a slight decrease in the proportion of ceils in the S and G/M phases of cell cycle with a concomitant increase in the proportion of cells in G/G phase. At the higher doses (400 and 800 pmol/L), apoptosis was induced. The regulation of EGCG on the expression of pNF-kB was also concentration-dependent, whereas it did not affect the unphosphorylated NF-kB expression, cDNA microarray analysis showed that cell cycle-related genes were down-regulated by EGCG (200 μmol/L). The expression of cyclins A/B and cyclin-dependent kinase 1 was reversibly regulated by EGCG (200 μmol/L). FITC-EGCG was found to be internalized into the cyto-plasm and translocated into the nucleus of nHDFs.Conclusion: EGCG, through uptake into cytoplasm, reversibly regulated the cell growth and expression of cell cycle-related proteins and genes in normal fibroblasts.

  5. The Effect of Botulinum Toxin Type A on Expression Profiling of Long Noncoding RNAs in Human Dermal Fibroblasts

    Science.gov (United States)

    Miao, Ying-ying; Liu, Juan; Zhu, Jie; Tao, Yan-ling; Zhang, Jia-an

    2017-01-01

    Objective. This study was aimed at analyzing the expressions of long noncoding RNAs (lncRNAs) in Botulinum Toxin Type A (BoNTA) treated human dermal fibroblasts (HDFs) in vitro. Methods. We used RNA sequencing to characterize the lncRNAs and mRNAs transcriptome in the control and BoNTA treated group, in conjunction with application of GO (gene ontology) analysis and KEGG (kyoto encyclopedia of genes and genomes) analysis to delineate the alterations in gene expression. We also obtained quantitative real time polymerase chain reaction (qRT-PCR) to confirm some differentially expressed genes. Results. Numerous differentially expressed genes were observed by microarrays between the two groups. qRT-PCR confirmed the changes of six lncRNAs (RP11-517C16.2-001, FR271872, LOC283352, RP11-401E9.3, FGFR3P, and XXbac-BPG16N22.5) and nine mRNAs (NOS2, C13orf15, FOS, FCN2, SPINT1, PLAC8, BIRC5, NOS2, and COL19A1). Farther studies indicated that the downregulating effect of BoNTA on the expression of FGFR3P was time-related and the dosage of BoNTA at a range from 2.5 U/106 cells to 7.5 U/106 cells increased the expression of FGFR3P and COL19A1 in HDFs as well. Conclusion. The expression profiling of lncRNAs was visibly changed in BoNTA treated HDFs. Further studies should focus on several lncRNAs to investigate their functions in BoNTA treated HDFs and the underlying mechanisms. PMID:28265570

  6. A titanium surface with nano-ordered spikes and pores enhances human dermal fibroblastic extracellular matrix production and integration of collagen fibers.

    Science.gov (United States)

    Yamada, Masahiro; Kato, Eiji; Yamamoto, Akiko; Sakurai, Kaoru

    2016-02-02

    The acquisition of substantial dermal sealing determines the prognosis of percutaneous titanium-based medical devices or prostheses. A nano-topographic titanium surface with ordered nano-spikes and pores has been shown to induce periodontal-like connective tissue attachment and activate gingival fibroblastic functions. This in vitro study aimed to determine whether an alkali-heat (AH) treatment-created nano-topographic titanium surface could enhance human dermal fibroblastic functions and binding strength to the deposited collagen on the titanium surface. The surface topographies of commercially pure titanium machined discs exposed to two different AH treatments were evaluated. Human dermal fibroblastic cultures grown on the discs were evaluated in terms of cellular morphology, proliferation, extracellular matrix (ECM) and proinflammatory cytokine synthesis, and physicochemical binding strength of surface-deposited collagen. An isotropically-patterned, shaggy nano-topography with a sponge-like inner network and numerous well-organized, anisotropically-patterned fine nano-spikes and pores were observed on each nano-topographic surface type via scanning electron microscopy. In contrast to the typical spindle-shaped cells on the machined surfaces, the isotropically- and anisotropically-patterned nano-topographic titanium surfaces had small circular/angular cells containing contractile ring-like structures and elongated, multi-shaped cells with a developed cytoskeletal network and multiple filopodia and lamellipodia, respectively. These nano-topographic surfaces enhanced dermal-related ECM synthesis at both the protein and gene levels, without proinflammatory cytokine synthesis or reduced proliferative activity. Deposited collagen fibers were included in these surfaces and sufficiently bound to the nano-topographies to resist the physical, enzymatic and chemical detachment treatments, in contrast to machined surfaces. Well-organized, isotropically

  7. Finite element approach to study the behavior of fluid distribution in the dermal regions of human body due to thermal stress

    Directory of Open Access Journals (Sweden)

    M.A. Khanday

    2015-10-01

    Full Text Available The human body is a complex structure where the balance of mass and heat transport in all tissues is necessary for its normal functioning. The stabilities of intracellular and extracellular fluids are important physiological factors responsible for homoeostasis. To estimate the effects of thermal stress on the behavior of extracellular fluid concentration in human dermal regions, a mathematical model based on diffusion equation along with appropriate boundary conditions has been formulated. Atmospheric temperature, evaporation rate, moisture concentration and other factors affecting the fluid concentration were taken into account. The variational finite element approach has been employed to solve the model and the results were interpreted graphically.

  8. Effects of pro-inflammatory cytokines on expression of kynurenine pathway enzymes in human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Kegel Magdalena

    2011-10-01

    Full Text Available Abstract Background The kynurenine pathway (KP is the main route of tryptophan degradation in the human body and generates several neuroactive and immunomodulatory metabolites. Altered levels of KP-metabolites have been observed in neuropsychiatric and neurodegenerative disorders as well as in patients with affective disorders. The purpose of the present study was to investigate if skin derived human fibroblasts are useful for studies of expression of enzymes in the KP. Methods Fibroblast cultures were established from cutaneous biopsies taken from the arm of consenting volunteers. Such cultures were subsequently treated with interferon (IFN-γ 200 U/ml and/or tumor necrosis factor (TNF-α, 100 U/ml for 48 hours in serum-free medium. Levels of transcripts encoding different enzymes were determined by real-time PCR and levels of kynurenic acid (KYNA were determined by HPLC. Results At base-line all cultures harbored detectable levels of transcripts encoding KP enzymes, albeit with considerable variation across individuals. Following cytokine treatment, considerable changes in many of the transcripts investigated were observed. For example, increases in the abundance of transcripts encoding indoleamine 2,3-dioxygenase, kynureninase or 3-hydroxyanthranilic acid oxygenase and decreases in the levels of transcripts encoding tryptophan 2,3-dioxygenase, kynurenine aminotransferases or quinolinic acid phosphoribosyltransferase were observed following IFN-γ and TNF-α treatment. Finally, the fibroblast cultures released detectable levels of KYNA in the cell culture medium at base-line conditions, which were increased after IFN-γ, but not TNF-α, treatments. Conclusions All of the investigated genes encoding KP enzymes were expressed in human fibroblasts. Expression of many of these appeared to be regulated in response to cytokine treatment as previously reported for other cell types. Fibroblast cultures, thus, appear to be useful for studies of disease

  9. Distinct DNA-based epigenetic switches trigger transcriptional activation of silent genes in human dermal fibroblasts.

    Science.gov (United States)

    Pandian, Ganesh N; Taniguchi, Junichi; Junetha, Syed; Sato, Shinsuke; Han, Le; Saha, Abhijit; AnandhaKumar, Chandran; Bando, Toshikazu; Nagase, Hiroki; Vaijayanthi, Thangavel; Taylor, Rhys D; Sugiyama, Hiroshi

    2014-01-24

    The influential role of the epigenome in orchestrating genome-wide transcriptional activation instigates the demand for the artificial genetic switches with distinct DNA sequence recognition. Recently, we developed a novel class of epigenetically active small molecules called SAHA-PIPs by conjugating selective DNA binding pyrrole-imidazole polyamides (PIPs) with the histone deacetylase inhibitor SAHA. Screening studies revealed that certain SAHA-PIPs trigger targeted transcriptional activation of pluripotency and germ cell genes in mouse and human fibroblasts, respectively. Through microarray studies and functional analysis, here we demonstrate for the first time the remarkable ability of thirty-two different SAHA-PIPs to trigger the transcriptional activation of exclusive clusters of genes and noncoding RNAs. QRT-PCR validated the microarray data, and some SAHA-PIPs activated therapeutically significant genes like KSR2. Based on the aforementioned results, we propose the potential use of SAHA-PIPs as reagents capable of targeted transcriptional activation.

  10. Enkephalin-like immunoreactivity in human skin is found selectively in a fraction of CD68-positive dermal cells

    DEFF Research Database (Denmark)

    Nissen, J B; Lund, Marianne; Stengaard-Pedersen, K

    1997-01-01

    psoriasis, sections of skin from psoriatic patients were immunohistochemically stained with antisera against methionine and leucine enkephalin, CD68 (KP1, PG-M1), calprotectin (M747), M130 (Ber-MAC3), CD1a and CD3. Enkephalin-like activity was detected selectively in dermal CD68-positive macrophages...

  11. Oxidant exposure induces cysteine-rich protein 61 (CCN1 via c-Jun/AP-1 to reduce collagen expression in human dermal fibroblasts.

    Directory of Open Access Journals (Sweden)

    Zhaoping Qin

    Full Text Available Human skin is a primary target of oxidative stress from reactive oxygen species (ROS generated from both extrinsic and intrinsic sources. Oxidative stress inhibits the production of collagen, the most abundant protein in skin, and thus contributes to connective tissue aging. Here we report that cysteine-rich protein 61 (CCN1, a negative regulator of collagen production, is markedly induced by ROS and mediates loss of type I collagen in human dermal fibroblasts. Conversely, antioxidant N-acetyl-L-cysteine significantly reduced CCN1 expression and prevented ROS-induced loss of type I collagen in both human dermal fibroblasts and human skin in vivo. ROS increased c-Jun, a critical member of transcription factor AP-1 complex, and increased c-Jun binding to the AP-1 site of the CCN1 promoter. Functional blocking of c-Jun significantly reduced CCN1 promoter and gene expression and thus prevented ROS-induced loss of type I collagen. Targeting the c-Jun/CCN1 axis may provide clinical benefit for connective tissue aging in human skin.

  12. Minoxidil activates β-catenin pathway in human dermal papilla cells: a possible explanation for its anagen prolongation effect.

    Science.gov (United States)

    Kwack, Mi Hee; Kang, Bo Mi; Kim, Moon Kyu; Kim, Jung Chul; Sung, Young Kwan

    2011-06-01

    It is believed that the length of the actively growing phase of the anagen hair cycle mainly contributes to hair length. Recent studies showed that maintenance of β-catenin activity in the dermal papilla cells (DPCs) enables hair follicles to keep actively growing. Topical minoxidil treatment promotes hair growth in men with androgenetic alopecia, suggesting that minoxidil may prolong the actively growing phase of the anagen hair cycle. To investigate whether minoxidil prolongs the anagen hair cycle in mice and, if so, to investigate whether minoxidil activates β-catenin pathway in human DPCs. Dorsal skins of C57BL/6 mice were depilated to synchronize the hair cycle. After 10 days, 3% minoxidil were topically applied daily for 10 days. Sections of back skins were stained with hematoxylin and eosin. Hair follicles were graded and hair cycle score (HCS) was calculated. Cultured human DPCs were transiently transfected with the β-catenin responsive TCF reporter plasmid (pTopflash) and corresponding negative control reporter (pFopflash) to assess the activity of β-catenin signaling by minoxidil. Immunofluorescence staining and immunoblot were performed to examine the expression and localization of β-catenin in the presence or absence of minoxidil. Phosphorylation of GSK3β, PKA and PKB were also examined by immunoblot after minoxidil treatment. RT-PCR analysis and immunoblot were employed to investigate the expression of β-catenin pathway targets in DPCs, such as Axin2, Lef-1, and EP2. Modest extension of anagen phase thereby delay of catagen progression was observed by application of minoxidil in mice. Minoxidil stimulated the transcriptional activity of pTopflash but not pFopflash. Nuclear accumulation of β-catenin was also observed after minoxidil treatment. Immunoblot further showed that minoxidil treatment increases the phosphorylation of GSK3β, PKA and PKB. Moreover, minoxidil induced Axin2, Lef-1, and EP2 expression. Our results strongly suggest that

  13. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    Science.gov (United States)

    Laranjeira, Marta S; Carvalho, Ângela; Pelaez-Vargas, Alejandro; Hansford, Derek; Ferraz, Maria Pia; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena; Monteiro, Fernando Jorge

    2014-01-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol–gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior. PMID:27877662

  14. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    Directory of Open Access Journals (Sweden)

    Marta S Laranjeira

    2014-03-01

    Full Text Available Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol–gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs and human dermal microvascular endothelial cells (HDMECs on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves. Our results showed that cells had a higher metabolic activity (HGF, HDMEC and increased gene expression levels of fibroblast-specific protein-1 (FSP-1 and collagen type I (COL I on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior.

  15. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    Science.gov (United States)

    Laranjeira, Marta S.; Carvalho, Ângela; Pelaez-Vargas, Alejandro; Hansford, Derek; Ferraz, Maria Pia; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena; Monteiro, Fernando Jorge

    2014-04-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol-gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior.

  16. Irradiated Human Dermal Fibroblasts Are as Efficient as Mouse Fibroblasts as a Feeder Layer to Improve Human Epidermal Cell Culture Lifespan

    Directory of Open Access Journals (Sweden)

    Lucie Germain

    2013-02-01

    Full Text Available A fibroblast feeder layer is currently the best option for large scale expansion of autologous skin keratinocytes that are to be used for the treatment of severely burned patients. In a clinical context, using a human rather than a mouse feeder layer is desirable to reduce the risk of introducing animal antigens and unknown viruses. This study was designed to evaluate if irradiated human fibroblasts can be used in keratinocyte cultures without affecting their morphological and physiological properties. Keratinocytes were grown either with or without a feeder layer in serum-containing medium. Our results showed that keratinocytes grown either on an irradiated human feeder layer or irradiated 3T3 cells (i3T3 can be cultured for a comparable number of passages. The average epithelial cell size and morphology were also similar. On the other hand, keratinocytes grown without a feeder layer showed heavily bloated cells at early passages and stop proliferating after only a few passages. On the molecular aspect, the expression level of the transcription factor Sp1, a useful marker of keratinocytes lifespan, was maintained and stabilized for a high number of passages in keratinocytes grown with feeder layers whereas Sp1 expression dropped quickly without a feeder layer. Furthermore, gene profiling on microarrays identified potential target genes whose expression is differentially regulated in the absence or presence of an i3T3 feeder layer and which may contribute at preserving the growth characteristics of these cells. Irradiated human dermal fibroblasts therefore provide a good human feeder layer for an effective expansion of keratinocytes in vitro that are to be used for clinical purposes.

  17. Pigmentation and dermal conservative effects of the astonishing algae Sargassum polycystum and Padina tenuis on guinea pigs, human epidermal melanocytes (HEM) and Chang cells.

    Science.gov (United States)

    Quah, Chin Chew; Kim, Kah Hwi; Lau, Mei Siu; Kim, Wee Ric; Cheah, Swee Hung; Gundamaraju, Rohit

    2014-01-01

    The preference for a fairer skin-tone has become a common trend among both men and women around the world. In this study, seaweeds Sargassum polycystum and Padina tenuis were investigated for their in vitro and in vivo potentials in working as skin whitening agents. Seaweed has been used as a revolutionary skin repairing agent in both traditional and modern preparations. The high antioxidant content is one of the prime reasons for its potent action. It has been employed in traditional Chinese and Japanese medicine. For centuries, most medical practitioners in the Asian cultures have known seaweed as an organic source of vitamins, minerals, fatty acids like omega-3 and omega-6 and antioxidants. The present objective of the study was to evaluate the potent dermal protective effect of the two seaweeds Sargassum polycystum and Padina tenuis on human cell lines and guinea pigs. Seaweeds were extracted with ethanol and further fractionated with hexane, ethyl acetate and water. The extracts were tested for mushroom tyrosinase inhibitory activity, cytotoxicity in human epidermal melanocyte (HEM), and Chang cells. Extracts with potent melanocytotoxicity were formulated into cosmetic cream and tested on guinea pigs in dermal irritation tests and de-pigmentation assessments. Both Sargassum polycystum and Padina tenuis seaweeds showed significant inhibitory effect on mushroom tyrosinase in the concentration tested. SPEt showed most potent cytotoxicity on HEM (IC50 of 36µg/ml), followed by SPHF (65µg/ml), and PTHF (78.5µg/ml). SPHF and SPEt reduced melanin content in skin of guinea pigs when assessed histologically. SPEt, SPHF and PTHF were able to inhibit HEM proliferation in vitro, with SPHF being most potent and did not cause any dermal irritation in guinea pigs. The results obtained indicate that SPHF is a promising pharmacological or cosmetic agent.

  18. Effects of plant sterols derived from Aloe vera gel on human dermal fibroblasts in vitro and on skin condition in Japanese women

    Directory of Open Access Journals (Sweden)

    Tanaka M

    2015-02-01

    Full Text Available Miyuki Tanaka,1 Eriko Misawa,1 Koji Yamauchi,1 Fumiaki Abe,1 Chiaki Ishizaki2 1Functional Food Research Department, Food Science and Technology Institute, Morinaga Milk Industry Co, Ltd, Zama, Kanagawa, 2Ebisu Skin Research Center, Inforward, Inc., Tokyo, Japan Background: Aloe is known for its topical use for treating wounds and burns. Many previous studies reported the healing effects of Aloe vera. However, there are few clinical studies on the effect of orally administered A. vera gel on the skin. Aloe sterols are a type of plant sterols that have the capability to regulate the metabolism of glucose and lipids. In a recent study, we confirmed that ingested Aloe sterols reached the peripheral tissues through the bloodstream. However, their influence on dermal fibroblasts has not been investigated. Methods: First, we investigated the capability of Aloe sterols (cycloartenol and lophenol to stimulate human dermal fibroblasts in vitro. Then, we investigated the effect of intake of Aloe vera gel powder (AVGP containing 40 µg Aloe sterols on the skin conditions in Japanese women with dry skin in a randomized, double-blind, placebo-controlled trial. Results: After cocultivation with Aloe sterols, the production of collagen and hyaluronic acid increased by approximately two-fold and 1.5-fold, and gene expression levels of these enzymes responsible for their synthesis were also observed in human dermal fibroblasts. An increase in arm skin hydration was observed at 8 weeks in the AVGP group, whereas a slight decrease in arm skin hydration was noted in the placebo group. However, there was no statistical difference between AVGP and placebo groups in skin moisture. In subgroup analysis, the change in the mean wrinkle depth was significantly lower in the AVGP group than in the control group. In addition, percent body fat after 8 weeks was significantly lower in the AVGP group. No AVGP intake-dependent harmful phenomenon was observed during the intake

  19. Aging alters functionally human dermal papillary fibroblasts but not reticular fibroblasts: a new view of skin morphogenesis and aging.

    Directory of Open Access Journals (Sweden)

    Solène Mine

    Full Text Available Understanding the contribution of the dermis in skin aging is a key question, since this tissue is particularly important for skin integrity, and because its properties can affect the epidermis. Characteristics of matched pairs of dermal papillary and reticular fibroblasts (Fp and Fr were investigated throughout aging, comparing morphology, secretion of cytokines, MMPs/TIMPs, growth potential, and interaction with epidermal keratinocytes. We observed that Fp populations were characterized by a higher proportion of small cells with low granularity and a higher growth potential than Fr populations. However, these differences became less marked with increasing age of donors. Aging was also associated with changes in the secretion activity of both Fp and Fr. Using a reconstructed skin model, we evidenced that Fp and Fr cells do not possess equivalent capacities to sustain keratinopoiesis. Comparing Fp and Fr from young donors, we noticed that dermal equivalents containing Fp were more potent to promote epidermal morphogenesis than those containing Fr. These data emphasize the complexity of dermal fibroblast biology and document the specific functional properties of Fp and Fr. Our results suggest a new model of skin aging in which marked alterations of Fp may affect the histological characteristics of skin.

  20. In vitro recapitulation of functional microvessels for the study of endothelial shear response, nitric oxide and [Ca2+]i.

    Directory of Open Access Journals (Sweden)

    Xiang Li

    Full Text Available Microfluidic technologies enable in vitro studies to closely simulate in vivo microvessel environment with complexity. Such method overcomes certain constrains of the statically cultured endothelial monolayers and enables the cells grow under physiological range of shear flow with geometry similar to microvessels in vivo. However, there are still existing knowledge gaps and lack of convincing evidence to demonstrate and quantify key biological features of the microfluidic microvessels. In this paper, using advanced micromanufacturing and microfluidic technologies, we presented an engineered microvessel model that mimicked the dimensions and network structures of in vivo microvessels with a long-term and continuous perfusion capability, as well as high-resolution and real-time imaging capability. Through direct comparisons with studies conducted in intact microvessels, our results demonstrated that the cultured microvessels formed under perfused conditions recapitulated certain key features of the microvessels in vivo. In particular, primary human umbilical vein endothelial cells were successfully cultured the entire inner surfaces of the microchannel network with well-developed junctions indicated by VE-cadherin staining. The morphological and proliferative responses of endothelial cells to shear stresses were quantified under different flow conditions which was simulated with three-dimensional shear dependent numerical flow model. Furthermore, we successfully measured agonist-induced changes in intracellular Ca2+ concentration and nitric oxide production at individual endothelial cell levels using fluorescence imaging. The results were comparable to those derived from individually perfused intact venules. With in vivo validation of its functionalities, our microfluidic model demonstrates a great potential for biological applications and bridges the gaps between in vitro and in vivo microvascular research.

  1. Induction of tissue inhibitor of matrix metalloproteinase-2 by cholesterol depletion leads to the conversion of proMMP-2 into active MMP-2 in human dermal fibroblasts.

    Science.gov (United States)

    Kim, Sangmin; Oh, Jang-Hee; Lee, Youngae; Lee, Jeongyoon; Cho, Kwang Hyun; Chung, Jin Ho

    2010-01-31

    Cholesterol is one of major components of cell membrane and plays a role in vesicular trafficking and cellular signaling. We investigated the effects of cholesterol on matrix metalloproteinase-2 (MMP-2) activation in human dermal fibroblasts. We found that tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) expression and active form MMP-2 (64 kD) were dose-dependently increased by methyl-beta-cyclodextrin (MbetaCD), a cholesterol depletion agent. In contrast, cholesterol depletion-induced TIMP-2 expression and MMP-2 activation were suppressed by cholesterol repletion. Then we investigated the regulatory mechanism of TIMP-2 expression by cholesterol depletion. We found that the phosphorylation of JNK as well as ERK was significantly increased by cholesterol depletion. Moreover, cholesterol depletion-induced TIMP-2 expression and MMP-2 activation was significantly decreased by MEK inhibitor U0126, and JNK inhibitor SP600125, respectively. While a low dose of recombinant TIMP-2 (100 ng/ml) increased the level of active MMP-2 (64 kD), the high dose of TIMP-2 (>or=200 ng/ml) decreased the level of active MMP-2 (64 kD). Taken together, we suggest that the induction of TIMP-2 by cholesterol depletion leads to the conversion of proMMP-2 (72 kD) into active MMP-2 (64 kD) in human dermal fibroblasts.

  2. Evaluation of cultured human dermal- and dermo-epidermal substitutes focusing on extracellular matrix components: Comparison of protein and RNA analysis.

    Science.gov (United States)

    Oostendorp, Corien; Meyer, Sarah; Sobrio, Monia; van Arendonk, Joyce; Reichmann, Ernst; Daamen, Willeke F; van Kuppevelt, Toin H

    2017-05-01

    Treatment of full-thickness skin defects with split-thickness skin grafts is generally associated with contraction and scar formation and cellular skin substitutes have been developed to improve skin regeneration. The evaluation of cultured skin substitutes is generally based on qualitative parameters focusing on histology. In this study we focused on quantitative evaluation to provide a template for comparison of human bio-engineered skin substitutes between clinical and/or research centers, and to supplement histological data. We focused on extracellular matrix proteins since these components play an important role in skin regeneration. As a model we analyzed the human dermal substitute denovoDerm and the dermo-epidermal skin substitute denovoSkin. The quantification of the extracellular matrix proteins type III collagen and laminin 5 in tissue homogenates using western blotting analysis and ELISA was not successful. The same was true for assaying lysyl oxidase, an enzyme involved in crosslinking of matrix molecules. As an alternative, gene expression levels were measured using qPCR. Various RNA isolation procedures were probed. The gene expression profile for specific dermal and epidermal genes could be measured reliably and reproducibly. Differences caused by changes in the cell culture conditions could easily be detected. The number of cells in the skin substitutes was measured using the PicoGreen dsDNA assay, which was found highly quantitative and reproducible. The (dis) advantages of assays used for quantitative evaluation of skin substitutes are discussed.

  3. Interaction of New-Developed TiO2-Based Photocatalytic Nanoparticles with Pathogenic Microorganisms and Human Dermal and Pulmonary Fibroblasts

    Science.gov (United States)

    Nica, Ionela Cristina; Stan, Miruna Silvia; Popa, Marcela; Chifiriuc, Mariana Carmen; Lazar, Veronica; Pircalabioru, Gratiela G.; Dumitrescu, Iuliana; Ignat, Madalina; Feder, Marcel; Tanase, Liviu Cristian; Mercioniu, Ionel; Diamandescu, Lucian; Dinischiotu, Anca

    2017-01-01

    TiO2-based photocatalysts were obtained during previous years in order to limit pollution and to ease human daily living conditions due to their special properties. However, obtaining biocompatible photocatalysts is still a key problem, and the mechanism of their toxicity recently received increased attention. Two types of TiO2 nanoparticles co-doped with 1% of iron and nitrogen (TiO2-1% Fe–N) atoms were synthesized in hydrothermal conditions at pH of 8.5 (HT1) and 5.5 (HT2), and their antimicrobial activity and cytotoxic effects exerted on human pulmonary and dermal fibroblasts were assessed. These particles exhibited significant microbicidal and anti-biofilm activity, suggesting their potential application for microbial decontamination of different environments. In addition, our results demonstrated the biocompatibility of TiO2-1% Fe–N nanoparticles at low doses on lung and dermal cells, which may initiate oxidative stress through dose accumulation. Although no significant changes were observed between the two tested photocatalysts, the biological response was cell type specific and time- and dose-dependent; the lung cells proved to be more sensitive to nanoparticle exposure. Taken together, these experimental data provide useful information for future photocatalytic applications in the industrial, food, pharmaceutical, and medical fields. PMID:28125053

  4. Identification and localization of insulin-like growth factor-binding protein (IGFBP) messenger RNAs in human hair follicle dermal papilla.

    Science.gov (United States)

    Batch, J A; Mercuri, F A; Werther, G A

    1996-03-01

    The role of the insulin-like growth factors (IGFs) in hair follicle biology has recently been recognized, although their actions, sites of production, and modulation by the insulin-like growth factor-binding proteins (IGFBPs) have not to date been defined. IGF-I is essential for normal hair growth and development, and may be important in regulation of the hair growth cycle. In many culture systems, IGF-I actions are modulated by the IGFBPs. Thus, if IGFBPs are produced in the human hair follicle, they may play a role in targeting IGF-I to its receptor or may modulate IGF-I action by interaction with matrix proteins. We have used in situ hybridization to localize messenger RNA for the six IGFBPs in anagen hair follicles. Anti-sense and sense RNA probes for the IGFBPs (IGFBP-1 to -6) were produced, and 5-micrometer sections of adult facial skin were probed. Messenger RNA for IGFBP-3, -4, and -5 were identified, with predominantly IGFBP-3 and -5 mRNA found in the dermal papilla, and to a lesser extent IGFBP-4 mRNA. IGFBP-4 mRNA was also found at the dermal papilla/epithelial matrix border. Messenger RNAs for both IGFBP-4 and -5 were also demonstrated in the dermal sheath surrounding the hair follicle. Messenger RNAs for IGFBP-1, -2, and -6 were not identified. These studies demonstrate specific localization of IGFBP mRNAs in hair follicles, suggesting that they each play specific roles in the local modulation of IGF action during the hair growth cycle.

  5. Complications of Dermal Filling

    Directory of Open Access Journals (Sweden)

    Sajad Ahmad Salati

    2011-11-01

    Full Text Available Dermal fillers have globally become sought after drugs due to the desire of aging population to regain the youthful looks without any surgical operations. But like other procedures, dermal filling can become complicated. Besides the profitability have introduced the factor of malpractice which can bring in misery rather than beauty and youthful body contours. This article briefly reviews the common adverse effects of dermal fillers.

  6. Cytotoxicity and Proliferation Studies with Arsenic in Established Human Cell Lines: Keratinocytes, Melanocytes, Dendritic Cells, Dermal Fibroblasts, Microvascular Endothelial Cells, Monocytes and T-Cells

    Directory of Open Access Journals (Sweden)

    Hari H. P. Cohly

    2003-01-01

    Full Text Available Abstract: Based on the hypothesis that arsenic exposure results in toxicity and mitogenecity, this study examined the dose-response of arsenic in established human cell lines of keratinocytes (HaCaT, melanocytes (1675, dendritic cells (THP-1/A23187, dermal fibroblasts (CRL1904, microvascular endothelial cells (HMEC, monocytes (THP-1, and T cells (Jurkat. Cytotoxicity was determined by incubating THP-1, THP-1+ A23187 and JKT cells in RPMI 1640, 1675 in Vitacell, HMEC in EBM, and dermal fibroblasts and HaCaT in DMEM with 10% fetal bovine serum, 1% streptomycin and penicillin for 72 hrs in 96-well microtiter plates, at 37oC in a 5% CO2 incubator with different concentrations of arsenic using fluorescein diacetate (FDA. Cell proliferation in 96-well plates was determined in cultured cells starved by prior incubation for 24 hrs in 1% FBS and exposed for 72 hours, using the 96 cell titer proliferation solution (Promega assay. Cytotoxicity assays yielded LD50s of 9 μg/mL for HaCaT, 1.5 μg/mL for CRL 1675, 1.5 μg/mL for dendritic cells, 37 μg/mL for dermal fibroblasts, 0.48 μg/mL for HMEC, 50 μg/mL for THP-1 cells and 50 μg/mL for JKT-T cells. The peak proliferation was observed at 6 μg/mL for HaCaT and THP-1 cells, 0.19 μg/mL for CRL 1675, dendritic cells, and HMEC, and 1.5 μg/mL for dermal fibroblasts and Jurkat T cells. These results show that arsenic is toxic at high doses to keratinocytes, fibroblasts, monocytes and T cells, and toxic at lower doses to melanocytes, microvascular endothelial cells and dendritic cells. Proliferation studies showed sub-lethal doses of arsenic to be mitogenic.

  7. A quantitative comparison of human HT-1080 fibrosarcoma cells and primary human dermal fibroblasts identifies a 3D migration mechanism with properties unique to the transformed phenotype.

    Directory of Open Access Journals (Sweden)

    Michael P Schwartz

    Full Text Available Here, we describe an engineering approach to quantitatively compare migration, morphologies, and adhesion for tumorigenic human fibrosarcoma cells (HT-1080s and primary human dermal fibroblasts (hDFs with the aim of identifying distinguishing properties of the transformed phenotype. Relative adhesiveness was quantified using self-assembled monolayer (SAM arrays and proteolytic 3-dimensional (3D migration was investigated using matrix metalloproteinase (MMP-degradable poly(ethylene glycol (PEG hydrogels ("synthetic extracellular matrix" or "synthetic ECM". In synthetic ECM, hDFs were characterized by vinculin-containing features on the tips of protrusions, multipolar morphologies, and organized actomyosin filaments. In contrast, HT-1080s were characterized by diffuse vinculin expression, pronounced β1-integrin on the tips of protrusions, a cortically-organized F-actin cytoskeleton, and quantitatively more rounded morphologies, decreased adhesiveness, and increased directional motility compared to hDFs. Further, HT-1080s were characterized by contractility-dependent motility, pronounced blebbing, and cortical contraction waves or constriction rings, while quantified 3D motility was similar in matrices with a wide range of biochemical and biophysical properties (including collagen despite substantial morphological changes. While HT-1080s were distinct from hDFs for each of the 2D and 3D properties investigated, several features were similar to WM239a melanoma cells, including rounded, proteolytic migration modes, cortical F-actin organization, and prominent uropod-like structures enriched with β1-integrin, F-actin, and melanoma cell adhesion molecule (MCAM/CD146/MUC18. Importantly, many of the features observed for HT-1080s were analogous to cellular changes induced by transformation, including cell rounding, a disorganized F-actin cytoskeleton, altered organization of focal adhesion proteins, and a weakly adherent phenotype. Based on our results

  8. Structural chromosome abnormalities, increased DNA strand breaks and DNA strand break repair deficiency in dermal fibroblasts from old female human donors.

    Science.gov (United States)

    Kalfalah, Faiza; Seggewiß, Sabine; Walter, Regina; Tigges, Julia; Moreno-Villanueva, María; Bürkle, Alexander; Ohse, Sebastian; Busch, Hauke; Boerries, Melanie; Hildebrandt, Barbara; Royer-Pokora, Brigitte; Boege, Fritz

    2015-02-01

    Dermal fibroblasts provide a paradigmatic model of cellular adaptation to long-term exogenous stress and ageing processes driven thereby. Here we addressed whether fibroblast ageing analysedex vivo entails genome instability. Dermal fibroblasts from human female donors aged 20-67 years were studied in primary culture at low population doubling. Under these conditions, the incidence of replicative senescence and rates of age-correlated telomere shortening were insignificant. Genome-wide gene expression analysis revealed age-related impairment of mitosis, telomere and chromosome maintenance and induction of genes associated with DNA repair and non-homologous end-joining, most notably XRCC4 and ligase 4. We observed an age-correlated drop in proliferative capacity and age-correlated increases in heterochromatin marks, structural chromosome abnormalities (deletions, translocations and chromatid breaks), DNA strand breaks and histone H2AX-phosphorylation. In a third of the cells from old and middle-aged donors repair of X-ray induced DNA strand breaks was impaired despite up-regulation of DNA repair genes. The distinct phenotype of genome instability, increased heterochromatinisation and (in 30% of the cases futile) up-regulation of DNA repair genes was stably maintained over several cell passages indicating that it represents a feature of geroconversion that is distinct from cellular senescence, as it does not encompass a block of proliferation.

  9. Surgical Outcomes of Deep Superior Sulcus Augmentation Using Acellular Human Dermal Matrix in Anophthalmic or Phthisis Socket.

    Science.gov (United States)

    Cho, Won-Kyung; Jung, Su-Kyung; Paik, Ji-Sun; Yang, Suk-Woo

    2016-07-01

    Patients with anophthalmic or phthisis socket suffer from cosmetic problems. To resolve those problems, the authors present the surgical outcomes of deep superior sulcus (DSS) augmentation using acellular dermal matrix in patients with anophthalmic or phthisis socket. The authors retrospectively reviewed anophthalmic or phthisis patients who underwent surgery for DSS augmentation using acellular dermal matrix. To evaluate surgical outcomes, the authors focused on 3 aspects: the possibility of wearing contact prosthesis, the degree of correction of the DSS, and any surgical complications. The degree of correction of DSS was classified as excellent: restoration of superior sulcus enough to remove sunken sulcus shadow; fair: gain of correction effect but sunken shadow remained; or fail: no effect of correction at all. Ten eyes of 10 patients were included. There was a mean 21.3 ± 37.1-month period from evisceration or enucleation to the operation for DSS augmentation. All patients could wear contact prosthesis after the operation (100%). The degree of correction was excellent in 8 patients (80%) and fair in 2. Three of 10 (30%) showed complications: eyelid entropion, upper eyelid multiple creases, and spontaneous wound dehiscence followed by inflammation after stitch removal. Uneven skin surface and paresthesia in the forehead area of the affected eye may be observed after surgery. The overall surgical outcomes were favorable, showing an excellent degree of correction of DSS and low surgical complication rates. This procedure is effective for patients who have DSS in the absence or atrophy of the eyeball.

  10. Leukocyte margination in a model microvessel

    Science.gov (United States)

    Freund, Jonathan B.

    2007-02-01

    The physiological inflammation response depends upon the multibody interactions of blood cells in the microcirculation that bring leukocytes (white blood cells) to the vessel walls. We investigate the fluid mechanics of this using numerical simulations of 29 red blood cells and one leukocyte flowing in a two-dimensional microvessel, with the cells modeled as linearly elastic shell membranes. Despite its obvious simplifications, this model successfully reproduces the increasingly blunted velocity profiles and increased leukocyte margination observed at lower shear rates in actual microvessels. Red cell aggregation is shown to be unnecessary for margination. The relative stiffness of the red cells in our simulations is varied by over a factor of 10, but the margination is found to be much less correlated with this than it is to changes associated with the blunting of the mean velocity profile at lower shear rates. While velocity around the leukocyte when it is near the wall depends upon the red cell properties, it changes little for strongly versus weakly marginating cases. In the more strongly marginating cases, however, a red cell is frequently observed to be leaning on the upstream side of the leukocyte and appears to stabilize it, preventing other red cells from coming between it and the wall. A well-known feature of the microcirculation is a near-wall cell-free layer. In our simulations, it is observed that the leukocyte's most probable position is at the edge of this layer. This wall stand-off distance increases with velocity following a scaling that would be expected for a lubrication mechanism, assuming that there were a nearly constant force pushing the cells toward the wall. The leukocyte's near-wall position is observed to be less stable with increasing mean stand-off distance, but this distance would have potentially greater effect on adhesion since the range of the molecular binding is so short.

  11. Squarticles as a lipid nanocarrier for delivering diphencyprone and minoxidil to hair follicles and human dermal papilla cells.

    Science.gov (United States)

    Aljuffali, Ibrahim A; Sung, Calvin T; Shen, Feng-Ming; Huang, Chi-Ting; Fang, Jia-You

    2014-01-01

    Delivery of diphencyprone (DPCP) and minoxidil to hair follicles and related cells is important in the treatment of alopecia. Here we report the development of "squarticles," nanoparticles formed from sebum-derived lipids such as squalene and fatty esters, for use in achieving targeted drug delivery to the follicles. Two different nanosystems, nanostructured lipid carriers (NLC) and nanoemulsions (NE), were prepared. The physicochemical properties of squarticles, including size, zeta potential, drug encapsulation efficiency, and drug release, were examined. Squarticles were compared to a free control solution with respect to skin absorption, follicular accumulation, and dermal papilla cell targeting. The particle size of the NLC type was 177 nm; that of the NE type was 194 nm. Approximately 80% of DPCP and 60% of minoxidil were entrapped into squarticles. An improved drug deposition in the skin was observed in the in vitro absorption test. Compared to the free control, the squarticles reduced minoxidil penetration through the skin. This may indicate a minimized absorption into systemic circulation. Follicular uptake by squarticles was 2- and 7-fold higher for DPCP and minoxidil respectively compared to the free control. Fluorescence and confocal images of the skin confirmed a great accumulation of squarticles in the follicles and the deeper skin strata. Vascular endothelial growth factor expression in dermal papilla cells was significantly upregulated after the loading of minoxidil into the squarticles. In vitro papilla cell viability and in vivo skin irritancy tests in nude mice suggested a good tolerability of squarticles to skin. Squarticles provide a promising nanocarrier for topical delivery of DPCP and minoxidil.

  12. Photobiomodulation of distinct lineages of human dermal fibroblasts: a rational approach towards the selection of effective light parameters for skin rejuvenation and wound healing

    Science.gov (United States)

    Mignon, Charles; Uzunbajakava, Natallia E.; Raafs, Bianca; Moolenaar, Mitchel; Botchkareva, Natalia V.; Tobin, Desmond J.

    2016-03-01

    Distinct lineages of human dermal fibroblasts play complementary roles in skin rejuvenation and wound healing, which makes them a target of phototherapy. However, knowledge about differential responses of specific cell lineages to different light parameters and moreover the actual molecular targets remain to be unravelled. The goal of this study was to investigate the impact of a range of parameters of light on the metabolic activity, collagen production, and cell migration of distinct lineages of human dermal fibroblasts. A rational approach was used to identify parameters with high therapeutic potential. Fibroblasts exhibited both inhibitory and cytotoxic change when exposed to a high dose of blue and cyan light in tissue culture medium containing photo-reactive species, but were stimulated by high dose red and near infrared light. Cytotoxic effects were eliminated by refreshing the medium after light exposure by removing potential ROS formed by extracellular photo-reactive species. Importantly, distinct lineages of fibroblasts demonstrated opposite responses to low dose blue light treatment when refreshing the medium after exposure. Low dose blue light treatment also significantly increased collagen production by papillary fibroblasts; high dose significantly retarded closure of the scratch wound without signs of cytotoxicity, and this is likely to have involved effects on both cell migration and proliferation. We recommend careful selection of fibroblast subpopulations and their culture conditions, a systematic approach in choosing and translating treatment parameters, and pursuit of fundamental research on identification of photoreceptors and triggered molecular pathways, while seeking effective parameters to address different stages of skin rejuvenation and wound healing.

  13. UVB-irradiated human keratinocytes and interleukin-1αindirectly increase MAP kinase/AP-1 activation and MMP-1 production in UVA-irradiated dermal fibroblasts

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-yong; BI Zhi-gang

    2006-01-01

    Background Solar ultraviolet (UV) irradiation induces the production of matrix metalloproteinases (MMPs) by activating cellular signalling transduction pathways. MMPs are responsible for the degradation and/or inhibition of synthesis of collagenous extracellular matrix in connective tissues. We mimicked the action of environmental ultraviolet on skin and investigated the effects of UVB-irradiated human keratinocytes HaCaT and IL-1α on mitogen activated protein (MAP) kinase activation, c-Jun and c-Fos (AP-1 is composed of Jun and Fos proteins)mRNA expression and MMP-1 production in UVA-irradiated dermal fibroblasts.Methods Following UVA irradiation, the culture medium of fibroblasts was replaced by culture medium from UVB-irradiated HaCaT, or replaced by the complete culture medium with interleukin (IL)-1α. MAP kinase activity expression in fibroblasts was detected by Western blot. c-Jun and c-Fos mRNA expressions were determined by reverse transcriptional polymerase chain reaction (RT-PCR); MMP-1 production in culture medium was detected by enzyme-linked immunosorbent assay (ELISA).Results Culture medium from UVB-irradiated keratinocytes increased MAP kinase activity and c-Jun mRNA expression in UVA-irradiated fibroblasts. IL-1α increased MAP kinase activity and c-Jun mRNA expression,IL-1 α also increased c-Fos mRNA expression. Both culture media from UVB-irradiated human keratinocytes and externally applied IL-1 α increased MMP-1 production in UVA-irradiated fibroblasts.Conclusions UVB-irradiated keratinocytes and IL-1α indirectly promote MMP-1 production in UVA-irradiated fibroblasts by increasing MAP kinase/AP-1 activity. IL-1 may play an important role in the paracrine activation and dermal collagen excessive degradation leading to skin photoaging.

  14. Effects of the novel compound DK223 ([1E,2E-1,2-Bis(6-methoxy-2H-chromen-3-yl)methylene]hydrazine) on migration and proliferation of human keratinocytes and primary dermal fibroblasts.

    Science.gov (United States)

    Ho, Manh Tin; Kang, Hyun Sik; Huh, Jung Sik; Kim, Young Mee; Lim, Yoongho; Cho, Moonjae

    2014-07-23

    Wound healing plays an important role in protecting the human body from external infection. Cell migration and proliferation of keratinocytes and dermal fibroblasts are essential for proper wound healing. Recently, several studies have demonstrated that secondary compounds produced in plants could affect skin cells migration and proliferation. In this study, we identified a novel compound DK223 ([1E,2E-1,2-bis(6-methoxy-2H-chromen-3-yl)methylene]hydrazine) that concomitantly induced human keratinocyte migration and dermal fibroblast proliferation. We evaluated the regulation of epithelial and mesenchymal protein markers, such as E-cadherin and Vimentin, in human keratinocytes, as well as extracellular matrix (ECM) secretion and metalloproteinase families in dermal fibroblasts. DK223 upregulated keratinocyte migration and significantly increased the epithelial marker E-cadherin in a time-dependent manner. We also found that reactive oxygen species (ROS) increased significantly in keratinocytes after 2 h of DK223 exposure, returning to normal levels after 24 h, which indicated that DK223 had an early shock effect on ROS production. DK223 also stimulated fibroblast proliferation, and induced significant secretion of ECM proteins, such as collagen I, III, and fibronectin. In dermal fibroblasts, DK223 treatment induced TGF-β1, which is involved in a signaling pathway that mediates proliferation. In conclusion, DK223 simultaneously induced both keratinocyte migration via ROS production and fibroblast proliferation via TGF-β1 induction.

  15. Effects of the Novel Compound DK223 ([1E,2E-1,2-Bis(6-methoxy-2H-chromen-3-ylmethylene]hydrazine on Migration and Proliferation of Human Keratinocytes and Primary Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Manh Tin Ho

    2014-07-01

    Full Text Available Wound healing plays an important role in protecting the human body from external infection. Cell migration and proliferation of keratinocytes and dermal fibroblasts are essential for proper wound healing. Recently, several studies have demonstrated that secondary compounds produced in plants could affect skin cells migration and proliferation. In this study, we identified a novel compound DK223 ([1E,2E-1,2-bis(6-methoxy-2H-chromen-3-ylmethylene]hydrazine that concomitantly induced human keratinocyte migration and dermal fibroblast proliferation. We evaluated the regulation of epithelial and mesenchymal protein markers, such as E-cadherin and Vimentin, in human keratinocytes, as well as extracellular matrix (ECM secretion and metalloproteinase families in dermal fibroblasts. DK223 upregulated keratinocyte migration and significantly increased the epithelial marker E-cadherin in a time-dependent manner. We also found that reactive oxygen species (ROS increased significantly in keratinocytes after 2 h of DK223 exposure, returning to normal levels after 24 h, which indicated that DK223 had an early shock effect on ROS production. DK223 also stimulated fibroblast proliferation, and induced significant secretion of ECM proteins, such as collagen I, III, and fibronectin. In dermal fibroblasts, DK223 treatment induced TGF-β1, which is involved in a signaling pathway that mediates proliferation. In conclusion, DK223 simultaneously induced both keratinocyte migration via ROS production and fibroblast proliferation via TGF-β1 induction.

  16. Aryl hydrocarbon receptor-dependent upregulation of Cyp1b1 by TCDD and diesel exhaust particles in rat brain microvessels

    Directory of Open Access Journals (Sweden)

    Jacob Aude

    2011-08-01

    Full Text Available Abstract Background AhR activates the transcription of several target genes including CYP1B1. Recently, we showed CYP1B1 as the major cytochrome P450 (CYP enzyme expressed in human brain microvessels. Here, we studied the effect of AhR activation by environmental pollutants on the expression of Cyp1b1 in rat brain microvessels. Methods Expression of AhR and Cyp1b1 was detected in isolated rat brain microvessels. AhR was immunovisualised in brain microvessel endothelial cells. The effect of AhR ligands on Cyp1b1 expression was studied using isolated brain microvessels after ex vivo and/or in vivo exposure to TCDD, heavy hydrocarbons containing diesel exhaust particles (DEP or Δ9-tetrahydrocannabinol (Δ9-THC. Results After ex vivo exposure to TCDD (a highly potent AhR ligand for 3 h, Cyp1b1 expression was significantly increased by 2.3-fold in brain microvessels. A single i.p. dose of TCDD also increased Cyp1b1 transcripts (22-fold and Cyp1b1 protein (2-fold in rat brain microvessels at 72 h after TCDD. Likewise, DEP treatment (in vivo and ex vivo strongly induced Cyp1b1 protein in brain microvessels. DEP-mediated Cyp1b1 induction was inhibited by actinomycin D, cycloheximide, or by an AhR antagonist. In contrast, a sub-chronic in vivo treatment with Δ9-THC once daily for 7 seven days had no effect on Cyp1b1 expression Conclusions Our results show that TCDD and DEP strongly induced Cyp1b1 in rat brain microvessels, likely through AhR activation.

  17. Evaluation of electric arc furnace-processed steel slag for dermal corrosion, irritation, and sensitization from dermal contact.

    Science.gov (United States)

    Suh, Mina; Troese, Matthew J; Hall, Debra A; Yasso, Blair; Yzenas, John J; Proctor, Debora M

    2014-12-01

    Electric arc furnace (EAF) steel slag is alkaline (pH of ~11-12) and contains metals, most notably chromium and nickel, and thus has potential to cause dermal irritation and sensitization at sufficient dose. Dermal contact with EAF slag occurs in many occupational and environmental settings because it is used widely in construction and other industrial sectors for various applications including asphaltic paving, road bases, construction fill, and as feed for cement kilns construction. However, no published study has characterized the potential for dermal effects associated with EAF slag. To assess dermal irritation, corrosion and sensitizing potential of EAF slag, in vitro and in vivo dermal toxicity assays were conducted based on the Organisation for Economic Co-operation and Development (OECD) guidelines. In vitro dermal corrosion and irritation testing (OECD 431 and 439) of EAF slag was conducted using the reconstructed human epidermal (RHE) tissue model. In vivo dermal toxicity and delayed contact sensitization testing (OECD 404 and 406) were conducted in rabbits and guinea pigs, respectively. EAF slag was not corrosive and not irritating in any tests. The results of the delayed contact dermal sensitization test indicate that EAF slag is not a dermal sensitizer. These findings are supported by the observation that metals in EAF slag occur as oxides of low solubility with leachates that are well below toxicity characteristic leaching procedure (TCLP) limits. Based on these results and in accordance to the OECD guidelines, EAF slag is not considered a dermal sensitizer, corrosive or irritant.

  18. Human dermal safety studies with eflornithine HCl 13.9% cream (Vaniqa), a novel treatment for excessive facial hair.

    Science.gov (United States)

    Hickman, J G; Huber, F; Palmisano, M

    2001-01-01

    Eflornithine HCl 13.9% cream (Vaniqa) is a novel treatment for the management of unwanted facial hair in women. This paper reports the results of four modified open-label, within-subject vehicle-controlled studies evaluating the dermal safety of this topical treatment. In a repeated insult patch test (230 subjects), erythema with oedema occurred in 38.9% of subjects treated with eflornithine HCl 13.9% cream and 4.8% of subjects treated with vehicle cream. Challenge applications at previously untested sites following the three-week induction period produced noticeable erythema or greater on only four sites treated with eflornithine HCl 13.9% cream and one vehicle-treated site. The erythema at these sites subsided substantially within 24 hours. In a three-week cumulative irritation study (30 subjects), the mean irritation score for sites treated with eflornithine HCl 13.9% cream was 1.33, compared with 0.76 at vehicle-treated sites and 3.09 at positive-control (sodium lauryl sulphate-treated) sites (p < 0.001 between all three groups). In a phototoxicity study (25 subjects), irradiated sites showed either no reaction (40% of both sites treated with eflornithine HCl 13.9% cream and vehicle-treated sites), or mild erythema subsiding in all cases but one within 24 hours. No reaction was seen at non-irradiated sites. In a photocontact allergy study (30 subjects), challenge with eflornithine HCl 13.9% cream or its vehicle alone produced either no reaction or mild erythema subsiding within 24 hours at both irradiated and non-irradiated sites. No serious adverse events were reported during the studies, and the only adverse events considered related to treatment were pruritus (three subjects) and dry skin at test site (one subject). These results demonstrate that eflornithine HCl 13.9% cream does not have contact sensitising, photocontact allergic or phototoxic properties. It can cause irritation under exaggerated conditions of use. Eflornithine HCl 13.9% cream, therefore

  19. Adipose Tissue-Derived Stromal Cells Inhibit TGF-beta 1-Induced Differentiation of Human Dermal Fibroblasts and Keloid Scar-Derived Fibroblasts in a Paracrine Fashion

    NARCIS (Netherlands)

    Spiekman, Maroesjka; Przybyt, Ewa; Plantinga, Josee A.; Gibbs, Susan; van der Lei, Berend; Harmsen, Martin C.

    2014-01-01

    Background: Adipose tissue-derived stromal cells augment wound healing and skin regeneration. It is unknown whether and how they can also influence dermal scarring. The authors hypothesized that adipose tissue-derived stromal cells inhibit adverse differentiation of dermal fibroblasts induced by the

  20. Cytoprotective effects of cerium and selenium nanoparticles on heat-shocked human dermal fibroblasts: an in vitro evaluation

    Directory of Open Access Journals (Sweden)

    Yuan B

    2016-04-01

    Full Text Available Bo Yuan, Thomas J Webster, Amit K Roy Chemical Engineering Department, College of Engineering, Northeastern University, Boston, MA, USA Abstract: It is a widely accepted fact that environmental factors affect cells by modulating the components of subcellular compartments and altering metabolic enzymes. Factors (such as oxidative stress and heat-shock-induced proteins and heat shock factors, which upregulate stress-response related genes to protect affected cells are commonly altered during changes in environmental conditions. Studies by our group and others have shown that nanoparticles (NPs are able to efficiently attenuate oxidative stress by penetrating into specific tissues or organs. Such findings warrant further investigation on the effects of NPs on heat-shock-induced stress, specifically in cells in the presence or absence (pretreated of NPs. Here, we examined the cytoprotective effects of two different NPs (cerium and selenium on heat-induced cell death for a model cell using dermal fibroblasts. We report for the first time that both ceria and selenium NPs (at 500 µg/mL possess stress-relieving behavior on fibroblasts undergoing heat shock. Such results indicate the need to further develop these NPs as a novel treatment for heat shock. Keywords: ceria, heat shock, nanotechnology, cell death, nanomedicine, protective

  1. Regulation of collagen synthesis in human dermal fibroblasts by the sodium and magnesium salts of ascorbyl-2-phosphate.

    Science.gov (United States)

    Geesin, J C; Gordon, J S; Berg, R A

    1993-01-01

    Ascorbic acid has been shown to stimulate collagen synthesis in dermal fibroblasts by increasing the rate of transcription of collagen genes. Experiments involving the use of ascorbic acid require daily supplementation due to the instability of the molecule in aqueous solutions. In order to provide a more stable alternative to ascorbic acid, two salts of ascorbyl-2-phosphate, having a greater chemical stability than ascorbic acid, were tested for their ability to stimulate collagen synthesis in monolayer fibroblast cultures. The concentration and time dependence of their activities were compared with ascorbic acid. The magnesium salt of ascorbyl-2-phosphate was found to be equivalent to ascorbic acid in stimulating collagen synthesis in these assays, while the sodium salt required at least a tenfold greater concentration to produce the same effect as ascorbic acid. Solutions of either ascorbic acid or the ascorbyl-2-phosphate analogs (at 10 mM) in phosphate-buffered saline (PBS) were relatively stable as shown by their decay rates and their ability to stimulate collagen synthesis even after nine days in solution prior to testing their effects on cultured cells. Ascorbic acid was unstable at neutral pH compared to solutions of either sodium or magnesium ascorbyl-2-phosphate. These data support the use of magnesium ascorbyl-2-phosphate in experiments where stability of ascorbic acid is a concern, e.g. in long-term cultures or in in vivo studies.

  2. Epigallocatechin Gallate-Mediated Alteration of the MicroRNA Expression Profile in 5α-Dihydrotestosterone-Treated Human Dermal Papilla Cells

    Science.gov (United States)

    Shin, Shanghun; Kim, Karam; Lee, Myung Joo; Lee, Jeongju; Choi, Sungjin; Kim, Kyung-Suk; Ko, Jung-Min; Han, Hyunjoo; Kim, Su Young; Youn, Hae Jeong; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan

    2016-01-01

    Background Dihydrotestosterone (DHT) induces androgenic alopecia by shortening the hair follicle growth phase, resulting in hair loss. We previously demonstrated how changes in the microRNA (miRNA) expression profile influenced DHT-mediated cell death, cell cycle arrest, cell viability, the generation of reactive oxygen species (ROS), and senescence. Protective effects against DHT have not, however, been elucidated at the genome level. Objective We showed that epigallocatechin gallate (EGCG), a major component of green tea, protects DHT-induced cell death by regulating the cellular miRNA expression profile. Methods We used a miRNA microarray to identify miRNA expression levels in human dermal papilla cells (DPCs). We investigated whether the miRNA expression influenced the protective effects of EGCG against DHT-induced cell death, growth arrest, intracellular ROS levels, and senescence. Results EGCG protected against the effects of DHT by altering the miRNA expression profile in human DPCs. In addition, EGCG attenuated DHT-mediated cell death and growth arrest and decreased intracellular ROS levels and senescence. A bioinformatics analysis elucidated the relationship between the altered miRNA expression and EGCG-mediated protective effects against DHT. Conclusion Overall, our results suggest that EGCG ameliorates the negative effects of DHT by altering the miRNA expression profile in human DPCs. PMID:27274631

  3. Arborvitae (Thuja plicata essential oil significantly inhibited critical inflammation- and tissue remodeling-related proteins and genes in human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Xuesheng Han

    2017-06-01

    Full Text Available Arborvitae (Thuja plicata essential oil (AEO is becoming increasingly popular in skincare, although its biological activity in human skin cells has not been investigated. Therefore, we sought to study AEO's effect on 17 important protein biomarkers that are closely related to inflammation and tissue remodeling by using a pre-inflamed human dermal fibroblast culture model. AEO significantly inhibited the expression of vascular cell adhesion molecule 1 (VCAM-1, intracellular cell adhesion molecule 1 (ICAM-1, interferon gamma-induced protein 10 (IP-10, interferon-inducible T-cell chemoattractant (I-TAC, monokine induced by interferon gamma (MIG, and macrophage colony-stimulating factor (M-CSF. It also showed significant antiproliferative activity and robustly inhibited collagen-I, collagen-III, plasminogen activator inhibitor-1 (PAI-1, and tissue inhibitor of metalloproteinase 1 and 2 (TIMP-1 and TIMP-2. The inhibitory effect of AEO on increased production of these protein biomarkers suggests it has anti-inflammatory property. We then studied the effect of AEO on the genome-wide expression of 21,224 genes in the same cell culture. AEO significantly and diversely modulated global gene expression. Ingenuity pathway analysis (IPA showed that AEO robustly affected numerous critical genes and signaling pathways closely involved in inflammatory and tissue remodeling processes. The findings of this study provide the first evidence of the biological activity and beneficial action of AEO in human skin cells.

  4. Structure-Based Algorithms for Microvessel Classification

    KAUST Repository

    Smith, Amy F.

    2015-02-01

    © 2014 The Authors. Microcirculation published by John Wiley & Sons Ltd. Objective: Recent developments in high-resolution imaging techniques have enabled digital reconstruction of three-dimensional sections of microvascular networks down to the capillary scale. To better interpret these large data sets, our goal is to distinguish branching trees of arterioles and venules from capillaries. Methods: Two novel algorithms are presented for classifying vessels in microvascular anatomical data sets without requiring flow information. The algorithms are compared with a classification based on observed flow directions (considered the gold standard), and with an existing resistance-based method that relies only on structural data. Results: The first algorithm, developed for networks with one arteriolar and one venular tree, performs well in identifying arterioles and venules and is robust to parameter changes, but incorrectly labels a significant number of capillaries as arterioles or venules. The second algorithm, developed for networks with multiple inlets and outlets, correctly identifies more arterioles and venules, but is more sensitive to parameter changes. Conclusions: The algorithms presented here can be used to classify microvessels in large microvascular data sets lacking flow information. This provides a basis for analyzing the distinct geometrical properties and modelling the functional behavior of arterioles, capillaries, and venules.

  5. Inguinal hernia repair using human acellular dermal matrix%脱细胞真皮基质修补腹股沟疝

    Institute of Scientific and Technical Information of China (English)

    刘飞德; 李基业; 姚胜; 王世斌; 朱瑛梅

    2011-01-01

    BACKGROUND: Tension-free repair using polypropylene mesh is the standard technique for inguinal hernia repair at the present,but the prosthetic material maybe has harmful impact on the patient reproductive functions.OBJECTIVE: To summarize the experience and evaluate the clinical effect of human acellular dermal matrix in inguinal hernia repair.METHODS: Nineteen patients aged 5-38 years with inguinal hernia underwent hernia repair using human acelluar demall matrix.Of the patients, there were 15 male and 4 female. The wound healing was observed and regular follow-up was conducted.RESULTS AND CONCLUSION: Of the 19 patients, all patients recovered with primary wound healing without infection of incisional wound or seroma. Eighteen patients were followed up. During a follow-up of 3-30 months, no chronic pain or discomfort at the incisional area or hernia recurrence occurred. It is feasible and safe to use human acellular dermal matrix patch in inguinal hernia repair, especially in young people or man with inguinal hernia willing to procreate.%背景:当前应用聚丙烯补片行腹股沟疝无张力修补已成为腹股沟疝修补的标准手段,但这些材料可能对患者生殖功能产生影响.目的:总结应用脱细胞真皮基质修补腹股沟疝的经验.方法:回顾性分析19例应用异体脱细胞真皮基质修补腹股沟疝患者的临床资料,男15例,女4例,年龄5~38岁.术后观察切口愈合情况,并定期随访.结果与结论:19例患者伤口均Ⅰ期愈合,无切口感染、皮下积液等并发症.18例患者获得随访,随访3~30个月,无局部疼痛、牵拉等不适感,无复发病例.提示脱细胞真皮基质材料为未成年人、尚未婚育及有生育要求的男性腹股沟疝患者的治疗提供一种新的选择.

  6. Effects of continuous wave and fractionated diode laser on human fibroblast cancer and dermal normal cells by zinc phthalocyanine in photodynamic therapy: A comparative study.

    Science.gov (United States)

    Navaeipour, Farzaneh; Afsharan, Hadi; Tajalli, Habib; Mollabashi, Mahmood; Ranjbari, Farideh; Montaseri, Azadeh; Rashidi, Mohammad-Reza

    2016-08-01

    In this experimental study, cancer and normal cells behavior during an in vitro photodynamic therapy (PDT) under exposure of continuous wave (CW) and fractionated mode of laser with different irradiation power and time intervals was compared and investigated. At the first, human fibroblast cancer cell line (SW 872) and human dermal normal (HFFF2) cell line were incubated with different concentrations of zinc phthalocyanine (ZnPc), as a PDT drug. The cells, then, were irradiated with a 675nm diode laser and the cell viability was evaluated using MTT assay. Under optimized conditions, the viability of the cancer cells was eventually reduced to 3.23% and 13.17%, and that of normal cells was decreased to 20.83% and 36.23% using CW and fractionated diode lasers, respectively. In general, the ratio of ZnPc LD50 values for the normal cells to the cancer cells with CW laser was much higher than that of the fractionated laser. Subsequently, cancer cells in comparison with normal ones were found to be more sensitive toward the photodynamic damage induced by ZnPc. In addition, treatment with CW laser was found to be more effective against the cancer cells with a lower toxicity to the normal cells compared with the fractionated diode laser.

  7. Effects of TRAP-1-like protein (TLP gene on collagen synthesis induced by TGF-β/Smad signaling in human dermal fibroblasts.

    Directory of Open Access Journals (Sweden)

    Xue Wang

    Full Text Available BACKGROUND: Hypertrophic scars are pathologic proliferations of the dermal skin layer resulting from excessive collagen deposition during the healing process of cutaneous wounds. Current research suggests that the TGF-β/Smad signaling pathway is closely associated with normal scar and hypertrophic scar formation. TRAP-1-like protein (TLP, a cytoplasmic protein, has been reported to efficiently regulate Smad2- and Smad3-dependent signal expression in the TGF-β pathway. The relationship between TLP and Type I/III collagen (Col I/III synthesis explored in the present study provides an effective target for wound healing and gene therapy of hypertrophic scarring. OBJECTIVE: To investigate the effects of TLP on collagen synthesis in human dermal fibroblasts. METHODS: Lentiviral vectors encoding TLP was constructed to transfect fibroblasts derived from normal human skin. The expression of Col I/III and phosphorylation of Smad2 and Smad3 in fibroblasts were examined after TLP treatment. In addition, the comparison of TLP expression in normal skin tissues and in hypertrophic scar tissues was performed, and the effect of TLP on cell viability was analyzed by MTT assay. RESULTS: TLP expression in hypertrophic scar tissue was markedly higher than in normal skin tissue. The Real Time PCR and Western blot test results both revealed that the synthesis of Col I/III was positively correlated with the expression of TLP. TLP also facilitate Smad2 phosphorylation while, conversely, inhibiting Smad3 phosphorylation. TLP may play a cooperative role, along with the cytokine TGF-β1, in improving the overall cell viability of skin fibroblasts. CONCLUSIONS: TLP likely acts as a molecular modulator capable of altering the balance of Smad3- and Smad2-dependent signaling through regulation of phosphorylation, thus facilitating collagen synthesis in fibroblasts. Based on genetic variation in TLP levels in different tissues, these results suggest that TLP plays a key role

  8. Anti-aging effects of Piper cambodianum P. Fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice

    Directory of Open Access Journals (Sweden)

    Lee H

    2016-07-01

    Full Text Available Hyunji Lee,1 Youngeun Hong,1 So Hee Kwon,2 Jongsun Park,1 Jisoo Park1 1Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, 2Department of Pharmacy, College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea Background: Aging of skin is associated with environmental factors such as ultraviolet rays, air pollution, gravity, and genetic factors, all of which can lead to wrinkling of skin. Previous reports suggest that the wound repair is impaired by the aging process and strategies to manipulate the age-related wound healing are necessary in order to stimulate repair.Objective: Several traditional plant extracts are well-known for their properties of skin protection and care. Piper cambodianum P. Fourn. (PPF, a member of Piperacecae, is a plant found in Vietnam that might have therapeutic properties. Therefore, the effects of PPF stem and leaf extract on aging process were investigated in vitro and in vivo.Methods: PPF extract dissolved in methanol was investigated using Western blotting, real-time quantitative reverse transcription-polymerase chain reaction, flow cytometry, and cell wound-healing assays. We assessed the anti-aging effect of PPF in mouse using the wound-healing assay. The results were analyzed by Student’s unpaired t-test; *P<0.05 and **P<0.01 were considered to indicate significant and highly significant values, respectively, compared with corresponding controls.Results: PPF treatment demonstrated in vitro and in vivo anti-aging activity. Western blot analysis of PPF-treated normal human dermal fibroblast cells showed a dose-dependent increase in the expression of extracellular matrix genes such as collagen and elastin, but decreased expression of the aging gene matrix metalloproteinase-3. Quantitative polymerase chain reaction showed

  9. Erythrocyte hemodynamics in stenotic microvessels: A numerical investigation

    Science.gov (United States)

    Wang, Tong; Xing, Zhongwen

    2014-03-01

    This paper presents a two-dimensional numerical investigation of deformation and motion of erythrocytes in stenotic microvessels using the immersed boundary-fictitious domain method. The erythrocytes were modeled as biconcave-shaped closed membranes filled with cytoplasm. We studied the biophysical characteristics of human erythrocytes traversing constricted microchannels with the narrowest cross-sectional diameter as small as 3 μm. The effects of essential parameters, namely, stenosis severity, shape of the erythrocytes, and erythrocyte membrane stiffness, were simulated and analyzed in this study. Moreover, simulations were performed to discuss conditions associated with the shape transitions of the cells along with the relative effects of radial position and initial orientation of erythrocytes, membrane stiffness, and plasma environments. The simulation results were compared with existing experiment findings whenever possible, and the physical insights obtained were discussed. The proposed model successfully simulated rheological behaviors of erythrocytes in microscale flow and thus is applicable to a large class of problems involving fluid flow with complex geometry and fluid-cell interactions. Our study would be helpful for further understanding of pathology of malaria and some other blood disorders.

  10. Immunohistochemical analysis of radiation-induced non-healing dermal wounds of the head and neck.

    Science.gov (United States)

    Riedel, Frank; Philipp, Katrin; Sadick, Haneen; Goessler, Ullrich; Hörmann, Karl; Verse, Thomas

    2005-01-01

    Persistent, poorly healing wounds are a significant clinical problem in patients who have had previous irradiation. The pathology of chronic dermal ulcers is characterised by excessive proteolytic activity which degrades the extracellular matrix (required for cell migration) and growth factors and their receptors. Interestingly, the molecular basis of radiation-induced dermal wounds is poorly understood. The aim of this study was to investigate, by immunohistochemistry, the expression of the endothelial marker vWF, of angiogenic bFGF, VEGF and IL-8, of collagenases MMP-2 and MMP-9 and their inhibitors TIMP-1 and TIMP-2, in tissue samples from radiation-induced chronic dermal wounds and healthy control skin. Performing immunohistochemical detection of microvessels, an equivalent density of microvessels was observed within tissue samples from normal healthy skin and from radiation-induced non-healing cutaneous wounds. Investigation of angiogenic bFGF and VEGF demonstrated a decreased expression of both factors in the radiation-induced dermal wounds. The expression of angiogenic IL-8 was weak in both the healthy skin samples and the radiation-induced wounds. In addition, an increased expression of collagenases MMP-2 and MMP-9 protein within the radiation-induced wounds was demonstrated. While the expression of TIMP-1 showed no difference of expression between normal control skin and tissue samples from radiation-induced wounds, TIMP-2 expression was slightly increased compared to healthy controls. Our data suggest that radiation-induced dermal injuries often fail to heal because of decreased angiogenesis and persistently high concentrations of MMPs with an imbalance of their tissue inhibitors. The basic mechanisms of wound healing in radiation-induced dermal wounds at the molecular level need to be understood further for the development of innovative treatment strategies.

  11. Precursor of advanced glycation end products mediates ER-stress-induced caspase-3 activation of human dermal fibroblasts through NAD(PH oxidase 4.

    Directory of Open Access Journals (Sweden)

    Danielle T Loughlin

    Full Text Available BACKGROUND: The precursor for advanced glycation end products, 3-deoxyglucosone (3DG is highly upregulated in skin explants of diabetic cutaneous wounds, and has been shown to negatively impact dermal fibroblasts, which are crucial in wound remodeling. 3DG induces apoptosis however; the mechanisms involved in the apoptotic action of 3DG in the pathogenesis of diabetic chronic wounds are poorly understood. Therefore, we sought to delineate novel mechanisms involved with the 3DG-collagen induced apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Using human dermal fibroblasts, we demonstrated that 3DG-modified collagen induces oxidative stress and caspase-3 activation. Oxidative stress was found to be dependent on the upregulation of NAD(PH oxidase 4 (Nox4, a reactive oxygen species (ROS Nox homologue, triggering endoplasmic reticulum (ER stress, as assessed by the ER stress-induced apoptosis marker Growth Arrest and DNA Damage-inducible gene 153 (GADD153. We demonstrated that 3DG-collagen activated GADD153 via phosphorylation of p38 mitogen activated protein kinase (MAPK, and this was dependent on upstream ROS. Inhibition of ROS and/or p38 MAPK abrogated 3DG-collagen induced caspase-3 activation. Our investigations also demonstrated that 3DG-collagen-induced caspase-3 activation did not signal through the canonical receptor for advanced glycation end products (RAGE but through integrin alpha1beta1. To further verify the role of integrins, neutralization of integrins alpha1beta1 prevented 3DG-collagen-induced upregulation of ROS, GADD153, and caspase-3 activation; suggesting that 3DG-collagen signaling to the fibroblast is dependent on integrins alpha1beta1. CONCLUSIONS/SIGNIFICANCE: Taken together, these findings demonstrate for the first time that a RAGE independent mechanism is involved in 3DG-collagen-induced apoptosis. Moreover, the ER stress pathway through activation of Nox4 by integrins alpha1beta1 plays a key role in 3DG-collagen-induced caspase

  12. Chronic Exposure to Rhodobacter Sphaeroides Extract Lycogen™ Prevents UVA-Induced Malondialdehyde Accumulation and Procollagen I Down-Regulation in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Tsai-Hsiu Yang

    2014-01-01

    Full Text Available UVA contributes to the pathogenesis of skin aging by downregulation of procollagen I content and induction of matrix metalloproteinase (MMP-associated responses. Application of antioxidants such as lycopene has been demonstrated as a convenient way to achieve protection against skin aging. Lycogen™, derived from the extracts of Rhodobacter sphaeroides, exerts several biological effects similar to that of lycopene whereas most of its anti-aging efficacy remains uncertain. In this study, we attempted to examine whether Lycogen™ could suppress malondialdehyde (MDA accumulation and restore downregulated procollagen I expression induced by UVA exposure. In human dermal fibroblasts Hs68 cells, UVA repressed cell viability and decreased procollagen I protein content accompanied with the induction of MMP-1 and MDA accumulation. Remarkably, incubation with 50 µM Lycogen™ for 24 h ameliorated UVA-induced cell death and restored UVA-induced downregulation of procollagen in a dose-related manner. Lycogen™ treatment also prevented the UVA-induced MMP-1 upregulation and intracellular MDA generation in Hs68 cells. Activation of NFκB levels, one of the downstream events induced by UVA irradiation and MMP-1 induction, were also prevented by Lycogen™ administration. Taken together, our findings demonstrate that Lycogen™ may be an alternative agent that prevents UVA-induced skin aging and could be used in cosmetic and pharmaceutical applications.

  13. Analysis of changes in microRNA expression profiles in response to the troxerutin-mediated antioxidant effect in human dermal papilla cells.

    Science.gov (United States)

    Lim, Kyung Mi; An, Sungkwan; Lee, Ok-Kyu; Lee, Myung Joo; Lee, Jeong Pyo; Lee, Kwang Sik; Lee, Ghang Tai; Lee, Kun Kook; Bae, Seunghee

    2015-08-01

    Dermal papilla (DP) cells function as important regulators of the hair growth cycle. The loss of these cells is a primary cause of diseases characterized by hair loss, including alopecia, and evidence has revealed significantly increased levels of reactive oxygen species (ROS) in hair tissue and DP cells in the balding population. In the present study, troxerutin, a flavonoid derivative of rutin, was demonstrated to have a protective effect against H2O2-mediated cellular damage in human DP (HDP) cells. Biochemical assays revealed that pretreatment with troxerutin exerted a protective effect against H2O2-induced loss of cell viability and H2O2-induced cell death. Further experiments confirmed that troxerutin inhibited the H2O2-induced production of ROS and upregulation of senescence-associated β-galactosidase activity. Using microRNA (miRNA) microarrays, the present study identified 24 miRNAs, which were differentially expressed in the troxerutin-pretreated, H2O2-treated HDP cells. Subsequent prediction using bioinformatics analysis revealed that the altered miRNAs were functionally involved in several cell signaling pathways, including the mitogen-activated protein kinase and WNT pathways. Overall, these results indicated that ROS-mediated cellular damage was inhibited by troxerutin and suggested that the use of troxerutin may be an effective approach in the treatment of alopecia.

  14. Protection of free radical-induced cytotoxicity by 2-O-α-D-glucopyranosyl-L-ascorbic acid in human dermal fibroblasts.

    Science.gov (United States)

    Hanada, Yukako; Iomori, Atsuko; Ishii, Rie; Gohda, Eiichi; Tai, Akihiro

    2014-01-01

    The stable ascorbic acid (AA) derivative, 2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G), exhibits vitamin C activity after enzymatic hydrolysis to AA. The biological activity of AA-2G per se has not been studied in detail, although AA-2G has been noted as a stable source for AA supply. The protective effect of AA-2G against the oxidative cell death of human dermal fibroblasts induced by incubating with 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) for 24 h was investigated in this study. AA-2G showed a significant protective effect against the oxidative stress in a concentration-dependent manner. AA-2G did not exert a protective effect during the initial 12 h of incubation, but had a significant protective effect in the later part of the incubation period. Experiments using a α-glucosidase inhibitor and comparative experiments using a stereoisomer of AA-2G confirmed that AA-2G had a protective effect against AAPH-induced cytotoxicity without being converted to AA. Our results provide an insight into the efficacy of AA-2G as a biologically interesting antioxidant and suggest the practical use of AA-2G even before being converted into AA as a beneficial antioxidant.

  15. Enriched Astaxanthin Extract from Haematococcus pluvialis Augments Growth Factor Secretions to Increase Cell Proliferation and Induces MMP1 Degradation to Enhance Collagen Production in Human Dermal Fibroblasts.

    Science.gov (United States)

    Chou, Hsin-Yu; Lee, Chelsea; Pan, Jian-Liang; Wen, Zhi-Hong; Huang, Shu-Hung; Lan, Chi-Wei John; Liu, Wang-Ta; Hour, Tzyh-Chyuan; Hseu, You-Cheng; Hwang, Byeong Hee; Cheng, Kuo-Chen; Wang, Hui-Min David

    2016-06-16

    Among many antioxidants that are used for the repairing of oxidative stress induced skin damages, we identified the enriched astaxanthin extract (EAE) from Haematococcus pluvialis as a viable ingredient. EAE was extracted from the red microalgae through supercritical fluid carbon dioxide extraction. To compare the effectiveness, EAE wastreated on human dermal fibroblasts with other components, phorbol 12-myristate 13-acetate (PMA), and doxycycline. With sirius red staining and quantitative real-time polymerase chain reaction (qRT-PCR), we found that PMA decreased the collagen concentration and production while overall the addition of doxycycline and EAE increased the collagen concentration in a trial experiments. EAE increased collagen contents through inhibited MMP1 and MMP3 mRNA expression and induced TIMP1, the antagonists of MMPs protein, gene expression. As for when tested for various proteins through western blotting, it was seen that the addition of EAE increased the expression of certain proteins that promote cell proliferation. Testing those previous solutions using growth factor assay, it was noticeable that EAE had a positive impact on cell proliferation and vascular endothelial growth factor (VEGF) than doxycycline, indicating that it was a better alternative treatment for collagen production. To sum up, the data confirmed the possible applications as medical cosmetology agentsand food supplements.

  16. Salvianolic Acid B Protects Normal Human Dermal Fibroblasts Against Ultraviolet B Irradiation-Induced Photoaging Through Mitogen-Activated Protein Kinase and Activator Protein-1 Pathways.

    Science.gov (United States)

    Sun, Zhengwang; Park, Sang-Yong; Hwang, Eunson; Zhang, Mengyang; Jin, Fengxie; Zhang, Baochun; Yi, Tae Hoo

    2015-01-01

    Exposure to ultraviolet (UV) light causes increased matrix metalloproteinase (MMP) activity and decreased collagen synthesis, leading to skin photoaging. Salvianolic acid B (SAB), a polyphenol, was extracted and purified from salvia miltiorrhiza. We assessed effects of SAB on UVB-induced photoaging and investigated its molecular mechanism of action in UVB-irradiated normal human dermal fibroblasts. Our results show that SAB significantly inhibited the UVB-induced expression of metalloproteinases-1 (MMP-1) and interleukin-6 (IL-6) while promoting the production of type I procollagen and transforming growth factor β1 (TGF-β1). Moreover, treatment with SAB in the range of 1-100 μg/mL significantly inhibited UVB-induced extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38 phosphorylation, which resulted in decreasing UVB-induced phosphorylation of c-Fos and c-Jun. These results indicate that SAB downregulates UV-induced MMP-1 expression by inhibiting Mitogen-activated protein kinase (MAPK) signaling pathways and activator protein-1 (AP-1) activation. Our results suggest a potential use for SAB in skin photoprotection.

  17. A Protective Mechanism of Visible Red Light in Normal Human Dermal Fibroblasts: Enhancement of GADD45A-Mediated DNA Repair Activity.

    Science.gov (United States)

    Kim, Yeo Jin; Kim, Hyoung-June; Kim, Hye Lim; Kim, Hyo Jeong; Kim, Hyun Soo; Lee, Tae Ryong; Shin, Dong Wook; Seo, Young Rok

    2017-02-01

    The phototherapeutic effects of visible red light on skin have been extensively investigated, but the underlying biological mechanisms remain poorly understood. We aimed to elucidate the protective mechanism of visible red light in terms of DNA repair of UV-induced oxidative damage in normal human dermal fibroblasts. The protective effect of visible red light on UV-induced DNA damage was identified by several assays in both two-dimensional and three-dimensional cell culture systems. With regard to the protective mechanism of visible red light, our data showed alterations in base excision repair mediated by growth arrest and DNA damage inducible, alpha (GADD45A). We also observed an enhancement of the physical activity of GADD45A and apurinic/apyrimidinic endonuclease 1 (APE1) by visible red light. Moreover, UV-induced DNA damages were diminished by visible red light in an APE1-dependent manner. On the basis of the decrease in GADD45A-APE1 interaction in the activating transcription factor-2 (ATF2)-knockdown system, we suggest a role for ATF2 modulation in GADD45A-mediated DNA repair upon visible red light exposure. Thus, the enhancement of GADD45A-mediated base excision repair modulated by ATF2 might be a potential protective mechanism of visible red light. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Skin Aging-Dependent Activation of the PI3K Signaling Pathway via Downregulation of PTEN Increases Intracellular ROS in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Eun-Mi Noh

    2016-01-01

    Full Text Available Reactive oxygen species (ROS play a major role in both chronological aging and photoaging. ROS induce skin aging through their damaging effect on cellular constituents. However, the origins of ROS have not been fully elucidated. We investigated that ROS generation of replicative senescent fibroblasts is generated by the modulation of phosphatidylinositol 3,4,5-triphosphate (PIP3 metabolism. Reduction of the PTEN protein, which dephosphorylates PIP3, was responsible for maintaining a high level of PIP3 in replicative cells and consequently mediated the activation of the phosphatidylinositol-3-OH kinase (PI3K/Akt pathway. Increased ROS production was blocked by inhibition of PI3K or protein kinase C (PKC or by NADPH oxidase activating in replicative senescent cells. These data indicate that the signal pathway to ROS generation in replicative aged skin cells can be stimulated by reduced PTEN level. Our results provide new insights into skin aging-associated modification of the PI3K/NADPH oxidase signaling pathway and its relationship with a skin aging-dependent increase of ROS in human dermal fibroblasts.

  19. Ridge preservation with acellular dermal matrix and anorganic bone matrix cell-binding peptide P-15 after tooth extraction in humans. A histologic and morphometric study

    Directory of Open Access Journals (Sweden)

    Arthur B. Novaes Jr

    2012-06-01

    Full Text Available Aim: The aim of this study was to analyze by histomorphometric parameters the use of acellular dermal matrix (ADM with or without anorganic bovine bone matrix (ABM / synthetic cell-binding peptide P-15 in the formation of bone in human alveoli. Materials and methods: Eighteen patients in need of extraction of maxillary anterior teeth were selected and randomly assigned to the test group (ADM plus ABM/P-15 or the control group (ADM only. Histomorphometric measurements and histological analysis were recorded about 6 months after ridge preservation procedures in ten patients. The amount of newly formed bone, the most recently formed bone, fibrous tissue plus marrow spaces and remaining graft particles were measured and analyzed. Results: At 6 months, the new bone area parameter and the percentage of fibrous tissue plus marrow space areas showed higher values to the control group, and statistically significant differences when compared with the test group (p=0.03. Conclusion: The ADM acted as a membrane. The association of ABM/P-15 with ADM resulted in new bone formation within the alveoli, but the results were not considered relevant when used in this indication.

  20. Enriched Astaxanthin Extract from Haematococcus pluvialis Augments Growth Factor Secretions to Increase Cell Proliferation and Induces MMP1 Degradation to Enhance Collagen Production in Human Dermal Fibroblasts

    Science.gov (United States)

    Chou, Hsin-Yu; Lee, Chelsea; Pan, Jian-Liang; Wen, Zhi-Hong; Huang, Shu-Hung; Lan, Chi-Wei John; Liu, Wang-Ta; Hour, Tzyh-Chyuan; Hseu, You-Cheng; Hwang, Byeong Hee; Cheng, Kuo-Chen; Wang, Hui-Min David

    2016-01-01

    Among many antioxidants that are used for the repairing of oxidative stress induced skin damages, we identified the enriched astaxanthin extract (EAE) from Haematococcus pluvialis as a viable ingredient. EAE was extracted from the red microalgae through supercritical fluid carbon dioxide extraction. To compare the effectiveness, EAE wastreated on human dermal fibroblasts with other components, phorbol 12-myristate 13-acetate (PMA), and doxycycline. With sirius red staining and quantitative real-time polymerase chain reaction (qRT-PCR), we found that PMA decreased the collagen concentration and production while overall the addition of doxycycline and EAE increased the collagen concentration in a trial experiments. EAE increased collagen contents through inhibited MMP1 and MMP3 mRNA expression and induced TIMP1, the antagonists of MMPs protein, gene expression. As for when tested for various proteins through western blotting, it was seen that the addition of EAE increased the expression of certain proteins that promote cell proliferation. Testing those previous solutions using growth factor assay, it was noticeable that EAE had a positive impact on cell proliferation and vascular endothelial growth factor (VEGF) than doxycycline, indicating that it was a better alternative treatment for collagen production. To sum up, the data confirmed the possible applications as medical cosmetology agentsand food supplements. PMID:27322248

  1. Solar-simulated ultraviolet radiation induces histone 3 methylation changes in the gene promoters of matrix metalloproteinases 1 and 3 in primary human dermal fibroblasts.

    Science.gov (United States)

    Gesumaria, Lisa; Matsui, Mary S; Kluz, Thomas; Costa, Max

    2015-05-01

    Molecular signalling pathways delineating the induction of matrix metalloproteinases (MMPs) by ultraviolet radiation (UVR) are currently well-defined; however, the effects of UVR on epigenetic mechanisms of MMP induction are not as well understood. In this study, we examined solar-simulated UVR (ssUVR)-induced gene expression changes and alterations to histone methylation in the promoters of MMP1 and MMP3 in primary human dermal fibroblasts (HDF). Gene expression changes, including the increased expression of MMP1 and MMP3, were observed using Affymetrix GeneChip arrays and confirmed by qRT-PCR. Using ChIP-PCR, we showed for the first time that in HDF irradiated with 12 J/cm(2) ssUVR, the H3K4me3 transcriptional activating mark increased and the H3K9me2 transcriptional silencing mark decreased in abundance in promoters, correlating with the observed elevation of MMP1 and MMP3 mRNA levels following ssUVR exposure. Changes in mRNA levels due to a single exposure were transient and decreased 5 days after exposure.

  2. Bioactive Constituents of Zanthoxylum rhetsa Bark and Its Cytotoxic Potential against B16-F10 Melanoma Cancer and Normal Human Dermal Fibroblast (HDF) Cell Lines.

    Science.gov (United States)

    Santhanam, Ramesh Kumar; Ahmad, Syahida; Abas, Faridah; Safinar Ismail, Intan; Rukayadi, Yaya; Tayyab Akhtar, Muhammad; Shaari, Khozirah

    2016-05-24

    Zanthoxylum rhetsa is an aromatic tree, known vernacularly as "Indian Prickly Ash". It has been predominantly used by Indian tribes for the treatment of many infirmities like diabetes, inflammation, rheumatism, toothache and diarrhea. In this study, we identified major volatile constituents present in different solvent fractions of Z. rhetsa bark using GC-MS analysis and isolated two tetrahydrofuran lignans (yangambin and kobusin), a berberine alkaloid (columbamine) and a triterpenoid (lupeol) from the bioactive chloroform fraction. The solvent fractions and purified compounds were tested for their cytotoxic potential against human dermal fibroblasts (HDF) and mouse melanoma (B16-F10) cells, using the MTT assay. All the solvent fractions and purified compounds were found to be non-cytotoxic to HDF cells. However, the chloroform fraction and kobusin exhibited cytotoxic effect against B16-F10 melanoma cells. The presence of bioactive lignans and alkaloids were suggested to be responsible for the cytotoxic property of Z. rhetsa bark against B16-F10 cells.

  3. Bioactive Constituents of Zanthoxylum rhetsa Bark and Its Cytotoxic Potential against B16-F10 Melanoma Cancer and Normal Human Dermal Fibroblast (HDF Cell Lines

    Directory of Open Access Journals (Sweden)

    Ramesh Kumar Santhanam

    2016-05-01

    Full Text Available Zanthoxylum rhetsa is an aromatic tree, known vernacularly as “Indian Prickly Ash”. It has been predominantly used by Indian tribes for the treatment of many infirmities like diabetes, inflammation, rheumatism, toothache and diarrhea. In this study, we identified major volatile constituents present in different solvent fractions of Z. rhetsa bark using GC-MS analysis and isolated two tetrahydrofuran lignans (yangambin and kobusin, a berberine alkaloid (columbamine and a triterpenoid (lupeol from the bioactive chloroform fraction. The solvent fractions and purified compounds were tested for their cytotoxic potential against human dermal fibroblasts (HDF and mouse melanoma (B16-F10 cells, using the MTT assay. All the solvent fractions and purified compounds were found to be non-cytotoxic to HDF cells. However, the chloroform fraction and kobusin exhibited cytotoxic effect against B16-F10 melanoma cells. The presence of bioactive lignans and alkaloids were suggested to be responsible for the cytotoxic property of Z. rhetsa bark against B16-F10 cells.

  4. Isomenthone protects human dermal fibroblasts from TNF-α-induced death possibly by preventing activation of JNK and p38 MAPK.

    Science.gov (United States)

    Jung, Eunsun; Byun, Sangyo; Kim, Seungbeom; Kim, Moohan; Park, Deokhoon; Lee, Jongsung

    2012-10-01

    Cell death evoked by tumor necrosis factor-α (TNF-α) is regulated by the TNF-α receptor-associated death domain containing protein, which interacts with and activates apoptotic proteases triggering cell death. c-Jun N-terminal kinase (JNK) and p38 MAPK, induce the apoptotic program and are indispensible early elements in stress-induced apoptosis that control the release of cytochrome c. Isomenthone is a constituent of the essential oil of Mentha arvensis L. and is used as a fragrance and flavor in the cosmetic, drug, and food industries. In this study, we investigated the protective effects of isomenthone against TNF-α-induced cell death and its mechanism in human dermal fibroblasts. To understand the cytoprotective role of isomenthone, MTT and terminal deoxynucleotidyl transferase dUTP nick end labeling assays for cell viability and enzyme-linked immunosorbent assay analysis for the mechanistic study were performed. We found that isomenthone inhibited the TNF-α-mediated reduction in cell viability and inhibited the increase in apoptosis under a serum-free condition. Isomenthone also blocked the JNK and p38 MAPK pathways and downstream apoptotic events. These results indicate that isomenthone has the potential to protect fibroblasts against TNF-α-induced cell death under a serum-deprived condition by blocking activation of the JNK and p38 MAPK pathways and downstream apoptotic events.

  5. Effect of a novel ascorbic derivative, disodium isostearyl 2-O-L-ascorbyl phosphate, on normal human dermal fibroblasts against reactive oxygen species.

    Science.gov (United States)

    Shibayama, Hiroharu; Hisama, Masayoshi; Matsuda, Sanae; Kawase, Atsushi; Ohtsuki, Mamitaro; Hanada, Katsumi; Iwaki, Masahiro

    2008-04-01

    The novel amphiphilic vitamin C derivative disodium isostearyl 2-O-L-ascorbyl phosphate (VCP-IS-2Na), which has a C(18) alkyl chain attached to the stable ascorbate derivative sodium L-ascorbic acid 2-phosphate (VCP-Na), was evaluated for reduction of cell damage induced by oxidative stress, ultraviolet A (UVA), ultraviolet B (UVB), and H(2)O(2); stimulation of collagen synthesis against UVA irradiation; and inhibition of matrix metalloproteinase-1 (MMP-1) activity induced by UVA in human normal dermal fibroblasts. VCP-IS-2Na pretreatment resulted in significant protection against cell damage induced by UVB, UVA, and H(2)O(2). The amount of type I collagen following UVA irradiation was increased by treatment with VCP-IS-2Na in a concentration-dependent manner. These effects of VCP-IS-2Na were superior to those of L-ascorbic acid (vitamin C, VC) and VCP-Na. On the other hand, VCP-IS-2Na suppressed 65% of the excess MMP-1 irradiated UVA, and VC and VCP-Na slightly suppressed it.

  6. Enriched Astaxanthin Extract from Haematococcus pluvialis Augments Growth Factor Secretions to Increase Cell Proliferation and Induces MMP1 Degradation to Enhance Collagen Production in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Chou

    2016-06-01

    Full Text Available Among many antioxidants that are used for the repairing of oxidative stress induced skin damages, we identified the enriched astaxanthin extract (EAE from Haematococcus pluvialis as a viable ingredient. EAE was extracted from the red microalgae through supercritical fluid carbon dioxide extraction. To compare the effectiveness, EAE wastreated on human dermal fibroblasts with other components, phorbol 12-myristate 13-acetate (PMA, and doxycycline. With sirius red staining and quantitative real-time polymerase chain reaction (qRT-PCR, we found that PMA decreased the collagen concentration and production while overall the addition of doxycycline and EAE increased the collagen concentration in a trial experiments. EAE increased collagen contents through inhibited MMP1 and MMP3 mRNA expression and induced TIMP1, the antagonists of MMPs protein, gene expression. As for when tested for various proteins through western blotting, it was seen that the addition of EAE increased the expression of certain proteins that promote cell proliferation. Testing those previous solutions using growth factor assay, it was noticeable that EAE had a positive impact on cell proliferation and vascular endothelial growth factor (VEGF than doxycycline, indicating that it was a better alternative treatment for collagen production. To sum up, the data confirmed the possible applications as medical cosmetology agentsand food supplements.

  7. Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation

    Directory of Open Access Journals (Sweden)

    Wang GJ

    2012-04-01

    Full Text Available Hsiao-Wei Wang1, Chung-Wei Cheng2, Ching-Wen Li3, Han-Wei Chang4, Ping-Han Wu2, Gou-Jen Wang 1Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan, 2Laser Application Technology Center, Industrial Technology Research Institute, Tainan County, Taiwan, 3Department of Mechanical Engineering, 4Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan, People’s Republic of ChinaAbstract: One of the persistent challenges confronting tissue engineering is the lack of intrinsic microvessels for the transportation of nutrients and metabolites. An artificial microvascular system could be a feasible solution to this problem. In this study, the femtosecond laser ablation technique was implemented for the fabrication of pillared microvessel scaffolds of polylactic-co-glycolic acid (PLGA. This novel scaffold facilitates implementation of the conventional cell seeding process. The progress of cell growth can be observed in vitro by optical microscopy. The problems of becoming milky or completely opaque with the conventional PLGA scaffold after cell seeding can be resolved. In this study, PLGA microvessel scaffolds consisting of 47 µm × 80 µm pillared branches were produced. Results of cell culturing of bovine endothelial cells demonstrate that the cells adhere well and grow to surround each branch of the proposed pillared microvessel networks.Keywords: femtosecond laser ablation, pillared microvessel scaffold, polylactic-co-glycolic acid, bovine endothelial cells

  8. Microvessel density in the placental bed among preeclampsia patients

    Directory of Open Access Journals (Sweden)

    Tarcisio Mota Coelho

    Full Text Available CONTEXT AND OBJECTIVE: Morphological changes in the spiral arteries of the placental bed have been studied in patients with preeclampsia, one of the largest causes of maternal and perinatal morbidity and mortality. The reports show that vasospasm and vascular endothelial injury were two major pathological conditions for preeclampsia. The aim of this study was to investigate the microvessel density of spiral arteries in the placental bed, in pregnancies complicated by hypertension and proteinuria, and in normal pregnancies. DESIGN AND SETTING: This was a cross-sectional survey of immunohistochemical studies on biopsies from the spiral arteries of the placental bed, among women undergoing cesarean sections for clinical and obstetrical reasons at Universidade Federal de São Paulo, São Paulo, Brazil. METHODS: Placental bed biopsies were obtained during cesarean section after placenta removal, with direct viewing of the central area of placenta insertion. The microvessel density of spiral arteries was measured by immunohistochemical methods in decidual and myometrial segments, using CD34 antibody. RESULTS: Biopsies containing spiral arteries were obtained from 34 hypertensive pregnant women with proteinuria, and 26 normotensive pregnant women. The microvessel densities in decidual and myometrial segments of the placental bed were compared between the groups. It was observed that, with increasing blood pressure and proteinuria, the microvessel density gradually decreased. CONCLUSION: The presence of high levels of hypertension and proteinuria may be associated with a progressive decrease in microvessel density in the placental bed.

  9. In vivo release of non-neuronal acetylcholine from the human skin as measured by dermal microdialysis: effect of botulinum toxin.

    Science.gov (United States)

    Schlereth, Tanja; Birklein, Frank; an Haack, Katrin; Schiffmann, Susanne; Kilbinger, Heinz; Kirkpatrick, Charles James; Wessler, Ignaz

    2006-01-01

    1.--Acetylcholine is synthesized in the majority of non-neuronal cells, for example in human skin. In the present experiments, the in vivo release of acetylcholine was measured by dermal microdialysis. 2.--Two microdialysis membranes were inserted intradermally at the medial shank of volunteers. Physiological saline containing 1 muM neostigmine was perfused at a constant rate of 4 microl min(-1) and the effluent was collected in six subsequent 20 min periods. Acetylcholine was measured by high-pressure liquid chromatography (HPLC) combined with bioreactors and electrochemical detection. 3.--Analysis of the effluent by HPLC showed an acetylcholine peak that disappeared, when the analytical column was packed with acetylcholine-specific esterase, confirming the presence of acetylcholine. 4.--In the absence of neostigmine, 71+/-51 pmol acetylcholine (n=4) was found during a 120 min period. The amount increased to 183+/-43 pmol (n=34), when the perfusion medium contained 1 microM neostigmine. 5.--Injection of 100 MU botulinum toxin subcutaneously blocked sweating completely, but the release of acetylcholine was not affected (botulinum toxin treated skin: 116+/-70 pmol acetylcholine/120 min; untreated skin: 50+/-20 pmol; n=4). 6.--Quinine (1 mM), inhibitor of organic cation transporters, and carnitine (0.1 mM), substrate of the Na(+)-dependent carnitine transporter OCTN2, tended to reduce acetylcholine release (by 40%, not significant). 7.--Our experiments demonstrate, for the first time, the in vivo release of non-neuronal acetylcholine in human skin. Organic cation transporters are not predominantly involved in the release of non-neuronal acetylcholine from the human skin.

  10. DNA damage and oxidative stress induced by CeO2 nanoparticles in human dermal fibroblasts: Evidence of a clastogenic effect as a mechanism of genotoxicity.

    Science.gov (United States)

    Benameur, Laila; Auffan, Mélanie; Cassien, Mathieu; Liu, Wei; Culcasi, Marcel; Rahmouni, Hidayat; Stocker, Pierre; Tassistro, Virginie; Bottero, Jean-Yves; Rose, Jérôme; Botta, Alain; Pietri, Sylvia

    2015-01-01

    The broad range of applications of cerium oxide (CeO2) nanoparticles (nano-CeO2) has attracted industrial interest, resulting in greater exposures to humans and environmental systems in the coming years. Their health effects and potential biological impacts need to be determined for risk assessment. The aims of this study were to gain insights into the molecular mechanisms underlying the genotoxic effects of nano-CeO2 in relation with their physicochemical properties. Primary human dermal fibroblasts were exposed to environmentally relevant doses of nano-CeO2 (mean diameter, 7 nm; dose range, 6 × 10(-5)-6 × 10(-3) g/l corresponding to a concentration range of 0.22-22 µM) and DNA damages at the chromosome level were evaluated by genetic toxicology tests and compared to that induced in cells exposed to micro-CeO2 particles (mean diameter, 320 nm) under the same conditions. For this purpose, cytokinesis-blocked micronucleus assay in association with immunofluorescence staining of centromere protein A in micronuclei were used to distinguish between induction of structural or numerical chromosome changes (i.e. clastogenicity or aneuploidy). The results provide the first evidence of a genotoxic effect of nano-CeO2, (while not significant with micro-CeO2) by a clastogenic mechanism. The implication of oxidative mechanisms in this genotoxic effect was investigated by (i) assessing the impact of catalase, a hydrogen peroxide inhibitor, and (ii) by measuring lipid peroxidation and glutathione status and their reversal by application of N-acetylcysteine, a precusor of glutathione synthesis in cells. The data are consistent with the implication of free radical-related mechanisms in the nano-CeO2-induced clastogenic effect, that can be modulated by inhibition of cellular hydrogen peroxide release.

  11. Chum salmon egg extracts induce upregulation of collagen type I and exert antioxidative effects on human dermal fibroblast cultures

    OpenAIRE

    Yoshino A; Polouliakh N; Meguro A; Takeuchi M; Kawagoe T; Mizuki N

    2016-01-01

    Atsushi Yoshino,1 Natalia Polouliakh,1–3 Akira Meguro,1 Masaki Takeuchi,1,4 Tatsukata Kawagoe,1 Nobuhisa Mizuki1 1Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 2Sony Computer Science Laboratories Inc., Fundamental Research Laboratories, 3Systems Biology Institute, Tokyo, Japan; 4Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA Abstract...

  12. In vitro effects of Choukroun's PRF (platelet-rich fibrin) on human gingival fibroblasts, dermal prekeratinocytes, preadipocytes, and maxillofacial osteoblasts in primary cultures.

    Science.gov (United States)

    Dohan Ehrenfest, David M; Diss, Antoine; Odin, Guillaume; Doglioli, Pierre; Hippolyte, Marie-Pascale; Charrier, Jean-Baptiste

    2009-09-01

    The objective of this study was to analyze the effects of Choukroun's PRF (platelet-rich fibrin), a leucocyte and platelet concentrate clinically usable as fibrin membrane or clot, on human primary cultures of gingival fibroblasts, dermal prekeratinocytes, preadipocytes, and maxillofacial osteoblasts. For the proliferation study, these cells were cultivated with or without a PRF membrane originating from the same donor as for the cells. For osteoblasts and fibroblasts, dose-dependent effect was assessed (using 2 membranes). Cell counts and cytotoxicity tests were performed at 3, 7, 14, and 21 days, and even 28 days for osteoblasts. More osteoblast cultures were prepared in differentiation conditions according to 3 modalities (without PRF, with PRF, with PRF the first day and differentiation medium applied only after the first week of culture). Osteoblast differentiation was analyzed using Von Kossa staining and alkaline phosphatase, DNA and total cell proteins dosage. PRF induced a significant and continuous stimulation of proliferation in all cell types. It was dose dependent during all the experiment with osteoblasts, but only on day 14 with fibroblasts. Moreover, PRF induced a strong differentiation in the osteoblasts, whatever the culture conditions. The analysis of osteoblast cultures in differentiation conditions with PRF, using light and scanning electron microscopy, revealed a starting mineralization process in the PRF membrane itself after 14 days. Moreover, PRF leucocytes seemed to proliferate and interact with osteoblasts. Cultures with PRF are always cocultures with leucocytes. These "chaperone leucocytes" could be the source of differential geographic regulation within the culture and explain the double contradictory effect proliferation/differentiation observed on osteoblasts.

  13. Ligand-activated PPARδ upregulates α-smooth muscle actin expression in human dermal fibroblasts: A potential role for PPARδ in wound healing.

    Science.gov (United States)

    Ham, Sun Ah; Hwang, Jung Seok; Yoo, Taesik; Lee, Won Jin; Paek, Kyung Shin; Oh, Jae-Wook; Park, Chan-Kyu; Kim, Jin-Hoi; Do, Jung Tae; Kim, Jae-Hwan; Seo, Han Geuk

    2015-12-01

    The phenotypic changes that accompany differentiation of resident fibroblasts into myofibroblasts are important aspects of the wound healing process. Recent studies showed that peroxisome proliferator-activated receptor (PPAR) δ plays a critical role in wound healing. To determine whether the nuclear receptor PPARδ can modulate the differentiation of human dermal fibroblasts (HDFs) into myofibroblasts. These studies were undertaken in primary HDFs using Western blot analyses, small interfering (si)RNA-mediated gene silencing, reporter gene assays, chromatin immunoprecipitation (ChIP), migration assays, collagen gel contraction assays, and real-time PCR. Activation of PPARδ by GW501516, a specific ligand of PPARδ, specifically upregulated the myofibroblast marker α-smooth muscle actin (α-SMA) in a time- and concentration-dependent manner. This induction was significantly inhibited by the presence of siRNA against PPARδ, indicating that PPARδ is involved in myofibroblast transdifferentiation of HDFs. Ligand-activated PPARδ increased α-SMA promoter activity in a dual mode by directly binding a direct repeat-1 (DR1) site in the α-SMA promoter, and by inducing expression of transforming growth factor (TGF)-β, whose downstream effector Smad3 interacts with a Smad-binding element (SBE) in another region of the promoter. Mutations in these cis-elements totally abrogated transcriptional activation of the α-SMA gene by the PPARδ ligand; thus both sites represent novel types of PPARδ response elements. GW501516-activated PPARδ also increased the migration and contractile properties of HDFs, as demonstrated by Transwell and collagen lattice contraction assays, respectively. In addition, PPARδ-mediated upregulation of α-SMA was correlated with elevated expression of myofibroblast markers such as collagen I and fibronectin, with a concomitant reduction in expression of the epithelial marker E-cadherin. PPARδ plays pivotal roles in wound healing by promoting

  14. Flavonoids derived from Abelmoschus esculentus attenuatesUV-B Induced cell damage in human dermal fibroblasts throughNrf2-ARE pathway

    Directory of Open Access Journals (Sweden)

    Juilee Patwardhan

    2016-01-01

    Abbreviations used:ABTS: 2,2'-azino-bis-(3-ethylbenzothiazoline -6-sulphonic acid, AO: Acridine orange, ANOVA: Analysis of variance, ARE: Antioxidant response elements, BSA: Bovine serum albumin, CAPE: Caffeic acid phenethyl ester, CAT: Catalase, DCFH-DA: 2',7'-dichlorofluorescein diacetate, DMEM: Dulbecco's modified eagle's medium, DMSO: dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DPBS: Dulbecco's phosphate-buffered saline, DPPH: 2,2-diphenyl-1-picryl hydrazyl, ECL: Enhanced chemiluminescence, EDTA: Ethylenediaminetetraacetic acid, ELISA: Enzyme-linked immunosorbent assay, EtBr: Ethidium bromide, FBS: Fetal bovine serum, FE Fraction: Flavonoid-enriched fraction, FRAP: Ferric reducing antioxidant power, GPx: Glutathione peroxidase, GR: Glutathione reductase, GST: Glutathione-S-transferase, GSH: Reduced glutathione, GSSG: Oxidized glutathione, HDF: Human dermal fibroblast adult cells, HEPES: 4-(2-hydroxyethyl-1-piperazineethanesulphonic acid, HRP: Horseradish peroxidase, HO-1: Heme oxygenase-1, HPTLC: High-performance thin layer chromatography, Keap-1: Kelch-like ECH-associated protein-1, MTT: 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, NaCl: sodium chloride, NFDM: nonfat dry milk, Nrf2: Nuclear factor E2-related factor 2, NQO1: NAD (P H: Quinine oxidoreductase 1, OH: Hydroxyl ions, PBST: Phosphate-buffered saline with 0.1% tween 20, PCR: Polymerase chain reaction, PMSF: Phenylmethanesulfonyl fluoride, Rf: Retention factor, ROS: Reactive oxygen species, rRNA: Ribosomal ribonucleic acid, SDS: Sodium dodecyl sulfate, SOD: Superoxide dismutase, TLC: Thin layer chromatography, TLC-DPPH: Thin layer chromatography-2,2-diphenyl-1-picryl hydrazyl, UV: Ultraviolet, UV-A: Ultraviolet-A, UV-B: Ultraviolet-B, UV-C: Ultraviolet-C, qPCR: Quantitative polymerase chain reaction

  15. Vascular permeability modulation and isolated perfused microvessel approach%血管通透性的调节和游离微血管技术在其研究中的应用

    Institute of Scientific and Technical Information of China (English)

    王述昀; 赵克森

    2005-01-01

    Vascular hyperpermeability is a cardinal feature of inflammation or bum in which an array of inflammatory mediators can cause such changes in the microvessels. The fimctional measures of microvascular exchange that represent the properties of microvascular wails are the permeability coefficients which have been reported from measurements on intact whole organisms (including human subjects}, on perfused tissues and organs, on single perfused microvessels, and on monolayers of cultured microvascular endothelial cells. In this review, we summarize some experiments of vascular permeability in individually isolated perfused microvessels.

  16. Significance of microvessel density in prostate cancer core biopsy

    Directory of Open Access Journals (Sweden)

    Salapura-Dugonjić Aleksandra

    2015-01-01

    Full Text Available Background/Aim. In prostate tumors, angiogenesis, measured as microvessel density, is associated with tumor stage and Gleason score. The aim of this study was determine neovascularization of prostatic adenocarcinomas in core biopsies and corresponding prostatectomies. Methods. The study population included 61 patients who underwent radical prostatectomy (RP for localized prostate carcinoma patients and did not receive chemohormonal, or radiation therapy before surgery. Tumor blocks were immunostained using the endothelial-specific antibody CD31 and subsequently evaluated at x 400 magnification in both biopsies and corresponding prostatectomies. Results. When comparing microvessel density in core biopsies and corresponding prostatectomies, no statistically significant difference was found (p > 0.1. A statistically significant positive correlation was found when determining correlation between microvessel density (as linear and categorical variable, i.e. with the cut-off value of 48 that was associated with the Gleason score (p 0.1. Conclusion. Microvessel density can be reliably applied to needle prostate biopsy specimens. Quantification of the microvascular density in biopsies is an accurate pre-operative predictor of tumor stage, discriminating between organconfined and organ-extending neoplasms.

  17. Response of Primary Human Bone Marrow Mesenchymal Stromal Cells and Dermal Keratinocytes to Thermal Printer Materials In Vitro.

    Science.gov (United States)

    Schmelzer, Eva; Over, Patrick; Gridelli, Bruno; Gerlach, Jörg C

    Advancement in thermal three-dimensional printing techniques has greatly increased the possible applications of various materials in medical applications and tissue engineering. Yet, potential toxic effects on primary human cells have been rarely investigated. Therefore, we compared four materials commonly used in thermal printing for bioengineering, namely thermally printed acrylonitrile butadiene styrene, MED610, polycarbonate, and polylactic acid, and investigated their effects on primary human adult skin epidermal keratinocytes and bone marrow mesenchymal stromal cells (BM-MSCs) in vitro. We investigated indirect effects on both cell types caused by potential liberation of soluble substances from the materials, and also analyzed BM-MSCs in direct contact with the materials. We found that even in culture without direct contact with the materials, the culture with MED610 (and to a lesser extent acrylonitrile butadiene styrene) significantly affected keratinocytes, reducing cell numbers and proliferation marker Ki67 expression, and increasing glucose consumption, lactate secretion, and expression of differentiation-associated genes. BM-MSCs had decreased metabolic activity, and exhibited increased cell death in direct culture on the materials. MED610 and acrylonitrile butadiene styrene induced the strongest expression of genes associated to differentiation and estrogen receptor activation. In conclusion, we found strong cell-type-specific effects of the materials, suggesting that materials for applications in regenerative medicine should be carefully selected not only based on their mechanical properties but also based on their cell-type-specific biological effects.

  18. Mechanistic effects of long-term ultraviolet B irradiation induce epidermal and dermal changes in human skin xenografts.

    Science.gov (United States)

    Hachiya, Akira; Sriwiriyanont, Penkanok; Fujimura, Tsutomu; Ohuchi, Atsushi; Kitahara, Takashi; Takema, Yoshinori; Kitzmiller, William J; Visscher, Marty O; Tsuboi, Ryoji; Boissy, Raymond E

    2009-02-01

    UVB irradiation has been reported to induce photoaging and suppress systemic immune function that could lead to photocarcinogenesis. However, because of the paucity of an UVB-induced photodamaged skin model, precise and temporal mechanism(s) underlying the deleterious effects of long-term UVB exposure on human skin have yet to be delineated. In this study, we established a model using human skin xenografted onto severe combined immunodeficient mice, which were subsequently challenged by repeated UVB irradiation for 6 weeks. Three-dimensional optical image analysis of skin replicas and noninvasive biophysical measurements illustrated a significant increase in skin surface roughness, similar to premature photoaging, and a significant loss of skin elasticity after long-term UVB exposure. Resembling authentically aged skin, UVB-exposed samples exhibited significant increases in epithelial keratins (K6, K16, K17), elastins, and matrix metalloproteinases (MMP-1, MMP-9, MMP-12) as well as degradation of collagens (I, IV, VII). The UVB-induced deterioration of fibrous keratin intermediate filaments was also observed in the stratum corneum. Additionally, similarities in gene expression patterns between our model and chronologically aged skin substantiated the plausible relationship between photodamage and chronological age. Furthermore, severe skin photodamage was observed when neutralizing antibodies against TIMP-1, an endogenous inhibitor of MMPs, were administered during the UVB exposure regimen. Taken together, these findings suggest that our skin xenograft model recapitulates premature photoaged skin and provides a comprehensive tool with which to assess the deleterious effects of UVB irradiation.

  19. Genetics Home Reference: focal dermal hypoplasia

    Science.gov (United States)

    ... Home Health Conditions focal dermal hypoplasia focal dermal hypoplasia Enable Javascript to view the expand/collapse boxes. ... PDF Open All Close All Description Focal dermal hypoplasia is a genetic disorder that primarily affects the ...

  20. Dermal reflectivity determined by optical coherence tomography is an indicator of epidermal hyperplasia and dermal edema within inflamed skin

    Science.gov (United States)

    Phillips, Kevin G.; Wang, Yun; Levitz, David; Choudhury, Niloy; Swanzey, Emily; Lagowski, James; Kulesz-Martin, Molly; Jacques, Steven L.

    2011-04-01

    Psoriasis is a common inflammatory skin disease resulting from genetic and environmental alterations of cutaneous immune responses. While numerous therapeutic targets involved in the immunopathogenesis of psoriasis have been identified, the in vivo dynamics of inflammation in psoriasis remain unclear. We undertook in vivo time course focus-tracked optical coherence tomography (OCT) imaging to noninvasively document cutaneous alterations in mouse skin treated topically with Imiquimod (IMQ), an established model of a psoriasis-like disease. Quantitative appraisal of dermal architectural changes was achieved through a two parameter fit of OCT axial scans in the dermis of the form A(x, y, z) = ρ(x, y)exp [ - μ(x, y)z]. Ensemble averaging over 2000 axial scans per mouse in each treatment arm revealed no significant changes in the average dermal attenuation rate, , however the average local dermal reflectivity , decreased significantly following 1, 3, and 6 days of IMQ treatment (p collagen fiber bundle enlargement, occur prior to epidermal thickness changes due to hyperplasia and dermal thickness changes due to edema. Dermal reflectivity positively correlated with epidermal hyperplasia (repi2 = 0.78) and dermal edema (rderm2 = 0.86). Our results suggest that dermal reflectivity as measured by OCT can be utilized to quantify a psoriasis-like disease in mice, and thus has the potential to aid in the quantitative assessment of psoriasis in humans.

  1. Anti-aging effects of Piper cambodianum P. Fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice.

    Science.gov (United States)

    Lee, Hyunji; Hong, Youngeun; Kwon, So Hee; Park, Jongsun; Park, Jisoo

    2016-01-01

    Aging of skin is associated with environmental factors such as ultraviolet rays, air pollution, gravity, and genetic factors, all of which can lead to wrinkling of skin. Previous reports suggest that the wound repair is impaired by the aging process and strategies to manipulate the age-related wound healing are necessary in order to stimulate repair. Several traditional plant extracts are well-known for their properties of skin protection and care. Piper cambodianum P. Fourn. (PPF), a member of Piperacecae, is a plant found in Vietnam that might have therapeutic properties. Therefore, the effects of PPF stem and leaf extract on aging process were investigated in vitro and in vivo. PPF extract dissolved in methanol was investigated using Western blotting, real-time quantitative reverse transcription-polymerase chain reaction, flow cytometry, and cell wound-healing assays. We assessed the anti-aging effect of PPF in mouse using the wound-healing assay. The results were analyzed by Student's unpaired t-test; *P<0.05 and **P<0.01 were considered to indicate significant and highly significant values, respectively, compared with corresponding controls. PPF treatment demonstrated in vitro and in vivo anti-aging activity. Western blot analysis of PPF-treated normal human dermal fibroblast cells showed a dose-dependent increase in the expression of extracellular matrix genes such as collagen and elastin, but decreased expression of the aging gene matrix metalloproteinase-3. Quantitative polymerase chain reaction showed that PPF-treated cells displayed dose-dependent increase in messenger RNA expression levels of collagen, elastin, and hyaluronan synthase-2 and decreased expression levels of matrix metalloproteinase-1 aging gene. PPF treatment led to decreased production of reactive oxygen species in cells subjected to ultraviolet irradiation. Furthermore, PPF extract showed positive wound-healing effects in mice. This study demonstrated the anti-aging and wound

  2. Dermal route in systemic exposure

    NARCIS (Netherlands)

    Benford, D.J.; Cocker, J.; Sartorelli, P.; Schneider, T.; Hemmen, J. van; Firth, J.G.

    1999-01-01

    To evaluate risk from dermal exposure, the amount of material on the skin must first be measured. The potential for dermal uptake must then be assessed for the potential health effects from systemic exposure. No standard methods exist for studying these processes, and published data are not comparab

  3. Assessment of an extended dataset of in vitro human dermal absorption studies on pesticides to determine default values, opportunities for read-across and influence of dilution on absorption.

    Science.gov (United States)

    Aggarwal, M; Fisher, P; Hüser, A; Kluxen, F M; Parr-Dobrzanski, R; Soufi, M; Strupp, C; Wiemann, C; Billington, R

    2015-06-01

    Dermal absorption is a key parameter in non-dietary human safety assessments for agrochemicals. Conservative default values and other criteria in the EFSA guidance have substantially increased generation of product-specific in vitro data and in some cases, in vivo data. Therefore, data from 190 GLP- and OECD guideline-compliant human in vitro dermal absorption studies were published, suggesting EFSA defaults and criteria should be revised (Aggarwal et al., 2014). This follow-up article presents data from an additional 171 studies and also the combined dataset. Collectively, the data provide consistent and compelling evidence for revision of EFSA's guidance. This assessment covers 152 agrochemicals, 19 formulation types and representative ranges of spray concentrations. The analysis used EFSA's worst-case dermal absorption definition (i.e., an entire skin residue, except for surface layers of stratum corneum, is absorbed). It confirmed previously proposed default values of 6% for liquid and 2% for solid concentrates, irrespective of active substance loading, and 30% for all spray dilutions, irrespective of formulation type. For concentrates, absorption from solvent-based formulations provided reliable read-across for other formulation types, as did water-based products for solid concentrates. The combined dataset confirmed that absorption does not increase linearly beyond a 5-fold increase in dilution. Finally, despite using EFSA's worst-case definition for absorption, a rationale for routinely excluding the entire stratum corneum residue, and ideally the entire epidermal residue in in vitro studies, is presented. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Age-related disruption of autophagy in dermal fibroblasts modulates extracellular matrix components

    Energy Technology Data Exchange (ETDEWEB)

    Tashiro, Kanae [Skin Research Department, POLA Chemical Industries, Inc., Yokohama (Japan); Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Shishido, Mayumi [Skin Research Department, POLA Chemical Industries, Inc., Yokohama (Japan); Fujimoto, Keiko [Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Organelle Homeostasis Research Center, Kyushu University, Fukuoka (Japan); Hirota, Yuko [Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Yo, Kazuyuki; Gomi, Takamasa [Skin Research Department, POLA Chemical Industries, Inc., Yokohama (Japan); Tanaka, Yoshitaka, E-mail: tanakay@bioc.phar.kyushu-u.ac.jp [Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Organelle Homeostasis Research Center, Kyushu University, Fukuoka (Japan)

    2014-01-03

    Highlights: •Autophagosomes accumulate in aged dermal fibroblasts. •Autophagic degradation is impaired in aged dermal fibroblasts. •Autophagy disruption affects extracellular matrix components in dermal fibroblasts. -- Abstract: Autophagy is an intracellular degradative system that is believed to be involved in the aging process. The contribution of autophagy to age-related changes in the human skin is unclear. In this study, we examined the relationship between autophagy and skin aging. Transmission electron microscopy and immunofluorescence microscopy analyses of skin tissue and cultured dermal fibroblasts derived from women of different ages revealed an increase in the number of nascent double-membrane autophagosomes with age. Western blot analysis showed that the amount of LC3-II, a form associated with autophagic vacuolar membranes, was significantly increased in aged dermal fibroblasts compared with that in young dermal fibroblasts. Aged dermal fibroblasts were minimally affected by inhibition of autophagic activity. Although lipofuscin autofluorescence was elevated in aged dermal fibroblasts, the expression of Beclin-1 and Atg5—genes essential for autophagosome formation—was similar between young and aged dermal fibroblasts, suggesting that the increase of autophagosomes in aged dermal fibroblasts was due to impaired autophagic flux rather than an increase in autophagosome formation. Treatment of young dermal fibroblasts with lysosomal protease inhibitors, which mimic the condition of aged dermal fibroblasts with reduced autophagic activity, altered the fibroblast content of type I procollagen, hyaluronan and elastin, and caused a breakdown of collagen fibrils. Collectively, these findings suggest that the autophagy pathway is impaired in aged dermal fibroblasts, which leads to deterioration of dermal integrity and skin fragility.

  5. Effect of viscoelasticity and RBC migration phenomena in stenotic microvessels

    Science.gov (United States)

    Dimakopoulos, Yiannis; Syrakos, Alexandros; Georgiou, Georgios; Tsamopoulos, John

    2014-11-01

    This study deals with the numerical simulation of the hemodynamics in stenotic microvessels. The blood flow in microvessels differs significantly from that in large arteries and veins, because the Red Blood Cells (RBCs) are comparable in size with the radius of the microvessels and, consequently, local effects such as cell interaction and migration are more pronounced. In terms of complexity of the flow, viscoelasticity along with stress-gradient induced migration effects have a more dominant role, which exceeds the viscous, inertial and transient effects. Recently, a non-homogeneous viscoelastic model has been proposed by Moyers-Gonzalez et al. (2008), which can accurately predict the Fahraeus effects. We developed a numerical algorithm for the time-integration of the set of differential equations that arise from the coupling of momentum, mass, and population balances for RBCs and aggregates with the constitutive laws for both species. The simulations show that a cell-depleted layer develops along the vessel wall with an almost constant thickness. Along this layer, the shear stresses are almost Newtonian because of the plasma, but the normal stresses that are exerted on the wall are high due to the contribution of the individual RBCs and rouleaux.

  6. Microvessel Density in Thyroid Carcinoma and Its Clinical Significance

    Institute of Scientific and Technical Information of China (English)

    XUE Gang(薛刚); YAO Zhenxiang(姚榛祥)

    2002-01-01

    Objective: To investigate the relationships between angiogenesis and development, metastasis as well as prognosis of thyroid carcinoma. Methods:48 cases of thyroid carcinoma and 5 cases of thyroid adenoma were studied.Density of microvessels of the tumors were identified by immunohistochemical staining in formalin -fixed and paraffin-embedded sections with anti-CD34 monoclonal antibody, and counted microscopically (×200).Results :The mean value of MVD in tumors>2cm in diameter was (174.92±72.63)/field, while that in tumors≤2cm was ( 117.40± 39.95)/field ( t = 3.3298, P = 0.0026).The number of microvessels was also significantly different in respect to the histotype of the thyroid carcinomas, such as papillary thyroid carcinoma(PTC), follicular thyroid carcinoma(FTC)and medullary thyroid carcinoma(MTC) ( F = 14. 95, P = 0. 0001), but not significantly different in respect to patients'age nor sex ( P>0.05). Conclusions:By studying microvessel density (MVD) of thyroid arcinomas and correlated with their clinical features and biological behaviors, it is concluded that ngiogenesis is important in tumor growth and metastasis as well as prognosis of thyroid carcinomas. Measures to combat angiogenesis may be beneficial in the treatment for thyroid carcinomas.

  7. Dermal versus total uptake of benzene from mineral spirits solvent during parts washing.

    Science.gov (United States)

    Bogen, Kenneth T; Sheehan, Patrick J

    2014-07-01

    Quantitative approaches to assessing exposure to, and associated risk from, benzene in mineral spirits solvent (MSS), used widely in parts washing and degreasing operations, have focused primarily on the respiratory pathway. The dermal contribution to total benzene uptake from such operations remains uncertain because measuring in vivo experimental dermal uptake of this volatile human carcinogen is difficult. Unprotected dermal uptake involves simultaneous sustained immersion events and transient splash/wipe events, each yielding residues subject to evaporation as well as dermal uptake. A two-process dermal exposure framework to assess dermal uptake to normal and damaged skin was applied to estimate potential daily dermal benzene dose (Dskin ) to workers who used historical or current formulations of recycled MSS in manual parts washers. Measures of evaporation and absorption of MSS dermally applied to human subjects were modeled to estimate in vivo dermal uptake of benzene in MSS. Uncertainty and interindividual variability in Dskin was characterized by Monte Carlo simulation, conditioned on uncertainty and/or variability estimated for each model input. Dermal exposures are estimated to average 33% of total (inhalation + dermal) benzene parts washing dose, with approximately equal predicted portions of dermal dose due to splash/wipe and to continuous contact with MSS. The estimated median (95th percentile) dermal and total daily benzene doses from parts washing are: 0.0069 (0.024) and 0.025 (0.18) mg/day using current, and 0.027 (0.085) and 0.098 (0.69) mg/day using historical, MSS solvents, respectively. © 2014 Society for Risk Analysis.

  8. A standalone perfusion platform for drug testing and target validation in micro-vessel networks.

    Science.gov (United States)

    Zhang, Boyang; Peticone, Carlotta; Murthy, Shashi K; Radisic, Milica

    2013-01-01

    Studying the effects of pharmacological agents on human endothelium includes the routine use of cell monolayers cultivated in multi-well plates. This configuration fails to recapitulate the complex architecture of vascular networks in vivo and does not capture the relationship between shear stress (i.e. flow) experienced by the cells and dose of the applied pharmacological agents. Microfluidic platforms have been applied extensively to create vascular systems in vitro; however, they rely on bulky external hardware to operate, which hinders the wide application of microfluidic chips by non-microfluidic experts. Here, we have developed a standalone perfusion platform where multiple devices were perfused at a time with a single miniaturized peristaltic pump. Using the platform, multiple micro-vessel networks, that contained three levels of branching structures, were created by culturing endothelial cells within circular micro-channel networks mimicking the geometrical configuration of natural blood vessels. To demonstrate the feasibility of our platform for drug testing and validation assays, a drug induced nitric oxide assay was performed on the engineered micro-vessel network using a panel of vaso-active drugs (acetylcholine, phenylephrine, atorvastatin, and sildenafil), showing both flow and drug dose dependent responses. The interactive effects between flow and drug dose for sildenafil could not be captured by a simple straight rectangular channel coated with endothelial cells, but it was captured in a more physiological branching circular network. A monocyte adhesion assay was also demonstrated with and without stimulation by an inflammatory cytokine, tumor necrosis factor-α.

  9. Generalized mid dermal elastolysis

    Directory of Open Access Journals (Sweden)

    Maria João Cruz

    2011-12-01

    Full Text Available Mid-dermal elastolysis (MDE is a rare skin disorder clinically characterized by the appearance of diffuse fine wrinkling, most often of the trunk and arms. This entity is distinguished from other elastolytic disorders by its characteristic selective loss of elastic fibers of the mid dermis. The aetiopathogenesis of the disease is still unclear as well as the effective treatment. Half of the cases described in the literature are associated with ultraviolet radiation exposure. Other reported triggering conditions such as urticaria, eczema and granuloma annulare suggests different eliciting inflammatory pathways. The authors describe the case of a 38-year-old woman who developed an urticarial eruption during months which progressed to generalized and severe fine wrinkling.

  10. Dermal uptake directly from air under transient conditions: advances in modeling and comparisons with experimental results for human subjects

    DEFF Research Database (Denmark)

    Morrison, G C; Weschler, Charles J.; Bekö, Gabriel

    2016-01-01

    To better understand the dermal exposure pathway, we enhance an existing mechanistic model of transdermal uptake by including skin surface lipids (SSL) and consider the impact of clothing. Addition of SSL increases the overall resistance to uptake of SVOCs from air but also allows for rapid...... transfer of SVOCs to sinks like clothing or clean air. We test the model by simulating di-ethyl phthalate (DEP) and di-n-butyl phthalate (DnBP) exposures of six bare-skinned (Weschler et al. 2015, Environ. Health Perspect., 123, 928) and one clothed participant (Morrison et al. 2016, J. Expo. Sci. Environ...

  11. Combined effects of low-level laser therapy and human bone marrow mesenchymal stem cell conditioned medium on viability of human dermal fibroblasts cultured in a high-glucose medium.

    Science.gov (United States)

    Hendudari, Farzane; Piryaei, Abbas; Hassani, Seyedeh-Nafiseh; Darbandi, Hasan; Bayat, Mohammad

    2016-05-01

    Low-level laser therapy (LLLT) exhibited biostimulatory effects on fibroblasts viability. Secretomes can be administered to culture mediums by using bone marrow mesenchymal stem cells conditioned medium (BM-MSCs CM). This study investigated the combined effects of LLLT and human bone marrow mesenchymal stem cell conditioned medium (hBM-MSCs CM) on the cellular viability of human dermal fibroblasts (HDFs), which was cultured in a high-glucose (HG) concentration medium. The HDFs were cultured either in a concentration of physiologic (normal) glucose (NG; 5.5 mM/l) or in HG media (15 mM/l) for 4 days. LLLT was performed with a continuous-wave helium-neon laser (632.8 nm, power density of 0.00185 W/cm(2) and energy densities of 0.5, 1, and 2 J/cm(2)). About 10% of hBM-MSCs CM was added to the HG HDF culture medium. The viability of HDFs was evaluated using dimethylthiazol-diphenyltetrazolium bromide (MTT) assay. A significantly higher cell viability was observed when laser of either 0.5 or 1 J/cm(2) was used to treat HG HDFs, compared to the control groups. The cellular viability of HG-treated HDFs was significantly lower compared to the LLLT + HG HDFs, hBM-MSCs CM-treated HG HDFs, and LLLT + hBM-MSCs CM-treated HG HDFs. In conclusion, hBM-MSCs CM or LLLT alone increased the survival of HG HDFs cells. However, the combination of hBM-MSCs CM and LLLT improved these results in comparison to the conditioned medium.

  12. Relationship between vascular invasion and microvessel density and micrometastasis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To evaluate the relationship between vascular invasion and microvessel density (MVD) of tissue and micrometastasis in blood.METHODS: Vascular invasion was detected by both hematoxylin and eosin staining and immunohistochemiscal staining. Blood samples were collected from 17 patients with vascular invasion and 29 patients without vascular invasion and examined for cytokeratin20 (CK20) expression by reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Microvessel density of tissue samples was also determined by immunohistochemistry using antibodies to CD105.RESULTS: CK20 was detected in 12 of the 17 patients with vascular invasion and in 9 of the 29 patients without vascular invasion. Positive RT-PCR was significantly correlated with vascular invasion (70.6% vs 30.0%, P < 0.05). The average MVD was significantly higher in patients with positive vascular invasion than in patients with negative vascular invasion (29.2 ± 3.3 vs 25.4 ± 4.7, P < 0.05). The vascular invasion detected with hematoxylin-eosin staining was less than that with immunohistochemical staining. There was a significant difference between the two staining methods (19.6% vs 36.9%, P < 0.05).CONCLUSION: Positive CK20 RT-PCR, depth of tumor invasion, lymph node status, metastasis and MVD are significantly correlated with vascular invasion.Immunohistochemical staining is more sensitive than hematoxylin-eosin staining for detecting vascular invasion.

  13. Effect of silver/copper and copper oxide nanoparticle powder on growth of Gram-negative and Gram-positive bacteria and their toxicity against the normal human dermal fibroblasts

    Science.gov (United States)

    Peszke, Jerzy; Nowak, Anna; Szade, Jacek; Szurko, Agnieszka; Zygadło, Dorota; Michałowska, Marlena; Krzyściak, Paweł; Zygoń, Patrycja; Ratuszna, Alicja; Ostafin, Marek M.

    2016-12-01

    Engineered nanomaterials, especially metallic nanoparticles, are the most popular system applied in daily life products. The study of their biological and toxicity properties seems to be indispensable. In this paper, we present results of biological activity of Ag/Cu nanoparticles. These nanoparticles show more promising killing/inhibiting properties on Gram-negative bacteria than for Gram-positive ones. The Gram-negative bacteria show strong effect already at the concentration of 1 ppm after 15 min of incubation. Moreover, in vitro tests of toxicity made on normal human dermal fibroblast cultures showed that after 72 h of incubation with Ag/Cu nanoparticles, they are less toxic then Cu2O/CuO nanoparticles.

  14. Reconstruction of the abdominal wall by using a combination of the human acellular dermal matrix implant and an interpositional omentum flap after extensive tumor resection in patients with abdominal wall neoplasm:A preliminary result

    Institute of Scientific and Technical Information of China (English)

    Yan Gu; Rui Tang; Ding-Quan Gong; Yun-Liang Qian

    2008-01-01

    AIM:To present our trial using a combination of the human acellular dermal matrix (HADM) implant and an interpositional omentum flap to repair giant abdominal wall defects after extensive tumor resection.METHODS:Between February and October of 2007,three patients with giant defects of the abdominal wall after extensive tumor resection underwent reconstruction with a combination of HADM and omentum flap.Postoperative morbidities and signs of herniation were monitored.RESULTS:The abdominal wall reconstruction was successful in these three patients,there was no severe morbidity and no signs of herniation in the follow-up period.CONCLUSION:The combination of HADM and omentum flap offers a new,safe and effective alternative to traditional forms in the repair of giant abdominal wall defects.Further analysis of the long-term outcome and more cases are needed to assess the reliability of this technique.

  15. Cholesterolinduced changes in macro- and microvessels in rabbits : Effects of antioxidants

    OpenAIRE

    Freyschuss, Anna

    1997-01-01

    Cholesterol induced changes in macro- and microvessels in rabbits. Effects of antioxidants. Anna Freyschuss, Division of Cardiology and Clinical Chemistry, Karolinska Institute at Huddinge University Hospital, Stockholm, Sweden. A hyperlipidemic state induced by cholesterol feeding results in changes in both the structure and function of macro- and microvessels in rabbits. It has been proposed that oxidative modification of lipoproteins might be an important patho...

  16. Topical photodynamic therapy following excisional wounding of human skin increases production of transforming growth factor-β3 and matrix metalloproteinases 1 and 9, with associated improvement in dermal matrix organization.

    Science.gov (United States)

    Mills, S J; Farrar, M D; Ashcroft, G S; Griffiths, C E M; Hardman, M J; Rhodes, L E

    2014-07-01

    Animal studies report photodynamic therapy (PDT) to improve healing of excisional wounds; the mechanism is uncertain and equivalent human studies are lacking. To explore the impact of methyl aminolaevulinate (MAL)-PDT on clinical and microscopic parameters of human cutaneous excisional wound healing, examining potential modulation through production of transforming growth factor (TGF)-β isoforms. In 27 healthy older men (60-77 years), a 4-mm punch biopsy wound was created in skin of the upper inner arm and treated with MAL-PDT three times over 5 days. An identical control wound to the contralateral arm was untreated and both wounds left to heal by secondary intention. Wounds were re-excised during the inflammatory phase (7 days, n = 10), matrix remodelling (3 weeks, n = 8) and cosmetic outcome/dermal structure (9 months, n = 9). Production of TGF-β1, TGF-β3 and matrix metalloproteinases (MMPs) was assessed by immunohistochemistry alongside microscopic measurement of wound size/area and clinical assessment of wound appearance. MAL-PDT delayed re-epithelialization at 7 days, associated with increased inflammation. However, 3 weeks postwounding, treated wounds were smaller with higher production of MMP-1 (P = 0·01), MMP-9 (P = 0·04) and TGF-β3 (P = 0·03). TGF-β1 was lower than control at 7 days and higher at 3 weeks (both P = 0·03). At 9 months, MAL-PDT-treated wounds showed greater, more ordered deposition of collagen I, collagen III and elastin (all P matrix remodelling, ultimately producing scars with improved dermal matrix architecture. © 2014 British Association of Dermatologists.

  17. Adiponectin promotes hyaluronan synthesis along with increases in hyaluronan synthase 2 transcripts through an AMP-activated protein kinase/peroxisome proliferator-activated receptor-{alpha}-dependent pathway in human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, Takumi; Kobayashi-Hattori, Kazuo [Department of Nutritional Sciences, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502 (Japan); Oishi, Yuichi, E-mail: y3oishi@nodai.ac.jp [Department of Nutritional Sciences, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502 (Japan)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Adiponectin promotes hyaluronan synthesis along with an increase in HAS2 transcripts. Black-Right-Pointing-Pointer Adiponectin also increases the phosphorylation of AMPK. Black-Right-Pointing-Pointer A pharmacological activator of AMPK increases mRNA levels of PPAR{alpha} and HAS2. Black-Right-Pointing-Pointer Adiponectin-induced HAS2 mRNA expression is blocked by a PPAR{alpha} antagonist. Black-Right-Pointing-Pointer Adiponectin promotes hyaluronan synthesis via an AMPK/PPAR{alpha}-dependent pathway. -- Abstract: Although adipocytokines affect the functions of skin, little information is available on the effect of adiponectin on the skin. In this study, we investigated the effect of adiponectin on hyaluronan synthesis and its regulatory mechanisms in human dermal fibroblasts. Adiponectin promoted hyaluronan synthesis along with an increase in the mRNA levels of hyaluronan synthase 2 (HAS2), which plays a primary role in hyaluronan synthesis. Adiponectin also increased the phosphorylation of AMP-activated protein kinase (AMPK). A pharmacological activator of AMPK, 5-aminoimidazole-4-carboxamide-1{beta}-ribofuranoside (AICAR), increased mRNA levels of peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}), which enhances the expression of HAS2 mRNA. In addition, AICAR increased the mRNA levels of HAS2. Adiponectin-induced HAS2 mRNA expression was blocked by GW6471, a PPAR{alpha} antagonist, in a concentration-dependent manner. These results show that adiponectin promotes hyaluronan synthesis along with increases in HAS2 transcripts through an AMPK/PPAR{alpha}-dependent pathway in human dermal fibroblasts. Thus, our study suggests that adiponectin may be beneficial for retaining moisture in the skin, anti-inflammatory activity, and the treatment of a variety of cutaneous diseases.

  18. Magnesium Modifies the Structural Features of Enzymatically Mineralized Collagen Gels Affecting the Retraction Capabilities of Human Dermal Fibroblasts Embedded within This 3D System

    Directory of Open Access Journals (Sweden)

    Federica Boraldi

    2016-06-01

    Full Text Available Mineralized collagen gels have been developed as in vitro models to better understand the mechanisms regulating the calcification process and the behavior of a variety of cell types. The vast majority of data are related to stem cells and to osteoblast-like cells, whereas little information is available for dermal fibroblasts, although these cells have been associated with ectopic calcification and consequently to a number of pathological conditions. Therefore, we developed and characterized an enzymatically mineralized collagen gel in which fibroblasts were encapsulated within the 3D structure. MgCl2 was also added during gel polymerization, given its role as (i modulator of ectopic calcification; (ii component of biomaterials used for bone replacement; and (iii constituent of pathological mineral deposits. Results demonstrate that, in a short time, an enzymatically mineralized collagen gel can be prepared in which mineral deposits and viable cells are homogeneously distributed. MgCl2 is present in mineral deposits and significantly affects collagen fibril assembly and organization. Consequently, cell shape and the ability of fibroblasts to retract collagen gels were modified. The development of three-dimensional (3D mineralized collagen matrices with both different structural features and mineral composition together with the use of fibroblasts, as a prototype of soft connective tissue mesenchymal cells, may pave new ways for the study of ectopic calcification.

  19. Development of a chemically defined in vitro culture system to effectively stimulate the proliferation of adult human dermal fibroblasts.

    Science.gov (United States)

    Kim, Min Seong; Yun, Jung Im; Gong, Seung Pyo; Ahn, Ji Yeon; Lim, Jeong Mook; Song, Young Han; Park, Kyu Hyun; Lee, Seung Tae

    2015-07-01

    Despite the fact that dermal fibroblasts are a practical model for research related to cell physiology and cell therapy, an in vitro culture system excluding serum, which complicates standardization and specificity and induces variability and unwanted effects, does not exist. We tried to establish a CDCS that supports effective proliferation of aHDFs. KDMEM supplemented with 5% (v/v) KSR, 12 ng/ml bFGF, 5 ng/ml EGF and 1 μg/ml hydrocortisone supported sufficient proliferation of aHDFs for 1 week. However, aHDF proliferation was decreased greatly after subculture. This problem could be overcome by culturing aHDFs in CDCM in culture plates coated with 10 μg/ml FN. Long-term culture of aHDFs was achieved using CDCM and FN-coated culture plates for 7 weeks. The optimized CDCS increased the proliferation of aHDFs significantly, without any increase in the senescence rate or alteration in morphology of aHDFs, despite long-term culture. In conclusion, we established a CDCS that improved proliferation of aHDFs while inhibiting cellular senescence. The CDCS will contribute to advances in various future research related to clinical skin regeneration.

  20. Dermal uptake of petroleum substances.

    Science.gov (United States)

    Jakasa, Ivone; Kezic, Sanja; Boogaard, Peter J

    2015-06-01

    Petroleum products are complex substances comprising varying amounts of linear and branched alkanes, alkenes, cycloalkanes, and aromatics which may penetrate the skin at different rates. For proper interpretation of toxic hazard data, understanding their percutaneous absorption is of paramount importance. The extent and significance of dermal absorption of eight petroleum substances, representing different classes of hydrocarbons, was evaluated. Literature data on the steady-state flux and permeability coefficient of these substances were evaluated and compared to those predicted by mathematical models. Reported results spanned over 5-6 orders of magnitude and were largely dependent on experimental conditions in particular on the type of the vehicle used. In general, aromatic hydrocarbons showed higher dermal absorption than more lipophilic aliphatics with similar molecular weight. The results showed high variation and were largely influenced by experimental conditions emphasizing the need of performing the experiments under "in use" scenario. The predictive models overestimated experimental absorption. The overall conclusion is that, based on the observed percutaneous penetration data, dermal exposure to petroleum hydrocarbons, even of aromatics with highest dermal absorption is limited and highly unlikely to be associated with health risks under real use scenarios. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Mechanisms of caffeine antiandrogenic on human dermal papilla cells in vitro%体外培养人毛乳头细胞中咖啡因抗雄激素作用的机制研究

    Institute of Scientific and Technical Information of China (English)

    庄晓晟; 孙蔚凌; 范卫新

    2013-01-01

    目的:探讨咖啡因在体外培养人毛乳头细胞中抗雄激素作用的机制.方法:体外培养人毛乳头细胞经0.000 5%咖啡因及10 nmol/L睾酮单独及联合处理48 h后,通过碱性磷酸酶(AKP)染色、四甲基偶氮唑蓝(MTT)、流式细胞仪检测,并筛选10个基因通过RealtimePCR检测mRNA水平表达量.结果:0.000 5%咖啡因能对抗睾酮对毛乳头细胞的凋亡,促进增殖;顶部毛乳头细胞经睾酮处理后雄激素受体(AR)、Ⅱ型5α-还原酶(SRD5A2)、p53基因、凋亡信号受体FasR、糖原合成酶激酶(GSK)-3β、转化生长因子(TGF)-β2表达上调,加入咖啡因后可部分逆转睾酮的生理作用.阴部毛乳头细胞睾酮处理后p53、FasR等凋亡因子的表达下降,加入咖啡因可以进一步抑制细胞凋亡.结论:咖啡因在体外培养人毛乳头细胞中可能通过多条信号转导通路发挥抗雄激素作用.%Objective: To investigate the possible antiandrogenic mechanisms of caffeine on human dermal papilla cells in vitro. Methods: Human dermal papilla cells, taken from vertex, occiput and pubis, were cultivated for 48 h in vitro with 0.0005% caffeine and 10 nmol/L testostero respectively or combination. Measured the relative growth and apoptotic rate by MTT assay and flowcytometry, and Realtime PCR was applied to analysis mRNA of 10 candidate genes connecting to possible signaling pathway of AGA. Results: 0.000 5% caffeine stimulated the proliferation and inhibited the apoptosis of human DPCs in vitro. AR, SRD5A2, p53, FasR, GSK-3β TGF-β2 show significant regulations in vertex DPC culture treatment concentrations of 10 nmol/L testostero. In pubic cell culture p53 and FasR were down- regulated with testostero and further apoptosis suppression can be achieved by caffeine treatment. Conclusion: Caffeine probable play a role in antiandrogenic effect on human dermal papilla cellss in vitro by acting on different signalling pathway.

  2. Ginseng-berry-mediated gold and silver nanoparticle synthesis and evaluation of their in vitro antioxidant, antimicrobial, and cytotoxicity effects on human dermal fibroblast and murine melanoma skin cell lines

    Science.gov (United States)

    Jiménez Pérez, Zuly Elizabeth; Mathiyalagan, Ramya; Markus, Josua; Kim, Yeon-Ju; Kang, Hyun Mi; Abbai, Ragavendran; Seo, Kwang Hoon; Wang, Dandan; Soshnikova, Veronika; Yang, Deok Chun

    2017-01-01

    There has been a growing interest in the design of environmentally affable and biocompatible nanoparticles among scientists to find novel and safe biomaterials. Panax ginseng Meyer berries have unique phytochemical profile and exhibit beneficial pharmacological activities such as antihyperglycemic, antiobesity, antiaging, and antioxidant properties. A comprehensive study of the biologically active compounds in ginseng berry extract (GBE) and the ability of ginseng berry (GB) as novel material for the biosynthesis of gold nanoparticles (GBAuNPs) and silver nanoparticles (GBAgNPs) was conducted. In addition, the effects of GBAuNPs and GBAgNPs on skin cell lines for further potential biological applications are highlighted. GBAuNPs and GBAgNPs were synthesized using aqueous GBE as a reducing and capping agent. The synthesized nanoparticles were characterized for their size, morphology, and crystallinity. The nanoparticles were evaluated for antioxidant, anti-tyrosinase, antibacterial, and cytotoxicity activities and for morphological changes in human dermal fibroblast and murine melanoma skin cell lines. The phytochemicals contained in GBE effectively reduced and capped gold and silver ions to form GBAuNPs and GBAgNPs. The optimal synthesis conditions (ie, temperature and v/v % of GBE) and kinetics were investigated. Polysaccharides and phenolic compounds present in GBE were suggested to be responsible for stabilization and functionalization of nanoparticles. GBAuNPs and GBAgNPs showed increased scavenging activity against 2,2-diphenyl-1-picrylhydrazyl free radicals compared to GBE. GBAuNPs and GBAgNPs effectively inhibited mushroom tyrosinase, while GBAgNPs showed antibacterial activity against Escherichia coli and Staphylococcus aureus. In addition, GBAuNPs were nontoxic to human dermal fibroblast and murine melanoma cell lines, and GBAgNPs showed cytotoxic effect on murine melanoma cell lines. The current results evidently suggest that GBAgNPs can act as potential

  3. Microvessel and mast cell densities in malignant laryngeal neoplasm

    Directory of Open Access Journals (Sweden)

    Balica Nicolae Constantin

    2014-01-01

    Full Text Available Laryngeal neoplasm contributes to 30-40% of carcinomas of the head and neck. Mast cells are normal connective tissue residents, well represented in the respiratory tract. Experimental evidence suggests that the growth of a tumor beyond a certain size requires angiogenesis, which may also permit metastasis. The aim of this study was to evaluate the correlation between mast cell density, microvascular density, histopathological type and histological grade. Our study included 38 laryngeal carcinomas as follows: adenoid cystic carcinoma (2 cases, malignant papilloma (2 cases and squamous cell carcinoma (34 cases. The combined technique of CD 34-alcian blue safranin (ABS was used to identify microvessel and mast cell density, which was quantified by the hot spot method. A significant correlation was found between both mast cell and microvascular density, and G1/G2 histological grade (p=0.002 and p=0.004, respectively. Squamous cell carcinoma was significantly correlated with mast cell density (p=0.003, but not with microvascular density (p=0.454.

  4. Neutral amino acid transport across brain microvessel endothelial cell monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Audus, K.L.; Borchardt, R.T.

    1986-03-01

    Brain microvessel endothelial cells (BMEC) which form the blood-brain barrier (BBB) possess an amino acid carrier specific for large neutral amino acids (LNAA). The carrier is important for facilitating the delivery of nutrient LNAA's and centrally acting drugs that are LNAA's, to the brain. Bovine BMEC's were isolated and grown up to complete monolayers on regenerated cellulose-membranes in primary culture. To study the transendothelial transport of leucine, the monolayers were placed in a side-by-side diffusion cell, and transport across the monolayers followed with (/sup 3/H)-leucine. The transendothelial transport of leucine in this in vitro model was determined to be bidirectional, and time-, temperature-, and concentration-dependent. The transport of leucine was saturable and the apparent K/sub m/ and V/sub max/, 0.18 mM and 6.3 nmol/mg/min, respectively. Other LNAA's, including the centrally acting drugs, ..cap alpha..-methyldopa, L-DOPA, ..cap alpha..-methyl-tyrosine, and baclofen, inhibited leucine transport. The leucine carrier was also found to be stereospecific and not sensitive to inhibitors of active transport. These results are consistent with previous in vitro and in vivo studies. Primary cultures of BMEC's appear to be a potentially important tool for investigating at the cellular level, the transport mechanisms of the BBB.

  5. Flow of Red Blood Cells in Stenosed Microvessels

    Science.gov (United States)

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  6. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47{sup phox} pathway

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Horng [Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin, Taiwan (China); Lin, Zih-Chan [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Liang, Chan-Jung [Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yen, Feng-Lin [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Institute of Biomedical Sciences, Sun Yat-Sen University, 70 Lienhai Rd., Kaohsiung, Taiwan (China); Chiang, Yao-Chang [Center for Drug Abuse and Addiction, China Medical University Hospital, Taichung, Taiwan (China); China Medical University, Taichung, Taiwan (China); Lee, Chiang-Wen, E-mail: cwlee@gw.cgust.edu.tw [Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan (China)

    2014-09-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47{sup phox}/JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47{sup phox} inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation.

  7. REDUCED WOUND CONTRACTION AND SCAR FORMATION IN PUNCH BIOPSY WOUNDS - NATIVE COLLAGEN DERMAL SUBSTITUTES - A CLINICAL-STUDY

    NARCIS (Netherlands)

    DEVRIES, HJC; ZEEGELAAR, JE; MIDDELKOOP, E; GIJSBERS, G; VANMARLE, J; WILDEVUUR, CHR; WESTERHOF, W

    In full-thickness skin wounds dermal regeneration usually fails, resulting in scar formation and wound contraction. We studied dermal regeneration by implantation of collagenous matrices in a human punch biopsy wound model. Matrices were made of native bovine collagen I fibres, and either hyaluronic

  8. Photoprotective Potential of Penta-O-Galloyl-β-DGlucose by Targeting NF-κB and MAPK Signaling in UVB Radiation-Induced Human Dermal Fibroblasts and Mouse Skin.

    Science.gov (United States)

    Kim, Byung-Hak; Choi, Mi Sun; Lee, Hyun Gyu; Lee, Song-Hee; Noh, Kum Hee; Kwon, Sunho; Jeong, Ae Jin; Lee, Haeri; Yi, Eun Hee; Park, Jung Youl; Lee, Jintae; Joo, Eun Young; Ye, Sang-Kyu

    2015-11-01

    Exposure of the skin to ultraviolet radiation can cause skin damage with various pathological changes including inflammation. In the present study, we identified the skin-protective activity of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (pentagalloyl glucose, PGG) in ultraviolet B (UVB) radiation-induced human dermal fibroblasts and mouse skin. PGG exhibited antioxidant activity with regard to intracellular reactive oxygen species (ROS) generation as well as ROS and reactive nitrogen species (RNS) scavenging. Furthermore, PGG exhibited anti-inflammatory activity, inhibiting the activation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling, resulting in inhibition of the expression of pro-inflammatory mediators. Topical application of PGG followed by chronic exposure to UVB radiation in the dorsal skin of hairless mice resulted in a significant decrease in the progression of inflammatory skin damages, leading to inhibited activation of NF-κB signaling and expression of pro-inflammatory mediators. The present study demonstrated that PGG protected from skin damage induced by UVB radiation, and thus, may be a potential candidate for the prevention of environmental stimuli-induced inflammatory skin damage.

  9. Mechanics of smooth muscle in isolated single microvessels.

    Science.gov (United States)

    Gore, R W; Davis, M J

    1984-01-01

    In vivo studies on frog mesenteric arterioles (4) indicate that segmental differences in the response of microvessels to physical and chemical stimuli can be explained simply in terms of the length-tension characteristics of vascular smooth muscle at different points along the vascular tree. Studies on single, isolated arterioles in vitro were initiated to examine more closely the validity of this explanation for regional response differences. This paper reports some of the results. First-, second-, and third-order arterioles (18-60 micron i.d.) were dissected from hamster cheek pouches. The vessels were cannulated with a modified Burg microperfusion system, and their mechanical properties studied using the methods described by Duling and Gore. Vessels were activated in four stages with K+ and norepinephrine. During activation, transmural pressures were adjusted to minimize vascular smooth-muscle shortening. Active pressure-diameter curves were recorded while adjusting transmural pressure through the range 5 to 400 cm H20 in 5-25 cm steps. Vessel dimensions were measured with a videomicrometer. Passive curves were obtained after equilibration overnight in Ca2+-free medium. The vessels were then fixed and prepared for histologic sectioning, and measurements of vessel-wall composition were made. The Laplace relationship was used to construct length-tension diagrams, and the histologic data were used to normalize the dimensional data to smooth-muscle lengths. Maximum active tension of second-order arterioles (1,170 dynes/cm) was two times previous values reported by Gore et al. This was due presumably to refinements in techniques and dissection procedures. Maximum active stress averaged 3.9 X 10(+6) dynes/cm2 for second-order arterioles. This number is identical to data obtained from hog carotid strips by Dillon et al.

  10. Topical PDT following excisional wounding of human skin increases production of TGF-b3, MMP-1 and MMP-9 with associated improvement in dermal matrix organisation

    OpenAIRE

    Mills SJ, Farrar MD, Ashcroft GS, Griffiths CEM, Rhodes LE

    2014-01-01

    Animal studies report photodynamic therapy (PDT) to improve healing of excisional wounds but the mechanism is uncertain and equivalent human studies are lacking. To explore the impact of methyl aminolaevulinate (MAL)-PDT on clinical and microscopic parameters of human cutaneous excisional wound healing, examining for potential modulation through production of transforming growth factor (TGF)-β isoforms. In healthy older men (60-77 years; n=27), a 4 mm punch biopsy wound was created in ...

  11. Modulation of P-glycoprotein function by amlodipine derivatives in brain microvessel endothelial cells of rats

    Institute of Scientific and Technical Information of China (English)

    Bian-sheng JI; Ling HE; Guo-qing LIU

    2005-01-01

    Aim: To investigate whether the amlodipine derivatives, CJX1 and CJX2, have a modulative effect on P-glycoprotein (P-gp) function in rat brain microvessel endothelial cells (RBMEC). Methods: Isolated RBMEC were cultured in DMEM/ F1 2 (1:1) medium. The amount of intracellular rhodamine (Rh 123) was determined, using a fluorescence spectrophotometer, to evaluate the function of P-gp. Results:The accumulation of Rh123 in RBMEC was potentiated in a concentrationdependent manner after incubation with CJX1 and CJX2 at 1, 2.5, 5, and 10μmol/L (P<0.01), but no accumulation of Rh123 was observed in human umbilical vein endothelial cells after incubation with CJX1 and CJX2 10 μmol/L (P>0.05). Accumulation of intracellular Rh123 was increased and efflux of intracellular Rh123 was decreased in a time-dependent manner from 0-100 min after CJX1 and CXJ2 at 10 μmol/L treatment. The inhibitory effect of CJX1 and CJX2 on P-gp function was reversible and remained even at 120 min after removal of CJX1 and CJX2 at 2.5 μmol/L from the medium. Conclusion: CJX1 and CJX2 exhibited a potent effect in the inhibition of P-gp function in vitro.

  12. A metabolically active dermal replacement (Dermagraft) for vestibuloplasty.

    Science.gov (United States)

    Raguse, J D; Gath, H J

    2005-05-01

    This article describes the use of tissue-engineered dermal replacement in the vestibular extension instead of palatal donor tissue or (split-thickness) skin graft. In three patients the living human-derived fibroblast skin substitute (Dermagraft) was implanted on the wound surface after mucogingival junction and supraperiosteal dissection. Following application of Dermagraft, epithelial closure starting from the resection margins of the defect was observed, obviating further surgical treatment. Vestibular depth was increased and no scarring or frena occurred. Tissue-engineered dermal replacement consisting of living human fibroblasts appears to be a useful substitute for autogenous grafts in pre-prosthetic surgery, offering the advantages of unlimited availability, good colour match and no donor site morbidity.

  13. Enhanced dermal delivery of acyclovir using solid lipid nanoparticles.

    Science.gov (United States)

    Jain, Sanyog; Mistry, Meghal A; Swarnakar, Nitin K

    2011-10-01

    The present investigation was enthused by the possibility to develop solid lipid nanoparticles (SLNs) of hydrophilic drug acyclovir (ACV) and evaluate their potential as the carrier for dermal delivery. ACV-loaded SLNs (ACV-SLNs) were prepared by the optimized double emulsion process using Compritol 888 ATO as solid lipid. The prepared SLNs were smooth and spherical in shape with average diameter, polydispersity index, and entrapment efficiency of 262 ± 13 nm, 0.280 ± 0.01, and 40.08 ± 4.39% at 10% (w/w) theoretical drug loading with respect to Compritol 888 ATO content. Differential scanning calorimetry and powder X-ray diffraction pattern revealed that ACV was present in the amorphous state inside the SLNs. In vitro skin permeation studies on human cadaver and Sprague-Dawley rat skin revealed 17.65 and 15.17 times higher accumulation of ACV-SLNs in the dermal tissues in comparison to commercially available ACV cream after 24 h. Mechanism of topical permeation and dermal distribution was studied qualitatively using confocal laser scanning microscopy. While free dye (calcein) failed to penetrate skin barrier, the same encapsulated in SLNs penetrated deeply into the dermal tissue suggesting that pilosebaceous route was followed by SLNs for skin penetration. Histological examination and transdermal epidermal water loss measurement suggested that no major morphological changes occurred on rat skin surface due to the application of SLNs. Overall, it was concluded that ACV-loaded SLNs might be beneficial in improving dermal delivery of antiviral agent(s) for the treatment of topical herpes simplex infection.

  14. Pterocarpus santalinus L. Regulated Ultraviolet B Irradiation-induced Procollagen Reduction and Matrix Metalloproteinases Expression Through Activation of TGF-β/Smad and Inhibition of the MAPK/AP-1 Pathway in Normal Human Dermal Fibroblasts.

    Science.gov (United States)

    Gao, Wei; Lin, Pei; Hwang, Eunson; Wang, Yushuai; Yan, Zhengfei; Ngo, Hien T T; Yi, Tae-Hoo

    2017-08-31

    Ultraviolet light-induced reactive oxygen species (ROS) damage human skin and prematurely cause aging. A growing body of research is focusing on considering plants and plant-derived compounds as anti-photoaging therapeutic material. Pterocarpus santalinus L., as an Indian traditional medicine, possesses antidiabetic, anti-inflammatory and antioxidative effects. Here, we studied the anti-photoaging effects of ethanolic extract of P. santalinus L. heartwood (EPS) on ultraviolet radiation B (UVB)-irradiated normal human dermal fibroblasts (NHDFs). Results showed that EPS significantly inhibited the upregulation of matrix metalloproteinases and IL-6 caused by UVB irradiation, and suppressed UVB-induced phosphorylation of extracellular signal-regulated kinase, Jun N-terminal kinase, and p38, as well as the activation of AP-1 transcription factors. Further study indicated that UVB-induced production of MMP-1 and IL-6 could be inhibit by PD 98059 (an ERK inhibitor) and SP600125 (A JNK inhibitor), implied that EPS inhibited UVB-induced MMP-1 and IL-6 secretion by inactivating MAPK signaling pathway. In addition, EPS possessed an excellent antioxidant activity, which could increase cytoprotective antioxidants such as HO-1, NQ-O1 expression by facilitating the nuclear accumulation of Nrf2. Treatment of NHDFs with EPS also recovered UVB-induced procollagen type I reduction by activating TGF-β/Smad pathway. These findings demonstrated that EPS had a potential effect against UVB-induced skin photoaging. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Immune Suppression by Dermal Application of JP-8 Jet Fuel

    Science.gov (United States)

    2008-10-13

    transmitting the immunosuppressive signal from the skin to the immune system ( Limon -Flores, et al., Mast Cells mediate the Immune suppression Induced by...human and murine data. Nat Rev Immunol 7, 93-104. Byrne, S. N., Limon -Flores, A. Y. and Ullrich, S. E. (2008). Mast cell migration from the skin to...Ramos, G., Limon -Flores, A. Y. and Ullrich, S. E. (2007). Dermal exposure to jet fuel suppresses delayed-type hypersensitivity: a critical role

  16. From dermal exposure to internal dose

    NARCIS (Netherlands)

    Sandt, J.J.M. van de; Dellarco, M.; Hemmen, J.J. van

    2007-01-01

    Exposure scenarios form an essential basis for chemical risk assessment reports under the new EU chemicals regulation REACH (Registration, Evaluation, Authorisation and restriction of Chemicals). In case the dermal route of exposure is predominant, information on both exposure and dermal bioavailabi

  17. Study of Microvessel Density and the Expression of Vascular Endothelial Growth Factors in Adrenal Gland Pheochromocytomas

    Directory of Open Access Journals (Sweden)

    Magdalena Białas

    2014-01-01

    Full Text Available Angiogenesis (neoangiogenesis, a process of neovascularization, is an essential step for local tumor growth and distant metastasis formation. We have analysed angiogenesis status: vascular architecture, microvessel density, and vascular endothelial growth factors expression in 62 adrenal pheochromocytomas: 57 benign and 5 malignant. Immunohistochemical evaluation revealed that vascular architecture and vessel density are different in the central and subcapsular areas of the tumor. Furthermore, we have observed a strong correlation between number of macrophages and microvessel density in the central and subcapsular areas of the tumor and between the expression of VEGF-A in tumor cells and microvessel density in central and subcapsular areas of the tumor. Secondary changes in these tumors influence the results and both vascular architecture and microvessel density are markedly disturbed by hemorrhagic and cystic changes in pheochromocytomas. These changes are partially caused by laparoscopic operation technique. However, no differences in vascular parameters were found between pheochromocytomas with benign and malignant clinical behavior. Our observation showed that analysis of angiogenesis, as a single feature, does not help in differentiating malignant and benign pheochromocytomas and has no independent prognostic significance. On the other hand, high microvessel density in pheochromocytoma is a promising factor for antiangiogenic therapy in malignant cases.

  18. Antioxidant and potential anti-inflammatory activity of extracts and formulations of white tea, rose, and witch hazel on primary human dermal fibroblast cells

    OpenAIRE

    Hili Pauline; Thring Tamsyn SA; Naughton Declan P

    2011-01-01

    Abstract Background Numerous reports have identified therapeutic roles for plants and their extracts and constituents. The aim of this study was to assess the efficacies of three plant extracts for their potential antioxidant and anti-inflammatory activity in primary human skin fibroblasts. Methods Aqueous extracts and formulations of white tea, witch hazel and rose were subjected to assays to measure anti-collagenase, anti-elastase, trolox equivalent and catalase activities. Skin fibroblast ...

  19. A Fibrocontractive Mechanochemical Model of Dermal Wound Closure Incorporating Realistic Growth Factor Kinetics

    KAUST Repository

    Murphy, Kelly E.

    2012-01-13

    Fibroblasts and their activated phenotype, myofibroblasts, are the primary cell types involved in the contraction associated with dermal wound healing. Recent experimental evidence indicates that the transformation from fibroblasts to myofibroblasts involves two distinct processes: The cells are stimulated to change phenotype by the combined actions of transforming growth factor β (TGFβ) and mechanical tension. This observation indicates a need for a detailed exploration of the effect of the strong interactions between the mechanical changes and growth factors in dermal wound healing. We review the experimental findings in detail and develop a model of dermal wound healing that incorporates these phenomena. Our model includes the interactions between TGFβ and collagenase, providing a more biologically realistic form for the growth factor kinetics than those included in previous mechanochemical descriptions. A comparison is made between the model predictions and experimental data on human dermal wound healing and all the essential features are well matched. © 2012 Society for Mathematical Biology.

  20. Inflammatory microenvironment and tumor necrosis factor alpha as modulators of periostin and CCN2 expression in human non-healing skin wounds and dermal fibroblasts.

    Science.gov (United States)

    Elliott, Christopher G; Forbes, Thomas L; Leask, Andrew; Hamilton, Douglas W

    2015-04-01

    Non-healing skin wounds remain a significant clinical burden, and in recent years, the regulatory role of matricellular proteins in skin healing has received significant attention. Periostin and CCN2 are both upregulated at day 3 post-wounding in murine skin, where they regulate aspects of the proliferative phase of repair including mesenchymal cell infiltration and myofibroblast differentiation. In this study, we examined 1) the wound phenotype and expression patterns of periostin and CCN2 in non-healing skin wounds in humans and 2) the regulation of their expression in wound fibroblasts by tumor necrosis factor α (TNFα) and transforming growth factor-β1 (TGF-β1). Chronic skin wounds had a pro-inflammatory phenotype, characterized by macrophage infiltration, TNFα immunoreactivity, and neutrophil infiltration. Periostin, but not CCN2, was significantly suppressed in non-healing wound edge tissue at the mRNA and protein level compared with non-involved skin. In vitro, human wound edge fibroblasts populations were still able to proliferate and contract collagen gels. Compared to cells from non-involved skin, periostin and α-SMA mRNA levels increased significantly in the presence of TGF-β1 in wound cells and were significantly decreased by TNFα, but not those of Col1A2 or CCN2. In the presence of both TGF-β1 and TNFα, periostin and α-SMA mRNA levels were significantly reduced compared to TGF-β1 treated wound cells. Effects of TGF-β1 and TNFα on gene expression were also more pronounced in wound edge cells compared to non-involved fibroblasts. We conclude that variations in the expression of periostin and CCN2, are related to an inflammatory microenvironment and the presence of TNFα in human chronic wounds. Copyright © 2015. Published by Elsevier B.V.

  1. Alpha-Adrenergic receptors in cerebral microvessels of normotensive and spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, H.; Wada, A.; Izumi, F.; Magnoni, M.S.; Trabucchi, M.

    1985-03-01

    In rat cerebral microvessels, we characterized alpha 1- and alpha 2-adrenergic receptors, using (/sup 3/H)prazosin and (/sup 3/H)-p-amino-clonidine as radioligands. (/sup 3/H)Prazosin binding to the cerebral microvessels was saturable and of high affinity (dissociation constant of 78 pM), with a maximum binding of 48 fmol/mg protein. (/sup 3/H)Prazosin binding reached equilibrium within 15 minutes and was dissociated by the addition of 10 microM phentolamine. The inhibitory effects of isomers of norepinephrine and epinephrine on the binding showed that l-isomers were over 10 times more potent than d-isomers. (/sup 3/H)-p-Amino-clonidine binding to the cerebral microvessels was saturable and of high affinity (K/sub D/ . 0.61 nM) with a B/sub max/ of 73 fmol/mg protein. The binding reached equilibrium within 30 minutes, and was dissociated by the addition of 100 microM l-norepinephrine. l-Isomers of norepinephrine and epinephrine were over 10 times more potent than d-isomers in displacing the binding. Thus, both (/sup 3/H)prazosin and (/sup 3/H)-p-amino-clonidine bindings to the cerebral microvessels were characterized by saturability, high affinity, reversibility, and stereo-specificity. Furthermore, the specificity of both binding sites was pharmacologically evaluated by the inhibitory effects of various adrenergic agonists and antagonists on the bindings. These data indicate the existence of alpha-adrenergic receptors in the cerebral microvessels and are consistent with the hypothesis that the cerebral microcirculation is regulated by adrenergic innervation. Furthermore, the receptors were measured in cerebral microvessels of spontaneously hypertensive rats and Wistar-Kyoto controls.

  2. Antioxidant and potential anti-inflammatory activity of extracts and formulations of white tea, rose, and witch hazel on primary human dermal fibroblast cells

    Directory of Open Access Journals (Sweden)

    Hili Pauline

    2011-10-01

    Full Text Available Abstract Background Numerous reports have identified therapeutic roles for plants and their extracts and constituents. The aim of this study was to assess the efficacies of three plant extracts for their potential antioxidant and anti-inflammatory activity in primary human skin fibroblasts. Methods Aqueous extracts and formulations of white tea, witch hazel and rose were subjected to assays to measure anti-collagenase, anti-elastase, trolox equivalent and catalase activities. Skin fibroblast cells were employed to determine the effect of each extract/formulation on IL-8 release induced by the addition of hydrogen peroxide. Microscopic examination along with Neutral Red viability testing was employed to ascertain the effects of hydrogen peroxide directly on cell viability. Results Considerable anti-collagenase, anti-elastase, and antioxidant activities were measured for all extracts apart from the witch hazel distillate which showed no activity in the collagenase assay or in the trolox equivalence assay. All of the extracts and products tested elicited a significant decrease in the amount of IL-8 produced by fibroblast cells compared to the control (p Conclusions These data show that the extracts and products tested have a protective effect on fibroblast cells against hydrogen peroxide induced damage. This approach provides a potential method to evaluate the claims made for plant extracts and the products in which these extracts are found.

  3. PTEN与Survivin在人皮肤血管瘤组织中的表达及意义%Significance and Expression of PTEN and Survivin in Human Dermal Hemangioma

    Institute of Scientific and Technical Information of China (English)

    蒋晖; 汪晓庆; 张端莲; 陕声国; 吴慧芬; 蔡丽华; 袁玉虎

    2009-01-01

    目的 探讨PTEN与Survivin在血管瘤发生、发展过程中的表达及意义.方法 应用免疫组织化学方法和RT-PCR法检测了皮肤血管瘤增生期、退化期以及正常皮肤组织中PTEN和Survivin的表达水平.结果 ①免疫组织化学结果:PTEN在增生期血管瘤内皮细胞的表达低于退化期,差异有显著性意义(P0.05).②RT-PCR结果:在退化期血管瘤和正常皮肤组织中均有明显的PTEN mRNA表达,而增生期血管瘤中PTEN mRNA的表达较弱;在增生期血管瘤中有明显的Survivin mRNA表达,而退化期血管瘤和正常皮肤组织中Survivin mRNA均无表达.结论 PTEN和Survivin参与了血管瘤的发生、发展和退化,PTEN通过诱导内皮细胞凋亡而促进血管瘤由增生向退化的转变,Survivin通过抑制内皮细胞凋亡而促进血管瘤的增生,两者在血管瘤的发生发展中发挥协同效应.%Objective To study the expression of PTEN and Survivin,and investigate the mechanism and significance of them in different phases of human hemangiomas. Methods The expression of PTEN and Survivin was detected by using immu-no-histochemical technique,and that of PTEN mRNA and Survivin mRNA by using reverse transcription polymerase chain reac-tion(RT-PCR)in proliferating,involuting human hemangiomas and normal skin tissues. Results ①The expression of PTEN in the endothelial cells of involuting hemangiomas was significantly higher than in proliferating hemangiomas(P0. 05). ②The expression of PTEN mRNA was strong in involting hemangiomas and normal skin tissues, but weak in proliferating hemangiomas. The expression of Survivin mRNA was significantly increased in proliferating hemangiomas,and no Survivin mRNA was detected in involuting hemangiomas and normal skin tissues. Conclusion It is suggested that both PTEN and Survivin may take part in the genesis,development,and involution. PTEN promoted the switching from proliferation to involution in hemangiomas through inducing the

  4. Effect of a novel ascorbic derivative, disodium isostearyl 2-O-L-ascorbyl phosphate on human dermal fibroblasts: increased collagen synthesis and inhibition of MMP-1.

    Science.gov (United States)

    Shibayama, Hiroharu; Hisama, Masayoshi; Matsuda, Sanae; Ohtsuki, Mamitaro; Iwaki, Masahiro

    2008-04-01

    The effects of a novel amphiphilic vitamin C derivative, disodium isostearyl 2-O-L-ascorbyl phosphate (disodium 2-(1,3,3-trimethyl-n-butyl)-5,7,7-trimethyl-n-octyl-L-ascorbyl phosphate, VCP-IS-2Na), possessing a C18 alkyl chain attached to a stable sodium L-ascorbic acid 2-phosphate (VCP-Na), on the proliferation of fibroblasts and collagen synthesis, and inhibition of matrix metalloproteinase-1 (MMP-1) in normal human fibroblasts, NHDFs and NB1RGBs, were evaluated. Compared with proliferation of non-treated fibroblasts, VCP-IS-2Na at 50 microM increased proliferation to 123 and 135% of that in NHDFs and NB1RGBs. On the other hand, L-ascorbic acid (vitamin C) and VCP-Na had little effect on proliferation. At a concentration of 5.0-50 microM, VCP-IS-2Na stimulated collagen synthesis with an effectiveness comparable to that of vitamin C and VCP-Na. The amount of type I collagen in the culture medium was increased by treatment with VCP-IS-2Na for 72 h, in a concentration-dependent manner. Maximum increases of 126 and 1067% were seen with VCP-IS-2Na at 50 microM in NHDFs and NB1RGBs, respectively, whereas vitamin C and VCP-Na only had a small effect. VCP-IS-2Na had a small inhibitory effect on MMP-1, but vitamin C did not inhibit MMP-1, and VCP-Na had very little effect. VCP-IS-2Na exerted its collagen synthesis-promoting activity after being converted to vitamin C by phosphatase. This vitamin C promoted proliferation, collagen synthesis and inhibition of MMP-1, which are prolonged through sustained conversion of VCP-IS-2Na.

  5. Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF).

    Science.gov (United States)

    Abdian, Narges; Ghasemi-Dehkordi, Payam; Hashemzadeh-Chaleshtori, Morteza; Ganji-Arjenaki, Mahbobe; Doosti, Abbas; Amiri, Beheshteh

    2015-12-01

    Basic fibroblast growth factor (bFGF or FGF-2) is a member of the FGF family secreted by different kinds of cells like HDFs and it is an important nutritional factor for cell growth and differentiation. The HDFs release bFGF in culture media at very low. The present study aims to investigate the HDFs growth rate in culture media supplemented either with or without bFGF. In brief, HDFs were isolated from human foreskin sample and were cultured in vitro in media containing bFGF and lack of this factor. The cells growth rate was calculated by trypan blue. The karyotyping was performed using G-banding to investigate the chromosomal abnormality of HDFs in both groups. Total RNA of each groups were extracted and cDNA samples were synthesized then, real-time Q-PCR was used to measure the expression level of p27kip1 and cyclin D1 genes normalized to internal control gene (GAPDH). The karyotype analysis showed that HDFs cultured in media or without bFGF had normal karyotype (46 chromosomes, XY) and chromosomal abnormalities were not observed. The cell growth rates in both groups were normal with proliferated exponentially but the slope of growth curve in HDFs cultured in media containing bFGF was increased. Karyotyp test showed that bFGF does not affect on cytogenetic stability of cells. The survey of p27kip1 and cyclin D1 genes by real-time Q-PCR showed that the expression level of these genes were up-regulated when adding bFGF in culture media (p media with growth factor like bFGF could enhance the proliferation and differentiation capacity of cells and improve cells growth rate. Similarly, fibroblast growth factors did not induce any chromosomal abnormality in cells. Furthermore, in HDFs cultured in bFGF supplemented media, the p27kip1 and cyclin D1 genes were up-regulated and suggesting an important role for bFGF in cell-cycle regulation and progression and fibroblast division stimulation. It also suggests that the effects of bFGF on different cell types with

  6. Collagen/chitosan based two-compartment and bi-functional dermal scaffolds for skin regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Plastic Surgery and Burns, Shenzhen Second People' s Hospital, Shenzhen 518035 (China); Wang, Mingbo [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); She, Zhending [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518057 (China); Fan, Kunwu; Xu, Cheng [Department of Plastic Surgery and Burns, Shenzhen Second People' s Hospital, Shenzhen 518035 (China); Chu, Bin; Chen, Changsheng [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shi, Shengjun, E-mail: shengjunshi@yahoo.com [The Burns Department of Zhujiang Hospital, Southern Medical University, Guangzhou 510280 (China); Tan, Rongwei, E-mail: tanrw@landobiom.com [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518057 (China)

    2015-07-01

    Inspired from the sophisticated bilayer structures of natural dermis, here, we reported collagen/chitosan based two-compartment and bi-functional dermal scaffolds. Two functions refer to mediating rapid angiogenesis based on recombinant human vascular endothelial growth factor (rhVEGF) and antibacterial from gentamicin, which were encapsulated in PLGA microspheres. The gentamicin and rhVEGF encapsulated PLGA microspheres were further combined with collagen/chitosan mixtures in low (lower layer) and high (upper layer) concentrations, and molded to generate the two-compartment and bi-functional scaffolds. Based on morphology and pore structure analyses, it was found that the scaffold has a distinct double layered porous and connective structure with PLGA microspheres encapsulated. Statistical analysis indicated that the pores in the upper layer and in the lower layer have great variations in diameter, indicative of a two-compartment structure. The release profiles of gentamicin and rhVEGF exceeded 28 and 49 days, respectively. In vitro culture of mouse fibroblasts showed that the scaffold can facilitate cell adhesion and proliferation. Moreover, the scaffold can obviously inhibit proliferation of Staphylococcus aureus and Serratia marcescens, exhibiting its unique antibacterial effect. The two-compartment and bi-functional dermal scaffolds can be a promising candidate for skin regeneration. - Highlights: • The dermal scaffold is inspired from the bilayer structures of natural dermis. • The dermal scaffold has two-compartment structures. • The dermal scaffold containing VEGF and gentamicin encapsulated PLGA microspheres • The dermal scaffold can facilitate cell adhesion and proliferation.

  7. The application of dermal papillary rings in dermatology by in vivo confocal laser scanning microscopy

    Science.gov (United States)

    Xiang, W. Z.; Xu, A. E.; Xu, J.; Bi, Z. G.; Shang, Y. B.; Ren, Q. S.

    2010-08-01

    Confocal laser scanning microscopy (CLSM) allows noninvasive visualization of human skin in vivo, without needing to fix or section the tissue. Melanocytes and pigmented keratinocytes at the level of the basal layer form bright dermal papillary rings which are readily amenable to identify in confocal images. Our purpose was to explore the role of dermal papillary rings in assessment of lesion location, the diagnosis, differential diagnosis of lesions and assessment of therapeutic efficacy by in vivo CLSM. Seventy-one patients were imaged with the VivaScope 1500 reflectance confocal microscope provided by Lucid, Inc. The results indicate that dermal papillary rings can assess the location of lesion; the application of dermal papillary rings can provide diagnostic support and differential diagnosis for vitiligo, nevus depigmentosus, tinea versicolor, halo nevus, common nevi, and assess the therapeutic efficacy of NBUVB phototherapy plus topical 0.1 percent tacrolimus ointment for vitiligo. In conclusion, our findings indicate that the dermal papillary rings play an important role in the assessment the location of lesion, diagnosis, differential diagnosis of lesions and assessment of therapeutic efficacy by in vivo CLSM. CLSM may be a promising tool for noninvasive examination in dermatology. However, larger studies are needed to expand the application of dermal papillary rings in dermatology.

  8. Laser-induced transepidermal elimination of dermal content by fractional photothermolysis.

    Science.gov (United States)

    Hantash, Basil M; Bedi, Vikramaditya P; Sudireddy, Vasanthi; Struck, Steven K; Herron, G Scott; Chan, Kin Foong

    2006-01-01

    The wound healing process in skin is studied in human subjects treated with fractional photothermolysis. In-vivo histological evaluation of vacuoles formed over microthermal zones (MTZs) and their content is undertaken. A 30-W, 1550-nm single-mode fiber laser system delivers an array of 60 microm or 140 microm 1e2 incidence microbeam spot size at variable pulse energy and density. Treatments span from 6 to 20 mJ with skin excisions performed 1-day post-treatment. Staining with hematoxylin and eosin demonstrates an intact stratum corneum with vacuolar formation within the epidermis. The re-epithelialization process with repopulation of melanocytes and keratinocytes at the basal layer is apparent by 1-day post-treatment. The dermal-epidermal (DE) junction is weakened and separated just above zones of dermal coagulation. Complete loss of dermal cell viability is noted within the confines of the MTZs 1-day post-treatment, as assessed by lactate dehydrogenase. All cells falling outside the irradiation field remain viable. Content within the epidermal vacuoles stain positively with Gomori trichrome, suggesting a dermal origin. However, the positive staining could be due to loss of specificity after thermal alteration. Nevertheless, this dermal extrusion hypothesis is supported by very specific positive staining with an antihuman elastin antibody. Fractional photothermolysis creates microthermal lesions that allow transport and extrusion of dermal content through a compromised DE junction. Some dermal material is incorporated into the microepidermal necrotic debris and shuttled up the epidermis to eventually be exfoliated through the stratum corneum. This is the first report of a nonablative laser-induced transport mechanism by which dermal content can be predictably extruded biologically through the epidermis. Thus, treatment with the 1550-nm fiber laser may provide the first therapeutic option for clinical indications, including pigmentary disorders such as medically

  9. Citral: identifying a threshold for induction of dermal sensitization.

    Science.gov (United States)

    Lalko, Jon; Api, Anne Marie

    2008-10-01

    Citral [CAS# 5392-40-5; EINECS# 226-394-6; RIFM # 116; cis- and trans-3,7-dimethyl-2,6-Octadienal] is an important fragrance ingredient appreciated for its powerful lemon-aroma. It is widely used in fragrance formulations and incorporated into numerous consumer products. A comprehensive review of the dermal sensitization data available for citral was undertaken with the goal of identifying a threshold for the induction of dermal sensitization. In 2007, a complete literature search was conducted. On-line databases that were surveyed included Chemical Abstract Services and the National Library of Medicine. In addition, the toxicologic database of the Research Institute for Fragrance materials, Inc. (RIFM) was searched, which includes numerous unpublished reports. Based on a weight of evidence approach, the data from this survey demonstrate that the human NOEL (No Observed Effect Level) for induction of dermal sensitization to citral is 1400 microg/cm(2). The identification of this induction threshold will allow for risk assessments to focus on primary prevention of contact allergy to citral based on a new Quantitative Risk Assessment (QRA) paradigm. This subsequent assessment will form the basis of a risk management approach; specifically a new IFRA (International Fragrance Association) standard on the use of citral in consumer products.

  10. Dermal benefits of topical D-ribose

    Directory of Open Access Journals (Sweden)

    Linda M Shecterle

    2009-09-01

    Full Text Available Linda M Shecterle, John A St. CyrJacqmar, Inc., Minneapolis, MN, USAAbstract: Our aging skin undergoes changes with reductions in collagenous and elastic fibers, fibroblasts, mast cells, and macrophages with free radical production, which can result in reduced skin tone and wrinkle formation. Fibroblasts are important for dermal integrity and function with a decrease in function producing less skin tone, thinning, and wrinkle formation. Dermal levels of adenosine triphosphate (ATP decline with aging, potentially altering dermal function. Supplemental D-ribose, a natural occurring carbohydrate, enhances ATP regeneration. D-ribosebased studies demonstrated benefits in both cell culture fibroblastic activities and a subsequent clinical study in women with decreased skin tone with wrinkles. Supplemental D-ribose may offer this needed cellular benefit.Keywords: dermal, fibroblast, ATP, aging, wrinkles

  11. Antioxidant Nanoplatforms for Dermal Delivery: Melatonin.

    Science.gov (United States)

    Milán, Aroha Belen Sánchez; Campmany, Ana C Calpena; Naveros, Beatriz Clares

    2017-02-22

    Melatonin (MLT) is emerging as a promising therapeutic agent, mainly due to its role as antioxidant. Substantial evidences show that melatonin is potentially effective on a variety of diseases as cancer, inflammation and neurodegenerative diseases. The excellent antioxidant capacity with pharmacokinetics characteristics and the emerging search for new pharmaceutical nanotechnology based systems, make it particularly attractive to elaborate nanoplatforms based on MLT for biomedical or cosmetic dermal applications. Different nanosystems for dermal delivery have been investigated. These nanosystems are expected to play a significant role in the protection of therapeutic functions of MLT, enhanced transdermal permeability and dermal delivery profiles. These nanocarriers not only transport MLT, but also increase the solubility, bioavailability, half-life and antioxidant activity. In the current review, we will focus on nanocarrier production strategies, dermal MLT application and delivery advances in vivo and in vitro. Equally, future perspectives of this assisted MLT delivery will be also discussed.

  12. Dermal administration of manganese porphyrin by iontophoresis.

    Science.gov (United States)

    Ito, Fuminori; Imamura, Shinya; Asayama, Shoichiro; Kanamura, Kiyoshi; Kawakami, Hiroyoshi

    2014-08-01

    The present study describes a technique for dermal administration of cationic manganese porphyrin (Mn-porphyrin), an antioxidant with superoxide dismutase (SOD) activity, in hairless mouse. In general, the stratum corneum on the surface of the skin represents a barrier to passive diffusion of therapeutic agents by standard dermal administration. The present study investigated whether, dermal administration of Mn-porphyrin solution using iontophoresis, the electrical dermal administration technique, could overcome this barrier. We visually confirmed that Mn-porphyrin had penetrated to the reverse side of the hairless mouse skin after iontophoresis for a short period. With prolonged iontophoresis, the ratio of detectable Mn-porphyrin solution on the reverse side of the hairless mouse skin increased. In the future, this technique could provide an innovative approach for delivery of this antioxidant in intractable disease.

  13. Prognostic Significance of Axillary Lymph Node Micrometastases and Microvessel Count in Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    RuiHui; FengyunZhao

    2004-01-01

    OBJECTIVE To investigate the influence of axillary lymph node micrometastases and the microvessel count on the prognosis of patients with breast cancer. METHODS Forty-eight patients with breast cancer, who had no tumor cells in their regional lymph nodes based on conventional histopathologic examination, were re-examined with immunohistochemical LSAB techniques. H&E, anti-EMA, CK 19 and FVlII factor staining was used to identify tumor cells in both lymph nodes and tumor tissues and to count the microvessels. A total of 882 lymph nodes were examined. RESULTS Immunostaining-positive tumor cells were found in 9.0 %(79/882) of the dissected lymph nodes. The positive rates were not significantly different between a surviving group and a deceased group (P>0.05). The microvessel count was significantly higher in group that had died (P<0.001). CONCLUSION The lymph node micrometastases did not show any correlation with patients'survival, but the microvessel density had a negative correlation with the survival period in breast cancer patients who had negative axillary lymph nodes.

  14. Similar Endothelial Glycocalyx Structures in Microvessels from a Range of Mammalian Tissues

    DEFF Research Database (Denmark)

    Arkill, K P; Knupp, C; Michel, C C

    2011-01-01

    The glycocalyx or endocapillary layer on the luminal surface of microvessels has a major role in the exclusion of macromolecules from the underlying endothelial cells. Current structural evidence in the capillaries of frog mesentery indicates a regularity in the structure of the glycocalyx, with ...

  15. Quantifying single microvessel permeability in isolated blood-perfused rat lung preparation.

    Science.gov (United States)

    Kandasamy, Kathirvel; Parthasarathi, Kaushik

    2014-01-01

    The isolated blood-perfused lung preparation is widely used to visualize and define signaling in single microvessels. By coupling this preparation with real time imaging, it becomes feasible to determine permeability changes in individual pulmonary microvessels. Herein we describe steps to isolate rat lungs and perfuse them with autologous blood. Then, we outline steps to infuse fluorophores or agents via a microcatheter into a small lung region. Using these procedures described, we determined permeability increases in rat lung microvessels in response to infusions of bacterial lipopolysaccharide. The data revealed that lipopolysaccharide increased fluid leak across both venular and capillary microvessel segments. Thus, this method makes it possible to compare permeability responses among vascular segments and thus, define any heterogeneity in the response. While commonly used methods to define lung permeability require postprocessing of lung tissue samples, the use of real time imaging obviates this requirement as evident from the present method. Thus, the isolated lung preparation combined with real time imaging offers several advantages over traditional methods to determine lung microvascular permeability, yet is a straightforward method to develop and implement.

  16. Angiogenesis in Paget's Disease of the Vulva and the Breast: Correlation with Microvessel Density

    Directory of Open Access Journals (Sweden)

    Patricia E. Ellis

    2012-01-01

    Full Text Available Our understanding of the pathogenesis of Paget's disease of the vulva and the breast remains limited. Current evidence supports the fact that angiogenesis plays an important role in the pathogenesis of several diseases. Therefore, we sought to define its role, as correlated with microvessel density, in Paget's disease of the vulva and the breast. Microvessels were analysed using anti-von Willebrand factor antibody in 105 cases of Paget's disease of the vulva and the breast comprising 71 cases of Paget's disease of the vulva, including 8 cases with invasive disease, and 34 cases of Paget's disease of the breast. The latter included 12 cases with DCIS, 5 cases with both DCIS and invasive carcinoma, and 6 with carcinoma alone. Eleven cases had no underlying tumour identified. Increased microvessel density was demonstrated in Paget's disease of the breast with DCIS and with carcinoma alone compared to Paget's disease of the breast alone, <0.08 and <0.013, respectively. There were no significant differences in microvessel density in the vulval cases. Neovascularisation is an important process in the development of Paget's disease of the breast. Other biological and molecular processes are more involved in the pathogenesis of Paget's disease of the vulva.

  17. Effects of wall shear stress and its gradient on tumor cell adhesion in curved microvessels.

    Science.gov (United States)

    Yan, W W; Cai, B; Liu, Y; Fu, B M

    2012-05-01

    Tumor cell adhesion to vessel walls in the microcirculation is one critical step in cancer metastasis. In this paper, the hypothesis that tumor cells prefer to adhere at the microvessels with localized shear stresses and their gradients, such as in the curved microvessels, was examined both experimentally and computationally. Our in vivo experiments were performed on the microvessels (post-capillary venules, 30-50 μm diameter) of rat mesentery. A straight or curved microvessel was cannulated and perfused with tumor cells by a glass micropipette at a velocity of ~1mm/s. At less than 10 min after perfusion, there was a significant difference in cell adhesion to the straight and curved vessel walls. In 60 min, the averaged adhesion rate in the curved vessels (n = 14) was ~1.5-fold of that in the straight vessels (n = 19). In 51 curved segments, 45% of cell adhesion was initiated at the inner side, 25% at outer side, and 30% at both sides of the curved vessels. To investigate the mechanical mechanism by which tumor cells prefer adhering at curved sites, we performed a computational study, in which the fluid dynamics was carried out by the lattice Boltzmann method , and the tumor cell dynamics was governed by the Newton's law of translation and rotation. A modified adhesive dynamics model that included the influence of wall shear stress/gradient on the association/dissociation rates of tumor cell adhesion was proposed, in which the positive wall shear stress/gradient jump would enhance tumor cell adhesion while the negative wall shear stress/gradient jump would weaken tumor cell adhesion. It was found that the wall shear stress/gradient, over a threshold, had significant contribution to tumor cell adhesion by activating or inactivating cell adhesion molecules. Our results elucidated why the tumor cell adhesion prefers to occur at the positive curvature of curved microvessels with very low Reynolds number (in the order of 10(-2)) laminar flow.

  18. The Involvement of Pial Microvessels in Leukocyte Invasion after Mild Traumatic Brain Injury

    Science.gov (United States)

    Shan, Rongzi; Thomasian, Nicole; Chodobski, Adam

    2016-01-01

    The pathophysiological mechanisms underlying mild traumatic brain injury (mTBI) are not well understood, but likely involve neuroinflammation. Here the controlled cortical impact model of mTBI in rats was used to test this hypothesis. Mild TBI caused a rapid (within 6 h post-mTBI) upregulation of synthesis of TNF-α and IL-1β in the cerebral cortex and hippocampus, followed by an increase in production of neutrophil (CXCL1–3) and monocyte (CCL2) chemoattractants. While astrocytes were not a significant source of CXC chemokines, they highly expressed CCL2. An increase in production of CXC chemokines coincided with the influx of neutrophils into the injured brain. At 6 h post-mTBI, we observed a robust influx of CCL2-expressing neutrophils across pial microvessels into the subarachnoid space (SAS) near the injury site. Mild TBI was not accompanied by any significant influx of neutrophils into the brain parenchyma until 24 h after injury. This was associated with an early induction of expression of intercellular adhesion molecule 1 on the endothelium of the ipsilateral pial, but not intraparenchymal, microvessels. At 6 h post-mTBI, we also observed a robust influx of neutrophils into the ipsilateral cistern of velum interpositum (CVI), a slit-shaped cerebrospinal fluid space located above the 3rd ventricle with highly vascularized pia mater. From SAS and CVI, neutrophils appeared to move along the perivascular spaces to enter the brain parenchyma. The monocyte influx was not observed until 24 h post-mTBI, and these inflammatory cells predominantly entered the ipsilateral SAS and CVI, with a limited invasion of brain parenchyma. These observations indicate that the endothelium of pial microvessels responds to injury differently than that of intraparenchymal microvessels, which may be associated with the lack of astrocytic ensheathment of cerebrovascular endothelium in pial microvessels. These findings also suggest that neuroinflammation represents the potential

  19. Calibrating Doppler imaging of preterm intracerebral circulation using a microvessel flow phantom

    Directory of Open Access Journals (Sweden)

    Fleur A. Camfferman

    2015-01-01

    Full Text Available Introduction. Preterm infants are born during critical stages of brain development, in which the adaptive capacity of the fetus to extra-uterine environment is limited. Inadequate brain perfusion has been directly linked to preterm brain damage. Advanced high-frequency ultrasound probes and processing algorithms allow visualization of microvessels and depiction of regional variation. To assess whether visualization and flow velocity estimates of preterm cerebral perfusion using Doppler techniques is accurate, we conducted an in vitro experiment using a microvessel flow phantom.Materials and Methods. An in-house developed flow phantom containing two microvessels (inner diameter 200 and 700 microns with attached syringe pumps, filled with blood-mimicking fluid, was used to generate non-pulsatile perfusion of variable flow. Measurements were performed using an Esaote MyLab70 scanner.Results. Microvessel mimicking catheters with velocities as low as 1cm/sec were adequately visualized with a linear ultrasound probe. With a convex probe velocities <2 cm/sec could not be depicted. Within settings, velocity and diameter measurements were highly reproducible (intra class correlation 0.997 (95% CI 0.996-0.998 and 0.914 (0.864-0.946. Overall, mean velocity was overestimated up to 3-fold, especially in high velocity ranges. Significant differences were seen in velocity measurements when using steer angle correction and in vessel diameter estimation (p<0.05.Conclusion. Visualization of microvessel size catheters mimicking small brain vessels is feasible. Reproducible velocity and diameter results can be obtained, although important overestimation of the values is observed. Before velocity estimates of microcirculation can find its use in clinical practice, calibration of the ultrasound machine for any specific Doppler purpose is essential. The ultimate goal is to develop a sonographic tool that can be used for objective study of regional perfusion in routine

  20. 咖啡因对体外培养人毛囊及毛乳头细胞的影响%Effects of caffeine on human hair follicles and the dermal papilla cells in vitro

    Institute of Scientific and Technical Information of China (English)

    陈蕾; 关宁宁; 孙蔚凌; 刘嘉茵; 何绍衡; 范卫新

    2011-01-01

    目的:研究咖啡因对人毛囊及毛乳头细胞体外培养的影响.方法:选择不同浓度咖啡因作用于体外培养的人毛囊及毛乳头细胞,记录6 d内毛囊的生长速度和毛球部形态学改变,采用四甲基偶氮唑蓝(MTT)法测定毛乳头细胞增殖活性;流式细胞技术测定细胞凋亡;RT-PCR技术进行血管内皮生长因子(VEGF)、成纤维细胞生长因子(FGF)、雌激素受体(ER)、雄激素受体(AR)及5α-还原酶(SRD5A)的mRNA定量.结果:与对照组相比,0.005%咖啡因明显促进毛囊生长,0.000 5%咖啡因促进毛乳头细胞增殖、抑制凋亡,并促进毛发生长正性相关因子表达,抑制负性相关因子表达.结论:在有效浓度范围内,咖啡因可以促进人毛发生长,高浓度咖啡因抑制毛发生长.%Objective : To investigate the effects of caffeine on the growth of human hair follicles and the dermal papilla cells (DPCs) in vitro.Methods: Different concentrations of caffeine were incubated with human hair follicles and the DPCs.The morphological changes in the hair bulbs and growth speed of the hair follicles were observed and recorded daily within 6 days.MTT assay and flow cytometry were used to detect cell proliferation and apoptosis respectively.RT-PCR was also applied to analysis the expressions of VEGF, FGF, ER, AR and SRD5A.Results: Compared with the controls, 0.005% caffeine significantly stimulated the growth of hair follicles.and at this concentration it stimulated the proliferation and inhibited the apoptosis of human DPCs in vitro.RT-PCR results showed that 0.0005% caffeine significantly stimulated the expression of VEGF, FGF and ER and inhibited the expressions of AR and SRD5A.Conclusion: In the effective concentrations.caffeine can promote the growth of human hair.These effects may be concerned with its stimulating the expressions of VEGF.FGF and ER and inhibiting the expressions of AR and SRD5A.

  1. Delayed repair in a case of forearm fascial muscle herniation using non-cross-linked acellular porcine dermal matrix.

    Science.gov (United States)

    Hartmann, Christoph E A; Branford, Olivier A; Floyd, David

    2012-09-01

    The options for treatment of symptomatic muscle herniation in the limbs traditionally include fasciotomy, direct repair, tendon weave graft (palmaris longus), fascial graft (tensor fascia lata), and synthetic mesh (prolene). A recent case report has described the use of acellular cadaveric dermal matrix to reconstruct fascial defects in 2 cases. We describe the use of Strattice, a non-cross-linked acellular porcine dermal matrix, as a fascial underlay graft in a case of symptomatic upper limb muscle herniation. We propose that Strattice has the advantages over cadaveric dermal matrices in terms of avoiding the use of human donor tissue. It has suitable tensile properties to be used for reconstructing fascial defects.

  2. Culture of Dermal Papilla Cells from Ovine Wool Follicles: An In Vitro Model for Papilla Size Determination.

    Science.gov (United States)

    Rufaut, Nicholas W; Nixon, Allan J; Sinclair, Rodney D

    2016-01-01

    Common human balding or hair loss is driven by follicle miniaturization. Miniaturization is thought to be caused by a reduction in dermal papilla size. The molecular mechanisms that regulate papilla size are poorly understood, and their elucidation would benefit from a tractable experimental model. We have found that dermal papilla cells from sheep spontaneously aggregate in culture to form papilla-like structures. Here, we describe methods for microdissecting dermal papillae from wool follicles, for initiating and maintaining cultures of ovine papilla cells, and for using these cells in an in vitro assay to measure the effect of bioactive molecules on aggregate size.

  3. Complete blockade of the vasorelaxant effects of angiotensin-(1-7) and bradykinin in murine microvessels by antagonists of the receptor Mas.

    Science.gov (United States)

    Peiró, Concepción; Vallejo, Susana; Gembardt, Florian; Palacios, Erika; Novella, Susana; Azcutia, Verónica; Rodríguez-Mañas, Leocadio; Hermenegildo, Carlos; Sánchez-Ferrer, Carlos F; Walther, Thomas

    2013-05-01

    The heptapeptide angiotensin-(1-7) is a biologically active metabolite of angiotensin II, the predominant peptide of the renin-angiotensin system. Recently, we have shown that the receptor Mas is associated with angiotensin-(1-7)-induced signalling and mediates, at least in part, the vasodilatory properties of angiotensin-(1-7). However, it remained controversial whether an additional receptor could account for angiotensin-(1-7)-induced vasorelaxation. Here, we used two different angiotensin-(1-7) antagonists, A779 and d-Pro-angiotensin-(1-7), to address this question and also to study their influence on the vasodilatation induced by bradykinin. Isolated mesenteric microvessels from both wild-type and Mas-deficient C57Bl/6 mice were precontracted with noradrenaline, and vascular reactivity to angiotensin-(1-7) and bradykinin was subsequently studied using a small-vessel myograph. Furthermore, mechanisms for Mas effects were investigated in primary human umbilical vein endothelial cells. Both angiotensin-(1-7) and bradykinin triggered a concentration-dependent vasodilatation in wild-type microvessels, which was absent in the presence of a nitric oxide synthase inhibitor. In these vessels, the pre-incubation with the Mas antagonists A779 or d-Pro-angiotensin-(1-7) totally abolished the vasodilatory capacity of both angiotensin-(1-7) and bradykinin, which was nitric oxide mediated. Accordingly, Mas-deficient microvessels lacked the capacity to relax in response to either angiotensin-(1-7) or bradykinin. Pre-incubation of human umbilical vein endothelial cells with A779 prevented bradykinin-mediated NO generation and NO synthase phosphorylation at serine 1177. The angiotensin-(1-7) antagonists A779 and d-Pro-angiotensin-(1-7) equally block Mas, which completely controls the angiotensin-(1-7)-induced vasodilatation in mesenteric microvessels. Importantly, Mas also appears to be a critical player in NO-mediated vasodilatation induced by renin-angiotensin system

  4. Regulation of human heme oxygenase in endothelial cells by using sense and antisense retroviral constructs.

    Science.gov (United States)

    Quan, S; Yang, L; Abraham, N G; Kappas, A

    2001-10-09

    Our objective was to determine whether overexpression and underexpression of human heme oxygenase (HHO)-1 could be controlled on a long-term basis by introduction of the HO-1 gene in sense (S) and antisense (AS) orientation with an appropriate vector into endothelial cells. Retroviral vector (LXSN) containing viral long terminal repeat promoter-driven human HO-1 S (LSN-HHO-1) and LXSN vectors containing HHO-1 promoter (HOP)-controlled HHO-1 S and AS (LSN-HOP-HHO-1 and LSN-HOP-HHO-1-AS) sequences were constructed and used to transfect rat lung microvessel endothelial cells (RLMV cells) and human dermal microvessel endothelial cells (HMEC-1 cells). RLMV cells transduced with HHO-1 S expressed human HO-1 mRNA and HO-1 protein associated with elevation in total HO activity compared with nontransduced cells. Vector-mediated expression of HHO-1 S or AS under control of HOP resulted in effective production of HO-1 or blocked induction of endogenous human HO-1 in HMEC-1 cells, respectively. Overexpression of HO-1 AS was associated with a long-term decrease (45%) of endogenous HO-1 protein and an increase (167%) in unmetabolized exogenous heme in HMEC-1 cells. Carbon monoxide (CO) production in HO-1 S- or AS-transduced HMEC-1 cells after heme treatment was increased (159%) or decreased (50%), respectively, compared with nontransduced cells. HO-2 protein levels did not change. These findings demonstrate that HHO-1 S and AS retroviral constructs are functional in enhancing and reducing HO activity, respectively, and thus can be used to regulate cellular heme levels, the activity of heme-dependent enzymes, and the rate of heme catabolism to CO and bilirubin.

  5. Reproducibility of the capsaicin-induced dermal blood flow response as assessed by laser Doppler perfusion imaging

    OpenAIRE

    Van der Schueren, B. J.; Hoon, J.N.; Vanmolkot, F H; Van Hecken, A; Depre, M; Kane, S A; De Lepeleire, I.; Sinclair, S R

    2007-01-01

    What is already known about this subjectCapsaicin rapidly produces local neurogenic inflammation (characterized by oedema and erythema) when locally administered to the human skin by binding to the TRPV1 receptor present on dermal sensory nerve endings.In nonhuman primates, a pharmacodynamic assay has been described and validated using capsaicin-induced dermal vasodilation measured by laser Doppler perfusion imaging to assess calcitonin gene-related peptide antagonist activity.Laser Doppler p...

  6. Dermal adipocytes and hair cycling: is spatial heterogeneity a characteristic feature of the dermal adipose tissue depot?

    Science.gov (United States)

    Kruglikov, Ilja L; Scherer, Philipp E

    2016-04-01

    Adipocytes are widely distributed in the dermis, in a unique fat depot referred to as dermal white adipose tissue (dWAT). In rodents, dWAT is present as widespread thin layers, whereas in pigs and humans, it is present in clusters referred to as 'dermal cones' around the pilosebaceous units. This distinct layer of fat cells located above the subcutaneous white adipose tissue is important for proper hair follicle (HF) cycling in rodents. Murine HFs produce spatially restricted synchronous patches after their second postnatal cycle which correlates with the spatial heterogeneity of murine dWAT. Similarly, the cycling of HFs in humans may also be related to the spatial distribution of dWAT, making the difference between murine and human HF cycling of more quantitative than of qualitative nature. This should allow the production of small spatially correlated HF patches in human skin, and we propose that this process can be regulated by paracrine signalling involving a number of signalling modules, including the hedgehog pathway. This pathway is an established player in HF cycling, but is also involved in the regulation of adipogenesis and may therefore be a key regulator of the process across species. We also suggest that the spatial heterogeneity of dWAT is connected not only to HF cycling, but may also be related to other physiological and pathological processes in the skin.

  7. Effect of heat transfer on rotating electroosmotic flow through a micro-vessel: haemodynamical applications

    Science.gov (United States)

    Sinha, A.; Mondal, A.; Shit, G. C.; Kundu, P. K.

    2016-08-01

    This paper theoretically analyzes the heat transfer characteristics associated with electroosmotic flow of blood through a micro-vessel having permeable walls. The analysis is based on the Debye-Hückel approximation for charge distributions and the Navier-Stokes equations are assumed to represent the flow field in a rotating system. The velocity slip condition at the vessel walls is taken into account. The essential features of the rotating electroosmotic flow of blood and associated heat transfer characteristics through a micro-vessel are clearly highlighted by the variation in the non-dimensional flow velocity, volumetric flow rate and non-dimensional temperature profiles. Moreover, the effect of Joule heating parameter and Prandtl number on the thermal transport characteristics are discussed thoroughly. The study reveals that the flow of blood is appreciably influenced by the elctroosmotic parameter as well as rotating Reynolds number.

  8. Role of Proinflammatory Cytokines in Thermal Activation of Lymphocyte Recruitment in Breast Tumor Microvessels

    Science.gov (United States)

    2005-03-01

    interactionsI IL-6 trans-signaling mechanism J__ MEK/ERK Inside-out signaling Cancer Immunology , Immunotherapy (in press) DYNAMIC CONTROL OF LYMPHOCYTE...venules, tumor microvessels, fever Cancer Immunology , Immunotherapy (in press) ABSTRACT Migration of blood-borne lymphocytes into tissues involves a...the basis for novel approaches to improve recruitment of immune effector cells to tumor sites. 2 Cancer Immunology , Immunotherapy (in press) High

  9. 纳米金与细胞相互作用机理的蛋白质组学研究%Proteomic analysis of molecular mechanism of interactions between gold nanoparticles and human dermal fibroblasts-fetal

    Institute of Scientific and Technical Information of China (English)

    吕晓迎; 瞿颖华; 杨雅敏; 黄炎

    2011-01-01

    应用蛋白质组学结合生物信息学方法研究纳米金与人皮肤成纤维细胞(HDF-f )的作用机理.首先采用柠檬酸钠还原氛金酸法制备20nm的纳米金,然后应用MTT法和流式细胞术评价纳米金的细胞毒性及对细胞周期和细胞凋亡的影响.接着应用蛋白质组学技术和生物信息学方法筛选纳米金作用后细胞发生差异表达的蛋白质并进行基因本体论分析.MTT实验结果表明,浓度为200μmo1/L,粒径为20nm的纳米金与HDF-f作用1,4,8h后均未产生细胞毒性,流式细胞仪结果显示纳米金作用后S期细胞增加而G2/M期细胞减少.对蛋白质组学实验筛选出的29个功能蛋白质进行的基因本体论分析表明,纳米金可能会影响细胞RNA转录过程及能量代谢调节,诱导细胞产生免疫响应,进而对细胞的生理过程产生影响.%The aim of the present study is to investigate the mechanism of interactions between gold nanoparticles (GNPs) and human dermal fibroblasts-fetal (HDF-f) based on proteomics technology combining bioinformatics analysis. 20nm GNPs was prepared by sodium citrate reducing chloroauric acid at first. Then Methylthiazoltet-razolium (MTT) assay and flow cytomtery were applied to evaluate cytotoxicity and the influence on cell cycle and apoptosis by GNPs. Finally, differentially expressed proteins in HDF-f treated with GNPs were obtained u-sing proteomics technology and bioinformatics tool was employed to carry out the gene ontology (GO) analysis. MTT assay showed that 200μmol 20nm GNPs caused no cytotoxicity to cells after treated for 1, 4 and 8h. Flow cytometry experiment results suggested the effects of GNPs on cells were mainly on S and G2/M phase. 29 proteins were identified with different expression in all three-culture periods using proteomics technology. GO analysis of 29 differentially expressed proteins indicated that GNPs may have an influence on the HDF-f through impacting the transcription processes of RNA

  10. EZH2和CBX7在皮肤血管瘤中的异常表达及意义%Abnormal expression and clinical significance of EZH2 and CBX7 in Human Dermal Hemangiomas

    Institute of Scientific and Technical Information of China (English)

    唐甜; 陈小希; 张端莲

    2013-01-01

    Objective To study the effect of EZH2 and CBX7 in the development of human dermal hemangioma. Methods Specimens from 50 cases (25 males, and 25 females) of hemangioma from the Department of Pathology in Renmin Hospital of Wuhan University from 2005 to 2009 were collected. We examined the expression of EZH2 and CBX7 in proliferative, involuting hemangiomas and normal skin tissues by using immunohistochemical technique. Average optical density and positive area rates of expres- sion of EZH2 and CBX7 were measured by image analysis (HPIAS-1000). Results EZH2 and CBX7 expressions were significanthy higher in the proliferative phase of hemangiomas, than in involuting hemangioma and normal skin tissues(P 0. 05). Conclusion EZH2 and CBX7 are up-regulated, in proliferating hemangioma which indicates that both EZH2 and CBX7 are closely related to the vascular tumor occurrence and development.%目的 探讨EZH2和CBX7在血管瘤中的的异常表达及临床意义.方法 收集武汉大学人民医院病理科2005年9月-2009年12月皮肤毛细血管瘤存档蜡块50例,其中男性25例,女性25例.采用免疫组织化学S-P法检测50例皮肤血管瘤增生期、退化期及正常皮肤组织中EZH2和CBX7的表达水平,采用图像分析系统对EZH2和CBX7的表达进行定量分析,并用SPSS13.0软件对各组免疫组织化学反应阳性颗粒的平均光密度、阳性面积率做单因素方差分析和SNK(q)检验.结果 增生期血管瘤血管内皮细胞中可见密集分布的棕黄色颗粒,EZH2和CBX7呈高表达,退化组及正常皮肤组血管内皮细胞中可见少量的棕黄色颗粒,EZH2和CBX7表达弱.增生期组EZH2和CBX7的表达明显高于退化期组和正常皮肤组(P<0.05),而后两组比较差异无统计学意义(P>0.05).结论 EZH2和CBX7在血管瘤增生期均上调表达,表明EZH2和CBX7均与血管瘤内皮细胞的增殖密切相关.

  11. Cell-free layer and wall shear stress variation in microvessels.

    Science.gov (United States)

    Yin, Xuewen; Zhang, Junfeng

    2012-01-01

    In this study, we simulated multiple red blood cells flowing through straight microvessels with the immersed-boundary lattice-Boltzmann model to examine the shear stress variation on the microvessel surface and its relation to the properties of cell-free layer. Significant variation in shear stress has been observed due to the irregular configuration of blood cells flowing near the microvessel wall. A low shear stress is typically found at locations where there is a cell flowing close to the wall, and a large shear stress at locations with a relatively wide gap between cell and wall. This relationship between the shear stress magnitude and the distance between cell and wall has been attributed to the reverse pressure difference developed between the front and rear sides of a cell flowing near the vessel wall. We further studied the effects of several hemodynamic factors on the variation of shear stress, including the cell deformability, the flow rate, and the aggregation among red blood cells. These simulations show that the shear stress variation is less profound in situations with wider cell-free layers, since the reverse pressure difference around the edge cells is less evident, and the influence of this pressure difference on wall shear stress becomes weaker. This study also demonstrates the complexity of the flow field in the gap between cell and wall. More precise experimental techniques are required accurately measure such shear stress variation in microcirculation.

  12. Relationship between atrial natriuretic peptide-immunoreactive cells and microvessels in rat gastric mucosa

    Institute of Scientific and Technical Information of China (English)

    Chun-hui LI; Zong-wei YANG; Zheng-ri YIN; Zheng JIN; De-gang XING; Lian-hua PIAO; Yong-chul KIM; Wen-xie XU

    2006-01-01

    Aim: To investigate the ultrastructural localization of atrial natriuretic peptide(ANP)-synthesizing cells and the relationship between ANP-synthesizing cells and microvessels in rat gastric mucosa. Methods: Immunohistochemistry techniques and postembedding immunoelectron microscopy techniques were used to validate the findings regarding the expression of ANP-synthesizing cells and the ultrastructural localization of ANP-synthesizing cells in the gastric mucosa. Histochemistry techniques and the tannic acid-ferric chloride method (TA-Fe staining method) were used to reveal microvessel density and the distribution of ANPsynthesizing cells in different regions of the stomach. Results: Cells expressing ANP were localized and ANP-synthesizing cells were identified as enterochromaffin (EC) cells in the gastric mucosa. ANP-synthesizing cells existed in different regions of the stomach. The percentage ANP-synthesizing cells in the mucosa was greatest in the fundus (46.7%±5.3%), intermediate in the antrum (40.1%±4.5%), and least in the body (21.6%±3.6%). There was a positive relationship between the percentage of ANP-synthesizing cells and the density of microvessels in the antral mucosa, but not in the fundus or body mucosa. Conclusion: ANP is synthesized by EC cells in rat gastric mucosa, and ANP-synthesizing cells are most dense in the gastric fundus. ANP may act not only as a regional autocrine and/or paracrine regulator, but also as an endocrine regulatory peptide in the gastrointestinal tract.

  13. The fabrication of PLGA microvessel scaffolds with nano-patterned inner walls.

    Science.gov (United States)

    Wang, Gou-Jen; Lin, Yan-Cheng; Hsu, Shan-Hui

    2010-10-01

    Poly (lactic-co-glycolic acid) (PLGA) is one of the most commonly used biodegradable, biocompatible materials. Nanostructured PLGA has immense potential for application in tissue engineering. In this article we discuss a novel approach for the fabrication of PLGA microvessel scaffolds with nanostructured inner walls. In this novel nano-patterning approach, the thermal reflow technique is first adapted to fabricate a semi-cylindrical photoresist master mold. A thin film of titanium and a thin film of aluminum are sputtered in sequence on the semi-cylindrical microvessel network. Aluminum foil anodization is then executed to transform the aluminum thin film into a porous anodic aluminum oxide (AAO) film. During the casting process a PLGA solution is cast on the AAO film to build up semi-cylindrical PLGA microstructures with nanostructured inner walls after which inductive coupled plasma (ICP) is implemented to assist bonding of the two PLGA structures. The result is the building of a network of microchannels with nano-patterned inner walls. Bovine endothelial cells (BECs) are carefully cultured in the scaffold via semi-dynamic seeding for 7 days. Observations show that the BECs grew more separately in a nano-patterned microvessel scaffold than they did in a smooth surface scaffold.

  14. Implant-assisted magnetic drug targeting in permeable microvessels: Comparison of two-fluid statistical transport model with experiment

    Science.gov (United States)

    ChiBin, Zhang; XiaoHui, Lin; ZhaoMin, Wang; ChangBao, Wang

    2017-03-01

    In experiments and theoretical analyses, this study examines the capture efficiency (CE) of magnetic drug carrier particles (MDCPs) for implant-assisted magnetic drug targeting (IA-MDT) in microvessels. It also proposes a three-dimensional statistical transport model of MDCPs for IA-MDT in permeable microvessels, which describes blood flow by the two-fluid (Casson and Newtonian) model. The model accounts for the permeable effect of the microvessel wall and the coupling effect between the blood flow and tissue fluid flow. The MDCPs move randomly through the microvessel, and their transport state is described by the Boltzmann equation. The regulated changes and factors affecting the CE of the MDCPs in the assisted magnetic targeting were obtained by solving the theoretical model and by experimental testing. The CE was negatively correlated with the blood flow velocity, and positively correlated with the external magnetic field intensity and microvessel permeability. The predicted CEs of the MDCPs were consistent with the experimental results. Additionally, under the same external magnetic field, the predicted CE was 5-8% higher in the IA-MDT model than in the model ignoring the permeability effect of the microvessel wall.

  15. Effect of granulocyte/macrophage colony-stimulating factor on expression of vascular endotllelial growth factor in human dermal fibroblasts%粒细胞-单核巨噬细胞集落刺激因子对人皮肤成纤维细胞血管内皮细胞生长因子表达的影响

    Institute of Scientific and Technical Information of China (English)

    李晓光; 方勇; 姚敏; 徐鹏; 俞为荣; 倪涛; 王莹

    2011-01-01

    Objective To study the effects of granulocyte-macrophage colony stimulating factor (GM-CSF) on the expression of vascular endotllelial growth factor (VEGF) in human dermal fibroblast. Methods In vitro human dermal fibroblasts in good status were incubated with GM-CSF (GM-CSF group) or non-GM-CSF (control group) culture medium for different periods of time. The mRNA, protein expression of VEGF in derma fibroblast were determined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, respectively, and the secretion of VEGF in supernatant was measured by enzyme linked immunosorbant assay (ELISA). Results The expression of VEGF mRNA from dermal fibroblasts was increased significantly after l or more hours of incubation with GM-CSF comparing with the control (P<0.05). 6 hours of stimulation by GM-CSF caused maximal expression of VEGF mRNA. The expression of VEGF protein in dermal fibroblasts was increased from 12 hours and was peaked at 24 hour after stimulation by GM-CSF. VEGF protein from the supernatant of the dermal fibroblasts was also raised persistently from 12 hour after stimulation by GM-CSF and was improved remarkably compared with the control. Conclusions GM-CSF can up-regulate directly the expression of VEGF in human derma fibroblast, which may be one of the mechanisms that GM-CSF accelerates neovascularization in wound healing.%目的 探讨粒细胞-单核巨噬细胞集落刺激因子(granulocyte-macrophage colony stimulating factor,GM-CSF)对人皮肤成纤维细胞血管内皮细胞生长因子(vascular endothelial cell growth factor,VEGF)表达的影响.方法 分别用含GM-CSF(GM-CSF组)和不含GM-CSF(对照组)培养液,孵育离体培养的人皮肤成纤维细胞,作用不同时间后,采用逆转录-聚合酶链反应(RT-PCR)、蛋白质印迹法(Western印迹法)、酶联免疫吸附试验(ELISA)分别检测人皮肤成纤维细胞VEGF mRNA表达和蛋白表达.结果 GM-CSF作用1、3、6、12 h后,人皮肤成纤

  16. Radionecrosis skin model induced an athymic mouse nude (Nu/Nu) for development of dermal-epidermal human substitute based regenerative therapy; Modelo de radionecrose cutanea induzida em camundongos Nude (Nu/Nu) para desenvolvimento de terapias regenerativas baseadas em substitutos dermo-epidermicos humanos

    Energy Technology Data Exchange (ETDEWEB)

    Mosca, Rodrigo Crespo

    2014-07-01

    The neoplasms incidence has increased significantly in recent years and continued population growth and aging will increase the statistics of this illness in the world's diseases. The cancer treatment usually consists in individual or combined use of chemotherapy, surgery and radiotherapy depending on the etiology of the tumor. In cases where radiotherapy is used in addition to the therapeutic effects of radiation, specific complications can occur, and in the skin, these complications can be present with a clinical expression ranging from erythema to radionecrosis, and this latter being the adverse effect with greater severity. The radionecrosis treatment consists in debridement necrotic areas and covering the surgical wounds. Autologous grafts are most commonly used for this covering, however when large areas are affected, allografts can be used for occlusive treatment and the keratinocytes and adipose derived stem cells (ADSC) addition becomes an alternative, due to the knowing for immunomodulatory and regenerative response. For that reason, aiming to simulate the radionecrosis adverse effects, an animal model of induced cutaneous radionecrosis was created, in athymic mouse Nude (Nu/Nu), for developing regenerative therapies based on human dermal-epidermal substitutes containing keratinocytes and ADSC, which proved occlusive as an efficient treatment, furthermore, having this radionecrosis animal model established, new possibilities for treatment of diseases involving dermal regeneration, can be tested. (author)

  17. RELATIONS BETWEEN INVITRO CYTOTOXICITY AND CROSS-LINKED DERMAL SHEEP COLLAGENS

    NARCIS (Netherlands)

    VANLUYN, MJA; VANWACHEM, PB; DAMINK, LO; DIJKSTRA, PJ; FEIJEN, J; NIEUWENHUIS, P

    Collagen-based biomaterials have found various applications in the biomedical field. However, collagen-based biomaterials may induce cytotoxic effects. This study evaluated possible cytotoxic effects of (crosslinked) dermal sheep collagen (DSC) using a 7-d-methylcellulose cell culture with human

  18. New in vitro dermal absorption database and the prediction of dermal absorption under finite conditions for risk assessment purposes

    NARCIS (Netherlands)

    Buist, H.E.; Burgsteden, J.A. van; Freidig, A.P.; Maas, W.J.M.; Sandt, J.J.M. van de

    2010-01-01

    Most QSARs for dermal absorption predict the permeability coefficient, Kp, of a molecule, which is valid for infinite dose conditions. In practice, dermal exposure mostly occurs under finite dose conditions. Therefore, a simple model to predict finite dose dermal absorption from infinite

  19. Assessment of dermal exposure to chemicals

    NARCIS (Netherlands)

    Hemmen, J.J. van; Brouwer, D.H.

    1995-01-01

    The methods for the dermal exposure assessment vary in their complexity and are in some sense complementary to each other. The most easy-to-use methods involve a pseudo-skin-approach, such as gloves and removal by washing. In some cases generic modelling appears to be possible. The experimental

  20. Focal dermal hypoplasia: A rare case report

    Directory of Open Access Journals (Sweden)

    Sahana M Srinivas

    2015-01-01

    Full Text Available Focal dermal hypoplasia (Goltz syndrome is a rare genetic multisystem disorder primarily involving the skin, skeletal system, eyes, and face. We report the case of an eight-month-old female child who presented with multiple hypopigmented atrophic macules along the lines of blaschko, skeletal anomalies, umbilical hernia, developmental delay, hypoplastic nails, syndactyly, and lobster claw deformity characteristic of Goltz syndrome.

  1. Assessment of dermal exposure to chemicals

    NARCIS (Netherlands)

    Hemmen, J.J. van; Brouwer, D.H.

    1995-01-01

    The methods for the dermal exposure assessment vary in their complexity and are in some sense complementary to each other. The most easy-to-use methods involve a pseudo-skin-approach, such as gloves and removal by washing. In some cases generic modelling appears to be possible. The experimental meth

  2. Acellular Dermal Matrix in Postmastectomy Breast Reconstruction

    NARCIS (Netherlands)

    A.M.S. Ibrahim (Ahmed)

    2014-01-01

    markdownabstract__Abstract__ Over the last decade the use of acellular dermal matrix (ADM) in reconstructive breast surgery has been transformative. Some authors have gone as far as to suggest that it is the single most important advancement in prosthetic breast reconstruction. ADMs are able

  3. Shock associated with endothelial dysfunction in omental microvessels.

    Science.gov (United States)

    Somberg, Lewis B; Gutterman, David D; Miura, Hiroto; Nirula, Raminder; Hatoum, Ossama A

    2017-01-01

    Impaired microvascular function leads to a poor outcome in a variety of medical conditions. Our aim was to determine whether vasodilator responses to acetylcholine (Ach) are impaired in human omental arterioles from patients with severe trauma. Patients with massive blood loss and severe shock requiring damage control procedures were included. Tissues were collected at the first (FEL) and the second explorative laparotomy (SEL). Control tissues were collected from nontrauma patients. Freshly isolated 50-200-μm-diameter omental arterioles were analysed using videomicroscopy. Dihydroethidine and DCF-DA fluorescence were used to assess reactive oxygen species (ROS) production. MnTBAP was used to determine the contribution of excess vascular superoxide contribution to endothelial dysfunction. After constriction (30-50%) with endothelin-1, dilation to graded doses of Ach (10(-9) -10(-4) M) was greater in control vessels compared to FEL and SEL (max dilation at 10(-4) M (MD) = 25 ± 3%, n = 8; and 59 ± 8%, n = 8, respectively, and controls MD = 93 ± 10%, n = 6, P mismatch between local blood supply and demand, exacerbating abnormal tissue perfusion and function. © 2016 Stichting European Society for Clinical Investigation Journal Foundation.

  4. Evaluation of the cytotoxicity of cell free dermal substitutes using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide method

    Institute of Scientific and Technical Information of China (English)

    NING Fang-gang; ZHANG Guo-an

    2010-01-01

    Background The cytotoxicity of dermal substitutes may be increased by the very processes used to deplete the cells. The present research aimed to investigate the method for monitoring the cytotoxicity of cell-free dermal substitutes using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method.Methods The cytotoxicity of four dermal substitutes was evaluated using the MTT method according to the standards set by the Chinese State Food and Drug Administration (SFDA). Swine acellular dermal matrix (SADM) and goat acellular dermal matrix (GADM) were produced using a repeated freeze-thaw method. Human dermal matrix glutaraldehyde composite (HADM-G) and SADM cross-linked with glutaraldehyde (SADM-G) were produced using conventional methods. Results The cytotoxicity of all dermal substitutes ranged from Grade 0 to Grade 1, meeting the standards of the Chinese FDA. The OD_(490) of both SADM and GADM was higher than that of either HADM-G or SADM-G (P<0.05). Conclusion Dermal substitutes produced by the freeze-thaw method are less cytotoxic than those produced using conventional methods.

  5. CJZ3,a lomerizine derivative,modulates P-glycoprotein function in rat brain microvessel endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Bian-sheng JI; Ling HE; Xiao-qu LI; Guo-qing LIU

    2006-01-01

    Aim:To investigate the modulatory effect of CJZ3,a lomerizine derivative,on P-glycoprotein (P-gp) function in rat brain microvessel endothelial cells (RBMEC).Methods:RBMEC were isolated and cultured in Dulbecco's modified Eagle's medium/F12 (1∶1) medium,and the amount of intracellular rhodamine 123 (Rh123) was determined using a fluorescence spectrophotometer to evaluate the modulatory effect of CJZ3 on P-gp function.Results:The accumulation of Rh123 was 190ten. tiated in a concentration-dependent manner after incubation witll CJZ3 for RBMEC.but not for human umbilical vein endothelial cells (HUVEC).CJZ3 caused the accumulation of intracellular Rh 123 in a time.dependent manner and significantly decreased the effiUX of Rhl 23 from the cells.The inhibitory effect of CJZ3 on P-gp function was reversible and remained for 120 min after CJZ3 (2.5 μmol/L) was removed from the medium.Conclusion:CJZ3 has a potent in vitro effect on the inhibition of P-gp function.

  6. Review of data on the dermal penetration of mineral oils and waxes used in cosmetic applications.

    Science.gov (United States)

    Petry, T; Bury, D; Fautz, R; Hauser, M; Huber, B; Markowetz, A; Mishra, S; Rettinger, K; Schuh, W; Teichert, T

    2017-10-05

    Mineral oils and waxes used in cosmetic products, also referred to as "personal care products" outside the European Union, are mixtures of predominantly saturated hydrocarbons consisting of straight-chain, branched and ring structures with carbon chain lengths greater than C16. They are used in skin and lip care cosmetic products due to their excellent skin tolerance as well as their high protecting and cleansing performance and broad viscosity options. Recently, concerns have been raised regarding potential adverse health effects of mineral oils and waxes from dermal application of cosmetics. In order to be able to assess the risk for the consumer the dermal penetration potential of these ingredients has to be evaluated. The scope and objective of this review are to identify and summarize publicly available literature on the dermal penetration of mineral oils and waxes as used in cosmetic products. For this purpose, a comprehensive literature search was conducted. A total of 13 in vivo (human, animal) and in vitro studies investigating the dermal penetration of mineral oils and waxes has been identified and analysed. The majority of the substances were dermally adsorbed to the stratum corneum and only a minor fraction reached deeper skin layers. Overall, there is no evidence from the various studies that mineral oils and waxes are percutaneously absorbed and become systemically available. Thus, given the absence of dermal uptake, mineral oils and waxes as used in cosmetic products do not present a risk to the health of the consumer. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Dermal and transdermal delivery of pharmaceutically relevant macromolecules.

    Science.gov (United States)

    Münch, S; Wohlrab, J; Neubert, R H H

    2017-10-01

    The skin offers an attractive way for dermal and transdermal drug delivery that is why the drug still needs certain qualities to transcend the outermost layer of the skin, the stratum corneum. The requirements are: drugs with a maximum molecular weight of 1kDa, high lipophilicity and a certain polarity. This would restrict the use of a transdermal delivery of macromolecules, which would make the drug more effective in therapeutic administration. Various studies have shown that macromolecules without support do not penetrate the human skin. This effect can be achieved using physical and chemical methods, as well as biological peptides. The most popular physical method is the use of microneedles to create micropores in the skin and release the active agent in different sections. But also, other methods have been tested. Microjets, lasers, electroporation, sonophoresis and iontophoresis are also promising methods to successfully deliver dermal and transdermal macromolecules. Additionally, there are different penetration enhancer groups and biological peptides, which are also considered to be interesting approaches of enabling macromolecules to travel along the skin. All these methods will be described and evaluated in this review article. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A study of uniaxial tension on the superficial dermal microvasculature.

    Science.gov (United States)

    Barnhill, R L; Bader, D L; Ryan, T J

    1984-05-01

    A spring-loaded apparatus was designed to apply uniaxial tension to forearm skin in 17 human subjects--10 normals, 6 psoriatics, and 1 patient with scleroderma. Simultaneously, the effects of stretching on the upper dermal vasculature were observed stereomicroscopically. Progressive changes (collapse) in the superficial microvasculature--vertical capillary loops and horizontal subpapillary plexus--with increasing tension were photographed. Force and strains were recorded at the points of disappearance of virtually all vessels. An average force of 11.9 newtons (N), accompanied by a mean strain of 10.3%, resulted in occlusion of all vessels. A much higher force (18.5 N) was necessary to occlude blood flow in the 1 patient with scleroderma. In summary, we have described a new technique for the study of mechanical forces on the blood supply of the epidermis. The data have shown that uniaxial tension has important effects on the superficial dermal microvasculature, resulting in impedance and obliteration of blood flow at relatively low magnitudes.

  9. Effect of Arctium lappa (burdock) extract on canine dermal fibroblasts.

    Science.gov (United States)

    Pomari, Elena; Stefanon, Bruno; Colitti, Monica

    2013-12-15

    Although the biological activities of Arctium lappa (burdock) have been already investigated in human and other species, data evaluating the molecular mechanisms have not been reported in the dog. In this study we analyzed for the first time the effect of a root extract of burdock on molecular responses in canine dermal fibroblasts with H2O2 stimulation (H group), with burdock treatment (B group) and with H2O2 stimulation and burdock treatment (BH group), using RNAseq technology. Differentially expressed genes (P<0.05) of H, B and BH groups in comparison to the untreated sample (negative control, C group) were identified with MeV software and were functional annotated and monitored for signaling pathways and candidate biomarkers using the Ingenuity Pathways Analysis (IPA). The expression profile of canine dermal fibroblasts treated with burdock extract with or without H2O2 stimulation, showed an up-regulation of mitochondrial superoxide dismutase (SOD2), disheveled 3 (DVL3) and chondroitin sulfate N-acetylgalactosaminyltransferase 2 (CSGALNACT2). The data suggested that burdock has implications in cell adhesion and gene expression with the modulation of Wnt/β catenin signaling and Chondroitin Sulphate Biosynthesis that are particularly important for the wound healing process.

  10. Microvessel angiogenesis: a possible cardioprotective mechanism of external counterpulsation for canine myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    WU Gui-fu; DU Zhi-min; HU Cheng-hen; ZHENG Zhen-sheng; ZHAN Cheng-yang; MA Hong; FANG Dian-qiu; John CK Hui; William E Lawson

    2005-01-01

    Background Enhanced external counterpulsation (EECP) has been demonstrated to be effective in the treatment of patients with coronary artery disease (CAD). It has been proposed that the beneficial effects of EECP observed in clinical studies may be due to the formation of new blood vessels (angiogenesis) and collateral development. However, there is a relative paucity of basic studies to support the proposed mechanisms. Methods Twelve Beagle dogs were anesthetized with 3% sodium pentobarbital, 1 mg/kg intraperitoneal injection and mechanically ventilated for the development of myocardial infarction. After coronary occlusion, all animals were randomly assigned to either EECP or control. EECP was given one hour per day, 5 days a week, for a total of 28 to 30 hours treatment over a 6-week course. Immunohistochemical studies of α-actin and von Willebrand factor (vWF) were used to detect newly developed microvessels. Systemic and local vascular endothelial growth factor (VEGF) were identified by enzyme linked immunosorbent assay (ELISA) and reverse-transcriptional polymerase chain reaction (RT-PCR) analysis. Results There was a significant increase in the density of microvessels per mm2 in the infarcted regions of EECP group compared to control group (vWF, 15.2±6.3 versus 4.9±2.1, P<0.05; α-actin, 11.8±5.3 versus 3.4±1.2, P<0.05), along with significant increase of positive vWF and α-actin stained area. Both immunohistochemical staining and RT-PCR analysis documented a significant increase in VEGF expression. These factors associated with angiogenesis corresponded to improved myocardial perfusion by 99mTc-sestamibi single-photon emission computed tomography. Conclusion Microvessel angiogenesis may be a mechanism of action for the improved myocardial perfusion after EECP therapy.

  11. In vivo hyperspectral imaging of microvessel response to trastuzumab treatment in breast cancer xenografts

    Science.gov (United States)

    McCormack, Devin R.; Walsh, Alex J.; Sit, Wesley; Arteaga, Carlos L.; Chen, Jin; Cook, Rebecca S.; Skala, Melissa C.

    2014-01-01

    HER2-amplified (HER2 + ) breast cancers are treated with the anti-HER2 monoclonal antibody trastuzumab. Although trastuzumab reduces production of the angiogenic factor VEGF in HER2 + tumors, the acute and sustained effects of trastuzumab on the tumor vasculature are not understood fully, particularly in trastuzumab-resistant tumors. We used mouse models of trastuzumab sensitive and trastuzumab-resistant HER2 + breast cancers to measure dynamic changes in tumor microvessel density and hemoglobin oxygenation (sO2) in vivo using quantitative hyperspectral imaging at 2, 5, 9, and 14 days after antibody treatment. Further analysis quantified the distribution of microvessels into low and high oxygenation groups, and monitored changes in these distributions with trastuzumab treatment. Gold standard immunohistochemistry was performed to validate complementary markers of tumor cell and vascular response to treatment. Trastuzumab treatment in both responsive and resistant tumors resulted in decreased sO2 5 days after initial treatment when compared to IgG-treated controls (p<0.05). Importantly, responsive tumors showed significantly higher vessel density and significantly lower sO2 than all other groups at 5 days post-treatment (p<0.05). Distribution analysis of vessel sO2 showed a significant (p<0.05) shift of highly oxygenated vessels towards lower oxygenation over the time-course in both trastuzumab-treated responsive and resistant tumors. This study suggests that longitudinal hyperspectral imaging of microvessel sO2 and density could distinguish trastuzumab-responsive from trastuzumab-resistant tumors, a finding that could be exploited in the post-neoadjuvant setting to guide post-surgical treatment decisions. PMID:25071962

  12. Humanized mouse model of skin inflammation is characterized by disturbed keratinocyte differentiation and influx of IL-17A producing T cells.

    Directory of Open Access Journals (Sweden)

    Vivian L de Oliveira

    Full Text Available Humanized mouse models offer a challenging possibility to study human cell function in vivo. In the huPBL-SCID-huSkin allograft model human skin is transplanted onto immunodeficient mice and allowed to heal. Thereafter allogeneic human peripheral blood mononuclear cells are infused intra peritoneally to induce T cell mediated inflammation and microvessel destruction of the human skin. This model has great potential for in vivo study of human immune cells in (skin inflammatory processes and for preclinical screening of systemically administered immunomodulating agents. Here we studied the inflammatory skin response of human keratinocytes and human T cells and the concomitant systemic human T cell response.As new findings in the inflamed human skin of the huPBL-SCID-huSkin model we here identified: 1. Parameters of dermal pathology that enable precise quantification of the local skin inflammatory response exemplified by acanthosis, increased expression of human β-defensin-2, Elafin, K16, Ki67 and reduced expression of K10 by microscopy and immunohistochemistry. 2. Induction of human cytokines and chemokines using quantitative real-time PCR. 3. Influx of inflammation associated IL-17A-producing human CD4+ and CD8+ T cells as well as immunoregulatory CD4+Foxp3+ cells using immunohistochemistry and -fluorescence, suggesting that active immune regulation is taking place locally in the inflamed skin. 4. Systemic responses that revealed activated and proliferating human CD4+ and CD8+ T cells that acquired homing marker expression of CD62L and CLA. Finally, we demonstrated the value of the newly identified parameters by showing significant changes upon systemic treatment with the T cell inhibitory agents cyclosporine-A and rapamycin. In summary, here we equipped the huPBL-SCID-huSkin humanized mouse model with relevant tools not only to quantify the inflammatory dermal response, but also to monitor the peripheral immune status. This combined approach

  13. Keynote Paper: Cell-Surface Adhesive Interactions in Microchannels and Microvessels

    CERN Document Server

    King, M R

    2003-01-01

    Adhesive interactions between white blood cells and the interior surface of the blood vessels they contact is important in inflammation and in the progression of heart disease. Parallel-plate microchannels have been useful in characterizing the strength of these interactions, in conditions that are much simplified over the complex environment these cells experience in the body. Recent computational and experimental work by several laboratories have attempted to bridge this gap between behavior observed in flow chamber experiments, and cell-surface interactions observed in the microvessels of anesthetized animals.

  14. CATHEPSIN B EXPRESSION AND ITS RELATIONSHIP WITH MICROVESSEL DENSITY AND BIOLOGICAL BEHAVIOUR OF COLORECTAL CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    王娅兰; 林晓

    2002-01-01

    Objective: To investigate cathepsin B(CB) expression in colorectal carcinoma and its relationship with microvessel density (MVD) and biological behavior. Methods: CB and MVD were detected by immunohistochemistry in 47 cases of colorectal carcinoma. Results: The expression of CB in mucinous colorectal carcinoma was significantly higher than that in no-mucinous colorectal carcinoma. There was significant difference (P<0.05). The MVD in group with positive CB was stronger than that in group with negative CB. There was also significant difference (P<0.05). Conclusion: The results suggest that CB expression has correlation with MVD, invasion and metastasis in colorectal carcinoma, especially in mucinous colorectal carcinoma.

  15. Dermal fillers for tissue augmentation: an overview

    Directory of Open Access Journals (Sweden)

    Zeplin, Philip H.

    2014-06-01

    Full Text Available [english] Treatments with dermal fillers for tissue augmentation constitute the majority of all non-surgical procedures in plastic surgery. Newly developed products get launched and the market grows continuously, but the “ideal” substance has yet not been found. The substances used these days are high molecular compounds. They have substantial differences in their physicochemical properties and are suspended in complex matrices. This overview describes the latest history of dermal fillers and the commonly used substances of different origin and formalizes the need for the development of systematic procedures of standardized pre-clinical tests with subsequent certification as well as the establishment of interdisciplinary clinical guidelines to ensure custumer’s safety.

  16. Chemical sterilization of allograft dermal tissues.

    Science.gov (United States)

    Phipps, Abigail; Vaynshteyn, Edward; Kowalski, John B; Ngo, Manh-Dan; Merritt, Karen; Osborne, Joel; Chnari, Evangelia

    2017-08-10

    Common terminal sterilization methods are known to alter the natural structure and properties of soft tissues. One approach to providing safe grafts with preserved biological properties is the combination of a validated chemical sterilization process followed by an aseptic packaging process. This combination of processes is an accepted method for production of sterile healthcare products as described in ANSI/AAMI ST67:2011. This article describes the validation of the peracetic acid and ethanol-based (PAAE) chemical sterilization process for allograft dermal tissues at the Musculoskeletal Transplant Foundation (MTF, Edison, NJ). The sterilization capability of the PAAE solution used during routine production of aseptically processed dermal tissue forms was determined based on requirements of relevant ISO standards, ISO 14161:2009 and ISO 14937:2009. The resistance of spores of Bacillus subtilis, Clostridium sporogenes, Mycobacterium terrae, Pseudomonas aeruginosa, Enterococcus faecium, and Staphylococcus aureus to the chemical sterilization process employed by MTF was determined. Using a worst-case scenario testing strategy, the D value was calculated for the most resistant microorganism, Bacillus. The 12D time parameter determined the minimum time required to achieve a SAL of 10(-6). Microbiological performance qualification demonstrated a complete kill of 10(6) spores at just a quarter of the full cycle time. The validation demonstrated that the PAAE sterilization process is robust, achieves sterilization of allograft dermal tissue to a SAL 10(-6), and that in combination with aseptic processing secures the microbiological safety of allograft dermal tissue while avoiding structural and biochemical tissue damage previously observed with other sterilization methods such as ionizing irradiation.

  17. Dermal mass aspirate from a Persian cat.

    Science.gov (United States)

    Zimmerman, Kurt; Feldman, Bernard; Robertson, John; Herring, Erin S; Manning, Thomas

    2003-01-01

    A 1-year-old spayed female Persian cat with alopecia and weight loss had numerous variably ulcerated dermal nodules. Cytologic examination of an aspirate of one of the nodules revealed pyogranulomatous inflammation along with septate hyphae and basophilic round bodies, 0.5-1.0 microm in diameter, surrounded by a thin clear halo (arthrospores). The cytologic diagnosis was dermatophytic pseudomycetoma. Histologically, there were dermal granulomas containing poorly staining, septate hyphae with bulbous spores embedded within abundant amorphous eosinophilic material (Splendore-Hoeppli reaction), and the histologic diagnosis was pseudomycetoma-associated chronic multifocal severe granulomatous dermatitis with lymphocytic perifolliculitis and furunculosis. Microsporum canis was cultured from the lesion. Pseudomycetomas are distinguished from fungal mycetomas, or eumycotic mycetomas, by the findings of multiple lesions, lack of a history of skin trauma, an association with dermatophytes, most commonly Microsporum canis, and, histologically, lack of true cement material and a more abundant Splendore-Hoeppli reaction in pseudomycetomas. Additionally, pseudomycetomas differ from dermatophytosis, in which lesions are restricted to epidermal structures. Persian cats have a high incidence of pseudomycetoma formation, suggesting a heritable predisposition. The prognosis is fair with systemic antifungal therapy. When examining cytologic specimens from Persian cats with single or multiple dermal nodules, especially if pyogranulomatous inflammation is present, a diagnosis of pseudomycetoma should be suspected and is warranted if arthrospores and refractile septate hyphae are present.

  18. Posterior repair with perforated porcine dermal graft

    Directory of Open Access Journals (Sweden)

    G. Bernard Taylor

    2008-02-01

    Full Text Available OBJECTIVE: To compare postoperative vaginal incision separation and healing in patients undergoing posterior repair with perforated porcine dermal grafts with those that received grafts without perforations. Secondarily, the tensile properties of the perforated and non-perforated grafts were measured and compared. MATERIALS AND METHODS: This was a non-randomized retrospective cohort analysis of women with stage II or greater rectoceles who underwent posterior repair with perforated and non-perforated porcine dermal grafts (PelvicolTM CR Bard Covington, GA USA. The incidence of postoperative vaginal incision separation (dehiscence was compared. A secondary analysis to assess graft tensile strength, suture pull out strength, and flexibility after perforation was performed using standard test method TM 0133 and ASTM bending and resistance protocols. RESULTS: Seventeen percent of patients (21/127 who received grafts without perforations developed vaginal incision dehiscence compared to 7% (5/71 of patients who received perforated grafts (p = 0.078. Four patients with vaginal incision dehiscence with non-perforated grafts required surgical revision to facilitate healing. Neither tensile strength or suture pull out strength were significantly different between perforated and non-perforated grafts (p = 0.81, p = 0.29, respectively. There was no difference in the flexibility of the two grafts (p = 0.20. CONCLUSION: Perforated porcine dermal grafts retain their tensile properties and are associated with fewer vaginal incision dehiscences.

  19. Relationship between Vasodilation Effect of Anisodamine and Endothelial Target for Acetylcholine on Microvessels in Rat

    Institute of Scientific and Technical Information of China (English)

    鲍颖霞; 李庆平; 汪海

    2002-01-01

    Objective To study the effects of anisodamine on microvessels and its relatwn-ship with endothelium target for acetylcholine (ETA). Methods Norepinephrine precontracted mesen-teric vascular beds in rat were used to determine changes of tension of vessels in response to anisodamineafter removal of endothelium , coincubated with L-NAME, nitric oxide synthase (NOS) inhibitor, in-domethacin , cyclo-oxygenase inhibitor and glibenclamide , ATP-dependent K+ channels (K ATP ) inhibitor.Results Anisodamine produced a vasodilation effect on mesenteric vascular beds, which was remark-ably inhibited after removal of endothelium (P< 0.01). The vasodilation effect of anisodamine was al-so significantly inhibited after coincubated with indomethacin (1 μmol/ L), NG-nitro-L-arginine methylester ( L- NAME, 100 μrmol / L) and glibenclamide (1 μmol/L, P<0. 01, vs control). Conclu-sion The vasodilation effect of ani.sodamine on microvessels was mediated by ETA. This is related toprostacyclin , endothelium derived relaxing factor (EDRF) and KATP besides M, a-receptor on vascularmooth muscle cell (VSMC) and calcium-antagonistic effects.

  20. Expression of Thrombospondin-1 is Correlated with Microvessel Density in Prostate Cancer

    Institute of Scientific and Technical Information of China (English)

    Hui Zhang; Jiaju Lu; Ying Liu; Qiang Fu

    2006-01-01

    OBJECTIVE To observe the expression of thrombospondin-1 (TSP-1) in prostate cancer, and examine its expression in relation to angiogenesis.METHODS The expression of TSP-1 and microvessel density (MVD) were studied in 22 prostate cancer patients by using immunohistochemistry.RESULTS Positive expression of the TSP-1 protein was detected in 16(72.7%)of the 22 cases. Most of the positive staining for TSP-1 was seen in the cytoplasm of the cancer cells, but some was in the extracellular matrix. The mean MVD in the 22 prostate cancer cases was 71.21±31.14vessels per 100 high field of vision. Tumors with an elevated expression of TSP-1 showed a high MVD resulting in a correlation between TSP-1immunopositivity and microvessel density that was highly significant (r=0.54, P=0.009).CONCLUSION TSP-1 is strongly expressed in most prostate cancers and is associated with neovascularization. Therefore TSP-1 is a likely contributor to the extensive neovascularization in prostate cancer and increased TSP-1 expression might participate in an angiogenic phenotype.

  1. Sickle erythrocytes target cytotoxics to hypoxic tumor microvessels and potentiate a tumoricidal response.

    Directory of Open Access Journals (Sweden)

    David S Terman

    Full Text Available Resistance of hypoxic solid tumor niches to chemotherapy and radiotherapy remains a major scientific challenge that calls for conceptually new approaches. Here we exploit a hitherto unrecognized ability of sickled erythrocytes (SSRBCs but not normal RBCs (NLRBCs to selectively target hypoxic tumor vascular microenviroment and induce diffuse vaso-occlusion. Within minutes after injection SSRBCs, but not NLRBCs, home and adhere to hypoxic 4T1 tumor vasculature with hemoglobin saturation levels at or below 10% that are distributed over 70% of the tumor space. The bound SSRBCs thereupon form microaggregates that obstruct/occlude up to 88% of tumor microvessels. Importantly, SSRBCs, but not normal RBCs, combined with exogenous prooxidant zinc protoporphyrin (ZnPP induce a potent tumoricidal response via a mutual potentiating mechanism. In a clonogenic tumor cell survival assay, SSRBC surrogate hemin, along with H(2O(2 and ZnPP demonstrate a similar mutual potentiation and tumoricidal effect. In contrast to existing treatments directed only to the hypoxic tumor cell, the present approach targets the hypoxic tumor vascular environment and induces injury to both tumor microvessels and tumor cells using intrinsic SSRBC-derived oxidants and locally generated ROS. Thus, the SSRBC appears to be a potent new tool for treatment of hypoxic solid tumors, which are notable for their resistance to existing cancer treatments.

  2. Microvessel count predicts metastatic disease and survival in non-small cell lung cancer.

    Science.gov (United States)

    Fontanini, G; Bigini, D; Vignati, S; Basolo, F; Mussi, A; Lucchi, M; Chine, S; Angeletti, C A; Harris, A L; Bevilacqua, G

    1995-09-01

    The growth of newly formed vessels, or neoangiogenesis, represents an important step in both physiological and pathological situations: in particular, tumour growth and metastasis require angiogenesis. Microvessel count (MC), which represents a measure of tumour angiogenesis, has been associated with metastatic spread in cutaneous, mammary, prostatic, head and neck, and early-stage lung cancer. In this study, the role of tumour angiogenesis as a prognostic indicator was examined in 253 primary non-small lung cancer (NSCLC) patients. Microvessels were counted by highlighting endothelial cells with anti-Factor VIII monoclonal antibody (Mab) in methacarn-fixed tumour samples. In univariat analysis, MC (P 25 vessels/field) were significantly associated with increased death risk (log-rank test P = 0.00067; Cox's test P = 0.00046; Gehan's Wilcoxon test P = 0.00108). In 94 patients, the development of metastatic disease during follow-up was significantly related to MC. Indeed, patients who developed metastasis during follow-up showed a higher MC, either as a dichotomous (P = 0.01) or as a continuous (P = 0.003) variable, than patients who had developed no metastasis at the time of the analysis. Moreover, in the stepwise logistic regression analysis, MC retained the most important influence on distant metastases.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Magnetic targeting in the impermeable microvessel with two-phase fluid model--non-Newtonian characteristics of blood.

    Science.gov (United States)

    Shaw, Sachin; Murthy, P V S N

    2010-09-01

    The present investigation deals with finding the trajectories of the drug dosed magnetic carrier particle in a microvessel with two-phase fluid model which is subjected to the external magnetic field. The radius of the microvessel is divided into the endothelial glycocalyx layer in which the blood is assumed to obey Newtonian character and a core and plug regions where the blood obeys the non-Newtonian Herschel-Bulkley character which is suitable for the microvessel of radius 50 microm. The carrier particles, bound with nanoparticles and drug molecules are injected into the vascular system upstream from malignant tissue, and captured at the tumor site using a local applied magnetic field. The applied magnetic field is produced by a cylindrical magnet positioned outside the body and near the tumor position. The expressions for the fluidic force for the carrier particle traversing in the two-phase fluid in the microvessel and the magnetic force due to the external magnetic field are obtained. Several factors that influence the magnetic targeting of the carrier particles in the microvasculature, such as the size of the carrier particle, the volume fraction of embedded magnetic nanoparticles, and the distance of separation of the magnet from the axis of the microvessel are considered in the present problem. An algorithm is given to solve the system of coupled equations for trajectories of the carrier particle in the invasive case. The trajectories of the carrier particle are found for both invasive and noninvasive targeting systems. A comparison is made between the trajectories in these cases. Also, the present results are compared with the data available for the impermeable microvessel with single-phase fluid flow. Also, a prediction of the capture of therapeutic magnetic nanoparticle in the impermeable microvasculature is made for different radii, distances and volume fractions in both the invasive and noninvasive cases.

  4. Water permeability parameters of dermal fibroblast employed in tissue engineering in subzero temperatures

    Institute of Scientific and Technical Information of China (English)

    WANG; Xin; CHENG; Qikang; GAO; Cai; YANG; Pengfei; HUA; Tse

    2005-01-01

    Fibroblast is a crucial kind of cell in the construction of the tissue engineered dermal equivalent. In order to optimize the cryopreservation protocols of the tissue- engineered dermis, the characteristics of dermal fibroblast in subzero temperatures are required, which include the water permeability of the cell membrane and the apparent activation energy. Using the differential scanning calorimeter (DSC), the volumetric shrinkage during freezing of human dermal fibroblast suspensions was obtained at the cooling rate of 5℃·min-1 in the presence of extracellular ice. To ensure the presence of extracellular ice, a small quantity of ice nucleation bacteria (INA bacteria), pseudomonas syringae was added in the samples. And based on the Karlsson's model, a nonlinear- least-squares curve fitting technique was implemented to calculate the cryogenic parameters. At the reference temperature TR (= 0℃), the water permeability of membrane Lpg = 0.578μm·min-1·atm-1 and the apparent activation energy ELP = 308.8 kJ·mol-1. These parameters were then used to simulate water transport of fibroblast during constant cooling at rates between 0.01―50℃·min-1. The simulation results were analyzed to predict the amount of water left in the cell after dehydration and the "optimal cooling rate" for fibroblast cryopreservation. For the dermal fibroblast with DMEM solution, a cooling rate of 4.6℃·min-1 was optimal.

  5. Pengujian Toksisitas Akut Oral Dan Dermal pada Biolarvasida Metarhizium anisopliae terhadap Tikus Putih Spraque Dawley

    Directory of Open Access Journals (Sweden)

    Deni Zulfiana

    2016-03-01

    Full Text Available Acute oral and dermal toxicity test against white rats was conducted to determine the toxicity and side effects of bio-larvacide (Metarhizium anisopliae crude extract on humans. In the oral test used a maximum dose 5000 mg/kg and dermal testing used a maximum dose of 2000 mg/kg. Dose treatment and control tested to 5 Spraque Dawley male rats. The results showed that oral treatment with a dose of 5000 mg/kg did not cause mortality and did not cause changes in anatomic pathology of viceral organs. In the dermal treatment with a dose of 2000 mg/kg did not cause mortality and did not cause changes in anatomic pathology of viceral organs. Based on these results LD50 acute oral M. anisopliae biolarvacide above 5000 mg/kg and the acute dermal is above 2000 mg/kg. It was therefore concluded that the formulation of Metarhizium anisopliae biolarvasida classified as not hazardous when used in accordance with the recommendation of the class I (WHO, 2003.

  6. Defense against dermal exposures is only skin deep

    DEFF Research Database (Denmark)

    Nielsen, Jesper Bo; Nielsen, Flemming; Sørensen, Jens Ahm

    2007-01-01

    The OECD guideline for studies on percutaneous penetration to be used in hazard and risk evaluations prescribes experimental conditions with optimal barrier integrity of the skin, which in many occupational settings probably is not true. Thus, workers may have compromised skin due to chemical...... or mechanical damage, due to different medical conditions (eczema, dermatitis, skin irritation) or related to occupational scenarios involving prolonged wet work. The present study used the OECD guideline procedures to study the in vitro percutaneous penetration through human skin of a number of model...... substances (glyphosat, caffeine, benzoic acid, malathion) covering a range of solubilities. Further, we studied the extent to which a slightly damaged skin would change the rate, the amount absorbed during dermal exposure and the distribution of chemical deposition between epidermis and dermis. The present...

  7. File list: Unc.Epd.50.AllAg.Dermal_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Epd.50.AllAg.Dermal_fibroblasts mm9 Unclassified Epidermis Dermal fibroblasts h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Epd.50.AllAg.Dermal_fibroblasts.bed ...

  8. File list: Unc.Epd.20.AllAg.Dermal_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Epd.20.AllAg.Dermal_fibroblasts mm9 Unclassified Epidermis Dermal fibroblasts h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Epd.20.AllAg.Dermal_fibroblasts.bed ...

  9. Probe depth matters in dermal microdialysis sampling of benzoic acid after topical application

    DEFF Research Database (Denmark)

    Holmgaard, R; Benfeldt, E; Bangsgaard, N

    2012-01-01

    Microdialysis (MD) in the skin - dermal microdialysis (DMD) - is a unique technique for sampling of topically as well as systemically administered drugs at the site of action, e.g. sampling of dermatological drug concentrations in the dermis. Debate has concerned the existence of a correlation...... between the depth of the sampling device - the probe - in the dermis and the amount of drug sampled following topical drug administration. This study evaluates the relation between probe depth and drug sampling using dermal DMD sampling ex vivo in human skin. We used superficial (...-2 mm) and deep (>2 mm) positioning of the linear MD probe in the dermis of human abdominal skin, followed by topical application of 4 mg/ml of benzoic acid (BA) in skin chambers overlying the probes. Dialysate was sampled every hour for 12 h and analysed for BA content by high-performance liquid...

  10. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Puente, Pilar de la, E-mail: pilardelapuentegarcia@gmail.com [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain); Ludeña, Dolores [Pathology Service, University Hospital of Salamanca, P/San Vicente 58-182, 37007 Salamanca (Spain); López, Marta; Ramos, Jennifer; Iglesias, Javier [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain)

    2013-02-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  11. Evaluation of lymphangiogenesis in acellular dermal matrix

    Directory of Open Access Journals (Sweden)

    Mario Cherubino

    2014-01-01

    Full Text Available Introduction: Much attention has been directed towards understanding the phenomena of angiogenesis and lymphangiogenesis in wound healing. Thanks to the manifold dermal substitute available nowadays, wound treatment has improved greatly. Many studies have been published about angiogenesis and cell invasion in INTEGRA® . On the other hand, the development of the lymphatic network in acellular dermal matrix (ADM is a more obscure matter. In this article, we aim to characterize the different phases of host cell invasion in ADM. Special attention was given to lymphangiogenic aspects. Materials and Methods: Among 57 rats selected to analyse the role of ADM in lymphangiogenesis, we created four groups. We performed an excision procedure on both thighs of these rats: On the left one we did not perform any action except repairing the borders of the wound; while on the right one we used INTEGRA® implant. The excision biopsy was performed at four different times: First group after 7 days, second after 14 days, third after 21 days and fourth after 28 days. For our microscopic evaluation, we used the classical staining technique of haematoxylin and eosin and a semi-quantitative method in order to evaluate cellularity counts. To assess angiogenesis and lymphangiogenesis development we employed PROX-1 Ab and CD31/PECAM for immunohistochemical analysis. Results: We found remarkable wound contraction in defects that healed by secondary intention while minor wound contraction was observed in defects treated with ADM. At day 7, optical microscopy revealed a more plentiful cellularity in the granulation tissue compared with the dermal regeneration matrix. The immunohistochemical process highlighted vascular and lymphatic cells in both groups. After 14 days a high grade of fibrosis was noticeable in the non-treated group. At day 21, both lymphatic and vascular endothelial cells were better developed in the group with a dermal matrix application. At day 28

  12. Application of image restoration and three-dimensional visualization techniques to frog microvessels in-situ loaded with fluorescent indicators

    Science.gov (United States)

    Pagakis, Stamatis N.; Curry, Fitz-Roy E.; Lenz, Joyce F.

    1993-07-01

    In situ experiments on microvessels require image sensors of wide dynamic range due to large variations of the intensity in the scene, and 3D visualization due to the thickness of the preparation. The images require restoration because of the inherent tissue movement, out-of- focus-light contamination, and blur. To resolve the above problems, we developed an imaging system for quantitative imaging based on a 12 bits/pixel cooled CCD camera and a PC based digital imaging system. We applied the optical sectioning technique with image restoration using a modified nearest neighbor algorithm and iterative constrained deconvolution on each of the 2D optical sections. For the 3D visualization of the data, a volume rendering software was used. The data provided 3D images of the distribution of fluorescent indicators in intact microvessels. Optical cross sections were also compared with cross sections of the same microvessels examined in the electron microscope after their luminal surfaces were labeled with a tracer which was both electron dense and fluorescent. This procedure enabled precise identification of the endothelial cells in the microvessel wall as the principal site of accumulation of the fluorescent calcium indicator, fura-2, during microperfusion experiments.

  13. The effect of beta-turn structure on the permeation of peptides across monolayers of bovine brain microvessel endothelial cells

    DEFF Research Database (Denmark)

    Sorensen, M; Steenberg, B; Knipp, G T;

    1997-01-01

    PURPOSE: To investigate the effects of the beta-turn structure of a peptide on its permeation via the paracellular and transcellular routes across cultured bovine brain microvessel endothelial cell (BBMEC) monolayers, an in vitro model of the blood-brain barrier (BBB). METHODS: The effective...

  14. Angiogenesis in breast cancer: a comparative study of the observer variability of methods for determining microvessel density

    DEFF Research Database (Denmark)

    Hansen, S; Grabau, D A; Rose, C;

    1998-01-01

    The purpose of this study was to evaluate the reliability of different methods for estimating neovascularization in breast cancer and to compare them in terms of observer variability. The microvessel endothelium was stained immunohistochemically by antibodies against CD34. The investigated method...

  15. [Relationship between the changes in ischemia/reperfusion cerebro-microvessel basement membrane injury and gelatinase system in senile rat].

    Science.gov (United States)

    Li, Jian-sheng; Liu, Ke; Liu, Jing-xia; Wang, Ming-hang; Zhao, Yue-wu; Liu, Zheng-guo

    2008-11-01

    To study the relationship of cerebro-microvessel basement membrane injury and gelatinase system after cerebral ischemia/reperfusion (I/R) in aged rats. Cerebral I/R injury model was reproduced by intraluminal silk ligature thrombosis of the middle cerebral artery occlusion (MCAO). Rats were divided randomly into sham control and I/R groups in young rats [ischemia 3 hours (I 3 h) and reperfusion 6 hours (I/R 6 h), 12 hours (I/R 12 h), 24 hours (I/R 24 h), 3 days (I/R 3 d), 6 days (I/R 6 d)], and sham control group and I/R group in aged rats (I 3 h and I/R 6 h, I/R 12 h, I/R 24 h , I/R 3 d, I/R 6 d). The change in cerebro-cortex microvessel basement membrane structure, basement membrane type IV collagen (Col IV) and laminin (LN) contents, matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) expression in every group were determined with immunohistochemical method and zymogram analysis. With the increase in age, Col IV and LN contents of the microvessel basement membrane were increased, and MMP-2 and MMP-9 expressions were stronger. With prolongation of I/R, the degradation of microvessel basement membrane components (Col IV and LN) was positively correlated with the duration of cerebral I/R. MMP-2 expression was increased gradually, and MMP-9 and TIMP-1 expression increased at the beginning and decreased subsequently. Col IV(I 3 h, I/R 6 h , I/R 12 h), LN (I 3 h, I/R 6-24 h), MMP-2 (I 3 h, I/R 6 h-6 d) and MMP-9 (I 3 h, I/R 6-24 h) expression level in aged rats with I/R injury were higher, and TIMP-1 (I/R 24 h) expression was lower than those in young rats (Pcerebro-microvessel basement membrane in rats is related with MMPs and TIMP. Cerebro-microvessel basement membrane injury is more serious in aged rats than that of young rats. Changes in cerebro-microvessel basement membrane injury in aged rats is related with gelatinase system change.

  16. Dermal pharmacokinetics of microemulsion formulations determined by in vivo microdialysis

    DEFF Research Database (Denmark)

    Kreilgaard, Mads

    2001-01-01

    To investigate the potential of improving dermal drug delivery of hydrophilic and lipophilic substances by formulation in microemulsion vehicles and to establish a reliable pharmacokinetic model to analyze cutaneous microdialysis data.......To investigate the potential of improving dermal drug delivery of hydrophilic and lipophilic substances by formulation in microemulsion vehicles and to establish a reliable pharmacokinetic model to analyze cutaneous microdialysis data....

  17. Spectrum of PORCN mutations in Focal Dermal Hypoplasia

    Science.gov (United States)

    Focal Dermal Hypoplasia (FDH), also known as Goltz syndrome (OMIM 305600), is a genetic disorder that affects multiple organ systems early in development. Features of FDH include skin abnormalities, (hypoplasia, atrophy, linear pigmentation, and herniation of fat through dermal defects); papillomas...

  18. Effects of vitamin E on the expression of hyaluronic acid synthetase-2 gene in human dermal fibroblasts in vitro%维生素E对体外培养人皮肤成纤维细胞透明质酸合成酶-2基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    范丽云; 刘全忠

    2009-01-01

    Objective To explore the mechanism of vitamin E on delaying skin aging by observ-ing the expression of hyaluronic acid synthetase-2 (HAS-2) in human dermal fibroblasts in vitro. Methods Human skin fibroblasts were cultured in vitro, and these fibroblast cells were then divided into 3 groups: different concentration of vitamin E (0, 0.1 × 10-10, 1 ×109mol/L) was added in the medium in the different group. 24 hours later, the fibroblasts were collected, RNAs extracted, and then amplified by RT-PCR. The PCR product was determined by agarose gel electrophoresis, to analyze the level of HAS-2 mRNA expression. Results RT-PCR showed the lever of HAS-2 mRNA was higher in the low-dose group than the control group, with significant difference (P0.05).结论 维生素E可以上调HAS-2基因的转录水平,可能增加皮肤成纤维细胞透明质酸的合成,增加皮肤的水分含量,使皮肤湿润、弹力增加、皱纹变浅,逆转或延缓皮肤老化.

  19. Microvessel density and Ki-67 labeling index in esthesioneuroblastoma: is there a prognostic role?

    Science.gov (United States)

    Singh, Lavleen; Ranjan, Richa; Madan, Renu; Arava, Sudheer K; Deepak, Rakesh K; Singh, Manoj Kumar

    2015-12-01

    Esthesioneuroblastoma (ENB) is a malignant neuroectodermal tumor. Hyams grading has an established role in its prognostication. The importance of microvessel density (MVD) and Ki-67 labeling index (Ki-67 LI) is well studied in various tumors, but the same remains understated in ENB. The aims of the study were to estimate proliferation index and MVD in ENB and to correlate them with Hyams grade. Twenty-six ENB cases diagnosed over a period of 5 years were included. Hyams grade, MVD, and Ki-67 LI were evaluated for each of them. The cases were categorized as low (Hyams grades 1 and 2) and high (Hyams grades 3 and 4) grades. Microvessel density and Ki-67 LI were correlated with grade. The treatment response was analyzed in different grades. The commonest histologic grade was 4 (42%). The mean Ki-67 LI was 2%, 8.2%, 30.8%, and 40.5% and mean MVD was 81.67/mm(2), 37/mm(2), 24/mm(2), and 25.2/mm(2) in grades 1, 2, 3, and 4, respectively. A statistically significant correlation of grade with Ki-67 LI (P < .001) and MVD (P < .007) was noted. Hyams grade in ENB correlates well with treatment response. Ki-67 LI is an important prognostic factor in ENB. We propose a cutoff of 25% for Ki-67 LI to differentiate low- vs high-grade ENB, but larger studies are needed for validation. Contrary to epithelial tumors, there is a decrease in MVD with increasing grade in ENB.

  20. Vascular endothelial growth factor and microvessel density for detection and prognostic evaluation of invasive breast cancer

    Institute of Scientific and Technical Information of China (English)

    Lukui Yang; Long Li; Xiangyu Cui; Dalei Yang

    2015-01-01

    Objective The purpose of this study was to evaluate the distribution of vascular endothelial growth factor (VEGF) and CD105-microvessel density (MVD) in invasive breast carcinomas. We also aimed to analyze the relationship between VEGF and MVD expression with other standard prognostic parameters associated with invasive breast cancer, such as size, grade, stage of the cancer, metastases, and tumor recurrence. Methods Immunohistochemistry via the Ultra SensitiveTM S-P method was used to detect VEGF and MVD expression in 128 cases of invasive breast carcinoma. Specimens were evaluated for CD105 expres-sion. Positively stained microvessels were counted in dense vascular foci under 400× magnification. MVD in the peripheral area adjacent to the lesion and in the central area within the lesion in invasive breast carcinomas and benign leisions groups were also assessed. Fifty cases of benign breast disease tissue were selected as the control group. Results Results showed that 64.1% of invasive breast cancer samples were VEGF-positive, higher than in benign breast disease tissue (22.0%, P 0.05). MVD of the peripheral area adja-cent to the lesion was significantly higher than those central area within the lesion in both invasive breast cancer and benign breast disease groups (P 50 years) or the two tumor diameter groups (≤2 cm vs.>2 cm), P > 0.05. Conclusion Overexpression of VEGF and MVD may be important biological markers for invasion and lymph node and distant metastases of invasive breast cancer. Combined detection of the two tumor mark-ers could provide better prognostic monitoring for disease recurrence and metastasis, as wel as aid with clinical staging of breast tumors. Prediction of the risk for metastasis and recurrence, as wel as recurrence patterns based on VEGF and MVD post-surgery, could aid design of better fol ow-up regimens and appro-priate treatment strategies for breast cancer patients.

  1. Validation and comparison of two sampling methods to assess dermal exposure to drilling fluids and crude oil.

    Science.gov (United States)

    Galea, Karen S; McGonagle, Carolyn; Sleeuwenhoek, Anne; Todd, David; Jiménez, Araceli Sánchez

    2014-06-01

    Dermal exposure to drilling fluids and crude oil is an exposure route of concern. However, there have been no published studies describing sampling methods or reporting dermal exposure measurements. We describe a study that aimed to evaluate a wipe sampling method to assess dermal exposure to an oil-based drilling fluid and crude oil, as well as to investigate the feasibility of using an interception cotton glove sampler for exposure on the hands/wrists. A direct comparison of the wipe and interception methods was also completed using pigs' trotters as a surrogate for human skin and a direct surface contact exposure scenario. Overall, acceptable recovery and sampling efficiencies were reported for both methods, and both methods had satisfactory storage stability at 1 and 7 days, although there appeared to be some loss over 14 days. The methods' comparison study revealed significantly higher removal of both fluids from the metal surface with the glove samples compared with the wipe samples (on average 2.5 times higher). Both evaluated sampling methods were found to be suitable for assessing dermal exposure to oil-based drilling fluids and crude oil; however, the comparison study clearly illustrates that glove samplers may overestimate the amount of fluid transferred to the skin. Further comparison of the two dermal sampling methods using additional exposure situations such as immersion or deposition, as well as a field evaluation, is warranted to confirm their appropriateness and suitability in the working environment.

  2. Involvement of mast cells and microvessels density in reactive lesions of oral cavity: A comparative immunohistochemical study.

    Science.gov (United States)

    Ferreira, Stephany Vasco; Xavier, Flávia Caló Aquino; Freitas, Maria da Conceição Andrade de; Nunes, Fábio Daumas; Gurgel, Clarissa Araújo; Cangussu, Maria Cristina Teixeira; Martins, Manoela Domingues; Freitas, Valéria Souza; Dos Santos, Jean Nunes

    2016-09-01

    In view of the similarity of clinicopathological features between reactive lesions of the oral cavity, the objective of the present study was to investigate the density of MCs (mast cells) and microvessels in a series of these lesions. Thirty-seven cases of reactive lesions including fibrous hyperplasia (FH, n=10), inflammatory fibrous hyperplasia (IFH, n=10), peripheral giant cell lesion (PGCL, n=10) and lobular capillary hemangioma (LCH, n=7) were investigated using immunohistochemistry for mast cell tryptase and CD34. For comparative purposes, central giant cell lesions (CGCL, n=5) were included. A higher MC density was observed in LCH (37.01), while CGCL exhibited the lowest density (n=8.14). There was a significant difference in MC density when all reactive lesions were compared to CGCL (p=0.001). The largest mean density of microvessels was observed in LCH (n=21.69). The smallest number was observed in CGCL (n=6.24). There was a significant difference in microvessel density when the reactive lesions were compared to CGCL (p=0.003). There was a significant and direct correlation between the density of MCs and microvessels only for IFH (p=0.048) and CGCL (p=0.005). A significant and direct correlation between the mean density of MCs and microvessels was observed when the reactive lesions were analyzed as a whole (p=0.005). Our results suggest that mast cells contribute to the connective tissue framework and angiogenic function, as well as the development, of reactive lesions of the oral cavity, including FH, IFH, LCH and PGCL.

  3. Lipid nanoparticles for dermal drug delivery.

    Science.gov (United States)

    Kakadia, Pratibha G; Conway, Barbara R

    2015-01-01

    Lipid based drug delivery systems have been widely studied and reported over the past decade and offer a useful alternative to other colloidal drug delivery systems. Skin is a popular route of drug delivery for locally and systemically acting drugs and nanoparticles are reported as a potential formulation strategy for dermal delivery. Although the skin acts as a natural physical barrier against penetration of foreign materials, including particulates, opportunities exist for the delivery of therapeutic nanoparticles, especially in diseased and damaged skin and via appendageal routes such as the openings of hair follicles. The extent and ability of nanoparticles to penetrate into the underlying viable tissue is still the subject of debate although recent studies have identified the follicular route as the most likely route of entry; this influences the potential applications of these dosage forms as a drug delivery strategy. This paper reviews present state of art of lipid-based nanocarriers focussing on solid lipid nanoparticles, nanostructured lipid carriers and nanoemulsions, their production methods, potential advantages and applications in dermal drug delivery.

  4. Novel PORCN mutations in focal dermal hypoplasia.

    Science.gov (United States)

    Froyen, G; Govaerts, K; Van Esch, H; Verbeeck, J; Tuomi, M-L; Heikkilä, H; Torniainen, S; Devriendt, K; Fryns, J-P; Marynen, P; Järvelä, I; Ala-Mello, S

    2009-12-01

    Focal dermal hypoplasia (FDH), Goltz or Goltz-Gorlin syndrome, is an X-linked dominant multisystem disorder characterized primarily by involvement of the skin, skeletal system and eyes. We screened for mutations in the PORCN gene in eight patients of Belgian and Finnish origin with firm clinical suspicion of FDH. First, we performed quantitative PCR (qPCR) analysis to define the copy number at this locus. Next, we sequenced the coding regions and flanking intronic sequences of the PORCN gene. Three de novo mutations were identified in our patients with FDH: a 150-kb deletion removing six genes including PORCN, as defined by qPCR and X-array-CGH, and two heterozygous missense mutations; c.992T>G (p.L331R) in exon 11 and c.1094G>A (p.R365Q) in exon 13 of the gene. Both point mutations changed highly conserved amino acids and were not found in 300 control X chromosomes. The three patients in whom mutations were identified all present with characteristic dermal findings together with limb manifestations, which were not seen in our mutation-negative patients. The clinical characteristics of our patients with PORCN mutations were compared with the previously reported mutation-positive cases. In this report, we summarize the literature on PORCN mutations and associated phenotypes.

  5. [Cerebellar abscesses secondary to infection of an occipital dermal sinus].

    Science.gov (United States)

    García Galera, A; Martínez León, M I; Pérez da Rosa, S; Ros López, B

    2013-09-01

    A dermal sinus is a congenital defect arising from a closure failure of the neural tube that results in different degrees of communication between the skin and the central nervous system. A dermal sinus can occur anywhere from the root of the nose to the conus medullaris, and the occipital location is the second most common. Dermal sinuses are often found in association with dermoid or epidermoid cysts and less frequently with teratomas. Patients with an occipital dermoid cyst associated with a dermal sinus can develop meningitis and/or abscesses as the first clinical manifestation of the disease due to the dermoid cyst itself becoming abscessed or to the formation of secondary abscesses; few cases of the formation of secondary abscesses have been reported. We present a case of a dermoid cyst associated with an infected dermal sinus and posterior development of cerebellar abscesses and hydrocephalus.

  6. Late-onset Ito's nevus: an uncommon acquired dermal melanocytosis.

    Science.gov (United States)

    Mataix, Javier; López, Norberto; Haro, Rosario; González, Elena; Angulo, Jorge; Requena, Luis

    2007-08-01

    Dermal melanocytoses comprise a variety of congenital and acquired conditions characterized by a sparse population of intradermal dendritic, variably pigmented, spindle-shaped melanocytes. While Mongolian spot, Ota's and Ito's nevi are usually present at birth or appear around puberty; acquired dermal melanocytoses that appear in adult life are extremely rare. They include the facial lesions of acquired bilateral nevus of Ota-like macules, also named Hori's nevus, and the acquired unilateral nevus of Ota, also known as Sun's nevus. Uncommon extrafacial examples of acquired dermal melanocytoses include lesions involving upper extremities, wrist, back, lower extremities and dorsal aspects of the hands and feet. They are more prevalent among Asian women. In general, dermal melanocytoses are rare lesions in Caucasian patients and acquired variants are exceedingly uncommon. We report a rare example of acquired Ito's nevus that appeared in a Caucasian elderly woman and review the literature about acquired dermal melanocytoses.

  7. AGEs and Glucose Levels Modulate Type I and III Procollagen mRNA Synthesis in Dermal Fibroblasts Cells Culture

    Directory of Open Access Journals (Sweden)

    Serban Iren Andreea

    2008-01-01

    Full Text Available In the dermis, fibroblasts play an important role in the turnover of the dermal extracellular matrix. Collagen I and III, the most important dermal proteins of the extracellular matrix, are progressively altered during ageing and diabetes. For mimicking diabetic conditions, the cultured human dermal fibroblasts were incubated with increasing amounts of AGE-modified BSA and D-glucose for 24 hours. The expression of procollagen α2(I and procollagen α1(III mRNA was analyzed by quantitative real-time PCR. Our data revealed that the treatment of fibroblasts with AGE-modified BSA upregulated the expression of procollagen α2(I and procollagen α1(III mRNA in a dose-dependent manner. High glucose levels mildly induced a profibrogenic pattern, increasing the procollagen α2(I mRNA expression whereas there was a downregulation tendency of procollagen α1(III mRNA.

  8. Dermal permeation data and models for the prioritization and screening-level exposure assessment of organic chemicals

    Science.gov (United States)

    High throughput screening (HTS) models are being developed and applied to prioritize chemicals for more comprehensive exposure and risk assessment. Dermal pathways are possible exposure routes to humans for thousands of chemicals found in personal care products and the indoor env...

  9. 77 FR 43089 - Evaluation of an Up-and-Down Procedure for Acute Dermal Systemic Toxicity Testing: Request for...

    Science.gov (United States)

    2012-07-23

    ... Acute poisoning from chemicals and chemical products, including pharmaceuticals, is a significant public health problem. In 2009, 2.5 million human poisoning cases were reported to U.S. poison control centers (Bronstein et al., 2010). Dermal exposures were involved in 7.25% (179,832 cases) of the poisonings,...

  10. Hypocellular Plaque-Like CD34-Positive Dermal Fibroma (Medallion-Like Dermal Dendrocyte Hamartoma) Presenting as a Skin-Colored Dermal Nodule.

    Science.gov (United States)

    Mutgi, Krishna A J; Chitgopeker, Pooja; Ciliberto, Heather; Stone, Mary S

    2016-01-01

    Plaque-like CD34-positive dermal fibromas, also known as medallion-like dermal dendrocyte hamartomas (MDDHs), are a recently recognized group of congenital and acquired spindle cell neoplasms that may appear histologically similar to dermatofibrosarcoma protuberans. Recognizing the clinical heterogeneity of this neoplasm and the subtle pathologic differences are crucial to making the correct diagnosis and avoiding the aggressive surgical intervention required to treat a dermatofibrosarcoma protuberans. We present the case of a 9-year-old girl with an acquired variant of a plaque-like CD34-positive dermal fibroma without clinical epidermal change. Our case expands the clinical spectrum to include an acquired variant of a plaque-like CD34-positive dermal fibroma without clinical epidermal change. Examination of more cases is needed to determine whether all clinical variants are truly subtypes of the same neoplasm or represent distinct CD34-positive spindle cell proliferations.

  11. Evaluation of cytochrome P450 activity in vitro, using dermal and hepatic microsomes from four species and two keratinocyte cell lines in culture.

    Science.gov (United States)

    Rolsted, Kamilla; Kissmeyer, Anne-Marie; Rist, Gerda Marie; Hansen, Steen Honoré

    2008-01-01

    The Cytochrome P450 (CYP450) enzymes are expressed in the skin, and despite a low activity, as compared to the hepatic counterpart, a role during transdermal delivery of a drug cannot be excluded. Additionally, the enzymes may play a role in local toxicity, and further knowledge of dermal CYP450 activity can contribute to elucidate this issue. To achieve this, a cocktail of six selective CYP450 probe substrates were incubated with dermal and hepatic microsomes isolated from mouse, rat, minipig and man. Different species were used to evaluate if a reliable substitute for human tissue was possible. Further, the hepatic microsomes were included in this study, to estimate if the hepatic CYP450 activity is predictive of dermal CYP450 activity. The CYP450 activity was determined in two keratinocyte cell lines as well, as this in vitro model is desirable due to the ease in handling, among other factors. Overall, the metabolism found in the dermal microsomes was very low, and major differences were observed between species. When comparing the activities in dermal and hepatic microsomes, the qualitative pattern was to some extent similar within species, but also a number of differences were observed. The CYP450 metabolic activity in the two keratinocyte cell lines was not comparable to metabolism in the human dermal microsomes.

  12. In vitro cytotoxicity assays of solid lipid nanoparticles in epithelial and dermal cells

    Science.gov (United States)

    Ridolfi, D. M.; Marcato, P. D.; Machado, D.; Silva, R. A.; Justo, G. Z.; Durán, N.

    2011-07-01

    In recent years, the interest in nanostructured systems to drug delivery has increased because they offer several advantages over conventional dosage forms. Solid Lipid Nanoparticles (SLN) have been highlighted among these systems because they have advantages such as high physical stability, protection against drug degradation and ease of scale-up and manufacturing, without using organic solvent. The aim of this work was to evaluate the potential of SLN, by in vitro cytotoxicity assays, for dermal drug delivery. SLN of three different lipids were prepared by hot high pressure homogenization and the cytotoxicity was assessed by 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyl tetrazolium bromide (MTT) test in mouse 3T3 fibroblasts and human HaCaT keratinocytes. SLN showed no cytotoxic potential suggesting a great potential for dermal application.

  13. In vitro cytotoxicity assays of solid lipid nanoparticles in epithelial and dermal cells

    Energy Technology Data Exchange (ETDEWEB)

    Ridolfi, D M; Marcato, P D; Duran, N [Instituto de Quimica, Universidade Estadual de Campinas (Brazil); Machado, D; Silva, R A [Instituto de Biologia, Universidade Estadual de Campinas (Brazil); Justo, G Z, E-mail: daniela_ridolfi@hotmail.com [Departamento de BioquImica, Universidade Federal de Sao Paulo (Brazil)

    2011-07-06

    In recent years, the interest in nanostructured systems to drug delivery has increased because they offer several advantages over conventional dosage forms. Solid Lipid Nanoparticles (SLN) have been highlighted among these systems because they have advantages such as high physical stability, protection against drug degradation and ease of scale-up and manufacturing, without using organic solvent. The aim of this work was to evaluate the potential of SLN, by in vitro cytotoxicity assays, for dermal drug delivery. SLN of three different lipids were prepared by hot high pressure homogenization and the cytotoxicity was assessed by 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyl tetrazolium bromide (MTT) test in mouse 3T3 fibroblasts and human HaCaT keratinocytes. SLN showed no cytotoxic potential suggesting a great potential for dermal application.

  14. New E-beam-initiated hyaluronan acrylate cryogels support growth and matrix deposition by dermal fibroblasts.

    Science.gov (United States)

    Thönes, S; Kutz, L M; Oehmichen, S; Becher, J; Heymann, K; Saalbach, A; Knolle, W; Schnabelrauch, M; Reichelt, S; Anderegg, U

    2017-01-01

    Cryogels made of components of natural extracellular matrix components are potent biomaterials for bioengineering and regenerative medicine. Human dermal fibroblasts are key cells for tissue replacement during wound healing. Thus, any biomaterial for wound healing applications should enable growth, differentiation and matrix synthesis by these cells. Cryogels are highly porous scaffolds consisting of a network of interconnected pores. Here, we used a novel group of cryogels generated from acrylated hyaluronan where the polymerization was initiated by accelerated electrons (E-beam). This novel procedure omits any toxic polymerization initiators and results in sterile, highly elastic scaffolds with adjustable pore size, excellent swelling and low flow resistance properties. We show that these cryogels are effective 3D-substrates for long-term cultures of human dermal fibroblasts in vitro. The cells proliferate for at least 28days throughout the cryogels and deposit their own matrix in the pores. Moreover, key modulators of dermal fibroblasts during wound healing like TGFβ and PDGF efficiently stimulated the expression of wound healing-relevant genes. In conclusion, electron beam initiated cryogels of acrylated hyaluronan represent a functional and cell compatible biomaterial that could be adapted for special wound healing applications by further functionalization. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Horse hair follicles: A novel dermal stem cell source for equine regenerative medicine.

    Science.gov (United States)

    Michler, Jule K; Hillmann, Aline; Savkovic, Vuk; Mülling, Christoph K W

    2017-09-02

    The easily accessible niche represented by skin and its appendages may serve as a promising source to complement modern regenerative medicine for horses. In humans and in animal models for human medicine, the hair follicle and its stem cell niches are well characterized. Since literature in this field of equine research is scarce, we sought to analyze cells of the dermal stem cell niche of the equine hair follicle morphologically and for a subset of markers useful for cell characterization via immunolabeling. We cultured equine forelock skin explants to obtain cultures with cells migrating from the hair follicles. Isolation of cells revealed typical fibroblast morphology with a strong tendency to aggregate and form spheroids. For immunofluorescent characterization of primary isolations, we tested an antibody panel consisting of lineage makers for the dermal compartment of the hair follicle, markers associated with an undifferentiated cell status and markers for epithelial cell types as negative controls. All antibodies used were also tested on equine skin sections. The isolated cells displayed clear profiles of dermal and undifferentiated cells. To substantiate our findings, we tested our primary isolations for established equine multipotent mesenchymal stromal cell antigen expression markers in flow cytometry experiments yielding strong convergence. The data presented here provide insights to a stem cell source in horses almost unnoticed to date. The basic investigations of the equine dermal hair follicle stem cell niche confirm the expression of standard markers used in other species and lay the foundation for future studies on this easily available adult stem cell source. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  16. Dermal graft correction of extraordinary chordee.

    Science.gov (United States)

    Kogan, S J; Reda, E F; Smey, P L; Levitt, S B

    1983-11-01

    Severe degrees of primary chordee and persistent or recurrent chordee following previous surgical attempts at correction present a challenging problem. Inadequate resection of involved tissues, which may involve all layers of the penile investiture, or recurrent scarring of the ventral skin, Buck's fascia and tunica albuginea is usually the cause. Reoperation to achieve penile straightening often is unsuccessful unless all chordee-bearing tissue is resected extensively. Excision of large segments of tunica albuginea or wide separation of the margins creates a defect that tends to heal by dense scarring unless the defect is bridged by a graft. Various autogenous materials have been used, including blood vessel, fascia, free fat graft, dermis and tunica albuginea, as well as prosthestic materials, such as polytetrafluoroethylene, with varying results. A series of patients with extensive chordee is presented in whom tunical resection was necessary to achieve penile straightening. The results of free dermal graft replacement of the tunica are reported.

  17. Prenatal Diagnosis of Congenital Dermal Sinus

    Directory of Open Access Journals (Sweden)

    Sharif Sakr

    2015-04-01

    Full Text Available Background - Congenital dermal sinus (CDS is an uncommon form of spinal dysraphism. Although postdelivery identification in the neonate is aided by several associated physical examination findings, establishing this diagnosis prenatally has proven to be elusive. Case Report - We present a case of CDS where the prenatal findings at 20 weeks gestation led to the diagnosis, which was confirmed postnatally. The associated protrusion of fibrotic membranes through the sinus tract helped in the identification of this lesion prenatally, but created confusion with a more common type of lesion, an open neural tube defect. This is the first case report in the literature describing prenatal diagnosis of fetal CDS. Conclusion - Prenatal diagnosis with postnatal confirmation of CDS leads to early intervention, better long-term outcomes, and lesser complications.

  18. Dermal and Ophthalmic Findings in Pseudohypoaldosteronism

    Science.gov (United States)

    Korkut, Sabriye; Gökalp, Emir; Özdemir, Ahmet; Kurtoğlu, Selim; Demirtaş, Şafak; Gül, Ülkü; Baştuğ, Osman

    2015-01-01

    Pseudohypoaldosteronism (PHA) is defined as a state of resistance to aldosterone, a hormone crucial for electrolyte equilibrium. The genetically transmitted type of PHA is primary hypoaldosteronism. Secondary hypoaldosteronism develops as a result of hydronephrosis or hydroureter. PHA patients suffer from severe hyponatremia and a severe clinical condition due to severe loss of salt can be encountered in the neonatal period. Dermal findings in the form of miliaria rubra can also develop in these patients. With the loss of salt, abnormal accumulation of sebum in the eye due to a defect in the sodium channels can also occur. In this paper, a case of PHA in a newborn showing typical dermatological and ophthalmological findings is presented. PMID:26316441

  19. [Generalized granuloma annulare or diffuse dermal histiocytosis?].

    Science.gov (United States)

    Kretzschmar, L; Biel, K; Luger, T A; Goerdt, S

    1995-08-01

    Generalized granuloma annulare is a rare variant of granuloma annulare affecting the trunk and extremities with a multitude of lesions. In contrast to localized granuloma annulare, generalized granuloma annulare occurs in older patients, shows a stronger association with diabetes, and is characteristically chronic. Like our 55-year-old patient, most patients present with papules and annular plaques; less often, macular or non-annular lesions may be encountered. Histology often fails to show necrobiotic or necrotic connective tissue changes demarcated by a palisading granuloma. Instead, there are diffuse dermal, band-like or nodular aggregations of histiocytes intermingled with some multinucleated giant cells and a predominantly lymphocytic infiltrate in the periphery. Because of its special characteristics, it has been suggested that generalized granuloma annulare might constitute a separate disease entity and that it should be classed among the primary cutaneous histiocytoses as a diffuse dermal histiocytosis. Using immunohistochemistry to determine the macrophage phenotype of the lesional histiocytes, we have shown that generalized granuloma annulare is not a cutaneous histiocytosis. Neither MS-1 high-molecular-weight protein, a new specific marker for cutaneous non-Langerhans cell histiocytoses, nor CD1a, the well-known marker for Langerhans cells and Langerhans cell histiocytoses, is expressed by the lesional histiocytes of our patient. In contrast, the antigen expression pattern was diagnostic for non-infectious granulomas and was highly similar to that in localized granuloma annulare. In contrast to the successful treatment of localized granuloma annulare reported with intralesional interferon beta-1, systemic treatment with interferon alpha-2b (9 x 10(6) units three times a week) was ineffective.

  20. Dermal grafts for correction of severe chordee associated with hypospadias.

    Science.gov (United States)

    Horton, C E; Gearhart, J P; Jeffs, R D

    1993-08-01

    We report on 24 patients with hypospadias and severe chordee that could not be straightened with conventional techniques. We used small dermal grafts to augment the ventral tunica albuginea, which resulted in a completely straight, normal appearing erection in all patients. Subsequent urethroplasty was not complicated by the presence of the dermal graft. This procedure is technically straightforward and consistently results in a completely straight penis. Although required only rarely in hypospadias surgery, we recommend the dermal graft technique of tunica albuginea augmentation for cases of refractory chordee.

  1. 毛乳头细胞促进组织工程皮肤血管化的实验研究%EXPERIMENTAL STUDY ON DERMAL PAPILLARY CELLS IMPROVING VASCULARIZATION OF TISSUE ENGINEERED SKIN SUBSTITUTES

    Institute of Scientific and Technical Information of China (English)

    刘坡; 祁少海; 舒斌; 谢举临; 徐盈斌; 刘旭盛

    2012-01-01

    Objective To investigate the impact of dermal papillary cells on vascularization of tissue engineered skin substitutes consisting of epidermal stem cells and allogeneic acellular dermal matrix. Methods Human foreskins from routine circumcisions were collected to separate epidermal cells by using dispase with trypsogen. Collagen type IV was used to isolate epidermal stem cells from the 2nd and 3rd passage keratinocytes. Dermal papilla was isolated by the digestion method of collagenase I from fetus scalp and cultured in routine fibroblast medium. Tissue engineered skin substitutes were reconstructed by seeding epidermal stem cells on the papillary side of allogeneic acellular dermis with (the experimental group) or without (the control group) seeding dermal papillary cells on the reticular side. The two kinds of composite skin substitutes were employed to cover skin defects (1 cm×1 cm in size) on the back of the BALB/C-nu nude mice (n=30). The grafting survival rate was recorded 2 weeks after grafting. HE staining and immunohistochemistry method were employed to determine the expression of CD31 and calculate the microvessel density at 2 and 4 weeks after grafting. Results Those adhesion cells by collagen type IV coexpressed Keratin 19 and β1 integrin, indicating that the cells were epidermal stem cells. The cultivated dermal papillary cells were identified by expressing high levels of a-smooth muscle actin. The grafting survival rate was significantly higher in experimental group (28/30, 93.3%), than that in control group (24/30, 80.0%). HE staining showed that the epithelial layer in experimental group was 12-layered with large epithelial cells in the grafted composite skin, and that the epithelial layer in control group was 4-6-layered with small epithelial cells. At 2 and 4 weeks after grafting, the microvessel density was (38.56 ± 2.49)/mm2 and (49.12 ± 2.39)/mm2 in experimental group and was (25.16 ± 3.73)/mm2 and (36.26 ± 3.24)/mm2 in control group

  2. Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study.

    Science.gov (United States)

    Chen, Chuyi; Gu, Yuyang; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2016-03-01

    Understanding the dynamics of coated-microbubble oscillating in an elastic microvessel is important for effective and safe applications of ultrasound contrast agents (UCAs) in imaging and therapy. Numerical simulations are performed based on a two-dimensional (2D) asymmetric finite element model to investigate the influences of both acoustic driving parameters (e.g., pressure and frequency) and material properties (vessel size, microbubble shell visco-elastic parameters and fluid viscosity) on the dynamic interactions in the bubble-blood-vessel system. The results show that, the constrained effect of the blood vessel along the radial direction will induce the asymmetric bubble oscillation and vessel deformation, as well as shifting the bubble resonance frequency toward the higher frequency range. For a bubble (1.5-μm radius) activated by 1-MHz ultrasound pulses in a microvessel with a radius varying between 2 and 6.5 μm, up to 26.95 kPa shear stress could be generated on the vessel wall at a driving pressure of 0.2 MPa, which should be high enough to damage the vascular endothelial cells. The asymmetrical oscillation ratio of the bubble can be aggravated from 0.12% to 79.94% with the increasing acoustic driving pressure and blood viscosity, or the decreasing vessel size and microbubble shell visco-elastic properties. The maximum compression velocity on the bubble shell will be enhanced from 0.19 to 22.79 m/s by the increasing vessel size and acoustic pressure, or the decreasing microbubble shell visco-elasticity and blood viscosity. As the results, the peak values of microstreaming-induced shear stress on the vessel wall increases from 0.003 to 26.95 kPa and the deformation degree of vessel is raised from 1.01 to 1.49, due to the enhanced acoustic amplitude, or the decreasing vessel size, blood viscosity and microbubble shell visco-elasticity. Moreover, it also suggests that, among above impact parameters, microbubble resonance frequency and UCA shell elasticity

  3. Mosaic Activating Mutations in GNA11 and GNAQ Are Associated with Phakomatosis Pigmentovascularis and Extensive Dermal Melanocytosis

    Science.gov (United States)

    Thomas, Anna C.; Zeng, Zhiqiang; Rivière, Jean-Baptiste; O’Shaughnessy, Ryan; Al-Olabi, Lara; St.-Onge, Judith; Atherton, David J.; Aubert, Hélène; Bagazgoitia, Lorea; Barbarot, Sébastien; Bourrat, Emmanuelle; Chiaverini, Christine; Chong, W. Kling; Duffourd, Yannis; Glover, Mary; Groesser, Leopold; Hadj-Rabia, Smail; Hamm, Henning; Happle, Rudolf; Mushtaq, Imran; Lacour, Jean-Philippe; Waelchli, Regula; Wobser, Marion; Vabres, Pierre; Patton, E. Elizabeth; Kinsler, Veronica A.

    2016-01-01

    Common birthmarks can be an indicator of underlying genetic disease but are often overlooked. Mongolian blue spots (dermal melanocytosis) are usually localized and transient, but they can be extensive, permanent, and associated with extracutaneous abnormalities. Co-occurrence with vascular birthmarks defines a subtype of phakomatosis pigmentovascularis, a group of syndromes associated with neurovascular, ophthalmological, overgrowth, and malignant complications. Here, we discover that extensive dermal melanocytosis and phakomatosis pigmentovascularis are associated with activating mutations in GNA11 and GNAQ, genes that encode Gα subunits of heterotrimeric G proteins. The mutations were detected at very low levels in affected tissues but were undetectable in the blood, indicating that these conditions are postzygotic mosaic disorders. In vitro expression of mutant GNA11R183C and GNA11Q209L in human cell lines demonstrated activation of the downstream p38 MAPK signaling pathway and the p38, JNK, and ERK pathways, respectively. Transgenic mosaic zebrafish models expressing mutant GNA11R183C under promoter mitfa developed extensive dermal melanocytosis recapitulating the human phenotype. Phakomatosis pigmentovascularis and extensive dermal melanocytosis are therefore diagnoses in the group of mosaic heterotrimeric G-protein disorders, joining McCune-Albright and Sturge-Weber syndromes. These findings will allow accurate clinical and molecular diagnosis of this subset of common birthmarks, thereby identifying infants at risk for serious complications, and provide novel therapeutic opportunities. PMID:26778290

  4. Apigenin induces dermal collagen synthesis via smad2/3 signaling pathway.

    Science.gov (United States)

    Zhang, Y; Wang, J; Cheng, X; Yi, B; Zhang, X; Li, Q

    2015-04-13

    Decrease in fibroblast-produced collagen has been proven to be the pivotal cause of skin aging, but there is no satisfactory drug which directly increases dermal thickness and collage density. Here we found that a flavonoid natural product, apigenin, could significantly increase collagen synthesis. NIH/3T3 and primary human dermal fibroblasts (HDFs) were incubated with various concentrations of apigenin, with dimethyl sulfoxide (DMSO) serving as the negative control. Real-time reverse-transcription polymerase chain reaction (PCR), Western Blot, and Toluidine blue staining demonstrated that apigenin stimulated type-I and type-III collagen synthesis of fibroblasts on the mRNA and protein levels. Meanwhile, apigenin did not induce expression of alpha smooth muscle actin (α-SMA) in vitro and in vivo, a fibrotic marker in living tissues. Then the production of collagen was confirmed by Masson's trichrome stain, Picrosirius red stain and immunohistochemistry in mouse models. We also clarified that this compound induced collagen synthesis by activating smad2/3 signaling pathway. Taken together, without obvious influence on fibroblasts' apoptosis and viability, apigenin could promote the type-I and type-III collagen synthesis of dermal fibroblasts in vitro and in vivo, thus suggesting that apigenin may serve as a potential agent for esthetic and reconstructive skin rejuvenation.

  5. Apigenin induces dermal collagen synthesis via smad2/3 signaling pathway

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2015-04-01

    Full Text Available Decrease in fibroblast-produced collagen has been proven to be the pivotal cause of skin aging, but there is no satisfactory drug which directly increases dermal thickness and collage density. Here we found that a flavonoid natural product, apigenin, could significantly increase collagen synthesis. NIH/3T3 and primary human dermal fibroblasts (HDFs were incubated with various concentrations of apigenin, with dimethyl sulfoxide (DMSO serving as the negative control. Real-time reverse-transcription polymerase chain reaction (PCR, Western Blot, and Toluidine blue staining demonstrated that apigenin stimulated type-I and type-III collagen synthesis of fibroblasts on the mRNA and protein levels. Meanwhile, apigenin did not induce expression of alpha smooth muscle actin (α-SMA in vitro and in vivo, a fibrotic marker in living tissues. Then the production of collagen was confirmed by Masson’s trichrome stain, Picrosirius red stain and immunohistochemistry in mouse models. We also clarified that this compound induced collagen synthesis by activating smad2/3 signaling pathway. Taken together, without obvious influence on fibroblasts’ apoptosis and viability, apigenin could promote the type-I and type-III collagen synthesis of dermal fibroblasts in vitro and in vivo, thus suggesting that apigenin may serve as a potential agent for esthetic and reconstructive skin rejuvenation.

  6. Dermal bioaccessibility of flame retardants from indoor dust and the influence of topically applied cosmetics.

    Science.gov (United States)

    Pawar, Gopal; Abdallah, Mohamed Abou-Elwafa; de Sáa, Eugenia Villaverde; Harrad, Stuart

    2017-01-01

    Despite extensive literature on their potential adverse health effects, there is a lack of information on human dermal exposure to organic flame retardant chemicals (FRs). This study applies an in vitro physiologically based extraction test to provide new insights into the dermal bioaccessibility of various FRs from indoor dust to synthetic sweat/sebum mixture (SSSM). The bioaccessible fractions of α-, β- and γ-hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) to 1:1 (sweat/sebum) mixture were 41%, 47%, 50% and 40%, respectively. For Tris-2-chloroethyl phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCIPP) and tris-1,3-dichloropropyl phosphate (TDCIPP), bioaccessible fractions were 10%, 17% and 19%. Composition of the SSSM and compound-specific physicochemical properties were the major factors influencing the bioaccessibility of target FRs. Except for TBBPA, the presence of cosmetics (moisturising cream, sunscreen lotion, body spray and shower gel) had a significant effect (Pbioaccessibility of the studied FRs. The presence of cosmetics decreased the bioaccessibility of HBCDs from indoor dust, whereas shower gel and sunscreen lotion enhanced the bioaccessibility of target PFRs. Our bioaccessibility data were applied to estimate the internal exposure of UK adults and toddlers to the target FRs via dermal contact with dust. Our worst-case scenario exposure estimates fell far below available health-based limit values for TCEP, TCIPP and TDCIPP. However, future research may erode the margin of safety for these chemicals.

  7. Cedrol Enhances Extracellular Matrix Production in Dermal Fibroblasts in a MAPK-Dependent Manner

    Science.gov (United States)

    Jin, Mu Hyun; Park, Sun Gyoo; Hwang, Yul-Lye; Lee, Min-Ho; Jeong, Nam-Ji; Roh, Seok-Seon; Lee, Young; Kim, Chang Deok

    2012-01-01

    Background The extracellular matrix (ECM) produced by dermal fibroblasts supports skin structure, and degradation and/or reduced production of ECM are the main causes of wrinkle formation. Objective The aim of this study was to identify the active ingredient that enhances ECM production in dermal fibroblasts. Methods Polarity-based fractionation was used to isolate the active ingredient from natural extracts, and the effects of cedrol (isolated from Pterocarpus indicusirginia) on ECM production in cultured human dermal fibroblasts was investigated by reverse transcription-polymerase chain reaction, enzyme linked immunosorbent assay, and Western blot analysis. Results Cedrol accelerated fibroblast growth in a dose-dependent manner and increased the production of type 1 collagen and elastin. Phosphorylation of p42/44 extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and Akt was markedly increased by cedrol, indicating that enhanced ECM production is linked to activation of intracellular signaling cascades. Conclusion These results indicate that cedrol stimulates ECM production, with possible applications to the maintenance of skin texture. PMID:22363150

  8. Difference in uptake and toxicity of trivalent and pentavalent inorganic arsenic in rat heart microvessel endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Seishiro; Cui, Xing; Kanno, Sanae; Kobayashi, Yayoi [Environmental Health Sciences Division, National Institute for Environmental Studies, 16-2 Onogawa, 305-8506, Tsukuba, Ibaraki (Japan); Li, Song [Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, 305-8506, Tsukuba, Ibaraki (Japan); Hayakawa, Toru [Environmental Health Sciences Division, National Institute for Environmental Studies, 16-2 Onogawa, 305-8506, Tsukuba, Ibaraki (Japan); Faculty of Pharmaceutical Sciences, Chiba University, Yayoi, Inage, 263-8522, Chiba (Japan); Shraim, Amjad [Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, 305-8506, Tsukuba, Ibaraki (Japan); National Research Centre for Environmental Toxicology, Brisbane (Australia)

    2003-06-01

    Intake of inorganic arsenic is known to cause vascular diseases as well as skin lesions and cancer in humans. We investigated the differences in cytotoxicity, uptake rate of arsenic, and gene expression of antioxidative enzymes between arsenite (As{sup 3+})- and arsenate (As{sup 5+})-exposed rat heart microvessel endothelial cells. As{sup 3+} was more cytotoxic than As{sup 5+}, and LC{sub 50} values were calculated to be 36 and 220 {mu}M, respectively. As{sup 3+} (1-25 {mu}M) increased mRNA levels of antioxidant enzymes such as heme oxygenase-1 (HO-1), thioredoxin peroxidase 2, NADPH dehydrogenase, and glutathione S-transferase P subunit. HO-1 mRNA levels showed the most remarkable increase in response to As{sup 3+}. cDNA microarray analysis indicated that there was no prominent difference in arsenic-induced transcriptional changes between As{sup 3+}- and As{sup 5+}-exposed cells, when the cells were exposed to one-fourth the LC{sub 50} concentration of arsenic (9 and 55 {mu}M for As{sup 3+} and As{sup 5+}, respectively). N-acetyl-l-cysteine (NAC) reduced both the cytotoxicity of inorganic arsenic and the HO-1 mRNA level, and buthionine sulfoximine enhanced cytotoxicity of inorganic arsenic. As{sup 3+} was taken up by the endothelial cells 6-7 times faster than As{sup 5+}, and the presence of NAC in the culture medium did not change the uptake rate of As{sup 3+}.These results suggest that the effects of NAC on arsenic-induced cytotoxicity and oxidative stress were due to the antioxidative role of non-protein thiols and not to chelation of arsenic in the culture medium. The difference in cellular uptake of arsenic between As{sup 3+} and As{sup 5+} appeared not to be due to the ionic charge on arsenic (at physiological pH, trivalent arsenic is neutral whereas pentavalent arsenic is negatively charged). These results suggest that the higher toxicity of As{sup 3+} compared with that of As{sup 5+} is probably due to the faster uptake of As{sup 3+} by endothelial cells

  9. Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia.

    Science.gov (United States)

    Zheng, Yong-Qiu; Liu, Jian-Xun; Wang, Jan-Nong; Xu, Li

    2007-03-23

    This paper studied the effects of crocin, a pharmacologically active component of Crocus sativus L., on ischemia/reperfusion (I/R) injury in mice cerebral microvessels. Transient global cerebral ischemia (20 min), followed by 24 h of reperfusion, significantly promoted the generation of nitric oxide (NO) and malondialdehyde (MDA) in cortical microvascular homogenates, as well as markedly reduced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) and promoted the activity of nitric oxide synthase (NOs). Reperfusion for 24 h led to serous edema with substantial microvilli loss, vacuolation, membrane damage and mitochondrial injuries in cortical microvascular endothelial cells (CMEC). Furthermore, enhanced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and decreased expression of matrix metalloproteinase-9 (MMP-9) were detected in cortical microvessels after I (20 min)/R (24 h). Reperfusion for 24 h also induced membrane (functional) G protein-coupled receptor kinase 2 (GRK2) expression, while it reduced cytosol GRK2 expression. Pretreatment with crocin markedly inhibited oxidizing reactions and modulated the ultrastructure of CMEC in mice with 20 min of bilateral common carotid artery occlusion (BCCAO) followed by 24 h of reperfusion in vivo. Furthermore, crocin inhibited GRK2 translocation from the cytosol to the membrane and reduced ERK1/2 phosphorylation and MMP-9 expression in cortical microvessels. We propose that crocin protects the brain against excessive oxidative stress and constitutes a potential therapeutic candidate in transient global cerebral ischemia.

  10. Perlecan maintains microvessel integrity in vivo and modulates their formation in vitro.

    Directory of Open Access Journals (Sweden)

    Erika Gustafsson

    Full Text Available Perlecan is a heparan sulfate proteoglycan assembled into the vascular basement membranes (BMs during vasculogenesis. In the present study we have investigated vessel formation in mice, teratomas and embryoid bodies (EBs in the absence of perlecan. We found that perlecan was dispensable for blood vessel formation and maturation until embryonic day (E 12.5. At later stages of development 40% of mutant embryos showed dilated microvessels in brain and skin, which ruptured and led to severe bleedings. Surprisingly, teratomas derived from perlecan-null ES cells showed efficient contribution of perlecan-deficient endothelial cells to an apparently normal tumor vasculature. However, in perlecan-deficient EBs the area occupied by an endothelial network and the number of vessel branches were significantly diminished. Addition of FGF-2 but not VEGF(165 rescued the in vitro deficiency of the mutant ES cells. Furthermore, in the absence of perlecan in the EB matrix lower levels of FGFs are bound, stored and available for cell surface presentation. Altogether these findings suggest that perlecan supports the maintenance of brain and skin subendothelial BMs and promotes vasculo- and angiogenesis by modulating FGF-2 function.

  11. Relationship of adrenomedullin expression and microvessel density and prognosis in smooth muscle tumor of uterus

    Institute of Scientific and Technical Information of China (English)

    JIANG Yuan; TIAN Xuehong; YUAN Jie; JIN Yuemei; TAN Yusong

    2007-01-01

    The aim of this paper was to investigate the relationship between the expression of adrenomedullin(ADM)and microvessel density(MVD)and prognosis in smooth muscle tumor of uterus.The expression of ADM was detected using immunohistochemical staining in specimens from 15 normal controls,28 eases of uterine leiomyoma(LE)and 19 eases of uterine leiomyosarcoma(LES).The MVD was assayed by immunostainting with CD34.There was a positive correlation between the ADM expression and MVD in LE and LES respectively(rs=0.823,P<0.01;rs=0.793,P<0.01).The expression of ADM in LE was statistically lower than that in LES(P<0.05).There was a positive correlation between the ADM expression and mitotic figures in LES(P<0.05):the more mitotic figures,the higher levels of the ADM expression and poor prognosis.The ADM is an important angiogenic factor in smooth muscle tumor of uterus.The ADM can be used as an accessory marker in estimating the malignant potency of LE and judging the prognosis of LES,and as a novel molecular target of anti-angiogenic and anticarcinogenic strategies.

  12. Evaluation of mast cell counts and microvessel density in reactive lesions of the oral cavity

    Science.gov (United States)

    Kouhsoltani, Maryam; Moradzadeh Khiavi, Monir; Tahamtan, Shabnam

    2016-01-01

    Background. Reliable immunohistochemical assays to assess the definitive role of mast cells (MCs) and angiogenesis in the pathogenesis of oral reactive lesions are generally not available. The aim of the present study was to evaluate mast cell counts (MCC) and microvessel density (MVD) in oral reactive lesions and determine the correlation between MCC and MVD. Methods. Seventy-five cases of reactive lesions of the oral cavity, including pyogenic granuloma, fibroma, peripheral giant cell granuloma, inflammatory fibrous hyperplasia, peripheral ossifying fibroma (15 for each category) were immunohisto-chemically stained with MC tryptase and CD31. Fifteen cases of normal gingival tissue were considered as the control group. The mean MCC and MVD in superficial and deep connective tissues were assessed and total MCC and MVD was computed for each lesion. Results. Statistically significant differences were observed in MCC and MVD between the study groups (P < 0.001). MC tryptase and CD31 expression increased in the superficial connective tissue of each lesion in comparison to the deep con-nective tissue. A significant negative correlation was not found between MCC and MVD in oral reactive lesions (P < 0.001, r = -0.458). Conclusion. Although MCs were present in the reactive lesions of the oral cavity, a direct correlation between MCC and MVD was not found in these lesions. Therefore, a significant interaction between MCs and endothelial cells and an active role for MCs in the growth of oral reactive lesions was not found in this study. PMID:28096950

  13. Perlecan Maintains Microvessel Integrity In Vivo and Modulates Their Formation In Vitro

    Science.gov (United States)

    Gustafsson, Erika; Almonte-Becerril, Maylin; Bloch, Wilhelm; Costell, Mercedes

    2013-01-01

    Perlecan is a heparan sulfate proteoglycan assembled into the vascular basement membranes (BMs) during vasculogenesis. In the present study we have investigated vessel formation in mice, teratomas and embryoid bodies (EBs) in the absence of perlecan. We found that perlecan was dispensable for blood vessel formation and maturation until embryonic day (E) 12.5. At later stages of development 40% of mutant embryos showed dilated microvessels in brain and skin, which ruptured and led to severe bleedings. Surprisingly, teratomas derived from perlecan-null ES cells showed efficient contribution of perlecan-deficient endothelial cells to an apparently normal tumor vasculature. However, in perlecan-deficient EBs the area occupied by an endothelial network and the number of vessel branches were significantly diminished. Addition of FGF-2 but not VEGF165 rescued the in vitro deficiency of the mutant ES cells. Furthermore, in the absence of perlecan in the EB matrix lower levels of FGFs are bound, stored and available for cell surface presentation. Altogether these findings suggest that perlecan supports the maintenance of brain and skin subendothelial BMs and promotes vasculo- and angiogenesis by modulating FGF-2 function. PMID:23320101

  14. Focal dermal hypoplasia: Unusual presentation in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Awadh Alamri

    2016-01-01

    Full Text Available Focal dermal hypoplasia (Goltz syndrome is a rare genetic multisystem characterized by multiple abnormalities of ectodermal and mesodermal origin. It is found predominantly in females. We report a case of a two month-old baby girl who had dermal hypoplasia, atrophic skin lesions with telangiectasia in a linear pattern, fat herniations, papillomas and cleft of the upper lip, ectrodactyly, claw hands, microphthalmia and unusual association of gastrointestinal omphalocele.

  15. Acquired ichthyosis and impaired dermal lipogenesis in Hodgkin's disease.

    Science.gov (United States)

    Cooper, M F; Wilson, P D; Hartop, P J; Shuster, S

    1980-06-01

    Epidermal lipid biosynthesis was normal in patients with mild ichthyosis due to Hodgkin's disease, but greatly reduced in one patient with severe ichthyosis. Dermal (sebaceous) lipid synthesis was decreased in all patients with Hodgkin's disease, whether or not they had ichthyosis, and was greatly reduced in the patient with severe ichthyosis. Neither the mechanism nor the possible relationship between the dermal and epidermal changes is understood.

  16. Evaluation of dermal fillers with noncontact optical coherence elastography

    Science.gov (United States)

    Singh, Manmohan; Wang, Shang; Yee, Richard W.; Han, Zhaolong; Aglyamov, Salavat R.; Larin, Kirill V.

    2017-02-01

    Over 2 million dermal filler procedures are performed each year in the USA alone, and this figure is only expected to increase as the aging population continues to grow. Dermal filler treatments can last from a few months to years depending on the type of filler and its placement. Although adverse reactions are rare, they can be quite severe due to ischemic events and filler migration. Previously, techniques such as ultrasound or magnetic resonance imaging have been used to evaluate the filler injections. However, these techniques are not practical for real-time filler injection guidance due to limitations such as the physical presence of the transducer. In this work, we propose the use of optical coherence tomography (OCT) for image-guided dermal filler injections due to the high spatial and temporal resolution of OCT. In addition, we utilize a noncontact optical coherence elastography (OCE) technique, to evaluate the efficacy of the dermal filler injection. A grid of air-pulse OCE measurements was taken, and the dynamic response of the skin to the air-pulse was translated to the Young's modulus and shear viscosity. Our results show that OCT was able to visualize the dermal filler injection process, and that OCE was able to localize the dermal filler injection sites. Combined with functional techniques such as optical microangiography, and recent advanced in OCT hardware, OCT may be able to provide real-time injection guidance in 3D by visualizing blood vessels to prevent ischemic events.

  17. Microneedle technologies for (trans)dermal drug and vaccine delivery.

    Science.gov (United States)

    van der Maaden, Koen; Jiskoot, Wim; Bouwstra, Joke

    2012-07-20

    Microneedles have been used for the dermal and transdermal delivery of a broad range of drugs, such as small molecular weight drugs, oligonucleotides, DNA, peptides, proteins and inactivated viruses. However, until now there are no microneedle-based (trans)dermal drug delivery systems on the market. In the past decade various types of microneedles have been developed by a number of production processes. Numerous geometries of microneedles have been designed from various materials. These microneedles have been used for different approaches of microneedle-based (trans)dermal drug delivery. Following a brief introduction about dermal and transdermal drug delivery, this review describes different production methods for solid and hollow microneedles as well as conditions that influence skin penetration. Besides, the four microneedle-based (trans)dermal drug delivery approaches are discussed: "poke and flow", "poke and patch", "poke and release", and "coat and poke". A separate section of this review is devoted to the use of microneedles for the delivery of therapeutic proteins and vaccines. Finally, we give our view on research and development that is needed to render microneedle-based (trans)dermal drug delivery technologies clinically useful in the near future.

  18. Dermal sensitization quantitative risk assessment (QRA) for fragrance ingredients.

    Science.gov (United States)

    Api, Anne Marie; Basketter, David A; Cadby, Peter A; Cano, Marie-France; Ellis, Graham; Gerberick, G Frank; Griem, Peter; McNamee, Pauline M; Ryan, Cindy A; Safford, Robert

    2008-10-01

    Based on chemical, cellular, and molecular understanding of dermal sensitization, an exposure-based quantitative risk assessment (QRA) can be conducted to determine safe use levels of fragrance ingredients in different consumer product types. The key steps are: (1) determination of benchmarks (no expected sensitization induction level (NESIL)); (2) application of sensitization assessment factors (SAF); and (3) consumer exposure (CEL) calculation through product use. Using these parameters, an acceptable exposure level (AEL) can be calculated and compared with the CEL. The ratio of AEL to CEL must be favorable to support safe use of the potential skin sensitizer. This ratio must be calculated for the fragrance ingredient in each product type. Based on the Research Institute for Fragrance Materials, Inc. (RIFM) Expert Panel's recommendation, RIFM and the International Fragrance Association (IFRA) have adopted the dermal sensitization QRA approach described in this review for fragrance ingredients identified as potential dermal sensitizers. This now forms the fragrance industry's core strategy for primary prevention of dermal sensitization to these materials in consumer products. This methodology is used to determine global fragrance industry product management practices (IFRA Standards) for fragrance ingredients that are potential dermal sensitizers. This paper describes the principles of the recommended approach, provides detailed review of all the information used in the dermal sensitization QRA approach for fragrance ingredients and presents key conclusions for its use now and refinement in the future.

  19. Long-Term Followup of Dermal Substitution with Acellular Dermal Implant in Burns and Postburn Scar Corrections

    OpenAIRE

    Juhasz, I.; Kiss, B.; Lukacs, L.; Erdei, I.; Peter, Z.; Remenyik, E.

    2010-01-01

    Full-thickness burn and other types of deep skin loss will result in scar formation. For at least partial replacement of the lost dermal layer, there are several options to use biotechnologically derived extracellular matrix components or tissue scaffolds of cadaver skin origin. In a survey, we have collected data on 18 pts who have previously received acellular dermal implant Alloderm. The age of these patients at the injury varied between 16 months and 84 years. The average area of the impl...

  20. Fine needle aspiration cytology of dermal cylindroma

    Directory of Open Access Journals (Sweden)

    Parikshaa Gupta

    2014-01-01

    Full Text Available In this paper, we have described fine needle aspiration cytology (FNAC of a rare case of dermal cylindroma. A 40-year-old female presented with a lateral mid-cervical swelling fixed to the skin. FNAC smears showed multiple clusters of small, round to oval cells with hyperchromatic nuclei, inconspicuous nucleoli and scant cytoplasm. In addition, the background showed deposits of basement membrane type material. This was dark magenta colored pinkish globular material. The globules were occasionally surrounded by the basal type of cells. Occasional cells with elongated nuclei were also noted. Cytological diagnosis of skin adnexal tumor possibly cylindroma was offered. Subsequent histopathology of the swelling showed sheets and clusters of cells in a jigsaw puzzle-like fashion. Deposition of abundant basement membrane-like material was noted in between the tumor cells. A diagnosis of cylindorma was offered. FNAC along with the subcutaneous location of the tumor and absence of primary salivary gland tumor may help to diagnose such rare case.

  1. Dermal factors influencing measurement of skin autofluorescence.

    Science.gov (United States)

    Noordzij, Margaretha J; Lefrandt, Joop D; Graaff, Reindert; Smit, Andries J

    2011-02-01

    Skin autofluorescence (SAF) is a noninvasive marker of accumulation of advanced glycation end products. It predicts cardiovascular complications and mortality in diabetes and renal failure. We assessed the influence of potential common confounders in SAF measurement, by determining the effects of endogenous and exogenous local dermal changes by body creams, hyperemia, vasoconstriction, and hydration. SAF was measured before and after local administration of body lotion, day cream, sunscreen, or self-browning cream and after attempts to remove these effects with alcohol swabs and washing. SAF was measured before and during three hyperemia maneuvers: vasoconstriction and on a dry and wet skin. The body lotion increased SAF by 18%. Day cream, sunscreen, and self-browning cream gave an increase of >100%. Except for body lotion, subsequent cleaning with alcohol swabs and washing with soap did not return SAF to baseline values. The effect of self-browning cream persisted for 2 weeks and that of sunscreen for 4 days. Hyperemia caused by a hot bath, capsicum cream, or postocclusive reactive hyperemia gave a decrease in SAF of, respectively, 18%, 22%, and 2.3%. Vasoconstriction caused by immersing the arm in cold water gave a 10% increase. Hydration state did not influence SAF. Measurement of SAF is strongly affected by several skin creams. This effect was often not fully corrected by alcohol swabs and washing with soap and may persist for many days. Marked hyperemia and vasoconstriction also influence SAF. We advise avoiding these potential error sources.

  2. ABCB5 Identifies Immunoregulatory Dermal Cells

    Directory of Open Access Journals (Sweden)

    Tobias Schatton

    2015-09-01

    Full Text Available Cell-based strategies represent a new frontier in the treatment of immune-mediated disorders. However, the paucity of markers for isolation of molecularly defined immunomodulatory cell populations poses a barrier to this field. Here, we show that ATP-binding cassette member B5 (ABCB5 identifies dermal immunoregulatory cells (DIRCs capable of exerting therapeutic immunoregulatory functions through engagement of programmed cell death 1 (PD-1. Purified Abcb5+ DIRCs suppressed T cell proliferation, evaded immune rejection, homed to recipient immune tissues, and induced Tregs in vivo. In fully major-histocompatibility-complex-mismatched cardiac allotransplantation models, allogeneic DIRCs significantly prolonged allograft survival. Blockade of DIRC-expressed PD-1 reversed the inhibitory effects of DIRCs on T cell activation, inhibited DIRC-dependent Treg induction, and attenuated DIRC-induced prolongation of cardiac allograft survival, indicating that DIRC immunoregulatory function is mediated, at least in part, through PD-1. Our results identify ABCB5+ DIRCs as a distinct immunoregulatory cell population and suggest promising roles of this expandable cell subset in cellular immunotherapy.

  3. ABCB5 identifies immunoregulatory dermal cells

    Science.gov (United States)

    Schatton, Tobias; Yang, Jun; Kleffel, Sonja; Uehara, Mayuko; Barthel, Steven R.; Schlapbach, Christoph; Zhan, Qian; Dudeney, Stephen; Mueller, Hansgeorg; Lee, Nayoung; de Vries, Juliane C.; Meier, Barbara; Vander Beken, Seppe; Kluth, Mark A.; Ganss, Christoph; Sharpe, Arlene H.; Waaga-Gasser, Ana Maria; Sayegh, Mohamed H.; Abdi, Reza; Scharffetter-Kochanek, Karin; Murphy, George F.; Kupper, Thomas S.; Frank, Natasha Y.; Frank, Markus H.

    2015-01-01

    Summary Cell-based strategies represent a new frontier in the treatment of immune-mediated disorders. However, the paucity of markers for isolation of molecularly-defined immunomodulatory cell populations poses a barrier to this field. Here we show that ATP-binding cassette member B5 (ABCB5) identifies dermal immunoregulatory cells (DIRCs) capable of exerting therapeutic immunoregulatory functions through engagement of programmed cell death 1 (PD-1). Purified Abcb5+ DIRCs suppressed T-cell proliferation, evaded immune rejection, homed to recipient immune tissues and induced Tregs in vivo. In fully MHC-mismatched cardiac allotransplantation models, allogeneic DIRCs significantly prolonged allograft survival. Blockade of DIRC-expressed PD-1 reversed the inhibitory effects of DIRCs on T-cell activation, inhibited DIRC-dependent Treg induction, and attenuated DIRC-induced prolongation of cardiac allograft survival, indicating that DIRC immunoregulatory function is mediated, at least in part, through PD-1. Our results identify ABCB5+ DIRCs as a distinct immunoregulatory cell population and suggest promising roles of this expandable cell subset in cellular immunotherapy. PMID:26321644

  4. Emotional intelligence and electro-dermal activity.

    Science.gov (United States)

    Zysberg, Leehu

    2012-09-01

    Emotional intelligence (EI) is a promising concept in our understanding of emotional regulation, related behaviors and pathologies. However, research linking EI to underlying physiological and biological structure and responses is meager. This study explored potential associations of EI with electro-dermal activity (EDA) responses to emotionally arousing visual stimuli. It was hypothesized that higher levels of EI will associate with more efficient emotional regulation as reflected by EDA. Eighty-four healthy participants were exposed to stimuli consisting of a series of 12 images designed to evoke positive or negative emotional responses, presented in a counterbalanced order. A self-report questionnaire and a computer based test of EI were administered along with a demographic questionnaire. EDA measures were taken during the exposure to the above stimuli using BIOPACK MP150. EI test scores (Beta = .35, .32; p self-report measure of EI and other demographics (e.g., gender. ethnicity) did not show any associations with the outcome measures. The results support the relevance of the concept to our understanding of emotional responses and regulation. The findings are briefly discussed within the context of underlying mechanisms of EI as well as measure validity and relevance.

  5. In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr:Forsterite laser

    Science.gov (United States)

    Yasui, Takeshi; Yonetsu, Makoto; Tanaka, Ryosuke; Tanaka, Yuji; Fukushima, Shu-ichiro; Yamashita, Toyonobu; Ogura, Yuki; Hirao, Tetsuji; Murota, Hiroyuki; Araki, Tsutomu

    2013-03-01

    In vivo visualization of human skin aging is demonstrated using a Cr:Forsterite (Cr:F) laser-based, collagen-sensitive second harmonic generation (SHG) microscope. The deep penetration into human skin, as well as the specific sensitivity to collagen molecules, achieved by this microscope enables us to clearly visualize age-related structural changes of collagen fiber in the reticular dermis. Here we investigated intrinsic aging and/or photoaging in the male facial skin. Young subjects show dense distributions of thin collagen fibers, whereas elderly subjects show coarse distributions of thick collagen fibers. Furthermore, a comparison of SHG images between young and elderly subjects with and without a recent life history of excessive sun exposure show that a combination of photoaging with intrinsic aging significantly accelerates skin aging. We also perform image analysis based on two-dimensional Fourier transformation of the SHG images and extracted an aging parameter for human skin. The in vivo collagen-sensitive SHG microscope will be a powerful tool in fields such as cosmeceutical sciences and anti-aging dermatology.

  6. Comparative genomics analysis of mononuclear phagocyte subsets confirms homology between lymphoid tissue-resident and dermal XCR1+ DCs in mouse and human and distinguishes them from Langerhans cells

    Science.gov (United States)

    Carpentier, Sabrina; Vu Manh, Thien-Phong; Chelbi, Rabie; Henri, Sandrine; Malissen, Bernard; Haniffa, Muzlifah; Ginhoux, Florent; Dalod, Marc

    2016-01-01

    Dendritic cells (DC) are mononuclear phagocytes which exhibit a branching (dendritic) morphology and excel at naïve T cell activation. DC encompass several subsets initially identified by their expression of cell surface molecules and later shown to possess distinct functions. DC subset differentiation is orchestrated by transcription factors, growth factors and cytokines. Identifying DC subsets is challenging as very few cell surface molecules are uniquely expressed on any one of these cell populations. There is no standard consensus to identify mononuclear phagocyte subsets; varying antigens are employed depending on the tissue and animal species studied and between laboratories. This has led to confusion in how to accurately define and classify DCs across tissues and between species. Here we report a comparative genomics strategy that enables universal definition of DC and other mononuclear phagocyte subsets across species. We performed a meta-analysis of several public datasets of human and mouse mononuclear phagocyte subsets isolated from blood, spleen, skin or cutaneous lymph nodes, including by using a novel and user friendly software, BubbleGUM, which generates and integrates gene signatures for high throughput gene set enrichment analysis. This analysis demonstrates the equivalence between human and mouse skin XCR1+ DCs, and between mouse and human Langerhans cells. PMID:26966045

  7. Comparative genomics analysis of mononuclear phagocyte subsets confirms homology between lymphoid tissue-resident and dermal XCR1(+) DCs in mouse and human and distinguishes them from Langerhans cells.

    Science.gov (United States)

    Carpentier, Sabrina; Vu Manh, Thien-Phong; Chelbi, Rabie; Henri, Sandrine; Malissen, Bernard; Haniffa, Muzlifah; Ginhoux, Florent; Dalod, Marc

    2016-05-01

    Dendritic cells (DC) are mononuclear phagocytes which exhibit a branching (dendritic) morphology and excel at naïve T cell activation. DC encompass several subsets initially identified by their expression of cell surface molecules and later shown to possess distinct functions. DC subset differentiation is orchestrated by transcription factors, growth factors and cytokines. Identifying DC subsets is challenging as very few cell surface molecules are uniquely expressed on any one of these cell populations. There is no standard consensus to identify mononuclear phagocyte subsets; varying antigens are employed depending on the tissue and animal species studied and between laboratories. This has led to confusion in how to accurately define and classify DCs across tissues and between species. Here we report a comparative genomics strategy that enables universal definition of DC and other mononuclear phagocyte subsets across species. We performed a meta-analysis of several public datasets of human and mouse mononuclear phagocyte subsets isolated from blood, spleen, skin or cutaneous lymph nodes, including by using a novel and user friendly software, BubbleGUM, which generates and integrates gene signatures for high throughput gene set enrichment analysis. This analysis demonstrates the equivalence between human and mouse skin XCR1(+) DCs, and between mouse and human Langerhans cells. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. 重组人β防御素2在真皮多能干细胞中的表达及抗菌活性的测定%Expression of recombinant human β-defensin 2 in dermal multipotent stem cells and its antiseptic activity

    Institute of Scientific and Technical Information of China (English)

    李楠; 肖桃元; 粟永萍; 徐辉; 王军平; 宗兆文; 冉新泽; 董世武; 刘志君

    2006-01-01

    目的检测重组人β防御素2(human β-defensin 2, hBD2)腺病毒表达载体在大鼠真皮多能干细胞(dermal multipotent stem cells, dMSCs)中的表达,并观察重组hBD2的体外抗菌活性.方法将含有hBD2重组腺病毒转染dMSCs,RT-PCR、荧光免疫化学、Western blotting检测hBD2的表达情况,ELISA测定培养上清中hBD2的浓度,K-B纸片扩散法检测上清对大肠埃希菌、金黄色葡萄球菌和铜绿假单胞菌等标准菌株的杀灭效果.结果 RT-PCR、荧光免疫化学和Western blotting的结果显示转染后hBD2可在dMSCs中有效地表达,上清中hBD2的浓度为743.6 ng/ml,K-B纸片法显示HBD2对上述标准菌株有明显的杀灭效应.结论 hBD2重组腺病毒表达载体在dMSCs可高效表达,并对大肠埃希菌等标准菌株有杀灭效应.

  9. Prognosis of invasive breast cancer after adjuvant therapy evaluated with VEGF microvessel density and microvascular imaging.

    Science.gov (United States)

    Li, Ying; Wei, Xi; Zhang, Sheng; Zhang, Jin

    2015-11-01

    The aim of this study was to investigate the role of ultrasonographic microvascular imaging in the evaluation of prognosis of patients with invasive breast cancer treated by adjuvant therapies. A total of 121 patients with invasive breast cancer underwent ultrasonographic contrast-enhanced imaging, vascular endothelial growth factor (VEGF) staining, and microvessel density (MVD) counts. The parameters of microvascular imaging and the expression of VEGF and MVD in primary breast cancer were calculated. The correlation between these factors and the overall and progression-free survival rate were analyzed using the Kaplan-Meier method. Among 121 cases, the positive VEGF cases were 75 and negative ones were 46. The cut point of 52.3 was calculated by the regressive curve for MVD counts. The data showed the mean intensity (MI) was positively associated with both the MVD counts (r = .51, p prognosis of patients, high VEGF expression and MVD counts were associated with reduced progressive and survival times (PFS, p = .032 and p = .034; OS, p = .041 and p = .038, respectively). The correlation between parameters of microvascular imaging, VEGF expressive status, and the MVD counts were established. The cut point of mean intensity (MI = 40) was used to investigate as an independent predictor for PFS (p = .021) and OS (p = .025), respectively, due to a strong correlation between MVD counts and VEGF expression in patients with invasive breast cancer. The microvascular imaging could be a visual and helpful tool to predict the prognosis of patients with invasive breast cancer treated by adjuvant therapies.

  10. Vimentin and laminin are altered on cheek pouch microvessels of streptozotocin-induced diabetic hamsters

    Directory of Open Access Journals (Sweden)

    Jemima Fuentes R Silva

    2011-01-01

    Full Text Available OBJECTIVE: Normal endothelial cells respond to shear stress by elongating and aligning in the direction of fluid flow. Hyperglycemia impairs this response and contributes to microvascular complications, which result in deleterious effects to the endothelium. This work aimed to evaluate cheek pouch microvessel morphological characteristics, reactivity, permeability, and expression of cytoskeleton and extracellular matrix components in hamsters after the induction of diabetes with streptozotocin. METHODS: Syrian golden hamsters (90-130 g were injected with streptozotocin (50 mg/kg, i.p. or vehicle either 6 (the diabetes mellitus 6 group or 15 (the diabetes mellitus 15 group days before the experiment. Vascular dimensions and density per area of vessels were determined by morphometric and stereological measurements. Changes in blood flow were measured in response to acetylcholine, and plasma extravasation was measured by the number of leakage sites. Actin, talin, α-smooth muscle actin, vimentin, type IV collagen, and laminin were detected by immunohistochemistry and assessed through a semiquantitative scoring system. RESULTS: There were no major alterations in the lumen, wall diameters, or densities of the examined vessels. Likewise, vascular reactivity and permeability were not altered by diabetes. The arterioles demonstrated increased immunoreactivity to vimentin and laminin in the diabetes mellitus 6 and diabetes mellitus 15 groups. DISCUSSION: Antibodies against laminin and vimentin inhibit branching morphogenesis in vitro. Therefore, laminin and vimentin participating in the structure of the focal adhesion may play a role in angiogenesis. CONCLUSIONS: Our results indicated the existence of changes related to cell-matrix interactions, which may contribute to the pathological remodeling that was already underway one week after induction of experimental diabetes.

  11. Slit2 overexpression results in increased microvessel density and lesion size in mice with induced endometriosis.

    Science.gov (United States)

    Guo, Sun-Wei; Zheng, Yu; Lu, Yuan; Liu, Xishi; Geng, Jian-Guo

    2013-03-01

    We recently reported that Slit/Roundabout (ROBO) 1 pathway may be a constituent biomarker for recurrence of endometriosis, likely through promoting angiogenesis. In this study, we sought to determine as whether Slit2 overexpression can facilitate angiogenesis, increase lesion size, and induce hyperalgesia in mice with induced endometriosis. We used 30 Slit2 transgenic (S) and 29 wild-type (W) mice and cross-transplanted endometrial fragments from S to W (group SW) and vice versa (group WS), and also within the S and W (groups SS and WW, respectively), into the peritoneal cavity, inducing endometriosis. We also performed a sham surgery within both S and W mice (groups Sm and Wm, respectively). The size of the ectopic implants, microvessel density (MVD) and immunoreactivity to ROBO1, and vascular endothelial cell growth factor (VEGF) in ectopic and eutopic endometrium, along with hotplate and tail-flick tests in all mice, were then evaluated. We found that the induction of endometriosis resulted in generalized hyperalgesia, which was unaffected by Slit2 overexpression. Slit2 overexpression did increase the lesion size significantly and correlated positively with the MVD in ectopic and eutopic endometrium. Slit2 expression levels appear to correlate with the MVD, but not with VEGF immunoreactivity, in ectopic endometrium. Consequently, we conclude that Slit2 may play an important role in angiogenesis in endometriosis. The increased angiogenesis, as measured by MVD, but not VEGF immunoreactivity, likely resulted in increased lesion size in induced endometriosis. Thus, SLIT2/ROBO1 pathway may be a potential therapeutic target for treating endometriosis.

  12. Modulation of cellular adhesion in bovine brain microvessel endothelial cells by a decapeptide.

    Science.gov (United States)

    Pal, D; Audus, K L; Siahaan, T J

    1997-01-30

    The importance of cell adhesion molecules in maintaining the cellular integrity of the endothelial layer is well recognized, yet their exact participation in regulating the blood-brain barrier (BBB) is poorly understood. Both Ca(2+)-dependent and Ca(2+)-independent cell adhesion molecules are found in endothelial cells. In this study, we used immunofluorescence, ELISA, Western blot and cell adhesion assay to identify a Ca(2+)-dependent cell adhesion molecule, E-cadherin, in bovine brain microvessel endothelial cells (BBMECs). Monoclonal anti-E-cadherin antibody specifically interacted with cultured BBMECs and decorated the cellular junctions with a series of punctate fluorescence spots as seen by indirect immunofluorescence using a confocal microscope. The intensity of these fluorescence spots increased after brief treatment with hIFN-gamma or CPT-cAMP. In the cellular extract of BBMECs, a 120 kDa protein was immunoprecipitated with anti-E-cadherin antibody. BBMECs did not react with anti-N-cadherin antibody, but recognized the FITC-labeled LRAHAVDVNG-NH2, a decapeptide generated from the EC-1 domain of N-cadherin, which decorated the lateral margins of the cells with fluorescence spots. A concentration-dependent binding of this decapeptide was also observed in the flow cytometry assay. BBMECs dissociated with trypsin plus Ca2+ were able to reaggregate only in the presence of Ca2+. However, such cell-cell aggregations of BBMECs were prevented by the presence of either anti-E-cadherin antibody or the decapeptide in the assay medium. These results confirm that BBMECs possess a distinct Ca(2+)-dependent cell adhesion mechanism that can be modulated by the decapeptide. This modulation of cell-cell adhesion in BBMECs by the decapeptide is thought-provoking for creating channels for paracellular drug delivery across the BBB.

  13. Study of the Impact of Uterine Artery Embolization (UAE) on Endometrial Microvessel Density (MVD) and Angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tan Guosheng; Xiang Xianhong; Guo Wenbo; Zhang Bing; Chen Wei; Yang Jianyong, E-mail: kerisgz@126.com [The First Affiliated Hospital of Sun Yat-sen University, Department of Interventional Radiology (China)

    2013-08-01

    PurposeTo investigate the influence of uterine artery embolization (UAE) on endometrial microvessel density (MVD) and angiogenesis.MethodsSixty female guinea pigs were divided into two groups, the control group (n = 15) and the UAE treatment group (n = 45). In the UAE group, tris-acryl gelatin microspheres were used to generate embolization. Animals were further divided into three subgroups, A1, A2, and A3 (n = 15 for each subgroup), with uterine specimens collected at 7-15, 16-30, and 31-45 days after UAE, respectively. Immunostaining for factor VIII and CD105 was performed to identify total endometrial MVD (MVD{sub FVIII}) and CD105-positive angiogenesis (MVD{sub CD105}) at the indicated time points after UAE.ResultsQuantitative analysis revealed that MVD{sub FVIII} significantly decreased in the A1 (11.40 {+-} 2.76, p < 0.05) and A2 (15.37 {+-} 3.06, p < 0.05) groups compared to the control group (19.40 {+-} 2.50), and was restored to normal in the A3 group (18.77 {+-} 2.69). UAE caused a temporal up-regulation of MVD{sub CD105}-positive angiogenesis in the A1 group (9.33 {+-} 2.37, p < 0.05) and the A2 group (11.63 {+-} 1.56, p < 0.05) compared to the control group (7.12 {+-} 1.67), and the MVD{sub CD105} value returned to normal in the A3 group (8.07 {+-} 1.97).ConclusionUAE caused a temporal decrease in endometrial MVD that reversed over time as a result of the increase of CD105-positive angiogenesis. Although the UAE-induced reduction of endometrial MVD was reversible, its long-term effect on endometrial receptivity still needs further study.

  14. Asphalt fume dermal carcinogenicity potential: I. dermal carcinogenicity evaluation of asphalt (bitumen) fume condensates.

    Science.gov (United States)

    Clark, Charles R; Burnett, Donald M; Parker, Craig M; Arp, Earl W; Swanson, Mark S; Minsavage, Gary D; Kriech, Anthony J; Osborn, Linda V; Freeman, James J; Barter, Robert A; Newton, Paul E; Beazley, Shelley L; Stewart, Christopher W

    2011-10-01

    Asphalt (bitumen) fume condensates collected from the headspace above paving and Type III built up roofing asphalt (BURA) tanks were evaluated in two-year dermal carcinogenicity assays in male C3H/HeNCrl mice. A third sample was generated from the BURA using a NIOSH laboratory generation method. Similar to earlier NIOSH studies, the BURA fume condensates were applied dermally in mineral oil twice per week; the paving sample was applied 7 days/week for a total weekly dose of 50 mg/wk in both studies. A single benign papilloma was observed in a group of 80 mice exposed to paving fume condensate at the end of the two-year study and only mild skin irritation was observed. The lab generated BURA fume condensate resulted in statistically significant (P<0.0001) increases in squamous cell carcinomas (35 animals or 55% of animals at risk). The field-matched BURA condensate showed a weaker but significant (P=0.0063) increase (8 carcinomas or 13% of animals) and a longer average latency (90 weeks vs. 76 for the lab fume). Significant irritation was observed in both BURA condensates. It is concluded that the paving fume condensate was not carcinogenic under the test conditions and that the field-matched BURA fume condensate produced a weak tumor response compared to the lab generated sample.

  15. Novel 11β-hydroxysteroid dehydrogenase 1 inhibitors reduce cortisol levels in keratinocytes and improve dermal collagen content in human ex vivo skin after exposure to cortisone and UV.

    Science.gov (United States)

    Boudon, Stéphanie M; Vuorinen, Anna; Geotti-Bianchini, Piero; Wandeler, Eliane; Kratschmar, Denise V; Heidl, Marc; Campiche, Remo; Jackson, Eileen; Odermatt, Alex

    2017-01-01

    Activity and selectivity assessment of new bi-aryl amide 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) inhibitors, prepared in a modular manner via Suzuki cross-coupling, are described. Several compounds inhibiting 11β-HSD1 at nanomolar concentrations were identified. Compounds 2b, 3e, 7b and 12e were shown to selectively inhibit 11β-HSD1 over 11β-HSD2, 17β-HSD1 and 17β-HSD2. These inhibitors also potently inhibited 11β-HSD1 activity in intact HEK-293 cells expressing the recombinant enzyme and in intact primary human keratinocytes expressing endogenous 11β-HSD1. Moreover, compounds 2b, 3e and 12e were tested for their activity in human skin biopsies. They were able to prevent, at least in part, both the cortisone- and the UV-mediated decreases in collagen content. Thus, inhibition of 11β-HSD1 by these compounds can be further investigated to delay or prevent UV-mediated skin damage and skin aging.

  16. The Effects of Taoren-Honghua Herb Pair on Pathological Microvessel and Angiogenesis-Associated Signaling Pathway in Mice Model of CCl4-Induced Chronic Liver Disease

    Directory of Open Access Journals (Sweden)

    Shengyan Xi

    2016-01-01

    Full Text Available Chronic liver disease is one of the most common diseases that threaten human health. Effective treatment is still lacking in western medicine. Semen Persicae (Taoren and Flos Carthami (Honghua are known to relieve acute hepatic injury and inflammation, improve microcirculation, and reduce tissue fiber. The aim of our study is to investigate the potential mechanisms of Taoren-Honghua Herb Pair (THHP in murine model of chronic liver disease caused by Carbon Tetrachloride (CCl4. Mice were randomly divided into seven groups: (1 blank, (2 model, (3 control (colchicine, 0.1 mg/kg, (4 THHP (5.53, 2.67, and 1.33 g/kg, and (5 Tao Hong Siwu Decoction (THSWD (8.50 g/kg. Histological change and microvessels density were examined by microscopy. Hepatic function, serum fibrosis related factors, and hepatic vascular endothelial growth factor (VEGF were measured with ELISA. VEGF, kinase insert domain-containing receptor (KDR, Flt-1, and Akt mRNA expression in hepatic tissue were determined with PCR. Tissues of Akt, pAkt, KDR, and Flt-1 were measured with western blotting. Data from this study showed that THHP improved hepatic function and restrained the hepatic inflammation and fibrosis. Its role in inhibiting pathological angiogenesis and hepatic fibrogenesis may be through affecting the angiogenesis-associated VEGF and its upstream and downstream signaling pathways.

  17. The Effects of Taoren-Honghua Herb Pair on Pathological Microvessel and Angiogenesis-Associated Signaling Pathway in Mice Model of CCl4-Induced Chronic Liver Disease.

    Science.gov (United States)

    Xi, Shengyan; Yue, Lifeng; Shi, Mengmeng; Peng, Ying; Xu, Yangxinzi; Wang, Xinrong; Li, Qian; Kang, Zhijun; Li, Hanjing; Wang, Yanhui

    2016-01-01

    Chronic liver disease is one of the most common diseases that threaten human health. Effective treatment is still lacking in western medicine. Semen Persicae (Taoren) and Flos Carthami (Honghua) are known to relieve acute hepatic injury and inflammation, improve microcirculation, and reduce tissue fiber. The aim of our study is to investigate the potential mechanisms of Taoren-Honghua Herb Pair (THHP) in murine model of chronic liver disease caused by Carbon Tetrachloride (CCl4). Mice were randomly divided into seven groups: (1) blank, (2) model, (3) control (colchicine, 0.1 mg/kg), (4) THHP (5.53, 2.67, and 1.33 g/kg), and (5) Tao Hong Siwu Decoction (THSWD) (8.50 g/kg). Histological change and microvessels density were examined by microscopy. Hepatic function, serum fibrosis related factors, and hepatic vascular endothelial growth factor (VEGF) were measured with ELISA. VEGF, kinase insert domain-containing receptor (KDR), Flt-1, and Akt mRNA expression in hepatic tissue were determined with PCR. Tissues of Akt, pAkt, KDR, and Flt-1 were measured with western blotting. Data from this study showed that THHP improved hepatic function and restrained the hepatic inflammation and fibrosis. Its role in inhibiting pathological angiogenesis and hepatic fibrogenesis may be through affecting the angiogenesis-associated VEGF and its upstream and downstream signaling pathways.

  18. The margin of internal exposure (MOIE) concept for dermal risk assessment based on oral toxicity data - A case study with caffeine.

    Science.gov (United States)

    Bessems, Jos G M; Paini, Alicia; Gajewska, Monika; Worth, Andrew

    2017-03-10

    Route-to-route extrapolation is a common part of human risk assessment. Data from oral animal toxicity studies are commonly used to assess the safety of various but specific human dermal exposure scenarios. Using theoretical examples of various user scenarios, it was concluded that delineation of a generally applicable human dermal limit value is not a practicable approach, due to the wide variety of possible human exposure scenarios, including its consequences for internal exposure. This paper uses physiologically based kinetic (PBK) modelling approaches to predict animal as well as human internal exposure dose metrics and for the first time, introduces the concept of Margin of Internal Exposure (MOIE) based on these internal dose metrics. Caffeine was chosen to illustrate this approach. It is a substance that is often found in cosmetics and for which oral repeated dose toxicity data were available. A rat PBK model was constructed in order to convert the oral NOAEL to rat internal exposure dose metrics, i.e. the area under the curve (AUC) and the maximum concentration (Cmax), both in plasma. A human oral PBK model was constructed and calibrated using human volunteer data and adapted to accommodate dermal absorption following human dermal exposure. Use of the MOIE approach based on internal dose metrics predictions provides excellent opportunities to investigate the consequences of variations in human dermal exposure scenarios. It can accommodate within-day variation in plasma concentrations and is scientifically more robust than assuming just an exposure in mg/kg bw/day. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Alteration of Skin Properties with Autologous Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Rajesh L. Thangapazham

    2014-05-01

    Full Text Available Dermal fibroblasts are mesenchymal cells found between the skin epidermis and subcutaneous tissue. They are primarily responsible for synthesizing collagen and glycosaminoglycans; components of extracellular matrix supporting the structural integrity of the skin. Dermal fibroblasts play a pivotal role in cutaneous wound healing and skin repair. Preclinical studies suggest wider applications of dermal fibroblasts ranging from skin based indications to non-skin tissue regeneration in tendon repair. One clinical application for autologous dermal fibroblasts has been approved by the Food and Drug Administration (FDA while others are in preclinical development or various stages of regulatory approval. In this context, we outline the role of fibroblasts in wound healing and discuss recent advances and the current development pipeline for cellular therapies using autologous dermal fibroblasts. The microanatomic and phenotypic differences of fibroblasts occupying particular locations within the skin are reviewed, emphasizing the therapeutic relevance of attributes exhibited by subpopulations of fibroblasts. Special focus is provided to fibroblast characteristics that define regional differences in skin, including the thick and hairless skin of the palms and soles as compared to hair-bearing skin. This regional specificity and functional identity of fibroblasts provides another platform for developing regional skin applications such as the induction of hair follicles in bald scalp or alteration of the phenotype of stump skin in amputees to better support their prosthetic devices.

  20. Bcl-2和Bax在皮肤血管瘤组织中的表达及意义%Expression of Bcl-2 and Bax in different phases of human dermal hemagniomas

    Institute of Scientific and Technical Information of China (English)

    陕声国; 张端莲; 刘昱; 余瑛; 杨勇; 熊彦娥; 李红

    2008-01-01

    Objective To investigate the function of Bcl-2 and Bax in the pathogenesis,development and regression of human hemangiomas.Methods We examined the expression of Bcl-2 and Bax in proliferating versus involuting human hemangioma tissues and normal skin tissues using immunohistochemical technique.Results The expression of Bcl-2 in proliferating hemangiomas was significantly higher than that in involuting hemangiomas and normal skin tissues(P<0.01).No significant difference was found between the expression of Bcl-2 in involuting hemangiomas and that in normal skin tissues(P>0.05).The expression of Bax in involuting hemangiomas was significantly higher than that in proliferating hemangiomas and normal skin tissues(P<0.01);the expression of Bax in proliferating hemangiomas was significantly higher than that in normal skin tissues(P<0.05).Conclusion Bcl-2 and Bax participate in the development and involution of hemangioma,Bcl-2 plays a role in accelerating the proliferation of hemangioma by inhibiting the apoptosis of endothelial cells,and Bax promotes the switching from proliferation to involution in hemangiomas through inducing the apoptosis of endothelial cells.%目的 探讨Bcl-2和Bax在皮肤血管瘤发生、发展及退化过程中的作用及意义.方法 采用免疫组织化学方法(S-P法)检测人皮肤血管瘤增生期、退化期及正常组织中Bcl-2和Bax的表达水平.结果 Bcl-2在增生期血管瘤内皮细胞的表达明显高于退化期血管瘤内皮细胞和正常皮肤组织血管内皮细胞(P<0.01);Bcl-2在退化期血管瘤内皮细胞的表达与正常皮肤组织血管内皮细胞相比,差异无统计学意义(P>0.05).Bax在退化期血管瘤内皮细胞的表达明显高于增生期血管瘤内皮细胞和正常皮肤组织血管内皮细胞(P<0.01);Bax在增生期血管瘤内皮细胞的表达高于正常皮肤组织血管内皮细胞(P<0.05).结论 Bcl-2和Bax参与了血管瘤的发生、发展和退化.Bcl-2通过

  1. Pesticides re-entry dermal exposure of workers in greenhouses.

    Science.gov (United States)

    Caffarelli, V; Conte, E; Correnti, A; Gatti, R; Musmeci, F; Morali, G; Spagnoli, G; Tranfo, G; Triolo, L; Vita, M; Zappa, G

    2004-01-01

    This research has the aim to evaluate the risk of pesticide dermal exposure for workers in greenhouses. We considered the following crops: tomato, cucumber and strawberry, largely spread in Bracciano lake district. The pesticides monitored were: tetradifon on strawberry: metalaxyl, azoxystrobin and fenarimol on cucumber; acrinathrin, azoxystrobin and chlorpyrifos ethyl on tomato. The dermal exposure was evaluated by Dislodgeable Foliar Residue (DFR) measurements employing transfer coefficients got from literature. For risk evaluation, we have compared the dermal exposures with Acceptable Operator Exposure Levels (AOEL). The re-entry time were obtained intercepting the dose decay curves with AOEL values. The re-entry times result higher than two days in the cases of chlorpyrifos on tomato (re-entry time: 3 days), azoxystrobin on tomato (4 days), and tetradifon on strawberry (8 days). The need of measuring specific transfer coefficients is pointed out.

  2. Proliferation kinetics of the dermal infiltrate in cutaneous malignant lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Sterry, W.; Pullmann, H.; Steigleder, G.K.

    1981-01-01

    To obtain information about the role of local proliferation in the pathogenesis of dermal infiltrate in malignant cutaneous lymphomas, we determined the percentage of /sup 3/H-thymidine-labeled infiltrating cells (/sup 3/H-index). A linear correlation was found between proliferative activity and clinical stage in mycosis fungoides, i.e., the /sup 3/H-index is moderately elevated in stage I and high in stage III. The /sup 3/H-index is within normal range in dermal infiltrate of Sezary syndrome, diffuse lymphocytic lymphoma, as well as in lymphocytoma benigna cutis. In parapsoriasis en plaques two groups can be distinguished: in the small plaque variant (chronic superficial dermatitis) the /sup 3/H-index is low, whereas the large-plaque variant (prereticulotic poikiloderma) shows strong proliferative activity. Thus, determination of proliferative activity seems to give new insights into the pathogenesis of dermal infiltrate in cutaneous lymphomas.

  3. Blaschko Linear Enamel Defects - A Marker for Focal Dermal Hypoplasia: Case Report of Focal Dermal Hypoplasia

    Directory of Open Access Journals (Sweden)

    Stefan Gysin

    2015-05-01

    Full Text Available Focal dermal hypoplasia (FDH is a rare genetic skin disorder. The inheritance of FDH or Goltz-Gorlin syndrome is X-linked dominant and the disease is associated with a PORCN gene mutation. This gene plays a key role in the Wnt pathway, which has an impact on embryonic development. Every tissue derived from meso- and ectoderm can be affected. Patients suffer from cutaneous, ocular, osseous, oral and dental defects. The skin and dental alterations manifest along the Blaschko lines. We present a woman (born in 1962 suffering from FDH with congenital skin changes and Blaschko linear enamel defects. Typical symptoms (e.g. fat herniations, scoliosis, syndactyly, microphthalmia, caries and alopecia plus vertical grooving of all teeth gave a first indication. Molecular genetic testing confirmed the definitive diagnosis of FDH. We hypothesize that, in the context of typical skin changes, visible Blaschko lines on the teeth in the form of vertical grooves are almost pathognomonic for FDH.

  4. Perfusion CT in Colorectal Cancer: Comparison of Perfusion Parameters with Tumor Grade and Microvessel Density

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Woong; Jeong, Yong Yeon; Chang, Nam Kyu; Heo, Suk Hee; Hur, Young Hoe; Kang, Heoung Keun [Chonnam National University Hwasun Hospital, Hwasun(Korea, Republic of); Shin, Sang Soo; Lee, Jae Hyuk [Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2012-02-15

    The purpose of this study was to prospectively compare pre-operative computed tomography (CT) perfusion parameters with tumor grade from colorectal adenocarcinoma (CRC) and to correlate pre-operative CT perfusion parameters with microvessel density (MVD) to evaluate angiogenesis in CRC. Pre-operative perfusion CTs were performed with a 64-channel multidetector row CT in 27 patients (17 women and 10 men; age range 32-82 years) who were diagnosed with CRC involving the sigmoid and rectum between August 2006 and November 2007. All patients underwent surgery without pre-operative chemotherapy or radiation therapy. Dynamic perfusion CTs were performed for 65 seconds after intravenous injection of contrast medium (100 mL, 300 mg of iodine per mL, 5 mL/sec). Before surgery, blood flow (BF), blood volume, mean transit time (MTT), and permeability-surface area product were measured in the tumor. After surgery, one gastrointestinal pathologist evaluated tumor grade and performed immunohistochemical staining using CD 34 to determine MVD in each tumor. The Kruskal-Wallis test was used to compare CT perfusion parameters with tumor grade, and Pearson's correlation analysis was used to correlate CT perfusion parameters with MVD. In 27 patients with CRC, tumor grading was as follows: well differentiated (n = 8); moderately differentiated (n = 15); and poorly differentiated (n = 4). BF was higher in moderately differentiated CRC than well differentiated and poorly differentiated CRCs (p = 0.14). MTT was shorter in moderately differentiated than well differentiated and poorly differentiated CRCs (p = 0.039). The MVD was greater in poorly differentiated than well differentiated and moderately differentiated CRCs (p = 0.034). There was no significant correlation between other perfusion parameters and tumor grade. There was no significant correlation between CT perfusion parameters and MVD. BF and MTT measurement by perfusion CT is effective in predicting moderately differentiated CRCs

  5. Correlation between CT perfusion parameters and microvessel density and vascular endothelial growth factor in adrenal tumors.

    Directory of Open Access Journals (Sweden)

    Hai-yan Qin

    Full Text Available We evaluated the correlation between computed tomography (CT perfusion parameters and markers of angiogenesis in adrenal adenomas and non-adenomas to determine if perfusion CT can be used to distinguish between them. Thirty-four patients with pathologically-confirmed adrenal tumors (17 adenomas, 17 non-adenomas received CT perfusion imaging before surgery. CT perfusion parameters (blood flow [BF], blood volume [BV], mean transit time [MTT], and permeability surface area product [PS] were calculated. Tumor tissue sections were examined with immunohistochemical methods for vascular endothelial growth factor (VEGF expression and microvessel density (MVD. The mean age of the 34 patients was 43 years. The median BV was significantly higher in adenomas than in non-adenomas [12.3 ml/100 g, inter-quartile range (IQR: 10.4 to 16.5 ml/100 g vs. 8.8 ml/100 g, IQR: 3.3 to 9.4 ml/100 g, p=0.001]. Differences in BF, MTT, and PS parameter values between adenomas and non-adenomas were not significant (p>0.05. The mean MVD was significantly higher in adenomas compared to non-adenomas (98.5 ± 28.5 vs. 53.5 ± 27.0, p<0.0001. Adenomas also expressed significantly higher median VEGF than non-adenomas (65%, IQR: 50 to 79% vs. 45%, IQR: 35 to 67%, p=0.02. A moderately strong correlation between BF and VEGF (r=0.53, p=0.03 and between BV and MVD among adenomas (r=0.57, p=0.02 exist. Morphology, MVD, and VEGF expression in adenomas differ significantly from non-adenomas. Of the CT perfusion parameters examined, both BF and BV correlate with MVD, but only BF correlates with VEGF, and only in adenomas. The significant difference in BV suggests that BV may be used to differentiate adenomas from non-adenomas. However, the small difference in BV shows that it may only be possible to use BV to identify adenomas vs. non-adenomas at extreme BV values.

  6. Dermal Exposure during Filling, Loading and Brushing with Products Containing 2-(2-Butoxyethoxy)ethanol

    NARCIS (Netherlands)

    Gijsbers, J.H.J.; Tielemans, E.; Brouwer, D.H.; Hemmen, J.J. van

    2004-01-01

    Introduction: Limited quantitative information is available on dermal exposure to chemicals during various industrial activities. Therefore, within the scope of the EU-funded RISKOFDERM project, potential dermal exposure was measured during three different tasks: filling, loading and brushing. DEGBE

  7. Successful breast reconstruction using acellular dermal matrix can be recommended in healthy non-smoking patients

    DEFF Research Database (Denmark)

    Gunnarsson, Gudjon Leifur; Børsen-Koch, Mikkel; Arffmann, Susanne

    2013-01-01

    We present Scandinavia's first series of immediate alloplastic breast reconstructions with an acellular dermal matrix.......We present Scandinavia's first series of immediate alloplastic breast reconstructions with an acellular dermal matrix....

  8. Increased dermal collagen bundle alignment in systemic sclerosis is associated with a cell migration signature and role of Arhgdib in directed fibroblast migration on aligned ECMs.

    Science.gov (United States)

    Cao, Lizhi; Lafyatis, Robert; Burkly, Linda C

    2017-01-01

    Systemic sclerosis (SSc) is a devastating disease affecting the skin and internal organs. Dermal fibrosis manifests early and Modified Rodnan Skin Scores (MRSS) correlate with disease progression. Transcriptomics of SSc skin biopsies suggest the role of the in vivo microenvironment in maintaining the pathological myofibroblasts. Therefore, defining the structural changes in dermal collagen in SSc patients could inform our understanding of fibrosis pathogenesis. Here, we report a method for quantitative whole-slide image analysis of dermal collagen from SSc patients, and our findings of more aligned dermal collagen bundles in diffuse cutaneous SSc (dcSSc) patients. Using the bleomycin-induced mouse model of SSc, we identified a distinct high dermal collagen bundle alignment gene signature, characterized by a concerted upregulation in cell migration, adhesion, and guidance pathways, and downregulation of spindle, replication, and cytokinesis pathways. Furthermore, increased bundle alignment induced a cell migration gene signature in fibroblasts in vitro, and these cells demonstrated increased directed migration on aligned ECM fibers that is dependent on expression of Arhgdib (Rho GDP-dissociation inhibitor 2). Our results indicate that increased cell migration is a cellular response to the increased collagen bundle alignment featured in fibrotic skin. Moreover, many of the cell migration genes identified in our study are shared with human SSc skin and may be new targets for therapeutic intervention.

  9. [Exploratory study on the micro-remodeling of dermal tissue].

    Science.gov (United States)

    Jiang, Yu-zhi; Ding, Gui-fu; Lu, Shu-liang

    2009-10-01

    To explore the effect of three-dimensional structure of dermal matrix on biological behavior of fibroblasts (Fb) in the microcosmic perspective. The three-dimensional structure of dermal tissue was analyzed by plane geometric and trigonometric function. Microdots structure array with cell adhesion effect was designed by computer-assisted design software according to the adhesive and non-adhesive components of dermal tissue. Four sizes (8 microm x 3 microm, space 6 microm; 16 microm x 3 microm, space 6 microm; 16 microm x 5 microm, space 8 microm; 20 microm x 3 microm, space 2 microm) of micropier grid used for cell culture (MPGCC) with cell-adhesive microdots, built up with micro-pattern printing and molecule self-assembly method were used to culture dermal Fb. Fb cultured with cell culture matrix without micropier grid was set up as control. The expression of skeleton protein (alpha-SMA) of Fb, cell viability and cell secretion were detected with immunohistochemistry, fluorescent immunohistochemistry, MTT test and the hydroxyproline content assay. The three-dimensional structure of dermal tissue could be simulated by MPGCC as shown in arithmetic analysis. Compared with those of control group [(12 +/- 3)% and (0.53 +/- 0.03) microg/mg, (0.35 +/- 0.04)], the expression of alpha-SMA [(49 +/- 3)%, (61 +/- 3)%, (47 +/- 4)%, (51 +/- 3)%] and the content of hydroxyproline [(0.95 +/- 0.04), (0.87 +/- 0.03), (0.81 +/- 0.03), (0.77 +/- 0.03) microg/mg] were increased significantly (P cell viability of Fb (0.12 +/- 0.03, 0.13 +/- 0.04, 0.14 +/- 0.03, 0.19 +/- 0.03) cultured in MPGCC was decreased significantly (P cell viability and the content of hydroxyproline of Fb cultured in four sizes of MPGCC were also significantly changed as compared with one another (P < 0.05). MPGCC may be the basic functional unit of dermal template, or unit of dermal template to call. Different three-dimensional circumstances for dermal tissue can result in different template effect and wound

  10. Bmi-1和EZH2基因在皮肤血管瘤组织中的表达及意义%Expression and signifieance of Bmi-1 and EZH2 in Human Dermal Hemangiomas

    Institute of Scientific and Technical Information of China (English)

    刘涓; 王赟; 张端莲

    2012-01-01

    Objective To investigate the effect of Bmi-1 and EZH2 in human dermalhemangioma. Methods Specimens from 40 cases (15 males and 25 females) of hemangioma were collected from the Department of Pathology in Renmin Hospital of Wuhan University from 2008 to 2011. We examined the expression of Bmi-1 and EZH2 in proliferative, involuting hemangioma and normal skin tissues by using im-munohistochemical technique. Average optical density and positive area rates of expression of Bmi-1 and EZH2 were measured by image analysis (HPIAS-1000). Results 1. Bmi-1 expression was significantly higher in the proliferative phase of angioma in endothelial cells than in involuting hemangioma and normal skin (P0. 05). 2. EZH2 expression was significantly higher in the proliferative phase of angioma in endothelial cells than in involuting hemangioma and normal skin (P0. 05). Conclusion Bmi-1 and EZH2 expressions high in proliferating hemangioma, indicating that both Bmi-1 and EZH2 are engaged in the occurrence and development of hemangioma.%目的 探讨Bmi-1和EZH2基因在血管瘤组织中的表达及其意义.方法 收集武汉大学人民医院病理科2008年-2011年皮肤毛细血管瘤存档蜡块40例,其中男性15例,女性25例.采用免疫组织化学SP法检测40例皮肤血管瘤增生期、退化期及正常皮肤组织Bmi-1和EZH2基因表达水平,采用HPIAS 1000图文报告管理系统对Bmi-1和EZH2基因的表达进行定量分析,并用SPSS11.5软件对各组免疫组织化学反应阳性颗粒的平均光密度、阳性面积率做单因素方差分析和SNK(q)检验.结果 (1)Bmi-1的表达增生期血管瘤血管内皮细胞中可见密集分布的棕黄色颗粒,Bmi-1呈高表达,正常皮肤组及退化组血管内皮细胞中可见少量的棕黄色颗粒,Bmi-1呈低表达.增生期组Bmi-1的表达明显高于退化期组和正常皮肤组(P<0.05),而后两组比较差异无统计学意义(P>0.05).(2)EZH2的表达 增生期血管瘤血管内皮细胞中

  11. EFSA Panel on Plant Protection Products and their Residues (PPR); EFSA Scientific Opinion on the science behind the revision of the guidance document on dermal absorption

    DEFF Research Database (Denmark)

    Petersen, Annette

    values that the Panel derived from the analysis of the available databases. Elements for a tiered approach are described and commented on. The PPR Panel also concludes that in vitro human studies can be used as a stand alone test for assessment of dermal absorption. The Panel indicates some additional...

  12. File list: InP.Epd.10.AllAg.Dermal_fibroblast [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Epd.10.AllAg.Dermal_fibroblast hg19 Input control Epidermis Dermal fibroblast S...,SRX447386,SRX666594,SRX447389,SRX200051,SRX864096,SRX200053 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Epd.10.AllAg.Dermal_fibroblast.bed ...

  13. File list: NoD.Epd.05.AllAg.Dermal_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Epd.05.AllAg.Dermal_fibroblasts mm9 No description Epidermis Dermal fibroblasts... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Epd.05.AllAg.Dermal_fibroblasts.bed ...

  14. File list: ALL.Epd.20.AllAg.Dermal_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Epd.20.AllAg.Dermal_fibroblasts mm9 All antigens Epidermis Dermal fibroblasts S...26,SRX310225,SRX310224,SRX388187 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Epd.20.AllAg.Dermal_fibroblasts.bed ...

  15. File list: InP.Epd.50.AllAg.Dermal_fibroblast [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Epd.50.AllAg.Dermal_fibroblast hg19 Input control Epidermis Dermal fibroblast S...,SRX200045,SRX864096,SRX200053,SRX200051,SRX447389,SRX447386 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Epd.50.AllAg.Dermal_fibroblast.bed ...

  16. File list: Oth.Epd.20.AllAg.Dermal_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Epd.20.AllAg.Dermal_fibroblasts mm9 TFs and others Epidermis Dermal fibroblasts... SRX247302,SRX382120,SRX247301,SRX247303,SRX382119,SRX310229,SRX310227,SRX310225 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Epd.20.AllAg.Dermal_fibroblasts.bed ...

  17. Validation of the dermal exposure model in ECETOC TRA.

    Science.gov (United States)

    Marquart, Hans; Franken, Remy; Goede, Henk; Fransman, Wouter; Schinkel, Jody

    2017-08-01

    The ECETOC TRA model (presently version 3.1) is often used to estimate worker inhalation and dermal exposure in regulatory risk assessment. The dermal model in ECETOC TRA has not yet been validated by comparison with independent measured exposure levels. This was the goal of the present study. Measured exposure levels and relevant contextual information were gathered via literature search, websites of relevant occupational health institutes and direct requests for data to industry. Exposure data were clustered in so-called exposure cases, which are sets of data from one data source that are expected to have the same values for input parameters in the ECETOC TRA dermal exposure model. For each exposure case, the 75th percentile of measured values was calculated, because the model intends to estimate these values. The input values for the parameters in ECETOC TRA were assigned by an expert elicitation and consensus building process, based on descriptions of relevant contextual information.From more than 35 data sources, 106 useful exposure cases were derived, that were used for direct comparison with the model estimates. The exposure cases covered a large part of the ECETOC TRA dermal exposure model. The model explained 37% of the variance in the 75th percentiles of measured values. In around 80% of the exposure cases, the model estimate was higher than the 75th percentile of measured values. In the remaining exposure cases, the model estimate may not be sufficiently conservative.The model was shown to have a clear bias towards (severe) overestimation of dermal exposure at low measured exposure values, while all cases of apparent underestimation by the ECETOC TRA dermal exposure model occurred at high measured exposure values. This can be partly explained by a built-in bias in the effect of concentration of substance in product used, duration of exposure and the use of protective gloves in the model. The effect of protective gloves was calculated to be on average a

  18. Expression of inducible nitric oxide synthase and cyclooxygenase-2 in pancreatic adenocarcinoma:Correlation with microvessel density

    Institute of Scientific and Technical Information of China (English)

    Hans U. Kasper; Hella Wolf; Uta Drebber; Helmut K. Wolf; Michael A. Kern

    2004-01-01

    AIM: Cyclooxygenases (COX) are key enzymes for conversion of arachidonic acid to prostaglandins. Nitric oxide synthase (NOS) is the enzyme responsible for formation of nitric oxide.Both have constitutive and inducible isoforms. The inducible isoforms (iNOS and COX-2) are of great interest as regulators of tumor angiogenesis, tumorigenesis and inflammatory processes. This study was to clarify their role in pancreatic adenocarcinomas.METHODS: We investigated the immunohistochemical iNOS and COX-2 expression in 40 pancreatic ducal adenocarcinomas of different grade and stage. The results were compared with microvessel density and clinicopathological data.RESULTS: Twenty-one (52.5%) of the cases showed iNOS expression, 15 (37.5%) of the cases were positive for COX-2.The immunoreaction was heterogeneously distributed within the tumors. Staining intensity was different between the tumors. No correlation between iNOS and COX-2 expression was seen. There was no relationship with microvessel density.However, iNOS positive tumors developed more often distant metastases and the more malignant tumors showed a higher COX-2 expression. There was no correlation with other clinicopathological data.CONCLUSION: Approximately half of the cases expressed iNOS and COX-2. These two enzymes do not seem to be the key step in angiogenesis or carcinogenesis of pancreatic adenocarcinomas. Due to a low prevalence of COX-2expression, chemoprevention of pancreatic carcinomas by COX-2 inhibitors can only achieve a limited success.

  19. Microvessel Landscape Assessment in Pancreatic Ductal Adenocarcinoma: Unclear Value of Targeting Endoglin (CD105) as Prognostic Factor of Clinical Outcome.

    Science.gov (United States)

    Lytras, Dimitrios; Leontara, Vassileia; Kefala, Maria; Foukas, Periklis G; Giannakou, Niki; Pouliakis, Abraham; Dervenis, Christos; Panayiotides, Ioannis G; Karakitsos, Petros

    2015-01-01

    Tumor angiogenesis based on microvessel density assessment has been associated with poor prognosis in several studies of patients with pancreatic ductal adenocarcinoma (PDAC). Expression of endoglin (CD105), a tumor-induced vascularization marker, has been found to represent a negative prognostic factor in many malignant tumors. The aim of our study was to assess the value of tumoral microvascularity both with pan-endothelial markers and endoglin as well, in correlation with the clinical outcome of patients with PDAC. Fifty-eight patients with PDAC, 36 males and 22 females, with a mean (SD) age of 65.4 (10.0) years were included in the study. Deparaffinized sections from formalin-fixed areas both from the center and periphery (invasion front) of the tumors were immunostained for CD105 as well as for the endothelial markers CD31 and CD34. Tumoral angiogenesis was assessed on the basis of microvessel density (number of vessels per square millimeter) and on microvascular area (square micrometers) as well. High intratumoral microvascular area, in endoglin-stained sections, was found to be of marginal prognostic significance for recurrence (log rank, P 0.05). Survival was also marginally associated with CD31 intratumoral microvascular area (log rank, P 0.05). Further studies are needed before endoglin replaces the conventional angiogenesis markers in PDCA.

  20. eEF-2 Phosphorylation Down-Regulates P-Glycoprotein Over-Expression in Rat Brain Microvessel Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Xing Hua Tang

    Full Text Available We investigated whether glutamate, NMDA receptors, and eukaryote elongation factor-2 kinase (eEF-2K/eEF-2 regulate P-glycoprotein expression, and the effects of the eEF-2K inhibitor NH125 on the expression of P-glycoprotein in rat brain microvessel endothelial cells (RBMECs.Cortex was obtained from newborn Wistar rat brains. After surface vessels and meninges were removed, the pellet containing microvessels was resuspended and incubated at 37°C in culture medium. Cell viability was assessed by the MTT assay. RBMECs were identified by immunohistochemistry with anti-vWF. P-glycoprotein, phospho-eEF-2, and eEF-2 expression were determined by western blot analysis. Mdr1a gene expression was analyzed by RT-PCR.Mdr1a mRNA, P-glycoprotein and phospho-eEF-2 expression increased in L-glutamate stimulated RBMECs. P-glycoprotein and phospho-eEF-2 expression were down-regulated after NH125 treatment in L-glutamate stimulated RBMECs.eEF-2K/eEF-2 should have played an important role in the regulation of P-glycoprotein expression in RBMECs. eEF-2K inhibitor NH125 could serve as an efficacious anti-multidrug resistant agent.

  1. Mitigating thermal mechanical damage potential during two-photon dermal imaging.

    Science.gov (United States)

    Masters, Barry R; So, Peter T C; Buehler, Christof; Barry, Nicholas; Sutin, Jason D; Mantulin, William W; Gratton, Enrico

    2004-01-01

    Two-photon excitation fluorescence microscopy allows in vivo high-resolution imaging of human skin structure and biochemistry with a penetration depth over 100 microm. The major damage mechanism during two-photon skin imaging is associated with the formation of cavitation at the epidermal-dermal junction, which results in thermal mechanical damage of the tissue. In this report, we verify that this damage mechanism is of thermal origin and is associated with one-photon absorption of infrared excitation light by melanin granules present in the epidermal-dermal junction. The thermal mechanical damage threshold for selected Caucasian skin specimens from a skin bank as a function of laser pulse energy and repetition rate has been determined. The experimentally established thermal mechanical damage threshold is consistent with a simple heat diffusion model for skin under femtosecond pulse laser illumination. Minimizing thermal mechanical damage is vital for the potential use of two-photon imaging in noninvasive optical biopsy of human skin in vivo. We describe a technique to mitigate specimen thermal mechanical damage based on the use of a laser pulse picker that reduces the laser repetition rate by selecting a fraction of pulses from a laser pulse train. Since the laser pulse picker decreases laser average power while maintaining laser pulse peak power, thermal mechanical damage can be minimized while two-photon fluorescence excitation efficiency is maximized.

  2. In vitro dermal and epidermal cellular response to titanium alloy implants fabricated with electron beam melting.

    Science.gov (United States)

    Springer, Jessica Collins; Harrysson, Ola L A; Marcellin-Little, Denis J; Bernacki, Susan H

    2014-10-01

    Transdermal osseointegrated prostheses (TOPs) are emerging as an alternative to socket prostheses. Electron beam melting (EBM) is a promising additive manufacturing technology for manufacture of custom, freeform titanium alloy (Ti6Al4V) implants. Skin ongrowth for infection resistance and mechanical stability are critically important to the success of TOP, which can be influenced by material composition and surface characteristics. We assessed viability and proliferation of normal human epidermal keratinocytes (NHEK) and normal human dermal fibroblasts (NHDF) on several Ti6Al4V surfaces: solid polished commercial, solid polished EBM, solid unpolished EBM and porous unpolished EBM. Cell proliferation was evaluated at days 2 and 7 using alamarBlue(®) and cell viability was analyzed with a fluorescence-based live-dead assay after 1 week. NHDF and NHEK were viable and proliferated on all Ti6Al4V surfaces. NHDF proliferation was highest on commercial and EBM polished surfaces. NHEK was highest on commercial polished surfaces. All EBM Ti6Al4V discs exhibited an acceptable biocompatibility profile compared to solid Ti6Al4V discs from a commercial source for dermal and epidermal cells. EBM may be considered as an option for fabrication of custom transdermal implants. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. protective effect of tetracycline against dermal toxicity induced by Jellyfish venom.

    Directory of Open Access Journals (Sweden)

    Changkeun Kang

    Full Text Available BACKGROUND: Previously, we have reported that most, if not all, of the Scyphozoan jellyfish venoms contain multiple components of metalloproteinases, which apparently linked to the venom toxicity. Further, it is also well known that there is a positive correlation between the inflammatory reaction of dermal tissues and their tissue metalloproteinase activity. Based on these, the use of metalloproteinase inhibitors appears to be a promising therapeutic alternative for the treatment of jellyfish envenomation. METHODOLOGY AND PRINCIPAL FINDINGS: Tetracycline (a metalloproteinase inhibitor has been examined for its activity to reduce or prevent the dermal toxicity induced by Nemopilema nomurai (Scyphozoa: Rhizostomeae jellyfish venom (NnV using in vitro and in vivo models. HaCaT (human keratinocyte and NIH3T3 (mouse fibroblast incubated with NnV showed decreases in cell viability, which is associated with the inductions of metalloproteinase-2 and -9. This result suggests that the use of metalloproteinase inhibitors, such as tetracycline, may prevent the jellyfish venom-mediated local tissue damage. In vivo experiments showed that comparing with NnV-alone treatment, tetracycline pre-mixed NnV demonstrated a significantly reduced progression of dermal toxicity upon the inoculation onto rabbit skin. CONCLUSIONS/SIGNIFICANCE: It is believed that there has been no previous report on the therapeutic agent of synthetic chemical origin for the treatment of jellyfish venom-induced dermonecrosis based on understanding its mechanism of action except the use of antivenom treatment. Furthermore, the current study, for the first time, has proposed a novel mechanism-based therapeutic intervention for skin damages caused by jellyfish stings.

  4. The Effect of PRF on Serum Starved Human Dermal Fibroblast.

    Directory of Open Access Journals (Sweden)

    Sunardi Radiono

    2016-12-01

    Hasil: FDM yang berpuasa serum ternyata secara signifikan (p < 0,05 mengalami penurunan kemampuan menimbun kolagen sebesar 10%, proliferasi sebesar 20% dan penurunan kemampuan migrasi sebesar 25%. Penambahan lisat FKP ternyata dapat memulihkan aktivitas selular tersebut. Dari eksperimen ini dapat disimpulkan bahwa FKP merupakan material biologis yang dapat dikembangkan untuk memacu penyembuhan ulkus khronis. Bagaimanapun juga, untuk memperoleh bukti-bukti klinis yang baik, uji klinis tetap diperlukan.

  5. Review of dermal effects and uptake of petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kezic, S.; Kruse, J. [Coronel Institute of Occupational Health, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Jakasa, I. [University of Zagreb, Zagreb (Croatia)

    2010-12-15

    This report serves as an update to and an extension of a previous CONCAWE report on dermal absorption of petroleum hydrocarbons (Petroleum hydrocarbons: their absorption through and effects on the skin, CONCAWE Report 84/54, 1984). To contribute to health risk assessments associated with dermal exposure, this report evaluates experimental data to determine the extent to which petroleum hydrocarbons pass through the skin. These data strongly suggest that dermal exposure to petroleum hydrocarbons, even following long-term exposures such as in occupational settings, will not cause systemic toxicity under normal working conditions and assuming an intact skin barrier. Skin contact with some petroleum products may cause skin irritation, leading to dermatitis, particularly after repeated or prolonged exposure. In addition to these irritating effects, the skin barrier function may be affected following repeated contact with petroleum hydrocarbons, making the skin potentially more susceptible to other irritants, sensitizing agents, and bacteria. In addition, the impaired skin barrier may lead to increased dermal penetration of hydrocarbons and other substances. To avoid this there is a need to minimise skin contact.

  6. Task-based dermal exposure models for regulatory risk assessment

    NARCIS (Netherlands)

    Warren, N.D.; Marquart, H.; Christopher, Y.; Laitinen, J.; Hemmen, J.J. van

    2006-01-01

    The regulatory risk assessment of chemicals requires the estimation of occupational dermal exposure. Until recently, the models used were either based on limited data or were specific to a particular class of chemical or application. The EU project RISKOFDERM has gathered a considerable number of ne

  7. Crosslinking of dermal sheep collagen using hexamethylene diisocyanate

    NARCIS (Netherlands)

    Olde Damink, L.H.H.; Dijkstra, P.J.; Luyn, van M.J.A.; Wachem, van P.B.; Nieuwenhuis, P.; Feijen, J.

    1995-01-01

    The use of hexamethylene diisocyanate (HMDIC) as a crosslinking agent for dermal sheep collagen (DSC) was studied. Because HMDIC is only slightly water soluble, a surfactant was used to obtain a clear and micellar crosslinking solution and to promote the penetration of HMDIC in the DSC matrix. Using

  8. Differential Apoptosis in Mucosal and Dermal Wound Healing

    Science.gov (United States)

    Johnson, Ariel; Francis, Marybeth; DiPietro, Luisa Ann

    2014-01-01

    Objectives: Dermal and mucosal healing are mechanistically similar. However, scarring and closure rates are dramatically improved in mucosal healing, possibly due to differences in apoptosis. Apoptosis, nature's preprogrammed form of cell death, occurs via two major pathways, extrinsic and intrinsic, which intersect at caspase3 (Casp3) cleavage and activation. The purpose of this experiment was to identify the predominant pathways of apoptosis in mucosal and dermal wound healing. Approach: Wounds (1 mm biopsy punch) were made in the dorsal skin (n=3) or tongue (n=3) of female Balb/C mice aged 6 weeks. Wounds were harvested at 6 h, 24 h, day 3 (D3), D5, D7, and D10. RNA was isolated and analyzed using real time reverse transcriptase–polymerase chain reaction. Expression levels for genes in the intrinsic and extrinsic apoptotic pathways were compared in dermal and mucosal wounds. Results: Compared to mucosal healing, dermal wounds exhibited significantly higher expression of Casp3 (at D5; pwound healing compared to skin. Conclusion: Expression patterns of key regulators of apoptosis in wound healing indicate that apoptosis occurs predominantly through the intrinsic pathway in the healing mucosa, but predominantly through the extrinsic pathway in the healing skin. The identification of differences in the apoptotic pathways in skin and mucosal wounds may allow the development of therapeutics to improve skin healing. PMID:25493209

  9. Dermal Uptake of Organic Vapors Commonly Found in Indoor Air

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Nazaroff, William W

    2014-01-01

    . In this group are common parabens, lower molecular weight phthalates, o-phenylphenol, Texanol, ethylene glycol, and α-terpineol. For other compounds, estimated dermal uptakes are small compared to inhalation. Examples include aliphatic hydrocarbons, single ring aromatics, terpenes, chlorinated solvents...

  10. CROSS-LINKING OF DERMAL SHEEP COLLAGEN USING HEXAMETHYLENE DIISOCYANATE

    NARCIS (Netherlands)

    DAMINK, LHHO; DIJKSTRA, PJ; VANLUYN, MJA; VANWACHEM, PB; NIEUWENHUIS, P; FEIJEN, J

    1995-01-01

    The use of hexamethylene diisocyanate (HMDIC) as a crosslinking agent for dermal sheep collagen (DSC) was studied. Because HMDIC is on ly slightly water soluble, a surfactant was used to obtain a clear and micellar crosslinking solution and to promote the penetration of HMDIC in the DSC matrix. Usin

  11. The Effect of Gynostemma pentaphyllum Extract on Mouse Dermal Fibroblasts.

    Science.gov (United States)

    Lobo, Sara Nadia; Qi, Yu Qing; Liu, Quan Zhong

    2014-01-01

    Background. The objective of this paper is to demonstrate the effect of Gynostemma pentaphyllum extract on mouse dermal fibroblasts. Recent studies have shown that this plant may possess great antioxidant properties, which can be very beneficial in combating oxidative stress. Methods. Gynostemma pentaphyllum extract was prepared and mouse dermal fibroblasts were obtained and cultured as per our laboratory protocols. Twelve samples of cells were cultured under the same conditions and both negative and positive controls were established. Induction of oxidative stress was carried out using ultraviolet C (UVC) light. Viable cell count was carried out, using microscopy. The analysis of the overall results was processed using SPSS version 16.0. Results. Statistical analysis showed strong positive correlation between the concentration of Gynostemma pentaphyllum and the mean duration of cell viability (rs = 1), with a high level of statistical significance (P Gynostemma pentaphyllum extract prolongs viability of mouse dermal fibroblasts damaged by UVC light-induced oxidative stress. The results show the potential benefits of this extract on dermal cell aging.

  12. PULMONARY HYPERRESPONSIVENESS FOLLOWING DERMAL EXPOSURE TO SELECTED DIISOCYANATES

    Science.gov (United States)

    PULMONARY HYPERRESPONSIVENESS FOLLOWING DERMAL EXPOSURE TO SELECTED DIISOCYANATESM.J.K. Selgrade, E.H. Boykin, N.H. Coates, D.L. Doerfler, S.H. GavettExperimental Toxicology Div., National Health and Environmental Research Laboratory, Office of Research and Developmen...

  13. Cerebellair abces door een occipitale dermale sinus bij een zuigeling

    NARCIS (Netherlands)

    Groen, R J; van Ouwerkerk, W J

    1994-01-01

    A 7.5-month-old girl was admitted with the clinical signs and symptoms of raised intracranial pressure. This was caused by an obstructive hydrocephalus, due to cerebellar abscesses induced by an infected contiguous complete occipital dermal sinus. Staphylococcus aureus was cultured. The patient was

  14. Task-based dermal exposure models for regulatory risk assessment

    NARCIS (Netherlands)

    Warren, N.D.; Marquart, H.; Christopher, Y.; Laitinen, J.; Hemmen, J.J. van

    2006-01-01

    The regulatory risk assessment of chemicals requires the estimation of occupational dermal exposure. Until recently, the models used were either based on limited data or were specific to a particular class of chemical or application. The EU project RISKOFDERM has gathered a considerable number of

  15. In vivo dermal absorption of pyrethroid pesticides in the rat.

    Science.gov (United States)

    The potential for exposure to pyrethroid pesticides has risen recently because of their increased use. The objective of this study was to examine the in vivo dermal absorption of bifenthrin, deltamethrin and permethrin in the rat. Hair on the dorsal side of anesthetized adult m...

  16. Novel System for Testing Dermal and Epidermal Toxicity in Vitro

    Science.gov (United States)

    1990-02-15

    months of this contract, we have been successful at establishing primary culture from 20 neonatal foreskin samples (from routine circumcisions ) and 6...objectives: 1. Established an inventory of neonatal and adult keratinocytes and fibroblasts. Modified the procedure for establishing and passing these...thymidine incorporation into adherent cell populations. Substrates utilized included neonatal fibroblast dermal equivalents (from foreskin) and adult

  17. 40 CFR 799.9120 - TSCA acute dermal toxicity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true TSCA acute dermal toxicity. 799.9120 Section 799.9120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...) Preparations. Healthy young adult animals are acclimatized to the laboratory conditions for at least 5...

  18. Defense against dermal exposures is only skin deep

    DEFF Research Database (Denmark)

    Nielsen, Jesper Bo; Nielsen, Flemming; Sørensen, Jens Ahm

    2007-01-01

    substances (glyphosat, caffeine, benzoic acid, malathion) covering a range of solubilities. Further, we studied the extent to which a slightly damaged skin would change the rate, the amount absorbed during dermal exposure and the distribution of chemical deposition between epidermis and dermis. The present...

  19. Efficacy of skin wash on dermal absorption: an in vitro study on four model compounds of varying solubility

    DEFF Research Database (Denmark)

    Nielsen, Jesper Bo

    2010-01-01

    that percutaneous penetration continues after end of exposure due to the reservoir present in the skin. However, penetration rate will decrease significantly, and it is evident that simple hand-wash after end of exposure not only reduces the amount of residue present in the upper skin compartment but also......PURPOSE: Following dermal exposure to chemicals causing systemic toxicity, the general advice to avoid further systemic exposure is to wash the skin. The present study uses four model compounds (benzoic acid, glyphosat, caffeine, malathion) with varying size and solubility to substantiate...... this advice and quantify the effect of skin wash following 6 h dermal exposure on subsequent extent of skin penetration and deposition within the skin compartment. METHOD: Percutaneous penetration through human skin is studied in an in vitro model with static diffusion cells. RESULTS: The study demonstrates...

  20. Effects of Thaumetopoea pityocampa (Lepidoptera: Thaumetopoeidae) larvae on the degranulation of dermal mast cells in mice; an electron microscopic study.

    Science.gov (United States)

    Kalender, Yusuf; Kalender, Suna; Uzunhisarcikli, Meltem; Ogutcu, Ayşe; Açikgoz, Fatma

    2004-01-01

    The pine caterpillar Thaumetopoea pityocampa (Lepidoptera: Thaumetopoeidae) is found in pine woods. Hairs of the T. pityocampa caterpillar cause a cutaneous reaction in humans and animals. Mast cells are responsible for allergic reactions in mammals. In this study male swiss albino mice were divided into two groups: 5 mice in the control group and 25 mice in the experimental group. The dorsal skin of mice was shaved. The mice in the experimental group and T. pityocampa larvae (fifth instar, approximately n=100) were put in the same cage. Dermal mast cells of mice exposed to T. pityocampa were examined with a transmission electron microscope and compared to the control group 1, 3, 6, 12 and 24 hours after exposure. Dermal mast cell degranulation in mice was observed 12 and 24 hours after exposure.

  1. Protective effect of chromene isolated from Sargassum horneri against UV-A-induced damage in skin dermal fibroblasts.

    Science.gov (United States)

    Kim, Jung-Ae; Ahn, Byul-Nim; Kong, Chang-Suk; Kim, Se-Kwon

    2012-08-01

    Skin homoeostasis is interrupted during UV-A irradiation. How the UV-A-altered skin components influences photoageing of skin should be investigated using human in vitro models that are important for understanding skin ageing. In this study, chromene compound, sargachromenol, was isolated from Sargassum horneri, and its potency on inhibition of photoageing was investigated in UV-A-irradiated dermal fibroblasts. Effects of sargachromenol on the prevention of photoageing were evaluated by measuring ROS production, membrane protein oxidation, lipid peroxidation and ageing-related gene expression in UV-A-irradiated human skin dermal fibroblasts. The results indicated that treatment with sargachromenol suppressed the collagenase matrix metalloproteinases (MMPs), MMP-1, MMP-2 and MMP-9 expression without any cytotoxicity and phototoxicity. It was further found that these inhibitions were because of increase in the expression of TIMP-1 and TIMP-2 genes. Furthermore, we confirmed that the UV-A-induced transcriptions of AP-1 signalling pathway were regulated by sargachromenol treatment in UV-A-irradiated dermal fibroblasts. © 2012 John Wiley & Sons A/S.

  2. Chitosan Dermal Substitute and Chitosan Skin Substitute Contribute to Accelerated Full-Thickness Wound Healing in Irradiated Rats

    Directory of Open Access Journals (Sweden)

    Abu Bakar Mohd Hilmi

    2013-01-01

    Full Text Available Wounds with full-thickness skin loss are commonly managed by skin grafting. In the absence of a graft, reepithelialization is imperfect and leads to increased scar formation. Biomaterials can alter wound healing so that it produces more regenerative tissue and fewer scars. This current study use the new chitosan based biomaterial in full-thickness wound with impaired healing on rat model. Wounds were evaluated after being treated with a chitosan dermal substitute, a chitosan skin substitute, or duoderm CGF. Wounds treated with the chitosan skin substitute showed the most re-epithelialization (33.2 ± 2.8%, longest epithelial tongue (1.62 ± 0.13 mm, and shortest migratory tongue distance (7.11 ± 0.25 mm. The scar size of wounds treated with the chitosan dermal substitute (0.13 ± 0.02 cm and chitosan skin substitute (0.16 ± 0.05 cm were significantly decreased (P<0.05 compared with duoderm (0.45 ± 0.11 cm. Human leukocyte antigen (HLA expression on days 7, 14, and 21 revealed the presence of human hair follicle stem cells and fibroblasts that were incorporated into and surviving in the irradiated wound. We have proven that a chitosan dermal substitute and chitosan skin substitute are suitable for wound healing in full-thickness wounds that are impaired due to radiation.

  3. Inhalation and dermal exposure among asphalt paving workers.

    Science.gov (United States)

    McClean, M D; Rinehart, R D; Ngo, L; Eisen, E A; Kelsey, K T; Herrick, R F

    2004-11-01

    The primary objective of this study was to identify determinants of inhalation and dermal exposure to polycyclic aromatic compounds (PACs) among asphalt paving workers. The study population included three groups of highway construction workers: 20 asphalt paving workers, as well as 12 millers and 6 roadside construction workers who did not work with hot-mix asphalt. During multiple consecutive work shifts, personal air samples were collected from each worker's breathing zone using a Teflon filter and cassette holder connected in series with an XAD-2 sorbent tube, while dermal patch samples were collected from the underside of each worker's wrist. All exposure samples were analyzed for PACs, pyrene and benzo[a]pyrene. Inhalation and dermal PAC exposures were highest among asphalt paving workers. Among paving workers, inhalation and dermal PAC exposures varied significantly by task, crew, recycled asphalt product (RAP) and work rate (inhalation only). Asphalt mix containing high RAP was associated with a 5-fold increase in inhalation PAC exposures and a 2-fold increase in dermal PAC exposure, compared with low RAP mix. The inhalation PAC exposures were consistent with the workers' proximity to the primary source of asphalt fume (paver operators > screedmen > rakers > roller operators), such that the adjusted mean exposures among paver operators (5.0 microg/m3, low RAP; 24 microg/m3, high RAP) were 12 times higher than among roller operators (0.4 microg/m3, low RAP; 2.0 microg/m3, high RAP). The dermal PAC exposures were consistent with the degree to which the workers have actual contact with asphalt-contaminated surfaces (rakers > screedmen > paver operators > roller operators), such that the adjusted mean exposures among rakers (175 ng/cm2, low RAP; 417 ng/cm2, high RAP) were approximately 6 times higher than among roller operators (27 ng/cm2, low RAP; 65 ng/cm2, high RAP). Paving task, RAP content and crew were also found to be significant determinants of