WorldWideScience

Sample records for human cytosolic sults

  1. Sulfation of afimoxifene, endoxifen, raloxifene, and fulvestrant by the human cytosolic sulfotransferases (SULTs): A systematic analysis.

    Science.gov (United States)

    Hui, Ying; Luo, Lijun; Zhang, Lingtian; Kurogi, Katsuhisa; Zhou, Chunyang; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2015-07-01

    Previous studies demonstrated that sulfate conjugation is involved in the metabolism of three commonly used breast cancer drugs, tamoxifen, raloxifene and fulvestrant. The current study was designed to systematically identify the human cytosolic sulfotransferases (SULTs) that are capable of sulfating raloxifene, fulvestrant, and two active metabolites of tamoxifen, afimoxifene and endoxifen. A systematic analysis using 13 known human SULTs revealed SULT1A1 and SULT1C4 as the major SULTs responsible for the sulfation of afimoxifene, endoxifen, raloxifene and fulvestrant. Kinetic parameters of these two human SULTs in catalyzing the sulfation of these drug compounds were determined. Sulfation of afimoxifene, endoxifen, raloxifene and fulvestrant under metabolic conditions was examined using HepG2 human hepatoma cells and MCF-7 breast cancer cells. Moreover, human intestine, kidney, liver, and lung cytosols were examined to verify the presence of afimoxifene/endoxifen/raloxifene/fulvestrant-sulfating activity.

  2. Sulfation of fulvestrant by human liver cytosols and recombinant SULT1A1 and SULT1E1

    Directory of Open Access Journals (Sweden)

    Edavana VK

    2011-11-01

    Full Text Available Vineetha Koroth Edavana1, Xinfeng Yu1, Ishwori B Dhakal1, Suzanne Williams1, Baitang Ning2, Ian T Cook3, David Caldwell1, Charles N Falany3, Susan Kadlubar11Division of Medical Genetics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; 2Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA; 3Department of Pharmacology, University of Alabama, Birmingham, AL, USAAbstract: Fulvestrant (Faslodex™ is a pure antiestrogen that is approved to treat hormone receptor-positive metastatic breast cancer in postmenopausal women. Previous studies have demonstrated that fulvestrant metabolism in humans involves cytochromes P450 and UDP-glucuronosyltransferases (UGTs. To date, fulvestrant sulfation has not been characterized. This study examined fulvestrant sulfation with nine recombinant sulfotransferases and found that only SULT1A1 and SULT1E1 displayed catalytic activity toward this substrate, with Km of 4.2 ± 0.99 and 0.2 ± 0.16 µM, respectively. In vitro assays of 104 human liver cytosols revealed marked individual variability that was highly correlated with β-naphthol sulfation (SULT1A1 diagnostic substrate; r = 0.98, P < 0.0001, but not with 17ß-estradiol sulfation (SULT1E1 diagnostic substrate; r = 0.16, P = 0.10. Fulvestrant sulfation was correlated with both SULT1A1*1/2 genotype (P value = 0.023 and copy number (P < 0.0001. These studies suggest that factors influencing SULT1A1/1E1 tissue expression and/or enzymatic activity could influence the efficacy of fulvestrant therapy.Keywords: fulvestrant, sulfotransferase, genotype, copy number

  3. Human cytosolic sulfotransferase SULT1C4 mediates the sulfation of doxorubicin and epirubicin.

    Science.gov (United States)

    Luo, Lijun; Zhou, Chunyang; Hui, Ying; Kurogi, Katsuhisa; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2016-04-01

    Doxorubicin, an anthracycline, has been reported to be excreted in sulfate conjugated form. The current study aimed to identify the human cytosolic sulfotransferase(s) (SULT(s)) that is(are) capable of sulfating doxorubicin and its analog epirubicin, and to verify whether sulfation of doxorubicin and epirubicin may occur under metabolic conditions. A systematic analysis of thirteen known human SULTs, previously cloned, expressed, and purified, revealed SULT1C4 as the only human SULT capable of sulfating doxorubicin and epirubicin. Cultured HepG2 human hepatoma cells and Caco-2 human colon carcinoma cells were labeled with [(35)S]sulfate in the presence of different concentrations of doxorubicin or epirubicin. Analysis of spent labeling media showed the generation and release of [(35)S]sulfated doxorubicin and epirubicin by HepG2 cells and Caco-2 cells. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed the expression of SULT1C4 in both HepG2 cells and Caco-2 cells. These results provided a molecular basis underlying the previous finding that sulfate-conjugated doxorubicin was excreted in the urine of patients treated with doxorubicin.

  4. Expression of the orphan cytosolic sulfotransferase SULT4A1 and its major splice variant in human tissues and cells: dimerization, degradation and polyubiquitination.

    Directory of Open Access Journals (Sweden)

    Neelima P Sidharthan

    Full Text Available The cytosolic sulfotransferase SULT4A1 is highly conserved between mammalian species but its function remains unknown. Polymorphisms in the SULT4A1 gene have been linked to susceptibility to schizophrenia. There are 2 major SULT4A1 transcripts in humans, one that encodes full length protein (wild-type and one that encodes a truncated protein (variant. Here, we investigated the expression of SULT4A1 in human tissues by RT-PCR and found the wild-type mRNA to be expressed mainly in the brain, gastrointestinal tract and prostate while the splice variant was more widely expressed. In human cell-lines, the wild-type transcript was found in neuronal cells, but the variant transcript was expressed in nearly all other lines examined. Western blot analysis only identified SULT4A1 protein in cells that expressed the wild-type mRNA. No variant protein was detected in cells that expressed the variant mRNA. Ectopically expressed full length SULT4A1 protein was stable while the truncated protein was not, having a half-life of approximately 3 hr. SULT4A1 was also shown to homodimerize, consistent with other SULTs that contain the consensus dimerization motif. Mutation of the dimerization motif resulted in a monomeric form of SULT4A1 that was rapidly degraded by polyubiquitination on the lysine located within the dimerization motif. These results show that SULT4A1 is widely expressed in human tissues, but mostly as a splice variant that produces a rapidly degraded protein. Dimerization protects the protein from degradation. Since many other cytosolic sulfotransferases possess the conserved lysine within the dimerization motif, homodimerization may serve, in part, to stabilize these enzymes in vivo.

  5. Expression of the orphan cytosolic sulfotransferase SULT4A1 and its major splice variant in human tissues and cells: dimerization, degradation and polyubiquitination.

    Science.gov (United States)

    Sidharthan, Neelima P; Butcher, Neville J; Mitchell, Deanne J; Minchin, Rodney F

    2014-01-01

    The cytosolic sulfotransferase SULT4A1 is highly conserved between mammalian species but its function remains unknown. Polymorphisms in the SULT4A1 gene have been linked to susceptibility to schizophrenia. There are 2 major SULT4A1 transcripts in humans, one that encodes full length protein (wild-type) and one that encodes a truncated protein (variant). Here, we investigated the expression of SULT4A1 in human tissues by RT-PCR and found the wild-type mRNA to be expressed mainly in the brain, gastrointestinal tract and prostate while the splice variant was more widely expressed. In human cell-lines, the wild-type transcript was found in neuronal cells, but the variant transcript was expressed in nearly all other lines examined. Western blot analysis only identified SULT4A1 protein in cells that expressed the wild-type mRNA. No variant protein was detected in cells that expressed the variant mRNA. Ectopically expressed full length SULT4A1 protein was stable while the truncated protein was not, having a half-life of approximately 3 hr. SULT4A1 was also shown to homodimerize, consistent with other SULTs that contain the consensus dimerization motif. Mutation of the dimerization motif resulted in a monomeric form of SULT4A1 that was rapidly degraded by polyubiquitination on the lysine located within the dimerization motif. These results show that SULT4A1 is widely expressed in human tissues, but mostly as a splice variant that produces a rapidly degraded protein. Dimerization protects the protein from degradation. Since many other cytosolic sulfotransferases possess the conserved lysine within the dimerization motif, homodimerization may serve, in part, to stabilize these enzymes in vivo.

  6. Identification and characterization of two novel cytosolic sulfotransferases, SULT1 ST7 and SULT1 ST8, from zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T.-A. [Department of Pharmacology, College of Pharmacy, University of Toledo, Toledo, OH 43606 (United States); Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan (China); Bhuiyan, Shakhawat [Division of Arts and Sciences, Jarvis Christian College, Hawkins, TX 75765 (United States); Snow, Rhodora [School of Mathematics and Science, J. Sargeant Reynolds Community College, Richmond, VA 23285 (United States); Yasuda, Shin; Yasuda, Tomoko [Department of Pharmacology, College of Pharmacy, University of Toledo, Toledo, OH 43606 (United States); Yang, Y.-S. [Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan (China); Williams, Frederick E.; Liu, M.-Y.; Suiko, Masahito [Department of Pharmacology, College of Pharmacy, University of Toledo, Toledo, OH 43606 (United States); Carter, Glendora [School of Mathematics and Science, J. Sargeant Reynolds Community College, Richmond, VA 23285 (United States); Liu, M.-C. [Department of Pharmacology, College of Pharmacy, University of Toledo, Toledo, OH 43606 (United States)], E-mail: ming.liu@utoledo.edu

    2008-08-29

    Cytosolic sulfotransferases (SULTs) constitute a family of Phase II detoxification enzymes that are involved in the protection against potentially harmful xenobiotics as well as the regulation and homeostasis of endogenous compounds. Compared with humans and rodents, the zebrafish serves as an excellent model for studying the role of SULTs in the detoxification of environmental pollutants including environmental estrogens. By searching the expressed sequence tag database, two zebrafish cDNAs encoding putative SULTs were identified. Sequence analysis indicated that these two putative zebrafish SULTs belong to the SULT1 gene family. The recombinant form of these two novel zebrafish SULTs, designated SULT1 ST7 and SULT1 ST8, were expressed using the pGEX-2TK glutathione S-transferase (GST) gene fusion system and purified from transformed BL21 (DE3) cells. Purified GST-fusion protein form of SULT1 ST7 and SULT1 ST8 exhibited strong sulfating activities toward environmental estrogens, particularly hydroxylated polychlorinated biphenyls (PCBs), among various endogenous and xenobiotic compounds tested as substrates. pH-dependence experiments showed that SULT1 ST7 and SULT1 ST8 displayed pH optima at 6.5 and 8.0, respectively. Kinetic parameters of the two enzymes in catalyzing the sulfation of catechin and chlorogenic acid as well as 3-chloro-4-biphenylol were determined. Developmental expression experiments revealed distinct patterns of expression of SULT1 ST7 and SULT1 ST8 during embryonic development and throughout the larval stage onto maturity.

  7. The effects of endoxifen and other major metabolites of tamoxifen on the sulfation of estradiol catalyzed by human cytosolic sulfotransferases hSULT1E1 and hSULT1A1*1.

    Science.gov (United States)

    Squirewell, Edwin J; Duffel, Michael W

    2015-06-01

    Tamoxifen is successfully used for both treatment and prevention of estrogen-dependent breast cancer, yet side effects and development of resistance remain problematic. Endoxifen is a major active metabolite of tamoxifen that is being investigated for clinical use. We hypothesized that endoxifen and perhaps other major metabolites of tamoxifen may affect the ability of human estrogen sulfotransferase 1E1 (hSULT1E1) and human phenol sulfotransferase 1A1 isoform 1 (hSULT1A1*1) to catalyze the sulfation of estradiol, an important mechanism in termination of estrogen signaling through loss of activity at estrogen receptors. Our results indicated that endoxifen, N-desmethyltamoxifen (N-desTAM), 4-hydroxytamoxifen (4-OHTAM), and tamoxifen-N-oxide were weak inhibitors of hSULT1E1 with Ki values ranging from 10 μM to 38 μM (i.e., over 1000 times higher than the 8.1 nM Km value for estradiol as substrate for the enzyme). In contrast to the results with hSULT1E1, endoxifen and 4-OHTAM were significant inhibitors of the sulfation of 2.0 µM estradiol catalyzed by hSULT1A1*1, with IC50 values (9.9 μM and 1.6 μM, respectively) that were similar to the Km value (1.5 μM) for estradiol as substrate for this enzyme. Additional investigation of the interaction of these metabolites with the two sulfotransferases revealed that endoxifen, 4-OHTAM, and N-desTAM were substrates for hSULT1E1 and hSULT1A1*1, although the relative catalytic efficiencies varied with both the substrate and the enzyme. These results may assist in future elucidation of cell- and tissue-specific effects of tamoxifen and its metabolites.

  8. Mechanistic insights into the specificity of human cytosolic sulfotransferase 2A1 (hSULT2A1) for hydroxylated polychlorinated biphenyls through the use of fluoro-tagged probes.

    Science.gov (United States)

    Ekuase, E J; van 't Erve, T J; Rahaman, A; Robertson, L W; Duffel, M W; Luthe, G

    2016-02-01

    Determining the relationships between the structures of substrates and inhibitors and their interactions with drug-metabolizing enzymes is of prime importance in predicting the toxic potential of new and legacy xenobiotics. Traditionally, quantitative structure activity relationship (QSAR) studies are performed with many distinct compounds. Based on the chemical properties of the tested compounds, complex relationships can be established so that models can be developed to predict toxicity of novel compounds. In this study, the use of fluorinated analogues as supplemental QSAR compounds was investigated. Substituting fluorine induces changes in electronic and steric properties of the substrate without substantially changing the chemical backbone of the substrate. In vitro assays were performed using purified human cytosolic sulfotransferase hSULT2A1 as a model enzyme. A mono-hydroxylated polychlorinated biphenyl (4-OH PCB 14) and its four possible mono-fluoro analogues were used as test compounds. Remarkable similarities were found between this approach and previously published QSAR studies for hSULT2A1. Both studies implicate the importance of dipole moment and dihedral angle as being important to PCB structure in respect to being substrates for hSULT2A1. We conclude that mono-fluorinated analogues of a target substrate can be a useful tool to study the structure activity relationships for enzyme specificity.

  9. Crystal structures of human sulfotransferases SULT1B1 and SULT1C1 complexed with the cofactor product adenosine-3'- 5'-diphosphate (PAP)

    Energy Technology Data Exchange (ETDEWEB)

    Dombrovski, Luidmila; Dong, Aiping; Bochkarev, Alexey; Plotnikov, Alexander N. (Toronto)

    2008-09-17

    Cytosolic sulfotransferases (SULTs), often referred as Phase II enzymes of chemical defense, are a superfamily of enzymes that catalyze the transfer of a sulfonate group from 3{prime}-phosphoadenosine 5{prime}-phosphosulfate (PAPS) to an acceptor group of substrates. This reaction modulates the activities of a large array of small endogenous and foreign chemicals including drugs, toxic compounds, steroid hormones, and neurotransmitters. In some cases, however, SULTs activate certain food and environmental compounds to mutagenenic and carcinogenic metabolites. Twelve human SULTs have been identified, which are partitioned into three families: SULT1, SULT2 and SULT4. The SULT1 family is further divided in four subfamilies, A, B, C, and E, and comprises eight members (1A1, 1A2, 1A3, 1B1, 1C1, 1C2, 1C3, and 1E1). Despite sequence and structural similarity among the SULTs, the family and subfamily members appear to have different biological function. SULT1 family shows substrate-binding specificity for simple phenols, estradiol, and thyroid hormones, as well as environmental xenobiotics and drugs. Human SULT1B1 is expressed in liver, colon, small intestine, and blood leukocytes, and shows substrate-binding specificity to thyroid hormones and benzylic alcohols. Human SULT1C1 is expressed in the adult stomach, kidney, and thyroid, as well as in fetal kidney and liver. SULT1C1 catalyzes the sulfonation of p-nitrophenol and N-hydroxy-2-acetylaminofluorene in vitro. However, the in vivo function of the enzyme remains unknown. We intend to solve the structures for all of the SULTs for which structural information is not yet available, and compare the structural and functional features of the entire SULT superfamily. Here we report the structures of two members of SULT1 family, SULT1B1 and SULT1C1, both in complex with the product of the PAPS cofactor, adenosine-3{prime}-5{prime}-diphosphate (PAP).

  10. Overexpression of SULT2B1b Promotes Angiogenesis in Human Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Wen Chen

    2016-03-01

    Full Text Available Background/Aims: Overexpression of cytosolic sulfotransferase 2B1b (SULT2B1b has been commonly found in colorectal and hepatocellular carcinoma, suggesting that SULT2B1b might act as a potential oncogenic protein. However, its clinical significance and biological role in gastric cancer progression remain largely unknown. Methods: Expressions of SULT2B1b in clinical gastric cancer (GC samples were examined using qRT-PCR and Western blot. Results: SULT2B1b was markedly overexpressed in human GC samples, and positively correlated with vessel density and associated with poor clinical features. We also demonstrated that overexpression of SULT2B1b resulted in increased tumor angiogenesis and tumor growth in mouse GC models. In addition, ablation of SULT2B1b in human GC cells lines BGC823 and MKN45 decreased the capability of the cells to recruit endothelial cells. Moreover, depletion of SULT2B1b in GC cells reduced VEGF-A expression by downregulating SP1 and AP2. Conclusion: Our results suggested that the SULT2B1b-mediated angiogenic pathway could serve as biomarkers for GC diagnosis and prognosis, and suppressing SULT2B1b-mediated angiogenic signaling might be a promising strategy for developing novel GC treatment.

  11. Sulfation of 6-Gingerol by the Human Cytosolic Sulfotransferases: A Systematic Analysis.

    Science.gov (United States)

    Luo, Lijun; Mei, Xue; Xi, Yuecheng; Zhou, Chunyang; Hui, Ying; Kurogi, Katsuhisa; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2016-02-01

    Previous studies have demonstrated the presence of the sulfated form of 6-gingerol, a major pharmacologically active component of ginger, in plasma samples of normal human subjects who were administered 6-gingerol. The current study was designed to systematically identify the major human cytosolic sulfotransferase enzyme(s) capable of mediating the sulfation of 6-gingerol. Of the 13 known human cytosolic sulfotransferases examined, six (SULT1A1, SULT1A2, SULT1A3, SULT1B1, SULT1C4, SULT1E1) displayed significant sulfating activity toward 6-gingerol. Kinetic parameters of SULT1A1, SULT1A3, SULT1C4, and SULT1E1 that showed stronger 6-gingerol-sulfating activity were determined. Of the four human organ samples tested, small intestine and liver cytosols displayed considerably higher 6-gingerol-sulfating activity than those of the lung and kidney. Moreover, sulfation of 6-gingerol was shown to occur in HepG2 human hepatoma cells and Caco-2 human colon adenocarcinoma cells under the metabolic setting. Collectively, these results provided useful information relevant to the metabolism of 6-gingerol through sulfation both in vitro and in vivo.

  12. Sulfation of ractopamine and salbutamol by the human cytosolic sulfotransferases.

    Science.gov (United States)

    Ko, Kyounga; Kurogi, Katsuhisa; Davidson, Garrett; Liu, Ming-Yih; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2012-09-01

    Feed additives such as ractopamine and salbutamol are pharmacologically active compounds, acting primarily as β-adrenergic agonists. This study was designed to investigate whether the sulfation of ractopamine and salbutamol may occur under the metabolic conditions and to identify the human cytosolic sulfotransferases (SULTs) that are capable of sulfating two major feed additive compounds, ractopamine and salbutamol. A metabolic labelling study showed the generation and release of [(35)S]sulfated ractopamine and salbutamol by HepG2 human hepatoma cells labelled with [(35)S]sulfate in the presence of these two compounds. A systematic analysis using 11 purified human SULTs revealed SULT1A3 as the major SULT responsible for the sulfation of ractopamine and salbutamol. The pH dependence and kinetic parameters were analyzed. Moreover, the inhibitory effects of ractopamine and salbutamol on SULT1A3-mediated dopamine sulfation were investigated. Cytosol or S9 fractions of human lung, liver, kidney and small intestine were examined to verify the presence of ractopamine-/salbutamol-sulfating activity in vivo. Of the four human organs, the small intestine displayed the highest activity towards both compounds. Collectively, these results imply that the sulfation mediated by SULT1A3 may play an important role in the metabolism and detoxification of ractopamine and salbutamol.

  13. Liver X receptor alpha mediated genistein induction of human dehydroepiandrosterone sulfotransferase (hSULT2A1) in Hep G2 cells.

    Science.gov (United States)

    Chen, Yue; Zhang, Shunfen; Zhou, Tianyan; Huang, Chaoqun; McLaughlin, Alicia; Chen, Guangping

    2013-04-15

    Cytosolic sulfotransferases are one of the major families of phase II drug metabolizing enzymes. Sulfotransferase-catalyzed sulfonation regulates hormone activities, metabolizes drugs, detoxifies xenobiotics, and bioactivates carcinogens. Human dehydroepiandrosterone sulfotransferase (hSULT2A1) plays important biological roles by sulfating endogenous hydroxysteroids and exogenous xenobiotics. Genistein, mainly existing in soy food products, is a naturally occurring phytoestrogen with both chemopreventive and chemotherapeutic potential. Our previous studies have shown that genistein significantly induces hSULT2A1 in Hep G2 and Caco-2 cells. In this study, we investigated the roles of liver X receptor (LXRα) in the genistein induction of hSULT2A1. LXRs have been shown to induce expression of mouse Sult2a9 and hSULT2A1 gene. Our results demonstrate that LXRα mediates the genistein induction of hSULT2A1, supported by Western blot analysis results, hSULT2A1 promoter driven luciferase reporter gene assay results, and mRNA interference results. Chromatin immunoprecipitation (ChIP) assay results demonstrate that genistein increase the recruitment of hLXRα binding to the hSULT2A1 promoter. These results suggest that hLXRα plays an important role in the hSULT2A1 gene regulation. The biological functions of phytoestrogens may partially relate to their induction activity toward hydroxysteroid SULT.

  14. Binding interactions of hydroxylated polychlorinated biphenyls (OHPCBs) with human hydroxysteroid sulfotransferase hSULT2A1.

    Science.gov (United States)

    Ekuase, Edugie J; Lehmler, Hans-Joachim; Robertson, Larry W; Duffel, Michael W

    2014-04-05

    Polychlorinated biphenyls (PCBs) are persistent environmental contaminants, and exposure to PCBs and their hydroxylated metabolites (OHPCBs) has been associated with various adverse health effects. The mammalian cytosolic sulfotransferases (SULTs) catalyze the sulfation of OHPCBs, and the interaction of OHPCBs with both the SULT1 and SULT2 families of these enzymes has received attention both with respect to metabolic disposition of these molecules and the potential mechanisms for their roles in endocrine disruption. We have previously shown that OHPCBs interact with human hydroxysteroid sulfotransferase hSULT2A1, an enzyme that catalyzes the sulfation of dehydroepiandrosterone (DHEA), other alcohol-containing steroids, bile acids, and many xenobiotics. The objective of our current studies is to investigate the mechanism of inhibition of hSULT2A1 by OHPCBs by combining inhibition kinetics with determination of equilibrium binding constants and molecular modeling of potential interactions. Examination of the effects of fifteen OHPCBs on the sulfation of DHEA catalyzed by hSULT2A1 showed predominantly noncompetitive inhibition patterns. This was observed for OHPCBs that were substrates for sulfation reactions catalyzed by the enzyme as well as those that solely inhibited the sulfation of DHEA. Equilibrium binding experiments and molecular modeling studies indicated that the OHPCBs bind at the binding site for DHEA on the enzyme, and that the observed noncompetitive patterns of inhibition are consistent with binding in more than one orientation to more than one enzyme complex. These results have implications for the roles of SULTs in the toxicology of OHPCBs, while also providing molecular probes of the complexity of substrate/inhibitor interactions with hSULT2A1.

  15. Liver X receptor alpha mediated genistein induction of human dehydroepiandrosterone sulfotransferase (hSULT2A1) in Hep G2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yue; Zhang, Shunfen [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078 (United States); Zhou, Tianyan [Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100083 (China); Huang, Chaoqun; McLaughlin, Alicia [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078 (United States); Chen, Guangping, E-mail: guangping.chen@okstate.edu [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078 (United States)

    2013-04-15

    Cytosolic sulfotransferases are one of the major families of phase II drug metabolizing enzymes. Sulfotransferase-catalyzed sulfonation regulates hormone activities, metabolizes drugs, detoxifies xenobiotics, and bioactivates carcinogens. Human dehydroepiandrosterone sulfotransferase (hSULT2A1) plays important biological roles by sulfating endogenous hydroxysteroids and exogenous xenobiotics. Genistein, mainly existing in soy food products, is a naturally occurring phytoestrogen with both chemopreventive and chemotherapeutic potential. Our previous studies have shown that genistein significantly induces hSULT2A1 in Hep G2 and Caco-2 cells. In this study, we investigated the roles of liver X receptor (LXRα) in the genistein induction of hSULT2A1. LXRs have been shown to induce expression of mouse Sult2a9 and hSULT2A1 gene. Our results demonstrate that LXRα mediates the genistein induction of hSULT2A1, supported by Western blot analysis results, hSULT2A1 promoter driven luciferase reporter gene assay results, and mRNA interference results. Chromatin immunoprecipitation (ChIP) assay results demonstrate that genistein increase the recruitment of hLXRα binding to the hSULT2A1 promoter. These results suggest that hLXRα plays an important role in the hSULT2A1 gene regulation. The biological functions of phytoestrogens may partially relate to their induction activity toward hydroxysteroid SULT. - Highlights: ► Liver X receptor α mediated genistein induction of hSULT2A1 in Hep G2 cells. ► LXRα and RXRα dimerization further activated this induction. ► Western blot results agreed well with luciferase reporter gene assay results. ► LXRs gene silencing significantly decreased hSULT2A1 expression. ► ChIP analysis suggested that genistein enhances hLXRα binding to the hSULT2A1 promoter.

  16. Subcellular location and molecular mobility of human cytosolic sulfotransferase 1C1 in living human embryonic kidney 293 cells.

    Science.gov (United States)

    Sheng, Jonathan J; Acquaah-Mensah, George K

    2011-08-01

    Cytosolic sulfotransferases were first isolated from the hepatic cytosol, and they have been localized in the cytoplasm of formaldehyde-fixed human cell samples. The current work was carried out to determine the subcellular localization and molecular mobility of cytosolic sulfotransferases in living human embryonic kidney (HEK) 293 cells. In this work, the subcellular location of human cytosolic sulfotransferase 1C1 (SULT1C1) was studied in cultured HEK293 cells using confocal laser-scanning microscopy. A green fluorescent protein (GFP)-tagged SULT1C1 protein was localized in the cytoplasm of living HEK293 cells. This is consistent with results from previous studies on several other cytosolic sulfotransferase isoforms. Fluorescence recovery after photobleaching microscopy was performed to assess the molecular mobility of the expressed GFP-SULT1C1 molecules. The results suggested that the expressed recombinant GFP-SULT1C1 molecules in living HEK293 cells may include both mobile and immobile populations. To obtain additional insights into the subcellular location of SULT1C1, two machine learning algorithms, Sequential Minimal Optimization and Multilayer Perceptron, were used to compute the probability distribution for the localization of SULT1C1 in nine selected cellular compartments. The resulting probability distribution suggested that the most likely subcellular location of SULT1C1 is the cytosol.

  17. Human sulfotransferase SULT1C1: cDNA cloning, tissue-specific expression, and chromosomal localization

    Energy Technology Data Exchange (ETDEWEB)

    Her, Chengtao; Weinshilboum, R.M. [Mayo Foundation, Rochester, MN (United States); Kaur, G.P. [Temple Univ. Medical School, Philadelphia, PA (United States)] [and others

    1997-05-01

    We have isolated and sequenced a cDNA that encodes an apparent human orthologue of a rat sulfotransferase (ST) cDNA that has been referred to as {open_quotes}ST1C1{close_quotes} - although it was recently recommended that sulfotransferase proteins and cDNAs be abbreviated {open_quotes}SULT.{close_quotes} The new human cDNA was cloned from a fetal liver-spleen cDNA library and had an 888-bp open reading frame. The amino acid sequence of the protein encoded by the cDNA was 62% identical with that encoded by the rat ST1C1 cDNA and included signature sequences that are conserved in all cytosolic SULT enzymes. Dot blot analysis of mRNA from 50 human tissues indicated that the cDNA was expressed in adult human stomach, kidney, and thyroid, as well as fetal kidney and liver. Northern blot analyses demonstrated that the major SULT1C1 mRNA in those same tissues was 1.4 kb in length. We next determined the partial human SULT1C1 gene sequence for a portion of the 5{prime}-terminus of one intron. That sequence was used to design SULT1C1 gene-specific primers that were used to perform the PCR with DNA from human/rodent somatic cell hybrids to demonstrate that the gene was located on chromosome 2. PCR amplifications performed with human chromosome 2/rodent hybrid cell DNA as template sublocalized SULT1C1 to a region between bands 2q11.1 and 2q11.2. 14 refs., 2 figs.

  18. Estrogen sulfotransferase/SULT1E1 promotes human adipogenesis.

    Science.gov (United States)

    Ihunnah, Chibueze A; Wada, Taira; Philips, Brian J; Ravuri, Sudheer K; Gibbs, Robert B; Kirisci, Levent; Rubin, J Peter; Marra, Kacey G; Xie, Wen

    2014-05-01

    Estrogen sulfotransferase (EST/SULT1E1) is known to catalyze the sulfoconjugation and deactivation of estrogens. The goal of this study is to determine whether and how EST plays a role in human adipogenesis. By using human primary adipose-derived stem cells (ASCs) and whole-fat tissues from the abdominal subcutaneous fat of obese and nonobese subjects, we showed that the expression of EST was low in preadipocytes but increased upon differentiation. Overexpression and knockdown of EST in ASCs promoted and inhibited differentiation, respectively. The proadipogenic activity of EST in humans was opposite to the antiadipogenic effect of the same enzyme in rodents. Mechanistically, EST promoted adipogenesis by deactivating estrogens. The proadipogenic effect of EST can be recapitulated by using an estrogen receptor (ER) antagonist or ERα knockdown. In contrast, activation of ER in ASCs inhibited adipogenesis by decreasing the recruitment of the adipogenic peroxisome proliferator-activated receptor γ (PPARγ) onto its target gene promoters, whereas ER antagonism increased the recruitment of PPARγ to its target gene promoters. Linear regression analysis revealed a positive correlation between the expression of EST and body mass index (BMI), as well as a negative correlation between ERα expression and BMI. We conclude that EST is a proadipogenic factor which may serve as a druggable target to inhibit the turnover and accumulation of adipocytes in obese patients.

  19. Modification of the catalytic function of human hydroxysteroid sulfotransferase hSULT2A1 by formation of disulfide bonds.

    Science.gov (United States)

    Qin, Xiaoyan; Teesch, Lynn M; Duffel, Michael W

    2013-05-01

    The human cytosolic sulfotransferase hSULT2A1 catalyzes the sulfation of a broad range of xenobiotics, as well as endogenous hydroxysteroids and bile acids. Reversible modulation of the catalytic activity of this enzyme could play important roles in its physiologic functions. Whereas other mammalian sulfotransferases are known to be reversibly altered by changes in their redox environment, this has not been previously shown for hSULT2A1. We have examined the hypothesis that the formation of disulfide bonds in hSULT2A1 can reversibly regulate the catalytic function of the enzyme. Three thiol oxidants were used as model compounds to investigate their effects on homogeneous preparations of hSULT2A1: glutathione disulfide, 5,5'-dithiobis(2-nitrobenzoic acid), and 1,1'-azobis(N,N-dimethylformamide) (diamide). Examination of the effects of disulfide bond formation with these agents indicated that the activity of the enzyme is reversibly altered. Studies on the kinetics of the hSULT2A1-catalyzed sulfation of dehydroepiandrosterone (DHEA) showed the effects of disulfide bond formation on the substrate inhibition characteristics of the enzyme. The effects of these agents on the binding of substrates and products, liquid chromatography-mass spectrometry identification of the disulfides formed, and structural modeling of the modified enzyme were examined. Our results indicate that conformational changes at cysteines near the nucleotide binding site affect the binding of both the nucleotide and DHEA to the enzyme, with the specific effects dependent on the structure of the resulting disulfide. Thus, the formation of disulfide bonds in hSULT2A1 is a potentially important reversible mechanism for alterations in the rates of sulfation of both endogenous and xenobiotic substrates.

  20. Sulphation of acetaminophen by the human cytosolic sulfotransferases: a systematic analysis.

    Science.gov (United States)

    Yamamoto, Akihiro; Liu, Ming-Yih; Kurogi, Katsuhisa; Sakakibara, Yoichi; Saeki, Yuichi; Suiko, Masahito; Liu, Ming-Cheh

    2015-12-01

    Sulphation is known to be critically involved in the metabolism of acetaminophen in vivo. This study aimed to systematically identify the major human cytosolic sulfotransferase (SULT) enzyme(s) responsible for the sulphation of acetaminophen. A systematic analysis showed that three of the twelve human SULTs, SULT1A1, SULT1A3 and SULT1C4, displayed the strongest sulphating activity towards acetaminophen. The pH dependence of the sulphation of acetaminophen by each of these three SULTs was examined. Kinetic parameters of these three SULTs in catalysing acetaminophen sulphation were determined. Moreover, sulphation of acetaminophen was shown to occur in HepG2 human hepatoma cells and Caco-2 human intestinal epithelial cells under the metabolic setting. Of the four human organ samples tested, liver and intestine cytosols displayed considerably higher acetaminophen-sulphating activity than those of lung and kidney. Collectively, these results provided useful information concerning the biochemical basis underlying the metabolism of acetaminophen in vivo previously reported.

  1. Structural plasticity in the human cytosolic sulfotransferase dimer and its role in substrate selectivity and catalysis.

    Science.gov (United States)

    Tibbs, Zachary E; Rohn-Glowacki, Katie Jo; Crittenden, Frank; Guidry, Amber L; Falany, Charles N

    2015-02-01

    The cytosolic sulfotransferases (SULTs) are dimeric enzymes that help maintain homeostasis through the modulation of hormone and drug activity by catalyzing their transformation into hydrophilic sulfate esters and increasing their excretion. Each of the thirteen active human SULT isoforms displays a unique substrate specificity pattern that underlies its individual role in our bodies. These specificities have proven to be complex, in some cases masking the biological role of specific isoforms. The first part of this review offers a short summary of historical underpinnings of human SULTs, primarily centered on the characterization of each isoform's kinetic and structural properties. Recent structural investigations have revealed each SULT has an active site "lid" that undergoes restructuring once the cofactor/sulfonate donor, 3'-phosphoadenosine-5'-phosphosulfate (PAPS), binds to the enzyme. This structural rearrangement can alter substrate-binding profiles, therefore complicating enzyme/substrate interactions and making substrate/cosubstrate concentrations and binding order important considerations in enzyme functionality. Molecular dynamic simulations have recently been employed to describe this restructuring in an attempt to offer insight to its effects on substrate selectivity. In addition to reviewing new data on SULT molecular dynamics, we will discuss the contribution of PAPS concentrations and SULT dimerization in the regulation of SULT activity within the human body.

  2. Genetic variation, expression and ontogeny of sulfotransferase SULT2A1 in humans.

    Science.gov (United States)

    Ekström, L; Rane, A

    2015-08-01

    Sulfotransferases (SULTs) are enzymes involved in the metabolism of several endogenous molecules. The activity and expression exhibit inter- and intra-individual variations due to age and genetic variation. The aims of this study were to compare the gene expression of SULT2A1 in fetal and adult livers, to study the intra-individual tissue distribution, and investigate if expression is associated with a SULT2A1 copy number variation polymorphism. In contrast to other drug metabolizing enzyme systems the expression of SULT2A1 did not differ between fetal and adult liver samples and it was not affected by maternal smoking or gestational age. Gene expression in relation to sex could not be assessed as the sex of the fetuses was unknown. SULT2A1 was consistently expressed in livers and adrenals, being seven times more abundant in adrenals, but was absent in the lungs. The SULT2A1 copy number variation was proportional to gene expression in liver and adrenals. Our results show that SULT2A1 is important in the first trimester; particularly in the adrenals.

  3. Ethanol up-regulates phenol sulfotransferase (SULT1A1) and hydroxysteroid sulfotransferase (SULT2A1) in rat liver and intestine.

    Science.gov (United States)

    Maiti, Smarajit; Chen, Guangping

    2015-05-01

    Ethanol-consumption impairs physiological-efficiency/endurance, expedites senescence. Impaired-regulations of steroids/biomolecules link these processes. Steroids are catabolized by cytosolic-sulfotransferases (SULTs). Ethanol-induction of eukaryotic-SULTs-expression is scanty. Plant (Brassica-napus) steroid-sulfotransferase; BNST3/BNST4 (gene/BNST) is highly ethanol-inducible (protein/mRNA). Resembling mammalian-SULTs catalytic-mechanism BNSTs show broad substrate-specificities (mammalian-steroids; estradiol/dehydroepiandrosterone/pregnanolone). Recently, ethanol-regulation of SULTs-expression is verified in rat liver/intestine/cultured human-hepatocarcinoma (Hep-G2) cells at enzyme-activity/protein-expression (Western-blot) level. Here, two week's ethanol ingestion by male rat significantly increased SULT2A1 in their liver/intestine (p sulfotransferase (SULT1A1) in intestine (p < 0.001) at enzyme-activity/protein levels. In human cells, ethanol significantly (2-fold) increased hSULT1A1/hSULT1E (2-3 fold) protein expressions paralleling their enzymatic-activities (p < 0.05-p < 0.01). The earlier finding of alcohol-association to the physiological impairment may be corroborated by our present findings. Inductions of SULT-expressions by ethanol have significant physiological/pharmacological consequences.

  4. Estrogen-related receptor ERRα regulation of human hydroxysteroid sulfotransferase (SULT2A1) gene expression in human Caco-2 cells.

    Science.gov (United States)

    Huang, Chaoqun; Zhou, Tianyan; Chen, Yue; Sun, Teng; Zhang, Shunfen; Chen, Guangping

    2014-01-01

    Human hydroxysteroid sulfotransferase, SULT2A1, is important for xenobiotic detoxification and the maintenance of hydroxysteroid homeostasis. Our published report suggested that estrogen-related receptor ERRα downregulates SULT2A1 in Hep G2 cells. The results shown in this study suggest that ERRα upregulates SULT2A1 transcription in Caco-2 cells. The deletion analysis suggested that SULT2A1 promoter region between -65 and -44 is important for this upregulation. Our further investigation suggested that ERRα binding element, ERRE51, mediates ERRα activation of SULT2A1 promoter transcription in Caco-2 cells. The interaction of ERRE51 with ERRα was confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation analysis. Results also suggest that the difference of constitutive androstane receptor transcription levels in Hep G2 and Caco-2 cells at least partially contribute to the cell type dependent ERRα modulation of SULT2A1 promoter transcription. ERRα regulates human SULT2A1 transcription by competing with other nuclear receptors binding to the DNA-promoter region.

  5. Human liver cytosolic sulfotransferase 2A1-dependent dehydroepiandrosterone sulfation assay by ultra-high performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Bansal, Sumit; Lau, Aik Jiang

    2016-02-20

    Sulfotransferase 2A1 (SULT2A1) is a major catalyst of the sulfation of dehydroepiandrosterone (DHEA) to dehydroepiandrosterone sulfate (DHEA-S) in human liver cytosol. However, there is a lack of a sensitive and fast analytical method for the human liver cytosolic SULT2A1-dependent DHEA sulfation assay. Therefore, we developed and validated an ultra-high performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method to quantify DHEA-S and used it to optimize the human liver cytosolic SULT2A1-dependent DHEA sulfation assay. DHEA-S and cortisol (internal standard) eluted at 2.95 and 2.75min, respectively. Negative multiple reaction monitoring was used to quantify DHEA-S (m/z 367.3→97.0) and cortisol (m/z 407.2→331.3). No interfering peaks were observed in blank samples. The lower limit of quantification was 0.2pmol DHEA-S and the calibration curve was linear from 0.2 to 200pmol. The intra-day and inter-day accuracy and precision was sulfotransferase enzyme assays, and it is the first UPLC-MS/MS method for determining SULT2A1-dependent DHEA sulfation in human liver cytosol.

  6. Paradigms of sulfotransferase catalysis: the mechanism of SULT2A1.

    Science.gov (United States)

    Wang, Ting; Cook, Ian; Falany, Charles N; Leyh, Thomas S

    2014-09-19

    Human cytosolic sulfotransferases (SULTs) regulate the activities of thousands of signaling small molecules via transfer of the sulfuryl moiety (-SO3) from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to the hydroxyls and primary amines of acceptors. Sulfonation controls the affinities of ligands for their targets, and thereby regulates numerous receptors, which, in turn, regulate complex cellular responses. Despite their biological and medical relevance, basic SULT mechanism issues remain unresolved. To settle these issues, and to create an in-depth model of SULT catalysis, the complete kinetic mechanism of a representative member of the human SULT family, SULT2A1, was determined. The mechanism is composed of eight enzyme forms that interconvert via 22 rate constants, each of which was determined independently. The result is a complete quantitative description of the mechanism that accurately predicts complex enzymatic behavior. This is the first description of a SULT mechanism at this resolution, and it reveals numerous principles of SULT catalysis and resolves previously ambiguous issues. The structures and catalytic behaviors SULTs are highly conserved; hence, the mechanism presented here should prove paradigmatic for the family.

  7. Chlorinated biphenyl quinones and phenyl-2,5-benzoquinone differentially modify the catalytic activity of human hydroxysteroid sulfotransferase hSULT2A1.

    Science.gov (United States)

    Qin, Xiaoyan; Lehmler, Hans-Joachim; Teesch, Lynn M; Robertson, Larry W; Duffel, Michael W

    2013-10-21

    Human hydroxysteroid sulfotransferase (hSULT2A1) catalyzes the sulfation of a broad range of environmental chemicals, drugs, and other xenobiotics in addition to endogenous compounds that include hydroxysteroids and bile acids. Polychlorinated biphenyls (PCBs) are persistent environmental contaminants, and oxidized metabolites of PCBs may play significant roles in the etiology of their adverse health effects. Quinones derived from the oxidative metabolism of PCBs (PCB-quinones) react with nucleophilic sites in proteins and also undergo redox cycling to generate reactive oxygen species. This, along with the sensitivity of hSULT2A1 to oxidative modification at cysteine residues, led us to hypothesize that electrophilic PCB-quinones react with hSULT2A1 to alter its catalytic function. Thus, we examined the effects of four phenylbenzoquinones on the ability of hSULT2A1 to catalyze the sulfation of the endogenous substrate, dehydroepiandrosterone (DHEA). The quinones studied were 2'-chlorophenyl-2,5-benzoquinone (2'-Cl-BQ), 4'-chlorophenyl-2,5-benzoquinone (4'-Cl-BQ), 4'-chlorophenyl-3,6-dichloro-2,5-benzoquinone (3,6,4'-triCl-BQ), and phenyl-2,5-benzoquinone (PBQ). At all concentrations examined, pretreatment of hSULT2A1 with the PCB-quinones decreased the catalytic activity of hSULT2A1. Pretreatment with low concentrations of PBQ, however, increased the catalytic activity of the enzyme, while higher concentrations inhibited catalysis. A decrease in substrate inhibition with DHEA was seen following preincubation of hSULT2A1 with all of the quinones. Proteolytic digestion of the enzyme followed by LC/MS analysis indicated PCB-quinone- and PBQ-adducts at Cys55 and Cys199, as well as oxidation products at methionines in the protein. Equilibrium binding experiments and molecular modeling suggested that changes due to these modifications may affect the nucleotide binding site and the entrance to the sulfuryl acceptor binding site of hSULT2A1.

  8. Interactions of cytosolic sulfotransferases with xenobiotics.

    Science.gov (United States)

    James, Margaret O; Ambadapadi, Sriram

    2013-11-01

    Cytosolic sulfotransferases are a superfamily of enzymes that catalyze the transfer of the sulfonic group from 3'-phosphoadenosine-5'-phosphosulfate to hydroxy or amine groups in substrate molecules. The human cytosolic sulfotransferases that have been most studied, namely SULT1A1, SULT1A3, SULT1B1, SULT1E1 and SULT2A1, are expressed in different tissues of the body, including liver, intestine, adrenal, brain and skin. These sulfotransferases play important roles in the sulfonation of endogenous molecules such as steroid hormones and neurotransmitters, and in the elimination of xenobiotic molecules such as drugs, environmental chemicals and natural products. There is often overlapping substrate selectivity among the sulfotransferases, although one isoform may exhibit greater enzyme efficiency than other isoforms. Similarly, inhibitors or enhancers of one isoform often affect other isoforms, but typically with different potency. This means that if the activity of one form of sulfotransferase is altered (either inhibited or enhanced) by the presence of a xenobiotic, the sulfonation of endogenous and xenobiotic substrates for other isoforms may well be affected. There are more examples of inhibitors than enhancers of sulfonation. Modulators of sulfotransferase enzymes include natural products ingested as part of the human diet as well as environmental chemicals and drugs. This review will discuss recent work on such interactions.

  9. Cytosolic malate dehydrogenase regulates senescence in human fibroblasts.

    Science.gov (United States)

    Lee, Seung-Min; Dho, So Hee; Ju, Sung-Kyu; Maeng, Jin-Soo; Kim, Jeong-Yoon; Kwon, Ki-Sun

    2012-10-01

    Carbohydrate metabolism changes during cellular senescence. Cytosolic malate dehydrogenase (MDH1) catalyzes the reversible reduction of oxaloacetate to malate at the expense of reduced nicotinamide adenine dinucleotide (NADH). Here, we show that MDH1 plays a critical role in the cellular senescence of human fibroblasts. We observed that the activity of MDH1 was reduced in old human dermal fibroblasts (HDFs) [population doublings (PD) 56], suggesting a link between decreased MDH1 protein levels and aging. Knockdown of MDH1 in young HDFs (PD 20) and the IMR90 human fibroblast cell line resulted in the appearance of significant cellular senescence features, including senescence-associated β-galactosidase staining, flattened and enlarged morphology, increased population doubling time, and elevated p16(INK4A) and p21(CIP1) protein levels. Cytosolic NAD/NADH ratios were decreased in old HDFs to the same extent as in MDH1 knockdown HDFs, suggesting that cytosolic NAD depletion is related to cellular senescence. We found that AMP-activated protein kinase, a sensor of cellular energy, was activated in MDH1 knockdown cells. We also found that sirtuin 1 (SIRT1) deacetylase, a controller of cellular senescence, was decreased in MDH1 knockdown cells. These results indicate that the decrease in MDH1 and subsequent reduction in NAD/NADH ratio, which causes SIRT1 inhibition, is a likely carbohydrate metabolism-controlled cellular senescence mechanism.

  10. Prediction of human drug clearance by multiple metabolic pathways: integration of hepatic and intestinal microsomal and cytosolic data.

    Science.gov (United States)

    Cubitt, Helen E; Houston, J Brian; Galetin, Aleksandra

    2011-05-01

    The current study assesses hepatic and intestinal glucuronidation, sulfation, and cytochrome P450 (P450) metabolism of raloxifene, quercetin, salbutamol, and troglitazone using different in vitro systems. The fraction metabolized by conjugation and P450 metabolism was estimated in liver and intestine, and the importance of multiple metabolic pathways on accuracy of clearance prediction was assessed. In vitro intrinsic sulfation clearance (CL(int, SULT)) was determined in human intestinal and hepatic cytosol and compared with hepatic and intestinal microsomal glucuronidation (CL(int, UGT)) and P450 clearance (CL(int, CYP)) expressed per gram of tissue. Hepatic and intestinal cytosolic scaling factors of 80.7 mg/g liver and 18 mg/g intestine were estimated from published data. Scaled CL(int, SULT) ranged between 0.7 and 11.4 ml · min(-1) · g(-1) liver and 0.1 and 3.3 ml · min(-1) · g(-1) intestine (salbutamol and quercetin were the extremes). Salbutamol was the only compound with a high extent of sulfation (51 and 28% of total CL(int) for liver and intestine, respectively) and also significant renal clearance (26-57% of observed plasma clearance). In contrast, the clearance of quercetin was largely accounted for by glucuronidation. Drugs metabolized by multiple pathways (raloxifene and troglitazone) demonstrated improved prediction of intravenous clearance using data from all hepatic pathways (44-86% of observed clearance) compared with predictions based only on the primary pathway (22-36%). The assumption of no intestinal first pass resulted in underprediction of oral clearance for raloxifene, troglitazone, and quercetin (3-22% of observed, respectively). Accounting for the intestinal contribution to oral clearance via estimated intestinal availability improved prediction accuracy for raloxifene and troglitazone (within 2.5-fold of observed). Current findings emphasize the importance of both hepatic and intestinal conjugation for in vitro-in vivo extrapolation

  11. Cloning and characterization of human liver cytosolic beta-glycosidase

    NARCIS (Netherlands)

    De Graaf, M; Van Veen, IC; Van Der Meulen-Muileman, IH; Gerritsen, WR; Pinedo, HM; Haisma, HJ

    2001-01-01

    Cytosolic beta -glucosidase (EC 3.2.1.21) from mammalian liver is a member of the family 1 glycoside hydrolases and is known for its ability to hydrolyse a range of beta -D-glycosides. including beta -D-glucoside acid beta -D-galactoside. We therefore refer to this enzyme as cytosolic beta

  12. Fast and sensitive quantification of human liver cytosolic lithocholic acid sulfation using ultra-high performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Bansal, Sumit; Lau, Aik Jiang

    2016-02-01

    Detoxification of lithocholic acid (LCA) to lithocholic acid sulfate (LCA-S) is catalyzed by sulfotransferases, mainly SULT2A1. We developed and validated an ultra-high performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method to quantify human liver cytosolic-dependent LCA sulfation. Chromatographic separation was achieved on an UPLC C18 column (2.1×50mm, 1.7μm) and a gradient elution of 0.1% formic acid in water and acetonitrile. Negative electrospray ionization with multiple reaction monitoring (MRM) mode was used to quantify LCA-S (455.3→97.0) and cholic acid (407.2→343.3; internal standard). The retention time was 3.51min for LCA-S and 3.08min for cholic acid. The lower limit of quantification of LCA-S was 0.5nM (or 0.23ng/ml in 400μl total volume) and the assay was linear from 0.2 to 200pmol. Intra-day and inter-day accuracy and precision were <14%. The quality control samples were stable at room temperature for 4h, 4°C for 24h, -20°C for 14 days, and after three freeze-thaw cycles. The matrix (20-100μg cytosolic protein) did not affect LCA-S quantification. This is the first UPLC-MS/MS method applied to optimization of the human liver cytosolic LCA sulfation assay. The optimal levels of MgCl2 and 3'-phosphoadenosine 5'-phosphosulfate (PAPS) cofactor were 2.5mM and 20μM, respectively. Addition of reducing agents (2-mercaptoethanol and DL-dithiothreitol) did not affect LCA-S formation. Human liver cytosolic LCA sulfation was linear with 20-100μg of cytosolic protein and 5-30min incubation time. This UPLC-MS/MS approach offers a specific, sensitive, fast, and direct approach for quantifying human liver cytosolic LCA sulfation.

  13. Human cytosolic glutathione transferases: structure, function, and drug discovery.

    Science.gov (United States)

    Wu, Baojian; Dong, Dong

    2012-12-01

    Glutathione transferases (GSTs) are important detoxifying enzymes that catalyze the conjugation of electrophilic substrates to glutathione. In recent years, GSTs have been of great interest in pharmacology and drug development because of their involvement in many important biological processes such as steroid and prostaglandin biosynthesis, tyrosine catabolism, and cell apoptosis. This review describes crystal structures for cytosolic GSTs and correlates active-site features with enzyme functions (e.g., steroid synthesis, tyrosine degradation, and dehydroascorbate reduction) and substrate selectivity. Use of these crystal structures for the design of specific inhibitors for several GST enzymes is also discussed.

  14. A SIMPLE COLORIMETRIC ASSAY FOR PHENOTYPING THE MAJOR HUMAN THERMOSTABLE PHENOL SULFOTRANSFERASE (SULT1A1) USING PLATELET CYTOSOLS. (R825280)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. A SIMPLE COLORIMETRIC ASSAY FOR PHENOTYPING THE MAJOR HUMAN THERMOSTABLE PHENOL SULFOTRANSFERASE (SULT1A1) USING PLATELET CYTOSOLS. (R825280)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. Human Cytosolic Extracts Stabilize the HIV-1 Core

    Science.gov (United States)

    Fricke, Thomas; Brandariz-Nuñez, Alberto; Wang, Xiaozhao; Smith, Amos B.

    2013-01-01

    The stability of the HIV-1 core in the cytoplasm is crucial for productive HIV-1 infection. Mutations that stabilize or destabilize the core showed defects on HIV-1 reverse transcription and infection. We developed a novel and simple assay to measure the stability of in vitro-assembled HIV-1 CA-NC complexes. The assay allowed us to demonstrate that cytosolic extracts strongly stabilize the HIV-1 core. Interestingly, stabilization of in vitro-assembled HIV-1 CA-NC complexes is not due solely to macromolecular crowding, suggesting the presence of specific cellular factors that stabilize the HIV-1 core. By using our novel assay, we measured the abilities of different drugs, such as PF74, CAP-1, IXN-053, cyclosporine, Bi2 (also known as BI-2), and the peptide CAI, to modulate the stability of in vitro-assembled HIV-1 CA-NC complexes. Interestingly, we found that PF74 and Bi2 strongly stabilized HIV-1 CA-NC complexes. On the other hand, the peptide CAI destabilized HIV-1 CA-NC complexes. We also found that purified cyclophilin A destabilizes in vitro-assembled HIV-1 CA-NC complexes in the presence of cellular extracts in a cyclosporine-sensitive manner. In agreement with previous observations using the fate-of-the-capsid assay, we also demonstrated the ability of recombinant CPSF6 to stabilize HIV-1 CA-NC complexes. Overall, our findings suggested that cellular extracts specifically stabilize the HIV-1 core. We believe that our assay can be a powerful tool to assess HIV-1 core stability in vitro. PMID:23885082

  17. Differential redox potential between the human cytosolic and mitochondrial branched-chain aminotransferase

    Institute of Scientific and Technical Information of China (English)

    Steven J. Coles; John T. Hancock; Myra E. Conway

    2012-01-01

    The human branched-chain aminotransferase (hBCAT) isoenzymes are CXXC motif redox sensitive homodimers central to glutamate metabolism in the central nervous system.These proteins respond differently to oxidation by H2O2,NO,and S-glutathionylation,suggesting that the redox potential is distinct between isoenzymes.Using various reduced to oxidized glutathione ratios (GSH:GSSG) to alter the redox environment,we demonstrate that hBCATc (cytosolic) has an overall redox potential that is 30 mV lower than hBCATm (mitochondrial).Furthermore,the CXXC motif of hBCATc was estimated to be 80 mV lower,suggesting that hBCATm is more oxidizing in nature.Western blot analysis revealed close correlations between hBCAT S-glutathionylation and the redox status of the assay environment,offering the hBCAT isoenzymes as novel biomarkers for cytosolic and mitochondrial oxidative stress.

  18. Subcellular Distribution of NAD+ between Cytosol and Mitochondria Determines the Metabolic Profile of Human Cells.

    Science.gov (United States)

    VanLinden, Magali R; Dölle, Christian; Pettersen, Ina K N; Kulikova, Veronika A; Niere, Marc; Agrimi, Gennaro; Dyrstad, Sissel E; Palmieri, Ferdinando; Nikiforov, Andrey A; Tronstad, Karl Johan; Ziegler, Mathias

    2015-11-13

    The mitochondrial NAD pool is particularly important for the maintenance of vital cellular functions. Although at least in some fungi and plants, mitochondrial NAD is imported from the cytosol by carrier proteins, in mammals, the mechanism of how this organellar pool is generated has remained obscure. A transporter mediating NAD import into mammalian mitochondria has not been identified. In contrast, human recombinant NMNAT3 localizes to the mitochondrial matrix and is able to catalyze NAD(+) biosynthesis in vitro. However, whether the endogenous NMNAT3 protein is functionally effective at generating NAD(+) in mitochondria of intact human cells still remains to be demonstrated. To modulate mitochondrial NAD(+) content, we have expressed plant and yeast mitochondrial NAD(+) carriers in human cells and observed a profound increase in mitochondrial NAD(+). None of the closest human homologs of these carriers had any detectable effect on mitochondrial NAD(+) content. Surprisingly, constitutive redistribution of NAD(+) from the cytosol to the mitochondria by stable expression of the Arabidopsis thaliana mitochondrial NAD(+) transporter NDT2 in HEK293 cells resulted in dramatic growth retardation and a metabolic shift from oxidative phosphorylation to glycolysis, despite the elevated mitochondrial NAD(+) levels. These results suggest that a mitochondrial NAD(+) transporter, similar to the known one from A. thaliana, is likely absent and could even be harmful in human cells. We provide further support for the alternative possibility, namely intramitochondrial NAD(+) synthesis, by demonstrating the presence of endogenous NMNAT3 in the mitochondria of human cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Subcellular Distribution of NAD+ between Cytosol and Mitochondria Determines the Metabolic Profile of Human Cells*

    Science.gov (United States)

    VanLinden, Magali R.; Dölle, Christian; Pettersen, Ina K. N.; Kulikova, Veronika A.; Niere, Marc; Agrimi, Gennaro; Dyrstad, Sissel E.; Palmieri, Ferdinando; Nikiforov, Andrey A.; Tronstad, Karl Johan; Ziegler, Mathias

    2015-01-01

    The mitochondrial NAD pool is particularly important for the maintenance of vital cellular functions. Although at least in some fungi and plants, mitochondrial NAD is imported from the cytosol by carrier proteins, in mammals, the mechanism of how this organellar pool is generated has remained obscure. A transporter mediating NAD import into mammalian mitochondria has not been identified. In contrast, human recombinant NMNAT3 localizes to the mitochondrial matrix and is able to catalyze NAD+ biosynthesis in vitro. However, whether the endogenous NMNAT3 protein is functionally effective at generating NAD+ in mitochondria of intact human cells still remains to be demonstrated. To modulate mitochondrial NAD+ content, we have expressed plant and yeast mitochondrial NAD+ carriers in human cells and observed a profound increase in mitochondrial NAD+. None of the closest human homologs of these carriers had any detectable effect on mitochondrial NAD+ content. Surprisingly, constitutive redistribution of NAD+ from the cytosol to the mitochondria by stable expression of the Arabidopsis thaliana mitochondrial NAD+ transporter NDT2 in HEK293 cells resulted in dramatic growth retardation and a metabolic shift from oxidative phosphorylation to glycolysis, despite the elevated mitochondrial NAD+ levels. These results suggest that a mitochondrial NAD+ transporter, similar to the known one from A. thaliana, is likely absent and could even be harmful in human cells. We provide further support for the alternative possibility, namely intramitochondrial NAD+ synthesis, by demonstrating the presence of endogenous NMNAT3 in the mitochondria of human cells. PMID:26432643

  20. Effect of Cyclosporin A and Angiotensin II on cytosolic calcium levels in primary human gingival fibroblasts

    Directory of Open Access Journals (Sweden)

    Ajitkumar Supraja

    2016-01-01

    Full Text Available Background: To evaluate the effect of Cyclosporin A (CsA and angiotensin II (Ang II on cytosolic calcium levels in cultured human gingival fibroblasts (HGFs. Materials and Methods: Healthy gingival samples from six volunteers were obtained, and primary HGFs were cultured. Cell viability and proliferation assay were performed to identify the ideal concentrations of CsA and Ang II. Cytosolic calcium levels in cultured gingival fibroblasts treated with CsA and Ang II were studied using colorimetric assay, confocal and fluorescence imaging. Statistical analyses were done using SPSS software and GraphPad Prism. Results: Higher levels of cytosolic levels were evident in cells treated with CsA and Ang II when compared to control group and was statistically significant (P < 0.05 in both colorimetric assay and confocal imaging. Fluorescent images of the cultured HGFs revealed the same. Conclusion: Thus calcium being a key player in major cellular functions, plays a major role in the pathogenesis of drug-induced gingival overgrowth.

  1. Differentially expressed cytosolic proteins in human leukemia and lymphoma cell lines correlate with lineages and functions.

    Science.gov (United States)

    Gez, Swetlana; Crossett, Ben; Christopherson, Richard I

    2007-09-01

    Identification of cytosolic proteins differentially expressed between types of leukemia and lymphoma may provide a molecular basis for classification and understanding their cellular properties. Two-dimensional fluorescence difference gel electrophoresis (DIGE) and mass spectrometry have been used to identify proteins that are differentially expressed in cytosolic extracts from four human leukemia and lymphoma cell lines: HL-60 (acute promyelocytic leukemia), MEC1 (B-cell chronic lymphocytic leukemia), CCRF-CEM (T-cell acute lymphoblastic leukemia) and Raji (B-cell Burkitt's lymphoma). A total of 247 differentially expressed proteins were identified between the four cell lines. Analysis of the data by principal component analysis identified 22 protein spots (17 different protein species) differentially expressed at more than a 95% variance level between these cell lines. Several of these proteins were differentially expressed in only one cell line: HL-60 (myeloperoxidase, phosphoprotein 32 family member A, ras related protein Rab-11B, protein disulfide-isomerase, ran-specific GTPase-activating protein, nucleophosmin and S-100 calcium binding protein A4), and Raji (ezrin). Several of these proteins were differentially expressed in two cell lines: Raji and MEC1 (C-1-tetrahydrofolate synthase, elongation factor 2, alpha- and beta-tubulin, transgelin-2 and stathmin). MEC1 and CCRF-CEM (gamma-enolase), HL-60 and CCRF-CEM (ubiquitin-conjugating enzyme E2 N). The differentially expressed proteins identified in these four cell lines correlate with cellular properties and provide insights into the molecular basis of these malignancies.

  2. Reductive metabolism of nabumetone by human liver microsomal and cytosolic fractions: exploratory prediction using inhibitors and substrates as marker probes.

    Science.gov (United States)

    Matsumoto, Kaori; Hasegawa, Tetsuya; Koyanagi, Junichi; Takahashi, Tamiko; Akimoto, Masayuki; Sugibayashi, Kenji

    2015-06-01

    The metabolic reduction of nabumetone was examined by inhibition and correlation studies using human liver microsomes and cytosol. This reduction was observed in both fractions, with the V(max) values for reduction activity being approximately fourfold higher, and the V(max)/K(m) values approximately three-fold higher, in the microsomes than in the cytosol. The reduction of nabumetone was inhibited by 18β-glycyrrhetinic acid, an 11β-hydroxysteroid dehydrogenase (11β-HSD) inhibitor, in the microsomal fraction. The reduction activity was also inhibited by quercetin and menadione [carbonyl reductase (CBR) inhibitors], and by phenolphthalein and medroxyprogesterone acetate [potent inhibitors of aldo-keto reductase (AKR) 1C1, 1C2 and 1C4] in the cytosol. A good correlation (r² = 0.93) was observed between the reduction of nabumetone and of cortisone, as a marker of 11β-HSD activity, in the microsomal fractions. There was also an excellent relationship between reduction of nabumetone and of the AKR1C substrates, acetohexamide, and ethacrynic acid (r 2 = 0.92 and 0.93, respectively), in the cytosol fractions. However, a poor correlation was observed between the formation of 4-(6-methoxy-2-naphthyl)-butan-2-ol (MNBO) from nabumetone and CBR activity (with 4-benzoyl pyridine reduction as a CBR substrate) in the cytosol fractions (r² = 0.24). These findings indicate that nabumetone may be metabolized by 11β-HSD in human liver microsomes, and primarily by AKR1C4 in human liver cytosol, although multiple enzymes in the AKR1C subfamily may be involved. It cannot be completely denied that CBR is involved to some extent in the formation of MNBO from nabumetone in the cytosol fraction.

  3. Studies of the cytosolic thymidine kinase in human cells and comparison to the recombinantly expressed enzyme

    DEFF Research Database (Denmark)

    Kock Jensen, Helle

    Thymidine kinase (TK) is a key enzyme in the salvage pathway of the nucleoside metabolism catalyzing the first phosphorylation step in TTP synthesis. Human cytosolic TK (TKl) is highly cell cycle regulated. TKl is regulated on many different levels of expression and isoforms with altered enzymatic...... properties are found in cancer cells. Investigation of these factors offers possibilities to understand the molecular background for TKl expression including to clarify general regulation patterns. It also gives valuable information for constructing new nucleoside analogs for the therapy of cancer and virus...... infections. In the first part of the present investigation a sensitive test for quantitating TKl mRNA (competitive PCR) is developed and the results show that PHA stimulated lymphocytes reveal the same pattern concerning expression of TKl mRNA and TKl enzyme activity as serum-stimulated cells. This pattern...

  4. Doxorubicin Regulates Autophagy Signals via Accumulation of Cytosolic Ca2+ in Human Cardiac Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Ji Hye Park

    2016-10-01

    Full Text Available Doxorubicin (DOXO is widely used to treat solid tumors. However, its clinical use is limited by side effects including serious cardiotoxicity due to cardiomyocyte damage. Resident cardiac progenitor cells (hCPCs act as key regulators of homeostasis in myocardial cells. However, little is known about the function of hCPCs in DOXO-induced cardiotoxicity. In this study, we found that DOXO-mediated hCPC toxicity is closely related to calcium-related autophagy signaling and was significantly attenuated by blocking mTOR signaling in human hCPCs. DOXO induced hCPC apoptosis with reduction of SMP30 (regucalcin and autophagosome marker LC3, as well as remarkable induction of the autophagy-related markers, Beclin-1, APG7, and P62/SQSTM1 and induction of calcium-related molecules, CaM (Calmodulin and CaMKII (Calmodulin kinase II. The results of an LC3 puncta assay further indicated that DOXO reduced autophagosome formation via accumulation of cytosolic Ca2+. Additionally, DOXO significantly induced mTOR expression in hCPCs, and inhibition of mTOR signaling by rapamycin, a specific inhibitor, rescued DOXO-mediated autophagosome depletion in hCPCs with significant reduction of DOXO-mediated cytosolic Ca2+ accumulation in hCPCs, and restored SMP30 and mTOR expression. Thus, DOXO-mediated hCPC toxicity is linked to Ca2+-related autophagy signaling, and inhibition of mTOR signaling may provide a cardio-protective effect against DOXO-mediated hCPC toxicity.

  5. Doxorubicin Regulates Autophagy Signals via Accumulation of Cytosolic Ca2+ in Human Cardiac Progenitor Cells

    Science.gov (United States)

    Park, Ji Hye; Choi, Sung Hyun; Kim, Hyungtae; Ji, Seung Taek; Jang, Woong Bi; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang Mo

    2016-01-01

    Doxorubicin (DOXO) is widely used to treat solid tumors. However, its clinical use is limited by side effects including serious cardiotoxicity due to cardiomyocyte damage. Resident cardiac progenitor cells (hCPCs) act as key regulators of homeostasis in myocardial cells. However, little is known about the function of hCPCs in DOXO-induced cardiotoxicity. In this study, we found that DOXO-mediated hCPC toxicity is closely related to calcium-related autophagy signaling and was significantly attenuated by blocking mTOR signaling in human hCPCs. DOXO induced hCPC apoptosis with reduction of SMP30 (regucalcin) and autophagosome marker LC3, as well as remarkable induction of the autophagy-related markers, Beclin-1, APG7, and P62/SQSTM1 and induction of calcium-related molecules, CaM (Calmodulin) and CaMKII (Calmodulin kinase II). The results of an LC3 puncta assay further indicated that DOXO reduced autophagosome formation via accumulation of cytosolic Ca2+. Additionally, DOXO significantly induced mTOR expression in hCPCs, and inhibition of mTOR signaling by rapamycin, a specific inhibitor, rescued DOXO-mediated autophagosome depletion in hCPCs with significant reduction of DOXO-mediated cytosolic Ca2+ accumulation in hCPCs, and restored SMP30 and mTOR expression. Thus, DOXO-mediated hCPC toxicity is linked to Ca2+-related autophagy signaling, and inhibition of mTOR signaling may provide a cardio-protective effect against DOXO-mediated hCPC toxicity. PMID:27735842

  6. Cytosolic phospholipase A{sub 2} gene in human and rat: Chromosomal localization and polymorphic markers

    Energy Technology Data Exchange (ETDEWEB)

    Tay, A.; Simon, J.S.; Jacob, H.J. [Univ. of Toronto (Canada)] [and others

    1995-03-01

    The authors report the chromosomal localization and a simple sequence repeat (SSR) in the cytosolic phospholipase A{sub 2} (cPLA{sub 2}) gene in both human and rat. A (CA){sub 18} repeat in the promoter of the rat gene was determined to exhibit length polymorphism when analyzed using the polymerase chain reaction (PCR) in 19 different inbred rat strains. Genotyping for this marker in 234 F{sub 2} progeny of a SHRXBN intercross mapped the gene to rat chromosome 13. Using a PCR strategy, a fragment of the promoter for the human gene was isolated, and a (CA){sub 18} repeat was identified. Since this marker displayed a low heterozygosity index, they also identified a mononucleotide repeat in the promoter for cPLA{sub 2} that displayed a polymorphism information content value of 0.76. The human gene was mapped using fluorescence in situ hybridization (FISH) to chromosome 1q25. Of interest, the gene encoding the enzyme prostaglandin-endoperoxide synthase 2 (cyclooxygenase-2), which acts on the arachidonic acid product of cPLA{sub 2}, was previously localized to this same chromosomal region, raising the possibility of coordinate regulation. Identification of intragenic markers may facilitate studies of polymorphic variants of these genes as candidates for disorders in which perturbations of the eicosanoid cascade may play a role. 20 refs., 3 figs., 2 tabs.

  7. Hydroxysteroid sulfotransferase SULT2B1b promotes hepatocellular carcinoma cells proliferation in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Xiaoming Yang

    Full Text Available Hydroxysteroid sulfotransferase 2B1b (SULT2B1b is highly selective for the addition of sulfate groups to 3β-hydroxysteroids. Although previous reports have suggested that SULT2B1b is correlated with cell proliferation of hepatocytes, the relationship between SULT2B1b and the malignant phenotype of hepatocarcinoma cells was not clear. In the present study, we found that SULT2B1 was comparatively higher in the human hepatocarcinoma tumorous tissues than their adjacent tissues. Besides, SULT2B1b overexpression promoted the growth of the mouse hepatocarcinoma cell line Hepa1-6, while Lentivirus-mediated SULT2B1b interference inhibited growth as assessed by the CCK-8 assay. Likewise, inhibition of SULT2B1b expression induced cell-cycle arrest and apoptosis in Hepa1-6 cells by upregulating the expression of FAS, downregulating the expression of cyclinB1, BCL2 and MYC in vitro and in vivo at both the transcript and protein levels. Knock-down of SULT2B1b expression significantly suppressed tumor growth in nude mouse xenografts. Moreover, proliferation rates and SULT2B1b expression were highly correlated in the human hepatocarcinoma cell lines Huh-7, Hep3B, SMMC-7721 and BEL-7402 cells. Knock-down of SULT2B1b inhibited cell growth and cyclinB1 levels in human hepatocarcinoma cells and suppressed xenograft growth in vivo. In conclusion, SULT2B1b expression promotes proliferation of hepatocellular carcinoma cells in vitro and in vivo, which may contribute to the progression of HCC.

  8. Inherited human group IVA cytosolic phospholipase A2 deficiency abolishes platelet, endothelial, and leucocyte eicosanoid generation

    Science.gov (United States)

    Kirkby, Nicholas S.; Reed, Daniel M.; Edin, Matthew L.; Rauzi, Francesca; Mataragka, Stefania; Vojnovic, Ivana; Bishop-Bailey, David; Milne, Ginger L.; Longhurst, Hilary; Zeldin, Darryl C.; Mitchell, Jane A.; Warner, Timothy D.

    2016-01-01

    Eicosanoids are important vascular regulators, but the phospholipase A2 (PLA2) isoforms supporting their production within the cardiovascular system are not fully understood. To address this, we have studied platelets, endothelial cells, and leukocytes from 2 siblings with a homozygous loss-of-function mutation in group IVA cytosolic phospholipase A2 (cPLA2α). Chromatography/mass spectrometry was used to determine levels of a broad range of eicosanoids produced by isolated vascular cells, and in plasma and urine. Eicosanoid release data were paired with studies of cellular function. Absence of cPLA2α almost abolished eicosanoid synthesis in platelets (e.g., thromboxane A2, control 20.5 ± 1.4 ng/ml vs. patient 0.1 ng/ml) and leukocytes [e.g., prostaglandin E2 (PGE2), control 21.9 ± 7.4 ng/ml vs. patient 1.9 ng/ml], and this was associated with impaired platelet activation and enhanced inflammatory responses. cPLA2α-deficient endothelial cells showed reduced, but not absent, formation of prostaglandin I2 (prostacyclin; control 956 ± 422 pg/ml vs. patient 196 pg/ml) and were primed for inflammation. In the urine, prostaglandin metabolites were selectively influenced by cPLA2α deficiency. For example, prostacyclin metabolites were strongly reduced (18.4% of control) in patients lacking cPLA2α, whereas PGE2 metabolites (77.8% of control) were similar to healthy volunteer levels. These studies constitute a definitive account, demonstrating the fundamental role of cPLA2α to eicosanoid formation and cellular responses within the human circulation.—Kirkby, N. S., Reed, D. M., Edin, M. L., Rauzi, F., Mataragka, S., Vojnovic, I., Bishop-Bailey, D., Milne, G. L., Longhurst, H., Zeldin, D. C., Mitchell, J. A., Warner, T. D. Inherited human group IVA cytosolic phospholipase A2 deficiency abolishes platelet, endothelial, and leucocyte eicosanoid generation. PMID:26183771

  9. Structure of Human GIVD Cytosolic Phospholipase A2 Reveals Insights into Substrate Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Klein, Michael G.; Snell, Gyorgy; Lane, Weston; Zou, Hua; Levin, Irena; Li, Ke; Sang, Bi-Ching (Takeda Cali)

    2016-07-01

    Cytosolic phospholipases A2 (cPLA2s) consist of a family of calcium-sensitive enzymes that function to generate lipid second messengers through hydrolysis of membrane-associated glycerophospholipids. The GIVD cPLA2 (cPLA2δ) is a potential drug target for developing a selective therapeutic agent for the treatment of psoriasis. Here, we present two X-ray structures of human cPLA2δ, capturing an apo state, and in complex with a substrate-like inhibitor. Comparison of the apo and inhibitor-bound structures reveals conformational changes in a flexible cap that allows the substrate to access the relatively buried active site, providing new insight into the mechanism for substrate recognition. The cPLA2δ structure reveals an unexpected second C2 domain that was previously unrecognized from sequence alignments, placing cPLA2δ into the class of membrane-associated proteins that contain a tandem pair of C2 domains. Furthermore, our structures elucidate novel inter-domain interactions and define three potential calcium-binding sites that are likely important for regulation and activation of enzymatic activity. These findings provide novel insights into the molecular mechanisms governing cPLA2's function in signal transduction.

  10. New insights into the posttranslational regulation of human cytosolic thioredoxin by S-palmitoylation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhiyu; Zhong, Liangwei, E-mail: liazho@ucas.ac.cn

    2015-05-15

    High level of palmitate is associated with metabolic disorders. We recently showed that enhanced level of S-palmitoylated cytosolic thioredoxin (Trx1) in mouse liver was new characteristic feature of insulin resistance. However, our understanding of the effect of S-palmitoylation on Trx1 is limited, and the tissue specificity of Trx1 S-palmitoylation is unclear. Here we show that S-palmitoylation also occurs at Cys73 of Trx1 in living endothelial cells, and the level of S-palmitoylated Trx1 undergoes regulation by insulin signaling. Trx1 prefers thiol-thioester exchange with palmitoyl-CoA to acetyl-CoA. S-palmitoylation alters conformation or secondary structure of Trx1, as well as decreases the ability of Trx1 to transfer electrons from thioredoxin reductase to S-nitrosylated protein–tyrosine phosphatase 1B and S-nitroso-glutathione. Our results demonstrate that S-palmitoylation is an important post-translational modification of human Trx1. - Highlights: • S-palmitoylation occurs at Cys73 of Trx1 in living endothelial cells. • Insulin signaling may regulate level of S-palmitoylated Trx1 in the cells. • S-palmitoylation plays significant effects on Trx1 structure and functions.

  11. Metabolism of F18, a Derivative of Calanolide A, in Human Liver Microsomes and Cytosol

    Directory of Open Access Journals (Sweden)

    Xiangmeng Wu

    2017-07-01

    Full Text Available 10-Chloromethyl-11-demethyl-12-oxo-calanolide (F18, an analog of calanolide A, is a novel potent nonnucleoside reverse transcriptase inhibitor against HIV-1. Here, we report the metabolic profile and the results of associated biochemical studies of F18 in vitro and in vivo. The metabolites of F18 were identified based on liquid chromatography-electrospray ionization mass spectrometry and/or nuclear magnetic resonance. Twenty-three metabolites of F18 were observed in liver microsomes in vitro. The metabolism of F18 involved 4-propyl chain oxidation, 10-chloromethyl oxidative dechlorination and 12-carbonyl reduction. Three metabolites (M1, M3-1, and M3-2 were also found in rat blood after oral administration of F18 and the reduction metabolites M3-1 and M3-2 were found to exhibit high potency for the inhibition of HIV-1 in vitro. The oxidative metabolism of F18 was mainly catalyzed by cytochrome P450 3A4 in human microsomes, whereas flavin-containing monooxygenases and 11β-hydroxysteroid dehydrogenase were found to be involved in its carbonyl reduction. In human cytosol, multiple carbonyl reductases, including aldo-keto reductase 1C, short-chain dehydrogenases/reductases and quinone oxidoreductase 1, were demonstrated to be responsible for F18 carbonyl reduction. In conclusion, the in vitro metabolism of F18 involves multiple drug metabolizing enzymes, and several metabolites exhibited anti-HIV-1 activities. Notably, the described results provide the first demonstration of the capability of FMOs for carbonyl reduction.

  12. Biophysical characterization of the dimer and tetramer interface interactions of the human cytosolic malic enzyme.

    Directory of Open Access Journals (Sweden)

    Sujithkumar Murugan

    Full Text Available The cytosolic NADP(+-dependent malic enzyme (c-NADP-ME has a dimer-dimer quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In this study, the urea-induced unfolding process of the c-NADP-ME interface mutants was monitored using fluorescence and circular dichroism spectroscopy, analytical ultracentrifugation and enzyme activities. Here, we demonstrate the differential protein stability between dimer and tetramer interface interactions of human c-NADP-ME. Our data clearly demonstrate that the protein stability of c-NADP-ME is affected predominantly by disruptions at the dimer interface rather than at the tetramer interface. First, during thermal stability experiments, the melting temperatures of the wild-type and tetramer interface mutants are 8-10°C higher than those of the dimer interface mutants. Second, during urea denaturation experiments, the thermodynamic parameters of the wild-type and tetramer interface mutants are almost identical. However, for the dimer interface mutants, the first transition of the urea unfolding curves shift towards a lower urea concentration, and the unfolding intermediate exist at a lower urea concentration. Third, for tetrameric WT c-NADP-ME, the enzyme is first dissociated from a tetramer to dimers before the 2 M urea treatment, and the dimers then dissociated into monomers before the 2.5 M urea treatment. With a dimeric tetramer interface mutant (H142A/D568A, the dimer completely dissociated into monomers after a 2.5 M urea treatment, while for a dimeric dimer interface mutant (H51A/D90A, the dimer completely dissociated into monomers after a 1.5 M urea treatment, indicating that the interactions of c-NADP-ME at the dimer interface are truly stronger than at the tetramer interface. Thus, this study provides a reasonable explanation for why malic enzymes need to assemble as a dimer of dimers.

  13. Inherited human group IVA cytosolic phospholipase A2 deficiency abolishes platelet, endothelial, and leucocyte eicosanoid generation.

    Science.gov (United States)

    Kirkby, Nicholas S; Reed, Daniel M; Edin, Matthew L; Rauzi, Francesca; Mataragka, Stefania; Vojnovic, Ivana; Bishop-Bailey, David; Milne, Ginger L; Longhurst, Hilary; Zeldin, Darryl C; Mitchell, Jane A; Warner, Timothy D

    2015-11-01

    Eicosanoids are important vascular regulators, but the phospholipase A2 (PLA2) isoforms supporting their production within the cardiovascular system are not fully understood. To address this, we have studied platelets, endothelial cells, and leukocytes from 2 siblings with a homozygous loss-of-function mutation in group IVA cytosolic phospholipase A2 (cPLA2α). Chromatography/mass spectrometry was used to determine levels of a broad range of eicosanoids produced by isolated vascular cells, and in plasma and urine. Eicosanoid release data were paired with studies of cellular function. Absence of cPLA2α almost abolished eicosanoid synthesis in platelets (e.g., thromboxane A2, control 20.5 ± 1.4 ng/ml vs. patient 0.1 ng/ml) and leukocytes [e.g., prostaglandin E2 (PGE2), control 21.9 ± 7.4 ng/ml vs. patient 1.9 ng/ml], and this was associated with impaired platelet activation and enhanced inflammatory responses. cPLA2α-deficient endothelial cells showed reduced, but not absent, formation of prostaglandin I2 (prostacyclin; control 956 ± 422 pg/ml vs. patient 196 pg/ml) and were primed for inflammation. In the urine, prostaglandin metabolites were selectively influenced by cPLA2α deficiency. For example, prostacyclin metabolites were strongly reduced (18.4% of control) in patients lacking cPLA2α, whereas PGE2 metabolites (77.8% of control) were similar to healthy volunteer levels. These studies constitute a definitive account, demonstrating the fundamental role of cPLA2α to eicosanoid formation and cellular responses within the human circulation.

  14. Characterization of bovine phenol sulfotransferases: evidence of a major role for SULT1B1 in the liver.

    Science.gov (United States)

    Choughule, Kanika V; Locuson, Charles W; Coughtrie, Michael W H

    2015-01-01

    1. Cattle are an important component of the human food chain. Drugs used either legally or illegally in cattle may therefore enter the food chain and it is thus important to understand pathways of drug metabolism in this species, including sulfation catalyzed by the sulfotransferases (SULTs). 2. In this study, we have analyzed the sulfation of 4-nitrophenol and other compounds in male and female bovine liver and characterized recombinant bovine SULT isoforms 1A1 and 1B1 expressed in Escherichia coli. 3. We found that, in contrast to most other mammalian species, the major phenol sulfotransferase SULT1A1 is not expressed in bovine liver. Rather SULT1B1 seems to be a major form in both male and female bovine liver. 4. We also identified kinetic differences between bovine and human SULT1A1 and, using the human SULT1A1 crystal structure, identified two amino acid positions in the active site of bovine SULT1A1 (Ile89Val and Phe247Val) that may be responsible for these differences.

  15. Cardiolipin hydrolysis by human phospholipases A2. The multiple enzymatic activities of human cytosolic phospholipase A2.

    Science.gov (United States)

    Buckland, A G; Kinkaid, A R; Wilton, D C

    1998-02-05

    The ability of mammalian phospholipases A2 (PLA2) to hydrolyse cardiolipin (diphosphatidylglycerol) was monitored with a fluorescent displacement assay which allows the use of natural phospholipid substrates. The mammalian enzymes used were porcine pancreatic (Group I) secretory PLA2 (sPLA2), human non-pancreatic (Group II) sPLA2 and human cytosolic PLA2 (cPLA2). High activity was observed with porcine pancreas sPLA2 whereas the human sPLA2 demonstrated only minimal activity with this substrate. In comparison, sPLA2 from Naja naja venom (Group I) also showed only modest activity with this substrate. Since many lipases possess PLA1 activity, a representative enzyme from Rhizopus arrhizus was also assessed for its ability to hydrolyse cardiolipin which proved to be a good substrate for this fungal lipase. In all cases dilysocardiolipin was the major product while some monolyso intermediate was detected after chromatographic separation. Human cPLA2 was unable to hydrolyse cardiolipin at a significant rate, however, both monolysocardiolipin and dilysocardiolipin, which are prepared by the PLA2-catalysed hydrolysis of cardiolipin, were good substrates providing a further example of the extensive lysophospholipase activity of this enzyme. Moreover, cardiolipin that was initially hydrolysed in situ with either excess porcine pancreatic PLA2 or R. arrhizus lipase (PLA1) was subsequently hydrolysed by human cPLA2. One explanation of this result is that human cPLA2 is able to hydrolyse both 1-acyl and 2-acyl-lysophospholipids. (c) 1998 Elsevier Science B.V.

  16. Cytosolic Bax

    Science.gov (United States)

    Vogel, Sandra; Raulf, Nina; Bregenhorn, Stephanie; Biniossek, Martin L.; Maurer, Ulrich; Czabotar, Peter; Borner, Christoph

    2012-01-01

    Bax is kept inactive in the cytosol by refolding its C-terminal transmembrane domain into the hydrophobic binding pocket. Although energetic calculations predicted this conformation to be stable, numerous Bax binding proteins were reported and suggested to further stabilize inactive Bax. Unfortunately, most of them have not been validated in a physiological context on the endogenous level. Here we use gel filtration analysis of the cytosol of primary and established cells to show that endogenous, inactive Bax runs 20–30 kDa higher than recombinant Bax, suggesting Bax dimerization or the binding of a small protein. Dimerization was excluded by a lack of interaction of differentially tagged Bax proteins and by comparing the sizes of dimerized recombinant Bax with cytosolic Bax on blue native gels. Surprisingly, when analyzing cytosolic Bax complexes by high sensitivity mass spectrometry after anti-Bax immunoprecipitation or consecutive purification by gel filtration and blue native gel electrophoresis, we detected only one protein, called p23 hsp90 co-chaperone, which consistently and specifically co-purified with Bax. However, this protein could not be validated as a crucial inhibitory Bax binding partner as its over- or underexpression did not show any apoptosis defects. By contrast, cytosolic Bax exhibits a slight molecular mass shift on SDS-PAGE as compared with recombinant Bax, which suggests a posttranslational modification and/or a structural difference between the two proteins. We propose that in most healthy cells, cytosolic endogenous Bax is a monomeric protein that does not necessarily need a binding partner to keep its pro-apoptotic activity in check. PMID:22277657

  17. Cytosolic chloride ion is a key factor in lysosomal acidification and function of autophagy in human gastric cancer cell.

    Science.gov (United States)

    Hosogi, Shigekuni; Kusuzaki, Katsuyuki; Inui, Toshio; Wang, Xiangdong; Marunaka, Yoshinori

    2014-06-01

    The purpose of the present study was to clarify roles of cytosolic chloride ion (Cl(-) ) in regulation of lysosomal acidification [intra-lysosomal pH (pHlys )] and autophagy function in human gastric cancer cell line (MKN28). The MKN28 cells cultured under a low Cl(-) condition elevated pHlys and reduced the intra-lysosomal Cl(-) concentration ([Cl(-) ]lys ) via reduction of cytosolic Cl(-) concentration ([Cl(-) ]c ), showing abnormal accumulation of LC3II and p62 participating in autophagy function (dysfunction of autophagy) accompanied by inhibition of cell proliferation via G0 /G1 arrest without induction of apoptosis. We also studied effects of direct modification of H(+) transport on lysosomal acidification and autophagy. Application of bafilomycin A1 (an inhibitor of V-type H(+) -ATPase) or ethyl isopropyl amiloride [EIPA; an inhibitor of Na(+) /H(+) exchanger (NHE)] elevated pHlys and decreased [Cl(-) ]lys associated with inhibition of cell proliferation via induction of G0 /G1 arrest similar to the culture under a low Cl(-) condition. However, unlike low Cl(-) condition, application of the compound, bafilomycin A1 or EIPA, induced apoptosis associated with increases in caspase 3 and 9 without large reduction in [Cl(-) ]c compared with low Cl(-) condition. These observations suggest that the lowered [Cl(-) ]c primarily causes dysfunction of autophagy without apoptosis via dysfunction of lysosome induced by disturbance of intra-lysosomal acidification. This is the first study showing that cytosolic Cl(-) is a key factor of lysosome acidification and autophagy.

  18. Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts

    Science.gov (United States)

    Ye, Hong; Jeong, Suh Young; Ghosh, Manik C.; Kovtunovych, Gennadiy; Silvestri, Laura; Ortillo, Danilo; Uchida, Naoya; Tisdale, John; Camaschella, Clara; Rouault, Tracey A.

    2010-01-01

    Glutaredoxin 5 (GLRX5) deficiency has previously been identified as a cause of anemia in a zebrafish model and of sideroblastic anemia in a human patient. Here we report that GLRX5 is essential for iron-sulfur cluster biosynthesis and the maintenance of normal mitochondrial and cytosolic iron homeostasis in human cells. GLRX5, a mitochondrial protein that is highly expressed in erythroid cells, can homodimerize and assemble [2Fe-2S] in vitro. In GLRX5-deficient cells, [Fe-S] cluster biosynthesis was impaired, the iron-responsive element–binding (IRE-binding) activity of iron regulatory protein 1 (IRP1) was activated, and increased IRP2 levels, indicative of relative cytosolic iron depletion, were observed together with mitochondrial iron overload. Rescue of patient fibroblasts with the WT GLRX5 gene by transfection or viral transduction reversed a slow growth phenotype, reversed the mitochondrial iron overload, and increased aconitase activity. Decreased aminolevulinate δ, synthase 2 (ALAS2) levels attributable to IRP-mediated translational repression were observed in erythroid cells in which GLRX5 expression had been downregulated using siRNA along with marked reduction in ferrochelatase levels and increased ferroportin expression. Erythroblasts express both IRP-repressible ALAS2 and non-IRP–repressible ferroportin 1b. The unique combination of IRP targets likely accounts for the tissue-specific phenotype of human GLRX5 deficiency. PMID:20364084

  19. Cytosolic purine 5'-nucleotidases of rat liver and human red blood cells: regulatory properties and role in AMP dephosphorylation.

    Science.gov (United States)

    Van den Berghe, G; Bontemps, F; Vincent, M F

    1988-01-01

    Of the various species of cellular 5'-nucleotidases, membranous, lysosomal and cytosolic, only the latter are likely to play a role in the physiologic dephosphorylation of the 5'-nucleoside monophosphates present in the cytoplasm. The necessity to preserve cellular ATP renders a strict control of the dephosphorylation as well as of the deamination of AMP mandatory, because both nucleotides are maintained in equilibrium by adenylate kinase. Our studies of cytosolic purine 5'-nucleotidases purified from rat liver and from human erythrocytes, reviewed in this presentation, have shown that both display complex kinetic properties. Both enzymes have markedly higher affinities for IMP and for GMP than for AMP. In addition, they are stimulated by nucleoside triphosphates, among them ATP and GTP, and inhibited by Pi. The erythrocytic purine 5'-nucleotidase is also stimulated by glycerate 2,3-bisphosphate. It could thus be expected that under conditions of ATP and GTP breakdown, particularly when accompanied by an increase in Pi, the dephosphorylation of AMP would be curtailed. To verify this hypothesis, experiments were performed with isolated rat hepatocytes and with human red blood cells. The rate of dephosphorylation of AMP was measured by following time-wise the production of adenosine in the presence of coformycin (or deoxycoformycin) and 5-iodotubercidin. The coformycins inhibit the deamination of adenosine into inosine by adenosine deaminase, and 5-iodotubercidin inhibits the recycling of adenosine into AMP by adenosine kinase. Upon induction of ATP catabolism by the addition of fructose to isolated rat hepatocytes, the dephosphorylation of AMP was nearly completely suppressed. In accordance with these results, the activity of the rat liver cytosolic 5'-nucleotidase, assayed in the presence of concentrations of substrate and effectors mimicking those measured in intact cells following the addition of fructose, was decreased as compared to control conditions. In

  20. Nuclear localization and cytosolic overexpression of LASP-1 correlates with tumor size and nodal-positivity of human breast carcinoma

    Directory of Open Access Journals (Sweden)

    Dietl Johannes

    2007-10-01

    Full Text Available Abstract Background LIM and SH3 protein 1 (LASP-1, initially identified from human breast cancer, is a specific focal adhesion protein involved in cell proliferation and migration, which was reported to be overexpressed in 8–12 % of human breast cancers and thought to be exclusively located in cytoplasm. Methods In the present work we analyzed the cellular and histological expression pattern of LASP-1 and its involvement in biological behavior of human breast cancer through correlation with standard clinicopathological parameters and expression of c-erbB2 (HER-2/neu, estrogen- (ER and progesterone-receptors (PR. For this purpose immunohistochemical staining intensity and percentage of stained cells were semi-quantitatively rated to define a LASP-1 immunoreactive score (LASP-1-IRS. LASP-1-IRS was determined in 83 cases of invasive ductal breast carcinomas, 25 ductal carcinomas in situ (DCIS and 18 fibroadenomas. Cellular LASP-1 distribution and expression pattern was visualized by immunofluorescence and confocal microscopy and assessed through separate Western blots of nuclear and cytosol preparations of BT-20, MCF-7, MDA-MB231, and ZR-75/1 breast cancer cells. Results Statistical analysis revealed that the resulting LASP-1-IRS was significantly higher in invasive carcinomas compared to fibroadenomas (p = 0.0176. Strong cytoplasmatic expression of LASP-1 was detected in 55.4 % of the invasive carcinomas, which correlated significantly with nuclear LASP-1-positivity (p = 0.0014, increased tumor size (p = 0.0159 and rate of nodal-positivity (p = 0.0066. However, levels of LASP-1 expression did not correlate with average age at time point of diagnosis, histological tumor grading, c-erbB2-, ER- or PR-expression. Increased nuclear localization and cytosolic expression of LASP-1 was found in breast cancer with higher tumor stage as well as in rapidly proliferating epidermal basal cells. Confocal microscopy and separate Western blots of cytosolic and

  1. Arf and RhoA regulate both the cytosolic and the membrane-bound phospholipase D from human placenta

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hansen, Harald S.; Provost, J.J.;

    1997-01-01

    proteins 1 µM mArf3 (2-fold) and 0.37 nM RhoA (2-fold). This is the first report to show RhoA activation of a cytosolic PLD. The activation by mArf3 was maintained after partial purification on DEAE Sepharose of the enzyme. We have previously reported the existence of a membrane-bound PLD from human...... for the inhibitory effect. Furthermore, placental membrane PLD was activated by 30 µM GTP¿S (4-fold) and by mArf3 (1 µM) and RhoA (0.37 nM) by a factor of 3 and 2, respectively. The solubilized membrane phospholipase D was partially purified to a basal specific activity of 25-37 nmol/min/mg. This preparation...

  2. Regulation of the activity and polymerization status of recombinant human cytosolic thymidine kinase by thiols and ATP.

    Science.gov (United States)

    Kuroiwa, N; Yusa, T; Nakamura, Y; Sakiyama, S; Hiwasa, T; Lin, L; Moriyama, Y; Fujimura, S

    2000-02-01

    The cDNA clone encoding human thymidine kinase (hTK), was expressed in E. coli using a prokaryotic expression vector, pKK 223-3. The kinetics of the recombinant hTK (rhTK) were similar to those of cytosolic TK but not of mitochondrial TK. rhTK was highly purified in the presence of either ATP or dithiothreitol (DTT). The specific activity of rhTK purified in the presence of ATP [rhTK(ATP)] was lower than that of rhTK purified in the presence of DTT [rhTK(DTT)]. Activity of the purified rhTK(ATP) was enhanced by addition of thiols including DTT, cysteine, homocysteine and beta-mercaptoethanol but inhibited by various sulfhydryl reagents such as 5,5'-dithio-bis(2-nitrobenzoic acid). Hence, it was suggested that rhTK is a thiol-type enzyme. Apparent Mr of purified rhTK(ATP) was 100 kDa, which corresponds to the size of a tetramer (25 kDa subunit), while that of purified rhTK(DTT) was 50 kDa, the size of a dimer. The tetramer form of rhTK(ATP) was converted to the dimer by replacement of ATP by DTT. On the other hand, the dimer form of rhTK(DTT) was converted to the tetramer by addition of ATP. Thus, the catalytic activity of human cytosolic TK might be regulated by thiols as well as ATP via its polymerization status.

  3. Transcriptional regulation of cytosol and membrane alanyl-aminopeptidase in human T cell subsets.

    Science.gov (United States)

    Bukowska, Alicja; Tadje, Janine; Arndt, Marco; Wolke, Carmen; Kähne, Thilo; Bartsch, Jaqueline; Faust, Jürgen; Neubert, Klaus; Hashimoto, Yuichi; Lendeckel, Uwe

    2003-04-01

    Aminopeptidase inhibitors strongly affect the proliferation and function of immune cells in man and animals and are promising agents for the pharmacological treatment of inflammatory or autoimmune diseases. Membrane alanyl-aminopeptidase (mAAP) has been considered as the major target of these anti-inflammatory aminopeptidase inhibitors. Recent evidence also points to a role of the cytosol alanyl-aminopeptidase (cAAP) in the immune response. In this study we used quantitative RT-PCR to determine the mRNA expression of both cAAP and mAAP in resting and activated peripheral T cells and also in CD4+, CD8+, Th1, Th2 and Treg (CD4+ CD25+) subpopulations. Both mAAP and cAAP mRNAs were expressed in all cell types investigated, and in response to activation their expression appeared to be upregulated in CD8+ cells, but downregulated in Treg cells. In CD4+ cells, mAAP and cAAP mRNAs were affected in opposite ways in response to activation. The cAAP-specific inhibitor, PAQ-22, did not affect either cAAP or mAAP expression in activated CD4+ or CD8+ cells, whereas in activated Treg cells it markedly upregulated the mRNA levels of both aminopeptidases. The non-discriminatory inhibitor, phebestin, significantly increased the amount of mAAP and cAAP mRNA in CD4+ and that of cAAP in Treg cells.

  4. Purification and characterization of a lipid thiobis ester from human neutrophil cytosol that reversibly deactivates the O2- -generating NADPH oxidase.

    Science.gov (United States)

    Eklund, E A; Gabig, T G

    1990-05-25

    Intact neutrophils possess a cellular mechanism that efficiently deactivates the microbicidal O2-generating NADPH oxidase during the respiratory burst (Akard, L. P., English, D., and Gabig, T. G. (1988) Blood 72, 322-327). The present studies directed at identifying the molecular mechanism(s) involved in NADPH oxidase deactivation showed that a heat- and trypsin-insensitive species in the cytosolic fraction from normal unstimulated neutrophils was capable of deactivating the membrane-associated NADPH oxidase isolated from opsonized zymosan- or phorbol 12-myristate 13-acetate-stimulated neutrophils. This cytosolic species also deactivated the cell-free-activated oxidase. Deactivation by this cytosolic species occurred in the absence of NADPH-dependent catalytic turnover and was reversible, since NADPH oxidase activity could be subsequently reactivated in the cell-free system. The sedimentable particulate fraction from unstimulated neutrophils did not demonstrate deactivator activity. Deactivator activity was demonstrated in the neutral lipid fraction of neutrophil cytosol extracted with chloroform:methanol. Following complete purification of cytosolic deactivator activity by thin layer chromatography and reversed phase high performance liquid chromatography, the deactivator species was shown to be a lipid thiobis ester compound by mass spectroscopy. Cellular metabolism of this compound in human neutrophils may reveal a unique mechanism for enzymatic control of the NADPH oxidase system and thereby play an important role in regulation of the inflammatory response.

  5. Surface-Enhanced Raman Spectroscopy (SERS Tracking of Chelerythrine, a Na+/K+ Pump Inhibitor, into Cytosol and Plasma Membrane Fractions of Human Lens Epithelial Cell Cultures

    Directory of Open Access Journals (Sweden)

    Kevin M. Dorney

    2013-12-01

    Full Text Available Background/Aims: The quaternary benzo-phenanthridine alkaloid (QBA chelerythrine (CET is a pro-apoptotic drug and Na+/K+ pump (NKP inhibitor in human lens epithelial cells (HLECs. In order to obtain further insight into the mechanism of NKP inhibition by CET, its sub-cellular distribution was quantified in cytosolic and membrane fractions of HLEC cultures by surface-enhanced Raman spectroscopy (SERS. Methods: Silver nanoparticles (AgNPs prepared by the Creighton method were concentrated, and size-selected using a one-step tangential flow filtration approach. HLECs cultures were exposed to 50 μM CET in 300 mOsM phosphate-buffered NaCl for 30 min. A variety of cytosolic extracts, crude and purified membranes, prepared in lysing solutions in the presence and absence of a non-ionic detergent, were incubated with AgNPs and subjected to SERS analysis. Determinations of CET were based on a linear calibration plot of the integrated CET SERS intensity at its 659 cm-1 marker band as a function of CET concentration. Results: SERS detected chemically unaltered CET in both cytosol and plasma membrane fractions. Normalized for protein, the CET content was some 100 fold higher in the crude and purified plasma membrane fraction than in the soluble cytosolic extract. The total free CET concentration in the cytosol, free of membranes or containing detergent-solubilized membrane material, approached that of the incubation medium of HLECs. Conclusion: Given a negative membrane potential of HLECs the data suggest, but do not prove, that CET may traverse the plasma membrane as a positively charged monomer (CET+ accumulating near or above passive equilibrium distribution. These findings may contribute to a recently proposed hypothesis that CET binds to and inhibits the NKP through its cytosolic aspect.

  6. Effects of Sulfur Amino Acids on Tyrosyl or Serine/Threonine Phosphorylation and Translocation of Cytosolic Compounds to Cell Membrane in Stimulus-treated Human Neutrophils

    Directory of Open Access Journals (Sweden)

    Kitaoka,Noriko

    2009-12-01

    Full Text Available We investigated the effects of various sulfur amino acids on the phosphorylation of proteins and the translocation of cytosolic compounds to cell membrane in stimulus-treated human neutrophils using specific monoclonal antibodies. D,L-homocysteine and D,L-homocysteine-thiolactone enhanced fMLP-induced tyrosyl phosphorylation of proteins and the translocation of p47phox, p67phox, and rac to the cell membrane in a concentration-dependent manner. L-cystathionine, NAc-L-cysteine and carboxymethylcysteine suppressed the tyrosyl phophorylation and translocation of cytosolic compounds to the cell membrane. L-cystathionine, L-cysteine and NAc-L-cysteine suppressed PMA-induced serine/threonine phosphorylation and the translocation of cytosolic compounds to the cell membrane. L-cysteine, NAc-L-cysteine and D,L-homocysteine enhanced AA-induced serine/threonine phosphorylation and the translocation of cytosolic compounds to the cell membrane, but L-cystathionine had opposite effects. These results indicated that the effects of sulfur amino acids on tyrosyl or serine/threonine phosphorylation and the translocation of p47phox, p67phox, and rac to the cell membrane in the stimulus-treated human neutrophils were in parallel with those of the stimulus-induced superoxide generation reported in previous paper. L-cysteine, D,L-homocysteine and L-cystathionine weakly inhibited lipid peroxidation, but the other sulfur amino acids tested had no effect.

  7. Metabolism of BYZX in human liver microsomes and cytosol: identification of the metabolites and metabolic pathways of BYZX.

    Directory of Open Access Journals (Sweden)

    Lushan Yu

    Full Text Available BYZX, [(E-2-(4-((diethylaminomethylbenzylidene-5,6-dimethoxy-2,3-dihydroinden-one], belongs to a series of novel acetylcholinesterase inhibitors and has been synthesized as a new chemical entity for the treatment of Alzheimer's disease symptoms. When incubated with human liver microsomes (HLMs, BYZX was rapidly transformed into its metabolites M1, M2, and M3. The chemical structures of these metabolites were identified using liquid chromatography tandem mass spectrometry and nuclear magnetic resonance, which indicated that M1 was an N-desethylated and C = C hydrogenation metabolite of BYZX. M2 and M3 were 2 precursor metabolites, which resulted from the hydrogenation and desethylation of BYZX, respectively. Further studies with chemical inhibitors and human recombinant cytochrome P450s (CYPs, and correlation studies were performed. The results indicated that the N-desethylation of BYZX and M2 was mediated by CYP3A4 and CYP2C8. The reduced form of β-nicotinamide adenine dinucleotide 2'-phosphate was involved in the hydrogenation of BYZX and M3, and this reaction occurred in the HLMs and in the human liver cytosol. The hydrogenation reaction was not inhibited by any chemical inhibitors of CYPs, but it was significantly inhibited by some substrates of α,β-ketoalkene C = C reductases and their inhibitors such as benzylideneacetone, dicoumarol, and indomethacin. Our results suggest that α,β-ketoalkene C = C reductases may play a role in the hydrogenation reaction, but this issue requires further clarification.

  8. Lung Beractant Increases Free Cytosolic Levels of Ca2+ in Human Lung Fibroblasts

    Science.gov (United States)

    Guzmán-Silva, Alejandro; Vázquez de Lara, Luis G.; Torres-Jácome, Julián; Vargaz-Guadarrama, Ajelet; Flores-Flores, Marycruz; Pezzat Said, Elias; Lagunas-Martínez, Alfredo; Mendoza-Milla, Criselda; Tanzi, Franco; Moccia, Francesco; Berra-Romani, Roberto

    2015-01-01

    Beractant, a natural surfactant, induces an antifibrogenic phenotype and apoptosis in normal human lung fibroblasts (NHLF). As intracellular Ca2+ signalling has been related to programmed cell death, we aimed to assess the effect of beractant on intracellular Ca2+ concentration ([Ca2+]i) in NHLF in vitro. Cultured NHLF were loaded with Fura-2 AM (3 μM) and Ca2+ signals were recorded by microfluorimetric techniques. Beractant causes a concentration-dependent increase in [Ca2+]i with a EC50 of 0.82 μg/ml. The application of beractant, at a concentration of 500 μg/ml, which has been shown to exert an apoptotic effect in human fibroblasts, elicited different patterns of Ca2+ signals in NHLF: a) a single Ca2+ spike which could be followed by b) Ca2+ oscillations, c) a sustained Ca2+ plateau or d) a sustained plateau overlapped by Ca2+ oscillations. The amplitude and pattern of Ca2+ transients evoked by beractant were dependent on the resting [Ca2+]i. Pharmacological manipulation revealed that beractant activates a Ca2+ signal through Ca2+ release from intracellular stores mediated by phospholipase Cβ (PLCβ), Ca2+ release from inositol 1,4,5-trisphosphate receptors (IP3Rs) and Ca2+ influx via a store-operated pathway. Moreover, beractant-induced Ca2+ release was abolished by preventing membrane depolarization upon removal of extracellular Na+ and Ca2+. Finally, the inhibition of store-operated channels prevented beractant-induced NHLF apoptosis and downregulation of α1(I) procollagen expression. Therefore, beractant utilizes SOCE to exert its pro-apoptotic and antifibrinogenic effect on NHLF. PMID:26230503

  9. Lung Beractant Increases Free Cytosolic Levels of Ca2+ in Human Lung Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Alejandro Guzmán-Silva

    Full Text Available Beractant, a natural surfactant, induces an antifibrogenic phenotype and apoptosis in normal human lung fibroblasts (NHLF. As intracellular Ca2+ signalling has been related to programmed cell death, we aimed to assess the effect of beractant on intracellular Ca2+ concentration ([Ca2+]i in NHLF in vitro. Cultured NHLF were loaded with Fura-2 AM (3 μM and Ca2+ signals were recorded by microfluorimetric techniques. Beractant causes a concentration-dependent increase in [Ca2+]i with a EC50 of 0.82 μg/ml. The application of beractant, at a concentration of 500 μg/ml, which has been shown to exert an apoptotic effect in human fibroblasts, elicited different patterns of Ca2+ signals in NHLF: a a single Ca2+ spike which could be followed by b Ca2+ oscillations, c a sustained Ca2+ plateau or d a sustained plateau overlapped by Ca2+ oscillations. The amplitude and pattern of Ca2+ transients evoked by beractant were dependent on the resting [Ca2+]i. Pharmacological manipulation revealed that beractant activates a Ca2+ signal through Ca2+ release from intracellular stores mediated by phospholipase Cβ (PLCβ, Ca2+ release from inositol 1,4,5-trisphosphate receptors (IP3Rs and Ca2+ influx via a store-operated pathway. Moreover, beractant-induced Ca2+ release was abolished by preventing membrane depolarization upon removal of extracellular Na+ and Ca2+. Finally, the inhibition of store-operated channels prevented beractant-induced NHLF apoptosis and downregulation of α1(I procollagen expression. Therefore, beractant utilizes SOCE to exert its pro-apoptotic and antifibrinogenic effect on NHLF.

  10. Cytosolic dsDNA triggers apoptosis and pro-inflammatory cytokine production in normal human melanocytes.

    Science.gov (United States)

    Wang, Suiquan; Liu, Dongyin; Ning, Weixuan; Xu, Aie

    2015-04-01

    Considerable evidence implicates that viral infection might be a participant factor in the pathogenesis of vitiligo. However, it is still unclear how viral infection leads to the melanocyte destruction. To elucidate the effects of viral dsDNA on the viability and cytokine synthesis of normal human melanocytes and to explore the underlying mechanisms, primary cultured normal human melanocytes were transfected with poly(dA:dT). The results demonstrated that poly(dA:dT) triggered apoptosis instead of pyroptosis in melanocytes. Knocking down AIM2 or RIG-I by RNA interference partially reduced the poly(dA:dT)-induced LDH release, suggesting the involvement of both nucleic acid sensors in the process of melanocyte death. Poly(dA:dT) induced the expression of pro-inflammatory cytokine genes including IFN-β, TNF-α, IL-6 and IL-8 as well, whereas the pro-inflammatory cytokine production was suppressed by RIG-I siRNA, but not by AIM2 siRNA. Poly(dA:dT) treatment increased the phosphorylation of p38 and JNK and NFκB. Accordingly, NFκB inhibitor Bay 11-7082 and JNK inhibitor SP600125 blocked the induction of the cytokine genes except IFN-β. The production of IL6 and IL8 was also suppressed by p38 inhibitor SB203580. On the contrary, the Poly(dA:dT)-induced melanocyte death was only decreased by SP600125. This study provides the possible mechanism of melanocyte destruction and immuno-stimulation in vitiligo by innate immune response following viral infection.

  11. Ecto- and cytosolic 5'-nucleotidases in normal and AMP deaminase-deficient human skeletal muscle

    DEFF Research Database (Denmark)

    Hanisch, Frank; Hellsten, Ylva; Zierz, Stephan

    2006-01-01

    AMPD1 genotypes [homozygotes for C34T mutation (TT); heterozygotes for C34T mutation (CT); and homozygotes for wild type (CC): diseased controls CC; and normal controls CC]. AMP deaminase activity showed genotype-dependent differences. Total cN activity in normal controls accounted for 57...... homogenate 5'-nucleotidase and ectoN, or in cN-I expression on Western blots. No correlation for age, fibre type distribution and AMPD1 genotype was found for whole homogenate nucleotidase, total cN and cN-I using multiple linear regression analysis. There was no gender-specific difference in the activities...... of whole homogenate nucleotidase, total cN and cN-I. The results indicate no changes in the relative expression or catalytic behaviour of cN-I in AMP deaminase-deficient human skeletal muscle, but suggest that increased turnover of AMP by cN-I in working skeletal muscle is due to higher substrate...

  12. Proteomic comparison of the cytosolic proteins of three Bifidobacterium longum human isolates and B. longum NCC2705

    Directory of Open Access Journals (Sweden)

    Champomier-Vergès Marie-Christine

    2010-01-01

    Full Text Available Abstract Background Bifidobacteria are natural inhabitants of the human gastrointestinal tract. In full-term newborns, these bacteria are acquired from the mother during delivery and rapidly become the predominant organisms in the intestinal microbiota. Bifidobacteria contribute to the establishment of healthy intestinal ecology and can confer health benefits to their host. Consequently, there is growing interest in bifidobacteria, and various strains are currently used as probiotic components in functional food products. However, the probiotic effects have been reported to be strain-specific. There is thus a need to better understand the determinants of the observed benefits provided by these probiotics. Our objective was to compare three human B. longum isolates with the sequenced model strain B. longum NCC2705 at the chromosome and proteome levels. Results Pulsed field electrophoresis genotyping revealed genetic heterogeneity with low intraspecies strain relatedness among the four strains tested. Using two-dimensional gel electrophoresis, we analyzed qualitative differences in the cytosolic protein patterns. There were 45 spots that were present in some strains and absent in others. Spots were excised from the gels and subjected to peptide mass fingerprint analysis for identification. The 45 spots represented 37 proteins, most of which were involved in carbohydrate metabolism and cell wall or cell membrane synthesis. Notably, the protein patterns were correlated with differences in cell membrane properties like surface hydrophobicity and cell agglutination. Conclusion These results showed that proteomic analysis can be valuable for investigating differences in bifidobacterial species and may provide a better understanding of the diversity of bifidobacteria and their potential use as probiotics.

  13. Parabens inhibit human skin estrogen sulfotransferase activity: possible link to paraben estrogenic effects.

    Science.gov (United States)

    Prusakiewicz, Jeffery J; Harville, Heather M; Zhang, Yanhua; Ackermann, Chrisita; Voorman, Richard L

    2007-04-11

    Parabens (p-hydroxybenzoate esters) are a group of widely used preservatives in topically applied cosmetic and pharmaceutical products. Parabens display weak associations with the estrogen receptors in vitro or in cell based models, but do exhibit estrogenic effects in animal models. It is our hypothesis that parabens exert their estrogenic effects, in part, by elevating levels of estrogens through inhibition of estrogen sulfotransferases (SULTs) in skin. We report here the results of a structure-activity-relationship of parabens as inhibitors of estrogen sulfation in human skin cytosolic fractions and normal human epidermal keratinocytes. Similar to reports of paraben estrogenicity and estrogen receptor affinity, the potency of SULT inhibition increased as the paraben ester chain length increased. Butylparaben was found to be the most potent of the parabens in skin cytosol, yielding an IC(50) value of 37+/-5 microM. Butylparaben blocked the skin cytosol sulfation of estradiol and estrone, but not the androgen dehydroepiandrosterone. The parabens were also tested as inhibitors of SULT activity in a cellular system, with normal human epidermal keratinocytes. The potency of butylparaben increased three-fold in these cells relative to the IC(50) value from skin cytosol. Overall, these results suggest chronic topical application of parabens may lead to prolonged estrogenic effects in skin as a result of inhibition of estrogen sulfotransferase activity. Accordingly, the skin anti-aging benefits of many topical cosmetics and pharmaceuticals could be derived, in part, from the estrogenicity of parabens.

  14. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity.

    Science.gov (United States)

    Xu, Xiang; Zhao, Jingyue; Xu, Zhen; Peng, Baozhen; Huang, Qiuhua; Arnold, Eddy; Ding, Jianping

    2004-08-06

    Isocitrate dehydrogenases (IDHs) catalyze the oxidative decarboxylation of isocitrate to alpha-ketoglutarate, and regulation of the enzymatic activity of IDHs is crucial for their biological functions. Bacterial IDHs are reversibly regulated by phosphorylation of a strictly conserved serine residue at the active site. Eukaryotic NADP-dependent IDHs (NADP-IDHs) have been shown to have diverse important biological functions; however, their regulatory mechanism remains unclear. Structural studies of human cytosolic NADP-IDH (HcIDH) in complex with NADP and in complex with NADP, isocitrate, and Ca2+ reveal three biologically relevant conformational states of the enzyme that differ substantially in the structure of the active site and in the overall structure. A structural segment at the active site that forms a conserved alpha-helix in all known NADP-IDH structures assumes a loop conformation in the open, inactive form of HcIDH; a partially unraveled alpha-helix in the semi-open, intermediate form; and an alpha-helix in the closed, active form. The side chain of Asp279 of this segment occupies the isocitrate-binding site and forms hydrogen bonds with Ser94 (the equivalent of the phosphorylation site in bacterial IDHs) in the inactive form and chelates the metal ion in the active form. The structural data led us to propose a novel self-regulatory mechanism for HcIDH that mimics the phosphorylation mechanism used by the bacterial homologs, consistent with biochemical and biological data. This mechanism might be applicable to other eukaryotic NADP-IDHs. The results also provide insights into the recognition and specificity of substrate and cofactor by eukaryotic NADP-IDHs.

  15. Differential 3-bromopyruvate inhibition of cytosolic and mitochondrial human serine hydroxymethyltransferase isoforms, key enzymes in cancer metabolic reprogramming.

    Science.gov (United States)

    Paiardini, Alessandro; Tramonti, Angela; Schirch, Doug; Guiducci, Giulia; di Salvo, Martino Luigi; Fiascarelli, Alessio; Giorgi, Alessandra; Maras, Bruno; Cutruzzolà, Francesca; Contestabile, Roberto

    2016-11-01

    The cytosolic and mitochondrial isoforms of serine hydroxymethyltransferase (SHMT1 and SHMT2, respectively) are well-recognized targets of cancer research, since their activity is critical for purine and pyrimidine biosynthesis and because of their prominent role in the metabolic reprogramming of cancer cells. Here we show that 3-bromopyruvate (3BP), a potent novel anti-tumour agent believed to function primarily by blocking energy metabolism, differentially inactivates human SHMT1 and SHMT2. SHMT1 is completely inhibited by 3BP, whereas SHMT2 retains a significant fraction of activity. Site directed mutagenesis experiments on SHMT1 demonstrate that selective inhibition relies on the presence of a cysteine residue at the active site of SHMT1 (Cys204) that is absent in SHMT2. Our results show that 3BP binds to SHMT1 active site, forming an enzyme-3BP complex, before reacting with Cys204. The physiological substrate l-serine is still able to bind at the active site of the inhibited enzyme, although catalysis does not occur. Modelling studies suggest that alkylation of Cys204 prevents a productive binding of l-serine, hampering interaction between substrate and Arg402. Conversely, the partial inactivation of SHMT2 takes place without the formation of a 3BP-enzyme complex. The introduction of a cysteine residue in the active site of SHMT2 by site directed mutagenesis (A206C mutation), at a location corresponding to that of Cys204 in SHMT1, yields an enzyme that forms a 3BP-enzyme complex and is completely inactivated. This work sets the basis for the development of selective SHMT1 inhibitors that target Cys204, starting from the structure and reactivity of 3BP.

  16. Cyclic AMP-phosphodiesterase IIIA1 inhibitors decrease cytosolic Ca2+ concentration and increase the Ca2+ content of intracellular storage sites in human platelets.

    Science.gov (United States)

    Roevens, P; de Chaffoy de Courcelles, D

    1993-06-09

    The effect of cyclic AMP-phosphodiesterase (cAMP-PDE) inhibitors on Ca2+ homeostasis in human platelets was studied using both quin-2 (2-(bis-(acetylamino)-5-methyl-phenoxy)methyl-6-methoxy-8-bis-(acetylami no) quinoline) and chlorotetracycline (CTC) to measure changes in cytosolic Ca2+ as well as changes in the amount of Ca2+ accumulated in intracellular storage sites. At therapeutic concentrations (1 microM) milrinone and R 80 122 but not enoximone decreased the cytosolic Ca2+ concentration in the resting platelet while the Ca2+ content in intracellular stores was increased. These observations are in accord with the proposed mechanism of action of cAMP-PDE inhibitors on cardiomyocites and highlight the particular role of cAMP in regulation of Ca2+ homeostasis.

  17. In vitro Phase I and Phase II metabolism of α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV) and methedrone by human liver microsomes and human liver cytosol.

    Science.gov (United States)

    Negreira, Noelia; Erratico, Claudio; Kosjek, Tina; van Nuijs, Alexander L N; Heath, Ester; Neels, Hugo; Covaci, Adrian

    2015-07-01

    The aim of the present study was to identify the in vitro Phase I and Phase II metabolites of three new psychoactive substances: α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV), and methedrone, using human liver microsomes and human liver cytosol. Accurate-mass spectra of metabolites were obtained using liquid chromatography-quadrupole time-of-flight mass spectrometry. Six Phase I metabolites of α-PVP were identified, which were formed involving reduction, hydroxylation, and pyrrolidine ring opening reactions. The lactam compound was the major metabolite observed for α-PVP. Two glucuronidated metabolites of α-PVP, not reported in previous in vitro studies, were further identified. MDPV was transformed into 10 Phase I metabolites involving reduction, hydroxylation, and loss of the pyrrolidine ring. Also, six glucuronidated and two sulphated metabolites were detected. The major metabolite of MDPV was the catechol metabolite. Methedrone was transformed into five Phase I metabolites, involving N- and O-demethylation, hydroxylation, and reduction of the ketone group. Three metabolites of methedrone are reported for the first time. In addition, the contribution of individual human CYP enzymes in the formation of the detected metabolites was investigated.

  18. LeftyA sensitive cytosolic pH regulation and glycolytic flux in Ishikawa human endometrial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Salker, Madhuri S.; Zhou, Yuetao; Singh, Yogesh [Department of Physiology, University of Tuebingen, 72076 Tuebingen (Germany); Brosens, Jan [Division of Reproductive Health, Warwick Medical School, Clinical Sciences Research Laboratories, University Hospital, Coventry CV2 2DX (United Kingdom); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tuebingen, 72076 Tuebingen (Germany)

    2015-05-08

    Objective: LeftyA, a powerful regulator of stemness, embryonic differentiation, and reprogramming of cancer cells, counteracts cell proliferation and tumor growth. Key properties of tumor cells include enhanced glycolytic flux, which is highly sensitive to cytosolic pH and thus requires export of H{sup +} and lactate. H{sup +} extrusion is in part accomplished by Na{sup +}/H{sup +} exchangers, such as NHE1. An effect of LeftyA on transport processes has, however, never been reported. The present study thus explored whether LeftyA modifies regulation of cytosolic pH (pHi) in Ishikawa cells, a well differentiated endometrial carcinoma cell model. Methods: NHE1 transcript levels were determined by qRT-PCR, NHE1 protein abundance quantified by Western blotting, pH{sub i} estimated utilizing (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein [BCECF] fluorescence, Na{sup +}/H{sup +} exchanger activity from Na{sup +} dependent realkalinization after an ammonium pulse, and lactate concentration in the supernatant utilizing an enzymatic assay and subsequent colorimetry. Results: A 2 h treatment with LeftyA (8 ng/ml) significantly decreased NHE1 transcript levels (by 99.6%), NHE1 protein abundance (by 71%), Na{sup +}/H{sup +} exchanger activity (by 55%), pHi (from 7.22 ± 0.02 to 7.05 ± 0.02), and lactate release (by 41%). Conclusions: LeftyA markedly down-regulates NHE1 expression, Na{sup +}/H{sup +} exchanger activity, pHi, and lactate release in Ishikawa cells. Those effects presumably contribute to cellular reprogramming and growth inhibition. - Highlights: • LeftyA, an inhibitor of tumor growth, reduces Na{sup +}/H{sup +}-exchanger activity by 55%. • LeftyA decreases NHE1 transcripts by 99.6% and NHE1 protein by 71%. • LeftyA decreases cytosolic pH from 7.22 ± 0.02 to 7.05 ± 0.02. • Cytosolic acidification by Lefty A decreases glycolysis by 41%. • Cytosolic acidification by Lefty A compromises energy production of tumor cells.

  19. Mammalian cytosolic glutathione transferases.

    Science.gov (United States)

    Dourado, Daniel F A R; Fernandes, Pedro Alexandrino; Ramos, Maria João

    2008-08-01

    Glutathione Transferases (GSTs) are crucial enzymes in the cell detoxification process catalyzing the nucleophilic attack of glutathione (GSH) on toxic electrophilic substrates and producing a less dangerous compound. GSTs studies are of great importance since they have been implicated in the development of drug resistance in tumoral cells and are related to human diseases such as Parkinson's, Alzheimer's, atherosclerois, liver cirrhosis, aging and cataract formation. In this review we start by providing an evolutionary perspective of the mammalian cytosolic GSTs known to date. Later on we focus on the more abundant classes alpha, mu and pi and their structure, catalysis, metabolic associated functions, drug resistance relation and inhibition methods. Finally, we introduce the recent insights on the GST class zeta from a metabolic perspective.

  20. 1α,25(OH) 2D3 Sensitive Cytosolic pH Regulation and Glycolytic Flux in Human Endometrial Ishikawa Cells.

    Science.gov (United States)

    Zeng, Ni; Zhou, Yuetao; Zhang, Shaqiu; Singh, Yogesh; Shi, Bing; Salker, Madhuri S; Lang, Florian

    2017-01-01

    Tumor cell proliferation is modified by 1,25-Dihydroxy-Vitamin D3 (1,25(OH)2D3), a steroid hormone predominantly known for its role in calcium and phosphorus metabolism. Key properties of tumor cells include enhanced glycolytic flux with excessive consumption of glucose and formation of lactate. As glycolysis is highly sensitive to cytosolic pH, maintenance of glycolysis requires export of H+ ions and lactate, which is in part accomplished by Na+/H+ exchangers, such as NHE1 and monocarboxylate transporters, such as MCT4. An effect of 1,25(OH)2D3 on those transport processes has, however, never been reported. As cytosolic pH impacts on apoptosis, the study further explored the effect of 1,25(OH)2D3 on apoptosis and on the apoptosis regulating kinase AKT, transcription factor Forkhead box O-3 (FOXO3A) and B-cell lymphoma protein BCL-2. In human endometrial adenocarcinoma (Ishikawa) cells, cytosolic pH (pHi) was determined utilizing (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein [BCECF] fluorescence, Na+/H+ exchanger activity from Na+ dependent realkalinization after an ammonium pulse, NHE1 and MCT4 transcript levels using qRT-PCR, NHE1, MCT4, total & phospho AKT, total & phospho-FOXO3A and BCL-2 protein abundance by Western blotting, lactate concentration in the supernatant utilizing a colorimetric enzyme assay and cell death quantification using CytoTox 96®, Annexin V and Propidium Iodide staining. A 24 hours treatment with 1,25(OH)2D3 (100 nM) significantly increased cytosolic pH (pHi), significantly decreased Na+/H+ exchanger activity, NHE1 and MCT4 transcript levels as well as protein abundance and significantly increased lactate concentration in the supernatant. Treatment of Ishikawa cells with 1,25(OH)2D3 (100 nM) further triggered apoptosis, an effect paralleled by decreased phosphorylation of AKT and FOXO3A as well as decreased abundance of BCL-2. In Ishikawa cells 1,25(OH)2D3 is a powerful stimulator of glycolysis, an effect presumably due to

  1. Effect of valine 106 on structure-function relation of cytosolic human thymidine kinase - Kinetic properties and oligomerization pattern of nine substitution mutants of V106

    DEFF Research Database (Denmark)

    Frederiksen, Hanne; Berenstein, Dvora; Munch-Petersen, Birgitte

    2004-01-01

    Information on the regulation and structure-function relation of enzymes involved in DNA precursor synthesis is pivotal, as defects in several of these enzymes have been found to cause depletion or deletion of mitochondrial DNA resulting in severe diseases. Here, the effect of amino acid 106...... on the enzymatic properties of the cell-cycle-regulated human cytosolic thymidine kinase 1 (TK1) is investigated. On the basis of the previously observed profound differences between recombinant TK1 with Val106 (V106WT) and Met106 (V106M) in catalytic activity and oligomerization pattern, we designed...... transition from a dimer with low catalytic activity to a tetramer with high catalytic activity. Group II (V106G, V106H, V106K, V106L and V106Q) behaves like V106M in that they are permanently high activity tetramers, irrespective of ATP exposure. We conclude that size and conformation of amino acid 106...

  2. Evidence that the Entamoeba histolytica Mitochondrial Carrier Family Links Mitosomal and Cytosolic Pathways through Exchange of 3'-Phosphoadenosine 5'-Phosphosulfate and ATP.

    Science.gov (United States)

    Mi-ichi, Fumika; Nozawa, Akira; Yoshida, Hiroki; Tozawa, Yuzuru; Nozaki, Tomoyoshi

    2015-11-01

    Entamoeba histolytica, a microaerophilic protozoan parasite, possesses mitosomes. Mitosomes are mitochondrion-related organelles that have largely lost typical mitochondrial functions, such as those involved in the tricarboxylic acid cycle and oxidative phosphorylation. The biological roles of Entamoeba mitosomes have been a long-standing enigma. We previously demonstrated that sulfate activation, which is not generally compartmentalized to mitochondria, is a major function of E. histolytica mitosomes. Sulfate activation cooperates with cytosolic enzymes, i.e., sulfotransferases (SULTs), for the synthesis of sulfolipids, one of which is cholesteryl sulfate. Notably, cholesteryl sulfate plays an important role in encystation, an essential process in the Entamoeba life cycle. These findings identified a biological role for Entamoeba mitosomes; however, they simultaneously raised a new issue concerning how the reactions of the pathway, separated by the mitosomal membranes, cooperate. Here, we demonstrated that the E. histolytica mitochondrial carrier family (EhMCF) has the capacity to exchange 3'-phosphoadenosine 5'-phosphosulfate (PAPS) with ATP. We also confirmed the cytosolic localization of all the E. histolytica SULTs, suggesting that in Entamoeba, PAPS, which is produced through mitosomal sulfate activation, is translocated to the cytosol and becomes a substrate for SULTs. In contrast, ATP, which is produced through cytosolic pathways, is translocated into the mitosomes and is a necessary substrate for sulfate activation. Taking our findings collectively, we suggest that EhMCF functions as a PAPS/ATP antiporter and plays a crucial role in linking the mitosomal sulfate activation pathway to cytosolic SULTs for the production of sulfolipids.

  3. RELATIONSHIP OF PHENOL SULFOTRANSFERASE (SULT1A1) GENOTYPE TO SULFOTRANSFERASE ACTIVITY PHENOTYPE IN PLATELET CYTOSOL. (R825280)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  4. Human CIA2A (FAM96A) and CIA2B (FAM96B) integrate maturation of different subsets of cytosolic-nuclear iron-sulfur proteins and iron homeostasis

    OpenAIRE

    Stehling, Oliver; Mascarenhas, Judita; Ajay A Vashisht; Sheftel, Alex D.; Niggemeyer, Brigitte; Rösser, Ralf; Pierik, Antonio J.; Wohlschlegel, James A.; Lill, Roland

    2013-01-01

    Numerous cytosolic and nuclear proteins involved in metabolism, DNA maintenance, protein translation, or iron homeostasis depend on iron-sulfur (Fe/S) cofactors, yet their assembly is poorly defined. Here, we identify and characterize human CIA2A (FAM96A), CIA2B (FAM96B), and CIA1 (CIAO1) as components of the cytosolic Fe/S protein assembly (CIA) machinery. CIA1 associates with either CIA2A or CIA2B and the CIA targeting factor MMS19. The CIA2B-CIA1-MMS19 complex binds to and facilitates asse...

  5. Expression of cytosolic 5' nucleotidase does not correlate with expression of oxidative metabolism marker: myoglobine in human skeletal muscles

    Institute of Scientific and Technical Information of China (English)

    Katarzyna Lechward; Kinga Tkacz-Stachowska

    2009-01-01

    Our previous studies had shown that eytosolic 5'nucleotidase-I (eN-I) is expressed in several tissues in pigeons, including brain and several different skeletal muscles. We observed that cN-I mRNA levels varied among different pigeon muscles. Initial quantification of the differences revealed that ~5-10 times more of cN-I transcript was present in red, oxidative muscles (breast muscle and gastrocnemius) than in white ones,composed of glycolytic fibers (biceps brachii). We had found this observation very intriguing and decided to compare human skeletal muscles distribution of cN-I with the type of oxygen metabolism. Our screen involved 60 samples of several human muscles and we assayed the correlation between the amount of tran-scripts of cN-I and myoglobine, which we took as a measure of oxidative-slow twitch fibers. Our question was whether in humans, cN-I presence in skeletal muscles was related to their fiber composition. If that was the case, then cN-I expression could serve as a tool to assess the percentage of oxidative fibers in any given human muscle sample, where myogiobine expression could not be readily measured. After quantification of expression of both genes, we concluded that there was no correlation between expression of cN-I and fiber type. Therefore, contrary to the pigeon muscles, cN-Idid not reflect the ratio of oxidative fibers to the total mass of the muscle sample in humans. That difference indicated that there were certain mechanisms that dif-ferentially regulated the expression of cN-I in muscle tissues of mammals and lower vertebrates.

  6. Diospyrin derivative, an anticancer quinonoid, regulates apoptosis at endoplasmic reticulum as well as mitochondria by modulating cytosolic calcium in human breast carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Binod [Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032 (India); Radiation and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Amit [Radiation and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ghosh, Subhalakshmi [Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032 (India); Pandey, Badri N., E-mail: bnp@barc.gov.in [Radiation and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mishra, Kaushala P. [Radiation and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Hazra, Banasri, E-mail: banasrihazra@yahoo.co.in [Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032 (India)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Diospyrin diethylether (D7) caused oxidative stress-dependent activation of PC-PLC. Black-Right-Pointing-Pointer Activated PC-PLC induced a sustained-release of Ca{sup 2+} from endoplasmic reticulum. Black-Right-Pointing-Pointer The elevated cytosolic Ca{sup +2} led to the calpain-caspase12 dependent apoptosis. Black-Right-Pointing-Pointer D7-Induced Ca{sup +2} also found to accentuate the mitochondrial pathway of apoptosis. -- Abstract: Diospyrin diethylether (D7), a bisnaphthoquinonoid derivative, exhibited an oxidative stress-dependent apoptosis in several human cancer cells and tumor models. The present study was aimed at evaluation of the increase in cytosolic calcium [Ca{sup 2+}]{sub c} leading to the apoptotic cell death triggered by D7 in MCF7 human breast carcinoma cells. A phosphotidylcholine-specific phospholipase C (PC-PLC) inhibitor, viz. U73122, and an antioxidant, viz. N-acetylcysteine, could significantly prevent the D7-induced rise in [Ca{sup 2+}]{sub c} and PC-PLC activity. Using an endoplasmic reticulum (ER)-Ca{sup 2+} mobilizer (thapsigargin) and an ER-IP3R antagonist (heparin), results revealed ER as a major source of [Ca{sup 2+}]{sub c} which led to the activation of calpain and caspase12, and cleavage of fodrin. These effects including apoptosis were significantly inhibited by the pretreatment of Bapta-AM (a cell permeable Ca{sup 2+}-specific chelator), or calpeptin (a calpain inhibitor). Furthermore, D7-induced [Ca{sup 2+}]{sub c} was found to alter mitochondrial membrane potential and induce cytochrome c release, which was inhibited by either Bapta-AM or ruthenium red (an inhibitor of mitochondrial Ca{sup 2+} uniporter). Thus, these results provided a deeper insight into the D7-induced redox signaling which eventually integrated the calcium-dependent calpain/caspase12 activation and mitochondrial alterations to accentuate the induction of apoptotic cell death.

  7. Induction of progesterone receptor A form attenuates the induction of cytosolic phospholipase A2alpha expression by cortisol in human amnion fibroblasts.

    Science.gov (United States)

    Guo, Chunming; Ni, Xiaotian; Zhu, Ping; Li, Wenjiao; Zhu, Xiaoou; Sun, Kang

    2010-05-01

    Cytosolic phospholipase A2alpha (cPLA(2alpha), now known as PLA2G4A) is the enzyme catalyzing the formation of the rate-limiting substrate, arachidonic acid, for prostaglandin (PG) synthesis. The increasing expression of PLA2G4A toward term gestation in human amnion fibroblasts is believed to be the crucial event in parturition. Human amnion fibroblasts produce cortisol, progesterone and express glucocorticoid receptor (GR), progesterone receptor A (PGRA) form at term. The roles of progesterone and PGRA in the induction of PLA2G4A by cortisol via GR in the amnion fibroblasts remain largely unknown. Using cultured human term amnion fibroblasts, we found that cortisol induced the expression of PGRA, which was attenuated by inhibiting PG synthesis with indomethacin. Knockdown of PGRA expression or inhibition of endogenous progesterone production with trilostane significantly enhanced the induction of PLA2G4A by cortisol, whereas overexpression of PGRA attenuated the induction of PLA2G4A by cortisol. Although exogenous progesterone did not alter PLA2G4A expression under basal conditions, it attenuated cortisol-induced PLA2G4A expression at concentrations about tenfold higher, which might be achieved by competition with cortisol for GR. In conclusion, PGRA in the presence of endogenous progesterone is a transdominant repressor of the induction of PLA2G4A by cortisol. High level of progesterone may compete with cortisol for GR, thus further inhibiting the induction of PLA2G4A by cortisol. Moreover, increased PG synthesis by cortisol may feed back on the expression of PGRA leading to attenuation of cortisol-induced PLA2G4A expression. The above findings may be pertinent to the inconsistent effects of glucocorticoids on parturition in humans.

  8. Identification of CMS as a cytosolic adaptor of the human pTalpha chain involved in pre-TCR function.

    Science.gov (United States)

    Navarro, María N; Nusspaumer, Gretel; Fuentes, Patricia; González-García, Sara; Alcain, Juan; Toribio, María L

    2007-12-15

    The T-cell receptor beta (TCRbeta)/pre-TCRalpha (pTalpha) pre-TCR complex (pre-TCR) signals the expansion and differentiation of de-veloping thymocytes. Functional pro-perties of the pre-TCR rely on its unique pTalpha chain, which suggests the participation of specific intracellular adaptors. However, pTalpha-interacting molecules remain unknown. Here, we identified a polyproline-arginine sequence in the human pTalpha cytoplasmic tail that interacted in vitro with SH3 domains of the CIN85/CMS family of adaptors, and mediated the recruitment of multiprotein complexes involving all (CMS, CIN85, and CD2BP3) members. Supporting the physiologic relevance of this interaction, we found that 1 such adaptor, CMS, interacted in vivo with human pTalpha, and its expression was selectively up-regulated during human thymopoiesis in pre-TCR-activated thymocytes. Upon activation, pre-TCR clustering was induced, and CMS and polymerized actin were simultaneously recruited to the pre-TCR activation site. CMS also associated via its C-terminal region to the actin cytoskeleton in the endocytic compartment, where it colocalized with internalized pTalpha in traffic to lysosomal degradation. Notably, deletion of the pTalpha CIN85/CMS-binding motif impaired pre-TCR-mediated Ca(2+) mobilization and NFAT transcriptional activity, and precluded activation induced by overexpression of a CMS-SH3 N-terminal mutant. These results provide the first molecular evidence for a pTalpha intracellular adaptor involved in pre-TCR function.

  9. Carbonic anhydrase inhibitors. Inhibition of human cytosolic isoforms I and II with (reduced) Schiff's bases incorporating sulfonamide, carboxylate and carboxymethyl moieties.

    Science.gov (United States)

    Nasr, Gihane; Cristian, Alina; Barboiu, Mihail; Vullo, Daniella; Winum, Jean-Yves; Supuran, Claudiu T

    2014-05-15

    A library of Schiff bases was synthesized by condensation of aromatic amines incorporating sulfonamide, carboxylic acid or carboxymethyl functionalities as Zn(2+)-binding groups, with aromatic aldehydes incorporating tert-butyl, hydroxy and/or methoxy groups. The corresponding amines were thereafter obtained by reduction of the imines. These compounds were assayed for the inhibition of two cytosolic human carbonic anhydrase (hCA, EC 4.2.1.1) isoenzymes, hCA I and II. The Ki values of the Schiff bases were in the range of 7.0-21,400nM against hCA II and of 52-8600nM against hCA I, respectively. The corresponding amines showed Ki values in the range of 8.6nM-5.3μM against hCA II, and of 18.7-251nM against hCA I, respectively. Unlike the imines, the reduced Schiff bases are stable to hydrolysis and several low-nanomolar inhibitors were detected, most of them incorporating sulfonamide groups. Some carboxylates also showed interesting CA inhibitory properties. Such hydrosoluble derivatives may show pharmacologic applications.

  10. Kuu plaat : Märt Sults "Kõigest koolipapa...". Plaadid kauplusest Lasering

    Index Scriptorium Estoniae

    2005-01-01

    Heliplaatidest : Märt Sults "Kõigest koolipapa...", Madonna "Confessions on a Dance Floor", Tõnis Mägi "Vestlus Hermanniga", Rammstein "Rosenrot", a-ha "Analogue", Darkness "One Way Ticket to Hell...And Back"

  11. Kuu plaat : Märt Sults "Kõigest koolipapa...". Plaadid kauplusest Lasering

    Index Scriptorium Estoniae

    2005-01-01

    Heliplaatidest : Märt Sults "Kõigest koolipapa...", Madonna "Confessions on a Dance Floor", Tõnis Mägi "Vestlus Hermanniga", Rammstein "Rosenrot", a-ha "Analogue", Darkness "One Way Ticket to Hell...And Back"

  12. Cytosol cathepsin-D content and proliferative activity of human breast cancer. The Comitato Italiano per il Controllo di Qualita del Laboratorio in Oncologia.

    Science.gov (United States)

    Paradiso, A; Mangia, A; Correale, M; Abbate, I; Ferri, G; Piffanelli, A; Catozzi, L; Amadori, D; Riccobon, A; De Lena, M

    1992-01-01

    Mitogenic properties have been demonstrated in vitro for the lysosomal acidic protease cathepsin-D (cath-D). We investigated possible relationships between cath-D cytosol cell content and tumor proliferative activity in a series of 129 operable breast cancer patients. For total cytosol cath-D evaluation, a solid phase two-site immunoradiometric assay was utilized on tumor cell cytosol obtained for hormone receptor assay (DCC method). The percentage of S-phase cells was analyzed by 3H-thymidine autoradiographic assay. Median 3H-thymidine Labeling Index (3H-Tdr-LI) of the series was 2.7%; median cath-D content resulted 57 pmol/mg of protein cytosol and was significantly higher in node-positive with respect to the node-negative subgroup (p < 0.03). When classified in low, intermediate or high tumor cath-D content and slow or fast proliferative activity (cut-off: median values of the series), no significant agreement was found between the two variables. Statistical analysis, however, showed that a significant inverse correlation existed in node positive tumors between cath-D and 3H-Tdr-LI values which was even more evident in N-positive high estrogen receptor-positive (ER+) cases (coefficient of correlation = 0.6828; p = 0.0001). Cytosol cath-D content cannot be generally proposed as a direct marker of proliferative activity for operable breast cancer.

  13. Differential Roles for the Interferon-inducible IFI16 and AIM2 Innate Immune Sensors for Cytosolic DNA in Cellular Senescence of Human Fibroblasts

    Science.gov (United States)

    Duan, Xin; Ponomareva, Larissa; Veeranki, Sudhakar; Panchanathan, Ravichandran; Dickerson, Eric; Choubey, Divaker

    2011-01-01

    The interferon (IFN)-inducible IFI16 and AIM2 proteins act as innate immune sensors for cytosolic double-stranded DNA (dsDNA). Upon sensing dsDNA, the IFI16 protein induces the expression of IFN-β whereas the AIM2 protein forms an inflammasome, which promotes the secretion of IL-1β. Given that the knockdown of IFI16 expression in human diploid fibroblasts (HDFs) delays the onset of cellular senescence, we investigated the potential roles for the IFI16 and AIM2 proteins in cellular senescence. We found that increased IFI16 protein levels in old (versus young) HDFs were associated with the induction of IFN-β. In contrast, increased levels of the AIM2 protein in the senescent (versus old) HDFs were associated with increased production of IL-1β. The knockdown of type I IFN-receptor subunit-α, which reduced the basal levels of the IFI16, but not the AIM2, protein delayed the onset of cellular senescence. Accordingly, increased constitutive levels of IFI16 and AIM2 proteins in ataxia telangiectasia (AT) HDFs were associated with the activation of the IFN-signaling and increased levels of IL-1β. The IFN-β treatment of the young HDFs, which induced the expression of IFI16 and AIM2 proteins, activated a DNA-damage response and also increased basal levels of IL-1β. Interestingly, the knockdown of AIM2 expression in HDFs increased the basal levels of IFI16 protein and activated the IFN-signaling. In contrast, the knockdown of the IFI16 expression in HDFs decreased the basal and dsDNA-induced activation of the IFN-signaling. Collectively, our observations demonstrate differential roles for the IFI16 and AIM2 proteins in cellular senescence and associated secretory phenotype. PMID:21471287

  14. Carbonic anhydrase inhibitors. Inhibition of the human cytosolic isoforms I and II and transmembrane, tumor-associated isoforms IX and XII with boronic acids.

    Science.gov (United States)

    Winum, Jean-Yves; Innocenti, Alessio; Scozzafava, Andrea; Montero, Jean-Louis; Supuran, Claudiu T

    2009-05-15

    A series of aromatic, arylalkenyl- and arylalkyl boronic acids were assayed as inhibitors of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic human (h) hCA I and II, and the transmembrane, tumor-associated hCA IX and XII. The best hCA I and II inhibitor was biphenyl boronic acid with, a K(I) of 3.7-4.5 microM, whereas the remaining derivatives showed inhibition constants in the range of 6.0-1560 microM for hCA I and of 6.0-1050 microM for hCA II, respectively. hCA IX and XII were effectively inhibited by most of the aromatic boronic acids (K(I)s of 7.6-12.3 microM) whereas the arylalkenyl and aryl-alkyl derivatives generally showed weaker inhibitory properties (K(I)s of 34-531 microM). The nature of the moiety substituting the boronic acid group strongly influenced the CA inhibitory activity, with inhibitors possessing low micromolar to millimolar activity being detected in this small series of investigated compounds. This study proves that the B(OH)(2) moiety represents a new zinc-binding group for the generation of effective CA inhibitors targeting isoforms with medicinal chemistry applications. The boronic acids probably bind to the Zn(II) ion within the CA active site leading to a tetrahedral geometry of the metal ion and of the B(III) derivative.

  15. Study on the correlation between polymorphisms of SULT1E1 gene and SULT1A1 gene of sulfotransferase and susceptibility of uterine leiomyoma%硫酸基转移酶SULT1E1、SULT1A1基因多态性与子宫平滑肌瘤易感性的关联研究

    Institute of Scientific and Technical Information of China (English)

    管睿; 郑唯强; 惠宁; 徐明娟

    2011-01-01

    Objective: To explore the effects of polymorphisms of SULT1 El gene and SULT1 Al gene of sulfolransferase on susceptibility of uterine leiomyoma. Methods: PCR - RFLP method was used to detect the polymorphisms of rs3736599 locus in SULT1E1 gene and rs9282861 locus in SULT1A1 gene in case group (uterine leiomyoma group) and control group. Results: There was significant difference in the genotypic distribution of rs3736599 locus in SULT1E1 gene between case group and control group (P =0.032) . The risk of uterine leiomyoma in women carrying mutant A allele (A/A genotype and A/G genotype) was 3.497 times more than risk of uterine leiomyoma in women carrying wild homozygous G/G genotype (P =0. 034, OR =3.497, 95% CI = 1. 12 ~ 10.91) . There was no significant difference in the genotypic distribution of rs9282861 locus in SULT1 Al gene. Conclusion: Polymorphism of rs3736599 locus in SULT1E1 gene may be related to susceptibility of uterine leiomyoma, mutant A allele might be one of the risk factors of uterine leiomyoma.%目的:探讨硫酸基转移酶SULT1 E1、SULT1 A1基因多态性对子宫平滑肌瘤易感性的影响.方法:采用聚合酶链反应-限制性片段长度多态性( PCR - RFLP)分析法检测子宫平滑肌瘤组和对照组SULT1 E1基因rs3736599位点、SULT1 A1基因rs9282861位点的多态性情况.结果:①病例组和对照组SULT1E1 rs3736599位点基因型分布差异有统计学意义(P=0.032),携带突变A等位基因(基因型为A/A和A/G)女性发生子宫平滑肌瘤的风险是野生型纯合子G/G女性的3.497倍(P=0.034,OR =3.497,95% CI:1.12~10.91).②病例组和对照组SULT1A1 rs9282861位点基因型分布差异无统计学意义.结论:硫酸基转移酶SULT1E1基因rs3736599多态性可能与子宫平滑肌瘤易感性相关,携带突变A等位基因可能是子宫平滑肌瘤的危险因素.

  16. Transcriptional Regulation of Cytosolic Sulfotransferase 1C2 by Intermediates of the Cholesterol Biosynthetic Pathway in Primary Cultured Rat Hepatocytes.

    Science.gov (United States)

    Rondini, Elizabeth A; Pant, Asmita; Kocarek, Thomas A

    2015-12-01

    Cytosolic sulfotransferase 1C2 (SULT1C2) is expressed in the kidney, stomach, and liver of rats; however, the mechanisms regulating expression of this enzyme are not known. We evaluated transcriptional regulation of SULT1C2 by mevalonate (MVA)-derived intermediates in primary cultured rat hepatocytes using several cholesterol synthesis inhibitors. Blocking production of mevalonate with the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor pravastatin (30 μM), reduced SULT1C2 mRNA content by ∼40% whereas the squalene synthase inhibitor squalestatin (SQ1, 0.1 μM), which causes accumulation of nonsterol isoprenoids, increased mRNA content by 4-fold. Treatment with MVA (10 mM) strongly induced SULT1C2 mRNA by 12-fold, and this effect was blocked by inhibiting squalene epoxidase but not by more distal cholesterol inhibitors, indicating the effects of MVA are mediated by postsqualene metabolites. Using rapid amplification of cDNA ends (RACE), we characterized the 5' end of SULT1C2 mRNA and used this information to generate constructs for promoter analysis. SQ1 and MVA increased reporter activity by ∼1.6- and 3-fold, respectively, from a construct beginning 49 base pairs (bp) upstream from the longest 5'-RACE product (-3140:-49). Sequence deletions from this construct revealed a hepatocyte nuclear factor 1 (HNF1) element (-2558), and mutation of this element reduced basal (75%) and MVA-induced (30%) reporter activity and attenuated promoter activation following overexpression of HNF1α or 1β. However, the effects of SQ1 were localized to a more proximal promoter region (-281:-49). Collectively, our findings demonstrate that cholesterol biosynthetic intermediates influence SULT1C2 expression in rat primary hepatocytes. Further, HNF1 appears to play an important role in mediating basal and MVA-induced SULT1C2 transcription.

  17. 酶抑制剂对V79-hCYP2E1-SULT1A1细胞酶依赖性化学诱变的影响%Effects of enzyme inhibitors on enzyme-dependent and chemical-induced mutagenesis in V79-hCYP2E1-hSULT1A1 cells

    Institute of Scientific and Technical Information of China (English)

    刘云岗; 胡克歧

    2011-01-01

    0bjective: V79-hCYP2E1-hSULT1A1 ,a genetically engineered Chinese hamster V79 cell line expressing human CYP2E1 and human sulfotransferase(SULT) 1A1 ,demonstrates mutagenic response to promutagens requiring metabolic activation by either expressed enzyme. For the purpose of investigating the effect of either enzyme alone, it is highly necessary to establish a test model wherein either of the enzymes is specifically inhibited. Methods:Using the forward mutation at Hprt locus as the end point to observe, N-nitrosodimethylamine (NDMA) and 2-nitropropane (2-NP) as CYP2E1- and SULT1A1-dependent promutagen.the effects of CYP inhibitors,trans-1,2-dichloroethylene (DCE) and 1-aminobenzotriazole (ABT),and that of SULT1 inhibitors,quercetin and pentachlorophenol (PCP) on each promutagen-induced mutagenic response were observed. Results:ABT prohibited NDMA-induced mutagenic activity by 99% with the action of 2-NP unaffected,while DCE reduced it only by 55% and simultaneously potentiated 2-NP-induced cytotoxicity. Quercetin and PCP reduced 2-NP-induced mutagenic activity by 63% and 98%, with the action of NDMA unaffected. Conclusion:Specifically and completely, ABT and PCP are capable of prohibiting CYP2El-and SULT1A1 -dependent mutagenic response, respectively, which is a test model of reliable value for investigating metabolic activation of genotoxicants.%目的:V79-hCYP2E1-hSULT1A1是一个表达人细胞色素P450(CYP)2E1和硫酸基转移酶(Sulfotransferase,SULT) 1A1的重组中国地鼠V79[Chinese hamster lung (V79)cells]细胞系,它对于需有关代谢酶活化的间接诱变剂有基因突变反应;为观察单个酶的作用,需要建立对细胞中任一酶特异抑制的模型.方法:以细胞Hprt位点的正向突变为试验终点,N-二甲基亚硝胺(N-Nitrosodimethylamine,NDMA)和2-硝基丙烷(2-Nitropropane,2-NP)为依赖CYP2E1和SULT1A1的间接诱变剂,观察CYP抑制剂反式二氯乙烯(Trans-1,2-dichloroethylene,DCE)和1-氨基苯并三唑(1

  18. ER-Dependent Ca++-mediated Cytosolic ROS as an Effector for Induction of Mitochondrial Apoptotic and ATM-JNK Signal Pathways in Gallic Acid-treated Human Oral Cancer Cells.

    Science.gov (United States)

    Lu, Yao-Cheng; Lin, Meng-Liang; Su, Hong-Lin; Chen, Shih-Shun

    2016-02-01

    Release of calcium (Ca(++)) from the endoplasmic reticulum (ER) has been proposed to be involved in induction of apoptosis by oxidative stress. Using inhibitor of ER Ca(++) release dantrolene and inhibitor of mitochondrial Ca(++) uptake Ru-360, we demonstrated that Ca(++) release from the ER was associated with generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential, and apoptosis of human oral cancer (OC) cells induced by gallic acid (GA). Small interfering RNA-mediated suppression of protein kinase RNA-like endoplasmic reticulum kinase inhibited tunicamycin-induced induction of 78 kDa glucose-regulated protein, C/EBP homologous protein, pro-caspase-12 cleavage, cytosolic Ca(++) increase and apoptosis, but did not attenuate the increase in cytosolic Ca(++) level and apoptosis induced by GA. Ataxia telangiectasia mutated (ATM)-mediated c-Jun N-terminal kinase (JNK) phosphorylation and apoptosis by GA was blocked by dantrolene. The specificity of ROS-mediated ATM-JNK activation was confirmed by treatment with N-acetylcysteine, a ROS scavenger. Blockade of ATM activation by specific inhibitor KU55933, short hairpin RNA, or kinase-dead ATM overexpression suppressed JNK phosphorylation but did not completely inhibit cytosolic ROS production, mitochondrial cytochrome c release, pro-caspase-3 cleavage, and apoptosis induced by GA. Taken together, these results indicate that GA induces OC cell apoptosis by inducing the activation of mitochondrial apoptotic and ATM-JNK signal pathways, likely through ER Ca(++)-mediated ROS production.

  19. Molecular cloning of the 31 kDa cytosolic phospholipase A2, as an antigen recognized by the lung cancer-specific human monoclonal antibody, AE6F4.

    Science.gov (United States)

    Kawamoto, S; Shoji, M; Setoguchi, Y; Kato, M; Hashizume, S; Ichikawa, A; Osada, K; Katakura, Y; Tachibana, H; Murakami, H

    1995-01-01

    The human monoclonal antibody AE6F4 specifically reacts with human lung cancer tissues but does not with normal tissues. This monoclonal antibody recognizes a cytosolic 31 kDa antigen in the cancer cells. In a previous study, we elucidated that the 31 kDa antigen belonged to a family of proteins collectively designated as 14-3-3 proteins, which were known as protein kinase-dependent activators of tyrosine/trytophan hydroxylases, or protein kinase C inhibitor proteins. Here we report molecular cloning of the 31 kDa antigen from the human lung adenocarcinoma cell line, A549. Sequencing analysis indicates that the cloned cDNA is identical to that of previously reported human placental cytosolic phospholipase A2 (cPLA2), which is also a member of the 14-3-3 protein family. Western analysis demonstrated that a 31 kDa recombinant cPLA2 expressed in monkey COS cells was recognized by the AE6F4 monoclonal antibody. Binding of the monoclonal antibody to the recombinant cPLA2 was abolished when treated with sodium periodate, suggesting that not only are carbohydrate chains associated with the cPLA2, but they also play a crucial role in antigen recognition by the monoclonal antibody.

  20. Copy number variation in sulfotransferase isoform 1A1 (SULT1A1 is significantly associated with enzymatic activity in Japanese subjects

    Directory of Open Access Journals (Sweden)

    Yu X

    2013-03-01

    Full Text Available Xinfeng Yu,1 Takahiro Kubota,2 Ishwori Dhakal,1 Setsuo Hasegawa,3 Suzanne Williams,1 Shogo Ozawa,4 Susan Kadlubar11Division of Medical Genetics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; 2Chiba Institute of Science, Chiba, Japan; 3Sekino Clinical Pharmacology Clinic, Tokyo, Japan; 4Iwate Medical University, Iwate, JapanAbstract: Sulfotransferase isoform 1A1 (SULT1A1 plays a key role in the metabolism of a variety of endo- and xenobiotics and it's activity could influence response to drugs. Our previous studies have focused on the impact of genetic variants of SULT1A1 on enzymatic activity in Caucasians and African-Americans. However, the contribution of genetic variants to SULT1A1 activity in Asians has not been explored. In this study, we investigated the collective effects of both SULT1A1 copy number variants (CNVs and single nucleotide polymorphisms (SNPs in the promoter region, coding region, and 3´ untranslated region on SULT1A1 activity in Japanese subjects. SNPs in the SULT1A1 promoter and 3´ untranslated region were not associated with SULT1A1 activity (P > 0.05. SULT1A1*1/2 (Arg213His was marginally associated with SULT1A1 activity (P = 0.037. However, SULT1A1 CNVs were strongly associated with SULT1A1 activity (trend test P = 0.008 and accounted for 10% of the observed variability in activity for Japanese subjects. In conclusion, SULT1A1 CNVs play a pivotal role in determination of SULT1A1 activity in Japanese subjects, highlighting the influence of ethnic differences in SULT1A1 genetic variants on drug metabolism and therapeutic efficacy.Keywords: CNV, genotype, phenotype, SULT1A1, single nucleotide polymorphisms

  1. Comparative metabolism of 1,2,3,3,3-pentafluoropropene in male and female mouse, rat, dog, and human liver microsomes and cytosol and male rat hepatocytes via oxidative dehalogenation and glutathione S-conjugation pathways.

    Science.gov (United States)

    Han, Xing; Szostek, Bogdan; Yang, Ching-Hui; Cheatham, Steve F; Mingoia, Robert T; Nabb, Diane L; Gannon, Shawn A; Himmelstein, Matthew W; Jepson, Gary W

    2011-07-01

    In vitro metabolism of 1,2,3,3,3-pentafluoropropene (PFP) was investigated in the present study. PFP was metabolized via cytochrome P450-catalyzed oxidative dehalogenation in liver microsomes and glutathione transferase (GST)-catalyzed conjugation in liver microsomes and cytosol. Two oxidation products, 2,3,3,3-tetrafluoropropionaldehyde (TPA) and 3,3,3-trifluoropyruvaldehyde (TFPA), and two GSH conjugates, S-(2,3,3,3-tetrafluoropropenyl)-GSH (TFPG) and S-(1,2,3,3,3-pentafluoropropyl)-GSH (PFPG) were identified. Enzyme kinetic parameters for the formation of TFPA, TFPG, and PFPG were obtained in male and female rat, mouse, dog, and human liver microsomes and cytosol and were confirmed using freshly isolated male rat hepatocytes. For the TFPA pathway, dog microsomes exhibited much larger K(m) values than rat, mouse, and human microsomes. Sex differences in the rates of metabolism within a given species were minor and generally were less than 2-fold. Across the species, liver microsomes were the primary subcellular fraction for GSH S-conjugation and the apparent reaction rates for the formation of TFPG were much greater than those for PFPG in liver microsomes. PFPG was unstable and had a half-life of approximately 3.9 h in a phosphate buffer (pH 7.4 and 37°C). The intrinsic clearance values for the formation of TFPA were much greater than those for the formation of GSH S-conjugates, suggesting that cytochrome P450-mediated oxidation is the primary pathway for the metabolism of PFP at relatively low PFP concentrations. Because saturation of the GST-mediated reactions was not reached at the highest possible PFP concentration, GSH S-conjugation may become a much more important pathway at higher PFP concentrations (relative to the K(m) for TFPA).

  2. Metabolic patterns and biotransformation activities of resveratrol in human glioblastoma cells: relevance with therapeutic efficacies.

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Shu

    Full Text Available BACKGROUND: Trans-resveratrol rather than its biotransformed monosulfate metabolite exerts anti-medulloblastoma effects by suppressing STAT3 activation. Nevertheless, its effects on human glioblastoma cells are variable due to certain unknown reason(s. METHODOLOGY/PRINCIPAL FINDINGS: Citing resveratrol-sensitive UW228-3 medulloblastoma cell line and primarily cultured rat brain cells/PBCs as controls, the effect of resveratrol on LN-18 human glioblastoma cells and its relevance with metabolic pattern(s, brain-associated sulfotransferase/SULT expression and the statuses of STAT3 signaling and protein inhibitor of activated STAT3 (PIAS3 were elucidated by multiple experimental approaches. Meanwhile, the expression patterns of three SULTs (SULT1A1, 1C2 and 4A1 in human glioblastoma tumors were profiled immunohistochemically. The results revealed that 100 µM resveratrol-treated LN-18 generated the same metabolites as UW228-3 cells, while additional metabolite in molecular weight of 403.0992 in negative ion mode was found in PBCs. Neither growth arrest nor apoptosis was found in resveratrol-treated LN-18 and PBC cells. Upon resveratrol treatment, the levels of SULT1A1, 1C2 and 4A1 expression in LN-18 cells were more up-regulated than that expressed in UW228-3 cells and close to the levels in PBCs. Immunohistochemical staining showed that 42.0%, 27.1% and 19.6% of 149 glioblastoma cases produced similar SULT1A1, 1C2 and 4A1 levels as that of tumor-surrounding tissues. Unlike the situation in UW228-3 cells, STAT3 signaling remained activated and its protein inhibitor PIAS3 was restricted in the cytosol of resveratrol-treated LN-18 cells. No nuclear translocation of STAT3 and PIAS3 was observed in resveratrol-treated PBCs. Treatment with STAT3 chemical inhibitor, AG490, committed majority of LN-18 and UW228-3 cells but not PBCs to apoptosis within 48 hours. CONCLUSIONS/SIGNIFICANCE: LN-18 glioblastoma cells are insensitive to resveratrol due to the

  3. Targeting Sulfotransferase (SULT) 2B1b as a Regulator of Cholesterol Metabolism in Prostate Cancer

    Science.gov (United States)

    2015-10-01

    designing a tet- inducible CRISPR /CAS9-based method to directly edit the genome by inserting LoxP sites flanking critical exon(s) in the SULT2b1b gene and...suppressed growth and greatly enhanced cell death, we performed further analysis to Figure 3. LNCaP cells were transfected with indicated siRNA...until we can generate the stable inducible cell lines using the CRISPR /CAS9 method described above in subtask 2. Major Task 4: Development  of

  4. Relationship between Genotypes Sult1a2 and Cyp2d6 and Tamoxifen Metabolism in Breast Cancer Patients

    Science.gov (United States)

    Fernández-Santander, Ana; Gaibar, María; Novillo, Apolonia; Romero-Lorca, Alicia; Rubio, Margarita; Chicharro, Luis Miguel; Tejerina, Armando; Bandrés, Fernando

    2013-01-01

    Tamoxifen is a pro-drug widely used in breast cancer patients to prevent tumor recurrence. Prior work has revealed a role of cytochrome and sulfotransferase enzymes in tamoxifen metabolism. In this descriptive study, correlations were examined between concentrations of tamoxifen metabolites and genotypes for CYP2D6, CYP3A4, CYP3A5, SULT1A1, SULT1A2 and SULT1E1 in 135 patients with estrogen receptor-positive breast cancer. Patients were genotyped using the Roche-AmpliChip® CYP450 Test, and Real-Time and conventional PCR-RFLP. Plasma tamoxifen, 4-hydroxy-tamoxifen, N-desmethyl-tamoxifen, endoxifen and tamoxifen-N-oxide were isolated and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Significantly higher endoxifen levels were detected in patients with the wt/wt CYP2D6 compared to the v/v CYP2D6 genotype (p<0.001). No differences were detected in the remaining tamoxifen metabolites among CYP2D6 genotypes. Patients featuring the SULT1A2*2 and SULT1A2*3 alleles showed significantly higher plasma levels of 4-hydroxy-tamoxifen and endoxifen (p = 0.025 and p = 0.006, respectively), as likely substrates of the SULT1A2 enzyme. Our observations indicate that besides the CYP2D6 genotype leading to tamoxifen conversion to potent hydroxylated metabolites in a manner consistent with a gene-dose effect, SULT1A2 also seems to play a role in maintaining optimal levels of both 4-hydroxy-tamoxifen and endoxifen. PMID:23922954

  5. Relationship between genotypes Sult1a2 and Cyp2d6 and tamoxifen metabolism in breast cancer patients.

    Science.gov (United States)

    Fernández-Santander, Ana; Gaibar, María; Novillo, Apolonia; Romero-Lorca, Alicia; Rubio, Margarita; Chicharro, Luis Miguel; Tejerina, Armando; Bandrés, Fernando

    2013-01-01

    Tamoxifen is a pro-drug widely used in breast cancer patients to prevent tumor recurrence. Prior work has revealed a role of cytochrome and sulfotransferase enzymes in tamoxifen metabolism. In this descriptive study, correlations were examined between concentrations of tamoxifen metabolites and genotypes for CYP2D6, CYP3A4, CYP3A5, SULT1A1, SULT1A2 and SULT1E1 in 135 patients with estrogen receptor-positive breast cancer. Patients were genotyped using the Roche-AmpliChip® CYP450 Test, and Real-Time and conventional PCR-RFLP. Plasma tamoxifen, 4-hydroxy-tamoxifen, N-desmethyl-tamoxifen, endoxifen and tamoxifen-N-oxide were isolated and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Significantly higher endoxifen levels were detected in patients with the wt/wt CYP2D6 compared to the v/v CYP2D6 genotype (p<0.001). No differences were detected in the remaining tamoxifen metabolites among CYP2D6 genotypes. Patients featuring the SULT1A2*2 and SULT1A2*3 alleles showed significantly higher plasma levels of 4-hydroxy-tamoxifen and endoxifen (p = 0.025 and p = 0.006, respectively), as likely substrates of the SULT1A2 enzyme. Our observations indicate that besides the CYP2D6 genotype leading to tamoxifen conversion to potent hydroxylated metabolites in a manner consistent with a gene-dose effect, SULT1A2 also seems to play a role in maintaining optimal levels of both 4-hydroxy-tamoxifen and endoxifen.

  6. Relationship between genotypes Sult1a2 and Cyp2d6 and tamoxifen metabolism in breast cancer patients.

    Directory of Open Access Journals (Sweden)

    Ana Fernández-Santander

    Full Text Available Tamoxifen is a pro-drug widely used in breast cancer patients to prevent tumor recurrence. Prior work has revealed a role of cytochrome and sulfotransferase enzymes in tamoxifen metabolism. In this descriptive study, correlations were examined between concentrations of tamoxifen metabolites and genotypes for CYP2D6, CYP3A4, CYP3A5, SULT1A1, SULT1A2 and SULT1E1 in 135 patients with estrogen receptor-positive breast cancer. Patients were genotyped using the Roche-AmpliChip® CYP450 Test, and Real-Time and conventional PCR-RFLP. Plasma tamoxifen, 4-hydroxy-tamoxifen, N-desmethyl-tamoxifen, endoxifen and tamoxifen-N-oxide were isolated and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Significantly higher endoxifen levels were detected in patients with the wt/wt CYP2D6 compared to the v/v CYP2D6 genotype (p<0.001. No differences were detected in the remaining tamoxifen metabolites among CYP2D6 genotypes. Patients featuring the SULT1A2*2 and SULT1A2*3 alleles showed significantly higher plasma levels of 4-hydroxy-tamoxifen and endoxifen (p = 0.025 and p = 0.006, respectively, as likely substrates of the SULT1A2 enzyme. Our observations indicate that besides the CYP2D6 genotype leading to tamoxifen conversion to potent hydroxylated metabolites in a manner consistent with a gene-dose effect, SULT1A2 also seems to play a role in maintaining optimal levels of both 4-hydroxy-tamoxifen and endoxifen.

  7. Reduced sulfotransferase SULT2A1 activity in patients with Alzheimer's disease.

    Science.gov (United States)

    Vaňková, M; Hill, M; Velíková, M; Včelák, J; Vacínová, G; Lukášová, P; Vejražková, D; Dvořáková, K; Rusina, R; Holmerová, I; Jarolímová, E; Vaňková, H; Bendlová, B

    2015-01-01

    Steroids are important components in the pathophysiology of Alzheimer's disease (AD). Although their role has been studied, the corresponding metabolomic data is limited. In the present study we evaluate the role of steroid sulfotransferase SULT2A1 in the pathophysiology of AD on the basis of circulating steroids (measured by GC-MS), in which the sulfation catalyzed by SULT2A1 dominates over glucuronidation (pregnenolone/sulfate, DHEA/sulfate, androstenediol/sulfate and 5alpha-reduced pregnane and androstane catabolites). To estimate a general trend of SUL2A1 activity in AD patients we compared the ratios of steroid conjugates to their unconjugated counterparts (C/U) in controls (11 men and 22 women) and AD patients (18 men and 16 women) for individual circulating steroids after adjustment for age and BMI using ANCOVA model including the factors AD status and gender. Decreased C/U ratio for the C19 steroids demonstrate an association between attenuated sulfation of C19 steroids in adrenal zona reticularis and the pathophysiology of AD.

  8. Genome-Derived Cytosolic DNA Mediates Type I Interferon-Dependent Rejection of B Cell Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Yu J. Shen

    2015-04-01

    Full Text Available The DNA damage response (DDR induces the expression of type I interferons (IFNs, but the underlying mechanisms are poorly understood. Here, we show the presence of cytosolic DNA in different mouse and human tumor cells. Treatment of cells with genotoxic agents increased the levels of cytosolic DNA in a DDR-dependent manner. Cloning of cytosolic DNA molecules from mouse lymphoma cells suggests that cytosolic DNA is derived from unique genomic loci and has the potential to form non-B DNA structures, including R-loops. Overexpression of Rnaseh1, which resolves R-loops, reduced the levels of cytosolic DNA, type I Ifn transcripts, and type I IFN-dependent rejection of lymphoma cells. Live-cell imaging showed a dynamic contact of cytosolic DNA with mitochondria, an important organelle for innate immune recognition of cytosolic nucleotides. In summary, we found that cytosolic DNA is present in many tumor cells and contributes to the immunogenicity of tumor cells.

  9. Garlic extract diallyl sulfide (DAS activates nuclear receptor CAR to induce the Sult1e1 gene in mouse liver.

    Directory of Open Access Journals (Sweden)

    Tatsuya Sueyoshi

    Full Text Available Constituent chemicals in garlic extract are known to induce phase I and phase II enzymes in rodent livers. Here we have utilized Car(+/+ and Car(-/- mice to demonstrate that the nuclear xenobiotic receptor CAR regulated the induction of the estrogen sulfotransferase Sult1e1 gene by diallyl sulfide (DAS treatment in mouse liver. DAS treatment caused CAR accumulation in the nucleus, resulting in a remarkable increase of SULT1E1 mRNA (3,200 fold and protein in the livers of Car(+/+ females but not of Car(-/- female mice. DAS also induced other CAR-regulated genes such as Cyp2b10, Cyp3a11 and Gadd45β. Compared with the rapid increase of these mRNA levels, which began as early as 6 hours after DAS treatment, the levels of SULT1E1 mRNA began increasing after 24 hours. This slow response to DAS suggested that CAR required an additional factor to activate the Sult1e1 gene or that this activation was indirect. Despite the remarkable induction of SULT1E1, there was no decrease in the serum levels of endogenous E2 or increase of estrone sulfate while the clearance of exogenously administrated E2 was accelerated in DAS treated mice.

  10. Cytosolic proteostasis through importing of misfolded proteins into mitochondria.

    Science.gov (United States)

    Ruan, Linhao; Zhou, Chuankai; Jin, Erli; Kucharavy, Andrei; Zhang, Ying; Wen, Zhihui; Florens, Laurence; Li, Rong

    2017-03-16

    Loss of proteostasis underlies ageing and neurodegeneration characterized by the accumulation of protein aggregates and mitochondrial dysfunction. Although many neurodegenerative-disease-associated proteins can be found in mitochondria, it remains unclear how mitochondrial dysfunction and protein aggregation could be related. In dividing yeast cells, protein aggregates that form under stress or during ageing are preferentially retained by the mother cell, in part through tethering to mitochondria, while the disaggregase Hsp104 helps to dissociate aggregates and thereby enables refolding or degradation of misfolded proteins. Here we show that, in yeast, cytosolic proteins prone to aggregation are imported into mitochondria for degradation. Protein aggregates that form under heat shock contain both cytosolic and mitochondrial proteins and interact with the mitochondrial import complex. Many aggregation-prone proteins enter the mitochondrial intermembrane space and matrix after heat shock, and some do so even without stress. Timely dissolution of cytosolic aggregates requires the mitochondrial import machinery and proteases. Blocking mitochondrial import but not proteasome activity causes a marked delay in the degradation of aggregated proteins. Defects in cytosolic Hsp70s leads to enhanced entry of misfolded proteins into mitochondria and elevated mitochondrial stress. We term this mitochondria-mediated proteostasis mechanism MAGIC (mitochondria as guardian in cytosol) and provide evidence that it may exist in human cells.

  11. GENETIC POLYMORPHISMS IN HUMAN LIVER PHENOL SULFOTRANSFERASES INVOLVED IN THE BIOACTIVATION OF N-HYDROXY DERIVATIVES OF CARCINOGENIC ARYLAMINES AND HETEROCYCLIC AMINES. (R825280)

    Science.gov (United States)

    AbstractThree related forms of phenol sulfotransferase (PSULT), thermostable ST1A2 (SULT1A2hum) and ST1A3 (SULT1A1hum) and a thermolabile TL-PST (SULT1A3hum), are known to exist in human livers. Thermostable forms, whose activities are polymorphically distributed, hav...

  12. The synthesis of novel pyrazole-3,4-dicarboxamides bearing 5-amino-1,3,4-thiadiazole-2-sulfonamide moiety with effective inhibitory activity against the isoforms of human cytosolic carbonic anhydrase I and II.

    Science.gov (United States)

    Mert, Samet; Alım, Zuhal; İşgör, Mehmet Mustafa; Beydemir, Şükrü; Kasımoğulları, Rahmi

    2016-10-01

    A series of 1-(3-substituted-phenyl)-5-phenyl-N(3),N(4)-bis(5-sulfamoyl-1,3,4-thiadiazol-2-yl)-1H-pyrazole-3,4-dicarboxamides (4-15) were synthesized. The structures of these pyrazole-sulfonamides were confirmed by FT-IR, (1)H NMR, (13)C NMR and elemental analysis methods. Human cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isozymes (hCA I and II) were purified from erythrocyte cells by affinity chromatography. The inhibitory effects of newly synthesized derivatives (4-15) were investigated in vitro on esterase activities of these isozymes. The Ki values were determined as 0.119-3.999μM for hCA I and 0.084-0.878μM for hCA II. The results showed that the compound 6 for hCA I and the compound 11 for hCA II had the highest inhibitory effect. Beside that, the compound 8 had the lowest inhibition effect on both isozymes.

  13. In vitro replication of plasmids containing human ribosomal gene sequences: origin localization and dependence on an aprotinin-binding cytosolic protein.

    Science.gov (United States)

    Coffman, F D; Georgoff, I; Fresa, K L; Sylvester, J; Gonzalez, I; Cohen, S

    1993-11-01

    We previously investigated the role of an aprotinin-binding protein (ADR) in the initiation of DNA replication in isolated quiescent nuclei. In the present study, we have used a cell-free DNA replication system to test the ability of plasmid vectors which contain sequences from the human ribosomal RNA gene to serve as replicative templates in vitro when exposed to ADR-containing preparations. Significant dTTP incorporation was seen using DNA from either a 7-kb sequence in the 5' spacer region (CHE) or a 7-kb sequence which begins near the end of the 28S coding region and extends into the 3' spacer region (ADBB), while sequences from other regions of the rRNA gene mediated little or no dTTP incorporation. The characteristics of plasmid-directed dTTP incorporation indicate that most incorporation is due to DNA replication and not repair or damage-initiated processes. To conclusively demonstrate origin-dependent replication in the plasmid system and to further map replication origins, an approach was developed using ddGTP to restrict the length of daughter strands followed by hybridization of these replication products to restriction fragments spanning the putative origin region. This approach allowed us to identify replication origin activity apart from parent strand repair or synthesis initiated at random damaged sites. One of the origins was localized to a 1375-bp fragment within the 5' spacer region, and this fragment contains sequences homologous to those found in other replication origins.

  14. Cytosolic glutamine synthetase in barley

    DEFF Research Database (Denmark)

    Thomsen, Hanne Cecilie

    Improving crop nitrogen (N) utilization efficiency (NUE) is of major importance in modern agriculture in order to reduce the amount of N fertilizer used for crop production. There is a high demand for development of crops which are able to produce high yields but with a concomitantly lower N...... fertilizer requirement. The enzyme glutamine synthetase (GS) has been a major topic in plant nitrogen research for decades due to its central role in plant N metabolism. The cytosolic version of this enzyme (GS1) plays an important role in relation to primary N assimilation as well as in relation to N...... and wildtype control. However, when grown to maturity the differences between transgenic lines and wildtype were highly dependent on the growth conditions applied. The transgenic lines had a higher N utilization efficiency (NUtE) than wildtype control, but only when exposed to a mild N stress following...

  15. Life cycle of cytosolic prions.

    Science.gov (United States)

    Hofmann, Julia; Vorberg, Ina

    2013-01-01

    Prions are self-templating protein aggregates that were originally identified as the causative agent of prion diseases in mammals, but have since been discovered in other kingdoms. Mammalian prions represent a unique class of infectious agents that are composed of misfolded prion protein. Prion proteins usually exist as soluble proteins but can refold and assemble into highly ordered, self-propagating prion polymers. The prion concept is also applicable to a growing number of non-Mendelian elements of inheritance in lower eukaryotes. While prions identified in mammals are clearly pathogens, prions in lower eukaryotes can be either detrimental or beneficial to the host. Prion phenotypes in fungi are transmitted vertically from mother to daughter cells during cell division and horizontally during mating or abortive mating, but extracellular phases have not been reported. Recent findings now demonstrate that in a mammalian cell environment, protein aggregates derived from yeast prion domains exhibit a prion life cycle similar to mammalian prions propagated ex vivo. This life cycle includes a soluble state of the protein, an induction phase by exogenous prion fibrils, stable replication of prion entities, vertical transmission to progeny and natural horizontal transmission to neighboring cells. Our data reveal that mammalian cells contain all co-factors required for cytosolic prion propagation and dissemination. This has important implications for understanding prion-like properties of disease-related protein aggregates. In light of the growing number of identified functional amyloids, cell-to-cell propagation of cytosolic protein conformers might not only be relevant for the spreading of disease-associated proteins, but might also be of more general relevance under non-disease conditions.

  16. Effect of SULT1A1 and NAT2 genetic polymorphism on the association between cigarette smoking and colorectal adenomas

    NARCIS (Netherlands)

    Tiemersma, E.W.; Bunschoten, J.E.; Kok, F.J.; Glatt, H.; Boer, van S.Y.; Kampman, E.

    2004-01-01

    Cigarette smoke contains polycyclic hydrocarbons and arylamines that may both be activated by sulfotransferase, encoded by SULT1A1. A genetic polymorphism leads to an Arg213His substitution, thereby decreasing enzyme activity and stability and might thus modify the association between smoking and

  17. Redox characteristics of the eukaryotic cytosol

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Winther, Jakob R

    2007-01-01

    (ROS) and glutathionylated proteins are maintained at very low levels. In the present review, recent progress in the understanding of the cytosolic thiol-disulfide redox metabolism and novel analytical approaches to studying cytosolic redox properties are discussed. We will focus on the yeast model...

  18. Exogenous dopamine induces dehydroepiandrosterone sulfotransferase (rSULT2A1) in rat liver and changes the pharmacokinetic profile of moxifloxacin in rats.

    Science.gov (United States)

    Shao, Xueyan; Li, Jian; Wang, Siyuan; Chen, Guangping; Xu, Jiaojiao; Ji, Xiwei; Li, Liang; Lu, Wei; Zhou, Tianyan

    2015-02-01

    Dehydroepiandrosterone sulfotransferase (SULT2A1) plays an important role in the detoxification of hydroxyl-containing xenobitotics and in the regulation of the biological activities of hydroxysteroids. Although dopamine (DA) is a vital neurotransmitter, DA also has some special functions in outer peripheral system and takes effect by binding with dopamine receptors including five subtypes (D1-D5). The objective of this study was to investigate the effect of exogenous DA on both the regulation of rSULT2A1 (rat SULT2A1) and the pharmacokinetics of moxifloxacin which is a specific substrate of rSULT2A1. After different doses of DA (0, 2, 10 and 100 mg/kg/d) were administrated to both male and female rats for 7 days, the activity, protein level and mRNA expression of rSULT2A1 increased significantly. Moreover, both Cmax and AUC of moxifloxacin decreased and AUC of moxifloxacin sulfate conjugate metabolite increased significantly when moxifloxacin was administered to rats with DA pretreatment. Additionally, D1 expression in liver and cAMP concentration also increased after the treatment with DA. Overall these results suggest that exogenous DA may induce rSULT2A1 in rat liver and may further change the pharmacokinetic characteristics of some substrates of SULT2A1, and the activation of D1-like receptor is probably involved in rSULT2A1 induction by DA.

  19. Downregulation of sulfotransferase expression and activity in diseased human livers.

    Science.gov (United States)

    Yalcin, Emine B; More, Vijay; Neira, Karissa L; Lu, Zhenqiang James; Cherrington, Nathan J; Slitt, Angela L; King, Roberta S

    2013-09-01

    Sulfotransferase (SULT) function has been well studied in healthy human subjects by quantifying mRNA and protein expression and determining enzyme activity with probe substrates. However, it is not well known if sulfotransferase activity changes in metabolic and liver disease, such as diabetes, steatosis, or cirrhosis. Sulfotransferases have significant roles in the regulation of hormones and excretion of xenobiotics. In the present study of normal subjects with nonfatty livers and patients with steatosis, diabetic cirrhosis, and alcoholic cirrhosis, we sought to determine SULT1A1, SULT2A1, SULT1E1, and SULT1A3 activity and mRNA and protein expression in human liver tissue. In general, sulfotransferase activity decreased significantly with severity of liver disease from steatosis to cirrhosis. Specifically, SULT1A1 and SULT1A3 activities were lower in disease states relative to nonfatty tissues. Alcoholic cirrhotic tissues further contained lower SULT1A1 and 1A3 activities than those affected by either of the two other disease states. SULT2A1, on the other hand, was only reduced in alcoholic cirrhotic tissues. SULT1E1 was reduced both in diabetic cirrhosis and in alcoholic cirrhosis tissues, relative to nonfatty liver tissues. In conclusion, the reduced levels of sulfotransferase expression and activity in diseased versus nondiseased liver tissue may alter the metabolism and disposition of xenobiotics and affect homeostasis of endobiotic sulfotransferase substrates.

  20. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria

    NARCIS (Netherlands)

    Houben, D.; Demangel, C.; Ingen, van J.; Perez, J.; Baldeon, L.; Abdallah, A.M.; Caleechurn, L.; Bottal, D.; Zon, van M.; Punder, de K.; Laan, van der T.; Kant, A.; Willemsen, P.; Bitter, W.; Soolingen, D.; Brosch, R.; Wel, van der N.

    2012-01-01

    Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium leprae, are among the most potent human bacterial pathogens. The discovery of cytosolic mycobacteria challenged the paradigm that these pathogens exclusively localize within the phagosome of host cells. As yet the biologic

  1. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria.

    NARCIS (Netherlands)

    Houben, D.; Demangel, C.; Ingen, J. van; Perez, J.; Baldeon, L.; Abdallah, A.M.; Caleechurn, L.; Bottai, D.; Zon, M. van; Punder, K. de; Laan, T. van der; Kant, A.; Bossers-de Vries, R.; Willemsen, P.; Bitter, W.; Soolingen, D. van; Brosch, R.; Wel, N. van der; Peters, P.J.H.

    2012-01-01

    Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium leprae, are among the most potent human bacterial pathogens. The discovery of cytosolic mycobacteria challenged the paradigm that these pathogens exclusively localize within the phagosome of host cells. As yet the biologic

  2. Shared and Distinct Mechanisms of Compartmentalized and Cytosolic Ciliogenesis.

    Science.gov (United States)

    Avidor-Reiss, Tomer; Leroux, Michel R

    2015-12-07

    Most motile and all non-motile (also known as primary) eukaryotic cilia possess microtubule-based axonemes that are assembled at the cell surface to form hair-like or more elaborate compartments endowed with motility and/or signaling functions. Such compartmentalized ciliogenesis depends on the core intraflagellar transport (IFT) machinery and the associated Bardet-Biedl syndrome complex (BBSome) for dynamic delivery of ciliary components. The transition zone (TZ), an ultrastructurally complex barrier or 'gate' at the base of cilia, also contributes to the formation of compartmentalized cilia. Yet, some ciliated protists do not have IFT components and, like some metazoan spermatozoa, use IFT-independent mechanisms to build axonemes exposed to the cytosol. Moreover, various ciliated protists lack TZ components, whereas Drosophila sperm surprisingly requires the activity of dynamically localized TZ proteins for cytosolic ciliogenesis. Here, we discuss the various ways eukaryotes use IFT and/or TZ proteins to generate the wide assortment of compartmentalized and cytosolic cilia observed in nature. Consideration of the different ciliogenesis pathways allows us to propose how three types of cytosol-exposed cilia (primary, secondary and tertiary), including cilia found in the human sperm proximal segment, are likely generated by evolutionary derivations of compartmentalized ciliogenesis.

  3. Cytosolic Ca2+ shifts as early markers of cytotoxicity

    Science.gov (United States)

    2013-01-01

    The determination of the cytotoxic potential of new and so far unknown compounds as well as their metabolites is fundamental in risk assessment. A variety of strategic endpoints have been defined to describe toxin-cell interactions, leading to prediction of cell fate. They involve measurement of metabolic endpoints, bio-energetic parameters or morphological cell modifications. Here, we evaluated alterations of the free cytosolic Ca2+ homeostasis using the Fluo-4 dye and compared results with the metabolic cell viability assay Alamar Blue. We investigated a panel of toxins (As2O3, gossypol, H2O2, staurosporine, and titanium(IV)-salane complexes) in four different mammalian cell lines covering three different species (human, mouse, and African green monkey). All tested compounds induced an increase in free cytosolic Ca2+ within the first 5 s after toxin application. Cytosolic Ca2+ shifts occurred independently of the chemical structure in all tested cell systems and were persistent up to 3 h. The linear increase of free cytosolic Ca2+ within the first 5 s of drug treatment correlates with the EC25 and EC75 values obtained in Alamar Blue assays one day after toxin exposure. Moreover, a rise of cytosolic Ca2+ was detectable independent of induced cell death mode as assessed by caspase and poly(ADP-ribose) polymerase (PARP) activity in HeLa versus MCF-7 cells at very low concentrations. In conclusion, a cytotoxicity assay based on Ca2+ shifts has a low limit of detection (LOD), is less time consuming (at least 24 times faster) compared to the cell viability assay Alamar Blue and is suitable for high-troughput-screening (HTS). PMID:23384168

  4. Superantigen-induced collagenase gene expression in human IFN-{gamma}-treated fibroblast-like synoviocytes involves prostaglandin E{sub 2}: Evidence for a role of cyclooxygenase-2 and cytosolic phospholipase A{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mehindate, K; Al-Daccak, R.; Mourad, W. [Laval Univ., Ste-Foy, Quebec (Canada)] [and others

    1995-10-01

    MHC class II molecules expressed in lymphoid and nonlymphoid cells act as signal-transducer molecules. We demonstrate that engagement of MHC class II molecules on human IFN-{gamma}-treated fibroblast-like synoviocytes by their natural ligand, the staphylococcal enterotoxin A (SEA), selectively induces the production of interstitial collagenase over the expression of the tissue inhibitor of metalloproteinase (TIMP). Collagenase gene expression required de novo protein synthesis and was accompanied by high levels of PGE{sub 2} production, suggesting its implication in this response. Two inhibitors that affect prostaglandin biosynthesis, indomethacin and arachidonyl-trifluoromethyl-ketone, inhibited both PGE{sub 2} production and collagenase gene expression. The addition of exogenous PGE{sub 2} to inhibitor-treated cells partially restored the SEA-induced collagenase, indicating a role for PGE{sub 2} in this response. As cyclooxygenases (COX-1 and -2), cytosolic phospholipase A{sub 2} (cPLA{sub 2}), and secreted PLA{sub 2} (sPLA{sub 2}) are the enzymes potentially implicated in prostaglandin synthesis, their involvement in SEA-induced collagenase was investigated. The mRNA levels of COX-2 and cPLA{sub 2} rapidly increased following ligation of MHC class II molecules, while COX-1 and sPLA{sub 2} mRNA levels were unchanged and transiently depressed, respectively. SEA-induced COX-2 mRNA was translated adequately to protein, whereas cPLA{sub 2} protein level was not enhanced, but rapidly phosphorylated, a process previously linked to the enzyme activation. In conclusion, this work demonstrates a selective induction of collagenase gene expression over its natural inhibitor TIMP in human IFN-{gamma}-treated fibroblast-like synoviocytes mediated, at least in part, by PGE{sub 2}, and provides evidence that signaling via MHC class II molecules induces the production of PGE{sub 2} through enhanced production of COX-2 and possibly activation of the cPLA{sub 2}. 46 refs., 10 figs.

  5. Impacts of Unregulated Novel Brominated Flame Retardants on Human Liver Thyroid Deiodination and Sulfotransferation.

    Science.gov (United States)

    Smythe, Tristan A; Butt, Craig M; Stapleton, Heather M; Pleskach, Kerri; Ratnayake, Geemitha; Song, Chae Yoon; Riddell, Nicole; Konstantinov, Alex; Tomy, Gregg T

    2017-06-20

    The inhibitory effects of five novel brominated flame retardants, 1,2-bis(2,4,5-tribromophenoxy)ethane (BTBPE), decabromodiphenylethane (DBDPE), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB), bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP), and β-tetrabromoethylcyclohexane (β-TBECH), on thyroid hormone deiodinase (DIO) and sulfotransferase (SULT) activity were investigated using human in vitro liver microsomal and cytosolic bioassays. Enzymatic activity was measured by incubating active human liver subcellular fractions with thyroid hormones (T4 and rT3 separately) and measuring changes in thyroid hormone (T4, T3, rT3, and 3,3'-T2) concentrations. Only DBDPE showed inhibition of both outer and inner ring deiodination (O and IRD) of T3 and 3,3'-T2 formation from T4, respectively, with an estimated IC50 of 160 nM; no statistically significant inhibition of SULT activity was observed. ORD inhibition of 3,3'-T2 formation from rT3 was also observed (IC50 ∼ 100 nM). The kinetics of T4 O and IRD were also investigated, although a definitive mechanism could not be identified as the Michaelis-Menten parameters and maximal rate constants were not significantly different. Concentrations tested were intentionally above expected environmental levels, and this study suggests that these NBFRs are not potent human liver DIO and SULT inhibitors. To our knowledge, DBDPE is the first example of a nonhydroxylated contaminant inhibiting DIO activity, and further study of the mechanism of action is warranted.

  6. Highly selective bioactivation of 1- and 2-hydroxy-3-methylcholanthrene to mutagens by individual human and other mammalian sulphotransferases expressed in Salmonella typhimurium.

    Science.gov (United States)

    Meinl, Walter; Tsoi, Carrie; Swedmark, Stellan; Tibbs, Zachary E; Falany, Charles N; Glatt, Hansruedi

    2013-09-01

    The benzylic alcohols 1- and 2-hydroxy-3-methylcholanthrene (OH-MC) are major primary metabolites of the carcinogen 3-methylcholanthrene (MC). We investigated them for mutagenicity in TA1538-derived Salmonella typhimurium strains expressing mammalian sulphotransferases (SULTs). 1-OH-MC was efficiently activated by human (h) SULT1B1 (2400 revertants/nmol), weakly activated by hSULT1C3 and hSULT2A1 (2-9 revertants/nmol), but not activated by the other hSULTs studied (1A2, 1A3, 1C2 and 1E1). Mouse, rat and dog SULT1B1 activated 1-OH-MC (8-100 revertants/nmol) with much lower efficiency than their human orthologue. The other isomer, 2-OH-MC, was activated to a potent mutagen by hSULT1A1 (4000-5400 revertants/nmol), weakly activated by hSULT1A2 or hSULT2A1 (1-12 revertants/nmol), but not activated by the other hSULTs. In contrast to their human orthologue, mouse, rat and dog SULT1A1 did not appreciably activate 2-OH-MC (mutagens extremely difficult, in particular as the critical form may even differ for positional isomers, such as 1- and 2-OH-MC. Moreover, the species-dependent differences will complicate the verification of in vitro results in animal studies.

  7. Association of Sult4A1 SNPs with psychopathology and cognition in patients with schizophrenia or schizoaffective disorder.

    Science.gov (United States)

    Meltzer, Herbert Y; Brennan, Mark D; Woodward, Neil D; Jayathilake, Karu

    2008-12-01

    A number of genes located on chromosome 22q11-13, including catechol-O-methyltransferase (COMT), are potential schizophrenia susceptibility genes. Recently, the sulfotransferase-4A1 (Sult4A1) locus within chromosome 22q13 was reported to be linked to schizophrenia in a family TDT study. Sult4A1 is related to metabolism of monoamines, particularly dopamine and norepinephrine, both of which have been implicated in the pathophysiology of the psychopathology and cognitive dysfunction components of schizophrenia. An available, prospectively collected data base was interrogated to determine how three Sult4A1 SNPs: rs138060, rs138097, and rs138110, previously shown to be associated with schizophrenia might be associated with psychopathology, cognition, and quality of life in a sample of 86 Caucasian patients with schizophrenia or schizoaffective disorder. The majority of patients met criteria for treatment resistant schizophrenia and had been drug-free for one week or longer at the time of evaluation. The major findings were: 1) patients heterozygous (T/G) for rs138060 had significantly worse Brief Psychiatric Rating Scale (BPRS) Total and anxiety/depression sub-scale scores, and higher Scale for the Assessment of Positive Symptoms (SAPS) Total scores than G/G homozygous patients; and 2) patients heterozygous (A/G) for rs138097 demonstrated significantly worse performance on neuropsychological testing, specifically on tests of executive function and working memory, compared to patients homozygous for the G and A alleles. RS138110 was unrelated to psychopathology and cognition. These results provide the first evidence of how genetic variation in Sult4A1 may be related to clinical symptoms and cognitive function in schizophrenia, and permit future studies to attempt to replicate these potentially important findings.

  8. The effect of CYP, GST, and SULT polymorphisms and their interaction with smoking on the risk of hepatocellular carcinoma.

    Science.gov (United States)

    Boccia, Stefania; Miele, Luca; Panic, Nikola; Turati, Federica; Arzani, Dario; Cefalo, Consuelo; Amore, Rosarita; Bulajic, Milutin; Pompili, Maurizio; Rapaccini, Gianlodovico; Gasbarrini, Antonio; La Vecchia, Carlo; Grieco, Antonio

    2015-01-01

    Aim. The aim of our study was to assess whether selected single nucleotide polymorphisms of CYP1A1 and 2E1, GSTM1, GSTT1, and SULT1A1 influence susceptibility towards HCC, considering their interaction with cigarette smoking. Methods. We recruited HCC cases and controls among patients admitted to the hospital "Agostino Gemelli," from January 2005 until July 2010. Odds ratios (OR) of HCC were derived from unconditional multiple logistic regression. Gene-gene and gene-smoking interaction were quantified by computing the attributable proportion (AP) due to biological interaction. Results. The presence of any CYP2E1 (*) 5B variant allele (OR: 0.23; 95% CI: 0.06-0.71) and CYP2E1 (*) 6 variant allele (OR: 0.08; 95% CI: 0.01-0.33) was inversely related to HCC. There was a borderline increased risk among carriers of combined CYP1A1 (*) 2A and SULT1A1 variant alleles (OR: 1.67; 95% CI: 0.97-3.24). A significant biological interaction was observed between GSTT1 and smoking (AP = 0.48; 95% CI: 0.001-0.815), with an OR of 3.13 (95% CI: 1.69-5.82), and borderline significant interaction was observed for SULT1A1 and smoking (AP = 0.36; 95% CI: -0.021-0.747), with an OR of 3.05 (95% CI: 1.73-5.40). Conclusion. CYP2E1 (*) 5B and CYP2E1 (*) 6 polymorphisms have a favourable effect on the development of HCC, while polymorphisms of GSTT1 and SULT1A1 might play role in increasing the susceptibility among smokers.

  9. Involvement of the cell-specific pigment genes pks and sult in bacterial defense response of sea urchins Strongylocentrotus intermedius.

    Science.gov (United States)

    Kiselev, Konstantin V; Ageenko, Natalya V; Kurilenko, Valeria V

    2013-03-26

    Bacterial infections are one of the most important problems in mass aquaculture, causing the loss of millions of juvenile organisms. We isolated 22 bacterial strains from the cavity fluid of the sea urchin Strongylocentrotus pallidus and used phylogenetic analysis based on 16S rRNA gene sequences to separate the bacterial strains into 9 genera (Aliivibrio, Bizionia, Colwellia, Olleya, Paenibacillus, Photobacterium, Pseudoalteromonas, Shewanella, and Vibrio). Incubating Strongylocentrotus intermedius larvae with a strain from each of the 9 bacterial genera, we investigated the viability of the larvae, the amount of pigment cells, and the level of polyketide synthase (pks) and sulfotransferase (sult) gene expression. Results of the assay on sea urchin development showed that all bacterial strains, except Pseudoalteromonas and Bizionia, suppressed sea urchin development (resulting in retardation of the embryos' development with cellular disorders) and reduced cell viability. We found that pks expression in the sea urchin larvae after incubation with the bacteria of 9 tested genera was significantly increased, while the sult expression was increased only after the treatment with Pseudoalteromonas and Shewanella. Shikimic acid, which is known to activate the biosynthesis of naphthoquinone pigments, increased the tolerance of the sea urchin embryos to the bacteria. In conclusion, we show that the cell-specific pigment genes pks and sult are involved in the bacterial defense response of sea urchins.

  10. An Upregulation in the Expression of Vanilloid Transient Potential Channels 2 Enhances Hypotonicity-Induced Cytosolic Ca2+ Rise in Human Induced Pluripotent Stem Cell Model of Hutchinson Gillford Progeria

    Science.gov (United States)

    Ho, Jenny Chung-Yee; Siu, Chung-Wah; Cheung, Sin-Ying; Tang, Nelson L.; Yu, Shan; Tse, Hung-Fat; Yao, Xiaoqiang

    2014-01-01

    Hutchinson-Gillford Progeria Syndrome (HGPS) is a fatal genetic disorder characterized by premature aging in multiple organs including the skin, musculoskeletal and cardiovascular systems. It is believed that an increased mechanosensitivity of HGPS cells is a causative factor for vascular cell death and vascular diseases in HGPS patients. However, the exact mechanism is unknown. Transient receptor potential (TRP) channels are cationic channels that can act as cellular sensors for mechanical stimuli. The aim of this present study was to examine the expression and functional role of TRP channels in human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) from the patients with HGPS. The mRNA and protein expression of TRP channels in HGPS and control (IMR90) iPSC-ECs were examined by semi-quantitative RT-PCRs and immunoblots, respectively. Hypotonicity-induced cytosolic Ca2+ ([Ca2+]i) rise in iPSC-ECs was measured by confocal microscopy. RT-PCRs and immunoblots showed higher expressional levels of TRPV2 in iPSC-ECs from HGPS patients than those from normal individuals. In functional studies, hypotonicity induced a transient [Ca2+]i rise in iPSC-ECs from normal individuals but a sustained [Ca2+]i elevation in iPSC-ECs from HGPS patients. A nonselective TRPV inhibitor, ruthenium red (RuR, 20 µM), and a specific TRPV2 channel inhibitor, tranilast (100 µM), abolished the sustained phase of hypotonicity-induced [Ca2+]i rise in iPSC-ECs from HGPS patients, and also markedly attenuated the transient phase of the [Ca2+]i rise in these cells. Importantly, a short 10 min hypotonicity treatment caused a substantial increase in caspase 8 activity in iPSC-ECs from HGPS patients but not in cells from normal individuals. Tranilast could also inhibit the hypotonicity-induced increase in caspase 8 activity. Taken together, our data suggest that an up-regulation in TRPV2 expression causes a sustained [Ca2+]i elevation in HGPS-iPSC-ECs under hypotonicity, consequently

  11. An upregulation in the expression of vanilloid transient potential channels 2 enhances hypotonicity-induced cytosolic Ca²⁺ rise in human induced pluripotent stem cell model of Hutchinson-Gillford Progeria.

    Directory of Open Access Journals (Sweden)

    Chun-Yin Lo

    Full Text Available Hutchinson-Gillford Progeria Syndrome (HGPS is a fatal genetic disorder characterized by premature aging in multiple organs including the skin, musculoskeletal and cardiovascular systems. It is believed that an increased mechanosensitivity of HGPS cells is a causative factor for vascular cell death and vascular diseases in HGPS patients. However, the exact mechanism is unknown. Transient receptor potential (TRP channels are cationic channels that can act as cellular sensors for mechanical stimuli. The aim of this present study was to examine the expression and functional role of TRP channels in human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs from the patients with HGPS. The mRNA and protein expression of TRP channels in HGPS and control (IMR90 iPSC-ECs were examined by semi-quantitative RT-PCRs and immunoblots, respectively. Hypotonicity-induced cytosolic Ca²⁺ ([Ca²⁺](i rise in iPSC-ECs was measured by confocal microscopy. RT-PCRs and immunoblots showed higher expressional levels of TRPV2 in iPSC-ECs from HGPS patients than those from normal individuals. In functional studies, hypotonicity induced a transient [Ca²⁺](i rise in iPSC-ECs from normal individuals but a sustained [Ca²⁺](i elevation in iPSC-ECs from HGPS patients. A nonselective TRPV inhibitor, ruthenium red (RuR, 20 µM, and a specific TRPV2 channel inhibitor, tranilast (100 µM, abolished the sustained phase of hypotonicity-induced [Ca²⁺](i rise in iPSC-ECs from HGPS patients, and also markedly attenuated the transient phase of the [Ca²⁺](i rise in these cells. Importantly, a short 10 min hypotonicity treatment caused a substantial increase in caspase 8 activity in iPSC-ECs from HGPS patients but not in cells from normal individuals. Tranilast could also inhibit the hypotonicity-induced increase in caspase 8 activity. Taken together, our data suggest that an up-regulation in TRPV2 expression causes a sustained [Ca²⁺](i elevation in HGPS

  12. An upregulation in the expression of vanilloid transient potential channels 2 enhances hypotonicity-induced cytosolic Ca²⁺ rise in human induced pluripotent stem cell model of Hutchinson-Gillford Progeria.

    Science.gov (United States)

    Lo, Chun-Yin; Tjong, Yung-Wui; Ho, Jenny Chung-Yee; Siu, Chung-Wah; Cheung, Sin-Ying; Tang, Nelson L; Yu, Shan; Tse, Hung-Fat; Yao, Xiaoqiang

    2014-01-01

    Hutchinson-Gillford Progeria Syndrome (HGPS) is a fatal genetic disorder characterized by premature aging in multiple organs including the skin, musculoskeletal and cardiovascular systems. It is believed that an increased mechanosensitivity of HGPS cells is a causative factor for vascular cell death and vascular diseases in HGPS patients. However, the exact mechanism is unknown. Transient receptor potential (TRP) channels are cationic channels that can act as cellular sensors for mechanical stimuli. The aim of this present study was to examine the expression and functional role of TRP channels in human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) from the patients with HGPS. The mRNA and protein expression of TRP channels in HGPS and control (IMR90) iPSC-ECs were examined by semi-quantitative RT-PCRs and immunoblots, respectively. Hypotonicity-induced cytosolic Ca²⁺ ([Ca²⁺](i)) rise in iPSC-ECs was measured by confocal microscopy. RT-PCRs and immunoblots showed higher expressional levels of TRPV2 in iPSC-ECs from HGPS patients than those from normal individuals. In functional studies, hypotonicity induced a transient [Ca²⁺](i) rise in iPSC-ECs from normal individuals but a sustained [Ca²⁺](i) elevation in iPSC-ECs from HGPS patients. A nonselective TRPV inhibitor, ruthenium red (RuR, 20 µM), and a specific TRPV2 channel inhibitor, tranilast (100 µM), abolished the sustained phase of hypotonicity-induced [Ca²⁺](i) rise in iPSC-ECs from HGPS patients, and also markedly attenuated the transient phase of the [Ca²⁺](i) rise in these cells. Importantly, a short 10 min hypotonicity treatment caused a substantial increase in caspase 8 activity in iPSC-ECs from HGPS patients but not in cells from normal individuals. Tranilast could also inhibit the hypotonicity-induced increase in caspase 8 activity. Taken together, our data suggest that an up-regulation in TRPV2 expression causes a sustained [Ca²⁺](i) elevation in HGPS

  13. Effects of SULT1A1 Copy Number Variation on Estrogen Concentration and Tamoxifen-Associated Adverse Drug Reactions in Premenopausal Thai Breast Cancer Patients: A Preliminary Study.

    Science.gov (United States)

    Charoenchokthavee, Wanaporn; Ayudhya, Duangchit Panomvana Na; Sriuranpong, Virote; Areepium, Nutthada

    2016-01-01

    Tamoxifen is a pharmacological estrogen inhibitor that binds to the estrogen receptor (ER) in breast cells. However, it shows an estrogenic effect in other organs, which causes adverse drug reactions (ADRs). The sulfotransferase 1A1 (SULT1A1) enzyme encoded by the SULT1A1 gene is involved in estrogen metabolism. Previous research has suggested that the SULT1A1 copy number is linked with the plasma estradiol (E2) concentration. Here, a total of 34 premenopausal breast cancer patients, selected from the Thai Tamoxifen (TTAM) Project, were screened for their SULT1A1 copy number, plasma E2 concentration and ADRs. The mean age was 44.3±11.1 years, and they were subtyped as ER+/ progesterone receptor (PR) + (28 patients), ER+/ PR- (5 patients) and ER-/PR- (1 patient). Three patients reported ADRs, which were irregular menstruation (2 patients) and vaginal discharge (1 patient). Most (33) patients had two SULT1A1 copies, with one patient having three copies. The median plasma E2 concentration was 1,575.6 (IQR 865.4) pg/ml. Patients with ADRs had significantly higher plasma E2 concentrations than those patients without ADRs (p = 0.014). The plasma E2 concentration was numerically higher in the patient with three SULT1A1 copies, but this lacked statistical significance.

  14. The effect of knockout of sulfotransferases 1a1 and 1d1 and of transgenic human sulfotransferases 1A1/1A2 on the formation of DNA adducts from furfuryl alcohol in mouse models.

    Science.gov (United States)

    Sachse, Benjamin; Meinl, Walter; Glatt, Hansruedi; Monien, Bernhard H

    2014-10-01

    Furfuryl alcohol is a rodent carcinogen present in numerous foodstuffs. Sulfotransferases (SULTs) convert furfuryl alcohol into the DNA reactive and mutagenic 2-sulfoxymethylfuran. Sensitive techniques for the isotope-dilution ultra performance liquid chromatography-tandem mass spectrometry quantification of resulting DNA adducts, e.g. N (2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N (2)-MF-dG), were developed. To better understand the contribution of specific SULT forms to the genotoxicity of furfuryl alcohol in vivo, we studied the tissue distribution of N (2)-MF-dG in different mouse models. Earlier mutagenicity studies with Salmonella typhimurium strains expressing different human and murine SULT forms indicated that human SULT1A1 and murine Sult1a1 and 1d1 catalyze furfuryl alcohol sulfo conjugation most effectively. Here, we used three mouse lines to study the bioactivation of furfuryl alcohol by murine SULTs, FVB/N wild-type (wt) mice and two genetically modified models lacking either murine Sult1a1 or Sult1d1. The animals received a single dose of furfuryl alcohol, and the levels of the DNA adducts were determined in liver, kidney, lung, colon and small intestine. The effect of Sult1d1 gene disruption on the genotoxicity of furfuryl alcohol was moderate and limited to kidney and small intestine. In contrast, the absence of functional Sult1a1 had a massive influence on the adduct levels, which were lowered by 33-73% in all tissues of the female Sult1a1 null mice compared with the wt animals. The detection of high N (2)-MF-dG levels in a humanized mouse line expressing hSULT1A1/1A2 instead of endogeneous Sult1a1 and Sult1d1 supports the hypothesis that furfuryl alcohol is converted to the mutagenic 2-sulfoxymethylfuran also in humans.

  15. Cell-free activation of phagocyte NADPH-oxidase: tissue and differentiation-specific expression of cytosolic cofactor activity.

    Science.gov (United States)

    Parkinson, J F; Akard, L P; Schell, M J; Gabig, T G

    1987-06-30

    We examined a variety of tissues for the presence of cytosolic cofactor activity that would support arachidonate-dependent cell-free activation of NADPH-oxidase in isolated human neutrophil membranes. Cofactor activity was not found in cytosol isolated from erythrocytes, lymphocytes, placenta, brain, liver, or the human promyelocytic leukemic cell line HL-60. Induction of differentiation in HL-60 cells led to expression of cytosolic cofactor activity. In dimethylsulphoxide-induced HL-60 cells the level of cytosolic cofactor activity was closely correlated with phorbol myristate acetate-stimulated whole cell superoxide production. These results strongly suggest that the cytosolic cofactor is a phagocyte-specific regulatory protein of physiologic importance in NADPH-oxidase activation.

  16. Sensing microbial RNA in the cytosol

    Directory of Open Access Journals (Sweden)

    Nicolas eVABRET

    2013-12-01

    Full Text Available The innate immune system faces the difficult task of keeping a fine balance between sensitive detection of microbial presence and avoidance of autoimmunity. To this aim, key mechanisms of innate responses rely on isolation of pathogens in specialized subcellular compartments, or sensing of specific microbial patterns absent from the host. Efficient detection of foreign RNA in the cytosol requires an additional layer of complexity from the immune system. In this particular case, innate sensors should be able to distinguish self and non-self molecules that share several similar properties. In this review, we discuss this interplay between cytosolic pattern recognition receptors and the microbial RNA they detect. We describe how microbial RNAs gain access to the cytosol, which receptors they activate and counter-strategies developed by microorganisms to avoid this response.

  17. Interaction of the cytochrome P4501A2, SULT1A1 and NAT gene polymorphisms with smoking and dietary mutagen intake in modification of the risk of pancreatic cancer.

    Science.gov (United States)

    Suzuki, Hideo; Morris, Jeffrey S; Li, Yanan; Doll, Mark A; Hein, David W; Liu, Jun; Jiao, Li; Hassan, Manal M; Day, Rena S; Bondy, Melissa L; Abbruzzese, James L; Li, Donghui

    2008-06-01

    Aromatic amines, N-nitroso compounds and heterocyclic amines are suspected human pancreatic carcinogens. Cytochrome P450 (CYP) 1A2, N-acetyltransferase (NAT) 1, NAT2 and sulfotransferase (SULT) are enzymes involved in the metabolism of these carcinogens. To test the hypothesis that genetic variations in carcinogen metabolism modify the risk of pancreatic cancer (PC), we investigated the effect of single-nucleotide polymorphisms (SNPs) of the CYP1A2, NAT1, NAT2 and SULT1A1 gene on modification of the risk of PC in a hospital-based study of 755 patients with pancreatic adenocarcinoma and 636 healthy frequency-matched controls. Smoking and dietary mutagen exposure information was collected by personal interviews. Genotypes were determined using the polymerase chain reaction-restriction fragment length polymorphism and Taqman methods. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using unconditional multivariate logistic regression analysis. We observed no significant main effects of any of these genes on the risk of PC. The CYP1A2 and NAT1 but not SULT1A1 and NAT2 genotypes showed significant interactions with heavy smoking in women not men. In contrast, a significant interaction between NAT1 genotype and dietary mutagen intake on modifying the risk of PC were observed among men but not women. The OR (95% CI) of PC was 2.23 (1.33-3.72) and 2.54 (1.51-4.25) for men having the NAT1*10 and a higher intake of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and benzo[a]pyrene, respectively, compared with individuals having no NAT1*10 or a lower intake of these dietary mutagens. These data suggest the existence of gender-specific susceptibility to tobacco carcinogen and dietary mutagen exposure in PC.

  18. The molecular basis for the broad substrate specificity of human sulfotransferase 1A1.

    Directory of Open Access Journals (Sweden)

    Ilana Berger

    Full Text Available Cytosolic sulfotransferases (SULTs are mammalian enzymes that detoxify a wide variety of chemicals through the addition of a sulfate group. Despite extensive research, the molecular basis for the broad specificity of SULTs is still not understood. Here, structural, protein engineering and kinetic approaches were employed to obtain deep understanding of the molecular basis for the broad specificity, catalytic activity and substrate inhibition of SULT1A1. We have determined five new structures of SULT1A1 in complex with different acceptors, and utilized a directed evolution approach to generate SULT1A1 mutants with enhanced thermostability and increased catalytic activity. We found that active site plasticity enables binding of different acceptors and identified dramatic structural changes in the SULT1A1 active site leading to the binding of a second acceptor molecule in a conserved yet non-productive manner. Our combined approach highlights the dominant role of SULT1A1 structural flexibility in controlling the specificity and activity of this enzyme.

  19. Echinacea-induced cytosolic Ca2+ elevation in HEK293

    Directory of Open Access Journals (Sweden)

    Nikolau Basil J

    2010-11-01

    Full Text Available Abstract Background With a traditional medical use for treatment of various ailments, herbal preparations of Echinacea are now popularly used to improve immune responses. One likely mode of action is that alkamides from Echinacea bind to cannabinoid type 2 (CB2 receptors and induce a transient increase in intracellular Ca2+. Here, we show that unidentified compounds from Echinacea purpurea induce cytosolic Ca2+ elevation in non-immune-related cells, which lack CB2 receptors and that the Ca2+ elevation is not influenced by alkamides. Methods A non-immune human cell line, HEK293, was chosen to evaluate E. purpurea root extracts and constituents as potential regulators of intracellular Ca2+ levels. Changes in cytosolic Ca2+ levels were monitored and visualized by intracellular calcium imaging. U73122, a phospholipase C inhibitor, and 2-aminoethoxydiphenyl borate (2-APB, an antagonist of inositol-1,4,5-trisphosphate (IP3 receptor, were tested to determine the mechanism of this Ca2+ signaling pathway. E. purpurea root ethanol extracts were fractionated by preparative HPLC, screened for bioactivity on HEK293 cells and by GC-MS for potential constituent(s responsible for this bioactivity. Results A rapid transient increase in cytosolic Ca2+ levels occurs when E. purpurea extracts are applied to HEK293 cells. These stimulatory effects are phospholipase C and IP3 receptor dependent. Echinacea-evoked responses could not be blocked by SR 144528, a specific CB2 receptor antagonist, indicating that CB2 is not involved. Ca2+ elevation is sustained after the Echinacea-induced Ca2+ release from intracellular Ca2+ stores; this longer-term effect is abolished by 2-APB, indicating a possible store operated calcium entry involvement. Of 28 HPLC fractions from E. purpurea root extracts, six induce cytosolic Ca2+ increase. Interestingly, GC-MS analysis of these fractions, as well as treatment of HEK293 cells with known individual and combined chemicals, indicates the

  20. Echinacea-induced cytosolic Ca2+ elevation in HEK293.

    Science.gov (United States)

    Wu, Lankun; Rowe, Eric W; Jeftinija, Ksenija; Jeftinija, Srdija; Rizshsky, Ludmila; Nikolau, Basil J; McKay, Jodi; Kohut, Marian; Wurtele, Eve Syrkin

    2010-11-23

    With a traditional medical use for treatment of various ailments, herbal preparations of Echinacea are now popularly used to improve immune responses. One likely mode of action is that alkamides from Echinacea bind to cannabinoid type 2 (CB2) receptors and induce a transient increase in intracellular Ca2+. Here, we show that unidentified compounds from Echinacea purpurea induce cytosolic Ca2+ elevation in non-immune-related cells, which lack CB2 receptors and that the Ca2+ elevation is not influenced by alkamides. A non-immune human cell line, HEK293, was chosen to evaluate E. purpurea root extracts and constituents as potential regulators of intracellular Ca2+ levels. Changes in cytosolic Ca2+ levels were monitored and visualized by intracellular calcium imaging. U73122, a phospholipase C inhibitor, and 2-aminoethoxydiphenyl borate (2-APB), an antagonist of inositol-1,4,5-trisphosphate (IP3) receptor, were tested to determine the mechanism of this Ca2+ signaling pathway. E. purpurea root ethanol extracts were fractionated by preparative HPLC, screened for bioactivity on HEK293 cells and by GC-MS for potential constituent(s) responsible for this bioactivity. A rapid transient increase in cytosolic Ca2+ levels occurs when E. purpurea extracts are applied to HEK293 cells. These stimulatory effects are phospholipase C and IP3 receptor dependent. Echinacea-evoked responses could not be blocked by SR 144528, a specific CB2 receptor antagonist, indicating that CB2 is not involved. Ca2+ elevation is sustained after the Echinacea-induced Ca2+ release from intracellular Ca2+ stores; this longer-term effect is abolished by 2-APB, indicating a possible store operated calcium entry involvement. Of 28 HPLC fractions from E. purpurea root extracts, six induce cytosolic Ca2+ increase. Interestingly, GC-MS analysis of these fractions, as well as treatment of HEK293 cells with known individual and combined chemicals, indicates the components thought to be responsible for the major

  1. Influence of SULT1A1 genetic variation on age at menopause, estrogen levels, and response to hormone therapy in recently postmenopausal white women.

    Science.gov (United States)

    Moyer, Ann M; de Andrade, Mariza; Weinshilboum, Richard M; Miller, Virginia M

    2016-08-01

    Onset and symptoms of menopause, and response to hormone therapy (HT) show large interindividual variability. SULT1A1 encodes for a highly expressed enzyme that metabolizes estrogens. We evaluated the relationship between genetic variation in SULT1A1, menopause age, symptoms, and response to HT. Women enrolled in the Kronos Early Estrogen Prevention Study at Mayo Clinic were randomized to 48 months of treatment with oral conjugated equine estrogen (n = 34), transdermal 17β-estradiol (E2) (n = 33), or placebo (n = 35). Linear regression models and ANOVA were used to test for association of SULT1A1 copy number, rs3760091, rs750155, and rs9282861 (SULT1A12), with age at menopause and symptoms, levels of estrogens (estrone [E1], estrone sulfate [E1S], E2, and estradiol sulfate [E2S]), before and after HT. SULT1A1 gene copy number affected the minor allele frequency for each single nucleotide polymorphisms tested. Before administration of exogenous hormones, increasing number of G alleles at rs9282861 was associated with earlier age at menopause (P = 0.014), lower frequency of night sweats (P = 0.009), and less severe insomnia (P = 0.046). After 48 months of treatment, SULT1A1 genotype was not associated with the presence of menopausal symptoms. In women randomized to oral conjugated equine estrogen, increasing number of the A allele at rs750155 was associated with lower E1S and E2S (P = 0.004 and 0.017), whereas increasing number of the C allele at rs3760091 was associated with lower E2S/E2 (P = 0.044). Interindividual variability in onset of menopause and symptoms before initiation of HT is explained in part by genetic variation in SULT1A1 and may represent a step toward individualizing HT treatment decisions.

  2. Recombinant BCG Expressing ESX-1 of Mycobacterium marinum Combines Low Virulence with Cytosolic Immune Signaling and Improved TB Protection

    NARCIS (Netherlands)

    Gröschel, Matthias I.; Sayes, Fadel; Shin, Sung Jae; Frigui, Wafa; Pawlik, Alexandre; Orgeur, Mickael; Canetti, Robin; Honore, Nadine; Simeone, Roxane; van der Werf, Tjip S.; Bitter, Wilbert; Cho, Sang-Nae; Majlessi, Laleh; Brosch, Roland

    2017-01-01

    Recent insights into the mechanisms by which Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, is recognized by cytosolic nucleotide sensors have opened new avenues for rational vaccine design. The only licensed anti-tuberculosis vaccine, Mycobacteriumbovis BCG, provides limited

  3. Intestinal carcinogenesis of two food processing contaminants, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and 5-hydroxymethylfurfural, in transgenic FVB min mice expressing human sulfotransferases.

    Science.gov (United States)

    Svendsen, Camilla; Meinl, Walter; Glatt, Hansruedi; Alexander, Jan; Knutsen, Helle K; Hjertholm, Hege; Rasmussen, Tone; Husøy, Trine

    2012-12-01

    Humans express sulfotransferases (SULTs) of the SULT1A subfamily in many tissues, whilst the single SULT1A gene present in rodents is mainly expressed in liver. The food processing contaminants, 5-hydroxymethylfurfural (HMF) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), are bioactivated by human SULT1A1 and SULT1A2. FVB multiple intestinal neoplasia (Min) mice, which spontaneously develop tumors and flat aberrant crypt foci (ACF) in intestine, were crossed with transgenic FVB mice expressing human SULT1A1 and 1A2 (hSULT) in several tissues, giving rise to wild-type and Min mice with and without hSULT. One-week-old Min mice with or without hSULT were given HMF (375 or 750 mg/kg bw) or saline by gavage three times a week for 11 wk. In another experiment, the F1 generation received subcutaneous injections of 50 mg/kg bw PhIP or saline 1 wk before birth, and 1, 2, and 3 wk after birth. HMF did not affect the formation of tumors, but may have induced some flat ACF (incidence 15-20%) in Min mice with and without hSULT. No control mouse developed any flat ACF. With the limitation that these putative effects were weak, they were unaffected by hSULT expression. The carcinogenic effect of PhIP increased in the presence of hSULT, with a significant increase in both incidence (31-80%) and number of colonic tumors (0.4-1.3 per animal). Thus, intestinal expression of human SULT1A1 and 1A2 might increase the susceptibility to compounds bioactivated via this pathway implying that humans might be more susceptible than conventional rodent models.

  4. 1-(5-Carboxyindol-1-yl)propan-2-ones as inhibitors of human cytosolic phospholipase A2alpha: synthesis and properties of bioisosteric benzimidazole, benzotriazole and indazole analogues.

    Science.gov (United States)

    Bovens, Stefanie; Kaptur, Martina; Elfringhoff, Alwine Schulze; Lehr, Matthias

    2009-04-15

    The indole ring systems of the cytosolic phospholipase A(2)alpha (cPLA(2)alpha) inhibitor 1-[3-(4-octylphenoxy)-2-oxopropyl]indole-5-carboxylic acid (2) and the isomeric 6-carboxylic acid (3) were replaced by benzimidazole, benzotriazole and indazole scaffolds, respectively. The effect of the structural variations on cPLA(2)alpha inhibitory potency, metabolic stability and solubility was studied. The lead 2 and the indazole-5-carboxylic acid 28 were the metabolically most stable compounds in an assay with rat liver microsomes, while the benzimidazole-5-carboxylic acid derivative 13 possessed the best water solubility (22 microg/mL at pH 7.4). The indazole-5-carboxylic acid 28 revealed the highest cPLA(2)alpha inhibitory potency of the compounds in this series. With an IC(50)-value of 0.005 microM it was about sevenfold more active than the lead 2.

  5. 1-(3-biaryloxy-2-oxopropyl)indole-5-carboxylic acids and related compounds as dual inhibitors of human cytosolic phospholipase A2α and fatty acid amide hydrolase.

    Science.gov (United States)

    Zahov, Stefan; Drews, Andreas; Hess, Mark; Schulze Elfringhoff, Alwine; Lehr, Matthias

    2011-03-07

    Cytosolic phospholipase A2α (cPLA2α) and fatty acid amide hydrolase (FAAH) are enzymes that have emerged as attractive targets for the development of analgesic and anti-inflammatory drugs. We recently reported that 1-[3-(4-octylphenoxy)-2-oxopropyl]indole-5-carboxylic acid (5) is a dual inhibitor of cPLA2α and FAAH. Structure-activity relationship studies revealed that substituents at the indole 3- and 5-positions and replacement of the indole scaffold of this compound by other heterocycles strongly influences the inhibitory potency against cPLA2α and FAAH, respectively. Herein we report the effect of variation of the 4-octyl residue of 5 and an exchange of its carboxylic acid moiety by some bioisosteric functional groups. Several of the compounds assayed were favorably active against both enzymes, and could therefore represent agents with improved analgesic and anti-inflammatory qualities in comparison with selective cPLA2 α and FAAH inhibitors.

  6. Cytosolic beta-glycosidases for activation of glycoside prodrugs of daunorubicin.

    NARCIS (Netherlands)

    Graaf, de M.; Pinedo, H.M.; Quadir, R; Haisma, H.J.; Boven, E.

    2003-01-01

    Human cytosolic beta-glycosidase is a small monomeric enzyme that is active under physiological conditions, which might be ideal for enzyme-prodrug therapy. We have previously reported the synthesis of a galactoside (DNR-GlA3) and a glucoside (DNR-GsA3) prodrug of daunorubicin. In the present study,

  7. Cytosolic beta-glycosidases for activation of glycoside prodrugs of daunorubicin

    NARCIS (Netherlands)

    Pinedo, H.M.; Quadir, R.; Haisma, H.J.; Boven, E.

    2003-01-01

    Human cytosolic beta-glycosidase is a small monomeric enzyme that is active under physiological conditions, which might be ideal for enzyme-prodrug therapy. We have previously reported the synthesis of a galactoside (DNR-GlA(3)) and a glucoside (DNR-GsA3) prodrug of daunorubicin. In the present

  8. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria

    KAUST Repository

    Houben, Diane

    2012-05-08

    Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium leprae, are among the most potent human bacterial pathogens. The discovery of cytosolic mycobacteria challenged the paradigm that these pathogens exclusively localize within the phagosome of host cells. As yet the biological relevance of mycobacterial translocation to the cytosol remained unclear. In this current study we used electron microscopy techniques to establish a clear link between translocation and mycobacterial virulence. Pathogenic, patient-derived mycobacteria species were found to translocate to the cytosol, while non-pathogenic species did not. We were further able to link cytosolic translocation with pathogenicity by introducing the ESX-1 (type VII) secretion system into the non-virulent, exclusively phagolysosomal Mycobacterium bovis BCG. Furthermore, we show that translocation is dependent on the C-terminus of the early-secreted antigen ESAT-6. The C-terminal truncation of ESAT-6 was shown to result in attenuation in mice, again linking translocation to virulence. Together, these data demonstrate the molecular mechanism facilitating translocation of mycobacteria. The ability to translocate from the phagolysosome to the cytosol is with this study proven to be biologically significant as it determines mycobacterial virulence. © 2012 Blackwell Publishing Ltd.

  9. Unlocking Barriers to DNA Vaccine Immunogenicity: A Cross-Species Analysis of Cytosolic DNA Sensing in Skeletal Muscle Myocytes

    Science.gov (United States)

    2016-10-01

    Skeletal Muscle Myocytes PRINCIPAL INVESTIGATOR: Dr. Gerasimos J. Zaharatos CONTRACTING ORGANIZATION: Sir Mortimer B. Davis Jewish General Hospital...Immunogenicity: A Cross-Species Analysis of Cytosolic DNA Sensing in Skeletal Muscle Myocytes 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr...humans. The present work is testing the hypothesis that skeletal muscle myocytes sense cytosolic DNA and elaborate an inflammatory response to DNA

  10. SULT1A1 genetic polymorphisms and the association between smoking and oral cancer in a case-control study in Brazil

    Directory of Open Access Journals (Sweden)

    Sergio eKoifman

    2012-12-01

    Full Text Available Introduction: Oral cancer is a public health problem worldwide, being tobacco and alcohol consumption their main risk factors. Sulfotransferase 1A1 (encoded by SULT1A1 is involved in procarcinogens metabolism, such as polycyclic aromatic hydrocarbons present in tobacco smoke. Objective: The aim of this study was to explore the magnitude of association between SULT1A1 gene Arg213His polymorphism and oral cancer, and to explore the interaction between such polymorphism and smoking. Methods: A hospital-based case-control study was carried out in Rio de Janeiro, Brazil, during 1998-2002. Epidemiological data and biological samples were obtained from 202 oral cancer patients and 196 sex and age-frequency matched controls without cancer antecedents. Results: No association was observed between Arg213His SULT1A1 polymorphism and oral cancer risk in overall analysis (OR=1.06, 95% CI 0.71-1.57. Among smokers, however, the presence of at least one polymorphic allele (genotypes Arg/His and His/His versus Arg/Arg was associated with oral cancer risk (OR = 2.72, 95% C.I.1.15-6.43. Conclusion: Our results suggest that Arg213His SULT1A1 polymorphism may modulate the association between smoking and oral cancer. However, this association needs to be replicated in other studies: due to modest number of cases and controls, the role of chance in the observed association cannot be ruled out.

  11. Combined effects of GSTO1 and SULT1A1 polymorphisms and cigarette smoking on urothelial carcinoma risk in a Taiwanese population

    Directory of Open Access Journals (Sweden)

    Min-Che Tung

    2014-09-01

    Conclusion: The present study provided epidemiological evidence for a significantly increased risk of UCB in ever smokers with the Ala/Ala genotype of the GSTO1 gene and the Arg/Arg genotype of the SULT1A1 gene.

  12. A case-control study on association of SULT1A1 polymorphism and smoked meat intake with breast cancer risk

    Institute of Scientific and Technical Information of China (English)

    陶蘋

    2012-01-01

    Objective To assess the association of smoked meat intake,SULT1A1 polymorphism as well as their combined effects with breast cancer risk. Methods A total of 400 newly diagnosed breast cancer cases from a cancer hospital in Sichuan province and 400 healthy controls from participants

  13. Influence of SULT1A1 genetic variation on age at menopause, estrogen levels, and response to hormone therapy in recently postmenopausal white women

    Science.gov (United States)

    Moyer, Ann M.; de Andrade, Mariza; Weinshilboum, Richard M.; Miller, Virginia M.

    2016-01-01

    Abstract Objective: Onset and symptoms of menopause, and response to hormone therapy (HT) show large interindividual variability. SULT1A1 encodes for a highly expressed enzyme that metabolizes estrogens. We evaluated the relationship between genetic variation in SULT1A1, menopause age, symptoms, and response to HT. Methods: Women enrolled in the Kronos Early Estrogen Prevention Study at Mayo Clinic were randomized to 48 months of treatment with oral conjugated equine estrogen (n = 34), transdermal 17β-estradiol (E2) (n = 33), or placebo (n = 35). Linear regression models and ANOVA were used to test for association of SULT1A1 copy number, rs3760091, rs750155, and rs9282861 (SULT1A1∗2), with age at menopause and symptoms, levels of estrogens (estrone [E1], estrone sulfate [E1S], E2, and estradiol sulfate [E2S]), before and after HT. Results: SULT1A1 gene copy number affected the minor allele frequency for each single nucleotide polymorphisms tested. Before administration of exogenous hormones, increasing number of G alleles at rs9282861 was associated with earlier age at menopause (P = 0.014), lower frequency of night sweats (P = 0.009), and less severe insomnia (P = 0.046). After 48 months of treatment, SULT1A1 genotype was not associated with the presence of menopausal symptoms. In women randomized to oral conjugated equine estrogen, increasing number of the A allele at rs750155 was associated with lower E1S and E2S (P = 0.004 and 0.017), whereas increasing number of the C allele at rs3760091 was associated with lower E2S/E2 (P = 0.044). Conclusions: Interindividual variability in onset of menopause and symptoms before initiation of HT is explained in part by genetic variation in SULT1A1 and may represent a step toward individualizing HT treatment decisions. PMID:27300114

  14. IOP1 protein is an external component of the human cytosolic iron-sulfur cluster assembly (CIA) machinery and functions in the MMS19 protein-dependent CIA pathway.

    Science.gov (United States)

    Seki, Mineaki; Takeda, Yukiko; Iwai, Kazuhiro; Tanaka, Kiyoji

    2013-06-07

    The emerging link between iron metabolism and genome integrity is increasingly clear. Recent studies have revealed that MMS19 and cytosolic iron-sulfur cluster assembly (CIA) factors form a complex and have central roles in CIA pathway. However, the composition of the CIA complex, particularly the involvement of the Fe-S protein IOP1, is still unclear. The roles of each component are also largely unknown. Here, we show that MMS19, MIP18, and CIAO1 form a tight "core" complex and that IOP1 is an "external" component of this complex. Although IOP1 and the core complex form a complex both in vivo and in vitro, IOP1 behaves differently in vivo. A deficiency in any core component leads to down-regulation of all of the components. In contrast, IOP1 knockdown does not affect the level of any core component. In MMS19-overproducing cells, other core components are also up-regulated, but the protein level of IOP1 remains unchanged. IOP1 behaves like a target protein in the CIA reaction, like other Fe-S helicases, and the core complex may participate in the maturation process of IOP1. Alternatively, the core complex may catch and hold IOP1 when it becomes mature to prevent its degradation. In any case, IOP1 functions in the MMS19-dependent CIA pathway. We also reveal that MMS19 interacts with target proteins. MIP18 has a role to bridge MMS19 and CIAO1. CIAO1 also binds IOP1. Based on our in vivo and in vitro data, new models of the CIA machinery are proposed.

  15. Food extracts consumed in Mediterranean countries and East Asia reduce protein concentrations of androgen receptor, phospho-protein kinase B, and phospho-cytosolic phospholipase A(2)alpha in human prostate cancer cells.

    Science.gov (United States)

    Singh, Jaskirat; Xie, Chanlu; Yao, Mu; Hua, Sheng; Vignarajan, Soma; Jardine, Greg; Hambly, Brett D; Sved, Paul; Dong, Qihan

    2010-04-01

    Active surveillance is an emerging management option for the rising number of men with low-grade, clinically localized prostate cancer. However, 30-40% of men on active surveillance will progress to high-grade disease over 5 y. With the ultimate aim of developing a food-based chemoprevention strategy to retard cancer progression in these otherwise healthy men, we have developed a blend of food extracts commonly consumed in Mediterranean countries and East Asia. The effect of the food extracts known as Blueberry Punch (BBP) on prostate cancer cell growth and key signaling pathways were examined in vitro and in vivo. BBP reduced prostate cancer cell growth in a dose-dependent manner (0.08-2.5%) at 72 h in vitro due to the reduction in cell proliferation and viability. Prostate cancer cell xenograft-bearing mice, administered 10% BBP in drinking water for 2 wk, had a 25% reduction in tumor volume compared with the control (water only). In vitro, BBP reduced protein concentrations in 3 signaling pathways necessary for the proliferation and survival of prostate cancer cells, namely androgen receptor, phospho-protein kinase B/protein kinase B, and phospho-cytosolic phospholipase A(2)alpha. The downstream effectors of these pathways, including prostate-specific antigen and glycogen synthase kinase 3beta, were also reduced. Thus, this palatable food supplement is a potential candidate for testing in clinical trials and may ultimately prove effective in retarding the progression of low-grade, early-stage prostate cancer in men managed by active surveillance.

  16. Cytosolic delivery of materials with endosome-disrupting colloids

    Science.gov (United States)

    Helms, Brett A.; Bayles, Andrea R.

    2016-03-15

    A facile procedure to deliver nanocrystals to the cytosol of live cells that is both rapid and general. The technique employs a unique cationic core-shell polymer colloid that directs nanocrystals to the cytosol of living cells within a few hours of incubation. The present methods and compositions enable a host of advanced applications arising from efficient cytosolic delivery of nanocrystal imaging probes: from single particle tracking experiments to monitoring protein-protein interactions in live cells for extended periods.

  17. Fine tuning of cytosolic Ca 2+ oscillations

    Science.gov (United States)

    Dupont, Geneviève; Combettes, Laurent

    2016-01-01

    Ca 2+ oscillations, a widespread mode of cell signaling, were reported in non-excitable cells for the first time more than 25 years ago. Their fundamental mechanism, based on the periodic Ca 2+ exchange between the endoplasmic reticulum and the cytoplasm, has been well characterized. However, how the kinetics of cytosolic Ca 2+ changes are related to the extent of a physiological response remains poorly understood. Here, we review data suggesting that the downstream targets of Ca 2+ are controlled not only by the frequency of Ca 2+ oscillations but also by the detailed characteristics of the oscillations, such as their duration, shape, or baseline level. Involvement of non-endoplasmic reticulum Ca 2+ stores, mainly mitochondria and the extracellular medium, participates in this fine tuning of Ca 2+ oscillations. The main characteristics of the Ca 2+ exchange fluxes with these compartments are also reviewed. PMID:27630768

  18. Association of sulfotransferase SULT1A1 with breast cancer risk: a meta-analysis of case-control studies with subgroups of ethnic and menopausal statue

    Directory of Open Access Journals (Sweden)

    Shao Zhimin

    2010-07-01

    Full Text Available Abstract Background Sulfotransferase (SULT plays an important role in the formation of estrogen which is usually conferred as a risk factor for breast cancer. Polymorphism of the SULT1A1 may be closely associated with breast cancer. However, studies on the association between polymorphism and breast cancer have yielded inconsistent results. We performed a meta-analysis including ethnic subgroup and menopausal statue subgroup to investigate the association of SULT1A1 Arg213His polymorphism with breast cancer. Methods PubMed, EBSCO and Web of Science databases were searched for the correlative articles up to January 2010 (10362 breast cancer patients and 14250 controls. The risk (odds ratio, OR was used to estimate the association between SULT1A1 polymorphism and breast cancer risk. All of the data from each study use either fixed-effects or random-effects. Results We found that SULT1A1 Arg213His had no exact effect to increase the risk of breast cancer (OR = 1.07, 95% CI: 0.97-1.17, P = 0.164, but it did increase the risk of breast cancer among postmenopausal women in the dominant model (OR = 1.28, 95%CI: 1.04-1.58, P = 0.019. No similar effect was found among premenopausal breast cancer women (OR = 1.06, 95%CI: 0.88-1.27, P = 0.537. There was a significant increase in breast cancer risk among Asian women (OR = 2.03, 95% CI: 1.00-4.14, P = 0.051 but not Caucasian women in recessive model. There was publication bias among postmenopausal women subgroup (P = 0.002, however by using the trim and fill method, if the publication bias was the only source of the funnel plot asymmetry, it needed two more studies to be symmetrical. The value of Log OR did not change too much after the adjustment and the fail-safe number of missing studies that would bring the P-value changed was 17. Conclusions We concluded that the polymorphism of SULT1A1 Arg213His might be one of the high risk factors for breast cancer in Asian women and in postmenopausal women for all

  19. Fumarase: a mitochondrial metabolic enzyme and a cytosolic/nuclear component of the DNA damage response.

    Directory of Open Access Journals (Sweden)

    Ohad Yogev

    2010-03-01

    Full Text Available In eukaryotes, fumarase (FH in human is a well-known tricarboxylic-acid-cycle enzyme in the mitochondrial matrix. However, conserved from yeast to humans is a cytosolic isoenzyme of fumarase whose function in this compartment remains obscure. A few years ago, FH was surprisingly shown to underlie a tumor susceptibility syndrome, Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC. A biallelic inactivation of FH has been detected in almost all HLRCC tumors, and therefore FH was suggested to function as a tumor suppressor. Recently it was suggested that FH inhibition leads to elevated intracellular fumarate, which in turn acts as a competitive inhibitor of HPH (HIF prolyl hydroxylase, thereby causing stabilization of HIF (Hypoxia-inducible factor by preventing proteasomal degradation. The transcription factor HIF increases the expression of angiogenesis regulated genes, such as VEGF, which can lead to high microvessel density and tumorigenesis. Yet this mechanism does not fully explain the large cytosolic population of fumarase molecules. We constructed a yeast strain in which fumarase is localized exclusively to mitochondria. This led to the discovery that the yeast cytosolic fumarase plays a key role in the protection of cells from DNA damage, particularly from DNA double-strand breaks. We show that the cytosolic fumarase is a member of the DNA damage response that is recruited from the cytosol to the nucleus upon DNA damage induction. This function of fumarase depends on its enzymatic activity, and its absence in cells can be complemented by high concentrations of fumaric acid. Our findings suggest that fumarase and fumaric acid are critical elements of the DNA damage response, which underlies the tumor suppressor role of fumarase in human cells and which is most probably HIF independent. This study shows an exciting crosstalk between primary metabolism and the DNA damage response, thereby providing a scenario for metabolic control of tumor

  20. Cytosolic adenylate changes during exercise in prawn muscle

    Energy Technology Data Exchange (ETDEWEB)

    Thebault, M.T. [College de France, 29 - Concarneau (France); Raffin, J.P.; Pichon, R. [Brest Univ., 29 (France)

    1994-11-01

    {sup 31}P NMR and biochemical analysis were used to assess the effect of heavy exercise on cytosolic adenylate levels in Palaemon serratus abdominal muscle. At rest, the MgATP level corresponded to 85.5% of the total ATP content. The cytosolic adenylate concentrations of the prawn muscle are considerably different from that of vertebrates. The percentage of ADP bound to myofilaments was lower in the prawn muscle. Consequently, the level of free cytosolic AMP was greatly higher (thirty fold higher) than in vertebrate muscle. During vigorous work, the concentration of MgATP dropped and the cytosolic AMP accumulated, while the cytosolic adenine nucleotide pool decreased significantly. The phosphorylation potential value and the ATP/ADP ratio, calculated from the cytosolic adenylate, dropped acutely during the whole period of muscular contractions. On the contrary, the adenylate energy charge calculated from the cytosolic adenylate decreased slightly. Therefore, even in muscle displaying no AMP deamination, the adenylate charge is stabilized during exercise by the dynamic changes between cytosolic and bound adenylate species. (author). 21 refs., 2 tabs.

  1. SULT1A1 rs9282861 polymorphism-a potential modifier of efficacy of the systemic adjuvant therapy in breast cancer?

    Directory of Open Access Journals (Sweden)

    Tengström Maria

    2012-06-01

    Full Text Available Abstract Background Sulfotransferase 1A1 (SULT1A1 participates in the elimination of 4-hydroxy-tamoxifen (4-OH-TAM, which is one of the major active metabolites of tamoxifen (TAM. Homozygous SULT1A1 variant allele genotype has been associated with lower catalytic activity and thermostability of the enzyme. Previous clinical studies suggest that the SULT1A1 rs9282861 polymorphism may influence the survival of breast cancer patients treated with TAM in the adjuvant setting. We investigated the effect of rs9282861 genotypes on the survival of Finnish breast cancer patients treated with adjuvant chemotherapy or TAM. Methods The rs9282861 genotypes of 412 Finnish breast cancer patients with early breast cancer were identified by using PCR-RFLP method. Seventy six patients were treated with adjuvant cyclophosphamide based chemotherapy only, 65 patients received adjuvant TAM, and four patients were treated with both adjuvant chemotherapy and TAM. Overall long-term survival (OS, breast cancer specific survival (BCSS, and relapse-free survival (RFS by rs9282861 genotypes were evaluated by the Kaplan-Meier method and Cox regression analysis. Results The multivariate analysis of 145 patients receiving either adjuvant TAM or chemotherapy showed a statistically significantly improved OS in patients with the rs9282861 homozygous variant AA genotype (hazard ratio [HR] = 0.50, 95% confidence interval [CI] = 0.29-0.88, P = 0.015. In the separate analyses of patients receiving only chemotherapy or adjuvant TAM, there were no statistically significant differences in survival. Conclusions In this prospective study, we observed a previously unreported association between the SULT1A1 rs9282861 genotype and OS of breast cancer patients treated with adjuvant chemotherapy or TAM. This novel finding suggests that the rs9282861 polymorphism modifies the long-term clinical outcome of patients receiving adjuvant TAM or chemotherapy.

  2. Action of Halowax 1051 on Enzymes of Phase I (CYP1A1 and Phase II (SULT1A and COMT Metabolism in the Pig Ovary

    Directory of Open Access Journals (Sweden)

    Justyna Barć

    2013-01-01

    Full Text Available Polychlorinated naphthalenes (PCNs are a group of organochlorinated compounds exhibiting dioxin-like properties. Previously published data showed the direct action of PCN-rich Halowax 1051 on ovarian follicular steroidogenesis. Taking into consideration that the observed biological effects of PCNs may be frequently side effects of metabolites generated by their detoxification, the aim of this study was to determine the activity and expression of enzymes involved in phase I (cytochrome P450, family 1 (CYP1A1 and phase II (sulfotransferase (SULT1A and catechol-O-methyltransferase (COMT detoxification metabolism. Cocultures of granulosa and theca interna cells collected from sexually mature pigs were exposed to 1 pg/mL to 10 ng/mL of Halowax 1051 for 1 to 48 hours, after which levels and activities of CYP1A1, SULT1A, and COMT were measured. Dose-dependent increases of CYP1A1 activity and expression were observed. High doses of Halowax 1051 were inhibitory to COMT and SULT1A activity and reduced their protein levels. In conclusion, fast activation of phase I enzymes with simultaneous inhibition of phase II enzymes indicates that the previously observed effect of Halowax 1051 on follicular steroidogenesis may partially result from metabolite action occurring locally in ovarian follicles.

  3. Polymorphisms of STS gene and SULT2A1 gene and neurosteroid levels in Han Chinese boys with attention-deficit/hyperactivity disorder: an exploratory investigation

    Science.gov (United States)

    Wang, Liang-Jen; Chan, Wen-Ching; Chou, Miao-Chun; Chou, Wen-Jiun; Lee, Min-Jing; Lee, Sheng-Yu; Lin, Pao-Yen; Yang, Yi-Hsin; Yen, Cheng-Fang

    2017-01-01

    This study examined the relationships among polymorphisms of the STS gene and SULT2A1 gene, dehydroepiandrosterone (DHEA) and its sulfated form (DHEA-S), and characteristics of attention-deficit/hyperactivity disorder (ADHD). We used cheek swabs to obtain the genomic DNA of 200 ADHD male probands (mean age: 8.7 years), 192 patients’ mothers and 157 patients’ fathers. Three SNPs in the STS gene (rs6639786, rs2270112, and rs17268988) and one SNP in the SULT2A1 gene (rs182420) were genotyped. Saliva samples were collected from the ADHD patients to analyze DHEA and DHEA-S levels. The behavioral symptoms were evaluated with the Swanson, Nolan, and Pelham, and Version IV Scale for ADHD (SNAP-IV), and the neuropsychological function was assessed using the Conners’ Continuous Performance Tests (CPT). We found the C allele of rs2270112 within the STS gene to be over-transmitted in males with ADHD. Polymorphisms of rs182420 within the SULT2A1 gene were not associated with ADHD. In addition, the C allele carriers of rs2270112 demonstrated significantly higher DHEA-S levels than the G allele carriers. Levels of DHEA were positively correlated with attention as measured by the CPT. These findings support a potential role in the underlying biological pathogenesis of ADHD with regard to STS polymorphisms and neurosteroid levels. PMID:28367959

  4. Apparent cytosolic calcium gradients in T-lymphocytes due to fura-2 accumulation in mitochondria.

    Science.gov (United States)

    Quintana, Ariel; Hoth, Markus

    2004-08-01

    Fura-2 is the most common dye to measure cytosolic Ca2+ concentrations ([Ca2+]i). To facilitate simultaneous imaging of many cells while preserving their cytosolic environment, fura-2 is often loaded into the cytosol in its membrane-permeant ester form. It has been reported that small amounts of fura-2 accumulate in intracellular compartments, an effect that is usually neglected. We show that either focal or non-focal stimulation methods induce large [Ca2+]i gradients in T-lymphocytes during both, Ca2+ release and Ca2+ influx across the plasma membrane. Interfering with mitochondrial Ca2+ homeostasis and by labeling mitochondria with MitoTracker, we demonstrate that [Ca2+]i gradients co-localize with mitochondria and are attributable to mitochondrial fura-2 sequestration. Gradients could not be avoided by different loading protocols, compromising measurements of "real" [Ca2+]i gradients following T-cell stimulation. They were observed in human blood and lamina propria lymphocytes, Jurkat T-cells, mast cells, but not to the same extent in HEK-293 cells. Finally, we show that T-lymphocytes can be efficiently loaded with the membrane-impermeant fura-2 salt by electroporation and by osmotic lysis of pinocytic vesicles, which result in the loss of [Ca2+]i gradients. These methods are therefore suitable to study localized Ca2+ signals in large populations of T-cells while preserving their cytosolic integrity.

  5. Specific high-affinity binding of fatty acids to epidermal cytosolic proteins

    Energy Technology Data Exchange (ETDEWEB)

    Raza, H.; Chung, W.L.; Mukhtar, H. (Department of Dermatology, University Hospitals of Cleveland, Case Western Reserve University, OH (USA))

    1991-08-01

    Cytosol from rat, mouse, and human skin or rat epidermis was incubated with (3H)arachidonic acid, (14C)retinoic acid, (14C)oleic acid, (3H)leukotriene A4, (3H)prostaglandin E2 (PGE2) or (3H) 15-hydroxyeicosatetraenoic acid (15-HETE), and protein-bound ligands were separated using Lipidex-1000 at 4C to assess the binding specificity. The binding of oleic acid and arachidonic acid with rat epidermal cytosol was rapid, saturable, and reversible. Binding of oleic acid was competed out with the simultaneous addition of other ligands and found to be in the following order: arachidonic acid greater than oleic acid greater than linoleic acid greater than lauric acid greater than leukotriene A4 greater than 15-HETE = PGE1 greater than PGE2 = PGF2. Scatchard analysis of the binding with arachidonic acid, oleic acid, and retinoic acid revealed high-affinity binding sites with the dissociation constant in the nM range. SDS-PAGE analysis of the oleic acid-bound epidermal cytosolic protein(s) revealed maximum binding at the 14.5 kDa region. The presence of the fatty acid-binding protein in epidermal cytosol and its binding to fatty acids and retinoic acid may be of significance both in the trafficking and the metabolism of fatty acids and retinoids across the skin.

  6. Sulfotransferase SULT1A1 Arg213His polymorphism with cancer risk: a meta-analysis of 53 case-control studies.

    Directory of Open Access Journals (Sweden)

    Juanjuan Xiao

    Full Text Available BACKGROUND: The SULT1A1 Arg213His (rs9282861 polymorphism is reported to be associated with many kinds of cancer risk. However, the findings are conflicting. For better understanding this SNP site and cancer risk, we summarized available data and performed this meta-analysis. METHODS: Data were collected from the following electronic databases: PubMed, Web of Knowledge and CNKI. The association was assessed by odd ratio (OR and the corresponding 95% confidence interval (95% CI. RESULTS: A total of 53 studies including 16733 cancer patients and 23334 controls based on the search criteria were analyzed. Overall, we found SULT1A1 Arg213His polymorphism can increase cancer risk under heterozygous (OR  1.09, 95% CI = 1.01-1.18, P = 0.040, dominant (OR = 1.10, 95% CI = 1.01-1.19, P = 0.021 and allelic (OR = 1.08, 95% CI = 1.02-1.16, P = 0.015 models. In subgroup analyses, significant associations were observed in upper aero digestive tract (UADT cancer (heterozygous model: OR = 1.62, 95% CI = 1.11-2.35, P = 0.012; dominant model: OR = 1.63, 95% CI = 1.13-2.35, P = 0.009; allelic model: OR = 1.52, 95% CI = 1.10-2.11, P = 0.012 and Indians (recessive model: OR = 1.93, 95% CI = 1.22-3.07, P = 0.005 subgroups. Hospital based study also showed marginally significant association. In the breast cancer subgroup, ethnicity and publication year revealed by meta-regression analysis and one study found by sensitivity analysis were the main sources of heterogeneity. The association between SULT1A1 Arg213His and breast cancer risk was not significant. No publication bias was detected. CONCLUSIONS: The present meta-analysis suggests that SULT1A1 Arg213His polymorphism plays an important role in carcinogenesis, which may be a genetic factor affecting individual susceptibility to UADT cancer. SULT1A1 Arg213His didn't show any association with breast cancer, but the possible risk in Asian population needs further investigation.

  7. Correlation between SULT1A1 Arg213His Gene Polymorphisms and Uterine Leiomyomas%SULT1A1基因Arg213His 位点多态性与子宫肌瘤发生的关联性

    Institute of Scientific and Technical Information of China (English)

    周超; 林林; 张英姿; 徐天和; 张磊磊

    2011-01-01

    目的:探讨硫酸氨基转移酶(Sulfotransferase,SULT)1A1基因Arg213His位点多态性与鲁北地区汉族女性子宫肌瘤的关系.方法:以病例-对照的研究方法,采用聚合酶链式反应-限制性片段长度多态性(PCR-RFLP)方法检测了123例子宫肌瘤患者和123例匹配对照者的SULT1A1基因Arg213His位点的基因型,应用条件Logistic回归等方法分析基因多态性与子宫肌瘤的关系.结果:1)SULT1A1基因Arg/Arg、Arg/His、His/His 3种基因型在子宫肌瘤与对照组中的分布存在显著性差异(P=0.011);2)与Arg/Arg基因型相比,Arg/His、His/His危险度均增加,分别为2.321倍和1.985倍(P=0.003和P=0.468);3)His等位基因可显著增加患子宫肌瘤的危险性(P=0.003,OR调整=2.296,95%CI为1.325~3.978).结论:SULT1A1基因Arg213His位点基因多态性与鲁北地区汉族女性子宫肌瘤的发生有关,增加了子宫肌瘤的患病风险.%Objective: To study the correlation between polymorphisms of SULT1A1 with the risk of uterine leiomyoma interaction among Han Chinese in Northern QiLu.Methods: Arg213His genotypes of the SULT1A1 gene were detected using polymerase chain reaction-restriction fragment length polymorphism in a case-control study.A total of 123 cases of uterine leiomyomas and 123 controls were included.Multivariate logistic regression analysis was used to estimate the risk of developing uterine leiomyomas associated with environmental exposures of the SULT1A1 genotype.Results: ( 1 ) The SULT1A1 polymorphisms of the Arg/Arg, Arg/His, and His/His genotypes in the uterine leiomyoma group and the control group were significantly different ( P = 0.011 ); ( 2 ) Comparedwith that of the Arg/Arg genotype, the risk of the Arg/His was genotype and His/His was both increased, by 2.321 times and 1.985 times ( P = 0.003 and P = 0.468 ).( 3 ) The risk was significantly higher among uterine leiomyoma patients with the His allele ( OR adjusted = 2.296, 95 % CI 1.325-3.978, P = 0

  8. Quantitative assessment of cytosolic Salmonella in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Leigh A Knodler

    Full Text Available Within mammalian cells, Salmonella enterica serovar Typhimurium (S. Typhimurium inhabits a membrane-bound vacuole known as the Salmonella-containing vacuole (SCV. We have recently shown that wild type S. Typhimurium also colonizes the cytosol of epithelial cells. Here we sought to quantify the contribution of cytosolic Salmonella to the total population over a time course of infection in different epithelial cell lines and under conditions of altered vacuolar escape. We found that the lysosomotropic agent, chloroquine, acts on vacuolar, but not cytosolic, Salmonella. After chloroquine treatment, vacuolar bacteria are not transcriptionally active or replicative and appear degraded. Using a chloroquine resistance assay, in addition to digitonin permeabilization, we found that S. Typhimurium lyses its nascent vacuole in numerous epithelial cell lines, albeit with different frequencies, and hyper-replication in the cytosol is also widespread. At later times post-infection, cytosolic bacteria account for half of the total population in some epithelial cell lines, namely HeLa and Caco-2 C2Bbe1. Both techniques accurately measured increased vacuole lysis in epithelial cells upon treatment with wortmannin. By chloroquine resistance assay, we also determined that Salmonella pathogenicity island-1 (SPI-1, but not SPI-2, the virulence plasmid nor the flagellar apparatus, was required for vacuolar escape and cytosolic replication in epithelial cells. Together, digitonin permeabilization and the chloroquine resistance assay will be useful, complementary tools for deciphering the mechanisms of SCV lysis and Salmonella replication in the epithelial cell cytosol.

  9. Diversity of cytosolic HSP70 Heat Shock Protein from decapods and their phylogenetic placement within Arthropoda.

    Science.gov (United States)

    Baringou, Stephane; Rouault, Jacques-Deric; Koken, Marcel; Hardivillier, Yann; Hurtado, Luis; Leignel, Vincent

    2016-10-10

    The 70kDa heat shock proteins (HSP70) are considered the most conserved members of the HSP family. These proteins are primordial to the cell, because of their implications in many cellular pathways (e. g., development, immunity) and also because they minimize the effects of multiple stresses (e. g., temperature, pollutants, salinity, radiations). In the cytosol, two ubiquitous HSP70s with either a constitutive (HSC70) or an inducible (HSP70) expression pattern are found in all metazoan species, encoded by 5 or 6 genes (Drosophila melanogaster or yeast and human respectively). The cytosolic HSP70 protein family is considered a major actor in environmental adaptation, and widely used in ecology as an important biomarker of environmental stress. Nevertheless, the diversity of cytosolic HSP70 remains unclear amongst the Athropoda phylum, especially within decapods. Using 122 new and 311 available sequences, we carried out analyses of the overall cytosolic HSP70 diversity in arthropods (with a focus on decapods) and inferred molecular phylogenies. Overall structural and phylogenetic analyses showed a surprisingly high diversity in cytosolic HSP70 and revealed the existence of several unrecognised groups. All crustacean HSP70 sequences present signature motifs and molecular weights characteristic of non-organellar HSP70, with multiple specific substitutions in the protein sequence. The cytosolic HSP70 family in arthropods appears to be constituted of at least three distinct groups (annotated as A, B and C), which comprise several subdivisions, including both constitutive and inducible forms. Group A is constituted by several classes of Arthropods, while group B and C seem to be specific to Malacostraca and Hexapoda/Chelicerata, respectively. The HSP70 organization appeared much more complex than previously suggested, and far beyond a simple differentiation according to their expression pattern (HSC70 versus HSP70). This study proposes a new classification of cytosolic

  10. Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm.

    Science.gov (United States)

    Mellouk, Nora; Enninga, Jost

    2016-01-01

    Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it.

  11. Cleavage by MALT1 induces cytosolic release of A20.

    Science.gov (United States)

    Malinverni, Claire; Unterreiner, Adeline; Staal, Jens; Demeyer, Annelies; Galaup, Marion; Luyten, Marcel; Beyaert, Rudi; Bornancin, Frédéric

    2010-10-01

    The MALT1 paracaspase has arginine-directed proteolytic activity. A20 is a dual ubiquitin-editing enzyme involved in termination of NF-κB signaling. Upon T- or B-cell receptor engagement human (h) A20 is cleaved by MALT1 after arginine 439, yielding an N-terminal fragment (hA20p50) and a C-terminal one (hA20p37). The hA20p50 fragment has never been detected directly, thus limiting insight into the functional consequences of MALT1-mediated cleavage of A20. Here, various antibodies were tested, including newly generated hA20p50 and hA20p37 specific antibodies, leading to detection of the hA20p50 fragment produced after MALT1-mediated cleavage of ectopically expressed as well as endogenous A20 proteins. The properties of both A20 fragments, generated upon co-expression with a constitutively active MALT1 protein, were further studied by sub-cellular fractionation and fluorescence microscopy. In contrast to full-length A20 which is particulate and insoluble, we found hA20p50 to be soluble and readily released into the cytosol whereas hA20p37 was partially soluble, thus suggesting loss of compartmentalization as a possible mechanism for MALT1-mediated dampening of A20 function.

  12. Cytosolic Innate Immune Sensing and Signaling upon Infection

    Directory of Open Access Journals (Sweden)

    Lilliana eRadoshevich

    2016-03-01

    Full Text Available Cytosolic sensing of pathogens is essential to a productive immune response. Recent reports have emphasized the importance of signaling platforms emanating from organelles and cytosolic sensors, particularly during the response to intracellular pathogens. Here we highlight recent discoveries identifying the key mediators of nucleic acid and cyclic nucleotide sensing and discuss their importance in host defense. This review will also cover strategies evolved by pathogens to manipulate these pathways.

  13. Cytosolic Ku70 regulates Bax-mediated cell death.

    Science.gov (United States)

    Hada, Manila; Subramanian, Chitra; Andrews, Phillip C; Kwok, Roland P S

    2016-10-01

    The first known function of Ku70 is as a DNA repair factor in the nucleus. Using neuronal neuroblastoma cells as a model, we have established that cytosolic Ku70 binds to the pro-apoptotic protein Bax in the cytosol and blocks Bax's cell death activity. Ku70-Bax binding is regulated by Ku70 acetylation in that when Ku70 is acetylated Bax dissociates from Ku70, triggering cell death. We propose that Ku70 may act as a survival factor in these cells such that Ku70 depletion triggers Bax-dependent cell death. Here, we addressed two fundamental questions about this model: (1) Does all Bax, which is a cytosolic protein, bind to all cytosolic Ku70? and (2) Is Ku70 a survival factor in cells types other than neuronal neuroblastoma cells? We show here that, in neuronal neuroblastoma cells, only a small fraction of Ku70 binds to a small fraction of Bax; most Bax is monomeric. Interestingly, there is no free or monomeric Ku70 in the cytosol; most cytosolic Ku70 is in complex with other factors forming several high molecular weight complexes. A fraction of cytosolic Ku70 also binds to cytosolic Ku80, Ku70's binding partner in the nucleus. Ku70 may not be a survival factor in some cell types (Ku70-depletion less sensitive) because Ku70 depletion does not affect survival of these cells. These results indicate that, in addition to Ku70 acetylation, other factors may be involved in regulating Ku70-Bax binding in the Ku70-depletion less sensitive cells because Ku70 acetylation in these cells is not sufficient to dissociate Bax from Ku70 or to activate Bax.

  14. A relevance study on uterine leiomyoma and gene polymorphisms of CYP1A1 MspⅠand SULT1A1 Arg213His%CYP1A1基因MspⅠ位点和SULT1A1基因Arg213His位点多态性与子宫肌瘤的关联性研究

    Institute of Scientific and Technical Information of China (English)

    周超; 林林; 张英姿; 徐天和; 张磊磊

    2011-01-01

    目的 探讨细胞色素P450(cytochrome P450,CYP)1A1基因MspⅠ位点和硫酸氨基转移酶(sulfotransferase,SULT)1A1基因Arg213His位点多态性与鲁北地区汉族女性子宫肌瘤的关系.方法 采用聚合酶链式反应-限制性片段长度多态性(PCR-RFLP)方法检测123例子宫肌瘤患者和123例健康对照组的CYP1A1基因MspⅠ位点的基因型和SULT1A1基因Arg213His位点的基因型,分析基因多态性与子宫肌瘤的关系.结果 子宫肌瘤组CYP1A1基因MspⅠ位点的基因型与对照组中的分布比较,差异无统计学意义(P=0.927);而子宫肌瘤组SULT1A1基因Arg213His位点的基因型与对照组中的分布比较,差异有统计学意义(P=0.011).CYP1A1基因MspⅠ位点和SULT1A1基因Arg213His位点多态性在子宫肌瘤的发生过程中的交互作用比较,差异有统计学意义(P=0.024).结论 CYP1A1基因MspⅠ位点多态性与鲁北地区汉族女性子宫肌瘤的易感性无显著相关;SULT1A1基因Arg213His位点多态性与鲁北地区汉族女性子宫肌瘤的发生有关,并增加了子宫肌瘤的患病风险;CYP1A1基因MspⅠ位点和SULT1A1基因Arg213His位点多态性在子宫肌瘤的发生过程中具有交互作用.

  15. Vitis vinifera seeds extract for the modulation of cytosolic factors BAX-α and NF-kB involved in UVB-induced oxidative stress and apoptosis of human skin cells

    Science.gov (United States)

    DECEAN, HANA; FISCHER-FODOR, EVA; TATOMIR, CORINA; PERDE-SCHREPLER, MARIA; SOMFELEAN, LIDIA; BURZ, CLAUDIA; HODOR, TUDOR; ORASAN, REMUS; VIRAG, PIROSKA

    2016-01-01

    Background and aims The depletion of the ozone layer allows overexposure of the skin to UV radiation, which is prolonged due to the increasing life expectancy, together with inappropriate life habits contribute to the increasing incidence of cutaneous malignancies. Plant extracts with antioxidant capacities are frequently employed as a means to protect skin against ultraviolet (UV) radiations, thus preventing skin cancers. In the present study we assessed a red grape seed extract (GSE) potential capacities to reduce ultraviolet B (UVB) radiation-induced reactive oxygen species (ROS) and subsequent apoptosis in a human keratinocytes cell line (HaCaT). We identified molecules and pathways modulated by the GSE through which this may exert its photoprotective effect. Methods The GSE was standardized according to its polyphenolic content and the most important biologically active compounds, such as epigallocatechin and epicatechin, catechin hydrate, procyanidin B and gallic acid were evidenced by high-performance liquid chromatography. According to the plant extract cytotoxicity on the HaCaT cell line, two concentrations were selected for testing from the non-toxic range: GSE1 (37.5 μgEqGA/ml) and GSE2 (75 μgEqGA/ml). The level of ROS was evaluated with CM-H2DCFDA assay, while apoptosis, Bax-α and NF-kβ p65 proteins with ELISA and confirmed by western-blot. Results Both concentrations of the extract decreased the level of ROS in UVB-irradiated keratinocytes (p<0.001), whereas apoptosis and Bax-α pro-apoptotic protein were only reduced by the higher concentration (GSE2). The NF-kB p65 protein level registered increasing values in time after UVB exposure of the cells, while the tested plant extract re-established its level when its smaller concentration was used (GSE1). Conclusion These results encourage further studies on this extract in order to identify other molecules and pathways through which this extract might exert its beneficial effects and also recommend

  16. SULT 1A3 single-nucleotide polymorphism and the single dose pharmacokinetics of inhaled salbutamol enantiomers: are some athletes at risk of higher urine levels?

    Science.gov (United States)

    Jacobson, Glenn A; Yee, Kwang Choon; Wood-Baker, Richard; Walters, E Haydn

    2015-02-01

    The study was designed to investigate the effect of a common genetic variation of the main salbutamol metabolizing enzyme SULT1A3 (single nucleotide polymorphism 105A>G, rs1975350) on the stereoselective pharmacokinetics of salbutamol. Subjects were administered a 400 µg dose of inhaled salbutamol via a large volume spacer and blood samples were collected over 4 h. Plasma levels of (R)- and (S)-salbutamol were determined by an enantioselective liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. Twenty-five subjects with asthma were recruited and underwent SULT1A3 genotyping, from which four SNP homozygote (GG) subjects and nine wild-type (AA) subjects were selected to participated in the pharmacokinetic investigation. There were no differences in pharmacokinetic parameters (t1/2 , Cmax , AUC0-4h ) between SNP and wild-type genotypes for either the R- or S-enantiomer. Observed Cmax of R- and S-salbutamol [mean (SD)] was 0.64 (0.30) ng/mL and 1.32 (0.98) ng/mL, respectively. The mean t1/2 of R- and S-salbutamol was estimated at 2.94 (1.17) h and 7.86 (6.14) h respectively. The AUC0-4h of R- and S-salbutamol was 14.0 (6.8) and 38.3 (19.5) ng/mL.h respectively. In conclusion, the common SULT1A3 SNP 105A>G is not an important determinant of salbutamol enantiomer pharmacokinetics under normal clinical use and does not place some individuals at greater risk of accumulation in the body.

  17. Dynamin-Related Protein 1 Translocates from the Cytosol to Mitochondria during UV-Induced Apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhenzhen; Wu Shengnan; Feng Jie, E-mail: wushn@scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China)

    2011-01-01

    Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, the mechanisms involved in these processes are still not well characterized. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial dynamics in response to UV irradiation in human lung adenocarcinoma cells (ASTC-{alpha}-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Our results suggest that Drp1 is involved in the regulation of transition from an interconnecting network to a punctiform mitochondrial phenotype during UV-induced apoptosis.

  18. Extracellular ATP induces spikes in cytosolic free Ca2+ but not in NADH oxidase activity in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Olsen, Lars Folke; Hallett, Maurice B.

    2011-01-01

    In order to establish whether non-mitochondrial oxidase activity in human neutrophils is tightly related to cytosolic Ca2+ concentration, we simultaneously measured Ca2+ oscillations induced by ATP and oxidant production in single adherent neutrophils using confocal microscopy. ATP induced fast...... that the generation of reactive oxygen species by neutrophils adherent to glass was accelerated by ATP. The step-up in NADPH oxidase activity followed the first elevation of cytosolic Ca2+ but, despite subsequent spikes in Ca2+ concentration, no oscillations in oxidase activity could be detected. ATP induced spikes...

  19. Extracellular ATP induces spikes in cytosolic free Ca(2+) but not in NADPH oxidase activity in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Olsen, Lars Folke; Hallett, Maurice B

    2011-01-01

    In order to establish whether non-mitochondrial oxidase activity in human neutrophils is tightly related to cytosolic Ca(2+) concentration, we simultaneously measured Ca(2+) oscillations induced by ATP and oxidant production in single adherent neutrophils using confocal microscopy. ATP induced fast...

  20. Extracellular ATP induces spikes in cytosolic free Ca2+ but not in NADH oxidase activity in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Olsen, Lars Folke; Hallett, Maurice B.

    2011-01-01

    In order to establish whether non-mitochondrial oxidase activity in human neutrophils is tightly related to cytosolic Ca2+ concentration, we simultaneously measured Ca2+ oscillations induced by ATP and oxidant production in single adherent neutrophils using confocal microscopy. ATP induced fast...

  1. Study on SULT1A1 and ICAM5 gene single nudeotide polymorphism of peripheral blood mononuclear in ovarian cancer patients%卵巢癌患者外周血单个核细胞SULT1A1、ICAM5基因单核苷酸多态性的研究

    Institute of Scientific and Technical Information of China (English)

    张鹏; 刘爱云; 王宁

    2012-01-01

    目的 探讨硫酸基转移酶(sulfotransferase,SULT)1A1、细胞间粘附分子(ICAM5)基因多态性与女性卵巢癌易感性的关系.方法 采外周血DNA后用等位基因特异性扩增法(allele specific amplification,ASA)检测淄博市92例正常对照者和97例卵巢癌患者SULT1A1、ICAM5基因多态性分布,分别比较正常组和病例组各种基因型分布频率的差异,并进行统计学分析.结果 (1)SULT1A1 Arg/Arg、Arg/His、His/His三种基因型分布在对照组和病例组之间的差异无显著意义(P=0.082);但与Arg/Arg基因型相比,Arg/His、His/His危险度呈增加趋势(P=0.035);病例组和对照组His等位基因频率差异有统计学意义.(2)ICAM5基因各基因型分布频率在病例组和对照组间的差异无显著意义(P=0.927).结论 SULT1A1 His等位基因与汉族女性卵巢癌的发生相关,可能成为卵巢癌早期基因诊断的一个指标.

  2. The cytosol activity of thymidine phosphorylase in endometrial cancer

    Directory of Open Access Journals (Sweden)

    Bieńkiewicz Andrzej

    2008-11-01

    Full Text Available Abstract Background Thymidine phosphorylase (TP is identical with platelet-derived endothelial cell growth factor (PD-ECGF which promotes angiogenesis. The aim of this study was to evaluate the cytosol activity of TP in tumor samples from patients with endometrial cancer. Methods The activity of TP was measured by the spectrophotometric method in the cytosol of endometrial tumor samples from 43 patients. Moreover, the expression of platelet-derived endothelial cell growth factor/thymidine phosphorylase (PD-ECGF/TP protein and microvessel density (MD were examined in the same endometrial tumor samples by immunohistochemical staining. Normal endometrium from 16 women, treated surgically due to nononcological reasons served as a control. A relationship between the cytosol TP activity, PD-ECGF/TP protein expression, MD and clinicopathologic features was investigated. Results A significantly higher the cytosol TP activity, PD-ECGF/TP protein expression and MD was stated in malignant tumor samples when compared to the control (samples of normal endometrium. A positive statistically significant correlation between the cytosol enzyme activity and PD-ECGF/TP protein expression and MD was found, but weaker from the remaining ones between PD-ECGF/TP protein expression and MD was observed. Besides no correlation between the cytosol TP activity, PD-ECGF/TP protein expression as well as MD and grading or histopatological type of endometrial cancer was stated. Conclusion The cytosol TP activity in endometrial cancer is significantly higher than in normal endometrium, with no relation as to the stage and grade of tumors, but correlates with the PD-ECGF/TP protein expression and MD may therefore be associated with favorable prognosis in patients treated with chemo- or radiotherapy after surgery.

  3. Selective reduction in the expression of UGTs and SULTs, a novel mechanism by which piperine enhances the bioavailability of curcumin in rat.

    Science.gov (United States)

    Zeng, Xiaohui; Cai, Dake; Zeng, Qiaohuang; Chen, Zhao; Zhong, Guoping; Zhuo, Juncheng; Gan, Haining; Huang, Xuejun; Zhao, Ziming; Yao, Nan; Huang, Dane; Zhang, Chengzhe; Sun, Dongmei; Chen, Yuxing

    2017-01-01

    Curcumin (CUR) is known to exert numerous health-promoting effects in pharmacological studies, but its low bioavailability hinders the development of curcumin as a feasible therapeutic agent. Piperine (PIP) has been reported to enhance the bioavailability of curcumin, but the underlying mechanism remains poorly understood. In an attempt to find the mechanism by which piperine enhances the bioavailability of curcumin, the dosage ratio (CUR: PIP) and pre-treatment with piperine were hypothesized as key factors for improving the bioavailability in this combination. Therefore, combining curcumin with piperine at various dose ratios (1:1 to 100:1) and pre-dosing with piperine (0.5-8 h prior to curcumin) were designed to investigate their contributions to the pharmacokinetic parameters of curcumin in rats and their effects on the expression of UGT and SULT isoforms. It was shown that the Cmax and AUC0-t of curcumin were slightly increased by 1.29 and 1.67 fold at a ratio of 20:1, while curcumin exposure was enhanced significantly in all the piperine pre-treated rats (0.5-8 h), peaking at 6 h (a 6.09-fold and 5.97-fold increase in Cmax and AUC0-t , p bioavailability of curcumin through the reversible and selective inhibition of UGTs and SULTs. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Insulin Protects Pancreatic Acinar Cells from Cytosolic Calcium Overload and Inhibition of Plasma Membrane Calcium Pump*

    Science.gov (United States)

    Mankad, Parini; James, Andrew; Siriwardena, Ajith K.; Elliott, Austin C.; Bruce, Jason I. E.

    2012-01-01

    Acute pancreatitis is a serious and sometimes fatal inflammatory disease of the pancreas without any reliable treatment or imminent cure. In recent years, impaired metabolism and cytosolic Ca2+ ([Ca2+]i) overload in pancreatic acinar cells have been implicated as the cardinal pathological events common to most forms of pancreatitis, regardless of the precise causative factor. Therefore, restoration of metabolism and protection against cytosolic Ca2+ overload likely represent key therapeutic untapped strategies for the treatment of this disease. The plasma membrane Ca2+-ATPase (PMCA) provides a final common path for cells to “defend” [Ca2+]i during cellular injury. In this paper, we use fluorescence imaging to show for the first time that insulin treatment, which is protective in animal models and clinical studies of human pancreatitis, directly protects pancreatic acinar cells from oxidant-induced cytosolic Ca2+ overload and inhibition of the PMCA. This protection was independent of oxidative stress or mitochondrial membrane potential but appeared to involve the activation of Akt and an acute metabolic switch from mitochondrial to predominantly glycolytic metabolism. This switch to glycolysis appeared to be sufficient to maintain cellular ATP and thus PMCA activity, thereby preventing Ca2+ overload, even in the face of impaired mitochondrial function. PMID:22128146

  5. Efflux transport of chrysin and apigenin sulfates in HEK293 cells overexpressing SULT1A3: The role of multidrug resistance-associated protein 4 (MRP4/ABCC4).

    Science.gov (United States)

    Li, Wan; Sun, Hua; Zhang, Xingwang; Wang, Huan; Wu, Baojian

    2015-11-01

    Efflux transport is a critical determinant to the pharmacokinetics of sulfate conjugates. Here we aimed to establish SULT1A3 stably transfected HEK293 cells, and to determine the contributions of BCRP and MRP transporters to excretion of chrysin and apigenin sulfates. The cDNA of SULT1A3 was stably introduced into HEK293 cells using a lentiviral vector, generating a sulfonation active cell line (i.e., SULT293 cells). Identification of sulfate transporters was achieved through chemical inhibition (using chemical inhibitors) and biological inhibition (using short-hairpin RNAs (shRNAs)) methods. Sulfated metabolites were rapidly generated and excreted upon incubation of SULT293 cells with chrysin and apigenin. Ko143 (a selective BCRP inhibitor) did not show inhibitory effects on sulfate disposition, whereas the pan-MRP inhibitor MK-571 caused significant reductions (38.5-64.3%, pHEK293 cells were an appropriate tool to study SULT1A3-mediated sulfonation and to characterize BCRP/MRP4-mediated sulfate transport.

  6. Identification and localization of soluble sulfotransferases in the human gastrointestinal tract

    OpenAIRE

    Teubner, Wera; Meinl, Walter; Florian, Simone; Kretzschmar, Michael; Glatt, Hansruedi

    2007-01-01

    Abstract Soluble sulfotransferases (SULTs) are important in the regulation of messenger molecules and the elimination of xenobiotics. However, sulfo-conjugation of various substrates can also lead to the formation of reactive metabolites that may induce cancer and cause other damage. Our aim was to identify the SULT forms expressed in the human gastrointestinal tract, especially colon and rectum (common sites for cancer) and to determine their cellular localization. Normal colonic ...

  7. Monitoring disulfide bond formation in the eukaryotic cytosol

    DEFF Research Database (Denmark)

    Østergaard, Henrik; Tachibana, Christine; Winther, Jakob R.

    2004-01-01

    Glutathione is the most abundant low molecular weight thiol in the eukaryotic cytosol. The compartment-specific ratio and absolute concentrations of reduced and oxidized glutathione (GSH and GSSG, respectively) are, however, not easily determined. Here, we present a glutathione-specific green...

  8. An all-or-nothing rise in cytosolic

    Science.gov (United States)

    Katoh; Kikuyama

    1997-01-01

    The peritrich ciliate Vorticella sp. exhibits cellular contraction of an all-or-nothing type in response to a mechanical stimulus. Many authors have suggested that the contraction may be controlled by the cytosolic level of Ca2+, since glycerol-extracted Vorticella contracts when Ca2+ is added to the external solution. However, no direct evidence for the increase in cytosolic [Ca2+] has yet been obtained in living Vorticella. In the present study, by injecting a fluorescent Ca2+ indicator into living Vorticella and monitoring the cytosolic [Ca2+] with a confocal microscope, we have demonstrated that a mechanical stimulus evoked an all-or-nothing rise in cytosolic [Ca2+] (Ca2+ 'spike'). The onset of the Ca2+ spike was similar in its time course to that of cellular contraction. Since the Ca2+ spike was recorded in a Ca2+-deprived solution containing 1 mmol l-1 EGTA, we concluded that release of Ca2+ from intracellular Ca2+ storage site(s) is responsible for the Ca2+ spike.

  9. The Arabidopsis cytosolic proteome

    DEFF Research Database (Denmark)

    Ito, Jun; Parsons, Harriet Tempé; Heazlewood, Joshua L.

    2014-01-01

    The plant cytosol is the major intracellular fluid that acts as the medium for inter-organellar crosstalk and where a plethora of important biological reactions take place. These include its involvement in protein synthesis and degradation, stress response signaling, carbon metabolism, biosynthesis...

  10. Developmental changes in cytosolic coupling between epidermis cells as visualized by photoactivation of fluorescein

    DEFF Research Database (Denmark)

    Liu, Xiangdong; Martens, Helle; Schulz, Alexander

    Developmental changes in cytosolic coupling between epidermis cells as visualized by photoactivation of fluorescein.......Developmental changes in cytosolic coupling between epidermis cells as visualized by photoactivation of fluorescein....

  11. Endosomolytic Nano-Polyplex Platform Technology for Cytosolic Peptide Delivery To Inhibit Pathological Vasoconstriction.

    Science.gov (United States)

    Evans, Brian C; Hocking, Kyle M; Kilchrist, Kameron V; Wise, Eric S; Brophy, Colleen M; Duvall, Craig L

    2015-06-23

    A platform technology has been developed and tested for delivery of intracellular-acting peptides through electrostatically complexed nanoparticles, or nano-polyplexes, formulated from an anionic endosomolytic polymer and cationic therapeutic peptides. This delivery platform has been initially tested and optimized for delivery of two unique vasoactive peptides, a phosphomimetic of heat shock protein 20 and an inhibitor of MAPKAP kinase II, to prevent pathological vasoconstriction (i.e., vasospasm) in human vascular tissue. These peptides inhibit vasoconstriction and promote vasorelaxation by modulating actin dynamics in vascular smooth muscle cells. Formulating these peptides into nano-polyplexes significantly enhances peptide uptake and retention, facilitates cytosolic delivery through a pH-dependent endosomal escape mechanism, and enhances peptide bioactivity in vitro as measured by inhibition of F-actin stress fiber formation. In comparison to treatment with the free peptides, which were endowed with cell-penetrating sequences, the nano-polyplexes significantly increased vasorelaxation, inhibited vasoconstriction, and decreased F-actin formation in the human saphenous vein ex vivo. These results suggest that these formulations have significant potential for treatment of conditions such as cerebral vasospasm following subarachnoid hemorrhage. Furthermore, because many therapeutic peptides include cationic cell-penetrating segments, this simple and modular platform technology may have broad applicability as a cost-effective approach for enhancing the efficacy of cytosolically active peptides.

  12. In vivo validation and physiologically based biokinetic modeling of the inhibition of SULT-mediated estragole DNA adduct formation in the liver of male Sprague-Dawley rats by the basil flavonoid nevadensin

    NARCIS (Netherlands)

    Alhusainy, W.; Paini, A.; Berg, van den J.H.J.; Punt, A.; Scholz, G.; Schilter, B.; Bladeren, van P.J.; Taylor, S.; Adams, T.B.; Rietjens, I.

    2013-01-01

    ScopeThe present work investigates whether the previous observation that the basil flavonoid nevadensin is able to inhibit sulfotransferase (SULT)-mediated estragole DNA adduct formation in primary rat hepatocytes could be validated in vivo. Methods and resultsEstragole and nevadensin were co-admini

  13. The Effect of Mifepristone on the SULT1E1 in Uterine Fibroid Tissue,ERαand ERβProtein Levels%米非司酮对子宫肌瘤组织SULT1 E1和雌激素受体α、β受体蛋白的影响

    Institute of Scientific and Technical Information of China (English)

    高玲; 李红霞

    2016-01-01

    Objective To evaluate the effect of mifepristone on the uterine fibroid tissue sulfotransferases 1E1 (SULT1E1), estrogen receptorα(ERα) and ERβprotein levels.Methods Total of 110 patients with uterine fibroid tissue in People′s Hospital of Chongqing Dadukou District from Oct.2013 to Apr.2015 were included.According to the random number table method they were divided into an observation group and a control group,55 cases each.The control group given preoperative oral placebo after a routine clinical exami-nation,taking 90 consecutive surgery treatment in the future.Observation group on the basis of preoperative routine clinical examination joint treated with mifepristone ,the first day of menstruation in patients with oral mifepristone 12.5 mg,taking 90 consecutive surgery in the future.Changes in the two groups before and after treatment were compared with tumor volume level,SULT1E1 content, ERα, ERβintegration level changes and therapeutic effect of the two groups were compared .Results Total effective rate of the observation group was higher than the control group[83.64%(46/55) vs 45.45%(25/55)], the difference was statistically significant( P <0.05 );after treatment, tumor volume of the observation group was lower than the control group[(96.32 ±4.65) mm3 vs (132.58 ±4.64) mm3],the difference was statistically significant(P<0.01);SULT1E1,ERα, ERβof the observation group were lower than the control group [(28.24 ± 3.47)% vs (33.67 ±3.92)%,(0.32 ±0.05)% vs (0.58 ±0.04)%,(0.09 ±0.01)% vs (0.12 ± 0.01)%],the differences were statistically significant(P <0.01).Conclusion Mifepristone has good effect for uterine fibroid patient,which can reduce tumor size, lower SULT1E1 and ERα, ERβlevel, with significantly improved efficacy,thus is worthy of promotion in clinical.%目的:探讨米非司酮对子宫肌瘤组织雌激素硫酸转移酶(SULT1E1)、雌激素受体(ER)α和ERβ蛋白的影响。方法选择2013年10月至2015年4月重庆市

  14. Artificial Loading of ASC Specks with Cytosolic Antigens.

    Directory of Open Access Journals (Sweden)

    Ali Can Sahillioğlu

    Full Text Available Inflammasome complexes form upon interaction of Nod Like Receptor (NLR proteins with pathogen associated molecular patterns (PAPMS inside the cytosol. Stimulation of a subset of inflammasome receptors including NLRP3, NLRC4 and AIM2 triggers formation of the micrometer-sized spherical supramolecular complex called the ASC speck. The ASC speck is thought to be the platform of inflammasome activity, but the reason why a supramolecular complex is preferred against oligomeric platforms remains elusive. We observed that a set of cytosolic proteins, including the model antigen ovalbumin, tend to co-aggregate on the ASC speck. We suggest that co-aggregation of antigenic proteins on the ASC speck during intracellular infection might be instrumental in antigen presentation.

  15. DMPD: Cytosolic DNA recognition for triggering innate immune responses. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18280611 Cytosolic DNA recognition for triggering innate immune responses. Takaoka ...A, Taniguchi T. Adv Drug Deliv Rev. 2008 Apr 29;60(7):847-57. Epub 2007 Dec 31. (.png) (.svg) (.html) (.csml) Show Cytosolic DNA reco...gnition for triggering innate immune responses. PubmedID 18280611 Title Cytosolic DNA reco

  16. Calcium-independent phospholipase A2 in rat tissue cytosols

    NARCIS (Netherlands)

    Pierik, A.J.; Nijssen, J.G.; Aarsman, A.J.; Bosch, H. van den

    1988-01-01

    Cytosols (105000 X g supernatant) from seven rat tissues were assayed for Ca²⁺-independent phospholipase A₂ activity with either 1-acyl-2-[1-¹⁴C]linoleoyl-sn-glycero-3-phosphocholine, 1-acyl-2-[l-¹⁴C]linoleoyl-snglycero- 3-phosphoethanohunine or 1-0-hexadecyl-2-[9,10-³H₂]oleoyl-sn-glycero-3-phosphoc

  17. A new view of the bacterial cytosol environment.

    Directory of Open Access Journals (Sweden)

    Benjamin P Cossins

    2011-06-01

    Full Text Available The cytosol is the major environment in all bacterial cells. The true physical and dynamical nature of the cytosol solution is not fully understood and here a modeling approach is applied. Using recent and detailed data on metabolite concentrations, we have created a molecular mechanical model of the prokaryotic cytosol environment of Escherichia coli, containing proteins, metabolites and monatomic ions. We use 200 ns molecular dynamics simulations to compute diffusion rates, the extent of contact between molecules and dielectric constants. Large metabolites spend ∼80% of their time in contact with other molecules while small metabolites vary with some only spending 20% of time in contact. Large non-covalently interacting metabolite structures mediated by hydrogen-bonds, ionic and π stacking interactions are common and often associate with proteins. Mg(2+ ions were prominent in NIMS and almost absent free in solution. Κ(+ is generally not involved in NIMSs and populates the solvent fairly uniformly, hence its important role as an osmolyte. In simulations containing ubiquitin, to represent a protein component, metabolite diffusion was reduced owing to long lasting protein-metabolite interactions. Hence, it is likely that with larger proteins metabolites would diffuse even more slowly. The dielectric constant of these simulations was found to differ from that of pure water only through a large contribution from ubiquitin as metabolite and monatomic ion effects cancel. These findings suggest regions of influence specific to particular proteins affecting metabolite diffusion and electrostatics. Also some proteins may have a higher propensity for associations with metabolites owing to their larger electrostatic fields. We hope that future studies may be able to accurately predict how binding interactions differ in the cytosol relative to dilute aqueous solution.

  18. Purification and characterization of protein Z from rabbit liver cytosol.

    Science.gov (United States)

    Vincent, S H; Holeman, B; Muller-Eberhard, U

    1985-10-30

    Protein Z was purified from rabbit liver cytosol by affinity chromatography on oleic acid-agarose and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After removal of sodium dodecyl sulfate, the renatured protein was found to bind heme and bilirubin with a Kd of approximately 1 microM which produced large red shifts in their absorption spectra. On isoelectric focusing, rabbit protein Z exhibited two main bands with pI around 6.0.

  19. Toxoplasma gondii Ingests and Digests Host Cytosolic Proteins

    OpenAIRE

    Dou, Zhicheng; McGovern, Olivia L.; Di Cristina, Manlio; Carruthers, Vern B.

    2014-01-01

    ABSTRACT The protozoan parasite Toxoplasma gondii resides within a nonfusogenic vacuole during intracellular replication. Although the limiting membrane of this vacuole provides a protective barrier to acidification and degradation by lysosomal hydrolases, it also physically segregates the parasite from the host cytosol. Accordingly, it has been suggested that T. gondii acquires material from the host via membrane channels or transporters. The ability of the parasite to internalize macromolec...

  20. The effect of mitochondrial dysfunction on cytosolic nucleotide metabolism

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Lykke, Anne; Rasmussen, Lene Juel

    2010-01-01

    of cytosolic ribonucleotides and deoxyribonucleotides, which in turn can result in aberrant RNA and DNA synthesis. Mitochondrial dysfunction has been linked to genomic instability, and it is possible that the limiting effect of mitochondrial dysfunction on the levels of nucleotides and resulting aberrant RNA...... and DNA synthesis in part can be responsible for this link. This paper summarizes the parts of the metabolic pathways responsible for nucleotide metabolism that can be affected by mitochondrial dysfunction....

  1. Sendai virus-based liposomes enable targeted cytosolic delivery of nanoparticles in brain tumor-derived cells

    Directory of Open Access Journals (Sweden)

    Dudu Veronica

    2012-02-01

    Full Text Available ABSTRACT Background Nanotechnology-based bioassays that detect the presence and/or absence of a combination of cell markers are increasingly used to identify stem or progenitor cells, assess cell heterogeneity, and evaluate tumor malignancy and/or chemoresistance. Delivery methods that enable nanoparticles to rapidly detect emerging, intracellular markers within cell clusters of biopsies will greatly aid in tumor characterization, analysis of functional state and development of treatment regimens. Results Experiments utilized the Sendai virus to achieve in vitro, cytosolic delivery of Quantum dots in cells cultured from Human brain tumors. Using fluorescence microscopy and Transmission Electron Microscopy, in vitro experiments illustrated that these virus-based liposomes decreased the amount of non-specifically endocytosed nanoparticles by 50% in the Human glioblastoma and medulloblastoma samples studied. Significantly, virus-based liposome delivery also facilitated targeted binding of Quantum dots to cytosolic Epidermal Growth Factor Receptor within cultured cells, focal to the early detection and characterization of malignant brain tumors. Conclusions These findings are the first to utilize the Sendai virus to achieve cytosolic, targeted intracellular binding of Qdots within Human brain tumor cells. The results are significant to the continued applicability of nanoparticles used for the molecular labeling of cancer cells to determine tumor heterogeneity, grade, and chemotherapeutic resistivity.

  2. Genotoxicity of three food processing contaminants in transgenic mice expressing human sulfotransferases 1A1 and 1A2 as assessed by the in vivo alkaline single cell gel electrophoresis assay.

    Science.gov (United States)

    Høie, Anja Hortemo; Svendsen, Camilla; Brunborg, Gunnar; Glatt, Hansruedi; Alexander, Jan; Meinl, Walter; Husøy, Trine

    2015-10-01

    The food processing contaminants 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 5-hydroxymethylfurfural (HMF) and 2,5 dimethylfuran (DMF) are potentially both mutagenic and carcinogenic in vitro and/or in vivo, although data on DMF is lacking. The PHIP metabolite N-hydroxy-PhIP and HMF are bioactivated by sulfotransferases (SULTs). The substrate specificity and tissue distribution of SULTs differs between species. A single oral dose of PhIP, HMF or DMF was administered to wild-type (wt) mice and mice expressing human SULT1A1/1A2 (hSULT mice). DNA damage was studied using the in vivo alkaline single cell gel electrophoresis (SCGE) assay. No effects were detected in wt mice. In the hSULT mice, PhIP and HMF exposure increased the levels of DNA damage in the liver and kidney, respectively. DMF was not found to be genotoxic. The observation of increased DNA damage in hSULT mice compared with wt mice supports the role of human SULTs in the bioactivation of N-hydroxy-PhIP and HMF in vivo.

  3. Growth factor deprivation induces cytosolic translocation of SIRT1

    Science.gov (United States)

    Meng, Chengbo; Xing, Da; Wu, Shengnan; Huang, Lei

    2010-02-01

    Sirtuin type 1 (SIRT1), a NAD+-dependent histone deacetylases, plays a critical role in cellular senescence, aging and longevity. In general, SIRT1 is localized in nucleus and is believed as a nuclear protein. Though overexpression of SIRT1 delays senescence, SIRT1-protein levels decline naturally in thymus and heart during aging. In the present studies, we investigated the subcellular localization of SIRT1 in response to growth factor deprivation in African green monkey SV40-transformed kidney fibroblast cells (COS-7). Using SIRT1-EGFP fluorescence reporter, we found that SIRT1 localized to nucleus in physiological conditions. We devised a model enabling cell senescence via growth factor deprivation, and we found that SIRT1 partially translocated to cytosol under the treatment, suggesting a reduced level of SIRT1's activity. We found PI3K/Akt pathway was involved in the inhibition of SIRT1's cytosolic translocation, because inhibition of these kinases significantly decreased the amount of SIRT1 maintained in nucleus. Taken together, we demonstrated that growth factor deprivation induces cytosolic translocation of SIRT1, which suggesting a possible connection between cytoplasm-localized SIRT1 and the aging process.

  4. Comparison of PCR-based mutation detection methods and application for identification of mouse Sult1a1 mutant embryonic stem cell clones using pooled templates.

    Science.gov (United States)

    Greber, Boris; Tandara, Helena; Lehrach, Hans; Himmelbauer, Heinz

    2005-05-01

    Reverse genetic approaches to generate mutants of model species are useful tools to assess functions of unknown genes. Recent work has demonstrated the feasibility of such strategies in several organisms, exploiting the power of chemical mutagenesis to disrupt genes randomly throughout the genome. To increase the throughput of gene-driven mutant identification, efficient mutation screening protocols are needed. Given the availability of sequence information for large numbers of unknown genes in many species, mutation detection protocols are preferably based on PCR. Using a set of defined mutations in the Hprt1 gene of mouse embryonic stem (ES) cells, we have systematically compared several PCR-based point mutation and deletion detection methods available for their ability to identify lesions in pooled samples, which is a major criterion for an efficient large-scale mutation screening assay. Results indicate that point mutations are most effectively identified by heteroduplex cleavage using CEL I endonuclease. Small deletions can most effectively be detected employing the recently described "poison" primer PCR technique. Further, we employed the CEL I assay followed by conventional agarose gel electrophoresis analysis for screening a library of chemically mutagenized ES cell clones. This resulted in the isolation of several clones harboring mutations in the mouse Sult1a1 locus, demonstrating the high-throughput compatibility of this approach using simple and inexpensive laboratory equipment.

  5. Retargeting the Clostridium botulinum C2 toxin to the neuronal cytosol.

    Science.gov (United States)

    Pavlik, Benjamin J; Hruska, Elizabeth J; Van Cott, Kevin E; Blum, Paul H

    2016-03-30

    Many biological toxins are known to attack specific cell types, delivering their enzymatic payloads to the cytosol. This process can be manipulated by molecular engineering of chimeric toxins. Using toxins with naturally unlinked components as a starting point is advantageous because it allows for the development of payloads separately from the binding/translocation components. Here the Clostridium botulinum C2 binding/translocation domain was retargeted to neural cell populations by deleting its non-specific binding domain and replacing it with a C. botulinum neurotoxin binding domain. This fusion protein was used to deliver fluorescently labeled payloads to Neuro-2a cells. Intracellular delivery was quantified by flow cytometry and found to be dependent on artificial enrichment of cells with the polysialoganglioside receptor GT1b. Visualization by confocal microscopy showed a dissociation of payloads from the early endosome indicating translocation of the chimeric toxin. The natural Clostridium botulinum C2 toxin was then delivered to human glioblastoma A172 and synchronized HeLa cells. In the presence of the fusion protein, native cytosolic enzymatic activity of the enzyme was observed and found to be GT1b-dependent. This retargeted toxin may enable delivery of therapeutics to peripheral neurons and be of use in addressing experimental questions about neural physiology.

  6. A Glutaredoxin·BolA Complex Serves as an Iron-Sulfur Cluster Chaperone for the Cytosolic Cluster Assembly Machinery.

    Science.gov (United States)

    Frey, Avery G; Palenchar, Daniel J; Wildemann, Justin D; Philpott, Caroline C

    2016-10-21

    Cells contain hundreds of proteins that require iron cofactors for activity. Iron cofactors are synthesized in the cell, but the pathways involved in distributing heme, iron-sulfur clusters, and ferrous/ferric ions to apoproteins remain incompletely defined. In particular, cytosolic monothiol glutaredoxins and BolA-like proteins have been identified as [2Fe-2S]-coordinating complexes in vitro and iron-regulatory proteins in fungi, but it is not clear how these proteins function in mammalian systems or how this complex might affect Fe-S proteins or the cytosolic Fe-S assembly machinery. To explore these questions, we use quantitative immunoprecipitation and live cell proximity-dependent biotinylation to monitor interactions between Glrx3, BolA2, and components of the cytosolic iron-sulfur cluster assembly system. We characterize cytosolic Glrx3·BolA2 as a [2Fe-2S] chaperone complex in human cells. Unlike complexes formed by fungal orthologs, human Glrx3-BolA2 interaction required the coordination of Fe-S clusters, whereas Glrx3 homodimer formation did not. Cellular Glrx3·BolA2 complexes increased 6-8-fold in response to increasing iron, forming a rapidly expandable pool of Fe-S clusters. Fe-S coordination by Glrx3·BolA2 did not depend on Ciapin1 or Ciao1, proteins that bind Glrx3 and are involved in cytosolic Fe-S cluster assembly and distribution. Instead, Glrx3 and BolA2 bound and facilitated Fe-S incorporation into Ciapin1, a [2Fe-2S] protein functioning early in the cytosolic Fe-S assembly pathway. Thus, Glrx3·BolA is a [2Fe-2S] chaperone complex capable of transferring [2Fe-2S] clusters to apoproteins in human cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Yeast and Mammals Utilize Similar Cytosolic Components to Drive Protein Transport through the Golgi Complex

    Science.gov (United States)

    Dunphy, William G.; Pfeffer, Suzanne R.; Clary, Douglas O.; Wattenberg, Binks W.; Glick, Benjamin S.; Rothman, James E.

    1986-03-01

    Vesicular transport between successive compartments of the mammalian Golgi apparatus has recently been reconstituted in a cell-free system. In addition to ATP, transport requires both membrane-bound and cytosolic proteins. Here we report that the cytosol fraction from yeast will efficiently substitute for mammalian cytosol. Mammalian cytosol contains several distinct transport factors, which we have distinguished on the basis of gel filtration and ion-exchange chromatography. Yeast cytosol appears to contain the same collection of transport factors. Resolved cytosol factors from yeast and mammals complement each other in a synergistic manner. These findings suggest that the molecular mechanisms of intracellular protein transport have been conserved throughout evolution. Moreover, this hybrid cell-free system will enable the application of yeast genetics to the identification and isolation of cytosolic proteins that sustain intracellular protein transport.

  8. Cytosolic Pellino-1-Mediated K63-Linked Ubiquitination of IRF5 in M1 Macrophages Regulates Glucose Intolerance in Obesity

    Directory of Open Access Journals (Sweden)

    Donghyun Kim

    2017-07-01

    Full Text Available IRF5 is a signature transcription factor that induces M1 macrophage polarization. However, little is known regarding cytosolic proteins that induce IRF5 activation for M1 polarization. Here, we report the interaction between ubiquitin E3 ligase Pellino-1 and IRF5 in the cytoplasm, which increased nuclear translocation of IRF5 by K63-linked ubiquitination in human and mouse M1 macrophages. LPS and/or IFN-γ increased Pellino-1 expression, and M1 polarization was attenuated in Pellino-1-deficient macrophages in vitro and in vivo. Defective M1 polarization in Pellino-1-deficient macrophages improved glucose intolerance in mice fed a high-fat diet. Furthermore, macrophages in adipose tissues from obese humans exhibited increased Pellino-1 expression and IRF5 nuclear translocation compared with nonobese subjects, and these changes are associated with insulin resistance index. This study demonstrates that cytosolic Pellino-1-mediated K63-linked ubiquitination of IRF5 in M1 macrophages regulates glucose intolerance in obesity, suggesting a cytosolic mediator function of Pellino-1 in TLR4/IFN-γ receptor-IRF5 axis during M1 polarization.

  9. Fhit delocalizes annexin a4 from plasma membrane to cytosol and sensitizes lung cancer cells to paclitaxel.

    Directory of Open Access Journals (Sweden)

    Eugenio Gaudio

    Full Text Available Fhit protein is lost or reduced in a large fraction of human tumors, and its restoration triggers apoptosis and suppresses tumor formation or progression in preclinical models. Here, we describe the identification of candidate Fhit-interacting proteins with cytosolic and plasma membrane localization. Among these, Annexin 4 (ANXA4 was validated by co-immunoprecipitation and confocal microscopy as a partner of this novel Fhit protein complex. Here we report that overexpression of Fhit prevents Annexin A4 translocation from cytosol to plasma membrane in A549 lung cancer cells treated with paclitaxel. Moreover, paclitaxel administration in combination with AdFHIT acts synergistically to increase the apoptotic rate of tumor cells both in vitro and in vivo experiments.

  10. SULT1A3与芹菜素的磺酸化结合反应的动力学特征研究%Study on kinectics characteristics of the sulfation of apigenin by SULTIA3

    Institute of Scientific and Technical Information of China (English)

    蒋昆谕; 吕晓; 周昱; 周一平; 马颖林; 孟胜男

    2015-01-01

    目的:研究人重组酶SULT1A3与芹菜素的磺酸化结合反应的动力学特征。方法采用高效液相色谱法,测定芹菜素的消除量及其磺酸化结合反应代谢产物的生成量,并应用LC-MS/MS液质联用技术鉴定其结构。建立芹菜素与重组酶SULT1 A3体外反应体系,测定SULT1A3催化不同浓度芹菜素的磺酸化结合反应代谢速率,采用GraphPad Prism 5软件对其进行酶动力学分析。结果芹菜素在0.15625~30μM范围内线性关系良好,平均回收率大于80%,日内和日间的RSD均小于15%。芹菜素与SULT1A3孵育体系中的代谢产物为单磺酸化结合产物。芹菜素与人重组酶SULT1A3的反应呈底物抑制动力学特征。芹菜素与SULT1A3酶反应的动力学参数Km和Ksi分别为(0.355±1.04)、(23.62±0.06)μM,Vmax为(65.71±1.30) nmol/(min・ mg),Vmax/Km为185.10 mL/(min・ mg)。结论人重组酶SULT1A3可介导芹菜素的磺酸化结合反应,且其酶动力学特征呈现底物抑制效应。推测由SULT1A3介导的磺酸化结合反应可能在芹菜素的体内II相代谢中发挥重要的作用。%Objective To investigate the kinectics characteristics of sulfation of apigenin mediated by SULTIA3.Methods After incubation of apigenin using in vitro SULT1A3 system, high-performance liquid chromatography was utilized to determine the sulfates of apigenin.Mass spectrum(MS) were employed to elucidate the structure of metabolite.The program GraphPad Prism 5 was used to perform the kinetic characterization of SULT1A3 catalyzed metabolism of apigenin.Results A liner calibration curve for the assay of apigenin was validated in the range of 0.15625 ~30 μM with the recoveries of at least 80% and intra-day and inter-day RSD of less than 15%.Metabolic product of apigenin and SULT1A3 in the incubated system was identified one monosulfate.The metabolic behavior of apigenin in SULT1A3 was followed substrate

  11. Cytosolic 5'-nucleotidase II interacts with the leucin rich repeat of NLR family member Ipaf.

    Directory of Open Access Journals (Sweden)

    Federico Cividini

    Full Text Available IMP/GMP preferring cytosolic 5'-nucleotidase II (cN-II is a bifunctional enzyme whose activities and expression play crucial roles in nucleotide pool maintenance, nucleotide-dependent pathways and programmed cell death. Alignment of primary amino acid sequences of cN-II from human and other organisms show a strong conservation throughout the entire vertebrata taxon suggesting a fundamental role in eukaryotic cells. With the aim to investigate the potential role of this homology in protein-protein interactions, a two hybrid system screening of cN-II interactors was performed in S. cerevisiae. Among the X positive hits, the Leucin Rich Repeat (LRR domain of Ipaf was found to interact with cN-II. Recombinant Ipaf isoform B (lacking the Nucleotide Binding Domain was used in an in vitro affinity chromatography assay confirming the interaction obtained in the screening. Moreover, co-immunoprecipitation with proteins from wild type Human Embryonic Kidney 293 T cells demonstrated that endogenous cN-II co-immunoprecipitated both with wild type Ipaf and its LRR domain after transfection with corresponding expression vectors, but not with Ipaf lacking the LRR domain. These results suggest that the interaction takes place through the LRR domain of Ipaf. In addition, a proximity ligation assay was performed in A549 lung carcinoma cells and in MDA-MB-231 breast cancer cells and showed a positive cytosolic signal, confirming that this interaction occurs in human cells. This is the first report of a protein-protein interaction involving cN-II, suggesting either novel functions or an additional level of regulation of this complex enzyme.

  12. Toxoplasma gondii Ingests and Digests Host Cytosolic Proteins

    Science.gov (United States)

    Dou, Zhicheng; McGovern, Olivia L.; Di Cristina, Manlio

    2014-01-01

    ABSTRACT The protozoan parasite Toxoplasma gondii resides within a nonfusogenic vacuole during intracellular replication. Although the limiting membrane of this vacuole provides a protective barrier to acidification and degradation by lysosomal hydrolases, it also physically segregates the parasite from the host cytosol. Accordingly, it has been suggested that T. gondii acquires material from the host via membrane channels or transporters. The ability of the parasite to internalize macromolecules via endocytosis during intracellular replication has not been tested. Here, we show that Toxoplasma ingests host cytosolic proteins and digests them using cathepsin L and other proteases within its endolysosomal system. Ingestion was reduced in mutant parasites lacking an intravacuolar network of tubular membranes, implicating this apparatus as a possible conduit for trafficking to the parasite. Genetic ablation of proteins involved in the pathway is associated with diminished parasite replication and virulence attenuation. We show that both virulent type I and avirulent type II strain parasites ingest and digest host-derived protein, indicating that the pathway is not restricted to highly virulent strains. The findings provide the first definitive evidence that T. gondii internalizes proteins from the host during intracellular residence and suggest that protein digestion within the endolysosomal system of the parasite contributes to toxoplasmosis. PMID:25028423

  13. Altered UDP-glucuronosyltransferase and sulfotransferase expression and function during progressive stages of human nonalcoholic fatty liver disease.

    Science.gov (United States)

    Hardwick, Rhiannon N; Ferreira, Daniel W; More, Vijay R; Lake, April D; Lu, Zhenqiang; Manautou, Jose E; Slitt, Angela L; Cherrington, Nathan J

    2013-03-01

    The UDP-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) represent major phase II drug-metabolizing enzymes that are also responsible for maintaining cellular homeostasis by metabolism of several endogenous molecules. Perturbations in the expression or function of these enzymes can lead to metabolic disorders and improper management of xenobiotics and endobiotics. Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of liver damage ranging from steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. Because the liver plays a central role in the metabolism of xenobiotics, the purpose of the current study was to determine the effect of human NAFLD progression on the expression and function of UGTs and SULTs in normal, steatosis, NASH (fatty), and NASH (not fatty/cirrhosis) samples. We identified upregulation of UGT1A9, 2B10, and 3A1 and SULT1C4 mRNA in both stages of NASH, whereas UGT2A3, 2B15, and 2B28 and SULT1A1, 2B1, and 4A1 as well as 3'-phosphoadenosine-5'-phosphosulfate synthase 1 were increased in NASH (not fatty/cirrhosis) only. UGT1A9 and 1A6 and SULT1A1 and 2A1 protein levels were decreased in NASH; however, SULT1C4 was increased. Measurement of the glucuronidation and sulfonation of acetaminophen (APAP) revealed no alterations in glucuronidation; however, SULT activity was increased in steatosis compared with normal samples, but then decreased in NASH compared with steatosis. In conclusion, the expression of specific UGT and SULT isoforms appears to be differentially regulated, whereas sulfonation of APAP is disrupted during progression of NAFLD.

  14. Binding of the hop (Humulus lupulus L.) chalcone xanthohumol to cytosolic proteins in Caco-2 intestinal epithelial cells.

    Science.gov (United States)

    Pang, Yan; Nikolic, Dejan; Zhu, Dongwei; Chadwick, Lucas R; Pauli, Guido F; Farnsworth, Norman R; van Breemen, Richard B

    2007-07-01

    Used in the brewing of beer, hops (Humulus lupulus L.) contain the prenylated chalcone xanthohumol, which is under investigation as a cancer chemoprevention agent and as a precursor for the estrogenic flavanones isoxanthohumol and 8-prenylnaringenin. The uptake, transport and accumulation of xanthohumol were studied using the human intestinal epithelial cell line Caco-2 to help understand the poor bioavailability of this chalcone. Studies were carried out using Caco-2 cell monolayers 18-21 days after seeding. The apparent K(m) and V(max) values of xanthohumol accumulation in Caco-2 cells were determined, and the protein binding of xanthohumol in sub-cellular fractions of Caco-2 cells was investigated. Approximately 70% of xanthohumol added to the apical side of Caco-2 cells accumulated inside the cells, while 93% of the intracellular xanthohumol was localized in the cytosol. Xanthohumol accumulation was temperature dependent and saturable with an apparent K(m )value of 26.5 +/- 4.66 muM and an apparent V(max) of 0.215 +/- 0.018 nmol/mg protein/min. Facilitated transport was not responsible for the uptake of xanthohumol, instead, accumulation inside the Caco-2 cells was apparently the result of specific binding to cytosolic proteins. These data suggest that specific binding of xanthohumol to cytosolic proteins in intestinal epithelial cells contributes to the poor oral bioavailability observed previously in vivo.

  15. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy

    Science.gov (United States)

    MacDuff, Donna A.; Kimmey, Jacqueline M.; Diner, Elie J.; Olivas, Joanna; Vance, Russell E.; Stallings, Christina L.; Virgin, Herbert W.; Cox, Jeffery S.

    2015-01-01

    Summary Type I interferons (IFNs) are critical mediators of antiviral defense, but their elicitation by bacterial pathogens can be detrimental to hosts. Many intracellular bacterial pathogens, including Mycobacterium tuberculosis, induce type I IFNs following phagosomal membrane perturbations. Cytosolic M. tuberculosis DNA has been implicated as a trigger for IFN production, but the mechanisms remain obscure. We report that the cytosolic DNA sensor, cyclic GMP-AMP synthase (cGAS), is required for activating IFN production via the STING/TBK1/IRF3 pathway during M. tuberculosis and L. pneumophila infection of macrophages, whereas L. monocytogenes short-circuits this pathway by producing the STING agonist, c-di-AMP. Upon sensing cytosolicDNA, cGAS also activates cell-intrinsic antibacterial defenses, promoting autophagic targeting of M. tuberculosis. Importantly, we show that cGAS binds M. tuberculosis DNA during infection, providing direct evidence that this unique host-pathogen interaction occurs in vivo. These data uncover a mechanism by which IFN is likely elicited during active human infections. PMID:26048136

  16. The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron-sulfur proteins.

    Science.gov (United States)

    Lill, Roland; Dutkiewicz, Rafal; Freibert, Sven A; Heidenreich, Torsten; Mascarenhas, Judita; Netz, Daili J; Paul, Viktoria D; Pierik, Antonio J; Richter, Nadine; Stümpfig, Martin; Srinivasan, Vasundara; Stehling, Oliver; Mühlenhoff, Ulrich

    2015-01-01

    Mitochondria have been derived from alpha-bacterial endosymbionts during the evolution of eukaryotes. Numerous bacterial functions have been maintained inside the organelles including fatty acid degradation, citric acid cycle, oxidative phosphorylation, and the synthesis of heme or lipoic acid cofactors. Additionally, mitochondria have inherited the bacterial iron-sulfur cluster assembly (ISC) machinery. Many of the ISC components are essential for cell viability because they generate a still unknown, sulfur-containing compound for the assembly of cytosolic and nuclear Fe/S proteins that perform important functions in, e.g., protein translation, DNA synthesis and repair, and chromosome segregation. The sulfur-containing compound is exported by the mitochondrial ABC transporter Atm1 (human ABCB7) and utilized by components of the cytosolic iron-sulfur protein assembly (CIA) machinery. An appealing minimal model for the striking compartmentation of eukaryotic Fe/S protein biogenesis is provided by organisms that contain mitosomes instead of mitochondria. Mitosomes have been derived from mitochondria by reductive evolution, during which they have lost virtually all classical mitochondrial tasks. Nevertheless, mitosomes harbor all core ISC components which presumably have been maintained for assisting the maturation of cytosolic-nuclear Fe/S proteins. The current review is centered around the Atm1 export process. We present an overview on the mitochondrial requirements for the export reaction, summarize recent insights into the 3D structure and potential mechanism of Atm1, and explain how the CIA machinery uses the mitochondrial export product for the assembly of cytosolic and nuclear Fe/S proteins.

  17. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  18. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling.

    Science.gov (United States)

    Bernard, Stéphanie M; Habash, Dimah Z

    2009-01-01

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  19. Listeria monocytogenes that lyse in the macrophage cytosol trigger AIM2-mediated pyroptosis

    OpenAIRE

    Sauer, John-Demian; Witte, Chelsea E.; Zemansky, Jason; Hanson, Bill; Lauer, Peter; Portnoy, Daniel A.

    2010-01-01

    To gain insight into the mechanisms by which host cells detect cytosolic invasion by intracellular pathogens, a genetic screen was performed to identify Listeria monocytogenes mutants that induced altered levels of host cell death. A mutation in lmo2473 resulted in hyper-stimulation of host cell death and IL-1β secretion (pyroptosis) following bacteriolysis in the macrophage cytosol. In addition, strains engineered to lyse in the cytosol by expression of both bacteriophage holin and lysin or ...

  20. Listeria monocytogenes that lyse in the macrophage cytosol trigger AIM2-mediated pyroptosis

    OpenAIRE

    Sauer, John-Demian; Witte, Chelsea E.; Zemansky, Jason; Hanson, Bill; Lauer, Peter; Portnoy, Daniel A.

    2010-01-01

    To gain insight into the mechanisms by which host cells detect cytosolic invasion by intracellular pathogens, a genetic screen was performed to identify Listeria monocytogenes mutants that induced altered levels of host cell death. A mutation in lmo2473 resulted in hyper-stimulation of host cell death and IL-1β secretion (pyroptosis) following bacteriolysis in the macrophage cytosol. In addition, strains engineered to lyse in the cytosol by expression of both bacteriophage holin and lysin or ...

  1. Identification of a negative feedback loop between cyclic di-GMP-induced levels of IFI16 and p202 cytosolic DNA sensors and STING.

    Science.gov (United States)

    Panchanathan, Ravichandran; Liu, Hongzhu; Xin, Duan; Choubey, Divaker

    2014-10-01

    A host type I IFN response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP (c-di-GMP) by STING (stimulator of IFN genes). Because the STING, an adaptor protein, links the cytosolic detection of DNA by the cytosolic DNA sensors such as the IFN-inducible human IFI16 and murine p202 proteins to the TBK1/IRF3 axis, we investigated whether c-di-GMP-induced signaling could regulate expression of IFI16 and p202 proteins. Here, we report that activation of c-di-GMP-induced signaling in human and murine cells increased steady-state levels of IFI16 and p202 proteins. The increase was c-di-GMP concentration- and time-dependent. Unexpectedly, treatment of cells with type I IFN decreased levels of the adaptor protein STING. Therefore, we investigated whether the IFI16 or p202 protein could regulate the expression of STING and activation of the TBK1/IRF3 axis. We found that constitutive knockdown of IFI16 or p202 expression in cells increased steady-state levels of STING. Additionally, the knockdown of IFI16 resulted in activation of the TBK1/IRF3 axis. Accordingly, increased levels of the IFI16 or p202 protein in cells decreased STING levels. Together, our observations identify a novel negative feedback loop between c-di-GMP-induced levels of IFI16 and p202 cytosolic DNA sensors and the adaptor protein STING.

  2. Response of transgenic poplar overexpressing cytosolic glutamine synthetase to phosphinothricin.

    Science.gov (United States)

    Pascual, María Belén; Jing, Zhong Ping; Kirby, Edward G; Cánovas, Francisco M; Gallardo, Fernando

    2008-01-01

    Glutamine synthetase (GS) is the main enzyme involved in ammonia assimilation in plants and is the target of phosphinothricin (PPT), an herbicide commonly used for weed control in agriculture. As a result of the inhibition of GS, PPT also blocks photorespiration, resulting in the depletion of leaf amino acid pools leading to the plant death. Hybrid transgenic poplar (Populus tremula x P. alba INRA clone 7171-B4) overexpressing cytosolic GS is characterized by enhanced vegetative growth [Gallardo, F., Fu, J., Cantón, F.R., García-Gutiérrez, A., Cánovas, F.M., Kirby, E.G., 1999. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210, 19-26; Fu, J., Sampalo, R., Gallardo, F., Cánovas, F.M., Kirby, E.G., 2003. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell Environ. 26, 411-418; Jing, Z.P., Gallardo, F., Pascual, M.B., Sampalo, R., Romero, J., Torres de Navarra, A., Cánovas, F.M., 2004. Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol. 164, 137-145], increased photosynthetic and photorespiratory capacities [El-Khatib, R.T., Hamerlynck, E.P., Gallardo, F., Kirby, E.G., 2004. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol. 24, 729-736], enhanced tolerance to water stress (El-Khatib et al., 2004), and enhanced nitrogen use efficiency [Man, H.-M., Boriel, R., El-Khatib, R.T., Kirby, E.G., 2005. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol. 167, 31-39]. In vitro plantlets of GS transgenic poplar exhibited enhanced resistance to PPT when compared with non-transgenic controls. After 30 days exposure to PPT at an equivalent dose of 275 g ha(-1), growth

  3. Protein abundance profiling of the Escherichia coli cytosol

    DEFF Research Database (Denmark)

    Ishihama, Y.; Schmidt, T.; Rappsilber, J.

    2008-01-01

    Background: Knowledge about the abundance of molecular components is an important prerequisite for building quantitative predictive models of cellular behavior. Proteins are central components of these models, since they carry out most of the fundamental processes in the cell. Thus far, protein...... sample. Using a combination of LC-MS/MS approaches with protein and peptide fractionation steps we identified 1103 proteins from the cytosolic fraction of the Escherichia coli strain MC4100. A measure of abundance is presented for each of the identified proteins, based on the recently developed em......PAI approach which takes into account the number of sequenced peptides per protein. The values of abundance are within a broad range and accurately reflect independently measured copy numbers per cell. As expected, the most abundant proteins were those involved in protein synthesis, most notably ribosomal...

  4. Computational model for amoeboid motion: Coupling membrane and cytosol dynamics.

    Science.gov (United States)

    Moure, Adrian; Gomez, Hector

    2016-10-01

    A distinguishing feature of amoeboid motion is that the migrating cell undergoes large deformations, caused by the emergence and retraction of actin-rich protrusions, called pseudopods. Here, we propose a cell motility model that represents pseudopod dynamics, as well as its interaction with membrane signaling molecules. The model accounts for internal and external forces, such as protrusion, contraction, adhesion, surface tension, or those arising from cell-obstacle contacts. By coupling the membrane and cytosol interactions we are able to reproduce a realistic picture of amoeboid motion. The model results are in quantitative agreement with experiments and show how cells may take advantage of the geometry of their microenvironment to migrate more efficiently.

  5. Structural characterization of coatomer in its cytosolic state

    Directory of Open Access Journals (Sweden)

    Shengliu Wang

    2016-07-01

    Full Text Available Abstract Studies on coat protein I (COPI have contributed to a basic understanding of how coat proteins generate vesicles to initiate intracellular transport. The core component of the COPI complex is coatomer, which is a multimeric complex that needs to be recruited from the cytosol to membrane in order to function in membrane bending and cargo sorting. Previous structural studies on the clathrin adaptors have found that membrane recruitment induces a large conformational change in promoting their role in cargo sorting. Here, pursuing negative-stain electron microscopy coupled with single-particle analyses, and also performing CXMS (chemical cross-linking coupled with mass spectrometry for validation, we have reconstructed the structure of coatomer in its soluble form. When compared to the previously elucidated structure of coatomer in its membrane-bound form we do not observe a large conformational change. Thus, the result uncovers a key difference between how COPI versus clathrin coats are regulated by membrane recruitment.

  6. Protein abundance profiling of the Escherichia coli cytosol

    DEFF Research Database (Denmark)

    Ishihama, Y.; Schmidt, T.; Rappsilber, J.

    2008-01-01

    PAI approach which takes into account the number of sequenced peptides per protein. The values of abundance are within a broad range and accurately reflect independently measured copy numbers per cell. As expected, the most abundant proteins were those involved in protein synthesis, most notably ribosomal...... sample. Using a combination of LC-MS/MS approaches with protein and peptide fractionation steps we identified 1103 proteins from the cytosolic fraction of the Escherichia coli strain MC4100. A measure of abundance is presented for each of the identified proteins, based on the recently developed em...... protein and mRNA abundance in E. coli cells. Conclusion: Abundance measurements for more than 1000 E. coli proteins presented in this work represent the most complete study of protein abundance in a bacterial cell so far. We show significant associations between the abundance of a protein and its...

  7. Polymorphisms in CYP1B1, CYP3A5, GSTT1, and SULT1A1 Are Associated with Early Age Acute Leukemia.

    Directory of Open Access Journals (Sweden)

    Bruno Almeida Lopes

    Full Text Available Based on observational studies, early age leukemia (EAL was associated with maternal hormone exposure during pregnancy. We studied the association between genetic polymorphisms of estrogen metabolism and EAL. Using data from the Brazilian Collaborative Study Group of Infant Acute Leukemia (2000-2012, 350 cases and 404 age-matched controls and 134 mothers of cases and controls were genotyped to explore polymorphisms in genes of the estrogen metabolism pathway: CYP1B1 (c.1294C>G, rs1056836, CYP3A4 (c.-392A>G, rs2740574, CYP3A5 (c.219-237G>A, rs776746, GSTM1/GSTT1 deletions, and SULT1A1 (c.638G>A, rs9282861; and c.667A>G, rs1801030. Logistic regression was used to calculate the odds ratios (OR with 95% confidence intervals (CIs, and unconditional logistic regression was used to estimate adjusted odds ratios (aORs by ethnicity. Because of multiple testing, p values A was associated to infant acute lymphoblastic leukemia and acute myeloid leukemia (AML risk in males (additive model: aOR = 0.52; 95% CI: 0.29-0.95, p = 0.03; dominant model: aOR = 2.18; 95% CI: 1.17-4.05, p = 0.01, respectively. CYP1B1 polymorphism was associated with a decreased risk of AML either for non-white or female children (additive model: OR = 0.24; 95% CI: 0.08-0.76, p < 0.01; additive model: aOR = 0.27; 95% CI: 0.08-0.89, p = 0.03, respectively. Since polymorphisms of Cytochrome P450 genes presented gender-specific risk associations, we also investigated their expression. CYP1B1 was not expressed in 57.1% of EAL cases, and its expression varied by genotype, gender, and leukemia subtype. Maternal-fetal GSTT1 null genotype was associated with risk of EAL. This study shows that polymorphisms in genes of estrogen metabolism confer genetic susceptibility to EAL, mainly in males, and maternal susceptibility genes modify the risk for developing EAL in newborns.

  8. Polymorphisms in CYP1B1, CYP3A5, GSTT1, and SULT1A1 Are Associated with Early Age Acute Leukemia.

    Science.gov (United States)

    Lopes, Bruno Almeida; Emerenciano, Mariana; Gonçalves, Bruno Alves Aguiar; Vieira, Tállita Meciany; Rossini, Ana; Pombo-de-Oliveira, Maria S

    2015-01-01

    Based on observational studies, early age leukemia (EAL) was associated with maternal hormone exposure during pregnancy. We studied the association between genetic polymorphisms of estrogen metabolism and EAL. Using data from the Brazilian Collaborative Study Group of Infant Acute Leukemia (2000-2012), 350 cases and 404 age-matched controls and 134 mothers of cases and controls were genotyped to explore polymorphisms in genes of the estrogen metabolism pathway: CYP1B1 (c.1294C>G, rs1056836), CYP3A4 (c.-392A>G, rs2740574), CYP3A5 (c.219-237G>A, rs776746), GSTM1/GSTT1 deletions, and SULT1A1 (c.638G>A, rs9282861; and c.667A>G, rs1801030). Logistic regression was used to calculate the odds ratios (OR) with 95% confidence intervals (CIs), and unconditional logistic regression was used to estimate adjusted odds ratios (aORs) by ethnicity. Because of multiple testing, p values A) was associated to infant acute lymphoblastic leukemia and acute myeloid leukemia (AML) risk in males (additive model: aOR = 0.52; 95% CI: 0.29-0.95, p = 0.03; dominant model: aOR = 2.18; 95% CI: 1.17-4.05, p = 0.01, respectively). CYP1B1 polymorphism was associated with a decreased risk of AML either for non-white or female children (additive model: OR = 0.24; 95% CI: 0.08-0.76, p polymorphisms of Cytochrome P450 genes presented gender-specific risk associations, we also investigated their expression. CYP1B1 was not expressed in 57.1% of EAL cases, and its expression varied by genotype, gender, and leukemia subtype. Maternal-fetal GSTT1 null genotype was associated with risk of EAL. This study shows that polymorphisms in genes of estrogen metabolism confer genetic susceptibility to EAL, mainly in males, and maternal susceptibility genes modify the risk for developing EAL in newborns.

  9. Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol

    Science.gov (United States)

    McNamara, A. L.; Kam, W. W. Y.; Scales, N.; McMahon, S. J.; Bennett, J. W.; Byrne, H. L.; Schuemann, J.; Paganetti, H.; Banati, R.; Kuncic, Z.

    2016-08-01

    Gold nanoparticles (GNPs) have shown potential as dose enhancers for radiation therapy. Since damage to the genome affects the viability of a cell, it is generally assumed that GNPs have to localise within the cell nucleus. In practice, however, GNPs tend to localise in the cytoplasm yet still appear to have a dose enhancing effect on the cell. Whether this effect can be attributed to stress-induced biological mechanisms or to physical damage to extra-nuclear cellular targets is still unclear. There is however growing evidence to suggest that the cellular response to radiation can also be influenced by indirect processes induced when the nucleus is not directly targeted by radiation. The mitochondrion in particular may be an effective extra-nuclear radiation target given its many important functional roles in the cell. To more accurately predict the physical effect of radiation within different cell organelles, we measured the full chemical composition of a whole human lymphocytic JURKAT cell as well as two separate organelles; the cell nucleus and the mitochondrion. The experimental measurements found that all three biological materials had similar ionisation energies  ˜70 eV, substantially lower than that of liquid water  ˜78 eV. Monte Carlo simulations for 10-50 keV incident photons showed higher energy deposition and ionisation numbers in the cell and organelle materials compared to liquid water. Adding a 1% mass fraction of gold to each material increased the energy deposition by a factor of  ˜1.8 when averaged over all incident photon energies. Simulations of a realistic compartmentalised cell show that the presence of gold in the cytosol increases the energy deposition in the mitochondrial volume more than within the nuclear volume. We find this is due to sub-micron delocalisation of energy by photoelectrons, making the mitochondria a potentially viable indirect radiation target for GNPs that localise to the cytosol.

  10. Current Injection Provokes Rapid Expansion of the Guard Cell Cytosolic Volume and Triggers Ca(2+) Signals.

    Science.gov (United States)

    Voss, Lena J; Hedrich, Rainer; Roelfsema, M Rob G

    2016-03-07

    High-resolution microscopy opens the door for detailed single-cell studies with fluorescent reporter dyes and proteins. We used a confocal spinning disc microscope to monitor fluorescent dyes and the fluorescent protein Venus in tobacco and Arabidopsis guard cells. Multi-barreled microelectrodes were used to inject dyes and apply voltage pulses, which provoke transient rises in the cytosolic Ca(2+) level. Voltage pulses also caused changes in the distribution of Lucifer Yellow and Venus, which pointed to a reversible increase of guard cell cytosolic volume. The dynamic cytosolic volume changes turned out to be provoked by current injection of ions. A reduction of the clamp current, by blocking K(+) uptake channels with Cs(+), strongly suppressed the cytosolic volume changes. Cs(+) not only inhibited the expansion of the cytosol, but also inhibited hyperpolarization-induced elevations of the cytosolic Ca(2+) concentration. A complete loss of voltage-induced Ca(2+) signals occurred when Ca(2+)-permeable plasma membrane channels were simultaneously blocked with La(3+). This shows that two mechanisms cause hyperpolarization-induced elevation of the cytosolic Ca(2+)-concentration: (i) activation of voltage-dependent Ca(2+)-permeable channels, (ii) osmotically induced expansion of the cytosol, which leads to a release of Ca(2+) from intracellular stores.

  11. Fluctuations in Cytosolic Calcium Regulate the Neuronal Malate-Aspartate NADH Shuttle

    DEFF Research Database (Denmark)

    Satrústegui, Jorgina; Bak, Lasse K

    2015-01-01

    that MAS is regulated by fluctuations in cytosolic Ca(2+) levels, and that this regulation is required to maintain a tight coupling between neuronal activity and mitochondrial respiration and oxidative phosphorylation. At cytosolic Ca(2+) fluctuations below the threshold of the mitochondrial calcium...

  12. Saccharomyces cerevisiae Forms D-2-Hydroxyglutarate and Couples Its Degradation to D-Lactate Formation via a Cytosolic Transhydrogenase.

    Science.gov (United States)

    Becker-Kettern, Julia; Paczia, Nicole; Conrotte, Jean-François; Kay, Daniel P; Guignard, Cédric; Jung, Paul P; Linster, Carole L

    2016-03-18

    The D or L form of 2-hydroxyglutarate (2HG) accumulates in certain rare neurometabolic disorders, and high D-2-hydroxyglutarate (D-2HG) levels are also found in several types of cancer. Although 2HG has been detected in Saccharomyces cerevisiae, its metabolism in yeast has remained largely unexplored. Here, we show that S. cerevisiae actively forms the D enantiomer of 2HG. Accordingly, the S. cerevisiae genome encodes two homologs of the human D-2HG dehydrogenase: Dld2, which, as its human homolog, is a mitochondrial protein, and the cytosolic protein Dld3. Intriguingly, we found that a dld3Δ knock-out strain accumulates millimolar levels of D-2HG, whereas a dld2Δ knock-out strain displayed only very moderate increases in D-2HG. Recombinant Dld2 and Dld3, both currently annotated as D-lactate dehydrogenases, efficiently oxidized D-2HG to α-ketoglutarate. Depletion of D-lactate levels in the dld3Δ, but not in the dld2Δ mutant, led to the discovery of a new type of enzymatic activity, carried by Dld3, to convert D-2HG to α-ketoglutarate, namely an FAD-dependent transhydrogenase activity using pyruvate as a hydrogen acceptor. We also provide evidence that Ser3 and Ser33, which are primarily known for oxidizing 3-phosphoglycerate in the main serine biosynthesis pathway, in addition reduce α-ketoglutarate to D-2HG using NADH and represent major intracellular sources of D-2HG in yeast. Based on our observations, we propose that D-2HG is mainly formed and degraded in the cytosol of S. cerevisiae cells in a process that couples D-2HG metabolism to the shuttling of reducing equivalents from cytosolic NADH to the mitochondrial respiratory chain via the D-lactate dehydrogenase Dld1.

  13. ChaC2, an Enzyme for Slow Turnover of Cytosolic Glutathione.

    Science.gov (United States)

    Kaur, Amandeep; Gautam, Ruchi; Srivastava, Ritika; Chandel, Avinash; Kumar, Akhilesh; Karthikeyan, Subramanian; Bachhawat, Anand Kumar

    2017-01-13

    Glutathione degradation plays an important role in glutathione and redox homeostasis, and thus it is imperative to understand the enzymes and the mechanisms involved in glutathione degradation in detail. We describe here ChaC2, a member of the ChaC family of γ-glutamylcyclotransferases, as an enzyme that degrades glutathione in the cytosol of mammalian cells. ChaC2 is distinct from the previously described ChaC1, to which ChaC2 shows ∼50% sequence identity. Human and mouse ChaC2 proteins purified in vitro show 10-20-fold lower catalytic efficiency than ChaC1, although they showed comparable Km values (Km of 3.7 ± 0.4 mm and kcat of 15.9 ± 1.0 min(-1) toward glutathione for human ChaC2; Km of 2.2 ± 0.4 mm and kcat of 225.2 ± 15 min(-1) toward glutathione for human ChaC1). The ChaC1 and ChaC2 proteins also shared the same specificity for reduced glutathione, with no activity against either γ-glutamyl amino acids or oxidized glutathione. The ChaC2 proteins were found to be expressed constitutively in cells, unlike the tightly regulated ChaC1. Moreover, lower eukaryotes have a single member of the ChaC family that appears to be orthologous to ChaC2. In addition, we determined the crystal structure of yeast ChaC2 homologue, GCG1, at 1.34 Å resolution, which represents the first structure of the ChaC family of proteins. The catalytic site is defined by a fortuitous benzoic acid molecule bound to the crystal structure. The mechanism for binding and catalytic activity of this new enzyme of glutathione degradation, which is involved in continuous but basal turnover of cytosolic glutathione, is proposed. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Cytosolic pro-apoptotic SPIKE induces mitochondrial apoptosis in cancer.

    Science.gov (United States)

    Nikolic, Ivana; Kastratovic, Tatjana; Zelen, Ivanka; Zivanovic, Aleksandar; Arsenijevic, Slobodan; Mitrovic, Marina

    2010-04-30

    Proteins of the BCL-2 family are important regulators of apoptosis. The BCL-2 family includes three main subgroups: the anti-apoptotic group, such as BCL-2, BCL-XL, BCL-W, and MCL-1; multi-domain pro-apoptotic BAX, BAK; and pro-apoptotic "BH3-only" BIK, PUMA, NOXA, BID, BAD, and SPIKE. SPIKE, a rare pro-apoptotic protein, is highly conserved throughout the evolution, including Caenorhabditis elegans, whose expression is downregulated in certain tumors, including kidney, lung, and breast. In the literature, SPIKE was proposed to interact with BAP31 and prevent BCL-XL from binding to BAP31. Here, we utilized the Position Weight Matrix method to identify SPIKE to be a BH3-only pro-apoptotic protein mainly localized in the cytosol of all cancer cell lines tested. Overexpression of SPIKE weakly induced apoptosis in comparison to the known BH3-only pro-apoptotic protein BIK. SPIKE promoted mitochondrial cytochrome c release, the activation of caspase 3, and the caspase cleavage of caspase's downstream substrates BAP31 and p130CAS. Although the informatics analysis of SPIKE implicates this protein as a member of the BH3-only BCL-2 subfamily, its role in apoptosis remains to be elucidated.

  15. Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Shu Liu

    2016-07-01

    Full Text Available Prions are infectious protein particles that replicate by templating their aggregated state onto soluble protein of the same type. Originally identified as the causative agent of transmissible spongiform encephalopathies, prions in yeast (Saccharomyces cerevisiae are epigenetic elements of inheritance that induce phenotypic changes of their host cells. The prototype yeast prion is the translation termination factor Sup35. Prions composed of Sup35 or its modular prion domain NM are heritable and are transmitted vertically to progeny or horizontally during mating. Interestingly, in mammalian cells, protein aggregates derived from yeast Sup35 NM behave as true infectious entities that employ dissemination strategies similar to those of mammalian prions. While transmission is most efficient when cells are in direct contact, we demonstrate here that cytosolic Sup35 NM prions are also released into the extracellular space in association with nanometer-sized membrane vesicles. Importantly, extracellular vesicles are biologically active and are taken up by recipient cells, where they induce self-sustained Sup35 NM protein aggregation. Thus, in mammalian cells, extracellular vesicles can serve as dissemination vehicles for protein-based epigenetic information transfer.

  16. Unrestrained AMPylation targets cytosolic chaperones and activates the heat shock response

    Science.gov (United States)

    Truttmann, Matthias C.; Zheng, Xu; Hanke, Leo; Damon, Jadyn R.; Grootveld, Monique; Krakowiak, Joanna; Pincus, David; Ploegh, Hidde L.

    2017-01-01

    Protein AMPylation is a conserved posttranslational modification with emerging roles in endoplasmic reticulum homeostasis. However, the range of substrates and cell biological consequences of AMPylation remain poorly defined. We expressed human and Caenorhabditis elegans AMPylation enzymes—huntingtin yeast-interacting protein E (HYPE) and filamentation-induced by cyclic AMP (FIC)-1, respectively—in Saccharomyces cerevisiae, a eukaryote that lacks endogenous protein AMPylation. Expression of HYPE and FIC-1 in yeast induced a strong cytoplasmic Hsf1-mediated heat shock response, accompanied by attenuation of protein translation, massive protein aggregation, growth arrest, and lethality. Overexpression of Ssa2, a cytosolic heat shock protein (Hsp)70, was sufficient to partially rescue growth. In human cell lines, overexpression of active HYPE similarly induced protein aggregation and the HSF1-dependent heat shock response. Excessive AMPylation also abolished HSP70-dependent influenza virus replication. Our findings suggest a mode of Hsp70 inactivation by AMPylation and point toward a role for protein AMPylation in the regulation of cellular protein homeostasis beyond the endoplasmic reticulum. PMID:28031489

  17. The Arabidopsis DJ-1a protein confers stress protection through cytosolic SOD activation.

    Science.gov (United States)

    Xu, Xiang Ming; Lin, Hong; Maple, Jodi; Björkblom, Benny; Alves, Guido; Larsen, Jan Petter; Møller, Simon Geir

    2010-05-15

    Mutations in the DJ-1 gene (also known as PARK7) cause inherited Parkinson's disease, which is characterized by neuronal death. Although DJ-1 is thought to be an antioxidant protein, the underlying mechanism by which loss of DJ-1 function contributes to cell death is unclear. Human DJ-1 and its Arabidopsis thaliana homologue, AtDJ-1a, are evolutionarily conserved proteins, indicating a universal function. To gain further knowledge of the molecular features associated with DJ-1 dysfunction, we have characterized AtDJ-1a. We show that AtDJ-1a levels are responsive to stress treatment and that AtDJ-1a loss of function results in accelerated cell death in aging plants. By contrast, transgenic plants with elevated AtDJ-1a levels have increased protection against environmental stress conditions, such as strong light, H(2)O(2), methyl viologen and copper sulfate. We further identify superoxide dismutase 1 (SOD1) and glutathione peroxidase 2 (GPX2) as interaction partners of both AtDJ-1a and human DJ-1, and show that this interaction results in AtDJ-1a- and DJ-1-mediated cytosolic SOD1 activation in a copper-dependent fashion. Our data have highlighted a conserved molecular mechanism for DJ-1 and revealed a new protein player in the oxidative stress response of plants.

  18. Endoplasmic reticulum calcium regulates the retrotranslocation of Trypanosoma cruzi calreticulin to the cytosol.

    Directory of Open Access Journals (Sweden)

    Carlos A Labriola

    Full Text Available For most secretory pathway proteins, crossing the endoplasmic reticulum (ER membrane is an irreversible process. However, in some cases this flow can be reversed. For instance, misfolded proteins retained in the ER are retrotranslocated to the cytosol to be degraded by the proteasome. This mechanism, known as ER associated degradation (ERAD, is exploited by several bacterial toxins to gain access to the cytosol. Interestingly, some ER resident proteins can also be detected in the cytosol or nucleus, calreticulin (CRT being the most studied. Here we show that in Trypanosoma cruzi a minor fraction of CRT localized to the cytosol. ER calcium depletion, but not increasing cytosolic calcium, triggered the retrotranslocation of CRT in a relatively short period of time. Cytosolic CRT was subsequently degraded by the proteasome. Interestingly, the single disulfide bridge of CRT is reduced when the protein is located in the cytosol. The effect exerted by ER calcium was strictly dependent on the C-terminal domain (CRT-C, since a CRT lacking it was totally retained in the ER, whereas the localization of an unrelated protein fused to CRT-C mirrored that of endogenous CRT. This finding expands the regulatory mechanisms of protein sorting and may represent a new crossroad between diverse physiological processes.

  19. Apoptotic DNA Degradation into Oligonucleosomal Fragments, but Not Apoptotic Nuclear Morphology, Relies on a Cytosolic Pool of DFF40/CAD Endonuclease*

    Science.gov (United States)

    Iglesias-Guimarais, Victoria; Gil-Guiñon, Estel; Gabernet, Gisela; García-Belinchón, Mercè; Sánchez-Osuna, María; Casanelles, Elisenda; Comella, Joan X.; Yuste, Victor J.

    2012-01-01

    Apoptotic cell death is characterized by nuclear fragmentation and oligonucleosomal DNA degradation, mediated by the caspase-dependent specific activation of DFF40/CAD endonuclease. Here, we describe how, upon apoptotic stimuli, SK-N-AS human neuroblastoma-derived cells show apoptotic nuclear morphology without displaying concomitant internucleosomal DNA fragmentation. Cytotoxicity afforded after staurosporine treatment is comparable with that obtained in SH-SY5Y cells, which exhibit a complete apoptotic phenotype. SK-N-AS cell death is a caspase-dependent process that can be impaired by the pan-caspase inhibitor q-VD-OPh. The endogenous inhibitor of DFF40/CAD, ICAD, is correctly processed, and dff40/cad cDNA sequence does not reveal mutations altering its amino acid composition. Biochemical approaches show that both SH-SY5Y and SK-N-AS resting cells express comparable levels of DFF40/CAD. However, the endonuclease is poorly expressed in the cytosolic fraction of healthy SK-N-AS cells. Despite this differential subcellular distribution of DFF40/CAD, we find no differences in the subcellular localization of both pro-caspase-3 and ICAD between the analyzed cell lines. After staurosporine treatment, the preferential processing of ICAD in the cytosolic fraction allows the translocation of DFF40/CAD from this fraction to a chromatin-enriched one. Therefore, the low levels of cytosolic DFF40/CAD detected in SK-N-AS cells determine the absence of DNA laddering after staurosporine treatment. In these cells DFF40/CAD cytosolic levels can be restored by the overexpression of their own endonuclease, which is sufficient to make them proficient at degrading their chromatin into oligonucleosome-size fragments after staurosporine treatment. Altogether, the cytosolic levels of DFF40/CAD are determinants in achieving a complete apoptotic phenotype, including oligonucleosomal DNA degradation. PMID:22253444

  20. Cytosolic 5'-triphosphate ended viral leader transcript of measles virus as activator of the RIG I-mediated interferon response.

    Directory of Open Access Journals (Sweden)

    Sébastien Plumet

    Full Text Available BACKGROUND: Double stranded RNA (dsRNA is widely accepted as an RNA motif recognized as a danger signal by the cellular sentries. However, the biology of non-segmented negative strand RNA viruses, or Mononegavirales, is hardly compatible with the production of such dsRNA. METHODOLOGY AND PRINCIPAL FINDINGS: During measles virus infection, the IFN-beta gene transcription was found to be paralleled by the virus transcription, but not by the virus replication. Since the expression of every individual viral mRNA failed to activate the IFN-beta gene, we postulated the involvement of the leader RNA, which is a small not capped and not polyadenylated RNA firstly transcribed by Mononegavirales. The measles virus leader RNA, synthesized both in vitro and in vivo, was efficient in inducing the IFN-beta expression, provided that it was delivered into the cytosol as a 5'-trisphosphate ended RNA. The use of a human cell line expressing a debilitated RIG-I molecule, together with overexpression studies of wild type RIG-I, showed that the IFN-beta induction by virus infection or by leader RNA required RIG-I to be functional. RIG-I binds to leader RNA independently from being 5-trisphosphate ended; while a point mutant, Q299A, predicted to establish contacts with the RNA, fails to bind to leader RNA. Since the 5'-triphosphate is required for optimal RIG-I activation but not for leader RNA binding, our data support that RIG-I is activated upon recognition of the 5'-triphosphate RNA end. CONCLUSIONS/SIGNIFICANCE: RIG-I is proposed to recognize Mononegavirales transcription, which occurs in the cytosol, while scanning cytosolic RNAs, and to trigger an IFN response when encountering a free 5'-triphosphate RNA resulting from a mislocated transcription activity, which is therefore considered as the hallmark of a foreign invader.

  1. Cytosolic PrP can participate in prion-mediated toxicity.

    Science.gov (United States)

    Thackray, Alana M; Zhang, Chang; Arndt, Tina; Bujdoso, Raymond

    2014-07-01

    Prion diseases are characterized by a conformational change in the normal host protein PrPC. While the majority of mature PrPC is tethered to the plasma membrane by a glycosylphosphatidylinositol anchor, topological variants of this protein can arise during its biosynthesis. Here we have generated Drosophila transgenic for cytosolic ovine PrP in order to investigate its toxic potential in flies in the absence or presence of exogenous ovine prions. While cytosolic ovine PrP expressed in Drosophila was predominantly detergent insoluble and showed resistance to low concentrations of proteinase K, it was not overtly detrimental to the flies. However, Drosophila transgenic for cytosolic PrP expression exposed to classical or atypical scrapie prion inocula showed a faster decrease in locomotor activity than similar flies exposed to scrapie-free material. The susceptibility to classical scrapie inocula could be assessed in Drosophila transgenic for panneuronal expression of cytosolic PrP, whereas susceptibility to atypical scrapie required ubiquitous PrP expression. Significantly, the toxic phenotype induced by ovine scrapie in cytosolic PrP transgenic Drosophila was transmissible to recipient PrP transgenic flies. These data show that while cytosolic PrP expression does not adversely affect Drosophila, this topological PrP variant can participate in the generation of transmissible scrapie-induced toxicity. These observations also show that PrP transgenic Drosophila are susceptible to classical and atypical scrapie prion strains and highlight the utility of this invertebrate host as a model of mammalian prion disease. Importance: During prion diseases, the host protein PrPC converts into an abnormal conformer, PrPSc, a process coupled to the generation of transmissible prions and neurotoxicity. While PrPC is principally a glycosylphosphatidylinositol-anchored membrane protein, the role of topological variants, such as cytosolic PrP, in prion-mediated toxicity and prion

  2. Resolution of a low molecular weight G protein in neutrophil cytosol required for NADPH oxidase activation and reconstitution by recombinant Krev-1 protein.

    Science.gov (United States)

    Eklund, E A; Marshall, M; Gibbs, J B; Crean, C D; Gabig, T G

    1991-07-25

    Activation of the membrane-associated NADPH oxidase in intact human neutrophils requires a receptor-associated heterotrimeric GTP-binding protein that is sensitive to pertussis toxin. Activation of this NADPH oxidase by arachidonate in a cell-free system requires an additional downstream pertussis toxin-insensitive G protein (Gabig, T. G., English, D., Akard, L. P., and Schell, M. J. (1987) (J. Biol. Chem. 262, 1685-1690) that is located in the cytosolic fraction of unstimulated cells (Gabig, T. G., Eklund, E. A., Potter, G. B., and Dykes, J. R. (1990) J. Immunol. 145, 945-951). In the present study, immunodepletion of G proteins from the cytosolic fraction of unstimulated neutrophils resulted in a loss of the ability to activate NADPH oxidase in the membrane fraction. The activity in immunodepleted cytosol was fully reconstituted by a partially purified fraction from neutrophil cytosol that contained a 21-kDa GTP-binding protein. Purified human recombinant Krev-1 p21 also completely reconstituted immunodepleted cytosol whereas recombinant human H-ras p21 or yeast RAS GTP-binding proteins had no reconstitutive activity. Rabbit antisera raised against a synthetic peptide corresponding to the effector region of Krev-1 (amino acids 31-43) completely inhibited cell-free NADPH oxidase activation, and this inhibition was blocked by the synthetic 31-43 peptide. An inhibitory monoclonal antibody specific for ras p21 amino acids 60-77 (Y13-259) had no effect on cell-free NADPH oxidase activation. Activation of the NADPH oxidase in intact neutrophils by stimulation with phorbol myristate acetate caused a marked increase in the amount of membrane-associated antigen recognized by 151 antiserum on Western blot. Thus a G protein in the cytosol of unstimulated neutrophils antigenically and functionally related to Krev-1 may be the downstream effector G protein for NADPH oxidase activation. This system represents a unique model to study molecular interactions of a ras-like G

  3. Cytosolic [Ca2+] signaling pathway in macula densa cells.

    Science.gov (United States)

    Peti-Peterdi, J; Bell, P D

    1999-09-01

    Previous micropuncture studies suggested that macula densa (MD) cells might detect variations in luminal sodium chloride concentration ([NaCl]l) through changes in cytosolic calcium ([Ca2+]c). To test this hypothesis, MD [Ca2+]c was measured with fluorescence microscopy using fura 2 in the isolated perfused thick ascending limb with attached glomerulus preparation dissected from rabbit kidney. Tubules were bathed and perfused with a Ringer solution, [NaCl]l was varied and isosmotically replaced with N-methyl-D-glucamine cyclamate. Control [Ca2+]c, during perfusion with 25 mM NaCl and 150 mM NaCl in the bath, averaged 101. 6 +/- 8.2 nM (n = 21). Increasing [NaCl]l to 150 mM elevated [Ca2+]c by 39.1 +/- 5.2 nM (n = 21, P < 0.01). This effect was concentration dependent between zero and 60 mM [NaCl]l. The presence of either luminal furosemide or basolateral nifedipine or 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), a potent Cl- channel blocker, significantly reduced resting [Ca2+]c and abolished the increase in [Ca2+]c in response to increased [NaCl]l. Nifedipine failed to produce a similar inhibitory effect when added exclusively to the luminal perfusate. Also, 100 nM BAY K 8644, a voltage-gated Ca2+ channel agonist, added to the bathing solution increased [Ca2+]c by 33.2 +/- 8.1 nM (n = 5, P < 0.05). These observations suggest that MD cells may detect variations in [NaCl]l through a signaling pathway that includes Na+-2Cl--K+ cotransport, basolateral membrane depolarization via Cl- channels, and Ca2+ entry through voltage-gated Ca2+ channels.

  4. Both genome and cytosol dynamics change in E. coli challenged with sublethal rifampicin

    Science.gov (United States)

    Wlodarski, Michal; Raciti, Bianca; Kotar, Jurij; Cosentino Lagomarsino, Marco; Fraser, Gillian M.; Cicuta, Pietro

    2017-02-01

    While the action of many antimicrobial drugs is well understood at the molecular level, a systems-level physiological response to antibiotics remains largely unexplored. This work considers fluctuation dynamics of both the chromosome and cytosol in Escherichia coli, and their response to sublethal treatments of a clinically important antibiotic, rifampicin. We precisely quantify the changes in dynamics of chromosomal loci and cytosolic aggregates (a rheovirus nonstructural protein known as μNS-GFP), measuring short time-scale displacements across several hours of drug exposure. To achieve this we develop an empirical method correcting for photo-bleaching and loci size effects. This procedure allows us to characterize the dynamic response to rifampicin in different growth conditions, including a customised microfluidic device. We find that sub-lethal doses of rifampicin cause a small but consistent increase in motility of both the chromosomal loci and cytosolic aggregates. Chromosomal and cytosolic responses are consistent with each other and between different growth conditions.

  5. Amino acid starvation has opposite effects on mitochondrial and cytosolic protein synthesis.

    Directory of Open Access Journals (Sweden)

    Mark A Johnson

    Full Text Available Amino acids are essential for cell growth and proliferation for they can serve as precursors of protein synthesis, be remodelled for nucleotide and fat biosynthesis, or be burnt as fuel. Mitochondria are energy producing organelles that additionally play a central role in amino acid homeostasis. One might expect mitochondrial metabolism to be geared towards the production and preservation of amino acids when cells are deprived of an exogenous supply. On the contrary, we find that human cells respond to amino acid starvation by upregulating the amino acid-consuming processes of respiration, protein synthesis, and amino acid catabolism in the mitochondria. The increased utilization of these nutrients in the organelle is not driven primarily by energy demand, as it occurs when glucose is plentiful. Instead it is proposed that the changes in the mitochondrial metabolism complement the repression of cytosolic protein synthesis to restrict cell growth and proliferation when amino acids are limiting. Therefore, stimulating mitochondrial function might offer a means of inhibiting nutrient-demanding anabolism that drives cellular proliferation.

  6. Proteinous amino acids in hearts' muscle cytosol of rats pretreated with digoxin, caffeine or isoproterenol.

    Science.gov (United States)

    Gabrys, Janusz; Konecki, Janusz; Głowacka, Maria; Durczok, Katarzyna; Nowak, Przemysław; Bielaczyc, Grzegorz; Brus, Ryszard; Shani, Jashovam

    2004-01-01

    Levels of the 19 proteinous amino acids and total free amino acids were assayed by gas-liquid chromatography in cytosols of rat atrial and ventricular muscle cardiomyocytes. The tissues were assayed after the rats had been exposed to the cardioactive drugs digoxin, caffeine, and isoproterenol, each having different mechanisms of action. We demonstrated that, in the atrial and ventricular cardiac muscle cytosol of control (untreated) rats, arginine, glutamine, and cysteine existed in their highest levels: 35.1% and 17.6%; 14.8% and 51.6%; 9.9% and 0.25% of the total free amino acids, respectively. The levels of the other amino acids in the atrial and ventricular cardiac muscle cytosols ranged between 0.1% and 10.0% of the total free amino acids. Digoxin, caffeine, and isoproterenol significantly reduced the total amount of cytosolic free amino acids in the atrial heart muscle cytosol to 7.6%, 9.0%, and 9.2% of the control value (100%), and in the ventricular heart muscle cytosol to 31.1%, 43.2%, and 28.3% of the control. The three drugs tested changed the cytosols' levels of arginine, cysteine, tryptophane, asparagine, and tyrosine in atrial and ventricular heart muscle cytosol, as compared to the control groups (calculated as a percent of the total free amino acids in the experimental groups). The role of proteinous amino acids in the function of the heart muscle and in the mechanism of action of these drugs on the mammalian heart is discussed.

  7. Recombinant BCG Expressing ESX-1 of Mycobacterium marinum Combines Low Virulence with Cytosolic Immune Signaling and Improved TB Protection.

    Science.gov (United States)

    Gröschel, Matthias I; Sayes, Fadel; Shin, Sung Jae; Frigui, Wafa; Pawlik, Alexandre; Orgeur, Mickael; Canetti, Robin; Honoré, Nadine; Simeone, Roxane; van der Werf, Tjip S; Bitter, Wilbert; Cho, Sang-Nae; Majlessi, Laleh; Brosch, Roland

    2017-03-14

    Recent insights into the mechanisms by which Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, is recognized by cytosolic nucleotide sensors have opened new avenues for rational vaccine design. The only licensed anti-tuberculosis vaccine, Mycobacterium bovis BCG, provides limited protection. A feature of BCG is the partial deletion of the ESX-1 type VII secretion system, which governs phagosomal rupture and cytosolic pattern recognition, key intracellular phenotypes linked to increased immune signaling. Here, by heterologously expressing the esx-1 region of Mycobacterium marinum in BCG, we engineered a low-virulence, ESX-1-proficient, recombinant BCG (BCG::ESX-1(Mmar)) that induces the cGas/STING/TBK1/IRF-3/type I interferon axis and enhances AIM2 and NLRP3 inflammasome activity, resulting in both higher proportions of CD8(+) T cell effectors against mycobacterial antigens shared with BCG and polyfunctional CD4(+) Th1 cells specific to ESX-1 antigens. Importantly, independent mouse vaccination models show that BCG::ESX-1(Mmar) confers superior protection relative to parental BCG against challenges with highly virulent M. tuberculosis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Recombinant BCG Expressing ESX-1 of Mycobacterium marinum Combines Low Virulence with Cytosolic Immune Signaling and Improved TB Protection

    Directory of Open Access Journals (Sweden)

    Matthias I. Gröschel

    2017-03-01

    Full Text Available Recent insights into the mechanisms by which Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, is recognized by cytosolic nucleotide sensors have opened new avenues for rational vaccine design. The only licensed anti-tuberculosis vaccine, Mycobacterium bovis BCG, provides limited protection. A feature of BCG is the partial deletion of the ESX-1 type VII secretion system, which governs phagosomal rupture and cytosolic pattern recognition, key intracellular phenotypes linked to increased immune signaling. Here, by heterologously expressing the esx-1 region of Mycobacterium marinum in BCG, we engineered a low-virulence, ESX-1-proficient, recombinant BCG (BCG::ESX-1Mmar that induces the cGas/STING/TBK1/IRF-3/type I interferon axis and enhances AIM2 and NLRP3 inflammasome activity, resulting in both higher proportions of CD8+ T cell effectors against mycobacterial antigens shared with BCG and polyfunctional CD4+ Th1 cells specific to ESX-1 antigens. Importantly, independent mouse vaccination models show that BCG::ESX-1Mmar confers superior protection relative to parental BCG against challenges with highly virulent M. tuberculosis.

  9. Protein abundance profiling of the Escherichia coli cytosol

    Directory of Open Access Journals (Sweden)

    Mann Matthias

    2008-02-01

    Full Text Available Abstract Background Knowledge about the abundance of molecular components is an important prerequisite for building quantitative predictive models of cellular behavior. Proteins are central components of these models, since they carry out most of the fundamental processes in the cell. Thus far, protein concentrations have been difficult to measure on a large scale, but proteomic technologies have now advanced to a stage where this information becomes readily accessible. Results Here, we describe an experimental scheme to maximize the coverage of proteins identified by mass spectrometry of a complex biological sample. Using a combination of LC-MS/MS approaches with protein and peptide fractionation steps we identified 1103 proteins from the cytosolic fraction of the Escherichia coli strain MC4100. A measure of abundance is presented for each of the identified proteins, based on the recently developed emPAI approach which takes into account the number of sequenced peptides per protein. The values of abundance are within a broad range and accurately reflect independently measured copy numbers per cell. As expected, the most abundant proteins were those involved in protein synthesis, most notably ribosomal proteins. Proteins involved in energy metabolism as well as those with binding function were also found in high copy number while proteins annotated with the terms metabolism, transcription, transport, and cellular organization were rare. The barrel-sandwich fold was found to be the structural fold with the highest abundance. Highly abundant proteins are predicted to be less prone to aggregation based on their length, pI values, and occurrence patterns of hydrophobic stretches. We also find that abundant proteins tend to be predominantly essential. Additionally we observe a significant correlation between protein and mRNA abundance in E. coli cells. Conclusion Abundance measurements for more than 1000 E. coli proteins presented in this work

  10. Glucose-stimulated oscillations in free cytosolic ATP concentration imaged in single islet beta-cells: evidence for a Ca2+-dependent mechanism.

    Science.gov (United States)

    Ainscow, Edward K; Rutter, Guy A

    2002-02-01

    Normal glucose-stimulated insulin secretion is pulsatile, but the molecular mechanisms underlying this pulsatility are poorly understood. Oscillations in the intracellular free [ATP]/[ADP] ratio represent one possible mechanism because they would be expected to cause fluctuations in ATP-sensitive K(+) channel activity and hence oscillatory Ca(2+) influx. After imaging recombinant firefly luciferase, expressed via an adenoviral vector in single human or mouse islet beta-cells, we report here that cytosolic free ATP concentrations oscillate and that these oscillations are affected by glucose. In human beta-cells, oscillations were observed at both 3 and 15 mmol/l glucose, but the oscillations were of a longer wavelength at the higher glucose concentration (167 vs. 66 s). Mouse beta-cells displayed oscillations in both cytosolic free [Ca(2+)] and [ATP] only at elevated glucose concentrations, both with a period of 120 s. To explore the causal relationship between [Ca(2+)] and [ATP] oscillations, the regulation of each was further investigated in populations of MIN6 beta-cells. Incubation in Ca(2+)-free medium lowered cytosolic [Ca(2+)] but increased [ATP] in MIN6 cells at both 3 and 30 mmol/l glucose. Removal of external Ca(2+) increased [ATP], possibly by decreasing ATP consumption by endoplasmic reticulum Ca(2+)-ATPases. These results allow a model to be constructed of the beta-cell metabolic oscillator that drives nutrient-induced insulin secretion.

  11. 乳腺癌SULT1A1、ICAM5基因单核苷酸多态性的研究%Association of SULT1A1and ICAM5 Polymorphisms with Breast Cancer Risk in Chinese Women

    Institute of Scientific and Technical Information of China (English)

    周晓坤; 葛银林; 张金玉; 李福年

    2010-01-01

    目的:探讨硫酸基转移酶(sulfotransferase,SULT)lA1、细胞间粘附分子(ICAM5)基因多态性与女性乳腺癌易感性的关系.方法:采外周血DNA后用等位基因特异性扩增法(allele specific amplification,ASA)检测青岛市200例正常对照者和160例乳腺癌患者的SULTIA1、ICAM5基因多态性分布,并进行统计学分析.结果:(1)SULTlA1 Arg/Arg、Arg/His、His/His三种基因型分布在对照组和病例组之间的差异无显著意义(P=0.103);病例组、对照组His等位基因频率分别为19.5%和9.2%(P=0.039),此差别有统计学意义;在淋巴结转移方面SULTIA1基因三种基因型在阴、阳性组间的差异有统计学意义(P=0.038).(2)ICAM5基因各基因型及等位基因分布频率在病例组和对照组间的差异无显著意义(P=0.245,P=0.294);从临床病例分型方面进一步分析,基因型GG与携带变异基因A的GA及AA基因型相比差异均无统计意义.结论:SULTlA1 His等位基因与汉族女性乳腺癌的发生可能相关.

  12. Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA.

    Directory of Open Access Journals (Sweden)

    John W Yarham

    2014-06-01

    Full Text Available Identifying the genetic basis for mitochondrial diseases is technically challenging given the size of the mitochondrial proteome and the heterogeneity of disease presentations. Using next-generation exome sequencing, we identified in a patient with severe combined mitochondrial respiratory chain defects and corresponding perturbation in mitochondrial protein synthesis, a homozygous p.Arg323Gln mutation in TRIT1. This gene encodes human tRNA isopentenyltransferase, which is responsible for i6A37 modification of the anticodon loops of a small subset of cytosolic and mitochondrial tRNAs. Deficiency of i6A37 was previously shown in yeast to decrease translational efficiency and fidelity in a codon-specific manner. Modelling of the p.Arg323Gln mutation on the co-crystal structure of the homologous yeast isopentenyltransferase bound to a substrate tRNA, indicates that it is one of a series of adjacent basic side chains that interact with the tRNA backbone of the anticodon stem, somewhat removed from the catalytic center. We show that patient cells bearing the p.Arg323Gln TRIT1 mutation are severely deficient in i6A37 in both cytosolic and mitochondrial tRNAs. Complete complementation of the i6A37 deficiency of both cytosolic and mitochondrial tRNAs was achieved by transduction of patient fibroblasts with wild-type TRIT1. Moreover, we show that a previously-reported pathogenic m.7480A>G mt-tRNASer(UCN mutation in the anticodon loop sequence A36A37A38 recognised by TRIT1 causes a loss of i6A37 modification. These data demonstrate that deficiencies of i6A37 tRNA modification should be considered a potential mechanism of human disease caused by both nuclear gene and mitochondrial DNA mutations while providing insight into the structure and function of TRIT1 in the modification of cytosolic and mitochondrial tRNAs.

  13. Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA.

    Science.gov (United States)

    Yarham, John W; Lamichhane, Tek N; Pyle, Angela; Mattijssen, Sandy; Baruffini, Enrico; Bruni, Francesco; Donnini, Claudia; Vassilev, Alex; He, Langping; Blakely, Emma L; Griffin, Helen; Santibanez-Koref, Mauro; Bindoff, Laurence A; Ferrero, Ileana; Chinnery, Patrick F; McFarland, Robert; Maraia, Richard J; Taylor, Robert W

    2014-06-01

    Identifying the genetic basis for mitochondrial diseases is technically challenging given the size of the mitochondrial proteome and the heterogeneity of disease presentations. Using next-generation exome sequencing, we identified in a patient with severe combined mitochondrial respiratory chain defects and corresponding perturbation in mitochondrial protein synthesis, a homozygous p.Arg323Gln mutation in TRIT1. This gene encodes human tRNA isopentenyltransferase, which is responsible for i6A37 modification of the anticodon loops of a small subset of cytosolic and mitochondrial tRNAs. Deficiency of i6A37 was previously shown in yeast to decrease translational efficiency and fidelity in a codon-specific manner. Modelling of the p.Arg323Gln mutation on the co-crystal structure of the homologous yeast isopentenyltransferase bound to a substrate tRNA, indicates that it is one of a series of adjacent basic side chains that interact with the tRNA backbone of the anticodon stem, somewhat removed from the catalytic center. We show that patient cells bearing the p.Arg323Gln TRIT1 mutation are severely deficient in i6A37 in both cytosolic and mitochondrial tRNAs. Complete complementation of the i6A37 deficiency of both cytosolic and mitochondrial tRNAs was achieved by transduction of patient fibroblasts with wild-type TRIT1. Moreover, we show that a previously-reported pathogenic m.7480A>G mt-tRNASer(UCN) mutation in the anticodon loop sequence A36A37A38 recognised by TRIT1 causes a loss of i6A37 modification. These data demonstrate that deficiencies of i6A37 tRNA modification should be considered a potential mechanism of human disease caused by both nuclear gene and mitochondrial DNA mutations while providing insight into the structure and function of TRIT1 in the modification of cytosolic and mitochondrial tRNAs.

  14. O-GlcNAcylation mediates the control of cytosolic phosphoenolpyruvate carboxykinase activity via Pgc1α

    Science.gov (United States)

    Latorre, Pedro; Varona, Luis; Burgos, Carmen; López-Buesa, Pascual

    2017-01-01

    PGC1α is a coactivator of many transcription factors and cytosolic phosphoenolpyruvate carboxykinase (PCK1) is a key enzyme for gluconeogenesis. PGC1α interacts with the transcription factor PPARγ to stimulate PCK1 expression and thus de novo glucose synthesis. These proteins are not only important for central energy metabolism but also for supplying intermediates for other metabolic pathways, including lipidogenesis and protein synthesis and might therefore be important factors in the ethiopathogenesis of metabolic disorders like diabetes but also in other pathologies like cancer. Since polymorphisms in these proteins have been related to some phenotypic traits in animals like pigs and PGC1α G482S polymorphism increases fat deposition in humans, we have investigated the molecular basis of such effects focusing on a commonly studied polymorphism in pig Pgc1α, which changes a cysteine at position 430 (WT) of the protein to a serine (C430S). Biochemical analyses show that Pgc1α WT stimulates higher expression of human PCK1 in HEK293T and HepG2 cells. Paradoxically, Pgc1α WT is less stable than Pgc1α p.C430S in HEK293T cells. However, the study of different post-translational modifications shows a higher O-GlcNAcylation level of Pgc1α p.C430S. This higher O-GlcNAcylation level significantly decreases the interaction between Pgc1α and PPARγ demonstrating the importance of post-translational glycosylation of PGC1α in the regulation of PCK1 activity. This, furthermore, could explain at least in part the observed epistatic effects between PGC1α and PCK1 in pigs. PMID:28644880

  15. Bacterial ligands generated in a phagosome are targets of the cytosolic innate immune system.

    Directory of Open Access Journals (Sweden)

    Anat A Herskovits

    2007-03-01

    Full Text Available Macrophages are permissive hosts to intracellular pathogens, but upon activation become microbiocidal effectors of innate and cell-mediated immunity. How the fate of internalized microorganisms is monitored by macrophages, and how that information is integrated to stimulate specific immune responses is not understood. Activation of macrophages with interferon (IFN-gamma leads to rapid killing and degradation of Listeria monocytogenes in a phagosome, thus preventing escape of bacteria to the cytosol. Here, we show that activated macrophages induce a specific gene expression program to L. monocytogenes degraded in the phago-lysosome. In addition to activation of Toll-like receptor (TLR signaling pathways, degraded bacteria also activated a TLR-independent transcriptional response that was similar to the response induced by cytosolic L. monocytogenes. More specifically, degraded bacteria induced a TLR-independent IFN-beta response that was previously shown to be specific to cytosolic bacteria and not to intact bacteria localized to the phagosome. This response required the generation of bacterial ligands in the phago-lysosome and was largely dependent on nucleotide-binding oligomerization domain 2 (NOD2, a cytosolic receptor known to respond to bacterial peptidoglycan fragments. The NOD2-dependent response to degraded bacteria required the phagosomal membrane potential and the activity of lysosomal proteases. The NOD2-dependent IFN-beta production resulted from synergism with other cytosolic microbial sensors. This study supports the hypothesis that in activated macrophages, cytosolic innate immune receptors are activated by bacterial ligands generated in the phagosome and transported to the cytosol.

  16. Preclinical evaluation of an inhibitor of cytosolic phospholipase A2α for the treatment of asthma.

    Science.gov (United States)

    Hewson, Christopher A; Patel, Sheena; Calzetta, Luigino; Campwala, Hinnah; Havard, Suzanne; Luscombe, Emma; Clarke, Philip A; Peachell, Peter T; Matera, Maria G; Cazzola, Mario; Page, Clive; Abraham, William M; Williams, Cara M; Clark, James D; Liu, Wai L; Clarke, Nicholas P; Yeadon, Michael

    2012-03-01

    Asthma is a chronic inflammatory lung disease with considerable unmet medical needs for new and effective therapies. Cytosolic phospholipase A(2)α (cPLA(2)α) is the rate-limiting enzyme that is ultimately responsible for the production of eicosanoids implicated in the pathogenesis of asthma. We investigated a novel cPLA(2)α inhibitor, PF-5212372, to establish the potential of this drug as a treatment for asthma. PF-5212372 was a potent inhibitor of cPLA(2)α (7 nM) and was able to inhibit prostaglandin (PG)D(2) and cysteinyl leukotriene release from anti-IgE-stimulated human lung mast cells (0.29 and 0.45 nM, respectively). In a mixed human lung cell population, PF-5212372 was able to inhibit ionomycin-stimulated release of leukotriene B(4), thromboxane A(2), and PGD(2) (2.6, 2.6, and 4.0 nM, respectively) but was significantly less effective against PGE(2) release (>301 nM; p < 0.05). In an in vitro cell retention assay, PF-5212372 retained its potency up to 24 h after being washed off. In a sheep model of allergic inflammation, inhalation of PF-5212372 significantly inhibited late-phase bronchoconstriction (78% inhibition; p < 0.001) and airway hyper-responsiveness (94% inhibition; p < 0.001), and isolated sheep lung mast cell assays confirmed species translation via effective inhibition of PGD(2) release (0.78 nM). Finally, PF-5212372 was assessed for its ability to inhibit the contraction of human bronchi induced by AMP. PF5212372 significantly inhibited AMP-induced contraction of human bronchi (81% inhibition; p < 0.001); this finding, together with the ability of this drug to be effective in a wide range of preclinical asthma models, suggests that inhibition of cPLA(2)α with PF-5212372 may represent a new therapeutic option for the treatment of asthma.

  17. A Comparison of Two Yeast MnSODs: Mitochondrial Saccharomyces cerevisiae versus Cytosolic Candida albicans

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Y.; Cabelli D.; Stich, T.A.; Barnese, K.; Gralla, E.B.; Cascio, D.; Britt, R.D.; Valentine, J.S.

    2011-12-28

    Human MnSOD is significantly more product-inhibited than bacterial MnSODs at high concentrations of superoxide (O{sub 2}{sup -}). This behavior limits the amount of H{sub 2}O{sub 2} produced at high [O{sub 2}{sup -}]; its desirability can be explained by the multiple roles of H{sub 2}O{sub 2} in mammalian cells, particularly its role in signaling. To investigate the mechanism of product inhibition in MnSOD, two yeast MnSODs, one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), were isolated and characterized. ScMnSOD and CaMnSODc are similar in catalytic kinetics, spectroscopy, and redox chemistry, and they both rest predominantly in the reduced state (unlike most other MnSODs). At high [O{sub 2}{sup -}], the dismutation efficiencies of the yeast MnSODs surpass those of human and bacterial MnSODs, due to very low level of product inhibition. Optical and parallel-mode electron paramagnetic resonance (EPR) spectra suggest the presence of two Mn{sup 3+} species in yeast Mn{sup 3+}SODs, including the well-characterized 5-coordinate Mn{sup 3+} species and a 6-coordinate L-Mn{sup 3+} species with hydroxide as the putative sixth ligand (L). The first and second coordination spheres of ScMnSOD are more similar to bacterial than to human MnSOD. Gln154, an H-bond donor to the Mn-coordinated solvent molecule, is slightly further away from Mn in yeast MnSODs, which may result in their unusual resting state. Mechanistically, the high efficiency of yeast MnSODs could be ascribed to putative translocation of an outer-sphere solvent molecule, which could destabilize the inhibited complex and enhance proton transfer from protein to peroxide. Our studies on yeast MnSODs indicate the unique nature of human MnSOD in that it predominantly undergoes the inhibited pathway at high [O{sub 2}{sup -}].

  18. Graphene nanoplatelets spontaneously translocate into the cytosol and physically interact with cellular organelles in the fish cell line PLHC-1

    Energy Technology Data Exchange (ETDEWEB)

    Lammel, Tobias; Navas, José M., E-mail: jmnavas@inia.es

    2014-05-01

    Highlights: • We assessed the cytotoxicity and uptake of graphene nanomaterials in PLHC-1 cells. • GO and CXYG nanoplatelets caused physical injury of the plasma membrane. • GO and CXYG accumulated in the cytosol and interacted with cellular organelles. • PLHC-1 cells exposed to GO/CXYG demonstrated high ROS levels but low cytotoxicity. • ROS formation was related with GO/CXYG-induced structural damage of mitochondria. - Abstract: Graphene and graphene derivatives constitute a novel class of carbon-based nanomaterials being increasingly produced and used in technical and consumer applications. Release of graphene nanoplatelets during the life cycle of these applications may result in human and environmental exposure calling for assessment of their potential to cause harm to humans and wildlife. This study aimed to assess the toxicity of graphene oxide (GO) and carboxyl graphene (CXYG) nanoplatelets to non-mammalian species using the fish cell line PLHC-1 as in vitro model. The cytotoxicity of GO and CXYG was assessed using different assays measuring alterations in plasma membrane integrity, metabolic activity, and lysosomal and mitochondrial function. The induction of oxidative stress was assessed by measuring intracellular reactive oxygen species (ROS) levels. Interaction with the plasma membrane and internalization of nanoplatelets were investigated by electron microscopy. Graphene nanoplatelets spontaneously penetrated through the plasma membrane and accumulated in the cytosol, where they further interacted with mitochondrial and nuclear membranes. PLHC-1 cells demonstrated significantly reduced mitochondrial membrane potential (MMP) and increased ROS levels at 16 μg/ml GO and CXYG (72 h), but barely any decrease in cell viability. The observation of intracellular graphene accumulations not enclosed by membranes suggests that GO and CXYG internalization in fish hepatoma cells occurs through an endocytosis-independent mechanism.

  19. The Cytosolic pH of Individual Saccharomyces cerevisiae Cells Is a Key Factor in Acetic Acid Tolerance

    Science.gov (United States)

    Fernández-Niño, Miguel; Marquina, Maribel; Swinnen, Steve; Rodríguez-Porrata, Boris

    2015-01-01

    It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH. PMID:26341199

  20. Cytosolic Calcium Concentration Changes in Neuronal Cells Under Clinorotation and in Parabolic Flight Missions

    Science.gov (United States)

    Hauslage, Jens; Abbrecht, Medea; Hanke, Lars; Hemmersbach, Ruth; Koch, Claudia; Hanke, Wolfgang; Kohn, Florian P. M.

    2016-12-01

    All life on earth has been established under conditions of stable gravity of 1g. Nevertheless, in numerous experiments the direct gravity dependence of biological processes has been shown on all levels of organization, from single molecules to humans. To study the effects especially of microgravity on biological systems, a variety of platforms are available, from drop towers to the ISS. Due to the costs of these platforms and their limited availability, as an alternative, numerous simulators have been developed for so called "simulated" microgravity. A classical systems is a clinostat, basically rotating a sample around one axis, and by integration of the gravity vector for 360° arguing that thus the effects of gravity are depleted. Indeed, a variety of studies has shown that taking out the direction of gravity from a biological system often results in consequences similar to the exposure of the system to real microgravity. Nevertheless, the opposite has been shown, too, and as a consequence the relevance of clinostats in microgravity research is still under discussion. To get some more insight into this problem we have constructed a small fluorescence clinostat and have studied the effects of clinorotation on the cytosolic calcium concentration of neuroglioma cells. The results have been compared to experiments with identical cells in real microgravity, utilizing parabolic flight missions. Our results show that in case of a cell suspension used in a small florescence clinostat within a tube diameter of 2mm, the effects of clinorotation are comparable to those under real microgravity, both showing a significant increase in intracellular calcium concentration.

  1. NMR structure of integrin α4 cytosolic tail and its interactions with paxillin.

    Directory of Open Access Journals (Sweden)

    Geok-Lin Chua

    Full Text Available BACKGROUND: Integrins are a group of transmembrane signaling proteins that are important in biological processes such as cell adhesion, proliferation and migration. Integrins are α/β hetero-dimers and there are 24 different integrins formed by specific combinations of 18 α and 8 β subunits in humans. Generally, each of these subunits has a large extracellular domain, a single pass transmembrane segment and a cytosolic tail (CT. CTs of integrins are important in bidirectional signal transduction and they associate with a large number of intracellular proteins. PRINCIPAL FINDINGS: Using NMR spectroscopy, we determined the 3-D structure of the full-length α4 CT (Lys968-Asp999 and characterize its interactions with the adaptor protein paxillin. The α4 CT assumes an overall helical structure with a kink in its membrane proximal region. Residues Gln981-Asn997 formed a continuous helical conformation that may be sustained by potential ionic and/or hydrogen bond interactions and packing of aromatic-aliphatic side-chains. ¹⁵N-¹H HSQC NMR experiments reveal interactions of the α4 CT C-terminal region with a fragment of paxillin (residues G139-K277 that encompassed LD2-LD4 repeats. Residues of these LD repeats including their adjoining linkers showed α4 CT binding-induced chemical shift changes. Furthermore, NMR studies using LD-containing peptides showed predominant interactions between LD3 and LD4 of paxillin and α4 CT. Docked structures of the α4 CT with these LD repeats suggest possible polar and/or salt-bridge and non-polar packing interactions. SIGNIFICANCE: The current study provides molecular insights into the structural diversity of α CTs of integrins and interactions of integrin α4 CT with the adaptor protein paxillin.

  2. Listeria monocytogenes that lyse in the macrophage cytosol trigger AIM2-mediated pyroptosis

    Science.gov (United States)

    Sauer, John-Demian; Witte, Chelsea E.; Zemansky, Jason; Hanson, Bill; Lauer, Peter; Portnoy, Daniel A.

    2010-01-01

    Summary To gain insight into the mechanisms by which host cells detect cytosolic invasion by intracellular pathogens, a genetic screen was performed to identify Listeria monocytogenes mutants that induced altered levels of host cell death. A mutation in lmo2473 resulted in hyper-stimulation of host cell death and IL-1β secretion (pyroptosis) following bacteriolysis in the macrophage cytosol. In addition, strains engineered to lyse in the cytosol by expression of both bacteriophage holin and lysin or induced to lyse by treatment with ampicillin stimulated pyroptosis. Pyroptosis was independent of the Nlrp3 and Nlrc4 receptors, but dependent on ASC and AIM2. Importantly, wild type L. monocytogenes were also found to lyse, albeit at low levels, and trigger AIM2-dependent pyroptosis. Since AIM2 is activated by DNA, these data suggested that pyroptosis is triggered by bacterial DNA released during lysis. PMID:20417169

  3. Bcl-xL retrotranslocates Bax from the mitochondria into the cytosol

    Science.gov (United States)

    Edlich, Frank; Banerjee, Soojay; Suzuki, Motoshi; Cleland, Megan M.; Arnoult, Damien; Wang, Chunxin; Neutzner, Albert; Tjandra, Nico; Youle, Richard J.

    2011-01-01

    Summary The Bcl-2 family member Bax translocates from the cytosol to mitochondria where it oligomerizes and permeabilizes the mitochondrial outer membrane to promote apoptosis. Bax activity is counteracted by pro-survival Bcl-2 proteins, but how they inhibit Bax remains controversial, because they neither co-localize nor form stable complexes with Bax. We constrained Bax in its native cytosolic conformation within cells using intramolecular disulfide tethers. Bax tethers disrupt interaction with Bcl-xL in detergents and cell free MOMP activity, but unexpectedly induce Bax accumulation on mitochondria. Fluorescence Loss in Photobleaching (FLIP) reveals constant retrotranslocation of wt Bax, but not tethered Bax, from the mitochondria into the cytoplasm of healthy cells. Bax retrotranslocation depends on pro-survival Bcl-2 family proteins and inhibition of retrotranslocation correlates with Bax accumulation on the mitochondria. We propose that Bcl-xL inhibits and maintains Bax in the cytosol by constant retrotranslocation of mitochondrial Bax. PMID:21458670

  4. Involvement of Polyamine Oxidase in Abscisic Acid induced Cytosolic Antioxidant Defense in Leaves of Maize

    Institute of Scientific and Technical Information of China (English)

    Beibei Xue; Aying Zhang; Mingyi Jiang

    2009-01-01

    Using pharmacological and biochemical approaches, the role of maize polyamine oxidase (MPAO) in abscisic acid (ABA)induced antioxidant defense in leaves of maize (Zea mays L.) plants was investigated. Exogenous ABA treatment enhanced the expression of the MPAO gene and the activities of apoplastic MPAO. Pretreatment with two different inhibitors for apoplastic MPAO partly reduced hydrogen peroxide (H2O2) accumulation induced by ABA and blocked the ABA-induced expression of the antioxidant genes superoxide dismutase 4 and cytosolic ascorbate peroxidase and the activities of the cytosolic antioxidant enzymes. Treatment with spermidine, the optimum substrate of MPAO, also induced the expression and the activities of the antioxidant enzymes, and the upregulation of the antioxidant enzymes was prevented by two inhibitors of MPAO and two scavengers of H2O2. These results suggest that MPAO contributes to ABA-induced cytosolic antioxidant defense through H2O2, a Spd catabolic product.

  5. General Strategy for Direct Cytosolic Protein Delivery via Protein-Nanoparticle Co-engineering.

    Science.gov (United States)

    Mout, Rubul; Ray, Moumita; Tay, Tristan; Sasaki, Kanae; Yesilbag Tonga, Gulen; Rotello, Vincent M

    2017-06-27

    Endosomal entrapment is a key hurdle for most intracellular protein-based therapeutic strategies. We report a general strategy for efficient delivery of proteins to the cytosol through co-engineering of proteins and nanoparticle vehicles. The proteins feature an oligo(glutamate) sequence (E-tag) that binds arginine-functionalized gold nanoparticles, generating hierarchical spherical nanoassemblies. These assemblies fuse with cell membranes, releasing the E-tagged protein directly into the cytosol. Five different proteins with diverse charges, sizes, and functions were effectively delivered into cells, demonstrating the generality of our method. Significantly, the engineered proteins retained activity after cytosolic delivery, as demonstrated through the delivery of active Cre recombinase, and granzyme A to kill cancer cells.

  6. Cytosol-dependent membrane fusion in ER, nuclear envelope and nuclear pore assembly: biological implications.

    Science.gov (United States)

    Rafikova, Elvira R; Melikov, Kamran; Chernomordik, Leonid V

    2010-01-01

    Endoplasmic reticulum and nuclear envelope rearrangements after mitosis are often studied in the reconstitution system based on Xenopus egg extract. In our recent work we partially replaced the membrane vesicles in the reconstitution mix with protein-free liposomes to explore the relative contributions of cytosolic and transmembrane proteins. Here we discuss our finding that cytosolic proteins mediate fusion between membranes lacking functional transmembrane proteins and the role of membrane fusion in endoplasmic reticulum and nuclear envelope reorganization. Cytosol-dependent liposome fusion has allowed us to restore, without adding transmembrane nucleoporins, functionality of nuclear pores, their spatial distribution and chromatin decondensation in nuclei formed at insufficient amounts of membrane material and characterized by only partial decondensation of chromatin and lack of nuclear transport. Both the mechanisms and the biological implications of the discovered coupling between spatial distribution of nuclear pores, chromatin decondensation and nuclear transport are discussed.

  7. Role of cytosol receptor in regulation of deiodination of thyroxine to triiodothyronine in rat liver microsomal fraction

    Energy Technology Data Exchange (ETDEWEB)

    Nauman, A.; Vogtt, E.; Bardowska, U. (Centrum Medyczne Ksztalcenia Podyplomowego, Warsaw (Poland))

    1980-01-01

    It was shown that partially purified and concentrated thyroid hormones binding cytosol proteins inhibit in vitro deiodination of thyroxine to triiodothyronine. The similar effect was evoked by equivalent concentration of bovine albumine. These results show that cytosol binding proteins may indirectly, by acting on concentration of free thyroxine, regulate the rate of conversion reaction. Results of studies with dithiotreitol-SH group protecting compound - suggest the possibility of indirect interaction between the cytosol binding proteins and converting system. These interactions were also observed in the presence of albumine which suggest that such a mechanism is not specific for cytosol receptor only.

  8. Visualization of cytosolic ribosomes on the surface of mitochondria by electron cryo-tomography.

    Science.gov (United States)

    Gold, Vicki Am; Chroscicki, Piotr; Bragoszewski, Piotr; Chacinska, Agnieszka

    2017-10-01

    We employed electron cryo-tomography to visualize cytosolic ribosomes on the surface of mitochondria. Translation-arrested ribosomes reveal the clustered organization of the TOM complex, corroborating earlier reports of localized translation. Ribosomes are shown to interact specifically with the TOM complex, and nascent chain binding is crucial for ribosome recruitment and stabilization. Ribosomes are bound to the membrane in discrete clusters, often in the vicinity of the crista junctions. This interaction highlights how protein synthesis may be coupled with transport. Our work provides unique insights into the spatial organization of cytosolic ribosomes on mitochondria. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  9. Celecoxib influences steroid sulfonation catalyzed by human recombinant sulfotransferase 2A1.

    Science.gov (United States)

    Ambadapadi, Sriram; Wang, Peter L; Palii, Sergiu P; James, Margaret O

    2015-08-01

    Celecoxib has been reported to switch the human SULT2A1-catalyzed sulfonation of 17β-estradiol (17β-E2) from the 3- to the 17-position. The effects of celecoxib on the sulfonation of selected steroids catalyzed by human SULT2A1 were assessed through in vitro and in silico studies. Celecoxib inhibited SULT2A1-catalyzed sulfonation of dehydroepiandrosterone (DHEA), androst-5-ene-3β, 17β-diol (AD), testosterone (T) and epitestosterone (Epi-T) in a concentration-dependent manner. Low μM concentrations of celecoxib strikingly enhanced the formation of the 17-sulfates of 6-dehydroestradiol (6D-E2), 17β-dihydroequilenin (17β-Eqn), 17β-dihydroequilin (17β-Eq), and 9-dehydroestradiol (9D-E2) as well as the overall rate of sulfonation. For 6D-E2, 9D-E2 and 17β-Eqn, celecoxib inhibited 3-sulfonation, however 3-sulfonation of 17β-Eq was stimulated at celecoxib concentrations below 40 μM. Ligand docking studies in silico suggest that celecoxib binds in the substrate-binding site of SULT2A1 in a manner that prohibits the usual binding of substrates but facilitates, for appropriately shaped substrates, a binding mode that favors 17-sulfonation.

  10. Cancer-Related NEET Proteins Transfer 2Fe-2S Clusters to Anamorsin, a Protein Required for Cytosolic Iron-Sulfur Cluster Biogenesis

    Science.gov (United States)

    Lipper, Colin H.; Paddock, Mark L.; Onuchic, José N.; Mittler, Ron; Nechushtai, Rachel; Jennings, Patricia A.

    2015-01-01

    Iron-sulfur cluster biogenesis is executed by distinct protein assembly systems. Mammals have two systems, the mitochondrial Fe-S cluster assembly system (ISC) and the cytosolic assembly system (CIA), that are connected by an unknown mechanism. The human members of the NEET family of 2Fe-2S proteins, nutrient-deprivation autophagy factor-1 (NAF-1) and mitoNEET (mNT), are located at the interface between the mitochondria and the cytosol. These proteins have been implicated in cancer cell proliferation, and they can transfer their 2Fe-2S clusters to a standard apo-acceptor protein. Here we report the first physiological 2Fe-2S cluster acceptor for both NEET proteins as human Anamorsin (also known as cytokine induced apoptosis inhibitor-1; CIAPIN-1). Anamorsin is an electron transfer protein containing two iron-sulfur cluster-binding sites that is required for cytosolic Fe-S cluster assembly. We show, using UV-Vis spectroscopy, that both NAF-1 and mNT can transfer their 2Fe-2S clusters to apo-Anamorsin with second order rate constants similar to those of other known human 2Fe-2S transfer proteins. A direct protein-protein interaction of the NEET proteins with apo-Anamorsin was detected using biolayer interferometry. Furthermore, electrospray mass spectrometry of holo-Anamorsin prepared by cluster transfer shows that it receives both of its 2Fe-2S clusters from the NEETs. We propose that mNT and NAF-1 can provide parallel routes connecting the mitochondrial ISC system and the CIA. 2Fe-2S clusters assembled in the mitochondria are received by NEET proteins and when needed transferred to Anamorsin, activating the CIA. PMID:26448442

  11. Molecular evolution and the role of oxidative stress in the expansion and functional diversification of cytosolic glutathione transferases

    Directory of Open Access Journals (Sweden)

    Vasconcelos Vítor

    2010-09-01

    Full Text Available Abstract Background Cytosolic glutathione transferases (cGST are a large group of ubiquitous enzymes involved in detoxification and are well known for their undesired side effects during chemotherapy. In this work we have performed thorough phylogenetic analyses to understand the various aspects of the evolution and functional diversification of cGSTs. Furthermore, we assessed plausible correlations between gene duplication and substrate specificity of gene paralogs in humans and selected species, notably in mammalian enzymes and their natural substrates. Results We present a molecular phylogeny of cytosolic GSTs that shows that several classes of cGSTs are more ubiquitous and thus have an older ancestry than previously thought. Furthermore, we found that positive selection is implicated in the diversification of cGSTs. The number of duplicate genes per class is generally higher for groups of enzymes that metabolize products of oxidative damage. Conclusions 1 Protection against oxidative stress seems to be the major driver of positive selection in mammalian cGSTs, explaining the overall expansion pattern of this subfamily; 2 Given the functional redundancy of GSTs that metabolize xenobiotic chemicals, we would expect the loss of gene duplicates, but by contrast we observed a gene expansion of this family, which likely has been favored by: i the diversification of endogenous substrates; ii differential tissue expression; and iii increased specificity for a particular molecule; 3 The increased availability of sequence data from diversified taxa is likely to continue to improve our understanding of the early origin of the different cGST classes.

  12. Structure-activity relationship studies of 1-substituted 3-dodecanoylindole-2-carboxylic acids as inhibitors of cytosolic phospholipase A2-mediated arachidonic acid release in intact platelets.

    Science.gov (United States)

    Griessbach, Klaus; Klimt, Monika; Schulze Elfringhoff, Alwine; Lehr, Matthias

    2002-01-01

    A series of 3-dodecanoylindole-2-carboxylic acid derivatives with varied carboxylic acid substituents at the indole 1-position were synthesized and evaluated for their ability to inhibit arachidonic acid release in human platelets mediated by the cytosolic phospholipase A(2). Structure-activity relationship studies revealed that increasing the polarity of these substituents by the introduction of additional polar groups in the proximity of the carboxylic acid moiety reduced activity. Conformational restriction of the indole-1-carboxylic acid substituents in distinct positions as well as extending the length of these residues led to compounds which did not substantially differ in their potencies.

  13. Listeria monocytogenes and the inflammasome: from cytosolic bacteriolysis to tumor immunotherapy

    Science.gov (United States)

    Theisen, Erin; Sauer, John-Demian

    2016-01-01

    Inflammasomes are cytosolic innate immune surveillance systems that recognize a variety of danger signals, including those from pathogens. Listeria monocytogenes is a Gram-positive intracellular bacterium evolved to live within the harsh environment of the host cytosol. Further, L. monocytogenes can activate a robust cell-mediated immune response that is being harnessed as an immunotherapeutic platform. Access to the cytosol is critical for both causing disease and for inducing a protective immune response, and it is hypothesized that the cytosolic innate immune system, including the inflammasome, is critical for both host protection and induction of long term immunity. L. monocytogenes can activate a variety of inflammasomes via its pore-forming toxin Listeriolysin-O, flagellin, or DNA released through bacteriolysis; however, inflammasome activation attenuates L. monocytogenes, and as such, L. monocytogenes has evolved a variety of ways to limit inflammasome activation. Surprisingly, inflammasome activation also impairs the host cell-mediated immune response. Thus understanding how L. monocytogenes activates or avoids detection by the inflammasome is critical to understand the pathogenesis of L. monocytogenes and improve the cell-mediated immune response generated to L. monocytogenes for more effective immunotherapies. PMID:27460808

  14. Optical sensors for measuring dynamic changes of cytosolic metabolite levels in yeast.

    Science.gov (United States)

    Bermejo, Clara; Haerizadeh, Farzad; Takanaga, Hitomi; Chermak, Diane; Frommer, Wolf B

    2011-10-27

    Optical sensors allow dynamic quantification of metabolite levels with subcellular resolution. Here we describe protocols for analyzing cytosolic glucose levels in yeast using genetically encoded Förster resonance energy transfer (FRET) sensors. FRET glucose sensors with different glucose affinities (K(d)) covering the low nano- to mid- millimolar range can be targeted genetically to the cytosol or to subcellular compartments. The sensors detect the glucose-induced conformational change in the bacterial periplasmic glucose/galactose binding protein MglB using FRET between two fluorescent protein variants. Measurements can be performed with a single sensor or multiple sensors in parallel. In one approach, cytosolic glucose accumulation is measured in yeast cultures in a 96-well plate using a fluorimeter. Upon excitation of the cyan fluorescent protein (CFP), emission intensities of CFP and YFP (yellow fluorescent protein) are captured before and after glucose addition. FRET sensors provide temporally resolved quantitative data of glucose for the compartment of interest. In a second approach, reversible changes of cytosolic free glucose are measured in individual yeast cells trapped in a microfluidic platform, allowing perfusion of different solutions while FRET changes are monitored in a microscope setup. By using the microplate fluorimeter protocol, 96 cultures can be measured in less than 1 h; analysis of single cells of a single genotype can be completed in <2 h. FRET-based analysis has been performed with glucose, maltose, ATP and zinc sensors, and it can easily be adapted for high-throughput screening using a wide spectrum of sensors.

  15. Listeria monocytogenes triggers AIM2-mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol.

    Science.gov (United States)

    Sauer, John-Demian; Witte, Chelsea E; Zemansky, Jason; Hanson, Bill; Lauer, Peter; Portnoy, Daniel A

    2010-05-20

    A host defense strategy against pathogens is the induction of cell death, thereby eliminating the pathogen's intracellular niche. Pyroptosis, one such form of cell death, is dependent on inflammasome activation. In a genetic screen to identify Listeria monocytogenes mutants that induced altered levels of host cell death, we identified a mutation in lmo2473 that caused hyperstimulation of IL-1beta secretion and pyroptosis following bacteriolysis in the macrophage cytosol. In addition, strains engineered to lyse in the cytosol by expression of both bacteriophage holin and lysin or induced to lyse by treatment with ampicillin stimulated pyroptosis. Pyroptosis was independent of the Nlrp3 and Nlrc4 inflammasome receptors but dependent on the inflammasome adaptor ASC and the cytosolic DNA sensor AIM2. Importantly, wild-type L. monocytogenes were also found to lyse, albeit at low levels, and trigger AIM2-dependent pyroptosis. These data suggested that pyroptosis is triggered by bacterial DNA released during cytosolic lysis. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Bax Exists in a Dynamic Equilibrium between the Cytosol and Mitochondria to Control Apoptotic Priming

    Science.gov (United States)

    Schellenberg, Barbara; Wang, Pengbo; Keeble, James A.; Rodriguez-Enriquez, Ricardo; Walker, Scott; Owens, Thomas W.; Foster, Fiona; Tanianis-Hughes, Jolanta; Brennan, Keith; Streuli, Charles H.; Gilmore, Andrew P.

    2013-01-01

    Summary The proapoptotic Bcl-2 protein Bax is predominantly found in the cytosol of nonapoptotic cells and is commonly thought to translocate to mitochondria following an apoptotic stimulus. The current model for Bax activation is that BH3 proteins bind to cytosolic Bax, initiating mitochondrial targeting and outer-membrane permeabilization. Here, we challenge this and show that Bax is constitutively targeted to mitochondria but in nonapoptotic cells is constantly translocated back to the cytosol. Using live-cell spinning-disk confocal imaging with a combination of FLIP, FRAP, and photoactivatable GFP-Bax, we demonstrate that disrupting adhesion-dependent survival signals slows the rate of Bax’s dissociation from mitochondria, leading to its accumulation on the outer mitochondrial membrane. The overall accumulation of mitochondrial Bax following loss of survival signaling sensitizes cells to proapoptotic BH3 proteins. Our findings show that Bax is normally in a dynamic equilibrium between cytosol and mitochondria, enabling fluctuations in survival signals to finely adjust apoptotic sensitivity. PMID:23375500

  17. Dierexperimentele behandeling van paraquat- toxiciteit met desferrioxamine, gewassen erythrocyten of erythrocyten-cytosol

    NARCIS (Netherlands)

    Boonen; H.C.M.*; Hillen; F.C.; Jong; Y.de; Timmerman; A.; Dormans; J.A.M.A.; Asbeck; B.S.van*

    1986-01-01

    Een paraquat intoxicatie bij de rat kon met de ijzerchelator desferrioxiamine via een chronisch infuus worden tegengegaan: het overlevingspercentage bleek tot 66,6% te stijgen na een desferrioxamine infuus van 100 mg/kg/24uur. Gewassen erythrocyten en cytosol hadden na intratracheale toediening

  18. The cytosolic B-glucosidase GBA3 does not influence type 1 Gaucher disease manifestation

    NARCIS (Netherlands)

    Dekker, N.; Voorn-Brouwer, T.; Verhoek, M.; Wennekes, T.; Narayan, R.S.; Speijer, D.; Hollak, C.E.M.; Overkleeft, H.S.; Boot, R.G.; Aerts, J.M.F.G.

    2011-01-01

    GBA3, also known as cytosolic ß-glucosidase, is thought to hydrolyze xenobiotic glycosides in man. Deficiency of glucocerebrosidase (GBA), a ß-glucosidase degrading glucosylceramide, underlies Gaucher disease. We examined GBA3, which recently was proposed to degrade glucosylceramide and influence th

  19. Cytosolic NADPH balancing in Penicillium chrysogenum cultivated on mixtures of glucose and ethanol.

    Science.gov (United States)

    Zhao, Zheng; Kuijvenhoven, Karel; van Gulik, Walter M; Heijnen, Joseph J; van Winden, Wouter A; Verheijen, Peter J T

    2011-01-01

    The in vivo flux through the oxidative branch of the pentose phosphate pathway (oxPPP) in Penicillium chrysogenum was determined during growth in glucose/ethanol carbon-limited chemostat cultures, at the same growth rate. Non-stationary (13)C flux analysis was used to measure the oxPPP flux. A nearly constant oxPPP flux was found for all glucose/ethanol ratios studied. This indicates that the cytosolic NADPH supply is independent of the amount of assimilated ethanol. The cofactor assignment in the model of van Gulik et al. (Biotechnol Bioeng 68(6):602-618, 2000) was supported using the published genome annotation of P. chrysogenum. Metabolic flux analysis showed that NADPH requirements in the cytosol remain nearly the same in these experiments due to constant biomass growth. Based on the cytosolic NADPH balance, it is known that the cytosolic aldehyde dehydrogenase in P. chrysogenum is NAD(+) dependent. Metabolic modeling shows that changing the NAD(+)-aldehyde dehydrogenase to NADP(+)-aldehyde dehydrogenase can increase the penicillin yield on substrate.

  20. Mediator-assisted simultaneous probing of cytosolic and mitochondrial redox activity in living cells.

    Science.gov (United States)

    Heiskanen, Arto; Spégel, Christer; Kostesha, Natalie; Lindahl, Sofia; Ruzgas, Tautgirdas; Emnéus, Jenny

    2009-01-01

    This work describes an electron transfer mediator-assisted amperometric flow injection method for assessing redox enzyme activity in different subcellular compartments of the phosphoglucose isomerase deletion mutant strain of Saccharomyces cerevisiae, EBY44. The method is demonstrated using the ferricyanide-menadione double mediator system to study the effect of dicoumarol, an inhibitor of cytosolic and mitochondrial oxidoreductases and an uncoupler of the electron transport chain. Evaluation of the role of NAD(P)H-producing pathways in mediating biological effects is facilitated by introducing either fructose or glucose as the carbon source, yielding either NADH or NADPH through the glycolytic or pentose phosphate pathway, respectively. Respiratory noncompetent cells show greater inhibition of cytosolic menadione-reducing enzymes when NADH rather than NADPH is produced. Spectrophotometric in vitro assays show no difference between the cofactors. Respiratory competent cells show cytosolic inhibition only when NADPH is produced, whereas production of NADH reveals uncoupling at low dicoumarol concentrations and inhibition of complexes III and IV at higher concentrations. Spectrophotometric assays only indicate the presence of cytosolic inhibition regardless of the reduced cofactor used. This article shows the applicability of the amperometric method and emphasizes the significance of determining biological effects of chemicals in living cells.

  1. Glyoxylate Reductase Isoform 1 is Localized in the Cytosol and Not Peroxisomes in Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Steven L. K. Ching; Satinder K. Gidda; Amanda Rochon; Owen R. van Cauwenberghe; Barry J. Shelp; Robert T. Mullen

    2012-01-01

    Glyoxylate reductase (GLYR) is a key enzyme in plant metabolism which catalyzes the detoxification of both photorespiratory glyoxylate and succinic semialdehdye,an intermediate of the γ-aminobutyrate (GABA) pathway.Two isoforms of GLYR exist in plants,GLYR1 and GLYR2,and while GLYR2 is known to be localized in plastids,GLYR1 has been reported to be localized in either peroxisomes or the cytosol.Here,we reappraised the intracellular localization of GLYR1 in Arabidopsis thaliana L.Heynh (ecotype Lansberg erecta) using both transiently-transformed suspension cells and stably-transformed plants,in combination with fluorescence microscopy.The results indicate that GLYR1 is localized exclusively to the cytosol regardless of the species,tissue and/or cell type,or exposure of plants to environmental stresses that would increase flux through the GABA pathway.Moreover,the C-terminal tripeptide sequence of GLYR1,-SRE,despite its resemblance to a type 1 peroxisomal targeting signal,is not sufficient for targeting to peroxisomes.Collectively,these results define the cytosol as the intracellular location of GLYR1 and provide not only important insight to the metabolic roles of GLYR1 and the compartmentation of the GABA and photorespiratory pathways in plant cells,but also serve as a useful reference for future studies of proteins proposed to be localized to peroxisomes and/or the cytosol.

  2. DMPD: Regulation of arachidonic acid release and cytosolic phospholipase A2activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10080535 Regulation of arachidonic acid release and cytosolic phospholipase A2activ...ation. Gijon MA, Leslie CC. J Leukoc Biol. 1999 Mar;65(3):330-6. (.png) (.svg) (.html) (.csml) Show Regulation... of arachidonic acid release and cytosolic phospholipase A2activation. PubmedID 10080535 Title Regulation

  3. A functional comparison of the venom of three Australian jellyfish--Chironex fleckeri, Chiropsalmus sp., and Carybdea xaymacana--on cytosolic Ca2+, haemolysis and Artemia sp. lethality.

    Science.gov (United States)

    Bailey, Paul M; Bakker, Anthony J; Seymour, Jamie E; Wilce, Jacqueline A

    2005-02-01

    Cnidarian venoms produce a wide spectrum of envenoming syndromes in humans ranging from minor local irritation to death. Here, the effects of Chironex fleckeri, Chiropsalmus sp., and Carybdea xaymacana venoms on ventricular myocyte cytosolic Ca2+, haemolysis and Artemia sp. lethality are compared for the first time. All three venoms caused a large, irreversible elevation of cytosolic Ca2+ in myocytes as measured using the Ca2+ sensitive fluorescent probe Indo-1. The L-type Ca2+ channel antagonist verapamil had no effect on Ca2+ influx whilst La3+, a non-specific channel and pore blocker, inhibited the effect. Haemolytic activity was observed for all venoms, with C. xaymacana venom displaying the greatest activity. These activities are consistent with the presence of a pore-forming toxin existing in the venoms which has been demonstrated by transmission electron microscopy in the case of C. fleckeri. The venom of C. fleckeri was found to be more lethal against Artemia sp. than the venom of the other species, consistent with the order of known human toxicities. This suggests that the observed lytic effects may not underlie the lethal effects of the venom, and raises the question of how such potent activities are dealt with by envenomed humans.

  4. Mitochondrial Iron-Sulfur Cluster Activity and Cytosolic Iron Regulate Iron Traffic in Saccharomyces cerevisiae*

    Science.gov (United States)

    Wofford, Joshua D.; Lindahl, Paul A.

    2015-01-01

    An ordinary differential equation-based mathematical model was developed to describe trafficking and regulation of iron in growing fermenting budding yeast. Accordingly, environmental iron enters the cytosol and moves into mitochondria and vacuoles. Dilution caused by increasing cell volume is included. Four sites are regulated, including those in which iron is imported into the cytosol, mitochondria, and vacuoles, and the site at which vacuolar FeII is oxidized to FeIII. The objective of this study was to determine whether cytosolic iron (Fecyt) and/or a putative sulfur-based product of iron-sulfur cluster (ISC) activity was/were being sensed in regulation. The model assumes that the matrix of healthy mitochondria is anaerobic, and that in ISC mutants, O2 diffuses into the matrix where it reacts with nonheme high spin FeII ions, oxidizing them to nanoparticles and generating reactive oxygen species. This reactivity causes a further decline in ISC/heme biosynthesis, which ultimately gives rise to the diseased state. The ordinary differential equations that define this model were numerically integrated, and concentrations of each component were plotted versus the concentration of iron in the growth medium and versus the rate of ISC/heme biosynthesis. Model parameters were optimized by fitting simulations to literature data. The model variant that assumed that both Fecyt and ISC biosynthesis activity were sensed in regulation mimicked observed behavior best. Such “dual sensing” probably arises in real cells because regulation involves assembly of an ISC on a cytosolic protein using Fecyt and a sulfur species generated in mitochondria during ISC biosynthesis and exported into the cytosol. PMID:26306041

  5. IFNγ inhibits the cytosolic replication of Shigella flexneri via the cytoplasmic RNA sensor RIG-I.

    Directory of Open Access Journals (Sweden)

    Stephanie P Jehl

    Full Text Available The activation of host cells by interferon gamma (IFNγ is essential for inhibiting the intracellular replication of most microbial pathogens. Although significant advances have been made in identifying IFNγ-dependent host factors that suppress intracellular bacteria, little is known about how IFNγ enables cells to recognize, or restrict, the growth of pathogens that replicate in the host cytoplasm. The replication of the cytosolic bacterial pathogen Shigella flexneri is significantly inhibited in IFNγ-stimulated cells, however the specific mechanisms that mediate this inhibition have remained elusive. We found that S. flexneri efficiently invades IFNγ-activated mouse embryonic fibroblasts (MEFs and escapes from the vacuole, suggesting that IFNγ acts by blocking S. flexneri replication in the cytosol. This restriction on cytosolic growth was dependent on interferon regulatory factor 1 (IRF1, an IFNγ-inducible transcription factor capable of inducing IFNγ-mediated cell-autonomous immunity. To identify host factors that restrict S. flexneri growth, we used whole genome microarrays to identify mammalian genes whose expression in S. flexneri-infected cells is controlled by IFNγ and IRF1. Among the genes we identified was the pattern recognition receptor (PRR retanoic acid-inducible gene I (RIG-I, a cytoplasmic sensor of foreign RNA that had not been previously known to play a role in S. flexneri infection. We found that RIG-I and its downstream signaling adaptor mitochondrial antiviral signaling protein (MAVS--but not cytosolic Nod-like receptors (NLRs--are critically important for IFNγ-mediated S. flexneri growth restriction. The recently described RNA polymerase III pathway, which transcribes foreign cytosolic DNA into the RIG-I ligand 5'-triphosphate RNA, appeared to be involved in this restriction. The finding that RIG-I responds to S. flexneri infection during the IFNγ response extends the range of PRRs that are capable of recognizing

  6. Limits to anaerobic energy and cytosolic concentration in the living cell

    Science.gov (United States)

    Paglietti, A.

    2015-11-01

    For many physical systems at any given temperature, the set of all states where the system's free energy reaches its largest value can be determined from the system's constitutive equations of internal energy and entropy, once a state of that set is known. Such an approach is fraught with complications when applied to a living cell, because the cell's cytosol contains thousands of solutes, and thus thousands of state variables, which makes determination of its state impractical. We show here that, when looking for the maximum energy that the cytosol can store and release, detailed information on cytosol composition is redundant. Compatibility with cell's life requires that a single variable that represents the overall concentration of cytosol solutes must fall between defined limits, which can be determined by dehydrating and overhydrating the cell to its maximum capacity. The same limits are shown to determine, in particular, the maximum amount of free energy that a cell can supply in fast anaerobic processes, starting from any given initial state. For a typical skeletal muscle in normal physiological conditions this energy, i.e., the maximum anaerobic capacity to do work, is calculated to be about 960 J per kg of muscular mass. Such energy decreases as the overall concentration of solutes in the cytosol is increased. Similar results apply to any kind of cell. They provide an essential tool to understand and control the macroscopic response of single cells and multicellular cellular tissues alike. The applications include sport physiology, cell aging, disease produced cell damage, drug absorption capacity, to mention the most obvious ones.

  7. Platelet cytosolic 44-kDa protein is a substrate of cholera toxin-induced ADP-ribosylation and is not recognized by antisera against the. alpha. subunit of the stimulatory guanine nucleotide-binding regulatory protein

    Energy Technology Data Exchange (ETDEWEB)

    Molina Y Vedia, L.M.; Reep, B.R.; Lapetina, E.G. (Burroughs Wellcome Co., Research Triangle Park, NC (USA))

    1988-08-01

    ADP-ribosylation induced by cholera toxin and pertussis toxin was studied in particulate and cytosolic fractions of human platelets. Platelets were disrupted by a cycle of freezing and thawing in the presence of a hyposmotic buffer containing protease inhibitors. In both fractions, the A subunit of cholera toxin ADP-ribosylates two proteins with molecular masses of 42 and 44 kDa, whereas pertussis toxin ADP-ribosylates a 41-kDa polypeptide. Two antisera against the {alpha} subunit of the stimulatory guanine nucleotide-binding regulatory protein recognize only the 42-kDa polypeptide. Cholera toxin-induced ADP-ribosylation of the 42- and 44-kDa proteins is reduced by pretreatment of platelets with iloprost, a prostacyclin analog. The 44-kDa protein, which is substrate of cholera toxin, could be extracted completely from the membrane and recovered in the cytosolic fraction when the cells were disrupted by Dounce homogenization and the pellet was extensively washed. A 44-kDa protein can also be labeled with 8-azidoguanosine 5{prime}-({alpha}-{sup 32}P)triphosphate in the cytosol and membranes. These finding indicate that cholera and pertussis toxins produced covalent modifications of proteins present in particulate and cytosolic platelet fractions. Moreover, the 44-kDa protein might be an {alpha} subunit of a guanine nucleotide-binding regulatory protein that is not recognized by available antisera.

  8. Purification and kinetic analysis of cytosolic and mitochondrial thioredoxin glutathione reductase extracted from Taenia solium cysticerci.

    Science.gov (United States)

    Plancarte, Agustin; Nava, Gabriela

    2015-02-01

    Thioredoxin glutathione reductases (TGRs) (EC 1.8.1.9) were purified to homogeneity from the cytosolic (cTsTGR) and mitochondrial (mTsTGR) fractions of Taenia solium, the agent responsible for neurocysticercosis, one of the major central nervous system parasitic diseases in humans. TsTGRs had a relative molecular weight of 132,000, while the corresponding value per subunit obtained under denaturing conditions, was of 62,000. Specific activities for thioredoxin reductase and glutathione reductase substrates for both TGRs explored were in the range or lower than values obtained for other platyhelminths and mammalian TGRs. cTsTGR and mTsTGR also showed hydroperoxide reductase activity using hydroperoxide as substrate. Km(DTNB) and Kcat(DTNB) values for cTsTGR and mTsTGR (88 µM and 1.9 s(-1); 45 µM and 12.6 s(-1), respectively) and Km(GSSG) and Kcat(GSSG) values for cTsTGR and mTsTGR (6.3 µM and 0.96 s(-1); 4 µM and 1.62 s(-1), respectively) were similar to or lower than those reported for mammalian TGRs. Mass spectrometry analysis showed that 12 peptides from cTsTGR and seven from mTsTGR were a match for gi|29825896 thioredoxin glutathione reductase [Echinococcus granulosus], confirming that both enzymes are TGRs. Both T. solium TGRs were inhibited by the gold compound auranofin, a selective inhibitor of thiol-dependent flavoreductases (I₅₀ = 3.25, 2.29 nM for DTNB and GSSG substrates, respectively for cTsTGR; I₅₀ = 5.6, 25.4 nM for mTsTGR toward the same substrates in the described order). Glutathione reductase activity of cTsTGR and mTsTGR exhibited hysteretic behavior with moderate to high concentrations of GSSG; this result was not observed either with thioredoxin, DTNB or NADPH. However, the observed hysteretic kinetics was suppressed with increasing amounts of both parasitic TGRs. These data suggest the existence of an effective substitute which may account for the lack of the detoxification enzymes glutathione reductase

  9. PDE7B is involved in nandrolone decanoate hydrolysis in liver cytosol and its transcription is up-regulated by androgens in HepG2

    Directory of Open Access Journals (Sweden)

    Emmanuel eStrahm

    2014-05-01

    Full Text Available Most androgenic drugs are available as esters for a prolonged depot action. However the enzymes involved in the hydrolysis of the esters have not been identified. There is one study indicating that PDE7B may be involved in the activation of testosterone enanthate. The aims are to identify the cellular compartments where the hydrolysis of testosterone enanthate and nandrolone decanoate occurs, and to investigate the involvement of PDE7B in the activation. We also determined if testosterone and nandrolone affect the expression of the PDE7B gene. The hydrolysis studies were performed in isolated human liver cytosolic and microsomal preparations with and without specific PDE7B inhibitor. The gene expression was studied in human hepatoma cells (HepG2 exposed to testosterone and nandrolone. We show that PDE7B serves as a catalyst of the hydrolysis of testosterone enanthate and nandrolone decanoate in liver cytosol. The gene expression of PDE7B was significantly induced 3- and 5- fold after 2 hours exposure to 1 µM testosterone enanthate and nandrolone decanoate, respectively. These results show that PDE7B is involved in the activation of esterified nandrolone and testosterone and that the gene expression of PDE7B is induced by supra-physiological concentrations of androgenic drugs.

  10. Cytosolic Cl- Affects the Anticancer Activity of Paclitaxel in the Gastric Cancer Cell Line, MKN28 Cell

    Directory of Open Access Journals (Sweden)

    Sachie Tanaka

    2017-05-01

    Full Text Available Background/Aims: Our previous study revealed that cytosolic Cl- affected neurite elongation promoted via assembly of microtubule in rat pheochromocytoma PC12D cells and Cl-–induced blockade of intrinsic GTPase enhanced tubulin polymerization in vitro. Paclitaxel (PTX is a microtubule-targeted chemotherapeutic drug and stabilizes microtubules resulting in mainly blockade of mitosis at the metaphase-anaphase transition and induction of apoptosis. In the present study, we tried to clarify whether the cytosolic Cl- affected PTX ability to inhibit cell growth in the gastric cancer cell line, MKN28. Methods: To clarify the cytosolic Cl- action on PTX-induced cell death and metaphase-anaphase transition in the gastric cancer cell line, MKN28 cell, and PTX-induced tubulin polymerization, we performed cell proliferation assay, cytosolic Cl- concentration measurement, immunofluorescence microscopy, and in vitro tubulin polymerization assay. Results: The decline of cytosolic Cl- weakened the cytotoxic effect of PTX on cell proliferation of MKN28 cells, which could pass through the metaphase-anaphase transition. Moreover, in vitro PTX-induced tubulin polymerization was diminished under the low Cl- condition. Conclusions: Our results strongly suggest that the upregulation of cytosolic Cl- concentration would enhance the antitumor effect of PTX, and that the cytosolic Cl- would be one of the key targets for anti-cancer therapy.

  11. A neutrophil GTP-binding protein that regulates cell free NADPH oxidase activation is located in the cytosolic fraction.

    Science.gov (United States)

    Gabig, T G; Eklund, E A; Potter, G B; Dykes, J R

    1990-08-01

    The dormant O2(-)-generating oxidase in plasma membranes from unstimulated neutrophils becomes activated in the presence of arachidonate and a multicomponent cytosolic fraction. This process is stimulated by nonhydrolyzable GTP analogues and may involve a pertussis toxin insensitive GTP-binding protein. Our studies were designed to characterize the putative GTP-binding protein, localizing it to either membrane or cytosolic fraction in this system. Exposure of the isolated membrane fraction to guanosine-5'-(3-O-thio)triphosphate (GTP gamma S), with or without arachidonate, had no effect on subsequent NADPH oxidase activation by the cytosolic fraction. Preexposure of the cytosolic fraction to GTP gamma S alone did not enhance activation of the membrane oxidase. However, preexposure of the cytosol to GTP gamma S then arachidonate caused a four-fold enhancement of its ability to activate the membrane oxidase. This enhancement was evident after removal of unbound GTP gamma S and arachidonate, and was not augmented by additional GTP gamma S during membrane activation. A reconstitution assay was developed for cytosolic component(s) responsible for the GTP gamma S effect. Cytosol preincubated with GTP gamma 35S then arachidonate was fractionated by anion exchange chromatography. A single peak of protein-bound GTP gamma 35S was recovered that had reconstitutive activity. Cytosol preincubated with GTP gamma 35S alone was similarly fractionated and the same peak of protein-bound GTP gamma 35S was observed. However, this peak had no reconstitutive activity. We conclude that the GTP-binding protein regulating this cellfree system is located in the cytosolic fraction. The GTP gamma S-liganded form of this protein may be activated or stabilized by arachidonate.

  12. From Proteomics to Structural Studies of Cytosolic/Mitochondrial-Type Thioredoxin Systems in Barley Seeds

    DEFF Research Database (Denmark)

    Shahpiri, Azar; Svensson, Birte; Finnie, Christine

    2009-01-01

    for Trx, indicating that Trx plays a key role in several aspects of cell metabolism. In contrast to other organisms, plants contain multiple forms of Trx that are classified based on their primary structures and sub-cellular localization. The reduction of cytosolic and mitochondrial types of Trx...... is dependent on NADPH and catalyzed by NADPH-dependent thioredoxin reductase (NTR). In barley, two isoforms each of Trx and NTR have been identified and investigated using proteomics, gene expression, and structural studies. This review outlines the diverse roles suggested for cytosolic/mitochondrial-type Trx...... systems in cereal seeds and summarizes the current knowledge of the barley system including recent data on function, regulation, interactions, and structure. Directions for future research are discussed....

  13. Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis.

    Science.gov (United States)

    Yao, Yu-Xin; Li, Ming; Zhai, Heng; You, Chun-Xiang; Hao, Yu-Jin

    2011-03-15

    Cytosolic NAD-dependent malate dehydrogenase (cyMDH) is an enzyme crucial for malate synthesis in the cytosol. The apple MdcyMDH gene (GenBank Accession No. DQ221207) encoding the cyMDH enzyme in apple was cloned and functionally characterized. The protein was subcellularly localized to the cytoplasm and plasma membrane. Based on kinetic parameters, it mainly catalyzes the reaction from oxalacetic acid (OAA) to malate in vitro. The expression level of MdcyMDH was positively correlated with malate dehydrogenase (MDH) activity throughout fruit development, but not with malate content, especially in the ripening apple fruit. MdcyMDH overexpression contributed to malate accumulation in the apple callus and tomato. Taken together, our results support the involvement of MdcyMDH directly in malate synthesis and indirectly in malate accumulation through the regulation of genes/enzymes associated with malate degradation and transportation, gluconeogenesis and the tricarboxylic acid cycle.

  14. DYNAMIC ANALYSIS OF CYTOSOLIC GLUCOSE AND ATP LEVELS IN YEAST WITH OPTICAL SENSORS

    Science.gov (United States)

    Bermejo, Clara; Haerizadeh, Farzad; Takanaga, Hitomi; Chermak, Diane; Frommer, Wolf B.

    2010-01-01

    Precise and dynamic measurement of intracellular metabolite levels has been hampered by difficulties in differentiating between adsorbed and imported fractions and the subcellular distribution between cytosol, endomembrane compartments and mitochondria. Here, genetically encoded Förster Resonance Energy Transfer (FRET)-based sensors were deployed for dynamic measurements of free cytosolic glucose and ATP at varying external supply and in glucose transport mutants. Moreover, by using the FRET sensors in a microfluidic platform, we were able to monitor in vivo changes in intracellular free glucose in individual yeast cells. We demonstrate the suitability of the FRET sensors for gaining physiological insight by demonstrating that free intracellular glucose and ATP levels are reduced in an hxt5Δ hexose transporter mutant compared to wild type and to other hxtΔ strains. PMID:20854260

  15. Dynamic analysis of cytosolic glucose and ATP levels in yeast using optical sensors.

    Science.gov (United States)

    Bermejo, Clara; Haerizadeh, Farzad; Takanaga, Hitomi; Chermak, Diane; Frommer, Wolf B

    2010-12-01

    Precise and dynamic measurement of intracellular metabolite levels has been hampered by difficulties in differentiating between adsorbed and imported fractions and the subcellular distribution between cytosol, endomembrane compartments and mitochondria. In the present study, genetically encoded FRET (Förster resonance energy transfer)-based sensors were deployed for dynamic measurements of free cytosolic glucose and ATP with varying external supply and in glucose-transport mutants. Moreover, by using the FRET sensors in a microfluidic platform, we were able to monitor in vivo changes of intracellular free glucose in individual yeast cells. We demonstrate the suitability of the FRET sensors for gaining physiological insight by demonstrating that free intracellular glucose and ATP levels are reduced in a hxt5Δ hexose-transporter mutant compared with wild-type and other hxtΔ strains.

  16. A role for cytosolic fumarate hydratase in urea cycle metabolism and renal neoplasia.

    Science.gov (United States)

    Adam, Julie; Yang, Ming; Bauerschmidt, Christina; Kitagawa, Mitsuhiro; O'Flaherty, Linda; Maheswaran, Pratheesh; Özkan, Gizem; Sahgal, Natasha; Baban, Dilair; Kato, Keiko; Saito, Kaori; Iino, Keiko; Igarashi, Kaori; Stratford, Michael; Pugh, Christopher; Tennant, Daniel A; Ludwig, Christian; Davies, Benjamin; Ratcliffe, Peter J; El-Bahrawy, Mona; Ashrafian, Houman; Soga, Tomoyoshi; Pollard, Patrick J

    2013-05-30

    The identification of mutated metabolic enzymes in hereditary cancer syndromes has established a direct link between metabolic dysregulation and cancer. Mutations in the Krebs cycle enzyme, fumarate hydratase (FH), predispose affected individuals to leiomyomas, renal cysts, and cancers, though the respective pathogenic roles of mitochondrial and cytosolic FH isoforms remain undefined. On the basis of comprehensive metabolomic analyses, we demonstrate that FH1-deficient cells and tissues exhibit defects in the urea cycle/arginine metabolism. Remarkably, transgenic re-expression of cytosolic FH ameliorated both renal cyst development and urea cycle defects associated with renal-specific FH1 deletion in mice. Furthermore, acute arginine depletion significantly reduced the viability of FH1-deficient cells in comparison to controls. Our findings highlight the importance of extramitochondrial metabolic pathways in FH-associated oncogenesis and the urea cycle/arginine metabolism as a potential therapeutic target.

  17. Solution NMR of MPS-1 reveals a random coil cytosolic domain structure.

    Science.gov (United States)

    Li, Pan; Shi, Pan; Lai, Chaohua; Li, Juan; Zheng, Yuanyuan; Xiong, Ying; Zhang, Longhua; Tian, Changlin

    2014-01-01

    Caenorhabditis elegans MPS1 is a single transmembrane helical auxiliary subunit that co-localizes with the voltage-gated potassium channel KVS1 in the nematode nervous system. MPS-1 shares high homology with KCNE (potassium voltage-gated channel subfamily E member) auxiliary subunits, and its cytosolic domain was reported to have a serine/threonine kinase activity that modulates KVS1 channel function via phosphorylation. In this study, NMR spectroscopy indicated that the full length and truncated MPS-1 cytosolic domain (134-256) in the presence or absence of n-dodecylphosphocholine detergent micelles adopted a highly flexible random coil secondary structure. In contrast, protein kinases usually adopt a stable folded conformation in order to implement substrate recognition and phosphoryl transfer. The highly flexible random coil secondary structure suggests that MPS-1 in the free state is unstructured but may require a substrate or binding partner to adopt stable structure required for serine/threonine kinase activity.

  18. Mechanism for Alternating Electric Fields Induced-Effects on Cytosolic Calcium

    Institute of Scientific and Technical Information of China (English)

    LUO Ming-Yan; SONG Kun; ZHANG Xu; LEE Imshik

    2009-01-01

    In this work, from the point of calcium ions in the cytosol, we extend a Vm-[Ca2+]cyt model to explain the changes of action potential Vm of the plasma membrane and the calcium concentration in the cytosol [Ca2+]cyt under an alternating electric field in cells. An alternating external electric field may exert an oscillating force to each of the free electrolytes, existing on both sides of the plasma membrane. The mechanism for the alternating electric field induced-effects on Vm and [Ca2+]cyt is elucidated. The simulation results show a correlation between the changes of [Ca2+]cyt and the alternating electric field. When the numerical ratio between the intensity Eo(mV/m) and the frequency ν, (Hz) of the field was about 1-2, the [Ca2+]cyt signal is changed dramatically. The bioactive changes of [Ca2+]cyt appear at low frequency, in the range of 0-100 Hz.

  19. Pin1-Induced Proline Isomerization in Cytosolic p53 Mediates BAX Activation and Apoptosis.

    Science.gov (United States)

    Follis, Ariele Viacava; Llambi, Fabien; Merritt, Parker; Chipuk, Jerry E; Green, Douglas R; Kriwacki, Richard W

    2015-08-20

    The cytosolic fraction of the tumor suppressor p53 activates the apoptotic effector protein BAX to trigger apoptosis. Here we report that p53 activates BAX through a mechanism different from that associated with activation by BH3 only proteins (BIM and BID). We observed that cis-trans isomerization of proline 47 (Pro47) within p53, an inherently rare molecular event, was required for BAX activation. The prolyl isomerase Pin1 enhanced p53-dependent BAX activation by catalyzing cis-trans interconversion of p53 Pro47. Our results reveal a signaling mechanism whereby proline cis-trans isomerization in one protein triggers conformational and functional changes in a downstream signaling partner. Activation of BAX through the concerted action of cytosolic p53 and Pin1 may integrate cell stress signals to induce a direct apoptotic response. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Effect of cysteamine on cytosolic somatostatin binding sites in rabbit duodenal mucosa.

    Science.gov (United States)

    Gonzalez-Guijarro, L; Lopez-Ruiz, M P; Bodegas, G; Prieto, J C; Arilla, E

    1987-04-01

    Administration of cysteamine in rabbits elicited a rapid depletion of both duodenal mucosa and plasma somatostatin. A significant reduction was observed within 5 min, returning toward control values by 150 min. The depletion of somatostatin was associated with an increase in the binding capacity and a decrease in the affinity of both high- and low-affinity binding sites present in cytosol of duodenal mucosa. Incubation of cytosolic fraction from control rabbits with 1 mM cysteamine did not modify somatostatin binding. Furthermore, addition of cysteamine at the time of binding assay did not affect the integrity of 125I-Tyr11-somatostatin. It is concluded that in vivo administration of cysteamine to rabbits depletes both duodenal mucosa and plasma somatostatin and leads to up-regulation of duodenal somatostatin binding sites.

  1. Cytosolic disulfide bond formation in cells infected with large nucleocytoplasmic DNA viruses.

    Science.gov (United States)

    Hakim, Motti; Fass, Deborah

    2010-10-01

    Proteins that have evolved to contain stabilizing disulfide bonds generally fold in a membrane-delimited compartment in the cell [i.e., the endoplasmic reticulum (ER) or the mitochondrial intermembrane space (IMS)]. These compartments contain sulfhydryl oxidase enzymes that catalyze the pairing and oxidation of cysteine residues. In contrast, most proteins in a healthy cytosol are maintained in reduced form through surveillance by NADPH-dependent reductases and the lack of sulfhydryl oxidases. Nevertheless, one of the core functionalities that unify the broad and diverse set of nucleocytoplasmic large DNA viruses (NCLDVs) is the ability to catalyze disulfide formation in the cytosol. The substrates of this activity are proteins that contribute to the assembly, structure, and infectivity of the virions. If the last common ancestor of NCLDVs was present during eukaryogenesis as has been proposed, it is interesting to speculate that viral disulfide bond formation pathways may have predated oxidative protein folding in intracellular organelles.

  2. A Role for Cytosolic Fumarate Hydratase in Urea Cycle Metabolism and Renal Neoplasia

    Directory of Open Access Journals (Sweden)

    Julie Adam

    2013-05-01

    Full Text Available The identification of mutated metabolic enzymes in hereditary cancer syndromes has established a direct link between metabolic dysregulation and cancer. Mutations in the Krebs cycle enzyme, fumarate hydratase (FH, predispose affected individuals to leiomyomas, renal cysts, and cancers, though the respective pathogenic roles of mitochondrial and cytosolic FH isoforms remain undefined. On the basis of comprehensive metabolomic analyses, we demonstrate that FH1-deficient cells and tissues exhibit defects in the urea cycle/arginine metabolism. Remarkably, transgenic re-expression of cytosolic FH ameliorated both renal cyst development and urea cycle defects associated with renal-specific FH1 deletion in mice. Furthermore, acute arginine depletion significantly reduced the viability of FH1-deficient cells in comparison to controls. Our findings highlight the importance of extramitochondrial metabolic pathways in FH-associated oncogenesis and the urea cycle/arginine metabolism as a potential therapeutic target.

  3. Cytosolic ppGpp accumulation induces retarded plant growth and development.

    Science.gov (United States)

    Ihara, Yuta; Masuda, Shinji

    2016-01-01

    In bacteria a second messenger, guanosine 5'-diphosphate 3'-diphosphate (ppGpp), synthesized upon nutrient starvation, controls many gene expressions and enzyme activities, which is necessary for growth under changeable environments. Recent studies have shown that ppGpp synthase and hydrolase are also conserved in eukaryotes, although their functions are not well understood. We recently showed that ppGpp-overaccumulation in Arabidopsis chloroplasts results in robust growth under nutrient-limited conditions, demonstrating that the bacterial-like stringent response at least functions in plastids. To test if ppGpp also functions in the cytosol, we constructed the transgenic Arabidopsis expressing Bacillus subtilis ppGpp synthase gene yjbM. Upon induction of the gene, the mutant synthesizes ∼10-20-fold higher levels of ppGpp, and its fresh weight was reduced to ˜80% that of the wild type. These results indicate that cytosolic ppGpp negatively regulates plant growth and development.

  4. Enhancement of cytosolic tyrosine kinase activity by propylthiouracil-induced hyperplasia in the rat thyroid.

    Science.gov (United States)

    Polychronakos, C; Piscina, R; Fantus, I G

    1989-01-01

    Hyperplasia of the thyroid gland induced by propylthiouracil (PTU) is a well established model of rapid cell proliferation in vivo. Recent evidence indicates that tyrosine kinase activity is associated with growth factor receptors and oncogene protein products and may have an important regulatory action in the control of cell growth. Thus, we examined tyrosine kinase activity in rat thyroid membrane and cytosol preparations at rest and during PTU-induced hyperplasia. Although kinase activity was present in a crude microsomal membrane preparation, no change was observed during thyroid growth. In contrast, tyrosine kinase activity assayed with the artificial substrate poly(Glu,Na:Tyr) 4:1 was present in normal rat thyroid cytosol and increased 2- to 6-fold during the rapid phase of hyperplasia in the first 5-10 days of PTU treatment. It declined to control values by day 15, when the size and DNA content of the thyroid reached a plateau. Preincubation of the cytosolic preparations with several peptides known to bind to and activate growth factor receptor tyrosine kinases failed to enhance the activity, suggesting, along with the cytosolic localization, that the activity was distinct from these receptors. By gel filtration chromatography and polyacrylamide gel electrophoresis, tyrosine kinase activity was associated with a 55 kDa protein. Partial purification over a poly(Glu,Na:Tyr)4:1-Sepharose column, yielded a protein that appeared capable of autophosphorylation. It is suggested that this tyrosine kinase plays a role in mediating the growth-promoting effects of this model of thyroid cell hyperplasia.

  5. Two cytosolic protein families implicated in lipid-binding: main structural and functional features.

    Science.gov (United States)

    Schoentgen, F; Bucquoy, S; Seddiqi, N; Jollès, P

    1993-12-01

    1. According to the important biological role of fatty acids and phospholipids in cell membranes, two cytosolic proteins implicated in their binding and transport in brain were considered, namely: Fatty Acid-Binding Protein and basic 21 kDa protein. 2. They were reviewed as well as their related protein families. 3. Although the two protein groups do not present significant sequence homologies, they share several similar properties and might thus be implicated in common physiological functions.

  6. Type I Interferon is Not Just for Viruses: Cytosolic Sensing of Bacterial Nucleic Acids

    OpenAIRE

    Monroe, Kathryn McGee

    2011-01-01

    Initial detection of invading microorganisms is one of the primary tasks of the innate immune system. However, the molecular mechanisms by which pathogens are recognized remain incompletely understood. I used the intracellular gram-negative Legionella pneumophila to study mechanisms by which the innate immune system distinguishes virulent bacteria from avirulent bacteria. I have made the surprising observation that a cytosolic RNA immunosurveillance pathway (called the RIG-I/MDA5 pathway), ...

  7. Metabolism of minor isoforms of prion proteins: Cytosolic prion protein and transmembrane prion protein

    OpenAIRE

    Song, Zhiqi; Zhao, Deming; Yang, Lifeng

    2013-01-01

    Transmissible spongiform encephalopathy or prion disease is triggered by the conversion from cellular prion protein to pathogenic prion protein. Growing evidence has concentrated on prion protein configuration changes and their correlation with prion disease transmissibility and pathogenicity. In vivo and in vitro studies have shown that several cytosolic forms of prion protein with specific topological structure can destroy intracellular stability and contribute to prion protein pathogenicit...

  8. The Synthesis of [gamma]-Aminobutyric Acid in Response to Treatments Reducing Cytosolic pH.

    Science.gov (United States)

    Crawford, L. A.; Bown, A. W.; Breitkreuz, K. E.; Guinel, F. C.

    1994-03-01

    [gamma]-Aminobutyric acid (GABA) synthesis (L-glutamic acid + H+ -> GABA + CO2) is rapidly stimulated by a variety of stress conditions including hypoxia. Recent literature suggests that GABA production and concomitant H+ consumption ameliorates the cytosolic acidification associated with hypoxia or other stresses. This proposal was investigated using isolated asparagus (Asparagus sprengeri Regel) mesophyll cells. Cell acidification was promoted using hypoxia, H+/L-glutamic acid symport, and addition of butyrate or other permeant weak acids. Sixty minutes of all three treatments stimulated the levels of both intracellular and extracellular GABA by values ranging from 100 to 1800%. At an external pH of 5.0, addition of 5 mM butyrate stimulated an increase in overall GABA level from 3.86 (0.56 [plus or minus] SE) to 20.4 (2.16 [plus or minus] SE) nmol of GABA/106 cell. Butyrate stimulated GABA levels by 200 to 300% within 15 s, and extracellular GABA was observed after 10 min. The acid load due to butyrate addition was assayed by measuring [14C]butyrate uptake. After 45 s of butyrate treatment, H+-consuming GABA production accounted for 45% of the imposed acid load. The cytosolic location of a fluorescent pH probe was confirmed using fluorescent microscopy. Spectrofluorimetry indicated that butyrate addition reduced cytosolic pH by 0.60 units with a half-time of approximately 2 s. The proposal that GABA synthesis ameliorates cytosolic acidification is supported by the data. The possible roles of H+ and Ca2+ in stimulating GABA synthesis are discussed.

  9. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization.

    Science.gov (United States)

    Veeranki, Sudhakar; Choubey, Divaker

    2012-01-01

    The interferon (IFN)-inducible p200-protein family includes structurally related murine (for example, p202a, p202b, p204, and Aim2) and human (for example, AIM2 and IFI16) proteins. All proteins in the family share a partially conserved repeat of 200-amino acid residues (also called HIN-200 domain) in the C-terminus. Additionally, most proteins (except the p202a and p202b proteins) also share a protein-protein interaction pyrin domain (PYD) in the N-terminus. The HIN-200 domain contains two consecutive oligosaccharide/oligonucleotide binding folds (OB-folds) to bind double stranded DNA (dsDNA). The PYD domain in proteins allows interactions with the family members and an adaptor protein ASC. Upon sensing cytosolic dsDNA, Aim2, p204, and AIM2 proteins recruit ASC protein to form an inflammasome, resulting in increased production of proinflammatory cytokines. However, IFI16 protein can sense cytosolic as well as nuclear dsDNA. Interestingly, the IFI16 protein contains a nuclear localization signal (NLS). Accordingly, the initial studies had indicated that the endogenous IFI16 protein is detected in the nucleus and within the nucleus in the nucleolus. However, several recent reports suggest that subcellular localization of IFI16 protein in nuclear versus cytoplasmic (or both) compartment depends on cell type. Given that the IFI16 protein can sense cytosolic as well as nuclear dsDNA and can initiate different innate immune responses (production of IFN-β versus proinflammatory cytokines), here we evaluate the experimental evidence for the regulation of subcellular localization of IFI16 protein in various cell types. We conclude that further studies are needed to understand the molecular mechanisms that regulate the subcellular localization of IFI16 protein. Published by Elsevier Ltd.

  10. An in-cell NMR study of monitoring stress-induced increase of cytosolic Ca2+ concentration in HeLa cells.

    Science.gov (United States)

    Hembram, Dambarudhar Shiba Sankar; Haremaki, Takahiro; Hamatsu, Jumpei; Inoue, Jin; Kamoshida, Hajime; Ikeya, Teppei; Mishima, Masaki; Mikawa, Tsutomu; Hayashi, Nobuhiro; Shirakawa, Masahiro; Ito, Yutaka

    2013-09-06

    Recent developments in in-cell NMR techniques have allowed us to study proteins in detail inside living eukaryotic cells. The lifetime of in-cell NMR samples is however much shorter than that in culture media, presumably because of various stresses as well as the nutrient depletion in the anaerobic environment within the NMR tube. It is well known that Ca(2+)-bursts occur in HeLa cells under various stresses, hence the cytosolic Ca(2+) concentration can be regarded as a good indicator of the healthiness of cells in NMR tubes. In this study, aiming at monitoring the states of proteins resulting from the change of cytosolic Ca(2+) concentration during experiments, human calbindin D9k (P47M+C80) was used as the model protein and cultured HeLa cells as host cells. Time-resolved measurements of 2D (1)H-(15)N SOFAST-HMQC experiments of calbindin D9k (P47M+C80) in HeLa cells showed time-dependent changes in the cross-peak patterns in the spectra. Comparison with in vitro assignments revealed that calbindin D9k (P47M+C80) is initially in the Mg(2+)-bound state, and then gradually converted to the Ca(2+)-bound state. This conversion process initiates after NMR sample preparation. These results showed, for the first time, that cells inside the NMR tube were stressed, presumably because of cell precipitation, the lack of oxygen and nutrients, etc., thereby releasing Ca(2+) into cytosol during the measurements. The results demonstrated that in-cell NMR can monitor the state transitions of stimulated cells through the observation of proteins involved in the intracellular signalling systems. Our method provides a very useful tool for in situ monitoring of the "healthiness" of the cells in various in-cell NMR studies.

  11. Low pH is required for avian sarcoma and leukosis virus Env-dependent viral penetration into the cytosol and not for viral uncoating.

    Science.gov (United States)

    Barnard, Richard J O; Narayan, Shakti; Dornadula, Geethanjali; Miller, Michael D; Young, John A T

    2004-10-01

    A novel entry mechanism has been proposed for the avian sarcoma and leukosis virus (ASLV), whereby interaction with specific cell surface receptors activates or primes the viral envelope glycoprotein (Env), rendering it sensitive to subsequent low-pH-dependent fusion triggering in acidic intracellular organelles. However, ASLV fusion seems to proceed to a lipid mixing stage at neutral pH, leading to the suggestion that low pH might instead be required for a later stage of viral entry such as uncoating (L. J. Earp, S. E. Delos, R. C. Netter, P. Bates, and J. M. White. J. Virol. 77:3058-3066, 2003). To address this possibility, hybrid virus particles were generated with the core of human immunodeficiency virus type 1 (HIV-1), a known pH-independent virus, and with subgroups A or B ASLV Env proteins. Infection of cells by these pseudotyped virions was blocked by lysosomotropic agents, as judged by inhibition of HIV-1 DNA synthesis. Furthermore, by using HIV-1 cores that contain a Vpr-beta-lactamase fusion protein (Vpr-BlaM) to monitor viral penetration into the cytosol, we demonstrated that virions bearing ASLV Env, but not HIV-1 Env, enter the cytosol in a low-pH-dependent manner. This effect was independent of the presence of the cytoplasmic tail of ASLV Env. These studies provide strong support for the model, indicating that low pH is required for ASLV Env-dependent viral penetration into the cytosol and not for viral uncoating.

  12. Polyplex-induced cytosolic nuclease activation leads to differential transgene expression.

    Science.gov (United States)

    Rattan, Rahul; Vaidyanathan, Sriram; Wu, Gordon S-H; Shakya, Anisha; Orr, Bradford G; Banaszak Holl, Mark M

    2013-08-01

    Cytosolic nucleases have been proposed to play an important role in limiting the effectiveness of polyplex-based gene delivery agents. In order to explore the effect of cell membrane disruption on nuclease activation, nuclease activity upon polyplex uptake and localization, and nuclease activity upon gene expression, we employed an oligonucleotide molecular beacon (MB). The MB was incorporated as an integral part of the polymer/DNA polyplex, and two-color flow cytometry experiments were performed to explore the relationship of MB cleavage with propidium iodide (PI) uptake, protein expression, and polyplex uptake. In addition, confocal fluorescence microcopy was performed to examine both polyplex and cleaved MB localization. The impact of cell membrane disruption was also probed using whole-cell patch clamp measurement of the plasma membrane's electrical conductance. Differential activation of cytosolic nuclease was observed with substantial activity for B-PEI and G5 PAMAM dendrimer (G5), less cleavage for jetPEI, and little activity for L-PEI. jetPEI and L-PEI exhibited substantially greater transgene expression, consistent with the lower amounts of MB oligonucleotide cleavage observed. Cytosolic nuclease activity, although dependent on the choice of polymer employed, was not related to the degree of cell plasma membrane disruption that occurred as measured by PI uptake or whole-cell patch clamp.

  13. Dynamic imaging of cytosolic zinc in Arabidopsis roots combining FRET sensors and RootChip technology.

    Science.gov (United States)

    Lanquar, Viviane; Grossmann, Guido; Vinkenborg, Jan L; Merkx, Maarten; Thomine, Sébastien; Frommer, Wolf B

    2014-04-01

    Zinc plays a central role in all living cells as a cofactor for enzymes and as a structural element enabling the adequate folding of proteins. In eukaryotic cells, metals are highly compartmentalized and chelated. Although essential to characterize the mechanisms of Zn(2+) homeostasis, the measurement of free metal concentrations in living cells has proved challenging and the dynamics are difficult to determine. Our work combines the use of genetically encoded Förster resonance energy transfer (FRET) sensors and a novel microfluidic technology, the RootChip, to monitor the dynamics of cytosolic Zn(2+) concentrations in Arabidopsis root cells. Our experiments provide estimates of cytosolic free Zn(2+) concentrations in Arabidopsis root cells grown under sufficient (0.4 nM) and excess (2 nM) Zn(2+) supply. In addition, monitoring the dynamics of cytosolic [Zn(2+) ] in response to external supply suggests the involvement of high- and low-affinity uptake systems as well as release from internal stores. In this study, we demonstrate that the combination of genetically encoded FRET sensors and microfluidics provides an attractive tool to monitor the dynamics of cellular metal ion concentrations over a wide concentration range in root cells. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  14. Structural Studies on Cytosolic Domain of Magnesium Transporter MgtE from Enterococcus faecalis

    Energy Technology Data Exchange (ETDEWEB)

    Ragumani, S.; Sauder, J; Burley, S; Swaminathan, S

    2009-01-01

    Magnesium (Mg{sup 2+}) is an essential element for growth and maintenance of living cells. It acts as a cofactor for many enzymes and is also essential for stability of the plasma membrane. There are two distinct classes of magnesium transporters identified in bacteria that convey Mg{sup 2+} from periplasm to cytoplasm [ATPase-dependent (MgtA and MgtB) and constitutively active (CorA and MgtE)]. Previously published work on Mg{sup 2+} transporters yielded structures of full length MgtE from Thermus thermophilus, determined at 3.5 {angstrom} resolution, and its cytoplasmic domain with and without bond Mg{sup 2+} determined at 2.3 and 3.9 {angstrom} resolution, respectively. Here, they report the crystal structure of the Mg{sup 2+} bound form of the cytosolic portion of MgtE (residues 6-262) from Enterococcus faecalis at 2.2 {angstrom} resolution. The present structure and magnesium bound cytosolic domain structure from T. thermophilus (PDB ID: 2YVY) are structurally similar. Three magnesium binding sites are common to both MgtE full length and the present structure. Their work revealed an additional Mg{sup 2+} binding site in the E. faecalis structure. In this report, they discuss the functional significance of Mg{sup 2+} binding sites in the cytosolic domains of MgtE transporters.

  15. Cytosolic acidification as a signal mediating hyperosmotic stress responses in Dictyostelium discoideum

    Directory of Open Access Journals (Sweden)

    Klein Gérard

    2001-06-01

    Full Text Available Abstract Background Dictyostelium cells exhibit an unusual response to hyperosmolarity that is distinct from the response in other organisms investigated: instead of accumulating compatible osmolytes as it has been described for a wide range of organisms, Dictyostelium cells rearrange their cytoskeleton and thereby build up a rigid network which is believed to constitute the major osmoprotective mechanism in this organism. To gain more insight into the osmoregulation of this amoeba, we investigated physiological processes affected under hyperosmotic conditions in Dictyostelium. Results We determined pH changes in response to hyperosmotic stress using FACS or 31P-NMR. Hyperosmolarity was found to acidify the cytosol from pH 7.5 to 6.8 within 5 minutes, whereas the pH of the endo-lysosomal compartment remained constant. Fluid-phase endocytosis was identified as a possible target of cytosolic acidification, as the inhibition of endocytosis observed under hypertonic conditions can be fully attributed to cytosolic acidification. In addition, a deceleration of vesicle mobility and a decrease in the NTP pool was observed. Conclusion Together, these results indicate that hyperosmotic stress triggers pleiotropic effects, which are partially mediated by a pH signal and which all contribute to the downregulation of cellular activity. The comparison of our results with the effect of hyperosmolarity and intracellular acidification on receptor-mediated endocytosis in mammalian cells reveals striking similarities, suggesting the hypothesis of the same mechanism of inhibition by low internal pH.

  16. Induction of interferon and cell death in response to cytosolic DNA in chicken macrophages.

    Science.gov (United States)

    Vitak, Nazarii; Hume, David A; Chappell, Keith J; Sester, David P; Stacey, Katryn J

    2016-06-01

    Responses to cytosolic DNA can protect against both infectious organisms and the mutagenic effect of DNA integration. Recognition of invading DNA is likely to be fundamental to eukaryotic cellular life, but has been described only in mammals. Introduction of DNA into chicken macrophages induced type I interferon mRNA via a pathway conserved with mammals, requiring the receptor cGAS and the signalling protein STING. A second pathway of cytosolic DNA recognition in mammalian macrophages, initiated by absent in melanoma 2 (AIM2), results in rapid inflammasome-mediated pyroptotic cell death. AIM2 is restricted to mammals. Nevertheless, chicken macrophages underwent lytic cell death within 15 min of DNA transfection. The mouse AIM2-mediated response requires double stranded DNA, but chicken cell death was maintained with denatured DNA. This appears to be a novel form of rapid necrotic cell death, which we propose is an ancient response rendered redundant in mammalian macrophages by the appearance of the AIM2 inflammasome. The retention of these cytosolic DNA responses through evolution, with both conserved and non-conserved mechanisms, suggests a fundamental importance in cellular defence.

  17. Fluorescence detection and imaging of cytosolic calcium oscillations:A comparison of four equipment setups

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Fang; Xiaoting Zhao; Wei Zhou; Jia Li; Qin Liu; Xun Shen; Yoh-ichi Satoh; Zong Jie Cui

    2009-01-01

    The increase in cytosolic calcium concentration has been shown to play an important role in vital cellular functions such as muscle contraction,cell secretion,oocyte fertilization,nerve conduction,embryo development and apoptosis in animals,plants and microbes,and in the invasion of mammalian cells by parasites,bacteria,and viruses.Therefore,live cell imaging of increases in cytosolic calcium concentration in cellular compartments has been investigated intensively.Multiple calcium imaging systems are now available commercially,but when it comes to deciding which model to purchase,it is often hard to obtain enough information for an optimal setup.In this paper,a comparison was made among four fluorescent detection/imaging devices for the detection of cytosolic calcium oscillations induced in rat pancreatic acinar ceils by cholecystokinin and in hepatocytes by phenylephrine.Detailed equipment setup,differences in data acquisition and analysis,and side effects of the excitation light on live cells were analyzed.A list of important factors that should be considered in choosing the optimal equipment are recommended,which will be useful for users of such devices in the future.

  18. Metformin Restores Parkin-Mediated Mitophagy, Suppressed by Cytosolic p53

    Directory of Open Access Journals (Sweden)

    Young Mi Song

    2016-01-01

    Full Text Available Metformin is known to alleviate hepatosteatosis by inducing 5’ adenosine monophosphate (AMP-kinase-independent, sirtuin 1 (SIRT1-mediated autophagy. Dysfunctional mitophagy in response to glucolipotoxicities might play an important role in hepatosteatosis. Here, we investigated the mechanism by which metformin induces mitophagy through restoration of the suppressed Parkin-mediated mitophagy. To this end, our ob/ob mice were divided into three groups: (1 ad libitum feeding of a standard chow diet; (2 intraperitoneal injections of metformin 300 mg/kg; and (3 3 g/day caloric restriction (CR. HepG2 cells were treated with palmitate (PA plus high glucose in the absence or presence of metformin. We detected enhanced mitophagy in ob/ob mice treated with metformin or CR, whereas mitochondrial spheroids were observed in mice fed ad libitum. Metabolically stressed ob/ob mice and PA-treated HepG2 cells showed an increase in expression of endoplasmic reticulum (ER stress markers and cytosolic p53. Cytosolic p53 inhibited mitophagy by disturbing the mitochondrial translocation of Parkin, as demonstrated by immunoprecipitation. However, metformin decreased ER stress and p53 expression, resulting in induction of Parkin-mediated mitophagy. Furthermore, pifithrin-α, a specific inhibitor of p53, increased mitochondrial incorporation into autophagosomes. Taken together, these results indicate that metformin treatment facilitates Parkin-mediated mitophagy rather than mitochondrial spheroid formation by decreasing the inhibitory interaction with cytosolic p53 and increasing degradation of mitofusins.

  19. Metformin Restores Parkin-Mediated Mitophagy, Suppressed by Cytosolic p53.

    Science.gov (United States)

    Song, Young Mi; Lee, Woo Kyung; Lee, Yong-Ho; Kang, Eun Seok; Cha, Bong-Soo; Lee, Byung-Wan

    2016-01-16

    Metformin is known to alleviate hepatosteatosis by inducing 5' adenosine monophosphate (AMP)-kinase-independent, sirtuin 1 (SIRT1)-mediated autophagy. Dysfunctional mitophagy in response to glucolipotoxicities might play an important role in hepatosteatosis. Here, we investigated the mechanism by which metformin induces mitophagy through restoration of the suppressed Parkin-mediated mitophagy. To this end, our ob/ob mice were divided into three groups: (1) ad libitum feeding of a standard chow diet; (2) intraperitoneal injections of metformin 300 mg/kg; and (3) 3 g/day caloric restriction (CR). HepG2 cells were treated with palmitate (PA) plus high glucose in the absence or presence of metformin. We detected enhanced mitophagy in ob/ob mice treated with metformin or CR, whereas mitochondrial spheroids were observed in mice fed ad libitum. Metabolically stressed ob/ob mice and PA-treated HepG2 cells showed an increase in expression of endoplasmic reticulum (ER) stress markers and cytosolic p53. Cytosolic p53 inhibited mitophagy by disturbing the mitochondrial translocation of Parkin, as demonstrated by immunoprecipitation. However, metformin decreased ER stress and p53 expression, resulting in induction of Parkin-mediated mitophagy. Furthermore, pifithrin-α, a specific inhibitor of p53, increased mitochondrial incorporation into autophagosomes. Taken together, these results indicate that metformin treatment facilitates Parkin-mediated mitophagy rather than mitochondrial spheroid formation by decreasing the inhibitory interaction with cytosolic p53 and increasing degradation of mitofusins.

  20. Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase.

    Science.gov (United States)

    Rius, Sebastián P; Casati, Paula; Iglesias, Alberto A; Gomez-Casati, Diego F

    2006-08-01

    Non-phosphorylating glyceraldehyde- 3-phosphate dehydrogenase (NP-GAPDH) is a conserved cytosolic protein found in higher plants. In photosynthetic cells, the enzyme is involved in a shuttle transfer mechanism to export NADPH from the chloroplast to the cytosol. To investigate the role of this enzyme in plant tissues, we characterized a mutant from Arabidopsis thaliana having an insertion at the NP-GAPDH gene locus. The homozygous mutant was determined to be null respect to NP-GAPDH, as it exhibited undetectable levels of both transcription of NP-GAPDH mRNA, protein expression and enzyme activity. Transcriptome analysis demonstrated that the insertion mutant plant shows altered expression of several enzymes involved in carbohydrate metabolism. Significantly, cytosolic phosphorylating (NAD-dependent) glyceraldehyde-3-phosphate dehydrogenase mRNA levels are induced in the mutant, which correlates with an increase in enzyme activity. mRNA levels and enzymatic activity of glucose-6-phosphate dehydrogenase were also elevated, correlating with an increase in NADPH concentration. Moreover, increased ROS levels were measured in the mutant plants. Down-regulation of several glycolytic and photosynthetic genes suggests that NP-GAPDH is important for the efficiency of both metabolic processes. The results presented demonstrate that NP-GAPDH has a relevant role in plant growth and development.

  1. Requirements for Carnitine Shuttle-Mediated Translocation of Mitochondrial Acetyl Moieties to the Yeast Cytosol

    Directory of Open Access Journals (Sweden)

    Harmen M. van Rossum

    2016-05-01

    Full Text Available In many eukaryotes, the carnitine shuttle plays a key role in intracellular transport of acyl moieties. Fatty acid-grown Saccharomyces cerevisiae cells employ this shuttle to translocate acetyl units into their mitochondria. Mechanistically, the carnitine shuttle should be reversible, but previous studies indicate that carnitine shuttle-mediated export of mitochondrial acetyl units to the yeast cytosol does not occur in vivo. This apparent unidirectionality was investigated by constitutively expressing genes encoding carnitine shuttle-related proteins in an engineered S. cerevisiae strain, in which cytosolic acetyl coenzyme A (acetyl-CoA synthesis could be switched off by omitting lipoic acid from growth media. Laboratory evolution of this strain yielded mutants whose growth on glucose, in the absence of lipoic acid, was l-carnitine dependent, indicating that in vivo export of mitochondrial acetyl units to the cytosol occurred via the carnitine shuttle. The mitochondrial pyruvate dehydrogenase complex was identified as the predominant source of acetyl-CoA in the evolved strains. Whole-genome sequencing revealed mutations in genes involved in mitochondrial fatty acid synthesis (MCT1, nuclear-mitochondrial communication (RTG2, and encoding a carnitine acetyltransferase (YAT2. Introduction of these mutations into the nonevolved parental strain enabled l-carnitine-dependent growth on glucose. This study indicates intramitochondrial acetyl-CoA concentration and constitutive expression of carnitine shuttle genes as key factors in enabling in vivo export of mitochondrial acetyl units via the carnitine shuttle.

  2. AM fungal exudates activate MAP kinases in plant cells in dependence from cytosolic Ca(2+) increase.

    Science.gov (United States)

    Francia, Doriana; Chiltz, Annick; Lo Schiavo, Fiorella; Pugin, Alain; Bonfante, Paola; Cardinale, Francesca

    2011-09-01

    The molecular dialogue occurring prior to direct contact between the fungal and plant partners of arbuscular-mycorrhizal (AM) symbioses begins with the release of fungal elicitors, so far only partially identified chemically, which can activate specific signaling pathways in the host plant. We show here that the activation of MAPK is also induced by exudates of germinating spores of Gigaspora margarita in cultured cells of the non-leguminous species tobacco (Nicotiana tabacum), as well as in those of the model legume Lotus japonicus. MAPK activity peaked about 15 min after the exposure of the host cells to the fungal exudates (FE). FE were also responsible for a rapid and transient increase in free cytosolic Ca(2+) in Nicotiana plumbaginifolia and tobacco cells, and pre-treatment with a Ca(2+)-channel blocker (La(3+)) showed that in these cells, MAPK activation was dependent on the cytosolic Ca(2+) increase. A partial dependence of MAPK activity on the common Sym pathway could be demonstrated for a cell line of L. japonicus defective for LjSym4 and hence unable to establish an AM symbiosis. Our results show that MAPK activation is triggered by an FE-induced cytosolic Ca(2+) transient, and that a Sym genetic determinant acts to modulate the intensity and duration of this activity.

  3. Disintegration of lysosomes mediated by GTPgammaS-treated cytosol: possible involvement of phospholipases.

    Science.gov (United States)

    Sai, Y; Matsuda, T; Arai, K; Ohkuma, S

    1998-04-01

    We showed previously that cytosol treated with guanosine 5'-O-(3-thiotriphosphate) (GTP-gammaS) disintegrated lysosomes in vitro [Sai, Y. et al. (1994) Biochem. Biophys. Res. Commun. 198, 869-877] in time-, temperature-, and dose-dependent manners. This also requires ATP, however, the latter can be substituted with deoxy-ATP, ADP, or ATPgammaS, suggesting no requirement of ATP hydrolysis. The lysis was inhibited by several chemical modifiers, including N-ethylmaleimide, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, and by various phospholipase inhibitors (trifluoperazine, p-bromophenacyl bromide, nordihydroguaiaretic acid, W-7, primaquine, compound 48/80, neomycin, and gentamicin), but not by ONO-RS-082, an inhibitor of phospholipase A2. The reaction was also inhibited by phospholipids (phosphatidylinositol, phosphatidylserine, phosphatidic acid, and phosphatidylcholine) and diacylglycerol. Among the phospholipase A2 hydrolysis products of phospholipids, unsaturated fatty acids (oleate, linoleate, and arachidonate) and lysophospholipid (lysophosphatidylcholine) by themselves broke lysosomes down directly, whereas saturated fatty acids (palmitate and stearate) had little effect. We found that GTPgammaS-stimulated cytosolic phospholipase A2 activity was highly sensitive to ONO-RS-082. These results suggest the participation of phospholipase(s), though not cytosolic phospholipase A2, in the GTPgammaS-dependent lysis of lysosomes.

  4. Bacterial cytosolic proteins with a high capacity for Cu(I) that protect against copper toxicity

    Science.gov (United States)

    Vita, Nicolas; Landolfi, Gianpiero; Baslé, Arnaud; Platsaki, Semeli; Lee, Jaeick; Waldron, Kevin J.; Dennison, Christopher

    2016-12-01

    Bacteria are thought to avoid using the essential metal ion copper in their cytosol due to its toxicity. Herein we characterize Csp3, the cytosolic member of a new family of bacterial copper storage proteins from Methylosinus trichosporium OB3b and Bacillus subtilis. These tetrameric proteins possess a large number of Cys residues that point into the cores of their four-helix bundle monomers. The Csp3 tetramers can bind a maximum of approximately 80 Cu(I) ions, mainly via thiolate groups, with average affinities in the (1–2) × 1017 M‑1 range. Cu(I) removal from these Csp3s by higher affinity potential physiological partners and small-molecule ligands is very slow, which is unexpected for a metal-storage protein. In vivo data demonstrate that Csp3s prevent toxicity caused by the presence of excess copper. Furthermore, bacteria expressing Csp3 accumulate copper and are able to safely maintain large quantities of this metal ion in their cytosol. This suggests a requirement for storing copper in this compartment of Csp3-producing bacteria.

  5. VPS35 binds farnesylated N-Ras in the cytosol to regulate N-Ras trafficking

    Science.gov (United States)

    Wiener, Heidi; Su, Wenjuan; Liot, Caroline; Hancock, John F.

    2016-01-01

    Ras guanosine triphosphatases (GTPases) regulate signaling pathways only when associated with cellular membranes through their C-terminal prenylated regions. Ras proteins move between membrane compartments in part via diffusion-limited, fluid phase transfer through the cytosol, suggesting that chaperones sequester the polyisoprene lipid from the aqueous environment. In this study, we analyze the nature of the pool of endogenous Ras proteins found in the cytosol. The majority of the pool consists of farnesylated, but not palmitoylated, N-Ras that is associated with a high molecular weight (HMW) complex. Affinity purification and mass spectrographic identification revealed that among the proteins found in the HMW fraction is VPS35, a latent cytosolic component of the retromer coat. VPS35 bound to N-Ras in a farnesyl-dependent, but neither palmitoyl- nor guanosine triphosphate (GTP)–dependent, fashion. Silencing VPS35 increased N-Ras’s association with cytoplasmic vesicles, diminished GTP loading of Ras, and inhibited mitogen-activated protein kinase signaling and growth of N-Ras–dependent melanoma cells. PMID:27502489

  6. Domain Modeling: NP_005706.1 [SAHG[Archive

    Lifescience Database Archive (English)

    Full Text Available NP_005706.1 chr6 Crystal structure of human cytosolic sulfotransferase SULT1B1 in complex with PAP and resve...ratrol p3ckla_ chr6/NP_005706.1/NP_005706.1_holo_69-370.pdb psi-blast 84N,87Y,107Y,

  7. Domain Modeling: NP_055280.2 [SAHG[Archive

    Lifescience Database Archive (English)

    Full Text Available NP_055280.2 chr4 Crystal structure of human cytosolic sulfotransferase SULT1B1 in complex with PAP and resve...ratrol p3cklb_ chr4/NP_055280.2/NP_055280.2_holo_1-296.pdb blast 21T,24F,45T,46Y,47

  8. An in-cell NMR study of monitoring stress-induced increase of cytosolic Ca{sup 2+} concentration in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Hembram, Dambarudhar Shiba Sankar; Haremaki, Takahiro; Hamatsu, Jumpei; Inoue, Jin; Kamoshida, Hajime; Ikeya, Teppei; Mishima, Masaki [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0373 (Japan); Mikawa, Tsutomu [Cellular and Molecular Biology Unit, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198 (Japan); Hayashi, Nobuhiro [Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B-1, Nagatsuda-chou, Midori-ku, Yokohama, Kanagawa 226-8501 (Japan); Shirakawa, Masahiro [Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Ito, Yutaka, E-mail: ito-yutaka@tmu.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0373 (Japan)

    2013-09-06

    Highlights: •We performed time-resolved NMR observations of calbindin D{sub 9k} in HeLa cells. •Stress-induced increase of cytosolic Ca{sup 2+} concentration was observed by in-cell NMR. •Calbindin D{sub 9k} showed the state-transition from Mg{sup 2+}- to Ca{sup 2+}-bound state in cells. •We provide a useful tool for in situ monitoring of the healthiness of the cells. -- Abstract: Recent developments in in-cell NMR techniques have allowed us to study proteins in detail inside living eukaryotic cells. The lifetime of in-cell NMR samples is however much shorter than that in culture media, presumably because of various stresses as well as the nutrient depletion in the anaerobic environment within the NMR tube. It is well known that Ca{sup 2+}-bursts occur in HeLa cells under various stresses, hence the cytosolic Ca{sup 2+} concentration can be regarded as a good indicator of the healthiness of cells in NMR tubes. In this study, aiming at monitoring the states of proteins resulting from the change of cytosolic Ca{sup 2+} concentration during experiments, human calbindin D{sub 9k} (P47M + C80) was used as the model protein and cultured HeLa cells as host cells. Time-resolved measurements of 2D {sup 1}H–{sup 15}N SOFAST–HMQC experiments of calbindin D{sub 9k} (P47M + C80) in HeLa cells showed time-dependent changes in the cross-peak patterns in the spectra. Comparison with in vitro assignments revealed that calbindin D{sub 9k} (P47M + C80) is initially in the Mg{sup 2+}-bound state, and then gradually converted to the Ca{sup 2+}-bound state. This conversion process initiates after NMR sample preparation. These results showed, for the first time, that cells inside the NMR tube were stressed, presumably because of cell precipitation, the lack of oxygen and nutrients, etc., thereby releasing Ca{sup 2+} into cytosol during the measurements. The results demonstrated that in-cell NMR can monitor the state transitions of stimulated cells through the observation of

  9. Chronic ethanol consumption decreases the phorbol ester binding to membranal but not cytosolic protein kinase C in rat brain.

    Science.gov (United States)

    Pandey, S C; Dwivedi, Y; Piano, M R; Schwertz, D W; Davis, J M; Pandey, G N

    1993-01-01

    We examined the effect of 60 days of ethanol treatment on protein kinase C (PKC) in membrane and cytosolic fractions of the rat cerebral cortex. Membranal and cytosolic PKC were determined by binding technique using [3H]-phorbol 12,13 dibutyrate (PDBU) as radioligand and phorbol 12-myristate 13-acetate (PMA) as displacer. Chronic ethanol consumption resulted in a decrease in the maximum number of binding sites (Bmax) of [3H]-PDBU binding to membranal PKC without significant change in the apparent dissociation constant (KD) in the rat cortex. We also observed that chronic ethanol consumption had no significant effect on Bmax or KD of [3H]-PDBU binding to cytosolic PKC in the rat cerebral cortex. These results suggest that chronic ethanol consumption leads to the down-regulation of brain PKC associated with membrane but not with cytosol.

  10. Cytosolic Proteins From Tobacco Pollen Tubes That Crosslink Microtubules and Actin Filaments In Vitro Are Metabolic Enzymes

    NARCIS (Netherlands)

    Romagnoli, Silvia; Faleri, Claudia; Bini, Luca; Baskin, Tobias I.; Cresti, Mauro

    2010-01-01

    In plant cells, many processes require cooperative action of both microtubules and actin filaments, but proteins mediating interactions between these cytoskeletal members are mostly undiscovered. Here, we attempt to identify such proteins by affinity purification. Cytosol from Nicotiana tabacum (tob

  11. Genetically encoded pH‐indicators reveal activity‐dependent cytosolic acidification of Drosophila motor nerve termini in vivo

    National Research Council Canada - National Science Library

    Rossano, Adam J; Chouhan, Amit K; Macleod, Gregory T

    2013-01-01

    .... •  At the fruit fly larval neuromuscular junction, fluorescent genetically encoded pH‐indicators (GEpHIs) revealed significant cytosolic acidification of presynaptic termini during nerve activity...

  12. G6pd Deficiency Does Not Affect the Cytosolic Glutathione or Thioredoxin Antioxidant Defense in Mouse Cochlea.

    Science.gov (United States)

    White, Karessa; Kim, Mi-Jung; Ding, Dalian; Han, Chul; Park, Hyo-Jin; Meneses, Zaimary; Tanokura, Masaru; Linser, Paul; Salvi, Richard; Someya, Shinichi

    2017-06-07

    Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway; it catalyzes the conversion of glucose-6-phosphate to 6-phosphogluconate and NADP(+) to NADPH and is thought to be the principal source of NADPH for the cytosolic glutathione and thioredoxin antioxidant defense systems. We investigated the roles of G6PD in the cytosolic antioxidant defense in the cochlea of G6pd hypomorphic mice that were backcrossed onto normal-hearing CBA/CaJ mice. Young G6pd-deficient mice displayed a significant decrease in cytosolic G6PD protein levels and activities in the inner ears. However, G6pd deficiency did not affect the cytosolic NADPH redox state, or glutathione or thioredoxin antioxidant defense in the inner ears. No histological abnormalities or oxidative damage was observed in the cochlea of G6pd hemizygous males or homozygous females. Furthermore, G6pd deficiency did not affect auditory brainstem response hearing thresholds, wave I amplitudes or wave I latencies in young males or females. In contrast, G6pd deficiency resulted in increased activities and protein levels of cytosolic isocitrate dehydrogenase 1, an enzyme that catalyzes the conversion of isocitrate to α-ketoglutarate and NADP(+) to NADPH, in the inner ear. In a mouse inner ear cell line, knockdown of Idh1, but not G6pd, decreased cell growth rates, cytosolic NADPH levels, and thioredoxin reductase activities. Therefore, under normal physiological conditions, G6pd deficiency does not affect the cytosolic glutathione or thioredoxin antioxidant defense in mouse cochlea. Under G6pd deficiency conditions, isocitrate dehydrogenase 1 likely functions as the principal source of NADPH for cytosolic antioxidant defense in the cochlea.SIGNIFICANCE STATEMENT Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway; it catalyzes the conversion of glucose-6-phosphate to 6-phosphogluconate and NADP(+) to NADPH and

  13. Expression and cytosolic assembly of the S-layer fusion protein mSbsC-EGFP in eukaryotic cells

    Directory of Open Access Journals (Sweden)

    Veenhuis Marten

    2005-10-01

    Full Text Available Abstract Background Native as well as recombinant bacterial cell surface layer (S-layer protein of Geobacillus (G. stearothermophilus ATCC 12980 assembles to supramolecular structures with an oblique symmetry. Upon expression in E. coli, S-layer self assembly products are formed in the cytosol. We tested the expression and assembly of a fusion protein, consisting of the mature part (aa 31–1099 of the S-layer protein and EGFP (enhanced green fluorescent protein, in eukaryotic host cells, the yeast Saccharomyces cerevisiae and human HeLa cells. Results Upon expression in E. coli the recombinant mSbsC-EGFP fusion protein was recovered from the insoluble fraction. After denaturation by Guanidine (Gua-HCl treatment and subsequent dialysis the fusion protein assembled in solution and yielded green fluorescent cylindric structures with regular symmetry comparable to that of the authentic SbsC. For expression in the eukaryotic host Saccharomyces (S. cerevisiae mSbsC-EGFP was cloned in a multi-copy expression vector bearing the strong constitutive GPD1 (glyceraldehyde-3-phosophate-dehydrogenase promoter. The respective yeast transfomants were only slightly impaired in growth and exhibited a needle-like green fluorescent pattern. Transmission electron microscopy (TEM studies revealed the presence of closely packed cylindrical structures in the cytosol with regular symmetry comparable to those obtained after in vitro recrystallization. Similar structures are observed in HeLa cells expressing mSbsC-EGFP from the Cytomegalovirus (CMV IE promoter. Conclusion The mSbsC-EGFP fusion protein is stably expressed both in the yeast, Saccharomyces cerevisiae, and in HeLa cells. Recombinant mSbsC-EGFP combines properties of both fusion partners: it assembles both in vitro and in vivo to cylindrical structures that show an intensive green fluorescence. Fusion of proteins to S-layer proteins may be a useful tool for high level expression in yeast and HeLa cells of

  14. Study of the role of cytosolic phospholipase A2 alpha in eicosanoid generation and thymocyte maturation in the thymus.

    Directory of Open Access Journals (Sweden)

    Matthieu Rousseau

    Full Text Available The thymus is a primary lymphoid organ, home of maturation and selection of thymocytes for generation of functional T-cells. Multiple factors are involved throughout the different stages of the maturation process to tightly regulate T-cell production. The metabolism of arachidonic acid by cyclooxygenases, lipoxygenases and specific isomerases generates eicosanoids, lipid mediators capable of triggering cellular responses. In this study, we determined the profile of expression of the eicosanoids present in the mouse thymus at different stages of thymocyte development. As the group IVA cytosolic phospholipase A2 (cPLA2α catalyzes the hydrolysis of phospholipids, thereby generating arachidonic acid, we further verified its contribution by including cPLA2α deficient mice to our investigations. We found that a vast array of eicosanoids is expressed in the thymus, which expression is substantially modulated through thymocyte development. The cPLA2α was dispensable in the generation of most eicosanoids in the thymus and consistently, the ablation of the cPLA2α gene in mouse thymus and the culture of thymuses from human newborns in presence of the cPLA2α inhibitor pyrrophenone did not impact thymocyte maturation. This study provides information on the eicosanoid repertoire present during thymocyte development and suggests that thymocyte maturation can occur independently of cPLA2α.

  15. Study of the role of cytosolic phospholipase A2 alpha in eicosanoid generation and thymocyte maturation in the thymus.

    Science.gov (United States)

    Rousseau, Matthieu; Naika, Gajendra S; Perron, Jean; Jacques, Frederic; Gelb, Michael H; Boilard, Eric

    2015-01-01

    The thymus is a primary lymphoid organ, home of maturation and selection of thymocytes for generation of functional T-cells. Multiple factors are involved throughout the different stages of the maturation process to tightly regulate T-cell production. The metabolism of arachidonic acid by cyclooxygenases, lipoxygenases and specific isomerases generates eicosanoids, lipid mediators capable of triggering cellular responses. In this study, we determined the profile of expression of the eicosanoids present in the mouse thymus at different stages of thymocyte development. As the group IVA cytosolic phospholipase A2 (cPLA2α) catalyzes the hydrolysis of phospholipids, thereby generating arachidonic acid, we further verified its contribution by including cPLA2α deficient mice to our investigations. We found that a vast array of eicosanoids is expressed in the thymus, which expression is substantially modulated through thymocyte development. The cPLA2α was dispensable in the generation of most eicosanoids in the thymus and consistently, the ablation of the cPLA2α gene in mouse thymus and the culture of thymuses from human newborns in presence of the cPLA2α inhibitor pyrrophenone did not impact thymocyte maturation. This study provides information on the eicosanoid repertoire present during thymocyte development and suggests that thymocyte maturation can occur independently of cPLA2α.

  16. Germ-Cell-Specific Inflammasome Component NLRP14 Negatively Regulates Cytosolic Nucleic Acid Sensing to Promote Fertilization.

    Science.gov (United States)

    Abe, Takayuki; Lee, Albert; Sitharam, Ramaswami; Kesner, Jordan; Rabadan, Raul; Shapira, Sagi D

    2017-04-18

    Cytosolic sensing of nucleic acids initiates tightly regulated programs to limit infection. Oocyte fertilization represents a scenario wherein inappropriate responses to exogenous yet non-pathogen-derived nucleic acids would have negative consequences. We hypothesized that germ cells express negative regulators of nucleic acid sensing (NAS) in steady state and applied an integrated data-mining and functional genomics approach to identify a rheostat of DNA and RNA sensing-the inflammasome component NLRP14. We demonstrated that NLRP14 interacted physically with the nucleic acid sensing pathway and targeted TBK1 (TANK binding kinase 1) for ubiquitination and degradation. We further mapped domains in NLRP14 and TBK1 that mediated the inhibitory function. Finally, we identified a human nonsense germline variant associated with male sterility that results in loss of NLRP14 function and hyper-responsiveness to nucleic acids. The discovery points to a mechanism of nucleic acid sensing regulation that may be of particular importance in fertilization. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A novel C(28)-hydroxylated lupeolic acid suppresses the biosynthesis of eicosanoids through inhibition of cytosolic phospholipase A(2).

    Science.gov (United States)

    Verhoff, Moritz; Seitz, Stefanie; Northoff, Hinnak; Jauch, Johann; Schaible, Anja M; Werz, Oliver

    2012-09-01

    Eicosanoids are potent lipid mediators derived from phospholipase (PL)-released arachidonic acid (AA) coupled to subsequent metabolism by cyclooxygenase (COX)-1/2 or lipoxygenases (LO) which are involved in a variety of homeostatic biological functions and inflammation. We have investigated three lupeolic acids (LA) from the gum resin of Boswellia carterii for their ability to interfere with eicosanoid biosynthesis in human blood cells. A novel, yet unknown C(28)-hydroxylated LA, that is, 3α-acetoxy-28-hydroxylup-20(29)-en-4β-oic acid (Ac-OH-LA) was found to inhibit the biosynthesis of COX-, 5-LO- and 12-LO-derived eicosanoids from endogenous AA in activated platelets, neutrophils, and monocytes from human blood with consistent IC(50) values of 2.3-6.9 μM. In contrast, two other LAs lacking the C(28)-OH moiety were essentially inactive in this respect. Inhibition of eicosanoids by Ac-OH-LA correlated with reduced release of AA in intact cells. When AA was exogenously provided as substrate for cellular eicosanoid biosynthesis the inhibitory effects of Ac-OH-LA were essentially reversed, even though some inhibition of 5-LO and COX-1 product formation still remained. Finally, by means of a cell-free phospholipid hydrolysis assay using human recombinant cytosolic PLA(2)α, we show that Ac-OH-LA may directly interfere with cPLA(2)α activity (IC(50) = 3.6 μM). Together, we identified a novel, naturally occuring C(28)-hydroxylated LA which acts as efficient inhibitor of cPLA(2)α and consequently suppresses eicosanoid biosynthesis in intact cells.

  18. Monitoring change in refractive index of cytosol of animal cells on affinity surface under osmotic stimulus for label-free measurement of viability.

    Science.gov (United States)

    Park, Jina; Jin, Sung Il; Kim, Hyung Min; Ahn, Junhyoung; Kim, Yeon-Gu; Lee, Eun Gyo; Kim, Min-Gon; Shin, Yong-Beom

    2015-02-15

    We demonstrated that a metal-clad waveguide (MCW)-based biosensor can be applied to label-free measurements of viability of adherent animal cells with osmotic stimulation in real time. After Chinese hamster ovary (CHO) and human embryonic kidney cell 293 (HEK293) cells were attached to a Concanavalin A (Con A)-modified sensor surface, the magnitudes of cell responses to non-isotonic stimulation were compared between live and dead cells. The live cells exhibited a change in the refractive index (RI) of the cytosol caused by a redistribution of water through the cell membrane, which was induced by the osmotic stimulus, but the dead cells did not. Moreover, the normalized change in the RI measured via the MCW sensor was linearly proportional to the viability of attached cells and the resolution in monitoring cell viability was about 0.079%. Therefore, the viability of attached animal cells can be measured without labels by observing the relative differences in the RI of cytosol in isotonic and non-isotonic buffers. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Crystal structures of Plasmodium falciparum cytosolic tryptophanyl-tRNA synthetase and its potential as a target for structure-guided drug design.

    Science.gov (United States)

    Koh, Cho Yeow; Kim, Jessica E; Napoli, Alberto J; Verlinde, Christophe L M J; Fan, Erkang; Buckner, Frederick S; Van Voorhis, Wesley C; Hol, Wim G J

    2013-05-01

    Malaria, most commonly caused by the parasite Plasmodium falciparum, is a devastating disease that remains a large global health burden. Lack of vaccines and drug resistance necessitate the continual development of new drugs and exploration of new drug targets. Due to their essential role in protein synthesis, aminoacyl-tRNA synthetases are potential anti-malaria drug targets. Here we report the crystal structures of P. falciparum cytosolic tryptophanyl-tRNA synthetase (Pf-cTrpRS) in its ligand-free state and tryptophanyl-adenylate (WAMP)-bound state at 2.34 Å and 2.40 Å resolutions, respectively. Large conformational changes are observed when the ligand-free protein is bound to WAMP. Multiple residues, completely surrounding the active site pocket, collapse onto WAMP. Comparison of the structures to those of human cytosolic TrpRS (Hs-cTrpRS) provides information about the possibility of targeting Pf-cTrpRS for inhibitor development. There is a high degree of similarity between Pf-cTrpRS and Hs-cTrpRS within the active site. However, the large motion that Pf-cTrpRS undergoes during transitions between different functional states avails an opportunity to arrive at compounds which selectively perturb the motion, and may provide a starting point for the development of new anti-malaria therapeutics. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Electric pulses: a flexible tool to manipulate cytosolic calcium concentrations and generate spontaneous-like calcium oscillations in mesenchymal stem cells

    Science.gov (United States)

    de Menorval, Marie-Amelie; Andre, Franck M.; Silve, Aude; Dalmay, Claire; Français, Olivier; Le Pioufle, Bruno; Mir, Lluis M.

    2016-01-01

    Human adipose mesenchymal stem cells (haMSCs) are multipotent adult stem cells of great interest in regenerative medicine or oncology. They present spontaneous calcium oscillations related to cell cycle progression or differentiation but the correlation between these events is still unclear. Indeed, it is difficult to mimic haMSCs spontaneous calcium oscillations with chemical means. Pulsed electric fields (PEFs) can permeabilise plasma and/or organelles membranes depending on the applied pulses and therefore generate cytosolic calcium peaks by recruiting calcium from the external medium or from internal stores. We show that it is possible to mimic haMSCs spontaneous calcium oscillations (same amplitude, duration and shape) using 100 μs PEFs or 10 ns PEFs. We propose a model that explains the experimental situations reported. PEFs can therefore be a flexible tool to manipulate cytosolic calcium concentrations. This tool, that can be switched on and off instantaneously, contrary to chemicals agents, can be very useful to investigate the role of calcium oscillations in cell physiology and/or to manipulate cell fate. PMID:27561994

  1. Alterations in cytosol free calcium in horseradish roots simultaneously exposed to lanthanum(III) and acid rain.

    Science.gov (United States)

    Zhang, Xuanbo; Wang, Lihong; Zhou, Anhua; Zhou, Qing; Huang, Xiaohua

    2016-04-01

    The extensive use of rare earth elements (REEs) has increased their environmental levels. REE pollution concomitant with acid rain in many agricultural regions can affect crop growth. Cytosol free calcium ions (Ca(2+)) play an important role in almost all cellular activities. However, no data have been reported regarding the role of cytosol free Ca(2+) in plant roots simultaneously exposed to REE and acid rain. In this study, the effects of exposures to lanthanum(III) and acid rain, independently and in combination, on cytosol free Ca(2+) levels, root activity, metal contents, biomass, cytosol pH and La contents in horseradish roots were investigated. The simultaneous exposures to La(III) and acid rain increased or decreased the cytosol free Ca(2+) levels, depending on the concentration of La(III), and these effects were more evident than independent exposure to La(III) or acid rain. In combined exposures, cytosol free Ca(2+) played an important role in the regulation of root activity, metal contents and biomass. These roles were closely related to La(III) dose, acid rain strength and treatment mode (independent exposure or simultaneous exposure). A low concentration of La(III) (20 mg L(-1)) could alleviate the adverse effects on the roots caused by acid rain, and the combined exposures at higher concentrations of La(III) and acid rain had synergic effects on the roots.

  2. A Genetic Screen Reveals that Synthesis of 1,4-Dihydroxy-2-Naphthoate (DHNA), but Not Full-Length Menaquinone, Is Required for Listeria monocytogenes Cytosolic Survival.

    Science.gov (United States)

    Chen, Grischa Y; McDougal, Courtney E; D'Antonio, Marc A; Portman, Jonathan L; Sauer, John-Demian

    2017-03-21

    Through unknown mechanisms, the host cytosol restricts bacterial colonization; therefore, only professional cytosolic pathogens are adapted to colonize this host environment. Listeria monocytogenes is a Gram-positive intracellular pathogen that is highly adapted to colonize the cytosol of both phagocytic and nonphagocytic cells. To identify L. monocytogenes determinants of cytosolic survival, we designed and executed a novel screen to isolate L. monocytogenes mutants with cytosolic survival defects. Multiple mutants identified in the screen were defective for synthesis of menaquinone (MK), an essential molecule in the electron transport chain. Analysis of an extensive set of MK biosynthesis and respiratory chain mutants revealed that cellular respiration was not required for cytosolic survival of L. monocytogenes but that, instead, synthesis of 1,4-dihydroxy-2-naphthoate (DHNA), an MK biosynthesis intermediate, was essential. Recent discoveries showed that modulation of the central metabolism of both host and pathogen can influence the outcome of host-pathogen interactions. Our results identify a potentially novel function of the MK biosynthetic intermediate DHNA and specifically highlight how L. monocytogenes metabolic adaptations promote cytosolic survival and evasion of host immunity.IMPORTANCE Cytosolic bacterial pathogens, such as Listeria monocytogenes and Francisella tularensis, are exquisitely evolved to colonize the host cytosol in a variety of cell types. Establishing an intracellular niche shields these pathogens from effectors of humoral immunity, grants access to host nutrients, and is essential for pathogenesis. Through yet-to-be-defined mechanisms, the host cytosol restricts replication of non-cytosol-adapted bacteria, likely through a combination of cell autonomous defenses (CADs) and nutritional immunity. Utilizing a novel genetic screen, we identified determinants of L. monocytogenes cytosolic survival and virulence and identified a role for

  3. Mechanistic insights into the inhibitory effects of palmitoylation on cytosolic thioredoxin reductase and thioredoxin.

    Science.gov (United States)

    Qin, Huijun; Liang, Wei; Xu, Zhiyu; Ye, Fei; Li, Xiaoming; Zhong, Liangwei

    2015-03-01

    Overnutrition can lead to oxidative stress, but its underlying mechanism remains unclear. In this study, we report that human liver-derived HepG2 cells utilize cytosolic thioredoxin reductase (TrxR1) and thioredoxin (hTrx1) to defend against the high glucose/palmitate-mediated increase in reactive oxygen species. However, enhanced TrxR1/hTrx1 palmitoylation occurs in parallel with a decrease in their activities under the conditions studied here. An autoacylation process appears to be the major mechanism for generating palmitoylated TrxR1/Trx1 in HepG2 cells. A novel feature of this post-translational modification is the covalent inhibition of TrxR1/hTrx1 by palmitoyl-CoA, an activated form of palmitate. The palmitoyl-CoA/TrxR1 reaction is NADPH-dependent and produces palmitoylated TrxR1 at an active site selenocysteine residue. Conversely, S-palmitoylation occurs at the structural Cys62/Cys69/Cys72 residues but not the active site Cys32/Cys35 residues of hTrx1. Palmitoyl-CoA concentration and the period of incubation with TrxR1/hTrx1 are important factors that influence the inhibitory efficacy of palmitoyl-CoA on TrxR1/hTrx1. Thus, an increase in TrxR1/hTrx1 palmitoylation could be a potential consequence of high glucose/palmitate. The time-dependent inactivation of the NADPH-TrxR1-Trx1 system by palmitoyl-CoA occurs in a biphasic manner - a fast phase followed by a slow phase. Kinetic analysis suggests that the fast phase is consistent with a fast and reversible association between TrxR1/hTrx1 and palmitoyl-CoA. The slow phase is correlated with a slow and irreversible inactivation, in which selenolate/thiolate groups nucleophilically attack the α-carbon of bound palmitoyl-CoA, leading to the formation of thioester/selenoester bonds. hTrx1 can enhance rate of fast phase but limits the rate of slow phase when it is present in a preincubation mixture containing NADPH, TrxR1 and palmitoyl-CoA. Therefore, hTrx1 may provide palmitoylation sites or partially protect

  4. 烟熏肉类摄入和磺基转移酶基因多态性与乳腺癌患病风险的病例对照研究%A case-control study on association of SULT1A1 polymorphism and smoked meat intake with breast cancer risk

    Institute of Scientific and Technical Information of China (English)

    陶苹; 李卉; 王琼; 曹兰清; 李佳圆; 杨非; 王远萍

    2012-01-01

    Objective To assess the association of smoked meat intake,SULT1A1 polymorphism as well as their combined effects with breast cancer risk.Methods A total of 400 newly diagnosed breast cancer cases from a cancer hospital in Sichuan province and 400 healthy controls from participants of physical examination in a hospital in Chengdu city were recruited from May 2007 to July 2009.A valid questionnaire was designed to collect their demographic characteristics and breast cancer risk factors.Daily intake of foods was collected using semi-quantitative frequency questionnaire and then the daily intake of smoked meat was calculated and transformed to energy-adjusted smoked meat intake by the residual method.Gene sequencing was used to analyze SULT1A1 Arg213His genotypes.Multivariable conditional logistic regression was used to estimate adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs).Results The energy-adjusted daily intake of smoked meat ( Median ( P25,P75 ) ) was 8.65 (3.63,18.44) g/d in cases and 4.44(0.19,8.71 ) g/d in controls.The frequency of SULT1A1 variant allele was 14.75% (59/400) among cases and 12.75% (51/400) among controls.High energy-adjusted daily intake of smoked meat ( ≥4.44 g/d)was significantly associated with breast cancer risk among premenopausal ( OR =2.31,95% CI:1.46-3.66 ) and postmenopausal subjects (OR =3.13,95% CI:1.89-5.17 ).High energy-adjusted daily intake of smoked meal combined with carrying SULT1A1 variant allele elevated breast cancer risk among premenopausal (OR =3.31,95% CI:1.66-6.62) and postmenopausal subjects ( OR =3.81,95% CI:1.79-8.10).Conclusion High smoked meat intake contributes to high risk of breast cancer.SULT1A1 variant allele increases breast cancer risk among subjects who were exposed to high smoked meat intake.%目的 分析磺基转移酶1A1( Sulfotransferase 1A1,SULT1A1)基因多态性、烟熏肉类摄入及二者联合作用与乳腺癌的关系.方法 收集四川省某肿瘤医院2007

  5. Cytosolic CARP promotes angiotensin II- or pressure overload-induced cardiomyocyte hypertrophy through calcineurin accumulation.

    Directory of Open Access Journals (Sweden)

    Ci Chen

    Full Text Available The gene ankyrin repeat domain 1 (Ankrd1 is an enigmatic gene and may exert pleiotropic function dependent on its expression level, subcellular localization and even types of pathological stress, but it remains unclear how these factors influence the fate of cardiomyocytes. Here we attempted to investigate the role of CARP on cardiomyocyte hypertrophy. In neonatal rat ventricular cardiomyocytes (NRVCs, angiotensin II (Ang II increased the expression of both calpain 1 and CARP, and also induced cytosolic translocation of CARP, which was abrogated by a calpain inhibitor. In the presence of Ang-II in NRVCs, infection with a recombinant adenovirus containing rat Ankrd1 cDNA (Ad-Ankrd1 enhanced myocyte hypertrophy, the upregulation of atrial natriuretic peptide and β-myosin heavy chain genes and calcineurin proteins as well as nuclear translocation of nuclear factor of activated T cells. Cyclosporin A attenuated Ad-Ankrd1-enhanced cardiomyocyte hypertrophy. Intra-myocardial injection of Ad-Ankrd1 in mice with transverse aortic constriction (TAC markedly increased the cytosolic CARP level, the heart weight/body weight ratio, while short hairpin RNA targeting Ankrd1 inhibited TAC-induced hypertrophy. The expression of calcineurin was also significantly increased in Ad-Ankrd1-infected TAC mice. Olmesartan (an Ang II receptor antagonist prevented the upregulation of CARP in both Ang II-stimulated NRVCs and hearts with pressure overload. These findings indicate that overexpression of Ankrd1 exacerbates pathological cardiac remodeling through the enhancement of cytosolic translocation of CARP and upregulation of calcineurin.

  6. Cytosolic peroxidases protect the lysosome of bloodstream African trypanosomes from iron-mediated membrane damage.

    Directory of Open Access Journals (Sweden)

    Corinna Hiller

    2014-04-01

    Full Text Available African trypanosomes express three virtually identical non-selenium glutathione peroxidase (Px-type enzymes which preferably detoxify lipid-derived hydroperoxides. As shown previously, bloodstream Trypanosoma brucei lacking the mitochondrial Px III display only a weak and transient proliferation defect whereas parasites that lack the cytosolic Px I and Px II undergo extremely fast lipid peroxidation and cell lysis. The phenotype can completely be rescued by supplementing the medium with the α-tocopherol derivative Trolox. The mechanism underlying the rapid cell death remained however elusive. Here we show that the lysosome is the origin of the cellular injury. Feeding the px I-II knockout parasites with Alexa Fluor-conjugated dextran or LysoTracker in the presence of Trolox yielded a discrete lysosomal staining. Yet upon withdrawal of the antioxidant, the signal became progressively spread over the whole cell body and was completely lost, respectively. T. brucei acquire iron by endocytosis of host transferrin. Supplementing the medium with iron or transferrin induced, whereas the iron chelator deferoxamine and apo-transferrin attenuated lysis of the px I-II knockout cells. Immunofluorescence microscopy with MitoTracker and antibodies against the lysosomal marker protein p67 revealed that disintegration of the lysosome precedes mitochondrial damage. In vivo experiments confirmed the negligible role of the mitochondrial peroxidase: Mice infected with px III knockout cells displayed only a slightly delayed disease development compared to wild-type parasites. Our data demonstrate that in bloodstream African trypanosomes, the lysosome, not the mitochondrion, is the primary site of oxidative damage and cytosolic trypanothione/tryparedoxin-dependent peroxidases protect the lysosome from iron-induced membrane peroxidation. This process appears to be closely linked to the high endocytic rate and distinct iron acquisition mechanisms of the infective

  7. Cytosolic nucleotides block and regulate the Arabidopsis vacuolar anion channel AtALMT9.

    Science.gov (United States)

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-09-12

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al(3+) to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell.

  8. Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses.

    Science.gov (United States)

    Noël, Laurent D; Cagna, Giuseppe; Stuttmann, Johannes; Wirthmüller, Lennart; Betsuyaku, Shigeyuki; Witte, Claus-Peter; Bhat, Riyaz; Pochon, Nathalie; Colby, Thomas; Parker, Jane E

    2007-12-01

    The conserved eukaryotic protein SGT1 (for Suppressor of G2 allele of skp1) has characteristics of an HSP90 (for heat shock protein 90 kD) cochaperone and in plants regulates hormone responses and Resistance gene-triggered immunity. We affinity-purified SGT1-interacting proteins from Arabidopsis thaliana leaf extracts and identified by mass spectrometry cytosolic heat shock cognate 70 (HSC70) chaperones as the major stable SGT1 interactors. Arabidopsis SGT1a and SGT1b proteins associate with HSC70 in vivo and distribute with HSC70 in the cytosol and nucleus. An intact C-terminal SGT1-specific (SGS) domain that is required for all known SGT1b functions in immunity and development is needed for HSC70 interaction and for the nuclear accumulation of SGT1b. Interaction assays of transiently expressed proteins or their domains in Nicotiana benthamiana point to a role of SGT1 as a HSC70 cofactor. Expression of two HSC70 isoforms is upregulated by pathogen challenge, and while loss of function of individual cytosolic HSC70 genes has no defense phenotype, HSC70-1 overexpression disables resistance to virulent and avirulent pathogens. Moreover, mutations in SGT1b lead to a similar degree of heat shock tolerance as deregulation of HSC70-1. We conclude that an HSC70-SGT1 chaperone complex is important for multiple plant environmental responses and that the evolutionarily conserved SGS domain of SGT1 is a key determinant of the HSC70-SGT1 association.

  9. The role of a cytosolic superoxide dismutase in barley-pathogen interactions

    KAUST Repository

    Lightfoot, Damien J.

    2016-03-19

    Reactive oxygen species (ROS), including superoxide (O2-HO2) and hydrogen peroxide (H2O2), are differentially produced during resistance responses to biotrophic pathogens and during susceptible responses to necrotrophic and hemi-biotrophic pathogens. Superoxide dismutase (SOD) is responsible for the catalysis of the dismutation of O2-HO2 to H2O2, regulating the redox status of plant cells. Increased SOD activity has been correlated previously with resistance in barley to the hemi-biotrophic pathogen Pyrenophora teres f. teres (Ptt, the causal agent of the net form of net blotch disease), but the role of individual isoforms of SOD has not been studied. A cytosolic CuZnSOD, HvCSD1, was isolated from barley and characterized as being expressed in tissue from different developmental stages. HvCSD1 was up-regulated during the interaction with Ptt and to a greater extent during the resistance response. Net blotch disease symptoms and fungal growth were not as pronounced in transgenic HvCSD1 knockdown lines in a susceptible background (cv. Golden Promise), when compared with wild-type plants, suggesting that cytosolic O2-HO2 contributes to the signalling required to induce a defence response to Ptt. There was no effect of HvCSD1 knockdown on infection by the hemi-biotrophic rice blast pathogen Magnaporthe oryzae or the biotrophic powdery mildew pathogen Blumeria graminis f. sp. hordei, but HvCSD1 also played a role in the regulation of lesion development by methyl viologen. Together, these results suggest that HvCSD1 could be important in the maintenance of the cytosolic redox status and in the differential regulation of responses to pathogens with different lifestyles.

  10. A cytosolic juxtamembrane interface modulates plexin A3 oligomerization and signal transduction.

    Directory of Open Access Journals (Sweden)

    Rachael Barton

    Full Text Available Plexins (plxns are transmembrane (TM receptors involved in the guidance of vascular, lymphatic vessel, and neuron growth as well as cancer metastasis. Plxn signaling results in cytosolic GTPase-activating protein activity, and previous research implicates dimerization as important for activation of plxn signaling. Purified, soluble plxn extracellular and cytosolic domains exhibit only weak homomeric interactions, suggesting a role for the plxn TM and juxtamembrane regions in homooligomerization. In this study, we consider a heptad repeat in the Danio rerio PlxnA3 cytosolic juxtamembrane domain (JM for its ability to influence PlxnA3 homooligomerization in TM-domain containing constructs. Site-directed mutagenesis in conjunction with the AraTM assay and bioluminescent energy transfer (BRET² suggest an interface involving a JM heptad repeat, in particular residue M1281, regulates PlxnA3 homomeric interactions when examined in constructs containing an ectodomain, TM and JM domain. In the presence of a neuropilin-2a co-receptor and semaphorin 3F ligand, disruption to PlxnA3 homodimerization caused by an M1281F mutation is eliminated, suggesting destabilization of the PlxnA3 homodimer in the JM is not sufficient to disrupt co-receptor complex formation. In contrast, enhanced homodimerization of PlxnA3 caused by mutation M1281L remains even in the presence of ligand semaphorin 3F and co-receptor neuropilin-2a. Consistent with this pattern of PlxnA3 dimerization in the presence of ligand and co-receptor, destabilizing mutations to PlxnA3 homodimerization (M1281F are able to rescue motor patterning defects in sidetracked zebrafish embryos, whereas mutations that enhance PlxnA3 homodimerization (M1281L are not. Collectively, our results indicate the JM heptad repeat, in particular residue M1281, forms a switchable interface that modulates both PlxnA3 homomeric interactions and signal transduction.

  11. Characterization of a cytosolic nucleoside diphosphate kinase associated with cell division and growth in potato.

    Science.gov (United States)

    Dorion, Sonia; Matton, Daniel P; Rivoal, Jean

    2006-06-01

    A cDNA encoding Solanum chacoense cytosolic NDPK (NDPK1, EC 2.7.4.6) was isolated. The open reading frame encoded a 148 amino acid protein that shares homology with other cytosolic NDPKs including a conserved N-terminal domain. S. chacoense NDPK1 was expressed in Escherichia coli as a 6xHis-tagged protein and purified by affinity chromatography. The recombinant protein exhibited a pattern of abortive complex formation suggesting that the enzyme is strongly regulated by the NTP/NDP ratio. A polyclonal antibody generated against recombinant NDPK1 was specific for the cytosolic isoform in Solanum tuberosum as shown from immunoprecipitation experiments and immunoblot analysis of chloroplasts and mitochondria preparations. NDPK activity and NDPK1 protein were found at different levels in various vegetative and reproductive tissues. DEAE fractogel analyses of NDPK activity in root tips, leaves, tubers and cell cultures suggest that NDPK1 constitutes the bulk of extractable NDPK activity in all these organs. NDPK activity and NDPK1 protein levels raised during the exponential growth phase of potato cell cultures whereas no rise in activity or NDPK1 protein was observed when sucrose concentration in the culture was manipulated to limit growth. Activity measurements, immunoblot analysis as well as immunolocalization experiments performed on potato root tips and shoot apical buds demonstrated that NDPK1 was predominantly localized in the meristematic zones and provascular tissues of the apical regions. These data suggest that NDPK1 plays a specific role in the supply of UTP during early growth of plant meristematic and provascular tissues.

  12. Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing.

    Science.gov (United States)

    Mout, Rubul; Ray, Moumita; Yesilbag Tonga, Gulen; Lee, Yi-Wei; Tay, Tristan; Sasaki, Kanae; Rotello, Vincent M

    2017-03-28

    Genome editing through the delivery of CRISPR/Cas9-ribonucleoprotein (Cas9-RNP) reduces unwanted gene targeting and avoids integrational mutagenesis that can occur through gene delivery strategies. Direct and efficient delivery of Cas9-RNP into the cytosol followed by translocation to the nucleus remains a challenge. Here, we report a remarkably highly efficient (∼90%) direct cytoplasmic/nuclear delivery of Cas9 protein complexed with a guide RNA (sgRNA) through the coengineering of Cas9 protein and carrier nanoparticles. This construct provides effective (∼30%) gene editing efficiency and opens up opportunities in studying genome dynamics.

  13. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels

    DEFF Research Database (Denmark)

    Gopal, Sandeep; Søgaard, Pernille; Multhaupt, Hinke A B;

    2015-01-01

    show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7...... with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan-TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement...

  14. In situ fiber-optical monitoring of cytosolic calcium in tissue explant cultures

    CERN Document Server

    Ryser, Manuel; Geiser, Marianne; Frenz, Martin; Rička, Jaro

    2014-01-01

    We present a fluorescence-lifetime based method for monitoring cell and tissue activity in situ, during cell culturing and in the presence of a strong autofluorescence background. The miniature fiber-optic probes are easily incorporated in the tight space of a cell culture chamber or in an endoscope. As a first application we monitored the cytosolic calcium levels in porcine tracheal explant cultures using the Calcium Green-5N (CG5N) indicator. Despite the simplicity of the optical setup we are able to detect changes of calcium concentration as small as 2.5 nM, with a monitoring time resolution of less than 1 s.

  15. β-Turn Sequences Promote Stability of Peptide Substrates for Kinases within the Cytosolic Environment

    OpenAIRE

    Yang, Shan; Proctor, Angela; Cline, Lauren L.; Houston, Kaiulani M.; Waters, Marcey L.; Allbritton, Nancy L.

    2013-01-01

    A strategy was developed to extend the lifetime of an peptide-based substrate for Abl kinase in the cytosolic environment. Small β-turn structures were added to the peptide’s N-terminus to block entry into peptidase catalytic sites. The influence of the size of the β-turn and two covalent cross-linking strategies on the rate of hydrolysis was assessed. The most peptidase-resistant substrate was degraded at a rate of 0.6 pmol mg−1 s−1 and possessed a half-life of 20.3 ± 1.7 min in a Baf/BCR-AB...

  16. Cytosolic iron-sulfur cluster assembly (CIA) system: factors, mechanism, and relevance to cellular iron regulation.

    Science.gov (United States)

    Sharma, Anil K; Pallesen, Leif J; Spang, Robert J; Walden, William E

    2010-08-27

    FeS cluster biogenesis is an essential process in virtually all forms of life. Complex protein machineries that are conserved from bacteria through higher eukaryotes facilitate assembly of the FeS cofactor in proteins. In the last several years, significant strides have been made in our understanding of FeS cluster assembly and the functional overlap of this process with cellular iron homeostasis. This minireview summarizes the present understanding of the cytosolic iron-sulfur cluster assembly (CIA) system in eukaryotes, with a focus on information gained from studies in budding yeast and mammalian systems.

  17. Noise-Induced Bursting and Coherence Resonance in Minimal Cytosolic Ca2+ Oscillation Model

    Institute of Scientific and Technical Information of China (English)

    JIA Ya; YANG Li-Jian; WU Dan; LIU Quan; ZHAN Xuan

    2004-01-01

    @@ A stochastic calcium oscillation model based on the minimal calcium oscillation model is investigated by numerical computation. When the extracellular stimulation is sub-threshold and random, the oscillations of cytosolic calcium show complex behaviour: a bursting-like phenomenon induced by noise, that is, the phase of glomerate spikes are separated by phase of quiescence (but fluctuations in the baseline values of calcium with small amplitude during the silent phase), in a pattern that occurs at irregular inter,ls. By using the histogram of interspike intervals of calcium concentration spikes, it is found that the noise-induced coherence resonance phenomenon occurs at the cellular level.

  18. Simultaneous cytosolic delivery of a chemotherapeutic and siRNA using nanoparticle-stabilized nanocapsules

    Science.gov (United States)

    Hardie, Joseph; Jiang, Ying; Tetrault, Emily R.; Ghazi, Phaedra C.; Yesilbag Tonga, Gulen; Farkas, Michelle E.; Rotello, Vincent M.

    2016-09-01

    We report on nanoparticle-stabilized capsules (NPSCs) as a platform for the co-delivery of survivin-targeted siRNA and tamoxifen. These capsules feature an inner oil core that provides a carrier for tamoxifen, and is coated on the surface with positively charged nanoparticles self-assembled with siRNA. The multifaceted chemical nature of the NPSC system enables the simultaneous delivery of both payloads directly into the cytosol in vitro. The NPSC co-delivery of tamoxifen and survivin-targeted siRNA into breast cancer cells disables the pathways that inhibit apoptosis, resulting in enhanced breast cell death.

  19. Inhibition of Insulin Degradation by Hepatoma Cells after Microinjection of Monoclonal Antibodies to a Specific Cytosolic Protease

    Science.gov (United States)

    Shii, Kozui; Roth, Richard A.

    1986-06-01

    Four monoclonal antibodies were identified by their ability to bind to 125I-labeled insulin covalently linked to a cytosolic insulin-degrading enzyme from human erythrocytes. All four antibodies were also found to remove more than 90% of the insulin-degrading activity from erythrocyte extracts. These antibodies were shown to be directed to different sites on the enzyme by mapping studies and by their various properties. Two antibodies recognized the insulin-degrading enzyme from rat liver; one inhibited the erythrocyte enzyme directly; and two recognized the enzyme after gel electrophoresis and transfer to nitrocellulose filters. By this latter procedure and immunoprecipitation from metabolically labeled cells, the enzyme from a variety of tissues was shown to be composed of a single polypeptide chain of apparent Mr 110,000. Finally, these monoclonal antibodies were microinjected into the cytoplasm of a human hepatoma cell line to assess the contribution of this enzyme to insulin degradation in the intact cell. In five separate experiments, preloading of cells with these monoclonal antibodies resulted in an inhibition of insulin degradation of 18-54% (average 39%) and increased the amount of 125I-labeled insulin associated with the cells. In contrast, microinjection of control antibody or an extraneous monoclonal antibody had no effect on insulin degradation or on the amount of insulin associated with the cells. Moreover, the monoclonal antibodies to the insulin-degrading enzyme caused no significant inhibition of degradation of another molecule, low density lipoprotein. Thus, these results support a role for this enzyme in insulin degradation in the intact cell.

  20. Cytosolic malate dehydrogenase regulates RANKL-mediated osteoclastogenesis via AMPK/c-Fos/NFATc1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se Jeong [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Gu, Dong Ryun [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Jin, Su Hyun [Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Park, Keun Ha [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Lee, Seoung Hoon, E-mail: leesh2@wku.ac.kr [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Wonkwang Institute of Biomaterials and Implant, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of)

    2016-06-17

    Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reduced following the activation of adenosine 5′ monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression.

  1. Cloning and Expression of a Cytosolic HSP90 Gene in Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Zhengyi Liu

    2014-01-01

    Full Text Available Heat shock protein 90 (HSP90, a highly conserved molecular chaperone, plays essential roles in folding, keeping structural integrity, and regulating the subset of cytosolic proteins. We cloned the cDNA of Chlorella vulgaris HSP90 (named CvHSP90 by combining homology cloning with rapid amplification of cDNA ends (RACE. Sequence analysis indicated that CvHSP90 is a cytosolic member of the HSP90 family. Quantitative RT-PCR was applied to determine the expression level of messenger RNA (mRNA in CvHSP90 under different stress conditions. C. vulgaris was kept in different temperatures (5–45°C for 1 h. The mRNA expression level of CvHSP90 increased with temperature from 5 to 10°C, went further from 35 to 40°C, and reached the maximum at 40°C. On the other hand, for C. vulgaris kept at 35°C for different durations, the mRNA expression level of CvHSP90 increased gradually and reached the peak at 7 h and then declined progressively. In addition, the expression level of CvHSP90 at 40 or 45 in salinity (‰ was almost fourfold of that at 25 in salinity (‰ for 2 h. Therefore, CvHSP90 may be a potential biomarker to monitor environment changes.

  2. Identification and characterization of cytosolic fructose-1,6-bisphosphatase in Euglena gracilis.

    Science.gov (United States)

    Ogawa, Takahisa; Kimura, Ayako; Sakuyama, Harumi; Tamoi, Masahiro; Ishikawa, Takahiro; Shigeoka, Shigeru

    2015-01-01

    Euglena gracilis has the ability to accumulate a storage polysaccharide, a β-1,3-glucan known as paramylon, under aerobic conditions. Under anaerobic conditions, E. gracilis cells degrade paramylon and synthesize wax esters. Cytosolic fructose-1,6-bisphosphatase (FBPase) appears to be a key enzyme in gluconeogenesis and position branch point of carbon partitioning between paramylon and wax ester biosynthesis. We herein identified and characterized cytosolic FBPase from E. gracilis. The Km and Vmax values of EgFBPaseIII were 16.5 ± 1.6 μM and 30.4 ± 7.2 μmol min(-1) mg protein(-1), respectively. The activity of EgFBPaseIII was not regulated by AMP or reversible redox modulation. No significant differences were observed in the production of paramylon in transiently suppressed EgFBPaseIII gene expression cells by RNAi (KD-EgFBPaseIII); nevertheless, FBPase activity was markedly decreased in KD-EgFBPaseIII cells. On the other hand, the growth of KD-EgFBPaseIII cells was slightly higher than that of control cells.

  3. Myeloperoxidase-dependent lipid peroxidation promotes the oxidative modification of cytosolic proteins in phagocytic neutrophils.

    Science.gov (United States)

    Wilkie-Grantham, Rachel P; Magon, Nicholas J; Harwood, D Tim; Kettle, Anthony J; Vissers, Margreet C; Winterbourn, Christine C; Hampton, Mark B

    2015-04-10

    Phagocytic neutrophils generate reactive oxygen species to kill microbes. Oxidant generation occurs within an intracellular phagosome, but diffusible species can react with the neutrophil and surrounding tissue. To investigate the extent of oxidative modification, we assessed the carbonylation of cytosolic proteins in phagocytic neutrophils. A 4-fold increase in protein carbonylation was measured within 15 min of initiating phagocytosis. Carbonylation was dependent on NADPH oxidase and myeloperoxidase activity and was inhibited by butylated hydroxytoluene and Trolox, indicating a role for myeloperoxidase-dependent lipid peroxidation. Proteomic analysis of target proteins revealed significant carbonylation of the S100A9 subunit of calprotectin, a truncated form of Hsp70, actin, and hemoglobin from contaminating erythrocytes. The addition of the reactive aldehyde 4-hydroxynonenal (HNE) caused carbonylation, and HNE-glutathione adducts were detected in the cytosol of phagocytic neutrophils. The post-translational modification of neutrophil proteins will influence the functioning and fate of these immune cells in the period following phagocytic activation, and provides a marker of neutrophil activation during infection and inflammation.

  4. Abolishing activity against ascorbate in a cytosolic ascorbate peroxidase from switchgrass.

    Science.gov (United States)

    Kovacs, Frank A; Sarath, Gautam; Woodworth, Kyle; Twigg, Paul; Tobias, Christian M

    2013-10-01

    Switchgrass (Panicum virgatum L.) is being developed as a bioenergy species. Recently an early version of its genome has been released permitting a route to the cloning and analysis of key proteins. Ascorbate peroxidases (APx) are an important part of the antioxidant defense system of plant cells and present a well studied model to understand structure-function relationships. Analysis of the genome indicates that switchgrass encodes several cytosolic ascorbate peroxidases with apparent varying levels of tissue expression. A major cytosolic ascorbate peroxidase was thus selected for further studies. This gene was cloned and expressed in Escherichia coli cells to obtain purified active protein. Full heme incorporation of the enzyme was achieved utilizing slow growth and supplementing the media with 5-aminolevulinic acid. The enzyme was observed to be monomeric in solution via size exclusion chromatography. Activity toward ascorbate was observed that was non-Michaelis-Menten in nature. A site-directed mutant, R172S, was made in an attempt to differentiate activity against ascorbate versus other substrates. The R172S protein exhibited negligible ascorbate peroxidase activity, but showed near wild type activity toward other aromatic substrates.

  5. Cytosolic localization of acetohydroxyacid synthase Ilv2 and its impact on diacetyl formation during beer fermentation.

    Science.gov (United States)

    Dasari, Suvarna; Kölling, Ralf

    2011-02-01

    Diacetyl (2,3-butanedione) imparts an unpleasant "butterscotch-like" flavor to alcoholic beverages such as beer, and therefore its concentration needs to be reduced below the sensory threshold before packaging. We examined the mechanisms that lead to highly elevated diacetyl formation in petite mutants of Saccharomyces cerevisiae during beer fermentations. We present evidence that elevated diacetyl formation is tightly connected to the mitochondrial import of acetohydroxyacid synthase (Ilv2), the key enzyme in the production of diacetyl. Our data suggest that accumulation of the matrix-targeted Ilv2 preprotein in the cytosol is responsible for the observed high diacetyl levels. We could show that the Ilv2 preprotein accumulates in the cytosol of petite yeasts. Furthermore, expression of an Ilv2 variant that lacks the N-terminal mitochondrial targeting sequence and thus cannot be imported into mitochondria led to highly elevated diacetyl levels comparable to a petite strain. We further show that expression of a mutant allele of the γ-subunit of the F(1)-ATPase (ATP3-5) could be an attractive way to reduce diacetyl formation by petite strains.

  6. Phototropism and geotropism in maize coleoptiles are spatially correlated with increases in cytosolic free calcium.

    Science.gov (United States)

    Gehring, C A; Williams, D A; Cody, S H; Parish, R W

    1990-06-01

    Phototropism and gravitropism in the shoots and roots of higher plants are the result of asymmetric growth. This is explained by the redistribution of growth regulators following exposure to gravity or unilateral light (the Cholodny-Went hypothesis). The positive phototropism and the negative geotropism of grass seedling coleoptiles are believed to result from lateral movement of auxin from the irradiated to the shaded side and from the upper to the lower side, respectively. Many physiological processes in plants, including auxin-induced cell elongation, are reported to be under the control of calcium. Added auxin triggers oscillations in cytosolic free calcium ([Ca2+]cyt) and cytosolic pH (pHcyt) in epidermal cells of maize coleoptiles. Until recently, it has not been possible to visualize these changes spatially with the commonly used fluorescent cation indicators. Using a scanning laser confocal microscope, a new visible wavelength Ca2+ probe fluo-3 and the fluorescent pH indicator BCECF, we have recorded rapid light-induced increases in [Ca2+]cyt and a lowering of pHcyt of cells on the shaded side of maize coleoptiles. In horizontally orientated coleoptiles, [Ca2+]cyt increases and pHcyt decreases in the more rapidly elongating cells on the lower side. For the first time, rapid changes in [Ca2+]cyt and pHcyt are correlated directly with increases in cell elongation stimulated by light and gravity.

  7. Enhanced fluorescence imaging of live cells by effective cytosolic delivery of probes.

    Directory of Open Access Journals (Sweden)

    Marzia Massignani

    Full Text Available BACKGROUND: Microscopic techniques enable real-space imaging of complex biological events and processes. They have become an essential tool to confirm and complement hypotheses made by biomedical scientists and also allow the re-examination of existing models, hence influencing future investigations. Particularly imaging live cells is crucial for an improved understanding of dynamic biological processes, however hitherto live cell imaging has been limited by the necessity to introduce probes within a cell without altering its physiological and structural integrity. We demonstrate herein that this hurdle can be overcome by effective cytosolic delivery. PRINCIPAL FINDINGS: We show the delivery within several types of mammalian cells using nanometre-sized biomimetic polymer vesicles (a.k.a. polymersomes that offer both highly efficient cellular uptake and endolysomal escape capability without any effect on the cellular metabolic activity. Such biocompatible polymersomes can encapsulate various types of probes including cell membrane probes and nucleic acid probes as well as labelled nucleic acids, antibodies and quantum dots. SIGNIFICANCE: We show the delivery of sufficient quantities of probes to the cytosol, allowing sustained functional imaging of live cells over time periods of days to weeks. Finally the combination of such effective staining with three-dimensional imaging by confocal laser scanning microscopy allows cell imaging in complex three-dimensional environments under both mono-culture and co-culture conditions. Thus cell migration and proliferation can be studied in models that are much closer to the in vivo situation.

  8. A conserved mitochondrial ATP-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly.

    Science.gov (United States)

    Schaedler, Theresia A; Thornton, Jeremy D; Kruse, Inga; Schwarzländer, Markus; Meyer, Andreas J; van Veen, Hendrik W; Balk, Janneke

    2014-08-22

    An ATP-binding cassette transporter located in the inner mitochondrial membrane is involved in iron-sulfur cluster and molybdenum cofactor assembly in the cytosol, but the transported substrate is unknown. ATM3 (ABCB25) from Arabidopsis thaliana and its functional orthologue Atm1 from Saccharomyces cerevisiae were expressed in Lactococcus lactis and studied in inside-out membrane vesicles and in purified form. Both proteins selectively transported glutathione disulfide (GSSG) but not reduced glutathione in agreement with a 3-fold stimulation of ATPase activity by GSSG. By contrast, Fe(2+) alone or in combination with glutathione did not stimulate ATPase activity. Arabidopsis atm3 mutants were hypersensitive to an inhibitor of glutathione biosynthesis and accumulated GSSG in the mitochondria. The growth phenotype of atm3-1 was strongly enhanced by depletion of the mitochondrion-localized, GSH-dependent persulfide oxygenase ETHE1, suggesting that the physiological substrate of ATM3 contains persulfide in addition to glutathione. Consistent with this idea, a transportomics approach using mass spectrometry showed that glutathione trisulfide (GS-S-SG) was transported by Atm1. We propose that mitochondria export glutathione polysulfide, containing glutathione and persulfide, for iron-sulfur cluster assembly in the cytosol.

  9. Normal Growth of Transgenic Tobacco Plants in the Absence of Cytosolic Pyruvate Kinase 1

    Science.gov (United States)

    Gottlob-McHugh, Sylvia G.; Sangwan, Rajender S.; Blakeley, Stephen D.; Vanlerberghe, Greg C.; Ko, Kenton; Turpin, David H.; Plaxton, William C.; Miki, Brian L.; Dennis, David T.

    1992-01-01

    The coding sequence of the cytosolic isozyme of potato tuber pyruvate kinase (PK) was attached to the transit peptide of the small subunit of pea ribulose-1,5-bisphosphate carboxylase oxygenase and placed under the control of the cauliflower mosaic virus 35S promoter. This construct was transformed into Nicotiana tabacum. Unexpectedly, two primary transformants were recovered in which PK activity in leaves was greatly reduced. The reduction in PK activity appeared to result from the complete absence of the cytosolic form of the enzyme (PKc). In addition, no PKc could be detected on western blots of leaf extracts. Metabolite analyses indicated that the levels of phosphoenolpyruvate are substantially higher in PKc-deficient leaves than in wild-type leaves, consistent with a block in glycolysis at the step catalyzed by PK. PKc deficiency in the leaves does not appear to adversely affect plant growth. Analysis of progeny indicates that PKc deficiency is a heritable trait. The leaves of PKc-deficient transformants have normal rates of photosynthetic O2 evolution and respiratory O2 consumption, indicating that these plants are using alternative pathways to bypass PK. Images Figure 2 Figure 4 PMID:16653063

  10. Phosphocitrate inhibits mitochondrial and cytosolic accumulation of calcium in kidney cells in vivo.

    Science.gov (United States)

    Tew, W P; Malis, C D; Howard, J E; Lehninger, A L

    1981-09-01

    Synthetic 3-phosphocitrate, an extremely potent inhibitor of calcium phosphate crystallization as determined in a nonbiological physical-chemical assay, has many similarities to a mitochondrial factor that inhibits crystallization of nondiffracting amorphous calcium phosphate. In order to determine whether phosphocitrate can prevent uptake and crystallization of calcium phosphate in mitochondria in vivo, it was administered intraperitoneally to animals given large daily doses of calcium gluconate or parathyroid hormone, a regimen that causes massive accumulation and crystallization of calcium phosphate in the mitochondria and cytosol of renal tubule cells in vivo. Administration of phosphocitrate greatly reduced the net uptake of Ca2+ by the kidneys and prevented the appearance of apatite-like crystalline structures within the mitochondrial matrix and cytosol of renal tubule cells. Phosphocitrate, which is a poor chelator of Ca2+, did not reduce the hypercalcemia induced by either agent. These in vivo observations therefore indicate that phosphocitrate acts primarily at the cellular level to prevent the extensive accumulation of calcium phosphate in kidney cells by inhibiting the mitochondrial accumulation or crystallization of calcium phosphate.

  11. Metallothionein turnover, cytosolic distribution and the uptake of Cd by the green mussel Perna viridis.

    Science.gov (United States)

    Ng, T Y-T; Rainbow, P S; Amiard-Triquet, C; Amiard, J C; Wang, W-X

    2007-08-30

    We examined the relationship between Cd kinetics (uptake from solution and diet, and efflux), metallothionein turnover, and changes in the cytosolic distribution of accumulated Cd between protein fractions in the green mussel Perna viridis. We pre-exposed the mussels to 5, 20, 50 and 200 microg l(-1) of Cd for 1 week and determined the biokinetics of Cd uptake and efflux in the mussels. The dietary assimilation efficiency of Cd increased by 2 times following exposure to 20-200 microg l(-1) Cd, but the dissolved uptake rate was unchanged by pre-exposure to any Cd concentrations. The efflux rate of Cd was also similar among control and Cd pre-exposed mussels. The cytosolic distribution of Cd in the mussels that had been exposed to dissolved Cd, showed that besides metallothionein (7000 - 20,000 Da), high molecular weight proteins (>20,000 Da) were important for Cd binding and depuration. In general, the Cd pre-exposed mussels had higher metallothionein turnover with a higher metallothionein synthesis rate, but similar metallothionein breakdown rates as the control mussels. Metallothionein synthesis rate was correlated to the dietary assimilation of Cd, whereas metallothionein breakdown and Cd efflux rate were independent of each other. This study provides important new information for the role of metallothionein turnover on Cd kinetics in an aquatic invertebrate.

  12. Targeting of cytosolic mRNA to mitochondria: naked RNA can bind to the mitochondrial surface.

    Science.gov (United States)

    Michaud, Morgane; Maréchal-Drouard, Laurence; Duchêne, Anne-Marie

    2014-05-01

    Mitochondria contain hundreds of proteins but only a few are encoded by the mitochondrial genome. The other proteins are nuclear-encoded and imported into mitochondria. These proteins can be translated on free cytosolic polysomes, then targeted and imported into mitochondria. Nonetheless, numerous cytosolic mRNAs encoding mitochondrial proteins are detected at the surface of mitochondria in yeast, plants and animals. The localization of mRNAs to the vicinity of mitochondria would be a way for mitochondrial protein sorting. The mechanisms responsible for mRNA targeting to mitochondria are not clearly identified. Sequences within the mRNA molecules (cis-elements), as well as a few trans-acting factors, have been shown to be essential for targeting of some mRNAs. In order to identify receptors involved in mRNA docking to the mitochondrial surface, we have developed an in vitro mRNA binding assay with isolated plant mitochondria. We show that naked mRNAs are able to bind to isolated mitochondria, and our results strongly suggest that mRNA docking to the plant mitochondrial outer membrane requires at least one component of TOM complex.

  13. Rearrangement of MICU1 multimers for activation of MCU is solely controlled by cytosolic Ca(2.).

    Science.gov (United States)

    Waldeck-Weiermair, Markus; Malli, Roland; Parichatikanond, Warisara; Gottschalk, Benjamin; Madreiter-Sokolowski, Corina T; Klec, Christiane; Rost, Rene; Graier, Wolfgang F

    2015-10-22

    Mitochondrial Ca(2+) uptake is a vital process that controls distinct cell and organelle functions. Mitochondrial calcium uptake 1 (MICU1) was identified as key regulator of the mitochondrial Ca(2+) uniporter (MCU) that together with the essential MCU regulator (EMRE) forms the mitochondrial Ca(2+) channel. However, mechanisms by which MICU1 controls MCU/EMRE activity to tune mitochondrial Ca(2+) signals remain ambiguous. Here we established a live-cell FRET approach and demonstrate that elevations of cytosolic Ca(2+) rearranges MICU1 multimers with an EC50 of 4.4 μM, resulting in activation of mitochondrial Ca(2+) uptake. MICU1 rearrangement essentially requires the EF-hand motifs and strictly correlates with the shape of cytosolic Ca(2+) rises. We further show that rearrangements of MICU1 multimers were independent of matrix Ca(2+) concentration, mitochondrial membrane potential, and expression levels of MCU and EMRE. Our experiments provide novel details about how MCU/EMRE is regulated by MICU1 and an original approach to investigate MCU/EMRE activation in intact cells.

  14. Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Yun Chen

    Full Text Available As a key intracellular metabolite, acetyl-coenzyme A (acetyl-CoA plays a major role in various metabolic pathways that link anabolism and catabolism. In the yeast Saccharomyces cerevisiae, acetyl-CoA involving metabolism is compartmentalized, and may vary with the nutrient supply of a cell. Membranes separating intracellular compartments are impermeable to acetyl-CoA and no direct transport between the compartments occurs. Thus, without carnitine supply the glyoxylate shunt is the sole possible route for transferring acetyl-CoA from the cytosol or the peroxisomes into the mitochondria. Here, we investigate the physiological profiling of different deletion mutants of ACS1, ACS2, CIT2 and MLS1 individually or in combination under alternative carbon sources, and study how various mutations alter carbon distribution. Based on our results a detailed model of carbon distribution about cytosolic and peroxisomal acetyl-CoA metabolism in yeast is suggested. This will be useful to further develop yeast as a cell factory for the biosynthesis of acetyl-CoA-derived products.

  15. Cytosolic Localization of Acetohydroxyacid Synthase Ilv2 and Its Impact on Diacetyl Formation during Beer Fermentation▿

    Science.gov (United States)

    Dasari, Suvarna; Kölling, Ralf

    2011-01-01

    Diacetyl (2,3-butanedione) imparts an unpleasant “butterscotch-like” flavor to alcoholic beverages such as beer, and therefore its concentration needs to be reduced below the sensory threshold before packaging. We examined the mechanisms that lead to highly elevated diacetyl formation in petite mutants of Saccharomyces cerevisiae during beer fermentations. We present evidence that elevated diacetyl formation is tightly connected to the mitochondrial import of acetohydroxyacid synthase (Ilv2), the key enzyme in the production of diacetyl. Our data suggest that accumulation of the matrix-targeted Ilv2 preprotein in the cytosol is responsible for the observed high diacetyl levels. We could show that the Ilv2 preprotein accumulates in the cytosol of petite yeasts. Furthermore, expression of an Ilv2 variant that lacks the N-terminal mitochondrial targeting sequence and thus cannot be imported into mitochondria led to highly elevated diacetyl levels comparable to a petite strain. We further show that expression of a mutant allele of the γ-subunit of the F1-ATPase (ATP3-5) could be an attractive way to reduce diacetyl formation by petite strains. PMID:21131528

  16. Gene clone,expression and enzyme activity assay of a cytosolic malate dehydrogenase from apple fruits

    Institute of Scientific and Technical Information of China (English)

    Yuxin YAO; Yujin HAO; Ming LI; Mingli PANG; Zhi LIU; Heng ZHAI

    2008-01-01

    Malate dehydrogenase (MDH) ubiquitously exists in animals,plants and microoganisms,and catalyzes the interconversion from oxaloacetate to malate.Cytosolic NAD-dependent MDH gene (cyMDH)encodes a key enzyme crucial for malic acid synthesis in the cytosol which has not been extensively characterized in plants.In this study,a full-length cDNA of cyMDH was isolated from apple fruits with RT-PCR as well as 3' and 5' rapid amplification of cDNA ends,and designated as Mal-cyMDH (GenBank accession No.DQ221207).It contained a 996-bp ORF and its sequence analysis shows a high similarity to other plant cyMDHs.Phylogenetic analysis indicated that almost all the cyMDHs could be clustered into the same group and it was likely to represent the original MDH.A roughly 37-kDa fused protein was obtained by the recombinant prokaryotic expression and its enzyme activity assay showed that it mainly catalyzed oxaloacetate to malate.It was also discovered that the enzyme activity of cyMDH exhibited remarkable difference between the high- and low-acid apple germplasm.

  17. MLL5 maintains spindle bipolarity by preventing aberrant cytosolic aggregation of PLK1.

    Science.gov (United States)

    Zhao, Wei; Liu, Jie; Zhang, Xiaoming; Deng, Lih-Wen

    2016-03-28

    Faithful chromosome segregation with bipolar spindle formation is critical for the maintenance of genomic stability. Perturbation of this process often leads to severe mitotic failure, contributing to tumorigenesis. MLL5 has been demonstrated to play vital roles in cell cycle progression and the maintenance of genomic stability. Here, we identify a novel interaction between MLL5 and PLK1 in the cytosol that is crucial for sustaining spindle bipolarity during mitosis. Knockdown of MLL5 caused aberrant PLK1 aggregation that led to acentrosomal microtubule-organizing center (aMTOC) formation and subsequent spindle multipolarity. Further molecular studies revealed that the polo-box domain (PBD) of PLK1 interacted with a binding motif on MLL5 (Thr887-Ser888-Thr889), and this interaction was essential for spindle bipolarity. Overexpression of wild-type MLL5 was able to rescue PLK1 mislocalization and aMTOC formation in MLL5-KD cells, whereas MLL5 mutants incapable of interacting with the PBD failed to do so. We thus propose that MLL5 preserves spindle bipolarity through maintaining cytosolic PLK1 in a nonaggregated form.

  18. Proteomic analysis of cytosolic proteins associated with petite mutations in Candida glabrata

    Directory of Open Access Journals (Sweden)

    C.V. Loureiro y Penha

    2010-12-01

    Full Text Available The incidence of superficial or deep-seated infections due to Candida glabrata has increased markedly, probably because of the low intrinsic susceptibility of this microorganism to azole antifungals and its relatively high propensity to acquire azole resistance. To determine changes in the C. glabrata proteome associated with petite mutations, cytosolic extracts from an azole-resistant petite mutant of C. glabrata induced by exposure to ethidium bromide, and from its azole-susceptible parent isolate were compared by two-dimensional polyacrylamide gel electrophoresis. Proteins of interest were identified by peptide mass fingerprinting or sequence tagging using a matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometer. Tryptic peptides from a total of 160 Coomassie-positive spots were analyzed for each strain. Sixty-five different proteins were identified in the cytosolic extracts of the parent strain and 58 in the petite mutant. Among the proteins identified, 10 were higher in the mutant strain, whereas 23 were lower compared to the parent strain. The results revealed a significant decrease in the enzymes associated with the metabolic rate of mutant cells such as aconitase, transaldolase, and pyruvate kinase, and changes in the levels of specific heat shock proteins. Moreover, transketolase, aconitase and catalase activity measurements decreased significantly in the ethidium bromide-induced petite mutant. These data may be useful for designing experiments to obtain a better understanding of the nuclear response to impairment of mitochondrial function associated with this mutation in C. glabrata.

  19. A cytosolic activator of DNA replication is tyrosine phosphorylated in its active form.

    Science.gov (United States)

    Fresa, K L; Autieri, M V; Coffman, F D; Georgoff, I; Cohen, S

    1993-04-01

    Cytosolic extracts from actively dividing lymphoid cells have been shown to induce DNA synthesis in isolated, quiescent nuclei. An initiating factor in such extracts (activator of DNA replication; ADR) is a > 90-kDa aprotinin-binding protein whose activity is inhibitable not only by aprotinin, but also by several other protease inhibitors as well. Although cytosol from non-proliferating lymphocytes is devoid of ADR activity, we have shown that these preparations can be induced to express ADR activity by brief exposure to a membrane-enriched fraction of spontaneously proliferating MOLT-4 cells via a kinase-dependent mechanism. In the present study, we examine the role of tyrosine kinases in this process. Three inhibitors of tyrosine kinases (genistein, kaempferol, and quercetin) can inhibit the in vitro generation of ADR activity. In vitro generation of ADR activity is associated with the de novo phosphorylation of several proteins, many of which are detectable using anti-phosphotyrosine monoclonal antibodies. ADR itself may be tyrosine phosphorylated in active form as immunoprecipitation using such monoclonal antibodies leads to the depletion of its activity. Moreover, immunoprecipitation results in the removal of several de novo tyrosine-phosphorylated proteins, including species at approximately 122, 105, 93, 86, 79, and 65 kDa. A subset of de novo-phosphorylated proteins, migrating at approximately 105, 93, and 70 kDa, also bound to aprotinin, suggesting that at least one of these proteins may represent ADR itself.

  20. From Proteomics to Structural Studies of Cytosolic/Mitochondrial-Type Thioredoxin Systems in Barley Seeds

    Institute of Scientific and Technical Information of China (English)

    Azar Shahpiri; Birte Svensson; Christine Finnie

    2009-01-01

    Thioredoxins (Trx) are ubiquitous proteins that participate in thiol disulfide reactions via two active site cysteine residues,allowing Trx to reduce disulfide bonds in target proteins.Recent progress in proteome analysis has resulted in identification of a wide range of potential target proteins for Trx,indicating that Trx plays a key role in several aspects of cell metabolism.In contrast to other organisms,plants contain multiple forms of Trx that are classified based on their primary structures and sub-cellular localization.The reduction of cytosolic and mitochondrial types of Trx is dependenl on NADPH and catalyzed by NADPH-dependent thioredoxin reductase (NTR).In barley,two isoforms each of Trx and NTR have been identified and investigated using proteomics,gene expression,and structural studies.This review outlines the diverse roles suggested for cytosolic/mitochondrial-type Trx systems in cereal seeds and summarizes the current knowl-edge of the barley system including recent data on function,regulation,interactions,and structure.Directions for future research are discussed.

  1. DNA adducts induced by food mutagen PhIP in a mouse model expressing human sulfotransferases 1A1 and 1A2.

    Science.gov (United States)

    Høie, Anja Hortemo; Monien, Bernhard Hans; Glatt, Hansruedi; Hjertholm, Hege; Husøy, Trine

    2016-04-25

    Food processing contaminant 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) has previously been shown to induce formation of DNA adducts in vivo. In a previous study the adduct levels were found to increase in a mouse model expressing human (h) sulfotransferases (SULTs) 1A1 and 1A2 after PhIP exposure, detected by (32)P-postlabelling. Isotope dilution ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) is emerging as the method of choice for selective and reproducible detection of known DNA adducts. In the present study we investigated the level and distribution of PhIP induced DNA adducts in male FVB mice 9-11 weeks of age with hSULT mice or wild-type mice (wt) using UPLC-MS/MS. Mice received a single administration of 75 mg/kg bw PhIP by oral gavage, and DNA was analysed 3h after exposure. C8-(2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine- N(2)-yl)-2'-deoxyguanosine (C8-PhIP-dG) adduct levels are significantly higher in PhIP exposed hSULT mice compared with PhIP exposed wt mice. The liver was the least affected organ in wild-type mice, whereas it was the most affected organ in hSULT mice with a 14-fold higher adduct level.

  2. Enhancement of UVB radiation-mediated apoptosis by knockdown of cytosolic NADP+-dependent isocitrate dehydrogenase in HaCaT cells.

    Science.gov (United States)

    Lee, Su Jeong; Park, Jeen-Woo

    2014-04-01

    Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS) that promote apoptotic cell death. We showed that cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) plays an essential role in the control of cellular redox balance and defense against oxidative damage, by supplying NADPH for antioxidant systems. In this study, we demonstrated that knockdown of IDPc expression by RNA interference enhances UVB-induced apoptosis of immortalized human HaCaT keratinocytes. This effect manifested as DNA fragmentation, changes in cellular redox status, mitochondrial dysfunction, and modulation of apoptotic marker expression. Based on our findings, we suggest that attenuation of IDPc expression may protect skin from UVB-mediated damage, by inducing the apoptosis of UV-damaged cells.

  3. A Redox-Activatable Fluorescent Sensor for the High-Throughput Quantification of Cytosolic Delivery of Macromolecules.

    Science.gov (United States)

    Wang, Zhaohui; Luo, Min; Mao, Chengqiong; Wei, Qi; Zhao, Tian; Li, Yang; Huang, Gang; Gao, Jinming

    2017-01-24

    Efficient delivery of biomacromolecules (e.g., proteins, nucleic acids) into cell cytosol remains a critical challenge for the development of macromolecular therapeutics or diagnostics. To date, most common approaches to assess cytosolic delivery rely on fluorescent labeling of macromolecules with an "always on" reporter and subcellular imaging of endolysosomal escape by confocal microscopy. This strategy is limited by poor signal-to-noise ratio and only offers low throughput, qualitative information. Herein we describe a quantitative redox-activatable sensor (qRAS) for the real-time monitoring of cytosolic delivery of macromolecules. qRAS-labeled macromolecules are silent (off) inside the intact endocytic organelles, but can be turned on by redox activation after endolysosomal disruption and delivery into the cytosol, thereby greatly improving the detection accuracy. In addition to confocal microscopy, this quantitative sensing technology allowed for a high-throughput screening of a panel of polymer carriers toward efficient cytosolic delivery of model proteins on a plate reader. The simple and versatile qRAS design offers a useful tool for the investigation of new strategies for endolysosomal escape of biomacromolecules to facilitate the development of macromolecular therapeutics for a variety of disease indications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state

    Science.gov (United States)

    Kojer, Kerstin; Bien, Melanie; Gangel, Heike; Morgan, Bruce; Dick, Tobias P; Riemer, Jan

    2012-01-01

    Glutathione is an important mediator and regulator of cellular redox processes. Detailed knowledge of local glutathione redox potential (EGSH) dynamics is critical to understand the network of redox processes and their influence on cellular function. Using dynamic oxidant recovery assays together with EGSH-specific fluorescent reporters, we investigate the glutathione pools of the cytosol, mitochondrial matrix and intermembrane space (IMS). We demonstrate that the glutathione pools of IMS and cytosol are dynamically interconnected via porins. In contrast, no appreciable communication was observed between the glutathione pools of the IMS and matrix. By modulating redox pathways in the cytosol and IMS, we find that the cytosolic glutathione reductase system is the major determinant of EGSH in the IMS, thus explaining a steady-state EGSH in the IMS which is similar to the cytosol. Moreover, we show that the local EGSH contributes to the partially reduced redox state of the IMS oxidoreductase Mia40 in vivo. Taken together, we provide a comprehensive mechanistic picture of the IMS redox milieu and define the redox influences on Mia40 in living cells. PMID:22705944

  5. Aeromonas caviae alters the cytosolic and mitochondrial creatine kinase activities in experimentally infected silver catfish: Impairment on renal bioenergetics.

    Science.gov (United States)

    Baldissera, Matheus D; Souza, Carine F; Júnior, Guerino B; Verdi, Camila Marina; Moreira, Karen L S; da Rocha, Maria Izabel U M; da Veiga, Marcelo L; Santos, Roberto C V; Vizzotto, Bruno S; Baldisserotto, Bernardo

    2017-09-01

    Cytosolic and mitochondrial creatine kinases (CK), through the creatine kinase-phosphocreatine (CK/PCr) system, provide a temporal and spatial energy buffer to maintain cellular energy homeostasis. However, the effects of bacterial infections on the kidney remain poorly understood and are limited only to histopathological analyses. Thus, the aim of this study was to investigate the involvement of cytosolic and mitochondrial CK activities in renal energetic homeostasis in silver catfish experimentally infected with Aeromonas caviae. Cytosolic CK activity decreased in infected animals, while mitochondrial CK activity increased compared to uninfected animals. Moreover, the activity of the sodium-potassium pump (Na(+), K(+)-ATPase) decreased in infected animals compared to uninfected animals. Based on this evidence, it can be concluded that the inhibition of cytosolic CK activity by A. caviae causes an impairment on renal energy homeostasis through the depletion of adenosine triphosphate (ATP) levels. This contributes to the inhibition of Na(+), K(+)-ATPase activity, although the mitochondrial CK activity acted in an attempt to restore the cytosolic ATP levels through a feedback mechanism. In summary, A. caviae infection causes a severe energetic imbalance in infected silver catfish, which may contribute to disease pathogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Functional Integrity of the Chimeric (Humanized) Mouse Liver: Enzyme Zonation, Physiologic Spaces, and Hepatic Enzymes and Transporters.

    Science.gov (United States)

    Chow, Edwin C Y; Wang, Jason Z Ya; Quach, Holly P; Tang, Hui; Evans, David C; Li, Albert P; Silva, Jose; Pang, K Sandy

    2016-09-01

    Chimeric mouse liver models are useful in vivo tools for human drug metabolism studies; however, liver integrity and the microcirculation remain largely uninvestigated. Hence, we conducted liver perfusion studies to examine these attributes in FRGN [Fah(-/-), Rag2(-/-), and Il2rg(-/-), NOD strain] livers (control) and chimeric livers repopulated with mouse (mFRGN) or human (hFRGN) hepatocytes. In single-pass perfusion studies (2.5 ml/min), outflow dilution profiles of noneliminated reference indicators ((51)Cr-RBC, (125)I-albumin, (14)C-sucrose, and (3)H-water) revealed preservation of flow-limited distribution and reduced water and albumin spaces in hFRGN livers compared with FRGN livers, a view supported microscopically by tightly packed sinusoids. With prograde and retrograde perfusion of harmol (50 µM) in FRGN livers, an anterior sulfation (Sult1a1) over the posterior distribution of glucuronidation (Ugt1a1) activity was preserved, evidenced by the 42% lower sulfation-to-glucuronidation ratio (HS/HG) and 14% higher harmol extraction ratio (E) upon switching from prograde to retrograde flow. By contrast, zonation was lost in mFRGN and hFRGN livers, with HS/HG and E for both flows remaining unchanged. Remnant mouse genes persisted in hFRGN livers (10%-300% those of FRGN). When hFRGN livers were compared with human liver tissue, higher UGT1A1 and MRP2, lower MRP3, and unchanged SULT1A1 and MRP4 mRNA expression were observed. Total Sult1a1/SULT1A1 protein expression in hFRGN livers was higher than that of FRGN livers, consistent with higher harmol sulfate formation. The composite data on humanized livers suggest a loss of zonation, lack of complete liver humanization, and persistence of murine hepatocyte activities leading to higher sulfation.

  7. Resveratrol-induced autophagy is dependent on IP3Rs and on cytosolic Ca(2).

    Science.gov (United States)

    Luyten, Tomas; Welkenhuyzen, Kirsten; Roest, Gemma; Kania, Elzbieta; Wang, Liwei; Bittremieux, Mart; Yule, David I; Parys, Jan B; Bultynck, Geert

    2017-06-01

    Previous work revealed that intracellular Ca(2+) signals and the inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) are essential to increase autophagic flux in response to mTOR inhibition, induced by either nutrient starvation or rapamycin treatment. Here, we investigated whether autophagy induced by resveratrol, a polyphenolic phytochemical reported to trigger autophagy in a non-canonical way, also requires IP3Rs and Ca(2+) signaling. Resveratrol augmented autophagic flux in a time-dependent manner in HeLa cells. Importantly, autophagy induced by resveratrol (80μM, 2h) was completely abolished in the presence of 10μM BAPTA-AM, an intracellular Ca(2+)-chelating agent. To elucidate the IP3R's role in this process, we employed the recently established HEK 3KO cells lacking all three IP3R isoforms. In contrast to the HEK293 wt cells and to HEK 3KO cells re-expressing IP3R1, autophagic responses in HEK 3KO cells exposed to resveratrol were severely impaired. These altered autophagic responses could not be attributed to alterations in the mTOR/p70S6K pathway, since resveratrol-induced inhibition of S6 phosphorylation was not abrogated by chelating cytosolic Ca(2+) or by knocking out IP3Rs. Finally, we investigated whether resveratrol by itself induced Ca(2+) release. In permeabilized HeLa cells, resveratrol neither affected the sarco- and endoplasmic reticulum Ca(2+) ATPase (SERCA) activity nor the IP3-induced Ca(2+) release nor the basal Ca(2+) leak from the ER. Also, prolonged (4 h) treatment with 100μM resveratrol did not affect subsequent IP3-induced Ca(2+) release. However, in intact HeLa cells, although resveratrol did not elicit cytosolic Ca(2+) signals by itself, it acutely decreased the ER Ca(2+)-store content irrespective of the presence or absence of IP3Rs, leading to a dampened agonist-induced Ca(2+) signaling. In conclusion, these results reveal that IP3Rs and cytosolic Ca(2+) signaling are fundamentally important for driving autophagic flux, not only

  8. Skeletal muscle contractions induce acute changes in cytosolic superoxide, but slower responses in mitochondrial superoxide and cellular hydrogen peroxide.

    Science.gov (United States)

    Pearson, Timothy; Kabayo, Tabitha; Ng, Rainer; Chamberlain, Jeffrey; McArdle, Anne; Jackson, Malcolm J

    2014-01-01

    Skeletal muscle generation of reactive oxygen species (ROS) is increased following contractile activity and these species interact with multiple signaling pathways to mediate adaptations to contractions. The sources and time course of the increase in ROS during contractions remain undefined. Confocal microscopy with specific fluorescent probes was used to compare the activities of superoxide in mitochondria and cytosol and the hydrogen peroxide content of the cytosol in isolated single mature skeletal muscle (flexor digitorum brevis) fibers prior to, during, and after electrically stimulated contractions. Superoxide in mitochondria and cytoplasm were assessed using MitoSox red and dihydroethidium (DHE) respectively. The product of superoxide with DHE, 2-hydroxyethidium (2-HE) was acutely increased in the fiber cytosol by contractions, whereas hydroxy-MitoSox showed a slow cumulative increase. Inhibition of nitric oxide synthases increased the contraction-induced formation of hydroxy-MitoSox only with no effect on 2-HE formation. These data indicate that the acute increases in cytosolic superoxide induced by contractions are not derived from mitochondria. Data also indicate that, in muscle mitochondria, nitric oxide (NO) reduces the availability of superoxide, but no effect of NO on cytosolic superoxide availability was detected. To determine the relationship of changes in superoxide to hydrogen peroxide, an alternative specific approach was used where fibers were transduced using an adeno-associated viral vector to express the hydrogen peroxide probe, HyPer within the cytoplasmic compartment. HyPer fluorescence was significantly increased in fibers following contractions, but surprisingly followed a relatively slow time course that did not appear directly related to cytosolic superoxide. These data demonstrate for the first time temporal and site specific differences in specific ROS that occur in skeletal muscle fibers during and after contractile activity.

  9. Genetically encoded pH-indicators reveal activity-dependent cytosolic acidification of Drosophila motor nerve termini in vivo.

    Science.gov (United States)

    Rossano, Adam J; Chouhan, Amit K; Macleod, Gregory T

    2013-04-01

    All biochemical processes, including those underlying synaptic function and plasticity, are pH sensitive. Cytosolic pH (pH(cyto)) shifts are known to accompany nerve activity in situ, but technological limitations have prevented characterization of such shifts in vivo. Genetically encoded pH-indicators (GEpHIs) allow for tissue-specific in vivo measurement of pH. We expressed three different GEpHIs in the cytosol of Drosophila larval motor neurons and observed substantial presynaptic acidification in nerve termini during nerve stimulation in situ. SuperEcliptic pHluorin was the most useful GEpHI for studying pH(cyto) shifts in this model system. We determined the resting pH of the nerve terminal cytosol to be 7.30 ± 0.02, and observed a decrease of 0.16 ± 0.01 pH units when the axon was stimulated at 40 Hz for 4 s. Realkalinization occurred upon cessation of stimulation with a time course of 20.54 ± 1.05 s (τ). The chemical pH-indicator 2,7-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein corroborated these changes in pH(cyto). Bicarbonate-derived buffering did not contribute to buffering of acid loads from short (≤ 4 s) trains of action potentials but did buffer slow (~60 s) acid loads. The magnitude of cytosolic acid transients correlated with cytosolic Ca(2+) increase upon stimulation, and partial inhibition of the plasma membrane Ca(2+)-ATPase, a Ca(2+)/H(+) exchanger, attenuated pH(cyto) shifts. Repeated stimulus trains mimicking motor patterns generated greater cytosolic acidification (~0.30 pH units). Imaging through the cuticle of intact larvae revealed spontaneous pH(cyto) shifts in presynaptic termini in vivo, similar to those seen in situ during fictive locomotion, indicating that presynaptic pH(cyto) shifts cannot be dismissed as artifacts of ex vivo preparations.

  10. Mechanisms of rapid reactive oxygen species generation in response to cytosolic Ca2+ or Zn2+ loads in cortical neurons.

    Directory of Open Access Journals (Sweden)

    Aaron Clausen

    Full Text Available Excessive "excitotoxic" accumulation of Ca(2+ and Zn(2+ within neurons contributes to neurodegeneration in pathological conditions including ischemia. Putative early targets of these ions, both of which are linked to increased reactive oxygen species (ROS generation, are mitochondria and the cytosolic enzyme, NADPH oxidase (NOX. The present study uses primary cortical neuronal cultures to examine respective contributions of mitochondria and NOX to ROS generation in response to Ca(2+ or Zn(2+ loading. Induction of rapid cytosolic accumulation of either Ca(2+ (via NMDA exposure or Zn(2+ (via Zn(2+/Pyrithione exposure in 0 Ca(2+ caused sharp cytosolic rises in these ions, as well as a strong and rapid increase in ROS generation. Inhibition of NOX activation significantly reduced the Ca(2+-induced ROS production with little effect on the Zn(2+- triggered ROS generation. Conversely, dissipation of the mitochondrial electrochemical gradient increased the cytosolic Ca(2+ or Zn(2+ rises caused by these exposures, consistent with inhibition of mitochondrial uptake of these ions. However, such disruption of mitochondrial function markedly suppressed the Zn(2+-triggered ROS, while partially attenuating the Ca(2+-triggered ROS. Furthermore, block of the mitochondrial Ca(2+ uniporter (MCU, through which Zn(2+ as well as Ca(2+ can enter the mitochondrial matrix, substantially diminished Zn(2+ triggered ROS production, suggesting that the ROS generation occurs specifically in response to Zn(2+ entry into mitochondria. Finally, in the presence of the sulfhydryl-oxidizing agent 2,2'-dithiodipyridine, which impairs Zn(2+ binding to cytosolic metalloproteins, far lower Zn(2+ exposures were able to induce mitochondrial Zn(2+ uptake and consequent ROS generation. Thus, whereas rapid acute accumulation of Zn(2+ and Ca(2+ each can trigger injurious ROS generation, Zn(2+ entry into mitochondria via the MCU may do so with particular potency. This may be of particular

  11. Kex2 protease converts the endoplasmic reticulum α1,2-mannosidase of Candida albicans into a soluble cytosolic form

    Science.gov (United States)

    Mora-Montes, Héctor M.; Bader, Oliver; López-Romero, Everardo; Zinker, Samuel; Ponce-Noyola, Patricia; Hube, Bernhard; Gow, Neil A. R.; Flores-Carreón, Arturo

    2008-01-01

    Cytosolic α-mannosidases are glycosyl hydrolases that participate in the catabolism of cytosolic free N-oligosaccharides. Two soluble α-mannosidases (E-I and E-II) belonging to glycosyl hydrolases family 47 have been described in Candida albicans. We demonstrate that addition of pepstatin A during the preparation of cell homogenates enriched α-mannosidase E-I at the expense of E-II, indicating that the latter is generated by proteolysis during cell disruption. E-I corresponded to a polypeptide of 52 kDa that was associated with mannosidase activity and was recognized by an anti-α1,2-mannosidase antibody. The N-mannan core trimming properties of the purified enzyme E-I were consistent with its classification as a family 47 α1,2-mannosidase. Differential density-gradient centrifugation of homogenates revealed that α1,2-mannosidase E-I was localized to the cytosolic fraction and Golgi-derived vesicles, and that a 65 kDa membrane-bound α1,2-mannosidase was present in endoplasmic reticulum and Golgi-derived vesicles. Distribution of α-mannosidase activity in a kex2Δ null mutant or in wild-type protoplasts treated with monensin demonstrated that the membrane-bound α1,2-mannosidase is processed by Kex2 protease into E-I, recognizing an atypical cleavage site of the precursor. Analysis of cytosolic free N-oligosaccharides revealed that cytosolic α1,2-mannosidase E-I trims free Man8GlcNAc2 isomer B into Man7GlcNAc2 isomer B. This is believed to be the first report demonstrating the presence of soluble α1,2-mannosidase from the glycosyl hydrolases family 47 in a cytosolic compartment of the cell. PMID:19047746

  12. The mitochondrial Na+/Ca2+ exchanger plays a key role in the control of cytosolic Ca2+ oscillations

    OpenAIRE

    Hernández-San Miguel, Esther; Vay, Laura; Santo Domingo, Jaime; Domínguez Lobatón, María Carmen; Moreno, Alfredo; Montero, Mayte; Álvarez, Javier

    2006-01-01

    Producción Científica There is increasing evidence that mitochondria play an important role in the control of cytosolic Ca2+ signaling. We show here that the main mitochondrial Ca2+-exit pathway, the mitochondrial Na+/Ca2+ exchanger, controls the pattern of cytosolic Ca2+ oscillations in nonexcitable cells. In HeLa cells, the inhibitor of the mitochondrial Na+/Ca2+ exchanger CGP37157 changed the pattern of the oscillations induced by histamine from a high-frequency irregular one t...

  13. Kex2 protease converts the endoplasmic reticulum α1,2-mannosidase of Candida albicans into a soluble cytosolic form

    OpenAIRE

    2008-01-01

    Cytosolic α-mannosidases are glycosyl hydrolases that participate in the catabolism of cytosolic free N-oligosaccharides. Two soluble α-mannosidases (E-I and E-II) belonging to glycosyl hydrolases family 47 have been described in Candida albicans. We demonstrate that addition of pepstatin A during the preparation of cell homogenates enriched α-mannosidase E-I at the expense of E-II, indicating that the latter is generated by proteolysis during cell disruption. E-I corresponded to a polypeptid...

  14. Tandem affinity purification to identify cytosolic and nuclear gβγ-interacting proteins.

    Science.gov (United States)

    Campden, Rhiannon; Pétrin, Darlaine; Robitaille, Mélanie; Audet, Nicolas; Gora, Sarah; Angers, Stéphane; Hébert, Terence E

    2015-01-01

    It has become clear in recent years that the Gβγ subunits of heterotrimeric proteins serve broad roles in the regulation of cellular activity and interact with many proteins in different subcellular locations including the nucleus. Protein affinity purification is a common method to identify and confirm protein interactions. When used in conjugation with mass spectrometry it can be used to identify novel protein interactions with a given bait protein. The tandem affinity purification (TAP) technique identifies partner proteins bound to tagged protein bait. Combined with protocols to enrich the nuclear fraction of whole cell lysate through sucrose cushions, TAP allows for purification of interacting proteins found specifically in the nucleus. Here we describe the use of the TAP technique on cytosolic and nuclear lysates to identify candidate proteins, through mass spectrometry, that bind to Gβ1 subunits.

  15. Fine tuning of cytosolic Ca2+ oscillations [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Geneviève Dupont

    2016-08-01

    Full Text Available Ca2+ oscillations, a widespread mode of cell signaling, were reported in non-excitable cells for the first time more than 25 years ago. Their fundamental mechanism, based on the periodic Ca2+ exchange between the endoplasmic reticulum and the cytoplasm, has been well characterized. However, how the kinetics of cytosolic Ca2+ changes are related to the extent of a physiological response remains poorly understood. Here, we review data suggesting that the downstream targets of Ca2+ are controlled not only by the frequency of Ca2+ oscillations but also by the detailed characteristics of the oscillations, such as their duration, shape, or baseline level. Involvement of non-endoplasmic reticulum Ca2+ stores, mainly mitochondria and the extracellular medium, participates in this fine tuning of Ca2+ oscillations. The main characteristics of the Ca2+ exchange fluxes with these compartments are also reviewed.

  16. Gene deletion of cytosolic ATP: citrate lyase leads to altered organic acid production in Aspergillus niger

    DEFF Research Database (Denmark)

    Meijer, Susan Lisette; Nielsen, Michael Lynge; Olsson, Lisbeth

    2009-01-01

    With the availability of the genome sequence of the filamentous fungus Aspergillus niger, the use of targeted genetic modifications has become feasible. This, together with the fact that A. niger is well established industrially, makes this fungus an attractive micro-organism for creating a cell...... factory platform for production of chemicals. Using molecular biology techniques, this study focused on metabolic engineering of A. niger to manipulate its organic acid production in the direction of succinic acid. The gene target for complete gene deletion was cytosolic ATP: citrate lyase (acl), which...... the acl gene. Additionally, the total amount of organic acids produced in the deletion strain was significantly increased. Genome-scale stoichiometric metabolic model predictions can be used for identifying gene targets. Deletion of the acl led to increased succinic acid production by A. niger....

  17. Comparative inhibition of tetrameric carbonyl reductase activity in pig heart cytosol by alkyl 4-pyridyl ketones.

    Science.gov (United States)

    Shimada, Hideaki; Tanigawa, Takahiro; Matayoshi, Kazunori; Katakura, Kazufumi; Babazono, Ken; Takayama, Hiroyuki; Murahashi, Tsuyoshi; Akita, Hiroyuki; Higuchi, Toshiyuki; Eto, Masashi; Imamura, Yorishige

    2014-06-01

    The present study is to elucidate the comparative inhibition of tetrameric carbonyl reductase (TCBR) activity by alkyl 4-pyridyl ketones, and to characterize its substrate-binding domain. The inhibitory effects of alkyl 4-pyridyl ketones on the stereoselective reduction of 4-benzoylpyridine (4-BP) catalyzed by TCBR were examined in the cytosolic fraction of pig heart. Of alkyl 4-pyridyl ketones, 4-hexanoylpyridine, which has a straight-chain alkyl group of five carbon atoms, inhibited most potently TCBR activity and was a competitive inhibitor. Furthermore, cyclohexyl pentyl ketone, which is substituted by cyclohexyl group instead of phenyl group of hexanophenone, had much lower ability to be reduced than hexanophenone. These results suggest that in addition to a hydrophobic cleft corresponding to a straight-chain alkyl group of five carbon atoms, a hydrophobic pocket with affinity for an aromatic group is located in the substrate-binding domain of TCBR.

  18. ER Adaptor SCAP Translocates and Recruits IRF3 to Perinuclear Microsome Induced by Cytosolic Microbial DNAs

    Science.gov (United States)

    Yu, Huansha; Liu, Xing; Huang, Lulu; Wang, Qiang; Liu, Heng; Cui, Ye; Tang, Yijun; Zhang, Peng; Wang, Chen

    2016-01-01

    Stimulator of interferon genes (STING, also known as MITA, ERIS or MPYS) induces the activation of TBK1 kinase and IRF3 transcription factor, upon sensing of microbial DNAs. How IRF3 is recruited onto the STING signalosome remains unknown. We report here that silencing of the ER adaptor SCAP markedly impairs the IRF3-responsive gene expression induced by STING. Scap knockdown mice are more susceptible to HSV-1 infection. Interestingly, SCAP translocates from ER, via Golgi, to perinuclear microsome in a STING-dependent manner. Mechanistically, the N-terminal transmembrane domain of SCAP interacts with STING, and the C-terminal cytosolic domain of SCAP binds to IRF3, thus recruiting IRF3 onto STING signalosome. Mis-localization of SCAP abolishes its antiviral function. Collectively, this study characterizes SCAP as an essential adaptor in the STING signaling pathway, uncovering a critical missing link in DNAs-triggered host antiviral responses. PMID:26900919

  19. DNA polymerase-α regulates type I interferon activation through cytosolic RNA:DNA synthesis

    Science.gov (United States)

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J.; Xing, Chao; Wang, Richard C.; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K.; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R.; Burstein, Ezra

    2016-01-01

    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations disrupting nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts expression of POLA1, the gene encoding the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency results in increased type I interferon production. This enzyme is necessary for RNA:DNA primer synthesis during DNA replication and strikingly, POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Altogether, this work identified POLA1 as a critical regulator of the type I interferon response. PMID:27019227

  20. ER Adaptor SCAP Translocates and Recruits IRF3 to Perinuclear Microsome Induced by Cytosolic Microbial DNAs.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2016-02-01

    Full Text Available Stimulator of interferon genes (STING, also known as MITA, ERIS or MPYS induces the activation of TBK1 kinase and IRF3 transcription factor, upon sensing of microbial DNAs. How IRF3 is recruited onto the STING signalosome remains unknown. We report here that silencing of the ER adaptor SCAP markedly impairs the IRF3-responsive gene expression induced by STING. Scap knockdown mice are more susceptible to HSV-1 infection. Interestingly, SCAP translocates from ER, via Golgi, to perinuclear microsome in a STING-dependent manner. Mechanistically, the N-terminal transmembrane domain of SCAP interacts with STING, and the C-terminal cytosolic domain of SCAP binds to IRF3, thus recruiting IRF3 onto STING signalosome. Mis-localization of SCAP abolishes its antiviral function. Collectively, this study characterizes SCAP as an essential adaptor in the STING signaling pathway, uncovering a critical missing link in DNAs-triggered host antiviral responses.

  1. Metabolism of minor isoforms of prion proteins Cytosolic prion protein and transmembrane prion protein*

    Institute of Scientific and Technical Information of China (English)

    Zhiqi Song; Deming Zhao; Lifeng Yang

    2013-01-01

    Transmissible spongiform encephalopathy or prion disease is triggered by the conversion from cellular prion protein to pathogenic prion protein. Growing evidence has concentrated on prion protein configuration changes and their correlation with prion disease transmissibility and pathoge-nicity. In vivo and in vitro studies have shown that several cytosolic forms of prion protein with spe-cific topological structure can destroy intracellular stability and contribute to prion protein pathoge-nicity. In this study, the latest molecular chaperone system associated with endoplasmic reticu-lum-associated protein degradation, the endoplasmic reticulum resident protein quality-control system and the ubiquitination proteasome system, is outlined. The molecular chaperone system directly correlates with the prion protein degradation pathway. Understanding the molecular me-chanisms wil help provide a fascinating avenue for further investigations on prion disease treatment and prion protein-induced neurodegenerative diseases.

  2. Cytosolic glutamine synthetase: a target for improvement of crop nitrogen use efficiency?

    Science.gov (United States)

    Thomsen, Hanne C; Eriksson, Dennis; Møller, Inge S; Schjoerring, Jan K

    2014-10-01

    Overexpression of the cytosolic enzyme glutamine synthetase 1 (GS1) has been investigated in numerous cases with the goal of improving crop nitrogen use efficiency. However, the outcome has generally been inconsistent. Here, we review possible reasons underlying the lack of success and conclude that GS1 activity may be downregulated via a chain of processes elicited by metabolic imbalances and environmental constraints. We suggest that a pivotal role of GS1 may be related to the maintenance of essential nitrogen (N) flows and internal N sensing during critical stages of plant development. A number of more refined overexpression strategies exploiting gene stacking combined with tissue and cell specific targeting to overcome metabolic bottlenecks are considered along with their potential in relation to new N management strategies.

  3. Meclizine Inhibits Mitochondrial Respiration through Direct Targeting of Cytosolic Phosphoethanolamine Metabolism*

    Science.gov (United States)

    Gohil, Vishal M.; Zhu, Lin; Baker, Charli D.; Cracan, Valentin; Yaseen, Abbas; Jain, Mohit; Clish, Clary B.; Brookes, Paul S.; Bakovic, Marica; Mootha, Vamsi K.

    2013-01-01

    We recently identified meclizine, an over-the-counter drug, as an inhibitor of mitochondrial respiration. Curiously, meclizine blunted respiration in intact cells but not in isolated mitochondria, suggesting an unorthodox mechanism. Using a metabolic profiling approach, we now show that treatment with meclizine leads to a sharp elevation of cellular phosphoethanolamine, an intermediate in the ethanolamine branch of the Kennedy pathway of phosphatidylethanolamine biosynthesis. Metabolic labeling and in vitro enzyme assays confirmed direct inhibition of the cytosolic enzyme CTP:phosphoethanolamine cytidylyltransferase (PCYT2). Inhibition of PCYT2 by meclizine led to rapid accumulation of its substrate, phosphoethanolamine, which is itself an inhibitor of mitochondrial respiration. Our work identifies the first pharmacologic inhibitor of the Kennedy pathway, demonstrates that its biosynthetic intermediate is an endogenous inhibitor of respiration, and provides key mechanistic insights that may facilitate repurposing meclizine for disorders of energy metabolism. PMID:24142790

  4. Meclizine inhibits mitochondrial respiration through direct targeting of cytosolic phosphoethanolamine metabolism.

    Science.gov (United States)

    Gohil, Vishal M; Zhu, Lin; Baker, Charli D; Cracan, Valentin; Yaseen, Abbas; Jain, Mohit; Clish, Clary B; Brookes, Paul S; Bakovic, Marica; Mootha, Vamsi K

    2013-12-06

    We recently identified meclizine, an over-the-counter drug, as an inhibitor of mitochondrial respiration. Curiously, meclizine blunted respiration in intact cells but not in isolated mitochondria, suggesting an unorthodox mechanism. Using a metabolic profiling approach, we now show that treatment with meclizine leads to a sharp elevation of cellular phosphoethanolamine, an intermediate in the ethanolamine branch of the Kennedy pathway of phosphatidylethanolamine biosynthesis. Metabolic labeling and in vitro enzyme assays confirmed direct inhibition of the cytosolic enzyme CTP:phosphoethanolamine cytidylyltransferase (PCYT2). Inhibition of PCYT2 by meclizine led to rapid accumulation of its substrate, phosphoethanolamine, which is itself an inhibitor of mitochondrial respiration. Our work identifies the first pharmacologic inhibitor of the Kennedy pathway, demonstrates that its biosynthetic intermediate is an endogenous inhibitor of respiration, and provides key mechanistic insights that may facilitate repurposing meclizine for disorders of energy metabolism.

  5. An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase.

    Science.gov (United States)

    Yoo, Heejin; Widhalm, Joshua R; Qian, Yichun; Maeda, Hiroshi; Cooper, Bruce R; Jannasch, Amber S; Gonda, Itay; Lewinsohn, Efraim; Rhodes, David; Dudareva, Natalia

    2013-01-01

    Phenylalanine is a vital component of proteins in all living organisms, and in plants is a precursor for thousands of additional metabolites. Animals are incapable of synthesizing phenylalanine and must primarily obtain it directly or indirectly from plants. Although plants can synthesize phenylalanine in plastids through arogenate, the contribution of an alternative pathway via phenylpyruvate, as occurs in most microbes, has not been demonstrated. Here we show that plants also utilize a microbial-like phenylpyruvate pathway to produce phenylalanine, and flux through this route is increased when the entry point to the arogenate pathway is limiting. Unexpectedly, we find the plant phenylpyruvate pathway utilizes a cytosolic aminotransferase that links the coordinated catabolism of tyrosine to serve as the amino donor, thus interconnecting the extra-plastidial metabolism of these amino acids. This discovery uncovers another level of complexity in the plant aromatic amino acid regulatory network, unveiling new targets for metabolic engineering.

  6. Novel TPR-containing subunit of TOM complex functions as cytosolic receptor for Entamoeba mitosomal transport.

    Science.gov (United States)

    Makiuchi, Takashi; Mi-ichi, Fumika; Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2013-01-01

    Under anaerobic environments, the mitochondria have undergone remarkable reduction and transformation into highly reduced structures, referred as mitochondrion-related organelles (MROs), which include mitosomes and hydrogenosomes. In agreement with the concept of reductive evolution, mitosomes of Entamoeba histolytica lack most of the components of the TOM (translocase of the outer mitochondrial membrane) complex, which is required for the targeting and membrane translocation of preproteins into the canonical aerobic mitochondria. Here we showed, in E. histolytica mitosomes, the presence of a 600-kDa TOM complex composed of Tom40, a conserved pore-forming subunit, and Tom60, a novel lineage-specific receptor protein. Tom60, containing multiple tetratricopeptide repeats, is localized to the mitosomal outer membrane and the cytosol, and serves as a receptor of both mitosomal matrix and membrane preproteins. Our data indicate that Entamoeba has invented a novel lineage-specific shuttle receptor of the TOM complex as a consequence of adaptation to an anaerobic environment.

  7. Cytosolic calcium and pH signaling in plants under salinity stress.

    Science.gov (United States)

    Kader, Md Abdul; Lindberg, Sylvia

    2010-03-01

    Calcium is one of the essential nutrients for growth and development of plants. It is an important component of various structures in cell wall and membranes. Besides some fundamental roles under normal condition, calcium functions as a major secondary-messenger molecule in plants under different developmental cues and various stress conditions including salinity stress. Also changes in cytosolic pH, pH(cyt), either individually, or in coordination with changes in cytosolic Ca(2+) concentration, [Ca(2+)](cyt), evoke a wide range of cellular functions in plants including signal transduction in plant-defense responses against stresses. It is believed that salinity stress, like other stresses, is perceived at cell membrane, either extra cellular or intracellular, which then triggers an intracellular-signaling cascade including the generation of secondary messenger molecules like Ca(2+) and protons. The variety and complexity of Ca(2+) and pH signaling result from the nature of the stresses as well as the tolerance level of the plant species against that specific stress. The nature of changes in [Ca(2+)](cyt) concentration, in terms of amplitude, frequency and duration, is likely very important for decoding the specific downstream responses for salinity stress tolerance in planta. It has been observed that the signatures of [Ca(2+)](cyt) and pH differ in various studies reported so far depending on the techniques used to measure them, and also depending on the plant organs where they are measured, such as root, shoot tissues or cells. This review describes the recent advances about the changes in [Ca(2+)](cyt) and pH(cyt) at both cellular and whole-plant levels under salinity stress condition, and in various salinity-tolerant and -sensitive plant species.

  8. Expression of novel cytosolic malate dehydrogenases (cMDH) in Lupinus angustifolius nodules during phosphorus starvation.

    Science.gov (United States)

    Le Roux, Marcellous; Phiri, Ethel; Khan, Wesaal; Sakiroğlu, Muhammet; Valentine, Alex; Khan, Sehaam

    2014-11-01

    During P deficiency, the increased activity of malate dehydrogenase (MDH, EC 1.1.1.37) can lead to malate accumulation. Cytosolic- and nodule-enhanced MDH (cMDH and neMDH, respectively) are known isoforms, which contribute to MDH activity in root nodules. The aim of this study was to investigate the role of the cMDH isoforms in nodule malate supply under P deficiency. Nodulated lupins (Lupinus angustifolius var. Tanjil) were hydroponically grown at adequate P (+P) or low P (-P). Total P concentration in nodules decreased under P deficiency, which coincided with an increase in total MDH activity. A consequence of higher MDH activity was the enhanced accumulation of malate derived from dark CO2 fixation via PEPC and not from pyruvate. Although no measurable neMDH presence could be detected via PCR, gene-specific primers detected two 1kb amplicons of cMDH, designated LangMDH1 (corresponding to +P, HQ690186) and LangMDH2 (corresponding to -P, HQ690187), respectively. Sequencing analyses of these cMDH amplicons showed them to be 96% identical on an amino acid level. There was a high degree of diversification between proteins detected in this study and other known MDH proteins, particularly those from other leguminous plants. Enhanced malate synthesis in P-deficient nodules was achieved via increased anaplerotic CO2 fixation and subsequent higher MDH activities. Novel isoforms of cytosolic MDH may be involved, as shown by gene expression of specific genes under P deficiency.

  9. Vacuolar H+-ATPase in the nuclear membranes regulates nucleo-cytosolic proton gradients.

    Science.gov (United States)

    Santos, Julianna Maria; Martínez-Zaguilán, Raul; Facanha, Arnoldo Rocha; Hussain, Fazle; Sennoune, Souad R

    2016-10-01

    The regulation of the luminal pH of each organelle is crucial for its function and must be controlled tightly. Nevertheless, it has been assumed that the nuclear pH is regulated by the cytoplasmic proton transporters via the diffusion of H(+) across the nuclear pores because of their large diameter. However, it has been demonstrated that ion gradients exist between cytosol and nucleus, suggesting that the permeability of ions across the nuclear pores is restricted. Vacuolar H(+)-ATPase (V-H(+)-ATPase) is responsible for the creation and maintenance of trans-membrane electrochemical gradient. We hypothesize that V-H(+)-ATPase located in the nuclear membranes functions as the primary mechanism to regulate nuclear pH and generate H(+) gradients across the nuclear envelope. We studied the subcellular heterogeneity of H(+) concentration in the nucleus and cytosol using ratio imaging microscopy and SNARF-1, a pH indicator, in prostate cells. Our results indicate that there are proton gradients across the nuclear membranes that are generated by V-H(+)-ATPase located in the outer and inner nuclear membranes. We demonstrated that these gradients are mostly dissipated by inhibiting V-H(+)-ATPase. Immunoblots and V-H(+)-ATPase activity corroborated the existence of V-H(+)-ATPase in the nuclear membranes. This study demonstrates that V-H(+)-ATPase is functionally expressed in nuclear membranes and is responsible for nuclear H(+) gradients that may promote not only the coupled transport of substrates, but also most electrochemically driven events across the nuclear membranes. This study represents a paradigm shift that the nucleus can regulate its own pH microenvironment, providing new insights into nuclear ion homeostasis and signaling.

  10. Knockdown of cytosolic glutaredoxin 1 leads to loss of mitochondrial membrane potential: implication in neurodegenerative diseases.

    Directory of Open Access Journals (Sweden)

    Uzma Saeed

    Full Text Available Mitochondrial dysfunction including that caused by oxidative stress has been implicated in the pathogenesis of neurodegenerative diseases. Glutaredoxin 1 (Grx1, a cytosolic thiol disulfide oxido-reductase, reduces glutathionylated proteins to protein thiols and helps maintain redox status of proteins during oxidative stress. Grx1 downregulation aggravates mitochondrial dysfunction in animal models of neurodegenerative diseases, such as Parkinson's and motor neuron disease. We examined the mechanism underlying the regulation of mitochondrial function by Grx1. Downregulation of Grx1 by shRNA results in loss of mitochondrial membrane potential (MMP, which is prevented by the thiol antioxidant, alpha-lipoic acid, or by cyclosporine A, an inhibitor of mitochondrial permeability transition. The thiol groups of voltage dependent anion channel (VDAC, an outer membrane protein in mitochondria but not adenosine nucleotide translocase (ANT, an inner membrane protein, are oxidized when Grx1 is downregulated. We then examined the effect of beta-N-oxalyl amino-L-alanine (L-BOAA, an excitatory amino acid implicated in neurolathyrism (a type of motor neuron disease, that causes mitochondrial dysfunction. Exposure of cells to L-BOAA resulted in loss of MMP, which was prevented by overexpression of Grx1. Grx1 expression is regulated by estrogen in the CNS and treatment of SH-SY5Y cells with estrogen upregulated Grx1 and protected from L-BOAA mediated MMP loss. Our studies demonstrate that Grx1, a cytosolic oxido-reductase, helps maintain mitochondrial integrity and prevents MMP loss caused by oxidative insult. Further, downregulation of Grx1 leads to mitochondrial dysfunction through oxidative modification of the outer membrane protein, VDAC, providing support for the critical role of Grx1 in maintenance of MMP.

  11. Ammonia-regulated expression of a soybean gene encoding cytosolic glutamine synthetase in transgenic Lotus corniculatus.

    Science.gov (United States)

    Miao, G H; Hirel, B; Marsolier, M C; Ridge, R W; Verma, D P

    1991-01-01

    A full-length cDNA clone encoding cytosolic glutamine synthetase (GS), expressed in roots and root nodules of soybean, was isolated by direct complementation of an Escherichia coli gln A- mutant. This sequence is induced in roots by the availability of ammonia. A 3.5-kilobase promoter fragment of a genomic clone (lambda GS15) corresponding to this cDNA was isolated and fused with a reporter [beta-glucuronidase (GUS)] gene. The GS-GUS fusion was introduced into a legume (Lotus corniculatus) and a nonlegume (tobacco) plant by way of Agrobacterium-mediated transformations. This chimeric gene was found to be expressed in a root-specific manner in both tobacco and L. corniculatus, the expression being restricted to the growing root apices and the vascular bundles of the mature root. Treatment with ammonia increased the expression of this chimeric gene in the legume background (i.e., L. corniculatus); however, no induction was observed in tobacco roots. Histochemical localization of GUS activity in ammonia-treated transgenic L. corniculatus roots showed a uniform distribution across all cell types. These data suggest that the tissue specificity of the soybean cytosolic GS gene is conserved in both tobacco and L. corniculatus; however, in the latter case, this gene is ammonia inducible. Furthermore, the ammonia-enhanced GS gene expression in L. corniculatus is due to an increase in transcription. That this gene is directly regulated by externally supplied or symbiotically fixed nitrogen is also evident from the expression of GS-GUS in the infection zone, including the uninfected cells, and the inner cortex of transgenic L. corniculatus nodules, where a flux of ammonia is encountered by this tissue. The lack of expression of GS-GUS in the outer cortex of the nodules suggests that ammonia may not be able to diffuse outside the endodermis.

  12. Localization of age-related macular degeneration-associated ARMS2 in cytosol, not mitochondria

    Science.gov (United States)

    Wang, Gaofeng; Spencer, Kylee L.; Court, Brenda L.; Olson, Lana M.; Scott, William K.; Haines, Jonathan L.; Pericak-Vance, Margaret A.

    2010-01-01

    PURPOSE To analyze the relationship between ARMS2 and HTRA1 in the association with age-related macular degeneration (AMD) in an independent case-control dataset, and to investigate the subcellular localization of the ARMS2 protein in an in vitro system. METHOD Two SNPs in ARMS2 and HTRA1 were genotyped in 685 cases and 269 controls by Taqman Assay. Allelic association was tested by a χ2 test. A likelihood ratio test (LRT) of full vs. reduced models was utilized to analyze the interaction between ARMS2 and smoking and HTRA1 and smoking, after adjusting for CFH and age. Immunofluorescence and immunoblot were applied to localize ARMS2 in retinal epithelial ARPE-19 cells and COS7 cell transfected by ARMS2 constructs. RESULT Both significantly associated SNP rs10490924 and rs11200638 (P<0.0001) are in strong linkage disequilibrium (LD) (D′=0.97, r2=0.93) that generates virtually identical association test and odds ratios. In separate logistic regression models the interaction effect for both smoking with ARMS2 and with HTRA1 was not statistically significant. Immunofluorescence and immunoblot show that both endogenous and exogenous ARMS2 are mainly distributed in the cytosol, not the mitochondria. Comparing to wild type, ARMS2 A69S is more likely to be associated with cytoskeleton in COS7 cells. CONCLUSIONS The significant associations in ARMS2 and HTRA1 are with polymorphisms in strong LD that confer virtually identical risks, preventing differentiation at the statistical level. We found that ARMS2 was mainly distributed in the cytosol, not in mitochondrial outer membrane as previously reported, suggesting that ARMS2 may not confer risk to AMD through the mitochondrial pathway. PMID:19255159

  13. Contributions of two cytosolic glutamine synthetase isozymes to ammonium assimilation in Arabidopsis roots.

    Science.gov (United States)

    Konishi, Noriyuki; Ishiyama, Keiki; Beier, Marcel Pascal; Inoue, Eri; Kanno, Keiichi; Yamaya, Tomoyuki; Takahashi, Hideki; Kojima, Soichi

    2016-12-21

    Glutamine synthetase (GS) catalyzes a reaction that incorporates ammonium into glutamate and yields glutamine in the cytosol and chloroplasts. Although the enzymatic characteristics of the GS1 isozymes are well known, their physiological functions in ammonium assimilation and regulation in roots remain unclear. In this study we show evidence that two cytosolic GS1 isozymes (GLN1;2 and GLN1;3) contribute to ammonium assimilation in Arabidopsis roots. Arabidopsis T-DNA insertion lines for GLN1;2 and GLN1;3 (i.e. gln1;2 and gln1;3 single-mutants), the gln1;2:gln1;3 double-mutant, and the wild-type accession (Col-0) were grown in hydroponic culture with variable concentrations of ammonium to compare their growth, and their content of nitrogen, carbon, ammonium, and amino acids. GLN1;2 and GLN1;3 promoter-dependent green fluorescent protein was observed under conditions with or without ammonium supply. Loss of GLN1;2 caused significant suppression of plant growth and glutamine biosynthesis under ammonium-replete conditions. In contrast, loss of GLN1;3 caused slight defects in growth and Gln biosynthesis that were only visible based on a comparison of the gln1;2 single- and gln1;2:gln1;3 double-mutants. GLN1;2, being the most abundantly expressed GS1 isozyme, markedly increased following ammonium supply and its promoter activity was localized at the cortex and epidermis, while GLN1;3 showed only low expression at the pericycle, suggesting their different physiological contributions to ammonium assimilation in roots. The GLN1;2 promoter-deletion analysis identified regulatory sequences required for controlling ammonium-responsive gene expression of GLN1;2 in Arabidopsis roots. These results shed light on GLN1 isozyme-specific regulatory mechanisms in Arabidopsis that allow adaptation to an ammonium-replete environment.

  14. The enzymology of cytosolic pyrimidine 5'-nucleotidases: functional analysis and physiopathological implications.

    Science.gov (United States)

    Magni, Giulio; Amici, Adolfo; Orsomando, Giuseppe

    2013-01-01

    In mammals, cellular 5'-nucleotidase (5'-NT) activity (EC 3.1.3.5) encompasses a number of genetically and structurally distinct enzyme forms, either membrane-bound or soluble, mainly cytosolic, that are characterized by broad specificity towards nucleoside 5'-monophosphate substrates differing in base (purine/pyrimidine) and/or sugar (oxy/deoxy-ribose) moieties. In particular, among the cytosolic 5'-NTs active towards pyrimidine nucleotides are cN-III and cdN, ubiquitously distributed in mammalian tissues and treated as a single entity in the early days. cN-III was first linked to a genetic defect , hereditary pyrimidine nucleotidase deficiency, associated to a nonspherocyt ic hemolytic anemia disorder of still unclear mechanism but metabolically characterized by abnormally high levels of pyrimidine compounds and ribonucleoproteins in erythrocytes, as evidenced by occurrence of basophilic stippling on blood smearings. Since the first review on pyrimidine-specific nucleotidases (Amici, A.; Magni, G., Arch. Biochem. Biophys., 2002, 397(2), 184- 190), excellent overviews on the topic appeared in the literature. In the present contribution, the major findings on these two enzymatic proteins, cN-III and cdN, will be described with particular emphasis on the relationships between their structure and function, as well as on their roles in normal and pathological conditions. The catalytic mechanism of both specific hydrolytic and phosphotransferase activities, possessed by both enzymes, will be discussed also in the light of recent solution of both cN-III and cdN three-dimensional structures. This review also focuses on possible therapeutic approaches involving cellular 5'-NTs in detoxifying common antiviral and antineoplastic drugs.

  15. Cytosolic HSP90 Cochaperones HOP and FKBP Interact with Freshly Synthesized Chloroplast Preproteins of Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Christine Fellerer; Regina Schweiger; Katharina Sch(o)ngruber; Jürgen Soll; Serena Schwenkert

    2011-01-01

    Most chloroplast and mitochondrial proteins are synthesized in the cytosol of the plant cell and have to be imported into the organelles post-translationally.Molecular chaperones play an important role in preventing protein aggregation of freshly translated preproteins and assist in maintaining the preproteins in an import competent state.Preproteins can associate with HSPT0,HSP90,and 14-3-3 proteins in the cytosol.In this study,we analyzed a large set of wheat germ-translated chloroplast preproteins with respect to their chaperone binding.Our results demonstrate that the formation of distinct 14-3-3 or HSP90 containing preprotein complexes is a common feature in post-translational protein transport in addition to preproteins that seem to interact solely with HSP70.We were able to identify a diverse and extensive class of preproteins as HSP90 substrates,thus providing a tool for the investigation of HSP90 client protein association.The analyses of chimeric HSP90 and 14-3-3 binding preproteins with exchanged transit peptides indicate an involvement of both the transit peptide and the mature part of the proteins,in HSP90 binding.We identified two partner components of the HSP90 cycle,which were present in the preprotein containing high-molecular-weight complexes,the HSP70/HSP90 organizing protein HOP,as well as the immunophilin FKBP73.The results establish chloroplast preproteins as a general class of HSP90 client proteins in plants using HOP and FKBP as novel cochaperones.

  16. Excessive signal transduction of gain-of-function variants of the calcium-sensing receptor (CaSR are associated with increased ER to cytosol calcium gradient.

    Directory of Open Access Journals (Sweden)

    Marianna Ranieri

    Full Text Available In humans, gain-of-function mutations of the calcium-sensing receptor (CASR gene are the cause of autosomal dominant hypocalcemia or type 5 Bartter syndrome characterized by an abnormality of calcium metabolism with low parathyroid hormone levels and excessive renal calcium excretion. Functional characterization of CaSR activating variants has been so far limited at demonstrating an increased sensitivity to external calcium leading to lower Ca-EC50. Here we combine high resolution fluorescence based techniques and provide evidence that for the efficiency of calcium signaling system, cells expressing gain-of-function variants of CaSR monitor cytosolic and ER calcium levels increasing the expression of the Sarco-Endoplasmic Reticulum Calcium-ATPase (SERCA and reducing expression of Plasma Membrane Calcium-ATPase (PMCA. Wild-type CaSR (hCaSR-wt and its gain-of-function (hCaSR-R990G; hCaSR-N124K variants were transiently transfected in HEK-293 cells. Basal intracellular calcium concentration was significantly lower in cells expressing hCaSR-wt and its gain of function variants compared to mock. In line, FRET studies using the D1ER probe, which detects [Ca2+]ER directly, demonstrated significantly higher calcium accumulation in cells expressing the gain of function CaSR variants compared to hCaSR-wt. Consistently, cells expressing activating CaSR variants showed a significant increase in SERCA activity and expression and a reduced PMCA expression. This combined parallel regulation in protein expression increases the ER to cytosol calcium gradient explaining the higher sensitivity of CaSR gain-of-function variants to external calcium. This control principle provides a general explanation of how cells reliably connect (and exacerbate receptor inputs to cell function.

  17. Excessive signal transduction of gain-of-function variants of the calcium-sensing receptor (CaSR) are associated with increased ER to cytosol calcium gradient.

    Science.gov (United States)

    Ranieri, Marianna; Tamma, Grazia; Di Mise, Annarita; Vezzoli, Giuseppe; Soldati, Laura; Svelto, Maria; Valenti, Giovanna

    2013-01-01

    In humans, gain-of-function mutations of the calcium-sensing receptor (CASR) gene are the cause of autosomal dominant hypocalcemia or type 5 Bartter syndrome characterized by an abnormality of calcium metabolism with low parathyroid hormone levels and excessive renal calcium excretion. Functional characterization of CaSR activating variants has been so far limited at demonstrating an increased sensitivity to external calcium leading to lower Ca-EC50. Here we combine high resolution fluorescence based techniques and provide evidence that for the efficiency of calcium signaling system, cells expressing gain-of-function variants of CaSR monitor cytosolic and ER calcium levels increasing the expression of the Sarco-Endoplasmic Reticulum Calcium-ATPase (SERCA) and reducing expression of Plasma Membrane Calcium-ATPase (PMCA). Wild-type CaSR (hCaSR-wt) and its gain-of-function (hCaSR-R990G; hCaSR-N124K) variants were transiently transfected in HEK-293 cells. Basal intracellular calcium concentration was significantly lower in cells expressing hCaSR-wt and its gain of function variants compared to mock. In line, FRET studies using the D1ER probe, which detects [Ca2+]ER directly, demonstrated significantly higher calcium accumulation in cells expressing the gain of function CaSR variants compared to hCaSR-wt. Consistently, cells expressing activating CaSR variants showed a significant increase in SERCA activity and expression and a reduced PMCA expression. This combined parallel regulation in protein expression increases the ER to cytosol calcium gradient explaining the higher sensitivity of CaSR gain-of-function variants to external calcium. This control principle provides a general explanation of how cells reliably connect (and exacerbate) receptor inputs to cell function.

  18. FVT-1 is a mammalian 3-ketodihydrosphingosine reductase with an active site that faces the cytosolic side of the endoplasmic reticulum membrane.

    Science.gov (United States)

    Kihara, Akio; Igarashi, Yasuyuki

    2004-11-19

    Sphingolipids are essential membrane components of eukaryotic cells. Their synthesis is initiated with the condensation of l-serine with palmitoyl-CoA, producing 3-ketodihydrosphingosine (KDS), followed by a reduction to dihydrosphingosine by KDS reductase. Until now, only yeast TSC10 has been identified as a KDS reductase gene. Here, we provide evidence that the human FVT-1 (hFVT-1) and mouse FVT-1 (mFVT-1) are functional mammalian KDS reductases. The forced expression of hFVT-1 or mFVT-1 in TSC10-null yeast cells suppressed growth defects, and hFVT-1 overproduced in cultured cells exhibited KDS reductase activity in vitro. Moreover, purified recombinant hFVT-1 protein exhibited NADPH-dependent KDS reductase activity. The identification of the FVT-1 genes enabled us to characterize the mammalian KDS reductase at the molecular level. Northern blot analyses demonstrated that both hFVT-1 and mFVT-1 mRNAs are ubiquitously expressed, suggesting that FVT-1 is a major KDS reductase. We also found the presence of hFVT-1 variants, which were differentially expressed among tissues. Immunofluorescence microscopic analysis revealed that hFVT-1 is localized at the endoplasmic reticulum. Moreover, a proteinase K digestion assay revealed that the large hydrophilic domain of hFVT-1, which contains putative active site residues, faces the cytosol. These results suggest that KDS is converted to dihydrosphingosine in the cytosolic side of the endoplasmic reticulum membrane. Moreover, the topology studies provide insight into the spatial organization of the sphingolipid biosynthetic pathway.

  19. Processing and MHC class II presentation of exogenous soluble antigen involving a proteasome-dependent cytosolic pathway in CD40-activated B cells.

    Science.gov (United States)

    Becker, Hans Jiro; Kondo, Eisei; Shimabukuro-Vornhagen, Alexander; Theurich, Sebastian; von Bergwelt-Baildon, Michael S

    2016-08-01

    Activated B cells have the capacity to present antigen and induce immune responses as potent antigen-presenting cells (APCs). As in other APCs, antigen presentation by B cells involves antigen internalization, antigen processing, and peptide loading onto MHC molecules. However, while the mechanism of antigen processing has been studied extensively in other APCs, this pathway remains elusive in B cells. The aim of this study was to investigate the MHC class II processing pathway in CD40-activated B cells (CD40Bs), as a model for activated, antigen-presenting B cells. Using CMV pp65 as a model antigen, we evaluated processing and presentation of the CD4 + T-cell epitope 509-523 (K509) by human CD40Bs in ELISPOT assays. As expected, stimulation of specific CD4 + T-cell clones was attenuated after pretreatment of CD40Bs with inhibitors of classic class II pathway components. However, proteasome inhibitors such as epoxomicin limited antigen presentation as well. This suggests that the antigen is processed in a non-classical, cytosolic MHC class II pathway. Further experiments with truncated protein variants revealed involvement of the proteasome in processing of the N and C extensions of the epitope. Access to the cytosol was shown to be size dependent. Epoxomicin sensitivity exclusively in CD40B cells, but not in dendritic cells, suggests a novel processing mechanism unique to this APC. Our data suggest that B cells process antigen using a distinct, non-classical class II pathway.

  20. The Campylobacter jejuni CiaC virulence protein is secreted from the flagellum and delivered to the cytosol of host cells

    Directory of Open Access Journals (Sweden)

    Jason eNeal-McKinney

    2012-03-01

    Full Text Available Campylobacter jejuni is a leading cause of bacterial gastroenteritis worldwide. Acute C. jejuni-mediated disease (campylobacteriosis involves C. jejuni invasion of host epithelial cells using a set of virulence proteins known as the Campylobacter invasion antigens (Cia. The genes encoding the Cia proteins are up-regulated upon co-culture of C. jejuni with epithelial cells. One of the Cia proteins, CiaC, is required for maximal invasion of host cells by C. jejuni. Previous work has also revealed that CiaC is, in part, responsible for host cell cytoskeletal rearrangements that result in membrane ruffling. This study was performed to test the hypothesis that CiaC is delivered to the cytosol of host cells. To detect the delivery of CiaC into cultured epithelial cells, we used the adenylate cyclase domain (ACD of Bordetella pertussis CyaA as a reporter. In this study, we found that export and delivery of the C. jejuni Cia proteins into human INT 407 epithelial cells required a functional flagellar hook complex composed of FlgE, FlgK, and FlgL. Assays performed with bacterial culture supernatants supported the hypothesis that CiaC delivery requires bacteria-host cell contact. We also found that that CiaC was delivered to host cells by cell-associated (bound bacteria, as judged by experiments performed with inhibitors that specifically target the cell signaling pathways utilized by C. jejuni for cell invasion. Interestingly, the C. jejuni flgL mutant, which is incapable of exporting and delivering the Cia proteins, did not induce INT 407 cell membrane ruffles. Complementation of the flgL mutant with plasmid-encoded flgL restored the motility and membrane ruffling. These data support the hypothesis that the C. jejuni Cia proteins, which are exported from the flagellum, are delivered to the cytosol of host cells.

  1. Effect of tamoxifen on cytosolic estrogen receptor in the different parts of fallopian tube and uterus during ovum transport.

    Science.gov (United States)

    Gupta, J S; Roy, S K

    1987-12-01

    The effect of tamoxifen (ICI-46474) (alpha-[4-(beta-N-dimethylamino ethoxy)-phenyl]alpha'-ethyl trans stilbene on estrogen cytosolic receptor was observed in different parts of fallopian tube and uterus of rabbits during ovum transport. Tubal segments viz. ampulla (A), ampullary isthmic junction (AIJ), isthmus (I), uterine isthmic junction (UIJ) and uterus (U) were studied during the passage of ovum. Significant differences were observed in normal, drug treated and pregnant animals at 14, 24, 34, 48, 72, 144 and 168 h. In treated animals during 14 h post-coitum (p.c.) to 34 h p.c. the ampullary cytosol receptor concentration increased and suddenly decreased at 48 h p.c. whereas from 72 h p.c. to 144 h p.c. it increased gradually. Tamoxifen accelerated the rate of egg transport decreasing tubal cytosolic receptors at 48 h p.c. However, beyond 48 h p.c. receptors increased till 144 h p.c. Results suggest that tamoxifen modulated tubal cytosolic estrogen receptors during egg transport and prevents pregnancy.

  2. Expression and cytosolic assembly of the S-layer fusion protein mSbsC-EGFP in eukaryotic cells

    NARCIS (Netherlands)

    Blecha, Andreas; Zarschler, Kristof; Sjollema, Klaas A.; Veenhuis, Marten; Rödel, Gerhard; Rodel, G.

    2005-01-01

    Background: Native as well as recombinant bacterial cell surface layer (S-layer) protein of Geobacillus (G.) stearothermophilus ATCC 12980 assembles to supramolecular structures with an oblique symmetry. Upon expression in E. coli, S-layer self assembly products are formed in the cytosol. We tested

  3. Contribution of vesicular and cytosolic dopamine to the increased striatal dopamine efflux elicited by intrastriatal injection of dexamphetamine.

    NARCIS (Netherlands)

    Watanabe, S.; Aono, Y.; Fusa, K.; Takada, K.; Saigusa, T.; Koshikawa, N.; Cools, A.R.

    2005-01-01

    Systemic administration of high doses of dexamphetamine induces a dopamine efflux that has its intracellular origin in both the vesicular, reserpine-sensitive dopamine pool and the cytosolic, alpha-methyl-para-tyrosine-sensitive, newly synthesized dopamine pool. It remains unknown whether locally

  4. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Kozak, B.U.; Van Rossum, M.H.; Luttik, M.A.; Akeroyd, M.; Benjamin, K.R.; Wu, L.; De Vries, S.; Daran, J.M.; Pronk, J.T.; Van Maris, A.J.A.

    2014-01-01

    The energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been intr

  5. Dynamic protein composition of Arabidopsis thaliana cytosolic ribosomes in response to sucrose feeding as revealed by label free MSE proteomics

    NARCIS (Netherlands)

    Hummel, M.; Cordewener, J.H.G.C.; Groot, de J.C.M.; Smeekens, S.; America, A.H.P.; Hanson, J.

    2012-01-01

    Cytosolic ribosomes are among the largest multisubunit cellular complexes. Arabidopsis thaliana ribosomes consist of 79 different ribosomal proteins (r-proteins) that each are encoded by two to six (paralogous) genes. It is unknown whether the paralogs are incorporated into the ribosome and whether

  6. TAT and HA2 facilitate cellular uptake of gold nanoparticles but do not lead to cytosolic localisation.

    Science.gov (United States)

    Cesbron, Yann; Shaheen, Umbreen; Free, Paul; Lévy, Raphaël

    2015-01-01

    The methods currently available to deliver functional labels and drugs to the cell cytosol are inefficient and this constitutes a major obstacle to cell biology (delivery of sensors and imaging probes) and therapy (drug access to the cell internal machinery). As cell membranes are impermeable to most molecular cargos, viral peptides have been used to bolster their internalisation through endocytosis and help their release to the cytosol by bursting the endosomal vesicles. However, conflicting results have been reported on the extent of the cytosolic delivery achieved. To evaluate their potential, we used gold nanoparticles as model cargos and systematically assessed how the functionalisation of their surface by either or both of the viral peptides TAT and HA2 influenced their intracellular delivery. We evaluated the number of gold nanoparticles present in cells after internalisation using photothermal microscopy and their subcellular localisation by electron microscopy. While their uptake increased when the TAT and/or HA2 viral peptides were present on their surface, we did not observe a significant cytosolic delivery of the gold nanoparticles.

  7. Selective induction and subcellular distribution of ACONITASE 3 reveal the importance of cytosolic citrate metabolism during lipid mobilization in Arabidopsis.

    Science.gov (United States)

    Hooks, Mark A; Allwood, J William; Harrison, Joanna K D; Kopka, Joachim; Erban, Alexander; Goodacre, Royston; Balk, Janneke

    2014-10-15

    Arabidopsis thaliana has three genes that encode distinct aconitases (ACO), but little is known about the function of each isoenzyme during plant development. In newly emerged seedlings of Arabidopsis, transcript and protein levels for ACO3 were selectively induced to yield more than 80% of total aconitase activity. Characterization of knockout mutants for each of the three ACOs suggests a major role for only ACO3 in citrate metabolism. The aco3 mutant showed delayed early seedling growth, altered assimilation of [14C]acetate feeding and elevated citrate levels, which were nearly 4-fold greater than in wild-type, aco1 or aco2. However, both ACO1 and ACO2 are active in seedlings as shown by inhibition of aco3 growth by the toxin monofluoroacetate, and altered [14C]acetate assimilation and metabolite levels in aco1 and aco2. Relative levels of fumarate and malate differed between aco2 and aco3, indicating metabolically isolated pools of these metabolites in seedlings. Our inability to enrich ACO protein through mitochondria isolation, and the reduced cytosolic ACO activity of the iron-sulfur centre assembly mutant atm3-1, indicated a cytosolic localization of ACO3 in 3-day-old seedlings. Subsequently, we determined that more than 90% of ACO3 was cytosolic. We conclude that ACO3 is cytosolic in young seedlings and functions in citrate catabolism consistent with the operation of the classic glyoxylate and not direct catabolism of citrate within mitochondria.

  8. Contribution of vesicular and cytosolic dopamine to the increased striatal dopamine efflux elicited by intrastriatal injection of dexamphetamine.

    NARCIS (Netherlands)

    Watanabe, S.; Aono, Y.; Fusa, K.; Takada, K.; Saigusa, T.; Koshikawa, N.; Cools, A.R.

    2005-01-01

    Systemic administration of high doses of dexamphetamine induces a dopamine efflux that has its intracellular origin in both the vesicular, reserpine-sensitive dopamine pool and the cytosolic, alpha-methyl-para-tyrosine-sensitive, newly synthesized dopamine pool. It remains unknown whether locally ad

  9. Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress.

    Science.gov (United States)

    Bonifacio, Aurenivia; Martins, Marcio O; Ribeiro, Carolina W; Fontenele, Adilton V; Carvalho, Fabricio E L; Margis-Pinheiro, Márcia; Silveira, Joaquim A G

    2011-10-01

    Current studies, particularly in Arabidopsis, have demonstrated that mutants deficient in cytosolic ascorbate peroxidases (APXs) are susceptible to the oxidative damage induced by abiotic stress. In contrast, we demonstrate here that rice mutants double silenced for cytosolic APXs (APx1/2s) up-regulated other peroxidases, making the mutants able to cope with abiotic stress, such as salt, heat, high light and methyl viologen, similar to non-transformed (NT) plants. The APx1/2s mutants exhibited an altered redox homeostasis, as indicated by increased levels of H₂O₂ and ascorbate and glutathione redox states. Both mutant and NT plants exhibited similar photosynthesis (CO₂) assimilation and photochemical efficiency) under both normal and stress conditions. Overall, the antioxidative compensatory mechanism displayed by the mutants was associated with increased expression of OsGpx genes, which resulted in higher glutathione peroxidase (GPX) activity in the cytosolic and chloroplastic fractions. The transcript levels of OsCatA and OsCatB and the activities of catalase (CAT) and guaiacol peroxidase (GPOD; type III peroxidases) were also up-regulated. None of the six studied isoforms of OsApx were up-regulated under normal growth conditions. Therefore, the deficiency in cytosolic APXs was effectively compensated for by up-regulation of other peroxidases. We propose that signalling mechanisms triggered in rice mutants could be distinct from those proposed for Arabidopsis.

  10. The bimodal lifestyle of intracellular Salmonella in epithelial cells: replication in the cytosol obscures defects in vacuolar replication.

    Directory of Open Access Journals (Sweden)

    Preeti Malik-Kale

    Full Text Available Salmonella enterica serovar Typhimurium invades and proliferates within epithelial cells. Intracellular bacteria replicate within a membrane bound vacuole known as the Salmonella containing vacuole. However, this bacterium can also replicate efficiently in the cytosol of epithelial cells and net intracellular growth is a product of both vacuolar and cytosolic replication. Here we have used semi-quantitative single-cell analyses to investigate the contribution of each of these replicative niches to intracellular proliferation in cultured epithelial cells. We show that cytosolic replication can account for the majority of net replication even though it occurs in less than 20% of infected cells. Consequently, assays for net growth in a population of infected cells, for example by recovery of colony forming units, are not good indicators of vacuolar proliferation. We also show that the Salmonella Type III Secretion System 2, which is required for SCV biogenesis, is not required for cytosolic replication. Altogether this study illustrates the value of single cell analyses when studying intracellular pathogens.

  11. Trolox-sensitive reactive oxygen species regulate mitochondrial morphology, oxidative phosphorylation and cytosolic calcium handling in healthy cells

    NARCIS (Netherlands)

    Distelmaier, F.; Valsecchi, F.; Forkink, M.; Emst-de Vries, S.E. van; Swarts, H.G.P.; Rodenburg, R.J.T.; Verwiel, E.T.P.; Smeitink, J.A.M.; Willems, P.H.G.M.; Koopman, W.J.H.

    2012-01-01

    AIMS: Cell regulation by signaling reactive oxygen species (sROS) is often incorrectly studied through extracellular oxidant addition. Here, we used the membrane-permeable antioxidant Trolox to examine the role of sROS in mitochondrial morphology, oxidative phosphorylation (OXPHOS), and cytosolic

  12. Engineering Acetyl Coenzyme A Supply: Functional Expression of a Bacterial Pyruvate Dehydrogenase Complex in the Cytosol of Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Kozak, B.U.; Van Rossum, H.M.; Luttik, M.A.H.; Akeroyd, M.; Benjamin, K.R.; Wu, L.; De Vries, S.; Daran, J.M.; Pronk, J.T.; Van Maris, A.J.A.

    2014-01-01

    The energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been intr

  13. Trolox-sensitive reactive oxygen species regulate mitochondrial morphology, oxidative phosphorylation and cytosolic calcium handling in healthy cells

    NARCIS (Netherlands)

    Distelmaier, F.; Valsecchi, F.; Forkink, M.; Emst-de Vries, S.E. van; Swarts, H.G.P.; Rodenburg, R.J.T.; Verwiel, E.T.P.; Smeitink, J.A.M.; Willems, P.H.G.M.; Koopman, W.J.H.

    2012-01-01

    AIMS: Cell regulation by signaling reactive oxygen species (sROS) is often incorrectly studied through extracellular oxidant addition. Here, we used the membrane-permeable antioxidant Trolox to examine the role of sROS in mitochondrial morphology, oxidative phosphorylation (OXPHOS), and cytosolic ca

  14. Phylogenetic Analysis of Nucleus-Encoded Acetyl-CoA Carboxylases Targeted at the Cytosol and Plastid of Algae.

    KAUST Repository

    Huerlimann, Roger

    2015-07-01

    The understanding of algal phylogeny is being impeded by an unknown number of events of horizontal gene transfer (HGT), and primary and secondary/tertiary endosymbiosis. Through these events, previously heterotrophic eukaryotes developed photosynthesis and acquired new biochemical pathways. Acetyl-CoA carboxylase (ACCase) is a key enzyme in the fatty acid synthesis and elongation pathways in algae, where ACCase exists in two locations (cytosol and plastid) and in two forms (homomeric and heteromeric). All algae contain nucleus-encoded homomeric ACCase in the cytosol, independent of the origin of the plastid. Nucleus-encoded homomeric ACCase is also found in plastids of algae that arose from a secondary/tertiary endosymbiotic event. In contrast, plastids of algae that arose from a primary endosymbiotic event contain heteromeric ACCase, which consists of three nucleus-encoded and one plastid-encoded subunits. These properties of ACCase provide the potential to inform on the phylogenetic relationships of hosts and their plastids, allowing different hypothesis of endosymbiotic events to be tested. Alveolata (Dinoflagellata and Apicomplexa) and Chromista (Stramenopiles, Haptophyta and Cryptophyta) have traditionally been grouped together as Chromalveolata, forming the red lineage. However, recent genetic evidence groups the Stramenopiles, Alveolata and green plastid containing Rhizaria as SAR, excluding Haptophyta and Cryptophyta. Sequences coding for plastid and cytosol targeted homomeric ACCases were isolated from Isochrysis aff. galbana (TISO), Chromera velia and Nannochloropsis oculata, representing three taxonomic groups for which sequences were lacking. Phylogenetic analyses show that cytosolic ACCase strongly supports the SAR grouping. Conversely, plastidial ACCase groups the SAR with the Haptophyta, Cryptophyta and Prasinophyceae (Chlorophyta). These two ACCase based, phylogenetic relationships suggest that the plastidial homomeric ACCase was acquired by the

  15. Identification, purification, characterization and regulation of the rabbit peritoneal neutrophil cytosolic inositol 1,4,5-trisphosphate 5-phosphomonoesterase

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, S.P.

    1988-01-01

    Inositol 1,4,5-trisphosphate (IP{sub 3}) is a second messenger involved in intracellular Ca{sup 2+} mobilization. Its enzymatic breakdown by inositol 1,4,5-trisphosphate 5-phosphomonoesterase (IP{sub 3} phosphatase) yields inositol 1,4-bisphosphate (IP{sub 2}) which does not mobilize Ca{sup 2+}. Thus, the IP{sub 3} phosphatase can serve to regulate internal free Ca{sup 2+} levels. In Triton X-100 permeabilized rabbit peritoneal neutrophils and neutrophil cytosol, exogenously added ({sup 3}H)IP{sub 3} is rapidly hydrolyzed to IP{sub 2}, inositol monophosphate (IP) and free inositol. The rate of IP{sub 3} hydrolysis was greater than that of IP{sub 2} in permeabilized neutrophils, while the converse was observed in cytosol. DE-52 chromatography of cytosol separates the specific from nonspecific IP{sub 3} phosphatase activity. Further purification of the specific enzyme resulted in a 790-fold purification over cytosol activity, however, the IP{sub 3} phosphatase could not be identified with any protein in this preparation. The neutrophil IP{sub 3} phosphatase has a molecular weight of 43-47 kDa, and an isoelectric point of 5.6, as determined by size exclusion chromatography and Chromatofocusing, respectively. Physiological concentrations of Ca{sup 2+} and calmodulin have no effect on IP{sub 3} phosphatase activity. Activation of endogenous protein kinase C in permeabilized cells and cytosol also has no effect on the activity. Characteristics of the neutrophil IP{sub 3} phosphatase are discussed in relation to IP{sub 3} phosphatases in other cells and tissues.

  16. Alternative translational initiation of ATP sulfurylase underlying dual localization of sulfate assimilation pathways in plastids and cytosol in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Anne-Sophie eBohrer

    2015-01-01

    Full Text Available Plants assimilate inorganic sulfate into sulfur-containing vital metabolites. ATP sulfurylase (ATPS is the enzyme catalyzing the key entry step of the sulfate assimilation pathway in both plastids and cytosol in plants. Arabidopsis thaliana has four ATPS genes (ATPS1, -2, -3 and -4 encoding ATPS pre-proteins containing N-terminal transit peptide sequences for plastid targeting, however, the genetic identity of the cytosolic ATPS has remained unverified. Here we show that Arabidopsis ATPS2 dually encodes plastidic and cytosolic ATPS isoforms, differentiating their subcellular localizations by initiating translation at AUGMet1 to produce plastid-targeted ATPS2 pre-proteins or at AUGMet52 or AUGMet58 within the transit peptide to have ATPS2 stay in cytosol. Translational initiation of ATPS2 at AUGMet52 or AUGMet58 was verified by expressing a tandem-fused synthetic gene, ATPS2(5’UTR-His12:Renilla luciferase:ATPS2(Ile13-Val77:firefly luciferase, under a single constitutively active CaMV 35S promoter in Arabidopsis protoplasts and examining the activities of two different luciferases translated in-frame with split N-terminal portions of ATPS2. Introducing missense mutations at AUGMet52 and AUGMet58 significantly reduced the firefly luciferase activity, while AUGMet52 was a relatively preferred site for the alternative translational initiation. The activity of luciferase fusion protein starting at AUGMet52 or AUGMet58 was not modulated by changes in sulfate conditions. The dual localizations of ATPS2 in plastids and cytosol were further evidenced by expression of ATPS2-GFP fusion proteins in Arabidopsis protoplasts and transgenic lines, while they were also under control of tissue-specific ATPS2 promoter activity found predominantly in leaf epidermal cells, guard cells, vascular tissues and roots.

  17. Phylogenetic Analysis of Nucleus-Encoded Acetyl-CoA Carboxylases Targeted at the Cytosol and Plastid of Algae.

    Directory of Open Access Journals (Sweden)

    Roger Huerlimann

    Full Text Available The understanding of algal phylogeny is being impeded by an unknown number of events of horizontal gene transfer (HGT, and primary and secondary/tertiary endosymbiosis. Through these events, previously heterotrophic eukaryotes developed photosynthesis and acquired new biochemical pathways. Acetyl-CoA carboxylase (ACCase is a key enzyme in the fatty acid synthesis and elongation pathways in algae, where ACCase exists in two locations (cytosol and plastid and in two forms (homomeric and heteromeric. All algae contain nucleus-encoded homomeric ACCase in the cytosol, independent of the origin of the plastid. Nucleus-encoded homomeric ACCase is also found in plastids of algae that arose from a secondary/tertiary endosymbiotic event. In contrast, plastids of algae that arose from a primary endosymbiotic event contain heteromeric ACCase, which consists of three nucleus-encoded and one plastid-encoded subunits. These properties of ACCase provide the potential to inform on the phylogenetic relationships of hosts and their plastids, allowing different hypothesis of endosymbiotic events to be tested. Alveolata (Dinoflagellata and Apicomplexa and Chromista (Stramenopiles, Haptophyta and Cryptophyta have traditionally been grouped together as Chromalveolata, forming the red lineage. However, recent genetic evidence groups the Stramenopiles, Alveolata and green plastid containing Rhizaria as SAR, excluding Haptophyta and Cryptophyta. Sequences coding for plastid and cytosol targeted homomeric ACCases were isolated from Isochrysis aff. galbana (TISO, Chromera velia and Nannochloropsis oculata, representing three taxonomic groups for which sequences were lacking. Phylogenetic analyses show that cytosolic ACCase strongly supports the SAR grouping. Conversely, plastidial ACCase groups the SAR with the Haptophyta, Cryptophyta and Prasinophyceae (Chlorophyta. These two ACCase based, phylogenetic relationships suggest that the plastidial homomeric ACCase was

  18. Expression of Bovine Cytosolic 5′-Nucleotidase (cN-II) in Yeast: Nucleotide Pools Disturbance and Its Consequences on Growth and Homologous Recombination

    Science.gov (United States)

    Allegrini, Simone; Filoni, Daniela Nicole; Galli, Alvaro; Collavoli, Anita; Pesi, Rossana; Camici, Marcella; Tozzi, Maria Grazia

    2013-01-01

    Cytosolic 5′-nucleotidase II is a widespread IMP hydrolyzing enzyme, essential for cell vitality, whose role in nucleotide metabolism and cell function is still to be exactly determined. Cytosolic 5′-nucleotidase overexpression and silencing have both been demonstrated to be toxic for mammalian cultured cells. In order to ascertain the effect of enzyme expression on a well-known eukaryote simple model, we expressed cytosolic 5′-nucleotidase II in Saccharomyces cerevisiae, which normally hydrolyzes IMP through the action of a nucleotidase with distinct functional and structural features. Heterologous expression was successful. The yeast cells harbouring cytosolic 5′-nucleotidase II displayed a shorter duplication time and a significant modification of purine and pyrimidine derivatives concentration as compared with the control strain. Furthermore the capacity of homologous recombination in the presence of mutagenic compounds of yeast expressing cytosolic 5′-nucleotidase II was markedly impaired. PMID:23691116

  19. Non-invasive in-cell determination of free cytosolic [NAD+]/[NADH] ratios using hyperpolarized glucose show large variations in metabolic phenotypes

    DEFF Research Database (Denmark)

    Christensen, Caspar Elo; Karlsson, Magnus; Winther, Jakob R.;

    2014-01-01

    a magnetic enhancement technique (hyperpolarization) with cellular glycolytic activity. The bioprobe reports free cytosolic [NAD+]/[NADH] ratios based on dynamically measured in-cell [pyruvate]/ [lactate] ratios. We demonstrate its utility in breast and prostate cancer cells. The free cytosolic [NAD......+]/[NADH] ratio determined in prostate cancer cells was 4 times higher than in breast cancer cells. This higher ratio reflects a distinct metabolic phenotype of prostate cancer cells consistent with previously reported alterations in the energy metabolism of these cells. As a reporter on free cytosolic [NAD...... death and oxidative stress. It has been suggested that changes in the ratio of free cytosolic [NAD+]/[NADH] reflects metabolic alterations leading to, or correlating with, pathological states. We have designed an isotopically labelled metabolic bioprobe of free cytosolic [NAD+]/[NADH] by combining...

  20. Chloroplast parameters differ in wild type and transgenic poplars overexpressing gsh1 in the cytosol.

    Science.gov (United States)

    Ivanova, L A; Ronzhina, D A; Ivanov, L A; Stroukova, L V; Peuke, A D; Rennenberg, H

    2009-07-01

    Poplar mutants overexpressing the bacterial genes gsh1 or gsh2 encoding the enzymes of glutathione biosynthesis are among the best-characterised transgenic plants. However, this characterisation originates exclusively from laboratory studies, and the performance of these mutants under field conditions is largely unknown. Here, we report a field experiment in which the wild-type poplar hybrid Populus tremula x P. alba and a transgenic line overexpressing the bacterial gene gsh1 encoding gamma-glutamylcysteine synthetase in the cytosol were grown for 3 years at a relatively clean (control) field site and a field site contaminated with heavy metals. Aboveground biomass accumulation was slightly smaller in transgenic compared to wild-type plants; soil contamination significantly decreased biomass accumulation in both wild-type and transgenic plants by more than 40%. Chloroplasts parameters, i.e., maximal diameter, projection area and perimeter, surface area and volume, surface/volume ratio and a two-dimensional form coefficient, were found to depend on plant type, leaf tissue and soil contamination. The greatest differences between wild and transgenic poplars were observed at the control site. Under these conditions, chloroplast sizes in palisade tissue of transgenic poplar significantly exceeded those of the wild type. In contrast to the wild type, palisade chloroplast volume exceeded that of spongy chloroplasts in transgenic poplars at both field sites. Chlorophyll content per chloroplast was the same in wild and transgenic poplars. Apparently, the increase in chloroplast volume was not connected to changes in the photosynthetic centres. Chloroplasts of transgenic poplar at the control site were more elongated in palisade cells and close to spherical in spongy mesophyll chloroplasts. At the contaminated site, palisade and spongy cell chloroplasts of leaves from transgenic trees and the wild type were the same shape. Transgenic poplars also had a smaller chloroplast

  1. Caspase-11 activation in response to bacterial secretion systems that access the host cytosol.

    Directory of Open Access Journals (Sweden)

    Cierra N Casson

    Full Text Available Inflammasome activation is important for antimicrobial defense because it induces cell death and regulates the secretion of IL-1 family cytokines, which play a critical role in inflammatory responses. The inflammasome activates caspase-1 to process and secrete IL-1β. However, the mechanisms governing IL-1α release are less clear. Recently, a non-canonical inflammasome was described that activates caspase-11 and mediates pyroptosis and release of IL-1α and IL-1β. Caspase-11 activation in response to Gram-negative bacteria requires Toll-like receptor 4 (TLR4 and TIR-domain-containing adaptor-inducing interferon-β (TRIF-dependent interferon production. Whether additional bacterial signals trigger caspase-11 activation is unknown. Many bacterial pathogens use specialized secretion systems to translocate effector proteins into the cytosol of host cells. These secretion systems can also deliver flagellin into the cytosol, which triggers caspase-1 activation and pyroptosis. However, even in the absence of flagellin, these secretion systems induce inflammasome activation and the release of IL-1α and IL-1β, but the inflammasome pathways that mediate this response are unclear. We observe rapid IL-1α and IL-1β release and cell death in response to the type IV or type III secretion systems of Legionella pneumophila and Yersinia pseudotuberculosis. Unlike IL-1β, IL-1α secretion does not require caspase-1. Instead, caspase-11 activation is required for both IL-1α secretion and cell death in response to the activity of these secretion systems. Interestingly, whereas caspase-11 promotes IL-1β release in response to the type IV secretion system through the NLRP3/ASC inflammasome, caspase-11-dependent release of IL-1α is independent of both the NAIP5/NLRC4 and NLRP3/ASC inflammasomes as well as TRIF and type I interferon signaling. Furthermore, we find both overlapping and non-redundant roles for IL-1α and IL-1β in mediating neutrophil recruitment

  2. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration.

    Science.gov (United States)

    Gout, Elisabeth; Rébeillé, Fabrice; Douce, Roland; Bligny, Richard

    2014-10-28

    In animal and plant cells, the ATP/ADP ratio and/or energy charge are generally considered key parameters regulating metabolism and respiration. The major alternative issue of whether the cytosolic and mitochondrial concentrations of ADP and ATP directly mediate cell respiration remains unclear, however. In addition, because only free nucleotides are exchanged by the mitochondrial ADP/ATP carrier, whereas MgADP is the substrate of ATP synthase (EC 3.6.3.14), the cytosolic and mitochondrial Mg(2+) concentrations must be considered as well. Here we developed in vivo/in vitro techniques using (31)P-NMR spectroscopy to simultaneously measure these key components in subcellular compartments. We show that heterotrophic sycamore (Acer pseudoplatanus L.) cells incubated in various nutrient media contain low, stable cytosolic ADP and Mg(2+) concentrations, unlike ATP. ADP is mainly free in the cytosol, but complexed by Mg(2+) in the mitochondrial matrix, where [Mg(2+)] is tenfold higher. In contrast, owing to a much higher affinity for Mg(2+), ATP is mostly complexed by Mg(2+) in both compartments. Mg(2+) starvation used to alter cytosolic and mitochondrial [Mg(2+)] reversibly increases free nucleotide concentration in the cytosol and matrix, enhances ADP at the expense of ATP, decreases coupled respiration, and stops cell growth. We conclude that the cytosolic ADP concentration, and not ATP, ATP/ADP ratio, or energy charge, controls the respiration of plant cells. The Mg(2+) concentration, remarkably constant and low in the cytosol and tenfold higher in the matrix, mediates ADP/ATP exchange between the cytosol and matrix, [MgADP]-dependent mitochondrial ATP synthase activity, and cytosolic free ADP homeostasis.

  3. Cytosolic mRNA Target and Bioavailability of Nanoparticulate siRNA delivery systems for gene silencing.

    Science.gov (United States)

    Leucuta, Sorin Emilian

    2017-03-22

    Recent research in medical and pharmaceutical sciences has benefited from advances in molecular biology and genetics, which made possible a diagnosis at the molecular level in more and more diseases. This implies the drug treatment at the molecular level. The interest in Ribonucleic acid interference (RNAi) is based on the mechanism operates by eliminating the messenger RNAs (mRNAs) coding for multiple proteins, which open solutions for treating many types of diseases. Small (short) interfering RNA (siRNA) has quickly been established as an effective gene-silencing strategy in animal models, and more recently in human clinical trials, as a potential therapeutic approach. Various nanoparticulate drug delivery systems for siRNA delivery have been explored extensively. However, there are many more barriers and challenges that need to be addressed and overcome to achieve the ideal formulation in terms of selectivity, efficacy and safety. One of the major causes of the drawback of these treatments is the difficulty to transport the nucleic acids in the cytosol and organelles. These delivery systems will favorably alter the pharmacokinetics and biodistribution of siRNAs, should be biocompatible and genocompatible to avoid immune stimulation and off-target gene effects. These properties are essential for systemic use, as they prolong siRNA half-lives in blood and increase intracellular bioavailability of siRNA. Future research needs drug delivery systems with more effective design, enhanced biological stability, subcellular bioavailability, and efficient targeted delivery in vivo for improved targeting and specificity of siRNA molecules for any given clinical condition. The paper shows how to overcome physiological barriers to achieve the target, and examples in which significant results were obtained in therapeutic in vitro and in vivo research including nanoparticulate systems.To day, only a few nanoparticle-based siRNA delivery systems have been approved by the Food

  4. ATP promotes cell survival via regulation of cytosolic [Ca2+] and Bcl-2/Bax ratio in lung cancer cells.

    Science.gov (United States)

    Song, Shanshan; Jacobson, Krista N; McDermott, Kimberly M; Reddy, Sekhar P; Cress, Anne E; Tang, Haiyang; Dudek, Steven M; Black, Stephen M; Garcia, Joe G N; Makino, Ayako; Yuan, Jason X-J

    2016-01-15

    Adenosine triphosphate (ATP) is a ubiquitous extracellular messenger elevated in the tumor microenvironment. ATP regulates cell functions by acting on purinergic receptors (P2X and P2Y) and activating a series of intracellular signaling pathways. We examined ATP-induced Ca(2+) signaling and its effects on antiapoptotic (Bcl-2) and proapoptotic (Bax) proteins in normal human airway epithelial cells and lung cancer cells. Lung cancer cells exhibited two phases (transient and plateau phases) of increase in cytosolic [Ca(2+)] ([Ca(2+)]cyt) caused by ATP, while only the transient phase was observed in normal cells. Removal of extracellular Ca(2+) eliminated the plateau phase increase of [Ca(2+)]cyt in lung cancer cells, indicating that the plateau phase of [Ca(2+)]cyt increase is due to Ca(2+) influx. The distribution of P2X (P2X1-7) and P2Y (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11) receptors was different between lung cancer cells and normal cells. Proapoptotic P2X7 was nearly undetectable in lung cancer cells, which may explain why lung cancer cells showed decreased cytotoxicity when treated with high concentration of ATP. The Bcl-2/Bax ratio was increased in lung cancer cells following treatment with ATP; however, the antiapoptotic protein Bcl-2 demonstrated more sensitivity to ATP than proapoptotic protein Bax. Decreasing extracellular Ca(2+) or chelating intracellular Ca(2+) with BAPTA-AM significantly inhibited ATP-induced increase in Bcl-2/Bax ratio, indicating that a rise in [Ca(2+)]cyt through Ca(2+) influx is the critical mediator for ATP-mediated increase in Bcl-2/Bax ratio. Therefore, despite high ATP levels in the tumor microenvironment, which would induce cell apoptosis in normal cells, the decreased P2X7 and elevated Bcl-2/Bax ratio in lung cancer cells may enable tumor cells to survive. Increasing the Bcl-2/Bax ratio by exposure to high extracellular ATP may, therefore, be an important selective pressure promoting transformation and cancer progression. Copyright

  5. Expression of a cytosolic phospholipase A2 by ovine endometrium on days 11-14 of a simulated oestrous cycle.

    Science.gov (United States)

    Graf, G A; Burns, P D; Silvia, W J

    1999-03-01

    Oxytocin stimulates the synthesis and secretion of PGF2 alpha from uterine tissues in vivo and in vitro late in the ovine oestrous cycle. The synthesis of eicosanoids is dependent upon the availability of free arachidonic acid which is released through the activity of arachidonate releasing phospholipases. In the present study, the following hypothesis was tested: the ovine endometrium expresses a cytosolic phospholipase A2 (cPLA2) and expression or activity of cPLA2 increases as uterine secretory responsiveness to oxytocin develops late in the oestrous cycle. Endometrial tissue was collected from cyclic ewes on day 15 of the oestrous cycle for the preparation of tissue homogenates and isolation of mRNA to determine whether ovine endometrium expressed a cPLA2. A 110 kDa band was detected by western blotting, indicating the presence of a putative ovine cPLA2. A 834 bp fragment of the ovine cPLA2 shared 87% homology with human and mouse cDNA, and northern blot hybridization analysis indicated a single 3.4 kb transcript. A total of 20 ewes were ovariectomized and treated with progesterone and oestrogen to simulate the oestrous cycle to determine whether the expression or activity of ovine cPLA2 changed during the onset of uterine secretory responsiveness to oxytocin in vivo. On days 11-14 (n = 5 per day) of a simulated oestrous cycle, caruncular endometrium was evaluated for expression of ovine cPLA2 mRNA and protein and the synthesis of PGF2 alpha in response to melittin (a potent stimulator of PLA2 activity). Immunoreactive cPLA2 and cPLA2 mRNA were observed on all days and did not increase during the development of uterine responsiveness to oxytocin in vivo. Similarly, melittin increased the synthesis of PGF2 alpha irrespective of day, indicating the presence of a functional cPLA2 on all days examined. These data indicate that the ovine endometrium expresses a functional cPLA2 and that ample concentrations of cPLA2 are present by day 11 of a simulated oestrous

  6. Low molecular weight hyaluronan activates cytosolic phospholipase A2α and eicosanoid production in monocytes and macrophages.

    Science.gov (United States)

    Sokolowska, Milena; Chen, Li-Yuan; Eberlein, Michael; Martinez-Anton, Asuncion; Liu, Yueqin; Alsaaty, Sara; Qi, Hai-Yan; Logun, Carolea; Horton, Maureen; Shelhamer, James H

    2014-02-14

    Hyaluronan (HA) is the major glycosaminoglycan in the extracellular matrix. During inflammation, there is an increased breakdown of HA, resulting in the accumulation of low molecular weight (LMW) HA and activation of monocytes and macrophages. Eicosanoids, derived from the cytosolic phospholipase A2 group IVA (cPLA2α) activation, are potent lipid mediators also attributed to acute and chronic inflammation. The aim of this study was to determine the effect of LMW HA on cPLA2α activation, arachidonic acid (AA) release, and subsequent eicosanoid production and to examine the receptors and downstream mechanisms involved in these processes in monocytes and differently polarized macrophages. LMW HA was a potent stimulant of AA release in a time- and dose-dependent manner, induced cPLA2α, ERK1/2, p38, and JNK phosphorylation, as well as activated COX2 expression and prostaglandin (PG) E2 production in primary human monocytes, murine RAW 264.7, and wild-type bone marrow-derived macrophages. Specific cPLA2α inhibitor blocked HA-induced AA release and PGE2 production in all of these cells. Using CD44, TLR4, TLR2, MYD88, RHAMM or STAB2 siRNA-transfected macrophages and monocytes, we found that AA release, cPLA2α, ERK1/2, p38, and JNK phosphorylation, COX2 expression, and PGE2 production were activated by LMW HA through a TLR4/MYD88 pathway. Likewise, PGE2 production and COX2 expression were blocked in Tlr4(-/-) and Myd88(-/-) mice, but not in Cd44(-/-) mice, after LMW HA stimulation. Moreover, we demonstrated that LMW HA activated the M1 macrophage phenotype with the unique cPLA2α/COX2(high) and COX1/ALOX15/ALOX5/LTA4H(low) gene and PGE2/PGD2/15-HETE(high) and LXA4(low) eicosanoid profile. These findings reveal a novel link between HA-mediated inflammation and lipid metabolism.

  7. Gain of interaction of ALS-linked G93A superoxide dismutase with cytosolic malate dehydrogenase.

    Science.gov (United States)

    Mali, Yael; Zisapels, Nava

    2008-10-01

    Protein interactions of the Amyotrophic Lateral Sclerosis (ALS)-linked copper-zinc superoxide dismutase (hSOD1) G93A mutation were studied using a fluorescence resonance energy transfer (FRET) based screening system. The FRET results confirmed by pull-down immunoprecipitation indicated "gain-of-interaction" of the G93A-hSOD1 mutant with cytosolic malate dehydrogenase (cytMDH)-a key enzyme in the malate-aspartate shuttle which is vital to neurons. Furthermore, cytMDH mRNA expression was upregulated in G93A-hSOD1 expressing cells but endogenous cytMDH enzymatic activity was not enhanced, not even with exogenously added-on enzyme. Consistent with inhibition of the malate-aspartate shuttle, G93A-hSOD1 had lower malate and higher lactate levels compared to non-induced or Wild-Type-hSOD1 expressing cells. Mitochondrial NADH/NAD+ ratio is also elevated. Malate-aspartate shuttle dysfunction may explain the damage to neurons and the vulnerability to impairments of glycolytic pathways in ALS and provide a new target for the development of potential therapies.

  8. Sorbitol dehydrogenase is a cytosolic protein required for sorbitol metabolism in Arabidopsis thaliana.

    Science.gov (United States)

    Aguayo, María Francisca; Ampuero, Diego; Mandujano, Patricio; Parada, Roberto; Muñoz, Rodrigo; Gallart, Marta; Altabella, Teresa; Cabrera, Ricardo; Stange, Claudia; Handford, Michael

    2013-05-01

    Sorbitol is converted to fructose in Rosaceae species by SORBITOL DEHYDROGENASE (SDH, EC 1.1.1.14), especially in sink organs. SDH has also been found in non-Rosaceae species and here we show that the protein encoded by At5g51970 in Arabidopsis thaliana (L.) Heynh. possesses the molecular characteristics of an SDH. Using a green fluorescent protein-tagged version and anti-SDH antisera, we determined that SDH is cytosolically localized, consistent with bioinformatic predictions. We also show that SDH is widely expressed, and that SDH protein accumulates in both source and sink organs. In the presence of NAD+, recombinant SDH exhibited greatest oxidative activity with sorbitol, ribitol and xylitol as substrates; other sugar alcohols were oxidized to a lesser extent. Under standard growth conditions, three independent sdh- mutants developed as wild-type. Nevertheless, all three exhibited reduced dry weight and primary root length compared to wild-type when grown in the presence of sorbitol. Additionally, under short-day conditions, the mutants were more resistant to dehydration stress, as shown by a reduced loss of leaf water content when watering was withheld, and a greater survival rate on re-watering. This evidence suggests that limitations in the metabolism of sugar alcohols alter the growth of Arabidopsis and its response to drought.

  9. Model for external influences on cellular signal transduction pathways including cytosolic calcium oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Eichwald, C.; Kaiser, F. [Technical Univ. of Darmstadt (Germany)

    1995-06-01

    Experiments on the effects of extremely-low-frequency (ELF) electric and magnetic fields on cells of the immune system, T-lymphocytes in particular, suggest that the external field interacts with the cell at the level of intracellular signal transduction pathways. These are directly connected with changes in the calcium-signaling processes of the cell. Based on these findings, a theoretical model for receptor-controlled cytosolic calcium oscillations and for external influences on the signal transduction pathway is presented. The authors discuss the possibility that the external field acts on the kinetics of the signal transduction between the activated receptors at the cell membrane and the G-proteins. It is shown that, depending on the specific combination of cell internal biochemical and external physical parameters, entirely different responses of the cell can occur. The authors compare the effects of a coherent (periodic) modulation and of incoherent perturbations (noise). The model and the calculations are based on the theory of self-sustained, nonlinear oscillators. It is argued that these systems form an ideal basis for information-encoding processes in biological systems.

  10. Infrared spectroscopic study of a phosphoryl-containing enzyme: cytosolic aspartate aminotransferase

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Ruiz, J.M.; Martinez-Carrion, M.

    1986-05-01

    A Fourier Transform Infrared spectroscopic study of cytosolic aspartate aminotransferase has been carried out in order to determine the ionization state of the phosphate group of the bound pyridoxal phosphate. The band arising from the symmetric stretching of the dianionic phosphate monoester has been identified in holoenzyme spectra in solution. Its integrated intensity does not change with pH in the range 5.3-8.6, the value being close to the integrated intensity of the same band in free pyridoxal phosphate in solution at pH 8-9. On the other hand, for free cofactor, the integrated intensity changes with pH according to the pK expected for a 5'-phosphate group in solution. It appears, therefore, that the 5'-phosphate group of the bound cofactor remains mostly dianionic in the pH range 5.3-8.6, and a small /sup 31/P-NMR chemiCal shift/pH titration dependent curve observed in holoenzyme solutions seems due to the phosphate group in the protein, likely the Lys 258-pyridoxal phosphate Schiff's base. These results also show Fourier Transform Infrared Spectroscopy as a valuable technique in the study of phosphoryl-containing proteins.

  11. Haploinsufficiency of cytosolic serine hydroxymethyltransferase in the Smith-Magenis syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Elsea, S.H.; Juyal, R.C.; Jiralerspong, S. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1995-12-01

    Folate-dependent one-carbon metabolism is critical for the synthesis of numerous cellular constituents required for cell growth, and serine hydroxymethyltransferase (SHMT) is central to this process. Our studies reveal that the gene for cytosolic SHMT (cSHMT) maps to the critical interval for Smith-Magenis syndrome (SMS) on chromosome 17p11.2. The basic organization of the cSHMT locus on chromosome 17 was determined and was found to span{approximately}40 kb. The gene for cSHMT was found to be deleted in all 26 SMS patients examined by PCR, FISH, and/or Southern analysis. Furthermore, with respect to haploinsufficiency, cSHMT enzyme activity in patient lymphoblasts was determined to be {approximately}50% that of unaffected parent lymphoblasts. Serine, glycine, and folate levels were also assessed in three SMS patients and were found to be within normal ranges. The possible effects of cSHMT hemizygosity on the SMS phenotype are discussed. 40 refs., 3 figs., 21 tabs.

  12. IFITM3 inhibits influenza A virus infection by preventing cytosolic entry.

    Directory of Open Access Journals (Sweden)

    Eric M Feeley

    2011-10-01

    Full Text Available To replicate, viruses must gain access to the host cell's resources. Interferon (IFN regulates the actions of a large complement of interferon effector genes (IEGs that prevent viral replication. The interferon inducible transmembrane protein family members, IFITM1, 2 and 3, are IEGs required for inhibition of influenza A virus, dengue virus, and West Nile virus replication in vitro. Here we report that IFN prevents emergence of viral genomes from the endosomal pathway, and that IFITM3 is both necessary and sufficient for this function. Notably, viral pseudoparticles were inhibited from transferring their contents into the host cell cytosol by IFN, and IFITM3 was required and sufficient for this action. We further demonstrate that IFN expands Rab7 and LAMP1-containing structures, and that IFITM3 overexpression is sufficient for this phenotype. Moreover, IFITM3 partially resides in late endosomal and lysosomal structures, placing it in the path of invading viruses. Collectively our data are consistent with the prediction that viruses that fuse in the late endosomes or lysosomes are vulnerable to IFITM3's actions, while viruses that enter at the cell surface or in the early endosomes may avoid inhibition. Multiple viruses enter host cells through the late endocytic pathway, and many of these invaders are attenuated by IFN. Therefore these findings are likely to have significance for the intrinsic immune system's neutralization of a diverse array of threats.

  13. Channel Gating Regulation by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) First Cytosolic Loop.

    Science.gov (United States)

    Ehrhardt, Annette; Chung, W Joon; Pyle, Louise C; Wang, Wei; Nowotarski, Krzysztof; Mulvihill, Cory M; Ramjeesingh, Mohabir; Hong, Jeong; Velu, Sadanandan E; Lewis, Hal A; Atwell, Shane; Aller, Steve; Bear, Christine E; Lukacs, Gergely L; Kirk, Kevin L; Sorscher, Eric J

    2016-01-22

    In this study, we present data indicating a robust and specific domain interaction between the cystic fibrosis transmembrane conductance regulator (CFTR) first cytosolic loop (CL1) and nucleotide binding domain 1 (NBD1) that allows ion transport to proceed in a regulated fashion. We used co-precipitation and ELISA to establish the molecular contact and showed that binding kinetics were not altered by the common clinical mutation F508del. Both intrinsic ATPase activity and CFTR channel gating were inhibited severely by CL1 peptide, suggesting that NBD1/CL1 binding is a crucial requirement for ATP hydrolysis and channel function. In addition to cystic fibrosis, CFTR dysregulation has been implicated in the pathogenesis of prevalent diseases such as chronic obstructive pulmonary disease, acquired rhinosinusitis, pancreatitis, and lethal secretory diarrhea (e.g. cholera). On the basis of clinical relevance of the CFTR as a therapeutic target, a cell-free drug screen was established to identify modulators of NBD1/CL1 channel activity independent of F508del CFTR and pharmacologic rescue. Our findings support a targetable mechanism of CFTR regulation in which conformational changes in the NBDs cause reorientation of transmembrane domains via interactions with CL1 and result in channel gating.

  14. FUM2, a Cytosolic Fumarase, Is Essential for Acclimation to Low Temperature in Arabidopsis thaliana.

    Science.gov (United States)

    Dyson, Beth C; Miller, Matthew A E; Feil, Regina; Rattray, Nicholas; Bowsher, Caroline G; Goodacre, Royston; Lunn, John E; Johnson, Giles N

    2016-09-01

    Although cold acclimation is a key process in plants from temperate climates, the mechanisms sensing low temperature remain obscure. Here, we show that the accumulation of the organic acid fumaric acid, mediated by the cytosolic fumarase FUM2, is essential for cold acclimation of metabolism in the cold-tolerant model species Arabidopsis (Arabidopsis thaliana). A nontargeted metabolomic approach, using gas chromatography-mass spectrometry, identifies fumarate as a key component of the cold response in this species. Plants of T-DNA insertion mutants, lacking FUM2, show marked differences in their response to cold, with contrasting responses both in terms of metabolite concentrations and gene expression. The fum2 plants accumulated higher concentrations of phosphorylated sugar intermediates and of starch and malate. Transcripts for proteins involved in photosynthesis were markedly down-regulated in fum2.2 but not in wild-type Columbia-0. Plants of fum2 show a complete loss of the ability to acclimate photosynthesis to low temperature. We conclude that fumarate accumulation plays an essential role in low temperature sensing in Arabidopsis, either indirectly modulating metabolic or redox signals or possibly being itself directly involved in cold sensing.

  15. Cytosolically expressed PrP GPI-signal peptide interacts with mitochondria.

    Science.gov (United States)

    Guizzunti, Gianni; Zurzolo, Chiara

    2015-01-01

    We previously reported that PrP GPI-anchor signal peptide (GPI-SP) is specifically degraded by the proteasome. Additionally, we showed that the point mutation P238S, responsible for a genetic form of prion diseases, while not affecting the GPI-anchoring process, results in the accumulation of PrP GPI-SP, suggesting the possibility that PrP GPI-anchor signal peptide could play a role in neurodegenerative prion diseases. We now show that PrP GPI-SP, when expressed as a cytosolic peptide, is able to localize to the mitochondria and to induce mitochondrial fragmentation and vacuolarization, followed by loss in mitochondrial membrane potential, ultimately resulting in apoptosis. Our results identify the GPI-SP of PrP as a novel candidate responsible for the impairment in mitochondrial function involved in the synaptic pathology observed in prion diseases, establishing a link between PrP GPI-SP accumulation and neuronal death.

  16. KR-62980 suppresses lipid metabolism through inhibition of cytosolic NADP isocitrate dehydrogenase in zebrafish.

    Science.gov (United States)

    Chun, Hang-Suk; Shin, Sun Hye; Ahn, Sunjoo; Shin, Dae-Seop; Choi, Sun-Sil; Ahn, Jin Hee; Bae, Myung Ae

    2014-04-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a target of antidiabetic drugs. However, many PPARγ activators, including rosiglitazone, show unwanted side effects, such as weight gain. The KR-62980 [1-(trans-methylimino-N-oxy)-3-phenyl-6-(3-phenylpropoxy)-1H-indene-2-carboxylic acid ethyl ester], a novel partial agonist of PPARγ, is a new compound for diabetes with antihyperglycemic activity and weak antiadipogenic activity. This study was performed to elucidate the mechanism of the weak adipogenesis induced by KR-62980 despite its being a PPARγ agonist in zebrafish. We elucidated the mechanism of KR-62980 in lipid metabolism using adipocytes and zebrafish. Since NADPH is a critical cofactor in fat metabolism, we investigated effect of KR-62980 on NADPH-producing enzymes such as cytosolic NADP(+) isocitrate dehydrogenase (cICDH). We found that the mRNA expression of cICDH was significantly decreased by KR-62980 in 3T3-L1 cells. KR-62980 inhibited lipase activity and lipid metabolism in zebrafish. Further, KR-62980 substantially suppressed cICDH in adipocytes and zebrafish. These results suggest that cICDH may be one of the targets of KR-62980 responsible for weight gain and adipogenesis.

  17. Structure-Based Mechanism for Early PLP-Mediated Steps of Rabbit Cytosolic Serine Hydroxymethyltransferase Reaction

    Directory of Open Access Journals (Sweden)

    Martino L. Di Salvo

    2013-01-01

    Full Text Available Serine hydroxymethyltransferase catalyzes the reversible interconversion of L-serine and glycine with transfer of one-carbon groups to and from tetrahydrofolate. Active site residue Thr254 is known to be involved in the transaldimination reaction, a crucial step in the catalytic mechanism of all pyridoxal 5′-phosphate- (PLP- dependent enzymes, which determines binding of substrates and release of products. In order to better understand the role of Thr254, we have expressed, characterized, and determined the crystal structures of rabbit cytosolic serine hydroxymethyltransferase T254A and T254C mutant forms, in the absence and presence of substrates. These mutants accumulate a kinetically stable gem-diamine intermediate, and their crystal structures show differences in the active site with respect to wild type. The kinetic and crystallographic data acquired with mutant enzymes permit us to infer that conversion of gem-diamine to external aldimine is significantly slowed because intermediates are trapped into an anomalous position by a misorientation of the PLP ring, and a new energy barrier hampers the transaldimination reaction. This barrier likely arises from the loss of the stabilizing hydrogen bond between the hydroxymethyl group of Thr254 and the ε-amino group of active site Lys257, which stabilizes the external aldimine intermediate in wild type SHMTs.

  18. Signaling mediated by the cytosolic domain of peptidylglycine alpha-amidating monooxygenase.

    Science.gov (United States)

    Alam, M R; Steveson, T C; Johnson, R C; Bäck, N; Abraham, B; Mains, R E; Eipper, B A

    2001-03-01

    The luminal domains of membrane peptidylglycine alpha-amidating monooxygenase (PAM) are essential for peptide alpha-amidation, and the cytosolic domain (CD) is essential for trafficking. Overexpression of membrane PAM in corticotrope tumor cells reorganizes the actin cytoskeleton, shifts endogenous adrenocorticotropic hormone (ACTH) from mature granules localized at the tips of processes to the TGN region, and blocks regulated secretion. PAM-CD interactor proteins include a protein kinase that phosphorylates PAM (P-CIP2) and Kalirin, a Rho family GDP/GTP exchange factor. We engineered a PAM protein unable to interact with either P-CIP2 or Kalirin (PAM-1/K919R), along with PAM proteins able to interact with Kalirin but not with P-CIP2. AtT-20 cells expressing PAM-1/K919R produce fully active membrane enzyme but still exhibit regulated secretion, with ACTH-containing granules localized to process tips. Immunoelectron microscopy demonstrates accumulation of PAM and ACTH in tubular structures at the trans side of the Golgi in AtT-20 cells expressing PAM-1 but not in AtT-20 cells expressing PAM-1/K919R. The ability of PAM to interact with P-CIP2 is critical to its ability to block exit from the Golgi and affect regulated secretion. Consistent with this, mutation of its P-CIP2 phosphorylation site alters the ability of PAM to affect regulated secretion.

  19. Signaling Mediated by the Cytosolic Domain of Peptidylglycine α-Amidating Monooxygenase

    Science.gov (United States)

    Alam, M. Rashidul; Steveson, Tami C.; Johnson, Richard C.; Bäck, Nils; Abraham, Benjamin; Mains, Richard E.; Eipper, Betty A.

    2001-01-01

    The luminal domains of membrane peptidylglycine α-amidating monooxygenase (PAM) are essential for peptide α-amidation, and the cytosolic domain (CD) is essential for trafficking. Overexpression of membrane PAM in corticotrope tumor cells reorganizes the actin cytoskeleton, shifts endogenous adrenocorticotropic hormone (ACTH) from mature granules localized at the tips of processes to the TGN region, and blocks regulated secretion. PAM-CD interactor proteins include a protein kinase that phosphorylates PAM (P-CIP2) and Kalirin, a Rho family GDP/GTP exchange factor. We engineered a PAM protein unable to interact with either P-CIP2 or Kalirin (PAM-1/K919R), along with PAM proteins able to interact with Kalirin but not with P-CIP2. AtT-20 cells expressing PAM-1/K919R produce fully active membrane enzyme but still exhibit regulated secretion, with ACTH-containing granules localized to process tips. Immunoelectron microscopy demonstrates accumulation of PAM and ACTH in tubular structures at the trans side of the Golgi in AtT-20 cells expressing PAM-1 but not in AtT-20 cells expressing PAM-1/K919R. The ability of PAM to interact with P-CIP2 is critical to its ability to block exit from the Golgi and affect regulated secretion. Consistent with this, mutation of its P-CIP2 phosphorylation site alters the ability of PAM to affect regulated secretion. PMID:11251076

  20. Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7.

    Science.gov (United States)

    Taylor, Kathryn M; Hiscox, Stephen; Nicholson, Robert I; Hogstrand, Christer; Kille, Peter

    2012-02-07

    The transition element zinc, which has recently been identified as an intracellular second messenger, has been implicated in various signaling pathways, including those leading to cell proliferation. Zinc channels of the ZIP (ZRT1- and IRT1-like protein) family [also known as solute carrier family 39A (SLC39A)] transiently increase the cytosolic free zinc (Zn(2+)) concentration in response to extracellular signals. We show that phosphorylation of evolutionarily conserved residues in endoplasmic reticulum zinc channel ZIP7 is associated with the gated release of Zn(2+) from intracellular stores, leading to activation of tyrosine kinases and the phosphorylation of AKT and extracellular signal-regulated kinases 1 and 2. Through pharmacological manipulation, proximity ligation assay, and mutagenesis, we identified protein kinase CK2 as the kinase responsible for ZIP7 activation. Together, the present results show that transition element channels in eukaryotes can be activated posttranslationally by phosphorylation, as part of a cell signaling cascade. Our study links the regulated release of zinc from intracellular stores to phosphorylation of kinases involved in proliferative responses and cell migration, suggesting a functional role for ZIP7 and zinc signals in these events. The connection with proliferation and migration, as well as the activation of ZIP7 by CK2, a kinase that is antiapoptotic and promotes cell division, suggests that ZIP7 may provide a target for anticancer drug development.

  1. Communications between Mitochondria, the Nucleus, Vacuoles, Peroxisomes, the Endoplasmic Reticulum, the Plasma Membrane, Lipid Droplets, and the Cytosol during Yeast Chronological Aging

    Science.gov (United States)

    Dakik, Pamela; Titorenko, Vladimir I.

    2016-01-01

    Studies employing the budding yeast Saccharomyces cerevisiae as a model organism have provided deep insights into molecular mechanisms of cellular and organismal aging in multicellular eukaryotes and have demonstrated that the main features of biological aging are evolutionarily conserved. Aging in S. cerevisiae is studied by measuring replicative or chronological lifespan. Yeast replicative aging is likely to model aging of mitotically competent human cell types, while yeast chronological aging is believed to mimic aging of post-mitotic human cell types. Emergent evidence implies that various organelle-organelle and organelle-cytosol communications play essential roles in chronological aging of S. cerevisiae. The molecular mechanisms underlying the vital roles of intercompartmental communications in yeast chronological aging have begun to emerge. The scope of this review is to critically analyze recent progress in understanding such mechanisms. Our analysis suggests a model for how temporally and spatially coordinated movements of certain metabolites between various cellular compartments impact yeast chronological aging. In our model, diverse changes in these key metabolites are restricted to critical longevity-defining periods of chronological lifespan. In each of these periods, a limited set of proteins responds to such changes of the metabolites by altering the rate and efficiency of a certain cellular process essential for longevity regulation. Spatiotemporal dynamics of alterations in these longevity-defining cellular processes orchestrates the development and maintenance of a pro- or anti-aging cellular pattern. PMID:27729926

  2. A Genetic Screen Reveals that Synthesis of 1,4-Dihydroxy-2-Naphthoate (DHNA, but Not Full-Length Menaquinone, Is Required for Listeria monocytogenes Cytosolic Survival

    Directory of Open Access Journals (Sweden)

    Grischa Y. Chen

    2017-03-01

    Full Text Available Through unknown mechanisms, the host cytosol restricts bacterial colonization; therefore, only professional cytosolic pathogens are adapted to colonize this host environment. Listeria monocytogenes is a Gram-positive intracellular pathogen that is highly adapted to colonize the cytosol of both phagocytic and nonphagocytic cells. To identify L. monocytogenes determinants of cytosolic survival, we designed and executed a novel screen to isolate L. monocytogenes mutants with cytosolic survival defects. Multiple mutants identified in the screen were defective for synthesis of menaquinone (MK, an essential molecule in the electron transport chain. Analysis of an extensive set of MK biosynthesis and respiratory chain mutants revealed that cellular respiration was not required for cytosolic survival of L. monocytogenes but that, instead, synthesis of 1,4-dihydroxy-2-naphthoate (DHNA, an MK biosynthesis intermediate, was essential. Recent discoveries showed that modulation of the central metabolism of both host and pathogen can influence the outcome of host-pathogen interactions. Our results identify a potentially novel function of the MK biosynthetic intermediate DHNA and specifically highlight how L. monocytogenes metabolic adaptations promote cytosolic survival and evasion of host immunity.

  3. Cyclic GMP-AMP Synthase is a Cytosolic DNA Sensor that Activates the Type-I Interferon Pathway

    Science.gov (United States)

    Sun, Lijun; Wu, Jiaxi; Du, Fenghe; Chen, Xiang; Chen, Zhijian J.

    2013-01-01

    The presence of DNA in the cytoplasm of mammalian cells is a danger signal that triggers the host immune responses such as the production of type-I interferons (IFN). Cytosolic DNA induces IFN through the production of cyclic-GMP-AMP (cGAMP), which binds to and activates the adaptor protein STING. Through biochemical fractionation and quantitative mass spectrometry, we identified a cGAMP synthase (cGAS), which belongs to the nucleotidyltransferase family. Overexpression of cGAS activated the transcription factor IRF3 and induced IFNβ in a STING-dependent manner. Knockdown of cGAS inhibited IRF3 activation and IFNβ induction by DNA transfection or DNA virus infection. cGAS bound to DNA in the cytoplasm and catalyzed cGAMP synthesis. These results indicate that cGAS is a cytosolic DNA sensor that induces interferons by producing the second messenger cGAMP. PMID:23258413

  4. The functions of an apple cytosolic malate dehydrogenase gene in growth and tolerance to cold and salt stresses.

    Science.gov (United States)

    Yao, Yu-Xin; Dong, Qing-Long; Zhai, Heng; You, Chun-Xiang; Hao, Yu-Jin

    2011-03-01

    It is well-known that cytosolic NAD-dependent malate dehydrogenase (cyMDH; l-malate:NAD-oxidoreductase; EC 1.1.1.37) is an enzyme crucial for malic acid synthesis in the cytosol. Nothing is known about cyMDH in growth and stress tolerance. Here we characterised the role of the apple cyMDH gene (MdcyMDH, GenBank ID: DQ221207) in growth and tolerance to cold and salt stresses. MdcyMDH transcripts were highly accumulated in vigorously growing apple tissues, organs and suspension cells. In addition, MdcyMDH was sensitive to cold and salt stresses. MdcyMDH overexpression favourably contributed to cell and plant growth and conferred stress tolerance both in the apple callus and tomato. Taken together, our results indicated that MdcyMDH is involved in plant and cell growth as well as the tolerance to cold and salt stresses.

  5. Triglyceride-rich lipoproteins and cytosolic lipid droplets in enterocytes: key players in intesti