WorldWideScience

Sample records for human cytomegalovirus glycoprotein

  1. Virion Glycoprotein-Mediated Immune Evasion by Human Cytomegalovirus: a Sticky Virus Makes a Slick Getaway

    Science.gov (United States)

    Gardner, Thomas J.

    2016-01-01

    SUMMARY The prototypic herpesvirus human cytomegalovirus (CMV) exhibits the extraordinary ability to establish latency and maintain a chronic infection throughout the life of its human host. This is even more remarkable considering the robust adaptive immune response elicited by infection and reactivation from latency. In addition to the ability of CMV to exist in a quiescent latent state, its persistence is enabled by a large repertoire of viral proteins that subvert immune defense mechanisms, such as NK cell activation and major histocompatibility complex antigen presentation, within the cell. However, dissemination outside the cell presents a unique existential challenge to the CMV virion, which is studded with antigenic glycoprotein complexes targeted by a potent neutralizing antibody response. The CMV virion envelope proteins, which are critical mediators of cell attachment and entry, possess various characteristics that can mitigate the humoral immune response and prevent viral clearance. Here we review the CMV glycoprotein complexes crucial for cell attachment and entry and propose inherent properties of these proteins involved in evading the CMV humoral immune response. These include viral glycoprotein polymorphism, epitope competition, Fc receptor-mediated endocytosis, glycan shielding, and cell-to-cell spread. The consequences of CMV virion glycoprotein-mediated immune evasion have a major impact on persistence of the virus in the population, and a comprehensive understanding of these evasion strategies will assist in designing effective CMV biologics and vaccines to limit CMV-associated disease. PMID:27307580

  2. Sustained expression of human cytomegalovirus glycoprotein B (UL55) in the seeds of homozygous rice plants.

    Science.gov (United States)

    Tackaberry, Eilleen S; Prior, Fiona A; Rowlandson, Karen; Tocchi, Monika; Mehic, Jelica; Porter, Suzanne; Walsh, Mike; Schleiss, Mark R; Ganz, Peter R; Sardana, Ravinder K; Altosaar, Illimar; Dudani, Anil K

    2008-09-01

    Production of recombinant subunit vaccines in transgenic plants may be a means of reducing vaccine costs while increasing availability and safety. A plant-derived product found safe and effective for oral administration would provide additional advantages when used as a vaccine. Outstanding issues with the technology include transgene stability through successive generations and consistent bioproduction. We previously reported expression of glycoprotein B (gB) of human cytomegalovirus in seeds of transgenic tobacco. Here the goal was to determine if gB could be similarly expressed in rice, and if so, to examine expression over several plant generations. Results show that immunoreactive gB was successfully expressed in transgenic rice seeds, with sustained expression over three generations. The gB contained several neutralizing epitopes and was stable over 27 months.

  3. Cytomegalovirus glycoprotein B genotyping in ocular fluids and blood of AIDS patients with cytomegalovirus retinitis

    NARCIS (Netherlands)

    Peek, R.; Verbraak, F.; Bruinenberg, M.; van der Lelij, A.; van den Horn, G.; Kijlstra, A.

    1998-01-01

    To determine the frequency of cytomegalovirus glycoprotein B (gB) genotypes in clinical samples of ocular fluids of patients with acquired immune deficiency syndrome (AIDS) who have cytomegalovirus retinitis and to compare these with the cytomegalovirus gB genotype in paired peripheral blood

  4. Peptide inhibition of human cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Morris Cindy A

    2011-02-01

    Full Text Available Abstract Background Human cytomegalovirus (HCMV is the most prevalent congenital viral infection in the United States and Europe causing significant morbidity and mortality to both mother and child. HCMV is also an opportunistic pathogen in immunocompromised individuals, including human immunodeficiency virus (HIV- infected patients with AIDS, and solid organ and allogeneic stem cell transplantation recipients. Current treatments for HCMV-associated diseases are insufficient due to the emergence of drug-induced resistance and cytotoxicity, necessitating novel approaches to limit HCMV infection. The aim of this study was to develop therapeutic peptides targeting glycoprotein B (gB, a major glycoprotein of HCMV that is highly conserved across the Herpesviridae family, that specifically inhibit fusion of the viral envelope with the host cell membrane preventing HCMV entry and infection. Results Using the Wimley-White Interfacial Hydrophobicity Scale (WWIHS, several regions within gB were identified that display a high potential to interact with lipid bilayers of cell membranes and hydrophobic surfaces within proteins. The ability of synthetic peptides analogous to WWIHS-positive sequences of HCMV gB to inhibit viral infectivity was evaluated. Human foreskin fibroblasts (HFF were infected with the Towne-GFP strain of HCMV (0.5 MOI, preincubated with peptides at a range of concentrations (78 nm to 100 μM, and GFP-positive cells were visualized 48 hours post-infection by fluorescence microscopy and analyzed quantitatively by flow cytometry. Peptides that inhibited HCMV infection demonstrated different inhibitory concentration curves indicating that each peptide possesses distinct biophysical properties. Peptide 174-200 showed 80% inhibition of viral infection at a concentration of 100 μM, and 51% and 62% inhibition at concentrations of 5 μM and 2.5 μM, respectively. Peptide 233-263 inhibited infection by 97% and 92% at concentrations of 100

  5. Overlapping transcription structure of human cytomegalovirus

    Indian Academy of Sciences (India)

    Transcription of human cytomegalovirus UL/b′ region has been studied extensively for some genes. In this study, transcripts of the UL140 and UL141, two of the UL/b′ genes, were identified in late RNAs of three HCMV isolates using Northern blot hybridization, cDNA library screening and RACE-PCR. At least three ...

  6. Overlapping transcription structure of human cytomegalovirus ...

    Indian Academy of Sciences (India)

    2013-01-21

    Jan 21, 2013 ... Transcription of human cytomegalovirus UL/b′ region has been studied extensively for some genes. In this study, transcripts of the UL140 and UL141, two of the UL/b′ genes, were identified in late RNAs of three HCMV isolates using Northern blot hybridization, cDNA library screening and RACE-PCR.

  7. A novel polyclonal antibody against human cytomegalovirus ...

    African Journals Online (AJOL)

    Future research should be directed to epitope screening of synthetic HMCV peptides, which could help to understand HCMV infection and virus-neutralising antibodies more fully and to prepare HCMV vaccines and antiviral drugs. Key words: Human cytomegalovirus, AD169 strain, Towne strains, polyclonal antibody.

  8. Evaluating the Effects of Cytomegalovirus Glycoprotein B on the Maturation and Function of Monocyte-derived dendritic cells

    Directory of Open Access Journals (Sweden)

    Afsson shariat

    2015-11-01

    Full Text Available Background & Objectives: Interaction of cytomegalovirus glycoprotein B with toll-like receptors of dendritic cells leads to early signaling and innate immune responses. The aim of this study is to evaluate the effects of cytomegalovirus glycoprotein B on the maturation and function of monocyte-derived dendritic cells in treated groups in comparison with control groups. Materials & Methods: Blood samples were taken from 5 healthy volunteers. Following the generation of monocyte-derived dendritic cells on the fifth day of cell culture, half of the immature dendritic cells were treated with cytomegalovirus glycoprotein B, and the rest of them were induced to mature dendritic untreated cells and were used as the control group. The maturation and function of dendritic cells were evaluated in these two groups. Results: The gene expression level of toll-like receptor-4 significantly increased in the group treated with glycoprotein B (p < 0.05, whereas there were no significant differences in the expression rates of CD83, CD86, CD1a, and HLA-DR and the secretion of IL-23 from monocyte-derived dendritic cells between the treated groups and the controls. Conclusion: The increase in the gene expression of toll-like receptor-4 in monocyte-derived dendritic cells treated with cytomegalovirus glycoprotein B showed that cell contact is required to elicit cellular antiviral response and toll-like receptor activation. Thus, it is critical to recognize the viral and cellular determinants of the immune system in order to develop new therapeutic strategies against cytomegalovirus.

  9. A novel polyclonal antibody against human cytomegalovirus ...

    African Journals Online (AJOL)

    User

    2011-05-09

    May 9, 2011 ... The identification of the synthetic peptide antibody was confirmed by ... cell virus transmission and fusion of infected cells, as well ..... Cytomegalovirus and Epstein-. Barr virus subtypes-The search for clinical significance.

  10. Glycoprotein biosynthesis by human normal platelets

    International Nuclear Information System (INIS)

    Rodriguez, P.; Bello, O.; Apitz-Castro, R.

    1987-01-01

    Incorporation of radioactive Man, Gal, Fuc, Glc-N, and NANA into washed human normal platelets and endogenous glycoproteins has been found. Both parameters were time dependent. Analysis of hydrolyzed labeled glycoproteins by paper chromatography revealed that the radioactive monosaccharide incubated with the platelets had not been converted into other sugars. Acid hydrolysis demonstrates the presence of a glycosidic linkage. All the effort directed to the demonstration of the existence of a lipid-sugar intermediate in intact human platelets yielded negative results for Man and Glc-N used as precursors. The incorporation of these sugars into glycoproteins is insensitive to bacitracin, suggesting no involvement of lipid-linked saccharides in the synthesis of glycoproteins in human blood platelets. The absence of inhibition of the glycosylation process in the presence of cycloheximide suggests that the sugars are added to proteins present in the intact platelets. These results support the contention that glycoprotein biosynthesis in human blood platelets observed under our experimental conditions is effected through direct sugar nucleotide glycosylation

  11. Human embryonic stem cell lines model experimental human cytomegalovirus latency.

    Science.gov (United States)

    Penkert, Rhiannon R; Kalejta, Robert F

    2013-05-28

    Herpesviruses are highly successful pathogens that persist for the lifetime of their hosts primarily because of their ability to establish and maintain latent infections from which the virus is capable of productively reactivating. Human cytomegalovirus (HCMV), a betaherpesvirus, establishes latency in CD34(+) hematopoietic progenitor cells during natural infections in the body. Experimental infection of CD34(+) cells ex vivo has demonstrated that expression of the viral gene products that drive productive infection is silenced by an intrinsic immune defense mediated by Daxx and histone deacetylases through heterochromatinization of the viral genome during the establishment of latency. Additional mechanistic details about the establishment, let alone maintenance and reactivation, of HCMV latency remain scarce. This is partly due to the technical challenges of CD34(+) cell culture, most notably, the difficulty in preventing spontaneous differentiation that drives reactivation and renders them permissive for productive infection. Here we demonstrate that HCMV can establish, maintain, and reactivate in vitro from experimental latency in cultures of human embryonic stem cells (ESCs), for which spurious differentiation can be prevented or controlled. Furthermore, we show that known molecular aspects of HCMV latency are faithfully recapitulated in these cells. In total, we present ESCs as a novel, tractable model for studies of HCMV latency.

  12. Human cytomegalovirus (HCMV) induces human endogenous retrovirus (HERV) transcription.

    Science.gov (United States)

    Assinger, Alice; Yaiw, Koon-Chu; Göttesdorfer, Ingmar; Leib-Mösch, Christine; Söderberg-Nauclér, Cecilia

    2013-11-12

    Emerging evidence suggests that human cytomegalovirus (HCMV) is highly prevalent in tumours of different origin. This virus is implied to have oncogenic and oncomodulatory functions, through its ability to control host gene expression. Human endogenous retroviruses (HERV) are also frequently active in tumours of different origin, and are supposed to contribute as cofactors to cancer development. Due to the high prevalence of HCMV in several different tumours, and its ability to control host cell gene expression, we sought to define whether HCMV may affect HERV transcription. Infection of 3 established cancer cell lines, 2 primary glioblastoma cells, endothelial cells from 3 donors and monocytes from 4 donors with HCMV (strains VR 1814 or TB40/F) induced reverse transcriptase (RT) activity in all cells tested, but the response varied between donors. Both, gammaretrovirus-related class I elements HERV-T, HERV-W, HERV-F and ERV-9, and betaretrovirus-related class II elements HML-2 - 4 and HML-7 - 8, as well as spuma-virus related class III elements of the HERV-L group were up-regulated in response to HCMV infection in GliNS1 cells. Up-regulation of HERV activity was more pronounced in cells harbouring active HCMV infection, but was also induced by UV-inactivated virus. The effect was only slightly affected by ganciclovir treatment and was not controlled by the IE72 or IE86 HCMV genes. Within this brief report we show that HCMV infection induces HERV transcriptional activity in different cell types.

  13. A Role for Myosin Va in Human Cytomegalovirus Nuclear Egress.

    Science.gov (United States)

    Wilkie, Adrian R; Sharma, Mayuri; Pesola, Jean M; Ericsson, Maria; Fernandez, Rosio; Coen, Donald M

    2018-03-15

    Herpesviruses replicate and package their genomes into capsids in replication compartments within the nuclear interior. Capsids then move to the inner nuclear membrane for envelopment and release into the cytoplasm in a process called nuclear egress. We previously found that nuclear F-actin is induced upon infection with the betaherpesvirus human cytomegalovirus (HCMV) and is important for nuclear egress and capsid localization away from replication compartment-like inclusions toward the nuclear rim. Despite these and related findings, it has not been shown that any specific motor protein is involved in herpesvirus nuclear egress. In this study, we have investigated whether the host motor protein, myosin Va, could be fulfilling this role. Using immunofluorescence microscopy and coimmunoprecipitation, we observed associations between a nuclear population of myosin Va and the viral major capsid protein, with both concentrating at the periphery of replication compartments. Immunoelectron microscopy showed that nearly 40% of assembled nuclear capsids associate with myosin Va. We also found that myosin Va and major capsid protein colocalize with nuclear F-actin. Importantly, antagonism of myosin Va with RNA interference or a dominant negative mutant revealed that myosin Va is important for the efficient production of infectious virus, capsid accumulation in the cytoplasm, and capsid localization away from replication compartment-like inclusions toward the nuclear rim. Our results lead us to suggest a working model whereby human cytomegalovirus capsids associate with myosin Va for movement from replication compartments to the nuclear periphery during nuclear egress. IMPORTANCE Little is known regarding how newly assembled and packaged herpesvirus capsids move from the nuclear interior to the periphery during nuclear egress. While it has been proposed that an actomyosin-based mechanism facilitates intranuclear movement of alphaherpesvirus capsids, a functional role for

  14. Annotating Human P-Glycoprotein Bioassay Data.

    Science.gov (United States)

    Zdrazil, Barbara; Pinto, Marta; Vasanthanathan, Poongavanam; Williams, Antony J; Balderud, Linda Zander; Engkvist, Ola; Chichester, Christine; Hersey, Anne; Overington, John P; Ecker, Gerhard F

    2012-08-01

    Huge amounts of small compound bioactivity data have been entering the public domain as a consequence of open innovation initiatives. It is now the time to carefully analyse existing bioassay data and give it a systematic structure. Our study aims to annotate prominent in vitro assays used for the determination of bioactivities of human P-glycoprotein inhibitors and substrates as they are represented in the ChEMBL and TP-search open source databases. Furthermore, the ability of data, determined in different assays, to be combined with each other is explored. As a result of this study, it is suggested that for inhibitors of human P-glycoprotein it is possible to combine data coming from the same assay type, if the cell lines used are also identical and the fluorescent or radiolabeled substrate have overlapping binding sites. In addition, it demonstrates that there is a need for larger chemical diverse datasets that have been measured in a panel of different assays. This would certainly alleviate the search for other inter-correlations between bioactivity data yielded by different assay setups.

  15. Humanizing recombinant glycoproteins from Chinese hamster ovary cells

    DEFF Research Database (Denmark)

    Hansen, Anders Holmgaard; Amann, Thomas; Kol, Stefan

    With new tools for gene-editing like zinc-fingers, TALENS and CRISPR, it is now feasible totailor-make the N-Glycoforms for therapeutic glycoproteins that have previously been almost impossible. We here demonstrate a case of humanizing a recombinant human glycoprotein that in Wild type (WT) Chinese...

  16. Glycoprotein B genotyping in congenital/perinatal Cytomegalovirus infection in symptomatic infants.

    Science.gov (United States)

    Gandhoke, Inderjeet; Hussain, S Akhtar; Pasha, S T; Chauhan, L S; Khare, Shashi

    2013-07-01

    Molecular epidemiological studies on circulating strains of CMV in cogenital/perinatal infections have not been done earlier in this region. To study the glycoprotein B genotypes in babies with symptomatic congenital/perinatal CMV infection and to assess the possible influence of genotype on the outcome of the infection. Clinical samples (blood and urine) of symptomatic babies are sent to the Virology Department of NCDC, Delhi for the diagnosis of congenital infections. 375 clinical samples of infants (newborn - 6 months old) were included for the study. Serum samples were subjected to ELISA for detection of IgM antibodies against CMV. DNA isolation and amplification of CMV genomic DNA targeting gB gene fragment by nested PCR, was carried out in the samples. The amplified fragment including the cleavage site was subjected to RFLP using restriction enzymes Rsal and Hinf1. They were also verified by sequencing using Big Dye Terminator chemistry. 75 samples out of 375 tested were confirmed positive for CMV infection by serology and PCR. Both RFLP and sequencing of gB gene fragment showed that gB 1, 2 and 3 genotypes were in circulation. gB 3 was the most prevalent genotype in symptomatic infants. Hepatosplenomegaly was the most common feature in gB-3 genotype of CMV. gB2 congenital CMV infection was more commonly associated with long term sequelae.

  17. Human Cytomegalovirus: Coordinating Cellular Stress, Signaling, and Metabolic Pathways.

    Science.gov (United States)

    Shenk, Thomas; Alwine, James C

    2014-11-01

    Viruses face a multitude of challenges when they infect a host cell. Cells have evolved innate defenses to protect against pathogens, and an infecting virus may induce a stress response that antagonizes viral replication. Further, the metabolic, oxidative, and cell cycle state may not be conducive to the viral infection. But viruses are fabulous manipulators, inducing host cells to use their own characteristic mechanisms and pathways to provide what the virus needs. This article centers on the manipulation of host cell metabolism by human cytomegalovirus (HCMV). We review the features of the metabolic program instituted by the virus, discuss the mechanisms underlying these dramatic metabolic changes, and consider how the altered program creates a synthetic milieu that favors efficient HCMV replication and spread.

  18. Host protein Snapin interacts with human cytomegalovirus pUL130 ...

    Indian Academy of Sciences (India)

    2016-04-07

    Apr 7, 2016 ... The interplay between the host and Human cytomegalovirus (HCMV) plays a pivotal role in the outcome of an infection. ... ed from infected cells but is incorporated into the virion envelope in a ..... Fields virology 5th ed.

  19. Sequence and transcription analysis of the human cytomegalovirus DNA polymerase gene

    International Nuclear Information System (INIS)

    Kouzarides, T.; Bankier, A.T.; Satchwell, S.C.; Weston, K.; Tomlinson, P.; Barrell, B.G.

    1987-01-01

    DNA sequence analysis has revealed that the gene coding for the human cytomegalovirus (HCMV) DNA polymerase is present within the long unique region of the virus genome. Identification is based on extensive amino acid homology between the predicted HCMV open reading frame HFLF2 and the DNA polymerase of herpes simplex virus type 1. The authors present here a 5280 base-pair DNA sequence containing the HCMV pol gene, along with the analysis of transcripts encoded within this region. Since HCMV pol also shows homology to the predicted Epstein-Barr virus pol, they were able to analyze the extent of homology between the DNA polymerases of three distantly related herpes viruses, HCMV, Epstein-Barr virus, and herpes simplex virus. The comparison shows that these DNA polymerases exhibit considerable amino acid homology and highlights a number of highly conserved regions; two such regions show homology to sequences within the adenovirus type 2 DNA polymerase. The HCMV pol gene is flanked by open reading frames with homology to those of other herpes viruses; upstream, there is a reading frame homologous to the glycoprotein B gene of herpes simplex virus type I and Epstein-Barr virus, and downstream there is a reading frame homologous to BFLF2 of Epstein-Barr virus

  20. Human antibody technology and the development of antibodies against cytomegalovirus.

    Science.gov (United States)

    Ohlin, Mats; Söderberg-Nauclér, Cecilia

    2015-10-01

    Cytomegalovirus (CMV) is a virus that causes chronic infections in a large set of the population. It may cause severe disease in immunocompromised individuals, is linked to immunosenescence and implied to play an important role in the pathogenesis of cardiovascular diseases and cancer. Modulation of the immune system's abilities to manage the virus represent a highly viable therapeutic option and passive immunotherapy with polyclonal antibody preparations is already in clinical use. Defined monoclonal antibodies offer many advantages over polyclonal antibodies purified from serum. Human CMV-specific monoclonal antibodies have consequently been thoroughly investigated with respect to their potential in the treatment of diseases caused by CMV. Recent advances in human antibody technology have substantially expanded the breadth of antibodies for such applications. This review summarizes the fundamental basis for treating CMV disease by use of antibodies, the basic technologies to be used to develop such antibodies, and relevant human antibody specificities available to target this virus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. BST2/Tetherin enhances entry of human cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Kasinath Viswanathan

    2011-11-01

    Full Text Available Interferon-induced BST2/Tetherin prevents budding of vpu-deficient HIV-1 by tethering mature viral particles to the plasma membrane. BST2 also inhibits release of other enveloped viruses including Ebola virus and Kaposi's sarcoma associated herpesvirus (KSHV, indicating that BST2 is a broadly acting antiviral host protein. Unexpectedly however, recovery of human cytomegalovirus (HCMV from supernatants of BST2-expressing human fibroblasts was increased rather than decreased. Furthermore, BST2 seemed to enhance viral entry into cells since more virion proteins were released into BST2-expressing cells and subsequent viral gene expression was elevated. A significant increase in viral entry was also observed upon induction of endogenous BST2 during differentiation of the pro-monocytic cell line THP-1. Moreover, treatment of primary human monocytes with siRNA to BST2 reduced HCMV infection, suggesting that BST2 facilitates entry of HCMV into cells expressing high levels of BST2 either constitutively or in response to exogenous stimuli. Since BST2 is present in HCMV particles we propose that HCMV entry is enhanced via a reverse-tethering mechanism with BST2 in the viral envelope interacting with BST2 in the target cell membrane. Our data suggest that HCMV not only counteracts the well-established function of BST2 as inhibitor of viral egress but also employs this anti-viral protein to gain entry into BST2-expressing hematopoietic cells, a process that might play a role in hematogenous dissemination of HCMV.

  2. Human cytomegalovirus gH stability and trafficking are regulated by ER-associated degradation and transmembrane architecture.

    Science.gov (United States)

    Gardner, Thomas J; Hernandez, Rosmel E; Noriega, Vanessa M; Tortorella, Domenico

    2016-03-30

    The prototypic betaherpesvirus human cytomegalovirus (CMV) establishes life-long persistence within its human host. While benign in healthy individuals, CMV poses a significant threat to the immune compromised, including transplant recipients and neonates. The CMV glycoprotein complex gH/gL/gO mediates infection of fibroblasts, and together with the gH/gL/UL128/130/131 a pentameric complex permits infection of epithelial, endothethial, and myeloid cells. Given the central role of the gH/gL complex during infection, we were interested in studying cellular trafficking of the gH/gL complex through generation of human cells that stably express gH and gL. When expressed alone, CMV gH and gL were degraded through the ER-associated degradation (ERAD) pathway. However, co-expression of these proteins stabilized the polypeptides and enhanced their cell-surface expression. To further define regulatory factors involved in gH/gL trafficking, a CMV gH chimera in which the gH transmembrane and cytoplasmic tail were replaced with that of human CD4 protein permitted cell surface gH expression in absence of gL. We thus demonstrate the ability of distinct cellular processes to regulate the trafficking of viral glycoproteins. Collectively, the data provide insight into the processing and trafficking requirements of CMV envelope protein complexes and provide an example of the co-opting of cellular processes by CMV.

  3. Human cytomegalovirus replicates in gamma-irradiated fibroblasts

    International Nuclear Information System (INIS)

    Shanley, J.D.

    1986-01-01

    Because of the unique interdependence of human cytomegalovirus (HCMV) and the physiological state of the host cell, we evaluated the ability of human foreskin fibroblasts (HFF), exposed to gamma radiation, to support HCMV growth. Irradiation of HFF with 2,500 rADS prevented cellular proliferation and suppressed cellular DNA, but not RNA or protein synthesis. Treatment of HFF cells with 2,500 rADS 6 or 48 hours prior to infection did not alter the time course or virus yield during HCMV replication. Virus plaquing efficiency in irradiated cells was comparable to that of nonirradiated cells. As judged by thymidine incorporation and BUdR inhibition of virus replication, HCMV infection induced both thymidine kinase activity and host cell DNA synthesis in irradiated cells. In addition, virus could be recovered from HFF exposed to radiation 0-2 days after infection with HCMV. These studies indicate that the damage to cells by gamma irradiation does not alter the capacity of host cells to support HCMV replication

  4. Resistance to antivirals in human cytomegalovirus: mechanisms and clinical significance.

    Science.gov (United States)

    Pérez, J L

    1997-09-01

    Long term therapies needed for managing human cytomegalovirus (HCMV) infections in immunosupressed patients provided the background for the emergence of the resistance to antivirals active against HCMV. In addition, laboratory selected mutants have also been readily achieved. Both clinical and laboratory resistant strains share the same determinants of resistance. Ganciclovir resistance may be due to a few mutations in the HCMV UL97 gene and/or viral DNA pol gene, the former being responsible for about 70% of clinical resistant isolates. Among them, V464, V594, S595 and F595 are the most frequent mutations. Because of their less extensive clinical use, much less is known about resistance to foscarnet and cidofovir (formerly, HPMPC) but in both cases, it has been associated to mutations in the DNA pol. Ganciclovir resistant strains showing DNA pol mutations are cross-resistant to cidofovir and their corresponding IC50 are normally higher than those from strains harboring only mutations at the UL97 gene. To date, foscarnet resistance seems to be independent of both ganciclovir and cidofovir resistance.

  5. Human Milk Glycoproteins Protect Infants Against Human Pathogens

    Science.gov (United States)

    Liu, Bo

    2013-01-01

    Abstract Breastfeeding protects the neonate against pathogen infection. Major mechanisms of protection include human milk glycoconjugates functioning as soluble receptor mimetics that inhibit pathogen binding to the mucosal cell surface, prebiotic stimulation of gut colonization by favorable microbiota, immunomodulation, and as a substrate for bacterial fermentation products in the gut. Human milk proteins are predominantly glycosylated, and some biological functions of these human milk glycoproteins (HMGPs) have been reported. HMGPs range in size from 14 kDa to 2,000 kDa and include mucins, secretory immunoglobulin A, bile salt-stimulated lipase, lactoferrin, butyrophilin, lactadherin, leptin, and adiponectin. This review summarizes known biological roles of HMGPs that may contribute to the ability of human milk to protect neonates from disease. PMID:23697737

  6. Inhibition of Human Cytomegalovirus pUL89 Terminase Subunit Blocks Virus Replication and Genome Cleavage.

    Science.gov (United States)

    Wang, Yan; Mao, Lili; Kankanala, Jayakanth; Wang, Zhengqiang; Geraghty, Robert J

    2017-02-01

    The human cytomegalovirus terminase complex cleaves concatemeric genomic DNA into unit lengths during genome packaging and particle assembly. This process is an attractive drug target because cleavage of concatemeric DNA is not required in mammalian cell DNA replication, indicating that drugs targeting the terminase complex could be safe and selective. One component of the human cytomegalovirus terminase complex, pUL89, provides the endonucleolytic activity for genome cleavage, and the domain responsible is reported to have an RNase H-like fold. We hypothesize that the pUL89 endonuclease activity is inhibited by known RNase H inhibitors. Using a novel enzyme-linked immunosorbent assay (ELISA) format as a screening assay, we found that a hydroxypyridonecarboxylic acid compound, previously reported to be an inhibitor of human immunodeficiency virus RNase H, inhibited pUL89 endonuclease activity at low-micromolar concentrations. Further characterization revealed that this pUL89 endonuclease inhibitor blocked human cytomegalovirus replication at a relatively late time point, similarly to other reported terminase complex inhibitors. Importantly, this inhibitor also prevented the cleavage of viral genomic DNA in infected cells. Taken together, these results substantiate our pharmacophore hypothesis and validate our ligand-based approach toward identifying novel inhibitors of pUL89 endonuclease. Human cytomegalovirus infection in individuals lacking a fully functioning immune system, such as newborns and transplant patients, can have severe and debilitating consequences. The U.S. Food and Drug Administration-approved anti-human cytomegalovirus drugs mainly target the viral polymerase, and resistance to these drugs has appeared. Therefore, anti-human cytomegalovirus drugs from novel targets are needed for use instead of, or in combination with, current polymerase inhibitors. pUL89 is a viral ATPase and endonuclease and is an attractive target for anti-human cytomegalovirus

  7. In silico pattern-based analysis of the human cytomegalovirus genome.

    Science.gov (United States)

    Rigoutsos, Isidore; Novotny, Jiri; Huynh, Tien; Chin-Bow, Stephen T; Parida, Laxmi; Platt, Daniel; Coleman, David; Shenk, Thomas

    2003-04-01

    More than 200 open reading frames (ORFs) from the human cytomegalovirus genome have been reported as potentially coding for proteins. We have used two pattern-based in silico approaches to analyze this set of putative viral genes. With the help of an objective annotation method that is based on the Bio-Dictionary, a comprehensive collection of amino acid patterns that describes the currently known natural sequence space of proteins, we have reannotated all of the previously reported putative genes of the human cytomegalovirus. Also, with the help of MUSCA, a pattern-based multiple sequence alignment algorithm, we have reexamined the original human cytomegalovirus gene family definitions. Our analysis of the genome shows that many of the coded proteins comprise amino acid combinations that are unique to either the human cytomegalovirus or the larger group of herpesviruses. We have confirmed that a surprisingly large portion of the analyzed ORFs encode membrane proteins, and we have discovered a significant number of previously uncharacterized proteins that are predicted to be G-protein-coupled receptor homologues. The analysis also indicates that many of the encoded proteins undergo posttranslational modifications such as hydroxylation, phosphorylation, and glycosylation. ORFs encoding proteins with similar functional behavior appear in neighboring regions of the human cytomegalovirus genome. All of the results of the present study can be found and interactively explored online (http://cbcsrv.watson.ibm.com/virus/).

  8. Increased Cytomegalovirus Secretion and Risks of Infant Infection by Breastfeeding Duration From Maternal Human Immunodeficiency Virus Positive Compared to Negative Mothers in Sub-Saharan Africa.

    Science.gov (United States)

    Musonda, Kunda G; Nyonda, Mary; Filteau, Suzanne; Kasonka, Lackson; Monze, Mwaka; Gompels, Ursula A

    2016-06-01

    Breastfeeding imparts beneficial immune protection and nutrition to infants for healthy growth, but it is also a route for human immunodeficiency virus (HIV) and human cytomegalovirus (HCMV) infection. In previous studies, we showed that HCMV adversely affects infant development in Africa, particularly with maternal HIV exposure. In this study, we analyzed infants risks for acquisition of HCMV infection from breastfeeding and compared HIV-positive and HIV-negative mothers. Two cohorts were studied in Zambia. (1) Two hundred sixty-one HIV-infected and HIV-uninfected mothers were compared for HCMV deoxyribonucleic acid (DNA) loads and genotypes (glycoprotein gO) in milk from birth to 4 months postpartum. (2) Maternally HIV-exposed and HIV-unexposed infants were compared for HCMV infection risk factors. The second cohort of 460 infants, from a trial of micronutrient-fortified complementary-food to breastfeeding, were studied between 6 and 18 months of age. Human cytomegalovirus seroprevalence was assayed, and logistic regression was used to calculate risk factors for HCMV infection, including maternal HIV exposure and breastfeeding duration. Human cytomegalovirus was detected in breast milk from 3 days to 4 months postpartum, with significantly raised levels in HIV-positive women and independent of genotype. In infants, HCMV antibody seroprevalence was 83% by 18 months age. Longer breastfeeding duration increased infection risk in maternally HIV-unexposed (odds ratio [OR] = 2.69 for 18 months vs 6 months vs never; 95% CI, 3.71-111.70; P breastfeeding, which is common in Africa, increased risk of HCMV infection in infants. Both HIV-positive and HIV-negative women had extended milk HCMV secretion. Women who were HIV-positive secreted higher HCMV levels, and for longer duration, with their children at increased infection risk. Human cytomegalovirus control is required to maintain health benefits of breastfeeding. © The Author 2016. Published by Oxford University Press

  9. Partial functional complementation between human and mouse cytomegalovirus chemokine receptor homologues

    DEFF Research Database (Denmark)

    Farrell, Helen E; Abraham, Alexander M; Cardin, Rhonda D

    2011-01-01

    The human cytomegalovirus (CMV) proteins US28 and UL33 are homologous to chemokine receptors (CKRs). Knockout of the mouse CMV M33 protein (UL33 homologue) results in substantial attenuation of salivary gland infection/replication and reduced efficiency of reactivation from tissue explants. M33-m...

  10. IgM-specific serodiagnosis of acute human cytomegalovirus infection using recombinant autologous fusion proteins

    NARCIS (Netherlands)

    Vornhagen, R; Hinderer, W; Sonneborn, HH; Bein, G; Matter, L; The, T. Hauw; Enders, G; Jahn, G; Plachter, B

    Portions of three human cytomegalovirus (HCMV) polypeptides, which were shown previously to be highly reactive with patient sera, were expressed in Escherichia coli as autologous fusion proteins. Purified recombinant polypeptides were used as antigens in enzyme linked immunosorbent assay (ELISA) and

  11. The peanut lectin-binding glycoproteins of human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Morrison, A.I.; Keeble, S.; Watt, F.M.

    1988-01-01

    The peanut lectin (PNA) is known to bind more strongly to keratinocytes that are undergoing terminal differentiation than to proliferating keratinocytes. In order to investigate the significance of this change in cell-surface carbohydrate authors have identified the PNA-binding glycoproteins of cultured human keratinocytes and antibodies against them. Two heavily glycosylated bands of 110 and 250 kDa were resolved by PAGE of [ 14 C]galactose- or [ 14 C]mannose- and [ 14 C]glucosamine-labeled cell extracts eluted with galactose from PNA affinity columns. The higher molecular weight band was also detected on PNA blots of unlabeled cell extracts transferred to nitrocellulose. Both bands were sensitive to pronase digestion, but only the 250-kDa band was digested with trypsin. A rabbit antiserum that we prepared (anti-PNA-gp) immunoprecipitated both bands from cell extracts. In contrast to PNA, anti-PNA-gp bound equally to proliferating and terminally differentiating cells, indicating that some epitope(s) of the PNA-binding glycoproteins is present on the cell surface prior to terminal differentiation. When keratinocytes grown as a monolayer in low-calcium medium were switched to medium containing 2 mM calcium ions in order to induce desmosome formation and stratification, there was a dramatic redistribution of the PNA-binding glycoproteins, which became concentrated at the boundaries between cells. This may suggest a role for the glycoproteins in cell-cell interactions during stratification

  12. FINE SPECIFICITY OF CELLULAR IMMUNE-RESPONSES IN HUMANS TO HUMAN CYTOMEGALOVIRUS IMMEDIATE-EARLY 1-PROTEIN

    NARCIS (Netherlands)

    ALP, NJ; ALLPORT, TD; VANZANTEN, J; RODGERS, B; SISSONS, JGP; BORYSIEWICZ, LK

    Cell-mediated immunity is important in maintaining the virus-host equilibrium in persistent human cytomegalovirus (HCMV) infection. The HCMV 72-kDa major immediate early 1 protein (IE1) is a target for CD8+ cytotoxic T cells in humans, as is the equivalent 89-kDa protein in mouse. Less is known

  13. The prevalence of human cytomegalovirus DNA in gliomas of Brazilian patients

    Directory of Open Access Journals (Sweden)

    Renata Fragelli Fonseca

    2012-11-01

    Full Text Available Members of the Herpesviridae family have been implicated in a number of tumours in humans. At least 75% of the human population has had contact with cytomegalovirus (HCMV. In this work, we screened 75 Brazilian glioma biopsies for the presence of HCMV DNA sequences. HCMV DNA was detected in 36% (27/75 of the biopsies. It is possible that HCMV could be a co-factor in the evolution of brain tumours.

  14. Monoclonal antibody to an external epitope of the human mdr1 P-glycoprotein

    NARCIS (Netherlands)

    Arceci, R. J.; Stieglitz, K.; Bras, J.; Schinkel, A.; Baas, F.; Croop, J.

    1993-01-01

    A membrane glycoprotein, termed P-glycoprotein, has been shown to be responsible for cross-resistance to a broad range of structurally and functionally distinct cytotoxic agents. P-glycoprotein, encoded in humans by the mdr1 gene, functions as an energy-dependent efflux pump to exclude these

  15. Global Mapping of O-Glycosylation of Varicella Zoster Virus, Human Cytomegalovirus, and Epstein-Barr Virus*

    Science.gov (United States)

    Bagdonaite, Ieva; Nordén, Rickard; Joshi, Hiren J.; King, Sarah L.; Vakhrushev, Sergey Y.; Olofsson, Sigvard; Wandall, Hans H.

    2016-01-01

    Herpesviruses are among the most complex and widespread viruses, infection and propagation of which depend on envelope proteins. These proteins serve as mediators of cell entry as well as modulators of the immune response and are attractive vaccine targets. Although envelope proteins are known to carry glycans, little is known about the distribution, nature, and functions of these modifications. This is particularly true for O-glycans; thus we have recently developed a “bottom up” mass spectrometry-based technique for mapping O-glycosylation sites on herpes simplex virus type 1. We found wide distribution of O-glycans on herpes simplex virus type 1 glycoproteins and demonstrated that elongated O-glycans were essential for the propagation of the virus. Here, we applied our proteome-wide discovery platform for mapping O-glycosites on representative and clinically significant members of the herpesvirus family: varicella zoster virus, human cytomegalovirus, and Epstein-Barr virus. We identified a large number of O-glycosites distributed on most envelope proteins in all viruses and further demonstrated conserved patterns of O-glycans on distinct homologous proteins. Because glycosylation is highly dependent on the host cell, we tested varicella zoster virus-infected cell lysates and clinically isolated virus and found evidence of consistent O-glycosites. These results present a comprehensive view of herpesvirus O-glycosylation and point to the widespread occurrence of O-glycans in regions of envelope proteins important for virus entry, formation, and recognition by the host immune system. This knowledge enables dissection of specific functional roles of individual glycosites and, moreover, provides a framework for design of glycoprotein vaccines with representative glycosylation. PMID:27129252

  16. A Phase 1 Study of 4 Live, Recombinant Human Cytomegalovirus Towne/Toledo Chimera Vaccines in Cytomegalovirus-Seronegative Men.

    Science.gov (United States)

    Adler, Stuart P; Manganello, Anne-Marie; Lee, Ronzo; McVoy, Michael A; Nixon, Daniel E; Plotkin, Stanley; Mocarski, Edward; Cox, Josephine H; Fast, Patricia E; Nesterenko, Pavlo A; Murray, Susan E; Hill, Ann B; Kemble, George

    2016-11-01

    Human cytomegalovirus (HCMV) infection causes disease in newborns and transplant recipients. A HCMV vaccine (Towne) protects transplant recipients.  The genomes of Towne and the nonattenuated Toledo strain were recombined, yielding 4 Towne/Toledo chimera vaccines. Each of 36 HCMV-seronegative men received 1 subcutaneous dose of 10, 100, or 1000 plaque-forming units (PFU) in cohorts of 3. Safety and immunogenicity were evaluated over 12 weeks after immunization and for 52 weeks for those who seroconverted.  There were no serious local or systemic reactions. No subject had HCMV in urine or saliva. For chimera 3, none of 9 subjects seroconverted. For chimera 1, 1 of 9 seroconverted (the seroconverter received 100 PFU). For chimera 2, 3 subjects seroconverted (1 received 100 PFU, and 2 received 1000 PFU). For chimera 4, 7 subjects seroconverted (1 received 10 PFU, 3 received 100 PFU, and 3 received 1000 PFU). All 11 seroconverters developed low but detectable levels of neutralizing activity. CD4 + T-cell responses were detectable in 1 subject (who received 100 PFU of chimera 4). Seven subjects receiving chimera 2 or 4 had detectable CD8 + T-cell responses to IE1; 3 responded to 1-2 additional antigens.  The Towne/Toledo chimera vaccine candidates were well tolerated and were not excreted. Additional human trials of chimeras 2 and 4 are appropriate.  NCT01195571. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  17. High-performance liquid chromatography of human glycoprotein hormones.

    Science.gov (United States)

    Chlenov, M A; Kandyba, E I; Nagornaya, L V; Orlova, I L; Volgin, Y V

    1993-02-12

    The chromatographic behavior of the glycoprotein hormones from human pituitary glands and of placental origin [thyroid-stimulating hormone, luteinizing hormone and chorionic gonadotropin (CG)] was studied. It was shown that hydrophobic interaction chromatography on a microparticulate packing and anion-exchange HPLC can be applied for the purification of these hormones. Reversed-phase HPLC on wide-pore C4-bonded silica at neutral pH can be applied for the determination of the above hormones and for the isolation of pure CG and its subunits.

  18. Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells.

    Directory of Open Access Journals (Sweden)

    Leonardo D'Aiuto

    Full Text Available Human cytomegalovirus (HCMV infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs, neural progenitor cells (NPCs and neurons suggests that (i iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii Neural stem cells have impaired differentiation when infected by HCMV; (iii NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv most iPS-derived neurons are not permissive to HCMV infection; and (v infected neurons have impaired calcium influx in response to glutamate.

  19. Saturated very long chain fatty acids are required for the production of infectious human cytomegalovirus progeny.

    Directory of Open Access Journals (Sweden)

    Emre Koyuncu

    Full Text Available Human cytomegalovirus hijacks host cell metabolism, increasing the flux of carbon from glucose to malonyl-CoA, the committed precursor to fatty acid synthesis and elongation. Inhibition of acetyl-CoA carboxylase blocks the production of progeny virus. To probe further the role of fatty acid metabolism during infection, we performed an siRNA screen to identify host cell metabolic enzymes needed for the production of infectious cytomegalovirus progeny. The screen predicted that multiple long chain acyl-CoA synthetases and fatty acid elongases are needed during infection, and the levels of RNAs encoding several of these enzymes were upregulated by the virus. Roles for acyl-CoA synthetases and elongases during infection were confirmed by using small molecule antagonists. Consistent with a role for these enzymes, mass spectrometry-based fatty acid analysis with ¹³C-labeling revealed that malonyl-CoA is consumed by elongases to produce very long chain fatty acids, generating an approximately 8-fold increase in C26-C34 fatty acid tails in infected cells. The virion envelope was yet further enriched in C26-C34 saturated fatty acids, and elongase inhibitors caused the production of virions with lower levels of these fatty acids and markedly reduced infectivity. These results reveal a dependence of cytomegalovirus on very long chain fatty acid metabolism.

  20. Activation of nucleotide oligomerization domain 2 (NOD2 by human cytomegalovirus initiates innate immune responses and restricts virus replication.

    Directory of Open Access Journals (Sweden)

    Arun Kapoor

    Full Text Available Nucleotide-binding oligomerization domain 2 (NOD2 is an important innate immune sensor of bacterial pathogens. Its induction results in activation of the classic NF-κB pathway and alternative pathways including type I IFN and autophagy. Although the importance of NOD2 in recognizing RNA viruses has recently been identified, its role in sensing DNA viruses has not been studied. We report that infection with human cytomegalovirus (HCMV results in significant induction of NOD2 expression, beginning as early as 2 hours post infection and increasing steadily 24 hours post infection and afterwards. Infection with human herpesvirus 1 and 2 does not induce NOD2 expression. While the HCMV-encoded glycoprotein B is not required for NOD2 induction, a replication competent virion is necessary. Lentivirus-based NOD2 knockdown in human foreskin fibroblasts (HFFs and U373 glioma cells leads to enhanced HCMV replication along with decreased levels of interferon beta (IFN-β and the pro-inflammatory cytokine, IL8. NOD2 induction in HCMV-infected cells activates downstream NF-κB and interferon pathways supported by reduced nuclear localization of NF-κB and pIRF3 in NOD2 knockdown HFFs. Stable overexpression of NOD2 in HFFs restricts HCMV replication in association with increased levels of IFN-β and IL8. Similarly, transient overexpression of NOD2 in U373 cells or its downstream kinase, RIPK2, results in decreased HCMV replication and enhanced cytokine responses. However, overexpression of a mutant NOD2, 3020insC, associated with severe Crohn's disease, results in enhanced HCMV replication and decreased levels of IFN-β in U373 cells. These results show for the first time that NOD2 plays a significant role in HCMV replication and may provide a model for studies of HCMV recognition by the host cell and HCMV colitis in Crohn's disease.

  1. Cytomegalovirus Survival and Transferability and the Effectiveness of Common Hand-Washing Agents against Cytomegalovirus on Live Human Hands

    OpenAIRE

    Stowell, Jennifer D.; Forlin-Passoni, Daniela; Radford, Kay; Bate, Sheri L.; Dollard, Sheila C.; Bialek, Stephanie R.; Cannon, Michael J.; Schmid, D. Scott

    2014-01-01

    Congenital cytomegalovirus (CMV) transmission can occur when women acquire CMV while pregnant. Infection control guidelines may reduce risk for transmission. We studied the duration of CMV survival after application of bacteria to the hands and after transfer from the hands to surfaces and the effectiveness of cleansing with water, regular and antibacterial soaps, sanitizer, and diaper wipes. Experiments used CMV AD169 in saliva at initial titers of 1 × 105 infectious particles/ml. Samples fr...

  2. Probable neuroimmunological link between Toxoplasma and cytomegalovirus infections and personality changes in the human host

    Directory of Open Access Journals (Sweden)

    Roubalová Kateřina

    2005-07-01

    Full Text Available Abstract Background Recently, a negative association between Toxoplasma-infection and novelty seeking was reported. The authors suggested that changes of personality trait were caused by manipulation activity of the parasite, aimed at increasing the probability of transmission of the parasite from an intermediate to a definitive host. They also suggested that low novelty seeking indicated an increased level of the neurotransmitter dopamine in the brain of infected subjects, a phenomenon already observed in experimentally infected rodents. However, the changes in personality can also be just a byproduct of any neurotropic infection. Moreover, the association between a personality trait and the toxoplasmosis can even be caused by an independent correlation of both the probability of Toxoplasma-infection and the personality trait with the third factor, namely with the size of living place of a subject. To test these two alternative hypotheses, we studied the influence of another neurotropic pathogen, the cytomegalovirus, on the personality of infected subjects, and reanalyzed the original data after the effect of the potential confounder, the size of living place, was controlled. Methods In the case-control study, 533 conscripts were tested for toxoplasmosis and presence of anti-cytomegalovirus antibodies and their novelty seeking was examined with Cloninger's TCI questionnaire. Possible association between the two infections and TCI dimensions was analyzed. Results The decrease of novelty seeking is associated also with cytomegalovirus infection. After the size of living place was controlled, the effect of toxoplasmosis on novelty seeking increased. Significant difference in novelty seeking was observed only in the largest city, Prague. Conclusion Toxoplasma and cytomegalovirus probably induce a decrease of novelty seeking. As the cytomegalovirus spreads in population by direct contact (not by predation as with Toxoplasma, the observed changes are

  3. Human Cytomegalovirus Encoded miR-US25-1-5p Attenuates CD147/EMMPRIN-Mediated Early Antiviral Response

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2017-12-01

    Full Text Available Cellular receptor-mediated signaling pathways play critical roles during the initial immune response to Human Cytomegalovirus (HCMV infection. However, the involvement of type-I transmembrane glycoprotein CD147/EMMPRIN (extracellular matrix metalloproteinase inducer in the antiviral response to HCMV infection is still unknown. Here, we demonstrated the specific knockdown of CD147 significantly decreased HCMV-induced activation of NF-κB and Interferon-beta (IFN-β, which contribute to the cellular antiviral responses. Next, we confirmed that HCMV-encoded miR-US25-1-5p could target the 3′ UTR (Untranslated Region of CD147 mRNA, and thus facilitate HCMV lytic propagation at a low multiplicity of infection (MOI. The expression and secretion of Cyclophilin A (sCyPA, as a ligand for CD147 and a proinflammatory cytokine, were up-regulated in response to HCMV stimuli. Finally, we confirmed that CD147 mediated HCMV-triggered antiviral signaling via the sCyPA-CD147-ERK (extracellular regulated protein kinases/NF-κB axis signaling pathway. These findings reveal an important HCMV mechanism for evading antiviral innate immunity through its encoded microRNA by targeting transmembrane glycoprotein CD147, and a potential cause of HCMV inflammatory disorders due to the secretion of proinflammatory cytokine CyPA.

  4. Detection of Human Cytomegalovirus and Epstein-Barr Virus in Coronary Atherosclerotic Tissue

    Science.gov (United States)

    Imbronito, Ana Vitória; Marcelino, Silvia Linardi; Grande, Sabrina Rosa; Nunes, Fabio Daumas; Romito, Giuseppe Alexandre

    2010-01-01

    Previous studies indicated that patients with atherosclerosis are predominantly infected by human cytomegalovirus (HCMV), but rarely infected by type 1 Epstein-Barr virus (EBV-1). In this study, atheromas of 30 patients who underwent aortocoronary bypass surgery with coronary endartherectomy were tested for the presence of these two viruses. HCMV occurred in 93.3% of the samples and EBV-1 was present in 50% of them. Concurrent presence of both pathogens was detected in 43.3% of the samples. PMID:24031529

  5. Identification of Persistent RNA-DNA Hybrid Structures within the Origin of Replication of Human Cytomegalovirus

    OpenAIRE

    Prichard, Mark N.; Jairath, Sanju; Penfold, Mark E. T.; Jeor, Stephen St.; Bohlman, Marlene C.; Pari, Gregory S.

    1998-01-01

    Human cytomegalovirus (HCMV) lytic-phase DNA replication initiates at the cis-acting origin of replication, oriLyt. oriLyt is a structurally complex region containing repeat elements and transcription factor binding sites. We identified two site-specific alkali-labile regions within oriLyt which flank an alkali-resistant DNA segment. These alkali-sensitive regions were the result of the degradation of two RNA species embedded within oriLyt and covalently linked to viral DNA. The virus-associa...

  6. Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production

    International Nuclear Information System (INIS)

    Jarvis, Donald L.

    2003-01-01

    The baculovirus-insect cell expression system is widely used to produce recombinant glycoproteins for many different biomedical applications. However, due to the fundamental nature of insect glycoprotein processing pathways, this system is typically unable to produce recombinant mammalian glycoproteins with authentic oligosaccharide side chains. This minireview summarizes our current understanding of insect protein glycosylation pathways and our recent efforts to address this problem. These efforts have yielded new insect cell lines and baculoviral vectors that can produce recombinant glycoproteins with humanized oligosaccharide side chains

  7. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Twite, Nicolas [Institute for Medical Immunology, Université Libre de Bruxelles, Rue A. Bolland 8, B-6041 Charleroi (Belgium); Andrei, Graciela [Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven (Belgium); Kummert, Caroline [ImmuneHealth, Rue A. Bolland 8, B-6041 Charleroi (Belgium); Donner, Catherine [Department of Obstetrics and Gynecology, Erasme Hospital, Route de Lennik 808, 1070 Brussels (Belgium); Perez-Morga, David [Laboratory of Molecular Parasitology, Institut de Biologie et Médecine Moléculaires, Université Libre de Bruxelles, Gosselies (Belgium); De Vos, Rita [Pathology Department, U.Z. Leuven, Minderbroedersstraat 12, Leuven (Belgium); Snoeck, Robert, E-mail: Robert.Snoeck@Rega.kuleuven.be [Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven (Belgium); Marchant, Arnaud, E-mail: arnaud.marchant@ulb.ac.be [Institute for Medical Immunology, Université Libre de Bruxelles, Rue A. Bolland 8, B-6041 Charleroi (Belgium); ImmuneHealth, Rue A. Bolland 8, B-6041 Charleroi (Belgium)

    2014-07-15

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMV by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.

  8. Human cytomegalovirus antigens in malignant gliomas as targets for adoptive cellular therapy

    Directory of Open Access Journals (Sweden)

    Daniel eLandi

    2014-11-01

    Full Text Available Malignant gliomas are the most common primary brain tumor in adults, with over 12,000 new cases diagnosed in the United States each year. Over the last decade, investigators have reliably identified human cytomegalovirus (HCMV proteins, nucleic acids, and virions in most high-grade gliomas, including glioblastoma (GBM. This discovery is significant because human cytomegalovirus gene products can be targeted by immune-based therapies.In this review, we describe the current level of understanding regarding the presence and role in pathogenesis of HCMV in GBM. We describe our success detecting and expanding HCMV-specific cytotoxic T lymphocytes to kill GBM cells and explain how these cells can be used as a platform for enhanced cellular therapies. We discuss alternative approaches that capitalize on HCMV infection to treat patients with HCMV-positive tumors. Adoptive cellular therapy for HCMV-positive GBM has been tried in a small number of patients with some benefit, but we reason why, to date, these approaches generally fail to generate long-term remission or cure. We conjecture how cellular therapy for GBM can be improved and describe the barriers that must be overcome to cure these patients.

  9. Relationship between human cytomegalovirus transcription and symptomatic apical periodontitis in Iran.

    Science.gov (United States)

    Yazdi, K A; Sabeti, M; Jabalameli, F; Eman eini, M; Kolahdouzan, S A; Slots, J

    2008-12-01

    Apical periodontitis of endodontic origin may develop as a result of cooperative interactions among herpesviruses, specific pathogenic bacteria and tissue-destructive inflammatory mediators. This study sought to identify the presence of Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) transcripts in symptomatic and asymptomatic periapical lesions of individuals living in Iran. Fifty endodontic patients (28 with symptomatic periapical lesions and 22 with asymptomatic periapical lesions) were included in the study. In each study subject, a microbiological periapical sample was collected using a curette in conjunction with periapical surgery. A reverse transcription-polymerase chain reaction assay was used to identify transcripts of EBV and HCMV. Human cytomegalovirus transcript was detected in 15 of the 28 (53.6%) symptomatic and in six of the 22 (27.3%) asymptomatic periapical study lesions (significant difference between symptomatic and asymptomatic lesions; P = 0.03, chi-square test). Epstein-Barr virus transcript was identified in one symptomatic and in two asymptomatic periapical lesions. This study establishes that HCMV transcription is common in apical periodontitis and is most frequent in symptomatic lesions. The high frequency of active herpesvirus infections in severe apical periodontitis changes the pathogenic paradigm of the disease and may also have preventive and therapeutic implications.

  10. Association of human cytomegalovirus viremia with human leukocyte antigens in liver transplantation recipients

    Institute of Scientific and Technical Information of China (English)

    Jianhua Hu; Jun Fan; Xueqin Meng; Hong Zhao; Xuan Zhang; Hainv Gao; Meifang Yang; Yadan Ma; Minhuan Li; Weihang Ma

    2011-01-01

    Human cytomegalovirus (HCMV) reactivation is a common complication after liver transplantation (LT).Here, we investigated whether human leukocyte antigen (HLA)-matching was related to HCMV infection and subsequent graft failure after LT for hepatitis B virus cirrhosis. This retrospective study reviewed 91 LT recipients.All the patients were grouped according to HLA-A, HLA-B, and HLA-DR locus matching. Clinical data were collected, including complete HLA-typing, HCMV viremia, graft failure, and the time of HCMV viremia.HLA typing was performed using a sequence-specific primer-polymerase chain reaction kit. HCMV was detected by pp65 antigenemia using a commercial kit.The incidence of HCMV infection post-LT was 81.32%.Graft failure was observed in 16 of 91 (17.6%) patients during the 4-year study. The incidence of HCMV viremia was 100% (5/5), 91.4% (32/35), and 72.5% (37/51) in HLA-A two locus, one locus, and zero locus compatibility,respectively. Nevertheless, the degree of the HLA-A,HLA-B, or HLA-DR match did not influence the time of HCMV viremia, graft failure, or the time of graft failure after a diagnosis of HCMV viremia (all P> 0.05). An interesting discovery was that the risk of HCMV viremia tended to be higher in patients with better HLA-A compatibility. Graft failure, time of HCMV viremia, and graft failure after a diagnosis of HCMV viremia appear to be independent of HLA allele compatibility.

  11. Molecular insight into conformational transmission of human P-glycoprotein

    International Nuclear Information System (INIS)

    Chang, Shan-Yan; Liu, Fu-Feng; Dong, Xiao-Yan; Sun, Yan

    2013-01-01

    P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through α-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp

  12. Impact of persistent cytomegalovirus infection on human neuroblastoma cell gene expression

    International Nuclear Information System (INIS)

    Hoever, Gerold; Vogel, Jens-Uwe; Lukashenko, Polina; Hofmann, Wolf-Karsten; Komor, Martina; Doerr, Hans Wilhelm; Cinatl, Jindrich

    2005-01-01

    In a model of human neuroblastoma (NB) cell lines persistently infected with human cytomegalovirus (HCMV) we previously showed that persistent HCMV infection is associated with an increased malignant phenotype, enhanced drug resistance, and invasive properties. To gain insights into the mechanisms of increased malignancy we analyzed the global changes in cellular gene expression induced by persistent HCMV infection of human neuroblastoma cells by use of high-density oligonucleotide microarrays (HG-U133A, Affymetrix) and RT-PCR. Comparing the gene expression of different NB cell lines with persistently infected cell sub-lines revealed 11 host cell genes regulated in a similar manner throughout all infected samples. Nine of these 11 genes may contribute to the previously observed changes in malignant phenotype of persistently HCMV infected NB cells by influencing invasive growth, apoptosis, angiogenesis, and proliferation. Thus, this work provides the basis for further functional studies

  13. Infection and upregulation of proinflammatory cytokines in human brain vascular pericytes by human cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Alcendor Donald J

    2012-05-01

    Full Text Available Abstract Background Congenital human cytomegalovirus (HCMV infections can result in CNS abnormalities in newborn babies including vision loss, mental retardation, motor deficits, seizures, and hearing loss. Brain pericytes play an essential role in the development and function of the blood–brain barrier yet their unique role in HCMV dissemination and neuropathlogy has not been reported. Methods Primary human brain vascular pericytes were exposed to a primary clinical isolate of HCMV designated ‘SBCMV’. Infectivity was analyzed by microscopy, immunofluorescence, Western blot, and qRT-PCR. Microarrays were performed to identify proinflammatory cytokines upregulated after SBCMV exposure, and the results validated by real-time quantitative polymerase chain reaction (qPCR methodology. In situ cytokine expression of pericytes after exposure to HCMV was examined by ELISA and in vivo evidence of HCMV infection of brain pericytes was shown by dual-labeled immunohistochemistry. Results HCMV-infected human brain vascular pericytes as evidenced by several markers. Using a clinical isolate of HCMV (SBCMV, microscopy of infected pericytes showed virion production and typical cytomegalic cytopathology. This finding was confirmed by the expression of major immediate early and late virion proteins and by the presence of HCMV mRNA. Brain pericytes were fully permissive for CMV lytic replication after 72 to 96 hours in culture compared to human astrocytes or human brain microvascular endothelial cells (BMVEC. However, temporal transcriptional expression of pp65 virion protein after SBCMV infection was lower than that seen with the HCMV Towne laboratory strain. Using RT-PCR and dual-labeled immunofluorescence, proinflammatory cytokines CXCL8/IL-8, CXCL11/ITAC, and CCL5/Rantes were upregulated in SBCMV-infected cells, as were tumor necrosis factor-alpha (TNF-alpha, interleukin-1 beta (IL-1beta, and interleukin-6 (IL-6. Pericytes exposed to SBCMV elicited

  14. Effect of compounds with antibacterial activities in human milk on respiratory syncytial virus and cytomegalovirus in vitro.

    Science.gov (United States)

    Portelli, J; Gordon, A; May, J T

    1998-11-01

    The effect of some antibacterial compounds present in human milk were tested for antiviral activity against respiratory syncytial virus, Semliki Forest virus and cytomegalovirus. These included the gangliosides GM1, GM2 and GM3, sialyl-lactose, lactoferrin and chondroitin sulphate A, B and C, which were all tested for their ability to inhibit the viruses in cell culture. Of the compounds tested, only the ganglioside GM2, chondroitin sulphate B and lactoferrin inhibited the absorption and growth of respiratory syncytial virus in cell culture, and none inhibited the growth of Semliki Forest virus, indicating that lipid antiviral activity was not associated with any of the gangliosides. While the concentrations of these two compounds required to inhibit respiratory syncytial virus were in excess of those present in human milk, sialyl-lactose concentrations similar to those present in human milk increased the growth of cytomegalovirus. Lactoferrin was confirmed as inhibiting both respiratory syncytial virus and cytomegalovirus growth in culture even when used at lower concentrations than those present in human milk. The antiviral activities of GM2, chondroitin sulphate B and lactoferrin were tested when added to an infant formula. Lactoferrin continued to have antiviral activity against cytomegalovirus, but a lower activity against respiratory syncytial virus; ganglioside GM2 and chondroitin sulphate B still maintained antiviral activity against respiratory syncytial virus.

  15. The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling

    DEFF Research Database (Denmark)

    Fraile-Ramos, A; Kledal, T N; Pelchen-Matthews, A

    2001-01-01

    Genes encoding chemokine receptor-like proteins have been found in herpes and poxviruses and implicated in viral pathogenesis. Here we describe the cellular distribution and trafficking of a human cytomegalovirus (HCMV) chemokine receptor encoded by the US28 gene, after transient and stable...

  16. Human cytomegalovirus chemokine receptor US28 induces migration of cells on a CX3CL1-presenting surface

    DEFF Research Database (Denmark)

    Hjortø, Gertrud M; Kiilerich-Pedersen, Katrine; Selmeczi, David

    2013-01-01

    Human cytomegalovirus (HCMV)-encoded G protein-coupled-receptor US28 is believed to participate in virus dissemination through modulation of cell migration and immune evasion. US28 binds different CC chemokines and the CX3C chemokine CX3CL1. Membrane-anchored CX3CL1 is expressed by immune-activat...

  17. Cytomegalovirus infection induces a stem cell phenotype in human primary glioblastoma cells

    DEFF Research Database (Denmark)

    Fornara, O; Bartek, J; Rahbar, A

    2016-01-01

    Glioblastoma (GBM) is associated with poor prognosis despite aggressive surgical resection, chemotherapy, and radiation therapy. Unfortunately, this standard therapy does not target glioma cancer stem cells (GCSCs), a subpopulation of GBM cells that can give rise to recurrent tumors. GBMs express...... human cytomegalovirus (HCMV) proteins, and previously we found that the level of expression of HCMV immediate-early (IE) protein in GBMs is a prognostic factor for poor patient survival. In this study, we investigated the relation between HCMV infection of GBM cells and the presence of GCSCs. Primary...... GBMs were characterized by their expression of HCMV-IE and GCSCs marker CD133 and by patient survival. The extent to which HCMV infection of primary GBM cells induced a GCSC phenotype was evaluated in vitro. In primary GBMs, a large fraction of CD133-positive cells expressed HCMV-IE, and higher co...

  18. Viral and cellular subnuclear structures in human cytomegalovirus-infected cells.

    Science.gov (United States)

    Strang, Blair L

    2015-02-01

    In human cytomegalovirus (HCMV)-infected cells, a dramatic remodelling of the nuclear architecture is linked to the creation, utilization and manipulation of subnuclear structures. This review outlines the involvement of several viral and cellular subnuclear structures in areas of HCMV replication and virus-host interaction that include viral transcription, viral DNA synthesis and the production of DNA-filled viral capsids. The structures discussed include those that promote or impede HCMV replication (such as viral replication compartments and promyelocytic leukaemia nuclear bodies, respectively) and those whose role in the infected cell is unclear (for example, nucleoli and nuclear speckles). Viral and cellular proteins associated with subnuclear structures are also discussed. The data reviewed here highlight advances in our understanding of HCMV biology and emphasize the complexity of HCMV replication and virus-host interactions in the nucleus. © 2015 The Authors.

  19. Human platelet glycoprotein IX: An adhesive prototype of leucine-rich glycoproteins with flank-center-flank structures

    International Nuclear Information System (INIS)

    Hickey, M.J.; Williams, S.A.; Roth, G.J.

    1989-01-01

    The glycoprotein (GP) Ib-IX complex on the surface of human platelets functions as the von Willebrand factor receptor and mediates von Willebrand factor-dependent platelet adhesion to blood vessels. GPIX is a relatively small (M r , 17,000) protein that may provide for membrane insertion and orientation of the larger component of the complex. GPIb (M r , 165,000). Using antibody screening, the authors cloned a cDNA encoding GPIX from a human erythroleukemia cell cDNA library constructed in phage λgt11. Lacking a 5' untranslated region and start codon, the cDNA sequence includes 604 nucleotides, beginning with 495 bases at the 5' end coding for 165 amino acids, followed by a stop codon and 106 noncoding bases at the 3' end. By Northern blot analysis, the GPIX cDNA hybridizes with a single 1.0-kilobase species of platelet poly(A) + RNA. Translation of the cDNA sequence gives a predicted protein sequence beginning with a truncated putative signal sequence of 5 amino acids followed by a sequence of 17 amino acids matching that determined directly by Edman degradation of intact GPIX. GPIX contains a leucine-rich glycoprotein (LRG) sequence of 24 amino acids similar to conserved LRG sequences in GPIb and other proteins from humans, Drosophila, and yeast. The role of the flank-LRG center-flank structure in the evolution and function of the LRG proteins remains to be defined

  20. Evaluating Human T-Cell Therapy of Cytomegalovirus Organ Disease in HLA-Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Simone Thomas

    2015-07-01

    Full Text Available Reactivation of human cytomegalovirus (HCMV can cause severe disease in recipients of hematopoietic stem cell transplantation. Although preclinical research in murine models as well as clinical trials have provided 'proof of concept' for infection control by pre-emptive CD8 T-cell immunotherapy, there exists no predictive model to experimentally evaluate parameters that determine antiviral efficacy of human T cells in terms of virus control in functional organs, prevention of organ disease, and host survival benefit. We here introduce a novel mouse model for testing HCMV epitope-specific human T cells. The HCMV UL83/pp65-derived NLV-peptide was presented by transgenic HLA-A2.1 in the context of a lethal infection of NOD/SCID/IL-2rg-/- mice with a chimeric murine CMV, mCMV-NLV. Scenarios of HCMV-seropositive and -seronegative human T-cell donors were modeled by testing peptide-restimulated and T-cell receptor-transduced human T cells, respectively. Upon transfer, the T cells infiltrated host tissues in an epitope-specific manner, confining the infection to nodular inflammatory foci. This resulted in a significant reduction of viral load, diminished organ pathology, and prolonged survival. The model has thus proven its potential for a preclinical testing of the protective antiviral efficacy of HCMV epitope-specific human T cells in the evaluation of new approaches to an immunotherapy of CMV disease.

  1. Cytomegalovirus survival and transferability and the effectiveness of common hand-washing agents against cytomegalovirus on live human hands.

    Science.gov (United States)

    Stowell, Jennifer D; Forlin-Passoni, Daniela; Radford, Kay; Bate, Sheri L; Dollard, Sheila C; Bialek, Stephanie R; Cannon, Michael J; Schmid, D Scott

    2014-01-01

    Congenital cytomegalovirus (CMV) transmission can occur when women acquire CMV while pregnant. Infection control guidelines may reduce risk for transmission. We studied the duration of CMV survival after application of bacteria to the hands and after transfer from the hands to surfaces and the effectiveness of cleansing with water, regular and antibacterial soaps, sanitizer, and diaper wipes. Experiments used CMV AD169 in saliva at initial titers of 1 × 10(5) infectious particles/ml. Samples from hands or surfaces (points between 0 and 15 min) were placed in culture and observed for at least 2 weeks. Samples were also tested using CMV real-time PCR. After application of bacteria to the hands, viable CMV was recovered from 17/20 swabs at 0 min, 18/20 swabs at 1 min, 5/20 swabs at 5 min, and 4/20 swabs at 15 min. After transfer, duration of survival was at least 15 min on plastic (1/2 swabs), 5 min on crackers and glass (3/4 swabs), and 1 min or less on metal and cloth (3/4 swabs); no viable virus was collected from wood, rubber, or hands. After cleansing, no viable virus was recovered using water (0/22), plain soap (0/20), antibacterial soap (0/20), or sanitizer (0/22). Viable CMV was recovered from 4/20 hands 10 min after diaper wipe cleansing. CMV remains viable on hands for sufficient times to allow transmission. CMV may be transferred to surfaces with reduced viability. Hand-cleansing methods were effective at eliminating viable CMV from hands.

  2. HCMV Infection of Human Trophoblast Progenitor Cells of the Placenta Is Neutralized by a Human Monoclonal Antibody to Glycoprotein B and Not by Antibodies to the Pentamer Complex

    Directory of Open Access Journals (Sweden)

    Martin Zydek

    2014-03-01

    Full Text Available Human cytomegalovirus (HCMV is the major viral cause of congenital infection and birth defects. Primary maternal infection often results in virus transmission, and symptomatic babies can have permanent neurological deficiencies and deafness. Congenital infection can also lead to intrauterine growth restriction, a defect in placental transport. HCMV replicates in primary cytotrophoblasts (CTBs, the specialized cells of the placenta, and inhibits differentiation/invasion. Human trophoblast progenitor cells (TBPCs give rise to the mature cell types of the chorionic villi, CTBs and multi-nucleated syncytiotrophoblasts (STBs. Here we report that TBPCs are fully permissive for pathogenic and attenuated HCMV strains. Studies with a mutant virus lacking a functional pentamer complex (gH/gL/pUL128-131A showed that virion entry into TBPCs is independent of the pentamer. In addition, infection is blocked by a potent human neutralizing monoclonal antibody (mAb, TRL345, reactive with glycoprotein B (gB, but not mAbs to the pentamer proteins pUL130/pUL131A. Functional studies revealed that neutralization of infection preserved the capacity of TBPCs to differentiate and assemble into trophospheres composed of CTBs and STBs in vitro. Our results indicate that mAbs to gB protect trophoblast progenitors of the placenta and could be included in antibody treatments developed to suppress congenital infection and prevent disease.

  3. Glycoproteins and sialyl transferase of human B lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Lui, S.W.L.; Ng, M.H.

    1980-01-01

    We used two radiolabeling methods to study glycoproteins on the surface of lymphoblastoid cells. One of the methods affects tritiation of residues which are oxidized with galactose oxidase and the other causes tritiation of neuraminic acid residues. This approach was shown to allow a better resolution of cell surface glycoproteins than if either method were used alone. Glycoproteins of B 1 - 19 cells which harbor the Epstein-Barr virus genomes were compared with those of its parental cell line, BJAB, which does not harbor the viral genomes. These studies did not reveal a unique viral protein. A 28,000 mol. wt. glycoprotein was found to be the most prominent neuraminic acidlabeled product of B 1 - 19 cells and also of the two other cell lines, Raji and Ly38, which harbor the EBV genomes. A similar molecular weight species from BJAB cells identified by galactose oxidase labeling might be deficient in neuraminic acid residues as it was poorly labeled by the periodate oxidation method. The neuraminic acid content and level of sialyl transferase of BJAB cells were found to be lower than those of the other cell lines studied. (auth.)

  4. Adenovirus E1A/E1B Transformed Amniotic Fluid Cells Support Human Cytomegalovirus Replication

    Directory of Open Access Journals (Sweden)

    Natascha Krömmelbein

    2016-02-01

    Full Text Available The human cytomegalovirus (HCMV replicates to high titers in primary human fibroblast cell cultures. A variety of primary human cells and some tumor-derived cell lines do also support permissive HCMV replication, yet at low levels. Cell lines established by transfection of the transforming functions of adenoviruses have been notoriously resistant to HCMV replication and progeny production. Here, we provide first-time evidence that a permanent cell line immortalized by adenovirus type 5 E1A and E1B (CAP is supporting the full HCMV replication cycle and is releasing infectious progeny. The CAP cell line had previously been established from amniotic fluid cells which were likely derived from membranes of the developing fetus. These cells can be grown under serum-free conditions. HCMV efficiently penetrated CAP cells, expressed its immediate-early proteins and dispersed restrictive PML-bodies. Viral DNA replication was initiated and viral progeny became detectable by electron microscopy in CAP cells. Furthermore, infectious virus was released from CAP cells, yet to lower levels compared to fibroblasts. Subviral dense bodies were also secreted from CAP cells. The results show that E1A/E1B expression in transformed cells is not generally repressive to HCMV replication and that CAP cells may be a good substrate for dense body based vaccine production.

  5. Comparative Analysis of Whey N-Glycoproteins in Human Colostrum and Mature Milk Using Quantitative Glycoproteomics.

    Science.gov (United States)

    Cao, Xueyan; Song, Dahe; Yang, Mei; Yang, Ning; Ye, Qing; Tao, Dongbing; Liu, Biao; Wu, Rina; Yue, Xiqing

    2017-11-29

    Glycosylation is a ubiquitous post-translational protein modification that plays a substantial role in various processes. However, whey glycoproteins in human milk have not been completely profiled. Herein, we used quantitative glycoproteomics to quantify whey N-glycosylation sites and their alteration in human milk during lactation; 110 N-glycosylation sites on 63 proteins and 91 N-glycosylation sites on 53 proteins were quantified in colostrum and mature milk whey, respectively. Among these, 68 glycosylation sites on 38 proteins were differentially expressed in human colostrum and mature milk whey. These differentially expressed N-glycoproteins were highly enriched in "localization", "extracellular region part", and "modified amino acid binding" according to gene ontology annotation and mainly involved in complement and coagulation cascades pathway. These results shed light on the glycosylation sites, composition and biological functions of whey N-glycoproteins in human colostrum and mature milk, and provide substantial insight into the role of protein glycosylation during infant development.

  6. Human cytomegalovirus infection dysregulates the canonical Wnt/β-catenin signaling pathway.

    Directory of Open Access Journals (Sweden)

    Magdalena Angelova

    Full Text Available Human Cytomegalovirus (HCMV is a ubiquitous herpesvirus that currently infects a large percentage of the world population. Although usually asymptomatic in healthy individuals, HCMV infection during pregnancy may cause spontaneous abortions, premature delivery, or permanent neurological disabilities in infants infected in utero. During infection, the virus exerts control over a multitude of host signaling pathways. Wnt/β-catenin signaling, an essential pathway involved in cell cycle control, differentiation, embryonic development, placentation and metastasis, is frequently dysregulated by viruses. How HCMV infection affects this critical pathway is not currently known. In this study, we demonstrate that HCMV dysregulates Wnt/β-catenin signaling in dermal fibroblasts and human placental extravillous trophoblasts. Infection inhibits Wnt-induced transcriptional activity of β-catenin and expression of β-catenin target genes in these cells. HCMV infection leads to β-catenin protein accumulation in a discrete juxtanuclear region. Levels of β-catenin in membrane-associated and cytosolic pools, as well as nuclear β-catenin, are reduced after infection; while transcription of the β-catenin gene is unchanged, suggesting enhanced degradation. Given the critical role of Wnt/β-catenin signaling in cellular processes, these findings represent a novel and important mechanism whereby HCMV disrupts normal cellular function.

  7. Enhanced capacity of DNA repair in human cytomegalovirus-infected cells

    International Nuclear Information System (INIS)

    Nishiyama, Y.; Rapp, F.

    1981-01-01

    Plaque formation in Vero cells by UV-irradiated herpes simplex virus was enhanced by infection with human cytomegalovirus (HCMV), UV irradiation, or treatment with methylmethanesulfonate. Preinfection of Vero cells with HCMV enhanced reactivation of UV-irradiated herpes simplex virus more significantly than did treatment with UV or methylmethanesulfonate alone. A similar enhancement by HCMV was observed in human embryonic fibroblasts, but not in xeroderma pigmentosum (XP12BE) cells. It was also found that HCMV infection enhanced hydroxyurea-resistant DNA synthesis induced by UV light or methylmethanesulfonate. Alkaline sucrose gradient sedimentation analysis revealed an enhanced rate of synthesis of all size classes of DNA in UV-irradiated HCMV-infected Vero cells. However, HCMV infection did not induce repairable lesions in cellular DNA and did not significantly inhibit host cell DNA synthesis, unlike UV or methylmethanesulfonate. These results indicate that HCMV enhanced DNA repair capacity in the host cells without producing detectable lesions in cellular DNA and without inhibiting DNA synthesis. This repair appeared to be error proof for UV-damaged herpes simplex virus DNA when tested with herpes simplex virus thymidine kinase-negative mutants

  8. Human cytomegalovirus renders cells non-permissive for replication of herpes simplex viruses

    International Nuclear Information System (INIS)

    Cockley, K.D.

    1988-01-01

    The herpes simplex virus (HSV) genome during production infection in vitro may be subject to negative regulation which results in modification of the cascade of expression of herpes virus macromolecular synthesis leading to establishment of HSV latency. In the present study, human embryonic lung (HEL) cells infected with human cytomegalovirus (HCMV) restricted the replication of HSV type-1 (HSV-1). A delay in HSV replication of 15 hr as well as a consistent, almost 1000-fold inhibition of HSV replication in HCMV-infected cell cultures harvested 24 to 72 hr after superinfection were observed compared with controls infected with HSV alone. HSV type-2 (HSV-2) replication was similarly inhibited in HCMV-infected HEL cells. Prior ultraviolet-irradiation (UV) of HCMV removed the block to HSV replication, demonstrating the requirement for an active HCMV genome. HCMV deoxyribonucleic acid (DNA) negative temperature-sensitive (ts) mutants inhibited HSV replications as efficiently as wild-type (wt) HCMV at the non-permissive temperature. Evidence for penetration and replication of superinfecting HSV into HCMV-infected cells was provided by blot hybridization of HSV DNA synthesized in HSV-superinfected cell cultures and by cesium chloride density gradient analysis of [ 3 H]-labeled HSV-1-superinfected cells

  9. Molecular detection of cytomegalovirus, herpes simplex virus 2, human papillomavirus 16-18 in Turkish pregnants

    Directory of Open Access Journals (Sweden)

    Bedia Dinc

    Full Text Available OBJECTIVE: Human cytomegalovirus (CMV is the most common cause of viral intrauterine infections in the world. Herpes simplex virus type 2 (HSV-2 and human papillomavirus (HPV are the main agents of viral sexually transmitted diseases, which cause genital ulcers and genital warts, respectively. HPV infection has been linked to the majority of the anogenital malignancies. The aim of this study was to detect the existence of CMV, HSV-2 and HPV type 16-18 in Turkish pregnants by using sensitive molecular assays. METHODS: One hundred thirty-four women (18-41 years old; mean age ± SD: 27 ± 8 applied to outpatient clinic of Obstetrics and Gynecology, in between 18th - 22nd weeks of their pregnancy and a control group of 99 healthy women (15-39 years old; mean age ± SD: 24 ± 8 were included in the study. Cervical smear samples were used for DNA extraction. CMV, HSV-2 and HPV 16-18 detections were carried out by real time PCR and in house PCR method, respectively. RESULTS: Three patients (3/134; 2.2% were found to be positive for each HPV and HSV-2. Dual infection with HPV and HSV was found in just one patient. HPV 18 was detected in all positive samples. CMV was found to be positive in two patients (2/134; 1.4 %. CONCLUSION: HPV, HSV and CMV must be screened due to high prevalence of these viruses in pregnants by using sensitive molecular methods.

  10. Molecular detection of cytomegalovirus, herpes simplex virus 2, human papillomavirus 16-18 in Turkish pregnants.

    Science.gov (United States)

    Dinc, Bedia; Bozdayi, Gulendam; Biri, Aydan; Kalkanci, Ayse; Dogan, Bora; Bozkurt, Nuray; Rota, Seyyal

    2010-01-01

    Human cytomegalovirus (CMV) is the most common cause of viral intrauterine infections in the world. Herpes simplex virus type 2 (HSV-2) and human papillomavirus (HPV) are the main agents of viral sexually transmitted diseases, which cause genital ulcers and genital warts, respectively. HPV infection has been linked to the majority of the anogenital malignancies. The aim of this study was to detect the existence of CMV, HSV-2 and HPV type 16-18 in Turkish pregnants by using sensitive molecular assays. One hundred thirty-four women (18-41 years old; mean age ± SD: 27 ± 8) applied to outpatient clinic of Obstetrics and Gynecology, in between 18th - 22nd weeks of their pregnancy and a control group of 99 healthy women (15-39 years old; mean age ± SD: 24 ± 8) were included in the study. Cervical smear samples were used for DNA extraction. CMV, HSV-2 and HPV 16-18 detections were carried out by real time PCR and in house PCR method, respectively. Three patients (3/134; 2.2%) were found to be positive for each HPV and HSV-2. Dual infection with HPV and HSV was found in just one patient. HPV 18 was detected in all positive samples. CMV was found to be positive in two patients (2/134; 1.4 %). HPV, HSV and CMV must be screened due to high prevalence of these viruses in pregnants by using sensitive molecular methods.

  11. Induction of chromosome aberrations and mitotic arrest by cytomegalovirus in human cells

    International Nuclear Information System (INIS)

    AbuBakar, S.; Au, W.W.; Legator, M.S.; Albrecht, T.

    1988-01-01

    Human cytomegalovirus (CMV) is potentially an effective but often overlooked genotoxic agent in humans. We report here evidence that indicates that infection by CMV can induce chromosome alterations and mitotic inhibition. The frequency of chromosome aberrations induced was dependent on the input multiplicity of infection (m.o.i.) for human lung fibroblasts (LU), but not for human peripheral blood lymphocytes (PBLs) when both cell types were infected at the GO phase of the cell cycle. The aberrations induced by CMV were mostly chromatid breaks and chromosome pulverizations that resembled prematurely condensed S-phase chromatin. Pulverized chromosomes were not observed in LU cells infected with virus stocks that had been rendered nonlytic by UV-irradiation at 24,000 ergs/mm2 or from infection of human lymphocytes. In LU cells infected with UV-irradiated CMV, the frequency of aberrations induced was inversely dependent on the extent of the exposure of the CMV stock to the UV-light. In permissive CMV infection of proliferating LU cells at 24 hr after subculture, a high percentage (greater than 40%) of the metaphase cells were arrested at their first metaphase and displayed severely condensed chromosomes when harvested 48 hr later. A significant increase (p less than 0.05) in the chromosome aberration frequency was also observed. Our study shows that CMV infection is genotoxic to host cells. The types and extent of damage are dependent on the viral genome expression and on the cell cycle stage of the cells at the time of infection. The possible mechanisms for induction of chromosome damage by CMV are discussed

  12. Electrophoretic demonstration of glycoproteins, lipoproteins, and phosphoproteins in human and bovine enamel

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Bøg-Hansen, T C

    1990-01-01

    Enamel proteins from fully mineralized human molars and from bovine tooth germs were separated by electrophoresis. The gels were stained for detection of glycoproteins, lipoproteins, and phosphoproteins. Glycoproteins were shown by periodic acid-Schiff staining and lectin blotting. In mature human...... enamel a number of high molecular weight proteins could be demonstrated after ethylenediaminetetra-acetic acid demineralization and subsequent Triton X-100 extraction. These proteins are suggested to be lipoproteins. Phosphoproteins could only be visualized in enamel matrix from the tooth germs....

  13. Presentation of an immunodominant immediate-early CD8+ T cell epitope resists human cytomegalovirus immunoevasion.

    Directory of Open Access Journals (Sweden)

    Stefanie Ameres

    Full Text Available Control of human cytomegalovirus (HCMV depends on CD8+ T cell responses that are shaped by an individual's repertoire of MHC molecules. MHC class I presentation is modulated by a set of HCMV-encoded proteins. Here we show that HCMV immunoevasins differentially impair T cell recognition of epitopes from the same viral antigen, immediate-early 1 (IE-1, that are presented by different MHC class I allotypes. In the presence of immunoevasins, HLA-A- and HLA-B-restricted T cell clones were ineffective, but HLA-C*0702-restricted T cell clones recognized and killed infected cells. Resistance of HLA-C*0702 to viral immunoevasins US2 and US11 was mediated by the alpha3 domain and C-terminal region of the HLA heavy chain. In healthy donors, HLA-C*0702-restricted T cells dominated the T cell response to IE-1. The same HLA-C allotype specifically protected infected cells from attack by NK cells that expressed a corresponding HLA-C-specific KIR. Thus, allotype-specific viral immunoevasion allows HCMV to escape control by NK cells and HLA-A- and HLA-B-restricted T cells, while the virus becomes selectively vulnerable to an immunodominant population of HLA-C-restricted T cells. Our work identifies a T cell population that may be of particular efficiency in HCMV-specific immunotherapy.

  14. Human cytomegalovirus and Epstein-Barr virus type 1 in periodontal abscesses.

    Science.gov (United States)

    Saygun, I; Yapar, M; Ozdemir, A; Kubar, A; Slots, J

    2004-04-01

    Recent studies have linked herpesviruses to severe types of periodontal disease, but no information exists on their relationship to periodontal abscesses. The present study determined the presence of human cytomegalovirus (HCMV) and Epstein-Barr virus type 1 (EBV-1) in periodontal abscesses and the effect of treatment on the subgingival occurrence of these viruses. Eighteen adults with periodontal abscesses participated in the study. Subgingival samples were collected from each patient with sterile curettes from an abscess-affected site and a healthy control site. HCMV and EBV-1 were identified by polymerase chain reaction at the time of the abscess and at 4 months after surgical and systemic doxycycline therapy. HCMV was detected in 66.7% of periodontal abscess sites and in 5.6% of healthy sites (P=0.002). EBV-1 occurred in 72.2% of abscess sites but not in any healthy site (Pabscess sites. Posttreatment, HCMV and EBV-1 were not found in any study site. HCMV and EBV-1 genomes are commonly found in periodontal abscesses. These data favor a model in which a herpesvirus infection of the periodontium impairs the host defense and serves as a platform for the entrance of bacterial pathogens into gingival tissue with subsequent risk of abscess development.

  15. Visualization of the dynamic multimerization of human Cytomegalovirus pp65 in punctuate nuclear foci

    International Nuclear Information System (INIS)

    Cui Zongqiang; Zhang Ke; Zhang Zhiping; Liu Yalan; Zhou Yafeng; Wei Hongping; Zhang Xian-En

    2009-01-01

    The phosphorylated protein pp65 of human Cytomegalovirus (HCMV) is the predominant virion protein and the major tegument constituent. It plays important roles in HCMV infection and virion assembly. Live cell imaging and fluorescence recovery after photobleaching (FRAP) analysis showed that HCMV pp65 accumulated dynamically in punctuate nuclear foci when transiently expressed in mammalian cells. Fluorescence resonance energy transfer (FRET) imaging disclosed that pp65 can self-interact in its localization foci. Yeast two-hybrid assay verified that pp65 is a self-associating protein, and the N-terminal amino acids 14-22 were determined to be essential for pp65 self-association. However, these amino acids were not related to pp65 localization in the specific nuclear foci. The interaction of pp65 and ppUL97 was also studied by FRET microscopy, and the result suggested that there is another signal sequence in pp65, being the ppUL97 phosphorylation site, that is responsible for localization of pp65 in nuclear foci. These results help to understand the function of pp65 in HCMV infection and virion morphogenesis.

  16. Functional analysis of the human cytomegalovirus immune evasion protein, pUS322kDa

    International Nuclear Information System (INIS)

    Zhao Yiqiang; Biegalke, Bonita J.

    2003-01-01

    Human cytomegalovirus (HCMV) is an important opportunistic pathogen that infrequently causes disease in individuals with mature immune systems. The HCMV US3 gene encodes a 22-kDa protein that interferes with immune recognition of virally infected cells. The 22-kDa US3 protein binds to major histocompatibility complex (MHC) class I complexes, retaining them in the endoplasmic reticulum (ER), thereby decreasing the presentation of viral antigen to cytotoxic T cells. Our studies demonstrate that correct folding of the ER lumenal domain of the US3 protein is essential, but insufficient for interactions with MHC class I complexes. We demonstrate a requirement for the transmembrane domain of the 22-kDa US3 protein, confirming the results of others, and also show that the cytosolic carboxyl-terminal tail influences the function of the protein. Anchoring of the ER-lumenal immunoglobulin-like fold of the US3 protein to the membrane of the endoplasmic reticulum is critical for the binding and retention of MHC class I complexes

  17. Human Cytomegalovirus Secretome Contains Factors That Induce Angiogenesis and Wound Healing

    Energy Technology Data Exchange (ETDEWEB)

    Dumortier, Jerome; Streblow, Daniel N.; Moses, Ashlee V.; Jacobs, Jon M.; Kreklywich, Craig N.; Camp, David G.; Smith, Richard D.; Orloff, Susan L.; Nelson, Jay

    2008-07-01

    Human cytomegalovirus (HCMV) is implicated in the acceleration of a number of vascular diseases including transplant vascular sclerosis (TVS), the lesion associated with chronic rejection (CR) of solid organ transplants. Although the virus persists in the allograft throughout the course of disease, few cells are directly infected by CMV. This observation is in contrast to the global effects that CMV has on the acceleration of TVS/CR, suggesting that CMV infection indirectly promotes the vascular disease process. Recent transcriptome analysis of CMV-infected heart allografts indicates that the virus induces cytokines and growth factors associated with angiogenesis (AG) and wound healing (WH), suggesting that CMV may accelerate TVS/CR through the induction and secretion of AG/WH factors from infected cells. We analyzed virus-free supernatants from HCMV-infected cells (HCMV secretomes) for growth factors, by mass spectrometry and immunoassays, and found that the HCMV secretome contains over 1,000 cellular proteins, many of which are involved in AG/WH. Importantly, functional assays demonstrated that CMV but not herpes simplex virus secretomes not only induce AG/WH but also promote neovessel stabilization and endothelial cell survival for 2 weeks. These findings suggest that CMV acceleration of TVS occurs through virus-induced growth factors and cytokines in the CMV secretome.

  18. Detection of Human Cytomegalovirus in Different Histopathological Types of Glioma in Iraqi Patients

    Directory of Open Access Journals (Sweden)

    Haidar A. Shamran

    2015-01-01

    Full Text Available Human Cytomegalovirus (HCMV is an endemic herpes virus that reemerges in cancer patients enhancing oncogenic potential. HCMV infection is associated with certain types of cancer morbidity such as glioblastomas. HCMV, like all other herpes viruses, has the ability to remain latent within the body of the host and can contribute in chronic inflammation. To determine the role of HCMV in glioma pathogenesis, paraffin-embedded blocks from glioma patients (n=50 and from benign meningioma patients (n=30 were obtained and evaluated by immunohistochemistry and polymerase chain reaction for the evidence of HCMV antigen expression and the presence of viral DNA. We detected HCMV antigen and DNA for IEI-72, pp65, and late antigen in 33/36, 28/36, and 26/36 in glioblastoma multiforme patients whereas 12/14, 10/14, and 9/14 in anaplastic astrocytoma patients, respectively. Furthermore, 84% of glioma patients were positive for immunoglobulin G (IgG compared to 72.5% among control samples (P=0.04. These data indicate the presence of the HCMV virus in a high percentage of glioma samples demonstrating distinct histopathological grades and support previous reports showing the presence of HCMV infection in glioma tissue. These studies demonstrate that detection of low-levels of latent viral infections may play an active role in glioma development and pathogenesis.

  19. Nuclear trafficking of the human cytomegalovirus pp71 (ppUL82) tegument protein

    International Nuclear Information System (INIS)

    Shen Weiping; Westgard, Elizabeth; Huang Liqun; Ward, Michael D.; Osborn, Jodi L.; Chau, Nha H.; Collins, Lindsay; Marcum, Benjamin; Koach, Margaret A.; Bibbs, Jennifer; Semmes, O. John; Kerry, Julie A.

    2008-01-01

    The human cytomegalovirus tegument protein pp71 localizes to the nucleus immediately upon infection, and functions to initiate viral gene expression. Analysis of a series of random insertion mutations revealed that sequences within the mid region (MR) of pp71 are important for localization to the nucleus. Fusion of MR sequences with eGFP revealed that amino acids 94 to 300 were sufficient to target proteins to the nucleus. Random substitution mutagenesis within this domain resulted in two double substitution mutants, pp71P203T/T223M and pp71T228M/L275Q, with a predominantly cytoplasmic localization. Disruption of nuclear targeting resulted in relocalization of the fusion proteins to a distinct perinuclear region. Using tandem mass spectrometry, we determined that threonine 223 can be phosphorylated. Mutation of this residue to a phosphomimetic amino acid resulted in abrogation of nuclear targeting. These results strongly suggest that the intracellular trafficking of pp71 is regulated by phosphorylation

  20. The Cyclin-Dependent Kinase Ortholog pUL97 of Human Cytomegalovirus Interacts with Cyclins

    Directory of Open Access Journals (Sweden)

    Laura Graf

    2013-12-01

    Full Text Available The human cytomegalovirus (HCMV-encoded protein kinase, pUL97, is considered a cyclin-dependent kinase (CDK ortholog, due to shared structural and functional characteristics. The primary mechanism of CDK activation is binding to corresponding cyclins, including cyclin T1, which is the usual regulatory cofactor of CDK9. This study provides evidence of direct interaction between pUL97 and cyclin T1 using yeast two-hybrid and co-immunoprecipitation analyses. Confocal immunofluorescence revealed partial colocalization of pUL97 with cyclin T1 in subnuclear compartments, most pronounced in viral replication centres. The distribution patterns of pUL97 and cyclin T1 were independent of HCMV strain and host cell type. The sequence domain of pUL97 responsible for the interaction with cyclin T1 was between amino acids 231–280. Additional co-immunoprecipitation analyses showed cyclin B1 and cyclin A as further pUL97 interaction partners. Investigation of the pUL97-cyclin T1 interaction in an ATP consumption assay strongly suggested phosphorylation of pUL97 by the CDK9/cyclin T1 complex in a substrate concentration-dependent manner. This is the first demonstration of interaction between a herpesviral CDK ortholog and cellular cyclins.

  1. Nuclear body formation and PML body remodeling by the human cytomegalovirus protein UL35

    International Nuclear Information System (INIS)

    Salsman, Jayme; Wang Xueqi; Frappier, Lori

    2011-01-01

    The human cytomegalovirus (HCMV) UL35 gene encodes two proteins, UL35 and UL35a. Expression of UL35 in transfected cells results in the formation of UL35 nuclear bodies that associate with promyelocytic leukemia (PML) protein. PML forms the basis for PML nuclear bodies that are important for suppressing viral lytic gene expression. Given the important relationship between PML and viral infection, we have further investigated the association of UL35 with PML bodies. We demonstrate that UL35 bodies form independently of PML and subsequently recruit PML, Sp100 and Daxx. In contrast, UL35a did not form bodies; however, it could bind UL35 and inhibit the formation of UL35 bodies. The HCMV tegument protein pp71 promoted the formation of UL35 bodies and the cytoplasmic localization of UL35a. Similarly, UL35a shifted pp71 to the cytoplasm. These results indicate that the interplay between UL35, UL35a and pp71 affects their subcellular localization and likely their functions throughout infection.

  2. Structural changes in human cytomegalovirus cytoplasmic assembly sites in the absence of UL97 kinase activity

    International Nuclear Information System (INIS)

    Azzeh, Maysa; Honigman, Alik; Taraboulos, Albert; Rouvinski, Alexander; Wolf, Dana G.

    2006-01-01

    Studies of human cytomegalovirus (HCMV) UL97 kinase deletion mutant (ΔUL97) indicated a multi-step role for this kinase in early and late phases of the viral life cycle, namely, in DNA replication, capsid maturation and nuclear egress. Here, we addressed its possible involvement in cytoplasmic steps of HCMV assembly. Using the ΔUL97 and the UL97 kinase inhibitor NGIC-I, we demonstrate that the absence of UL97 kinase activity results in a modified subcellular distribution of the viral structural protein assembly sites, from compact structures impacting upon the nucleus to diffuse perinuclear structures punctuated by large vacuoles. Infection by either wild type or ΔUL97 viruses induced a profound reorganization of wheat germ agglutinin (WGA)-positive Golgi-related structures. Importantly, the viral-induced Golgi remodeling along with the reorganization of the nuclear architecture was substantially altered in the absence of UL97 kinase activity. These findings suggest that UL97 kinase activity might contribute to organization of the viral cytoplasmic assembly sites

  3. UL146 variability among clinical isolates of Human Cytomegalovirus from Japan

    Directory of Open Access Journals (Sweden)

    Francisco Aguayo

    2010-01-01

    Full Text Available Human Cytomegalovirus (HCMV is a herpesvirus associated with serious diseases in immunocompromised subjects. The region between ORF UL133 and UL151 from HCMV, named ULb' is frequently deleted in attenuated AD169 and in highly passaged laboratory strains. However, this region is conserved in low-passaged and more virulent HCMV, like the Toledo strain. The UL146 gene, which is located in the ULb' region, encodes a CXC-chemokine analogue. The diversity of UL146 gene was evaluated among fifty-six clinical isolates of HCMV from Japan. Results show that UL146 gene was successfully amplified by the polymerase chain reaction (PCR in only 17/56 strains (30%, while the success rate for UL145/UL147 gene was 18/56 strains (32%. After DNA sequencing, the 35 amplified strains were classified into 8 groups. When compared, variability of UL146 ranged from 25.1% to 52.9% at the DNA level and from 34.5% to 67% at the amino acid level. Seven groups had the interleukin-8 (IL-8 motif ERL (Glu-Leu-Arg CXC and one group had only the CXC motif, suggesting the absence of the IL-8 function of UL146. In conclusion, we found that UL146 gene of HCMV is hyper-variable in clinical strains from Japan suggesting the possibility of a different function in each sequence group.

  4. Four phosphoproteins with common amino termini are encoded by human cytomegalovirus AD169

    International Nuclear Information System (INIS)

    Wright, D.A.; Staprans, S.I.; Spector, D.H.

    1988-01-01

    In this report, the authors identify the proteins encoded by the 2.2-kilobase class of early transcripts arising from a region of the strain AD169 human cytomegalovirus genome (map units 0.682 to 0.713) which contains cell-related sequences. These transcripts, encoded by adjacent EcoRI fragments R and d, have a complex spliced structure with 5' and 3' coterminal ends. Antiserum directed against a synthetic 11-amino-acid peptide corresponding to the predicted amino terminus of the proteins was generated and found to immunoprecipitate four-infected-cell proteins of 84, 50, 43, and 34 kilodaltons. These proteins were phosphorylated and were associated predominantly with the nuclei of infected cells. The 43-kilodalton protein was the most abundant of the four proteins, and its level of expression remained relatively constant throughout the infection. Expression of the other proteins increased as the infection progressed. Pulse-chase analysis failed to show a precursor-product relationship between any of the proteins. A comparison of the [ 35 S]methionine-labeled tryptic peptide maps of the four proteins from infected cells and an in vitro-generated polypeptide derived from the putative first exon showed that all four infected-cell proteins were of viral origin and contained a common amino-terminal region

  5. Genomic localization, sequence analysis, and transcription of the putative human cytomegalovirus DNA polymerase gene

    International Nuclear Information System (INIS)

    Heilbronn, T.; Jahn, G.; Buerkle, A.; Freese, U.K.; Fleckenstein, B.; Zur Hausen, H.

    1987-01-01

    The human cytomegalovirus (HCMV)-induced DNA polymerase has been well characterized biochemically and functionally, but its genomic location has not yet been assigned. To identify the coding sequence, cross-hybridization with the herpes simplex virus type 1 (HSV-1) polymerase gene was used, as suggested by the close similarity of the herpes group virus-induced DNA polymerases to the HCMV DNA polymerase. A cosmid and plasmid library of the entire HCMV genome was screened with the BamHI Q fragment of HSF-1 at different stringency conditions. One PstI-HincII restriction fragment of 850 base pairs mapping within the EcoRI M fragment of HCMV cross-hybridized at T/sub m/ - 25/degrees/C. Sequence analysis revealed one open reading frame spanning the entire sequence. The amino acid sequence showed a highly conserved domain of 133 amino acids shared with the HSV and putative Esptein-Barr virus polymerase sequences. This domain maps within the C-terminal part of the HSV polymerase gene, which has been suggested to contain part of the catalytic center of the enzyme. Transcription analysis revealed one 5.4-kilobase early transcript in the sense orientation with respect to the open reading frame identified. This transcript appears to code for the 140-kilodalton HCMV polymerase protein

  6. N-terminal sequence of human leukocyte glycoprotein Mo1: conservation across species and homology to platelet IIb/IIIa.

    Science.gov (United States)

    Pierce, M W; Remold-O'Donnell, E; Todd, R F; Arnaout, M A

    1986-12-12

    Mo1 and gp160-gp93 are two surface membrane glycoprotein heterodimers present on granulocytes and monocytes derived from humans and guinea pigs, respectively. We purified both antigens and found that their alpha subunits had identical N-termini which were significantly homologous to the alpha subunit of the human adhesion platelet glycoprotein IIb/IIIa.

  7. Human CRISP-3 binds serum alpha(1)B-glycoprotein across species

    DEFF Research Database (Denmark)

    Udby, Lene; Johnsen, Anders H; Borregaard, Niels

    2010-01-01

    CRISP-3 was previously shown to be bound to alpha(1)B-glycoprotein (A1BG) in human serum/plasma. All mammalian sera are supposed to contain A1BG, although its presence in rodent sera is not well-documented. Since animal sera are often used to supplement buffers in experiments, in particular...

  8. Studies on the subunits of human glycoprotein hormones in relation to reproduction

    International Nuclear Information System (INIS)

    Hagen, C.

    1977-01-01

    In this review summarising present knowledge of the biological and immunological activity of the subunits of human glycoprotein hormones, the specificity of the α-subunit and β-subunit radioimmunoassays are discussed. The crossreaction studies performed with the α-subunit radioimmunoassays are aummarised in one table while those with the β-subunit radioimmunoassays are presented in a second table. (JIW)

  9. Human cytomegalovirus and Epstein-Barr virus in etiopathogenesis of apical periodontitis: a systematic review.

    Science.gov (United States)

    Jakovljevic, Aleksandar; Andric, Miroslav

    2014-01-01

    During the last decade, a hypothesis has been established that human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) may be implicated in the pathogenesis of apical periodontitis. The aim of this review was to analyze the available evidence that indicates that HCMV and EBV can actually contribute to the pathogenesis of periapical lesions and to answer the following focused question: is there a relationship between HCMV and EBV DNA and/or RNA detection and the clinical features of human periapical lesions? The literature search covered MEDLINE, Science Citation Index Expanded (SCIexpanded), Scopus, and The Cochrane Library database. Quantitative statistical analysis was performed on the pooled data of HCMV and EBV messenger RNA transcripts in tissues of symptomatic and asymptomatic periapical lesions. The electronic database search yielded 48 hits from PubMed, 197 hits from Scopus, 40 hits from Web of Science, and 1 from the Cochrane Library. Seventeen cross-sectional studies have been included in the final review. The pooled results from quantitative systematic method analysis showed no statistically significant relationship between the presence of HCMV and EBV messenger RNA transcripts (P = .083 and P = .306, respectively) and the clinical features of apical periodontitis. The findings of HCMV and EBV transcripts in apical periodontitis were controversial among the included studies. Herpesviruses were common in symptomatic and large-size periapical lesions, but such results failed to reach statistical significance. Further studies, including those based on an experimental animal model, should provide more data on herpesviruses as a factor in the pathogenesis of periapical inflammation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. The Human Cytomegalovirus Strain DB Activates Oncogenic Pathways in Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2018-04-01

    Full Text Available Background: Human cytomegalovirus (HCMV establishes a persistent life-long infection and increasing evidence indicates HCMV infection can modulate signaling pathways associated with oncogenesis. Breast milk is an important route of HCMV transmission in humans and we hypothesized that mammary epithelial cells could be one of the main cellular targets of HCMV infection. Methods: The infectivity of primary human mammary epithelial cells (HMECs was assessed following infection with the HCMV-DB strain, a clinical isolate with a marked macrophage-tropism. The impact of HCMV-DB infection on expression of p53 and retinoblastoma proteins, telomerase activity and oncogenic pathways (c-Myc, Akt, Ras, STAT3 was studied. Finally the transformation of HCMV-DB infected HMECs was evaluated using soft agar assay. CTH cells (CMV Transformed HMECs were detected in prolonged cultures of infected HMECs. Tumor formation was observed in NOD/SCID Gamma (NSG mice injected with CTH cells. Detection of long non coding RNA4.9 (lncRNA4.9 gene was assessed in CTH cells, tumors isolated from xenografted NSG mice and biopsies of patients with breast cancer using qualitative and quantitative PCR. Results: We found that HCMV, especially a clinical strain named HCMV-DB, infects HMECs in vitro. The clinical strain HCMV-DB replicates productively in HMECs as evidenced by detection of early and late viral transcripts and proteins. Following infection of HMECs with HCMV-DB, we observed the inactivation of retinoblastoma and p53 proteins, the activation of telomerase activity, the activation of the proto-oncogenes c-Myc and Ras, the activation of Akt and STAT3, and the upregulation of cyclin D1 and Ki67 antigen. Colony formation was observed in soft agar seeded with HCMV-DB-infected HMECs. Prolonged culture of infected HMECs resulted in the development of clusters of spheroid cells that we called CTH cells (CMV Transformed HMECs. CTH cells when injected in NOD/SCID Gamma (NSG mice

  11. Human Cytomegalovirus Exploits Interferon-Induced Transmembrane Proteins To Facilitate Morphogenesis of the Virion Assembly Compartment

    Science.gov (United States)

    Xie, Maorong; Xuan, Baoqin; Shan, Jiaoyu; Pan, Deng; Sun, Yamei; Shan, Zhao; Zhang, Jinping; Yu, Dong

    2014-01-01

    ABSTRACT Recently, interferon-induced transmembrane proteins (IFITMs) have been identified to be key effector molecules in the host type I interferon defense system. The invasion of host cells by a large range of RNA viruses is inhibited by IFITMs during the entry step. However, the roles of IFITMs in DNA virus infections have not been studied in detail. In this study, we report that human cytomegalovirus (HCMV), a large human DNA virus, exploits IFITMs to facilitate the formation of the virion assembly compartment (vAC) during infection of human fibroblasts. We found that IFITMs were expressed constitutively in human embryonic lung fibroblasts (MRC5 cells). HCMV infection inhibited IFITM protein accumulation in the later stages of infection. Overexpression of an IFITM protein in MRC5 cells slightly enhanced HCMV production and knockdown of IFITMs by RNA interference reduced the virus titer by about 100-fold on day 8 postinfection, according to the findings of a virus yield assay at a low multiplicity of infection. Virus gene expression and DNA synthesis were not affected, but the typical round structure of the vAC was not formed after the suppression of IFITMs, thereby resulting in defective virion assembly and the production of less infectious virion particles. Interestingly, the replication of herpes simplex virus, a human herpesvirus that is closely related to HCMV, was not affected by the suppression of IFITMs in MRC5 cells. These results indicate that IFITMs are involved in a specific pathway required for HCMV replication. IMPORTANCE HCMV is known to repurpose the interferon-stimulated genes (ISGs) viperin and tetherin to facilitate its replication. Our results expand the range of ISGs that can be exploited by HCMV for its replication. This is also the first report of a proviral function of IFITMs in DNA virus replication. In addition, whereas previous studies showed that IFITMs modulate virus entry, which is a very early stage in the virus life cycle, we

  12. Protein kinases responsible for the phosphorylation of the nuclear egress core complex of human cytomegalovirus.

    Science.gov (United States)

    Sonntag, Eric; Milbradt, Jens; Svrlanska, Adriana; Strojan, Hanife; Häge, Sigrun; Kraut, Alexandra; Hesse, Anne-Marie; Amin, Bushra; Sonnewald, Uwe; Couté, Yohann; Marschall, Manfred

    2017-10-01

    Nuclear egress of herpesvirus capsids is mediated by a multi-component nuclear egress complex (NEC) assembled by a heterodimer of two essential viral core egress proteins. In the case of human cytomegalovirus (HCMV), this core NEC is defined by the interaction between the membrane-anchored pUL50 and its nuclear cofactor, pUL53. NEC protein phosphorylation is considered to be an important regulatory step, so this study focused on the respective role of viral and cellular protein kinases. Multiply phosphorylated pUL50 varieties were detected by Western blot and Phos-tag analyses as resulting from both viral and cellular kinase activities. In vitro kinase analyses demonstrated that pUL50 is a substrate of both PKCα and CDK1, while pUL53 can also be moderately phosphorylated by CDK1. The use of kinase inhibitors further illustrated the importance of distinct kinases for core NEC phosphorylation. Importantly, mass spectrometry-based proteomic analyses identified five major and nine minor sites of pUL50 phosphorylation. The functional relevance of core NEC phosphorylation was confirmed by various experimental settings, including kinase knock-down/knock-out and confocal imaging, in which it was found that (i) HCMV core NEC proteins are not phosphorylated solely by viral pUL97, but also by cellular kinases; (ii) both PKC and CDK1 phosphorylation are detectable for pUL50; (iii) no impact of PKC phosphorylation on NEC functionality has been identified so far; (iv) nonetheless, CDK1-specific phosphorylation appears to be required for functional core NEC interaction. In summary, our findings provide the first evidence that the HCMV core NEC is phosphorylated by cellular kinases, and that the complex pattern of NEC phosphorylation has functional relevance.

  13. Identification and classification of human cytomegalovirus capsids in textured electron micrographs using deformed template matching

    Directory of Open Access Journals (Sweden)

    Söderberg-Nauclér Cecilia

    2006-08-01

    Full Text Available Abstract Background Characterization of the structural morphology of virus particles in electron micrographs is a complex task, but desirable in connection with investigation of the maturation process and detection of changes in viral particle morphology in response to the effect of a mutation or antiviral drugs being applied. Therefore, we have here developed a procedure for describing and classifying virus particle forms in electron micrographs, based on determination of the invariant characteristics of the projection of a given virus structure. The template for the virus particle is created on the basis of information obtained from a small training set of electron micrographs and is then employed to classify and quantify similar structures of interest in an unlimited number of electron micrographs by a process of correlation. Results Practical application of the method is demonstrated by the ability to locate three diverse classes of virus particles in transmission electron micrographs of fibroblasts infected with human cytomegalovirus. These results show that fast screening of the total number of viral structures at different stages of maturation in a large set of electron micrographs, a task that is otherwise both time-consuming and tedious for the expert, can be accomplished rapidly and reliably with our automated procedure. Using linear deformation analysis, this novel algorithm described here can handle capsid variations such as ellipticity and furthermore allows evaluation of properties such as the size and orientation of a virus particle. Conclusion Our methodological procedure represents a promising objective tool for comparative studies of the intracellular assembly processes of virus particles using electron microscopy in combination with our digitized image analysis tool. An automated method for sorting and classifying virus particles at different stages of maturation will enable us to quantify virus production in all stages of the

  14. The eIF4AIII RNA helicase is a critical determinant of human cytomegalovirus replication

    International Nuclear Information System (INIS)

    Ziehr, Ben; Lenarcic, Erik; Cecil, Chad; Moorman, Nathaniel J.

    2016-01-01

    Human cytomegalovirus (HCMV) was recently shown to encode a large number of spliced mRNAs. While the nuclear export of unspliced viral transcripts has been extensively studied, the role of host mRNA export factors in HCMV mRNA trafficking remains poorly defined. We found that the eIF4AIII RNA helicase, a component of the exon junction complex, was necessary for efficient virus replication. Depletion of eIF4AIII limited viral DNA accumulation, export of viral mRNAs from the nucleus, and the production of progeny virus. However eIF4AIII was dispensable for the association of viral transcripts with ribosomes. We found that pateamine A, a natural compound that inhibits both eIF4AI/II and eIF4AIII, has potent antiviral activity and inhibits HCMV replication throughout the virus lytic cycle. Our results demonstrate that eIF4AIII is required for efficient HCMV replication, and suggest that eIF4A family helicases may be a new class of targets for the development of host-directed antiviral therapeutics. - Highlights: • The host eIF4AIII RNA helicase is required for efficient HCMV replication. • Depleting eIF4AIII inhibited the nuclear export of HCMV mRNAs. • HCMV mRNAs did not require eIF4AIII to associate with polyribosomes. • The eIF4A family helicases may be new targets for host-directed antiviral drugs.

  15. The eIF4AIII RNA helicase is a critical determinant of human cytomegalovirus replication

    Energy Technology Data Exchange (ETDEWEB)

    Ziehr, Ben; Lenarcic, Erik; Cecil, Chad; Moorman, Nathaniel J., E-mail: nmoorman@med.unc.edu

    2016-02-15

    Human cytomegalovirus (HCMV) was recently shown to encode a large number of spliced mRNAs. While the nuclear export of unspliced viral transcripts has been extensively studied, the role of host mRNA export factors in HCMV mRNA trafficking remains poorly defined. We found that the eIF4AIII RNA helicase, a component of the exon junction complex, was necessary for efficient virus replication. Depletion of eIF4AIII limited viral DNA accumulation, export of viral mRNAs from the nucleus, and the production of progeny virus. However eIF4AIII was dispensable for the association of viral transcripts with ribosomes. We found that pateamine A, a natural compound that inhibits both eIF4AI/II and eIF4AIII, has potent antiviral activity and inhibits HCMV replication throughout the virus lytic cycle. Our results demonstrate that eIF4AIII is required for efficient HCMV replication, and suggest that eIF4A family helicases may be a new class of targets for the development of host-directed antiviral therapeutics. - Highlights: • The host eIF4AIII RNA helicase is required for efficient HCMV replication. • Depleting eIF4AIII inhibited the nuclear export of HCMV mRNAs. • HCMV mRNAs did not require eIF4AIII to associate with polyribosomes. • The eIF4A family helicases may be new targets for host-directed antiviral drugs.

  16. Inter-laboratory assessment of different digital PCR platforms for quantification of human cytomegalovirus DNA.

    Science.gov (United States)

    Pavšič, Jernej; Devonshire, Alison; Blejec, Andrej; Foy, Carole A; Van Heuverswyn, Fran; Jones, Gerwyn M; Schimmel, Heinz; Žel, Jana; Huggett, Jim F; Redshaw, Nicholas; Karczmarczyk, Maria; Mozioğlu, Erkan; Akyürek, Sema; Akgöz, Müslüm; Milavec, Mojca

    2017-04-01

    Quantitative PCR (qPCR) is an important tool in pathogen detection. However, the use of different qPCR components, calibration materials and DNA extraction methods reduces comparability between laboratories, which can result in false diagnosis and discrepancies in patient care. The wider establishment of a metrological framework for nucleic acid tests could improve the degree of standardisation of pathogen detection and the quantification methods applied in the clinical context. To achieve this, accurate methods need to be developed and implemented as reference measurement procedures, and to facilitate characterisation of suitable certified reference materials. Digital PCR (dPCR) has already been used for pathogen quantification by analysing nucleic acids. Although dPCR has the potential to provide robust and accurate quantification of nucleic acids, further assessment of its actual performance characteristics is needed before it can be implemented in a metrological framework, and to allow adequate estimation of measurement uncertainties. Here, four laboratories demonstrated reproducibility (expanded measurement uncertainties below 15%) of dPCR for quantification of DNA from human cytomegalovirus, with no calibration to a common reference material. Using whole-virus material and extracted DNA, an intermediate precision (coefficients of variation below 25%) between three consecutive experiments was noted. Furthermore, discrepancies in estimated mean DNA copy number concentrations between laboratories were less than twofold, with DNA extraction as the main source of variability. These data demonstrate that dPCR offers a repeatable and reproducible method for quantification of viral DNA, and due to its satisfactory performance should be considered as candidate for reference methods for implementation in a metrological framework.

  17. A third component of the human cytomegalovirus terminase complex is involved in letermovir resistance.

    Science.gov (United States)

    Chou, Sunwen

    2017-12-01

    Letermovir is a human cytomegalovirus (CMV) terminase inhibitor that was clinically effective in a Phase III prevention trial. In vitro studies have shown that viral mutations conferring letermovir resistance map primarily to the UL56 component of the terminase complex and uncommonly to UL89. After serial culture of a baseline CMV laboratory strain under letermovir, mutation was observed in a third terminase component in 2 experiments, both resulting in amino acid substitution P91S in gene UL51 and adding to a pre-existing UL56 mutation. Recombinant phenotyping indicated that P91S alone conferred 2.1-fold increased letermovir resistance (EC50) over baseline, and when combined with UL56 mutation S229F or R369M, multiplied the level of resistance conferred by those mutations by 3.5-7.7-fold. Similarly a combination of UL56 mutations S229F, L254F and L257I selected in the same experiment conferred 54-fold increased letermovir EC50 over baseline, but 290-fold when combined with UL51 P91S. The P91S mutant was not perceptibly growth impaired. Although pUL51 is essential for normal function of the terminase complex, its biological significance is not well understood. Letermovir resistance mutations mapping to 3 separate genes, and their multiplier effect on the level of resistance, suggest that the terminase components interactively contribute to the structure of a letermovir antiviral target. The diagnostic importance of the UL51 P91S mutation arises from its potential to augment the letermovir resistance of some UL56 mutations at low fitness cost. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Quantitative membrane proteomics reveals a role for tetraspanin enriched microdomains during entry of human cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Kasinath Viswanathan

    Full Text Available Human cytomegalovirus (HCMV depends on and modulates multiple host cell membrane proteins during each stage of the viral life cycle. To gain a global view of the impact of HCMV-infection on membrane proteins, we analyzed HCMV-induced changes in the abundance of membrane proteins in fibroblasts using stable isotope labeling with amino acids (SILAC, membrane fractionation and protein identification by two-dimensional liquid chromatography and tandem mass spectrometry. This systematic approach revealed that CD81, CD44, CD98, caveolin-1 and catenin delta-1 were down-regulated during infection whereas GRP-78 was up-regulated. Since CD81 downregulation was also observed during infection with UV-inactivated virus we hypothesized that this tetraspanin is part of the viral entry process. Interestingly, additional members of the tetraspanin family, CD9 and CD151, were also downregulated during HCMV-entry. Since tetraspanin-enriched microdomains (TEM cluster host cell membrane proteins including known CMV receptors such as integrins, we studied whether TEMs are required for viral entry. When TEMs were disrupted with the cholesterol chelator methyl-β-cylcodextrin, viral entry was inhibited and this inhibition correlated with reduced surface levels of CD81, CD9 and CD151, whereas integrin levels remained unchanged. Furthermore, simultaneous siRNA-mediated knockdown of multiple tetraspanins inhibited viral entry whereas individual knockdown had little effect suggesting essential, but redundant roles for individual tetraspanins during entry. Taken together, our data suggest that TEM act as platforms for receptors utilized by HCMV for entry into cells.

  19. Specific interactions between transcription factors and the promoter-regulatory region of the human cytomegalovirus major immediate-early gene

    International Nuclear Information System (INIS)

    Ghazal, P.; Lubon, H.; Hennighausen, L.

    1988-01-01

    Repeat sequence motifs as well as unique sequences between nucleotides -150 and -22 of the human cytomegalovirus immediate-early 1 gene interact in vitro with nuclear proteins. The authors show that a transcriptional element between nucleotides -91 and -65 stimulated promoter activity in vivo and in vitro by binding specific cellular transcription factors. Finally, a common sequence motif, (T)TGG/AC, present in 15 of the determined binding sites suggests a particular class of nuclear factors associated with the immediate-early 1 gene

  20. Multiple Drug Transport Pathways through Human P-Glycoprotein.

    Science.gov (United States)

    McCormick, James W; Vogel, Pia D; Wise, John G

    2015-07-21

    P-Glycoprotein (P-gp) is a plasma membrane efflux pump that is commonly associated with therapy resistances in cancers and infectious diseases. P-gp can lower the intracellular concentrations of many drugs to subtherapeutic levels by translocating them out of the cell. Because of the broad range of substrates transported by P-gp, overexpression of P-gp causes multidrug resistance. We reported previously on dynamic transitions of P-gp as it moved through conformations based on crystal structures of homologous ABCB1 proteins using in silico targeted molecular dynamics techniques. We expanded these studies here by docking transport substrates to drug binding sites of P-gp in conformations open to the cytoplasm, followed by cycling the pump through conformations that opened to the extracellular space. We observed reproducible transport of two substrates, daunorubicin and verapamil, by an average of 11-12 Å through the plane of the membrane as P-gp progressed through a catalytic cycle. Methylpyrophosphate, a ligand that should not be transported by P-gp, did not show this movement through P-gp. Drug binding to either of two subsites on P-gp appeared to determine the initial pathway used for drug movement through the membrane. The specific side-chain interactions with drugs within each pathway seemed to be, at least in part, stochastic. The docking and transport properties of a P-gp inhibitor, tariquidar, were also studied. A mechanism of inhibition by tariquidar that involves stabilization of an outward open conformation with tariquidar bound in intracellular loops or at the drug binding domain of P-gp is presented.

  1. Multiple Drug Transport Pathways through human P-Glycoprotein(†)

    Science.gov (United States)

    McCormick, James W.; Vogel, Pia D.; Wise, John G.

    2015-01-01

    P-glycoprotein (P-gp) is a plasma membrane efflux pump that is commonly associated with therapy resistances in cancers and infectious diseases. P-gp can lower the intracellular concentrations of many drugs to subtherapeutic levels by translocating them out of the cell. Because of the broad range of substrates transported by P-gp, overexpression of P-gp causes multidrug resistance. We reported previously on dynamic transitions of P-gp as it moved through conformations based on crystal structures of homologous ABCB1 proteins using in silico targeted molecular dynamics techniques. We expanded these studies here by docking transport substrates to drug binding sites of P-gp in conformations open to the cytoplasm, followed by cycling the pump through conformations that opened to the extracellular space. We observed reproducible transport of two substrates, daunorubicin and verapamil, by an average of 11 to 12 Å through the plane of the membrane as P-gp progressed through a catalytic cycle. Methyl-pyrophosphate, a ligand that should not be transported by P-gp, did not show this movement through P-gp. Drug binding to either of two subsites on P-gp appeared to determine the initial pathway used for drug movement through the membrane. The specific side-chain interactions with drugs within each pathway seemed to be, at least in part, stochastic. The docking and transport properties of a P-gp inhibitor, tariquidar, were also studied. A mechanism of inhibition by tariquidar is presented that involves stabilization of an outward open conformation with tariquidar bound in intracellular loops or at the drug binding domain of P-gp. PMID:26125482

  2. Transient Oral Human Cytomegalovirus Infections Indicate Inefficient Viral Spread from Very Few Initially Infected Cells.

    Science.gov (United States)

    Mayer, Bryan T; Krantz, Elizabeth M; Swan, David; Ferrenberg, James; Simmons, Karen; Selke, Stacy; Huang, Meei-Li; Casper, Corey; Corey, Lawrence; Wald, Anna; Schiffer, Joshua T; Gantt, Soren

    2017-06-15

    Cytomegalovirus (CMV) is acquired by the oral route in children, and primary infection is associated with abundant mucosal replication, as well as the establishment of latency in myeloid cells that results in lifelong infection. The efficiency of primary CMV infection in humans following oral exposure, however, is unknown. We consistently detected self-limited, low-level oral CMV shedding events, which we termed transient CMV infections, in a prospective birth cohort of 30 highly exposed CMV-uninfected infants. We estimated the likelihood of transient oral CMV infections by comparing their observed frequency to that of established primary infections, characterized by persistent high-level shedding, viremia, and seroconversion. We developed mathematical models of viral dynamics upon initial oral CMV infection and validated them using clinical shedding data. Transient infections comprised 76 to 88% of oral CMV shedding events. For this high percentage of transient infections to occur, we identified two mathematical prerequisites: a very small number of initially infected oral cells (1 to 4) and low viral infectivity (<1.5 new cells infected/cell). These observations indicate that oral CMV infection in infants typically begins with a single virus that spreads inefficiently to neighboring cells. Thus, although the incidence of CMV infection is high during infancy, our data provide a mechanistic framework to explain why multiple CMV exposures are typically required before infection is successfully established. These findings imply that a sufficiently primed immune response could prevent CMV from establishing latent infection in humans and support the achievability of a prophylactic CMV vaccine. IMPORTANCE CMV infects the majority of the world's population and is a major cause of birth defects. Developing a vaccine to prevent CMV infection would be extremely valuable but would be facilitated by a better understanding of how natural human CMV infection is acquired. We

  3. Immediate-early gene region of human cytomegalovirus trans-activates the promoter of human immunodeficiency virus

    International Nuclear Information System (INIS)

    Davis, M.G.; Kenney, S.C.; Kamine, J.; Pagano, J.S.; Huang, E.S.

    1987-01-01

    Almost all homosexual patients with acquired immunodeficiency syndrome are also actively infected with human cytomegalovirus (HCMV). The authors have hypothesized that an interaction between HCMV and human immunodeficiency virus (HIV), the agent that causes acquired immunodeficiency syndrome, may exist at a molecular level and contribute to the manifestations of HIV infection. In this report, they demonstrate that the immediate-early gene region of HCMV, in particular immediate-early region 2, trans-activates the expression of the bacterial gene chloramphenicol acetyltransferase that is fused to the HIV long terminal repeat and carried by plasmid pHIV-CAT. The HCMV immediate-early trans-activator increases the level of mRNA from the plamid pHIV-CAT. The sequences of HIV that are responsive to trans-activation by the HDMV immediate-early region are distinct from HIV sequences that are required for response to the HIV tat. The stimulation of HIV gene expression by HDMV gene functions could enhance the consequences of HIV infection in persons with previous or concurrent HCMV infection

  4. cGAS Senses Human Cytomegalovirus and Induces Type I Interferon Responses in Human Monocyte-Derived Cells.

    Directory of Open Access Journals (Sweden)

    Jennifer Paijo

    2016-04-01

    Full Text Available Human cytomegalovirus (HCMV infections of healthy individuals are mostly unnoticed and result in viral latency. However, HCMV can also cause devastating disease, e.g., upon reactivation in immunocompromised patients. Yet, little is known about human immune cell sensing of DNA-encoded HCMV. Recent studies indicated that during viral infection the cyclic GMP/AMP synthase (cGAS senses cytosolic DNA and catalyzes formation of the cyclic di-nucleotide cGAMP, which triggers stimulator of interferon genes (STING and thus induces antiviral type I interferon (IFN-I responses. We found that plasmacytoid dendritic cells (pDC as well as monocyte-derived DC and macrophages constitutively expressed cGAS and STING. HCMV infection further induced cGAS, whereas STING expression was only moderately affected. Although pDC expressed particularly high levels of cGAS, and the cGAS/STING axis was functional down-stream of STING, as indicated by IFN-I induction upon synthetic cGAMP treatment, pDC were not susceptible to HCMV infection and mounted IFN-I responses in a TLR9-dependent manner. Conversely, HCMV infected monocyte-derived cells synthesized abundant cGAMP levels that preceded IFN-I production and that correlated with the extent of infection. CRISPR/Cas9- or siRNA-mediated cGAS ablation in monocytic THP-1 cells and primary monocyte-derived cells, respectively, impeded induction of IFN-I responses following HCMV infection. Thus, cGAS is a key sensor of HCMV for IFN-I induction in primary human monocyte-derived DC and macrophages.

  5. 3,3′,4,4′,5-Pentachlorobiphenyl Inhibits Drug Efflux Through P-Glycoprotein in KB-3 Cells Expressing Mutant Human P-Glycoprotein

    Directory of Open Access Journals (Sweden)

    Hiroshi Fujise

    2004-01-01

    Full Text Available The effects on the drug efflux of 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126, the most toxic of all coplanar polychlorinated biphenyls (Co-PCBs, were examined in KB-3 cells expressing human wild-type and mutant P-glycoprotein in which the 61st amino acid was substituted for serine or phenylalanine (KB3-Phe61. In the cells expressing P-glycoproteins, accumulations of vinblastine and colchicine decreased form 85% to 92% and from 62% to 91%, respectively, and the drug tolerances for these chemicals were increased. In KB3-Phe61, the decreases in drug accumulation were inhibited by adding PCB-126 in a way similar to that with cyclosporine A: by adding 1 μM PCB-126, the accumulations of vinblastine and colchicine increased up to 3.3- and 2.3-fold, respectively. It is suggested that PCB-126 decreased the drug efflux by inhibiting the P-glycoprotein in KB3-Phe61. Since there were various P-glycoproteins and many congeners of Co-PCBs, this inhibition has to be considered a new cause of the toxic effects of Co-PCBs.

  6. Direct quantification of human cytomegalovirus immediate-early and late mRNA levels in blood of lung transplant recipients by competitive nucleic acid sequence-based amplification

    NARCIS (Netherlands)

    Greijer, AE; Verschuuren, EAM; Harmsen, MC; Dekkers, CAJ; Adriaanse, HMA; The, TH; Middeldorp, JM

    The dynamics of active human cytomegalovirus (HCMV) infection was monitored by competitive nucleic acid sequence-based amplification (NASBA) assays for quantification of IE1 (UL123) and pp67 (UL65) mRNA expression levels In the blood of patients after lung transplantation. RNA was isolated from 339

  7. Synthesis and structure-activity relationship of the first nonpeptidergic inverse agonists for the human cytomegalovirus encoded chemokine receptor US28

    NARCIS (Netherlands)

    Hulshof, Janneke W; Casarosa, Paola; Menge, Wiro M P B; Kuusisto, Leena M S; van der Goot, Henk; Smit, Martine J; de Esch, Iwan J P; Leurs, Rob

    2005-01-01

    US28 is a human cytomegalovirus (HCMV) encoded G-protein-coupled receptor that signals in a constitutively active manner. Recently, we identified 1 [5-(4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl)-2,2-diphenylpentanenitrile] as the first reported nonpeptidergic inverse agonist for a viral-encoded

  8. Humoral immune response to the entire human immunodeficiency virus envelope glycoprotein made in insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Rusche, J.R.; Lynn, D.L.; Robert-Guroff, M.; Langlois, A.J.; Lyerly, H.K.; Carson, H.; Krohn, K.; Ranki, A.; Gallo, R.C.; Bolognesi, D.P.; Putney, S.D.

    1987-10-01

    The human immunodeficiency virus envelope gene was expressed in insect cells by using a Baculovirus expression vector. The protein has an apparent molecular mass of 160 kDa, appears on the surface of infected insect cells, and does not appear to be cleaved to glycoproteins gp120 and gp41. Goats immunized with the 160-kDa protein have high titers of antibody that neutralizes virus infection as measured by viral gene expression or cell cytolysis. In addition, immune sera can block fusion of human immunodeficiency virus-infected cells in culture. Both neutralization and fusion-blocking activities are bound to and eluted from immobilized gp120.

  9. Humoral immune response to the entire human immunodeficiency virus envelope glycoprotein made in insect cells

    International Nuclear Information System (INIS)

    Rusche, J.R.; Lynn, D.L.; Robert-Guroff, M.

    1987-01-01

    The human immunodeficiency virus envelope gene was expressed in insect cells by using a Baculovirus expression vector. The protein has an apparent molecular mass of 160 kDa, appears on the surface of infected insect cells, and does not appear to be cleaved to glycoproteins gp120 and gp41. Goats immunized with the 160-kDa protein have high titers of antibody that neutralizes virus infection as measured by viral gene expression or cell cytolysis. In addition, immune sera can block fusion of human immunodeficiency virus-infected cells in culture. Both neutralization and fusion-blocking activities are bound to and eluted from immobilized gp120

  10. Human Cytomegalovirus pUL47 Modulates Tegumentation and Capsid Accumulation at the Viral Assembly Complex

    Science.gov (United States)

    Cappadona, Ilaria; Villinger, Clarissa; Schutzius, Gabi; Mertens, Thomas

    2015-01-01

    ABSTRACT Human cytomegalovirus (HCMV) tegument protein pUL47 is an interaction partner of pUL48 and highly conserved among herpesviruses. It is closely associated with the capsid and has an important function early in infection. Here, we report a specific role of pUL47 in the tegumentation of capsids in the cytoplasm. A newly generated mutant virus (TB-47stop), in which expression of pUL47 is blocked, exhibited a severe impairment in cell-to-cell spread and release of infectivity from infected cells. Ultrastructural analysis of TB-47stop-infected cells clearly showed cytoplasmic accumulations of nonenveloped capsids that were only partially tegumented, indicating that these capsids failed to complete tegumentation. Nevertheless, these accumulations were positive for HCMV inner tegument proteins pp150 and pUL48, suggesting that their attachment to capsids occurs independently of pUL47. Despite these morphological alterations, fully enveloped virus particles were found in the extracellular space and at the viral assembly complex (vAC) of TB-47stop-infected cells, indicating that pUL47 is not essential for the generation of virions. We confirmed findings that incorporation of pUL48 into virions is impaired in the absence of pUL47. Interestingly, pUL47 exhibited a strong nuclear localization in transfected cells, whereas it was found exclusively at the vAC in the context of virus infection. Colocalization of pUL47 and pUL48 at the vAC is consistent with their interaction. We also found a shift to a more nuclear localization of pUL47 when the expression of pUL48 was reduced. Summarizing our results, we hypothesize that pUL48 directs pUL47 to the vAC to promote tegumentation and secondary envelopment of capsids. IMPORTANCE Generation of infectious HCMV particles requires an organized and multistep process involving the action of several viral and cellular proteins as well as protein-protein interactions. A better understanding of these processes is important for

  11. A Tyrosine-Based Trafficking Motif of the Tegument Protein pUL71 Is Crucial for Human Cytomegalovirus Secondary Envelopment.

    Science.gov (United States)

    Dietz, Andrea N; Villinger, Clarissa; Becker, Stefan; Frick, Manfred; von Einem, Jens

    2018-01-01

    The human cytomegalovirus (HCMV) tegument protein pUL71 is required for efficient secondary envelopment and accumulates at the Golgi compartment-derived viral assembly complex (vAC) during infection. Analysis of various C-terminally truncated pUL71 proteins fused to enhanced green fluorescent protein (eGFP) identified amino acids 23 to 34 as important determinants for its Golgi complex localization. Sequence analysis and mutational verification revealed the presence of an N-terminal tyrosine-based trafficking motif (YXXΦ) in pUL71. This led us to hypothesize a requirement of the YXXΦ motif for the function of pUL71 in infection. Mutation of both the tyrosine residue and the entire YXXΦ motif resulted in an altered distribution of mutant pUL71 at the plasma membrane and in the cytoplasm during infection. Both YXXΦ mutant viruses exhibited similarly decreased focal growth and reduced virus yields in supernatants. Ultrastructurally, mutant-virus-infected cells exhibited impaired secondary envelopment manifested by accumulations of capsids undergoing an envelopment process. Additionally, clusters of capsid accumulations surrounding the vAC were observed, similar to the ultrastructural phenotype of a UL71-deficient mutant. The importance of endocytosis and thus the YXXΦ motif for targeting pUL71 to the Golgi complex was further demonstrated when clathrin-mediated endocytosis was inhibited either by coexpression of the C-terminal part of cellular AP180 (AP180-C) or by treatment with methyl-β-cyclodextrin. Both conditions resulted in a plasma membrane accumulation of pUL71. Altogether, these data reveal the presence of a functional N-terminal endocytosis motif that is an important determinant for intracellular localization of pUL71 and that is furthermore required for the function of pUL71 during secondary envelopment of HCMV capsids at the vAC. IMPORTANCE Human cytomegalovirus (HCMV) is the leading cause of birth defects among congenital virus infections and can

  12. The Human Cytomegalovirus Major Immediate-Early Proteins as Antagonists of Intrinsic and Innate Antiviral Host Responses

    Directory of Open Access Journals (Sweden)

    Michael Nevels

    2009-11-01

    Full Text Available The major immediate-early (IE gene of human cytomegalovirus (CMV is believed to have a decisive role in acute infection and its activity is an important indicator of viral reactivation from latency. Although a variety of gene products are expressed from this region, the 72-kDa IE1 and the 86-kDa IE2 nuclear phosphoproteins are the most abundant and important. Both proteins have long been recognized as promiscuous transcriptional regulators. More recently, a critical role of the IE1 and IE2 proteins in counteracting nonadaptive host cell defense mechanisms has been revealed. In this review we will briefly summarize the available literature on IE1- and IE2-dependent mechanisms contributing to CMV evasion from intrinsic and innate immune responses.

  13. Evidence that phosphatidylcholine-specific phospholipase C is a key molecule mediating insulin-induced enhancement of gene expression from human cytomegalovirus promoter in CHO cells

    OpenAIRE

    Zhang, Yingpei; Katakura, Yoshinori; Seto, Perry; Shirahata, Sanetaka

    1997-01-01

    The signal transduction from insulin to its receptors and Ras has been extensively studied, while little has been reported beyond these steps. We found that the expression of human interleukin 6 gene under the control of immediate early gene promoter of human cytomegalovirus was enhanced by insulin sitmulation in Chinese hamster ovary cells. The induction effect of insulin was not significantly affected by inhibitors or activators of conventional protein kinase C, cAMP dependent protein kinas...

  14. The Neutralizing Linear Epitope of Human Herpesvirus 6A Glycoprotein B Does Not Affect Virus Infectivity.

    Science.gov (United States)

    Wakata, Aika; Kanemoto, Satoshi; Tang, Huamin; Kawabata, Akiko; Nishimura, Mitsuhiro; Jasirwan, Chyntia; Mahmoud, Nora Fahmy; Mori, Yasuko

    2018-03-01

    Human herpesvirus 6A (HHV-6A) glycoprotein B (gB) is a glycoprotein consisting of 830 amino acids and is essential for the growth of the virus. Previously, we reported that a neutralizing monoclonal antibody (MAb) called 87-y-13 specifically reacts with HHV-6A gB, and we identified its epitope residue at asparagine (Asn) 347 on gB. In this study, we examined whether the epitope recognized by the neutralizing MAb is essential for HHV-6A infection. We constructed HHV-6A bacterial artificial chromosome (BAC) genomes harboring substitutions at Asn347, namely, HHV-6A BACgB(N347K) and HHV-6A BACgB(N347A). These mutant viruses could be reconstituted and propagated in the same manner as the wild type and their revertants, and MAb 87-y-13 could not inhibit infection by either mutant. In a cell-cell fusion assay, Asn at position 347 on gB was found to be nonessential for cell-cell fusion. In addition, in building an HHV-6A gB homology model, we found that the epitope of the neutralizing MAb is located on domain II of gB and is accessible to solvents. These results indicate that Asn at position 347, the linear epitope of the neutralizing MAb, does not affect HHV-6A infectivity. IMPORTANCE Glycoprotein B (gB) is one of the most conserved glycoproteins among all herpesviruses and is a key factor for virus entry. Therefore, antibodies targeted to gB may neutralize virus entry. Human herpesvirus 6A (HHV-6A) encodes gB, which is translated to a protein of about 830 amino acids (aa). Using a monoclonal antibody (MAb) for HHV-6A gB, which has a neutralizing linear epitope, we analyzed the role of its epitope residue, N347, in HHV-6A infectivity. Interestingly, this gB linear epitope residue, N347, was not essential for HHV-6A growth. By constructing a homology model of HHV-6A gB, we found that N347 was located in the region corresponding to domain II. Therefore, with regard to its neutralizing activity against HHV-6A infection, the epitope on gB might be exposed to solvents

  15. Serological responses in chimpanzees inoculated with human immunodeficiency virus glycoprotein (gp120) subunit vaccine

    International Nuclear Information System (INIS)

    Arthur, L.O.; Pyle, S.W.; Nara, P.L.

    1987-01-01

    The major envelope glycoprotein of a human immunodeficiency virus (HIV) has been purified and was utilized as a prototype vaccine in chimpanzees. The 120,000-dalton glycoprotein (gp120) was purified from membranes of human T-lymphotropic virus (HTLV)-IIIB-infected cells and the final preparation contained low levels to no detectable HTLV-IIIB core antigen (p24) and low levels of endotoxin. Chimpanzees inoculated with gp120 responded by developing antibodies that precipitated radiolabeled gp120 and neutralized in vitro infection of HTLV-IIIB. Antibodies to HTLV-IIIB p24 were not detected in the gp120-immunized chimpanzees. Peripheral blood leukocytes from the vaccinated animals were examined for T4 + and T8 + cells, and no decrease in the T4/T8 ratio was found, indicating that immunization with a ligand (gp120) that binds to T4 has not detectable adverse effect on the population of T4 + cells. The only current animal model that can be reproducibly infected with HIV is the chimpanzee. Immunization of chimpanzees with HIV proteins will provide an experimental system for testing the effectiveness of prototype vaccines for preventing HIV infection in vivo

  16. Carcinoma-specific Ulex europaeus agglutinin-I binding glycoproteins of human colorectal carcinoma and its relation to carcinoembryonic antigen.

    Science.gov (United States)

    Matsushita, Y; Yonezawa, S; Nakamura, T; Shimizu, S; Ozawa, M; Muramatsu, T; Sato, E

    1985-08-01

    Glycoproteins binding to Ulex europaeus agglutinin-I (UEA-I) lectin, which recognizes the terminal alpha-L-fucose residue, were analyzed in 18 cases of human colorectal carcinoma by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by the Western blotting method. In the distal large bowel (descending and sigmoid colon and rectum), high-molecular-weight glycoproteins binding to UEA-I existed in carcinoma tissue but not in normal mucosa. In the proximal large bowel (ascending and transverse colon), high-molecular-weight glycoproteins binding to UEA-I were found both in normal mucosa and in carcinoma tissue, whereas those from the carcinoma tissue had an apparently lower molecular weight as compared to the weight of those from the normal mucosa. Thus there is a biochemical difference in UEA-I binding glycoproteins between the normal mucosa and the carcinoma tissue, although in our previous histochemical study no difference was observed in UEA-I binding glycoproteins of the proximal large bowel between the carcinoma tissue and the normal mucosa. Furthermore, carcinoembryonic antigen from the carcinoma tissue was found to have the same electrophoretical mobility as the UEA-I binding glycoproteins.

  17. Bidirectional enhancing activities between human T cell leukemia-lymphoma virus type I and human cytomegalovirus in human term syncytiotrophoblast cells cultured in vitro.

    Science.gov (United States)

    Tóth, F D; Aboagye-Mathiesen, G; Szabó, J; Liu, X; Mosborg-Petersen, P; Kiss, J; Hager, H; Zdravkovic, M; Andirkó, I; Aranyosi, J

    1995-12-01

    The syncytiotrophoblast layer of the human placenta has an important role in limiting transplacental viral spread from mother to fetus. Human cytomegalovirus (HCMV) is capable of establishing a latent infection in syncytiotrophoblast cells, with restriction of gene expression to immediate-early and early proteins. We analyzed the extent of replication of human T cell leukemia-lymphoma virus type I (HTLV-I) in human term syncytiotrophoblasts infected with HTLV-I alone or coinfected with HTLV-I and HCMV. Although syncytiotrophoblasts could be infected with cell-free HTLV-I, no viral protein expression was found in the singly infected cells. On the contrary, coinfection of the cells with HTLV-I and HCMV resulted in simultaneous replication of both viruses. Bidirectional enhancing activities between HTLV-I and HCMV were mediated primarily by the Tax and immediate-early proteins, respectively. The stimulatory effect of HTLV-I Tax on HCMV replication appeared to be mediated partly by tumor necrosis factor beta and transforming growth factor beta-1. We observed formation of pseudotypes with HTLV-I nucleocapsids within HCMV envelopes, whereas HCMV was not pseudotyped by HTLV-I envelopes in dually infected syncytiotrophoblast cells. Our data suggest that in vivo dual infection of syncytiotrophoblast cells with HTLV-I and HCMV may facilitate the transplacental transmission of both viruses.

  18. Detection of human cytomegalovirus and Epstein-Barr virus in symptomatic and asymptomatic apical periodontitis lesions by real-time PCR

    OpenAIRE

    Ozbek, Selcuk M.; Ozbek, Ahmet; Yavuz, Muhammed Selim

    2013-01-01

    Objectives: Recent studies have investigated the occurrence of human cytomegalovirus and Epstein-Barr Virus in samples from apical periodontitis lesions and a role in the pathogenesis of this disease has been suggested. Because genotype distribution and seroprevalence of EBV and HCMV differ among populations, it is important to determine the presence of these viruses in endodontic periapical lesions of different populations. The aims of this study were to determine the presence of HCMV and EB...

  19. Cellular homeoproteins, SATB1 and CDP, bind to the unique region between the human cytomegalovirus UL127 and major immediate-early genes

    International Nuclear Information System (INIS)

    Lee Jialing; Klase, Zachary; Gao Xiaoqi; Caldwell, Jeremy S.; Stinski, Mark F.; Kashanchi, Fatah; Chao, S.-H.

    2007-01-01

    An AT-rich region of the human cytomegalovirus (CMV) genome between the UL127 open reading frame and the major immediate-early (MIE) enhancer is referred to as the unique region (UR). It has been shown that the UR represses activation of transcription from the UL127 promoter and functions as a boundary between the divergent UL127 and MIE genes during human CMV infection [Angulo, A., Kerry, D., Huang, H., Borst, E.M., Razinsky, A., Wu, J., Hobom, U., Messerle, M., Ghazal, P., 2000. Identification of a boundary domain adjacent to the potent human cytomegalovirus enhancer that represses transcription of the divergent UL127 promoter. J. Virol. 74 (6), 2826-2839; Lundquist, C.A., Meier, J.L., Stinski, M.F., 1999. A strong negative transcriptional regulatory region between the human cytomegalovirus UL127 gene and the major immediate-early enhancer. J. Virol. 73 (11), 9039-9052]. A putative forkhead box-like (FOX-like) site, AAATCAATATT, was identified in the UR and found to play a key role in repression of the UL127 promoter in recombinant virus-infected cells [Lashmit, P.E., Lundquist, C.A., Meier, J.L., Stinski, M.F., 2004. Cellular repressor inhibits human cytomegalovirus transcription from the UL127 promoter. J. Virol. 78 (10), 5113-5123]. However, the cellular factors which associate with the UR and FOX-like region remain to be determined. We reported previously that pancreatic-duodenal homeobox factor-1 (PDX1) bound to a 45-bp element located within the UR [Chao, S.H., Harada, J.N., Hyndman, F., Gao, X., Nelson, C.G., Chanda, S.K., Caldwell, J.S., 2004. PDX1, a Cellular Homeoprotein, Binds to and Regulates the Activity of Human Cytomegalovirus Immediate Early Promoter. J. Biol. Chem. 279 (16), 16111-16120]. Here we demonstrate that two additional cellular homeoproteins, special AT-rich sequence binding protein 1 (SATB1) and CCAAT displacement protein (CDP), bind to the human CMV UR in vitro and in vivo. Furthermore, CDP is identified as a FOX-like binding protein

  20. Human cytomegaloviruses expressing yellow fluorescent fusion proteins--characterization and use in antiviral screening.

    Directory of Open Access Journals (Sweden)

    Sarah Straschewski

    Full Text Available Recombinant viruses labelled with fluorescent proteins are useful tools in molecular virology with multiple applications (e.g., studies on intracellular trafficking, protein localization, or gene activity. We generated by homologous recombination three recombinant cytomegaloviruses carrying the enhanced yellow fluorescent protein (EYFP fused with the viral proteins IE-2, ppUL32 (pp150, and ppUL83 (pp65. In growth kinetics, the three viruses behaved all like wild type, even at low multiplicity of infection (MOI. The expression of all three fusion proteins was detected, and their respective localizations were the same as for the unmodified proteins in wild-type virus-infected cells. We established the in vivo measurement of fluorescence intensity and used the recombinant viruses to measure inhibition of viral replication by neutralizing antibodies or antiviral substances. The use of these viruses in a pilot screen based on fluorescence intensity and high-content analysis identified cellular kinase inhibitors that block viral replication. In summary, these viruses with individually EYFP-tagged proteins will be useful to study antiviral substances and the dynamics of viral infection in cell culture.

  1. Prevalence of human cytomegalovirus (HCMV antibodies among patients HIV/AIDS in Kurdistan province, 2015

    Directory of Open Access Journals (Sweden)

    Arezo Omati

    2016-12-01

    Full Text Available Background : Cytomegalovirus (CMV infection is one of the most common causes of death in people with immune deficiency diseases such as: organ or tissue recipients, patients with HIV/AIDS and newborn infants. The aim of this study was to determine the prevalence of anti-CMV antibodies in patients with HIV/AIDS in the Kurdistan province. Materials and Methods: This cross-sectional study carried out on 151 patients with HIV/AIDS covered by behavioral health counseling centers in Kurdistan province, 2015. For all patients the values of CMV antibodies, include IgG and IgM, were determined by ELISA technique and Diagnostic Kits (EIA WELL, Rome, Italy. Data analyses were done by use of t-test and multiple linear regression tests in stata software, version 13. Results: 116 (76.8% and 35 (23.2% of the patients were male and female, respectively. Mean (SD age of the patients were 39.3 (9.1 years. All studied patients were found positive for CMV-IgG (prevalence=100%, whereas only one case (0.7% was found positive for CMV-IgM. The relationship between age and CMV-IgG levels was statistically significant. Conclusion: The results showed that high prevalence of CMV in patients with HIV/AIDS, so in addition to paying more attention to the issue of HIV and CMV co-infection, about value of early antiretroviral treatment conducting further studies seems necessary.

  2. Sero-prevalence of Human Cytomegalovirus among blood donors in Lahore, Pakistan

    Directory of Open Access Journals (Sweden)

    Chahat Batool Rizvi

    2015-08-01

    Full Text Available Background: Transfusion-transmitted cytomegalovirus (TT-CMV infection can cause severe illness and even death among immunocompromised patients; therefore, the spread of CMV through blood products should be prevented. To our knowledge, no study has been carried out in Pakistan to determine the seroprevalence of CMV in general population as well as among blood donors. The goal of this study was to determine CMV seropositivity among blood donors at the blood bank of INMOL Hospital, Lahore, Pakistan. Methods: A sero-epidemiological cross-sectional study was conducted. Sera from 91 blood donors were screened for CMV specific IgG antibodies by enzyme-linked immunosorbent assay (ELISA based kit. Results: The CMV-specific IgG antibodies were detected in 89 blood donors, which gave seroprevalence rate of 97.8%. The statistical analysis of results was done using pearson chi-square test and appeared non-significant with values 0.625 and 0.705 for different age groups and blood groups of donors. Conclusion: Because of high seroprevalence in this study area, an adequate supply of CMV seronegative blood is difficult to maintain. Therefore, we propose that the future strategies for the prevention of post-transfusion CMV infection in recipients should include the transfusion of leukoreduced blood products. Further a prospective study with much greater population can be done to identify major causative risk factors for such highest prevalence rate.

  3. Murine and human b locus pigmentation genes encode a glycoprotein (gp75) with catalase activity

    International Nuclear Information System (INIS)

    Halaban, R.; Moellmann, G.

    1990-01-01

    Melanogenesis is regulated in large part by tyrosinase, and defective tyrosinase leads to albinism. The mechanisms for other pigmentation determinants (e.g., those operative in tyrosinase-positive albinism and in murine coat-color mutants) are not yet known. One murine pigmentation gene, the brown (b) locus, when mutated leads to a brown (b/b) or hypopigmentated (B lt /B lt ) coat versus the wild-type black (B/B). The authors show that the b locus codes for a glycoprotein with the activity of a catalase (catalase B). Only the c locus protein is a tyrosinase. Because peroxides may be by-products of melanogenic activity and hydrogen peroxide in particular is known to destroy melanin precursors and melanin, they conclude that pigmentation is controlled not only by tyrosinase but also by a hydroperoxidase. The studies indicate that catalase B is identical with gp75, a known human melanosomal glycoprotein; that the b mutation is in a heme-associated domain; and that the B lt mutation renders the protein susceptible to rapid proteolytic degradation

  4. Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus

    DEFF Research Database (Denmark)

    Giang, Erick; Dorner, Marcus; Prentoe, Jannick C

    2012-01-01

    , and an effective vaccine should target conserved T- and B-cell epitopes of the virus. Conserved B-cell epitopes overlapping the CD81 receptor-binding site (CD81bs) on the E2 viral envelope glycoprotein have been reported previously and provide promising vaccine targets. In this study, we isolated 73 human m......Abs recognizing five distinct antigenic regions on the virus envelope glycoprotein complex E1E2 from an HCV-immune phage-display antibody library by using an exhaustive-panning strategy. Many of these mAbs were broadly neutralizing. In particular, the mAb AR4A, recognizing a discontinuous epitope outside the CD81......bs on the E1E2 complex, has an exceptionally broad neutralizing activity toward diverse HCV genotypes and protects against heterologous HCV challenge in a small animal model. The mAb panel will be useful for the design and development of vaccine candidates to elicit broadly neutralizing antibodies...

  5. Dynamic and nucleolin-dependent localization of human cytomegalovirus UL84 to the periphery of viral replication compartments and nucleoli.

    Science.gov (United States)

    Bender, Brian J; Coen, Donald M; Strang, Blair L

    2014-10-01

    Protein-protein and protein-nucleic acid interactions within subcellular compartments are required for viral genome replication. To understand the localization of the human cytomegalovirus viral replication factor UL84 relative to other proteins involved in viral DNA synthesis and to replicating viral DNA in infected cells, we created a recombinant virus expressing a FLAG-tagged version of UL84 (UL84FLAG) and used this virus in immunofluorescence assays. UL84FLAG localization differed at early and late times of infection, transitioning from diffuse distribution throughout the nucleus to exclusion from the interior of replication compartments, with some concentration at the periphery of replication compartments with newly labeled DNA and the viral DNA polymerase subunit UL44. Early in infection, UL84FLAG colocalized with the viral single-stranded DNA binding protein UL57, but colocalization became less prominent as infection progressed. A portion of UL84FLAG also colocalized with the host nucleolar protein nucleolin at the peripheries of both replication compartments and nucleoli. Small interfering RNA (siRNA)-mediated knockdown of nucleolin resulted in a dramatic elimination of UL84FLAG from replication compartments and other parts of the nucleus and its accumulation in the cytoplasm. Reciprocal coimmunoprecipitation of viral proteins from infected cell lysates revealed association of UL84, UL44, and nucleolin. These results indicate that UL84 localization during infection is dynamic, which is likely relevant to its functions, and suggest that its nuclear and subnuclear localization is highly dependent on direct or indirect interactions with nucleolin. Importance: The protein-protein interactions among viral and cellular proteins required for replication of the human cytomegalovirus (HCMV) DNA genome are poorly understood. We sought to understand how an enigmatic HCMV protein critical for virus replication, UL84, localizes relative to other viral and cellular

  6. Aging and cytomegalovirus (CMV) infection differentially and jointly affect distinct circulating T cell subsets in humans1

    Science.gov (United States)

    Wertheimer, Anne M.; Bennett, Michael S.; Park, Byung; Uhrlaub, Jennifer L.; Martinez, Carmine; Pulko, Vesna; Currier, Noreen L.; Nikolich-Zugich, Dragana; Kaye, Jeffrey; Nikolich-Zugich, Janko

    2014-01-01

    The impact of intrinsic aging upon human peripheral blood T-cell subsets remains incompletely quantified and understood. This impact must be distinguished from the influence of latent persistent microorganisms, particularly cytomegalovirus (CMV), which has been associated with age-related changes in the T cell pool. In a cross-sectional cohort of 152 CMV-negative individuals, aged 21–101 years, we found that aging correlated strictly to an absolute loss of naïve CD8, but not CD4, T cells, but, contrary to many reports, did not lead to an increase in memory T cell numbers. The loss of naïve CD8 T cells was not altered by CMV in 239 subjects (range 21–96 years) but the decline in CD4+ naïve cells showed significance in CMV+ individuals. These individuals also exhibited an absolute increase in the effector/effector memory CD4+ and CD8+ cells with age. That increase was seen mainly, if not exclusively, in older subjects with elevated anti-CMV Ab titers, suggesting that efficacy of viral control over time may determine the magnitude of CMV impact upon T cell memory, and perhaps upon immune defense. These findings provide important new insights into the age-related changes in the peripheral blood pool of older adults, demonstrating that aging and CMV exert both distinct and joint influence upon blood T cell homeostasis in humans. PMID:24501199

  7. Human cytomegalovirus IE1 downregulates Hes1 in neural progenitor cells as a potential E3 ubiquitin ligase.

    Directory of Open Access Journals (Sweden)

    Xi-Juan Liu

    2017-07-01

    Full Text Available Congenital human cytomegalovirus (HCMV infection is the leading cause of neurological disabilities in children worldwide, but the mechanisms underlying these disorders are far from well-defined. HCMV infection has been shown to dysregulate the Notch signaling pathway in human neural progenitor cells (NPCs. As an important downstream effector of Notch signaling, the transcriptional regulator Hairy and Enhancer of Split 1 (Hes1 is essential for governing NPC fate and fetal brain development. In the present study, we report that HCMV infection downregulates Hes1 protein levels in infected NPCs. The HCMV 72-kDa immediate-early 1 protein (IE1 is involved in Hes1 degradation by assembling a ubiquitination complex and promoting Hes1 ubiquitination as a potential E3 ubiquitin ligase, followed by proteasomal degradation of Hes1. Sp100A, an important component of PML nuclear bodies, is identified to be another target of IE1-mediated ubiquitination. A C-terminal acidic region in IE1, spanning amino acids 451 to 475, is required for IE1/Hes1 physical interaction and IE1-mediated Hes1 ubiquitination, but is dispensable for IE1/Sp100A interaction and ubiquitination. Our study suggests a novel mechanism linking downregulation of Hes1 protein to neurodevelopmental disorders caused by HCMV infection. Our findings also complement the current knowledge of herpesviruses by identifying IE1 as the first potential HCMV-encoded E3 ubiquitin ligase.

  8. Review: Pichia pastoris represents an alternative for human glycoprotein production for therapeutic use. Fermentation strategies

    Directory of Open Access Journals (Sweden)

    Henry Córdoba Ruiz

    2003-07-01

    Full Text Available Producing human proteins in lower organisms' cells using recombinant technology represents a very promising approach for treating many diseases produced by a particular protein deficiency, including close to 40 lysosomal storage diseases. Although E. coli has been the first host successfully employed in expressing human recombinant proteins, it has some limitations owing to its inability to perform some post-traductional steps such as glycosylation. The yeast Saccharomyces cerevisiae (S. cerevisiae has thusbeen initially considered and used. However, S. cerevisiae glycosylates proteins in a very different way to human cells producing highly antigenic proteins and thus some other non-conventional yeasts such as Pichia pastoris have been used recently. Human protein expression is not assodated with growth in this system; growth may occur at high cell concentrations, increasing heterologous protein productivity and yield. The system employs a very efficient, methanol-induced promoter which may be used as sole carbon and energy source. Post-traductional modifications seem more similar to human cells than those produced by other non-mammalian systems used in producing human glycoproteins; they do not secrete large amounts of endogenous proteins, simplifying expressed protein purification. This review presents some strategies for producing heterologous proteins in high density cultures using P. pastoris as an expression system.

  9. Molecular cloning and mammalian expression of human beta 2-glycoprotein I cDNA

    DEFF Research Database (Denmark)

    Kristensen, Torsten; Schousboe, Inger; Boel, Espen

    1991-01-01

    Human β2-glycoprotein (β2gpI) cDNA was isolated from a liver cDNA library and sequenced. The cDNA encoded a 19-residue hydrophobic signal peptide followed by the mature β2gpI of 326 amino acid residues. In liver and in the hepatoma cell line HepG2 there are two mRNA species of about 1.4 and 4.3 kb......, respectively, hybridizing specifically with the β2gpI cDNA. Upon isoelectric focusing, recombinant β2gpI obtained from expression of β2gpI cDNA in baby hamster kidney cells showed the same pattern of bands as β2gpI isolated from plasma, and at least 5 polypeptides were visible...

  10. Activation of PPAR{gamma} by Human Cytomegalovirus for de novo Replication Impairs Migration and Invasiveness of Cytotrophoblast from Early Placenta

    DEFF Research Database (Denmark)

    Rauwel, Benjamin; Mariamé, Bernard; Martin, Hélène

    2010-01-01

    , as assessed by using well-established in vitro models of invasive trophoblast i.e. primary cultures of EVCT isolated from first trimester placentas and the EVCT-derived cell line HIPEC. Our data provide new clues to explain how early infection during pregnancy could impair implantation, placentation...... and chromatin immunoprecipitation assays. Due to the key role of PPARgamma in placentation and its specific trophoblast expression within the human placenta, we then provided evidence that by activating PPARgamma human cytomegalovirus dramatically impaired early human trophoblast migration and invasiveness...

  11. Profiling of Concanavalin A-Binding Glycoproteins in Human Hepatic Stellate Cells Activated with Transforming Growth Factor-β1

    Directory of Open Access Journals (Sweden)

    Yannan Qin

    2014-11-01

    Full Text Available Glycoproteins play important roles in maintaining normal cell functions depending on their glycosylations. Our previous study indicated that the abundance of glycoproteins recognized by concanavalin A (ConA was increased in human hepatic stellate cells (HSCs following activation by transforming growth factor-β1 (TGF-β1; however, little is known about the ConA-binding glycoproteins (CBGs of HSCs. In this study, we employed a targeted glycoproteomics approach using lectin-magnetic particle conjugate-based liquid chromatography-tandem mass spectrometry to compare CBG profiles between LX-2 HSCs with and without activation by TGF-β1, with the aim of discovering novel CBGs and determining their possible roles in activated HSCs. A total of 54 and 77 proteins were identified in the quiescent and activated LX-2 cells, respectively. Of the proteins identified, 14.3% were glycoproteins and 73.3% were novel potential glycoproteins. Molecules involved in protein processing in the endoplasmic reticulum (e.g., calreticulin and calcium signaling (e.g., 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase β-2 [PLCB2] were specifically identified in activated LX-2 cells. Additionally, PLCB2 expression was upregulated in the cytoplasm of the activated LX-2 cells, as well as in the hepatocytes and sinusoidal cells of liver cirrhosis tissues. In conclusion, the results of this study may aid future investigations to find new molecular mechanisms involved in HSC activation and antifibrotic therapeutic targets.

  12. Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1

    NARCIS (Netherlands)

    Sanders, Rogier W.; Vesanen, Mika; Schuelke, Norbert; Master, Aditi; Schiffner, Linnea; Kalyanaraman, Roopa; Paluch, Maciej; Berkhout, Ben; Maddon, Paul J.; Olson, William C.; Lu, Min; Moore, John P.

    2002-01-01

    The envelope glycoprotein (Env) complex of human immunodeficiency virus type I has evolved a structure that is minimally immunogenic while retaining its natural function of receptor-mediated virus-cell fusion. The Env complex is trimeric; its six individual subunits (three gp120 and three gp41

  13. Latency-Associated Expression of Human Cytomegalovirus US28 Attenuates Cell Signaling Pathways To Maintain Latent Infection

    Directory of Open Access Journals (Sweden)

    Benjamin A. Krishna

    2017-12-01

    Full Text Available Reactivation of human cytomegalovirus (HCMV latent infection from early myeloid lineage cells constitutes a threat to immunocompromised or immune-suppressed individuals. Consequently, understanding the control of latency and reactivation to allow targeting and killing of latently infected cells could have far-reaching clinical benefits. US28 is one of the few viral genes that is expressed during latency and encodes a cell surface G protein-coupled receptor (GPCR, which, during lytic infection, is a constitutive cell-signaling activator. Here we now show that in monocytes, which are recognized sites of HCMV latency in vivo, US28 attenuates multiple cell signaling pathways, including mitogen-activated protein (MAP kinase and NF-κB, and that this is required to establish a latent infection; viruses deleted for US28 initiate a lytic infection in infected monocytes. We also show that these monocytes then become potent targets for the HCMV-specific host immune response and that latently infected cells treated with an inverse agonist of US28 also reactivate lytic infection and similarly become immune targets. Consequently, we suggest that the use of inhibitors of US28 could be a novel immunotherapeutic strategy to reactivate the latent viral reservoir, allowing it to be targeted by preexisting HCMV-specific T cells.

  14. Human Cytomegalovirus nuclear egress and secondary envelopment are negatively affected in the absence of cellular p53

    Energy Technology Data Exchange (ETDEWEB)

    Kuan, Man I; O’Dowd, John M.; Chughtai, Kamila; Hayman, Ian; Brown, Celeste J.; Fortunato, Elizabeth A., E-mail: lfort@uidaho.edu

    2016-10-15

    Human Cytomegalovirus (HCMV) infection is compromised in cells lacking p53, a transcription factor that mediates cellular stress responses. In this study we have investigated compromised functional virion production in cells with p53 knocked out (p53KOs). Infectious center assays found most p53KOs released functional virions. Analysis of electron micrographs revealed modestly decreased capsid production in infected p53KOs compared to wt. Substantially fewer p53KOs displayed HCMV-induced infoldings of the inner nuclear membrane (IINMs). In p53KOs, fewer capsids were found in IINMs and in the cytoplasm. The deficit in virus-induced membrane remodeling within the nucleus of p53KOs was mirrored in the cytoplasm, with a disproportionately smaller number of capsids re-enveloped. Reintroduction of p53 substantially recovered these deficits. Overall, the absence of p53 contributed to inhibition of the formation and function of IINMs and re-envelopment of the reduced number of capsids able to reach the cytoplasm. -- Highlights: •The majority of p53KO cells release fewer functional virions than wt cells. •Nucleocapsids do not efficiently exit the nucleus in p53KO cells. •Infoldings of the inner nuclear membrane are not efficiently formed in p53KO cells. •Cytoplasmic capsids are not efficiently re-enveloped in p53KO cells. •Reintroduction of p53 largely ameliorates these phenotypes.

  15. pUL34 binding near the human cytomegalovirus origin of lytic replication enhances DNA replication and viral growth.

    Science.gov (United States)

    Slayton, Mark; Hossain, Tanvir; Biegalke, Bonita J

    2018-05-01

    The human cytomegalovirus (HCMV) UL34 gene encodes sequence-specific DNA-binding proteins (pUL34) which are required for viral replication. Interactions of pUL34 with DNA binding sites represses transcription of two viral immune evasion genes, US3 and US9. 12 additional predicted pUL34-binding sites are present in the HCMV genome (strain AD169) with three binding sites concentrated near the HCMV origin of lytic replication (oriLyt). We used ChIP-seq analysis of pUL34-DNA interactions to confirm that pUL34 binds to the oriLyt region during infection. Mutagenesis of the UL34-binding sites in an oriLyt-containing plasmid significantly reduced viral-mediated oriLyt-dependent DNA replication. Mutagenesis of these sites in the HCMV genome reduced the replication efficiencies of the resulting viruses. Protein-protein interaction analyses demonstrated that pUL34 interacts with the viral proteins IE2, UL44, and UL84, that are essential for viral DNA replication, suggesting that pUL34-DNA interactions in the oriLyt region are involved in the DNA replication cascade. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Resistance to maribavir is associated with the exclusion of pUL27 from nucleoli during human cytomegalovirus infection

    Science.gov (United States)

    Hakki, Morgan; Drummond, Coyne; Houser, Benjamin; Marousek, Gail; Chou, Sunwen

    2011-01-01

    Select mutations in the human cytomegalovirus (HCMV) gene UL27 confer low-grade resistance to the HCMV UL97 kinase inhibitor maribavir (MBV). It has been reported that the 608-amino acid UL27 gene product (pUL27) normally localizes to cell nuclei and nucleoli, whereas its truncation at codon 415, as found in a MBV-resistant mutant, results in cytoplasmic localization. We now show that in the context of full-length pUL27, diverse single amino acid substitutions associated with MBV resistance result in loss of its nucleolar localization when visualized after transient transfection, whereas substitutions representing normal interstrain polymorphism had no such effect. The same differences in localization were observed during a complete infection cycle with recombinant HCMV strains over-expressing full-length fluorescent pUL27 variants. Nested UL27 C-terminal truncation expression plasmids showed that amino acids 596–599 were required for the nucleolar localization of pUL27. These results indicate that the loss of a nucleolar function of pUL27 may contribute to MBV resistance, and that the nucleolar localization of pUL27 during HCMV infection depends not only on a carboxy-terminal domain but also on a property of pUL27 that is affected by MBV-resistant mutations, such as an interaction with component(s) of the nucleolus. PMID:21906628

  17. The presence of p53 influences the expression of multiple human cytomegalovirus genes at early times postinfection.

    Science.gov (United States)

    Hannemann, Holger; Rosenke, Kyle; O'Dowd, John M; Fortunato, Elizabeth A

    2009-05-01

    Human cytomegalovirus (HCMV) is a common cause of morbidity and mortality in immunocompromised and immunosuppressed individuals. During infection, HCMV is known to employ host transcription factors to facilitate viral gene expression. To further understand the previously observed delay in viral replication and protein expression in p53 knockout cells, we conducted microarray analyses of p53(+/+) and p53(-/-) immortalized fibroblast cell lines. At a multiplicity of infection (MOI) of 1 at 24 h postinfection (p.i.), the expression of 22 viral genes was affected by the absence of p53. Eleven of these 22 genes (group 1) were examined by real-time reverse transcriptase, or quantitative, PCR (q-PCR). Additionally, five genes previously determined to have p53 bound to their nearest p53-responsive elements (group 2) and three control genes without p53 binding sites in their upstream sequences (group 3) were also examined. At an MOI of 1, >3-fold regulation was found for five group 1 genes. The expression of group 2 and 3 genes was not changed. At an MOI of 5, all genes from group 1 and four of five genes from group 2 were found to be regulated. The expression of control genes from group 3 remained unchanged. A q-PCR time course of four genes revealed that p53 influences viral gene expression most at immediate-early and early times p.i., suggesting a mechanism for the reduced and delayed production of virions in p53(-/-) cells.

  18. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97.

    Science.gov (United States)

    Milbradt, Jens; Sonntag, Eric; Wagner, Sabrina; Strojan, Hanife; Wangen, Christina; Lenac Rovis, Tihana; Lisnic, Berislav; Jonjic, Stipan; Sticht, Heinrich; Britt, William J; Schlötzer-Schrehardt, Ursula; Marschall, Manfred

    2018-01-13

    The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.

  19. Characterization of Human Cytomegalovirus Genome Diversity in Immunocompromised Hosts by Whole-Genome Sequencing Directly From Clinical Specimens.

    Science.gov (United States)

    Hage, Elias; Wilkie, Gavin S; Linnenweber-Held, Silvia; Dhingra, Akshay; Suárez, Nicolás M; Schmidt, Julius J; Kay-Fedorov, Penelope C; Mischak-Weissinger, Eva; Heim, Albert; Schwarz, Anke; Schulz, Thomas F; Davison, Andrew J; Ganzenmueller, Tina

    2017-06-01

    Advances in next-generation sequencing (NGS) technologies allow comprehensive studies of genetic diversity over the entire genome of human cytomegalovirus (HCMV), a significant pathogen for immunocompromised individuals. Next-generation sequencing was performed on target enriched sequence libraries prepared directly from a variety of clinical specimens (blood, urine, breast milk, respiratory samples, biopsies, and vitreous humor) obtained longitudinally or from different anatomical compartments from 20 HCMV-infected patients (renal transplant recipients, stem cell transplant recipients, and congenitally infected children). De novo-assembled HCMV genome sequences were obtained for 57 of 68 sequenced samples. Analysis of longitudinal or compartmental HCMV diversity revealed various patterns: no major differences were detected among longitudinal, intraindividual blood samples from 9 of 15 patients and in most of the patients with compartmental samples, whereas a switch of the major HCMV population was observed in 6 individuals with sequential blood samples and upon compartmental analysis of 1 patient with HCMV retinitis. Variant analysis revealed additional aspects of minor virus population dynamics and antiviral-resistance mutations. In immunosuppressed patients, HCMV can remain relatively stable or undergo drastic genomic changes that are suggestive of the emergence of minor resident strains or de novo infection. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  20. The carboxyl terminus of human cytomegalovirus-encoded 7 transmembrane receptor US28 camouflages agonism by mediating constitutive endocytosis

    DEFF Research Database (Denmark)

    Waldhoer, Maria; Casarosa, Paola; Rosenkilde, Mette M

    2003-01-01

    are separable entities in this viral chemokine receptor. We generated chimeric and mutant US28 proteins that were altered in either their constitutive endocytic (US28 Delta 300, US28 Delta 317, US28-NK1-ctail, and US28-ORF74-ctail) or signaling properties (US28R129A). By using this series of mutants, we show...... further show that the constitutive endocytic property of US28 affects the action of its chemokine ligand fractalkine/CX3CL1 and show that in the absence of the US28 C terminus, fractalkine/CX3CL1 acts as an agonist on US28. This demonstrates for the first time that the endocytic properties of a 7TM......US28 is one of four 7 transmembrane (7TM) chemokine receptors encoded by human cytomegalovirus and has been shown to both signal and endocytose in a ligand-independent, constitutively active manner. Here we show that the constitutive activity and constitutive endocytosis properties of US28...

  1. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97

    Directory of Open Access Journals (Sweden)

    Jens Milbradt

    2018-01-01

    Full Text Available The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.

  2. Directed Selection of Recombinant Human Monoclonal Antibodies to Herpes Simplex Virus Glycoproteins from Phage Display Libraries

    Science.gov (United States)

    Sanna, Pietro Paolo; Williamson, R. Anthony; de Logu, Alessandro; Bloom, Floyd E.; Burton, Dennis R.

    1995-07-01

    Human monoclonal antibodies have considerable potential in the prophylaxis and treatment of viral disease. However, only a few such antibodies suitable for clinical use have been produced to date. We have previously shown that large panels of human recombinant monoclonal antibodies against a plethora of infectious agents, including herpes simplex virus types 1 and 2, can be established from phage display libraries. Here we demonstrate that facile cloning of recombinant Fab fragments against specific viral proteins in their native conformation can be accomplished by panning phage display libraries against viral glycoproteins "captured" from infected cell extracts by specific monoclonal antibodies immobilized on ELISA plates. We have tested this strategy by isolating six neutralizing recombinant antibodies specific for herpes simplex glycoprotein gD or gB, some of which are against conformationally sensitive epitopes. By using defined monoclonal antibodies for the antigen-capture step, this method can be used for the isolation of antibodies to specific regions and epitopes within the target viral protein. For instance, monoclonal antibodies to a nonneutralizing epitope can be used in the capture step to clone antibodies to neutralizing epitopes, or antibodies to a neutralizing epitope can be used to clone antibodies to a different neutralizing epitope. Furthermore, by using capturing antibodies to more immunodominant epitopes, one can direct the cloning to less immunogenic ones. This method should be of value in generating antibodies to be used both in the prophylaxis and treatment of viral infections and in the characterization of the mechanisms of antibody protective actions at the molecular level.

  3. An unusual dependence of human herpesvirus-8 glycoproteins-induced cell-to-cell fusion on heparan sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Vaibhav [Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific and College of Optometry, Western University of Health Sciences, Pomona, CA 91766 (United States); Darmani, Nissar A.; Thrush, Gerald R. [Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific and College of Optometry, Western University of Health Sciences, Pomona, CA 91766 (United States); Shukla, Deepak, E-mail: dshukla@uic.edu [Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612 (United States)

    2009-12-18

    Human herpesvirus-8 (HHV-8) is known to interact with cell surface heparan sulfate (HS) for entry into a target cell. Here we investigated the role of HS during HHV-8 glycoproteins-induced cell fusion. Interestingly, the observed fusion demonstrated an unusual dependence on HS as evident from following lines of evidence: (1) a significant reduction in cell-to-cell fusion occurred when target cells were treated with heparinase; (2) in a competition assay, when the effector cells expressing HHV-8 glycoproteins were challenged with soluble HS, cell-to-cell fusion was reduced; and, (3) co-expression of HHV-8 glycoproteins gH-gL on target cells resulted in inhibition of cell surface HS expression. Taken together, our results indicate that cell surface HS can play an additional role during HHV-8 pathogenesis.

  4. Isolation and characterization of broadly neutralizing human monoclonal antibodies to the e1 glycoprotein of hepatitis C virus

    DEFF Research Database (Denmark)

    Meunier, Jean-Christophe; Russell, Rodney S.; Goossens, Vera

    2008-01-01

    The relative importance of humoral and cellular immunity in the prevention or clearance of hepatitis C virus (HCV) infection is poorly understood. However, there is considerable evidence that neutralizing antibodies are involved in disease control. Here we describe the detailed analysis of human...... monoclonal antibodies (MAbs) directed against HCV glycoprotein E1, which may have the potential to control HCV infection. We have identified two MAbs that can strongly neutralize HCV-pseudotyped particles (HCVpp) bearing the envelope glycoproteins of genotypes 1a, 1b, 4a, 5a, and 6a and less strongly...... neutralize HCVpp bearing the envelope glycoproteins of genotype 2a. Genotype 3a was not neutralized. The epitopes for both MAbs were mapped to the region encompassing amino acids 313 to 327. In addition, robust neutralization was also observed against cell culture-adapted viruses of genotypes 1a and 2a...

  5. An unusual dependence of human herpesvirus-8 Glycoproteins-induced cell-to-cell fusion on heparan sulfate

    Science.gov (United States)

    Tiwari, Vaibhav; Darmani, Nissar A.; Thrush, Gerald R.; Shukla, Deepak

    2009-01-01

    Human herpes virus 8 (HHV-8) is known to interact with cell surface heparan sulfate (HS) for entry into a target cell. Here we investigated the role of HS during HHV-8 glycoproteins induced cell fusion. Interestingly, the observed fusion demonstrated an unusual dependence on HS as evident from following lines of evidence: 1) a significant reduction in cell-to-cell fusion occurred when target cells were treated with heparinase; 2) in a competition assay, when the effector cells expressing HHV-8 glycoproteins were challenged with soluble HS, cell-to-cell fusion was reduced; and, 3) coexpression of HHV-8 glycoproteins gH-gL on target cells resulted in inhibition of cell surface HS expression. Taken together, our results indicate that cell surface HS can play an additional role during HHV-8 pathogenesis. PMID:19747451

  6. An unusual dependence of human herpesvirus-8 glycoproteins-induced cell-to-cell fusion on heparan sulfate

    International Nuclear Information System (INIS)

    Tiwari, Vaibhav; Darmani, Nissar A.; Thrush, Gerald R.; Shukla, Deepak

    2009-01-01

    Human herpesvirus-8 (HHV-8) is known to interact with cell surface heparan sulfate (HS) for entry into a target cell. Here we investigated the role of HS during HHV-8 glycoproteins-induced cell fusion. Interestingly, the observed fusion demonstrated an unusual dependence on HS as evident from following lines of evidence: (1) a significant reduction in cell-to-cell fusion occurred when target cells were treated with heparinase; (2) in a competition assay, when the effector cells expressing HHV-8 glycoproteins were challenged with soluble HS, cell-to-cell fusion was reduced; and, (3) co-expression of HHV-8 glycoproteins gH-gL on target cells resulted in inhibition of cell surface HS expression. Taken together, our results indicate that cell surface HS can play an additional role during HHV-8 pathogenesis.

  7. Distribution of primaquine in human blood: Drug-binding to alpha 1-glycoprotein

    International Nuclear Information System (INIS)

    Kennedy, E.; Frischer, H.

    1990-01-01

    To clarify the distribution of the antimalarial primaquine in human blood, we measured the drug separately in the liquid, cellular, and ultrafiltrate phases. Washed red cells resuspended at a hematocrit of 0.4 were exposed to a submaximal therapeutic level of 250 ng/ml of carbon 14-labeled primaquine. The tracer was recovered quantitatively in separated plasma and red cells. Over 75% of the total labeled drug was found in red cells suspended in saline solution, but only 10% to 30% in red cells suspended in plasma. The plasma effect was not mediated by albumin. Studies with alpha 1-acid glycoprotein (AGP), tris(2-butoxyethyl)phosphate, an agent that displaces AGP-bound drugs, and cord blood known to have decreased AGP established that primaquine binds to physiologic amounts of the glycoprotein in plasma. Red cell primaquine concentration increased linearly as AGP level fell and as the free drug fraction rose. We suggest that clinical blood levels of primaquine include the red cell fraction or whole blood level because (1) erythrocytic primaquine is a sizable and highly variable component of the total drug in blood; (2) this component reflects directly the free drug in plasma, and inversely the extent of binding to AGP; (3) the amount of free primaquine may influence drug transport into specific tissues in vivo; and (4) fluctuations of AGP, an acute-phase reactant that increases greatly in patients with malaria and other infections, markedly affect the partition of primaquine in blood. Because AGP binds many basic drugs, unrecognized primaquine-drug interactions may exist

  8. Human cytomegalovirus TRS1 protein associates with the 7-methylguanosine mRNA cap and facilitates translation.

    Science.gov (United States)

    Ziehr, Benjamin; Lenarcic, Erik; Vincent, Heather A; Cecil, Chad; Garcia, Benjamin; Shenk, Thomas; Moorman, Nathaniel J

    2015-06-01

    Viruses rely on the host translation machinery for the synthesis of viral proteins. Human cells have evolved sensors that recognize viral RNAs and inhibit mRNA translation in order to limit virus replication. Understanding how viruses manipulate the host translation machinery to gain access to ribosomes and disable the antiviral response is therefore a critical aspect of the host/pathogen interface. In this study, we used a proteomics approach to identify human cytomegalovirus (HCMV) proteins that might contribute to viral mRNA translation. The HCMV TRS1 protein (pTRS1) associated with the 7-methylguanosine mRNA cap, increased the total level of protein synthesis, and colocalized with mRNAs undergoing translation initiation during infection. pTRS1 stimulated translation of a nonviral reporter gene and increased the translation of a reporter containing an HCMV 5' untranslated region (5'UTR) to a greater extent. The preferential effect of pTRS1 on translation of an mRNA containing a viral 5'UTR required the pTRS1 RNA and double-stranded RNA-dependent protein kinase (PKR)-binding domains, and was likely the result of PKR inhibition. However, pTRS1 also stimulated the total level of protein synthesis and translation directed by an HCMV 5'UTR in cells lacking PKR. Thus our results demonstrate that pTRS1 stimulates translation through both PKR-dependent and PKR-independent mechanisms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Human cytomegalovirus infant infection adversely affects growth and development in maternally HIV-exposed and unexposed infants in Zambia.

    Science.gov (United States)

    Gompels, U A; Larke, N; Sanz-Ramos, M; Bates, M; Musonda, K; Manno, D; Siame, J; Monze, M; Filteau, S

    2012-02-01

    Human immunodeficiency virus (HIV) and human cytomegalovirus (HCMV) coinfections have been shown to increase infant morbidity, mortality, and AIDS progression. In HIV-endemic regions, maternal HIV-exposed but HIV-uninfected infants, which is the majority of children affected by HIV, also show poor growth and increased morbidity. Although nutrition has been examined, the effects of HCMV infection have not been evaluated. We studied the effects of HCMV infection on the growth, development, and health of maternally HIV-exposed and unexposed infants in Zambia. Infants were examined in a cohort recruited to a trial of micronutrient-fortified complementary foods. HIV-infected mothers and infants had received perinatal antiretroviral therapy to prevent mother-to-child HIV transmission. Growth, development, and morbidity were analyzed by linear regression analyses in relation to maternal HIV exposure and HCMV infection, as screened by sera DNA for viremia at 6 months of age and by antibody for infection at 18 months. All HCMV-seropositive infants had decreased length-for-age by 18 months compared with seronegative infants (standard deviation [z]-score difference: -0.44 [95% confidence interval {CI}, -.72 to -.17]; P = .002). In HIV-exposed infants, those who were HCMV positive compared with those who were negative, also had reduced head size (mean z-score difference: -0.72 [95% CI, -1.23 to -.22]; P = .01) and lower psychomotor development (Bayley test score difference: -4.1 [95% CI, -7.8 to -.5]; P = .03). HIV-exposed, HCMV-viremic infants were more commonly referred for hospital treatment than HCMV-negative infants. The effects of HCMV were unaffected by micronutrient fortification. HCMV affects child growth, development, and morbidity of African infants, particularly in those maternally exposed to HIV. HCMV is therefore a risk factor for child health in this region.

  10. Prevalence and activity of Epstein-Barr virus and human cytomegalovirus in symptomatic and asymptomatic apical periodontitis lesions.

    Science.gov (United States)

    Hernádi, Katinka; Szalmás, Anita; Mogyorósi, Richárd; Czompa, Levente; Veress, György; Csoma, Eszter; Márton, Ildikó; Kónya, József

    2010-09-01

    Apical periodontitis is a polymicrobial inflammation with a dominant flora of opportunistic Gram-negative bacteria; however, a pathogenic role of human herpesviruses such as Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) has been implicated recently. The aims of this study were to determine the prevalence, activity, and disease association of EBV and HCMV in apical periodontitis in an Eastern Hungarian population. Forty samples with apical periodontitis (17 symptomatic and 23 asymptomatic) and 40 healthy pulp controls were collected. EBV and HCMV prevalences were measured by polymerase chain reaction (PCR) detection of the viral DNA and viral activity was tested by reverse-transcription PCR amplification of viral messenger RNA. EBV DNA and EBNA-2 messenger RNA were found in apical periodontitis lesions at significantly (p apical lesions (10%) and controls (0%). The presence of EBV DNA in apical lesions was associated significantly with large (> or = 5 mm) lesion size (p = 0.02) but not with symptoms (p = 0.30). Symptomatic manifestation was significantly associated with the co-occurrence (odds ratio [OR], 8.80; 95% confidence interval [CI], 1.69-45.76) but not the sole occurrences of EBNA-2 messenger RNA (OR, 2.29; 95% CI, 0.48-11.06) and large lesion size (OR, 4.02; 95% CI, 0.81-19.89). EBV infection is a frequent event in apical periodontitis, whereas the involvement of HCMV still remains to be elucidated. This study showed that symptomatic manifestation was likely to occur if a large-sized apical periodontitis lesion is aggravated with active EBV infection. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Ebola virus glycoprotein-mediated anoikis of primary human cardiac microvascular endothelial cells

    International Nuclear Information System (INIS)

    Ray, Ratna B.; Basu, Arnab; Steele, Robert; Beyene, Aster; McHowat, Jane; Meyer, Keith; Ghosh, Asish K.; Ray, Ranjit

    2004-01-01

    Ebola virus glycoprotein (EGP) has been implicated for the induction of cytotoxicity and injury in vascular cells. On the other hand, EGP has also been suggested to induce massive cell rounding and detachment from the plastic surface by downregulating cell adhesion molecules without causing cytotoxicity. In this study, we have examined the cytotoxic role of EGP in primary endothelial cells by transduction with a replication-deficient recombinant adenovirus expressing EGP (Ad-EGP). Primary human cardiac microvascular endothelial cells (HCMECs) transduced with Ad-EGP displayed loss of cell adhesion from the plastic surface followed by cell death. Transfer of conditioned medium from EGP-transduced HCMEC into naive cells did not induce loss of adhesion or cell death, suggesting that EGP needs to be expressed intracellularly to exert its cytotoxic effect. Subsequent studies suggested that HCMEC death occurred through apoptosis. Results from this study shed light on the EGP-induced anoikis in primary human cardiac endothelial cells, which may have significant pathological consequences

  12. Human cytomegalovirus and Epstein-Barr virus infection in inflammatory bowel disease: need for mucosal viral load measurement.

    Science.gov (United States)

    Ciccocioppo, Rachele; Racca, Francesca; Paolucci, Stefania; Campanini, Giulia; Pozzi, Lodovica; Betti, Elena; Riboni, Roberta; Vanoli, Alessandro; Baldanti, Fausto; Corazza, Gino Roberto

    2015-02-14

    To evaluate the best diagnostic technique and risk factors of the human Cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) infection in inflammatory bowel disease (IBD). A cohort of 40 IBD patients (17 refractory) and 40 controls underwent peripheral blood and endoscopic colonic mucosal sample harvest. Viral infection was assessed by quantitative real-time polymerase chain reaction and immunohistochemistry, and correlations with clinical and endoscopic indexes of activity, and risk factors were investigated. All refractory patients carried detectable levels of HCMV and/or EBV mucosal load as compared to 13/23 (56.5%) non-refractory and 13/40 (32.5%) controls. The median DNA value was significantly higher in refractory (HCMV 286 and EBV 5.440 copies/10(5) cells) than in non-refractory (HCMV 0 and EBV 6 copies/10(5) cells; P diseased mucosa in comparison to non-diseased mucosa (P < 0.0121 for HCMV and < 0.0004 for EBV), while non-refractory patients and controls invariably displayed levels below this threshold, thus allowing us to differentiate viral colitis from mucosal infection. Moreover, the mucosal load positively correlated with the values found in the peripheral blood, whilst no correlation with the number of positive cells at immunohistochemistry was found. Steroid use was identified as a significant risk factor for both HCMV (P = 0.018) and EBV (P = 0.002) colitis. Finally, a course of specific antiviral therapy with ganciclovir was successful in all refractory patients with HCMV colitis, whilst refractory patients with EBV colitis did not show any improvement despite steroid tapering and discontinuation of the other medications. Viral colitis appeared to contribute to mucosal lesions in refractory IBD, and its correct diagnosis and management require quantitative real-time polymerase chain reaction assay of mucosal specimens.

  13. Roles of polypyrimidine tract binding proteins in major immediate-early gene expression and viral replication of human cytomegalovirus.

    Science.gov (United States)

    Cosme, Ruth S Cruz; Yamamura, Yasuhiro; Tang, Qiyi

    2009-04-01

    Human cytomegalovirus (HCMV), a member of the beta subgroup of the family Herpesviridae, causes serious health problems worldwide. HCMV gene expression in host cells is a well-defined sequential process: immediate-early (IE) gene expression, early-gene expression, DNA replication, and late-gene expression. The most abundant IE gene, major IE (MIE) gene pre-mRNA, needs to be spliced before being exported to the cytoplasm for translation. In this study, the regulation of MIE gene splicing was investigated; in so doing, we found that polypyrimidine tract binding proteins (PTBs) strongly repressed MIE gene production in cotransfection assays. In addition, we discovered that the repressive effects of PTB could be rescued by splicing factor U2AF. Taken together, the results suggest that PTBs inhibit MIE gene splicing by competing with U2AF65 for binding to the polypyrimidine tract in pre-mRNA. In intron deletion mutation assays and RNA detection experiments (reverse transcription [RT]-PCR and real-time RT-PCR), we further observed that PTBs target all the introns of the MIE gene, especially intron 2, and affect gene splicing, which was reflected in the variation in the ratio of pre-mRNA to mRNA. Using transfection assays, we demonstrated that PTB knockdown cells induce a higher degree of MIE gene splicing/expression. Consistently, HCMV can produce more viral proteins and viral particles in PTB knockdown cells after infection. We conclude that PTB inhibits HCMV replication by interfering with MIE gene splicing through competition with U2AF for binding to the polypyrimidine tract in MIE gene introns.

  14. Can immune-related genotypes illuminate the immunopathogenesis of cytomegalovirus disease in human immunodeficiency virus-infected patients?

    Science.gov (United States)

    Affandi, Jacquita S; Aghafar, Zayd K A; Rodriguez, Benigno; Lederman, Michael M; Burrows, Sally; Senitzer, David; Price, Patricia

    2012-02-01

    Most human immunodeficiency virus (HIV) patients are seropositive for cytomegalovirus (CMV) but a smaller proportion experience end-organ disease. This observation may reflect variations in genes affecting inflammatory and natural killer cell responses. DNA samples were collected from 240 HIV-infected patients followed at the University Hospitals/Case Medical Center (Cleveland, OH) between 1993 and 2008. Seventy-eight patients (African Americans = 41, Caucasians = 37) experienced CMV disease. Genotypes were determined using allele-specific fluorescent probes or multiplex polymerase chain reaction sequence-specific primers. IL12B3'UTR*(1) and SLC11A1 D543N*(1,2) were associated with CMV disease in African American patients (p = 0.04 and p = 0.02, respectively). IL10-1082*(1,2) and LILRB1 I142T*(1) were associated with CMV disease in Caucasians (p = 0.02 and p = 0.07, respectively). DARC T-46C*(1) and CD14 C-159T*(2) were associated with low nadir CD4(+) T cell counts in African American patients (p = 0.002 and p = 0.01, respectively). Caucasian patients carrying TNFA-308*2, TNFA-1031*(2), IL2-330*(1), CCL2-2518*(2), or LILRB1 I142T*(1) had significantly lower nadir CD4(+) T cells in a bootstrapped multivariable model (p = 0.006-0.02). In general, polymorphisms associated with CMV disease and CD4(+) T cell counts were distinct in Caucasian and African American patients in the United States. The LILRB1 I142T polymorphism was associated with both CMV disease and low nadir CD4(+) T cell counts in Caucasians, but the clearest determinant of low nadir CD4(+) T cell count in African American patients was DARC T-46C. Copyright © 2012 American Society for Histocompatibility and Immunogenetics. All rights reserved.

  15. Human cytomegalovirus uracil DNA glycosylase associates with ppUL44 and accelerates the accumulation of viral DNA

    Directory of Open Access Journals (Sweden)

    Dixon Melissa

    2005-07-01

    Full Text Available Abstract Background Human cytomegalovirus UL114 encodes a uracil-DNA glycosylase homolog that is highly conserved in all characterized herpesviruses that infect mammals. Previous studies demonstrated that the deletion of this nonessential gene delays significantly the onset of viral DNA synthesis and results in a prolonged replication cycle. The gene product, pUL114, also appears to be important in late phase DNA synthesis presumably by introducing single stranded breaks. Results A series of experiments was performed to formally assign the observed phenotype to pUL114 and to characterize the function of the protein in viral replication. A cell line expressing pUL114 complemented the observed phenotype of a UL114 deletion virus in trans, confirming that the observed defects were the result of a deficiency in this gene product. Stocks of recombinant viruses without elevated levels of uracil were produced in the complementing cells; however they retained the phenotype of poor growth in normal fibroblasts suggesting that poor replication was unrelated to uracil content of input genomes. Recombinant viruses expressing epitope tagged versions of this gene demonstrated that pUL114 was expressed at early times and that it localized to viral replication compartments. This protein also coprecipitated with the DNA polymerase processivity factor, ppUL44 suggesting that these proteins associate in infected cells. This apparent interaction did not appear to require other viral proteins since ppUL44 could recruit pUL114 to the nucleus in uninfected cells. An analysis of DNA replication kinetics revealed that the initial rate of DNA synthesis and the accumulation of progeny viral genomes were significantly reduced compared to the parent virus. Conclusion These data suggest that pUL114 associates with ppUL44 and that it functions as part of the viral DNA replication complex to increase the efficiency of both early and late phase viral DNA synthesis.

  16. Ca 125 and Ca 19-9: two cancer-associated sialylsaccharide antigens on a mucus glycoprotein from human milk.

    Science.gov (United States)

    Hanisch, F G; Uhlenbruck, G; Dienst, C; Stottrop, M; Hippauf, E

    1985-06-03

    The cancer-associated antigens Ca 125 and Ca 19-9 were demonstrated by radioimmunoassay to form structural units of a mucus glycoprotein in human milk taken from healthy women four days after parturition. The glycoprotein precipitated with the casein fraction at pH 4.6 and was completely absent in the whey as judged from Ca 19-9 assay. It could be effectively enriched by phenol-saline extraction from soluble milk proteins and further purified by gel filtration on Sephacryl S300 and Sephacryl S400. The active component with a bouyant density of 1.41 g/ml in isopycnic density gradient centrifugation (CsCl) shared common physico-chemical and chemical characteristics of mucus glycoproteins. Carbohydrates representing about 68% by weight were conjugated to protein by alkali-labile linkages, exclusively and were essentially free of D-mannose. Activities of Ca 125 and Ca 19-9 were both destroyed by treatment with periodate, mild alkali or neuraminidase suggesting the antigens are sialylated saccharides bound to protein by alkali-labile linkages. The fraction of monosialylated saccharide alditols isolated after reductive beta-elimination from the mucus glycoprotein was shown to inhibit monoclonal antibodies anti-(Ca 125) and anti-(Ca 19-9) in radioimmunoassay.

  17. The antiviral protein human lactoferrin is distributed in the body to cytomegalovirus (CMV) infection-prone cells and tissues

    NARCIS (Netherlands)

    Beljaars, Leonie; Bakker, Hester I; van der Strate, Barry W A; Smit, Catharina; Duijvestijn, Adrian M; Meijer, Dirk K F; Molema, Grietje

    Purpose. Lactoferrin has anti-Cytomegalovirus (CMV) and -HIV properties in vitro. However, the pharmacokinetic behavior of the 80-kD protein has not been well defined. We, therefore, assessed the plasma decay and body distribution of lactoferrin after intravenous administration to freely moving

  18. Overexpression of human virus surface glycoprotein precursors induces cytosolic unfolded protein response in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Sasnauskas Kęstutis

    2011-05-01

    Full Text Available Abstract Background The expression of human virus surface proteins, as well as other mammalian glycoproteins, is much more efficient in cells of higher eukaryotes rather than yeasts. The limitations to high-level expression of active viral surface glycoproteins in yeast are not well understood. To identify possible bottlenecks we performed a detailed study on overexpression of recombinant mumps hemagglutinin-neuraminidase (MuHN and measles hemagglutinin (MeH in yeast Saccharomyces cerevisiae, combining the analysis of recombinant proteins with a proteomic approach. Results Overexpressed recombinant MuHN and MeH proteins were present in large aggregates, were inactive and totally insoluble under native conditions. Moreover, the majority of recombinant protein was found in immature form of non-glycosylated precursors. Fractionation of yeast lysates revealed that the core of viral surface protein aggregates consists of MuHN or MeH disulfide-linked multimers involving eukaryotic translation elongation factor 1A (eEF1A and is closely associated with small heat shock proteins (sHsps that can be removed only under denaturing conditions. Complexes of large Hsps seem to be bound to aggregate core peripherally as they can be easily removed at high salt concentrations. Proteomic analysis revealed that the accumulation of unglycosylated viral protein precursors results in specific cytosolic unfolded protein response (UPR-Cyto in yeast cells, characterized by different action and regulation of small Hsps versus large chaperones of Hsp70, Hsp90 and Hsp110 families. In contrast to most environmental stresses, in the response to synthesis of recombinant MuHN and MeH, only the large Hsps were upregulated whereas sHsps were not. Interestingly, the amount of eEF1A was also increased during this stress response. Conclusions Inefficient translocation of MuHN and MeH precursors through ER membrane is a bottleneck for high-level expression in yeast. Overexpression of

  19. Cell Surface Glycoprotein of Reactive Stromal Fibroblasts as a Potential Antibody Target in Human Epithelial Cancers

    Science.gov (United States)

    Garin-Chesa, Pilar; Old, Lloyd J.; Rettig, Wolfgang J.

    1990-09-01

    The F19 antigen is a cell surface glycoprotein (M_r, 95,000) of human sarcomas and proliferating, cultured fibroblasts that is absent from resting fibroblasts in normal adult tissues. Normal and malignant epithelial cells are also F19^-. The present immunohistochemical study describes induction of F19 in the reactive mesenchyme of epithelial tumors. F19^+ fibroblasts were found in primary and metastatic carcinomas, including colorectal (18 of 18 cases studied), breast (14/14), ovarian (21/21), bladder (9/10), and lung carcinomas (13/13). In contrast, the stroma of benign colorectal adenomas, fibrocystic disease and fibroadenomas of breast, benign prostate hyperplasia, in situ bladder carcinomas, and benign ovarian tumors showed no or only moderate numbers of F19^+ fibroblasts. Analysis of dermal incision wounds revealed that F19 is strongly induced during scar formation. Comparison of F19 with the extracellular matrix protein tenascin, a putative marker of tumor mesenchyme, showed a cellular staining pattern for F19 vs. the extracellular matrix pattern for tenascin and widespread expression of tenascin in F19^- normal tissues and benign tumors. Our results suggest that the F19^+ phenotype correlates with specialized fibroblast functions in wound healing and malignant tumor growth. Because of its abundance in tumor mesenchyme, F19 may serve as a target for antibodies labeled with radioisotopes or toxic agents, or inflammatogenic antibodies, in carcinoma patients.

  20. Celastraceae sesquiterpenes as a new class of modulators that bind specifically to human P-glycoprotein and reverse cellular multidrug resistance.

    Science.gov (United States)

    Muñoz-Martínez, Francisco; Lu, Peihua; Cortés-Selva, Fernando; Pérez-Victoria, José María; Jiménez, Ignacio A; Ravelo, Angel G; Sharom, Frances J; Gamarro, Francisco; Castanys, Santiago

    2004-10-01

    Overexpression of ABCB1 (MDR1) P-glycoprotein, a multidrug efflux pump, is one mechanism by which tumor cells may develop multidrug resistance (MDR), preventing the successful chemotherapeutic treatment of cancer. Sesquiterpenes from Celastraceae family are natural compounds shown previously to reverse MDR in several human cancer cell lines and Leishmania strains. However, their molecular mechanism of reversion has not been characterized. In the present work, we have studied the ability of 28 dihydro-beta-agarofuran sesquiterpenes to reverse the P-glycoprotein-dependent MDR phenotype and elucidated their molecular mechanism of action. Cytotoxicity assays using human MDR1-transfected NIH-3T3 cells allowed us to select the most potent sesquiterpenes reversing the in vitro resistance to daunomycin and vinblastine. Flow cytometry experiments showed that the above active compounds specifically inhibited drug transport activity of P-glycoprotein in a saturable, concentration-dependent manner (K(i) down to 0.24 +/- 0.01 micromol/L) but not that of ABCC1 (multidrug resistance protein 1; MRP1), ABCC2 (MRP2), and ABCG2 (breast cancer resistance protein; BCRP) transporters. Moreover, sesquiterpenes inhibited at submicromolar concentrations the P-glycoprotein-mediated transport of [(3)H]colchicine and tetramethylrosamine in plasma membrane from CH(R)B30 cells and P-glycoprotein-enriched proteoliposomes, supporting that P-glycoprotein is their molecular target. Photoaffinity labeling in plasma membrane and fluorescence spectroscopy experiments with purified protein suggested that sesquiterpenes interact with transmembrane domains of P-glycoprotein. Finally, sesquiterpenes modulated P-glycoprotein ATPase-activity in a biphasic, concentration-dependent manner: they stimulated at very low concentrations but inhibited ATPase activity as noncompetitive inhibitors at higher concentrations. Sesquiterpenes from Celastraceae are promising P-glycoprotein modulators with potential

  1. Mapping of Minimal Motifs of B-Cell Epitopes on Human Zona Pellucida Glycoprotein-3

    Directory of Open Access Journals (Sweden)

    Wan-Xiang Xu

    2012-01-01

    Full Text Available The human zona pellucida glycoprotein-3 (hZP3 by virtue of its critical role during fertilization has been proposed as a promising candidate antigen to develop a contraceptive vaccine. In this direction, it is imperative to map minimal motifs of the B cell epitopes (BCEs so as to avoid ZP-specific oophoritogenic T cell epitopes (TCEs in the ZP3-based immunogens. In this study, based on known results of mapping marmoset and bonnet monkey ZP3 (mstZP3 and bmZP3, two predictable epitopes23–30  and  301–320 on hZP3 were first confirmed and five minimal motifs within four epitopes on hZP3 were defined using serum to recombinant hZP3a22–176 or hZP3b177–348 as well as a biosynthetic peptide strategy. These defined minimal motifs were QPLWLL23–28 for hZP323–30, MQVTDD103–108 for hZP393–110, EENW178–181 for hZP3172–190, as well as SNSWF306–310 and EGP313–315 for hZP3301–320, respectively. Furthermore, the antigenicity of two peptides for hZP3172–187 and hZP3301–315 and specificity of the antibody response to these peptides were also evaluated, which produced high-titer antibodies in immunized animals that were capable of reacting to ZP on human oocytes, r-hZP3b177–348 protein, as well as r-hZP3172–190, r-hZP3303–310, and r-hZP3313–320 epitope peptides fused with truncated GST188 protein.

  2. Convergent evolution of pregnancy-specific glycoproteins in human and horse.

    Science.gov (United States)

    Aleksic, Denis; Blaschke, Lisa; Mißbach, Sophie; Hänske, Jana; Weiß, Wiebke; Handler, Johannes; Zimmermann, Wolfgang; Cabrera-Sharp, Victoria; Read, Jordan E; de Mestre, Amanda M; O'Riordan, Ronan; Moore, Tom; Kammerer, Robert

    2016-09-01

    Pregnancy-specific glycoproteins (PSGs) are members of the carcinoembryonic antigen cell adhesion molecule (CEACAM) family that are secreted by trophoblast cells. PSGs may modulate immune, angiogenic and platelet responses during pregnancy. Until now, PSGs are only found in species that have a highly invasive (hemochorial) placentation including humans, mice and rats. Surprisingly, analyzing the CEACAM gene family of the horse, which has a non-invasive epitheliochorial placenta, with the exception of the transient endometrial cups, we identified equine CEACAM family members that seem to be related to PSGs of rodents and primates. We identified seven genes that encode secreted PSG-like CEACAMs Phylogenetic analyses indicate that they evolved independently from an equine CEACAM1-like ancestor rather than from a common PSG-like ancestor with rodents and primates. Significantly, expression of PSG-like genes (CEACAM44, CEACAM48, CEACAM49 and CEACAM55) was found in non-invasive as well as invasive trophoblast cells such as purified chorionic girdle cells and endometrial cup cells. Chorionic girdle cells are highly invasive trophoblast cells that invade the endometrium of the mare where they form endometrial cups and are in close contact with maternal immune cells. Therefore, the microenvironment of invasive equine trophoblast cells has striking similarities to the microenvironment of trophoblast cells in hemochorial placentas, suggesting that equine PSG-like CEACAMs and rodent and primate PSGs have undergone convergent evolution. This is supported by our finding that equine PSG-like CEACAM49 exhibits similar activity to certain rodent and human PSGs in a functional assay of platelet-fibrinogen binding. Our results have implications for understanding the evolution of PSGs and their functions in maternal-fetal interactions. © 2016 Society for Reproduction and Fertility.

  3. Human cytomegalovirus-encoded miR-US4-1 promotes cell ...

    Indian Academy of Sciences (India)

    2016-04-05

    Apr 5, 2016 ... 3′) for hcmv-miR-US4-1 was designed according to the. miRNA sequence (5′- ... the hcmv-miR-US4-1 hybrid primer and polyA tails were. 184. Yaozhong ... eight hours later, luciferase activities were measured us- ing Dual ..... resolution profiling and analysis of viral and host small RNAs during human ...

  4. Incidence of human herpes virus-6 and human cytomegalovirus infections in donated bone marrow and umbilical cord blood hematopoietic stem cells

    Directory of Open Access Journals (Sweden)

    Behzad-Behbahani A

    2008-01-01

    Full Text Available This study examined the incidence of human herpes virus-6 (HHV-6 and human cytomegalovirus (HCMV infections that are potentially transmitted to haematopoietic stem cells (HSC transplant recipients via bone marrow (BM or umbilical cord blood (UCB. Bone marrow progenitor cells were collected from 30 allogenic BM donors. UCB HSC were collected from 34 subjects. The extracted DNA was then processed using nested polymerase chain reaction (nPCR technique. HCMV and HHV-6 serological status were determined by enzyme immunoassay (EIA. Nested PCR identified HCMV in 22 (73% of 30 samples of BM progenitor cells but in only eight (23.5% of 34 samples of UBC HSC ( P = 0.001. HHV-6 DNA was detected in 11 (36.6% of 30 BM progenitor cells and in only one (2.9% of 34 UBC cells ( P = 0.002. Both HHV-6 and HCMV infections were determined in nine (26.5% of 34 bone marrow samples. The results indicate that, the risk of HCMV and HHV-6 via BM progenitor cells is higher than transmission by UCB cells ( P= 0.04.

  5. Regulation and Gene Expression Profiling of NKG2D Positive Human Cytomegalovirus-Primed CD4+ T-Cells

    Science.gov (United States)

    Jensen, Helle; Folkersen, Lasse; Skov, Søren

    2012-01-01

    NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4+ T-cells, however recently a subset of NKG2D+ CD4+ T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D+ CD4+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D+ CD4+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D+ CD4+ T-cells, generated from HCMV-primed CD4+ T-cells. We show that the HCMV-primed NKG2D+ CD4+ T-cells possess a higher differentiated phenotype than the NKG2D– CD4+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4+ T-cells, whereas it is produced de novo in resting CD4+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D+ CD4+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression. PMID:22870231

  6. Regulation and gene expression profiling of NKG2D positive human cytomegalovirus-primed CD4+ T-cells.

    Directory of Open Access Journals (Sweden)

    Helle Jensen

    Full Text Available NKG2D is a stimulatory receptor expressed by natural killer (NK cells, CD8(+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4(+ T-cells, however recently a subset of NKG2D(+ CD4(+ T-cells has been found, which is specific for human cytomegalovirus (HCMV. This particular subset of HCMV-specific NKG2D(+ CD4(+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D(+ CD4(+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4(+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA to investigate the gene expression profile of NKG2D(+ CD4(+ T-cells, generated from HCMV-primed CD4(+ T-cells. We show that the HCMV-primed NKG2D(+ CD4(+ T-cells possess a higher differentiated phenotype than the NKG2D(- CD4(+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4(+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4(+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4(+ T-cells, whereas it is produced de novo in resting CD4(+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D(+ CD4(+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression.

  7. ABCB1 (P-glycoprotein) reduces bacterial attachment to human gastrointestinal LS174T epithelial cells.

    Science.gov (United States)

    Crowe, Andrew; Bebawy, Mary

    2012-08-15

    The aim of this project was to show elevated P-glycoprotein (P-gp) expression decreasing bacterial association with LS174T human gastrointestinal cells, and that this effect could be reversed upon blocking functional P-gp efflux. Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Lactobacillus acidophilus and numerous strains of Escherichia coli, from commensal to enteropathogenic and enterohaemorrhagic strains (O157:H7) were fluorescently labelled and incubated on LS174T cultures either with or without P-gp amplification using rifampicin. PSC-833 was used as a potent functional P-gp blocking agent. Staphylococcus and Pseudomonas displayed the greatest association with the LS174T cells. Surprisingly, lactobacilli retained more fluorescence than enteropathogenic-E. coli in this system. Irrespective of attachment differences between the bacterial species, the increase in P-gp protein expression decreased bacterial fluorescence by 25-30%. This included the GFP-labelled E. coli, and enterohaemorrhagic E. coli (O157:H7). Blocking P-gp function through the co-administration of PSC-833 increased the amount of bacteria associated with P-gp expressing LS174T cells back to control levels. As most bacteria were affected to the same degree, irrespective of pathogenicity, it is unlikely that P-gp has a direct influence on adhesion of bacteria, and instead P-gp may be playing an indirect role by secreting a bank of endogenous factors or changing the local environment to one less suited to bacterial growth in general. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  8. Catalytic transitions in the human MDR1 P-glycoprotein drug binding sites.

    Science.gov (United States)

    Wise, John G

    2012-06-26

    Multidrug resistance proteins that belong to the ATP-binding cassette family like the human P-glycoprotein (ABCB1 or Pgp) are responsible for many failed cancer and antiviral chemotherapies because these membrane transporters remove the chemotherapeutics from the targeted cells. Understanding the details of the catalytic mechanism of Pgp is therefore critical to the development of inhibitors that might overcome these resistances. In this work, targeted molecular dynamics techniques were used to elucidate catalytically relevant structures of Pgp. Crystal structures of homologues in four different conformations were used as intermediate targets in the dynamics simulations. Transitions from conformations that were wide open to the cytoplasm to transition state conformations that were wide open to the extracellular space were studied. Twenty-six nonredundant transitional protein structures were identified from these targeted molecular dynamics simulations using evolutionary structure analyses. Coupled movement of nucleotide binding domains (NBDs) and transmembrane domains (TMDs) that form the drug binding cavities were observed. Pronounced twisting of the NBDs as they approached each other as well as the quantification of a dramatic opening of the TMDs to the extracellular space as the ATP hydrolysis transition state was reached were observed. Docking interactions of 21 known transport ligands or inhibitors were analyzed with each of the 26 transitional structures. Many of the docking results obtained here were validated by previously published biochemical determinations. As the ATP hydrolysis transition state was approached, drug docking in the extracellular half of the transmembrane domains seemed to be destabilized as transport ligand exit gates opened to the extracellular space.

  9. Human cytomegalovirus alters localization of MHC class II and dendrite morphology in mature Langerhans cells.

    Science.gov (United States)

    Lee, Andrew W; Hertel, Laura; Louie, Ryan K; Burster, Timo; Lacaille, Vashti; Pashine, Achal; Abate, Davide A; Mocarski, Edward S; Mellins, Elizabeth D

    2006-09-15

    Hemopoietic stem cell-derived mature Langerhans-type dendritic cells (LC) are susceptible to productive infection by human CMV (HCMV). To investigate the impact of infection on this cell type, we examined HLA-DR biosynthesis and trafficking in mature LC cultures exposed to HCMV. We found decreased surface HLA-DR levels in viral Ag-positive as well as in Ag-negative mature LC. Inhibition of HLA-DR was independent of expression of unique short US2-US11 region gene products by HCMV. Indeed, exposure to UV-inactivated virus, but not to conditioned medium from infected cells, was sufficient to reduce HLA-DR on mature LC, implicating particle binding/penetration in this effect. Reduced surface levels reflected an altered distribution of HLA-DR because total cellular HLA-DR was not diminished. Accumulation of HLA-DR was not explained by altered cathepsin S activity. Mature, peptide-loaded HLA-DR molecules were retained within cells, as assessed by the proportion of SDS-stable HLA-DR dimers. A block in egress was implicated, as endocytosis of surface HLA-DR was not increased. Immunofluorescence microscopy corroborated the intracellular retention of HLA-DR and revealed markedly fewer HLA-DR-positive dendritic projections in infected mature LC. Unexpectedly, light microscopic analyses showed a dramatic loss of the dendrites themselves and immunofluorescence revealed that cytoskeletal elements crucial for the formation and maintenance of dendrites are disrupted in viral Ag-positive cells. Consistent with these dendrite effects, HCMV-infected mature LC exhibit markedly reduced chemotaxis in response to lymphoid chemokines. Thus, HCMV impedes MHC class II molecule trafficking, dendritic projections, and migration of mature LC. These changes likely contribute to the reduced activation of CD4+ T cells by HCMV-infected mature LC.

  10. Human intestinal P-glycoprotein activity estimated by the model substrate digoxin

    DEFF Research Database (Denmark)

    Larsen, U L; Hyldahl Olesen, L; Nyvold, Charlotte Guldborg

    2007-01-01

    P-glycoprotein (Pgp) plays a part in the intestinal uptake of xenobiotics and has been associated with susceptibility to ulcerative colitis. The aim of this study was to examine Pgp activity in relation to age, gender, medical treatment (rifampicin or ketoconazole) and the multidrug resistance (MDR...

  11. Modification-specific proteomic analysis of glycoproteins in human body fluids by mass spectrometry

    DEFF Research Database (Denmark)

    Bunkenborg, Jakob; Hägglund, Per; Jensen, Ole Nørregaard

    2007-01-01

    -glycosylated proteins in body fluids and other complex samples. An approach for identification of N-glycosylated proteins and mapping of their glycosylation sites is described. In this approach, glycoproteins are initially selectively purified by lectin chromatography. Following tryptic digestion, glycopeptides...

  12. Reference gene selection for quantitative real-time PCR analysis in virus infected cells: SARS corona virus, Yellow fever virus, Human Herpesvirus-6, Camelpox virus and Cytomegalovirus infections

    Directory of Open Access Journals (Sweden)

    Müller Marcel A

    2005-02-01

    Full Text Available Abstract Ten potential reference genes were compared for their use in experiments investigating cellular mRNA expression of virus infected cells. Human cell lines were infected with Cytomegalovirus, Human Herpesvirus-6, Camelpox virus, SARS coronavirus or Yellow fever virus. The expression levels of these genes and the viral replication were determined by real-time PCR. Genes were ranked by the BestKeeper tool, the GeNorm tool and by criteria we reported previously. Ranking lists of the genes tested were tool dependent. However, over all, β-actin is an unsuitable as reference gene, whereas TATA-Box binding protein and peptidyl-prolyl-isomerase A are stable reference genes for expression studies in virus infected cells.

  13. Characterization of the Fusion and Attachment Glycoproteins of Human Metapneumovirus and Human Serosurvey to Determine Reinfection Rates

    Science.gov (United States)

    2007-06-27

    Metapneumovirus genus. The Paramyxoviridae are in the taxonomical order Mononegavirales which includes Bornaviridae, Rhabdoviridae and Filoviridae which... Rhabdoviridae plant virus, replicate in the cytoplasm (66). The Paramyxoviridae are enveloped viruses and have been defined by the fusion glycoprotein

  14. Crystal structure of the Hendra virus attachment G glycoprotein bound to a potent cross-reactive neutralizing human monoclonal antibody.

    Directory of Open Access Journals (Sweden)

    Kai Xu

    Full Text Available The henipaviruses, represented by Hendra (HeV and Nipah (NiV viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4 was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines.

  15. Distinct spatial relationship of interleukin-9 receptor with IL-2R and MHC glycoproteins in human T lymphoma cells

    OpenAIRE

    Nizsalóczki, Enikő; Csomós, István; Nagy, Péter; Fazekas, Zsolt; Goldman, Carolyn K.; Waldmann, Thomas A.; Damjanovich, Sándor; Vámosi, György; Mátyus, László; Bodnár, Andrea

    2014-01-01

    The IL-9R consists of the α-subunit and the γc-chain shared with other cytokine receptors, including IL-2R, an important regulator of T cells. We have previously shown that IL-2R is expressed in common clusters with MHC glycoproteins in lipid rafts of human T lymphoma cells raising the question what the relationship between clusters of IL-2R/MHC and IL-9R is. Confocal microscopic co-localization and FRET experiments capable of detecting membrane protein organization at different size scales r...

  16. Effect of zolpidem on human cytochrome P450 activity, and on transport mediated by P-glycoprotein.

    Science.gov (United States)

    von Moltke, Lisa L; Weemhoff, James L; Perloff, Michael D; Hesse, Leah M; Harmatz, Jerold S; Roth-Schechter, Barbara F; Greenblatt, David J

    2002-12-01

    The influence of high concentrations of zolpidem (100 microM, corresponding to approximately 200 times maximum therapeutic concentrations) on the activity of six human Cytochrome P450 (CYP) enzymes was evaluated in a model system using human liver microsomes. Zolpidem produced negligible or weak inhibition of human CYP1A2, 2B6, 2C9, 2C19, 2D6, and 3A. Transport of rhodamine 123, presumed to be mediated mainly by the energy-dependent efflux transport protein P-glycoprotein, was studied in a cell culture system using a human intestinal cell line. High concentrations of zolpidem (100 microM), exceeding the usual therapeutic range by more than 100-fold, produced only modest impairment of rhodamine 123 transport. The findings indicate that zolpidem is very unlikely to cause clinical drug interactions attributable to impairment of CYP activity or P-gp mediated transport. Copyright 2002 John Wiley & Sons, Ltd.

  17. Genomic Knockout of Endogenous Canine P-Glycoprotein in Wild-Type, Human P-Glycoprotein and Human BCRP Transfected MDCKII Cell Lines by Zinc Finger Nucleases.

    Science.gov (United States)

    Gartzke, Dominik; Delzer, Jürgen; Laplanche, Loic; Uchida, Yasuo; Hoshi, Yutaro; Tachikawa, Masanori; Terasaki, Tetsuya; Sydor, Jens; Fricker, Gert

    2015-06-01

    To investigate whether it is possible to specifically suppress the expression and function of endogenous canine P-glycoprotein (cPgp) in Madin-Darby canine kidney type II cells (MDCKII) transfected with hPGP and breast cancer resistance protein (hBCRP) by zinc finger nuclease (ZFN) producing sequence specific DNA double strand breaks. Wild-type, hPGP-transfected, and hBCRP-transfected MDCKII cells were transfected with ZFN targeting for cPgp. Net efflux ratios (NER) of Pgp and Bcrp substrates were determined by dividing efflux ratios (basal-to-apical / apical-to-basal) in over-expressing cell monolayers by those in wild-type ones. From ZFN-transfected cells, cell populations (ko-cells) showing knockout of cPgp were selected based on genotyping by PCR. qRT-PCR analysis showed the significant knock-downs of cPgp and interestingly also cMrp2 expressions. Specific knock-downs of protein expression for cPgp were shown by western blotting and quantitative targeted absolute proteomics. Endogenous canine Bcrp proteins were not detected. For PGP-transfected cells, NERs of 5 Pgp substrates in ko-cells were significantly greater than those in parental cells not transfected with ZFN. Similar result was obtained for BCRP-transfected cells with a dual Pgp and Bcrp substrate. Specific efflux mediated by hPGP or hBCRP can be determined with MDCKII cells where cPgp has been knocked out by ZFN.

  18. Cytomegalovirus (CMV) infection

    Science.gov (United States)

    ... If your immune system becomes weakened in the future, this virus may have the chance to reactivate, ... 140. Drew WL. Cytomegalovirus. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: ...

  19. Study on sensitivity of southern blotting hybridization using a 32P-labeled probe of PCR products in detecting human cytomegalovirus

    International Nuclear Information System (INIS)

    Bu Hengfu; Chen Juan; Shen Rongsen; Ma Liren; Xu Yongqiang

    1996-01-01

    Southern blotting hybridization (SBH) using a 32 P-labeled probe is one of the most practical methods for genetic diagnosis of pathogen. On the basis of establishing PCR and nested PCR for detecting human cytomegalovirus (HCMV), a 32 P-labeled probe was prepared with the amplified products of 613 bp PCR outer primers and hybridized with 300 bp inner primer amplified product, resulting in increase in detecting sensitivity from 17 ng (in 1.2% agarose electrophoresis) before SBH to 500 pg (autoradiographed), in other words, increasing the sensitivity of detecting HCMV by 10 2 dilutions after using SBH. The method of PCR and SBH using a 32 P-labeled probe could detect less than 1 gene copy of HCMV, therefore, it is a rapid and reliable diagnosis method for detecting HCMV latent infection

  20. Identification of structural and secretory lectin-binding glycoproteins of normal and cancerous human prostate.

    Science.gov (United States)

    Lad, P M; Cooper, J F; Learn, D B; Olson, C V

    1984-12-07

    We have utilized the technique of lectin-loading of SDS gels with iodinated concanavalin A and wheat germ agglutinin to identify glycoproteins in prostatic and seminal fluids as well as in prostate tissue fractions. The following subunits which bound both lectins were detected: (a) 50, 43 and 38 kDa subunits common to prostatic and seminal fluids, and an additional 55 kDa subunit which predominates only in prostatic fluid; (b) 78, 55, 50 and 43 kDa subunits in prostatic tissue cytosol and (c) 195, 170, 135, 116 and 95 kDa subunits present in the particulate fractions of prostatic tissue. Immunoblotting using specific rabbit antibodies revealed the 50 kDa band to be prostatic acid phosphatase and the 38 kDa band to be prostate-specific antigen. Interestingly, antibodies directed toward prostatic acid phosphatase were found to cross-react with the 43 kDa band. Fractionation on sucrose gradients showed that several of these particulate glycoproteins were associated with a vesicle fraction enriched in adenylate cyclase activity, implying that they are plasma membrane glycoproteins. Comparison of soluble and particulate fractions of normal and cancerous tissue homogenates was made by densitometric scanning of autoradiograms of lectin-loaded gels. Similar relative intensities of lectin-binding were obtained for corresponding proteins in normal and cancerous tissue fractions. Also, immunoblotting showed no differences in prostatic acid phosphatase or prostate-specific antigen between normal and cancerous soluble homogenate fractions. Our results suggest that major lectin-binding proteins are conserved in the transition from normal to cancerous tissue. These results may be useful in developing a multiple-marker profile of metastatic prostate cancer and for the design of imaging agents, such as monoclonal antibodies, to prominent soluble and particulate prostate glycoproteins.

  1. Cell-cycle-dependent localization of human cytomegalovirus UL83 phosphoprotein in the nucleolus and modulation of viral gene expression in human embryo fibroblasts in vitro.

    Science.gov (United States)

    Arcangeletti, Maria-Cristina; Rodighiero, Isabella; Mirandola, Prisco; De Conto, Flora; Covan, Silvia; Germini, Diego; Razin, Sergey; Dettori, Giuseppe; Chezzi, Carlo

    2011-01-01

    The nucleolus is a multifunctional nuclear compartment widely known to be involved in several cellular processes, including mRNA maturation and shuttling to cytoplasmic sites, control of the cell cycle, cell proliferation, and apoptosis; thus, it is logical that many viruses, including herpesvirus, target the nucleolus in order to exploit at least one of the above-mentioned functions. Recent studies from our group demonstrated the early accumulation of the incoming ppUL83 (pp65), the major tegument protein of human cytomegalovirus (HCMV), in the nucleolus. The obtained results also suggested that a functional relationship might exist between the nucleolar localization of pp65, rRNA synthesis, and the development of the lytic program of viral gene expression. Here we present new data which support the hypothesis of a potentially relevant role of HCMV pp65 and its nucleolar localization for the control of the cell cycle by HCMV (arrest of cell proliferation in G1-G1/S), and for the promotion of viral infection. We demonstrated that, although the incoming pp65 amount in the infected cells appears to be constant irrespective of the cell-cycle phase, its nucleolar accumulation is prominent in G1 and G1/S, but very poor in S or G2/M. This correlates with the observation that only cells in G1 and G1/S support an efficient development of the HCMV lytic cycle. We propose that HCMV pp65 might be involved in regulatory/signaling pathways related to nucleolar functions, such as the cell-cycle control. Co-immunoprecipitation experiments have permitted to identify nucleolin as one of the nucleolar partners of pp65.

  2. Restriction enzyme analysis of the human cytomegalovirus genome in specimens collected from immunodeficient patients in Belém, State of Pará, Brazil

    Directory of Open Access Journals (Sweden)

    Dorotéa Lobato da Silva

    2011-10-01

    Full Text Available INTRODUCTION: Human cytomegalovirus is an opportunistic betaherpesvirus that causes persistent and serious infections in immunodeficient patients. Recurrent infections occur due to the presence of the virus in a latent state in some cell types. It is possible to examine the virus using molecular methods to aid in the immunological diagnosis and to generate a molecular viral profile in immunodeficient patients. The objective of this study was to characterize cytomegalovirus genotypes and to generate the epidemiological and molecular viral profile in immunodeficient patients. METHODS: A total of 105 samples were collected from immunodeficient patients from the City of Belém, including newborns, hemodialysis patients, transplant recipients and HIV+ patients. An IgG and IgM antibody study was completed using ELISA, and enzymatic analysis by restriction fragment length polymorphism (RFLP was performed to characterize viral genotypes. RESULTS: It was observed that 100% of the patients had IgG antibodies, 87% of which were IgG+/IgM-, consistent with a prior infection profile, 13% were IgG+/IgM+, suggestive of recent infection. The newborn group had the highest frequency (27% of the IgG+/IgM+ profile. By RFLP analysis, only one genotype was observed, gB2, which corresponded to the standard AD169 strain. CONCLUSIONS: The presence of IgM antibodies in new borns indicates that HCMV continues to be an important cause of congenital infection. The low observed genotypic diversity could be attributed to the small sample size because newborns were excluded from the RFLP analysis. This study will be continued including samples from newborns to extend the knowledge of the general and molecular epidemiology of HCMV in immunodeficient patients.

  3. Shedding of soluble glycoprotein 1 detected during acute Lassa virus infection in human subjects

    Directory of Open Access Journals (Sweden)

    Momoh Mambu

    2010-11-01

    Full Text Available Abstract Background Lassa hemorrhagic fever (LHF is a neglected tropical disease with significant impact on the health care system, society, and economy of Western and Central African nations where it is endemic. With a high rate of infection that may lead to morbidity and mortality, understanding how the virus interacts with the host's immune system is of great importance for generating vaccines and therapeutics. Previous work by our group identified a soluble isoform of the Lassa virus (LASV GP1 (sGP1 in vitro resulting from the expression of the glycoprotein complex (GPC gene 12. Though no work has directly been done to demonstrate the function of this soluble isoform in arenaviral infections, evidence points to immunomodulatory effects against the host's immune system mediated by a secreted glycoprotein component in filoviruses, another class of hemorrhagic fever-causing viruses. A significant fraction of shed glycoprotein isoforms during viral infection and biogenesis may attenuate the host's inflammatory response, thereby enhancing viral replication and tissue damage. Such shed glycoprotein mediated effects were previously reported for Ebola virus (EBOV, a filovirus that also causes hemorrhagic fever with nearly 90% fatality rates 345. The identification of an analogous phenomenon in vivo could establish a new correlate of LHF infection leading to the development of sensitive diagnostics targeting the earliest molecular events of the disease. Additionally, the reversal of potentially untoward immunomodulatory functions mediated by sGP1 could potentiate the development of novel therapeutic intervention. To this end, we investigated the presence of sGP1 in the serum of suspected LASV patients admitted to the Kenema Government Hospital (KGH Lassa Fever Ward (LFW, in Kenema, Sierra Leone that tested positive for viral antigen or displayed classical signs of Lassa fever. Results It is reasonable to expect that a narrow window exists for

  4. Shedding of soluble glycoprotein 1 detected during acute Lassa virus infection in human subjects.

    Science.gov (United States)

    Branco, Luis M; Grove, Jessica N; Moses, Lina M; Goba, Augustine; Fullah, Mohammed; Momoh, Mambu; Schoepp, Randal J; Bausch, Daniel G; Garry, Robert F

    2010-11-09

    Lassa hemorrhagic fever (LHF) is a neglected tropical disease with significant impact on the health care system, society, and economy of Western and Central African nations where it is endemic. With a high rate of infection that may lead to morbidity and mortality, understanding how the virus interacts with the host's immune system is of great importance for generating vaccines and therapeutics. Previous work by our group identified a soluble isoform of the Lassa virus (LASV) GP1 (sGP1) in vitro resulting from the expression of the glycoprotein complex (GPC) gene [1, 2]. Though no work has directly been done to demonstrate the function of this soluble isoform in arenaviral infections, evidence points to immunomodulatory effects against the host's immune system mediated by a secreted glycoprotein component in filoviruses, another class of hemorrhagic fever-causing viruses. A significant fraction of shed glycoprotein isoforms during viral infection and biogenesis may attenuate the host's inflammatory response, thereby enhancing viral replication and tissue damage. Such shed glycoprotein mediated effects were previously reported for Ebola virus (EBOV), a filovirus that also causes hemorrhagic fever with nearly 90 percent fatality rates [3 - 5]. The identification of an analogous phenomenon in vivo could establish a new correlate of LHF infection leading to the development of sensitive diagnostics targeting the earliest molecular events of the disease. Additionally, the reversal of potentially untoward immunomodulatory functions mediated by sGP1 could potentiate the development of novel therapeutic intervention. To this end, we investigated the presence of sGP1 in the serum of suspected LASV patients admitted to the Kenema Government Hospital (KGH) Lassa Fever Ward (LFW), in Kenema, Sierra Leone that tested positive for viral antigen or displayed classical signs of Lassa fever. It is reasonable to expect that a narrow window exists for detection of sGP1 as the sole

  5. Avian Influenza virus glycoproteins restrict virus replication and spread through human airway epithelium at temperatures of the proximal airways.

    Directory of Open Access Journals (Sweden)

    Margaret A Scull

    2009-05-01

    Full Text Available Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE, we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C, avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal airways (32 degrees C. These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the avian enteric tract (40 degrees C, rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627 attenuates a human virus, but does not account for the different infection between 32 degrees C and 37 degrees C. To determine the mechanism of temperature restriction of avian influenza viruses in HAE at 32 degrees C, we generated recombinant human influenza viruses in either the A/Victoria/3/75 (H3N2 or A/PR/8/34 (H1N1 genetic background that contained avian or avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA and neuraminidase (NA from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99, exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza viruses and

  6. Immunological targeting of cytomegalovirus for glioblastoma therapy

    OpenAIRE

    Nair, Smita K; Sampson, John H; Mitchell, Duane A

    2014-01-01

    Human cytomegalovirus (CMV) is purportedly present in glioblastoma (GBM) while absent from the normal brain, making CMV antigens potentially ideal immunological anti-GBM targets. We recently demonstrated that patient-derived CMV pp65-specific T cells are capable of recognizing and killing autologous GBM tumor cells. This data supports CMV antigen-directed immunotherapies against GBM.

  7. Herpes simplex virus (HSV)-specific proliferative and cytotoxic T-cell responses in humans immunized with an HSF type 2 glycoprotein subunit vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Zarling, J.M.; Moran, P.A.; Brewer, L.; Ashley, R.; Corey, L.

    1988-12-01

    Studies were undertaken to determine whether immunization of humans with a herpes simplex virus type 2 (HSV-2) glycoprotein-subunit vaccine would result in the priming of both HSV-specific proliferating cells and cytotoxic T cells. Peripheral blood lymphocytes (PBL) from all eight vaccinees studied responded by proliferating after stimulation with HSV-2, HSV-1, and glycoprotein gB-1. The PBL of five of these eight vaccinees proliferated following stimulation with gD-2, whereas stimulation with Gd-1 resulted in relatively low or no proliferative responses. T-cell clones were generated from HSV-2-stimulated PBL of three vaccinees who demonstrated strong proliferative responses to HSV-1 and HSV-2. Of 12 clones studied in lymphoproliferative assays, 9 were found to be cross-reactive for HSV-1 and HSV-2. Of the approximately 90 T-cell clones isolated, 14 demonstrated HSV-specific cytotoxic activity. Radioimmunoprecipitation-polyacrylamide gel electrophoresis analyses confirmed that the vaccinees had antibodies only to HSV glycoproteins, not to proteins which are absent in the subunit vaccine, indicating that these vaccinees had not become infected with HSV. Immunization of humans with an HSV-2 glycoprotein-subunit vaccine thus results in the priming of T cells that proliferate in response to stimulation with HSV and its glycoproteins and T cells that have cytotoxic activity against HSV-infected cells. Such HSV-specific memory T cells were detected as late as 2 years following the last boost with the subunit vaccine.

  8. Investigation of age-related decline of microfibril-associated glycoprotein-1 in human skin through immunohistochemistry study

    Directory of Open Access Journals (Sweden)

    Zheng Q

    2013-12-01

    Full Text Available Qian Zheng, Siming Chen, Ying Chen, John Lyga, Russell Wyborski, Uma SanthanamGlobal Research and Development, Avon Products Inc., Suffern, New York, USAAbstract: During aging, the reduction of elastic and collagen fibers in dermis can lead to skin atrophy, fragility, and aged appearance, such as increased facial wrinkling and sagging. Microfibril-associated glycoprotein-1 (MAGP-1 is an extracellular matrix protein critical for elastic fiber assembly. It integrates and stabilizes the microfibril and elastin matrix network that helps the skin to endure mechanical stretch and recoil. However, the observation of MAGP-1 during skin aging and its function in the dermis has not been established. To better understand age-related changes in the dermis, we investigated MAGP-1 during skin aging and photoaging, using a combination of in vitro and in vivo studies. Gene expression by microarray was performed using human skin biopsies from young and aged female donors. In addition, immunofluorescence analysis on the MAGP-1 protein was performed in dermal fibroblast cultures and in human skin biopsies. Specific antibodies against MAGP-1 and fibrillin-1 were used to examine protein expression and extracellular matrix structure in the dermis via biopsies from donors of multiple age groups. A reduction of the MAGP-1 gene and protein levels were observed in human skin with increasing age and photoexposure, indicating a loss of the functional MAGP-1 fiber network and a lack of structural support in the dermis. Loss of MAGP-1 around the hair follicle/pore areas was also observed, suggesting a possible correlation between MAGP-1 loss and enlarged pores in aged skin. Our findings demonstrate that a critical “pre-elasticity” component, MAGP-1, declines with aging and photoaging. Such changes may contribute to age-related loss of dermal integrity and perifollicular structural support, which may lead to skin fragility, sagging, and enlarged pores

  9. Global Mapping of O-Glycosylation of Varicella Zoster Virus, Human Cytomegalovirus, and Epstein-Barr Virus

    DEFF Research Database (Denmark)

    Bagdonaite, Ieva; Nordén, Rickard; Joshi, Hiren J

    2016-01-01

    to carry glycans, little is known about the distribution, nature, and functions of these modifications. This is particularly true for O-glycans; thus we have recently developed a "bottom up" mass spectrometry-based technique for mapping O-glycosylation sites on herpes simplex virus type 1. We found wide...... distribution of O-glycans on herpes simplex virus type 1 glycoproteins and demonstrated that elongated O-glycans were essential for the propagation of the virus. Here, we applied our proteome-wide discovery platform for mapping O-glycosites on representative and clinically significant members...

  10. Update on the current status of cytomegalovirus vaccines.

    Science.gov (United States)

    Sung, Heungsup; Schleiss, Mark R

    2010-11-01

    Human cytomegalovirus (HCMV) is ubiquitous in all populations, and is the most commonly recognized cause of congenital viral infection in developed countries. On the basis of the economic costs saved and the improvement in quality of life that could potentially be conferred by a successful vaccine for prevention of congenital HCMV infection, the Institute of Medicine has identified HCMV vaccine development as a major public health priority. An effective vaccine could potentially also be beneficial in preventing or ameliorating HCMV disease in immunocompromised individuals. Although there are no licensed HCMV vaccines currently available, enormous progress has been made in the last decade, as evidenced by the recently reported results of a Phase II trial of a glycoprotein B vaccine for the prevention of HCMV infection in seronegative women of childbearing age. HCMV vaccines currently in clinical trials include: glycoprotein B subunit vaccines; alphavirus replicon particle vaccines; DNA vaccines; and live-attenuated vaccines. A variety of vaccine strategies are also being examined in preclinical systems and animal models of infection. These include: recombinant vesicular stomatitis virus vaccines; recombinant modified vaccinia virus Ankara; replication-deficient adenovirus-vectored vaccines; and recombinant live-attenuated virus vaccines generated by mutagenesis of cloned rodent CMV genomes maintained as bacterial artificial chromosomes in Escherichia coli. In this article, we provide an overview of the current state of clinical trials and preclinical development of vaccines against HCMV, with an emphasis on studies that have been conducted in the past 5 years. We also summarize a number of recent advances in the study of the biology of HCMV, particularly with respect to epithelial and endothelial cell entry of the virus, which have implications for future vaccine design.

  11. Rapid detection of cytomegalovirus in bronchoalveolar lavage fluid and serum samples by polymerase chain reaction: correlation of virus isolation and clinical outcome for patients with human immunodeficiency virus infection

    DEFF Research Database (Denmark)

    Hansen, K K; Vestbo, Jørgen; Benfield, T

    1997-01-01

    Bronchoalveolar lavage (BAL) fluids and serum samples from 153 patients with pulmonary symptoms who were infected with human immunodeficiency virus (HIV) and underwent BAL were examined for the presence of cytomegalovirus (CMV) by conventional culture and by polymerase chain reaction (PCR...... technique than conventional culture. Detection of CMV DNA in BAL fluid or serum predicted subsequent development of extrapulmonary CMV disease but not death for HIV-infected patients with pulmonary symptoms....

  12. Cytomegalovirus Congenital Cataract

    Directory of Open Access Journals (Sweden)

    Ridha Wahyutomo

    2011-06-01

    Full Text Available Cytomegalovirus congenital infection is an infection caused by the the subfamily â Herpesviridae, during pregnancy. The incidence of infections among newborn infants is 1 %. One of the effects of congenitally acquired infection is the congenital cataract. A 6-year-old child complained to have a blurred vision diagnosed with cytomegalovirus congenital cataract. The diagnosis was confirmed by a positive serology testing for Ig M and Ig G CMV. The laboratory test using Giemsa staining to find inclusion bodies and a faster PCR could not be carried out (Sains Medika, 3(1:84-88.

  13. Human platelet glycoprotein Ia. One component is only expressed on the surface of activated platelets and may be a granule constituent

    International Nuclear Information System (INIS)

    Bienz, D.; Clemetson, K.J.

    1989-01-01

    Glycoprotein Ia (GP Ia) is a relatively minor component of human blood platelets thought to be a receptor involved in collagen-induced platelet activation. However, some difficulties exist with the definition of this glycoprotein. The expression of GP Ia on resting (prostacyclin analogue-treated) and thrombin-activated platelets was compared by surface labeling with 125 I-lactoperoxidase. Intact platelets or platelets solubilized in sodium dodecyl sulfate were labeled with periodate/[ 3 H]NaBH 4 . Analysis on two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels showed that GP Ia is very poorly labeled in resting platelets. After activation a new spot (GP Ia*) appears with the same relative molecular mass as GP Ia under reducing conditions. GP Ia and Ia* can be clearly separated by two-dimensional nonreduced/reduced gel electrophoresis. Therefore, two glycoproteins which have been termed GP Ia exist in platelets with similar molecular weight and pI under reducing conditions. One of these (GP Ia*) is only surface-labeled when platelets are activated, indicating that it is only exposed on the surface of activated platelets. Supernatant from activated platelets contains this glycoprotein as well as other granule components. This glycoprotein is missing in platelets from two patients with collagen-response defects

  14. An alternative conformation of the gp41 heptad repeat 1 region coiled coil exists in the human immunodeficiency virus (HIV-1) envelope glycoprotein precursor

    International Nuclear Information System (INIS)

    Mische, Claudia C.; Yuan Wen; Strack, Bettina; Craig, Stewart; Farzan, Michael; Sodroski, Joseph

    2005-01-01

    The human immunodeficiency virus (HIV-1) transmembrane envelope glycoprotein, gp41, which mediates virus-cell fusion, exists in at least three different conformations within the trimeric envelope glycoprotein complex. The structures of the prefusogenic and intermediate states are unknown; structures representing the postfusion state have been solved. In the postfusion conformation, three helical heptad repeat 2 (HR2) regions pack in an antiparallel fashion into the hydrophobic grooves on the surface of a triple-helical coiled coil formed by the heptad repeat 1 (HR1) regions. We studied the prefusogenic conformation of gp41 by mutagenic alteration of membrane-anchored and soluble forms of the HIV-1 envelope glycoproteins. Our results indicate that, in the HIV-1 envelope glycoprotein precursor, the gp41 HR1 region is in a conformation distinct from that of a trimeric coiled coil. Thus, the central gp41 coiled coil is formed during the transition of the HIV-1 envelope glycoproteins from the precursor state to the receptor-bound intermediate

  15. Characterization of the B-chain of human plasma α2HS-glycoprotein. The complete amino acid sequence and primary structure of its heteroglycan

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Gejyo, F.; Chang, J.-L.; Bürgi, W.; Schmid, K.; Offner, G.D.; Troxler, R.F.; Halbeek, H. van

    1983-01-01

    α2HS-Glycoprotein, a normal human plasma protein, was recently shown to consist of two polypeptide chains. In the present study, we have separated these two chains from one another and have elucidated the complete primary structure of the B-chain. Employing automated Edman degradation, the

  16. The antibacterial activity of peptides derived from human beta-2 glycoprotein I is inhibited by protein H and M1 protein from Streptococcus pyogenes

    NARCIS (Netherlands)

    Nilsson, Maria; Wasylik, Sylwia; Mörgelin, Matthias; Olin, Anders I.; Meijers, Joost C. M.; Derksen, Ronald H. W. M.; de Groot, Philip G.; Herwald, Heiko

    2008-01-01

    During the last years, the importance of antibacterial peptides has attracted considerable attention. We report here that peptides derived from the fifth domain of beta-2 glycoprotein I (beta(2)GPI), a human heparin binding plasma protein, have antibacterial activities against Gram-positive and

  17. Comparative analysis of human cytomegalovirus a-sequence in multiple clinical isolates by using polymerase chain reaction and restriction fragment length polymorphism assays.

    Science.gov (United States)

    Zaia, J A; Gallez-Hawkins, G; Churchill, M A; Morton-Blackshere, A; Pande, H; Adler, S P; Schmidt, G M; Forman, S J

    1990-01-01

    The human cytomegalovirus (HCMV) a-sequence (a-seq) is located in the joining region between the long (L) and short (S) unique sequences of the virus (L-S junction), and this hypervariable junction has been used to differentiate HCMV strains. The purpose of this study was to investigate whether there are differences among strains of human cytomegalovirus which could be characterized by polymerase chain reaction (PCR) amplification of the a-seq of HCMV DNA and to compare a PCR method of strain differentiation with conventional restriction fragment length polymorphism (RFLP) methodology by using HCMV junction probes. Laboratory strains of HCMV and viral isolates from individuals with HCMV infection were characterized by using both RFLPs and PCR. The PCR assay amplified regions in the major immediate-early gene (IE-1), the 64/65-kDa matrix phosphoprotein (pp65), and the a-seq of the L-S junction region. HCMV laboratory strains Towne, AD169, and Davis were distinguishable, in terms of size of the amplified product, when analyzed by PCR with primers specific for the a-seq but were indistinguishable by using PCR targeted to IE-1 and pp65 sequences. When this technique was applied to a characterization of isolates from individuals with HCMV infection, selected isolates could be readily distinguished. In addition, when the a-seq PCR product was analyzed with restriction enzyme digestion for the presence of specific sequences, these DNA differences were confirmed. PCR analysis across the variable a-seq of HCMV demonstrated differences among strains which were confirmed by RFLP in 38 of 40 isolates analyzed. The most informative restriction enzyme sites in the a-seq for distinguishing HCMV isolates were those of MnlI and BssHII. This indicates that the a-seq of HCMV is heterogeneous among wild strains, and PCR of the a-seq of HCMV is a practical way to characterize differences in strains of HCMV. Images PMID:1980680

  18. [{sup 11}C]FMAU and [{sup 18}F]FHPG as PET tracers for herpes simplex virus thymidine kinase enzyme activity and human cytomegalovirus infections

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Erik F.J. de E-mail: e.f.j.de.vries@pet.azg.nl; Waarde, Aren van; Harmsen, Marco C.; Mulder, Nanno H.; Vaalburg, Willem; Hospers, Geke A.P

    2000-02-01

    [{sup 11}C]-2'-Fluoro-5-methyl-1-{beta}-D-arabinofuranosyluracil ([{sup 11}C]FMAU) and [{sup 18}F]-9-[(3-fluoro-1-hydroxy-2-propoxy)methyl]guanine ([{sup 18}F]FHPG), radiolabeled representatives of two classes of antiviral agents, were evaluated as tracers for measuring herpes simplex virus thymidine kinase (HSV-tk) enzyme activity after gene transfer and as tracers for localization of active human cytomegalovirus (HCMV) infections. In vitro accumulation experiments revealed that both [{sup 11}C]FMAU and [{sup 18}F]FHPG accumulated significantly more in HSV-tk expressing cells than they did in control cells. [{sup 18}F]FHPG uptake in HSV-tk expressing cells, however, was found to depend strongly on the cell line used, which might be due to cell type dependent membrane transport or cell type dependent substrate specific susceptibility of the enzyme. In vitro, both tracers exhibited a good selectivity for accumulation in HCMV-infected human umbilical vein endothelial cells over uninfected cells. In contrast to [{sup 18}F]FHPG, [{sup 11}C]FMAU uptake in control cells was relatively high due to phosphorylation of the tracer by host kinases. Therefore, [{sup 18}F]FHPG appears to be the more selective tracer not only to predict HSV-tk gene therapy outcome, but also to localize active HCMV infections with PET.

  19. Cytomegalovirus Infection Triggers the Secretion of the PPARγ Agonists 15-Hydroxyeicosatetraenoic Acid (15-HETE and 13-Hydroxyoctadecadienoic Acid (13-HODE in Human Cytotrophoblasts and Placental Cultures.

    Directory of Open Access Journals (Sweden)

    Kaoutar Leghmar

    Full Text Available Congenital infection by human cytomegalovirus (HCMV is a leading cause of congenital abnormalities of the central nervous system. Placenta infection by HCMV allows for viral spread to fetus and may result in intrauterine growth restriction, preeclampsia-like symptoms, or miscarriages. We previously reported that HCMV activates peroxisome proliferator-activated receptor gamma (PPARγ for its own replication in cytotrophoblasts. Here, we investigated the molecular bases of PPARγ activation in infected cytotrophoblasts.We show that onboarded cPLA2 carried by HCMV particles is required for effective PPARγ activation in infected HIPEC cytotrophoblasts, and for the resulting inhibition of cell migration. Natural PPARγ agonists are generated by PLA2 driven oxidization of linoleic and arachidonic acids. Therefore, using HPLC coupled with mass spectrometry, we disclosed that cellular and secreted levels of 13-hydroxyoctadecadienoic acid (13-HODE and 15-hydroxyeicosatetraenoic acid (15-HETE were significantly increased in and from HIPEC cytotrophoblasts at soon as 6 hours post infection. 13-HODE treatment of uninfected HIPEC recapitulated the effect of infection (PPARγ activation, migration impairment. We found that infection of histocultures of normal, first-term, human placental explants resulted in significantly increased levels of secreted 15-HETE and 13-HODE.Our findings reveal that 15-HETE and 13-HODE could be new pathogenic effectors of HCMV congenital infection They provide a new insight about the pathogenesis of congenital infection by HCMV.

  20. Human Cytomegalovirus (HCMV)-Specific CD4+ T Cells Are Polyfunctional and Can Respond to HCMV-Infected Dendritic Cells In Vitro.

    Science.gov (United States)

    Jackson, Sarah E; Sedikides, George X; Mason, Gavin M; Okecha, Georgina; Wills, Mark R

    2017-03-15

    Human cytomegalovirus (HCMV) infection and periodic reactivation are generally well controlled by the HCMV-specific T cell response in healthy people. While the CD8 + T cell response to HCMV has been extensively studied, the HCMV-specific CD4 + T cell effector response is not as well understood, especially in the context of direct interactions with HCMV-infected cells. We screened the gamma interferon (IFN-γ) and interleukin-10 (IL-10) responses to 6 HCMV peptide pools (pp65, pp71, IE1, IE2, gB, and US3, selected because they were the peptides most frequently responded to in our previous studies) in 84 donors aged 23 to 74 years. The HCMV-specific CD4 + T cell response to pp65, IE1, IE2, and gB was predominantly Th1 biased, with neither the loss nor the accumulation of these responses occurring with increasing age. A larger proportion of donors produced an IL-10 response to pp71 and US3, but the IFN-γ response was still dominant. CD4 + T cells specific to the HCMV proteins studied were predominantly effector memory cells and produced both cytotoxic (CD107a expression) and cytokine (macrophage inflammatory protein 1β secretion) effector responses. Importantly, when we measured the CD4 + T cell response to cytomegalovirus (CMV)-infected dendritic cells in vitro , we observed that the CD4 + T cells produced a range of cytotoxic and secretory effector functions, despite the presence of CMV-encoded immune evasion molecules. CD4 + T cell responses to HCMV-infected dendritic cells were sufficient to control the dissemination of virus in an in vitro assay. Together, the results show that HCMV-specific CD4 + T cell responses, even those from elderly individuals, are highly functional and are directly antiviral. IMPORTANCE Human cytomegalovirus (HCMV) infection is carried for a lifetime and in healthy people is kept under control by the immune system. HCMV has evolved many mechanisms to evade the immune response, possibly explaining why the virus is never eliminated

  1. Cytomegalovirus Hepatitis During Pregnancy

    Directory of Open Access Journals (Sweden)

    Ying Chan

    1995-01-01

    Full Text Available Background: Although cytomegalovirus (CMV is an uncommon cause of viral hepatitis during pregnancy, a definitive diagnosis is important because of the potential for congenital CMV. In the case reported here, a diagnosis of hepatitis caused by CMV was made after the more common viral pathogens had been ruled out.

  2. Purification and characterization of a heteromultimeric glycoprotein from Artocarpus heterophyllus latex with an inhibitory effect on human blood coagulation.

    Science.gov (United States)

    Siritapetawee, Jaruwan; Thammasirirak, Sompong

    2011-01-01

    Plant latex has many health benefits and has been used in folk medicine. In this study, the biological effect of Artocarpus heterophyllus (jackfruit) latex on human blood coagulation was investigated. By a combination of heat precipitation and ion-exchange chromatography, a heat stable heteromultimeric glycoprotein (HSGPL1) was purified from jackfruit milky latex. The apparent molecular masses of the monomeric proteins on SDS/PAGE were 33, 31 and 29 kDa. The isoelectric points (pIs) of the monomers were 6.63, 6.63 and 6.93, respectively. Glycosylation and deglycosylation tests confirmed that each subunit of HSGPL1 formed the native multimer by sugar-based interaction. Moreover, the multimer of HSGPL1 also resisted 2-mercaptoethanol action. Peptide mass fingerprint analysis indicated that HSGPL1 was a complex protein related to Hsps/chaperones. HSGPL1 has an effect on intrinsic pathways of the human blood coagulation system by significantly prolonging the activated partial thrombin time (APTT). In contrast, it has no effect on the human extrinsic blood coagulation system using the prothrombin time (PT) test. The prolonged APTT resulted from the serine protease inhibitor property of HSGPL1, since it reduced activity of human blood coagulation factors XI(a) and α-XII(a).

  3. Isolation and characterization of broadly neutralizing human monoclonal antibodies to the e1 glycoprotein of hepatitis C virus

    DEFF Research Database (Denmark)

    Meunier, Jean-Christophe; Russell, Rodney S; Goossens, Vera

    2008-01-01

    monoclonal antibodies (MAbs) directed against HCV glycoprotein E1, which may have the potential to control HCV infection. We have identified two MAbs that can strongly neutralize HCV-pseudotyped particles (HCVpp) bearing the envelope glycoproteins of genotypes 1a, 1b, 4a, 5a, and 6a and less strongly...

  4. Human cytomegalovirus-induced NKG2C(hi) CD57(hi) natural killer cells are effectors dependent on humoral antiviral immunity.

    Science.gov (United States)

    Wu, Zeguang; Sinzger, Christian; Frascaroli, Giada; Reichel, Johanna; Bayer, Carina; Wang, Li; Schirmbeck, Reinhold; Mertens, Thomas

    2013-07-01

    Recent studies indicate that expansion of NKG2C-positive natural killer (NK) cells is associated with human cytomegalovirus (HCMV); however, their activity in response to HCMV-infected cells remains unclear. We show that NKG2C(hi) CD57(hi) NK cells gated on CD3(neg) CD56(dim) cells can be phenotypically identified as HCMV-induced NK cells that can be activated by HCMV-infected cells. Using HCMV-infected autologous macrophages as targets, we were able to show that these NKG2C(hi) CD57(hi) NK cells are highly responsive to HCMV-infected macrophages only in the presence of HCMV-specific antibodies, whereas they are functionally poor effectors of natural cytotoxicity. We further demonstrate that NKG2C(hi) CD57(hi) NK cells are intrinsically responsive to signaling through CD16 cross-linking. Our findings show that the activity of pathogen-induced innate immune cells can be enhanced by adaptive humoral immunity. Understanding the activity of NKG2C(hi) CD57(hi) NK cells against HCMV-infected cells will be of relevance for the further development of adoptive immunotherapy.

  5. Differential cellular localization of Epstein-Barr virus and human cytomegalovirus in the colonic mucosa of patients with active or quiescent inflammatory bowel disease.

    Science.gov (United States)

    Ciccocioppo, Rachele; Racca, Francesca; Scudeller, Luigia; Piralla, Antonio; Formagnana, Pietro; Pozzi, Lodovica; Betti, Elena; Vanoli, Alessandro; Riboni, Roberta; Kruzliak, Peter; Baldanti, Fausto; Corazza, Gino Roberto

    2016-02-01

    The role of human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) in the exacerbation of inflammatory bowel disease (IBD) is still uncertain. We prospectively investigated the presence of EBV and HCMV infection in both epithelial and immune cells of colonic mucosa of IBD patients, both refractory and responders to standard therapies, in comparison with patients suffering from irritable bowel syndrome who were considered as controls, by using quantitative real-time polymerase chain reaction, immunohistochemistry and in situ hybridization, in an attempt to assess viral localization, DNA load, life cycle phase and possible correlation with disease activity indexes. We obtained clear evidence of the presence of high DNA loads of both viruses in either enterocytes or immune cells of refractory IBD patients, whereas we observed low levels in the responder group and an absence of detectable copies in all cell populations of controls. Remarkably, the values of EBV and HCMV DNA in inflamed mucosa were invariably higher than in non-inflamed areas in both IBD groups, and the EBV DNA loads in the cell populations of diseased mucosa of refractory IBD patients positively correlated with the severity of mucosal damage and clinical indexes of activity. Moreover, EBV infection resulted the most prevalent either alone or in combination with HCMV, while immunohistochemistry and in situ hybridization did not allow us to distinguish between the different phases of viral life cycle. Finally, as regards treatment, these novel findings could pave the way for the use of new antiviral molecules in the treatment of this condition.

  6. Late radiation effects of low doses from occupational exposure. Antibodies to cytomegalovirus, Epstein-Barr virus and human T cell lymphotropic virus type 1 in radiological technologists

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Etsuko; Tanoue, Shozo (Kumamoto Univ. (Japan). Coll. of Medical Science); Sawada, Shozo

    1989-05-01

    To elucidate the effects of long-term exposure to low dose irradiation, serostatus of antibodies to cytomegalovirus (CMV), Epstein-Barr virus (EBV) and human T cell lymphotropic virus type 1 (HTLV-1) was determined in 99 radiological technologists and 96 healthy volunteers. Abnormal seropositivity rate for CMV was significantly higher in technologists working for 15 years or more than in those working for less than 15 years. For the same age group, however, there was no significant difference between technologists and controls. Seropositivity rates for EBV-viral capsid antigen (VSA)/IgG and early antigen (EA)/IgG were significantly higher in technologists working for 15 years or more than in the age-matched control group. In the group of technologists exposed to 0.3 Sv or more, seropositivity rates of these antibodies were significantly higher than in those exposed to less than 0.3 Sv. However, there was no correlation between exposure doses and both EBV-associated nuclear antigen antibody and HTLV-1 antibody. Few technologists seronegative for CMV antibody had seropositive antibodies of EBV-VCA/IgG and EA/IgG. For technologists seropositive for CMV antibody, 31% and 54% were seropositive for EBV-VCA/IgG and EA/IgG antibodies, respectively. (Namekawa, K).

  7. Correlation Between Expression of Recombinant Proteins and Abundance of H3K4Me3 on the Enhancer of Human Cytomegalovirus Major Immediate-Early Promoter.

    Science.gov (United States)

    Soo, Benjamin P C; Tay, Julian; Ng, Shirelle; Ho, Steven C L; Yang, Yuansheng; Chao, Sheng-Hao

    2017-08-01

    Role of epigenetic regulation in the control of gene expression is well established. The impact of several epigenetic mechanisms, such as DNA methylation and histone acetylation, on recombinant protein production in mammalian cells has been investigated recently. Here we investigate the correlation between the selected epigenetic markers and five trastuzumab biosimilar-producing Chinese hamster ovary (CHO) cell lines in which the expression of trastuzumab is driven by human cytomegalovirus (HCMV) major immediate-early (MIE) promoter. We chose the producing clones in which transcription was the determinative step for the production of recombinant trastuzumab. We found that the abundance of trimethylation of histone 3 at lysine 4 (H3K4Me3) on the enhancer of HCMV MIE promoter correlated well with the relative titers of recombinant trastuzumab among the clones. Such close correlation was not observed between the recombinant protein and other epigenetic markers examined in our study. Our results demonstrate that the HCMV MIE enhancer-bound H3K4Me3 epigenetic marker may be used as the epigenetic indicator to predict the relative production of recombinant proteins between the producing CHO cell lines.

  8. Synthesis and structure-activity relationship of the first nonpeptidergic inverse agonists for the human cytomegalovirus encoded chemokine receptor US28.

    Science.gov (United States)

    Hulshof, Janneke W; Casarosa, Paola; Menge, Wiro M P B; Kuusisto, Leena M S; van der Goot, Henk; Smit, Martine J; de Esch, Iwan J P; Leurs, Rob

    2005-10-06

    US28 is a human cytomegalovirus (HCMV) encoded G-protein-coupled receptor that signals in a constitutively active manner. Recently, we identified 1 [5-(4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl)-2,2-diphenylpentanenitrile] as the first reported nonpeptidergic inverse agonist for a viral-encoded chemokine receptor. Interestingly, this compound is able to partially inhibit the viral entry of HIV-1. In this study we describe the synthesis of 1 and several of its analogues and unique structure-activity relationships for this first class of small-molecule ligands for the chemokine receptor US28. Moreover, the compounds have been pharmacologically characterized as inverse agonists on US28. By modification of lead structure 1, it is shown that a 4-phenylpiperidine moiety is essential for affinity and activity. Other structural features of 1 are shown to be of less importance. These compounds define the first SAR of ligands on a viral GPCR (US28) and may therefore serve as important tools to investigate the significance of US28-mediated constitutive activity during viral infection.

  9. Distinct functional domains within the acidic cluster of tegument protein pp28 required for trafficking and cytoplasmic envelopment of human cytomegalovirus.

    Science.gov (United States)

    Seo, Jun-Young; Jeon, Hyejin; Hong, Sookyung; Britt, William J

    2016-10-01

    Human cytomegalovirus UL99-encoded tegument protein pp28 contains a 16 aa acidic cluster that is required for pp28 trafficking to the assembly compartment (AC) and the virus assembly. However, functional signals within the acidic cluster of pp28 remain undefined. Here, we demonstrated that an acidic cluster rather than specific sorting signals was required for trafficking to the AC. Recombinant viruses with chimeric pp28 proteins expressing non-native acidic clusters exhibited delayed viral growth kinetics and decreased production of infectious virus, indicating that the native acidic cluster of pp28 was essential for wild-type virus assembly. These results suggested that the acidic cluster of pp28 has distinct functional domains required for trafficking and for efficient virus assembly. The first half (aa 44-50) of the acidic cluster was sufficient for pp28 trafficking, whereas the native acidic cluster consisting of aa 51-59 was required for the assembly of wild-type levels of infectious virus.

  10. Comparison of hybrid capture and reverse transcriptase polymerase chain reaction methods in terms of diagnosing human cytomegalovirus infection in patients following hematopoietic stem cell transplantation

    International Nuclear Information System (INIS)

    Orsal, Arif S.; Ozsan, M.; Dolapci, I.; Tekeli, A.; Becksac, M.

    2006-01-01

    Human cytomegalovirus (CMV) is a life threatening cause of infection among hematopoietic stem cell recipients. Developing reliable methods in detecting the CMV infection is important to identify the patients at risk of CMV infection and disease. The aim of this study was to compare the 2 tests- hybrid capture test, which is routinely used in the diagnosis of CMV infection among hematopoietic stem cell recipients, and reverse transcriptase polymerase chain reaction (RT-PCR) detecting UL21.5 mRNA transcripts of the active virus. In this prospective study, a total of 178 blood samples obtained 35 patients following allogeneic hematopoietic stem cell transplantation at the Bone Marrow Transplantation Unit of the Hematology Department, Ibn-i-Sina Hospital of Ankara University School of Medicine, Turkey between January 2003 and September 2003 were analyzed. Hybrid capture and RT-PCR using UL21.5 gene transcript method to investigate HCMV in blood samples were performed at the department of Microbiology and Clinic Microbiology, Ankara University School of Medicine, Turkey. When Hybrid capture test was accepted as the golden standard, the sensitivity of Rt-PCR was 3%, specificity 100%, false negativity 67%, false positivity 0%, positive predictive value 100%, negative predictive value 74%, and accuracy was 77%. Improving this test by quantification, and application of additional gene transcripts, primarily the late gene transcripts can help increase the sensitivity and feasibility. (author)

  11. Regulated expression of the human cytomegalovirus pp65 gene: Octamer sequence in the promoter is required for activation by viral gene products

    International Nuclear Information System (INIS)

    Depto, A.S.; Stenberg, R.M.

    1989-01-01

    To better understand the regulation of late gene expression in human cytomegalovirus (CMV)-infected cells, the authors examined expression of the gene that codes for the 65-kilodalton lower-matrix phosphoprotein (pp65). Analysis of RNA isolated at 72 h from cells infected with CMV Towne or ts66, a DNA-negative temperature-sensitive mutant, supported the fact that pp65 is expressed at low levels prior to viral DNA replication but maximally expressed after the initiation of viral DNA replication. To investigate promoter activation in a transient expression assay, the pp65 promoter was cloned into the indicator plasmid containing the gene for chloramphenicol acetyltransferase (CAT). Transfection of the promoter-CAT construct and subsequent superinfection with CMV resulted in activation of the promoter at early times after infection. Cotransfection with plasmids capable of expressing immediate-early (IE) proteins demonstrated that the promoter was activated by IE proteins and that both IE regions 1 and 2 were necessary. These studies suggest that interactions between IE proteins and this octamer sequence may be important for the regulation and expression of this CMV gene

  12. Comparison of the performance of polymerase chain reaction and pp65 antigenemia for the detection of human cytomegalovirus in immunosuppressed patients

    Directory of Open Access Journals (Sweden)

    Patrícia Borba Martiny

    2011-06-01

    Full Text Available INTRODUCTION: Human cytomegalovirus (HCMV is often reactive in latently infected immunosuppressed patients. Accordingly, HCMV remains one of the most common infections following solid organ and hemopoietic stem cell transplantations, resulting in significant morbidity, graft loss and occasional mortality. The early diagnosis of HCMV disease is important in immunosuppressed patients, since in these individuals, preemptive treatment is useful. The objective of this study was to compare the performance of the in-house qualitative polymerase chain reaction (PCR and pp65 antigenemia to HCMV infection in immunosuppressed patients in the Hospital de Clínicas of Porto Alegre (HCPA. METHODS: A total of 216 blood samples collected between August 2006 and January 2007 were investigated. RESULTS: Among the samples analyzed, 81 (37.5% were HCMV-positive by PCR, while 48 (22.2% were positive for antigenemia. Considering antigenemia as the gold standard, sensitivity, specificity, positive predictive values and negative predictive values for PCR were 87.5%, 76.8%, 51.8% and 95.5% respectively. CONCLUSIONS: These results demonstrated that qualitative PCR has high sensitivity and negative predictive value (NPV. Consequently PCR is especially indicated for the initial diagnosis of HCMV infection. In the case of preemptive treatment strategy, identification of patients at high-risk for HCMV disease is fundamental and PCR can be useful tool.

  13. Placental macrophage contact potentiates the complete replicative cycle of human cytomegalovirus in syncytiotrophoblast cells: role of interleukin-8 and transforming growth factor-beta1.

    Science.gov (United States)

    Bácsi, A; Aranyosi, J; Beck, Z; Ebbesen, P; Andirkó, I; Szabó, J; Lampé, L; Kiss, J; Gergely, L; Tóth, F D

    1999-10-01

    Although syncytiotrophoblast (ST) cells can be infected by human cytomegalovirus (HCMV), in vitro studies have indicated that ST cells do not support the complete viral reproductive cycle, or HCMV replication may occur in less than 3% of ST cells. The present study tested the possibility that placental macrophages might enhance activation of HCMV carried in ST cells and, further, that infected ST cells would be capable of transmitting virus to neighboring macrophages. For this purpose, we studied HCMV replication in ST cells grown alone or cocultured with uninfected placental macrophages. Our results demonstrated that HCMV gene expression in ST cells was markedly upregulated by coculture with macrophages, resulting in release of substantial amounts of infectious virus from HCMV-infected ST cells. After having become permissive for viral replication, ST cells delivered HCMV to the cocultured macrophages, as evidenced by detection of virus-specific antigens in these cells. The stimulatory effect of coculture on HCMV gene expression in ST cells was mediated by marked interleukin-8 (IL-8) and transforming growth factor-beta1 (TGF-beta1) release from macrophages, an effect caused by contact between the different placental cells. Our findings indicate an interactive role for the ST layer and placental macrophages in the dissemination of HCMV among placental tissue. Eventually, these interactions may contribute to the transmission of HCMV from mother to the fetus.

  14. Herpes simplex virus and cytomegalovirus co-infection presenting as exuberant genital ulcer in a woman infected with human immunodeficiency virus.

    Science.gov (United States)

    Gouveia, A I; Borges-Costa, J; Soares-Almeida, L; Sacramento-Marques, M; Kutzner, H

    2014-12-01

    In patients infected with human immunodeficiency virus (HIV), genital herpes can result in severe and atypical clinical presentations, and can become resistant to aciclovir treatment. Rarely, these manifestations may represent concurrent herpes simplex virus (HSV) with other agents. We report a 41-year-old black woman with HIV who presented with extensive and painful ulceration of the genitalia. Histological examination of a biopsy sample was suggestive of herpetic infection, and intravenous aciclovir was started, but produced only partial improvement. PCR was performed on the biopsy sample, and both HSV and cytomegalovirus (CMV) DNA was detected. Oral valganciclovir was started with therapeutic success. CMV infection is common in patients infected with HIV, but its presence in mucocutaneous lesions is rarely reported. This case exemplifies the difficulties of diagnosis of genital ulcers in patients infected with HIV. The presence of exuberant and persistent HSV genital ulcers in patients with HIV should also raise suspicions of the presence of co-infection with other organisms such as CMV. © 2014 British Association of Dermatologists.

  15. Toll-like receptor 4 is involved in the cell cycle modulation and required for effective human cytomegalovirus infection in THP-1 macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Arcangeletti, Maria-Cristina, E-mail: mariacristina.arcangeletti@unipr.it [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy); Germini, Diego; Rodighiero, Isabella [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy); Mirandola, Prisco [Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma (Italy); De Conto, Flora; Medici, Maria-Cristina [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy); Gatti, Rita [Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma (Italy); Chezzi, Carlo; Calderaro, Adriana [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy)

    2013-05-25

    Suitable host cell metabolic conditions are fundamental for the effective development of the human cytomegalovirus (HCMV) lytic cycle. Indeed, several studies have demonstrated the ability of this virus to interfere with cell cycle regulation, mainly by blocking proliferating cells in G1 or G1/S. In the present study, we demonstrate that HCMV deregulates the cell cycle of THP-1 macrophages (a cell line irreversibly arrested in G0) by pushing them into S and G2 phases. Moreover, we show that HCMV infection of THP-1 macrophages leads to Toll-like receptor 4 (TLR4) activation. Since various studies have indicated TLR4 to be involved in promoting cell proliferation, here we investigate the possible role of TLR4 in the observed HCMV-induced cell cycle perturbation. Our data strongly support TLR4 as a mediator of HCMV-triggered cell cycle activation in THP-1 macrophages favouring, in turn, the development of an efficient viral lytic cycle. - Highlights: ► We studied HCMV infection impact on THP-1 macrophage cell cycle. ► We analysed the role played by Toll-like receptor (TLR) 4 upon HCMV infection. ► HCMV pushes THP-1 macrophages (i.e. resting cells) to re-enter the cell cycle. ► TLR4 pathway inhibition strongly affects the effectiveness of HCMV replication. ► TLR4 pathway inhibition significantly decreases HCMV-induced cell cycle re-entry.

  16. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner

    International Nuclear Information System (INIS)

    Inoue-Toyoda, Maki; Kato, Kohsuke; Nagata, Kyosuke; Yoshikawa, Hiroyuki

    2015-01-01

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX

  17. Evaluation of P-glycoprotein expression in pain relevant tissues: understanding translation of efflux from preclinical species to human

    Directory of Open Access Journals (Sweden)

    Renu Singh Dhanikula

    2016-10-01

    Full Text Available Various efflux transporters, such as P-glycoprotein (P-gp are now widely accepted to have profound influence on the disposition of substrates. Nevertheless, there is paucity of information about their expression and functionality in the pain relevant tissues (such as brain, spinal cord and dorsal root ganglia (DRG across various species. Therefore, our attempts were directed at evaluating P-gp expression in these tissues to understand its effect on the central nervous system (CNS disposition. As a means of characterizing the normal tissue distribution of P-gp, immunohistochemistry was performed with two antibodies (C219 and H241 directed against different epitopes of MDR1 gene. Notable expression of P-gp was detected in the DRG of Sprague Dawley rat, Beagle Dog, Cynomolgous monkey as well as human. The expression of P-gp was observed in the CNS tissues with evident species differences, the expression of P-gp in human brain and spinal cord was lower than in rats and dogs but relatively comparable to that in monkeys. However, no species related differences were seen in the expression at the DRG level. Double-labelling using an antibody against a marker of endothelial cells confirmed that P-gp was exclusively localized in capillary endothelial cells. This study highlights the cross species similarities and differences in the expression of P-gp and thus serves as a vital step in understanding the translation of exposure of P-gp substrates to human.

  18. The major surface glycoprotein (gp63) from Leishmania major and Leishmania donovani cleaves CD4 molecules on human T cells

    DEFF Research Database (Denmark)

    Hey, A S; Theander, T G; Hviid, L

    1994-01-01

    The effect of Leishmania major and L. donovani surface protease gp63 on surface markers on human T cells was studied using fluorescence-activated flow cytometry. Purified gp63 (63,000 m.w. glycoprotein) at concentrations above 10 micrograms/ml completely inhibited binding of six different anti-CD4......-expression of CD4, reaching 50% of the initial level after 72 h of incubation in medium. Preincubation of cells with live promastigotes showed an inhibitory effect on CD4 comparable to that seen with purified gp63. The binding of Abs directed against other surface markers present on human T-cells--CD2, CD3, CD5......, CD8, CD11A, CD25, CD45RO, CD45RA, CD58, TCR-alpha, TCR-gamma, and HLA DQ--was not inhibited by gp63. These data suggest that gp63, both in its purified form and in the form anchored to the parasite membrane, cleaves CD4 on human T cells. The cleavage of CD4 by the protease might play a role...

  19. Identification of the Interaction between P-Glycoprotein and Anxa2 in Multidrug-resistant Human Breast Cancer Cells

    International Nuclear Information System (INIS)

    Zhang, Hai-chang; Zhang, Fei; Wu, Bing; Han, Jing-hua; Ji, Wei; Zhou, Yan; Niu, Rui-fang

    2012-01-01

    To explore the interaction of Anxa2 with P-Glycoprotein (P-gp) in the migration and invasion of the multidrug-resistant (MDR) human breast cancer cell line MCF-7/ADR. A pair of short hairpin RNA (shRNA) targeting P-gp was transfected into MCF-7/ADR cells, and monoclonal cell strains were screened. The expression of P-gp was detected by Western blot. Transwell chambers were used to observe the cell migration capacity and invasion ability. The interaction between P-gp and Anxa2 was examined by immunoprecipitation and immunofluorescence confocal microscopy analyses. P-gp expression was significantly knocked down, and there were notable decreasing trends in the migration and invasion capability of MDR breast cancer cells (P<0.05). There was a close interaction between Anxa2 and P-gp. MCF-7/ADR is an MDR human breast cancer cell line with high migration and invasion abilities. The knockdown of P-gp notably impaired the migration and invasion abilities of the tumor cells. The interaction of Anxa2 with P-pg may play an important role in the enhanced invasiveness of MDR human breast cancer cells

  20. Attenuated Human Parainfluenza Virus Type 1 Expressing Ebola Virus Glycoprotein GP Administered Intranasally Is Immunogenic in African Green Monkeys.

    Science.gov (United States)

    Lingemann, Matthias; Liu, Xueqiao; Surman, Sonja; Liang, Bo; Herbert, Richard; Hackenberg, Ashley D; Buchholz, Ursula J; Collins, Peter L; Munir, Shirin

    2017-05-15

    The recent 2014-2016 Ebola virus (EBOV) outbreak prompted increased efforts to develop vaccines against EBOV disease. We describe the development and preclinical evaluation of an attenuated recombinant human parainfluenza virus type 1 (rHPIV1) expressing the membrane-anchored form of EBOV glycoprotein GP, as an intranasal (i.n.) EBOV vaccine. GP was codon optimized and expressed either as a full-length protein or as an engineered chimeric form in which its transmembrane and cytoplasmic tail (TMCT) domains were replaced with those of the HPIV1 F protein in an effort to enhance packaging into the vector particle and immunogenicity. GP was inserted either preceding the N gene (pre-N) or between the N and P genes (N-P) of rHPIV1 bearing a stabilized attenuating mutation in the P/C gene (C Δ170 ). The constructs grew to high titers and efficiently and stably expressed GP. Viruses were attenuated, replicating at low titers over several days, in the respiratory tract of African green monkeys (AGMs). Two doses of candidates expressing GP from the pre-N position elicited higher GP neutralizing serum antibody titers than the N-P viruses, and unmodified GP induced higher levels than its TMCT counterpart. Unmodified EBOV GP was packaged into the HPIV1 particle, and the TMCT modification did not increase packaging or immunogenicity but rather reduced the stability of GP expression during in vivo replication. In conclusion, we identified an attenuated and immunogenic i.n. vaccine candidate expressing GP from the pre-N position. It is expected to be well tolerated in humans and is available for clinical evaluation. IMPORTANCE EBOV hemorrhagic fever is one of the most lethal viral infections and lacks a licensed vaccine. Contact of fluids from infected individuals, including droplets or aerosols, with mucosal surfaces is an important route of EBOV spread during a natural outbreak, and aerosols also might be exploited for intentional virus spread. Therefore, vaccines that protect

  1. Innate immunity glycoprotein gp-340 variants may modulate human susceptibility to dental caries

    Directory of Open Access Journals (Sweden)

    Johansson Ingegerd

    2007-06-01

    Full Text Available Abstract Background Bacterial adhesion is an important determinant of colonization and infection, including dental caries. The salivary scavenger receptor cysteine-rich glycoprotein gp-340, which mediates adhesion of Streptococcus mutans (implicated in caries, harbours three major size variants, designated gp-340 I to III, each specific to an individual saliva. Here we have examined the association of the gp-340 I to III polymorphisms with caries experience and adhesion of S. mutans. Methods A case-referent study was performed in 12-year-old Swedish children with high (n = 19 or low (n = 19 caries experiences. We measured the gp-340 I to III saliva phenotypes and correlated those with multiple outcome measures for caries experience and saliva adhesion of S. mutans using the partial least squares (PLS multivariate projection technique. In addition, we used traditional statistics and 2-year caries increment to verify the established PLS associations, and bacterial adhesion to purified gp-340 I to III proteins to support possible mechanisms. Results All except one subject were typed as gp-340 I to III (10, 23 and 4, respectively. The gp-340 I phenotype correlated positively with caries experience (VIP = 1.37 and saliva adhesion of S. mutans Ingbritt (VIP = 1.47. The gp-340 II and III phenotypes tended to behave in the opposite way. Moreover, the gp-340 I phenotype tended to show an increased 2-year caries increment compared to phenotypes II/III. Purified gp-340 I protein mediated markedly higher adhesion of S. mutans strains Ingbritt and NG8 and Lactococcus lactis expressing AgI/II adhesins (SpaP or PAc compared to gp-340 II and III proteins. In addition, the gp-340 I protein appeared over represented in subjects positive for Db, an allelic acidic PRP variant associated with caries, and subjects positive for both gp-340 I and Db tended to experience more caries than those negative for both proteins. Conclusion Gp-340 I behaves as a caries

  2. The Role of RhoA, RhoB and RhoC GTPases in Cell Morphology, Proliferation and Migration in Human Cytomegalovirus (HCMV Infected Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Melpomeni Tseliou

    2016-01-01

    Full Text Available Background/Aims: Rho GTPases are crucial regulators of the actin cytoskeleton, membrane trafficking and cell signaling and their importance in cell migration and invasion is well- established. The human cytomegalovirus (HCMV is a widespread pathogen responsible for generally asymptomatic and persistent infections in healthy people. Recent evidence indicates that HCMV gene products are expressed in over 90% of malignant type glioblastomas (GBM. In addition, the HCMV Immediate Early-1 protein (IE1 is expressed in >90% of tumors analyzed. Methods: RhoA, RhoB and RhoC were individually depleted in U373MG glioblastoma cells as well as U373MG cells stably expressing the HCMV IE1 protein (named U373MG-IE1 cells shRNA lentivirus vectors. Cell proliferation assays, migration as well as wound-healing assays were performed in uninfected and HCMV-infected cells. Results: The depletion of RhoA, RhoB and RhoC protein resulted in significant alterations in the morphology of the uninfected cells, which were further enhanced by the cytopathic effect caused by HCMV. Furthermore, in the absence or presence of HCMV, the knockdown of RhoB and RhoC proteins decreased the proliferation rate of the parental and the IE1-expressing glioblastoma cells, whereas the knockdown of RhoA protein in the HCMV infected cell lines restored their proliferation rate. In addition, wound healing assays in U373MG cells revealed that depletion of RhoA, RhoB and RhoC differentially reduced their migration rate, even in the presence or the absence of HCMV. Conclusion: Collectively, these data show for the first time a differential implication of Rho GTPases in morphology, proliferation rate and motility of human glioblastoma cells during HCMV infection, further supporting an oncomodulatory role of HCMV depending on the Rho isoforms' state.

  3. Antibodies against human cytomegalovirus late protein UL94 in the pathogenesis of scleroderma-like skin lesions in chronic graft-versus-host disease.

    Science.gov (United States)

    Pastano, Rocco; Dell'Agnola, Chiara; Bason, Caterina; Gigli, Federica; Rabascio, Cristina; Puccetti, Antonio; Tinazzi, Elisa; Cetto, Gianluigi; Peccatori, Fedro; Martinelli, Giovanni; Lunardi, Claudio

    2012-09-01

    Human cytomegalovirus (hCMV) infection and its reactivation correlate both with the increased risk and with the worsening of graft-versus-host disease (GVHD). Because scleroderma-like skin lesions can occur in chronic GVHD (cGVHD) in allogeneic stem-cell transplant (HCT) patients and hCMV is relevant in the pathogenesis of systemic sclerosis (SSc), we evaluated the possible pathogenetic link between hCMV and skin cGVHD. Plasma from 18 HCT patients was tested for anti-UL94 and/or anti-NAG-2 antibodies, identified in SSc patients, by direct ELISA assays. Both donors and recipients were anti-hCMV IgG positive, without autoimmune diseases. Patients' purified anti-UL94 and anti-NAG-2 IgG binding to human umbilical endothelial cells (HUVECs) and fibroblasts was performed by FACS analysis and ELISA test. HUVECs apoptosis and fibroblasts proliferation induced by patients' anti-NAG-2 antibodies were measured by DNA fragmentation and cell viability, respectively. About 11/18 patients developed cGVHD and all of them showed skin involvement, ranging from diffuse SSc-like lesions to limited erythema. Eight of eleven cGVHD patients were positive for anti-UL94 and/or anti-NAG-2 antibodies. Remarkably, 4/5 patients who developed diffuse or limited SSc-like lesions had antibodies directed against both UL94 and NAG-2; their anti-NAG-2 IgG-bound HUVECs and fibroblasts induce both endothelial cell apoptosis and fibroblasts proliferation, similar to that induced by purified anti-UL94 and anti-NAG-2 antibodies obtained from SSc patients. In conclusion, our data suggest a pathogenetic link between hCMV infection and scleroderma-like skin cGVHD in HCT patients through a mechanism of molecular mimicry between UL94 viral protein and NAG-2 molecule, as observed in patients with SSc.

  4. Comprehensive Analysis of Cytomegalovirus pp65 Antigen-Specific CD8+ T Cell Responses According to Human Leukocyte Antigen Class I Allotypes and Intraindividual Dominance

    Directory of Open Access Journals (Sweden)

    Seung-Joo Hyun

    2017-11-01

    Full Text Available To define whether individual human leukocyte antigen (HLA class I allotypes are used preferentially in human cytomegalovirus (CMV-specific cytotoxic T lymphocyte responses, CD8+ T cell responses restricted by up to six HLA class I allotypes in an individual were measured in parallel using K562-based artificial antigen-presenting cells expressing both CMV pp65 antigen and one of 32 HLA class I allotypes (7 HLA-A, 14 HLA-B, and 11 HLA-C present in 50 healthy Korean donors. The CD8+ T cell responses to pp65 in the HLA-C allotypes were lower than responses to those in HLA-A and -B allotypes and there was no difference between the HLA-A and HLA-B loci. HLA-A*02:01, -B*07:02, and -C*08:01 showed the highest magnitude and frequency of immune responses to pp65 at each HLA class I locus. However, HLA-A*02:07, -B*59:01, -B*58:01, -B*15:11, -C*03:02, and -C*02:02 did not show any immune responses. Although each individual has up to six different HLA allotypes, 46% of the donors showed one allotype, 24% showed two allotypes, and 2% showed three allotypes that responded to pp65. Interestingly, the frequencies of HLA-A alleles were significantly correlated with the positivity of specific allotypes. Our results demonstrate that specific HLA class I allotypes are preferentially used in the CD8+ T cell immune response to pp65 and that a hierarchy among HLA class I allotypes is present in an individual.

  5. Absence of cytotoxic antibody to human immunodeficiency virus-infected cells in humans and its induction in animals after infection or immunization with purified envelope glycoprotein gp120

    International Nuclear Information System (INIS)

    Nara, P.L.; Robey, W.G.; Gonda, M.A.; Carter, S.G.; Fischinger, P.J.

    1987-01-01

    The presence of antibody-dependent complement-mediated cytotoxicity (ACC) was assessed in humans and chimpanzees, which are capable of infection with human immunodeficiency virus isolate HTLV-IIIb, and examined in the goat after immunization with the major viral glycoprotein (gp120) of HTLV-IIIb. In infected humans no antibody mediating ACC was observed regardless of the status of disease. Even healthy individuals with high-titer, broadly reactive, neutralizing antibodies has no ACC. In contrast, chimpanzees infected with HTLV-IIIb, from whom virus could be isolated, not only had neutralizing antibody but also antibodies broadly reactive in ACC, even against distantly related human immunodeficiency virus isolates, as well as against their own reisolated virus. In the goat, the gp120 of HTLV-IIIb induced a highly type-specific response as measured by both ACC and flow cytofluorometry of live infected H9 cells. Normal human cells were not subject to ACC by animal anti-HTLV-III gp120-specific sera. Induction of ACC and neutralizing antibody were closely correlated in the animal experimental models but not in humans. The presence of ACC in gp120-inoculated goats and HTLV-III-infected chimpanzees represent a qualitative difference that may be important in the quest for the elicitation of a protective immunity in humans

  6. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors.

    Science.gov (United States)

    Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László

    2009-01-01

    There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed.

  7. Human Immunodeficiency Virus type 1 group M consensus and mosaic envelope glycoproteins

    Science.gov (United States)

    Korber, Bette T.; Fischer, William; Liao, Hua-Xin; Haynes, Barton F.; Letvin, Norman; Hahn, Beatrice H.

    2017-11-21

    The disclosure relates to nucleic acids mosaic clade M HIV-1 Env polypeptides and to compositions and vectors comprising same. The nucleic acids are suitable for use in inducing an immune response to HIV-1 in a human.

  8. CTA1-DD adjuvant promotes strong immunity against human immunodeficiency virus type 1 envelope glycoproteins following mucosal immunization.

    Science.gov (United States)

    Sundling, Christopher; Schön, Karin; Mörner, Andreas; Forsell, Mattias N E; Wyatt, Richard T; Thorstensson, Rigmor; Karlsson Hedestam, Gunilla B; Lycke, Nils Y

    2008-12-01

    Strategies to induce potent and broad antibody responses against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) at both systemic and mucosal sites represent a central goal for HIV-1 vaccine development. Here, we show that the non-toxic CTA1-DD adjuvant promoted mucosal and systemic humoral and cell-mediated immune responses following intranasal (i.n.) immunizations with trimeric or monomeric forms of HIV-1 Env in mice and in non-human primates. Env-specific IgG subclasses in the serum of immunized mice reflected a balanced Th1/Th2 type of response. Strikingly, i.n. immunizations with Env and the CTA1-DD adjuvant induced substantial levels of mucosal anti-Env IgA in bronchial alveolar lavage and also detectable levels in vaginal secretions. By contrast, parenteral immunizations of Env formulated in Ribi did not stimulate mucosal IgA responses, while the two adjuvants induced a similar distribution of Env-specific IgG-subclasses in serum. A single parenteral boost with Env in Ribi adjuvant into mice previously primed i.n. with Env and CTA1-DD, augmented the serum anti-Env IgG levels to similar magnitudes as those observed after three intraperitoneal immunizations with Env in Ribi. The augmenting potency of CTA1-DD was similar to that of LTK63 or CpG oligodeoxynucleotides (ODN). However, in contrast to CpG ODN, the effect of CTA1-DD and LTK63 appeared to be independent of MyD88 and toll-like receptor signalling. This is the first demonstration that CTA1-DD augments specific immune responses also in non-human primates, suggesting that this adjuvant could be explored further as a clinically safe mucosal vaccine adjuvant for humoral and cell-mediated immunity against HIV-1 Env.

  9. Human Cytomegalovirus Nuclear Egress Proteins Ectopically Expressed in the Heterologous Environment of Plant Cells are Strictly Targeted to the Nuclear Envelope.

    Science.gov (United States)

    Lamm, Christian E; Link, Katrin; Wagner, Sabrina; Milbradt, Jens; Marschall, Manfred; Sonnewald, Uwe

    2016-03-10

    In all eukaryotic cells, the nucleus forms a prominent cellular compartment containing the cell's nuclear genome. Although structurally similar, animal and plant nuclei differ substantially in details of their architecture. One example is the nuclear lamina, a layer of tightly interconnected filament proteins (lamins) underlying the nuclear envelope of metazoans. So far no orthologous lamin genes could be detected in plant genomes and putative lamin-like proteins are only poorly described in plants. To probe for potentially conserved features of metazoan and plant nuclear envelopes, we ectopically expressed the core nuclear egress proteins of human cytomegalovirus pUL50 and pUL53 in plant cells. pUL50 localizes to the inner envelope of metazoan nuclei and recruits the nuclear localized pUL53 to it, forming heterodimers. Upon expression in plant cells, a very similar localization pattern of both proteins could be determined. Notably, pUL50 is specifically targeted to the plant nuclear envelope in a rim-like fashion, a location to which coexpressed pUL53 becomes strictly corecruited from its initial nucleoplasmic distribution. Using pUL50 as bait in a yeast two-hybrid screening, the cytoplasmic re-initiation supporting protein RISP could be identified. Interaction of pUL50 and RISP could be confirmed by coexpression and coimmunoprecipitation in mammalian cells and by confocal laser scanning microscopy in plant cells, demonstrating partial pUL50-RISP colocalization in areas of the nuclear rim and other intracellular compartments. Thus, our study provides strong evidence for conserved structural features of plant and metazoan nuclear envelops and identifies RISP as a potential pUL50-interacting plant protein.

  10. Association of interferon lambda-1 with herpes simplex viruses-1 and -2, Epstein-Barr virus, and human cytomegalovirus in chronic periodontitis.

    Science.gov (United States)

    Muzammil; Jayanthi, D; Faizuddin, Mohamed; Noor Ahamadi, H M

    2017-05-01

    Periodontal tissues facilitate the homing of herpes viruses that elicit the immune-inflammatory response releasing the interferons (IFN). IFN lambda-1 (λ1) can suppress the replication of viruses, and induces the antiviral mechanism. The aim of the present study was to evaluate the association between IFN-λ1 and periodontal herpes viruses in the immunoregulation of chronic periodontal disease. The cross-sectional study design included 30 chronic periodontitis patients with a mean age of 42.30 ± 8.63 years. Gingival crevicular fluid collected was assessed for IFN-λ1 using enzyme-linked immunosorbent assay and four herpes viruses were detected using multiplex polymerase chain reaction technique. IFN-λ1 levels were compared between virus-positive and -negative patients for individual and total viruses. Fifty per cent (n = 15) of patients were positive for the four herpes viruses together; 50% (n = 15), 30% (n = 9), 26.7% (n = 8), and 40% (n = 12) were positive for herpes simplex virus (HSV)-1, Epstein-Barr virus, HSV-2, and human cytomegalovirus, respectively. The mean concentrations of IFN-λ1 in virus-positive patients (14.38 ± 13.95) were lower than those of virus-negative patients (228.26 ± 215.35). INF-λ1 levels in individual virus groups were also lower in virus-positive patients compared to virus-negative patients, with P viruses in the pathogenesis of chronic periodontitis. © 2015 Wiley Publishing Asia Pty Ltd.

  11. Multiple 5' ends of human cytomegalovirus UL57 transcripts identify a complex, cycloheximide-resistant promoter region that activates oriLyt

    International Nuclear Information System (INIS)

    Kiehl, Anita; Huang, Lili; Franchi, David; Anders, David G.

    2003-01-01

    The human cytomegalovirus (HCMV) UL57 gene lies adjacent to HCMV oriLyt, from which it is separated by an organizationally conserved, mostly noncoding region that is thought to both regulate UL57 expression and activate oriLyt function. However, the UL57 promoter has not been studied. We determined the 5' ends of UL57 transcripts toward an understanding of the potential relationship between UL57 expression and oriLyt activation. The results presented here identified three distinct 5' ends spread over 800 bp, at nt 90302, 90530, and 91138; use of these sites exhibited differential sensitivity to phosphonoformic acid treatment. Interestingly, a 10-kb UL57 transcript accumulated in cycloheximide-treated infected cells, even though other early transcripts were not detectable. However, the 10-kb transcript did not accumulate in cells treated with the more stringent translation inhibitor anisomycin. Consistent with the notion that the identified 5' ends arise from distinct transcription start sites, the sequences upstream of sites I and II functioned as promoters responsive to HCMV infection in transient assays. However, the origin-proximal promoter region III required downstream sequences for transcriptional activity. Mutation of candidate core promoter elements suggested that promoter III is regulated by an initiator region (Inr) and a downstream promoter element. Finally, a 42-bp sequence containing the candidate Inr activated a minimal oriLyt core construct in transient replication assays. Thus, these studies showed that a large, complex promoter region with novel features controls UL57 expression, and identified a sequence that regulates both UL57 transcription and oriLyt activation

  12. The human cytomegalovirus UL11 protein interacts with the receptor tyrosine phosphatase CD45, resulting in functional paralysis of T cells.

    Directory of Open Access Journals (Sweden)

    Ildar Gabaev

    2011-12-01

    Full Text Available Human cytomegalovirus (CMV exerts diverse and complex effects on the immune system, not all of which have been attributed to viral genes. Acute CMV infection results in transient restrictions in T cell proliferative ability, which can impair the control of the virus and increase the risk of secondary infections in patients with weakened or immature immune systems. In a search for new immunomodulatory proteins, we investigated the UL11 protein, a member of the CMV RL11 family. This protein family is defined by the RL11 domain, which has homology to immunoglobulin domains and adenoviral immunomodulatory proteins. We show that pUL11 is expressed on the cell surface and induces intercellular interactions with leukocytes. This was demonstrated to be due to the interaction of pUL11 with the receptor tyrosine phosphatase CD45, identified by mass spectrometry analysis of pUL11-associated proteins. CD45 expression is sufficient to mediate the interaction with pUL11 and is required for pUL11 binding to T cells, indicating that pUL11 is a specific CD45 ligand. CD45 has a pivotal function regulating T cell signaling thresholds; in its absence, the Src family kinase Lck is inactive and signaling through the T cell receptor (TCR is therefore shut off. In the presence of pUL11, several CD45-mediated functions were inhibited. The induction of tyrosine phosphorylation of multiple signaling proteins upon TCR stimulation was reduced and T cell proliferation was impaired. We therefore conclude that pUL11 has immunosuppressive properties, and that disruption of T cell function via inhibition of CD45 is a previously unknown immunomodulatory strategy of CMV.

  13. Cis and trans acting factors involved in human cytomegalovirus experimental and natural latent infection of CD14 (+ monocytes and CD34 (+ cells.

    Directory of Open Access Journals (Sweden)

    Cyprian C Rossetto

    Full Text Available The parameters involved in human cytomegalovirus (HCMV latent infection in CD14 (+ and CD34 (+ cells remain poorly identified. Using next generation sequencing we deduced the transcriptome of HCMV latently infected CD14 (+ and CD34 (+ cells in experimental as well as natural latency settings. The gene expression profile from natural infection in HCMV seropositive donors closely matched experimental latency models, and included two long non-coding RNAs (lncRNAs, RNA4.9 and RNA2.7 as well as the mRNAs encoding replication factors UL84 and UL44. Chromatin immunoprecipitation assays on experimentally infected CD14 (+ monocytes followed by next generation sequencing (ChIP-Seq were employed to demonstrate both UL84 and UL44 proteins interacted with the latent viral genome and overlapped at 5 of the 8 loci identified. RNA4.9 interacts with components of the polycomb repression complex (PRC as well as with the MIE promoter region where the enrichment of the repressive H3K27me3 mark suggests that this lncRNA represses transcription. Formaldehyde Assisted Isolation of Regulatory Elements (FAIRE, which identifies nucleosome-depleted viral DNA, was used to confirm that latent mRNAs were associated with actively transcribed, FAIRE analysis also showed that the terminal repeat (TR region of the latent viral genome is depleted of nucleosomes suggesting that this region may contain an element mediating viral genome maintenance. ChIP assays show that the viral TR region interacts with factors associated with the pre replication complex and a plasmid subclone containing the HCMV TR element persisted in latently infected CD14 (+ monocytes, strongly suggesting that the TR region mediates viral chromosome maintenance.

  14. Intrapulmonary Human Cytomegalovirus Replication in Lung Transplant Recipients Is Associated With a Rise of CCL-18 and CCL-20 Chemokine Levels.

    Science.gov (United States)

    Weseslindtner, Lukas; Görzer, Irene; Roedl, Kevin; Küng, Erik; Jaksch, Peter; Klepetko, Walter; Puchhammer-Stöckl, Elisabeth

    2017-01-01

    In lung transplant recipients (LTRs), human cytomegalovirus (HCMV) DNA detection in the bronchoalveolar lavage fluid (BALF) indicates HCMV replication in the pulmonary compartment. Such local HCMV replication episodes may remain asymptomatic or may lead to symptomatic HCMV disease. Here, we investigated LTRs with intrapulmonary HCMV replication for the chemokines CCL-18 and CCL-20. In particular, we analyzed whether these chemokines rise in the allograft and/or the blood and are associated with HCMV disease. CCL-18 and CCL-20 levels were quantitated by ELISA in BALF and serum samples from 60 LTRs. During the posttransplant follow-up, these LTRs displayed HCMV DNA detection in the BALF by PCR, whereas other infectious agents were undetectable. Furthermore, we investigated samples from 10 controls who did not display any HCMV replication episode during the follow-up. HCMV replication in the allograft was associated with a significant increase of CCL-18 and CCL-20 BALF levels (P Wilcoxon signed-rank test) and a significant rise of CCL-20 (P Wilcoxon signed-rank test) but not of CCL-18 in the blood. In controls, no such chemokine increase was observed. Furthermore, CCL-18 BALF levels were significantly higher in 8 LTRs who additionally developed HCMV disease, as compared with the other 52 patients in whom HCMV replication remained asymptomatic (P test). HCMV replication in the allograft causes an intrapulmonary increase of CCL-18 and CCL-20 and a systemic rise of CCL-20 serum levels. Strong intrapulmonary CCL-18 responses are associated with symptomatic HCMV disease, proposing that CCL-18 BALF levels could serve as a marker.

  15. Detection of human cytomegalovirus and Epstein-Barr Virus in symptomatic and asymptomatic apical periodontitis lesions by real-time PCR.

    Science.gov (United States)

    Ozbek, Selcuk-M; Ozbek, Ahmet; Yavuz, Muhammed-Selim

    2013-09-01

    Recent studies have investigated the occurrence of human cytomegalovirus and Epstein-Barr Virus in samples from apical periodontitis lesions and a role in the pathogenesis of this disease has been suggested. Because genotype distribution and seroprevalence of EBV and HCMV differ among populations, it is important to determine the presence of these viruses in endodontic periapical lesions of different populations. The aims of this study were to determine the presence of HCMV and EBV DNAs in samples from Turkish patients with symptomatic and asymptomatic apical periodontitis lesions using real-time polymerase chain reaction method and to evaluate their presence in both symptomatic and asymptomatic apical periodontitis lesions. Periapical samples were collected from 12 asymptomatic and 16 symptomatic periapical lesions in conjunction with apicectomy. HCMV and EBV DNAs were identified in the samples by real-time PCR. The chi-squared test with Yates's correction or the Fisher's exact test was used to analyse the significance of differences. HCMV DNA was detected in 10 of the 16 (62.5%) symptomatic and in five of the 12 (41.7 %) asymptomatic periapical study lesions. The EBV DNA was identified in seven of the 16 (43.7 %) symptomatic and three of the 12 (25 %) asymptomatic periapical lesions. The difference in occurrence of HCMV and EBV DNA between symptomatic and asymptomatic periapical lesions was not statistically significant. (All comparisons have p > 0.05). Our findings suggest that HCMV and EBV is a frequent inhabitant of both symptomatic and asymptomatic apical periodontitis lesions of endodontic origin in Turkish population.

  16. Human cytomegalovirus tegument protein pp65 is detected in all intra- and extra-axial brain tumours independent of the tumour type or grade.

    Directory of Open Access Journals (Sweden)

    Sylwia Libard

    Full Text Available Human cytomegalovirus (HCMV has been indicated being a significant oncomodulator. Recent reports have suggested that an antiviral treatment alters the outcome of a glioblastoma. We analysed the performance of commercial HCMV-antibodies applying the immunohistochemical (IHC methods on brain sample obtained from a subject with a verified HCMV infection, on samples obtained from 14 control subjects, and on a tissue microarray block containing cores of various brain tumours. Based on these trials, we selected the best performing antibody and analysed a cohort of 417 extra- and intra-axial brain tumours such as gliomas, medulloblastomas, primary diffuse large B-cell lymphomas, and meningiomas. HCMV protein pp65 immunoreactivity was observed in all types of tumours analysed, and the IHC expression did not depend on the patient's age, gender, tumour type, or grade. The labelling pattern observed in the tumours differed from the labelling pattern observed in the tissue with an active HCMV infection. The HCMV protein was expressed in up to 90% of all the tumours investigated. Our results are in accordance with previous reports regarding the HCMV protein expression in glioblastomas and medulloblastomas. In addition, the HCMV protein expression was seen in primary brain lymphomas, low-grade gliomas, and in meningiomas. Our results indicate that the HCMV protein pp65 expression is common in intra- and extra-axial brain tumours. Thus, the assessment of the HCMV expression in tumours of various origins and pathologically altered tissue in conditions such as inflammation, infection, and even degeneration should certainly be facilitated.

  17. Detection of cytomegalovirus, human parvovirus B19, and herpes simplex virus-1/2 in women with first-trimester spontaneous abortions.

    Science.gov (United States)

    Zhou, Ya; Bian, Guohui; Zhou, Qiongxiu; Gao, Zhan; Liao, Pu; Liu, Yu; He, Miao

    2015-10-01

    The relationship between viral infections and first-trimester spontaneous abortions is not well-understood. The study aim was to investigate the prevalence of cytomegalovirus (CMV), human parvovirus B19 (B19V), and herpes simplex virus-1/2 (HSV-1/2) infection by molecular and serological techniques in women experiencing spontaneous miscarriage in the first trimester of pregnancy. Plasma samples were examined for CMV, B19V, and HSV-1/2 DNA using real-time quantitative polymerase chain reaction (Real-time qPCR), and for specific IgG antibodies against B19V, CMV, and HSV-1/2 using serological assays. The abortion group consisted of women (n = 1,716) with a history of two or more first-trimester spontaneous abortions. Women younger than 30 years possess higher portion to experience spontaneous abortion. No specimens were positive for B19V or CMV DNA. Seven out of the 1,716 specimens were positive for HSV-1/2 DNA. By serology, 47.24% of patients were positive for B19V IgG, 39.66% for HSV IgG, 79.31% for CMV IgG, and 9.31% for B19V IgM. The high rate of positivity for CMV IgG suggests that the majority of women with first-trimester spontaneous abortions are not susceptible to primary CMV infection. The lack of virus DNA in the majority of cases indicates that B19V, CMV, and HSV-1/2 infection is not commonly associated with first-trimester spontaneous abortion. © 2015 Wiley Periodicals, Inc.

  18. Human ClC-6 is a late endosomal glycoprotein that associates with detergent-resistant lipid domains.

    Directory of Open Access Journals (Sweden)

    Sofie Ignoul

    and ClC-7 when cotransfected in COS-1 cells. CONCLUSIONS: We conclude that human ClC-6 is an endosomal glycoprotein that partitions in detergent resistant lipid domains. The differential sorting of endogenous (late endosomal versus overexpressed (early and recycling endosomal ClC-6 is reminiscent of that of other late endosomal/lysosomal membrane proteins (e.g. LIMP II, and is consistent with a rate-limiting sorting step for ClC-6 between early endosomes and its final destination in late endosomes.

  19. Humoral immune-response against human cytomegalovirus (hcmv)-specific proteins after hcmv infection in lung transplantation as detected with recombinant and naturally-occurring proteins

    NARCIS (Netherlands)

    van Zanten, J; Harmsen, M. C.; van der Giessen, M.; van der Bij, W; Prop, J.; de Leij, L; The, T. Hauw

    The humoral immune response to four intracellularly located cytomegalovirus (CMV) proteins was studied in 15 lung transplant recipients experiencing active CMV infections. Five patients had primary infections, and 10 had secondary infections. Antibodies of the immunoglobulin M (IgM) and IgG classes

  20. Quantitative serology assays for determination of antibody responses to Ebola virus glycoprotein and matrix protein in nonhuman primates and humans.

    Science.gov (United States)

    Vu, Hong; Shulenin, Sergey; Grolla, Allen; Audet, Jonathan; He, Shihua; Kobinger, Gary; Unfer, Robert C; Warfield, Kelly L; Aman, M Javad; Holtsberg, Frederick W

    2016-02-01

    The West Africa Ebola virus disease (EVD) outbreak has reached unprecedented magnitude and caused worldwide concerns for the spread of this deadly virus. Recent findings in nonhuman primates (NHPs) demonstrate that antibodies can be protective against EVD. However, the role of antibody response in vaccine-mediated protection is not fully understood. To address these questions quantitative serology assays are needed for measurement of the antibody response to key Ebola virus (EBOV) proteins. Serology enzyme-linked immunosorbent assays (ELISA's), using a reference detection antibody, were developed in order to standardize the quantitation of antibody levels in vaccinated NHPs or in humans exposed to EBOV or immunized with an EBOV vaccine. Critical reagents were generated to support the development of the serology ELISAs. Recombinant EBOV matrix protein (VP40) was expressed in Escherichia coli and purified. Two variants of the glycoprotein (GP), the ectodomain lacking the transmembrane domain (GPΔTM), and an engineered GP lacking the mucin-like domain (GPΔmuc) were expressed and purified from mammalian cell systems. Using these proteins, three ELISA methods were developed and optimized for reproducibility and robustness, including stability testing of critical reagents. The assay was used to determine the antibody response against VP40, GPΔTM, and GPΔmuc in a NHP vaccine study using EBOV virus-like particles (VLP) vaccine expressing GP, VP40 and the nucleoprotein. Additionally, these ELISAs were used to successfully detect antibody responses to VP40, GPΔTM and GPΔmuc in human sera from EBOV infected individuals. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Inhibition of P-glycoprotein by HIV protease inhibitors increases intracellular accumulation of berberine in murine and human macrophages.

    Directory of Open Access Journals (Sweden)

    Weibin Zha

    Full Text Available HIV protease inhibitor (PI-induced inflammatory response in macrophages is a major risk factor for cardiovascular diseases. We have previously reported that berberine (BBR, a traditional herbal medicine, prevents HIV PI-induced inflammatory response through inhibiting endoplasmic reticulum (ER stress in macrophages. We also found that HIV PIs significantly increased the intracellular concentrations of BBR in macrophages. However, the underlying mechanisms of HIV PI-induced BBR accumulation are unknown. This study examined the role of P-glycoprotein (P-gp in HIV PI-mediated accumulation of BBR in macrophages.Cultured mouse RAW264.7 macrophages, human THP-1-derived macrophages, Wild type MDCK (MDCK/WT and human P-gp transfected (MDCK/P-gp cells were used in this study. The intracellular concentration of BBR was determined by HPLC. The activity of P-gp was assessed by measuring digoxin and rhodamine 123 (Rh123 efflux. The interaction between P-gp and BBR or HIV PIs was predicated by Glide docking using Schrodinger program. The results indicate that P-gp contributed to the efflux of BBR in macrophages. HIV PIs significantly increased BBR concentrations in macrophages; however, BBR did not alter cellular HIV PI concentrations. Although HIV PIs did not affect P-gp expression, P-gp transport activities were significantly inhibited in HIV PI-treated macrophages. Furthermore, the molecular docking study suggests that both HIV PIs and BBR fit the binding pocket of P-gp, and HIV PIs may compete with BBR to bind P-gp.HIV PIs increase the concentration of BBR by modulating the transport activity of P-gp in macrophages. Understanding the cellular mechanisms of potential drug-drug interactions is critical prior to applying successful combinational therapy in the clinic.

  2. Levels of the Novel Glycoprotein Lacritin in Human Tears After Laser Refractive Surgery

    Science.gov (United States)

    2013-10-01

    et al. Lacritin and other new proteins of the lacrimal functional unit . Exp Eye Res 2009;88(5):848. 6. McKown RL, et al. Mutational analysis of...Ryan COL MC USA 5d. PROJECT NUMBER 5e. TASK NUMBER email:Kraig.Bower@amedd.army.mil 5f. WORK UNIT NUMBER 7. PERFORMING...mitogenesis in human corneal epithelial cells and promoting production of tears in lacrimal gland acinar cells. Heparanase (HPSE) acts as a regulator for

  3. Molecular Characterization of the Interactions between Vascular Selectins and Glycoprotein Ligands on Human Hematopoietic Stem/Progenitor Cells

    KAUST Repository

    Abusamra, Dina

    2016-12-01

    The human bone marrow vasculature constitutively expresses both E-selectin and P-selectin where they interact with the cell-surface glycan moiety, sialyl Lewis x, on circulating hematopoietic stem/progenitor cells (HSPCs) to mediate the essential tethering/rolling step. Although several E-selectin glycoprotein ligands (E-selLs) have been identified, the importance of each E-selL on human HSPCs is debatable and requires additional methodologies to advance their specific involvement. The first objective was to fill the knowledge gap in the in vitro characterization of the mechanisms used by selectins to mediate the initial step in the HSPCs homing by developing a real time immunoprecipitation-based assay on a surface plasmon resonance chip. This novel assay bypass the difficulties of purifying ligands, enables the use of natively glycosylated forms of selectin ligands from any model cell of interest and study its binding affinities under flow. We provide the first comprehensive quantitative binding kinetics of two well-documented ligands, CD44 and PSGL-1, with E-selectin. Both ligands bind monomeric E-selectin transiently with fast on- and off-rates while they bind dimeric E-selectin with remarkably slow on- and off-rates with the on-rate, but not the off-rate, is dependent on salt concentration. Thus, suggest a mechanism through which monomeric selectins mediate initial fast-on and -off binding to capture the circulating cells out of shear-flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to slow rolling significantly. The second objective is to fully identify and characterize E/P-selectin ligand candidates expressed on CD34+ HSPCs which cause enhanced migration after intravenous transplantation compared to their CD34- counterparts. CD34 is widely recognized marker of human HSPCs but its natural ligand and function on these cells remain elusive. Proteomics identified CD34 as an E-selL candidate on human HSPCs, whose binding to E

  4. Cytomegalovirus infection with lissencephaly

    Directory of Open Access Journals (Sweden)

    Joseph Leena

    2008-07-01

    Full Text Available Lissencephaly is a malformation of the brain in which the brain surface is smooth, rather than convoluted. Among the various causes of lissencephaly, infection by a virus during pregnancy plays an important role. Cytomegalovirus (CMV is an important pathogen causing this anomaly. We present this case of a young female with 24-week-gestation diagnosed on ultrasound as carrying an anomalous fetus with lissencephalic features. At autopsy, there were multiple intra-nuclear CMV inclusions in the brain and the kidneys. This case is presented for its rarity and for the documentation of the tissue localization of CMV inclusions at autopsy.

  5. Analysis of glycoprotein E-selectin ligANDs on human and mouse marrow cells enriched for hematopoietic stem/progenitor cells

    KAUST Repository

    Merzaban, Jasmeen S.

    2011-06-09

    Although well recognized that expression of E-selectin on marrow microvessels mediates osteotropism of hematopoietic stem/progenitor cells (HSPCs), our knowledge regarding the cognate E-selectin ligand(s) on HSPCs is incomplete. Flow cytometry using E-selectin-Ig chimera (E-Ig) shows that human marrow cells enriched for HSPCs (CD34+ cells) display greater E-selectin binding than those obtained from mouse (lin-/Sca-1+/c-kit+ [LSK] cells). To define the relevant glycoprotein E-selectin ligands, lysates from human CD34+ and KG1a cells and from mouse LSK cells were immunoprecipitated using E-Ig and resolved byWestern blot using E-Ig. In both human and mouse cells, E-selectin ligand reactivity was observed at ∼ 120- to 130-kDa region, which contained two E-selectin ligands, the P-selectin glycoprotein ligand- 1 glycoform "CLA," and CD43. Human, but not mouse, cells displayed a prominent ∼ 100-kDa band, exclusively comprising the CD44 glycoform "HCELL."E-Ig reactivity was most prominent on CLA in mouse cells and on HCELL in human cells. To further assess HCELL\\'s contribution to E-selectin adherence, complementary studies were performed to silence (via CD44 siRNA) or enforce its expression (via exoglycosylation). Under physiologic shear conditions, CD44/HCELL-silenced human cells showed striking decreases (> 50%) in E-selectin binding. Conversely, enforced HCELL expression of LSK cells profoundly increased E-selectin adherence, yielding > 3-fold more marrow homing in vivo. These data define the key glycoprotein E-selectin ligands of human and mouse HSPCs, unveiling critical species-intrinsic differences in both the identity and activity of these structures. © 2011 by The American Society of Hematology.

  6. Levels of the Novel Glycoprotein Lacritin in Human Tears After Laser Refractive Surgery

    Science.gov (United States)

    2012-10-01

    be done at the 1 day and 1 week post-operative visit. Each of these tests has been used in clinical practice for years. They are being done for...medical or command authorities. Your name will not appear in any published paper or presentation related to this study. A folder will be maintained...Invest Ophthalmol Vis Sci. 2005;46:863–876. 19. Zhou L, Beuerman RW, Foo Y, Liu S, Ang LP, Tan DT. Character- isation of human tear proteins using high

  7. A human PrM antibody that recognizes a novel cryptic epitope on dengue E glycoprotein.

    Directory of Open Access Journals (Sweden)

    Annie Hoi Yi Chan

    Full Text Available Dengue virus (DENV is a major mosquito-borne pathogen infecting up to 100 million people each year; so far no effective treatment or vaccines are available. Recently, highly cross-reactive and infection-enhancing pre-membrane (prM-specific antibodies were found to dominate the anti-DENV immune response in humans, raising concern over vaccine candidates that contain native dengue prM sequences. In this study, we have isolated a broadly cross-reactive prM-specific antibody, D29, during a screen with a non-immunized human Fab-phage library against the four serotypes of DENV. The antibody is capable of restoring the infectivity of virtually non-infectious immature DENV (imDENV in FcγR-bearing K562 cells. Remarkably, D29 also cross-reacted with a cryptic epitope on the envelope (E protein located to the DI/DII junction as evidenced by site-directed mutagenesis. This cryptic epitope, while inaccessible to antibody binding in a native virus particle, may become exposed if E is not properly folded. These findings suggest that generation of anti-prM antibodies that enhance DENV infection may not be completely avoided even with immunization strategies employing E protein alone or subunits of E proteins.

  8. Identification of continuous human B-cell epitopes in the VP35, VP40, nucleoprotein and glycoprotein of Ebola virus.

    Directory of Open Access Journals (Sweden)

    Pierre Becquart

    Full Text Available Ebola virus (EBOV is a highly virulent human pathogen. Recovery of infected patients is associated with efficient EBOV-specific immunoglobulin G (IgG responses, whereas fatal outcome is associated with defective humoral immunity. As B-cell epitopes on EBOV are poorly defined, we sought to identify specific epitopes in four EBOV proteins (Glycoprotein (GP, Nucleoprotein (NP, and matrix Viral Protein (VP40 and VP35. For the first time, we tested EBOV IgG+ sera from asymptomatic individuals and symptomatic Gabonese survivors, collected during the early humoral response (seven days after the end of symptoms and the late memory phase (7-12 years post-infection. We also tested sera from EBOV-seropositive patients who had never had clinical signs of hemorrhagic fever or who lived in non-epidemic areas (asymptomatic subjects. We found that serum from asymptomatic individuals was more strongly reactive to VP40 peptides than to GP, NP or VP35. Interestingly, anti-EBOV IgG from asymptomatic patients targeted three immunodominant regions of VP40 reported to play a crucial role in virus assembly and budding. In contrast, serum from most survivors of the three outbreaks, collected a few days after the end of symptoms, reacted mainly with GP peptides. However, in asymptomatic subjects the longest immunodominant domains were identified in GP, and analysis of the GP crystal structure revealed that these domains covered a larger surface area of the chalice bowl formed by three GP1 subunits. The B-cell epitopes we identified in the EBOV VP35, VP40, NP and GP proteins may represent important tools for understanding the humoral response to this virus and for developing new antibody-based therapeutics or detection methods.

  9. Identification of continuous human B-cell epitopes in the VP35, VP40, nucleoprotein and glycoprotein of Ebola virus.

    Science.gov (United States)

    Becquart, Pierre; Mahlakõiv, Tanel; Nkoghe, Dieudonné; Leroy, Eric M

    2014-01-01

    Ebola virus (EBOV) is a highly virulent human pathogen. Recovery of infected patients is associated with efficient EBOV-specific immunoglobulin G (IgG) responses, whereas fatal outcome is associated with defective humoral immunity. As B-cell epitopes on EBOV are poorly defined, we sought to identify specific epitopes in four EBOV proteins (Glycoprotein (GP), Nucleoprotein (NP), and matrix Viral Protein (VP)40 and VP35). For the first time, we tested EBOV IgG+ sera from asymptomatic individuals and symptomatic Gabonese survivors, collected during the early humoral response (seven days after the end of symptoms) and the late memory phase (7-12 years post-infection). We also tested sera from EBOV-seropositive patients who had never had clinical signs of hemorrhagic fever or who lived in non-epidemic areas (asymptomatic subjects). We found that serum from asymptomatic individuals was more strongly reactive to VP40 peptides than to GP, NP or VP35. Interestingly, anti-EBOV IgG from asymptomatic patients targeted three immunodominant regions of VP40 reported to play a crucial role in virus assembly and budding. In contrast, serum from most survivors of the three outbreaks, collected a few days after the end of symptoms, reacted mainly with GP peptides. However, in asymptomatic subjects the longest immunodominant domains were identified in GP, and analysis of the GP crystal structure revealed that these domains covered a larger surface area of the chalice bowl formed by three GP1 subunits. The B-cell epitopes we identified in the EBOV VP35, VP40, NP and GP proteins may represent important tools for understanding the humoral response to this virus and for developing new antibody-based therapeutics or detection methods.

  10. GMP-140 binds to a glycoprotein receptor on human neutrophils: Evidence for a lectin-like interaction

    International Nuclear Information System (INIS)

    Moore, K.L.; Varki, A.; McEver, R.P.

    1991-01-01

    GMP-140 is a rapidly inducible receptor for neutrophils and monocytes expressed on activated platelets and endothelial cells. It is a member of the selectin family of lectin-like cell surface molecules that mediate leukocyte adhesion. We used a radioligand binding assay to characterize the interaction of purified GMP-140 with human neutrophils. Unstimulated neutrophils rapidly bound [125I]GMP-140 at 4 degrees C, reaching equilibrium in 10-15 min. Binding was Ca2+ dependent, reversible, and saturable at 3-6 nM free GMP-140 with half-maximal binding at approximately 1.5 nM. Receptor density and apparent affinity were not altered when neutrophils were stimulated with 4 beta-phorbol 12-myristate 13-acetate. Treatment of neutrophils with proteases abolished specific binding of [125I]GMP-140. Binding was also diminished when neutrophils were treated with neuraminidase from Vibrio cholerae, which cleaves alpha 2-3-, alpha 2-6-, and alpha 2-8-linked sialic acids, or from Newcastle disease virus, which cleaves only alpha 2-3- and alpha 2-8-linked sialic acids. Binding was not inhibited by an mAb to the abundant myeloid oligosaccharide, Lex (CD15), or by the neoglycoproteins Lex-BSA and sialyl-Lex-BSA. We conclude that neutrophils constitutively express a glycoprotein receptor for GMP-140, which contains sialic acid residues that are essential for function. These findings support the concept that GMP-140 interacts with leukocytes by a lectin-like mechanism

  11. Late Development of FcεRγneg Adaptive Natural Killer Cells Upon Human Cytomegalovirus Reactivation in Umbilical Cord Blood Transplantation Recipients

    Directory of Open Access Journals (Sweden)

    Letizia Muccio

    2018-05-01

    Full Text Available In human natural killer (NK cells, human cytomegalovirus (HCMV has been shown to be a driving force capable of inducing the expansion of a highly differentiated NKG2C+CD57+ subset, persisting over time in both HCMV+ healthy subjects and umbilical cord blood transplantation (UCBT recipients experiencing HCMV viral reactivation. In HCMV+ healthy subjects, such expanded NK-cells are characterized by epigenetic modifications that modulate their phenotypic and functional characteristics. In particular, an enhanced ADCC activity is detectable in NK cells lacking the signaling protein FcεRγ. Timing and mechanisms involved in the acquisition of HCMV-induced, adaptive-like features by NK cells are currently unknown. In this study, we investigated the de novo acquisition of several adaptive features in NK cells developing after UCBT by monitoring NK-cell differentiation for at least 2 years after transplant. In UCBT recipients experiencing HCMV reactivation, a rapid phenotypic reconfiguration occurred resulting in the expected expansion of CD56dim NKG2C+CD57+ NK cells. However, while certain HCMV-driven adaptive hallmarks, including high KIR, LILRB1, CD2 and low/negative NKG2A, Siglec-7, and CD161 expression, were acquired early after UCBT (namely by month 6, downregulation of the signaling protein FcεRγ was detected at a later time interval (i.e., by month 12. This feature characterized only a minor fraction of the HCMV-imprinted NKG2C+CD57+ CD56dim NK cell subset, while it was detectable in higher proportions of CD57+ NK cells lacking NKG2C. Interestingly, in patients developing a hyporesponsive CD56−CD16bright NK-cell subset, FcεRγ downregulation occurred in these cells earlier than in CD56dim NK cells. Our data suggest that the acquisition of a fully “adaptive” profile requires signals that may lack in UCBT recipients and/or longer time is needed to obtain a stable epigenetic reprogramming. On the other hand, we found that both HCMV

  12. Genomic Programming of Human Neonatal Dendritic Cells in Congenital Systemic and In Vitro Cytomegalovirus Infection Reveal Plastic and Robust Immune Pathway Biology Responses

    Directory of Open Access Journals (Sweden)

    Widad Dantoft

    2017-09-01

    Full Text Available Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1 and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1 roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity

  13. Genomic Programming of Human Neonatal Dendritic Cells in Congenital Systemic and In Vitro Cytomegalovirus Infection Reveal Plastic and Robust Immune Pathway Biology Responses.

    Science.gov (United States)

    Dantoft, Widad; Martínez-Vicente, Pablo; Jafali, James; Pérez-Martínez, Lara; Martin, Kim; Kotzamanis, Konstantinos; Craigon, Marie; Auer, Manfred; Young, Neil T; Walsh, Paul; Marchant, Arnaud; Angulo, Ana; Forster, Thorsten; Ghazal, Peter

    2017-01-01

    Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV) is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1) and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1) roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity differences. These

  14. Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNγ-Like Response.

    Directory of Open Access Journals (Sweden)

    Thomas Harwardt

    2016-07-01

    Full Text Available The human cytomegalovirus (hCMV major immediate-early 1 protein (IE1 is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445 in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420 deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication.

  15. Zonal variation in the distribution of an alpha 1-acid glycoprotein glycoform receptor in human adrenal cortex

    DEFF Research Database (Denmark)

    Andersen, U O; Bøg-Hansen, T C; Kirkeby, S

    1999-01-01

    receptor was located in the cytoplasm of glomerulosa and outer fasciculata cells. The intensity of the reaction product decreased in the fasciculata, and no staining was seen in inner fasciculata and reticularis. Inhibition with the simple sugars, mannose and GlcNAc confirmed a lectin-like reaction...... specific receptor. The binding of alpha 1-acid glycoprotein glycoform B and alpha 1-acid glycoprotein glycoform C to the glycoform specific receptor is inhibited by the steroid hormones cortisone, aldosterone, estradiol and progesterone but not by testosterone. The pronounced changes in the distribution...

  16. A Taq 1 polymorphism for the human platelet glycoprotein IIIa gene (GP3A)

    Energy Technology Data Exchange (ETDEWEB)

    Burk, C; Ingram, C; Weiner, M; Rappaport, E F; Schwartz, E; Poncz, M [Univ. of Pennsylvania School of Medicine, Philadelphia (USA)

    1988-07-25

    A cDNA clone containing a 4.0 kb GPIIIa insert was isolated from a human erythroleukemia (HEL) cell cDNA library. A 2.3 kb Eco RI fragment, representing the 5{prime} portion of this insert, was used as a probe for these Southern blot experiments. Taq I (T/CGA) identifies invariant bands of 5.0, 3.5, 1.3, 1.1, and 0.8 kb and a simple polymorphism with a band(s) at 8.0 kb or 4.8 and 3.2 kb. The frequency of the gene was studied in 17 persons (11 Caucasians, 3 Asians, and 3 blacks). The GPIIIa gene has been localized to the region 17q21{r arrow}22 by somatic cell hybrid and in situ hybridization studies. Mendelian inheritance was demonstrated in one family. The father is homozygous for the 8.0 kb band, and the mother is heterozygous for the 8.0/4.8 and 3.2 kb bands.

  17. Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets

    Science.gov (United States)

    Corona de la Peña, Norma; Gutiérrez-Aguilar, Manuel; Hernández-Reséndiz, Ileana; Marín-Hernández, Álvaro

    2017-01-01

    Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway i.e., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times vs. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation. PMID:28817667

  18. Human Cytomegalovirus Infection in Children with Tic Disorders%巨细胞病毒感染在抽动障碍中的临床意义初探

    Institute of Scientific and Technical Information of China (English)

    匡桂芳; 贺莉娜; 蒋玉红; 邓萍

    2001-01-01

    目的:探讨人巨细胞病毒(human cytomegalovirus,HCMV)感染在抽动障碍中的临床意义。方法:应用PCR基因扩增技术对66例抽动障碍患儿进行血液HCMV检测,并测定74例正常儿童作为对照。结果:抽动障碍患儿HCMV检出阳性率(26%)明显高于对照组(3%),差异有显著性(p<0.01),抽动障碍三种类型间HCMV感染阳性率无显著性差异(p>0.05)。结论:HCMV感染与抽动障碍发病有关。%Objective: To explore the situation of human cytomegalovirus (HCMV) infection in children with tic disorders. Method: The HCMV were determined in blood sample taken from 66 cases of tic disorders by polymerase chain reaction (PCR), while 74 normal children were tested either as control. Results: The positive rate in tic group (26%) was significantly higher than that of control (3%, p<0.01). There was no difference of this rate among the 3 subtypes of tic disorders. Conclusion: HCMV infection is more common in children with tic disorders and has no difference among the three subtypes.

  19. Intracellular Distribution of Capsid-Associated pUL77 of Human Cytomegalovirus and Interactions with Packaging Proteins and pUL93.

    Science.gov (United States)

    Köppen-Rung, Pánja; Dittmer, Alexandra; Bogner, Elke

    2016-07-01

    DNA packaging into procapsids is a common multistep process during viral maturation in herpesviruses. In human cytomegalovirus (HCMV), the proteins involved in this process are terminase subunits pUL56 and pUL89, which are responsible for site-specific cleavage and insertion of the DNA into the procapsid via portal protein pUL104. However, additional viral proteins are required for the DNA packaging process. We have shown previously that the plasmid that encodes capsid-associated pUL77 encodes another potential player during capsid maturation. Pulse-chase experiments revealed that pUL77 is stably expressed during HCMV infection. Time course analysis demonstrated that pUL77 is expressed in the early late part of the infectious cycle. The sequence of pUL77 was analyzed to find nuclear localization sequences (NLSs), revealing monopartite NLSm at the N terminus and bipartite NLSb in the middle of pUL77. The potential NLSs were inserted into plasmid pHM829, which encodes a chimeric protein with β-galactosidase and green fluorescent protein. In contrast to pUL56, neither NLSm nor NLSb was sufficient for nuclear import. Furthermore, we investigated by coimmunoprecipitation whether packaging proteins, as well as pUL93, the homologue protein of herpes simplex virus 1 pUL17, are interaction partners of pUL77. The interactions between pUL77 and packaging proteins, as well as pUL93, were verified. We showed that the capsid-associated pUL77 is another potential player during capsid maturation of HCMV. Protein UL77 (pUL77) is a conserved core protein of HCMV. This study demonstrates for the first time that pUL77 has early-late expression kinetics during the infectious cycle and an intrinsic potential for nuclear translocation. According to its proposed functions in stabilization of the capsid and anchoring of the encapsidated DNA during packaging, interaction with further DNA packaging proteins is required. We identified physical interactions with terminase subunits pUL56 and p

  20. Phenotype and specificity of T cells in primary human cytomegalovirus infection during pregnancy: IL-7Rpos long-term memory phenotype is associated with protection from vertical transmission.

    Science.gov (United States)

    Mele, Federico; Fornara, Chiara; Jarrossay, David; Furione, Milena; Arossa, Alessia; Spinillo, Arsenio; Lanzavecchia, Antonio; Gerna, Giuseppe; Sallusto, Federica; Lilleri, Daniele

    2017-01-01

    Congenital human cytomegalovirus (HCMV) infection is the major cause of birth defects and a precise definition of the HCMV-specific T-cell response in primary infection may help define reliable correlates of immune protection during pregnancy. In this study, a high throughput method was used to define the frequency of CD4+ and CD8+ T cells specific for four HCMV proteins in the naïve compartment of seronegative subjects and the effector/memory compartments of subjects with primary/remote HCMV infection. The naïve repertoire displayed comparable frequencies of T cells that were reactive with HCMV structural (pp65, gB and the pentamer gHgLpUL128L) and non-structural (IE-1) proteins. Whereas, following natural infection, the majority of effector/memory CD4+ and CD8+ T cells recognized either gB or IE-1, respectively, and pp65. The pattern of T cell reactivity was comparable at early and late stages of infection and in pregnant women with primary HCMV infection transmitting or not transmitting the virus to the fetus. At an early stage of primary infection, about 50% of HCMV-reactive CD4+ T cells were long-term IL-7Rpos memory cells, while 6-12 months later, the frequency of these cells increased to 70%, approaching 100% in remote infections. In contrast, only 10-20% of HCMV-specific CD8+ T cells were long-term memory cells up to 12 months after infection onset, thereafter increasing to 70% in remote infections. Interestingly, a significantly higher frequency of HCMV-specific CD4+ T cells with a long-term IL-7Rpos memory phenotype was observed in non-transmitting compared to transmitting women. These findings indicate that immunodominance in HCMV infection is not predetermined in the naïve compartment, but is the result of virus-host interactions and suggest that prompt control of HCMV infection in pregnancy is associated with the rapid development of long-term IL-7Rpos memory HCMV-specific CD4+ T cells and a low risk of virus transmission to the fetus.

  1. Expression of peanut agglutinin-binding mucin-type glycoprotein in human esophageal squamous cell carcinoma as a marker

    Directory of Open Access Journals (Sweden)

    Balakrishnan Ramathilakam

    2003-11-01

    Full Text Available Abstract Background The TF (Thomson – Friedenreich blood group antigen behaves as an onco-foetal carcinoma-associated antigen, showing increased expression in malignancies and its detection and quantification can be used in serologic diagnosis mainly in adenocarcinomas. This study was undertaken to analyze the sera and tissue level detectable mucin-type glycoprotein (TF-antigen by Peanut agglutinin (PNA and its diagnostic index in serum as well tissues of human esophageal squamous cell carcinoma as marker. Results We examined 100 patients for serological analysis by Enzyme Linked Lectin Assay (ELISA and demonstrated a sensitivity of 87.5%, specificity of 90% and a positive predictive value of 95%. The immuno-histochemical localization of TF antigen by Fluorescence Antigen Technique (FAT in 25 specimens of normal esophageal squamous epithelium specimens and 92 specimens with different grades of, allowed a quicker and more precise identification of its increased expression and this did not correlate with gender and tumor size. There was a positive correlation between membrane bound TF antigen expression with different histological progression, from well differentiated to poorly differentiated, determined by PNA binding. Specimens showed morphological changes and a pronounced increase in PNA binding in Golgi apparatus, secretory granules of the cytosol of well differentiated and an increased cell membrane labeling in moderately and poorly differentiated, when compared with ESCC and normal tissues. Conclusion The authors propose that the expression of TF-antigen in human may play an important role during tumorigenesis establishing it as a chemically well-defined carcinoma-associated antigen. Identification of the circulating TF-antigen as a reactive form and as a cryptic form in the healthy individuals, using PNA-ELLA and Immunohistochemical analysis of TF antigen by FAT is positively correlated with the different histological grades as a simple

  2. Effects of tunicamycin, mannosamine, and other inhibitors of glycoprotein processing on skeletal alkaline phosphatase in human osteoblast-like cells.

    Science.gov (United States)

    Farley, J R; Magnusson, P

    2005-01-01

    Skeletal alkaline phosphatase (sALP) is a glycoprotein- approximately 20% carbohydrate by weight, with five presumptive sites for N-linked glycosylation, as well as a carboxy-terminal site for attachment of the glycolipid structure (glycosylphosphatidylinositol, GPI), which anchors sALP to the outer surface of osteoblasts. The current studies were intended to characterize the effects of inhibiting glycosylation and glycosyl-processing on the synthesis, plasma membrane attachment, cellular-extracellular distribution, and reaction kinetics of sALP in human osteosarcoma (SaOS-2) cells. sALP synthesis, glycosylation, and GPI-anchor attachment were assessed as total protein synthesis/immunospecific sALP synthesis, sialic acid content (i.e., wheat germ agglutinin precipitation), and insolubility (i.e., temperature-dependent phase-separation), respectively. sALP reaction kinetics were characterized by analysis of dose-dependent initial velocity data, with a phosphoryl substrate. The results of these studies revealed that the inhibition of either N-linked glycosylation or oligosaccharide synthesis for GPI-anchor addition could affect the synthesis and the distribution of sALP, but not the kinetics of the phosphatase reaction. Tunicamycin-which blocks N-linked glycosylation by inhibiting core oligosaccharide synthesis-decreased cell layer protein and the total amount of sALP in the cells, while increasing the relative level of sALP in the cell-conditioned culture medium (CM, i.e., the amount of sALP released). These effects were attributed to dose- and time-dependent decreases in sALP synthesis and N-linked glycosylation, and an increase in apoptotic cell death (P sALP specific activity, in the cells and in the CM; and (3) increases in the percentages of both anchorless and wheat germ agglutinin (WGA)-soluble sALP in the medium, but not in the cells (P sALP to the outside of the plasma membrane surface. Neither mannosammine nor tunicamycin had any effect on the reaction

  3. An Analysis of Trafficking Receptors Shows that CD44 and P-Selectin Glycoprotein Ligand-1 Collectively Control the Migration of Activated Human T-Cells

    KAUST Repository

    Ali, Amal J.

    2017-05-03

    Selectins guide the traffic of activated T-cells through the blood stream by mediating their tethering and rolling onto inflamed endothelium, in this way acting as beacons to help navigate them to sites of inflammation. Here, we present a comprehensive analysis of E-selectin ligands expressed on activated human T-cells. We identified several novel glycoproteins that function as E-selectin ligands. Specifically, we compared the role of P-selectin glycoprotein ligand-1 (PSGL-1) and CD43, known E-selectin ligands, to CD44, a ligand that has not previously been characterized as an E-selectin ligand on activated human T-cells. We showed that CD44 acts as a functional E-selectin ligand when expressed on both CD4+ and CD8+ T-cells. Moreover, the CD44 protein carries a binding epitope identifying it as hematopoietic cell E- and/or L-selectin ligand (HCELL). Furthermore, by knocking down these ligands individually or together in primary activated human T-cells, we demonstrated that CD44/HCELL, and not CD43, cooperates with PSGL-1 as a major E-selectin ligand. Additionally, we demonstrated the relevance of our findings to chronic autoimmune disease, by showing that CD44/HCELL and PSGL-1, but not CD43, from T-cells isolated from psoriasis patients, bind E-selectin.

  4. Cytomegalovirus protease targeted prodrug development.

    Science.gov (United States)

    Sabit, Hairat; Dahan, Arik; Sun, Jing; Provoda, Chester J; Lee, Kyung-Dall; Hilfinger, John H; Amidon, Gordon L

    2013-04-01

    Human cytomegalovirus (HCMV) is a prevalent virus that infects up to 90% of the population. The goal of this research is to determine if small molecular prodrug substrates can be developed for a specific HCMV encoded protease and thus achieve site-specific activation. HCMV encodes a 256 amino acid serine protease that is responsible for capsid assembly, an essential process for herpes virus production. The esterase activity of the more stable HCMV A143T/A144T protease mutant was evaluated with model p-nitrophenol (ONp) esters, Boc-Xaa-ONp (Ala, Leu, Ile, Val, Gln, Phe at the Xaa position). We demonstrate that the A143T/A144T mutant has esterase activity toward specific small ester compounds, e.g., Boc-L-Ala-ONp. Mono amino acid and dipeptide prodrugs of ganciclovir (GCV) were also synthesized and evaluated for hydrolysis by the A143T/A144T protease mutant in solution. Hydrolysis of these prodrugs was also evaluated in Caco-2 cell homogenates, human liver microsomes (HLMs), and rat and human plasma. For the selectivity potential of the prodrugs, the hydrolysis ratio was evaluated as a percentage of prodrug hydrolyzed by the HCMV protease over the percentages of prodrug hydrolyses by Caco-2 cell homogenates, HLMs, and human/rat plasma. A dipeptide prodrug of ganciclovir, Ac-l-Gln-l-Ala-GCV, emerged as a potential selective prodrug candidate. The results of this research demonstrate that targeting prodrugs for activation by a specific protease encoded by the infectious HCMV pathogen may be achievable.

  5. Prediction of exposed domains of envelope glycoprotein in Indian HIV-1 isolates and experimental confirmation of their immunogenicity in humans

    Directory of Open Access Journals (Sweden)

    Mohabatkar H.

    2004-01-01

    Full Text Available We describe the impact of subtype differences on the seroreactivity of linear antigenic epitopes in envelope glycoprotein of HIV-1 isolates from different geographical locations. By computer analysis, we predicted potential antigenic sites of envelope glycoprotein (gp120 and gp4l of this virus. For this purpose, after fetching sequences of proteins of interest from data banks, values of hydrophilicity, flexibility, accessibility, inverted hydrophobicity, and secondary structure were considered. We identified several potential antigenic epitopes in a B subtype strain of envelope glycoprotein of HIV-1 (IIIB. Solid- phase peptide synthesis methods of Merrifield and Fmoc chemistry were used for synthesizing peptides. These synthetic peptides corresponded mainly to the C2, V3 and CD4 binding sites of gp120 and some parts of the ectodomain of gp41. The reactivity of these peptides was tested by ELISA against different HIV-1-positive sera from different locations in India. For two of these predicted epitopes, the corresponding Indian consensus sequences (LAIERYLKQQLLGWG and DIIGDIRQAHCNISEDKWNET (subtype C were also synthesized and their reactivity was tested by ELISA. These peptides also distinguished HIV-1-positive sera of Indians with C subtype infections from sera from HIV-negative subjects.

  6. Cytomegalovirus-Induced Effector T Cells Cause Endothelial Cell Damage

    NARCIS (Netherlands)

    van de Berg, Pablo J. E. J.; Yong, Si-La; Remmerswaal, Ester B. M.; van Lier, René A. W.; ten Berge, Ineke J. M.

    2012-01-01

    Human cytomegalovirus (CMV) infection has been linked to inflammatory diseases that involve vascular endothelial cell damage, but definitive proof for a direct cytopathic effect of CMV in these diseases is lacking. CMV infection is associated with a strong increase in both CD4(+) and CD8(+) T cells

  7. Early-life environment influencing susceptibility to cytomegalovirus infection

    DEFF Research Database (Denmark)

    Mortensen, Laust Hvas; Maier, A B; Slagbom, P E

    2012-01-01

    Human cytomegalovirus (CMV) is a common herpesvirus establishing lifelong persisting infection, which has been implicated in immunosenescence and mortality in the elderly. Little is known about how and when susceptibility to CMV infection is determined. We measured CMV seroprevalence in two...... number for partners was 71% (Psusceptibility to CMV infection...

  8. Cytomegalovirus infection in pregnancy.

    Science.gov (United States)

    Kagan, Karl Oliver; Hamprecht, Klaus

    2017-07-01

    Due to the severe risk of long-term sequelae, prenatal cytomegalovirus infection is of particular importance amongst intrauterine viral infections. This review summarizes the current knowledge about CMV infection in pregnancy. A search of the Medline and Embase database was done for articles about CMV infection in pregnany. We performed a detailed review of the literature in view of diagnosis, epidemiology and management of CMV infection in pregnancy. The maternal course of the infection is predominantly asymptomatic; the infection often remains unrecognized until the actual fetal manifestation. Typical ultrasound signs that should arouse suspicion of intrauterine CMV infection can be distinguished into CNS signs such as ventriculomegaly or microcephaly and extracerebral infection signs such as hepatosplenomegaly or hyperechogenic bowel. Current treatment strategies focus on hygienic measures to prevent a maternal CMV infection during pregnancy, on maternal application of hyperimmunoglobulines to avoid materno-fetal transmission in case of a maternal seroconversion, and on an antiviral therapy in case the materno-fetal transmission have occurred. CMV infection in pregnancy may result in a severe developmental disorder of the newborn. This should be taken into account in the treatment of affected and non-affected pregnant women.

  9. Individual contributions of the human metapneumovirus F, G, and SH surface glycoproteins to the induction of neutralizing antibodies and protective immunity

    International Nuclear Information System (INIS)

    Skiadopoulos, Mario H.; Biacchesi, Stephane; Buchholz, Ursula J.; Amaro-Carambot, Emerito; Surman, Sonja R.; Collins, Peter L.; Murphy, Brian R.

    2006-01-01

    We evaluated the individual contributions of the three surface glycoproteins of human metapneumovirus (HMPV), namely the fusion F, attachment G, and small hydrophobic SH proteins, to the induction of serum HMPV-binding antibodies, serum HMPV-neutralizing antibodies, and protective immunity. Using reverse genetics, each HMPV protein was expressed individually from an added gene in recombinant human parainfluenza virus type 1 (rHPIV1) and used to infect hamsters once or twice by the intranasal route. The F protein was highly immunogenic and protective, whereas G and SH were only weakly or negligibly immunogenic and protective, respectively. Thus, in contrast to other paramyxoviruses, the HMPV attachment G protein is not a major neutralization or protective antigen. Also, although the SH protein of HMPV is a virion protein that is much larger than its counterparts in previously studied paramyxoviruses, it does not appear to be a significant neutralization or protective antigen

  10. iP-gp , a novel cell line with tight barrier function and expression of human P-glycoprotein (ABCB1) for drug screening

    DEFF Research Database (Denmark)

    Brodin, Birger; Ozgür, Burak; Saaby, Lasse

    that new API's are evaluated with respect to P-gp interactions.  Aim : The aim of the present work was to validate the suitability of the newly developed iP-gp cell line for investigating P-gp interactions with human P-gp. Methods: IPEC-J2 MDR1 (iP-gp) cells were cultured on permeable supports for 17......Background : The efflux transporter P-glycoprotein (P-gp, product of the MDR1/ABCB1 gene) hinders uptake of drug compounds to the brain, limits intestinal uptake, is a cause of resistance to chemoterapeutics and a potential "site" for drug-drug interaction. Regulatory agencies therefore recommend.......04 +/- 0.01 µM in transport experiments including digoxin and rhodamine 123, respectively. Summary/Conclusion : The iP-gp cell line may become a useful screening tool for interactions between drug compounds and human P-gp....

  11. Computational identification of epitopes in the glycoproteins of novel bunyavirus (SFTS virus) recognized by a human monoclonal antibody (MAb 4-5)

    Science.gov (United States)

    Zhang, Wenshuai; Zeng, Xiaoyan; Zhang, Li; Peng, Haiyan; Jiao, Yongjun; Zeng, Jun; Treutlein, Herbert R.

    2013-06-01

    In this work, we have developed a new approach to predict the epitopes of antigens that are recognized by a specific antibody. Our method is based on the "multiple copy simultaneous search" (MCSS) approach which identifies optimal locations of small chemical functional groups on the surfaces of the antibody, and identifying sequence patterns of peptides that can bind to the surface of the antibody. The identified sequence patterns are then used to search the amino-acid sequence of the antigen protein. The approach was validated by reproducing the binding epitope of HIV gp120 envelop glycoprotein for the human neutralizing antibody as revealed in the available crystal structure. Our method was then applied to predict the epitopes of two glycoproteins of a newly discovered bunyavirus recognized by an antibody named MAb 4-5. These predicted epitopes can be verified by experimental methods. We also discuss the involvement of different amino acids in the antigen-antibody recognition based on the distributions of MCSS minima of different functional groups.

  12. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin: structural elucidation of the sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones

    International Nuclear Information System (INIS)

    Green, E.D.; Baenziger, J.U.

    1988-01-01

    The authors have elucidated the structures of the anionic asparagine-linked oligosaccharides present on the glycoprotein hormones lutropin (luteinizing hormone), follitropin (follicle-stimulating hormone), and thyrotropin (thyroid-stimulating hormone). Purified hormones, isolated from bovine, ovine, and human pituitaries, were digested with N-glycanase, and the released oligosaccharides were reduced with NaB[ 3 H] 4 . The 3 H-labeled oligosaccharides from each hormone were then fractionated by anion-exchange high performance liquid chromatography (HPLC) into populations differing in the number of sulfate and/or sialic acid moieties. The sulfated, sialylated, and sulfated/sialylated structures, which together comprised 67-90% of the asparagine-linked oligosaccharides on the pituitary glycoprotein hormones, were highly heterogeneous and displayed hormone- as well as animal species-specific features. A previously uncharacterized dibranched oligosaccharide, bearing one residue each of sulfate and sialic acid, was found on all of the hormones except bovine lutropin. In this study, they describe the purification and detailed structural characterizations of the sulfated, sialylated, and sulfated/sialylated oligosaccharides found on lutropin, follitropin, and thyrotropin from several animal species

  13. Up-Regulation of the Lymphatic Marker Podoplanin, a Mucin-Type Transmembrane Glycoprotein, in Human Squamous Cell Carcinomas and Germ Cell Tumors

    Science.gov (United States)

    Schacht, Vivien; Dadras, Soheil S.; Johnson, Louise A.; Jackson, David G.; Hong, Young-Kwon; Detmar, Michael

    2005-01-01

    The mucin-type glycoprotein podoplanin is specifically expressed by lymphatic but not blood vascular endothelial cells in culture and in tumor-associated lymphangiogenesis, and podoplanin deficiency results in congenital lymphedema and impaired lymphatic vascular patterning. However, research into the biological importance of podoplanin has been hampered by the lack of a generally available antibody against the human protein, and its expression in normal tissues and in human malignancies has remained unclear. We generated a human podoplanin-Fc fusion protein and found that the commercially available mouse monoclonal antibody D2-40 specifically recognized human podoplanin, as assessed by enzyme-linked immunosorbent assay and Western blot analyses. We found that, in addition to lymphatic endothelium, podoplanin was also expressed by peritoneal mesothelial cells, osteocytes, glandular myoepithelial cells, ependymal cells, and by stromal reticular cells and follicular dendritic cells of lymphoid organs. These findings were confirmed in normal mouse tissues with anti-podoplanin antibody 8.1.1. Podoplanin was also strongly expressed by granulosa cells in normal ovarian follicles, and by ovarian dysgerminomas and granulosa cell tumors. Although podoplanin was primarily absent from normal human epidermis, its expression was strongly induced in 22 of 28 squamous cell carcinomas studied. These findings suggest a potential role of podoplanin in tumor progression, and they also identify the first commercially available antibody for the specific staining of a defined lymphatic marker in archival human tissue sections, thereby enabling more widespread studies of tumor lymphangiogenesis in human cancers. PMID:15743802

  14. Cleavage of a Neuroinvasive Human Respiratory Virus Spike Glycoprotein by Proprotein Convertases Modulates Neurovirulence and Virus Spread within the Central Nervous System.

    Directory of Open Access Journals (Sweden)

    Alain Le Coupanec

    Full Text Available Human coronaviruses (HCoV are respiratory pathogens that may be associated with the development of neurological diseases, in view of their neuroinvasive and neurotropic properties. The viral spike (S glycoprotein is a major virulence factor for several coronavirus species, including the OC43 strain of HCoV (HCoV-OC43. In an attempt to study the role of this protein in virus spread within the central nervous system (CNS and neurovirulence, as well as to identify amino acid residues important for such functions, we compared the sequence of the S gene found in the laboratory reference strain HCoV-OC43 ATCC VR-759 to S sequences of viruses detected in clinical isolates from the human respiratory tract. We identified one predominant mutation at amino acid 758 (from RRSR↓ G758 to RRSR↓R758, which introduces a putative furin-like cleavage (↓ site. Using a molecular cDNA infectious clone to generate a corresponding recombinant virus, we show for the first time that such point mutation in the HCoV-OC43 S glycoprotein creates a functional cleavage site between the S1 and S2 portions of the S protein. While the corresponding recombinant virus retained its neuroinvasive properties, this mutation led to decreased neurovirulence while potentially modifying the mode of virus spread, likely leading to a limited dissemination within the CNS. Taken together, these results are consistent with the adaptation of HCoV-OC43 to the CNS environment, resulting from the selection of quasi-species harboring mutations that lead to amino acid changes in viral genes, like the S gene in HCoV-OC43, which may contribute to a more efficient establishment of a less pathogenic but persistent CNS infection. This adaptative mechanism could potentially be associated with human encephalitis or other neurological degenerative pathologies.

  15. P-Glycoprotein/MDR1 regulates pokemon gene transcription through p53 expression in human breast cancer cells.

    Science.gov (United States)

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-08-27

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  16. P-Glycoprotein/MDR1 Regulates Pokemon Gene Transcription Through p53 Expression in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2010-08-01

    Full Text Available P-glycoprotein (Pgp, encoded by the multidrug resistance 1 (MDR1 gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  17. A Homolog Pentameric Complex Dictates Viral Epithelial Tropism, Pathogenicity and Congenital Infection Rate in Guinea Pig Cytomegalovirus.

    Science.gov (United States)

    Coleman, Stewart; Choi, K Yeon; Root, Matthew; McGregor, Alistair

    2016-07-01

    In human cytomegalovirus (HCMV), tropism to epithelial and endothelial cells is dependent upon a pentameric complex (PC). Given the structure of the placenta, the PC is potentially an important neutralizing antibody target antigen against congenital infection. The guinea pig is the only small animal model for congenital CMV. Guinea pig cytomegalovirus (GPCMV) potentially encodes a UL128-131 HCMV PC homolog locus (GP128-GP133). In transient expression studies, GPCMV gH and gL glycoproteins interacted with UL128, UL130 and UL131 homolog proteins (designated GP129 and GP131 and GP133 respectively) to form PC or subcomplexes which were determined by immunoprecipitation reactions directed to gH or gL. A natural GP129 C-terminal deletion mutant (aa 107-179) and a chimeric HCMV UL128 C-terminal domain swap GP129 mutant failed to form PC with other components. GPCMV infection of a newly established guinea pig epithelial cell line required a complete PC and a GP129 mutant virus lacked epithelial tropism and was attenuated in the guinea pig for pathogenicity and had a low congenital transmission rate. Individual knockout of GP131 or 133 genes resulted in loss of viral epithelial tropism. A GP128 mutant virus retained epithelial tropism and GP128 was determined not to be a PC component. A series of GPCMV mutants demonstrated that gO was not strictly essential for epithelial infection whereas gB and the PC were essential. Ectopic expression of a GP129 cDNA in a GP129 mutant virus restored epithelial tropism, pathogenicity and congenital infection. Overall, GPCMV forms a PC similar to HCMV which enables evaluation of PC based vaccine strategies in the guinea pig model.

  18. Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways

    OpenAIRE

    Scull, Margaret A.; Gillim-Ross, Laura; Santos, Celia; Roberts, Kim L.; Bordonali, Elena; Subbarao, Kanta; Barclay, Wendy S.; Pickles, Raymond J.

    2009-01-01

    Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human p...

  19. Defining glycoprotein cancer biomarkers by MS in conjunction with glycoprotein enrichment.

    Science.gov (United States)

    Song, Ehwang; Mechref, Yehia

    2015-01-01

    Protein glycosylation is an important and common post-translational modification. More than 50% of human proteins are believed to be glycosylated to modulate the functionality of proteins. Aberrant glycosylation has been correlated to several diseases, such as inflammatory skin diseases, diabetes mellitus, cardiovascular disorders, rheumatoid arthritis, Alzheimer's and prion diseases, and cancer. Many approved cancer biomarkers are glycoproteins which are not highly abundant proteins. Therefore, effective qualitative and quantitative assessment of glycoproteins entails enrichment methods. This chapter summarizes glycoprotein enrichment methods, including lectin affinity, immunoaffinity, hydrazide chemistry, hydrophilic interaction liquid chromatography, and click chemistry. The use of these enrichment approaches in assessing the qualitative and quantitative changes of glycoproteins in different types of cancers are presented and discussed. This chapter highlights the importance of glycoprotein enrichment techniques for the identification and characterization of new reliable cancer biomarkers.

  20. History of the molecular biology of cytomegaloviruses.

    Science.gov (United States)

    Stinski, Mark F

    2014-01-01

    The history of the molecular biology of cytomegaloviruses from the purification of the virus and the viral DNA to the cloning and expression of the viral genes is reviewed. A key genetic element of cytomegalovirus (the CMV promoter) contributed to our understanding of eukaryotic cell molecular biology and to the development of lifesaving therapeutic proteins. The study of the molecular biology of cytomegaloviruses also contributed to the development of antivirals to control the viral infection.

  1. Microgravity Analogues of Herpes Virus Pathogenicity: Human Cytomegalovirus (hCMV) and Varicella Zoster (VZV) Infectivity in Human Tissue Like Assemblies (TLAs)

    Science.gov (United States)

    Goodwin, T. J.; McCarthy, M.; Albrecht, T.; Cohrs, R.

    2009-01-01

    The old adage we are our own worst enemies may perhaps be the most profound statement ever made when applied to man s desire for extraterrestrial exploration and habitation of Space. Consider the immune system protects the integrity of the entire human physiology and is comprised of two basic elements the adaptive or circulating and the innate immune system. Failure of the components of the adaptive system leads to venerability of the innate system from opportunistic microbes; viral, bacteria, and fungal, which surround us, are transported on our skin, and commonly inhabit the human physiology as normal and imunosuppressed parasites. The fine balance which is maintained for the preponderance of our normal lives, save immune disorders and disease, is deregulated in microgravity. Thus analogue systems to study these potential Risks are essential for our progress in conquering Space exploration and habitation. In this study we employed two known physiological target tissues in which the reactivation of hCMV and VZV occurs, human neural and lung systems created for the study and interaction of these herpes viruses independently and simultaneously on the innate immune system. Normal human neural and lung tissue analogues called tissue like assemblies (TLAs) were infected with low MOIs of approximately 2 x 10(exp -5) pfu hCMV or VZV and established active but prolonged low grade infections which spanned .7-1.5 months in length. These infections were characterized by the ability to continuously produce each of the viruses without expiration of the host cultures. Verification and quantification of viral replication was confirmed via RT_PCR, IHC, and confocal spectral analyses of the respective essential viral genomes. All host TLAs maintained the ability to actively proliferate throughout the entire duration of the experiments as is analogous to normal in vivo physiological conditions. These data represent a significant advance in the ability to study the triggering

  2. Glycoprotein on cell surfaces

    International Nuclear Information System (INIS)

    Muramatsu, T.

    1975-01-01

    There are conjugated polysaccharides in cell membranes and outside of animal cells, and they play important role in the control of cell behavior. In this paper, the studies on the glycoprotein on cell surfaces are reported. It was found that the glycoprotein on cell surfaces have both N-glycoside type and O-glycoside type saccharic chains. Therefore it can be concluded that the basic structure of the saccharic chains in the glycoprotein on cell surfaces is similar to that of blood serum and body fluid. The main glycoprotein in the membranes of red blood corpuscles has been studied most in detail, and it also has both types of saccharic chains. The glycoprotein in liver cell membranes was found to have only the saccharic chains of acid type and to be in different pattern from that in endoplasmic reticula and nuclear membranes, which also has the saccharic chains of neutral type. The structure of the saccharic chains of H-2 antigen, i.e. the peculiar glycoprotein on the surfaces of lymph system cells, has been studied, and it is similar to the saccharic chains of glycoprotein in blood serum. The saccharic chain structures of H-2 antigen and TL antigen are different. TL, H-2 (D), Lna and H-2 (K) are the glycoprotein on cell surfaces, and are independent molecules. The analysis of the saccharic chain patterns on cell surfaces was carried out, and it was shown that the acid type saccharic chains were similar to those of ordinary glycoprotein, because the enzyme of pneumococci hydrolyzed most of the acid type saccharic chains. The change of the saccharic chain patterns of glycoprotein on cell surfaces owing to canceration and multiplication is complex matter. (Kako, I.)

  3. The c-Myc target glycoprotein1balpha links cytokinesis failure to oncogenic signal transduction pathways in cultured human cells.

    Directory of Open Access Journals (Sweden)

    Qian Wu

    2010-05-01

    Full Text Available An increase in chromosome number, or polyploidization, is associated with a variety of biological changes including breeding of cereal crops and flowers, terminal differentiation of specialized cells such as megakaryocytes, cellular stress and oncogenic transformation. Yet it remains unclear how cells tolerate the major changes in gene expression, chromatin organization and chromosome segregation that invariably accompany polyploidization. We show here that cancer cells can initiate increases in chromosome number by inhibiting cell division through activation of glycoprotein1b alpha (GpIbalpha, a component of the c-Myc signaling pathway. We are able to recapitulate cytokinesis failure in primary cells by overexpression of GpIbalpha in a p53-deficient background. GpIbalpha was found to localize to the cleavage furrow by microscopy analysis and, when overexpressed, to interfere with assembly of the cellular cortical contraction apparatus and normal division. These results indicate that cytokinesis failure and tetraploidy in cancer cells are directly linked to cellular hyperproliferation via c-Myc induced overexpression of GpIbalpha.

  4. Evodiamine synergizes with doxorubicin in the treatment of chemoresistant human breast cancer without inhibiting P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Shengpeng Wang

    Full Text Available Drug resistance is one of the main hurdles for the successful treatment of breast cancer. The synchronous targeting of apoptosis resistance and survival signal transduction pathways may be a promising approach to overcome drug resistance. In this study, we determined that evodiamine (EVO, a major constituent of the Chinese herbal medicine Evodiae Fructus, could induce apoptosis of doxorubicin (DOX-sensitive MCF-7 and DOX-resistant MCF-7/ADR cells in a caspase-dependent manner, as confirmed by significant increases of cleaved poly(ADP-ribose polymerase (PARP, caspase-7/9, and caspase activities. Notably, the reversed phenomenon of apoptosis resistance by EVO might be attributed to its ability to inhibit the Ras/MEK/ERK pathway and the expression of inhibitors of apoptosis (IAPs. Furthermore, our results indicated that EVO enhanced the apoptotic action of DOX by inhibiting the Ras/MEK/ERK cascade and the expression of IAPs without inhibiting the expression and activity of P-glycoprotein (P-gp. Taken together, our data indicate that EVO, a natural product, may be useful applied alone or in combination with DOX for the treatment of resistant breast cancer.

  5. Increasing BMI is associated with reduced expression of P-glycoprotein (ABCB1 gene) in the human brain with a stronger association in African-Americans than Caucasians

    DEFF Research Database (Denmark)

    Nielsen, Julie Vendelbo; Olesen, Rasmus Hansen; Lauridsen, Jesper Krogh

    2016-01-01

    The efflux pump, p-glycoprotein, controls bioavailability and excretion of pharmaceutical compounds. In the blood-brain barrier, p-glycoprotein regulates the delivery of pharmaceutical substances to the brain, influencing efficacy and side effects for some drugs notably antipsychotics. Common sid...... online publication, 29 November 2016; doi:10.1038/tpj.2016.74....

  6. Signal peptide-dependent inhibition of MHC class I heavy chain translation by rhesus cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Colin J Powers

    2008-10-01

    Full Text Available The US2-11 region of human and rhesus cytomegalovirus encodes a conserved family of glycoproteins that inhibit MHC-I assembly with viral peptides, thus preventing cytotoxic T cell recognition. Since HCMV lacking US2-11 is no longer able to block assembly and transport of MHC-I, we examined whether this is also observed for RhCMV lacking the corresponding region. Unexpectedly, recombinant RhCMV lacking US2-11 was still able to inhibit MHC-I expression in infected fibroblasts, suggesting the presence of an additional MHC-I evasion mechanism. Progressive deletion analysis of RhCMV-specific genomic regions revealed that MHC-I expression is fully restored upon additional deletion of rh178. The protein encoded by this RhCMV-specific open reading frame is anchored in the endoplasmic reticulum membrane. In the presence of rh178, RhCMV prevented MHC-I heavy chain (HC expression, but did not inhibit mRNA transcription or association of HC mRNA with translating ribosomes. Proteasome inhibitors stabilized a HC degradation intermediate in the absence of rh178, but not in its presence, suggesting that rh178 prevents completion of HC translation. This interference was signal sequence-dependent since replacing the signal peptide with that of CD4 or murine HC rendered human HCs resistant to rh178. We have identified an inhibitor of antigen presentation encoded by rhesus cytomegalovirus unique in both its lack of homology to any other known protein and in its mechanism of action. By preventing signal sequence-dependent HC translocation, rh178 acts prior to US2, US3 and US11 which attack MHC-I proteins after protein synthesis is completed. Rh178 is the first viral protein known to interfere at this step of the MHC-I pathway, thus taking advantage of the conserved nature of HC leader peptides, and represents a new mechanism of translational interference.

  7. Functionalized Magnetic Resonance Contrast Agent Selectively Binds to Glycoprotein IIb/IIIa on Activated Human Platelets under Flow Conditions and Is Detectable at Clinically Relevant Field Strengths

    Directory of Open Access Journals (Sweden)

    Constantin von zur Mühlen

    2008-03-01

    Full Text Available Recent progress in molecular magnetic resonance imaging (MRI provides the opportunity to image cells and cellular receptors using microparticles of iron oxide (MPIOs. However, imaging targets on vessel walls remains challenging owing to the quantity of contrast agents delivered to areas of interest under shear stress conditions. We evaluated ex vivo binding characteristics of a functional MRI contrast agent to ligand-induced binding sites (LIBSs on activated glycoprotein IIb/IIIa receptors of human platelets, which were lining rupture-prone atherosclerotic plaques and could therefore facilitate detection of platelet-mediated pathology in atherothrombotic disease. MPIOs were conjugated to anti-LIBS single-chain antibodies (LIBS-MPIO or control antibodies (control MPIO. Ex vivo binding to human platelet-rich clots in a dose-dependent manner was confirmed on a 3 T clinical MRI scanner and by histology (p < .05 for LIBS-MPIO vs control MPIO. By using a flow chamber setup, significant binding of LIBS-MPIO to a platelet matrix was observed under venous and arterial flow conditions, but not for control MPIO (p < .001. A newly generated MRI contrast agent detects activated human platelets at clinically relevant magnetic field strengths and binds to platelets under venous and arterial flow conditions, conveying high payloads of contrast to specific molecular targets. This may provide the opportunity to identify vulnerable, rupture-prone atherosclerotic plaques via noninvasive MRI.

  8. Human α2-HS-glycoprotein: the A and B chains with a connecting sequence are encoded by a single mRNA transcript

    International Nuclear Information System (INIS)

    Lee, C.C.; Bowman, B.H.; Yang, F.

    1987-01-01

    The α 2 -HS-glycoprotein (AHSG) is a plasma protein reported to play roles in bone mineralization and in the immune response. It is composed of two subunits, the A and B chains. Recombinant plasmids containing human cDNA AHSG have been isolated by screening an adult human liver library with a mixed oligonucleotide probe. The cDNA clones containing AHSG inserts span approximately 1.5 kilobase pairs and include the entire AHSG coding sequence, demonstrating that the A and B chains are encoded by a single mRNA transcript. The cDNA sequence predicts an 18-amino-acid signal peptide, followed by the A-chain sequence of AHSG. A heretofore unseen connecting sequence of 40 amino acids was deduced between the A- and B-chain sequences. The connecting sequence demonstrates the unique amino acid doublets and collagen triplets found in the A and B chains; it is not homologous with other reported amino acid sequences. The connecting sequence may be cleaved in a posttranslational step by limited proteolysis before mature AHSG is released into the circulation or may vary in its presence because of alternative processing. The AHSG cDNA was utilized for mapping the AHSG gene to the 3q21→qter region of human chromosome 3. The availability of the AHSG cDNA clone will facilitate the analysis of its genetic control and gene expression during development and bone formation

  9. Cytomegalovirus vaccines under clinical development

    OpenAIRE

    Schleiss, Mark R

    2016-01-01

    Abstract Congenital cytomegalovirus (CMV) infection is the most common infectious cause of disability in newborn infants. CMV also causes serious disease in solid organ (SOT) and haematopoietic stem cell transplant (HSCT) recipients. In otherwise healthy children and adults, primary CMV infection rarely causes illness. However, even asymptomatic CMV infections may predispose an individual towards an increased risk of atherosclerosis, cancer and immune senescence over the life course, although...

  10. Properties of virion transactivator proteins encoded by primate cytomegaloviruses

    Directory of Open Access Journals (Sweden)

    Barry Peter A

    2009-05-01

    Full Text Available Abstract Background Human cytomegalovirus (HCMV is a betaherpesvirus that causes severe disease in situations where the immune system is immature or compromised. HCMV immediate early (IE gene expression is stimulated by the virion phosphoprotein pp71, encoded by open reading frame (ORF UL82, and this transactivation activity is important for the efficient initiation of viral replication. It is currently recognized that pp71 acts to overcome cellular intrinsic defences that otherwise block viral IE gene expression, and that interactions of pp71 with the cell proteins Daxx and ATRX are important for this function. A further property of pp71 is the ability to enable prolonged gene expression from quiescent herpes simplex virus type 1 (HSV-1 genomes. Non-human primate cytomegaloviruses encode homologs of pp71, but there is currently no published information that addresses their effects on gene expression and modes of action. Results The UL82 homolog encoded by simian cytomegalovirus (SCMV, strain Colburn, was identified and cloned. This ORF, named S82, was cloned into an HSV-1 vector, as were those from baboon, rhesus monkey and chimpanzee cytomegaloviruses. The use of an HSV-1 vector enabled expression of the UL82 homologs in a range of cell types, and permitted investigation of their abilities to direct prolonged gene expression from quiescent genomes. The results show that all UL82 homologs activate gene expression, and that neither host cell type nor promoter target sequence has major effects on these activities. Surprisingly, the UL82 proteins specified by non-human primate cytomegaloviruses, unlike pp71, did not direct long term expression from quiescent HSV-1 genomes. In addition, significant differences were observed in the intranuclear localization of the UL82 homologs, and in their effects on Daxx. Strikingly, S82 mediated the release of Daxx from nuclear domain 10 substructures much more rapidly than pp71 or the other proteins tested. All

  11. Molecular cloning of the α subunit of human and guinea pig leukocyte adhesion glycoprotein Mo1: Chromosomal localization and homology to the α subunits of integrins

    International Nuclear Information System (INIS)

    Arnaout, M.A.; Remold-O'Donnell, E.; Pierce, M.W.; Harris, P.; Tenen, D.G.

    1988-01-01

    The cell surface-glycoprotein Mo1 is a member of the family of leukocyte cell adhesion molecules (Leu-CAMs) that includes lymphocyte function-associated antigen 1 (LFA-1) and p150,95. Each Leu-CAM is a heterodimer with a distinct α subunit noncovalently associated with a common β subunit. The authors describe the isolation and analysis of two partial cDNA clones encoding the α subunit of the Leu-CAM Mo1 in humans and guinea pigs. A monoclonal antibody directed against an epitope in the carboxyl-terminal portion of the guinea pig α chain was used for immunoscreening a λgt11 expression library. The sequence of a 378-base-pair insert from one immunoreactive clone revealed a single continuous open reading frame encoding 126 amino acids including a 26-amino acid tryptic peptide isolated from the purified guinea pig α subunit. A cDNA clone of identical size was isolated from a human monocyte/lymphocyte cDNA library by using the guinea pig clone as a probe. The human clone also encoded a 126-amino acid peptide including the sequence of an additional tryptic peptide present in purified human Mo1α chain. Southern analysis of DNA from hamster-human hybrids localized the human Mo1α chain to chromosome 16, which has been shown to contain the gene for the α chain of lymphocyte function-associated antigen 1. These data suggest that the α subunits of Leu-CAMs evolved by gene duplication from a common ancestral gene and strengthen the hypothesis that the α subunits of these heterodimeric cell adhesion molecules on myeloid and lymphoid cells, platelets, and fibroblasts are evolutionary related

  12. Role of Human Breast Cancer Related Protein versus P-Glycoprotein as an Efflux Transporter for Benzylpenicillin: Potential Importance at the Blood-Brain Barrier.

    Directory of Open Access Journals (Sweden)

    Yangfang Li

    Full Text Available While the blood-brain barrier (BBB protects the brain by controlling the access of solutes and toxic substances to brain, it also limits drug entry to treat central nervous system disorders. Many drugs are substrates for ATP-binding cassette (ABC transporters at the BBB that limit their entry into the brain. The role of those transporters in limiting the entry of the widely prescribed therapeutic, benzylpenicillin, has produced conflicting results. This study investigated the possible potential involvement of P-glycoprotein (P-gp and breast cancer resistance protein (BCRP, two ABC transporters, in benzylpenicillin transport at BBB in human using MDCKII cells overexpressing those transporters as well as pharmacological inhibition. MDCKII cells overexpressing human BCRP (MDCKII-BCRP but not those overexpressing human P-gp (MDCKII-MDR cells had reduced [3H]benzylpenicillin uptake. Similarly, inhibiting BCRP increased [3H]benzylpenicillin uptake in MDCKII-BCRP cells, while inhibiting P-gp in MDCKII-MDR cells had no effect on uptake although there was evidence that benzylpenicillin is a substrate for canine P-gp. While inhibiting BCRP affected [3H]benzylpenicillin cell concentrations it did not affect transepithelial flux in MDCKII-BCRP cells. In summary, the results indicate that human BCRP and not human P-gp is involved in benzylpenicillin transport. However, targeting BCRP alone was not sufficient to alter transepithelial flux in MDCKII cells. Whether it would be sufficient to alter blood-to-brain flux at the human BBB remains to be investigated.

  13. Cytomegalovirus infection in pediatric rheumatic diseases: a review

    Directory of Open Access Journals (Sweden)

    Wolf Dana G

    2010-05-01

    Full Text Available Abstract Human cytomegalovirus (HCMV is familiar to pediatric rheumatologists mainly as a cause of opportunistic disease in pharmacologically immune suppressed patients. However, HCMV also has a variety of immuno-modulatory effects, through which it may influence the course of rheumatic conditions. In this article we discuss the interplay between HCMV and the immune system, and review the clinical manifestations, diagnosis, and treatment of HCMV infection in children with rheumatic disease.

  14. IPEC-J2 MDR1, a Novel High-Resistance Cell Line with Functional Expression of Human P-glycoprotein (ABCB1) for Drug Screening Studies

    DEFF Research Database (Denmark)

    Saaby, Lasse; Helms, Hans Christian Cederberg; Brodin, Birger

    2016-01-01

    The P-glycoprotein (P-gp) efflux pump has been shown to affect drug distribution and absorption in various organs and to cause drug resistance in cancer therapy. The aim of this work was to develop a cell line to serve as a screening system for potential substrates of P-gp. This requires a cell...... line with high paracellular tightness, low expression of nonhuman ABC transporters, and high expression of functional human P-gp (ABCB1). The porcine intestinal epithelial cell line, IPEC-J2, was selected as a transfection host, due to its ability to form extremely high-resistance monolayers (>10,000 Ω......·cm(2)) and its low endogenous expression of ABC-type efflux transporters. The IPEC-J2 cells were transfected with a plasmid that contained the sequence of the human MDR1 gene, which encodes P-gp, followed by a selection of successfully transfected cells with geneticin and puromycin. The resulting cell...

  15. Crystal structure of the antigen-binding fragment of a monoclonal antibody specific for the multidrug-resistance-linked ABC transporter human P-glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Esser, Lothar; Shukla, Suneet; Zhou, Fei; Ambudkar, Suresh V.; Xia, Di

    2016-07-27

    P-glycoprotein (P-gp) is a polyspecific ATP-dependent transporter linked to multidrug resistance in cancers that plays important roles in the pharmacokinetics of a large number of drugs. The drug-resistance phenotype of P-gp can be modulated by the monoclonal antibody UIC2, which specifically recognizes human P-gp in a conformation-dependent manner. Here, the purification, sequence determination and high-resolution structure of the Fab fragment of UIC2 (UIC2/Fab) are reported. Purified UIC2/Fab binds human P-gp with a 1:1 stoichiometry. Crystals of UIC2/Fab are triclinic (space groupP1), with unit-cell parametersa= 40.67,b= 44.91,c= 58.09 Å, α = 97.62, β = 99.10, γ = 94.09°, and diffracted X-rays to 1.6 Å resolution. The structure was determined by molecular replacement and refined to 1.65 Å resolution. The asymmetric unit contains one molecule of UIC2/Fab, which exhibits a positively charged antigen-binding surface, suggesting that it might recognize an oppositely charged extracellular epitope of P-gp.

  16. Differential staining of Western blots of human secreted glycoproteins from serum, milk, saliva, and seminal fluid using lectins displaying diverse sugar specificities.

    Science.gov (United States)

    Gilboa-Garber, Nechama; Lerrer, Batya; Lesman-Movshovich, Efrat; Dgani, Orly

    2005-12-01

    Human milk, serum, saliva, and seminal fluid glycoproteins (gps) nourish and protect newborn and adult tissues. Their saccharides, which resemble cell membrane components, may block pathogen adhesion and infection. In the present study, they were examined by a battery of lectins from plants, animals, and bacteria, using hemagglutination inhibition and Western blot analyses. The lectins included galactophilic ones from Aplysia gonad, Erythrina corallodendron, Maclura pomifera (MPL), peanut, and Pseudomonas aeruginosa (PA-IL); fucose-binding lectins from Pseudomonas aeruginosa (PA-IIL), Ralstonia solanacearum (RSL), and Ulex europaeus (UEA-I), and mannose/glucose-binding Con A. The results demonstrated the chosen lectin efficiency for differential analysis of human secreted gps as compared to CBB staining. They unveiled the diversity of these body fluid gp glycans (those of the milk and seminal fluid being highest): the milk gps interacted most strongly with PA-IIL, followed by RSL; the saliva gps with RSL, followed by PA-IIL and MPL; the serum gps with Con A and MPL, followed by PA-IIL and RSL, and the seminal plasma gps with RSL and MPL, followed by UEA-I and PA-IIL. The potential usage of these lectins as probes for scientific, industrial, and medical purposes, and for quality control of the desired gps is clearly indicated.

  17. Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge

    International Nuclear Information System (INIS)

    Bukreyev, Alexander; Marzi, Andrea; Feldmann, Friederike; Zhang Liqun; Yang Lijuan; Ward, Jerrold M.; Dorward, David W.; Pickles, Raymond J.; Murphy, Brian R.; Feldmann, Heinz; Collins, Peter L.

    2009-01-01

    We generated a new live-attenuated vaccine against Ebola virus (EBOV) based on a chimeric virus HPIV3/ΔF-HN/EboGP that contains the EBOV glycoprotein (GP) as the sole transmembrane envelope protein combined with the internal proteins of human parainfluenza virus type 3 (HPIV3). Electron microscopy analysis of the virus particles showed that they have an envelope and surface spikes resembling those of EBOV and a particle size and shape resembling those of HPIV3. When HPIV3/ΔF-HN/EboGP was inoculated via apical surface of an in vitro model of human ciliated airway epithelium, the virus was released from the apical surface; when applied to basolateral surface, the virus infected basolateral cells but did not spread through the tissue. Following intranasal (IN) inoculation of guinea pigs, scattered infected cells were detected in the lungs by immunohistochemistry, but infectious HPIV3/ΔF-HN/EboGP could not be recovered from the lungs, blood, or other tissues. Despite the attenuation, the virus was highly immunogenic, and a single IN dose completely protected the animals against a highly lethal intraperitoneal challenge of guinea pig-adapted EBOV

  18. Antigenic properties of the human immunodeficiency virus envelope glycoprotein gp120 on virions bound to target cells.

    Directory of Open Access Journals (Sweden)

    Meron Mengistu

    2015-03-01

    Full Text Available The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and structural rearrangements during the course of host cell attachment and viral entry, which are being increasingly defined at the atomic level using isolated proteins. In comparison, antigenic markers of these dynamic changes are essentially unknown for single HIV-1 particles bound to target cells. Such markers should indicate how neutralizing and/or non-neutralizing antibodies might interdict infection by either blocking infection or sensitizing host cells for elimination by Fc-mediated effector function. Here we address this deficit by imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and superresolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes as they appear on single HIV-1 particles bound to target cells. Epitope exposure was followed under conditions permissive or non-permissive for viral entry to delimit changes associated with virion binding from those associated with post-attachment events. We find that a previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding. This array comprises both neutralizing and non-neutralizing epitopes, the latter being hidden on free virions yet capable of serving as potent targets for Fc-mediated effector function. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing epitope exposures were relatively static over time for the majority of bound virions. Under entry-permissive conditions, epitope exposure patterns changed over time on subsets of virions that exhibited concurrent variations in virion contents. These studies reveal that bound virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120 epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediated effector function and/or for direct neutralization at a post-binding step

  19. Herpes simplex virus type 2 glycoprotein H interacts with integrin αvβ3 to facilitate viral entry and calcium signaling in human genital tract epithelial cells.

    Science.gov (United States)

    Cheshenko, Natalia; Trepanier, Janie B; González, Pablo A; Eugenin, Eliseo A; Jacobs, William R; Herold, Betsy C

    2014-09-01

    Herpes simplex virus (HSV) entry requires multiple interactions at the cell surface and activation of a complex calcium signaling cascade. Previous studies demonstrated that integrins participate in this process, but their precise role has not been determined. These studies were designed to test the hypothesis that integrin αvβ3 signaling promotes the release of intracellular calcium (Ca2+) stores and contributes to viral entry and cell-to-cell spread. Transfection of cells with small interfering RNA (siRNA) targeting integrin αvβ3, but not other integrin subunits, or treatment with cilengitide, an Arg-Gly-Asp (RGD) mimetic, impaired HSV-induced Ca2+ release, viral entry, plaque formation, and cell-to-cell spread of HSV-1 and HSV-2 in human cervical and primary genital tract epithelial cells. Coimmunoprecipitation studies and proximity ligation assays indicated that integrin αvβ3 interacts with glycoprotein H (gH). An HSV-2 gH-null virus was engineered to further assess the role of gH in the virus-induced signaling cascade. The gH-2-null virus bound to cells and activated Akt to induce a small Ca2+ response at the plasma membrane, but it failed to trigger the release of cytoplasmic Ca2+ stores and was impaired for entry and cell-to-cell spread. Silencing of integrin αvβ3 and deletion of gH prevented phosphorylation of focal adhesion kinase (FAK) and the transport of viral capsids to the nuclear pore. Together, these findings demonstrate that integrin signaling is activated downstream of virus-induced Akt signaling and facilitates viral entry through interactions with gH by activating the release of intracellular Ca2+ and FAK phosphorylation. These findings suggest a new target for HSV treatment and suppression. Herpes simplex viruses are the leading cause of genital disease worldwide, the most common infection associated with neonatal encephalitis, and a major cofactor for HIV acquisition and transmission. There is no effective vaccine. These

  20. Increased yield of heterologous viral glycoprotein in the seeds of homozygous transgenic tobacco plants cultivated underground.

    Science.gov (United States)

    Tackaberry, Eilleen S; Prior, Fiona; Bell, Margaret; Tocchi, Monika; Porter, Suzanne; Mehic, Jelica; Ganz, Peter R; Sardana, Ravinder; Altosaar, Illimar; Dudani, Anil

    2003-06-01

    The use of transgenic plants in the production of recombinant proteins for human therapy, including subunit vaccines, is being investigated to evaluate the efficacy and safety of these emerging biopharmaceutical products. We have previously shown that synthesis of recombinant glycoprotein B (gB) of human cytomegalovirus can be targeted to seeds of transgenic tobacco when directed by the rice glutelin 3 promoter, with gB retaining critical features of immunological reactivity (E.S. Tackaberry et al. 1999. Vaccine, 17: 3020-3029). Here, we report development of second generation transgenic plant lines (T1) homozygous for the transgene. Twenty progeny plants from two lines (A23T(1)-2 and A24T(1)-3) were grown underground in an environmentally contained mine shaft. Based on yields of gB in their seeds, the A23T(1)-2 line was then selected for scale-up in the same facility. Analyses of mature seeds by ELISA showedthat gB specific activity in A23T(1)-2 seeds was over 30-fold greater than the best T0 plants from the same transformation series, representing 1.07% total seed protein. These data demonstrate stable inheritance, an absence of transgene inactivation, and enhanced levels of gB expression in a homozygous second generation plant line. They also provide evidence for the suitability of using this environmentally secure facility to grow transgenic plants producing therapeutic biopharmaceuticals.

  1. Expression and localization of p-glycoprotein, multidrug resistance protein 4, and breast cancer resistance protein in the female lower genital tract of human and pigtailed macaque.

    Science.gov (United States)

    Zhou, Tian; Hu, Minlu; Pearlman, Andrew; Patton, Dorothy; Rohan, Lisa

    2014-11-01

    Antiretroviral drug absorption and disposition in cervicovaginal tissue is important for the effectiveness of vaginally or orally administered drug products in preexposure prophylaxis (PrEP) of HIV-1 sexual transmission to women. Therefore, it is imperative to understand critical determinants of cervicovaginal tissue pharmacokinetics. This study aimed to examine the mRNA expression and protein localization of three efflux transporters, P-glycoprotein (P-gp), multidrug resistance-associated protein 4 (MRP4), and breast cancer resistance protein (BCRP), in the lower genital tract of premenopausal women and pigtailed macaques. Along the human lower genital tract, the three transporters were moderately to highly expressed compared to colorectal tissue and liver, as revealed by real-time reverse transcriptase polymerase chain reaction (RT-PCR). In a given genital tract segment, the transporter with the highest expression level was either BCRP or P-gp, while MRP4 was always expressed at the lowest level among the three transporters tested. The immunohistochemical staining showed that P-gp and MRP4 were localized in multiple cell types including epithelial cells and vascular endothelial cells. BCRP was predominantly localized in the vascular endothelial cells. Differences in transporter mRNA level and localization were observed among endocervix, ectocervix, and vagina. Compared to human tissues, the macaque cervicovaginal tissues displayed comparable expression and localization patterns of the three transporters, although subtle differences were observed between the two species. The role of these cervicovaginal transporters in drug absorption and disposition warrants further studies. The resemblance between human and pigtailed macaque in transporter expression and localization suggests the utility of the macaque model in the studies of human cervicovaginal transporters.

  2. Molecular cloning of complementary DNAs encoding the heavy chain of the human 4F2 cell-surface antigen: a type II membrane glycoprotein involved in normal and neoplastic cell growth

    International Nuclear Information System (INIS)

    Quackenbush, E.; Clabby, M.; Gottesdiener, K.M.; Barbosa, J.; Jones, N.H.; Strominger, J.L.; Speck, S.; Leiden, J.M.

    1987-01-01

    Complementary DNA (cDNA) clones encoding the heavy chain of the heterodimeric human membrane glycoprotein 4F2 have been isolated by immunoscreening of a λgt11 expression library. The identity of these clones has been confirmed by hybridization to RNA and DNA prepared from mouse L-cell transfectants, which were produced by whole cell gene transfer and selected for cell-surface expression of the human 4F2 heavy chain. DNA sequence analysis suggest that the 4F2 heavy-chain cDNAs encode an approximately 526-amino acid type II membrane glycoprotein, which is composed of a large C-terminal extracellular domain, a single potential transmembrane region, and a 50-81 amino acid N-terminal intracytoplasmic domain. Southern blotting experiments have shown that the 4F2 heavy-chain cDNAs are derived from a single-copy gene that has been highly conserved during mammalian evolution

  3. Polyclonal and monoclonal antibodies specific for the six-helix bundle of the human respiratory syncytial virus fusion glycoprotein as probes of the protein post-fusion conformation

    International Nuclear Information System (INIS)

    Palomo, Concepción; Mas, Vicente; Vázquez, Mónica; Cano, Olga; Luque, Daniel; Terrón, María C.; Calder, Lesley J.; Melero, José A.

    2014-01-01

    Human respiratory syncytial virus (hRSV) has two major surface glycoproteins (G and F) anchored in the lipid envelope. Membrane fusion promoted by hRSV F occurs via refolding from a pre-fusion form to a highly stable post-fusion state involving large conformational changes of the F trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of hRSV F , we have prepared polyclonal (α-6HB) and monoclonal (R145) rabbit antibodies specific for the 6HB. Among other applications, these antibodies were used to explore the requirements of 6HB formation by isolated protein segments or peptides and by truncated mutants of the F protein. Site-directed mutagenesis and electron microscopy located the R145 epitope in the post-fusion hRSV F at a site distantly located from previously mapped epitopes, extending the repertoire of antibodies that can decorate the F molecule. - Highlights: • Antibodies specific for post-fusion respiratory syncytial virus fusion protein are described. • Polyclonal antibodies were obtained in rabbit inoculated with chimeric heptad repeats. • Antibody binding required assembly of a six-helix bundle in the post-fusion protein. • A monoclonal antibody with similar structural requirements is also described. • Binding of this antibody to the post-fusion protein was visualized by electron microscopy

  4. Human MHC-II with Shared Epitope Motifs Are Optimal Epstein-Barr Virus Glycoprotein 42 Ligands—Relation to Rheumatoid Arthritis

    Science.gov (United States)

    Trier, Nicole; Izarzugaza, Jose; Chailyan, Anna; Marcatili, Paolo; Houen, Gunnar

    2018-01-01

    Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder of unknown etiology, which is characterized by inflammation in the synovium and joint damage. Although the pathogenesis of RA remains to be determined, a combination of environmental (e.g., viral infections) and genetic factors influence disease onset. Especially genetic factors play a vital role in the onset of disease, as the heritability of RA is 50–60%, with the human leukocyte antigen (HLA) alleles accounting for at least 30% of the overall genetic risk. Some HLA-DR alleles encode a conserved sequence of amino acids, referred to as the shared epitope (SE) structure. By analyzing the structure of a HLA-DR molecule in complex with Epstein-Barr virus (EBV), the SE motif is suggested to play a vital role in the interaction of MHC II with the viral glycoprotein (gp) 42, an essential entry factor for EBV. EBV has been repeatedly linked to RA by several lines of evidence and, based on several findings, we suggest that EBV is able to induce the onset of RA in predisposed SE-positive individuals, by promoting entry of B-cells through direct contact between SE and gp42 in the entry complex. PMID:29361739

  5. Molecular determinants of the V3 loop of human immunodeficiency virus type 1 glycoprotein gp120 responsible for controlling cell tropism.

    Science.gov (United States)

    Chavda, S C; Griffin, P; Han-Liu, Z; Keys, B; Vekony, M A; Cann, A J

    1994-11-01

    We and others have identified the major determinant of cell tropism in human immunodeficiency virus type 1 (HIV-1) as the V3 loop of glycoprotein gp120. We have conducted a detailed study of two molecularly cloned isolates of HIV-1, HIVJR-CSF and HIVNL4-3, that differ in their tropism for immortalized CD4+ cell lines, by constructing a series of site-directed mutations within the V3 loop of HIVJR-CSF based on the sequence of HIVNL4-3. The phenotypes of these mutants fall into two classes, those which are viable and those which are not. A spontaneous mutant with significantly altered growth properties was also recovered and found to have an additional single amino acid change in the V3 loop sequence. The carboxy-terminal beta-strand part of the V3 loop is the major determinant of cell tropism. However, the results presented here indicate that the functional role of the V3 loop sequences can only be interpreted properly in the context of the original gp120 backbone from which they were derived. These findings show that over-simplistic interpretation of sequence data derived from unknown mixtures of HIV variants in infected persons may be highly misleading.

  6. The impact of envelope glycoprotein cleavage on the antigenicity, infectivity, and neutralization sensitivity of Env-pseudotyped human immunodeficiency virus type 1 particles

    International Nuclear Information System (INIS)

    Herrera, Carolina; Klasse, Per Johan; Michael, Elizabeth; Kake, Shivani; Barnes, Kelly; Kibler, Christopher W.; Campbell-Gardener, Lila; Si, Zhihai; Sodroski, Joseph; Moore, John P.; Beddows, Simon

    2005-01-01

    Endoproteolytic processing of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoproteins is an obligate part of the biosynthetic pathway that generates functional, fusion-competent Env complexes, which are then incorporated into infectious virions. We have examined the influence of cleavage on Env-specific antibody reactivity, Env incorporation into pseudovirions, and the infectivity and neutralization sensitivity of Env-pseudotyped viruses. To do so, we have used both incompletely processed wild-type (Wt) Env and engineered, cleavage-defective Env mutants. We find that there is no simple association between antibody reactivity to cell surface-expressed Env, and the ability of the same antibody to neutralize virus pseudotyped with the same Env proteins. One explanation for the absence of such an association is the diverse array of Env species present on the surface of transiently transfected cells. We also confirm that cleavage-defective mutants are antigenically different from Wt Env. These findings have implications for the use of Env binding assays as predictors of neutralizing activity, and for the development of cleavage-defective Env trimers for use as subunit immunogens

  7. Ninety-five- and 25-kDa fragments of the human immunodeficiency virus envelope glycoprotein gp120 bind to the CD4 receptor

    International Nuclear Information System (INIS)

    Nygren, A.; Bergman, T.; Matthews, T.; Joernvall, H.; Wigzell, H.

    1988-01-01

    Iodine-125-labeled gp120 (120-kDa envelope glycoprotein) from the BH10 isolate of human immunodeficiency virus is cleaved to a limited extend with the glutamate-specific protease from Staphylococcus aureus. After disulfide bond reduction, fragments with approximate molecular masses of 95, 60, 50, and 25 kDa are produced. Tests for binding to CD4-positive cells show that only two fragments, the 95- and 25- kDa peptides, are observed in cleavage products that retain the selective binding capacity of gp120. Radiosequence analysis of the fragments after sodium dodecyl sulfate/polyacrylamide gel electrophoresis and electroblotting demonstrates that the 95-kDa fragment lacks the N-terminal region of gp120 and starts at position 143 of the mature envelope protein. The 50-kDa fragment starts at the same position. The 25-kDa binding fragment was similarly deduced to be generated as a small fragment from a cleavage site in the C-terminal part of gp120. The identifications of these fragments demonstrate that radiosequence analysis utilizing 125 I-labeled tyrosine residues can function as a useful and reliable method for small-scale determination of cleavage sites in proteins. Combined, the data suggest domain-like subdivisions of gp120, define at least two intervening segments especially sensitive to proteolytic cleavage, and demonstrate the presence of a functional region for receptor binding in the C-terminal part of the molecule

  8. Rational design and synthesis of altered peptide ligands based on human myelin oligodendrocyte glycoprotein 35-55 epitope: inhibition of chronic experimental autoimmune encephalomyelitis in mice.

    Science.gov (United States)

    Tselios, Theodore; Aggelidakis, Mihalis; Tapeinou, Anthi; Tseveleki, Vivian; Kanistras, Ioannis; Gatos, Dimitrios; Matsoukas, John

    2014-11-04

    Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease of the central nervous system and is an animal model of multiple sclerosis (MS). Although the etiology of MS remains unclear, there is evidence T-cell recognition of immunodominant epitopes of myelin proteins, such as the 35-55 epitope of myelin oligodendrocyte glycoprotein (MOG), plays a pathogenic role in the induction of chronic EAE. Cyclization of peptides is of great interest since the limited stability of linear peptides restricts their potential use as therapeutic agents. Herein, we have designed and synthesized a number of linear and cyclic peptides by mutating crucial T cell receptor (TCR) contact residues of the human MOG35-55 epitope. In particular, we have designed and synthesized cyclic altered peptide ligands (APLs) by mutating Arg41 with Ala or Arg41 and Arg46 with Ala. The peptides were synthesized in solid phase on 2-chlorotrityl chloride resin (CLTR-Cl) using the Fmoc/t-Bu methodology. The purity of final products was verified by RP-HPLC and their identification was achieved by ESI-MS. It was found that the substitutions of Arg at positions 41 and 46 with Ala results in peptide analogues that reduce the severity of MOG-induced EAE clinical symptoms in C57BL/6 mice when co-administered with mouse MOG35-55 peptide at the time of immunization.

  9. ANTIPSYCHOTICS REVERSE P-GLYCOPROTEIN-MEDIATED DOXORUBICIN RESISTANCE IN HUMAN UTERINE SARCOMA MES-SA/Dx5 CELLS: A NOVEL APPROACH TO CANCER CHEMOTHERAPY.

    Science.gov (United States)

    Angelini, A; Ciofani, G; Conti, P

    2015-01-01

    Multidrug resistance (MDR) mediated by P-glycoprotein (Pgp) remains one of the major obstacles to effective cancer chemotherapy. Several chemosensitizers have been used in vivo and in vitro to reverse MDR but have exhibited several unwanted side effects. Antipsychotics are often administered to treat psychiatric disorders such as delirium, anxiety and sleep disorders in cancer patients during chemotherapy. The present in vitro study, examined the effects of two common antipsychotic compounds, haloperidol and risperidone, and a natural compound such as theobromine on reversing MDR Pgp-mediated, to evaluate their potential use as chemosensitizing agents. The human doxorubicin (doxo) resistant uterine sarcoma cells (MES-SA/Dx5) that overexpress Pgp (100-fold), were treated with the antipsychotic alone (1, 10 and 20 μM) or in combination with different concentrations of doxo (2, 4 and 8 μM). The accumulation and cytotoxicity of doxo (MTT assay) and cellular GSH content (GSH assay) in comparison with verapamil, a well-known Pgp inhibitor, used as reference molecule were examined. It was found that the three compounds significantly enhanced the intracellular accumulation of doxo in resistant cancer cells, when compared with cells receiving doxo alone (p 30%) in resistant cells, when compared to untreated control cells (ptheobromine showed to be an effective Pgp inhibitor with the lowest toxicity.

  10. Polyclonal and monoclonal antibodies specific for the six-helix bundle of the human respiratory syncytial virus fusion glycoprotein as probes of the protein post-fusion conformation

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, Concepción; Mas, Vicente; Vázquez, Mónica; Cano, Olga [Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid (Spain); CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid (Spain); Luque, Daniel; Terrón, María C. [Unidad de Microscopía Electrónica y Confocal, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid (Spain); Calder, Lesley J. [National Institute for Medical Research, MRC, Mill Hill, London NW7 1AA (United Kingdom); Melero, José A., E-mail: jmelero@isciii.es [Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid (Spain); CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid (Spain)

    2014-07-15

    Human respiratory syncytial virus (hRSV) has two major surface glycoproteins (G and F) anchored in the lipid envelope. Membrane fusion promoted by hRSV{sub F} occurs via refolding from a pre-fusion form to a highly stable post-fusion state involving large conformational changes of the F trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of hRSV{sub F}, we have prepared polyclonal (α-6HB) and monoclonal (R145) rabbit antibodies specific for the 6HB. Among other applications, these antibodies were used to explore the requirements of 6HB formation by isolated protein segments or peptides and by truncated mutants of the F protein. Site-directed mutagenesis and electron microscopy located the R145 epitope in the post-fusion hRSV{sub F} at a site distantly located from previously mapped epitopes, extending the repertoire of antibodies that can decorate the F molecule. - Highlights: • Antibodies specific for post-fusion respiratory syncytial virus fusion protein are described. • Polyclonal antibodies were obtained in rabbit inoculated with chimeric heptad repeats. • Antibody binding required assembly of a six-helix bundle in the post-fusion protein. • A monoclonal antibody with similar structural requirements is also described. • Binding of this antibody to the post-fusion protein was visualized by electron microscopy.

  11. Insights into the molecular mechanism of action of Celastraceae sesquiterpenes as specific, non-transported inhibitors of human P-glycoprotein.

    Science.gov (United States)

    Muñoz-Martínez, Francisco; Reyes, Carolina P; Pérez-Lomas, Antonio L; Jiménez, Ignacio A; Gamarro, Francisco; Castanys, Santiago

    2006-01-01

    Dihydro-beta-agarofuran sesquiterpenes from Celastraceae have been recently shown to bind to human P-glycoprotein (Pgp), functioning as specific, mixed-type inhibitors of its drug transport activity, as well as multidrug resistance (MDR) modulators in vitro. However, nothing is known about whether such compounds are themselves transported by Pgp, or whether they affect Pgp expression as well as its activity, or about the location of their binding site within the protein. We performed transport experiments with a newly synthesized fluorescent sesquiterpene derivative, which retains the anti-Pgp activity of its natural precursor. This probe was poorly transported by Pgp, MRP1, MRP2 and BCRP transporters, compared with classical MDR substrates. Moreover, Pgp did not confer cross-resistance to the most potent dihydro-beta-agarofurans, which did not affect Pgp expression levels in several MDR cell lines. Finally, we observed competitive and non-competitive interactions between one of such dihydro-beta-agarofurans (Mama12) and classical Pgp modulators such as cyclosporin A, verapamil, progesterone, vinblastine and GF120918. These findings suggest that multidrug ABC transporters do not confer resistance to dihydro-beta-agarofurans and could not affect their absorption and biodistribution in the body. Moreover, we mapped their binding site(s) within Pgp, which may prove useful for the rational design of improved modulators based on the structure of dihydro-beta-agarofurans.

  12. Comparison of cDNA-derived protein sequences of the human fibronectin and vitronectin receptor α-subunits and platelet glycoprotein IIb

    International Nuclear Information System (INIS)

    Fitzgerald, L.A.; Poncz, M.; Steiner, B.; Rall, S.C. Jr.; Bennett, J.S.; Phillips, D.R.

    1987-01-01

    The fibronectin receptor (FnR), the vitronectin receptor (VnR), and the platelet membrane glycoprotein (GP) IIb-IIIa complex are members of a family of cell adhesion receptors, which consist of noncovalently associated α- and β-subunits. The present study was designed to compare the cDNA-derived protein sequences of the α-subunits of human FnR, VnR, and platelet GP IIb. cDNA clones for the α-subunit of the FnR (FnR/sub α/) were obtained from a human umbilical vein endothelial (HUVE) cell library by using an oligonucleotide probe designed from a peptide sequence of platelet GP IIb. cDNA clones for platelet GP IIb were isolated from a cDNA expression library of human erythroleukemia cells by using antibodies. cDNA clones of the VnR α-subunit (VnR/sub α/) were obtained from the HUVE cell library by using an oligonucleotide probe from the partial cDNA sequence for the VnR/sub α/. Translation of these sequences showed that the FNR/sub α/, the VnR/sub α/, and GP IIb are composed of disulfide-linked large (858-871 amino acids) and small (137-158 amino acids) chains that are posttranslationally processed from a single mRNA. A single hydrophobic segment located near the carboxyl terminus of each small chain appears to be a transmembrane domain. The large chains appear to be entirely extracellular, and each contains four repeated putative Ca 2+ -binding domains of about 30 amino acids that have sequence similarities to other Ca 2+ -binding proteins. The identity among the protein sequences of the three receptor α-subunits ranges from 36.1% to 44.5%, with the Ca 2+ -binding domains having the greatest homology. These proteins apparently evolved by a process of gene duplication

  13. Salivary Mucin 19 Glycoproteins

    Science.gov (United States)

    Culp, David J.; Robinson, Bently; Cash, Melanie N.; Bhattacharyya, Indraneel; Stewart, Carol; Cuadra-Saenz, Giancarlo

    2015-01-01

    Saliva functions in innate immunity of the oral cavity, protecting against demineralization of teeth (i.e. dental caries), a highly prevalent infectious disease associated with Streptococcus mutans, a pathogen also linked to endocarditis and atheromatous plaques. Gel-forming mucins are a major constituent of saliva. Because Muc19 is the dominant salivary gel-forming mucin in mice, we studied Muc19−/− mice for changes in innate immune functions of saliva in interactions with S. mutans. When challenged with S. mutans and a cariogenic diet, total smooth and sulcal surface lesions are more than 2- and 1.6-fold higher in Muc19−/− mice compared with wild type, whereas the severity of lesions are up to 6- and 10-fold higher, respectively. Furthermore, the oral microbiota of Muc19−/− mice display higher levels of indigenous streptococci. Results emphasize the importance of a single salivary constituent in the innate immune functions of saliva. In vitro studies of S. mutans and Muc19 interactions (i.e. adherence, aggregation, and biofilm formation) demonstrate Muc19 poorly aggregates S. mutans. Nonetheless, aggregation is enhanced upon adding Muc19 to saliva from Muc19−/− mice, indicating Muc19 assists in bacterial clearance through formation of heterotypic complexes with salivary constituents that bind S. mutans, thus representing a novel innate immune function for salivary gel-forming mucins. In humans, expression of salivary MUC19 is unclear. We find MUC19 transcripts in salivary glands of seven subjects and demonstrate MUC19 glycoproteins in glandular mucous cells and saliva. Similarities and differences between mice and humans in the expression and functions of salivary gel-forming mucins are discussed. PMID:25512380

  14. Glycoprotein is enough for sindbis virus-derived DNA vector to express heterogenous genes

    Directory of Open Access Journals (Sweden)

    Fu Juanjuan

    2011-07-01

    Full Text Available Abstract To investigate the necessity and potential application of structural genes for expressing heterogenous genes from Sindbis virus-derived vector, the DNA-based expression vector pVaXJ was constructed by placing the recombinant genome of sindbis-like virus XJ-160 under the control of the human cytomegalovirus (CMV promoter of the plasmid pVAX1, in which viral structural genes were replaced by a polylinker cassette to allow for insertion of heterologous genes. The defect helper plasmids pVaE or pVaC were developed by cloning the gene of glycoprotein E3E26KE1 or capsid protein of XJ-160 virus into pVAX1, respectively. The report gene cassette pVaXJ-EGFP or pV-Gluc expressing enhanced green fluorescence protein (EGFP or Gaussia luciferase (G.luc were constructed by cloning EGFP or G.luc gene into pVaXJ. EGFP or G.luc was expressed in the BHK-21 cells co-transfected with report gene cassettes and pVaE at levels that were comparable to those produced by report gene cassettes, pVaC and pVaE and were much higher than the levels produced by report gene cassette and pVaC, suggesting that glycoprotein is enough for Sindbis virus-derived DNA vector to express heterogenous genes in host cells. The method of gene expression from Sindbis virus-based DNA vector only co-transfected with envelop E gene increase the conveniency and the utility of alphavirus-based vector systems in general.

  15. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells

    International Nuclear Information System (INIS)

    Rettig, W.F.; Garin-Chesa, P.; Beresford, H.R.; Oettgen, H.F.; Melamed, M.R.; Old, L.J.

    1988-01-01

    Normal differentiation and malignant transformation of human cells are characterized by specific changes in surface antigen phenotype. In the present study, the authors have defined six cell-surface antigens of human sarcomas and normal mesenchymal cells, by using mixed hemadsorption assays and immunochemical methods for the analysis of cultured cells and immunohistochemical staining for the analysis of normal tissues and > 200 tumor specimens. Differential patterns of F19, F24, G171, G253, S5, and Thy-1 antigen expression were found to characterize (i) subsets of cultured sarcoma cell lines, (ii) cultured fibroblasts derived from various organs, (iii) normal resting and activated mesenchymal tissues, and (iv) sarcoma and nonmesenchymal tumor tissues. These results provide a basic surface antigenic map for cultured mesenchymal cells and mesenchymal tissues and permit the classification of human sarcomas according to their antigenic phenotypes

  16. Cysteine-rich secretory protein 3 is a ligand of alpha1B-glycoprotein in human plasma

    DEFF Research Database (Denmark)

    Udby, Lene; Sørensen, Ole E; Pass, Jesper

    2004-01-01

    Human cysteine-rich secretory protein 3 (CRISP-3; also known as SGP28) belongs to a family of closely related proteins found in mammals and reptiles. Some mammalian CRISPs are known to be involved in the process of reproduction, whereas some of the CRISPs from reptiles are neurotoxin...

  17. An intact sequence-specific DNA-binding domain is required for human cytomegalovirus-mediated sequestration of p53 and may promote in vivo binding to the viral genome during infection

    International Nuclear Information System (INIS)

    Rosenke, Kyle; Samuel, Melanie A.; McDowell, Eric T.; Toerne, Melissa A.; Fortunato, Elizabeth A.

    2006-01-01

    The p53 protein is stabilized during infection of primary human fibroblasts with human cytomegalovirus (HCMV). However, the p53 in HCMV-infected cells is unable to activate its downstream targets. HCMV accomplishes this inactivation, at least in part, by sequestering p53 into viral replication centers within the cell's nucleus soon after they are established. In order to better understand the interplay between HCMV and p53 and the mechanism of sequestration, we constructed a panel of mutant p53-GFP fusion constructs for use in transfection/infection experiments. These mutants affected several post-translational modification sites and several sites within the central sequence-specific DNA-binding domain of the protein. Two categories of p53 sequestration were observed when the mutant constructs were transfected into primary fibroblasts and then infected at either high or low multiplicity. The first category, including all of the post-translational modification mutants, showed sequestration comparable to a wild-type (wt) control, while the second category, mutants affecting the DNA-binding core, were not specifically sequestered above control GFP levels. This suggested that the DNA-binding ability of the protein was required for sequestration. When the HCMV genome was analyzed for p53 consensus binding sites, 21 matches were found, which localized either to the promoters or the coding regions of viral proteins involved in DNA replication and processing as well as structural proteins. An analysis of in vivo binding to these identified sites via chromatin immunoprecipitation assays revealed differential binding to several of the sites over the course of infection

  18. Biological and immunogenic properties of rabies virus glycoprotein expressed by canine herpesvirus vector.

    Science.gov (United States)

    Xuan, X; Tuchiya, K; Sato, I; Nishikawa, Y; Onoderaz, Y; Takashima, Y; Yamamoto, A; Katsumata, A; Iwata, A; Ueda, S; Mikami, T; Otsuka, H

    1998-01-01

    In order to evaluate whether canine herpesvirus (CHV) could be used as a live vector for the expression of heterologous immunogenes, we constructed a recombinant canine herpesvirus (CHV) expressing glycoprotein (G protein) of rabies virus (RV). The gene of G protein was inserted within the thymidine kinase gene of CHV YP11mu strain under the control of the human cytomegalovirus immediate early promoter. The G protein expressed by the recombinant CHV was processed and transported to the cell surface as in RV infected cells, and showed the same biological activities such as low pH dependent cell fusion and hemadsorption. The antigenic authenticity of the recombinant G protein was confirmed by a panel of monoclonal antibodies specific for G protein. Dogs inoculated intransally with the recombinant CHV produced higher titres of virus neutralizing antibodies against RV than those inoculated with a commercial, inactivated rabies vaccine. These results suggest that the CHV recombinant expressing G protein can be used as a vaccine to control canine rabies and that CHV may be useful as a vector to develop live recombinant against other infectious diseases in dogs.

  19. Direct interaction of the mouse cytomegalovirus m152/gp40 immunoevasin with RAE-1 isoforms.

    Science.gov (United States)

    Zhi, Li; Mans, Janet; Paskow, Michael J; Brown, Patrick H; Schuck, Peter; Jonjić, Stipan; Natarajan, Kannan; Margulies, David H

    2010-03-23

    Cytomegaloviruses (CMVs) are ubiquitous species-specific viruses that establish acute, persistent, and latent infections. Both human and mouse CMVs encode proteins that inhibit the activation of natural killer (NK) cells by downregulating cellular ligands for the NK cell activating receptor, NKG2D. The MCMV glycoprotein m152/gp40 downregulates the surface expression of RAE-1 to prevent NK cell control in vivo. So far, it is unclear if there is a direct interaction between m152 and RAE-1 and, if so, if m152 interacts differentially with the five identified RAE-1 isoforms, which are expressed as two groups in MCMV-susceptible or -resistant mouse strains. To address these questions, we expressed and purified the extracellular domains of RAE-1 and m152 and performed size exclusion chromatography binding assays as well as analytical ultracentrifugation and isothermal titration calorimetry to characterize these interactions quantitatively. We further evaluated the role of full-length and naturally glycosylated m152 and RAE-1 in cotransfected HEK293T cells. Our results confirmed that m152 binds RAE-1 directly, relatively tightly (K(d) RAE-1 isoforms, corresponding to the susceptibility to downregulation by m152. A PLWY motif found in RAE-1beta, although contributing to its affinity for m152, does not influence the affinity of RAE-1gamma or RAE-1delta, suggesting that other differences contribute to the RAE-1-m152 interaction. Molecular modeling of the different RAE-1 isoforms suggests a potential site for the m152 interaction.

  20. Polymeric mannosides prevent DC-SIGN-mediated cell-infection by cytomegalovirus.

    Science.gov (United States)

    Brument, S; Cheneau, C; Brissonnet, Y; Deniaud, D; Halary, F; Gouin, S G

    2017-09-20

    Human cytomegalovirus (HCMV) is a beta-herpesvirus with a high prevalence in the population. HCMV is asymptomatic for immunocompetent adults but is a leading cause of morbidity for new born and immunocompromised patients. It was recently shown that the envelope glycoprotein B (gB) of HCMV interacts with the Dendritic Cell-Specific ICAM-3 Grabbing Non integrin (DC-SIGN) to infect the host. In this work we developed a set of DC-SIGN blockers based on mono-, di-, tetra and polyvalent mannosides. The multivalent mannosides were designed to interact with the carbohydrate recognition domains of DC-SIGN in a chelate or bind and recapture process, and represent the first chemical antiadhesives of HCMV reported so far. Polymeric dextrans coated with triazolylheptylmannoside (THM) ligands were highly potent, blocking the gB and DC-SIGN interaction at nanomolar concentrations. The compounds were further assessed for their ability to prevent the DC-SIGN mediated HCMV infection of dendritic cells. A dextran polymer coated with an average of 902 THM ligands showed an outstanding effect in blocking the HCMV trans-infection with IC 50 values down to the picomolar range (nanomolar when expressed in THM concentration). Each THM moiety on the polymer surpassed the antiadhesive effect of the methylmannoside reference by more than four orders of magnitude. The compound proved non-cytotoxic at the high concentration of 2 mM and therefore represents an interesting antiadhesive candidate against HCMV and potentially against other virus hijacking dendritic cells to infect the host.

  1. Peripheral Blood Leukocytes and Serum Nested Polymerase Chain Reaction Are Complementary Methods for Monitoring Active Cytomegalovirus Infection in Transplant Patients

    Directory of Open Access Journals (Sweden)

    PD Andrade

    2013-01-01

    Full Text Available BACKGROUND: Human cytomegalovirus is an important cause of morbidity and mortality in immunocompromised patients. Qualitative polymerase chain reaction (PCR has proven to be a sensitive and effective technique in defining active cytomegalovirus infection, in addition to having low cost and being a useful test for situations in which there is no need for quantification. Real-time PCR has the advantage of quantification; however, the high cost of this methodology makes it impractical for routine use.

  2. Intercellular transfer of P-glycoprotein from the drug resistant human bladder cancer cell line BIU-87 does not require cell-to-cell contact.

    Science.gov (United States)

    Zhou, Hui-liang; Zheng, Yong-jun; Cheng, Xiao-zhi; Lv, Yi-song; Gao, Rui; Mao, Hou-ping; Chen, Qin

    2013-09-01

    The efflux activity of transmembrane P-glycoprotein prevents various therapeutic drugs from reaching lethal concentrations in cancer cells, resulting in multidrug resistance. We investigated whether drug resistant bladder cancer cells could transfer functional P-glycoprotein to sensitive parental cells. Drug sensitive BIU-87 bladder cancer cells were co-cultured for 48 hours with BIU-87/ADM, a doxorubicin resistant derivative of the same cell line, in a Transwell® system that prevented cell-to-cell contact. The presence of P-glycoprotein in recipient cell membranes was established using fluorescein isothiocyanate, laser scanning confocal microscopy and Western blot. P-glycoprotein mRNA levels were compared between cell types. Rhodamine 123 efflux assay was done to confirm that P-glycoprotein was biologically active. The amount of P-glycoprotein protein in BIU-87 cells co-cultured with BIU-87/ADM was significantly higher than in BIU-87 cells (0.44 vs 0.25) and BIU-87/H33342 cells (0.44 vs 0.26, each p transfer. P-glycoprotein mRNA expression was significantly higher in BIU-87/ADM cells than in co-cultured BIU-87 cells (1.28 vs 0.30), BIU-87/H33342 (0.28) and BIU-87 cells (0.25, each p <0.001), ruling out a genetic mechanism. After 30 minutes of efflux, rhodamine 123 fluorescence intensity was significantly lower in BIU-87/ADM cells (5.55 vs 51.45, p = 0.004) and co-cultured BIU-87 cells than in BIU-87 cells (14.22 vs 51.45, p <0.001), indicating that P-glycoprotein was functional. Bladder cancer cells can acquire functional P-glycoprotein through a nongenetic mechanism that does not require direct cell contact. This mechanism is consistent with a microparticle mediated process. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Detection of Cytomegalovirus DNA in Serum Correlates with Clinical Cytomegalovirus Retinitis in AIDS

    DEFF Research Database (Denmark)

    Hansen, K.K.; Ricksten, A.; Hofmann, B.

    1994-01-01

    The high sensitivity of nested polymerase chain reaction (PCR) offers the possibility of rapid detection of cytomegalovirus (CMV) DNA in serum. Five consecutive serum samples were examined from 52 human immunodeficiency virus (HIV)-seropositive patients (19 of whom had clinically presumed diagnosis...... became positive with the onset of clinical retinitis. In contrast, 29 of 33 HIV-seropositive subjects without clinical CMV chorioretinitis and matched with respect to age and CD4 T cell numbers were negative for CMV DNA in all 5 serum samples. Thus, the presence of CMV DNA in serum analyzed by PCR...... is a good predictive marker of CMV retinitis in HIV-seropositive subjects. A positive PCR results supports the clinical diagnosis and may be useful for monitoring response to antiviral treatment....

  4. Molecular Characterization of the Interactions between Vascular Selectins and Glycoprotein Ligands on Human Hematopoietic Stem/Progenitor Cells

    KAUST Repository

    Abu Samra, Dina Bashir Kamil

    2016-01-01

    The first objective was to fill the knowledge gap in the in vitro characterization of the mechanisms used by selectins to mediate the initial step in the HSPCs homing by developing a real time immunoprecipitation-based assay on a surface plasmon resonance chip. This novel assay bypass the difficulties of purifying ligands, enables the use of natively glycosylated forms of selectin ligands from any model cell of interest and study its binding affinities under flow. We provide the first comprehensive quantitative binding kinetics of two well-documented ligands, CD44 and PSGL-1, with E-selectin. Both ligands bind monomeric E-selectin transiently with fast on- and off-rates while they bind dimeric E-selectin with remarkably slow on- and off-rates with the on-rate, but not the off-rate, is dependent on salt concentration. Thus, suggest a mechanism through which monomeric selectins mediate initial fast-on and -off binding to capture the circulating cells out of shear-flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to slow rolling significantly. The second objective is to fully identify and characterize E/P-selectin ligand candidates expressed on CD34+ HSPCs which cause enhanced migration after intravenous transplantation compared to their CD34- counterparts. CD34 is widely recognized marker of human HSPCs but its natural ligand and function on these cells remain elusive. Proteomics identified CD34 as an E-selL candidate on human HSPCs, whose binding to E-selectin was confirmed using some static and flow-based assays. E-selectin binds to CD34 with an affinity comparable to the well-described E-selLs CD44/HCELL and PSGL-1. CD34 knockdown resulted in faster-rolling velocities compared to control cells especially at and above three dyne/cm2. CD34 is the first selectin ligand since PSGL-1 reported to bind E-/P-/L-selectins and likely plays a key role in directing the migration of human HSPCs to the bone marrow.

  5. The C-terminal amino acid of the MHC-I heavy chain is critical for binding to Derlin-1 in human cytomegalovirus US11-induced MHC-I degradation.

    Science.gov (United States)

    Cho, Sunglim; Kim, Bo Young; Ahn, Kwangseog; Jun, Youngsoo

    2013-01-01

    Derlin-1 plays a critical role in endoplasmic reticulum-associated protein degradation (ERAD) of a particular subset of proteins. Although it is generally accepted that Derlin-1 mediates the export of ERAD substrates from the ER to the cytosol, little is known about how Derlin-1 interacts with these substrates. Human cytomegalovirus (HCMV) US11 exploits Derlin-1-dependent ERAD to degrade major histocompatibility complex class I (MHC-I) molecules and evade immune surveillance. US11 requires the cytosolic tail of the MHC-I heavy chain to divert MHC-I molecules into the ERAD pathway for degradation; however, the underlying mechanisms remain unknown. Here, we show that the cytosolic tail of the MHC-I heavy chain, although not required for interaction with US11, is required for tight binding to Derlin-1 and thus for US11-induced dislocation of the MHC-I heavy chain to the cytosol for proteasomal degradation. Surprisingly, deletion of a single C-terminal amino acid from the cytosolic tail disrupted the interaction between MHC-I molecules and Derlin-1, rendering mutant MHC-I molecules resistant to US11-induced degradation. Consistently, deleting the C-terminal cytosolic region of Derlin-1 prevented it from binding to MHC-I molecules. Taken together, these results suggest that the cytosolic region of Derlin-1 is involved in ERAD substrate binding and that this interaction is critical for the Derlin-1-mediated dislocation of the MHC-I heavy chain to the cytosol during US11-induced MHC-I degradation.

  6. Active evolution of memory B-cells specific to viral gH/gL/pUL128/130/131 pentameric complex in healthy subjects with silent human cytomegalovirus infection.

    Science.gov (United States)

    Xia, Lin; Tang, Aimin; Meng, Weixu; Freed, Daniel C; He, Linling; Wang, Dai; Li, Fengsheng; Li, Leike; Xiong, Wei; Gui, Xun; Schultz, Robbie D; Chen, Haotai; He, Xi; Swoyer, Ryan; Ha, Sha; Liu, Yaping; Morris, Charles D; Zhou, Yu; Wang, I-Ming; Zhao, Qinjian; Luo, Wenxin; Xia, Ningshao; Espeseth, Amy S; Hazuda, Daria J; Rupp, Richard E; Barrett, Alan D; Zhang, Ningyan; Zhu, Jiang; Fu, Tong-Ming; An, Zhiqiang

    2017-09-26

    Human cytomegalovirus (HCMV) can cause life-threatening infection in immunosuppressed patients, and in utero infection that may lead to birth defects. No vaccine is currently available. HCMV infection in healthy subjects is generally asymptomatic, and virus persists as latent infection for life. Host immunity is effective against reactivation and super-infection with another strain. Thus, vaccine candidates able to elicit immune responses similar to those of natural infection may confer protection. Since neutralization is essential for prophylactic vaccines, it is important to understand how antiviral antibodies are developed in natural infection. We hypothesized that the developmental path of antibodies in seropositive subjects could be unveiled by interrogating host B-cell repertoires using unique genetic signature sequences of mAbs. Towards this goal, we isolated 56 mAbs from three healthy donors with different neutralizing titers. Antibodies specific to the gH/gL/pUL128/130/131 pentameric complex were more potent in neutralization than those to gB. Using these mAbs as probes, patterns of extended lineage development for B-cells and evidence of active antibody maturation were revealed in two donors with higher neutralizing titers. Importantly, such patterns were limited to mAbs specific to the pentamer, but none to gB. Thus, memory B-cells with antiviral function such as neutralization were active during latent infection in the two donors, and this activity was responsible for their higher neutralizing titers. Our results indicated that memory B-cells of neutralizing capacity could be frequently mobilized in host, probably responding to silent viral episodes, further suggesting that neutralizing antibodies could play a role in control of recurrent infection.

  7. Evolution of human cytomegalovirus-seronegative donor/-seropositive recipient high-risk combination frequency in allogeneic hematopoietic stem cell transplantations at Institute of Hematology and Blood Transfusion during 1995-2014.

    Science.gov (United States)

    Nemeckova, S; Sroller, V; Stastna-Markova, M

    2016-04-01

    Human cytomegalovirus (HCMV) establishes lifelong latent infection that can result in severe life-threatening disease in immunosuppressed patients after hematopoietic stem cell transplantation (HSCT). An HCMV-seropositive transplant recipient who receives a graft from a seronegative donor (R+/D-) is at high risk of recurrent HCMV reactivation. To assess the incidence of R+/D- combination, we retrospectively evaluated HCMV-seronegative donors for 746 allogeneic HSCT treatments carried out at our center during 1995-2014. In our cohort, 20% HCMV-seronegative HSCT recipients, 21% HCMV-seronegative related graft donors, and 52% HCMV-seronegative unrelated graft donors were included. Analyses of the HCMV serostatus of hematopoietic stem cell donors during 2 consecutive calendar periods (1995-2005 and 2006-2014) showed a significant increase in the proportion of seronegative donors (odds ratio [OR] = 1.947). In addition, the number of HSCT treatments using an unrelated donor increased (OR = 2.376). Finally, the use of grafts from countries with a very low HCMV prevalence increased. This increase in HCMV seronegativity in unrelated donors and the increased proportion of unrelated donors were responsible for the increased occurrence of the high-risk combination R+/D- (OR = 1.680). If the reduction in the rate of HCMV-seropositive graft donors continues, an increased frequency of HCMV reactivation events in our transplant recipients can be expected, because of the increasing occurrence of the high-risk R+/D- combination. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Off-the-Shelf Virus-Specific T Cells to Treat BK Virus, Human Herpesvirus 6, Cytomegalovirus, Epstein-Barr Virus, and Adenovirus Infections After Allogeneic Hematopoietic Stem-Cell Transplantation.

    Science.gov (United States)

    Tzannou, Ifigeneia; Papadopoulou, Anastasia; Naik, Swati; Leung, Kathryn; Martinez, Caridad A; Ramos, Carlos A; Carrum, George; Sasa, Ghadir; Lulla, Premal; Watanabe, Ayumi; Kuvalekar, Manik; Gee, Adrian P; Wu, Meng-Fen; Liu, Hao; Grilley, Bambi J; Krance, Robert A; Gottschalk, Stephen; Brenner, Malcolm K; Rooney, Cliona M; Heslop, Helen E; Leen, Ann M; Omer, Bilal

    2017-11-01

    Purpose Improvement of cure rates for patients treated with allogeneic hematopoietic stem-cell transplantation (HSCT) will require efforts to decrease treatment-related mortality from severe viral infections. Adoptively transferred virus-specific T cells (VSTs) generated from eligible, third-party donors could provide broad antiviral protection to recipients of HSCT as an immediately available off-the-shelf product. Patient and Methods We generated a bank of VSTs that recognized five common viral pathogens: Epstein-Barr virus (EBV), adenovirus (AdV), cytomegalovirus (CMV), BK virus (BKV), and human herpesvirus 6 (HHV-6). The VSTs were administered to 38 patients with 45 infections in a phase II clinical trial. Results A single infusion produced a cumulative complete or partial response rate of 92% (95% CI, 78.1% to 98.3%) overall and the following rates by virus: 100% for BKV (n = 16), 94% for CMV (n = 17), 71% for AdV (n = 7), 100% for EBV (n = 2), and 67% for HHV-6 (n = 3). Clinical benefit was achieved in 31 patients treated for one infection and in seven patients treated for multiple coincident infections. Thirteen of 14 patients treated for BKV-associated hemorrhagic cystitis experienced complete resolution of gross hematuria by week 6. Infusions were safe, and only two occurrences of de novo graft-versus host disease (grade 1) were observed. VST tracking by epitope profiling revealed persistence of functional VSTs of third-party origin for up to 12 weeks. Conclusion The use of banked VSTs is a feasible, safe, and effective approach to treat severe and drug-refractory infections after HSCT, including infections from two viruses (BKV and HHV-6) that had never been targeted previously with an off-the-shelf product. Furthermore, the multispecificity of the VSTs ensures extensive antiviral coverage, which facilitates the treatment of patients with multiple infections.

  9. Sepsis and cytomegalovirus: foes or conspirators?

    Science.gov (United States)

    Mansfield, Sara; Grießl, Marion; Gutknecht, Michael; Cook, Charles H

    2015-06-01

    Cytomegalovirus (CMV) reactivation in non-immune-suppressed critically ill patients is an area of increasing interest. CMV has long been appreciated as a pathogen in immunocompromised hosts. CMV reactivates in approximately one-third of latently infected non-immune-suppressed hosts during critical illness; however, its role as a pathogen in these patients remains unclear. CMV reactivation has been linked to bacterial sepsis and likely results from inflammation, transient immune compromise, and viral epigenetic changes. While CMV may improve immune response to some bacterial infections, other data suggest that CMV induces exaggerated responses to severe infections that may be harmful to latently infected hosts. These results also suggest that previous infection history may explain significant differences seen between human septic responses and murine models of sepsis. While critically ill human hosts clearly have worse outcomes associated with CMV reactivation, determining causality remains an area of investigation, with randomized control trials currently being performed. Here we review the current literature and highlight areas for future investigation.

  10. Dominant-negative effect of hetero-oligomerization on the function of the human immunodeficiency virus type 1 envelope glycoprotein complex

    International Nuclear Information System (INIS)

    Herrera, Carolina; Klasse, Per Johan; Kibler, Christopher W.; Michael, Elizabeth; Moore, John P.; Beddows, Simon

    2006-01-01

    The human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein forms trimers that mediate interactions with the CD4 receptor and a co-receptor on the target cell surface, thereby triggering viral fusion with the cell membrane. Cleavage of Env into its surface, gp120, and transmembrane, gp41, moieties is necessary for activation of its fusogenicity. Here, we produced pseudoviruses with phenotypically mixed wild-type (Wt) and mutant, cleavage-incompetent Env in order to quantify the effects of incorporating uncleaved Env on virion infectivity, antigenicity and neutralization sensitivity. We modeled the relative infectivity of three such phenotypically mixed viral strains, JR-FL, HXBc2 and a derivative of the latter, 3.2P, as a function of the relative amount of Wt Env. The data were fit very closely (R 2 > 0.99) by models which assumed that only Wt homotrimers were functional, with different approximate thresholds of critical numbers of functional trimers per virion for the three strains. We also produced 3.2P pseudoviruses containing both a cleavage-competent Env that is defective for binding the neutralizing monoclonal antibody (NAb) 2G12, and a cleavage-incompetent Env that binds 2G12. The 2G12 NAb was not able to reduce the infectivity of these pseudoviruses detectably. Their neutralization by the CD4-binding site-directed agents CD4-IgG2 and NAb b12 was also unaffected by 2G12 binding to uncleaved Env. These results further strengthen the conclusion that only homotrimers consisting of cleaved Env are functional. They also imply that the function of a trimer is unaffected sterically by the binding of an antibody to an adjacent trimer

  11. Interaction of new kinase inhibitors cabozantinib and tofacitinib with human serum alpha-1 acid glycoprotein. A comprehensive spectroscopic and molecular Docking approach

    Science.gov (United States)

    Ajmal, Mohammad Rehan; Abdelhameed, Ali Saber; Alam, Parvez; Khan, Rizwan Hasan

    2016-04-01

    In the current study we have investigated the interaction of newly approved kinase inhibitors namely Cabozantinib (CBZ) and Tofacitinib (TFB) with human Alpha-1 acid glycoprotein (AAG) under simulated physiological conditions using fluorescence quenching measurements, circular dichroism, dynamic light scattering and molecular docking methods. CBZ and TFB binds to AAG with significant affinity and the calculated binding constant for the drugs lie in the order of 104. With the increase in temperature the binding constant values decreased for both CBZ and TFB. The fluorescence resonance energy transfer (FRET) from AAG to CBZ and TFB suggested the fluorescence intensity of AAG was quenched by the two studied drugs via the formation of a non-fluorescent complex in the static manner. The molecular distance r value calculated from FRET is around 2 nm for both drugs, fluorescence spectroscopy data was employed for the study of thermodynamic parameters, standard Gibbs free energy change at 300K was calculated as - 5.234 kcal mol- 1 for CBZ-AAG interaction and - 6.237 kcal mol- 1 for TFB-AAG interaction, standard enthalpy change and standard entropy change for CBZ-AAG interaction are - 9.553 kcal mol- 1 and - 14.618 cal mol- 1K- 1 respectively while for AAG-TFB interaction, standard enthalpy and standard entropy change was calculated as 4.019 kcal mol- 1 and 7.206 cal mol- 1K- 1 respectively. Protein binding of the two drugs caused the tertiary structure alterations. Dynamic light scattering measurements demonstrated the reduction in the hydrodynamic radii of the protein. Furthermore molecular docking results suggested the Hydrophobic interaction and hydrogen bonding were the interactive forces in the binding process of CBZ to AAG while in case of TFB only hydrophobic interactions were found to be involved, overlap of the binding site for two studied drugs on the AAG molecule was revealed by docking results.

  12. Eco-friendly ionic liquid assisted capillary electrophoresis and α-acid glycoprotein-assisted liquid chromatography for simultaneous determination of anticancer drugs in human fluids.

    Science.gov (United States)

    Abd El-Hady, Deia; Albishri, Hassan M; Rengarajan, Rajesh

    2015-06-01

    In the current work, two eco-friendly analytical methods based on capillary electrophoresis (CE) and reversed phase liquid chromatography (RPLC) were developed for simultaneous determination of the most commonly used anticancer drugs for Hodgkin's disease: methotrexate (MTX), vinblastine, chlorambucil and dacarbazine. A background electrolyte (BGE) of 12.5 mmol/L phosphate buffer at pH 7.4 and 0.1 µmol/L 1-butyl-3-methyl imidazolium bromide (BMImBr) ionic liquid (IL) was used for CE measurements at 250 nm detection wavelength, 20 kV applied voltage and 25 °C. The rinsing protocol was significantly improved to reduce the adsorption of IL on the interior surface of capillary. Moreover, RPLC method was developed on α-1-acid glycoprotein (AGP) column. Mobile phase was 10 mmol/L phosphate buffer at pH 6.0 (100% v/v) and flow rate at 0.1 mL/min. As AGP is a chiral column, it was successfully separated l-MTX from its enantiomer impurity d-MTX. Good linearity of quantitative analysis was achieved with coefficients of determinations (r(2) ) >0.995. The stability of drugs measurements was investigated with adequate recoveries up to 24 h storage time under ambient temperature. The limits of detection were <50 and 90 ng/mL by CE and RPLC, respectively. The using of short-chain IL as an additive in BGE achieved 600-fold sensitivity enhancement compared with conventional Capillary Zone Electrophoresis (CZE). Therefore, for the first time, the proposed methods were successfully applied to determine simultaneously the analytes in human plasma and urine samples at clinically relevant concentrations with fast and simple pretreatments. Developed IL-assisted CE and RPLC methods were also applied to measure MTX levels in patients' samples over time. Copyright © 2014 John Wiley & Sons, Ltd.

  13. HIV-1 envelope glycoprotein

    Science.gov (United States)

    Caulfield, Michael; Cupo, Albert; Dean, Hansi; Hoffenberg, Simon; King, C. Richter; Klasse, P. J.; Marozsan, Andre; Moore, John P.; Sanders, Rogier W.; Ward, Andrew; Wilson, Ian; Julien, Jean-Philippe

    2017-08-22

    The present application relates to novel HIV-1 envelope glycoproteins, which may be utilized as HIV-1 vaccine immunogens, and antigens for crystallization, electron microscopy and other biophysical, biochemical and immunological studies for the identification of broad neutralizing antibodies. The present invention encompasses the preparation and purification of immunogenic compositions, which are formulated into the vaccines of the present invention.

  14. Glycoprotein and proteoglycan techniques

    International Nuclear Information System (INIS)

    Beeley, J.G.

    1985-01-01

    The aim of this book is to describe techniques which can be used to answer some of the basic questions about glycosylated proteins. Methods are discussed for isolation, compositional analysis, and for determination of the primary structure of carbohydrate units and the nature of protein-carbohydrate linkages of glycoproteins and proteoglycans. High resolution NMR is considered, as well as radioactive labelling techniques. (Auth.)

  15. Three-Dimensionally Functionalized Reverse Phase Glycoprotein Array for Cancer Biomarker Discovery and Validation.

    Science.gov (United States)

    Pan, Li; Aguilar, Hillary Andaluz; Wang, Linna; Iliuk, Anton; Tao, W Andy

    2016-11-30

    Glycoproteins have vast structural diversity that plays an important role in many biological processes and have great potential as disease biomarkers. Here, we report a novel functionalized reverse phase protein array (RPPA), termed polymer-based reverse phase glycoprotein array (polyGPA), to capture and profile glycoproteomes specifically, and validate glycoproteins. Nitrocellulose membrane functionalized with globular hydroxyaminodendrimers was used to covalently capture preoxidized glycans on glycoproteins from complex protein samples such as biofluids. The captured glycoproteins were subsequently detected using the same validated antibodies as in RPPA. We demonstrated the outstanding specificity, sensitivity, and quantitative capabilities of polyGPA by capturing and detecting purified as well as endogenous α-1-acid glycoprotein (AGP) in human plasma. We further applied quantitative N-glycoproteomics and the strategy to validate a panel of glycoproteins identified as potential biomarkers for bladder cancer by analyzing urine glycoproteins from bladder cancer patients or matched healthy individuals.

  16. Cytomegalovirus

    Science.gov (United States)

    ... will have symptoms that are similar to the mononucleosis virus. Symptoms of CMV can include: sore throat ... similar to the viruses that cause chickenpox and mononucleosis. It gets into body fluids, such as saliva, ...

  17. Drug-induced trafficking of p-glycoprotein in human brain capillary endothelial cells as demonstrated by exposure to mitomycin C.

    Science.gov (United States)

    Noack, Andreas; Noack, Sandra; Hoffmann, Andrea; Maalouf, Katia; Buettner, Manuela; Couraud, Pierre-Olivier; Romero, Ignacio A; Weksler, Babette; Alms, Dana; Römermann, Kerstin; Naim, Hassan Y; Löscher, Wolfgang

    2014-01-01

    P-glycoprotein (Pgp; ABCB1/MDR1) is a major efflux transporter at the blood-brain barrier (BBB), restricting the penetration of various compounds. In other tissues, trafficking of Pgp from subcellular stores to the cell surface has been demonstrated and may constitute a rapid way of the cell to respond to toxic compounds by functional membrane insertion of the transporter. It is not known whether drug-induced Pgp trafficking also occurs in brain capillary endothelial cells that form the BBB. In this study, trafficking of Pgp was investigated in human brain capillary endothelial cells (hCMEC/D3) that were stably transfected with a doxycycline-inducible MDR1-EGFP fusion plasmid. In the presence of doxycycline, these cells exhibited a 15-fold increase in Pgp-EGFP fusion protein expression, which was associated with an increased efflux of the Pgp substrate rhodamine 123 (Rho123). The chemotherapeutic agent mitomycin C (MMC) was used to study drug-induced trafficking of Pgp. Confocal fluorescence microscopy of single hCMEC/D3-MDR1-EGFP cells revealed that Pgp redistribution from intracellular pools to the cell surface occurred within 2 h of MMC exposure. Pgp-EGFP exhibited a punctuate pattern at the cell surface compatible with concentrated regions of the fusion protein in membrane microdomains, i.e., lipid rafts, which was confirmed by Western blot analysis of biotinylated cell surface proteins in Lubrol-resistant membranes. MMC exposure also increased the functionality of Pgp as assessed in three functional assays with Pgp substrates (Rho123, eFluxx-ID Gold, calcein-AM). However, this increase occurred with some delay after the increased Pgp expression and coincided with the release of Pgp from the Lubrol-resistant membrane complexes. Disrupting rafts by depleting the membrane of cholesterol increased the functionality of Pgp. Our data present the first direct evidence of drug-induced Pgp trafficking at the human BBB and indicate that Pgp has to be released from lipid

  18. Immunization of rabbits with highly purified, soluble, trimeric human immunodeficiency virus type 1 envelope glycoprotein induces a vigorous B cell response and broadly cross-reactive neutralization.

    Directory of Open Access Journals (Sweden)

    Gerald V Quinnan

    Full Text Available Previously we described induction of cross-reactive HIV-1 neutralizing antibody responses in rabbits using a soluble HIV-1 gp140 envelope glycoprotein (Env in an adjuvant containing monophosphoryl lipid A (MPL and QS21 (AS02A. Here, we compared different forms of the same HIV-1 strain R2 Env for antigenic and biophysical characteristics, and in rabbits characterized the extent of B cell induction for specific antibody expression and secretion and neutralizing responses. The forms of this Env that were produced in and purified from stably transformed 293T cells included a primarily dimeric gp140, a trimeric gp140 appended to a GCN4 trimerization domain (gp140-GCN4, gp140-GCN4 with a 15 amino acid flexible linker between the gp120 and gp41 ectodomain (gp140-GCN4-L, also trimeric, and a gp140 with the flexible linker purified from cell culture supernatants as either dimer (gp140-L(D or monomer (gp140-L(M. Multimeric states of the Env proteins were assessed by native gel electrophoresis and analytical ultracentrifugation. The different forms of gp140 bound broadly cross-reactive neutralizing (BCN human monoclonal antibodies (mAbs similarly in ELISA and immunoprecipitation assays. All Envs bound CD4i mAbs in the presence and absence of sCD4, as reported for the R2 Env. Weak neutralization of some strains of HIV-1 was seen after two additional doses in AS02A. Rabbits that were given a seventh dose of gp140-GCN4-L developed BCN responses that were weak to moderate, similar to our previous report. The specificity of these responses did not appear similar to that of any of the known BCN human mAbs. Induction of spleen B cell and plasma cells producing immunoglobulins that bound trimeric gp140-GCN4-L was vigorous, based on ELISpot and flow cytometry analyses. The results demonstrate that highly purified gp140-GCN4-L trimer in adjuvant elicits BCN responses in rabbits accompanied by vigorous B cell induction.

  19. Drug-Induced Trafficking of P-Glycoprotein in Human Brain Capillary Endothelial Cells as Demonstrated by Exposure to Mitomycin C

    Science.gov (United States)

    Noack, Andreas; Noack, Sandra; Hoffmann, Andrea; Maalouf, Katia; Buettner, Manuela; Couraud, Pierre-Olivier; Romero, Ignacio A.; Weksler, Babette; Alms, Dana; Römermann, Kerstin; Naim, Hassan Y.; Löscher, Wolfgang

    2014-01-01

    P-glycoprotein (Pgp; ABCB1/MDR1) is a major efflux transporter at the blood-brain barrier (BBB), restricting the penetration of various compounds. In other tissues, trafficking of Pgp from subcellular stores to the cell surface has been demonstrated and may constitute a rapid way of the cell to respond to toxic compounds by functional membrane insertion of the transporter. It is not known whether drug-induced Pgp trafficking also occurs in brain capillary endothelial cells that form the BBB. In this study, trafficking of Pgp was investigated in human brain capillary endothelial cells (hCMEC/D3) that were stably transfected with a doxycycline-inducible MDR1-EGFP fusion plasmid. In the presence of doxycycline, these cells exhibited a 15-fold increase in Pgp-EGFP fusion protein expression, which was associated with an increased efflux of the Pgp substrate rhodamine 123 (Rho123). The chemotherapeutic agent mitomycin C (MMC) was used to study drug-induced trafficking of Pgp. Confocal fluorescence microscopy of single hCMEC/D3-MDR1-EGFP cells revealed that Pgp redistribution from intracellular pools to the cell surface occurred within 2 h of MMC exposure. Pgp-EGFP exhibited a punctuate pattern at the cell surface compatible with concentrated regions of the fusion protein in membrane microdomains, i.e., lipid rafts, which was confirmed by Western blot analysis of biotinylated cell surface proteins in Lubrol-resistant membranes. MMC exposure also increased the functionality of Pgp as assessed in three functional assays with Pgp substrates (Rho123, eFluxx-ID Gold, calcein-AM). However, this increase occurred with some delay after the increased Pgp expression and coincided with the release of Pgp from the Lubrol-resistant membrane complexes. Disrupting rafts by depleting the membrane of cholesterol increased the functionality of Pgp. Our data present the first direct evidence of drug-induced Pgp trafficking at the human BBB and indicate that Pgp has to be released from lipid

  20. Pyramidatine (Z88) Sensitizes Vincristine-Resistant Human Oral Cancer (KB/VCR) Cells to Chemotherapeutic Agents by Inhibition of P-glycoprotein.

    Science.gov (United States)

    Liu, Zulong; Zhu, Hengrui; Qu, Shijin; Tang, Lisha; Cao, Lihuan; Yu, Wenbo; Yang, Xianmei; Jiang, Songmin; Zhu, Dayuan; Tan, Changheng; Yu, Long

    2018-01-01

    Multi-drug resistance (MDR) remains a major impediment in cancer therapy. A major goal for scientists is to discover more effective compounds that are able to circumvent MDR and simultaneously have minimal adverse side effects. In the present study, we aim to determine the anti-MDR effects of pyramidatine (Z88), a cinnamic acid-derived bisamide compound isolated from the leaves of Aglaia perviridis, on KB/VCR (vincristineresistant human oral cancer cells) and MCF-7/ADR (adriamycin-resistant human breast adenocarcinoma) cells. Cell viability and average resistant fold (RF) of Z88 were examined by Cell Counting Kit-8 (CCK-8) assay. Flow cytometry, western blot, RT-PCR, Rhodamine 123 accumulation assay and P-glycoprotein (P-gp) ATPase assay were used to demonstrate the anti-MDR activity and mechanism of Z88. The average RF of Z88 is 0.09 and 0.51 in KB/VCR and MCF-7/ADR cells. A CCK-8 assay showed that Z88 could enhance the cytotoxicity of VCR toward KB/VCR cells. A FACS analysis revealed that Z88 could enhance the VCR-induced apoptosis as well as G2/M arrest in a dose-dependent manner in KB/VCR cells. Western blot results showed that the expression levels of PARP, Bax, and cyclin B1 all increased after treatment with 0.2 µmol/L (µM) of VCR combined with 10 µM of Z88 for 24 h in KB/VCR cells. Z88 also could enhance the accumulation of rhodamine 123. Further studies showed that Z88 could inhibit the verapamil stimulated Pgp ATPase activity. Additionally, qPCR detection and western blot assays revealed that Z88 could decrease the expression of P-gp at both RNA and protein level. Z88 exerted potent anti-MDR activity in vitro and its mechanisms are associated with dualinhibition of the function and expression of P-gp. These findings encourage efforts to develop more effective reversal agents to circumvent MDR based on Z88. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Prevalence of cytomegalovirus antibodies in blood donars at the ...

    African Journals Online (AJOL)

    Background: Cytomegalovirus (CMV) infection in susceptible patients is associated with serious morbidity and a high mortality. Transmission of cytomegalovirus infection through blood transfusion is markedly reduced by transfusion of CMV seronegative blood products, or by transfusion of leucodepleted blood products.

  2. Immunoradiometric assay for cytomegalovirus-specific IgG antibodies

    International Nuclear Information System (INIS)

    Klapper, P.E.; Cleator, G.M.; Prinja-Wolks, D.; Morris, D.J.

    1990-01-01

    An immunoradiometric assay (radio-immunosorbent test; RIST) for the detection of IgG antibodies to human herpesvirus 4 [human cytomegalovirus (CMV)] has been developed. The technique utilizes CMV antigen passively adsorbed to a polyvinyl microtitration plate and a radiolabelled murine monoclonal anti-human IgG antibody to detect binding of human antibody to the 'solid phase' reagent. The assay was optimized, and its specifity confirmed by testing paired acute and convalescent sera from patients with acute CMV or other human herpesvirus infections. To determine the assay's sensitivity 1433 blood donor sera were examined. The RIST was more sensitive than a standard complement fixation (CFT). Use of a monoclonal anti-human IgG antibody in the RIST reduced non-specific binding to the control uninfected cell antigen such that blood donor sera could be tested in the assay using only a CMV antigen without generating an unacceptable false positive rate. (author). 23 refs.; 1 tab

  3. CYTOMEGALOVIRUS: A REVIEW OF PATHOGENESIS, EPIDEMIOLOGY AND DIAGNOSIS OF INFECTION

    Directory of Open Access Journals (Sweden)

    Sócrates Bezerra de Matos

    2011-05-01

    Full Text Available The cytomegalovirus (CMV is a human β-herpesvirus ubiquitous and has high worldwide prevalence. The transmission occurs through contact with biological fluids, such as: saliva, semen, vaginal secretions, urine and breast milk, as well as transplacental, blood transfusion or organ transplantation. The most CMV infected individuals remains asymptomatic, however, some patients, especially the immunosuppressed, can develop severe infection with serious clinical signs, like the transplant recipients, HIV positive, leukemic or newborn. This review aims, among other things, discuss the pathogenesis and highlight important sites of immunology and diagnosis of CMV infection.

  4. Cytomegalovirus: a review of pathogenesis, epidemiology and diagnosis of infection

    Directory of Open Access Journals (Sweden)

    Sócrates Bezerra de Matos

    2011-01-01

    Full Text Available The cytomegalovirus (CMV is a human β-herpesvirus ubiquitous and has high worldwide prevalence. The transmission occurs through contact with biological fluids, such as: saliva, semen, vaginal secretions, urine and breast milk, as well as trans placental, blood transfusion or organ transplantation. The most CMV infected individuals remains asymptomatic, however, some patients, especially the immunosuppressed, can develop severe infection with serious clinical signs, like the transplant recipients, HIV positive, leukemic or newborn. This review aims, among other things, discuss the pathogenesis and highlight important sites of immunology and diagnosis of CMV infection.

  5. Targeting the latent cytomegalovirus reservoir with an antiviral fusion toxin protein

    DEFF Research Database (Denmark)

    Krishna, B A; Spiess, K; Poole, E L

    2017-01-01

    Reactivation of human cytomegalovirus (HCMV) in transplant recipients can cause life-threatening disease. Consequently, for transplant recipients, killing latently infected cells could have far-reaching clinical benefits. In vivo, myeloid cells and their progenitors are an important site of HCMV ...

  6. Investigation of the Role of the Cytomegalovirus as a Respiratory Pathogen in HIV-Infected Patients

    Directory of Open Access Journals (Sweden)

    Rafael E de la Hoz

    1996-01-01

    Full Text Available OBJECTIVE: To investigate the occurrence of cytomegalovirus (CMV pneumonitis in the setting of human immunodeficiency virus (HIV infection and whether the presence of CMV as copathogen is associated with increased clinical severity or short term mortality in patients with Pneumocystis carinii pneumonia.

  7. The downmodulation of the foreign body reaction by cytomegalovirus encoded interleukin-10

    NARCIS (Netherlands)

    van Putten, S. M.; Hennink, W. E.; van Luyna, M. J. A.; Harmsen, M. C.; Wubben, Maike

    The foreign body reaction (FBR) is of great importance for the function and turnover of biomaterial scaffolds. The development of biological tools that modulate the FBR will augment scaffold functionality and benefit regenerative medicine. The human cytomegalovirus encodes a functional homolog of

  8. Asiatic Acid (AA) Sensitizes Multidrug-Resistant Human Lung Adenocarcinoma A549/DDP Cells to Cisplatin (DDP) via Downregulation of P-Glycoprotein (MDR1) and Its Targets.

    Science.gov (United States)

    Cheng, Qilai; Liao, Meixiang; Hu, Haibo; Li, Hongliang; Wu, Longhuo

    2018-01-01

    P-glycoprotein (P-gp, i.e., MDR1) is associated with the phenotype of multidrug resistance (MDR) and causes chemotherapy failure in the management of cancers. Searching for effective MDR modulators and combining them with anticancer drugs is a promising strategy against MDR. Asiatic acid (AA), a natural triterpene isolated from the plant Centella asiatica, may have an antitumor activity. The present study assessed the reversing effect of AA on MDR and possible molecular mechanisms of AA action in MDR1-overexpressing cisplatin (DDP)-resistant lung cancer cells, A549/DDP. Human lung adenocarcinoma A549/DDP cells were either exposed to different concentrations of AA or treated with DDP, and their viability was measured by the MTT assay. A Rhodamine 123 efflux assay, immunofluorescent staining, ATPase assay, reverse-transcription PCR (RT-PCR), and western blot analysis were conducted to elucidate the mechanisms of action of AA on MDR. Our results showed that AA significantly enhanced the cytotoxicity of DDP toward A549/DDP cells but not its parental A549 cells. Furthermore, AA strongly inhibited P-gp expression by blocking MDR1 gene transcription and increased the intracellular accumulation of the P-gp substrate Rhodamine 123 in A549/DDP cells. Nuclear factor (NF)-kB (p65) activity, IkB degradation, and NF-kB/p65 nuclear translocation were markedly inhibited by pretreatment with AA. Additionally, AA inhibited the MAPK-ERK pathway, as indicated by decreased phosphorylation of ERK1 and -2, AKT, p38, and JNK, thus resulting in reduced activity of the Y-box binding protein 1 (YB1) via blockage of its nuclear translocation. AA reversed P-gp-mediated MDR by inhibition of P-gp expression. This effect was likely related to downregulation of YB1, and this effect was mediated by the NF-kB and MAPK-ERK pathways. AA may be useful as an MDR reversal agent for combination therapy in clinical trials. © 2018 The Author(s). Published by S. Karger AG, Basel.

  9. Genetic variation of the human α-2-Heremans-Schmid glycoprotein (AHSG gene associated with the risk of SARS-CoV infection.

    Directory of Open Access Journals (Sweden)

    Xiaohui Zhu

    Full Text Available Genetic background may play an important role in the process of SARS-CoV infection and SARS development. We found several proteins that could interact with the nucleocapsid protein of the SARS coronavirus (SARS-CoV. α-2-Heremans-Schmid Glycoprotein (AHSG, which is required for macrophage deactivation by endogenous cations, is associated with inflammatory regulation. Cytochrome P450 Family 3A (CYP4F3A is an ω-oxidase that inactivates Leukotriene B4 (LTB4 in human neutrophils and the liver. We investigated the association between the polymorphisms of these two inflammation-associated genes and SARS development. The linkage disequilibrium (LD maps of these two genes were built with Haploview using data on CHB+JPT (version 2 from the HapMap. A total of ten tag SNPs were selected and genotyped. In the Guangzhou cohort study, after adjusting for age and sex, two AHSG SNPs and one CYP4F3 SNP were found to be associated with SARS susceptibility: rs2248690 (adjusted odds ratio [AOR] 2.42; 95% confidence interval [CI] 1.30-4.51; rs4917 (AOR 1.84; 95% CI 1.02-3.34; and rs3794987 (AOR 2.01; 95% CI 1.10-3.68. To further validate the association, the ten tag SNPs were genotyped in the Beijing cohort. After adjusting for age and sex, only rs2248690 (AOR, 1.63; 95% CI, 1.30-2.04 was found to be associated with SARS susceptibility. The combined analysis of the two studies confirmed tag SNP rs2248690 in AHSG as a susceptibility variant (AOR 1.70; 95% CI 1.37-2.09. The statistical analysis of the rs2248690 genotype data among the patients and healthy controls in the HCW cohort, who were all similarly exposed to the SARS virus, also supported the findings. Further, the SNP rs2248690 affected the transcriptional activity of the AHSG promoter and thus regulated the AHSG serum level. Therefore, our study has demonstrated that the AA genotype of rs2268690, which leads to a higher AHSG serum concentration, was significantly associated with protection against SARS

  10. Critical amino acids within the human immunodeficiency virus type 1 envelope glycoprotein V4 N- and C-terminals contribute to virus entry.

    Directory of Open Access Journals (Sweden)

    Yan Li

    Full Text Available The importance of the fourth variable (V4 region of the human immunodeficiency virus 1 (HIV-1 envelope glycoprotein (Env in virus infection has not been well clarified, though the polymorphism of this region has been found to be associated with disease progression to acquired immunodeficiency syndrome (AIDS. In the present work, we focused on the correlation between HIV-1 gp120 V4 region polymorphism and the function of the region on virus entry, and the possible mechanisms for how the V4 region contributes to virus infectivity. Therefore, we analyzed the differences in V4 sequences along with coreceptor usage preference from CCR5 to CXCR4 and examined the importance of the amino acids within the V4 region for CCR5- and CXCR4-tropic virus entry. In addition, we determined the influence of the V4 amino acids on Env expression and gp160 processing intracellularly, as well as the amount of Env on the pseudovirus surface. The results indicated that V4 tended to have a shorter length, fewer potential N-linked glycosylation sites (PNGS, greater evolutionary distance, and a lower negative net charge when HIV-1 isolates switched from a coreceptor usage preference for CCR5 to CXCR4. The N- and C-terminals of the HIV-1 V4 region are highly conserved and critical to maintain virus entry ability, but only the mutation at position 417 in the context of ADA (a R5-tropic HIV-1 strain resulted in the ability to utilize CXCR4. In addition, 390L, 391F, 414I, and 416L are critical to maintain gp160 processing and maturation. It is likely that the hydrophobic properties and the electrostatic surface potential of gp120, rather than the conformational structure, greatly contribute to this V4 functionality. The findings provide information to aid in the understanding of the functions of V4 in HIV-1 entry and offer a potential target to aid in the development of entry inhibitors.

  11. Quantitative analysis of N-glycans from human alfa-acid-glycoprotein using stable isotope labeling and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry as tool for pancreatic disease diagnosis

    International Nuclear Information System (INIS)

    Giménez, Estela; Balmaña, Meritxell; Figueras, Joan; Fort, Esther; Bolós, Carme de; Sanz-Nebot, Victòria; Peracaula, Rosa; Rizzi, Andreas

    2015-01-01

    Highlights: • The method enables relative quantitation of hAGP glycans from pathological samples • Pancreatic cancer samples clearly showed an increase of hAGP fucosylated glycans. • Fucosylated glycans could be potential biomarkers for diagnosing pancreatic cancer. • The established method could be extremely useful to find novel glycoprotein biomarkers - Abstract: In this work we demonstrate the potential of glycan reductive isotope labeling (GRIL) using [ 12 C]- and [ 13 C]-coded aniline and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry (μZIC-HILIC-ESI-MS) for relative quantitation of glycosylation variants in selected glycoproteins present in samples from cancer patients. Human α 1 -acid-glycoprotein (hAGP) is an acute phase serum glycoprotein whose glycosylation has been described to be altered in cancer and chronic inflammation. However, it is not clear yet whether some particular glycans in hAGP can be used as biomarker for differentiating between these two pathologies. In this work, hAGP was isolated by immunoaffinity chromatography (IAC) from serum samples of healthy individuals and from those suffering chronic pancreatitis and different stages of pancreatic cancer, respectively. After de-N-glycosylation, relative quantitation of the hAGP glycans was carried out using stable isotope labeling and μZIC-HILIC-ESI-MS analysis. First, protein denaturing conditions prior to PNGase F digestion were optimized to achieve quantitative digestion yields, and the reproducibility of the established methodology was evaluated with standard hAGP. Then, the proposed method was applied to the analysis of the clinical samples (control vs. pathological). Pancreatic cancer samples clearly showed an increase in the abundance of fucosylated glycans as the stage of the disease increases and this was unlike to samples from chronic pancreatitis. The results gained here indicate the mentioned glycan in hAGP as a

  12. Quantitative analysis of N-glycans from human alfa-acid-glycoprotein using stable isotope labeling and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry as tool for pancreatic disease diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Giménez, Estela, E-mail: estelagimenez@ub.edu [Department of Analytical Chemistry, University of Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Balmaña, Meritxell [Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Campus Montilivi s/n, 17071 Girona (Spain); Figueras, Joan [Department of Surgery, Dr. Josep Trueta University Hospital, IdlBGi, 17007 Girona (Spain); Fort, Esther [Digestive Unit, Dr. Josep Trueta University Hospital, 17007 Girona (Spain); Bolós, Carme de [Gastroesophagic Cancer Research Group, Research Programme in Cancer, Hospital del Mar Medical Research Institute (IMIM), Dr. Aiguader, 88, 08003 Barcelona (Spain); Sanz-Nebot, Victòria [Department of Analytical Chemistry, University of Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Peracaula, Rosa [Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Campus Montilivi s/n, 17071 Girona (Spain); Rizzi, Andreas [Institute of Analytical Chemistry, University of Vienna, Währinger Straße 38, A-1090 Vienna (Austria)

    2015-03-25

    Highlights: • The method enables relative quantitation of hAGP glycans from pathological samples • Pancreatic cancer samples clearly showed an increase of hAGP fucosylated glycans. • Fucosylated glycans could be potential biomarkers for diagnosing pancreatic cancer. • The established method could be extremely useful to find novel glycoprotein biomarkers - Abstract: In this work we demonstrate the potential of glycan reductive isotope labeling (GRIL) using [{sup 12}C]- and [{sup 13}C]-coded aniline and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry (μZIC-HILIC-ESI-MS) for relative quantitation of glycosylation variants in selected glycoproteins present in samples from cancer patients. Human α{sub 1}-acid-glycoprotein (hAGP) is an acute phase serum glycoprotein whose glycosylation has been described to be altered in cancer and chronic inflammation. However, it is not clear yet whether some particular glycans in hAGP can be used as biomarker for differentiating between these two pathologies. In this work, hAGP was isolated by immunoaffinity chromatography (IAC) from serum samples of healthy individuals and from those suffering chronic pancreatitis and different stages of pancreatic cancer, respectively. After de-N-glycosylation, relative quantitation of the hAGP glycans was carried out using stable isotope labeling and μZIC-HILIC-ESI-MS analysis. First, protein denaturing conditions prior to PNGase F digestion were optimized to achieve quantitative digestion yields, and the reproducibility of the established methodology was evaluated with standard hAGP. Then, the proposed method was applied to the analysis of the clinical samples (control vs. pathological). Pancreatic cancer samples clearly showed an increase in the abundance of fucosylated glycans as the stage of the disease increases and this was unlike to samples from chronic pancreatitis. The results gained here indicate the mentioned glycan in h

  13. Conserved retinoblastoma protein-binding motif in human cytomegalovirus UL97 kinase minimally impacts viral replication but affects susceptibility to maribavir

    Directory of Open Access Journals (Sweden)

    Chou Sunwen

    2009-01-01

    Full Text Available Abstract The UL97 kinase has been shown to phosphorylate and inactivate the retinoblastoma protein (Rb and has three consensus Rb-binding motifs that might contribute to this activity. Recombinant viruses containing mutations in the Rb-binding motifs generally replicated well in human foreskin fibroblasts with only a slight delay in replication kinetics. Their susceptibility to the specific UL97 kinase inhibitor, maribavir, was also examined. Mutation of the amino terminal motif, which is involved in the inactivation of Rb, also renders the virus hypersensitive to the drug and suggests that the motif may play a role in its mechanism of action.

  14. Congenital and perinatal cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Chun Soo Kim

    2010-01-01

    Full Text Available Cytomegalovirus (CMV is currently the most common agent of congenital infection and the leading infectious cause of brain damage and hearing loss in children. Symptomatic congenital CMV infections usually result from maternal primary infection during early pregnancy. One half of symptomatic infants have cytomegalic inclusion disease (CID, which is characterized by involvement of multiple organs, in particular, the reticuloendothelial and central nervous system (CNS. Moreover, such involvement may or may not include ocular and auditory damage. Approximately 90% of infants with congenital infection are asymptomatic at birth. Preterm infants with perinatal CMV infection can have symptomatic diseases such as pneumonia, hepatitis, and thrombocytopenia. Microcephaly and abnormal neuroradiologic imaging are associated with a poor prognosis. Hearing loss may occur in both symptomatic and asymptomatic infants with congenital infection and may progress through childhood. Congenital infection is defined by the isolation of CMV from infants within the first 3 weeks of life. Ganciclovir therapy can be considered for infants with symptomatic congenital CMV infection involving the CNS. Pregnant women of seronegative state should be counseled on the importance of good hand washing and other control measures to prevent CMV infection. Heat treatment of infected breast milk at 72?#608;for 5 seconds can eliminate CMV completely.

  15. Localization of a membrane glycoprotein in benign fibrocystic disease and infiltrating duct carcinomas of the human breast with the use of a monoclonal antibody to guinea pig milk fat globule membrane.

    Science.gov (United States)

    Greenwalt, D. E.; Johnson, V. G.; Kuhajda, F. P.; Eggleston, J. C.; Mather, I. H.

    1985-01-01

    With monoclonal antibody D-274, raised against guinea pig milk fat globule membrane, the distribution of mucinlike glycoproteins of Mrs greater than or equal to 400,000 was determined in benign fibrocystic disease and infiltrating duct carcinoma of the human breast. These glycoproteins, called collectively PAS-I, were detected in 19 out of 20 cases of benign fibrocystic disease and in at least 26 out of 47 cases of infiltrating duct carcinoma. PAS-I was concentrated on luminal surfaces of ducts and alveoli in morphologically differentiated regions of the tumors. In areas where the glandular nature of the tissue was less evident in infiltrating duct carcinoma, the PAS-I determinant recognized by antibody D-274 was present on irregular luminal surfaces and in the cytoplasm. There was a negative correlation between the short-term recurrence (less than 2 years) of infiltrating duct carcinoma and the detection of strong positive staining with antibody D-274. The results are discussed with reference to recent studies on PAS-I in human breast tissue using monoclonal antibodies raised against human milk fat globule membrane. Images Figure 1 Figure 2 Figure 3 PMID:2579563

  16. Human cytomegalovirus and Epstein-Barr virus infection impact on {sup 18}F-FDG PET/CT SUVmax, CT volumetric and KRAS-based parameters of patients with locally advanced rectal cancer treated with neoadjuvant therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sole, Claudio V. [Instituto de Radiomedicina, Department of Radiation Oncology, Santiago (Chile); School of Medicine Complutense University, Madrid (Spain); Calvo, Felipe A. [Hospital General Universitario Gregorio Maranon, Department of Oncology, Madrid (Spain); School of Medicine Complutense University, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute for Sanitary Research, Madrid (Spain); Ferrer, Carlos [Hospital Provincial de Castellon, Institute of Oncology, Castellon de la Plana (Spain); School of Medicine Cardenal Herrera-CEU University, Castellon de la Plana (Spain); Alvarez, Emilio [School of Medicine Complutense University, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Department of Pathology, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute for Sanitary Research, Madrid (Spain); Carreras, Jose L. [School of Medicine Complutense University, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Department of Radiology and Medical Physics, Madrid (Spain); Ochoa, Enrique [Hospital Provincial de Castellon, Institute of Oncology, Castellon de la Plana (Spain)

    2014-10-01

    It has long been debated whether human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) are associated with rectal cancer. The gene products of HCMV and EBV contribute to cell-cycle progression, mutagenesis, angiogenesis and immune evasion. The aim of this prospective study was to analyse the association between infection of a tumour by HCMV and EBV and clinical, histological, metabolic ({sup 18}F-FDG uptake), volumetric (from CT) and molecular (KRAS status) features and long-term outcomes in a homogeneously treated group of patients with locally advanced rectal cancer. HCMV and EBV were detected in pretreatment biopsies using polymerase chain reaction (PCR). The Cox proportional hazards regression model was used to explore associations between viral infection and disease-free survival (DFS) and overall survival (OS). We analysed 37 patients with a median follow-up of 74 months (range 5-173 months). Locoregional control, OS and DFS at 5 years were 93 %, 74 % and 71 %, respectively. Patients with HCMV/EBV coinfection had a significantly higher maximum standardized uptake value than patients without viral coinfection (p = 0.02). Significant differences were also observed in staging and percentage relative reduction in tumour volume between patients with and without HCMV infection (p < 0.01) and EBV infection (p < 0.01). KRAS wildtype status was significantly more frequently observed in patients with EBV infection (p <0.01) and HCMV/EBV co-infection (p = 0.04). No significant differences were observed in OS or DFS between patients with and without EBV infection (p = 0.88 and 0.73), HCMV infection (p = 0.84 and 0.79), and EBV/CMV coinfection (p = 0.24 and 0.39). This pilot study showed that viral infections were associated with metabolic staging differences, and differences in the evolution of metabolic and volumetric parameters and KRAS mutations. Further findings of specific features will help determine the best candidates for metabolic and volumetric staging and

  17. Human cytomegalovirus and Epstein-Barr virus infection impact on 18F-FDG PET/CT SUVmax, CT volumetric and KRAS-based parameters of patients with locally advanced rectal cancer treated with neoadjuvant therapy

    International Nuclear Information System (INIS)

    Sole, Claudio V.; Calvo, Felipe A.; Ferrer, Carlos; Alvarez, Emilio; Carreras, Jose L.; Ochoa, Enrique

    2015-01-01

    It has long been debated whether human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) are associated with rectal cancer. The gene products of HCMV and EBV contribute to cell-cycle progression, mutagenesis, angiogenesis and immune evasion. The aim of this prospective study was to analyse the association between infection of a tumour by HCMV and EBV and clinical, histological, metabolic ( 18 F-FDG uptake), volumetric (from CT) and molecular (KRAS status) features and long-term outcomes in a homogeneously treated group of patients with locally advanced rectal cancer. HCMV and EBV were detected in pretreatment biopsies using polymerase chain reaction (PCR). The Cox proportional hazards regression model was used to explore associations between viral infection and disease-free survival (DFS) and overall survival (OS). We analysed 37 patients with a median follow-up of 74 months (range 5-173 months). Locoregional control, OS and DFS at 5 years were 93 %, 74 % and 71 %, respectively. Patients with HCMV/EBV coinfection had a significantly higher maximum standardized uptake value than patients without viral coinfection (p = 0.02). Significant differences were also observed in staging and percentage relative reduction in tumour volume between patients with and without HCMV infection (p < 0.01) and EBV infection (p < 0.01). KRAS wildtype status was significantly more frequently observed in patients with EBV infection (p <0.01) and HCMV/EBV co-infection (p = 0.04). No significant differences were observed in OS or DFS between patients with and without EBV infection (p = 0.88 and 0.73), HCMV infection (p = 0.84 and 0.79), and EBV/CMV coinfection (p = 0.24 and 0.39). This pilot study showed that viral infections were associated with metabolic staging differences, and differences in the evolution of metabolic and volumetric parameters and KRAS mutations. Further findings of specific features will help determine the best candidates for metabolic and volumetric staging and

  18. Effect of partial and complete variable loop deletions of the human immunodeficiency virus type 1 envelope glycoprotein on the breadth of gp160-specific immune responses

    International Nuclear Information System (INIS)

    Gzyl, Jaroslaw; Bolesta, Elizabeth; Wierzbicki, Andrew; Kmieciak, Dariusz; Naito, Toshio; Honda, Mitsuo; Komuro, Katsutoshi; Kaneko, Yutaro; Kozbor, Danuta

    2004-01-01

    Induction of cross-reactive cellular and humoral responses to the HIV-1 envelope (env) glycoprotein was examined after DNA immunization of BALB/c mice with gp140 89.6 -derived constructs exhibiting partial or complete deletions of the V1, V2, and V3 domains. It was demonstrated that specific modification of the V3 loop (mV3) in combination with the V2-modified (mV2) or V1/V2-deleted (ΔV1/V2) region elicited increased levels of cross-reactive CD8 + T cell responses. Mice immunized with the mV2/mV3 or ΔV1/V2/mV3 gp140 89.6 plasmid DNA were greater than 50-fold more resistant to challenge with recombinant vaccinia virus (rVV) expressing heterologous env gene products than animals immunized with the wild-type (WT) counterpart. Sera from mV2/mV3- and ΔV1/V2/mV3-immunized mice exhibited the highest cross-neutralizing activity and displayed intermediate antibody avidity values which were further enhanced by challenge with rVV expressing the homologous gp160 glycoprotein. In contrast, complete deletion of the variable regions had little or no effect on the cross-reactive antibody responses. The results of these experiments indicate that the breadth of antibody responses to the HIV-1 env glycoprotein may not be increased by removal of the variable domains. Instead, partial deletions within these regions may redirect specific responses toward conserved epitopes and facilitate approaches for boosting cross-reactive cellular and antibody responses to the env glycoprotein

  19. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C

    1990-01-01

    ), and the cell type used as the infection target (MT4, PMC, or selected T4 lymphocytes). Inhibition was observed when viruses were preincubated with MAbs but not when cells were preincubated with MAbs before inoculation, and the MAbs were shown to precipitate 125I-labeled gp120. The MAbs therefore define...... carbohydrate structures expressed by the viral envelope glycoprotein gp120, indicating that glycans of the viral envelope are possible targets for immunotherapy or vaccine development or both....

  20. Mathematical Model of Cytomegalovirus (CMV) Disease

    Science.gov (United States)

    Sriningsih, R.; Subhan, M.; Nasution, M. L.

    2018-04-01

    The article formed the mathematical model of cytomegalovirus (CMV) disease. Cytomegalovirus (CMV) is a type of herpes virus. This virus is actually not dangerous, but if the body's immune weakens the virus can cause serious problems for health and even can cause death. This virus is also susceptible to infect pregnant women. In addition, the baby may also be infected through the placenta. If this is experienced early in pregnancy, it will increase the risk of miscarriage. If the baby is born, it can cause disability in the baby. The model is formed by determining its variables and parameters based on assumptions. The goal is to analyze the dynamics of cytomegalovirus (CMV) disease spread.

  1. Proposed clinical case definition for cytomegalovirus-immune recovery retinitis.

    Science.gov (United States)

    Ruiz-Cruz, Matilde; Alvarado-de la Barrera, Claudia; Ablanedo-Terrazas, Yuria; Reyes-Terán, Gustavo

    2014-07-15

    Cytomegalovirus (CMV) retinitis has been extensively described in patients with advanced or late human immunodeficiency virus (HIV) disease under ineffective treatment of opportunistic infection and antiretroviral therapy (ART) failure. However, there is limited information about patients who develop active cytomegalovirus retinitis as an immune reconstitution inflammatory syndrome (IRIS) after successful initiation of ART. Therefore, a case definition of cytomegalovirus-immune recovery retinitis (CMV-IRR) is proposed here. We reviewed medical records of 116 HIV-infected patients with CMV retinitis attending our institution during January 2003-June 2012. We retrospectively studied HIV-infected patients who had CMV retinitis on ART initiation or during the subsequent 6 months. Clinical and immunological characteristics of patients with active CMV retinitis were described. Of the 75 patients under successful ART included in the study, 20 had improvement of CMV retinitis. The remaining 55 patients experienced CMV-IRR; 35 of those developed CMV-IRR after ART initiation (unmasking CMV-IRR) and 20 experienced paradoxical clinical worsening of retinitis (paradoxical CMV-IRR). Nineteen patients with CMV-IRR had a CD4 count of ≥50 cells/µL. Six patients with CMV-IRR subsequently developed immune recovery uveitis. There is no case definition for CMV-IRR, although this condition is likely to occur after successful initiation of ART, even in patients with high CD4 T-cell counts. By consequence, we propose the case definitions for paradoxical and unmasking CMV-IRR. We recommend close follow-up of HIV-infected patients following ART initiation. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Identification of a Genetic Variation in ERAP1 Aminopeptidase that Prevents Human Cytomegalovirus miR-UL112-5p-Mediated Immunoevasion

    Directory of Open Access Journals (Sweden)

    Paolo Romania

    2017-07-01

    Full Text Available Herein, we demonstrate that HCMV miR-UL112-5p targets ERAP1, thereby inhibiting the processing and presentation of the HCMV pp65495-503 peptide to specific CTLs. In addition, we show that the rs17481334 G variant, naturally occurring in the ERAP1 3′ UTR, preserves ERAP1 from miR-UL112-5p-mediated degradation. Specifically, HCMV miR-UL112-5p binds the 3′ UTR of ERAP1 A variant, but not the 3′ UTR of ERAP1 G variant, and, accordingly, ERAP1 expression is reduced both at RNA and protein levels only in human fibroblasts homozygous for the A variant. Consistently, HCMV-infected GG fibroblasts were more efficient in trimming viral antigens and being lysed by HCMV-peptide-specific CTLs. Notably, a significantly decreased HCMV seropositivity was detected among GG individuals suffering from multiple sclerosis, a disease model in which HCMV is negatively associated with adult-onset disorder. Overall, our results identify a resistance mechanism to HCMV miR-UL112-5p-based immune evasion strategy with potential implications for individual susceptibility to infection and other diseases.

  3. EBI3 regulates the NK cell response to mouse cytomegalovirus infection

    DEFF Research Database (Denmark)

    Jensen, Helle; Chen, Shih-Yu; Folkersen, Lasse Westergaard

    2017-01-01

    Natural killer (NK) cells are key mediators in the control of cytomegalovirus infection. Here, we show that Epstein-Barr virus-induced 3 (EBI3) is expressed by human NK cells after NKG2D or IL-12 plus IL-18 stimulation and by mouse NK cells during mouse cytomegalovirus (MCMV) infection. The induc......Natural killer (NK) cells are key mediators in the control of cytomegalovirus infection. Here, we show that Epstein-Barr virus-induced 3 (EBI3) is expressed by human NK cells after NKG2D or IL-12 plus IL-18 stimulation and by mouse NK cells during mouse cytomegalovirus (MCMV) infection....... The induction of EBI3 protein expression in mouse NK cells is a late activation event. Thus, early activation events of NK cells, such as IFNγ production and CD69 expression, were not affected in EBI3-deficient (Ebi3-/-) C57BL/6 (B6) mice during MCMV infection. Furthermore, comparable levels of early viral...... replication in spleen and liver were observed in MCMV-infected Ebi3-/- and wild-type (WT) B6 mice. Interestingly, the viral load in salivary glands and oral lavage was strongly decreased in the MCMV-infected Ebi3-/- B6 mice, suggesting that EBI3 plays a role in the establishment of MCMV latency. We detected...

  4. Cytomegalovirus Infection of the Rat Developing Brain In Utero Prominently Targets Immune Cells and Promotes Early Microglial Activation.

    Directory of Open Access Journals (Sweden)

    Robin Cloarec

    Full Text Available Congenital cytomegalovirus infections are a leading cause of neurodevelopmental disorders in human and represent a major health care and socio-economical burden. In contrast with this medical importance, the pathophysiological events remain poorly known. Murine models of brain cytomegalovirus infection, mostly neonatal, have brought recent insights into the possible pathogenesis, with convergent evidence for the alteration and possible involvement of brain immune cells.In order to confirm and expand those findings, particularly concerning the early developmental stages following infection of the fetal brain, we have created a model of in utero cytomegalovirus infection in the developing rat brain. Rat cytomegalovirus was injected intraventricularly at embryonic day 15 (E15 and the brains analyzed at various stages until the first postnatal day, using a combination of gene expression analysis, immunohistochemistry and multicolor flow cytometry experiments.Rat cytomegalovirus infection was increasingly seen in various brain areas including the choroid plexi and the ventricular and subventricular areas and was prominently detected in CD45low/int, CD11b+ microglial cells, in CD45high, CD11b+ cells of the myeloid lineage including macrophages, and in CD45+, CD11b- lymphocytes and non-B non-T cells. In parallel, rat cytomegalovirus infection of the developing rat brain rapidly triggered a cascade of pathophysiological events comprising: chemokines upregulation, including CCL2-4, 7 and 12; infiltration by peripheral cells including B-cells and monocytes at E17 and P1, and T-cells at P1; and microglia activation at E17 and P1.In line with previous findings in neonatal murine models and in human specimen, our study further suggests that neuroimmune alterations might play critical roles in the early stages following cytomegalovirus infection of the brain in utero. Further studies are now needed to determine which role, whether favorable or detrimental

  5. Development of glycoprotein capture-based label-free method for the high-throughput screening of differential glycoproteins in hepatocellular carcinoma.

    Science.gov (United States)

    Chen, Rui; Tan, Yexiong; Wang, Min; Wang, Fangjun; Yao, Zhenzhen; Dong, Liwei; Ye, Mingliang; Wang, Hongyang; Zou, Hanfa

    2011-07-01

    A robust, reproducible, and high throughput method was developed for the relative quantitative analysis of glycoprotein abundances in human serum. Instead of quantifying glycoproteins by glycopeptides in conventional quantitative glycoproteomics, glycoproteins were quantified by nonglycosylated peptides derived from the glycoprotein digest, which consists of the capture of glycoproteins in serum samples and the release of nonglycopeptides by trypsin digestion of captured glycoproteins followed by two-dimensional liquid chromatography-tandem MS analysis of released peptides. Protein quantification was achieved by comparing the spectrum counts of identified nonglycosylated peptides of glycoproteins between different samples. This method was demonstrated to have almost the same specificity and sensitivity in glycoproteins quantification as capture at glycopeptides level. The differential abundance of proteins present at as low as nanogram per milliliter levels was quantified with high confidence. The established method was applied to the analysis of human serum samples from healthy people and patients with hepatocellular carcinoma (HCC) to screen differential glycoproteins in HCC. Thirty eight glycoproteins were found with substantial concentration changes between normal and HCC serum samples, including α-fetoprotein, the only clinically used marker for HCC diagnosis. The abundance changes of three glycoproteins, i.e. galectin-3 binding protein, insulin-like growth factor binding protein 3, and thrombospondin 1, which were associated with the development of HCC, were further confirmed by enzyme-linked immunosorbent assay. In conclusion, the developed method was an effective approach to quantitatively analyze glycoproteins in human serum and could be further applied in the biomarker discovery for HCC and other cancers.

  6. Seroprevalence of cytomegalovirus Antibodies among pregnant ...

    African Journals Online (AJOL)

    Background: Cytomegalovirus is a common virus that infects most people at some time during their lives. It becomes dormant for a while and may reactivate later. In pregnant women, intrauterine infection may be associated with congenital abnormalities, intrauterine growth retardation and intrauterine death of the fetus as ...

  7. seroprevalence of cytomegalovirus infection amongst pregnant

    African Journals Online (AJOL)

    boaz

    Cytomegalovirus (CMV) is a major public health problem throughout the world. It is the leading cause of ... Serum obtained from the blood samples were examined ... systems have been weakened by disease or drug ... fluids (e.g. saliva, urine, breast milk cervico-vaginal ... centrifuged on same day and the serum stored at -.

  8. Postnatally acquired cytomegalovirus infections in preterm infants

    NARCIS (Netherlands)

    Nijman, J.

    2013-01-01

    A postnatal cytomegalovirus (CMV) infection is common in very low birth weight infants with an estimated prevalence of 6–59%. Breast milk from CMV seropositive mothers is the main source of postnatal CMV infection. Ninety-six percent of these mothers shed CMV in their breast milk after delivery due

  9. Human cytomegalovirus infections in premature infants by ...

    African Journals Online (AJOL)

    Freezing breast milk may be protective for the preterm infant until the titer of CMV antibody increases. However clinical importance of CMV infection in premature infants by breast-feeding is still unclear. This minireview focuses on recent advances in the study of CMV infection in premature infants by breastfeeding.

  10. An endoglycosidase-assisted LC-MS/MS-based strategy for the analysis of site-specific core-fucosylation of low-concentrated glycoproteins in human serum using prostate-specific antigen (PSA) as example.

    Science.gov (United States)

    Lang, Robert; Leinenbach, Andreas; Karl, Johann; Swiatek-de Lange, Magdalena; Kobold, Uwe; Vogeser, Michael

    2018-05-01

    Recently, site-specific fucosylation of glycoproteins has attracted attention as it can be associated with several types of cancers including prostate cancer. However, individual glycoproteins, which might serve as potential cancer markers, often are very low-concentrated in complex serum matrices and distinct glycan structures are hard to detect by immunoassays. Here, we present a mass spectrometry-based strategy for the simultaneous analysis of core-fucosylated and total prostate-specific antigen (PSA) in human serum in the low ng/ml concentration range. Sample preparation comprised an immunoaffinity capture step to enrich total PSA from human serum using anti-PSA antibody coated magnetic beads followed by consecutive two-step on-bead partial deglycosylation with endoglycosidase F3 and tryptic digestion prior to LC-MS/MS analysis. The method was shown to be linear from 0.5 to 60 ng/ml total PSA concentrations and allows the simultaneous quantification of core-fucosylated PSA down to 1 ng/ml and total PSA lower than 0.5 ng/ml. The imprecision of the method over two days ranged from 9.7-23.2% for core-fucosylated PSA and 10.3-18.3% for total PSA depending on the PSA level. The feasibility of the method in native sera was shown using three human specimens. To our knowledge, this is the first MS-based method for quantification of core-fucosylated PSA in the low ng/ml concentration range in human serum. This method could be used in large patient cohorts as core-fucosylated PSA may be a diagnostic biomarker for the differentiation of prostate cancer and other prostatic diseases, such as benign prostatic hyperplasia (BPH). Furthermore, the described strategy could be used to monitor potential changes in site-specific core-fucosylation of other low-concentrated glycoproteins, which could serve as more specific markers ("marker refinement") in cancer research. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin: distributions of sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones

    International Nuclear Information System (INIS)

    Green, E.D.; Baenziger, J.U.

    1988-01-01

    The asparagine-linked oligosaccharides on the pituitary glycoprotein hormones lutropin (LH), follitropin (FSH), and thyrotropin (TSH) consist of a heterogeneous array of neutral, sulfated, sialylated, and sulfated/sialylated structures. In this study, the authors determined the relative quantities of the various asparagine-linked oligosaccharides on LH, FSH, and TSH from these three animal species. The proportions of sulfated versus sialylated oligosaccharides varied markedly among the different hormones. Both hormone- and animal species-specific differences in the types and distributions of sulfated, sialylated, and sulfated/sialylated structures were evident. In particular, LH and FSH, which are synthesized in the same pituitary cell and bear α-subunits with the identical amino acid sequence, contained significantly different distributions of sulfated and sialylated oligosaccharides. For all three animal species, the ratio of sialylated to sulfated oligosaccharides differed by >10-fold for LH and FSH, with sulfated structures dominating on LH and sialylated structures on FSH. Sialylated oligosaccharides were also heterogeneous with respect to sialic acid linkage (α2,3 versus α2,6). The differences in oligosaccharide structures among the various pituitary glycoprotein hormones as well as among the various glycosylation sites within a single hormone support the hypothesis that glycosylation may serve important functional roles in the expression and/or regulation of hormone bioactivity

  12. Cytomegalovirus-targeted immunotherapy and glioblastoma: hype or hope?

    Science.gov (United States)

    Ferguson, Sherise D; Srinivasan, Visish M; Ghali, Michael Gz; Heimberger, Amy B

    2016-01-01

    Malignant gliomas, including glioblastoma (GBM), are the most common primary brain tumors. Despite extensive research only modest gains have been made in long-term survival. Standard of care involves maximizing safe surgical resection followed by concurrent chemoradiation with temozolomide. Immunotherapy for GBM is an area of intense research in recent years. New immunotherapies, although promising, have not been integrated into standard practice. Human cytomegalovirus (HCMV) is a DNA virus of the family Herpesviridae. Human seroprevalence is approximately 80%, and in most cases, is associated with asymptomatic infection. HCMV may be an important agent in the initiation, promotion and/or progression of tumorigenesis. Regardless of a possible etiologic role in GBM, interest has centered on exploiting this association for development of immunomodulatory therapies.

  13. Detecção de Citomegalovírus Humano e Herpesvírus Simples tipo 2 em amostras cervicais Detection of Human Cytomegalovirus and Herpes Simplex Virus type 2 in cervical sample

    Directory of Open Access Journals (Sweden)

    Danielle Albuquerque Pires Rocha

    2012-11-01

    Full Text Available OBJETIVO: Testar a presença de DNA de Citomegalovírus Humano (HCMV e Herpesvírus Simples tipo 2 (HSV-2 em amostras cervicais de mulheres atendidas em um serviço de atenção primária à saúde no município de Coari, Amazonas, Brasil. MÉTODOS: Participaram deste estudo 361 mulheres sexualmente ativas, variando entre 18 e 78 anos, atendidas em Unidades Básicas de Saúde para exame ginecológico de rotina. As amostras cervicais foram coletadas por meio de escova endocervical. A detecção dos vírus deu-se por meio de Reação em Cadeia da Polimerase (PCR em tempo real. RESULTADOS: A média de idade das mulheres participantes foi de 36,4 anos (desvio-padrão (DP=13,4. Foi encontrado DNA de HCMV em amostras cervicais de 30 mulheres (8,3%; IC95% 5,8 - 11,8 e de HSV-2 em 2 mulheres (0,6%; IC95% 0,1 - 2,2. Duas mulheres relataram ser portadoras do HIV, estando uma delas infectada com o HCMV. Não foram encontradas associações estatisticamente significativas entre a infecção pelos patógenos estudados e as variáveis socioeconômicas, clínicas e comportamentais. CONCLUSÕES: A prevalência de infecção pelo HCMV encontrada na amostra estudada chama a atenção para a necessidade do rastreio desse vírus na gestação e da vigilância nos pacientes imunocomprometidos. A baixa prevalência do HSV-2 deve-se provavelmente ao fato de a amostra cervical não ser adequada para este tipo de estudo por causa das características da biologia viral relacionadas à neurolatência.PURPOSE: To detect the presence of Human Cytomegalovirus (HCMV and Herpes Simplex Virus type 2 (HSV-2 DNA in cervical samples from women assisted in a primary health care clinic in the city of Coari, Amazonas, Brazil. METHODS: Participated in this study 361 sexually active women between 18 and 78 years. They were been assisted in a Basic Health Care Clinic for routine gynecological exam. The cervical samples were collected using endocervical brush. The viruses were detected

  14. Cooperativity in virus neutralization by human monoclonal antibodies to two adjacent regions located at the amino terminus of hepatitis C virus E2 glycoprotein

    DEFF Research Database (Denmark)

    Keck, Zhenyong; Wang, Wenyan; Wang, Yong

    2013-01-01

    A challenge for hepatitis C virus (HCV) vaccine development is defining conserved epitopes that induce protective antibodies against this highly diverse virus. An envelope glycoprotein (E2) segment located at amino acids (aa) 412 to 423 contains highly conserved neutralizing epitopes. While...... at higher concentrations. However, the overall effect was additive neutralization. A similar pattern was observed when these antibodies were combined to block E2 binding to the HCV coreceptor, CD81. These findings demonstrate that both of these E2 regions participate in epitopes mediating virus...... (HCVcc) with various activities. Although nonneutralizing HC33 HMAbs were isolated, they had lower binding affinities than neutralizing HC33 HMAbs. These antibodies could be converted to neutralizing antibodies by affinity maturation. Unidirectional competition for binding to E2 was observed between HC33...

  15. Acute cervicitis and vulvovaginitis may be associated with Cytomegalovirus

    OpenAIRE

    Abou, Magali; Dällenbach, Patrick

    2013-01-01

    Cytomegalovirus (CMV) infection in immunocompetent hosts is generally asymptomatic or may present as a mononucleosic syndrome. Its association with acute cervicitis and vulvovaginitis has rarely been reported.

  16. Prediction of conserved sites and domains in glycoproteins B, C and D of herpes viruses.

    Science.gov (United States)

    Rasheed, Muhammad Asif; Ansari, Abdur Rahman; Ihsan, Awais; Navid, Muhammad Tariq; Ur-Rehman, Shahid; Raza, Sohail

    2018-03-01

    Glycoprotein B (gB), C (gC) and D (gD) of herpes simplex virus are implicated in virus adsorption and penetration. The gB, gC and gD are glycoproteins for different processes of virus binding and attachment to the host cells. Moreover, their expression is necessary and sufficient to induce cell fusion in the absence of other glycoproteins. Egress of herpes simplex virus (HSV) and other herpes viruses from cells involves extensive modification of cellular membranes and sequential envelopment, de-envelopment and re-envelopment steps. Viral glycoproteins are important in these processes, and frequently two or more glycoproteins can largely suffice in any step. Hence, we target the 3 important glycoproteins (B, C and D) of eight different herpes viruses of different species. These species include human (HSV1 and 2), bovine (BHV1), equine (EHV1 and 4), chicken (ILT1 and MDV2) and pig (PRV1). By applying different bioinformatics tools, we highlighted the conserved sites in these glycoproteins which might be most significant regarding attachment and infection of the viruses. Moreover the conserved domains in these glycoproteins are also highlighted. From this study, we will able to analyze the role of different viral glycoproteins of different species during herpes virus adsorption and penetration. Moreover, this study will help to construct the antivirals that target the glycoproteins of different herpes viruses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Orthobunyavirus ultrastructure and the curious tripodal glycoprotein spike.

    Directory of Open Access Journals (Sweden)

    Thomas A Bowden

    Full Text Available The genus Orthobunyavirus within the family Bunyaviridae constitutes an expanding group of emerging viruses, which threaten human and animal health. Despite the medical importance, little is known about orthobunyavirus structure, a prerequisite for understanding virus assembly and entry. Here, using electron cryo-tomography, we report the ultrastructure of Bunyamwera virus, the prototypic member of this genus. Whilst Bunyamwera virions are pleomorphic in shape, they display a locally ordered lattice of glycoprotein spikes. Each spike protrudes 18 nm from the viral membrane and becomes disordered upon introduction to an acidic environment. Using sub-tomogram averaging, we derived a three-dimensional model of the trimeric pre-fusion glycoprotein spike to 3-nm resolution. The glycoprotein spike consists mainly of the putative class-II fusion glycoprotein and exhibits a unique tripod-like arrangement. Protein-protein contacts between neighbouring spikes occur at membrane-proximal regions and intra-spike contacts at membrane-distal regions. This trimeric assembly deviates from previously observed fusion glycoprotein arrangements, suggesting a greater than anticipated repertoire of viral fusion glycoprotein oligomerization. Our study provides evidence of a pH-dependent conformational change that occurs during orthobunyaviral entry into host cells and a blueprint for the structure of this group of emerging pathogens.

  18. Labelled antibody techniques in glycoprotein estimation

    International Nuclear Information System (INIS)

    Hazra, D.K.; Ekins, R.P.; Edwards, R.; Williams, E.S.

    1977-01-01

    The problems in the radioimmunoassay of the glycoprotein hormones (pituitary LH, FSH and TSH and human chlorionic gonadotrophin HGG) are reviewed viz: limited specificity and sensitivity in the clinical context, interpretation of disparity between bioassay and radioimmunoassay, and interlaboratory variability. The advantages and limitations of the labelled antibody techniques - classical immonoradiometric methods and 2-site or 125 I-anti-IgG indirect labelling modifications are reviewed in general, and their theoretical potential in glycoprotein assays examined in the light of previous work. Preliminary experiments in the development of coated tube 2-site assay for glycoproteins using 125 I anti-IgG labelling are described, including conditions for maximizing solid phase extraction of the antigen, iodination of anti-IgG, and assay conditions such as effects of temperature of incubation with antigen 'hormonefree serum', heterologous serum and detergent washing. Experiments with extraction and antigen-specific antisera raised in the same or different species are described as exemplified by LH and TSH assay systems, the latter apparently promising greater sensitivity than radioimmunoassay. Proposed experimental and mathematical optimisation and validation of the method as an assay system is outlined, and the areas for further work delineated. (orig.) [de

  19. Mondini dysplasia and congenital cytomegalovirus infection.

    Science.gov (United States)

    Bauman, N M; Kirby-Keyser, L J; Dolan, K D; Wexler, D; Gantz, B J; McCabe, B F; Bale, J F

    1994-01-01

    We report a case of bilateral temporal bone anomalies in a child with symptomatic congenital cytomegalovirus infection and severe, bilateral sensorineural hearing loss identified at 3 months of age. High-resolution temporal bone computed tomography (HRCT) revealed bilateral findings of a short, malformed cochlea lacking an interscalar septum, a short and wide internal auditory canal, and an enlarged vestibular aqueduct, features diagnostic of bilateral Mondini dysplasia. To determine the importance of this observation, we completed HRCT in five additional children between 7 months and 9 years of age who had evidence of symptomatic congenital cytomegalovirus infection. One child with profound sensorineural hearing loss had severe bilateral temporal bone dysplasia with a small cochlea lacking an interscalar septum, an abnormal vestibule, and a large cochlear aqueduct. Of the remaining four children, hearing thresholds ranged from normal to profoundly decreased, but their HRCT scans were normal to visual inspection. When inner ear dimensions of these temporal bones were compared with norms established by Pappas and coworkers, however, seven of the eight ears had short cochleas and narrow lateral semicircular canals, and three ears had short or narrow vestibules. These results indicate that congenital cytomegalovirus infection may cause anomalies or growth disturbances of the temporal bone.

  20. Immunobiology of herpes simplex virus and cytomegalovirus infections of the fetus and newborn

    OpenAIRE

    Muller, William J.; Jones, Cheryl A.; Koelle, David M.

    2010-01-01

    Immunologic “immaturity” is often blamed for the increased susceptibility of newborn humans to infection, but the precise mechanisms and details of immunologic development remain somewhat obscure. Herpes simplex virus (HSV) and cytomegalovirus (CMV) are two of the more common severe infectious agents of the fetal and newborn periods. HSV infection in the newborn most commonly occurs after exposure to the virus during delivery, and can lead to a spectrum of clinical disease ranging from isolat...

  1. Transient Antiphospholipid Syndrome Associated with Primary Cytomegalovirus Infection: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Nakayama

    2014-01-01

    Full Text Available Viral infection is known to induce transient autoimmunity in humans. Acute cytomegalovirus (CMV infection is implicated in occasional thrombosis formation. We here, for the first time, report a 19-year-old female who had an acute CMV infection, leading to a deep venous thrombosis and a pulmonary embolism along with transient appearance of lupus anticoagulant. The pathological role of antiphospholipid antibodies in CMV-mediated thrombosis is discussed.

  2. Cytomegalovirus (CMV) research in immune senescence comes of age: overview of the 6th International Workshop on CMV and Immunosenescence

    NARCIS (Netherlands)

    Nikolich-Žugich, Janko; van Lier, René A. W.

    2017-01-01

    Cytomegalovirus (CMV) is one of the most complex and most ubiquitous latent persistent viruses, with a considerable ability to evade and manipulate the immune system. Following an early-life infection, most immunocompetent humans spend several decades living with CMV, and, because the virus in these

  3. The leukocyte common antigen (CD45) on human pre-B leukemia cells: variant glycoprotein form expression during the cell exposure to phorbol ester is blocked by a nonselective protein kinase inhibitor H7

    International Nuclear Information System (INIS)

    Duraj, J.; Sedlak, J.; Chorvath, B.; Rauko, P.

    1997-01-01

    The human pre-B acute lymphoblastic leukemia cell line REH6 was utilized for characterization of CD45 glycoprotein by monoclonal antibodies (mAb) recognizing four distinct CD45 antigen specificities, i.e. nonrestricted CD45, restricted, CD45RA, CD45RB and CD45R0. Immunoprecipitation revealed two antigen specificities on REH6 cells of m.w. 220 kDa and 190 kDa, both presenting wide range of isoelectric point pI∼6.0-7.5. Nonrestricted CD45 epitopes were not affected by the sialyl acid cleavage with sodium meta-periodate or neuraminidase, but were sensitive to both, tunicamycin, the N-glycosylation inhibitor and monensin, an inhibitor of protein transport through the Golgi compartment. O-sialoglycoprotein endopeptidase from Pasteurella haemolytica A1 partially cleaved CD45RA and CD45RB epitopes, while nonrestricted CD45 determinants were not affected by this enzyme. Limited proteolysis of this antigen resulted in the appearance of 160-180 kDa peptide domains which retained CD45 epitopes. Further, the treatment of cells with phorbol myristate acetate (PMA) induced marked down-regulation of 220 and 190 kDa isoforms and the appearance of new 210, 180 and 170 kDa variant glycoprotein forms which were not found on parental cells. This PMA effect was not accompanied by the programmed cell death and was markedly blocked by a nonselective protein kinase (PK) inhibitor iso-quinoline sulfonamide H7. Modulation of CD45 by phorbol esters might serve as an in vitro model for an additional insight into the function of CD45 in hematopoietic cells. (author)

  4. De novo design of peptide immunogens that mimic the coiled coil region of human T-cell leukemia virus type-1 glycoprotein 21 transmembrane subunit for induction of native protein reactive neutralizing antibodies.

    Science.gov (United States)

    Sundaram, Roshni; Lynch, Marcus P; Rawale, Sharad V; Sun, Yiping; Kazanji, Mirdad; Kaumaya, Pravin T P

    2004-06-04

    Peptide vaccines able to induce high affinity and protective neutralizing antibodies must rely in part on the design of antigenic epitopes that mimic the three-dimensional structure of the corresponding region in the native protein. We describe the design, structural characterization, immunogenicity, and neutralizing potential of antibodies elicited by conformational peptides derived from the human T-cell leukemia virus type 1 (HTLV-1) gp21 envelope glycoprotein spanning residues 347-374. We used a novel template design and a unique synthetic approach to construct two peptides (WCCR2T and CCR2T) that would each assemble into a triple helical coiled coil conformation mimicking the gp21 crystal structure. The peptide B-cell epitopes were grafted onto the epsilon side chains of three lysyl residues on a template backbone construct consisting of the sequence acetyl-XGKGKGKGCONH2 (where X represents the tetanus toxoid promiscuous T cell epitope (TT) sequence 580-599). Leucine substitutions were introduced at the a and d positions of the CCR2T sequence to maximize helical character and stability as shown by circular dichroism and guanidinium hydrochloride studies. Serum from an HTLV-1-infected patient was able to recognize the selected epitopes by enzyme-linked immunosorbent assay (ELISA). Mice immunized with the wild-type sequence (WCCR2T) and the mutant sequence (CCR2T) elicited high antibody titers that were capable of recognizing the native protein as shown by flow cytometry and whole virus ELISA. Sera and purified antibodies from immunized mice were able to reduce the formation of syncytia induced by the envelope glycoprotein of HTLV-1, suggesting that antibodies directed against the coiled coil region of gp21 are capable of disrupting cell-cell fusion. Our results indicate that these peptides represent potential candidates for use in a peptide vaccine against HTLV-1.

  5. The effect of lycopene on cytochrome P450 isoenzymes and P-glycoprotein by using human liver microsomes and Caco-2 cell monolayer model.

    Science.gov (United States)

    Kong, Lingti; Song, Chunli; Ye, Linhu; Xu, Jian; Guo, Daohua; Shi, Qingping

    2018-01-11

    Lycopene is widely used as a dietary supplement. However, the effects of lycopene on cytochrome P450 (CYP) enzymes or P-glycoprotein (P-gp) are not comprehensive. The present study was performed to investigate the effects of lycopene on the CYP enzymes and P-gp activity. A cocktail method was used to evaluate the activities of CYP3A4, CYP2C9, CYP2C19, CYP2D6 and CYP2E1. Caco-2 cell monolayer model was carried out to assay lycopene on P-gp activity. The results indicated that lycopene had a moderate inhibitory effect on CYP2E1, with IC50 value of 43.65 μM, whereas no inhibitory effects on CYP3A4, CYP2C19, CYP2D6 and CYP2E1, with IC50 values all over 100 μM. In addition, lycopene showed almost no inhibitory effect on rhodamine-123 efflux and uptake (p > .05), indicated no effects on P-gp activity. In conclusion, there should be required attention when lycopene are coadministered with other drugs that are metabolised by CYP2E1.

  6. Podoplanin - a small glycoprotein with many faces

    OpenAIRE

    Ugorski, Maciej; Dziegiel, Piotr; Suchanski, Jaroslaw

    2016-01-01

    Podoplanin is a small membrane glycoprotein with a large number of O-glycoside chains and therefore it belongs to mucin-type proteins. It can be found on the surface of many types of normal cells originating from various germ layers. It is present primarily on the endothelium of lymphatic vessels, type I pneumocytes and glomerular podocytes. Increased levels of podoplanin or its neo-expression have been found in numerous types of human carcinomas, but it is especially common in squamous cell ...

  7. [Research progress on ebola virus glycoprotein].

    Science.gov (United States)

    Ding, Guo-Yong; Wang, Zhi-Yu; Gao, Lu; Jiang, Bao-Fa

    2013-03-01

    Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans and there are no effective therapeutic or prophylactic treatments available. The glycoprotein (GP) of EBOV is a transmembrane envelope protein known to play multiple functions including virus attachment and entry, cell rounding and cytotoxicity, down-regulation of host surface proteins, and enhancement of virus assembly and budding. GP is the primary target of protective immunity and the key target for developing neutralizing antibodies. In this paper, the research progress on genetic structure, pathogenesis and immunogenicity of EBOV GP in the last 5 years is reviewed.

  8. Induction of IL-12 Production in Human Peripheral Monocytes by Trypanosoma cruzi Is Mediated by Glycosylphosphatidylinositol-Anchored Mucin-Like Glycoproteins and Potentiated by IFN-γ and CD40-CD40L Interactions

    Directory of Open Access Journals (Sweden)

    Lúcia Cristina Jamli Abel

    2014-01-01

    Full Text Available Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi, is characterized by immunopathology driven by IFN-γ secreting Th1-like T cells. T. cruzi has a thick coat of mucin-like glycoproteins covering its surface, which plays an important role in parasite invasion and host immunomodulation. It has been extensively described that T. cruzi or its products—like GPI anchors isolated from GPI-anchored mucins from the trypomastigote life cycle stage (tGPI-mucins—are potent inducers of proinflammatory responses (i.e., cytokines and NO production by IFN-γ primed murine macrophages. However, little is known about whether T. cruzi or GPI-mucins exert a similar action in human cells. We therefore decided to further investigate the in vitro cytokine production profile from human mononuclear cells from uninfected donors exposed to T. cruzi as well as tGPI-mucins. We observed that both living T. cruzi trypomastigotes and tGPI-mucins are potent inducers of IL-12 by human peripheral blood monocytes and this effect depends on CD40-CD40L interaction and IFN-γ. Our findings suggest that the polarized T1-type cytokine profile seen in T. cruzi infected patients might be a long-term effect of IL-12 production induced by lifelong exposure to T. cruzi tGPI-mucins.

  9. Bacterial Artificial Chromosome Clones of Viruses Comprising the Towne Cytomegalovirus Vaccine

    Directory of Open Access Journals (Sweden)

    Xiaohong Cui

    2012-01-01

    Full Text Available Bacterial artificial chromosome (BAC clones have proven invaluable for genetic manipulation of herpesvirus genomes. BAC cloning can also be useful for capturing representative genomes that comprise a viral stock or mixture. The Towne live attenuated cytomegalovirus vaccine was developed in the 1970s by serial passage in cultured fibroblasts. Although its safety, immunogenicity, and efficacy have been evaluated in nearly a thousand human subjects, the vaccine itself has been little studied. Instead, genetic composition and in vitro growth properties have been inferred from studies of laboratory stocks that may not always accurately represent the viruses that comprise the vaccine. Here we describe the use of BAC cloning to define the genotypic and phenotypic properties of viruses from the Towne vaccine. Given the extensive safety history of the Towne vaccine, these BACs provide a logical starting point for the development of next-generation rationally engineered cytomegalovirus vaccines.

  10. Bacterial artificial chromosome clones of viruses comprising the towne cytomegalovirus vaccine.

    Science.gov (United States)

    Cui, Xiaohong; Adler, Stuart P; Davison, Andrew J; Smith, Larry; Habib, El-Sayed E; McVoy, Michael A

    2012-01-01

    Bacterial artificial chromosome (BAC) clones have proven invaluable for genetic manipulation of herpesvirus genomes. BAC cloning can also be useful for capturing representative genomes that comprise a viral stock or mixture. The Towne live attenuated cytomegalovirus vaccine was developed in the 1970s by serial passage in cultured fibroblasts. Although its safety, immunogenicity, and efficacy have been evaluated in nearly a thousand human subjects, the vaccine itself has been little studied. Instead, genetic composition and in vitro growth properties have been inferred from studies of laboratory stocks that may not always accurately represent the viruses that comprise the vaccine. Here we describe the use of BAC cloning to define the genotypic and phenotypic properties of viruses from the Towne vaccine. Given the extensive safety history of the Towne vaccine, these BACs provide a logical starting point for the development of next-generation rationally engineered cytomegalovirus vaccines.

  11. Epstein–Barr virus glycoprotein gM can interact with the cellular protein p32 and knockdown of p32 impairs virus

    International Nuclear Information System (INIS)

    Changotra, Harish; Turk, Susan M.; Artigues, Antonio; Thakur, Nagendra; Gore, Mindy; Muggeridge, Martin I.; Hutt-Fletcher, Lindsey M.

    2016-01-01

    The Epstein–Barr virus glycoprotein complex gMgN has been implicated in assembly and release of fully enveloped virus, although the precise role that it plays has not been elucidated. We report here that the long predicted cytoplasmic tail of gM is not required for complex formation and that it interacts with the cellular protein p32, which has been reported to be involved in nuclear egress of human cytomegalovirus and herpes simplex virus. Although redistribution of p32 and colocalization with gM was not observed in virus infected cells, knockdown of p32 expression by siRNA or lentivirus-delivered shRNA recapitulated the phenotype of a virus lacking expression of gNgM. A proportion of virus released from cells sedimented with characteristics of virus lacking an intact envelope and there was an increase in virus trapped in nuclear condensed chromatin. The observations suggest the possibility that p32 may also be involved in nuclear egress of Epstein–Barr virus. - Highlights: • The predicted cytoplasmic tail of gM is not required to complex with gN. • Cellular p32 can interact with the predicted cytoplasmic tail of EBV gM. • Knockdown of p32 recapitulates the phenotype of virus lacking the gNgM complex.

  12. Epstein–Barr virus glycoprotein gM can interact with the cellular protein p32 and knockdown of p32 impairs virus

    Energy Technology Data Exchange (ETDEWEB)

    Changotra, Harish; Turk, Susan M. [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Artigues, Antonio [Department of Biochemistry, University of Kansas Medical Center, Kansas City, KS (United States); Thakur, Nagendra; Gore, Mindy; Muggeridge, Martin I. [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Hutt-Fletcher, Lindsey M., E-mail: lhuttf@lsuhsc.edu [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA (United States)

    2016-02-15

    The Epstein–Barr virus glycoprotein complex gMgN has been implicated in assembly and release of fully enveloped virus, although the precise role that it plays has not been elucidated. We report here that the long predicted cytoplasmic tail of gM is not required for complex formation and that it interacts with the cellular protein p32, which has been reported to be involved in nuclear egress of human cytomegalovirus and herpes simplex virus. Although redistribution of p32 and colocalization with gM was not observed in virus infected cells, knockdown of p32 expression by siRNA or lentivirus-delivered shRNA recapitulated the phenotype of a virus lacking expression of gNgM. A proportion of virus released from cells sedimented with characteristics of virus lacking an intact envelope and there was an increase in virus trapped in nuclear condensed chromatin. The observations suggest the possibility that p32 may also be involved in nuclear egress of Epstein–Barr virus. - Highlights: • The predicted cytoplasmic tail of gM is not required to complex with gN. • Cellular p32 can interact with the predicted cytoplasmic tail of EBV gM. • Knockdown of p32 recapitulates the phenotype of virus lacking the gNgM complex.

  13. The glycoprotein of measles virus

    International Nuclear Information System (INIS)

    Anttonen, O.; Jokinen, M.; Salmi, A.; Vainionpaeae, R.; Gahmberg, C.G.

    1980-01-01

    Measles virus was propagated in VERO cells and purified from the culture supernatants by two successive tartrate-density-gradient centrifugations. Surface carbohydrates were labelled both in vitro and in vivo with 3 H after treatment with galactose oxidase/NaB 3 H 4 or with [ 3 H]glucosamine. The major labelled glycoprotein in measles virions had a mol.wt. of 79000. After labelling with periodate/NaB 3 H 4 , which would result in specific labelling of sialic acid residues, the 79000-mol.wt. glycoprotein was very weakly labelled. This suggested that there is no or a very low amount of sialic acid in the virions. Further analysis of the glycoprotein showed that galactose is the terminal carbohydrate unit in the oligosaccharide, and the molecular weight of the glycopeptide obtained after Pronase digestion is about 3000. The oligosaccharide is attached to the polypeptide through an alkali-stable bond, indicating a N-glycosidic asparagine linkage. (author)

  14. Biliary scintigraphy in neonatal cytomegalovirus cholestasis

    International Nuclear Information System (INIS)

    Tadzher, I.S.; Grujovska, S.; Todorovski, G.; Josifovska, T.; Arsovska, S.

    1996-01-01

    Diagnostic value of hepatobiliary scintigraphy using mebrofenin-Te-99m was assessed in three newborns with cytomegalovirus (CMV) hepatitis and one baby with hepatitis B jaundice. All cases were affected by persistent jaundice with predominately conjugated bilirubin, alcoholic stools, anemia. One of this newborns (case number 1) was suspected of having biliary atresia due to the absence of intestinal excretion of the tracer. After three weeks intestinal passage was seen in scintiscan late after 24 h. Hepatobiliary scintigraphy represents a non-invasive diagnostic procedure which enables the detection of permeability of the biliary tract. (Author)

  15. Strongyloides Hyperinfection Syndrome Combined with Cytomegalovirus Infection

    Directory of Open Access Journals (Sweden)

    Fatehi Elnour Elzein

    2016-01-01

    Full Text Available The mortality in Strongyloides hyperinfection syndrome (SHS is alarmingly high. This is particularly common in bone marrow, renal, and other solid organ transplant (SOT patients, where figures may reach up to 50–85%. Immunosuppressives, principally corticosteroids, are the primary triggering factor. In general, the clinical features of Strongyloides stercoralis hyperinfection are nonspecific; therefore, a high index of suspicion is required for early diagnosis and starting appropriate therapy. Although recurrent Gram-negative sepsis and meningitis have been previously reported, the combination of both cytomegalovirus (CMV and strongyloidiasis had rarely been associated. We here describe a patient who survived SHS with recurrent Escherichia coli (E. coli urosepsis and CMV infection.

  16. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Powell, F; Edman, J C

    1993-01-01

    The major surface antigen of Pneumocystis carinii, a life-threatening opportunistic pathogen in human immunodeficiency virus-infected patients, is an abundant glycoprotein that functions in host-organism interactions. A monoclonal antibody to this antigen is protective in animals, and thus this a...

  17. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Powell, F; Edman, J C

    1993-01-01

    hydrophobic region at the carboxyl terminus. The presence of multiple related msg genes encoding the major surface glycoprotein of P. carinii suggests that antigenic variation is a possible mechanism for evading host defenses. Further characterization of this family of genes should allow the development......The major surface antigen of Pneumocystis carinii, a life-threatening opportunistic pathogen in human immunodeficiency virus-infected patients, is an abundant glycoprotein that functions in host-organism interactions. A monoclonal antibody to this antigen is protective in animals, and thus...... blot studies using chromosomal or restricted DNA, the major surface glycoproteins are the products of a multicopy family of genes. The predicted protein has an M(r) of approximately 123,000, is relatively rich in cysteine residues (5.5%) that are very strongly conserved, and contains a well conserved...

  18. Detection of circulating immune complexes of human IgA and beta 2 glycoprotein I in patients with antiphospholipid syndrome symptomatology.

    Science.gov (United States)

    Martínez-Flores, José A; Serrano, Manuel; Pérez, Dolores; Lora, David; Paz-Artal, Estela; Morales, José M; Serrano, Antonio

    2015-07-01

    Patients with antiphospholipid syndrome (APS) have a hypercoagulable condition associated with the presence of antiphospholipid autoantibodies (aPL). Consensus antibodies for diagnosis are lupus anticoagulant, anti-beta2 glycoprotein I (B2GPI) and anticardiolipin (IgG or IgM). Circulating immunocomplexes (CIC) of B2GPI associated with IgM or IgG were reported. Isolated IgA aB2GPI antibodies have achieved high diagnostic value although specific CIC of B2GPI bounded to IgA (B2A-CIC) has still not been described. CIC detection assays are mainly based on interaction with complement and are not appropriate to detect B2A-CIC because IgA does not fix complement using the classical pathway. Sera from healthy blood donors (N= 247) and from patients with thrombosis background and isolate positive for IgA aB2GPI (N = 68) were studied in a case-control study. Two methods were applied, these being a capture ELISA to quantify specific B2A-CIC and quantification of total IgA anti-B2GPI after dissociating CIC. B2A-CIC values in APS-patients were 19.27 ± 2.6 AU vs 6.1 ± 0.4 AU in blood donors (p < 0.001). There were 36.4% B2A-CIC positive patients (cutoff 21 AU) versus 5.5% in blood donors (p < 0.001). Dissociated IgA aB2GPI levels (total IgA aB2GPI) were 146.8 ± 10.8 IU/mL in patients vs. 22.4 IU/mL in controls (p < 0.001). B2A-CIC was independent of B2GPI and autoantibodies IgA aB2GPI serum levels. B2A-CIC can be identified and quantified in an easy and reproducible manner using two complement-independent methods. The use of these tests in prospective studies will allow better understanding of the prognosis and outcome of patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A Functional Henipavirus Envelope Glycoprotein Pseudotyped Lentivirus Assay System

    Directory of Open Access Journals (Sweden)

    Broder Christopher C

    2010-11-01

    Full Text Available Abstract Background Hendra virus (HeV and Nipah virus (NiV are newly emerged zoonotic paramyxoviruses discovered during outbreaks in Queensland, Australia in 1994 and peninsular Malaysia in 1998/9 respectively and classified within the new Henipavirus genus. Both viruses can infect a broad range of mammalian species causing severe and often-lethal disease in humans and animals, and repeated outbreaks continue to occur. Extensive laboratory studies on the host cell infection stage of HeV and NiV and the roles of their envelope glycoproteins have been hampered by their highly pathogenic nature and restriction to biosafety level-4 (BSL-4 containment. To circumvent this problem, we have developed a henipavirus envelope glycoprotein pseudotyped lentivirus assay system using either a luciferase gene or green fluorescent protein (GFP gene encoding human immunodeficiency virus type-1 (HIV-1 genome in conjunction with the HeV and NiV fusion (F and attachment (G glycoproteins. Results Functional retrovirus particles pseudotyped with henipavirus F and G glycoproteins displayed proper target cell tropism and entry and infection was dependent on the presence of the HeV and NiV receptors ephrinB2 or B3 on target cells. The functional specificity of the assay was confirmed by the lack of reporter-gene signals when particles bearing either only the F or only G glycoprotein were prepared and assayed. Virus entry could be specifically blocked when infection was carried out in the presence of a fusion inhibiting C-terminal heptad (HR-2 peptide, a well-characterized, cross-reactive, neutralizing human mAb specific for the henipavirus G glycoprotein, and soluble ephrinB2 and B3 receptors. In addition, the utility of the assay was also demonstrated by an examination of the influence of the cytoplasmic tail of F in its fusion activity and incorporation into pseudotyped virus particles by generating and testing a panel of truncation mutants of NiV and HeV F

  20. Report from the second cytomegalovirus and immunosenescence workshop

    Directory of Open Access Journals (Sweden)

    Wills Mark

    2011-10-01

    Full Text Available Abstract The Second International Workshop on CMV & Immunosenescence was held in Cambridge, UK, 2-4th December, 2010. The presentations covered four separate sessions: cytomegalovirus and T cell phenotypes; T cell memory frequency, inflation and immunosenescence; cytomegalovirus in aging, mortality and disease states; and the immunobiology of cytomegalovirus-specific T cells and effects of the virus on vaccination. This commentary summarizes the major findings of these presentations and references subsequently published work from the presenter laboratory where appropriate and draws together major themes that were subsequently discussed along with new areas of interest that were highlighted by this discussion.

  1. Rabies virus-specific human T cell clones provide help for an in vitro antibody response against neutralizing antibody-inducing determinants of the viral glycoprotein.

    NARCIS (Netherlands)

    H. Bunschoten; R.J. Klapmuts; I.J.Th.M. Claassen (Ivo); S.D. Reijneveld; A.D.M.E. Osterhaus (Albert); F.G.C.M. Uytdehaag (Fons)

    1989-01-01

    textabstractHuman T cell clones were prepared from peripheral blood mononuclear cells from a vaccinated human donor and kept in culture in the presence of rabies virus antigen and growth factors. Phenotypic analysis of the T cell clones revealed expression of the CD3 and CD4 cell surface markers,

  2. P-glycoprotein binds to ezrin at amino acid residues 149-242 in the FERM domain and plays a key role in the multidrug resistance of human osteosarcoma.

    Science.gov (United States)

    Brambilla, Daria; Zamboni, Silvia; Federici, Cristina; Lugini, Luana; Lozupone, Francesco; De Milito, Angelo; Cecchetti, Serena; Cianfriglia, Maurizio; Fais, Stefano

    2012-06-15

    Overexpression of the mdr1 gene encoding P-glycoprotein (Pgp) exerts a major role in reducing the effectiveness of cytotoxic therapy in osteosarcoma. The interaction between actin and Pgp has been shown to be instrumental in the establishment of multidrug resistance (MDR) in human tumor cells. The cytoskeleton linker ezrin exerts a pivotal role in maintaining the functional connection between actin and Pgp. We investigated the role of ezrin in a human multidrug-resistant osteosarcoma cell line overexpressing Pgp and compared it to its counterpart that overexpresses an ezrin deletion mutant. The results showed that Pgp binds at amino acid residues 149-242 of the N-terminal domain of ezrin. The interaction between ezrin and Pgp occurs in the plasma membrane of MDR cells, where they also co-localize with the ganglioside G(M1) located in lipid rafts. The overexpression of the ezrin deletion mutant entirely restored drug susceptibility of osteosarcoma cells, consistent with Pgp dislocation to cytoplasmic compartments and abrogation of G(M1) /Pgp co-localization at the plasma membrane. Our study provides evidence that ezrin exerts a key role in MDR of human osteosarcoma cells through a Pgp-ezrin-actin connection that is instrumental for the permanence of Pgp into plasma membrane lipid rafts. We also show for the first time that Pgp-binding site is localized to amino acid residues 149-242 of the ezrin Band 4.1, Ezrin/Radixin/Moesin (FERM) domain, thus proposing a specific target for future molecular therapy aimed at counteracting MDR in osteosarcoma patients. Copyright © 2011 UICC.

  3. Old and New World arenaviruses share a highly conserved epitope in the fusion domain of the glycoprotein 2, which is recognized by Lassa virus-specific human CD4+ T-cell clones

    International Nuclear Information System (INIS)

    Meulen, Jan ter; Badusche, Marlis; Satoguina, Judith; Strecker, Thomas; Lenz, Oliver; Loeliger, Cornelius; Sakho, Mohamed; Koulemou, Kekoura; Koivogui, Lamine; Hoerauf, Achim

    2004-01-01

    Data from human studies and animal experiments indicate a dominant role of T-cells over antibodies in controlling acute Lassa virus infection and providing immunity to reinfection. Knowledge of the epitopes recognized by T-cells may therefore be crucial to the development of a recombinant Lassa virus vaccine. In order to study human T-cell reactivity to the most conserved structural protein of Lassa virus, the glycoprotein 2 (GP2), seven GP2-specific CD4+ T-cell clones (TCCs) were generated from the lymphocytes of a Lassa antibody positive individual. All TCC displayed high specific proliferation, showed DR-restriction, and produced IFN-γ upon stimulation with recombinant GP2. The epitope of four of the clones was localized to a short stretch of 13 amino acids located in the N-terminal part of GP2 (aa 289-301, numbering according to sequence of GPC). This epitope is conserved in all strains of Lassa virus and lymphocytic choriomeningitis virus (LCMV), shows >90% similarity in all New World arenaviruses of clade B, and overlaps with the proposed fusion domain of GP2. Peptides with conservative aa exchanges, as they naturally occur in the epitope 289-301 of the Old World arenavirus Mopeia and some New World arenaviruses, continued to effectively stimulate the Lassa-GP2-specific T-cell clones tested. The finding of a human T-helper cell epitope, which is highly conserved between Old and New World arenaviruses, is of importance for the design of arenavirus vaccines

  4. Enhanced anti-tumor effect of a gene gun-delivered DNA vaccine encoding the human papillomavirus type 16 oncoproteins genetically fused to the herpes simplex virus glycoprotein D

    Directory of Open Access Journals (Sweden)

    M.O. Diniz

    2011-05-01

    Full Text Available Anti-cancer DNA vaccines have attracted growing interest as a simple and non-invasive method for both the treatment and prevention of tumors induced by human papillomaviruses. Nonetheless, the low immunogenicity of parenterally administered vaccines, particularly regarding the activation of cytotoxic CD8+ T cell responses, suggests that further improvements in both vaccine composition and administration routes are still required. In the present study, we report the immune responses and anti-tumor effects of a DNA vaccine (pgD-E7E6E5 expressing three proteins (E7, E6, and E5 of the human papillomavirus type 16 genetically fused to the glycoprotein D of the human herpes simplex virus type 1, which was administered to mice by the intradermal (id route using a gene gun. A single id dose of pgD-E7E6E5 (2 µg/dose induced a strong activation of E7-specific interferon-γ (INF-γ-producing CD8+ T cells and full prophylactic anti-tumor effects in the vaccinated mice. Three vaccine doses inhibited tumor growth in 70% of the mice with established tumors. In addition, a single vaccine dose consisting of the co-administration of pgD-E7E6E5 and the vector encoding interleukin-12 or granulocyte-macrophage colony-stimulating factor further enhanced the therapeutic anti-tumor effects and conferred protection to 60 and 50% of the vaccinated mice, respectively. In conclusion, id administration of pgD-E7E6E5 significantly enhanced the immunogenicity and anti-tumor effects of the DNA vaccine, representing a promising administration route for future clinical trials.

  5. Recent Progress in Electrochemical Biosensors for Glycoproteins

    Directory of Open Access Journals (Sweden)

    Uichi Akiba

    2016-12-01

    Full Text Available This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.

  6. Adipokine zinc-α2-glycoprotein regulated by growth hormone and linked to insulin sensitivity.

    Science.gov (United States)

    Balaz, Miroslav; Ukropcova, Barbara; Kurdiova, Timea; Gajdosechova, Lucia; Vlcek, Miroslav; Janakova, Zuzana; Fedeles, Jozef; Pura, Mikulas; Gasperikova, Daniela; Smith, Steven R; Tkacova, Ruzena; Klimes, Iwar; Payer, Juraj; Wolfrum, Christian; Ukropec, Jozef

    2015-02-01

    Hypertrophic obesity is associated with impaired insulin sensitivity and lipid-mobilizing activity of zinc-α2-glycoprotein. Adipose tissue (AT) of growth hormone (GH) -deficient patients is characterized by extreme adipocyte hypertrophy due to defects in AT lipid metabolism. It was hypothesized that zinc-α2-glycoprotein is regulated by GH and mediates some of its beneficial effects in AT. AT from patients with GH deficiency and individuals with obesity-related GH deficit was obtained before and after 5-year and 24-month GH supplementation therapy. GH action was tested in primary human adipocytes. Relationships of GH and zinc-α2-glycoprotein with adipocyte size and insulin sensitivity were evaluated in nondiabetic patients with noncancerous cachexia and hypertrophic obesity. AT in GH-deficient adults displayed a substantial reduction of zinc-α2-glycoprotein. GH therapy normalized AT zinc-α2-glycoprotein. Obesity-related relative GH deficit was associated with almost 80% reduction of zinc-α2-glycoprotein mRNA in AT. GH increased zinc-α2-glycoprotein mRNA in both AT of obese men and primary human adipocytes. Interdependence of GH and zinc-α2-glycoprotein in regulating AT morphology and metabolic phenotype was evident from their relationship with adipocyte size and AT-specific and whole-body insulin sensitivity. The results demonstrate that GH is involved in regulation of AT zinc-α2-glycoprotein; however, the molecular mechanism linking GH and zinc-α2-glycoprotein in AT is yet unknown. © 2014 The Obesity Society.

  7. Cytomegalovirus as a cause of anterior uveitis in immunocompetent patients

    NARCIS (Netherlands)

    van Boxtel, Lonneke A. A.; van der Lelij, Allegonda; van der Meer, Johannes; Los, Leonoor I.

    Purpose: To describe 7 cases of unilateral, chronic and/or recurrent anterior uveitis caused by cytomegalovirus (CMV) in immunocompetent patients; to identify specific ophthalmologic characteristics; and to evaluate the clinical effect of valganciclovir treatment. Design: Retrospective observational

  8. 21 CFR 866.3175 - Cytomegalovirus serological reagents.

    Science.gov (United States)

    2010-04-01

    ... cytomegalic inclusion disease) and provides epidemiological information on these diseases. Cytomegalic inclusion disease is a generalized infection of infants and is caused by intrauterine or early postnatal... (abnormal smallness of the head), motor disability, and mental retardation. Cytomegalovirus infection has...

  9. Distribution of Cytomegalovirus Genotypes among Neonates Born to Infected Mothers in Islamabad, Pakistan.

    Directory of Open Access Journals (Sweden)

    Ghulam Mujtaba

    Full Text Available Congenital cytomegalovirus (cCMV infection contributes to considerable long-term sequelae in neonates and children all over the world. The association between viral genotypes and severity of clinical cytomegalovirus (CMV infection is yet to be defined. The objective of this study was to find the impact of active CMV infection during pregnancy and the clinical significance of genotypes in neonates with congenital cytomegalovirus infections in Pakistan.A total of 409 blood samples from pregnant women seeking health care services at the two antenatal hospitals of Islamabad during January to December 2012 were tested by ELISA and nested-PCR. Pregnant women with active infection (detected as IgM positive, PCR positive or positive on both assays were followed until delivery, to detect the outcome of overt cCMV infection in neonates. Genetic characterization of CMV strains was performed by sequence analysis of envelope glycoproteins: gB, gN and gH to detect the contributing CMV genotypes.The seroprevalence of anti-CMV IgG and IgM was 97.5% (399 out of 409 and 12.7% (52 out of 409, respectively, while 20% (82/409 pregnant women were found positive for CMV DNA by PCR. Logistic regression analysis showed a significant association of active infection with parity [OR = 2.56, 95% CI = 1.82-2.62, p = 0.04], febrile illness [OR = 1.84, 95% CI = 1.76-3.65, p = 0.01] and jaundice [OR = 22.5, 95% CI = 4.53-85.02, p = 0.002]. We were able to isolate virus in 41 out of 70 neonates; 36.6% (15 out of 41 of them were symptomatic at birth while 63.4% (26 out of 41 were asymptomatic. The most prominent clinical feature observed in symptomatic neonates was hepatosplenomegaly (26.6%; 4 out of 15. All three genotypes gB, gN and gH were found with the highest frequency of gB1 genotype, found in 75% infants with hepatic damage. Phylogenetic analysis of Pakistani strains showed 96%-100% homology to their prototype strains.Active CMV infection during pregnancy is a major cause

  10. Controlling Cytomegalovirus: Helping the Immune System Take the Lead

    Directory of Open Access Journals (Sweden)

    Patrick J. Hanley

    2014-05-01

    Full Text Available Cytomegalovirus, of the Herpesviridae family, has evolved alongside humans for thousands of years with an intricate balance of latency, immune evasion, and transmission. While upwards of 70% of humans have evidence of CMV infection, the majority of healthy people show little to no clinical symptoms of primary infection and CMV disease is rarely observed during persistent infection in immunocompetent hosts. Despite the fact that the majority of infected individuals are asymptomatic, immunologically, CMV hijacks the immune system by infecting and remaining latent in antigen-presenting cells that occasionally reactivate subclinically and present antigen to T cells, eventually causing the inflation of CMV-specific T cells until they can compromise up to 10% of the entire T cell repertoire. Because of this impact on the immune system, as well as its importance in fields such as stem cell and organ transplant, the relationship between CMV and the immune response has been studied in depth. Here we provide a review of many of these studies and insights into how CMV-specific T cells are currently being used therapeutically.

  11. An Analysis of Trafficking Receptors Shows that CD44 and P-Selectin Glycoprotein Ligand-1 Collectively Control the Migration of Activated Human T-Cells

    KAUST Repository

    Ali, Amal J.; AbuElela, Ayman; Merzaban, Jasmeen

    2017-01-01

    -selectin ligands, to CD44, a ligand that has not previously been characterized as an E-selectin ligand on activated human T-cells. We showed that CD44 acts as a functional E-selectin ligand when expressed on both CD4+ and CD8+ T-cells. Moreover, the CD44 protein

  12. Localization of MHC class II/human cartilage glycoprotein-39 complexes in synovia of rheumatoid arthritis patients using complex-specific monoclonal antibodies

    NARCIS (Netherlands)

    Steenbakkers, Peter G. A.; Baeten, Dominique; Rovers, Eric; Veys, Eric M.; Rijnders, Antonius W. M.; Meijerink, Jan; de Keyser, Filip; Boots, Annemieke M. H.

    2003-01-01

    Recently human cartilage gp-39 (HC gp-39) was identified as a candidate autoantigen in rheumatoid arthritis (RA). To further investigate the relevance of this Ag in RA, we have generated a set of five mAbs to a combination epitope of complexes of HC gp-39(263-275) and the RA-associated DR alpha beta

  13. Expression and functional activity of P-glycoprotein in passaged primary human nasal epithelial cell monolayers cultured by the air-liquid interface method for nasal drug transport study.

    Science.gov (United States)

    Cho, Hyun-Jong; Choi, Min-Koo; Lin, Hongxia; Kim, Jung Sun; Chung, Suk-Jae; Shim, Chang-Koo; Kim, Dae-Duk

    2011-03-01

    P-glycoprotein (P-gp) is an efflux transporter encoded by the multidrug resistance gene (MDR1), which is also known as the human ABCB1 gene (ATP-binding cassette, subfamily-B). The objectives of this study were to investigate the expression of P-gp in passaged primary human nasal epithelial (HNE) cell monolayer, cultured by the air-liquid interface (ALI) method, and to evaluate its feasibility as an in-vitro model for cellular uptake and transport studies of P-gp substrates. Reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to verify the expression of the MDR1 gene. Transport and cellular uptake studies with P-gp substrate (rhodamine123) and P-gp inhibitors (verapamil and cyclosporin A) were conducted to assess the functional activity of P-gp in HNE cell monolayers cultured by the ALI method. MDR1 gene expression in primary HNE cell monolayers cultured by ALI method was confirmed by RT-PCR. The apparent permeability coefficient (P(app) ) of the P-gp substrate (rhodamine123) in the basolateral to apical (B to A) direction was 6.9 times higher than that in the apical to basolateral (A to B) direction. B to A transport was saturated at high rhodamine123 concentration, and the treatment of P-gp inhibitors increased cellular uptake of rhodamine123 in a time- and concentration-dependent manner. These results support the MDR1 gene expression and the functional activity of P-gp in primary HNE cell monolayers cultured by the ALI method. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.

  14. Gastric cancer associated with refractory cytomegalovirus gastritis.

    Science.gov (United States)

    Ueno, Masayuki; Shimodate, Yuichi; Yamamoto, Shumpei; Yamamoto, Hiroshi; Mizuno, Motowo

    2017-12-01

    Cytomegalovirus (CMV) sometimes causes gastritis, especially in immunocompromised patients, but whether CMV gastritis promotes the development of gastric cancer is unknown. Here, we report a case of gastric cancer that developed in the presence of CMV gastritis, which had been present for at least 4 years and was refractory to treatment. An 80-year-old woman had noted epigastric discomfort and appetite loss. Esophagogastroduodenoscopy revealed a shallow geographical ulcer extending from the upper body to the pylorus. Histological findings of the biopsy and serology were suggestive of CMV gastritis. Serum anti-Helicobacter pylori antibody test was positive, suggesting co-infection with CMV and H. pylori. Her gastritis was unimproved with repeated antiviral therapy and eradication of H. pylori. Thirty months later, wide-spread gastric cancer had developed. We suggest the possibility that the addition of chronic inflammation of CMV infection to H. pylori-induced gastritis facilitated the development of gastric cancer.

  15. Structural analysis of human complement protein H: homology with C4b binding protein, beta 2-glycoprotein I, and the Ba fragment of B2

    DEFF Research Database (Denmark)

    Kristensen, Torsten; Wetsel, R A; Tack, B F

    1986-01-01

    We report here a partial primary structure for human complement protein H. Tryptic peptides comprising 27% of the H molecule were isolated by conventional techniques and were sequenced (333 amino acid residues). Several mixed-sequence oligonucleotide probes were constructed, based on the peptide...... sequence data, and were used to screen a human liver cDNA library. The largest recombinant plasmid (pH1050), which hybridized with two probes, was further characterized. The cDNA insert of this plasmid contained coding sequence (672 bp) for 224 amino acids of H. The 3' end of this clone had...... a polyadenylated tail preceded by a polyadenylation recognition site (ATTAAA) and a 3'-untranslated region (229 bp). Four regions of internal homology, each about 60 amino acids in length, were observed in the derived protein sequence from this cDNA clone, and a further seven from the tryptic peptide sequences...

  16. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C

    1990-01-01

    Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N......- and O-linked carbohydrate epitopes (LeY, A1, and sialyl-Tn) were able to block infection by cell-free virus as well as inhibit syncytium formation. Inhibition of virus infectivity was independent of virus strain (HTLVIIIB or patient isolate SSI-002), the cell line used for virus propagation (H9 or MT4...

  17. Human MHC-II with Shared Epitope Motifs Are Optimal Epstein-Barr Virus Glycoprotein 42 Ligands—Relation to Rheumatoid Arthritis

    DEFF Research Database (Denmark)

    Trier, Nicole; Gonzalez-Izarzugaza, Jose Maria; Chailyan, Anna

    2018-01-01

    influence disease onset. Especially genetic factors play a vital role in the onset of disease, as the heritability of RA is 50–60%, with the human leukocyte antigen (HLA) alleles accounting for at least 30% of the overall genetic risk. Some HLA-DR alleles encode a conserved sequence of amino acids, referred...... by several lines of evidence and, based on several findings, we suggest that EBV is able to induce the onset of RA in predisposed SE-positive individuals, by promoting entry of B-cells through direct contact between SE and gp42 in the entry complex...

  18. Expression of the Surface Glycoproteins of Human Parainfluenza Virus Type 3 by Bovine Parainfluenza Virus Type 3, a Novel Attenuated Virus Vaccine Vector

    OpenAIRE

    Haller, Aurelia A.; Miller, Tessa; Mitiku, Misrach; Coelingh, Kathleen

    2000-01-01

    Bovine parainfluenza virus type 3 (bPIV3) is being evaluated as an intranasal vaccine for protection against human PIV3 (hPIV3). In young infants, the bPIV3 vaccine appears to be infectious, attenuated, immunogenic, and genetically stable, which are desirable characteristics for an RNA virus vector. To test the potential of the bPIV3 vaccine strain as a vector, an infectious DNA clone of bPIV3 was assembled and recombinant bPIV3 (r-bPIV3) was rescued. r-bPIV3 displayed a temperature-sensitive...

  19. Cytomegalovirus (CMV) Infection: A Guide for Patients and Families After Stem Cell Transplant

    Science.gov (United States)

    ... Infection: A Guide for Patients and Families after Stem Cell Transplant What is cytomegalovirus (CMV)? Cytomegalovirus (CMV), a ... weakened by medicines that you must take after stem cell transplant and by the transplant itself. Your body ...

  20. Progress toward Development of a Vaccine against Congenital Cytomegalovirus Infection

    Science.gov (United States)

    Permar, Sallie R.; Plotkin, Stanley A.

    2017-01-01

    ABSTRACT A vaccine against congenital human cytomegalovirus (CMV) infection is a major public health priority. Congenital CMV causes substantial long-term morbidity, particularly sensorineural hearing loss (SNHL), in newborns, and the public health impact of this infection on maternal and child health is underrecognized. Although progress toward development of a vaccine has been limited by an incomplete understanding of the correlates of protective immunity for the fetus, knowledge about some of the key components of the maternal immune response necessary for preventing transplacental transmission is accumulating. Moreover, although there have been concerns raised about observations indicating that maternal seropositivity does not fully prevent recurrent maternal CMV infections during pregnancy, it is becoming increasing clear that preconception immunity does confer some measure of protection against both CMV transmission and CMV disease (if transmission occurs) in the newborn infant. Although the immunity to CMV conferred by both infection and vaccination is imperfect, there are encouraging data emerging from clinical trials demonstrating the immunogenicity and potential efficacy of candidate CMV vaccines. In the face of the knowledge that between 20,000 and 30,000 infants are born with congenital CMV in the United States every year, there is an urgent and compelling need to accelerate the pace of vaccine trials. In this minireview, we summarize the status of CMV vaccines in clinical trials and provide a perspective on what would be required for a CMV immunization program to become incorporated into clinical practice. PMID:29046308

  1. Cytomegalovirus in the Neonate: Immune Correlates of Infection and Protection

    Science.gov (United States)

    Schleiss, Mark R.

    2013-01-01

    Fetal and neonatal infections caused by human cytomegalovirus (CMV) are important causes of morbidity and occasional mortality. Development of a vaccine against congenital CMV infection is a major public health priority. Vaccine design is currently focused on strategies that aim to elicit neutralizing antibody and T-cell responses, toward the goal of preventing primary or recurrent infection in women of child-bearing age. However, there has been relatively little attention given to understanding the mechanisms of immune protection against acquisition of CMV infection in the fetus and newborn and how this information might be exploited for vaccine design. There has similarly been an insufficient study of what deficits in the immune response to CMV, both for mother and fetus, may increase susceptibility to congenital infection and disease. Protection of the fetus against vertical transmission can likely be achieved by protection of the placenta, which has its own unique immunological milieu, further complicating the analysis of the correlates of protective immunity. In this review, the current state of knowledge about immune effectors of protection against CMV in the maternal, placental, and fetal compartments is reviewed. A better understanding of immune responses that prevent and/or predispose to infection will help in the development of novel vaccine strategies. PMID:24023565

  2. Cytomegalovirus in the Neonate: Immune Correlates of Infection and Protection

    Directory of Open Access Journals (Sweden)

    Mark R. Schleiss

    2013-01-01

    Full Text Available Fetal and neonatal infections caused by human cytomegalovirus (CMV are important causes of morbidity and occasional mortality. Development of a vaccine against congenital CMV infection is a major public health priority. Vaccine design is currently focused on strategies that aim to elicit neutralizing antibody and T-cell responses, toward the goal of preventing primary or recurrent infection in women of child-bearing age. However, there has been relatively little attention given to understanding the mechanisms of immune protection against acquisition of CMV infection in the fetus and newborn and how this information might be exploited for vaccine design. There has similarly been an insufficient study of what deficits in the immune response to CMV, both for mother and fetus, may increase susceptibility to congenital infection and disease. Protection of the fetus against vertical transmission can likely be achieved by protection of the placenta, which has its own unique immunological milieu, further complicating the analysis of the correlates of protective immunity. In this review, the current state of knowledge about immune effectors of protection against CMV in the maternal, placental, and fetal compartments is reviewed. A better understanding of immune responses that prevent and/or predispose to infection will help in the development of novel vaccine strategies.

  3. [Giant gastric ulcer by cytomegalovirus in infection VIH/SIDA].

    Science.gov (United States)

    Pérez-Pereyra, Julia; Morales, Domingo; Díaz, Ramiro; Yoza, Max; Frisancho, Oscar

    2008-01-01

    Cytomegalovirus infection is an important cause of morbidity in immunosupressed patients with Human Immunodeficiency Virus (HIV). In this paper we present a 43 years old man with renal failure under hemodialysis, several blood transfusions because of anemia and three months of disease characterized by epigastric pain, specially at nights, ameliorated with antacid drugs. Other symptoms were early satisfy, vomits and weigh loss (18Kg). At clinical exam, the patient was pallid, presented adenopathies at cervical and inguinal regions and had a pain at epigastric region in profound touch palpation. The most important exams were HB: 10mg/dl, CMV: 83.5, leukocytes 7000, lymphocytes: 1715, erythrocyte sedimentation rate 49mm/h, the venon test (-), and Giardia lamblia trophozoites in stools. The studies demonstrated the patient was seropositive for HIV and the tests for IgG CMV and IgG Herpes virus resulted seropositives too. At endoscopy the esophagus mucosa was covered by a white plaque which suggests candida infection. In the stomach, over the body gastric, we found a big and deep ulcerated lesion (45 x 41mm), with defined rims and white fund. Biopsy from the edges of the gastric ulcer had the characteristic CMV intranuclear and intracytoplasmic inclusions; we confirmed the diagnosis by immunohystochemistry. The patient receives ganciclovir an then HAART and is getting well.

  4. A young patient with multisystem complications after cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Swaroopa Pulivarthi

    2014-01-01

    Full Text Available We are describing a case of an 18-year-old male patient with cytomegalovirus (CMV associated guillain-barre syndrome (GBS who presented with an acute onset of generalized weakness and numbness in the extremities, dysphagia, and facial diplegia, followed by respiratory failure, which led to mechanical ventilation. He had positive immunoglobulin G and immunoglobulin M antibodies against CMV, and CMV polymerase chain reaction was positive with <2000 copies of deoxyribonucleic acid. Human immunodeficiency virus test was negative. He received a course of ganciclovir, intravenous immunoglobulin, and plasmapheresis. After improving from acute episode, patient was transferred to a rehabilitation facility for physical and occupational therapy. At the rehabilitation facility, he exhibited signs of acute abdomen with pain in the left upper quadrant secondary to peritonitis from dislodged gastrostomy tube and underwent exploratory laparotomy. During the hospital course he was found to have splenic infarct and colitis on the computed tomography of abdomen. This case showed an immunocompetent young patient with multisystem complications including guillain-barre syndrome (GBS, splenic infarct, hepatitis, and colitis due to CMV.

  5. Optimized enzyme-linked immunosorbent assay for detecting cytomegalovirus infections during clinical trials of recombinant vaccines.

    Science.gov (United States)

    Pagnon, Anke; Piras, Fabienne; Gimenez-Fourage, Sophie; Dubayle, Joseline; Arnaud-Barbe, Nadège; Hessler, Catherine; Caillet, Catherine

    2017-11-01

    In clinical trials of cytomegalovirus (CMV) glycoprotein B (gB) vaccines, CMV infection is detected by first depleting serum of anti-gB antibodies and then measuring anti-CMV antibodies with a commercially available enzyme-linked immunosorbent assay (ELISA) kit, with confirmation of positive findings by immunoblot. Identification of CMV immunoantigens for the development of an ELISA that detects specifically CMV infection in clinical samples from individuals immunized with gB vaccines. Sensitivity and specificity of ELISAs using antigenic regions of CMV proteins UL83/pp65, UL99/pp28, UL44/pp52, UL80a/pp38, UL57, and UL32/pp150 were measured. An IgG ELISA using a UL32/pp150 [862-1048] capture peptide was the most specific (93.7%) and sensitive (96.4%) for detecting CMV-specific antibodies in sera. The ELISA successfully detected CMV-specific antibodies in 22 of 22 sera of subjects who had been vaccinated with a gB vaccine but who had later been infected with CMV. The ELISA was linear over a wide range of CMV concentrations (57-16,814 ELISA units/mL) and was reproducible as indicated by a 5% intra-day and 7% inter-day coefficients of variation. The signal was specifically competed by UL32/pp150 [862-1048] peptide but not by CMV-gB or herpes simplex virus 2 glycoprotein D. Lipid and hemoglobin matrix did not interfere with the assay. The UL32/pp150 [862-1048] IgG ELISA can be used for the sensitive and specific detection of CMV infection in gB-vaccinated individuals. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Boeravinone B, A Novel Dual Inhibitor of NorA Bacterial Efflux Pump of Staphylococcus aureus and Human P-Glycoprotein, Reduces the Biofilm Formation and Intracellular Invasion of Bacteria.

    Science.gov (United States)

    Singh, Samsher; Kalia, Nitin P; Joshi, Prashant; Kumar, Ajay; Sharma, Parduman R; Kumar, Ashok; Bharate, Sandip B; Khan, Inshad A

    2017-01-01

    This study elucidated the role of boeravinone B, a NorA multidrug efflux pump inhibitor, in biofilm inhibition. The effects of boeravinone B plus ciprofloxacin, a NorA substrate, were evaluated in NorA-overexpressing, wild-type, and knocked-out Staphylococcus aureus (SA-1199B, SA-1199, and SA-K1758, respectively). The mechanism of action was confirmed using the ethidium bromide accumulation and efflux assay. The role of boeravinone B as a human P -glycoprotein ( P -gp) inhibitor was examined in the LS-180 (colon cancer) cell line. Moreover, its role in the inhibition of biofilm formation and intracellular invasion of S. aureus in macrophages was studied. Boeravinone B reduced the minimum inhibitory concentration (MIC) of ciprofloxacin against S. aureus and its methicillin-resistant strains; the effect was stronger in SA-1199B. Furthermore, time-kill kinetics revealed that boeravinone B plus ciprofloxacin, at subinhibitory concentration (0.25 × MIC), is as equipotent as that at the MIC level. This combination also had a reduced mutation prevention concentration. Boeravinone B reduced the efflux of ethidium bromide and increased the accumulation, thus strengthening the role as a NorA inhibitor. Biofilm formation was reduced by four-eightfold of the minimal biofilm inhibitory concentration of ciprofloxacin, effectively preventing bacterial entry into macrophages. Boeravinone B effectively inhibited P -gp with half maximal inhibitory concentration (IC 50 ) of 64.85 μM. The study concluded that boeravinone B not only inhibits the NorA-mediated efflux of fluoroquinolones but also considerably inhibits the biofilm formation of S. aureus. Its P -gp inhibition activity demonstrates its potential as a bioavailability and bioefficacy enhancer.

  7. Global alteration of the drug-binding pocket of human P-glycoprotein (ABCB1) by substitution of fifteen conserved residues reveals a negative correlation between substrate size and transport efficiency.

    Science.gov (United States)

    Vahedi, Shahrooz; Chufan, Eduardo E; Ambudkar, Suresh V

    2017-11-01

    P-glycoprotein (P-gp), an ATP-dependent efflux pump, is linked to the development of multidrug resistance in cancer cells. However, the drug-binding sites and translocation pathways of this transporter are not yet well-characterized. We recently demonstrated the important role of tyrosine residues in regulating P-gp ATP hydrolysis via hydrogen bond formations with high affinity modulators. Since tyrosine is both a hydrogen bond donor and acceptor, and non-covalent interactions are key in drug transport, in this study we investigated the global effect of enrichment of tyrosine residues in the drug-binding pocket on the drug binding and transport function of P-gp. By employing computational analysis, 15 conserved residues in the drug-binding pocket of human P-gp that interact with substrates were identified and then substituted with tyrosine, including 11 phenylalanine (F72, F303, F314, F336, F732, F759, F770, F938, F942, F983, F994), two leucine (L339, L975), one isoleucine (I306), and one methionine (M949). Characterization of the tyrosine-rich P-gp mutant in HeLa cells demonstrated that this major alteration in the drug-binding pocket by introducing fifteen additional tyrosine residues is well tolerated and has no measurable effect on total or cell surface expression of this mutant. Although the tyrosine-enriched mutant P-gp could transport small to moderate size (transport large (>1000 Daltons) substrates such as NBD-cyclosporine A, Bodipy-paclitaxel and Bodipy-vinblastine was significantly decreased. This was further supported by the physico-chemical characterization of seventeen tested substrates, which revealed a negative correlation between drug transport and molecular size for the tyrosine-enriched P-gp mutant. Published by Elsevier Inc.

  8. Cyclic AMP regulation of the human glycoprotein hormone α-subunit gene is mediated by an 18-base-pair element

    International Nuclear Information System (INIS)

    Silver, B.J.; Bokar, J.A.; Virgin, J.B.; Vallen, E.A.; Milsted, A.; Nilson, J.H.

    1987-01-01

    cAMP regulates transcription of the gene encoding the α-subunit of human chorionic gonadotropin (hCG) in the choriocarcinoma cells (BeWo). To define the sequences required for regulation by cAMP, the authors inserted fragments from the 5' flanking region of the α-subunit gene into a test vector containing the simian virus 40 early promoter (devoid of its enhancer) linked to the bacterial chloramphenicol acetyltransferase (CAT) gene. Results from transient expression assays in BeWo cells indicated that a 1500-base-pair (bp) fragment conferred cAMP responsiveness on the CAT gene regardless of position or orientation of the insert relative to the viral promoter. A subfragment extending from position -169 to position -100 had the same effect on cAMP-induced expression. Furthermore, the entire stimulatory effect could be achieved with an 18-bp synthetic oligodeoxynucleotide corresponding to a direct repeat between position -146 and -111. In the absence of cAMP, the α-subunit 5' flanking sequence also enhanced transcription from the simian virus 40 early promoter. They localized this enhancer activity to the same -169/-100 fragment containing the cAMP response element. The 18-bp element alone, however, had no effect on basal expression. Thus, this short DNA sequence serves as a cAMP response element and also functions independently of other promoter-regulatory elements located in the 5' flanking sequence of the α-subunit gene

  9. Albumin Redhill (-1 Arg, 320 Ala → Thr): A glycoprotein variant of human serum albumin whose precursor has an aberrant signal peptidase cleavage site

    International Nuclear Information System (INIS)

    Brennan, S.O.; Myles, T.; Peach, R.J.; George, P.M.; Donaldson, D.

    1990-01-01

    Albumin Redhill is an electrophoretically slow genetic variant of human serum albumin that does not bind 63 Ni 2+ and has a molecular mass 2.5 kDa higher than normal albumin. Its inability to bind Ni 2+ was explained by the finding of an additional residue of Arg at position -1. This did not explain the molecular basis of the genetic variation or the increase in apparent molecular mass. Fractionation of tryptic digests on concanavalin A-Sepharose followed by peptide mapping of the bound and unbound fractions and sequence analysis of the glycopeptides identified a mutation of 320 Ala → Thr. This introduces as Asn-Tyr-Thr oligosaccharide attachment sequence centered on Asn-318 and explains the increase in molecular mass. This, however, did not satisfactorily explain the presence of the additional Arg residue at position -1. DNA sequencing of polymerase chain reaction-amplified genomic DNA encoding the prepro sequence of albumin indicated an additional mutation of -2 Arg → Cys. The authors propose that the new Phe-Cys-Arg sequence in the propeptide is an aberrant signal peptidase cleavage site and that the signal peptidase cleaves the propeptide of albumin Redhill in the lumen of the endoplasmic reticulum before it reaches the Golgi vesicles, the site of the diarginyl-specific proalbumin convertase

  10. Algerian Propolis Potentiates Doxorubicin Mediated Anticancer Effect against Human Pancreatic PANC-1 Cancer Cell Line through Cell Cycle Arrest, Apoptosis Induction and P-Glycoprotein Inhibition.

    Science.gov (United States)

    Rouibah, Hassiba; Mesbah, Lahouel; Kebsa, Wided; Zihlif, Malek; Ahram, Mamoun; Aburmeleih, Bachaer; Mostafa, Ibtihal; El Amir, Hemzeh

    2018-01-10

    Pancreatic cancer is one of the most aggressive and lethal cancer, with poor prognosis and high resistant to current chemotherapeutic agents. Therefore, new therapeutic strategies and targets are underscored. Propolis has been reported to exhibit a broad spectrum of biological activities including anticancer activity. This study was carried out to assess the possible efficacy of Algerian propolis on the antitumor effect of doxorubicin on human pancreatic cancer cell line (PANC-1). Modifications in cell viability, apoptosis and cell cycle progression, Pgp activity and intracellular accumulation of DOX were monitored to study the synergistic effect of Algerian propolis on the antitumor effects of DOX in PANC-1 cell line. Both propolis and its combination with doxorubicin inhibited cell growth in a dose-dependent manner by inducing cell cycle arrest and apoptosis. In the presence of 100 µg/ml of propolis, the IC50 of DOX against PANC-1 cells decreased by 10.9-fold. Propolis combined with DOX increased after 48h, the number of cells in the G0G1 phase with dramatical increase in sub-G1 phase to reach 47% of total cells, corresponding to an increase of senescence or apoptotic state of the cells. Dead cell assay with annexinV/PI staining demonstrated that propolis and propolis-DOX treatment resulted in a remarkable induction of apoptosis as detected by flow cytometry. It was interesting to note that propolis at its 5IC50 was found as the most potent inducer of apoptosis. Our finding revealed that induced apoptosis in our conditions was caspase-3 and caspase-9 dependent. Flow cytometry showed that propolis increased the accumulation of doxorubicin within PANC-1 cells. Moreover, fluorescent intensity detection revealed that propolis remarkably increased the retention of rhodamine-123, 7-fold compared to 3-fold of verapamil, the most effective P-gp inhibitor. In conclusion, propolis sensitize pancreatic cancer cells to DOX via enhancing the intracellular retention of DOX

  11. Statins Suppress Ebola Virus Infectivity by Interfering with Glycoprotein Processing.

    Science.gov (United States)

    Shrivastava-Ranjan, Punya; Flint, Mike; Bergeron, Éric; McElroy, Anita K; Chatterjee, Payel; Albariño, César G; Nichol, Stuart T; Spiropoulou, Christina F

    2018-05-01

    Ebola virus (EBOV) infection is a major public health concern due to high fatality rates and limited effective treatments. Statins, widely used cholesterol-lowering drugs, have pleiotropic mechanisms of action and were suggested as potential adjunct therapy for Ebola virus disease (EVD) during the 2013-2016 outbreak in West Africa. Here, we evaluated the antiviral effects of statin (lovastatin) on EBOV infection in vitro Statin treatment decreased infectious EBOV production in primary human monocyte-derived macrophages and in the hepatic cell line Huh7. Statin treatment did not interfere with viral entry, but the viral particles released from treated cells showed reduced infectivity due to inhibition of viral glycoprotein processing, as evidenced by decreased ratios of the mature glycoprotein form to precursor form. Statin-induced inhibition of infectious virus production and glycoprotein processing was reversed by exogenous mevalonate, the rate-limiting product of the cholesterol biosynthesis pathway, but not by low-density lipoprotein. Finally, statin-treated cells produced EBOV particles devoid of the surface glycoproteins required for virus infectivity. Our findings demonstrate that statin treatment inhibits EBOV infection and suggest that the efficacy of statin treatment should be evaluated in appropriate animal models of EVD. IMPORTANCE Treatments targeting Ebola virus disease (EVD) are experimental, expensive, and scarce. Statins are inexpensive generic drugs that have been used for many years for the treatment of hypercholesterolemia and have a favorable safety profile. Here, we show the antiviral effects of statins on infectious Ebola virus (EBOV) production. Our study reveals a novel molecular mechanism in which statin regulates EBOV particle infectivity by preventing glycoprotein processing and incorporation into virus particles. Additionally, statins have anti-inflammatory and immunomodulatory effects. Since inflammation and dysregulation of the immune

  12. Clinical Development of a Cytomegalovirus DNA Vaccine: From Product Concept to Pivotal Phase 3 Trial

    Directory of Open Access Journals (Sweden)

    Michele Gerber

    2013-09-01

    Full Text Available 2013 marks a milestone year for plasmid DNA vaccine development as a first-in-class cytomegalovirus (CMV DNA vaccine enters pivotal phase 3 testing. This vaccine consists of two plasmids expressing CMV antigens glycoprotein B (gB and phosphoprotein 65 (pp65 formulated with a CRL1005 poloxamer and benzalkonium chloride (BAK delivery system designed to enhance plasmid expression. The vaccine’s planned initial indication under investigation is for prevention of CMV reactivation in CMV-seropositive (CMV+ recipients of an allogeneic hematopoietic stem cell transplant (HCT. A randomized, double-blind placebo-controlled phase 2 proof-of-concept study provided initial evidence of the safety of this product in CMV+ HCT recipients who underwent immune ablation conditioning regimens. This study revealed a significant reduction in viral load endpoints and increased frequencies of pp65-specific interferon-γ-producing T cells in vaccine recipients compared to placebo recipients. The results of this endpoint-defining trial provided the basis for defining the primary and secondary endpoints of a global phase 3 trial in HCT recipients. A case study is presented here describing the development history of this vaccine from product concept to initiation of the phase 3 trial.

  13. Clinical Development of a Cytomegalovirus DNA Vaccine: From Product Concept to Pivotal Phase 3 Trial.

    Science.gov (United States)

    Smith, Larry R; Wloch, Mary K; Chaplin, Jennifer A; Gerber, Michele; Rolland, Alain P

    2013-09-25

    2013 marks a milestone year for plasmid DNA vaccine development as a first-in-class cytomegalovirus (CMV) DNA vaccine enters pivotal phase 3 testing. This vaccine consists of two plasmids expressing CMV antigens glycoprotein B (gB) and phosphoprotein 65 (pp65) formulated with a CRL1005 poloxamer and benzalkonium chloride (BAK) delivery system designed to enhance plasmid expression. The vaccine's planned initial indication under investigation is for prevention of CMV reactivation in CMV-seropositive (CMV⁺) recipients of an allogeneic hematopoietic stem cell transplant (HCT). A randomized, double-blind placebo-controlled phase 2 proof-of-concept study provided initial evidence of the safety of this product in CMV⁺ HCT recipients who underwent immune ablation conditioning regimens. This study revealed a significant reduction in viral load endpoints and increased frequencies of pp65-specific interferon-γ-producing T cells in vaccine recipients compared to placebo recipients. The results of this endpoint-defining trial provided the basis for defining the primary and secondary endpoints of a global phase 3 trial in HCT recipients. A case study is presented here describing the development history of this vaccine from product concept to initiation of the phase 3 trial.

  14. Cytomegalovirus replicon-based regulation of gene expression in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Hermine Mohr

    Full Text Available There is increasing evidence for a connection between DNA replication and the expression of adjacent genes. Therefore, this study addressed the question of whether a herpesvirus origin of replication can be used to activate or increase the expression of adjacent genes. Cell lines carrying an episomal vector, in which reporter genes are linked to the murine cytomegalovirus (MCMV origin of lytic replication (oriLyt, were constructed. Reporter gene expression was silenced by a histone-deacetylase-dependent mechanism, but was resolved upon lytic infection with MCMV. Replication of the episome was observed subsequent to infection, leading to the induction of gene expression by more than 1000-fold. oriLyt-based regulation thus provided a unique opportunity for virus-induced conditional gene expression without the need for an additional induction mechanism. This principle was exploited to show effective late trans-complementation of the toxic viral protein M50 and the glycoprotein gO of MCMV. Moreover, the application of this principle for intracellular immunization against herpesvirus infection was demonstrated. The results of the present study show that viral infection specifically activated the expression of a dominant-negative transgene, which inhibited viral growth. This conditional system was operative in explant cultures of transgenic mice, but not in vivo. Several applications are discussed.

  15. Tumor specific glycoproteins and method for detecting tumorigenic cancers

    International Nuclear Information System (INIS)

    Davidson, E.A.; Bolmer, S.D.

    1981-01-01

    The detection of tumour specific glycoproteins (TSGP) in human sera often indicates the presence of a malignant tumour in a patient. The distinguishing characteristics of TSGP isolated from the blood sera of cancer patients are described in detail together with methods of TSGP isolation and purification. Details are also given of radioimmunoassay techniques capable of detecting very low levels of serum TSGP with high specificity. (U.K.)

  16. P-glycoprotein in autoimmune rheumatic diseases.

    Science.gov (United States)

    García-Carrasco, M; Mendoza-Pinto, C; Macias Díaz, S; Vera-Recabarren, M; Vázquez de Lara, L; Méndez Martínez, S; Soto-Santillán, P; González-Ramírez, R; Ruiz-Arguelles, A

    2015-07-01

    P-glycoprotein (Pgp) is a transmembrane protein of 170 kD encoded by the multidrug resistance 1 (MDR-1) gene, localized on chromosome 7. More than 50 polymorphisms of the MDR-1 gene have been described; a subset of these has been shown to play a pathophysiological role in the development of inflammatory bowel disease, femoral head osteonecrosis induced by steroids, lung cancer and renal epithelial tumors. Polymorphisms that have a protective effect on the development of conditions such as Parkinson disease have also been identified. P-glycoprotein belongs to the adenosine triphosphate binding cassette transporter superfamily and its structure comprises a chain of approximately 1280 aminoacid residues with an N-C terminal structure, arranged as 2 homologous halves, each of which has 6 transmembrane segments, with a total of 12 segments with 2 cytoplasmic nucleotide binding domains. Many cytokines like interleukin 2 and tumor necrosis factor alpha increase Pgp expression and activity. Pgp functions as an efflux pump for a variety of toxins in order to protect particular organs and tissues as the central nervous system. Pgp transports a variety of substrates including glucocorticoids while other drugs such as tacrolimus and cyclosporine A act as modulators of this protein. The most widely used method to measure Pgp activity is flow cytometry using naturally fluorescent substrates such as anthracyclines or rhodamine 123. The study of drug resistance and its association to Pgp began with the study of resistance to chemotherapy in the treatment of cancer and antiretroviral therapy for human immunodeficiency virus; however, the role of Pgp in the treatment of systemic lupus erythematosus, rheumatoid arthritis and psoriatic arthritis has been a focus of study lately and has emerged as an important mechanism by which treatment failure occurs. The present review analyzes the role of Pgp in these autoimmune diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Cytomegalovirus Infections among African-Americans

    Directory of Open Access Journals (Sweden)

    Best Al M

    2008-08-01

    Full Text Available Abstract Background Since African-Americans have twice the prevalence of cytomegalovirus (CMV infections as age-matched Caucasians we sought to determine the ages and possible sources of infection of African-American children. Methods Subjects were 157 African-American healthy children and adolescents and their 113 household adults in Richmond VA. Families completed a questionnaire, provided saliva for antibody testing, and adolescents were interviewed regarding sexual activity. Results Regardless of age CMV seropositivity was not associated with gender, breast feeding, health insurance, sexual activity, or household income, education, or size. In the final regression model, prior CMV infection in adults was over two-fold higher than in children (chi-square = 18.8, p Conclusion We observed that African-American children had CMV seroprevalence rates by age 20 years at less than one-half of that of their adult mothers and caregivers. Sibling-to-sibling transmission was a likely source of CMV infections for the children. The next generation of African-American women may be highly susceptible to a primary CMV infection during pregnancy and may benefit from a CMV vaccine.

  18. Cytomegalovirus immune evasion of myeloid lineage cells.

    Science.gov (United States)

    Brinkmann, Melanie M; Dağ, Franziska; Hengel, Hartmut; Messerle, Martin; Kalinke, Ulrich; Čičin-Šain, Luka

    2015-06-01

    Cytomegalovirus (CMV) evades the immune system in many different ways, allowing the virus to grow and its progeny to spread in the face of an adverse environment. Mounting evidence about the antiviral role of myeloid immune cells has prompted the research of CMV immune evasion mechanisms targeting these cells. Several cells of the myeloid lineage, such as monocytes, dendritic cells and macrophages, play a role in viral control, but are also permissive for CMV and are naturally infected by it. Therefore, CMV evasion of myeloid cells involves mechanisms that qualitatively differ from the evasion of non-CMV-permissive immune cells of the lymphoid lineage. The evasion of myeloid cells includes effects in cis, where the virus modulates the immune signaling pathways within the infected myeloid cell, and those in trans, where the virus affects somatic cells targeted by cytokines released from myeloid cells. This review presents an overview of CMV strategies to modulate and evade the antiviral activity of myeloid cells in cis and in trans.

  19. Women's attitudes toward practicing cytomegalovirus prevention behaviors

    Directory of Open Access Journals (Sweden)

    Rosemary Thackeray

    2016-12-01

    Full Text Available Congenital cytomegalovirus (CMV infection causes severe disabilities and developmental delays. Women's awareness of CMV is low. Only about half of healthcare providers report counseling women about behaviors to reduce CMV risk and public health education is limited. Routine CMV counseling is not recommend. Providers may lack time to counsel women; other conditions may take priority for counseling; there may be a perception that women are reluctant to follow advice. This cross-sectional descriptive study examined women's attitudes toward CMV prevention behaviors. Data were collected from an online panel of 840 U.S. women 18–40 years of age, who had a child <5 years of age, and were pregnant or planning a pregnancy in the next 12 months. Questions assessed CMV awareness, frequency of past behaviors that transmit CMV, and attitudes toward eight CMV prevention behaviors. Only 15.5% of women were somewhat or very familiar with CMV. Very few women (6.1% reported hearing from their provider about CMV. Women held positive attitudes toward the CMV prevention behaviors and perceived them as feasible. Least positive attitudes were toward not kissing a child on the lips and not sharing foods. Predictors of positive attitudes were CMV awareness, past behavior, talking to a healthcare provider, and perceived risk reduction. Healthcare providers and public health practitioners should collaborate to increase CMV awareness. Encouraging behaviors to reduce saliva sharing may result in greater gains in reducing CMV infection.

  20. Neonatal gastrointestinal involvement and congenital cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Alessandro Porta

    2016-11-01

    Full Text Available Cytomegalovirus (CMV is the most common cause of congenital viral infection, affecting 0.2 to 2.3% of all live births in developed countries. Very low birth weight and extremely low birth weight newborns are at higher risk of symptomatic CMV infection, most commonly secondary and acquired through breast milk. Gastrointestinal involvement is rare in acquired CMV infections, but it could be an important manifestation of postnatal infection in preterm infants admitted to neonatal intensive care units. Early onset of CMV gastrointestinal signs/symptoms is very rare. In a review of the literature it is described in 5 newborns in the first 24 hours of life, and 6 considering the onset in the first week of life. This review describes also a case report of congenital CMV in an immunocompetent newborn with onset of gastrointestinal signs immediately after birth: a possible association between viral infection and enteric manifestations was considered in the differential diagnosis. A review of the literature of the different case reports found has done, with description and comparison of the different patients and clinical presentations.

  1. Characteristics of Cytomegalovirus Uveitis in Immunocompetent Patients.

    Science.gov (United States)

    Woo, Jyh Haur; Lim, Wee K; Ho, Su L; Teoh, Stephen C

    2015-01-01

    To present the clinical characteristics of patients with anterior uveitis who had evidence of cytomegalovirus (CMV) infection on polymerase chain reaction PCR-based assays for viral DNA in aqueous samples. This was a retrospective observational case series of 16 patients with CMV infection on qualitative polymerase chain reaction PCR-based assays for viral DNA in aqueous samples. Case records of 16 patients were reviewed and relevant clinical information was collected using a standardized data sheet. There were 10 male and 6 female patients, with 16 eyes included. The median age at the first attack was 52 years (range 27-77 years). Thirteen patients (81.3%) presented with an initial BCVA of 20/40 or better. Eleven eyes (68.8%) had anterior chamber inflammation of 1+ cells or less. Eight eyes (50.0%) had concomitant sectoral iris atrophy, while 2 eyes were noted to have heterochromic irides. Eleven patients (68.8%) presented with an elevated intraocular pressure. Seven patients (43.8%) had clinical features that led to a presumptive diagnosis of Posner-Schlossman syndrome, while 3 patients (18.8%) were initially diagnosed with Fuchs heterochromic iridocyclitis. Six patients were initially treated for uveitic glaucoma or anterior uveitis of unknown cause. There is a spectrum of clinical manifestations of CMV anterior uveitis. A high index of suspicion of a possible viral etiology, especially CMV, and subsequent accurate identification of the virus involved are fundamental to the overall therapeutic approach.

  2. No. 240-Cytomegalovirus Infection in Pregnancy.

    Science.gov (United States)

    Yinon, Yoav; Farine, Dan; Yudin, Mark H

    2018-02-01

    To review the principles of prenatal diagnosis of congenital cytomegalovirus (CMV) infection and to describe the outcomes of the affected pregnancies. Effective management of fetal infection following primary and secondary maternal CMV infection during pregnancy. Neonatal signs include intrauterine growth restriction (IUGR), microcephaly, hepatosplenomegaly, petechiae, jaundice, chorioretinitis, thrombocytopenia and anemia, and long-term sequelae consist of sensorineural hearing loss, mental retardation, delay of psychomotor development, and visual impairment. These guidelines provide a framework for diagnosis and management of suspected CMV infections. Medline was searched for articles published in English from 1966 to 2009, using appropriate controlled vocabulary (congenital CMV infection) and key words (intrauterine growth restriction, microcephaly). Results were restricted to systematic reviews, randomized controlled trials/controlled clinical trials, and observational studies. Searches were updated on a regular basis and incorporated into the guideline. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology assessment-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. The quality of evidence reported in this document has been assessed using the evaluation of evidence criteria in the Report of the Canadian Task Force on Preventive Health Care (Table 1). Copyright © 2018. Published by Elsevier Inc.

  3. Comparative magnitude and kinetics of human cytomegalovirus-specific CD4⁺ and CD8⁺ T-cell responses in pregnant women with primary versus remote infection and in transmitting versus non-transmitting mothers: Its utility for dating primary infection in pregnancy.

    Science.gov (United States)

    Fornara, Chiara; Furione, Milena; Arossa, Alessia; Gerna, Giuseppe; Lilleri, Daniele

    2016-07-01

    To discriminate between primary (PI) and remote (RI) human cytomegalovirus (HCMV) infection, several immunological parameters were monitored for a 2-year period in 53 pregnant women with PI, and 33 pregnant women experiencing HCMV PI at least 5 years prior. Cytokine (IFN-γ and IL-2) production by and phenotype (effector/memory CD45RA(+)) of HCMV-specific CD4(+) and CD8(+) T-cells as well as the lymphoproliferative responses (LPR) were evaluated, with special reference to the comparison between a group of women transmitting (T) and a group of non-transmitting (NT) the infection to fetus. While HCMV-specific CD4(+) T-cells reached at 90 days post-infection (p.i.) values comparable to RI, CD8(+) T-cells reached at 60 days p.i. levels significantly higher and persisting throughout the entire follow-up. Instead, IL-2 production and lymphoproliferative responses were lower in PI than RI for the entire follow-up period. Effector memory CD45RA(+) CD4(+) and CD8(+) HCMV-specific T-cells increased until 90 days p.i., reaching and maintaining levels higher than RI. The comparison between T and NT women showed that, at 30 days p.i., in NT women there was a significantly higher IL-2 production by HCMV-specific CD4(+) T-cells, and at 60 days p.i. a significantly higher frequency of both specific CD4(+) and CD8(+) CD45RA(+) T-cells. HCMV T-cell response appears to correlate with virus transmission to fetus and some parameters (CD4(+) lymphoproliferation, and frequency of HCMV-specific CD8(+) IL2(+) T-cells) may help in dating PI during pregnancy. © 2015 Wiley Periodicals, Inc.

  4. Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue.

    Directory of Open Access Journals (Sweden)

    Rafael Simó

    Full Text Available Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes and in vivo (C57BL6/mice experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not

  5. Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue.

    Science.gov (United States)

    Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M

    2014-01-01

    Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight

  6. Strategies to overcome or circumvent P-glycoprotein mediated multidrug resistance.

    Science.gov (United States)

    Yuan, Hongyu; Li, Xun; Wu, Jifeng; Li, Jinpei; Qu, Xianjun; Xu, Wenfang; Tang, Wei

    2008-01-01

    Cancer patients who receive chemotherapy often experience intrinsic or acquired resistance to a broad spectrum of chemotherapeutic agents. The phenomenon, termed multidrug resistance (MDR), is often associated with the over-expression of P-glycoprotein, a transmembrane protein pump, which can enhance efflux of a various chemicals structurally unrelated at the expense of ATP depletion, resulting in decrease of the intracellular cytotoxic drug accumulation. The MDR has been a big threaten to the human health and the war fight for it continues. Although several other mechanisms for MDR are elucidated in recent years, considerable efforts attempting to inverse MDR are involved in exploring P-glycoprotein modulators and suppressing P-glycoprotein expression. In this review, we will report on the recent advances in various strategies for overcoming or circumventing MDR mediated by P-glycoprotein.

  7. Molecular and Biological Characterization of a New Isolate of Guinea Pig Cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Mark R. Schleiss

    2014-01-01

    Full Text Available Development of a vaccine against congenital infection with human cytomegalovirus is complicated by the issue of re-infection, with subsequent vertical transmission, in women with pre-conception immunity to the virus. The study of experimental therapeutic prevention of re-infection would ideally be undertaken in a small animal model, such as the guinea pig cytomegalovirus (GPCMV model, prior to human clinical trials. However, the ability to model re-infection in the GPCMV model has been limited by availability of only one strain of virus, the 22122 strain, isolated in 1957. In this report, we describe the isolation of a new GPCMV strain, the CIDMTR strain. This strain demonstrated morphological characteristics of a typical Herpesvirinae by electron microscopy. Illumina and PacBio sequencing demonstrated a genome of 232,778 nt. Novel open reading frames ORFs not found in reference strain 22122 included an additional MHC Class I homolog near the right genome terminus. The CIDMTR strain was capable of dissemination in immune compromised guinea pigs, and was found to be capable of congenital transmission in GPCMV-immune dams previously infected with salivary gland‑adapted strain 22122 virus. The availability of a new GPCMV strain should facilitate study of re-infection in this small animal model.

  8. The glycoproteins of Marburg and Ebola virus and their potential roles in pathogenesis.

    Science.gov (United States)

    Feldmann, H; Volchkov, V E; Volchkova, V A; Klenk, H D

    1999-01-01

    Filoviruses cause systemic infections that can lead to severe hemorrhagic fever in human and non-human primates. The primary target of the virus appears to be the mononuclear phagocytic system. As the virus spreads through the organism, the spectrum of target cells increases to include endothelial cells, fibroblasts, hepatocytes, and many other cells. There is evidence that the filovirus glycoprotein plays an important role in cell tropism, spread of infection, and pathogenicity. Biosynthesis of the glycoprotein forming the spikes on the virion surface involves cleavage by the host cell protease furin into two disulfide linked subunits GP1 and GP2. GP1 is also shed in soluble form from infected cells. Different strains of Ebola virus show variations in the cleavability of the glycoprotein, that may account for differences in pathogenicity, as has been observed with influenza viruses and paramyxoviruses. Expression of the spike glycoprotein of Ebola virus, but not of Marburg virus, requires transcriptional editing. Unedited GP mRNA yields the nonstructural glycoprotein sGP, which is secreted extensively from infected cells. Whether the soluble glycoproteins GP1 and sGP interfere with the humoral immune response and other defense mechanisms remains to be determined.

  9. Cryptic nature of a conserved, CD4-inducible V3 loop neutralization epitope in the native envelope glycoprotein oligomer of CCR5-restricted, but not CXCR4-using, primary human immunodeficiency virus type 1 strains.

    Science.gov (United States)

    Lusso, Paolo; Earl, Patricia L; Sironi, Francesca; Santoro, Fabio; Ripamonti, Chiara; Scarlatti, Gabriella; Longhi, Renato; Berger, Edward A; Burastero, Samuele E

    2005-06-01

    The external subunit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env), gp120, contains conserved regions that mediate sequential interactions with two cellular receptor molecules, CD4 and a chemokine receptor, most commonly CCR5 or CXCR4. However, antibody accessibility to such regions is hindered by diverse protective mechanisms, including shielding by variable loops, conformational flexibility and extensive glycosylation. For the conserved neutralization epitopes hitherto described, antibody accessibility is reportedly unrelated to the viral coreceptor usage phenotype. Here, we characterize a novel, conserved gp120 neutralization epitope, recognized by a murine monoclonal antibody (MAb), D19, which is differentially accessible in the native HIV-1 Env according to its coreceptor specificity. The D19 epitope is contained within the third variable (V3) domain of gp120 and is distinct from those recognized by other V3-specific MAbs. To study the reactivity of MAb D19 with the native oligomeric Env, we generated a panel of PM1 cells persistently infected with diverse primary HIV-1 strains. The D19 epitope was conserved in the majority (23/29; 79.3%) of the subtype-B strains tested, as well as in selected strains from other genetic subtypes. Strikingly, in CCR5-restricted (R5) isolates, the D19 epitope was invariably cryptic, although it could be exposed by addition of soluble CD4 (sCD4); epitope masking was dependent on the native oligomeric structure of Env, since it was not observed with the corresponding monomeric gp120 molecules. By contrast, in CXCR4-using strains (X4 and R5X4), the epitope was constitutively accessible. In accordance with these results, R5 isolates were resistant to neutralization by MAb D19, becoming sensitive only upon addition of sCD4, whereas CXCR4-using isolates were neutralized regardless of the presence of sCD4. Other V3 epitopes examined did not display a similar divergence in accessibility based on

  10. Congenital Cytomegalovirus among Children with Cerebral Palsy.

    Science.gov (United States)

    Smithers-Sheedy, Hayley; Raynes-Greenow, Camille; Badawi, Nadia; Fernandez, Marian A; Kesson, Alison; McIntyre, Sarah; Leung, Kin-Chuen; Jones, Cheryl A

    2017-02-01

    To determine the proportion of children with cerebral palsy (CP) and cytomegalovirus (CMV) DNA detected retrospectively in their newborn screening cards (NBSC), to compare the proportion of children with CMV DNA in their NBSC across spastic subtypes of CP, and to compare the sex and other characteristics of children with CP and CMV detected on their NSBC with those in whom CMV DNA was not detected. Retrospective observational study. Data were extracted from patient records on children with CP (birth years 1996-2014) from 2 Australian state CP registers and state-wide paediatric rehabilitation services with consent. NBSCs were retrospectively analyzed for CMV DNA by nested polymerase chain reaction (PCR) using primers against gB. Positive samples were validated using real time PCR for CMV UL83. Of 401 children recruited, 323 (80.5%) had an available NBSC. Of these, 31 (9.6%; 95% CI, 6.8-13.3) tested positive for CMV DNA by nested PCR for CMV gB, of whom 28 (8.7%; 95% CI, 6.1-12.2) also had CMV DNA detected by real-time PCR for CMV UL83. Detection of CMV DNA was significantly associated with epilepsy, but not with clinical or epidemiologic characteristics, including sex and pattern of spasticity. CMV viremia in the newborn period, indicating congenital CMV infection, is highly prevalent among children with CP. Further research is needed to investigate the mechanisms and contribution of congenital CMV to the causal pathways to CP. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Attitudes toward newborn screening for cytomegalovirus infection.

    Science.gov (United States)

    Din, Erica S; Brown, Cedric J; Grosse, Scott D; Wang, Chengbin; Bialek, Stephanie R; Ross, Danielle S; Cannon, Michael J

    2011-12-01

    Newborns are not routinely screened for cytomegalovirus (CMV), the leading infectious cause of developmental disability. Congenital CMV satisfies a number of criteria for inclusion in newborn screening, and screening potentially offers benefits. Screening could also introduce harms such as anxiety and unnecessary costs for the families of the substantial proportion of CMV-infected children who never develop CMV-related disabilities. Our objective was to assess attitudes toward newborn screening for CMV. We analyzed responses to 5 statements about CMV and newborn screening from 3922 participants in the 2009 HealthStyles survey, a national mail survey designed to include a group similar to the US population with respect to gender, age, race/ethnicity, income, and household size. Two-step cluster analysis was performed to identify clusters of parental attitudes. The majority of respondents strongly or somewhat agreed that they would want to have their newborn tested for CMV even if it was not performed routinely (84%), they had to pay $20 (87%), or CMV-related problems never developed (84%). Nearly half (47%) of them "would worry that the CMV test would lead to unneeded doctor visits and expenses," and 32% "think CMV problems are too rare to worry about." Three clusters of parent respondents were identified on the basis of their attitudes toward CMV screening: "strongly in favor" (31%), "moderately in favor" (49%), and "weakly opposed" (20%). Among most parents, costs, worry, and anxiety associated with newborn screening for CMV would be acceptable. Although attitudes were generally favorable, a minority of the parents were weakly opposed to newborn screening for CMV.

  12. Prenatal Diagnosis of Congenital Cytomegalovirus Infection

    Science.gov (United States)

    Lazzarotto, T.; Guerra, B.; Spezzacatena, P.; Varani, S.; Gabrielli, L.; Pradelli, P.; Rumpianesi, F.; Banzi, C.; Bovicelli, L.; Landini, M. P.

    1998-01-01

    We report here the results of a study on the prenatal diagnosis of congenital cytomegalovirus (CMV) infection. The study was carried out by both PCR and virus isolation from amniotic fluid (AF) for 82 pregnant women at risk of transmitting CMV for the detection of (i) seroconversion to CMV immunoglobulin G (IgG) positivity during the first trimester of pregnancy, (ii) symptomatic CMV infection in the mother during the first trimester of pregnancy or intrauterine growth retardation detected by ultrasound or abnormal ultrasonographic findings suggestive of fetal infections, and (iii) seropositivity for CMV-specific IgM. For 50 women, fetal blood (FB) was also obtained and tests for antigenemia and PCR were performed. The results indicate that AF is better than FB for the prenatal diagnosis of CMV infection. PCR with AF has a sensitivity (SNS) of 100%, a specificity (SPE) of 83.3%, a positive predictive value (PPV) of 40%, and a negative predictive value (NPV) of 100%; rapid virus isolation with the same material has an SNS of 50%, an SPE of 100%, a PPV of 100%, and an NPV of 94.7%. Fewer than 10% of the women positive for IgM by enzyme immunoassay (EIA) had a congenitally infected fetus or newborn infant. When EIA IgM positivity was confirmed by Western blotting (WB) and the WB profile was considered, the percent transmission detected among women with an “at-risk” profile was higher than that observed among IgM-positive women and was the same as that among women who seroconverted during the first trimester of pregnancy (transmission rates of 29 and 25%, respectively). PMID:9817869

  13. Cytomegalovirus seropositivity is associated with herpes zoster

    Science.gov (United States)

    Ogunjimi, Benson; Hens, Niel; Pebody, Richard; Jansens, Hilde; Seale, Holly; Quinlivan, Mark; Theeten, Heidi; Goossens, Herman; Breuer, Judy; Beutels, Philippe

    2015-01-01

    Herpes zoster (HZ) is caused by VZV reactivation that is facilitated by a declined immunity against varicella-zoster virus (VZV), but also occurs in immunocompetent individuals. Cytomegalovirus (CMV) infection is associated with immunosenescence meaning that VZV-specific T-cells could be less responsive. This study aimed to determine whether CMV infection could be a risk factor for the development of HZ. CMV IgG serostatus was determined in stored serum samples from previously prospectively recruited ambulatory adult HZ patients in the UK (N = 223) in order to compare the results with those from UK population samples (N = 1545) by means of a logistic regression (controlling for age and gender). Furthermore, we compared the UK population CMV seroprevalence with those from population samples from other countries (from Belgium (N1 = 1741, N2 = 576), USA (N = 5572) and Australia (N = 2080)). Furthermore, CMV IgG titers could be compared between UK HZ patients and Belgium N2 population samples because the same experimental set-up for analysis was used. We found UK ambulatory HZ patients to have a higher CMV seroprevalence than UK population samples (OR 1.56 [1.11 2.19]). CMV IgG seropositivity was a significant risk factor for HZ in the UK (OR 3.06 [1.32 7.04]. Furthermore, high CMV IgG titers (exceeding the upper threshold) were less abundant in CMV-seropositive Belgian N2 population samples than in CMV-seropositive UK HZ patients (OR 0.51 [0.31 0.82]. We found CMV-seroprevalence to increase faster with age in the UK than in other countries (P < 0.05). We conclude that CMV IgG seropositivity is associated with HZ. This finding could add to the growing list of risk factors for HZ. PMID:25905443

  14. Growth and development of infants with asymptomatic congenital cytomegalovirus infection.

    Science.gov (United States)

    Shan, Ruobing; Wang, Xiaoliang; Fu, Ping

    2009-10-31

    To observe changes in audiology, intellectual development, behavior development, and physical growth during systematic follow-up of infants with asymptomatic congenital human cytomegalovirus (HCMV) infection. Fifty-two infants diagnosed with asymptomatic congenital HCMV infection from July 2003 to July 2007 served as the infection group, and 21 healthy infants served as the control group. All infants were confirmed to have HCMV infection by Fluorescent Quantative polymerase chain reaction (FQ-PCR). In both the infection and control groups, the neonates and infants at 3 months, 6 months, and 1 year of age underwent examinations. 1) 20 items of National Black Nurses Association (NBNA) scores of neonates 12-14 days after birth in 2 groups were 38.3 +/- 1.95 and 38.5 +/- 2.29, without significant differences. 2) Auditory test: 50 ears of 25 cases in the infection group showed abnormal auditory thresholds in V waves with an abnormal rate of 14%, while no abnormalities were found in 21 cases in the control group. 3) Mental and psychomotor development index scores in the control group (107.49 +/- 11.31 and 107.19 +/- 10.98) were compared with those in 41 asymptomatically infected infants at 1 year of age (107.21 +/- 9.96 and 108.31 +/- 11.25), and no statistically significant difference was noted. 1) An elevated threshold in the V wave was present in asymptomatically infected infants, but could not be detected through otoacoustic emission (OAE) screening. 2) Either in the neonatal or infant periods, asymptomatic congenital HCMV infection did not have a significant influence on nervous behavior or on physical and intellectual development.

  15. Anti-cytomegalovirus activity of the anthraquinone atanyl blue PRL.

    Science.gov (United States)

    Alam, Zohaib; Al-Mahdi, Zainab; Zhu, Yali; McKee, Zachary; Parris, Deborah S; Parikh, Hardik I; Kellogg, Glen E; Kuchta, Alison; McVoy, Michael A

    2015-02-01

    Human cytomegalovirus (CMV) causes significant disease in immunocompromised patients and serious birth defects if acquired in utero. Available CMV antivirals target the viral DNA polymerase, have significant toxicities, and suffer from resistance. New drugs targeting different pathways would be beneficial. The anthraquinone emodin is proposed to inhibit herpes simplex virus by blocking the viral nuclease. Emodin and related anthraquinones are also reported to inhibit CMV. In the present study, emodin reduced CMV infectious yield with an EC50 of 4.9μM but was cytotoxic at concentrations only twofold higher. Related anthraquinones acid blue 40 and alizarin violet R inhibited CMV at only high concentrations (238-265μM) that were also cytotoxic. However, atanyl blue PRL inhibited infectious yield of CMV with an EC50 of 6.3μM, significantly below its 50% cytotoxic concentration of 216μM. Atanyl blue PRL reduced CMV infectivity and inhibited spread. When added up to 1h after infection, it dramatically reduced CMV immediate early protein expression and blocked viral DNA synthesis. However, it had no antiviral activity when added 24h after infection. Interestingly, atanyl blue PRL inhibited nuclease activities of purified CMV UL98 protein with IC50 of 4.5 and 9.3μM. These results indicate that atanyl blue PRL targets very early post-entry events in CMV replication and suggest it may act through inhibition of UL98, making it a novel CMV inhibitor. This compound may provide valuable insights into molecular events that occur at the earliest times post-infection and serve as a lead structure for antiviral development. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A review on the relation between the brain-serum concentration ratio of drugs and the influence of P-glycoprotein

    DEFF Research Database (Denmark)

    Ejsing, Thomas Broeng; Morling, Niels; Linnet, Kristian

    2007-01-01

    This overview on the brain-serum relationship for drugs illustrates the importance of the drug transporter P-glycoprotein at the blood-brain barrier. Generally, an inverse relationship exists between the magnitude of the brain-serum ratio and the influence of P-glycoprotein. Concerning the pharma...... the pharmacogenomics of P-glycoprotein, no clear effect of single nucleotide polymorphisms (SNPs) has been demonstrated in humans....

  17. Replacement of the V3 domain in the surface subunit of the feline immunodeficiency virus envelope glycoprotein with the equivalent region of a T cell-tropic human immunodeficiency virus type 1 results in a chimeric surface protein that efficiently binds to CXCR4.

    Science.gov (United States)

    González, Silvia A; Falcón, Juan I; Affranchino, José L

    2014-03-01

    Feline immunodeficiency virus (FIV) and the T cell-tropic strains of human immunodeficiency virus type 1 (HIV-1) share the use of the chemokine receptor CXCR4 for cell entry. To study this process further we developed a cell surface binding assay based on the expression of a soluble version of the FIV SU C-terminally tagged with the influenza virus hemagglutinin epitope (HA). The specificity of the assay was demonstrated by the following evidence: (1) the SU-HA protein bound to HeLa cells that express CXCR4 but not to MDCK cells that lack this chemokine receptor; and (2) binding of the SU-HA to HeLa cells was blocked by incubation with the CXCR4 antagonist AMD3100 as well as with the anti-CXCR4 monoclonal antibody (MAb) 12G5. Deletion of the V3 region from the FIV SU glycoprotein abolished its ability to bind CXCR4-expressing cells. Remarkably, substitution of the V3 domain of the FIV SU by the equivalent region of the HIV-1 NL4-3 isolate resulted in efficient cell surface binding of the chimeric SU protein to CXCR4. Moreover, transfection of MDCK cells with a plasmid encoding human CXCR4 allowed the association of the chimeric SU-HA glycoprotein to the transfected cells. Interestingly, while cell binding of the chimeric FIV-HIV SU was inhibited by an anti-HIV-1 V3 MAb, its association with CXCR4 was found to be resistant to AMD3100. Of note, the chimeric FIV-HIV Env glycoprotein was capable of promoting CXCR4-dependent cell-to-cell fusion.

  18. Childhood environments and cytomegalovirus serostatus and reactivation in adults

    NARCIS (Netherlands)

    Janicki-Deverts, D.; Cohen, S.; Doyle, W.J.; Marsland, A.L.; Bosch, J.

    2014-01-01

    Childhood adversity, defined in terms of material hardship or physical or emotional maltreatment has been associated with risk for infection with cytomegalovirus (CMV) among children and adolescents, and with CMV reactivation in children and adults. The present study examined whether different

  19. Sero-Prevalence of Cytomegalovirus Infection among New -Born ...

    African Journals Online (AJOL)

    Aim: The aim of this study was to determine the seroprevalence of cytomegalovirus (CMV) infection in newborn babies in our environment and hence the suitability of cord blood for stem cell transplantation. Methodology: Cord blood sera of 212 babies in the labour room of the University of Benin Teaching Hospital (UBTH) ...

  20. Cytomegalovirus infection in NICU admitted neonates in Boushehr

    Directory of Open Access Journals (Sweden)

    Maryam Sanjideh

    2016-01-01

    Full Text Available Background: Cytomegalovirus is the most prevalent cause of congenital infections and the most important cause of congenital deafness. Which it's spread is about 0.64% of all birth which differ based on geolocation, race and socioeconomically situations. This proposal accomplished in the end of July until middle of February 2014 with the goal of studying Cytomegalovirus infection distribution among newborns who are hospitalized in Bushehr Shohadaye Khalij Fars hospital NICU. Material & Method: 80 urine samples were collected between July until February 2014 in NICU of Bushehr Khalij Fars hospitalized neonates. Samples were tested by PCR method on urine samples to find if they are infected by cytomegalovirus. Results: Mean age of neonates was 30.59±9.30 days. Only one newborn under 30 days had Cytomegalovirus and 11 cases older than 30 days had positive reaction. The relation between age and CMV seropositivity was statistically valid (p<0.05.this means only 1.2% of newborns are CMV and 55% are older than 1 month. Conclusion: The pattern of CMV seropositivity shows that most infections may be acquired from environment. According to low prevalence of congenital CMV infection, there is no need to introduce preventive methods and following present guidelines is enough.

  1. Effects of Acute Cytomegalovirus Infection on Rat Islet Allograft Survival

    NARCIS (Netherlands)

    Smelt, M. J.; Faas, M. M.; Melgert, B. N.; de Vos, P.; de Haan, Bart; de Haan, Aalzen

    2011-01-01

    Transplantation of pancreatic islets is a promising therapy for the treatment of type 1 diabetes mellitus. However, long-term islet graft survival rates are still unsatisfactory low. In this study we investigated the role of cytomegalovirus (CMV) in islet allograft failure. STZ-diabetic rats

  2. Successful treatment of Cytomegalovirus (CMV) pneumonitis with a ...

    African Journals Online (AJOL)

    Cytomegalovirus (CMV) is a double-stranded DNA virus, the largest in the Herpesvirus family. CMV disease in adults usually arises from reactivation of latent infection acquired in childhood, individuals with impaired cell mediated immunity are at risk: organ transplant recipients, individuals on chemotherapy or other ...

  3. Molecular diagnostic of cytomegalovirus, Epstein Barr virus and ...

    African Journals Online (AJOL)

    Introduction: in most developing countries, Cytomegalovirus (CMV), Epstein Barr virus (EBV) and Herpes virus 6 (HHV-6) are not diagnosed in blood donors. The aim of this study is to determine the prevalence of these viruses in blood donors from the city of Ouagadougou, Burkina Faso. Methods: the study included 198 ...

  4. Incidence and risk of primary cytomegalovirus infection among ...

    African Journals Online (AJOL)

    Background: Primary cytomegalovirus infection in pregnancy remains a leading cause of congenital hearing loss and mental retardation worldwide. Most women acquired CMV infection horizontally from their infected children or younger children who were cross- infected at school or day care facilities. Over 90% of infected ...

  5. Cytomegalovirus antibodies among healthy blood donors at Lagos ...

    African Journals Online (AJOL)

    Objectives. Cytomegalovirus (CMV) is found worldwide in all geographical locations and socio-economic groups and is the virus most frequently transmitted to a developing child before birth. This study aimed to determine the prevalence and risk factors for CMV antibodies among healthy blood donors at Lagos University ...

  6. Cytomegalovirus in inflammatory bowel disease: A systematic review

    NARCIS (Netherlands)

    Romkens, T.E.; Bulte, G.J.; Nissen, L.H.; Drenth, J.P.

    2016-01-01

    AIM: To identify definitions of cytomegalovirus (CMV) infection and intestinal disease, in inflammatory bowel disease (IBD), to determine the prevalence associated with these definitions. METHODS: We conducted a systematic review and interrogated PubMed, EMBASE and Cochrane for literature on

  7. Malignant transformation of guinea pig cells after exposure to ultraviolet-irradiated guinea pig cytomegalovirus

    International Nuclear Information System (INIS)

    Isom, H.C.; Mummaw, J.; Kreider, J.W.

    1983-01-01

    Guinea pig cells were malignantly transformed in vitro by ultraviolet (uv)-irradiated guinea pig cytomegalovirus (GPCMV). When guinea pig hepatocyte monolayers were infected with uv-irradiated GPCMV, three continuous epithelioid cell lines which grew in soft agarose were established. Two independently derived GPCMV-transformed liver cells and a cell line derived from a soft agarose clone of one of these lines induced invasive tumors when inoculated subcutaneously or intraperitoneally into nude mice. The tumors were sarcomas possibly derived from hepatic stroma or sinusoid. Transformed cell lines were also established after infection of guinea pig hepatocyte monolayers with human cytomegalovirus (HCMV) or simian virus 40 (SV40). These cell lines also formed colonies in soft agarose and induced sarcomas in nude mice. It is concluded that (i) GPCMV can malignantly transform guinea pig cells; (ii) cloning of GPCMV-transformed cells in soft agarose produced cells that induced tumors with a shorter latency period but with no alteration in growth rate or final tumor size; and (iii) the tumors produced by GPCMV-and HCMV-transformed guinea pig cells were more similar to each other in growth rate than to those induced by SV40-transformed guinea pig cells

  8. Dataset of aqueous humor cytokine profile in HIV patients with Cytomegalovirus (CMV retinitis

    Directory of Open Access Journals (Sweden)

    Jayant Venkatramani Iyer

    2016-09-01

    Full Text Available The data shows the aqueous humor cytokine profiling results acquired in a small cohort of 17 HIV patients clinically diagnosed with Cytomegalovirus retinitis using the FlexMAP 3D (Luminex® platform using the Milliplex Human Cytokine® kit. Aqueous humor samples were collected from these patients at different time points (pre-treatment and at 4-weekly intervals through the 12-week course of intravitreal ganciclovir treatment and 41 cytokine levels were analyzed at each time point. CMV DNA viral load was assessed in 8 patients at different time points throughout the course of ganciclovir treatment. The data described herein is related to the research article entitled “Aqueous humor immune factors and cytomegalovirus (CMV levels in CMV retinitis through treatment - The CRIGSS study” (Iyer et al., 2016 [1]. Cytokine levels against the different time points which indicate the response to the given treatment and against the CMV viral load were analyzed. Keywords: Cytokines, CMV retinitis, Dataset, HIV, Luminex bead assay

  9. Mucus glycoprotein secretion by tracheal explants: effects of pollutants

    International Nuclear Information System (INIS)

    Last, J.A.; Kaizu, T.

    1980-01-01

    Tracheal slices incubated with radioactive precursors in tissue culture medium secrete labeled mucus glycoproteins into the culture medium. We have used an in vivtro approach, a combined method utilizing exposure to pneumotoxins in vivo coupled with quantitation of mucus secretion rates in vitro, to study the effects of inhaled pollutants on mucus biosynthesis by rat airways. In addition, we have purified the mucus glycoproteins secreted by rat tracheal explants in order to determine putative structural changes that might by the basis for the observed augmented secretion rates after exposure of rats to H2SO4 aerosols in combination with high ambient levels of ozone. After digestion with papain, mucus glycoproteins secreted by tracheal explants may be separated into five fractions by ion-exchange chromatography, with recovery in high yield, on columns of DEAE-cellulose. Each of these five fractions, one neutral and four acidic, migrates as a single unique spot upon cellulose acetate electrophoresis at pH values of 8.6 and 1.2. The neutral fraction, which is labeled with [3H] glucosamine, does not contain radioactivity when Na2 35SO4 is used as the precursor. Acidic fractions I to IV are all labeled with either 3H-glucosamine or Na2 35SO4 as precursor. Acidic fraction II contains sialic acid as the terminal sugar on its oligosaccharide side chains, based upon its chromatographic behavior on columns of wheat-germ agglutinin-Agarose. Treatment of this fraction with neuraminidase shifts its elution position in the gradient to a lower salt concentration, coincident with acidic fraction I. After removal of terminal sialic acid residues with either neuraminidase or low pH treatment, the resultant terminal sugar on the oligosaccharide side chains is fucose. These results are identical with those observed with mucus glycoproteins secreted by cultured human tracheal explants and purified by these same techniques

  10. Seroepidemiology of cytomegalovirus infections in Croatia.

    Science.gov (United States)

    Vilibic-Cavlek, Tatjana; Kolaric, Branko; Beader, Natasa; Vrtar, Izabela; Tabain, Irena; Mlinaric-Galinovic, Gordana

    2017-02-01

    Cytomegalovirus (CMV) is endemic worldwide, with marked differences in the seroprevalence rates between countries. The aim of this study was to analyze the seroprevalence of CMV infections in Croatia. During a 3-year period (2013-2015) 2438 consecutive serum samples collected from Croatian residents were tested for the presence of CMV IgM and IgG antibodies using enzyme-linked immunoassay. The IgM/IgG positive samples were further tested for IgG avidity. The overall seroprevalence rates for CMV IgG and IgM antibodies were 74.4 % and 4.3 %, respectively. The IgG seroprevalence showed significant differences between population groups: children/adolescents 54.6 %, general adult population 77.2 %, hemodialysis patients 91.4 % (p < 0.001). Seropositivity of CMV was strongly age-dependent with prevalences ranging from 53.0 % in children less than 10 years old to 93.8 % in persons above 60 years (p < 0.001). There was no difference in the prevalence rate between women with normal pregnancy and women with poor obstetric history. Gender and place of residence were not associated with CMV seropositivity. Using IgG avidity, current/recent primary CMV infection was confirmed by a low/borderline avidity index (AI) in 46.7 % participants, while in 53.3 % a high AI indicated CMV reactivation or reinfection. Primary infections were detected mainly in children and adolescents (83.2 % and 70.5 %, respectively), while reactivation/reinfection was common in persons older than 40 (77.0-100 %). Reactivation/reinfection was most commonly detected in hemodialysis patients (92.3 %). Logistic regression showed that older age and being on hemodialysis were significant predictors of CMV seropositivity. Infections with CMV are widespread in the Croatian population. Older age and being on hemodialysis appear to be the main risk factors for CMV infection.

  11. Global analysis of glycoproteins identifies markers of endotoxin tolerant monocytes and GPR84 as a modulator of TNFα expression.

    Science.gov (United States)

    Müller, Mario M; Lehmann, Roland; Klassert, Tilman E; Reifenstein, Stella; Conrad, Theresia; Moore, Christoph; Kuhn, Anna; Behnert, Andrea; Guthke, Reinhard; Driesch, Dominik; Slevogt, Hortense

    2017-04-12

    Exposure of human monocytes to lipopolysaccharide (LPS) induces a temporary insensitivity to subsequent LPS challenges, a cellular state called endotoxin tolerance. In this study, we investigated the LPS-induced global glycoprotein expression changes of tolerant human monocytes and THP-1 cells to identify markers and glycoprotein targets capable to modulate the immunosuppressive state. Using hydrazide chemistry and LC-MS/MS analysis, we analyzed glycoprotein expression changes during a 48 h LPS time course. The cellular snapshots at different time points identified 1491 glycoproteins expressed by monocytes and THP-1 cells. Label-free quantitative analysis revealed transient or long-lasting LPS-induced expression changes of secreted or membrane-anchored glycoproteins derived from intracellular membrane coated organelles or from the plasma membrane. Monocytes and THP-1 cells demonstrated marked differences in glycoproteins differentially expressed in the tolerant state. Among the shared differentially expressed glycoproteins G protein-coupled receptor 84 (GPR84) was identified as being capable of modulating pro-inflammatory TNFα mRNA expression in the tolerant cell state when activated with its ligand Decanoic acid.

  12. Cytomegalovirus induces abnormal chondrogenesis and osteogenesis during embryonic mandibular development

    Directory of Open Access Journals (Sweden)

    Bringas Pablo

    2008-03-01

    Full Text Available Abstract Background Human clinical studies and mouse models clearly demonstrate that cytomegalovirus (CMV disrupts normal organ and tissue development. Although CMV is one of the most common causes of major birth defects in humans, little is presently known about the mechanism(s underlying CMV-induced congenital malformations. Our prior studies have demonstrated that CMV infection of first branchial arch derivatives (salivary glands and teeth induced severely abnormal phenotypes and that CMV has a particular tropism for neural crest-derived mesenchyme (NCM. Since early embryos are barely susceptible to CMV infection, and the extant evidence suggests that the differentiation program needs to be well underway for embryonic tissues to be susceptible to viral infection and viral-induced pathology, the aim of this study was to determine if first branchial arch NCM cells are susceptible to mCMV infection prior to differentiation of NCM derivatives. Results E11 mouse mandibular processes (MANs were infected with mouse CMV (mCMV for up to 16 days in vitro. mCMV infection of undifferentiated embryonic mouse MANs induced micrognathia consequent to decreased Meckel's cartilage chondrogenesis and mandibular osteogenesis. Specifically, mCMV infection resulted in aberrant stromal cellularity, a smaller, misshapen Meckel's cartilage, and mandibular bone and condylar dysmorphogenesis. Analysis of viral distribution indicates that mCMV primarily infects NCM cells and derivatives. Initial localization studies indicate that mCMV infection changed the cell-specific expression of FN, NF-κB2, RelA, RelB, and Shh and Smad7 proteins. Conclusion Our results indicate that mCMV dysregulation of key signaling pathways in primarily NCM cells and their derivatives severely disrupts mandibular morphogenesis and skeletogenesis. The pathogenesis appears to be centered around the canonical and noncanonical NF-κB pathways, and there is unusual juxtaposition of abnormal stromal

  13. Colonic stenosis post-necrotizing enterocolitis in term newborn with acquired cytomegalovirus infection.

    Science.gov (United States)

    Marseglia, L; Manti, S; D'Angelo, G; Lima, M; Impellizzeri, P; Romeo, C; Gitto, E

    2015-01-01

    Necrotizing enterocolitis is a gastrointestinal emergency typical of premature infants. Intestinal strictures infrequently complicate medical or surgical treatment of necrotizing enterocolitis. Postnatal cytomegalovirus infection with gastrointestinal linvolvement has occasionally been described in subjects with necrotizing enterocolitis. We report the case of a full term infant presenting necrotizing enterocolitis, acquired cytomegalovirus infection and post necrotizing enterocolitis colonic stricture.List of abbreviations: necrotizing enterocolitis = NEC,cytomegalovirus = CMV. Celsius.

  14. P-glycoprotein activity and biological response

    International Nuclear Information System (INIS)

    Vaalburg, W.; Hendrikse, N.H.; Elsinga, P.H.; Bart, J.; Waarde, A. van

    2005-01-01

    P-glycoprotein (P-gp) is a transmembrane drug efflux pump encoded by the MDR-1 gene in humans. Most likely P-gp protects organs against endogenous and exogenous toxins by extruding toxic compounds such as chemotherapeutics and other drugs. Many drugs are substrates for P-gp. Since P-gp is also expressed in the blood-brain barrier, P-gp substrates reach lower concentrations in the brain than in P-gp-negative tissues. Failure of response to chemotherapy of malignancies can be due to intrinsic or acquired drug resistance. Many tumors are multidrug resistant (MDR); resistant to several structurally unrelated chemotherapeutic agents. Several mechanisms are involved in MDR of which P-gp is studied most extensively. P-gp extrudes drugs out of tumor cells resulting in decreased intracellular drug concentrations, leading to the MDR phenotype. Furthermore, the MDR-1 gene exhibits several single nucleotide polymorphisms, some of which result in different transport capabilities. P-gp functionality and the effect of P-gp modulation on the pharmacokinetics of novel and established drugs can be studied in vivo by positron emission tomography (PET) using carbon-11 and fluorine-18-labeled P-gp substrates and modulators. PET may demonstrate the consequences of genetic differences on tissue pharmacokinetics. Inhibitors such as calcium-channel blockers (verapamil), cyclosporin A, ONT-093, and XR9576 can modulate the P-gp functionality. With PET the effect of P-gp modulation on the bioavailability of drugs can be investigated in humans in vivo. PET also allows the measurement of the efficacy of newly developed P-gp modulators

  15. Genotypic diversity and mixed infection in newborn disease and hearing loss in congenital cytomegalovirus infection.

    Science.gov (United States)

    Pati, Sunil K; Pinninti, Swetha; Novak, Zdenek; Chowdhury, Nazma; Patro, Raj K; Fowler, Karen; Ross, Shannon; Boppana, Suresh

    2013-10-01

    Congenital cytomegalovirus (cCMV) is a common congenital infection and a leading nongenetic cause of sensorineural hearing loss (SNHL). CMV exhibits extensive genetic variability, and infection with multiple CMV strains (mixed infection) was shown to be common in congenital CMV. The role of mixed infections in disease and outcome remains to be defined. Genotyping of envelope glycoproteins, UL55 (gB), UL73 (gN) and UL75 (gH), was performed on saliva specimens of 79 infants from the ongoing CMV and Hearing Multicenter Screening (CHIMES) Study and on blood and urine specimens of 52 infants who participated in natural history studies at the University of Alabama at Birmingham. Genotyping of UL144 and US28 was also performed in the CHIMES cohort. The association of individual genotypes and mixed infection with clinical findings at birth and SNHL was examined. Thirty-seven of 131 infants (28%) were symptomatic at birth and 26 (20%) had SNHL at birth. All known genotypes of UL55, UL75, UL73 and US28 were represented, and no particular genotype was associated with symptomatic infection or SNHL. UL144 subtype C was more common in symptomatic infants but not associated with SNHL. Mixed infection was observed in 59 infants (45%) and not associated with symptoms (P = 0.43) or SNHL at birth (P = 0.82). In the cohort of 52 infants with long-term hearing outcome, mixed infection at birth was not predictive of SNHL. Mixed infection is common in infants with congenital CMV but is neither associated with symptomatic infection nor associated with SNHL.

  16. Nipah virus infection and glycoprotein targeting in endothelial cells

    Directory of Open Access Journals (Sweden)

    Maisner Andrea

    2010-11-01

    Full Text Available Abstract Background The highly pathogenic Nipah virus (NiV causes fatal respiratory and brain infections in animals and humans. The major hallmark of the infection is a systemic endothelial infection, predominantly in the CNS. Infection of brain endothelial cells allows the virus to overcome the blood-brain-barrier (BBB and to subsequently infect the brain parenchyma. However, the mechanisms of NiV replication in endothelial cells are poorly elucidated. We have shown recently that the bipolar or basolateral expression of the NiV surface glycoproteins F and G in polarized epithelial cell layers is involved in lateral virus spread via cell-to-cell fusion and that correct sorting depends on tyrosine-dependent targeting signals in the cytoplasmic tails of the glycoproteins. Since endothelial cells share many characteristics with epithelial cells in terms of polarization and protein sorting, we wanted to elucidate the role of the NiV glycoprotein targeting signals in endothelial cells. Results As observed in vivo, NiV infection of endothelial cells induced syncytia formation. The further finding that infection increased the transendothelial permeability supports the idea of spread of infection via cell-to-cell fusion and endothelial cell damage as a mechanism to overcome the BBB. We then revealed that both glycoproteins are expressed at lateral cell junctions (bipolar, not only in NiV-infected primary endothelial cells but also upon stable expression in immortalized endothelial cells. Interestingly, mutation of tyrosines 525 and 542/543 in the cytoplasmic tail of the F protein led to an apical redistribution of the protein in endothelial cells whereas tyrosine mutations in the G protein had no effect at all. This fully contrasts the previous results in epithelial cells where tyrosine 525 in the F, and tyrosines 28/29 in the G protein were required for correct targeting. Conclusion We conclude that the NiV glycoprotein distribution is responsible for

  17. Primary cytomegalovirus infection in pregnant Egyptian women confirmed by cytomegalovirus IgG avidity testing.

    Science.gov (United States)

    Kamel, N; Metwally, L; Gomaa, N; Sayed Ahmed, W A; Lotfi, M; Younis, S

    2014-01-01

    To determine the frequency of primary cytomegalovirus (CMV) infection in pregnant Egyptian women using CMV IgG avidity testing. A cross-sectional study was conducted at Suez Canal University Hospital, Ismailia, Egypt. A total of 546 pregnant women, presenting for routine antenatal screening, were tested for CMV IgG and IgM using a commercially available enzyme-linked immunosorbent assay (ELISA). Sera from CMV IgM-positive women were tested by CMV IgG avidity assay. All the 546 pregnant women were seropositive for anti-CMV IgG. Of the 546 women, 40 (7.3%) were positive or equivocal for IgM antibodies. All sera from the 40 women (IgG+/IgM+) showed a high or intermediate CMV IgG avidity index. Of the 40 women, 23 (57.5%) were in the second or third trimesters of pregnancy and had their first-trimester blood retrieved, and the tested CMV IgG avidity assay showed a high avidity index. Women who were IgM positive had no primary CMV infection in the index pregnancy as evidenced by the high CMV IgG avidity testing. © 2013 S. Karger AG, Basel.

  18. Symptomatic Congenital Cytomegalovirus Infection in Children of Seropositive Women

    OpenAIRE

    Ines Mack; Marie-Anne Burckhardt; Marie-Anne Burckhardt; Ulrich Heininger; Friederike Prüfer; Sven Schulzke; Sven Wellmann

    2017-01-01

    Cytomegalovirus (CMV) is the most frequent congenital virus infection worldwide. The risk of congenital CMV (cCMV) transmission is highest in seronegative women who acquire primary CMV infection during pregnancy. A growing body of evidence indicates that secondary CMV infections in pregnant women with preconceptual immunity (either through reactivation of latent virus or re-infection with a new strain of CMV) contribute to a much greater proportion of symptomatic cCMV than was previously thou...

  19. Dasatinib-induced hemorrhagic colitis complicated with cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Aya Nakaya

    2017-12-01

    Full Text Available A 69-year-old man with chronic-phase chronic myeloid leukemia was initially treated with 100 mg dasatinib once a day. Despite a major molecular response within 9 months, he developed hemorrhagic colitis 32 months after starting dasatinib. Colonoscopy identified multiple hemorrhagic ulcers in the transverse colon. The pathological findings indicated cytomegalovirus infection. Dasatinib was stopped and he was started on ganciclovir. Three months later, colonoscopy confirmed the disappearance of the hemorrhagic ulcers. Dasatinib is a second-generation tyrosine kinase inhibitor used to treat chronic myeloid leukemia. As a multi-kinase inhibitor that acts on SRC-family kinases, its broader off-target kinase-inhibitory activity may account for the adverse events of dasatinib. Although gastrointestinal bleeding is common in patients taking dasatinib, the combination of cytomegalovirus infection and hemorrhagic colitis in the absence of systemic immunodeficiency is rare. Based on this case of dasatinibinduced hemorrhagic colitis with cytomegalovirus infection, we describe a possible mechanism and effective treatment.

  20. Two cases of cytomegalovirus panuveitis in immunocompetent patients

    Directory of Open Access Journals (Sweden)

    Masato Sakai

    2018-06-01

    Full Text Available Purpose: To report two cases of panuveitis in immunocompetent patients in which cytomegalovirus was involved. Observation: Case 1 was a 46-year-old man who had a history of recurrent anterior chamber inflammations in his left eye. After Nd:YAG laser posterior capsulotomy, he developed panuveitis with vitreous haze and periphlebitis. Polymerase chain reaction (PCR examination revealed the presence of cytomegalovirus (CMV DNA in the anterior chamber (AC. He responded well to a series of intravitreal injections of ganciclovir (GCV. Case 2 was a 63-year-old woman who had a history of recurrent anterior uveitis in her left eye. Two years after cataract surgery, AC inflammation, diffuse vitreous haze, and periphlebitis had developed. CMV DNA was detected in the AC. Intravitreal injections of GCV and oral valganciclovir were administered, and ocular inflammation finally improved. Conclusions: and importance: We experienced two cases of CMV panuveitis in immunocompetent adults, both of which responded well to anti-viral therapies. Keywords: Cytomegalovirus, Panuveitis, Immunocompetent, Intravitreal injection, PCR

  1. Multiorgan involvement due to cytomegalovirus infection in AIDS

    Directory of Open Access Journals (Sweden)

    Shounak Majumder

    Full Text Available Cytomegalovirus (CMV infection is a relatively late complication of AIDS. Like other viruses contributing to co-morbidity of HIV infection, cytomegalovirus has the propensity to cause multiorgan involvement. We report the case of a 34-year-old seropositive man who presented with bilateral lower limb weakness and symptomatic pallor. He was already on antiretroviral drugs for a month prior to presentation. Detailed clinical examination and laboratory investigations revealed cytomegalovirus polyradiculoneuropathy associated with bone marrow dysplasia. Dysplasia of haematopoeitic cell lines occurs in 30% to 70% of HIV infected patients, and is often indistinguishable from myelodysplastic syndrome. However, in our case, the bone marrow picture reverted back to normal with treatment of the CMV infection, pointing to a possible role of CMV as the causative agent of bone marrow dysplasia. Moreover, CMV has been incriminated as a pathogen producing the immune reconstitution inflammatory syndrome. The onset of the disease in our case one month after initiation of HAART strongly raises the possibility of this being a case of CMV related IRIS. This is the first reported case where IRIS has presented with CMV polyradiculoneuropathy and bone marrow dysplasia. We would like to highlight that in today's era of HIV care, clinicians should be aware of the possibility of multiorgan involvement by CMV, for appropriate management of this disease in the background of AIDS.

  2. Congenital cytomegalovirus related intestinal malrotation: a case report.

    Science.gov (United States)

    Colomba, Claudia; Giuffrè, Mario; La Placa, Simona; Cascio, Antonio; Trizzino, Marcello; De Grazia, Simona; Corsello, Giovanni

    2016-12-07

    Cytomegalovirus is the most common cause of congenital infection in the developed countries. Gastrointestinal involvement has been extensively described in both adult and paediatric immunocompromised patients but it is infrequent in congenital or perinatal CMV infection. We report on a case of coexistent congenital Cytomegalovirus infection with intestinal malrotation and positive intestinal Cytomegalovirus biopsy. At birth the neonate showed clinical and radiological evidence of intestinal obstruction. Meconium passed only after evacuative nursing procedures; stooling pattern was irregular; gastric residuals were bile-stained. Laparatomy revealed a complete intestinal malrotation and contextually gastrointestinal biopsy samples of the appendix confirmed the diagnosis of CMV gastrointestinal disease. Intravenous ganciclovir was initiated for 2 weeks, followed by oral valgancyclovir for 6 month. CMV-induced proinflammatory process may be responsible of the interruption of the normal development of the gut or could in turn lead to a disruption in the normal development of the gut potentiating the mechanism causing malrotation. We suggest the hypothesis that an inflammatory process induced by CMV congenital infection may be responsible, in the early gestation, of the intestinal end-organ disease, as the intestinal malrotation. CMV infection should always be excluded in full-term infants presenting with colonic stricture or malrotation.

  3. RATIONALE FOR A SPECIFIC THERAPY OF CYTOMEGALOVIRUS INFECTION IN CHILDREN WITH BRONCHIAL ASTHMA

    Directory of Open Access Journals (Sweden)

    E. N. Suprun

    2013-01-01

    Full Text Available Abstract. We propose a protocol of treatment in cases of bronchial asthma with cytomegalovirus (CMV persistence. This basic therapy is administered depending on the disease severity, according to the National Programme 2009. The treatment includes administration of human immunoglobulin, with dosage according on CMV antibodies titers. The study has revealed that such regimen of antibody administration based on the content of anti-CMV antibodies in bronchial asthma treatment stops active CMV replication in bronchial mucous membrane, alleviates clinical course of the disease, diminishes changes of immune system typical to children suffering from bronchial asthma and CMV reactivation, thus allowing to reduce the volume of basic therapy, along with maintaining control of asthma control.

  4. Glycoprotein Enrichment Analytical Techniques: Advantages and Disadvantages.

    Science.gov (United States)

    Zhu, R; Zacharias, L; Wooding, K M; Peng, W; Mechref, Y

    2017-01-01

    Protein glycosylation is one of the most important posttranslational modifications. Numerous biological functions are related to protein glycosylation. However, analytical challenges remain in the glycoprotein analysis. To overcome the challenges associated with glycoprotein analysis, many analytical techniques were developed in recent years. Enrichment methods were used to improve the sensitivity of detection, while HPLC and mass spectrometry methods were developed to facilitate the separation of glycopeptides/proteins and enhance detection, respectively. Fragmentation techniques applied in modern mass spectrometers allow the structural interpret