WorldWideScience

Sample records for human cytomegalovirus gene

  1. The human cytomegalovirus UL76 gene regulates the level of expression of the UL77 gene.

    Directory of Open Access Journals (Sweden)

    Hiroki Isomura

    Full Text Available BACKGROUND: Human cytomegalovirus (HCMV can be reactivated under immunosuppressive conditions causing several fatal pneumonitis, hepatitis, retinitis, and gastrointestinal diseases. HCMV also causes deafness and mental retardation in neonates when primary infection has occurred during pregnancy. In the genome of HCMV at least 194 known open reading frames (ORFs have been predicted, and approximately one-quarter, or 41 ORFs, are required for viral replication in cell culture. In contrast, the majority of the predicted ORFs are nonessential for viral replication in cell culture. However, it is also possible that these ORFs are required for the efficient viral replication in the host. The UL77 gene of HCMV is essential for viral replication and has a role in viral DNA packaging. The function of the upstream UL76 gene in the HCMV-infected cells is not understood. UL76 and UL77 are cistons on the same viral mRNA and a conventional 5' mRNA for UL77 has not been detected. The vast majority of eukaryotic mRNAs are monocistronic, i.e., they encode only a single protein. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether the UL76 ORF affects UL77 gene expression, we mutated UL76 by ORF frame-shifts, stop codons or deletion of the viral gene. The effect on UL77 protein expression was determined by either transfection of expression plasmids or infection with recombinant viruses. Mutation of UL76 ORF significantly increased the level of UL77 protein expression. However, deletion of UL76 upstream of the UL77 ORF had only marginal effects on viral growth. CONCLUSIONS/SIGNIFICANCE: While UL76 is not essential for viral replication, the UL76 ORF is involved in regulation of the level of UL77 protein expression in a manner dependent on the translation re-initiation. UL76 may fine-tune the UL77 expression for the efficient viral replication in the HCMV- infected cells.

  2. Effective inhibition of human cytomegalovirus gene expression by DNA-based external guide sequences

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Zeng; Hongjian Li; Yueqing Li; Yanwei Cui; Qi Zhou; Yi Zou; Guang Yang; Tianhong Zhou

    2009-01-01

    To investigate whether a 12 nucleotide DNA-based miniEGSs can silence the expression of human cytomegalovirus(HCMV)UL49 gene efficiently,A HeLa cell line stably expressing UL49 gene was constructed and the putative miniEGSs(UL49-miniEGSs)were assayed in the stable cell line.Quantitative RT-PCR and western blot resuits showed a reduction of 67%in UL49expression level in HeLa cells that were transfected with UL49-miniEGSs.It was significantly different from that of mock and control miniEGSs(TK-miniEGSs)which were 1 and 7%,respectively.To further confirm the gene silence directed by UL49-miniEGSs with human RNase P,a mutant of UL49-miniEGSs was constructedand a modified 5'RACE was carried out.Data showed that the inhibition of UL49 gene expression directed by UL49-miniEGSs was RNase P-dependent and the clea vage of UL49 mRNA by RNase P was site specific.As a result,the length of DNA-based miniEGSs that could silence gene expression efficiently was only 12 nt.That is significantly less than any other Oligonucleotide-based method of gene inactivation known SO far.MiniEGSs may represent novel gene-targeting agents for the inhibition of viral genes and other human disease reiated gene expression.

  3. Antibodies against Human Cytomegalovirus in the Pathogenesis of Systemic Sclerosis: A Gene Array Approach.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available BACKGROUND: Systemic sclerosis is an autoimmune disease characterized by immunological abnormalities, vascular damage, and fibroblast proliferation. We have previously shown that a molecular mimicry mechanism links antibodies against the human-cytomegalovirus-derived protein UL94 to the pathogenesis of systemic sclerosis. The UL94 epitope shows homology with NAG-2, a surface molecule highly expressed on endothelial cells. Anti-UL94 peptide antibodies purified from patients' sera induce apoptosis of endothelial cells upon engagement of the NAG-2-integrin complex. METHODS AND FINDINGS: We show here that NAG-2 is expressed on dermal fibroblasts and that anti-UL94 antibodies bind to fibroblasts. We have used the gene array strategy (Affimetrix oligonucleotide microarrays to analyze the transcriptional profile in response to a 4-h and an 8-h treatment with antibodies against the UL94 peptide in endothelial cells and dermal fibroblasts. Exposure of endothelial cells to anti-UL94 antibodies had a profound impact on gene expression, resulting in the upregulation of 1,645 transcripts. Several gene clusters were upregulated including genes encoding adhesion molecules, chemokines, colony-stimulating factors (CSFs, growth factors, and molecules involved in apoptosis. Following antibody stimulation, dermal fibroblasts showed an upregulation of 989 transcripts and acquired a "scleroderma-like" phenotype. Indeed, genes involved in extracellular matrix deposition, growth factors, chemokines, and cytokines were upregulated. We confirmed the microarray results by real-time quantitative polymerase chain reaction and by measuring some of the corresponding proteins with ELISA and Western blotting. CONCLUSION: Our results show that anti-human-cytomegalovirus antibodies may be linked to the pathogenesis of systemic sclerosis not only by inducing endothelial cell activation and apoptosis but also by causing activation of fibroblasts, one of the hallmarks of the disease.

  4. Antibodies against human cytomegalovirus in the pathogenesis of systemic sclerosis: a gene array approach.

    Directory of Open Access Journals (Sweden)

    Claudio Lunardi

    2006-01-01

    Full Text Available BACKGROUND: Systemic sclerosis is an autoimmune disease characterized by immunological abnormalities, vascular damage, and fibroblast proliferation. We have previously shown that a molecular mimicry mechanism links antibodies against the human-cytomegalovirus-derived protein UL94 to the pathogenesis of systemic sclerosis. The UL94 epitope shows homology with NAG-2, a surface molecule highly expressed on endothelial cells. Anti-UL94 peptide antibodies purified from patients' sera induce apoptosis of endothelial cells upon engagement of the NAG-2-integrin complex. METHODS AND FINDINGS: We show here that NAG-2 is expressed on dermal fibroblasts and that anti-UL94 antibodies bind to fibroblasts. We have used the gene array strategy (Affimetrix oligonucleotide microarrays to analyze the transcriptional profile in response to a 4-h and an 8-h treatment with antibodies against the UL94 peptide in endothelial cells and dermal fibroblasts. Exposure of endothelial cells to anti-UL94 antibodies had a profound impact on gene expression, resulting in the upregulation of 1,645 transcripts. Several gene clusters were upregulated including genes encoding adhesion molecules, chemokines, colony-stimulating factors (CSFs, growth factors, and molecules involved in apoptosis. Following antibody stimulation, dermal fibroblasts showed an upregulation of 989 transcripts and acquired a "scleroderma-like" phenotype. Indeed, genes involved in extracellular matrix deposition, growth factors, chemokines, and cytokines were upregulated. We confirmed the microarray results by real-time quantitative polymerase chain reaction and by measuring some of the corresponding proteins with ELISA and Western blotting. CONCLUSION: Our results show that anti-human-cytomegalovirus antibodies may be linked to the pathogenesis of systemic sclerosis not only by inducing endothelial cell activation and apoptosis but also by causing activation of fibroblasts, one of the hallmarks of the disease.

  5. Human cytomegalovirus UL145 gene is highly conserved among clinical strains

    Indian Academy of Sciences (India)

    Zhengrong Sun; Ying Lu; Qiang Ruan; Yaohua Ji; Rong He; Ying Qi; Yanping Ma; Yujing Huang

    2007-09-01

    Human cytomegalovirus (HCMV), a ubiquitous human pathogen, is the leading cause of birth defects in newborns. A region (referred to as UL/b′) present in the Toledo strain of HCMV and low-passage clinical isolates) contains 22 additional genes, which are absent in the highly passaged laboratory strain AD169. One of these genes, UL145 open reading frame (ORF), is located between the highly variable genes UL144 and UL146. To assess the structure of the UL145 gene, the UL145 ORF was amplified by PCR and sequenced from 16 low-passage clinical isolates and 15 non-passage strains from suspected congenitally infected infants. Nine UL145 sequences previously published in the GenBank were used for sequence comparison. The identities of the gene and the similarities of its putative protein among all strains were 95.9–100% and 96.6–100%, respectively. The post-translational modification motifs of the UL145 putative protein in clinical strains were conserved, comprising the protein kinase C phosphorylation motif (PKC) and casein kinase II phosphorylation site (CK-II). We conclude that the structure of the UL145 gene and its putative protein are relatively conserved among clinical strains, irrespective of whether the strains come from patients with different manifestations, from different areas of the world, or were passaged or not in human embryonic lung fibroblast (HELF) cells.

  6. Germline V-genes sculpt the binding site of a family of antibodies neutralizing human cytomegalovirus

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Christy A.; Bryson, Steve; McLean, Gary R.; Creagh, A. Louise; Pai, Emil F.; Schrader, John W. (Toronto); (UBC)

    2008-10-17

    Immunoglobulin genes are generated somatically through specialized mechanisms resulting in a vast repertoire of antigen-binding sites. Despite the stochastic nature of these processes, the V-genes that encode most of the antigen-combining site are under positive evolutionary selection, raising the possibility that V-genes have been selected to encode key structural features of binding sites of protective antibodies against certain pathogens. Human, neutralizing antibodies to human cytomegalovirus that bind the AD-2S1 epitope on its gB envelope protein repeatedly use a pair of well-conserved, germline V-genes IGHV3-30 and IGKV3-11. Here, we present crystallographic, kinetic and thermodynamic analyses of the binding site of such an antibody and that of its primary immunoglobulin ancestor. These show that these germline V-genes encode key side chain contacts with the viral antigen and thereby dictate key structural features of the hypermutated, high-affinity neutralizing antibody. V-genes may thus encode an innate, protective immunological memory that targets vulnerable, invariant sites on multiple pathogens.

  7. Overlapping transcription structure of human cytomegalovirus UL140 and UL141 genes

    Indian Academy of Sciences (India)

    Yanping Ma; Mali Li; Bo Zheng; Ning Wang; Shuang Gao; Lin Wang; Qi Ying; Zhengrong Sun; Qiang Ruan

    2013-03-01

    Transcription of human cytomegalovirus UL/b′ region has been studied extensively for some genes. In this study, transcripts of the UL140 and UL141, two of the UL/b′ genes, were identified in late RNAs of three HCMV isolates using Northern blot hybridization, cDNA library screening and RACE-PCR. At least three transcripts with length of 2800, 2400 and 1700 nt, as well as a group of transcripts of about 1000–1300 nt, were found in this gene region with an accordant 3′ ends. Among the transcripts, two initiated upstream of the start code of the UL140 gene and contained the UL140 and UL141 open reading frame (ORF), one initiated in the middle of the UL140 gene, and could encode short ORFs upstream of the UL141 ORF. A group of transcripts initiated upstream or downstream of the start code of the UL141 gene, and could encode `nested’ ORFs, including the UL141 ORF. These `nested’ ORFs possess different initiation sites but the same termination site as that of the UL141 ORF.

  8. Sequence and transcription analysis of the human cytomegalovirus DNA polymerase gene

    Energy Technology Data Exchange (ETDEWEB)

    Kouzarides, T.; Bankier, A.T.; Satchwell, S.C.; Weston, K.; Tomlinson, P.; Barrell, B.G.

    1987-01-01

    DNA sequence analysis has revealed that the gene coding for the human cytomegalovirus (HCMV) DNA polymerase is present within the long unique region of the virus genome. Identification is based on extensive amino acid homology between the predicted HCMV open reading frame HFLF2 and the DNA polymerase of herpes simplex virus type 1. The authors present here a 5280 base-pair DNA sequence containing the HCMV pol gene, along with the analysis of transcripts encoded within this region. Since HCMV pol also shows homology to the predicted Epstein-Barr virus pol, they were able to analyze the extent of homology between the DNA polymerases of three distantly related herpes viruses, HCMV, Epstein-Barr virus, and herpes simplex virus. The comparison shows that these DNA polymerases exhibit considerable amino acid homology and highlights a number of highly conserved regions; two such regions show homology to sequences within the adenovirus type 2 DNA polymerase. The HCMV pol gene is flanked by open reading frames with homology to those of other herpes viruses; upstream, there is a reading frame homologous to the glycoprotein B gene of herpes simplex virus type I and Epstein-Barr virus, and downstream there is a reading frame homologous to BFLF2 of Epstein-Barr virus.

  9. An antisense transcript in the human cytomegalovirus UL87 gene region

    Directory of Open Access Journals (Sweden)

    Ma Yanping

    2011-11-01

    Full Text Available Abstract Background Rapid advances in research on antisense transcripts are gradually changing our comprehension of genomic and gene expression aspects of the Herpesviridae. One such herpesvirus is the human cytomegalovirus (HCMV. Although transcription of the HCMV UL87 gene has not been specifically investigated, cDNA clones of UL87 antisense transcripts were found in HCMV cDNA libraries previously. In this study, the transcription of the UL87 antisense strand was investigated in three clinically isolated HCMV strains. Results First, an 800 nucleotides transcript having an antisense orientation to the UL87 gene was found in a late HCMV cDNA library. Then, the UL87 antisense transcript was confirmed by Rapid amplification of cDNA ends (RACE and Northern blot in three HCMV clinical strains. Two ORFs were predicted in the antisense transcript. The putative protein of ORF 1 showed a high degree of conservation among HCMV and other CMV strains. Conclusion An 800nt antisense transcript in the UL87 gene region exists in HCMV clinical strains.

  10. Identification of transcription factor AML-1 binding site upstream of human cytomegalovirus UL111A gene.

    Directory of Open Access Journals (Sweden)

    Xiaoqun Zheng

    Full Text Available Human cytomegalovirus (HCMV interleukin-10 (hcmvIL-10, encoded by HCMV UL111A gene, is a homolog of human IL-10. It exerts immunomodulatory effects that allow HCMV to evade host defense mechanisms. However, the exact mechanism underlying the regulation of hcmvIL-10 expression is not well understood. The transcription factor acute myeloid leukemia 1 (AML-1 plays an important role in the regulation of various genes involved in the differentiation of hematopoietic lineages. A putative AML-1 binding site is present within the upstream regulatory region (URR of UL111A gene. To provide evidence that AML-1 is involved in regulating UL111A gene expression, we examined the interaction of AML-1 with the URR of UL111A in HCMV-infected human monocytic THP-1 cells using a chromatin immunoprecipitation assay. HcmvIL-10 transcription was detected in differentiated THP-1 cells, but not in undifferentiated ones. Furthermore, the URR of UL111A showed a higher intensity of AML-1 binding, a higher level of histone H3 acetyl-K9, but a lower level of histone H3 dimethyl-K9 in differentiated THP-1 cells than undifferentiated cells. Down-regulation of AML1 by RNA interference decreased the expression of the UL111A gene. Our results suggest that AML-1 may contribute to the epigenetic regulation of UL111A gene via histone modification in HCMV-infected differentiated THP-1 cells. This finding could be useful for the development of new anti-viral therapies.

  11. Human cytomegalovirus gene expression in long-term infected glioma stem cells.

    Directory of Open Access Journals (Sweden)

    Estefania Fiallos

    Full Text Available The most common adult primary brain tumor, glioblastoma (GBM, is characterized by fifteen months median patient survival and has no clear etiology. We and others have identified the presence of human cytomegalovirus (HCMV gene products endogenously expressed in GBM tissue and primary cells, with a subset of viral genes being consistently expressed in most samples. Among these viral genes, several have important oncomodulatory properties, regulating tumor stemness, proliferation, immune evasion, invasion and angiogenesis. These findings lead us to hypothesize that a specific HCMV gene signature may be associated with GBM pathogenesis. To investigate this hypothesis, we used glioma cell lines and primary glioma stem-like cells (GSC infected with clinical and laboratory HCMV strains and measured relative viral gene expression levels along several time points up to 15 weeks post-infection. While HCMV gene expression was detected in several infected glioma lines through week 5 post-infection, only HCMV-infected GSC expressed viral gene products 15 weeks post-infection. Efficiency of infection across time was higher in GSC compared to cell lines. Importantly, HCMV-infected GSC outlived their uninfected counterparts, and this extended survival was paralleled by increased tumorsphere frequency and upregulation of stemness regulators, such as SOX2, p-STAT3, and BMX (a novel HCMV target identified in this study. Interleukin 6 (IL-6 treatment significantly upregulated HCMV gene expression in long-term infected glioma cultures, suggesting that pro-inflammatory signaling in the tumor milieu may further augment HCMV gene expression and subsequent tumor progression driven by viral-induced cellular signaling. Together, our data support a critical role for long-term, low-level HCMV infection in promoting survival, stemness, and proliferation of GSC that could significantly contribute to GBM pathogenesis.

  12. Human cytomegalovirus gene UL76 induces IL-8 expression through activation of the DNA damage response.

    Directory of Open Access Journals (Sweden)

    Helena Costa

    2013-09-01

    Full Text Available Human cytomegalovirus (HCMV, a β-herpesvirus, has evolved many strategies to subvert both innate and adaptive host immunity in order to ensure its survival and propagation within the host. Induction of IL-8 is particularly important during HCMV infection as neutrophils, primarily attracted by IL-8, play a key role in virus dissemination. Moreover, IL-8 has a positive effect in the replication of HCMV. This work has identified an HCMV gene (UL76, with the relevant property of inducing IL-8 expression at both transcriptional and protein levels. Up-regulation of IL-8 by UL76 results from activation of the NF-kB pathway as inhibition of both IKK-β activity or degradation of Ikβα abolishes the IL-8 induction and, concomitantly, expression of UL76 is associated with the translocation of p65 to the nucleus where it binds to the IL-8 promoter. Furthermore, the UL76-mediated induction of IL-8 requires ATM and is correlated with the phosphorylation of NEMO on serine 85, indicating that UL76 activates NF-kB pathway by the DNA Damage response, similar to the impact of genotoxic drugs. More importantly, a UL76 deletion mutant virus was significantly less efficient in stimulating IL-8 production than the wild type virus. In addition, there was a significant reduction of IL-8 secretion when ATM -/- cells were infected with wild type HCMV, thus, indicating that ATM is also involved in the induction of IL-8 by HCMV. In conclusion, we demonstrate that expression of UL76 gene induces IL-8 expression as a result of the DNA damage response and that both UL76 and ATM have a role in the mechanism of IL-8 induction during HCMV infection. Hence, this work characterizes a new role of the activation of DNA Damage response in the context of host-pathogen interactions.

  13. Immediate-early gene region of human cytomegalovirus trans-activates the promoter of human immunodeficiency virus

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.G.; Kenney, S.C.; Kamine, J.; Pagano, J.S.; Huang, E.S.

    1987-12-01

    Almost all homosexual patients with acquired immunodeficiency syndrome are also actively infected with human cytomegalovirus (HCMV). The authors have hypothesized that an interaction between HCMV and human immunodeficiency virus (HIV), the agent that causes acquired immunodeficiency syndrome, may exist at a molecular level and contribute to the manifestations of HIV infection. In this report, they demonstrate that the immediate-early gene region of HCMV, in particular immediate-early region 2, trans-activates the expression of the bacterial gene chloramphenicol acetyltransferase that is fused to the HIV long terminal repeat and carried by plasmid pHIV-CAT. The HCMV immediate-early trans-activator increases the level of mRNA from the plamid pHIV-CAT. The sequences of HIV that are responsive to trans-activation by the HDMV immediate-early region are distinct from HIV sequences that are required for response to the HIV tat. The stimulation of HIV gene expression by HDMV gene functions could enhance the consequences of HIV infection in persons with previous or concurrent HCMV infection.

  14. Regulation and gene expression profiling of NKG2D positive human cytomegalovirus-primed CD4+ T-cells

    DEFF Research Database (Denmark)

    Jensen, Helle; Folkersen, Lasse; Skov, Søren

    2012-01-01

    NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8(+) T-cells, and ¿d T-cells. NKG2D expression is normally absent from CD4(+) T-cells, however recently a subset of NKG2D(+) CD4(+) T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular...... CD4(+) T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D(+) CD4(+) T-cells, as well as the mechanisms regulating NKG2D cell surface expression.......NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8(+) T-cells, and ¿d T-cells. NKG2D expression is normally absent from CD4(+) T-cells, however recently a subset of NKG2D(+) CD4(+) T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular...... subset of HCMV-specific NKG2D(+) CD4(+) T-cells possesses effector-like functions, thus resembling the subsets of NKG2D(+) CD4(+) T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4(+) T-cells is currently not known. In this study...

  15. Human Cytomegalovirus DNA Quantification and Gene Expression in Gliomas of Different Grades

    Science.gov (United States)

    Medeiros, Raphael Salles Scortegagna; Guerra, Juliana Mariotti; Kimura, Lidia Midori; Shirata, Neuza Kazumi; Nonogaki, Suely; dos Santos, Claudia Januário; Carlan Silva, Maria Cristina

    2016-01-01

    Gliomas are the most common type of primary brain tumors. The most aggressive type, Glioblastoma multiforme (GBM), is one of the deadliest human diseases, with an average survival at diagnosis of about 1 year. Previous evidence suggests a link between human cytomegalovirus (HCMV) and gliomas. HCMV has been shown to be present in these tumors and several viral proteins can have oncogenic properties in glioma cells. Here we have investigated the presence of HCMV DNA, RNA and proteins in fifty-two gliomas of different grades of malignancy. The UL83 viral region, the early beta 2.7 RNA and viral protein were detected in 73%, 36% and 57% by qPCR, ISH and IHC, respectively. Positivity of the viral targets and viral load was independent of tumor type or grade suggesting no correlation between viral presence and tumor progression. Our results demonstrate high prevalence of the virus in gliomas from Brazilian patients, contributing to a better understanding of the association between HCMV infection and gliomas worldwide and supporting further investigations of the virus oncomodulatory properties. PMID:27458810

  16. Evidence that phosphatidylcholine-specific phospholipase C is a key molecule mediating insulin-induced enhancement of gene expression from human cytomegalovirus promoter in CHO cells

    OpenAIRE

    Zhang, Yingpei; Katakura, Yoshinori; Seto, Perry; Shirahata, Sanetaka

    1997-01-01

    The signal transduction from insulin to its receptors and Ras has been extensively studied, while little has been reported beyond these steps. We found that the expression of human interleukin 6 gene under the control of immediate early gene promoter of human cytomegalovirus was enhanced by insulin sitmulation in Chinese hamster ovary cells. The induction effect of insulin was not significantly affected by inhibitors or activators of conventional protein kinase C, cAMP dependent protein kinas...

  17. Reference gene selection for quantitative real-time PCR analysis in virus infected cells: SARS corona virus, Yellow fever virus, Human Herpesvirus-6, Camelpox virus and Cytomegalovirus infections

    Directory of Open Access Journals (Sweden)

    Müller Marcel A

    2005-02-01

    Full Text Available Abstract Ten potential reference genes were compared for their use in experiments investigating cellular mRNA expression of virus infected cells. Human cell lines were infected with Cytomegalovirus, Human Herpesvirus-6, Camelpox virus, SARS coronavirus or Yellow fever virus. The expression levels of these genes and the viral replication were determined by real-time PCR. Genes were ranked by the BestKeeper tool, the GeNorm tool and by criteria we reported previously. Ranking lists of the genes tested were tool dependent. However, over all, β-actin is an unsuitable as reference gene, whereas TATA-Box binding protein and peptidyl-prolyl-isomerase A are stable reference genes for expression studies in virus infected cells.

  18. Regulation and gene expression profiling of NKG2D positive human cytomegalovirus-primed CD4+ T-cells.

    Directory of Open Access Journals (Sweden)

    Helle Jensen

    Full Text Available NKG2D is a stimulatory receptor expressed by natural killer (NK cells, CD8(+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4(+ T-cells, however recently a subset of NKG2D(+ CD4(+ T-cells has been found, which is specific for human cytomegalovirus (HCMV. This particular subset of HCMV-specific NKG2D(+ CD4(+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D(+ CD4(+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4(+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA to investigate the gene expression profile of NKG2D(+ CD4(+ T-cells, generated from HCMV-primed CD4(+ T-cells. We show that the HCMV-primed NKG2D(+ CD4(+ T-cells possess a higher differentiated phenotype than the NKG2D(- CD4(+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4(+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4(+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4(+ T-cells, whereas it is produced de novo in resting CD4(+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D(+ CD4(+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression.

  19. Human Cytomegalovirus and Autoimmune Disease

    Directory of Open Access Journals (Sweden)

    Anne Halenius

    2014-01-01

    Full Text Available Human cytomegalovirus (HCMV represents a prototypic pathogenic member of the β-subgroup of the herpesvirus family. A range of HCMV features like its lytic replication in multiple tissues, the lifelong persistence through periods of latency and intermitting reactivation, the extraordinary large proteome, and extensive manipulation of adaptive and innate immunity make HCMV a high profile candidate for involvement in autoimmune disorders. We surveyed the available literature for reports on HCMV association with onset or exacerbation of autoimmune disease. A causative linkage between HCMV and systemic lupus erythematosus (SLE, systemic sclerosis (SSc, diabetes mellitus type 1, and rheumatoid arthritis (RA is suggested by the literature. However, a clear association of HCMV seroprevalence and disease could not be established, leaving the question open whether HCMV could play a coresponsible role for onset of disease. For convincing conclusions population-based prospective studies must be performed in the future. Specific immunopathogenic mechanisms by which HCMV could contribute to the course of autoimmune disease have been suggested, for example, molecular mimicry by UL94 in SSc and UL83/pp65 in SLE patients, as well as aggravation of joint inflammation by induction and expansion of CD4+/CD28− T-cells in RA patients. Further studies are needed to validate these findings and to lay the grounds for targeted therapeutic intervention.

  20. Use of 5-ethynyl-2'-deoxyuridine labelling and flow cytometry to study cell cycle-dependent regulation of human cytomegalovirus gene expression.

    Science.gov (United States)

    Wiebusch, Lüder; Hagemeier, Christian

    2014-01-01

    The cell cycle position at the time of infection has a profound influence on human cytomegalovirus (HCMV) gene expression and therefore needs consideration in the design and control of HCMV experiments. While G0/G1 cells support the immediate onset of viral transcription, cells progressing through the S and G2 cell cycle phases prevent HCMV from entering the lytic replication cycle. Here, we provide two fast and reliable protocols that allow one to determine the cell cycle distribution of the designated host cells and monitor viral protein expression as a function of the cell cycle state. Both protocols make use of the thymidine analogue 5-ethynyl-2'-deoxyuridine and "click" chemistry to label HCMV-non-permissive S phase cells in a gentle and sensitive way.

  1. Translational Effects of Mutations and Polymorphisms in a Repressive Upstream Open Reading Frame of the Human Cytomegalovirus UL4 Gene

    Science.gov (United States)

    Alderete, John P.; Jarrahian, Sohail; Geballe, Adam P.

    1999-01-01

    The human cytomegalovirus (HCMV) gpUL4 mRNA contains a 22-codon upstream open reading frame (uORF2), the peptide product of which represses downstream translation by blocking translation termination at its own stop codon and by causing ribosomes to stall on the mRNA. A distinctive feature of this unusual mechanism is its strict dependence on the uORF2 peptide sequence. To delineate sequence elements that function in the inhibitory mechanism, deletions and missense mutations affecting the previously uncharacterized amino-terminal region of uORF2 were analyzed in transient-transfection and infection assays. These experiments identified multiple codons in this region that are necessary for inhibition of downstream translation by uORF2 and, in conjunction with previous results, demonstrated that amino acids dispersed throughout the uORF2 peptide participate in the repressive mechanism. In contrast to the highly conserved carboxy terminus, the amino-terminal portion of the uORF2 peptide is polymorphic. A survey of uORF2 sequences in HCMV clinical isolates revealed that although most have uORF2 sequences that are predicted to retain the uORF2 inhibitory activity, ∼15% contain polymorphisms at codons that are essential for full inhibition by uORF2. Consistent with predictions based on analyses of engineered mutations, two viral isolates with uORF2 sequences that do not inhibit downstream translation in transfection assays expressed much more gpUL4 protein but similar levels of UL4 mRNA compared to the levels produced by the prototypic laboratory strain HCMV (Towne) and another clinical isolate with an inhibitory variant uORF2. These results demonstrate that uORF2 is polymorphic in sequence and repressive activity and suggest that the uORF2 regulatory mechanism, although prevalent among natural HCMV isolates, is not absolutely essential for viral replication. PMID:10482583

  2. Human embryonic stem cell lines model experimental human cytomegalovirus latency.

    Science.gov (United States)

    Penkert, Rhiannon R; Kalejta, Robert F

    2013-05-28

    Herpesviruses are highly successful pathogens that persist for the lifetime of their hosts primarily because of their ability to establish and maintain latent infections from which the virus is capable of productively reactivating. Human cytomegalovirus (HCMV), a betaherpesvirus, establishes latency in CD34(+) hematopoietic progenitor cells during natural infections in the body. Experimental infection of CD34(+) cells ex vivo has demonstrated that expression of the viral gene products that drive productive infection is silenced by an intrinsic immune defense mediated by Daxx and histone deacetylases through heterochromatinization of the viral genome during the establishment of latency. Additional mechanistic details about the establishment, let alone maintenance and reactivation, of HCMV latency remain scarce. This is partly due to the technical challenges of CD34(+) cell culture, most notably, the difficulty in preventing spontaneous differentiation that drives reactivation and renders them permissive for productive infection. Here we demonstrate that HCMV can establish, maintain, and reactivate in vitro from experimental latency in cultures of human embryonic stem cells (ESCs), for which spurious differentiation can be prevented or controlled. Furthermore, we show that known molecular aspects of HCMV latency are faithfully recapitulated in these cells. In total, we present ESCs as a novel, tractable model for studies of HCMV latency.

  3. Detection of human cytomegalovirus pp67 late gene transcripts in cerebrospinal fluid of human immunodeficiency virus type 1-infected patients by nucleic acid sequence-based amplification.

    Science.gov (United States)

    Zhang, F; Tetali, S; Wang, X P; Kaplan, M H; Cromme, F V; Ginocchio, C C

    2000-05-01

    This study examined the clinical correlation between the presence of human cytomegalovirus (HCMV) pp67 mRNA in cerebrospinal fluid (CSF) and active HCMV central nervous system (CNS) disease in patients with human immunodeficiency virus type 1 (HIV-1). In total, 76 CSF specimens collected from 65 HIV-1-positive patients diagnosed with HCMV CNS disease, other non-HCMV-related CNS diseases, or no CNS disease were tested for the presence of HCMV pp67 mRNA using the NucliSens cytomegalovirus (CMV) pp67 assay (Organon Teknika, Durham, N.C.). The results were compared to those of a nested PCR for the detection of HCMV glycoprotein B DNA and to those obtained by viral culture (54 samples). CSF specimens collected from patients without HCMV CNS disease yielded the following results: pp67 assay negative, 62 of 62 specimens; culture negative, 41 of 41 specimens; and PCR negative, 56 of 62 specimens (6 specimens were positive). CSF specimens collected from patients with HCMV CNS disease yielded the following results: pp67 assay positive, 9 of 13 specimens; PCR positive, 13 of 13 specimens; and culture positive, 2 of 13 specimens. After resolution of the discordant results, the following positive and negative predictive values (PPV and NPV, respectively) for the diagnosis of HCMV CNS disease were determined. The PPV for PCR, pp67 assay, and culture were 68.4, 100, and 100%, respectively, and the NPV for PCR, pp67 assay, and culture were 100, 97.0, and 82. 7%, respectively. The sensitivities for DNA PCR, pp67 assay, and culture for the detection of HCMV were 100, 84.6, and 18%, respectively, and the clinical specificities were 90.5, 100, and 100%, respectively. This study indicates that the detection of HCMV pp67 mRNA in CSF has good correlation with active HCMV CNS disease, whereas CSF culture is insensitive and qualitative DNA PCR may detect latent nonreplicating virus in CSF from patients without HCMV CNS disease.

  4. Characterization of the transcripts of human cytomegalovirus UL144

    Directory of Open Access Journals (Sweden)

    Sun Zhengrong

    2011-06-01

    Full Text Available Abstract Background The genome of human cytomegalovirus (HCMV has been studied extensively, particularly in the UL/b' region. In this study, transcripts of one of the UL/b' genes, UL144, were identified in 3 HCMV isolates obtained from urine samples of congenitally infected infants. Methods Northern blot hybridization, cDNA library screening, and RACE-PCR were used. Results We identified at least 4 differentially regulated 3'-coterminal transcripts of UL144 in infected cells of 1,300, 1,600, 1,700, and 3,500 nucleotides (nt. The 1600 nt transcript was the major form of UL144 mRNA. The largest transcript initiated from the region within the UL141 open reading frame (ORF and included UL141, UL142, UL143, UL144, and UL145 ORFs. Conclusions These findings reveal the complex nature of the transcription of the UL144 gene in clinical isolates.

  5. RNA interference-mediated targeting of human cytomegalovirus immediate-early or early gene products inhibits viral replication with differential effects on cellular functions.

    Science.gov (United States)

    Xiaofei, E; Stadler, Bradford M; Debatis, Michelle; Wang, Shixia; Lu, Shan; Kowalik, Timothy F

    2012-05-01

    Viral drug toxicity, resistance, and an increasing immunosuppressed population warrant continued research into new avenues for limiting diseases associated with human cytomegalovirus (HCMV). In this study, a small interfering RNA (siRNA), siX3, was designed to target coding sequences within shared exon 3 of UL123 and UL122 transcripts encoding IE1 and IE2 immediate-early proteins of HCMV. Pretreatment of cells with siX3 reduced the levels of viral protein expression, DNA replication, and progeny virus production compared to control siRNA. Two siRNAs against UL54 and overlapping transcripts (UL55-57) were compared to siX3 in HCMV infection and were also found to be effective at inhibiting HCMV replication. Further investigation into the effects of the siRNAs on viral replication showed that pretreatment with each of the siRNAs resulted in an inhibition in the formation of mature replication compartments. The ability of these siRNAs to prevent or reduce certain cytopathic effects associated with HCMV infection was also examined. Infected cells pretreated with siX3, but not siUL54, retained promyelocytic leukemia (PML) protein in cellular PML bodies, an essential component of this host intrinsic antiviral defense. DNA damage response proteins, which are localized in nuclear viral replication compartments, were reduced in the siX3- and siUL54-treated cells. siX3, but not siUL54, prevented DNA damage response signaling early after infection. Therapeutic efficacy was demonstrated by treating cells with siRNAs after HCMV replication had commenced. Together, these findings suggest that siRNAs targeting exon 3 of the major IE genes or the UL54-57 transcripts be further studied for their potential development into anti-HCMV therapeutics.

  6. Insertion and deletion mutagenesis of the human cytomegalovirus genome

    Energy Technology Data Exchange (ETDEWEB)

    Spaete, R.R.; Mocarski, E.S.

    1987-10-01

    Studies on human cytomegalovirus (CMV) have been limited by a paucity of molecular genetic techniques available for manipulating the viral genome. The authors have developed methods for site-specific insertion and deletion mutagenesis of CMV utilizing a modified Escherichia coli lacZ gene as a genetic marker. The lacZ gene was placed under the control of the major ..beta.. gene regulatory signals and inserted into the viral genome by homologous recombination, disrupting one of two copies of this ..beta.. gene within the L-component repeats of CMV DNA. They observed high-level expression of ..beta..-galactosidase by the recombinant in a temporally authentic manner, with levels of this enzyme approaching 1% of total protein in infected cells. Thus, CMV is an efficient vector for high-level expression of foreign gene products in human cells. Using back selection of lacZ-deficient virus in the presence of the chromogenic substrate 5-bromo-4-chloro-3-indolyl ..beta..-D-galactoside, they generated random endpoint deletion mutants. Analysis of these mutant revealed that CMV DNA sequences flanking the insert had been removed, thereby establishing this approach as a means of determining whether sequences flanking a lacZ insertion are dispensable for viral growth. In an initial test of the methods, they have shown that 7800 base pairs of one copy of L-component repeat sequences can be deleted without affecting viral growth in human fibroblasts.

  7. Replacement of the human cytomegalovirus promoter with fish enhancer and core elements to control the expression of the G gene of viral haemorrhagic septicemia virus (VHSV).

    Science.gov (United States)

    Martinez-Lopez, A; Chinchilla, B; Encinas, P; Gomez-Casado, E; Estepa, A; Coll, J M

    2012-12-15

    This work explores some of the possibilities to replace human cytomegalovirus (CMV) core and/or enhancer promoter control elements to create new expression vectors for use with fish. The work is relevant to fish vaccination, since DNA vaccines use eukaryotic expression plasmids controlled by the human cytomegalovirus (CMV) promoter to be effective against novirhabdoviruses, such as viral haemorrhagic septicemia virus (VHSV), one of the most devastating fish viral European diseases. To reduce possible homologous recombination with fish genome, core and enhancer sequences from fish origin, such as trout interferon-inducible myxovirus protein (Mx), zebrafish retrovirus long terminal repeat (LTR) and carp β-actin (AE6), were combined with those of CMV to design alternative hybrid promoters. The substitution of CMV core and/or enhancer with the corresponding elements of Mx or the LTR core maintained a similar in vitro protein G expression level than that obtained by using the CMV promoter. Vectors using the dsRNA-inducible Mx enhancer followed either by the LTR or the AE6 cores showed the highest in vitro protein G expression levels. Furthermore, synthetic constructs using the Mx enhancer maintained their polyI:C induction capabilities despite the core used. Some of these hybrid promoters might contribute to the development of all-fish-vectors for DNA vaccines while others might be useful for more basic studies.

  8. Genetic variation in Micro-RNA genes of host genome affects clinical manifestation of symptomatic Human Cytomegalovirus infection.

    Science.gov (United States)

    Misra, Maneesh Kumar; Mishra, Aditi; Pandey, Shashi Kant; Kapoor, Rakesh; Sharma, Raj Kumar; Agrawal, Suraksha

    2015-10-01

    Micro-RNAs are implicated in various physiological and pathologic processes. In this study, we tested whether Micro-RNA gene variants of host-genome affect clinical manifestation of symptomatic HCMV infection. HCMV infection was detected by fluorescent PCR and immuno-histochemistry. The detection of genetic variants of four studied Micro-RNA tag-SNPs was done through PCR-RFLP assay and validated with DNA sequencing. We observed an increased risk ranged from 3-folds to 5-folds among symptomatic HCMV cases for mutant genotype of rs2910164 (crude OR=3.11, p=0.009 and adjusted OR=3.25, p=0.007), rs11614913 (crude OR=3.20, p=0.006 and adjusted OR=3.48, p=0.004) and rs3746444 (crude OR=4.91, p=0.002 and adjusted OR=5.28, p=0.002) tag-SNPs. Interestingly, all the tag-SNPs that were significant after multiple comparisons at a FDR of 5% in symptomatic HCMV cases remained significant even after bootstrap analysis, providing internal validation to these results. Multifactor Dimensionality Reduction (MDR) analysis revealed 5-folds increased risk for symptomatic HCMV cases under the four-factor model (rs2910164, rs2292832, rs11614913 and rs3746444). These results suggest that Micro-RNA gene variants of host-genome may affect clinical manifestation of symptomatic HCMV infection. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  9. Peptide inhibition of human cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Morris Cindy A

    2011-02-01

    Full Text Available Abstract Background Human cytomegalovirus (HCMV is the most prevalent congenital viral infection in the United States and Europe causing significant morbidity and mortality to both mother and child. HCMV is also an opportunistic pathogen in immunocompromised individuals, including human immunodeficiency virus (HIV- infected patients with AIDS, and solid organ and allogeneic stem cell transplantation recipients. Current treatments for HCMV-associated diseases are insufficient due to the emergence of drug-induced resistance and cytotoxicity, necessitating novel approaches to limit HCMV infection. The aim of this study was to develop therapeutic peptides targeting glycoprotein B (gB, a major glycoprotein of HCMV that is highly conserved across the Herpesviridae family, that specifically inhibit fusion of the viral envelope with the host cell membrane preventing HCMV entry and infection. Results Using the Wimley-White Interfacial Hydrophobicity Scale (WWIHS, several regions within gB were identified that display a high potential to interact with lipid bilayers of cell membranes and hydrophobic surfaces within proteins. The ability of synthetic peptides analogous to WWIHS-positive sequences of HCMV gB to inhibit viral infectivity was evaluated. Human foreskin fibroblasts (HFF were infected with the Towne-GFP strain of HCMV (0.5 MOI, preincubated with peptides at a range of concentrations (78 nm to 100 μM, and GFP-positive cells were visualized 48 hours post-infection by fluorescence microscopy and analyzed quantitatively by flow cytometry. Peptides that inhibited HCMV infection demonstrated different inhibitory concentration curves indicating that each peptide possesses distinct biophysical properties. Peptide 174-200 showed 80% inhibition of viral infection at a concentration of 100 μM, and 51% and 62% inhibition at concentrations of 5 μM and 2.5 μM, respectively. Peptide 233-263 inhibited infection by 97% and 92% at concentrations of 100

  10. Analysis of human cytomegalovirus using the polymerase chain reaction.

    Science.gov (United States)

    Mendelson, M

    2000-01-01

    As with numerous other branches of science, the study of human cytomegalovirus (HCMV) infection has been revolutionized by the polymerase chain reaction (PCR) method first devised by Mullis and Faloona (1). PCR allows the in vitro amplification of HCMV DNA sequences by the simultaneous primer extension of complementary DNA strands. Similarly, reverse transcription-PCR (RT-PCR) allows the study of targeted gene expression, by reverse transcription of RNA to complementary DNA (cDNA), followed by amplification of target DNA using predetermined primers. The PCR method is used in the clinical diagnosis of HCMV infection, particularly in the setting of transplantation medicine and in those patients infected with the human immunodeficiency virus (HIV). In addition, the advent of PCR and RT-PCR has transformed our understanding of the pathogenesis of HCMV infection, central to which is the definition of the sites of latency, the degree and type of gene expression within the latently infected cell, and the factors influencing both the maintenance of latency and reactivation of the virus during immunosuppression.

  11. Resistance to antivirals in human cytomegalovirus: mechanisms and clinical significance.

    Science.gov (United States)

    Pérez, J L

    1997-09-01

    Long term therapies needed for managing human cytomegalovirus (HCMV) infections in immunosupressed patients provided the background for the emergence of the resistance to antivirals active against HCMV. In addition, laboratory selected mutants have also been readily achieved. Both clinical and laboratory resistant strains share the same determinants of resistance. Ganciclovir resistance may be due to a few mutations in the HCMV UL97 gene and/or viral DNA pol gene, the former being responsible for about 70% of clinical resistant isolates. Among them, V464, V594, S595 and F595 are the most frequent mutations. Because of their less extensive clinical use, much less is known about resistance to foscarnet and cidofovir (formerly, HPMPC) but in both cases, it has been associated to mutations in the DNA pol. Ganciclovir resistant strains showing DNA pol mutations are cross-resistant to cidofovir and their corresponding IC50 are normally higher than those from strains harboring only mutations at the UL97 gene. To date, foscarnet resistance seems to be independent of both ganciclovir and cidofovir resistance.

  12. BST2/Tetherin enhances entry of human cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Kasinath Viswanathan

    2011-11-01

    Full Text Available Interferon-induced BST2/Tetherin prevents budding of vpu-deficient HIV-1 by tethering mature viral particles to the plasma membrane. BST2 also inhibits release of other enveloped viruses including Ebola virus and Kaposi's sarcoma associated herpesvirus (KSHV, indicating that BST2 is a broadly acting antiviral host protein. Unexpectedly however, recovery of human cytomegalovirus (HCMV from supernatants of BST2-expressing human fibroblasts was increased rather than decreased. Furthermore, BST2 seemed to enhance viral entry into cells since more virion proteins were released into BST2-expressing cells and subsequent viral gene expression was elevated. A significant increase in viral entry was also observed upon induction of endogenous BST2 during differentiation of the pro-monocytic cell line THP-1. Moreover, treatment of primary human monocytes with siRNA to BST2 reduced HCMV infection, suggesting that BST2 facilitates entry of HCMV into cells expressing high levels of BST2 either constitutively or in response to exogenous stimuli. Since BST2 is present in HCMV particles we propose that HCMV entry is enhanced via a reverse-tethering mechanism with BST2 in the viral envelope interacting with BST2 in the target cell membrane. Our data suggest that HCMV not only counteracts the well-established function of BST2 as inhibitor of viral egress but also employs this anti-viral protein to gain entry into BST2-expressing hematopoietic cells, a process that might play a role in hematogenous dissemination of HCMV.

  13. Chromatin-mediated regulation of cytomegalovirus gene expression.

    Science.gov (United States)

    Reeves, Matthew B

    2011-05-01

    Following primary infection, whether Human cytomegalovirus (HCMV) enters either the latent or lytic lifecycle is dependent on the phenotype of the cell type infected. Multiple cell types are permissive for lytic infection with HCMV whereas, in contrast, well characterized sites of latency are restricted to a very specific population of CD34+ cells resident in the bone marrow and the immature myeloid cells they give rise to. It is becoming increasingly clear that one of the mechanisms that promote HCMV latency involves the recruitment of histone proteins to the major immediate early promoter (MIEP) which are subject to post-translational modifications that promote a transcriptionally inactive state. Integral to this, is the role of cellular transcriptional repressors that interact with histone modifying enzymes that promote and maintain this repressed state during latency. Crucially, the chromatin associated with the MIEP is dynamically regulated-myeloid cell differentiation triggers the acetylation of histones bound to the MIEP which is concomitant with the reactivation of IE gene expression and re-entry into lytic infection. Interestingly, this dynamic regulation of the MIEP by chromatin structure in latency extends not only into lytic infection but also for the regulation of multiple viral promoters in all phases of infection. HCMV lytic infection is characterised by a timely and co-ordinated pattern of gene expression that now has been shown to correlate with active post-translational modification of the histones associated with early and late promoters. These effects are mediated by the major IE products (IE72 and IE86) which physically and functionally interact with histone modifying enzymes resulting in the efficient activation of viral gene expression. Thus chromatin appears to play an important role in gene regulation in all phases of infection. Furthermore, these studies are highly suggestive that an intrinsic cellular anti-viral response to incoming viral

  14. Human cytomegalovirus IE2 protein interacts with transcription activating factors

    Institute of Scientific and Technical Information of China (English)

    XU; Jinping(徐进平); YE; Linbai(叶林柏)

    2002-01-01

    The human cytomegalovirus (HCMV) IE86 Cdna was cloned into Pgex-2T and fusion protein GST-IE86 was expressed in E. Coli. SDS-PAGE and Western blot assay indicated that fusion protein GST-IE86 with molecular weight of 92 ku is soluble in the supernatant of cell lysate. Protein GST and fusion protein GST-IE86 were purified by affinity chromatography. The technology of co-separation and specific affinity chromatography was used to study the interactions of HCMV IE86 protein with some transcriptional regulatory proteins and transcriptional factors. The results indicated that IE86 interacts separately with transcriptional factor TFIIB and promoter DNA binding transcription trans-activating factors SP1, AP1 and AP2 to form a heterogenous protein complex. These transcriptional trans-activating factors, transcriptional factor and IE86 protein were adsorbed and retained in the affinity chromatography simultaneously. But IE86 protein could not interact with NF-Кb, suggesting that the function of IE86 protein that can interact with transcriptional factor and transcriptional trans-activating factors has no relevance to protein glycosylation. IE86 protein probably has two domains responsible for binding transcriptional trans-activating regulatory proteins and transcriptional factors respectively, thus activating the transcription of many genes. The interactions accelerated the assembly of the transcriptional initiation complexes.

  15. Two Polypyrimidine Tracts in Intron 4 of the Major Immediate Early Gene Are Critical for Gene Expression Switching from IE1 to IE2 and for Replication of Human Cytomegalovirus

    Science.gov (United States)

    Hou, Wangheng; Torres, Lilith; Cruz-Cosme, Ruth; Arroyo, Fernando; Irizarry, Luis; Luciano, Dalia; Márquez, Arturo; Rivera, Leslie L.; Sala, Antonio L.; Luo, Min-hua

    2016-01-01

    ABSTRACT The human cytomegalovirus (HCMV) major immediate early (MIE) gene is essential for viral replication. The most abundant products encoded by the MIE gene include IE1 and IE2. Genes of IE1 and IE2 share the MIE promoter (MIEP), the first 3 exons, and the first 2 introns. IE1 is expressed earlier than IE2 after CMV infection or MIE gene transfection. In this study, we identified 2 polypyrimidine (Py) tracts in intron 4 (between exons 4 and 5) that are responsible for transcriptional switching from IE1 to IE2. The first Py is important and the second one is essential for the splicing and expression of IE2. In searching for the mechanisms of MIE gene switching from IE1 to IE2, we found that the second Py was required for the IE2's fourth intron to bind to a splicing factor such as U2AF65, as determined by an RNA electrophoretic mobility shift assay and a chromatin immunoprecipitation (ChIP) assay, while the first Py enhanced the binding of U2AF65 with the intron. An HCMV BACmid with the second Py mutated failed to produce any virus, while the HCMV with the first Py mutated replicated with a defective phenotype. Furthermore, we designed a small RNA (scRNAPy) that is complementary to the intron RNA covering the two Pys. The scRNAPy interfered with the interaction of U2AF65 with the intron and repressed the IE2 expression. Therefore, our studies implied that IE2 gene splicing might be an anti-CMV target. IMPORTANCE CMV is a ubiquitous herpesvirus and a significant cause of disease and death in the immunocompromised and elderly. Insights into its gene regulation will provide clues in designing anti-CMV strategies. The MIE gene is one of the earliest genes of CMV and is essential for CMV replication. It is known that the MIE gene needs to be spliced to produce more than two proteins; however, how MIE gene splicing is regulated remains elusive. In the present studies, we identified two Pys in intron 4 and found that the first Py is important and the second is

  16. Growth in agarose of human cells infected with cytomegalovirus.

    Science.gov (United States)

    Lang, D J; Montagnier, L; Latarjet, R

    1974-08-01

    After infection by human cytomegalovirus (CMV), human diploid fibroblasts could grow in agarose medium for several generations. Clones of infected cells grew for weeks, although in every case they ultimately underwent lysis owing to the cytopathic effect of the virus. Virus was inoculated at high dilution and after UV irradiation in an effort to derive cells infected with noninfectious defective particles still capable of inducing cell stimulation. Dilute or irradiated virus occasionally yielded large colonies of replicating cells, although permanent transformation was not observed. One clone derived from UV-CMV-infected cells was passaged four times before undergoing lysis. During these passages the cells exhibited alterations in morphology and orientation.

  17. Effect of Human Cytomegalovirus Infection on Nerve Growth Factor Expression in Human Glioma U251 Cells

    Institute of Scientific and Technical Information of China (English)

    HAI-TAO WANG; BIN WANG; ZHI-JUN LIU; ZHI-QIANG BAI; LING LI; HAI-YAN LIU; DONG-MENG QIAN; ZHI-YONG YAN; XU-XIA SONG

    2009-01-01

    Objectives To explore the change of endogenic nerve growth factor (NGF) expression in human glioma cells infected with human cytomegalovirus (HCMV). Methods U251 cells were cultured in RPMI 1640 culture medium and infected with HCMV AD169 strain in vitro to establish a cell model of viral infection. Morphologic changes of U251 cells were observed under inverted microscope before and after infection with HCMV. Expression of NGF gene and protein of cells was detected by RT-PCR and Western blotting before and after infection with HCMV. Results The cytopathic effects of HCMV-infected cells appeared on day 5 after infection. However, differential NGF expression was evident on day 7. NGF expression was decreased significantly in U251 cells on day 7 after infection in comparison with control group (P<0.05). Conclusion HCMV can down-regulate endogenous NGF levels in human glioma cell line U251.

  18. Blastogenic response of human lymphocytes to early antigen(s) of human cytomegalovirus.

    OpenAIRE

    Waner, J L; Kong, N; Biano, S

    1983-01-01

    The lymphocytes of asymptomatic, seropositive donors demonstrated blastogenic responses to early antigens of human cytomegalovirus whether or not antibodies to early antigens were detectable. The lymphocytes of six of nine patients with active cytomegalovirus infections gave stimulation indexes of greater than or equal to 2.00 with antigens of productively infected cells, whereas only two patients demonstrated comparable stimulation indexes with early antigens. Four patients with stimulation ...

  19. Blastogenic response of human lymphocytes to early antigen(s) of human cytomegalovirus.

    OpenAIRE

    Waner, J L; Kong, N; Biano, S

    1983-01-01

    The lymphocytes of asymptomatic, seropositive donors demonstrated blastogenic responses to early antigens of human cytomegalovirus whether or not antibodies to early antigens were detectable. The lymphocytes of six of nine patients with active cytomegalovirus infections gave stimulation indexes of greater than or equal to 2.00 with antigens of productively infected cells, whereas only two patients demonstrated comparable stimulation indexes with early antigens. Four patients with stimulation ...

  20. Roles of host and viral microRNAs in human cytomegalovirus biology

    OpenAIRE

    Dhuruvasan, Kavitha; Sivasubramanian, Geetha; Pellett, Philip E.

    2010-01-01

    Human cytomegalovirus (HCMV) has a relatively large and complex genome, a protracted lytic replication cycle, and employs a strategy of replicational latency as part of its lifelong persistence in the infected host. An important form of gene regulation in plants and animals revolves around a type of small RNA known as microRNA (miRNA). miRNAs can serve as major regulators of key developmental pathways, as well as provide subtle forms of regulatory control. The human genome encodes over 900 mi...

  1. The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling

    DEFF Research Database (Denmark)

    Fraile-Ramos, A; Kledal, T N; Pelchen-Matthews, A

    2001-01-01

    Genes encoding chemokine receptor-like proteins have been found in herpes and poxviruses and implicated in viral pathogenesis. Here we describe the cellular distribution and trafficking of a human cytomegalovirus (HCMV) chemokine receptor encoded by the US28 gene, after transient and stable...... in the sequestration of host chemokines, thereby modulating antiviral immune responses. In addition, the distribution of US28 mainly on endosomal membranes may allow it to be incorporated into the viral envelope during HCMV assembly....

  2. Growth in Agarose of Human Cells Infected with Cytomegalovirus

    Science.gov (United States)

    Lang, David J.; Montagnier, Luc; Latarjet, Raymond

    1974-01-01

    After infection by human cytomegalovirus (CMV), human diploid fibroblasts could grow in agarose medium for several generations. Clones of infected cells grew for weeks, although in every case they ultimately underwent lysis owing to the cytopathic effect of the virus. Virus was inoculated at high dilution and after UV irradiation in an effort to derive cells infected with noninfectious defective particles still capable of inducing cell stimulation. Dilute or irradiated virus occasionally yielded large colonies of replicating cells, although permanent transformation was not observed. One clone derived from UV-CMV-infected cells was passaged four times before undergoing lysis. During these passages the cells exhibited alterations in morphology and orientation. Images PMID:4367907

  3. Dynamics of the cellular metabolome during human cytomegalovirus infection.

    Directory of Open Access Journals (Sweden)

    Joshua Munger

    2006-12-01

    Full Text Available Viral replication requires energy and macromolecular precursors derived from the metabolic network of the host cell. Despite this reliance, the effect of viral infection on host cell metabolic composition remains poorly understood. Here we applied liquid chromatography-tandem mass spectrometry to measure the levels of 63 different intracellular metabolites at multiple times after human cytomegalovirus (HCMV infection of human fibroblasts. Parallel microarray analysis provided complementary data on transcriptional regulation of metabolic pathways. As the infection progressed, the levels of metabolites involved in glycolysis, the citric acid cycle, and pyrimidine nucleotide biosynthesis markedly increased. HCMV-induced transcriptional upregulation of specific glycolytic and citric acid cycle enzymes mirrored the increases in metabolite levels. The peak levels of numerous metabolites during infection far exceeded those observed during normal fibroblast growth or quiescence, demonstrating that HCMV markedly disrupts cellular metabolic homeostasis and institutes its own specific metabolic program.

  4. Murine cytomegalovirus protein pM92 is a conserved regulator of viral late gene expression.

    Science.gov (United States)

    Chapa, Travis J; Perng, Yi-Cheih; French, Anthony R; Yu, Dong

    2014-01-01

    In this study, we report that murine cytomegalovirus (MCMV) protein pM92 regulates viral late gene expression during virus infection. Previously, we have shown that MCMV protein pM79 and its human cytomegalovirus (HCMV) homologue pUL79 are required for late viral gene transcription. Identification of additional factors involved is critical to dissecting the mechanism of this regulation. We show here that pM92 accumulated abundantly at late times of infection in a DNA synthesis-dependent manner and localized to nuclear viral replication compartments. To investigate the role of pM92, we constructed a recombinant virus SMin92, in which pM92 expression was disrupted by an insertional/frameshift mutation. During infection, SMin92 accumulated representative viral immediate-early gene products, early gene products, and viral DNA sufficiently but had severe reduction in the accumulation of late gene products and was thus unable to produce infectious progeny. Coimmunoprecipitation and mass spectrometry analysis revealed an interaction between pM92 and pM79, as well as between their HCMV homologues pUL92 and pUL79. Importantly, we showed that the growth defect of pUL92-deficient HCMV could be rescued in trans by pM92. This study indicates that pM92 is an additional viral regulator of late gene expression, that these regulators (represented by pM92 and pM79) may need to complex with each other for their activity, and that pM92 and pUL92 share a conserved function in CMV infection. pM92 represents a potential new target for therapeutic intervention in CMV disease, and a gateway into studying a largely uncharted viral process that is critical to the viral life cycle.

  5. Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells.

    Directory of Open Access Journals (Sweden)

    Leonardo D'Aiuto

    Full Text Available Human cytomegalovirus (HCMV infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs, neural progenitor cells (NPCs and neurons suggests that (i iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii Neural stem cells have impaired differentiation when infected by HCMV; (iii NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv most iPS-derived neurons are not permissive to HCMV infection; and (v infected neurons have impaired calcium influx in response to glutamate.

  6. The structure and function analysis of duplicate genes in Merlin strains of human cytomegalovirus%人巨细胞病毒Merlin株全基因组的重叠基因结构与功能分析

    Institute of Scientific and Technical Information of China (English)

    杨光; 李月琴; 邹奕; 张欣; 周天鸿

    2011-01-01

    Objective To determine the genes in which exist overlapping ORF in Merlin strains of human cytomegalovirus, and to reveal their structure and functional characteristics. Methods We search for overlapping genes of ORF in HCMV Merlin strains' whole genome by Bioinformatics methods, analyzing coding sequence CDS and starting and ending sites of ORF, calculating the length of CDS and ORF, analyzing the molecular weight of encoding protein, overlapping length and coding direction of protein, identifying overlapping sequences and overlapping types, analyzing the expression phase of overlapping genes and the function of proteins. Results There were 39 overlapping ORF genes in HCMV Merlin strains, accounting for 23% of total genes. Among these 39 genes, there are 13 IE genes, 9 E genes and 17 L genes, which can be divided into 16 contigs. There are 11 contigs when two genes overlap, with 3 contigs in three genes overlapping, and 2 contigs in four genes overlapping. The functions of overlapping genes are widely. Conclusion We found that there are a lot of complex overlapping genes in HCMV Merlin strains, which are basis for further study of the transcription and translation mechanism of overlapping genes.%目的 分析人巨细胞病毒(HCMV)merlin株全基因组存在ORF重叠的基因,揭示HCMV重叠基因的结构与功能特征.方法 应用生物信息学方法 搜索HCMV Merlin全基因组中的ORF重叠基因,分析HCMV merlin株重叠基因的编码序列CDS和ORF起止位点,计算CDS和ORF的长度,编码蛋白的相对分子质量,重叠长度,蛋白编码方向,确定重叠序列,重叠类型,分析重叠基因的表达时相和编码蛋白的功能.结果 HCMV merlin株存在39个重叠ORF的基因,占全基因总数的23%,39个ORF重叠基因之中有13个IE基因,9个E基因,17个L基因,可分为16个重叠群,2个基因重叠的有11个重叠群,3个基因相互重叠的有3个重叠群,4个基因相互重叠的有2个重叠群,重

  7. Control of immune ligands by members of a cytomegalovirus gene expansion suppresses natural killer cell activation

    Science.gov (United States)

    Fielding, Ceri A; Weekes, Michael P; Nobre, Luis V; Ruckova, Eva; Wilkie, Gavin S; Paulo, Joao A; Chang, Chiwen; Suárez, Nicolás M; Davies, James A; Antrobus, Robin; Stanton, Richard J; Aicheler, Rebecca J; Nichols, Hester; Vojtesek, Borek; Trowsdale, John; Davison, Andrew J; Gygi, Steven P

    2017-01-01

    The human cytomegalovirus (HCMV) US12 family consists of ten sequentially arranged genes (US12-21) with poorly characterized function. We now identify novel natural killer (NK) cell evasion functions for four members: US12, US14, US18 and US20. Using a systematic multiplexed proteomics approach to quantify ~1300 cell surface and ~7200 whole cell proteins, we demonstrate that the US12 family selectively targets plasma membrane proteins and plays key roles in regulating NK ligands, adhesion molecules and cytokine receptors. US18 and US20 work in concert to suppress cell surface expression of the critical NKp30 ligand B7-H6 thus inhibiting NK cell activation. The US12 family is therefore identified as a major new hub of immune regulation. DOI: http://dx.doi.org/10.7554/eLife.22206.001 PMID:28186488

  8. Human cytomegalovirus antigens in malignant gliomas as targets for adoptive cellular therapy

    Directory of Open Access Journals (Sweden)

    Daniel eLandi

    2014-11-01

    Full Text Available Malignant gliomas are the most common primary brain tumor in adults, with over 12,000 new cases diagnosed in the United States each year. Over the last decade, investigators have reliably identified human cytomegalovirus (HCMV proteins, nucleic acids, and virions in most high-grade gliomas, including glioblastoma (GBM. This discovery is significant because human cytomegalovirus gene products can be targeted by immune-based therapies.In this review, we describe the current level of understanding regarding the presence and role in pathogenesis of HCMV in GBM. We describe our success detecting and expanding HCMV-specific cytotoxic T lymphocytes to kill GBM cells and explain how these cells can be used as a platform for enhanced cellular therapies. We discuss alternative approaches that capitalize on HCMV infection to treat patients with HCMV-positive tumors. Adoptive cellular therapy for HCMV-positive GBM has been tried in a small number of patients with some benefit, but we reason why, to date, these approaches generally fail to generate long-term remission or cure. We conjecture how cellular therapy for GBM can be improved and describe the barriers that must be overcome to cure these patients.

  9. Modulation of HLA Expression in Human Cytomegalovirus Immune Evasion

    Institute of Scientific and Technical Information of China (English)

    Aifen Lin; Huihui Xu; Weihua Yan

    2007-01-01

    Human cytomegalovirus (hCMV) has evolved multiple mechanisms to escape the host immune recognition and innate or adaptive immune responses. Among them, hCMV has developed strategies to modulate the expression and/or function of human leukocyte antigens (HLAs), including by encoding series of infection stage-dependent hCMV proteins to detain and destroy the expression of HLA molecules on the surface of infected cells. This disturbs the antigen presentation and processing, by encoding MHC class Ⅰ homologues or selective up-regulation of particular HLA class Ⅰ molecules binding to NK cell inhibitory receptors, and by encoding specific ligand antagonists to interfere with NK cell activating receptors. Here we discussed the molecular mechanisms utilized by the hCMV to alter the formation, transportation and expression of HLA antigens on the infected cell surface. The knowledge about hCMV modulating HLA expression could benefit us to further understand the pathogenesis of viral diseases and may eventually develop novel effective immunotherapies to counteract viral infections and viral associated diseases.

  10. The oncogenic potential of human cytomegalovirus and breast cancer.

    Directory of Open Access Journals (Sweden)

    Georges eHerbein

    2014-08-01

    Full Text Available Breast cancer is among the leading causes of cancer-related death among women. The vast majority of breast cancers are carcinomas that originate from cells lining the milk-forming ducts of the mammary gland. Numerous articles indicate that breast tumors exhibit diverse phenotypes depending on their distinct physiopathological signatures, clinical courses and therapeutic possibilities. The human cytomegalovirus (HCMV is a multifaceted highly host specific betaherpesvirus that is regarded as asymptomatic or mildly pathogenic virus in immunocompetent host. HCMV may cause serious in utero infections as well as acute and chronic complications in immunocompromised individual. The involvement of HCMV in late inflammatory complications underscores its possible role in inflammatory diseases and cancer. HCMV targets a variety of cell types in vivo, including macrophages, epithelial cells, endothelial cells, fibroblasts, stromal cells, neuronal cells, smooth muscle cells, and hepatocytes. HCMV can be detected in the milk after delivery and thereby HCMV could spread to adjacent mammary epithelial cells. HCMV also infects macrophages and induces an atypical M1/M2 phenotype, close to the tumor associated macrophage phenotype, which is associated with the release of cytokines involved in cancer initiation or promotion and breast cancer of poor prognosis. HCMV antigens and DNA have been detected in tissue biopsies of breast cancers and elevation in serum HCMV IgG antibody levels has been reported to precede the development of breast cancer in some women. In this review, we will discuss the potential role of HCMV in the initiation and progression of breast cancer.

  11. Evidence that neomycin inhibits human cytomegalovirus infection of fibroblasts.

    Science.gov (United States)

    Lobert, P E; Hober, D; Delannoy, A S; Wattré, P

    1996-01-01

    The effect of phosphoinositide-binding aminoglycosides, such as neomycin, gentamicin and streptomycin, on human cytomegalovirus (HCMV) infection of human fibroblasts MRC-5 was studied. The inhibition of HCMV infection was obtained with all of these molecules but neomycin was more effective than the others. We showed that the inoculation of the cells with cell-free viral suspension in presence of neomycin concentrations above 5 mM at 37 degrees C, inhibited more than 98% the HCMV infection. However, the preincubation of the fibroblasts with neomycin at 4 degrees C, before the removal of the drug and the inoculation of the cells, induced only a 30% decrease in the number of infected cells. Addition of neomycin after the HCMV-binding at 4 degrees C or the infection of the cells was less efficient to inhibit HCMV infection than the standard incubation of neomycin during inoculation of the fibroblasts. Indeed, 1 hour after the inoculation of the cells at 37 degrees C, neomycin still inhibited HCMV infection, but 4 hours after the inoculation, this drug had no effect on HCMV infection. Our findings demonstrated that neomycin must be present at the time of infection in order to exert a full inhibiting effect. The effect of neomycin on the HCMV infection was almost immediate upon the addition of the drug (binding and/or internalization) and after the virus internalization (inhibition of immediate-early events). We suggest that neomycin and other aminoglycoside antibiotics may interact with HCMV glycoproteins for binding to similar structural features of cell surface heparan sulfate proteoglycans and may inhibit HCMV infection in fibroblasts by disrupting phosphoinositide-mediated events in the cells.

  12. Crystal Structure of the Human Cytomegalovirus Glycoprotein B.

    Directory of Open Access Journals (Sweden)

    Heidi G Burke

    2015-10-01

    Full Text Available Human cytomegalovirus (HCMV, a dsDNA, enveloped virus, is a ubiquitous pathogen that establishes lifelong latent infections and caused disease in persons with compromised immune systems, e.g., organ transplant recipients or AIDS patients. HCMV is also a leading cause of congenital viral infections in newborns. Entry of HCMV into cells requires the conserved glycoprotein B (gB, thought to function as a fusogen and reported to bind signaling receptors. gB also elicits a strong immune response in humans and induces the production of neutralizing antibodies although most anti-gB Abs are non-neutralizing. Here, we report the crystal structure of the HCMV gB ectodomain determined to 3.6-Å resolution, which is the first atomic-level structure of any betaherpesvirus glycoprotein. The structure of HCMV gB resembles the postfusion structures of HSV-1 and EBV homologs, establishing it as a new member of the class III viral fusogens. Despite structural similarities, each gB has a unique domain arrangement, demonstrating structural plasticity of gB that may accommodate virus-specific functional requirements. The structure illustrates how extensive glycosylation of the gB ectodomain influences antibody recognition. Antigenic sites that elicit neutralizing antibodies are more heavily glycosylated than those that elicit non-neutralizing antibodies, which suggest that HCMV gB uses glycans to shield neutralizing epitopes while exposing non-neutralizing epitopes. This glycosylation pattern may have evolved to direct the immune response towards generation of non-neutralizing antibodies thus helping HCMV to avoid clearance. HCMV gB structure provides a starting point for elucidation of its antigenic and immunogenic properties and aid in the design of recombinant vaccines and monoclonal antibody therapies.

  13. Transcription pattern of UL131A-128 mRNA in clinical strains of human cytomegalovirus

    Indian Academy of Sciences (India)

    Zhengrong Sun; Gaowei Ren; Yanping Ma; Ning Wang; Yaohua Ji; Ying Qi; Mali Li; Rong He; Qiang Ruan

    2010-09-01

    Human cytomegalovirus (HCMV) mRNA was obtained from human embryonic lung fibroblast cells infected by HCMV clinical strains from urine samples of infants at different kinetic periods. The cDNA of UL131A-128 mRNAs was amplified using reverse transcription-polymerase chain reaction (RT-PCR) and analysed by sequencing. Mean while, clones containing UL131A-128 transcripts in an HCMV cDNA library of a clinical strain were selected and sequenced. It was demonstrated that UL131A-128 mRNA was expressed with immediately early, early and late kinetics. Sequences obtained by RT-PCR showed that the UL131A gene consisted of two exons and the coding region of the UL130 gene was not interrupted by any intron in the region as reported earlier. However, the transcript of the UL128 gene showed two patterns: one pattern consisted of three exons as reported earlier; the other contained the three exons and also the first intron. Moreover, the above characteristics of UL131A-128 spliced transcripts were confirmed by the sequences of clones selected from the HCMV cDNA library. Our results demonstrated that the UL131A, UL130 and UL128 genes were transcribed with the 3′-coterminal, although the initiation points of their mRNA may be different. The variation in the transcripts found in our study indicated the complex nature of transcription of UL131A-128 genes in clinical strains of HCMV.

  14. The association of killer cell immunoglobulin like receptor gene polylmorphism with cytomegalovirus infection after hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    吴小津

    2013-01-01

    Objective To explore the influence of the killer cell immunoglobulin like receptor(KIR)gene polymorphism on cytomegalovirus(CMV)infection and pathogenesis after hematopoietic stem cell transplantation(HSCT)

  15. Bioactive molecules released from cells infected with the Human Cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Anna eLuganini

    2016-05-01

    Full Text Available Following primary infection in humans, the Human Cytomegalovirus (HCMV persists in a latent state throughout the host’s lifetime despite a strong and efficient immune response. If the host experiences some form of immune dysregulation, such as immunosuppression or immunodeficiency, HCMV reactivates, thereby emerging from latency. Thus, in the absence of effective functional immune responses, as occurs in immunocompromised or immunoimmature individuals, both HCMV primary infections and reactivations from latency can cause significant morbidity and mortality. However, even in immunocompetent hosts, HCMV represents a relevant risk factor for the development of several chronic inflammatory diseases and certain forms of neoplasia. HCMV infection may shift between the lytic and latent state, regulated by a delicate and intricate balance between virus-mediated immunomodulation and host immune defenses. Indeed, HCMV is a master in manipulating innate and adaptive host defense pathways, and a large portion of its genome is devoted to encoding immunomodulatory proteins; such proteins may thus represent important virulence determinants. However, the pathogenesis of HCMV-related diseases is strengthened by the activities of bioactive molecules, of both viral and cellular origin, that are secreted from infected cells and collectively named as the secretome. Here, we review the state of knowledge on the composition and functions of HCMV-derived secretomes. In lytic infections of fibroblasts and different types of endothelial cells, the majority of HCMV-induced secreted proteins act in a paracrine fashion to stimulate the generation of an inflammatory microenvironment around infected cells; this may lead to vascular inflammation and angiogenesis that, in turn, foster HCMV replication and its dissemination through host tissues. Conversely, the HCMV secretome derived from latently infected hematopoietic progenitor cells induces an immunosuppressive

  16. Roles of host and viral microRNAs in human cytomegalovirus biology

    Science.gov (United States)

    Dhuruvasan, Kavitha; Sivasubramanian, Geetha; Pellett, Philip E.

    2011-01-01

    Human cytomegalovirus (HCMV) has a relatively large and complex genome, a protracted lytic replication cycle, and employs a strategy of replicational latency as part of its lifelong persistence in the infected host. An important form of gene regulation in plants and animals revolves around a type of small RNA known as microRNA (miRNA). miRNAs can serve as major regulators of key developmental pathways, as well as provide subtle forms of regulatory control. The human genome encodes over 900 miRNAs, and miRNAs are also encoded by some viruses, including HCMV, which encodes at least 14 miRNAs. Some of the HCMV miRNAs are known to target both viral and cellular genes, including important immunomodulators. In addition to expressing their own miRNAs, infections with some viruses, including HCMV, can result in changes in the expression of cellular miRNAs that benefit virus replication. In this review, we summarize the connections between miRNAs and HCMV biology. We describe the nature of miRNA genes, miRNA biogenesis and modes of action, methods for studying miRNAs, HCMV-encoded miRNAs, effects of HCMV infection on cellular miRNA expression, roles of miRNAs in HCMV biology, and possible HCMV-related diagnostic and therapeutic applications of miRNAs. PMID:20969901

  17. Human Leukocyte Antigen Alleles and Cytomegalovirus Infection After Renal Transplantation

    Directory of Open Access Journals (Sweden)

    Futohi

    2015-11-01

    Full Text Available Background Several studies have been conducted on the relationship between a number of human leukocyte antigen (HLA alleles and cytomegalovirus infection (CMV, in kidney transplant recipients, after transplantation. However, only a limited number of HLAs have been investigated, so far, and the results have been contradictory. Objectives This study aimed to investigate the relationship between 59 HLA alleles and the CMV infection, in transplant recipients, after kidney transplantation. Patients and Methods This retrospective cohort study was conducted on 200 patients, receiving a kidney transplant, in Baqiyatallah Hospital, in Tehran, during 2013. Throughout a one-year follow-up of kidney transplant recipients, in case of detecting the CMV antigen in patients’ blood, at any time, they were placed in the group of patients with CMV infection, whereas, if no CMV-specific antigen was developed, over a year, patients were placed in the group of patients without CMV infection, after transplantation. This study investigated the relationship between CMV infection in kidney transplant recipients and 59 HLA alleles, including 14 HLA-A, 28 HLA-B, and 17 HLA-DRB1 cases. Results Of all participants, 104 patients (52% were diagnosed with CMV infection. There was no significant difference between the two groups, with and without CMV infection, in terms of patient’s characteristics. The CMV infection, in patients receiving a transplanted organ from deceased donor, was significantly more prevalent than in those receiving kidney transplant from living donor (63% vs. 39%, respectively, P = 0.001. Recipients with HLA-B44 were more infected with CMV compared with patients without this allele (80% vs. 50%, respectively, P = 0.024; on the contrary, kidney recipients with HLA-DRB1-1 were less infected with CMV than patients without this allele (31% vs. 55%, respectively, P = 0.020. There was no significant relationship between CMV infection and other HLA alleles

  18. Viral Interleukin-10 Expressed by Human Cytomegalovirus during the Latent Phase of Infection Modulates Latently Infected Myeloid Cell Differentiation ▿ †

    OpenAIRE

    Avdic, Selmir; Cao, John Z.; Cheung, Allen K.L.; Abendroth, Allison; Slobedman, Barry

    2011-01-01

    The human cytomegalovirus UL111A gene is expressed during latent and productive infections, and it codes for homologs of interleukin-10 (IL-10). We examined whether viral IL-10 expressed during latency altered differentiation of latently infected myeloid progenitors. In comparison to infection with parental virus or mock infection, latent infection with a virus in which the gene encoding viral IL-10 has been deleted upregulated cytokines associated with dendritic cell (DC) formation and incre...

  19. Genetic variation in the UL133 gene in clinical strains of the human cytomegalovirus%人巨细胞病毒临床株UL133基因序列遗传变异分析

    Institute of Scientific and Technical Information of China (English)

    郭刚强; 叶思思; 杨敏; 叶璐璐; 林刻智; 李宝青; 张丽芳; 薛向阳

    2016-01-01

    目的 研究人巨细胞病毒(HCMV)临床感染株的UL133基因序列特征. 方法 采集HCMV-DNA阳性者的临床标本,PCR扩增UL133基因全序列,阳性扩增产物克隆到pEASYTM载体后进行序列测定,结合来自于NCBI数据库的15条序列进行UL133基因多态性分析. 结果 获得20例HCMV感染者的UL133全长序列.多态性分析显示HCMV临床株UL133基因核苷酸变异率为0~9.7%,氨基酸变异率为0~40.2%;不同感染者UL133序列5′端的第32-45位发生了相对集中的非同义突变,其他部分序列较少出现氨基酸缺失及错义突变.其中1例临床感染者UL133序列在163-166位核苷酸出现移码突变.综合NCBI数据库的15株序列分析显示,UL133序列分为G1、G2、G3、G4、G5、G6等6个型,但未发现基因型与HCMV感染的临床表现具有显著关联性.编码蛋白翻译后修饰位点包括酪蛋白激酶磷酸化位点(CKP),蛋白激酶C位点(PKC)以及NLS_BP核定位信号(NLS_BP).与Toledo株相比,有1株发生移码突变,其他临床株UL133基因编码产物翻译后修饰位点相对保守. 结论 HCMV UL133基因核苷酸序列及其编码的氨基酸序列高度保守,但仍具有一定的多态性.这种多态性与HCMV感染临床症状的关系尚待进一步研究.%Objective To examine the features of the sequence of the UL133 gene in clinical strains of the human cytomegalovirus (HCMV).Methods A polymerase chain reaction (PCR) was used to amplify the complete sequence of the UL133 gene from clinical samples with HCMV and that sequence was then cloned into a pEASYTM vector for further sequencing.The features of the UL133 gene were further analyzed in conjunction with 15 sequences from the NCBI database.Results Twenty complete sequences of the UL133 gene were obtained from clinical samples with HCMV.Polymorphism analysis indicated that the UL133 gene had mutations in 0-9.7% of its nucleotides and mutations in 0 40.2% of its amino acids.Non synonymous

  20. Infection of human endothelium in vitro by cytomegalovirus causes enhanced expression of purinergic receptors : A potential virus escape mechanism?

    NARCIS (Netherlands)

    Zandberg, Mariet; van Son, Willem J.; Harmsen, Martin C.; Bakker, Winston W.

    2007-01-01

    Background. Human cytomegalovirus (CMV) uses different strategies to escape from human host defense reactions. Previously we have observed that infection of endothelial cells with CMV in vitro leads to enhanced activity of endothelial ectonucleotidases. These ectoenzymes are responsible for hydrolys

  1. Infection of human endothelium in vitro by cytomegalovirus causes enhanced expression of purinergic receptors : A potential virus escape mechanism?

    NARCIS (Netherlands)

    Zandberg, Mariet; van Son, Willem J.; Harmsen, Martin C.; Bakker, Winston W.

    2007-01-01

    Background. Human cytomegalovirus (CMV) uses different strategies to escape from human host defense reactions. Previously we have observed that infection of endothelial cells with CMV in vitro leads to enhanced activity of endothelial ectonucleotidases. These ectoenzymes are responsible for

  2. 76 FR 69743 - The Development and Evaluation of Human Cytomegalovirus Vaccines; Public Workshop

    Science.gov (United States)

    2011-11-09

    ... Vaccines; Public Workshop AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public workshop. The... Prevention, and the National Vaccine Program Office are announcing a public workshop entitled ``The Development and Evaluation of Human Cytomegalovirus Vaccines.'' The purpose of the public workshop is to...

  3. Susceptibility of Human Pancreatic beta Cells for Cytomegalovirus Infection and the Effects on Cellular Immunogenicity

    NARCIS (Netherlands)

    Smelt, M.J.; Faas, M.M.; de Haan, Bart; Draijer, C.; Hugenholtz, G.C.G.; de Haan, A.; Engelse, M.A.; de Koning, E.J.P.; de Vos, P.

    2012-01-01

    Objectives: Human cytomegalovirus (HCMV) infection has been suggested to be a causal factor in the development of type 1 diabetes, posttransplantation diabetes, and the failure of islet allografts. This effect of CMV has been interpreted as an indirect effect on the immune system rather than direct

  4. Molecular profiling of cytomegalovirus-induced human CD8+ T cell differentiation

    NARCIS (Netherlands)

    Hertoghs, K.M.L.; Moerland, P.D.; van Stijn, A.; Remmerswaal, E.B.M.; Yong, S.L.; van de Berg, P.J.E.J.; Ham, S.M.; Baas, F.; ten Berge, R.J.M.; van Lier, R.A.W.

    2010-01-01

    CD8+ T cells play a critical role in the immune response to viral pathogens. Persistent human cytomegalovirus (HCMV) infection results in a strong increase in the number of virus-specific, quiescent effector-type CD8+ T cells with constitutive cytolytic activity, but the molecular pathways involved

  5. 不孕女性中人巨细胞病毒包膜糖蛋白B基因的分型%Genotypes of human cytomegalovirus envelope glycoprotein B gene in infertile women

    Institute of Scientific and Technical Information of China (English)

    郑静; 卓越; 李彩玉; 孙大康; 胡凤爱; 倪娜

    2012-01-01

    目的:探讨不孕女性中人巨细胞病毒(HCMV)感染流行株的包膜糖蛋白B(gB)基因型分布及其与不孕的相关性.方法:采用酶联免疫吸附试验(ELISA)检测300例女性不孕患者血清中HCMV-IgM抗体,ELISA阳性的患者采集晨尿接种于人胚肺成纤维细胞(HELF),提取细胞病变(CPE)阳性培养液中的病毒DNA,以巢式PCR (nest PCR)法扩增HCMVgB基因,利用限制性核酸内切酶HinfI、RsaI对HCMV gB基因进行限制性片段长度多态性(RFLP)分析判断基因型别;随机抽取11例送检测序,测序结果使用Clustal X软件与GenBank标准病毒株进行序列比对,用MEGA4.1构建核苷酸序列的基因树.结果:300例女性不孕患者中HCMV-IgM抗体阳性45例,阳性率为15.0%.45例患者晨尿接种HELF细胞,观察1月后检测到的病毒阳性37例,阳性率为12.3%.37例病毒阳性患者中最常见的基因型为gB 1型25例(67.6%),其次为gB 3型7例(18.9%)和gB 2型5例(13.5%),没有检测到gB4基因型.测序结果与GenBank标准病毒株HCMVADl69和Towne进行序列比对后,用MEGA4.1成功构建基因树.结论:女性不孕症的发生与HCMV感染有明显相关性,HCMV感染导致的不孕中最常见的gB基因型为gB 1型,其次是gB 3、gB 2型,未检测到gB 4型.%Objective: To explore the distribution of human cytomegalovirus (HCMV) envelope glycoprotein B (gB) genotypes in infertile human and its correlation with infertility. Methods: ELISA was used to detect HCMV - IgM antibody in serum samples of 300 infertile women, the morning urine samples of ELISA positive patients were obtained to inoculate human embryonic lung fibroblasts (HELF) , HCMV DNA was abstracted from cytopathic positive culture solution, nest PCR was used to amplify HCMV gB gene, restriction fragment length polymorphism (RFLP) was performed by restriction endonucleases Hinf I and Rsa 1 to analyze and determine genotypes; 11 cases were randomly selected to conduct gene sequencing, then the

  6. Human cytomegalovirus increases HUVEC sensitivity to thrombin and modulates expression of thrombin receptors.

    Science.gov (United States)

    Popović, Milan; Paskas, Svetlana; Zivković, Maja; Burysek, Ladislav; Laumonnier, Yves

    2010-08-01

    Human cytomegalovirus (HCMV) establishes a life-long persistent infection. HCMV infection could be associated with chronic inflammatory diseases, such as cardiovascular disease and atherosclerosis. Here we observed that in HCMV (AD-169) pre-exposed human umbilical vein endothelial cells (HUVEC), thrombin-induced expression of IL-1alpha and M-CSF is markedly enhanced compared to the un-exposed cells. Study of the expression of thrombin receptor genes in HUVEC showed that HCMV triggered a time- and concentration-dependent expression of the thrombin receptors PAR1, PAR3 and PAR4 at the mRNA level. Induction of PAR1 and PAR3 mRNA expression is due to transcriptional activation of their promoters as shown by gene reporter assay. Furthermore, the virus induced expression of PAR1 and PAR3 but not PAR4 proteins, as analyzed by Western immunoblotting. However, flow cytometric analysis revealed that only PAR3, expressed at very low level in control HUVEC, is induced at the surface during the exposure to the virus. Our data suggest that although exposure to HCMV induces a minor increase of cell-surface receptors expression, it does make endothelial cells more responsive to additional thrombin stimulation.

  7. Regulation of Human Cytomegalovirus Transcription in Latency: Beyond the Major Immediate-Early Promoter

    Directory of Open Access Journals (Sweden)

    John Sinclair

    2013-06-01

    Full Text Available Lytic infection of differentiated cell types with human cytomegalovirus (HCMV results in the temporal expression of between 170–200 open reading frames (ORFs. A number of studies have demonstrated the temporal regulation of these ORFs and that this is orchestrated by both viral and cellular mechanisms associated with the co-ordinated recruitment of transcription complexes and, more recently, higher order chromatin structure. Importantly, HCMV, like all herpes viruses, establishes a lifelong latent infection of the host—one major site of latency being the undifferentiated haematopoietic progenitor cells resident in the bone marrow. Crucially, the establishment of latency is concomitant with the recruitment of cellular enzymes that promote extensive methylation of histones bound to the major immediate early promoter. As such, the repressive chromatin structure formed at the major immediate early promoter (MIEP elicits inhibition of IE gene expression and is a major factor involved in maintenance of HCMV latency. However, it is becoming increasingly clear that a distinct subset of viral genes is also expressed during latency. In this review, we will discuss the mechanisms that control the expression of these latency-associated transcripts and illustrate that regulation of these latency-associated promoters is also subject to chromatin mediated regulation and that the instructive observations previously reported regarding the negative regulation of the MIEP during latency are paralleled in the regulation of latent gene expression.

  8. Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation.

    Science.gov (United States)

    Fielding, Ceri A; Aicheler, Rebecca; Stanton, Richard J; Wang, Eddie C Y; Han, Song; Seirafian, Sepehr; Davies, James; McSharry, Brian P; Weekes, Michael P; Antrobus, P Robin; Prod'homme, Virginie; Blanchet, Fabien P; Sugrue, Daniel; Cuff, Simone; Roberts, Dawn; Davison, Andrew J; Lehner, Paul J; Wilkinson, Gavin W G; Tomasec, Peter

    2014-05-01

    NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1-6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12-US21; a genetic arrangement, which is suggestive of an 'accordion' expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA

  9. Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation.

    Directory of Open Access Journals (Sweden)

    Ceri A Fielding

    2014-05-01

    Full Text Available NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC A andB, and UL16-binding proteins (ULBP1-6 induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV have aided both the identification and characterization of NKG2D ligands (NKG2DLs. HCMV immediate early (IE gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12-US21; a genetic arrangement, which is suggestive of an 'accordion' expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US

  10. Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation.

    Directory of Open Access Journals (Sweden)

    Ceri A Fielding

    2014-05-01

    Full Text Available NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC A andB, and UL16-binding proteins (ULBP1-6 induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV have aided both the identification and characterization of NKG2D ligands (NKG2DLs. HCMV immediate early (IE gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12-US21; a genetic arrangement, which is suggestive of an 'accordion' expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US

  11. Host protein Snapin interacts with human cytomegalovirus pUL130 and affects viral DNA replication.

    Science.gov (United States)

    Wang, Guili; Ren, Gaowei; Cui, Xin; Lu, Zhitao; Ma, Yanpin; Qi, Ying; Huang, Yujing; Liu, Zhongyang; Sun, Zhengrong; Ruan, Qiang

    2016-06-01

    The interplay between the host and Human cytomegalovirus (HCMV) plays a pivotal role in the outcome of an infection. HCMV growth in endothelial and epithelial cells requires expression of viral proteins UL128, UL130, and UL131 proteins (UL128-131), of which UL130 is the largest gene and the only one that is not interrupted by introns.Mutation of the C terminus of the UL130 protein causes reduced tropism of endothelial cells (EC). However, very few host factors have been identified that interact with the UL130 protein. In this study, HCMV UL130 protein was shown to directly interact with the human protein Snapin in human embryonic kidney HEK293 cells by Yeast two-hybrid screening, in vitro glutathione S-transferase (GST) pull-down, and co-immunoprecipitation. Additionally, heterologous expression of protein UL130 revealed co-localization with Snapin in the cell membrane and cytoplasm of HEK293 cells using fluorescence confocal microscopy. Furthermore, decreasing the level of Snapin via specific small interfering RNAs decreased the number of viral DNA copies and titer inHCMV-infected U373-S cells. Taken together, these results suggest that Snapin, the pUL130 interacting protein, has a role in modulating HCMV DNA synthesis.

  12. Host protein Snapin interacts with human cytomegalovirus pUL130 and affects viral DNA replication

    Indian Academy of Sciences (India)

    Guili Wang; Gaowei Ren; Xin Cui; Yanpin Ma; Ying Qi; Yujing Huang; Zhongyang Liu; Zhengrong Sun; Qiang Ruan

    2016-06-01

    The interplay between the host and Human cytomegalovirus (HCMV) plays a pivotal role in the outcome of an infection. HCMV growth in endothelial and epithelial cells requires expression of viral proteins UL128, UL130, and UL131 proteins (UL128-131), of which UL130 is the largest gene and the only one that is not interrupted by introns. Mutation of the C terminus of the UL130 protein causes reduced tropism of endothelial cells (EC). However, very few host factors have been identified that interact with the UL130 protein. In this study, HCMV UL130 protein was shown to directly interact with the human protein Snapin in human embryonic kidney HEK293 cells by Yeast two-hybrid screening, in vitro glutathione S-transferase (GST) pull-down, and co-immunoprecipitation. Additionally, heterologous expression of protein UL130 revealed co-localization with Snapin in the cell membrane and cytoplasm of HEK293 cells using fluorescence confocal microscopy. Furthermore, decreasing the level of Snapin via specific small interfering RNAs decreased the number of viral DNA copies and titer in HCMV-infected U373-S cells. Taken together, these results suggest that Snapin, the pUL130 interacting protein, has a role in modulating HCMV DNA synthesis.

  13. RNase P Ribozymes Inhibit the Replication of Human Cytomegalovirus by Targeting Essential Viral Capsid Proteins.

    Science.gov (United States)

    Yang, Zhu; Reeves, Michael; Ye, Jun; Trang, Phong; Zhu, Li; Sheng, Jingxue; Wang, Yu; Zen, Ke; Wu, Jianguo; Liu, Fenyong

    2015-06-24

    An engineered RNase P-based ribozyme variant, which was generated using the in vitro selection procedure, was used to target the overlapping mRNA region of two proteins essential for human cytomegalovirus (HCMV) replication: capsid assembly protein (AP) and protease (PR). In vitro studies showed that the generated variant, V718-A, cleaved the target AP mRNA sequence efficiently and its activity was about 60-fold higher than that of wild type ribozyme M1-A. Furthermore, we observed a reduction of 98%-99% in AP/PR expression and an inhibition of 50,000 fold in viral growth in cells with V718-A, while a 75% reduction in AP/PR expression and a 500-fold inhibition in viral growth was found in cells with M1-A. Examination of the antiviral effects of the generated ribozyme on the HCMV replication cycle suggested that viral DNA encapsidation was inhibited and as a consequence, viral capsid assembly was blocked when the expression of AP and PR was inhibited by the ribozyme. Thus, our study indicates that the generated ribozyme variant is highly effective in inhibiting HCMV gene expression and blocking viral replication, and suggests that engineered RNase P ribozyme can be potentially developed as a promising gene-targeting agent for anti-HCMV therapy.

  14. Infected T98G glioblastoma cells support human cytomegalovirus reactivation from latency.

    Science.gov (United States)

    Cheng, Shuang; Jiang, Xuan; Yang, Bo; Wen, Le; Zhao, Fei; Zeng, Wen-Bo; Liu, Xi-Juan; Dong, Xiao; Sun, Jin-Yan; Ming, Ying-Zi; Zhu, Hua; Rayner, Simon; Tang, Qiyi; Fortunato, Elizabeth; Luo, Min-Hua

    2017-10-01

    T98G cells have been shown to support long-term human cytomegalovirus (HCMV) genome maintenance without infectious virus release. However, it remains unclear whether these viral genomes could be reactivated. To address this question, a recombinant HCMV (rHCMV) containing a GFP gene was used to infect T98G cells, and the infected cells absent of infectious virus production were designated T98G-LrV. Upon dibutyryl cAMP plus IBMX (cAMP/IBMX) treatment, a serial of phenomena were observed, including GFP signal increase, viral genome replication, lytic genes expression and infectious viruses release, indicating the reactivation of HCMV in T98G-LrV cells from a latent status. Mechanistically, HCMV reactivation in the T98G-LrV cells induced by cAMP/IBMX was associated with the PKA-CREB signaling pathway. These results demonstrate that HCMV was latent in T98G-LrV cells and could be reactivated. The T98G-LrV cells represent an effective model for investigating the mechanisms of HCMV reactivation from latency in the context of neural cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Human Cytomegalovirus US28 Is Important for Latent Infection of Hematopoietic Progenitor Cells

    Science.gov (United States)

    Humby, Monica S.

    2015-01-01

    ABSTRACT Human cytomegalovirus (HCMV) resides latently in hematopoietic progenitor cells (HPCs). During latency, only a subset of HCMV genes is transcribed, including one of the four virus-encoded G protein-coupled receptors (GPCRs), US28. Although US28 is a multifunctional lytic protein, its function during latency has remained undefined. We generated a panel of US28 recombinant viruses in the bacterial artificial chromosome (BAC)-derived clinical HCMV strain TB40/E-mCherry. We deleted the entire US28 open reading frame (ORF), deleted all four of the viral GPCR ORFs, or deleted three of the HCMV GPCRs but not the US28 wild-type protein. Using these recombinant viruses, we assessed the requirement for US28 during latency in the Kasumi-3 in vitro latency model system and in primary ex vivo-cultured CD34+ HPCs. Our data suggest that US28 is required for latency as infection with viruses lacking the US28 ORF alone or in combination with the remaining HCMV-encoded GPCR results in transcription from the major immediate early promoter, the production of extracellular virions, and the production of infectious virus capable of infecting naive fibroblasts. The other HCMV GPCRs are not required for this phenotype as a virus expressing only US28 but not the remaining virus-encoded GPCRs is phenotypically similar to that of wild-type latent infection. Finally, we found that US28 copurifies with mature virions and is expressed in HPCs upon virus entry although its expression at the time of infection does not complement the US28 deletion latency phenotype. This work suggests that US28 protein functions to promote a latent state within hematopoietic progenitor cells. IMPORTANCE Human cytomegalovirus (HCMV) is a widespread pathogen that, once acquired, remains with its host for life. HCMV remains latent, or quiescent, in cells of the hematopoietic compartment and upon immune challenge can reactivate to cause disease. HCMV-encoded US28 is one of several genes expressed during

  16. Activation of PPAR{gamma} by Human Cytomegalovirus for de novo Replication Impairs Migration and Invasiveness of Cytotrophoblast from Early Placenta

    DEFF Research Database (Denmark)

    Rauwel, Benjamin; Mariamé, Bernard; Martin, Hélène;

    2010-01-01

    Human cytomegalovirus (HCMV) contributes to pathogenic processes in immuno-suppressed individuals, in fetuses and in neonates. In the present report by using reporter gene activation assays and confocal microscopy in the presence of specific antagonist we show for the first time that HCMV infection...... and chromatin immunoprecipitation assays. Due to the key role of PPARgamma in placentation and its specific trophoblast expression within the human placenta, we then provided evidence that by activating PPARgamma human cytomegalovirus dramatically impaired early human trophoblast migration and invasiveness......, as assessed by using well-established in vitro models of invasive trophoblast i.e. primary cultures of EVCT isolated from first trimester placentas and the EVCT-derived cell line HIPEC. Our data provide new clues to explain how early infection during pregnancy could impair implantation, placentation...

  17. In Vitro Characterization of Human Cytomegalovirus-Targeting Therapeutic Monoclonal Antibodies LJP538 and LJP539

    Science.gov (United States)

    Patel, Hetalkumar D.; Nikitin, Pavel; Gesner, Thomas; Lin, James J.; Barkan, David T.; Ciferri, Claudio; Carfi, Andrea; Akbarnejad Yazdi, Tahmineh; Skewes-Cox, Peter; Wiedmann, Brigitte; Jarousse, Nadine; Zhong, Weidong; Feire, Adam

    2016-01-01

    Human cytomegalovirus (HCMV) infection is usually benign in healthy individuals but can cause life-threatening disease in those with compromised immune systems. Approved drugs available to treat HCMV disease, including ganciclovir, cidofovir, and foscarnet, have significant toxicities that limit their use in certain patient populations. LJP538 and LJP539 are human monoclonal antibodies that are being evaluated as immunoglobulin therapeutics. The antibodies target glycoproteins gB and the gH/gL/UL128/UL130/UL131a pentameric complex, respectively. Here we present an in vitro characterization of these antibodies. We show that LJP538 and LJP539 are more potent than a marketed immunoglobulin at inhibiting HCMV infection of various cell lines relevant to pathogenesis. We find that LJP538 and LJP539 are active against a panel of clinical isolates in vitro and demonstrate minor-to-moderate synergy in combination. Passage of HCMV in the presence of LJP538 or LJP539 alone resulted in resistance-associated mutations that mapped to the target genes. However, no loss of susceptibility to the combination of antibodies was observed for >400 days in culture. Finally, the binding regions of LJP538 and LJP539 are conserved among clinical isolates. Taken together, these data support the use of LJP538 and LJP539 in combination for clinical trials in HCMV patients. PMID:27270290

  18. Clinical Manifestations of Cytomegalovirus-Associated Posterior Uveitis and Panuveitis in Patients Without Human Immunodeficiency Virus Infection

    NARCIS (Netherlands)

    Pathanapitoon, Kessara; Tesavibul, Nattaporn; Choopong, Pitipol; Boonsopon, Sutasinee; Kongyai, Natedao; Ausayakhun, Somsanguan; Kunavisarut, Paradee; Rothova, Aniki

    2013-01-01

    Importance: Little attention has been paid to clinical features of cytomegalovirus (CMV) infections in individuals without human immunodeficiency virus (HIV). Objective: To describe the clinical manifestations and comorbidities of patients without HIV infection who have CMV-associated posterior uvei

  19. The prevalence of human cytomegalovirus DNA in gliomas of Brazilian patients

    Directory of Open Access Journals (Sweden)

    Renata Fragelli Fonseca

    2012-11-01

    Full Text Available Members of the Herpesviridae family have been implicated in a number of tumours in humans. At least 75% of the human population has had contact with cytomegalovirus (HCMV. In this work, we screened 75 Brazilian glioma biopsies for the presence of HCMV DNA sequences. HCMV DNA was detected in 36% (27/75 of the biopsies. It is possible that HCMV could be a co-factor in the evolution of brain tumours.

  20. Immediate-Early (IE) gene regulation of cytomegalovirus: IE1- and pp71-mediated viral strategies against cellular defenses.

    Science.gov (United States)

    Torres, Lilith; Tang, Qiyi

    2014-12-01

    Three crucial hurdles hinder studies on human cytomegalovirus (HCMV): strict species specificity, differences between in vivo and in vitro infection, and the complexity of gene regulation. Ever since the sequencing of the whole genome was first accomplished, functional studies on individual genes have been the mainstream in the CMV field. Gene regulation has therefore been elucidated in a more detailed fashion. However, viral gene regulation is largely controlled by both cellular and viral components. In other words, viral gene expression is determined by the virus-host interaction. Generally, cells respond to viral infection in a defensive pattern; at the same time, viruses try to counteract the cellular defense or else hide in the host (latency). Viruses evolve effective strategies against cellular defense in order to achieve replicative success. Whether or not they are successful, cellular defenses remain in the whole viral replication cycle: entry, immediate-early (IE) gene expression, early gene expression, DNA replication, late gene expression, and viral egress. Many viral strategies against cellular defense, and which occur in the immediate-early time of viral infection, have been documented. In this review, we will summarize the documented biological functions of IE1 and pp71 proteins, especially with regard to how they counteract cellular intrinsic defenses.

  1. Immediate–Early (IE) gene regulation of cytomegalovirus: IE1- and pp71-mediated viral strategies against cellular defenses

    Science.gov (United States)

    Torres, Lilith; Tang, Qiyi

    2015-01-01

    Three crucial hurdles hinder studies on human cytomegalovirus (HCMV): strict species specificity, differences between in vivo and in vitro infection, and the complexity of gene regulation. Ever since the sequencing of the whole genome was first accomplished, functional studies on individual genes have been the mainstream in the CMV field. Gene regulation has therefore been elucidated in a more detailed fashion. However, viral gene regulation is largely controlled by both cellular and viral components. In other words, viral gene expression is determined by the virus–host interaction. Generally, cells respond to viral infection in a defensive pattern; at the same time, viruses try to counteract the cellular defense or else hide in the host (latency). Viruses evolve effective strategies against cellular defense in order to achieve replicative success. Whether or not they are successful, cellular defenses remain in the whole viral replication cycle: entry, immediate–early (IE) gene expression, early gene expression, DNA replication, late gene expression, and viral egress. Many viral strategies against cellular defense, and which occur in the immediate–early time of viral infection, have been documented. In this review, we will summarize the documented biological functions of IE1 and pp71 proteins, especially with regard to how they counteract cellular intrinsic defenses. PMID:25501994

  2. Immediate–Early(IE) gene regulation of cytomegalovirus:IE1-and pp71-mediated viral strategies against cellular defenses

    Institute of Scientific and Technical Information of China (English)

    Lilith; Torres; Qiyi; Tang

    2014-01-01

    Three crucial hurdles hinder studies on human cytomegalovirus(HCMV): strict species specificity, differences between in vivo and in vitro infection, and the complexity of gene regulation. Ever since the sequencing of the whole genome was first accomplished, functional studies on individual genes have been the mainstream in the CMV field. Gene regulation has therefore been elucidated in a more detailed fashion. However, viral gene regulation is largely controlled by both cellular and viral components. In other words, viral gene expression is determined by the virus–host interaction. Generally, cells respond to viral infection in a defensive pattern; at the same time, viruses try to counteract the cellular defense or else hide in the host(latency). Viruses evolve effective strategies against cellular defense in order to achieve replicative success. Whether or not they are successful, cellular defenses remain in the whole viral replication cycle: entry, immediate–early(IE) gene expression, early gene expression, DNA replication, late gene expression, and viral egress. Many viral strategies against cellular defense, and which occur in the immediate–early time of viral infection, have been documented. In this review, we will summarize the documented biological functions of IE1 and pp71 proteins, especially with regard to how they counteract cellular intrinsic defenses.

  3. The Transcription and Translation Landscapes during Human Cytomegalovirus Infection Reveal Novel Host-Pathogen Interactions.

    Science.gov (United States)

    Tirosh, Osnat; Cohen, Yifat; Shitrit, Alina; Shani, Odem; Le-Trilling, Vu Thuy Khanh; Trilling, Mirko; Friedlander, Gilgi; Tanenbaum, Marvin; Stern-Ginossar, Noam

    2015-01-01

    Viruses are by definition fully dependent on the cellular translation machinery, and develop diverse mechanisms to co-opt this machinery for their own benefit. Unlike many viruses, human cytomegalovirus (HCMV) does suppress the host translation machinery, and the extent to which translation machinery contributes to the overall pattern of viral replication and pathogenesis remains elusive. Here, we combine RNA sequencing and ribosomal profiling analyses to systematically address this question. By simultaneously examining the changes in transcription and translation along HCMV infection, we uncover extensive transcriptional control that dominates the response to infection, but also diverse and dynamic translational regulation for subsets of host genes. We were also able to show that, at late time points in infection, translation of viral mRNAs is higher than that of cellular mRNAs. Lastly, integration of our translation measurements with recent measurements of protein abundance enabled comprehensive identification of dozens of host proteins that are targeted for degradation during HCMV infection. Since targeted degradation indicates a strong biological importance, this approach should be applicable for discovering central host functions during viral infection. Our work provides a framework for studying the contribution of transcription, translation and degradation during infection with any virus.

  4. The Transcription and Translation Landscapes during Human Cytomegalovirus Infection Reveal Novel Host-Pathogen Interactions.

    Directory of Open Access Journals (Sweden)

    Osnat Tirosh

    Full Text Available Viruses are by definition fully dependent on the cellular translation machinery, and develop diverse mechanisms to co-opt this machinery for their own benefit. Unlike many viruses, human cytomegalovirus (HCMV does suppress the host translation machinery, and the extent to which translation machinery contributes to the overall pattern of viral replication and pathogenesis remains elusive. Here, we combine RNA sequencing and ribosomal profiling analyses to systematically address this question. By simultaneously examining the changes in transcription and translation along HCMV infection, we uncover extensive transcriptional control that dominates the response to infection, but also diverse and dynamic translational regulation for subsets of host genes. We were also able to show that, at late time points in infection, translation of viral mRNAs is higher than that of cellular mRNAs. Lastly, integration of our translation measurements with recent measurements of protein abundance enabled comprehensive identification of dozens of host proteins that are targeted for degradation during HCMV infection. Since targeted degradation indicates a strong biological importance, this approach should be applicable for discovering central host functions during viral infection. Our work provides a framework for studying the contribution of transcription, translation and degradation during infection with any virus.

  5. Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide

    OpenAIRE

    2010-01-01

    Specific regulatory nascent chains establish direct interactions with the ribosomal tunnel, leading to translational stalling. Despite a wealth of biochemical data, structural insight into the mechanism of translational stalling in eukaryotes is still lacking. Here we use cryo-electron microscopy to visualize eukaryotic ribosomes stalled during the translation of two diverse regulatory peptides: the fungal arginine attenuator peptide (AAP) and the human cytomegalovirus (hCMV) gp48 upstream op...

  6. The Human Cytomegalovirus Major Immediate-Early Proteins as Antagonists of Intrinsic and Innate Antiviral Host Responses

    Directory of Open Access Journals (Sweden)

    Michael Nevels

    2009-11-01

    Full Text Available The major immediate-early (IE gene of human cytomegalovirus (CMV is believed to have a decisive role in acute infection and its activity is an important indicator of viral reactivation from latency. Although a variety of gene products are expressed from this region, the 72-kDa IE1 and the 86-kDa IE2 nuclear phosphoproteins are the most abundant and important. Both proteins have long been recognized as promiscuous transcriptional regulators. More recently, a critical role of the IE1 and IE2 proteins in counteracting nonadaptive host cell defense mechanisms has been revealed. In this review we will briefly summarize the available literature on IE1- and IE2-dependent mechanisms contributing to CMV evasion from intrinsic and innate immune responses.

  7. Abundant Early Expression of gpUL4 from a Human Cytomegalovirus Mutant Lacking a Repressive Upstream Open Reading Frame

    Science.gov (United States)

    Alderete, John P.; Child, Stephanie J.; Geballe, Adam P.

    2001-01-01

    The human cytomegalovirus UL4 gene encodes a 48-kDa glycoprotein, expression of which is repressed at the translational level by a short upstream open reading frame (uORF2) within the UL4 transcript leader. Mutation of the uORF2 initiation codon in the viral genome eliminates ribosomal stalling at the uORF2 termination site, resulting in early and abundant gpUL4 protein synthesis. This mutation does not appear to affect viral replication kinetics in human fibroblasts. These results reveal that the unusual uORF2 inhibitory mechanism is a principal determinant of the abundance and timing of gpUL4 expression but is nonessential for replication in cell culture. PMID:11435600

  8. Human cytomegalovirus detection in gastric cancer and its possible association with lymphatic metastasis.

    Science.gov (United States)

    Zhang, Liang; Guo, Gangqiang; Xu, Jianfeng; Sun, Xiangwei; Chen, Wenjing; Jin, Jinji; Hu, Changyuan; Zhang, Peichen; Shen, Xian; Xue, Xiangyang

    2017-02-08

    Increasing evidence suggests that human cytomegalovirus (HCMV) is associated with many human malignancies. However, its prevalence in gastric cancer (GC) and clinical association remain unknown. HCMV IgG and IgM antibodies in the sera of 80 GC patients and 80 healthy controls were detected using a microparticle enzyme immunoassay. The prevalence of HCMV UL47, UL55, UL56, and UL77 genes among 102 GC tumor tissues and adjacent normal specimens was measured by polymerase chain reaction (PCR) or nested PCR. Quantitative real-time PCR (Q-PCR) was used to determine viral load. Virus localization in neoplastic tissues was determined by immunohistochemistry. No significant difference of HCMV IgG and IgM seropositivity was found between GC patients and the healthy group. However, the overall HCMV DNA positivity rate was significantly higher in GC cancerous tissue compared with in paired normal tissue (P<0.01). HCMV infection was mainly localized in the tumorous epithelium. Q-PCR in HCMV-positive specimens indicated that the viral copy number was notably higher in GC tissues than in adjacent normal specimens (P<0.001). Clinical statistical analysis indicated that HCMV load in GC tumor tissue was positively associated with lymphatic metastasis (P=0.043), the area under the receiver operating characteristic (ROC) curve was 0.6638. Our data clearly provide the prevalence of HCMV in GC patients. We conclude that HCMV infection in malignant tissues might be associated with carcinogenesis or progression of GC and possibly relates to lymphatic metastasis.

  9. Allograft rejection-related gene expression in the endothelial cells of renal transplantation recipients after cytomegalovirus infection

    Institute of Scientific and Technical Information of China (English)

    Yang LI; Jun HOU; Hang YAN; Wu-jun XUE; Pu-xun TIAN; Xiao-ming DING; Xiao-ming PAN; Xin-shun FENG; Xiao-hui TIAN; He-li XIANG

    2009-01-01

    Objective: To explore the effects of cytomegalovirus (CMV) infection on rejection-related gene expression in the endothelial cells of renal transplantation recipients. Methods: Endothelial cells (ECs) were cultured and stimulated by a variety of factors: A, normal control group; B, inactivated human cytomegalovirus (HCMV) infection group; C, HCMV infection group; D, HCMV supematant infection group; and E, ganciclovir HCMV group. Expression of intercellular adhesion molecule-1 (ICAM-1) and major histocompability complex (MHC) class Ⅰ and class Ⅱ antigens was detected by flow cytometry (FCM) and immuno-histochemistry. Results: We found characteristic CMV-infected ECs in this study. There were no significant differences among groups A, B and D (P>0.05). Although the expression levels of ICAM-1 were not significantly different between groups C and E (P>0.05), the ICAM-1 expression in these two groups was significantly higher than that in group A (P0.05). Human leucocyte antigen (HLA)-ABC expression was detected in all the groups, while HLA-DR expression was only detected in groups C and E. There were no significant dif-ferences of HLA-ABC and HLA-DR expression among groups A, B and D (P>0.05). However, the HLA-ABC and HLA-DR expression levels in groups C and D were higher than those of the remaining groups previously reported (P<0.05). Meanwhile, the HLA-ABC and HLA-DR expression levels in group E were lower than those of group C (P<0.05). Conclusion: CMV could up-regulate the expression levels of ICAM-1 and MHC antigens, which was closely related to allograft rejection.

  10. Use of Recombination-Mediated Genetic Engineering for Construction of Rescue Human Cytomegalovirus Bacterial Artificial Chromosome Clones

    Directory of Open Access Journals (Sweden)

    Kalpana Dulal

    2012-01-01

    Full Text Available Bacterial artificial chromosome (BAC technology has contributed immensely to manipulation of larger genomes in many organisms including large DNA viruses like human cytomegalovirus (HCMV. The HCMV BAC clone propagated and maintained inside E. coli allows for accurate recombinant virus generation. Using this system, we have generated a panel of HCMV deletion mutants and their rescue clones. In this paper, we describe the construction of HCMV BAC mutants using a homologous recombination system. A gene capture method, or gap repair cloning, to seize large fragments of DNA from the virus BAC in order to generate rescue viruses, is described in detail. Construction of rescue clones using gap repair cloning is highly efficient and provides a novel use of the homologous recombination-based method in E. coli for molecular cloning, known colloquially as recombineering, when rescuing large BAC deletions. This method of excising large fragments of DNA provides important prospects for in vitro homologous recombination for genetic cloning.

  11. Toxic megacolon and human Cytomegalovirus in a series of severe ulcerative colitis patients.

    Science.gov (United States)

    Criscuoli, Valeria; Rizzuto, Maria Rosa; Gallo, Elena; Orlando, Ambrogio; Cottone, Mario

    2015-05-01

    Human Cytomegalovirus (HCMV) infection has been reported to be a cause of refractory ulcerative colitis (UC). Toxic megacolon (TM) is a rare but severe complication of an acute attack of UC. Aim of this study is to evaluate in a case-control study the association between HCMV and TM. All patients who were admitted at Medicine Department of V. Cervello Hospital in Palermo (tertiary referral center) for a severe UC flare-up complicated by the onset of TM (diameter of the transverse colon>6 cm) between January 1990 and November 2011 were identified through the electronic database. A total of 24 consecutive patients (16 male/8 female) with TM were identified. Each case of TM were individually matched by sex, age, extent of the underlying disease to 24 severe UC controls who did not develop TM. A further non matched control population of 48 severe UC was included. Haematoxilin and eosin stain, immunohistochemical procedure and nested polymerase chain reaction were performed to detect HCMV genes and proteins on rectal biopsies or surgical specimens. Pp65 antigenemia was performed in order to diagnose any possible systemic infection. HCMV frequency was compared between patients with and without TM during follow-up, using Fisher's Exact test. HCMV was detected in histological specimens of 11 patients (46%) with TM compared to 2 (9%) severe UC matched controls (P = 0.0078) and 7 (14%) unmatched controls (p = 0,003). In severe colitis the presence of HCMV is more frequently associated with TM. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Calpains mediate the proteolytic modification of human cytomegalovirus UL112-113 proteins.

    Science.gov (United States)

    Wang, Shang-Kwei; Jiang, Meei Jyh; Lin, Shin-Rung; Chen, Mei-Yin; Wang, Hung-Hsueh; Duh, Chang-Yih

    2015-05-01

    The human cytomegalovirus (HCMV) UL112-113 gene is implicated in lytic viral replication. The UL112-113 proteins p34, p43, p50 and p84 are expressed via alternative splicing. However, the mechanism for the generation of three additional virus-associated proteins (p20, p26 and p28), which share the UL112 reading frame, remains unknown. Bioinformatic analyses indicated that p34, p43, p50 and p84 contain potential PEST-like degradation motifs. In this study, inhibitors of calpains, lysosomes and proteasomes reduced p20, p26 and p28 levels in virus-infected cells, suggesting the involvement of proteolytic modification. Moreover, maitotoxin, which increases intracellular calcium levels and activates calpain activity, induced the intracellular proteolysis of p34 into p20, p26 and p28 and the cleavage of p43, p50 and p84 into p38 and a novel protein, p34c. Proteolytic assays further indicated that p34, p43, p50 and p84 were substrates of calpain-1 and calpain-2 and that they generated proteolytic products that corresponded to those detected during the HCMV infectious period. Furthermore, substitution mutations in the putative calpain cleavage sites of p34 reduced accumulation of proteolytic products. The knockdown of endogenous calpain-1 and calpain-2 by RNA interference reduced accumulation of p20, p26 and p28 and concurrently increased levels of nascent p43, p50 and p84 during the infectious cycle. Intriguingly, calpain depletion enhanced viral genome synthesis. Moreover, HCMV-permissive cells that stably expressed p20, p26 or p28 exhibited reduced viral genome synthesis and mature virus production. Our findings suggest that cognate UL112-113 proteins derived from calpain-catalysed proteolysis are involved in the HCMV replication process.

  13. A faster immunofluorescence assay for tracking infection progress of human cytomegalovirus

    Institute of Scientific and Technical Information of China (English)

    Yingliang Duan; Lingfeng Miao; Hanqing Ye; Cuiqing Yang; Bishi Fu; Philip H.Schwartz; Simon Rayner; Elizabeth A.Fortunato; Min-Hua Luo

    2012-01-01

    Immunofluorescence assay (IFA) is one of the most frequently used methods in the biological sciences and clinic diagnosis,but it is expensive and time-consuming.To overcome these limitations,we developed a faster and more cost-effective IFA (f-IFA) by modifying the standard IFA,and applied this method to track the progression of human cytomegalovirus (HCMV) infection in different cells.The f-IFA that we developed not only saves time,but also dramatically reduces the quantity of antibody (Ab),which will facilitate the application of IFA in clinic diagnosis,f-IFA requires only 15 min for blocking,10 min incubation for each primary and secondary Abs,followed by 1 min extensive wash after each incubation.Only 25 μl of diluted Ab solution was needed for each coverslip at the primary and secondary Ab incubation steps.In addition,all steps were performed at room temperature.This f-IFA has been applied successfully to follow virion entry (pp65) and expression of viral genes (IE1,UL44,and pp65) in order to track the details of HCMV infection process.We found that ~0.5% HCMV-infected T98G cells formed multiple-micronuclei (IE1 and nucleus staining) and had virus shedding (pp65 staining) by f-IFA,which could not be detected by the traditional IFA.Our results indicated that f-IFA is a sensitive,convenient,fast,and cost-effective method for investigating the details of virus infection progress,especially HCMV infection.The faster and cost-effective feature with higher sensitivity and specilieity implies that f-IFA has potential applications in clinical diagnosis.

  14. Probable neuroimmunological link between Toxoplasma and cytomegalovirus infections and personality changes in the human host

    Directory of Open Access Journals (Sweden)

    Roubalová Kateřina

    2005-07-01

    Full Text Available Abstract Background Recently, a negative association between Toxoplasma-infection and novelty seeking was reported. The authors suggested that changes of personality trait were caused by manipulation activity of the parasite, aimed at increasing the probability of transmission of the parasite from an intermediate to a definitive host. They also suggested that low novelty seeking indicated an increased level of the neurotransmitter dopamine in the brain of infected subjects, a phenomenon already observed in experimentally infected rodents. However, the changes in personality can also be just a byproduct of any neurotropic infection. Moreover, the association between a personality trait and the toxoplasmosis can even be caused by an independent correlation of both the probability of Toxoplasma-infection and the personality trait with the third factor, namely with the size of living place of a subject. To test these two alternative hypotheses, we studied the influence of another neurotropic pathogen, the cytomegalovirus, on the personality of infected subjects, and reanalyzed the original data after the effect of the potential confounder, the size of living place, was controlled. Methods In the case-control study, 533 conscripts were tested for toxoplasmosis and presence of anti-cytomegalovirus antibodies and their novelty seeking was examined with Cloninger's TCI questionnaire. Possible association between the two infections and TCI dimensions was analyzed. Results The decrease of novelty seeking is associated also with cytomegalovirus infection. After the size of living place was controlled, the effect of toxoplasmosis on novelty seeking increased. Significant difference in novelty seeking was observed only in the largest city, Prague. Conclusion Toxoplasma and cytomegalovirus probably induce a decrease of novelty seeking. As the cytomegalovirus spreads in population by direct contact (not by predation as with Toxoplasma, the observed changes are

  15. Immunoglobulin genes influence the magnitude of humoral immunity to cytomegalovirus glycoprotein B.

    Science.gov (United States)

    Pandey, Janardan P; Kistner-Griffin, Emily; Radwan, Faisal F; Kaur, Navtej; Namboodiri, Aryan M; Black, Laurel; Butler, Mary Ann; Carreón, Tania; Ruder, Avima M

    2014-12-01

    Human cytomegalovirus (HCMV) is a risk factor for many human diseases, but among exposed individuals, not everyone is equally likely to develop HCMV-spurred diseases, implying the presence of host genetic factors that might modulate immunity to this virus. Here, we show that antibody responsiveness to HCMV glycoprotein B (gB) is significantly associated with particular immunoglobulin GM (γ marker) genotypes. Anti-HCMV gB antibody levels were highest in GM 17/17 homozygotes, intermediate in GM 3/17 heterozygotes, and lowest in GM 3/3 homozygotes (28.2, 19.0, and 8.1 µg/mL, respectively; P=.014). These findings provide mechanistic insights in the etiopathogenesis of HCMV-spurred diseases.

  16. Human cytomegalovirus UL141 promotes efficient downregulation of the natural killer cell activating ligand CD112

    OpenAIRE

    Prod'homme, Virginie; Sugrue, Daniel M.; Stanton, Richard J.; Nomoto, Akio; Davies, James; Rickards, Carole R.; Cochrane, Daniel; Moore, Melanie; Wilkinson, Gavin W. G.; Tomasec, Peter

    2010-01-01

    Human cytomegalovirus (HCMV) UL141 induces protection against natural killer cell-mediated cytolysis by downregulating cell surface expression of CD155 (nectin-like molecule 5; poliovirus receptor), a ligand for the activating receptor DNAM-1 (CD226). However, DNAM-1 is also recognized to bind a second ligand, CD112 (nectin-2). We now show that HCMV targets CD112 for proteasome-mediated degradation by 48 h post-infection, thus removing both activating ligands for DNAM-1 from the cell surface ...

  17. The DNA damage response induced by infection with human cytomegalovirus and other viruses.

    Science.gov (United States)

    Xiaofei, E; Kowalik, Timothy F

    2014-05-23

    Viruses use different strategies to overcome the host defense system. Recent studies have shown that viruses can induce DNA damage response (DDR). Many of these viruses use DDR signaling to benefit their replication, while other viruses block or inactivate DDR signaling. This review focuses on the effects of DDR and DNA repair on human cytomegalovirus (HCMV) replication. Here, we review the DDR induced by HCMV infection and its similarities and differences to DDR induced by other viruses. As DDR signaling pathways are critical for the replication of many viruses, blocking these pathways may represent novel therapeutic opportunities for the treatment of certain infectious diseases. Lastly, future perspectives in the field are discussed.

  18. Detection of Human Cytomegalovirus and Epstein-Barr Virus in Coronary Atherosclerotic Tissue

    Science.gov (United States)

    Imbronito, Ana Vitória; Marcelino, Silvia Linardi; Grande, Sabrina Rosa; Nunes, Fabio Daumas; Romito, Giuseppe Alexandre

    2010-01-01

    Previous studies indicated that patients with atherosclerosis are predominantly infected by human cytomegalovirus (HCMV), but rarely infected by type 1 Epstein-Barr virus (EBV-1). In this study, atheromas of 30 patients who underwent aortocoronary bypass surgery with coronary endartherectomy were tested for the presence of these two viruses. HCMV occurred in 93.3% of the samples and EBV-1 was present in 50% of them. Concurrent presence of both pathogens was detected in 43.3% of the samples. PMID:24031529

  19. Partial functional complementation between human and mouse cytomegalovirus chemokine receptor homologues

    DEFF Research Database (Denmark)

    Farrell, Helen E; Abraham, Alexander M; Cardin, Rhonda D

    2011-01-01

    The human cytomegalovirus (CMV) proteins US28 and UL33 are homologous to chemokine receptors (CKRs). Knockout of the mouse CMV M33 protein (UL33 homologue) results in substantial attenuation of salivary gland infection/replication and reduced efficiency of reactivation from tissue explants. M33......-mediated G protein-coupled signaling is critical for the salivary gland phenotype. In this report, we demonstrate that US28 and (to a lesser degree) UL33 restore reactivation from tissue explants and partially restore replication in salivary glands (compared to a signaling-deficient M33 mutant...

  20. CYTOMEGALOVIRUS RETINITIS ASSOCIATED WITH OCCLUSIVE VASCULOPATHY IN AN ELDERLY, HUMAN IMMUNODEFICIENCY VIRUS-NEGATIVE MAN.

    Science.gov (United States)

    Moussa, Kareem; Doan, Thuy; Stewart, Jay M; Shantha, Jessica; Gonzales, John; Acharya, Nisha; Cunningham, Emmett T

    2017-09-20

    To present a case of cytomegalovirus (CMV) retinitis associated with occlusive vasculopathy presenting as sudden unilateral loss of vision in a human immunodeficiency virus-negative elderly man. Clinical case report and literature review. An 84-year-old Chinese man with diabetes mellitus and primary open-angle glaucoma was seen in consultation by our uveitis service for evaluation of sudden vision loss in the right eye. Examination revealed an occlusive retinal vasculopathy. An extensive diagnostic workup was performed, including fluorescein angiography, serologic testing for infectious etiologies including syphilis and tuberculosis and a temporal artery biopsy. The patient was treated with high-dose oral prednisone, after which the biopsy returned negative for giant-cell arteritis. Three weeks after initial presentation, the patient was noted to have a new area of retinitis in the temporal periphery. An anterior chamber paracentesis was performed, and the fluid was sent for directed polymerase chain reaction testing, which returned positive for CMV. Human immunodeficiency virus testing was negative. He was treated with oral valganciclovir and intravitreal foscarnet injections and the infection subsequently resolved. Cytomegalovirus infection can be associated with occlusive vasculopathy in human immunodeficiency virus-negative individuals. The diagnosis of CMV retinitis should be considered in patients with human immunodeficiency virus-negative who have other conditions that may compromise immune function, particularly advanced age, diabetes mellitus, malignancy, or use of immunosuppressive agents.

  1. Cytomegalovirus replicon-based regulation of gene expression in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Hermine Mohr

    Full Text Available There is increasing evidence for a connection between DNA replication and the expression of adjacent genes. Therefore, this study addressed the question of whether a herpesvirus origin of replication can be used to activate or increase the expression of adjacent genes. Cell lines carrying an episomal vector, in which reporter genes are linked to the murine cytomegalovirus (MCMV origin of lytic replication (oriLyt, were constructed. Reporter gene expression was silenced by a histone-deacetylase-dependent mechanism, but was resolved upon lytic infection with MCMV. Replication of the episome was observed subsequent to infection, leading to the induction of gene expression by more than 1000-fold. oriLyt-based regulation thus provided a unique opportunity for virus-induced conditional gene expression without the need for an additional induction mechanism. This principle was exploited to show effective late trans-complementation of the toxic viral protein M50 and the glycoprotein gO of MCMV. Moreover, the application of this principle for intracellular immunization against herpesvirus infection was demonstrated. The results of the present study show that viral infection specifically activated the expression of a dominant-negative transgene, which inhibited viral growth. This conditional system was operative in explant cultures of transgenic mice, but not in vivo. Several applications are discussed.

  2. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Twite, Nicolas [Institute for Medical Immunology, Université Libre de Bruxelles, Rue A. Bolland 8, B-6041 Charleroi (Belgium); Andrei, Graciela [Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven (Belgium); Kummert, Caroline [ImmuneHealth, Rue A. Bolland 8, B-6041 Charleroi (Belgium); Donner, Catherine [Department of Obstetrics and Gynecology, Erasme Hospital, Route de Lennik 808, 1070 Brussels (Belgium); Perez-Morga, David [Laboratory of Molecular Parasitology, Institut de Biologie et Médecine Moléculaires, Université Libre de Bruxelles, Gosselies (Belgium); De Vos, Rita [Pathology Department, U.Z. Leuven, Minderbroedersstraat 12, Leuven (Belgium); Snoeck, Robert, E-mail: Robert.Snoeck@Rega.kuleuven.be [Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven (Belgium); Marchant, Arnaud, E-mail: arnaud.marchant@ulb.ac.be [Institute for Medical Immunology, Université Libre de Bruxelles, Rue A. Bolland 8, B-6041 Charleroi (Belgium); ImmuneHealth, Rue A. Bolland 8, B-6041 Charleroi (Belgium)

    2014-07-15

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMV by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.

  3. RT-qPCR-based microneutralization assay for human cytomegalovirus using fibroblasts and epithelial cells.

    Science.gov (United States)

    Wang, Xiao; Peden, Keith; Murata, Haruhiko

    2015-12-16

    Human cytomegalovirus (HCMV) is a leading cause of congenital infection that can result in serious disabilities in affected children. To facilitate HCMV vaccine development, a microscale neutralization assay based on reverse transcription quantitative PCR (RT-qPCR) was developed to quantify HCMV-neutralizing antibodies. Our approach relies on the generation of crude lysates from virus-infected cells that are amenable to direct analysis by RT-qPCR, thereby circumventing rate-limiting procedures associated with sample RNA extraction and purification. By serial passaging of the laboratory HCMV strain AD169 in epithelial cells (ARPE-19), a revertant virus with restored epithelial cell tropism, designated AD169(wt131), was obtained. AD169 and AD169(wt131) were evaluated in both epithelial cells (ARPE-19) and fibroblasts (MRC-5) by one-step RT-qPCR targeting the immediate-early gene IE1 transcript of HCMV. Expression kinetics indicated that RT-qPCR assessment could be conducted as early as 6h post-infection. Human serum samples (n=30) from healthy donors were tested for HCMV-specific IgG using a commercially available ELISA and for HCMV-neutralizing activity using our RT-qPCR-based neutralization assay. In agreement with the ELISA results, higher neutralizing activity was observed in the HCMV IgG seropositive group when compared with the HCMV IgG seronegative group. In addition, HCMV IgG seropositive human sera exhibited higher neutralizing titers using epithelial cells compared with using fibroblasts (geometric mean titers of 344 and 8 in ARPE-19 cells and MRC-5 cells, respectively). Our assay was robust to variation in input virus dose. In addition, a simple lysis buffer containing a non-ionic detergent was successfully demonstrated to be a less costly alternative to commercial reagents for cell-lysate preparation. Thus, our rapid HCMV neutralization assay may be a straightforward and flexible high-throughput tool for measuring antibody responses induced by vaccination

  4. cGAS Senses Human Cytomegalovirus and Induces Type I Interferon Responses in Human Monocyte-Derived Cells

    Science.gov (United States)

    Paijo, Jennifer; Döring, Marius; Spanier, Julia; Grabski, Elena; Nooruzzaman, Mohammed; Schmidt, Tobias; Witte, Gregor; Messerle, Martin; Hornung, Veit; Kaever, Volkhard; Kalinke, Ulrich

    2016-01-01

    Human cytomegalovirus (HCMV) infections of healthy individuals are mostly unnoticed and result in viral latency. However, HCMV can also cause devastating disease, e.g., upon reactivation in immunocompromised patients. Yet, little is known about human immune cell sensing of DNA-encoded HCMV. Recent studies indicated that during viral infection the cyclic GMP/AMP synthase (cGAS) senses cytosolic DNA and catalyzes formation of the cyclic di-nucleotide cGAMP, which triggers stimulator of interferon genes (STING) and thus induces antiviral type I interferon (IFN-I) responses. We found that plasmacytoid dendritic cells (pDC) as well as monocyte-derived DC and macrophages constitutively expressed cGAS and STING. HCMV infection further induced cGAS, whereas STING expression was only moderately affected. Although pDC expressed particularly high levels of cGAS, and the cGAS/STING axis was functional down-stream of STING, as indicated by IFN-I induction upon synthetic cGAMP treatment, pDC were not susceptible to HCMV infection and mounted IFN-I responses in a TLR9-dependent manner. Conversely, HCMV infected monocyte-derived cells synthesized abundant cGAMP levels that preceded IFN-I production and that correlated with the extent of infection. CRISPR/Cas9- or siRNA-mediated cGAS ablation in monocytic THP-1 cells and primary monocyte-derived cells, respectively, impeded induction of IFN-I responses following HCMV infection. Thus, cGAS is a key sensor of HCMV for IFN-I induction in primary human monocyte-derived DC and macrophages. PMID:27058035

  5. Association of human cytomegalovirus viremia with human leukocyte antigens in liver transplantation recipients

    Institute of Scientific and Technical Information of China (English)

    Jianhua Hu; Jun Fan; Xueqin Meng; Hong Zhao; Xuan Zhang; Hainv Gao; Meifang Yang; Yadan Ma; Minhuan Li; Weihang Ma

    2011-01-01

    Human cytomegalovirus (HCMV) reactivation is a common complication after liver transplantation (LT).Here, we investigated whether human leukocyte antigen (HLA)-matching was related to HCMV infection and subsequent graft failure after LT for hepatitis B virus cirrhosis. This retrospective study reviewed 91 LT recipients.All the patients were grouped according to HLA-A, HLA-B, and HLA-DR locus matching. Clinical data were collected, including complete HLA-typing, HCMV viremia, graft failure, and the time of HCMV viremia.HLA typing was performed using a sequence-specific primer-polymerase chain reaction kit. HCMV was detected by pp65 antigenemia using a commercial kit.The incidence of HCMV infection post-LT was 81.32%.Graft failure was observed in 16 of 91 (17.6%) patients during the 4-year study. The incidence of HCMV viremia was 100% (5/5), 91.4% (32/35), and 72.5% (37/51) in HLA-A two locus, one locus, and zero locus compatibility,respectively. Nevertheless, the degree of the HLA-A,HLA-B, or HLA-DR match did not influence the time of HCMV viremia, graft failure, or the time of graft failure after a diagnosis of HCMV viremia (all P> 0.05). An interesting discovery was that the risk of HCMV viremia tended to be higher in patients with better HLA-A compatibility. Graft failure, time of HCMV viremia, and graft failure after a diagnosis of HCMV viremia appear to be independent of HLA allele compatibility.

  6. Clinical manifestations of cytomegalovirus-associated posterior uveitis and panuveitis in patients without human immunodeficiency virus infection

    NARCIS (Netherlands)

    K. Pathanapitoon (Kessara); N. Tesavibul (Nattaporn); P. Choopong (Pitipol); S. Boonsopon (Sutasinee); N. Kongyai (Natedao); S. Ausayakhun (Somsanguan); P. Kunavisarut (Paradee); A. Rothova (Aniki)

    2013-01-01

    textabstractImportance: Little attention has been paid to clinical features of cytomegalovirus (CMV) infections in individuals without human immunodeficiency virus (HIV). Objective: To describe the clinical manifestations and comorbidities of patients without HIV infection who have CMV-associated po

  7. Latent cytomegalovirus infection enhances anti-tumour cytotoxicity through accumulation of NKG2C+ NK cells in healthy humans

    NARCIS (Netherlands)

    Bigley, A.B.; Rezvani, K.; Shah, N.; Sekine, T.; Balneger, N.; Pistillo, M.; Agha, N.; Kunz, H.; O'Connor, D.P.; Bollard, C.M.; Simpson, R.J.

    2016-01-01

    Cytomegalovirus (CMV) infection markedly expands NKG2C+/NKG2A- NK cells, which are potent killers of infected cells expressing human leucocyte antigen (HLA)-E. As HLA-E is also over-expressed in several haematological malignancies and CMV has been linked to a reduced risk of leukaemic relapse, we

  8. Global Mapping of O-Glycosylation of Varicella Zoster Virus, Human Cytomegalovirus, and Epstein-Barr Virus

    DEFF Research Database (Denmark)

    Bagdonaite, Ieva; Nordén, Rickard; Joshi, Hiren J;

    2016-01-01

    of the herpesvirus family: varicella zoster virus, human cytomegalovirus, and Epstein-Barr virus. We identified a large number of O-glycosites distributed on most envelope proteins in all viruses and further demonstrated conserved patterns of O-glycans on distinct homologous proteins. Because glycosylation is highly...

  9. Infection and upregulation of proinflammatory cytokines in human brain vascular pericytes by human cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Alcendor Donald J

    2012-05-01

    Full Text Available Abstract Background Congenital human cytomegalovirus (HCMV infections can result in CNS abnormalities in newborn babies including vision loss, mental retardation, motor deficits, seizures, and hearing loss. Brain pericytes play an essential role in the development and function of the blood–brain barrier yet their unique role in HCMV dissemination and neuropathlogy has not been reported. Methods Primary human brain vascular pericytes were exposed to a primary clinical isolate of HCMV designated ‘SBCMV’. Infectivity was analyzed by microscopy, immunofluorescence, Western blot, and qRT-PCR. Microarrays were performed to identify proinflammatory cytokines upregulated after SBCMV exposure, and the results validated by real-time quantitative polymerase chain reaction (qPCR methodology. In situ cytokine expression of pericytes after exposure to HCMV was examined by ELISA and in vivo evidence of HCMV infection of brain pericytes was shown by dual-labeled immunohistochemistry. Results HCMV-infected human brain vascular pericytes as evidenced by several markers. Using a clinical isolate of HCMV (SBCMV, microscopy of infected pericytes showed virion production and typical cytomegalic cytopathology. This finding was confirmed by the expression of major immediate early and late virion proteins and by the presence of HCMV mRNA. Brain pericytes were fully permissive for CMV lytic replication after 72 to 96 hours in culture compared to human astrocytes or human brain microvascular endothelial cells (BMVEC. However, temporal transcriptional expression of pp65 virion protein after SBCMV infection was lower than that seen with the HCMV Towne laboratory strain. Using RT-PCR and dual-labeled immunofluorescence, proinflammatory cytokines CXCL8/IL-8, CXCL11/ITAC, and CCL5/Rantes were upregulated in SBCMV-infected cells, as were tumor necrosis factor-alpha (TNF-alpha, interleukin-1 beta (IL-1beta, and interleukin-6 (IL-6. Pericytes exposed to SBCMV elicited

  10. Relationship between TLR4 signalling alterations and effective human cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Germini D.

    2014-09-01

    Full Text Available Toll-like receptors (TLR, the main class of immune-sensor molecules triggering the innate immunity pathways, are known to be involved in the infection of different RNA and DNA viruses, including herpesviruses. Human cytomegalovirus (HCMV is a widespread human beta-herpesvirus that infects 80–90 % of the world’s population and it can cause severe and even fatal diseases in immunocompromised patients and it is also responsible for birth defects as a consequence of congenital infection. Aim of this review is to discuss the existing data regarding the role of TLRs in HCMV concentrating mainly on TLR4. A better understanding in this relationship could be exploited for the development of efficient early diagnosis methodologies and anti viral therapies.

  11. Human cytomegalovirus UL141 promotes efficient downregulation of the natural killer cell activating ligand CD112

    Science.gov (United States)

    Prod'homme, Virginie; Sugrue, Daniel M.; Stanton, Richard J.; Nomoto, Akio; Davies, James; Rickards, Carole R.; Cochrane, Daniel; Moore, Melanie; Wilkinson, Gavin W. G.; Tomasec, Peter

    2010-01-01

    Human cytomegalovirus (HCMV) UL141 induces protection against natural killer cell-mediated cytolysis by downregulating cell surface expression of CD155 (nectin-like molecule 5; poliovirus receptor), a ligand for the activating receptor DNAM-1 (CD226). However, DNAM-1 is also recognized to bind a second ligand, CD112 (nectin-2). We now show that HCMV targets CD112 for proteasome-mediated degradation by 48 h post-infection, thus removing both activating ligands for DNAM-1 from the cell surface during productive infection. Significantly, cell surface expression of both CD112 and CD155 was restored when UL141 was deleted from the HCMV genome. While gpUL141 alone is sufficient to mediate retention of CD155 in the endoplasmic reticulum, UL141 requires assistance from additional HCMV-encoded functions to suppress expression of CD112. PMID:20410314

  12. Interplay between Human Cytomegalovirus and Intrinsic/Innate Host Responses: A Complex Bidirectional Relationship

    Directory of Open Access Journals (Sweden)

    Giada Rossini

    2012-01-01

    Full Text Available The interaction between human cytomegalovirus (HCMV and its host is a complex process that begins with viral attachment and entry into host cells, culminating in the development of a specific adaptive response that clears the acute infection but fails to eradicate HCMV. We review the viral and cellular partners that mediate early host responses to HCMV with regard to the interaction between structural components of virions (viral glycoproteins and cellular receptors (attachment/entry receptors, toll-like receptors, and other nucleic acid sensors or intrinsic factors (PML, hDaxx, Sp100, viperin, interferon inducible protein 16, the reactions of innate immune cells (antigen presenting cells and natural killer cells, the numerous mechanisms of viral immunoevasion, and the potential exploitation of events that are associated with early phases of virus-host interplay as a therapeutic strategy.

  13. The tiers and dimensions of evasion of the type I interferon response by human cytomegalovirus.

    Science.gov (United States)

    Amsler, Lisi; Verweij, Marieke C; DeFilippis, Victor R

    2013-12-13

    Human cytomegalovirus (HCMV) is a member of the β-herpesvirus family that invariably occupies hosts for life despite a consistent multi-pronged antiviral immune response that targets the infection. This persistence is enabled by the large viral genome that encodes factors conferring a wide assortment of sophisticated, often redundant phenotypes that disable or otherwise manipulate impactful immune effector processes. The type I interferon system represents a first line of host defense against infecting viruses. The physiological reactions induced by secreted interferon act to effectively block replication of a broad spectrum of virus types, including HCMV. As such, the virus must exhibit counteractive mechanisms to these responses that involve their inhibition, tolerance, or re-purposing. The goal of this review is to describe the impact of the type I interferon system on HCMV replication and to showcase the number and diversity of strategies employed by the virus that allow infection of hosts in the presence of interferon-dependent activity.

  14. The effect of human cytomegalovirus on the formation of CFU-MK in vitro.

    Science.gov (United States)

    Yao, Junxia; Song, Sanjun; Hu, Lihua

    2004-01-01

    To investigate the mechanism and the suppressive effect of human cytomegalovirus (HCMV) on colony forming unit-megakaryocyte (CFU-MK), semi-solid culture system was used to observe the effect of HCMV AD169 strain on CFU-MK's growth of 18 cord blood samples. HCMV DNA and immediate early (IE) protein mRNA in CFU-MK was detected by PCR and reverse transcription-polymerase chain reaction (RT-PCR). Our results showed that HCMV AD169 significantly suppressed the formation of CFU-MK in vitro. Compared with the mock group, the CFU-MK colonies decreased by 21.6%, 33.8% and 46.3%, respectively, in all the 3 infected groups (PCFU-MK by directly infecting their progenitors. There was early transcription of HCMV IE protein in CFU-MK infected by virus.

  15. The host ubiquitin-dependent segregase VCP/p97 is required for the onset of human cytomegalovirus replication.

    Directory of Open Access Journals (Sweden)

    Yao-Tang Lin

    2017-05-01

    Full Text Available The human cytomegalovirus major immediate early proteins IE1 and IE2 are critical drivers of virus replication and are considered pivotal in determining the balance between productive and latent infection. IE1 and IE2 are derived from the same primary transcript by alternative splicing and regulation of their expression likely involves a complex interplay between cellular and viral factors. Here we show that knockdown of the host ubiquitin-dependent segregase VCP/p97, results in loss of IE2 expression, subsequent suppression of early and late gene expression and, ultimately, failure in virus replication. RNAseq analysis showed increased levels of IE1 splicing, with a corresponding decrease in IE2 splicing following VCP knockdown. Global analysis of viral transcription showed the expression of a subset of viral genes is not reduced despite the loss of IE2 expression, including UL112/113. Furthermore, Immunofluorescence studies demonstrated that VCP strongly colocalised with the viral replication compartments in the nucleus. Finally, we show that NMS-873, a small molecule inhibitor of VCP, is a potent HCMV antiviral with potential as a novel host targeting therapeutic for HCMV infection.

  16. Polymorphisms in Toll-like receptor genes influence antibody responses to cytomegalovirus glycoprotein B vaccine

    Directory of Open Access Journals (Sweden)

    Arav-Boger Ravit

    2012-03-01

    Full Text Available Abstract Background Congenital Cytomegalovirus (CMV infection is an important medical problem that has yet no current solution. A clinical trial of CMV glycoprotein B (gB vaccine in young women showed promising efficacy. Improved understanding of the basis for prevention of CMV infection is essential for developing improved vaccines. Results We genotyped 142 women previously vaccinated with three doses of CMV gB for single nucleotide polymorphisms (SNPs in TLR 1-4, 6, 7, 9, and 10, and their associated intracellular signaling genes. SNPs in the platelet-derived growth factor receptor (PDGFRA and integrins were also selected based on their role in binding gB. Specific SNPs in TLR7 and IKBKE (inhibitor of nuclear factor kappa-B kinase subunit epsilon were associated with antibody responses to gB vaccine. Homozygous carriers of the minor allele at four SNPs in TLR7 showed higher vaccination-induced antibody responses to gB compared to heterozygotes or homozygotes for the common allele. SNP rs1953090 in IKBKE was associated with changes in antibody level from second to third dose of vaccine; homozygotes for the minor allele exhibited lower antibody responses while homozygotes for the major allele showed increased responses over time. Conclusions These data contribute to our understanding of the immunogenetic mechanisms underlying variations in the immune response to CMV vaccine.

  17. Cytomegalovirus survival and transferability and the effectiveness of common hand-washing agents against cytomegalovirus on live human hands.

    Science.gov (United States)

    Stowell, Jennifer D; Forlin-Passoni, Daniela; Radford, Kay; Bate, Sheri L; Dollard, Sheila C; Bialek, Stephanie R; Cannon, Michael J; Schmid, D Scott

    2014-01-01

    Congenital cytomegalovirus (CMV) transmission can occur when women acquire CMV while pregnant. Infection control guidelines may reduce risk for transmission. We studied the duration of CMV survival after application of bacteria to the hands and after transfer from the hands to surfaces and the effectiveness of cleansing with water, regular and antibacterial soaps, sanitizer, and diaper wipes. Experiments used CMV AD169 in saliva at initial titers of 1 × 10(5) infectious particles/ml. Samples from hands or surfaces (points between 0 and 15 min) were placed in culture and observed for at least 2 weeks. Samples were also tested using CMV real-time PCR. After application of bacteria to the hands, viable CMV was recovered from 17/20 swabs at 0 min, 18/20 swabs at 1 min, 5/20 swabs at 5 min, and 4/20 swabs at 15 min. After transfer, duration of survival was at least 15 min on plastic (1/2 swabs), 5 min on crackers and glass (3/4 swabs), and 1 min or less on metal and cloth (3/4 swabs); no viable virus was collected from wood, rubber, or hands. After cleansing, no viable virus was recovered using water (0/22), plain soap (0/20), antibacterial soap (0/20), or sanitizer (0/22). Viable CMV was recovered from 4/20 hands 10 min after diaper wipe cleansing. CMV remains viable on hands for sufficient times to allow transmission. CMV may be transferred to surfaces with reduced viability. Hand-cleansing methods were effective at eliminating viable CMV from hands.

  18. A rapid DNA extraction method from culture and clinical samples. Suitable for the detection of human cytomegalovirus by the polymerase chain reaction.

    Science.gov (United States)

    Zandotti, C; De Lamballerie, X; Guignole-Vignoli, C; Bollet, C; De Micco, P

    1993-02-01

    We propose an one-step DNA extraction method suitable for the polymerase chain reaction. This procedure utilizes Chelex 100, a chelating in exchange resin. This technique was compared with a traditional technique (proteinase K lysis, phenol-chloroform extraction and ethanol precipitation) for isolation of human cytomegalovirus DNA from clinical samples. The procedure using Chelex 100 appeared to be a simple and fast extraction method for human cytomegalovirus DNA.

  19. Human Herpes Virus Type 2 (HSV2), Human Cytomegalovirus (HCMV) in the Male Genital Tract and Fertilization

    Institute of Scientific and Technical Information of China (English)

    Courtot Anne Marie; Pallier Coralie; Testart Jacques

    2003-01-01

    The possibility of infection of the human male genital tract by human herpes virus type 2 (HSV2) or human cytomegalovirus (HCMV) is well established and their sexual transmission has been the object of many studies. Moreover, medically assisted procreation, which helps in numerous fertility problems, raises the question of new viral risks linked to the application of these new technologies. In this review, we shall consider current knowledge in terms of the presence of HSV2 and HCMV in the different parts of the genital tract of immunocompetent or immunodepressed men. We shall also consider the possibility of viral transmission by the sexual act or by the various techniques used in medically assisted procreation. We shall describe studies in human beings and in animals.

  20. Permissive human cytomegalovirus infection of a first trimester extravillous cytotrophoblast cell line

    Directory of Open Access Journals (Sweden)

    LaMarca Heather L

    2004-11-01

    Full Text Available Abstract Human cytomegalovirus (HCMV is the leading cause of congenital viral infection in the United States and Europe. Despite the significant morbidity associated with prenatal HCMV infection, little is known about how the virus infects the fetus during pregnancy. To date, primary human cytotrophoblasts (CTBs have been utilized to study placental HCMV infection and replication; however, the minimal mitotic potential of these cells restricts experimentation to a few days, which may be problematic for mechanistic studies of the slow-replicating virus. The aim of this study was to determine whether the human first trimester CTB cell line SGHPL-4 was permissive for HCMV infection and therefore could overcome such limitations. HCMV immediate early (IE protein expression was detected as early as 3 hours post-infection in SGHPL-4 cells and progressively increased as a function of time. HCMV growth assays revealed the presence of infectious virus in both cell lysates and culture supernatants, indicating that viral replication and the release of progeny virus occurred. Compared to human fibroblasts, viral replication was delayed in CTBs, consistent with previous studies reporting delayed viral kinetics in HCMV-infected primary CTBs. These results indicate that SGHPL-4 cells are fully permissive for the complete HCMV replicative cycle. Our findings suggest that these cells may serve as useful tools for future mechanistic studies of HCMV pathogenesis during early pregnancy.

  1. Human cytomegalovirus induces a distinct innate immune response in the maternal-fetal interface.

    Science.gov (United States)

    Weisblum, Yiska; Panet, Amos; Zakay-Rones, Zichria; Vitenshtein, Alon; Haimov-Kochman, Ronit; Goldman-Wohl, Debra; Oiknine-Djian, Esther; Yamin, Rachel; Meir, Karen; Amsalem, Hagai; Imbar, Tal; Mandelboim, Ofer; Yagel, Simcha; Wolf, Dana G

    2015-11-01

    The initial interplay between human cytomegalovirus (HCMV) and innate tissue response in the human maternal-fetal interface, though crucial for determining the outcome of congenital HCMV infection, has remained unknown. We studied the innate response to HCMV within the milieu of the human decidua, the maternal aspect of the maternal-fetal interface, maintained ex vivo as an integral tissue. HCMV infection triggered a rapid and robust decidual-tissue innate immune response predominated by interferon (IFN)γ and IP-10 induction, dysregulating the decidual cytokine/chemokine environment in a distinctive fashion. The decidual-tissue response was already elicited during viral-tissue contact, and was not affected by neutralizing HCMV antibodies. Of note, IFNγ induction, reflecting immune-cell activation, was distinctive to the maternal decidua, and was not observed in concomitantly-infected placental (fetal) villi. Our studies in a clinically-relevant surrogate human model, provide a novel insight into the first-line decidual tissue response which could affect the outcome of congenital infection.

  2. The Cellular Proteins Grb2 and DDX3 Are Increased upon Human Cytomegalovirus Infection and Act in a Proviral Fashion.

    Science.gov (United States)

    Cavignac, Yolaine; Lieber, Diana; Laib Sampaio, Kerstin; Madlung, Johannes; Lamkemeyer, Tobias; Jahn, Gerhard; Nordheim, Alfred; Sinzger, Christian

    2015-01-01

    While it is well established that human cytomegalovirus (HCMV) upregulates many cellular proteins and incorporates several of them into its virion, little is known about the functional relevance of such virus-host interactions. Two cellular proteins, Grb2 and DDX3, gained our interest as they appeared enriched in virion particles and this incorporation depended on the viral tegument protein pp65, suggesting a functional relevance. We therefore tested whether the level of these proteins is altered upon HCMV infection and whether they support viral replication. Immunoblotting analyses of cellular fractions showed increased levels of both proteins in infected cells with a maximum at 2 d p.i. and a reduction of the soluble Grb2 fraction. Knockdown of either gene by transfection of siRNAs reduced viral spread not only of the cell culture adapted HCMV strain TB40/E but also of recent clinical isolates. Apparently, Grb2 and DDX3 are proviral cellular factors that are upregulated in infected cells.

  3. The Cellular Proteins Grb2 and DDX3 Are Increased upon Human Cytomegalovirus Infection and Act in a Proviral Fashion.

    Directory of Open Access Journals (Sweden)

    Yolaine Cavignac

    Full Text Available While it is well established that human cytomegalovirus (HCMV upregulates many cellular proteins and incorporates several of them into its virion, little is known about the functional relevance of such virus-host interactions. Two cellular proteins, Grb2 and DDX3, gained our interest as they appeared enriched in virion particles and this incorporation depended on the viral tegument protein pp65, suggesting a functional relevance. We therefore tested whether the level of these proteins is altered upon HCMV infection and whether they support viral replication. Immunoblotting analyses of cellular fractions showed increased levels of both proteins in infected cells with a maximum at 2 d p.i. and a reduction of the soluble Grb2 fraction. Knockdown of either gene by transfection of siRNAs reduced viral spread not only of the cell culture adapted HCMV strain TB40/E but also of recent clinical isolates. Apparently, Grb2 and DDX3 are proviral cellular factors that are upregulated in infected cells.

  4. A Myeloid Progenitor Cell Line Capable of Supporting Human Cytomegalovirus Latency and Reactivation, Resulting in Infectious Progeny

    Science.gov (United States)

    O'Connor, Christine M.

    2012-01-01

    Human cytomegalovirus (HCMV) is a herpesvirus that establishes a lifelong, latent infection within a host. At times when the immune system is compromised, the virus undergoes a lytic reactivation producing infectious progeny. The identification and understanding of the biological mechanisms underlying HCMV latency and reactivation are not completely defined. To this end, we have developed a tractable in vitro model system to investigate these phases of viral infection using a clonal population of myeloid progenitor cells (Kasumi-3 cells). Infection of these cells results in maintenance of the viral genome with restricted viral RNA expression that is reversed with the addition of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA, also known as PMA). Additionally, a latent viral transcript (LUNA) is expressed at times where viral lytic transcription is suppressed. Infected Kasumi-3 cells initiate production of infectious virus following TPA treatment, which requires cell-to-cell contact for efficient transfer of virus to other cell types. Importantly, lytically infected fibroblast, endothelial, or epithelial cells can transfer virus to Kasumi-3 cells, which fail to initiate lytic replication until stimulated with TPA. Finally, inflammatory cytokines, in addition to the pharmacological agent TPA, are sufficient for transcription of immediate-early (IE) genes following latent infection. Taken together, our findings argue that the Kasumi-3 cell line is a tractable in vitro model system with which to study HCMV latency and reactivation. PMID:22761372

  5. Potential for Natural Killer Cell-Mediated Antibody-Dependent Cellular Cytotoxicity for Control of Human Cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Rebecca J. Aicheler

    2013-12-01

    Full Text Available Human cytomegalovirus (HCMV is an important pathogen that infects the majority of the population worldwide, yet, currently, there is no licensed vaccine. Despite HCMV encoding at least seven Natural Killer (NK cell evasion genes, NK cells remain critical for the control of infection in vivo. Classically Antibody-Dependent Cellular Cytotoxicity (ADCC is mediated by CD16, which is found on the surface of the NK cell in a complex with FcεRI-γ chains and/or CD3ζ chains. Ninety percent of NK cells express the Fc receptor CD16; thus, they have the potential to initiate ADCC. HCMV has a profound effect on the NK cell repertoire, such that up to 10-fold expansions of NKG2C+ cells can be seen in HCMV seropositive individuals. These NKG2C+ cells are reported to be FcεRI-γ deficient and possess variable levels of CD16+, yet have striking ADCC functions. A subset of HCMV cell surface proteins will induce robust antibody responses that could render cells susceptible to ADCC. We will consider how the strong anti-HCMV function of NKG2C+ FcεRI-γ-deficient NK cells could potentially be harnessed in the clinic to treat patients suffering from HCMV disease and in the development of an efficacious HCMV vaccine.

  6. Down-regulation of human cytomegalovirus UL138, a novel latency-associated determinant, by hcmv-miR-UL36

    Indian Academy of Sciences (India)

    Yujing Huang; Ying Qi; Yanping Ma; Rong He; Yaohua Ji; Zhengrong Sun; Qiang Ruan

    2013-09-01

    MicroRNAs (miRNAs) are small RNAs, 19–23 nucleotides in length, which regulate a variety of cellular processes. Human cytomegalovirus (HCMV) encodes only one intronic miRNA: human cytomegalovirus microRNA UL36 (hcmv-miR-UL36). In this study, we found that over-expression of hcmv-miR-UL36 resulted in a more than threefold increase in HCMV DNA synthesis at 24 h post infection. Fifteen putative targets of hcmv-miR-UL36 were identified using hybrid PCR, one being the HCMV UL138 gene that has previously been identified as a novel latency-associated determinant of HCMV infection. Down-regulation of UL138 expression by hcmv-miR-UL36 was validated using luciferase reporter assays and Western blot analysis in HEK293 cells. In the presence of hcmv-miR-UL36, we observed a 74.6% decrease in luciferase activity and a 46.2% decrease in HCMV UL138 protein expression. Our results indicate that hcmv-miR-UL36 may be a viral miRNA contributing to HCMV replication.

  7. [The validation of kit of reagents for quantitative detection of DNA of human cytomegalovirus in biological material using polymerase chain reaction technique in real time operation mode].

    Science.gov (United States)

    Sil'veĭstrova, O Iu; Domonova, É A; Shipulina, O Iu

    2014-04-01

    The validation of kit of reagents destined to detection and quantitative evaluation of DNA of human cytomegalovirus in biological material using polymerase chain reaction technique in real time operation mode was implemented. The comparison was made against international WHO standard--The first WHO international standard for human cytomegalovirus to implement measures the kit of reagents "AmpliSens CMV-screen/monitor-FL" and standard sample of enterprise DNA HCMV (The central research institute of epidemiology of Rospotrebnadzor) was applied. The fivefold dilution of international WHO standard and standard sample of enterprise were carried out in concentrations of DNA HCMV from 106 to 102. The arrangement of polymerase chain reaction and analysis of results were implemented using programed amplifier with system of detection of fluorescent signal in real-time mode "Rotor-Gene Q" ("Qiagen", Germany). In the total of three series of experiments, all stages of polymerase chain reaction study included, the coefficient of translation of quantitative evaluation of DNA HCMV from copy/ml to ME/ml equal to 0.6 was introduced for this kit of reagents.

  8. Adenovirus E1A/E1B Transformed Amniotic Fluid Cells Support Human Cytomegalovirus Replication

    Directory of Open Access Journals (Sweden)

    Natascha Krömmelbein

    2016-02-01

    Full Text Available The human cytomegalovirus (HCMV replicates to high titers in primary human fibroblast cell cultures. A variety of primary human cells and some tumor-derived cell lines do also support permissive HCMV replication, yet at low levels. Cell lines established by transfection of the transforming functions of adenoviruses have been notoriously resistant to HCMV replication and progeny production. Here, we provide first-time evidence that a permanent cell line immortalized by adenovirus type 5 E1A and E1B (CAP is supporting the full HCMV replication cycle and is releasing infectious progeny. The CAP cell line had previously been established from amniotic fluid cells which were likely derived from membranes of the developing fetus. These cells can be grown under serum-free conditions. HCMV efficiently penetrated CAP cells, expressed its immediate-early proteins and dispersed restrictive PML-bodies. Viral DNA replication was initiated and viral progeny became detectable by electron microscopy in CAP cells. Furthermore, infectious virus was released from CAP cells, yet to lower levels compared to fibroblasts. Subviral dense bodies were also secreted from CAP cells. The results show that E1A/E1B expression in transformed cells is not generally repressive to HCMV replication and that CAP cells may be a good substrate for dense body based vaccine production.

  9. Schizophrenia susceptibility genes directly implicated in the life cycles of pathogens: cytomegalovirus, influenza, herpes simplex, rubella, and Toxoplasma gondii.

    Science.gov (United States)

    Carter, C J

    2009-11-01

    Many genes implicated in schizophrenia can be related to glutamatergic transmission and neuroplasticity, oligodendrocyte function, and other families clearly related to neurobiology and schizophrenia phenotypes. Others appear rather to be involved in the life cycles of the pathogens implicated in the disease. For example, aspartylglucosaminidase (AGA), PLA2, SIAT8B, GALNT7, or B3GAT1 metabolize chemical ligands to which the influenza virus, herpes simplex, cytomegalovirus (CMV), rubella, or Toxoplasma gondii bind. The epidermal growth factor receptor (EGR/EGFR) is used by the CMV to gain entry to cells, and a CMV gene codes for an interleukin (IL-10) mimic that binds the host cognate receptor, IL10R. The fibroblast growth factor receptor (FGFR1) is used by herpes simplex. KPNA3 and RANBP5 control the nuclear import of the influenza virus. Disrupted in schizophrenia 1 (DISC1) controls the microtubule network that is used by viruses as a route to the nucleus, while DTNBP1, MUTED, and BLOC1S3 regulate endosomal to lysosomal routing that is also important in viral traffic. Neuregulin 1 activates ERBB receptors releasing a factor, EBP1, known to inhibit the influenza virus transcriptase. Other viral or bacterial components bind to genes or proteins encoded by CALR, FEZ1, FYN, HSPA1B, IL2, HTR2A, KPNA3, MED12, MED15, MICB, NQO2, PAX6, PIK3C3, RANBP5, or TP53, while the cerebral infectivity of the herpes simplex virus is modified by Apolipoprotein E (APOE). Genes encoding for proteins related to the innate immune response, including cytokine related (CCR5, CSF2RA, CSF2RB, IL1B, IL1RN, IL2, IL3, IL3RA, IL4, IL10, IL10RA, IL18RAP, lymphotoxin-alpha, tumor necrosis factor alpha [TNF]), human leukocyte antigen (HLA) antigens (HLA-A10, HLA-B, HLA-DRB1), and genes involved in antigen processing (angiotensin-converting enzyme and tripeptidyl peptidase 2) are all concerned with defense against invading pathogens. Human microRNAs (Hsa-mir-198 and Hsa-mir-206) are predicted to bind

  10. Genetic variations of US3 genes of human cytomegalovirus strains collected from late jaundice infants%晚期黄疸新生儿人巨细胞病毒感染与US3基因多态性的关系

    Institute of Scientific and Technical Information of China (English)

    胡洪波; 黄汉菊; 彭巧英; 卢佳

    2011-01-01

    Objective To investigate the human cytomegalovirus (HCMV) infection in infants with late jaundice and to explore the relationship between US3 gene polymorphism and the development of late jaundice. Methods PCR was used to amplify the entire HCMV-US3 gene region of clinical strains collected from late jaundice infants. The PCR products were sequenced and phylogenetic analysis was conducted using BioEdit, DNAstar, GeneDoc. Results 20 out of 79 isolates were successfully amplified and the positive rate of detection was 25.3%. By comparing with Towne sequence, the length (561 bp)of US3 ORF in all 20 clinical isolates was similar to that of reference isolate. Mutations were mainly sense mutation and the mutations were mainly found at the N-terminal of the US3 gene. The amino acid sequence of the US3 proteins was highly conserved although several strains had variation. Phylogenetic tree analysis did not show any clear association between the pathogenesis and the distribution of clinical isolates. Conclusion HCMV infection is the major cause of late jaundice in newborns. The DNA and the deduced amino acid sequences of US3 gene shared similarity among HCMV clinical strainsregardless of their polymorphism. No linkage was found between the diversity of US3 gene and the development of late jaundice.%目的 了解晚期黄疸新生儿人巨细胞病毒(HCMV)感染状况.探讨HCMV US3基因多态性与致病性之间的关系.方法 应用巢式PCR法检测2010年1~6月在本院新生儿科就诊的79例晚期黄疸新生儿样本HCMV US3基因,阳性标本结果进行双向DNA测序,通过BioEdit、DNAstar、GeneDoe等软件进行序列分析.结果 79例晚期黄疸新生儿中20例HCMV US3基因PCR扩增阳性,阳性率25.3%.以Towne作为参考株,序列比对分析显示,20株临床分离株US3的ORF长度均与参考株相同,为561 bp,编码186个氨基酸蛋白.US3核酸变异比较普遍,变异主要集中在序列的N端,大部分是同义突变,US3氨基酸序

  11. Bacterial Muramyl Dipeptide (MDP) Restricts Human Cytomegalovirus Replication via an IFN-β-Dependent Pathway.

    Science.gov (United States)

    Kapoor, Arun; Fan, Yi-Hsin; Arav-Boger, Ravit

    2016-02-02

    We recently reported that induction of NOD2 by human Cytomegalovirus (HCMV) resulted in virus inhibition and upregulation of antiviral and inflammatory cytokines. Here we investigated the effects of muramyl dipeptide (MDP), a bacterial cell wall component that activates NOD2, on HCMV replication and antiviral responses. HCMV infection of human foreskin fibroblasts induced NOD2, the downstream receptor-interacting serine/threonine-protein kinase 2 (RIPK2), resulting in phosphorylation of TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3). MDP treatment following infection at low multiplicity (MOI = 0.1 PFU/cell) inhibited HCMV in a dose-dependent manner and further induced phosphorylation of TBK1, IRF3 and expression of IFN-β. None of these effects of MDP were observed following infection at multiplicity of 1. In infected NOD2 knocked-down cells MDP did not induce IFN-β, irrespective of MOI. Treatment with MDP before infection also inhibited HCMV, an effect augmented with treatment duration. Treatment with an IFN-β receptor blocking antibody or knockdown of IFN-β significantly attenuated the inhibitory effect of MDP on HCMV. MDP treatment before or after infection with herpesvirus 1 did not inhibit its replication. Summarized, NOD2 activation exerts anti-HCMV activities predominantly via IFN-β. Since MDP is a bacterial cell wall component, ongoing microbial exposure may influence HCMV replication.

  12. [Detection of DNA human cytomegalovirus of a molecular methods: hybrid capture DNA CMV by immunocompromised].

    Science.gov (United States)

    Mhiri, Leila; Arrouji, Zakia; Slim, Amine; Ben Redjeb, Saida

    2006-10-01

    Human cytomegalovirus (HCMV), a member of the beta-virus herpes family, is a ubiquitous human pathogen. After a primary infection, HCMV establishes life latency. HCMV rarely causes symptomatic disease in an immunocompetent host, however, it is a major cause of infectious morbidity and mortality in immunocompromised individuals and developing fetuses. The HCMV genome consists of 240 kbp of double stranded DNA. Early diagnosis molecular of CMV infection is important. The objective of this study was to develop a molecular methods: Quantitative Hybrid capture for the detection of DNA CMV. We present results for 200 immunocompromised collected from 1999 to 2003 (122 men and 78 women, whom mean age was 35 years). Our results showed that 25% of women and 36% of men were positif for hybrid capture DNA CMV. This simple test (cold probe) provide quantitative and fast results. Also the efficacity of anti-CMV therapy can be followed. More over, in contrary with pp65-antigenemia assay and CMV PCR, this test can be managed on biopsy sample.

  13. Induction of pluripotent protective immunity following immunisation with a chimeric vaccine against human cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Jie Zhong

    Full Text Available Based on the life-time cost to the health care system, the Institute of Medicine has assigned the highest priority for a vaccine to control human cytomegalovirus (HCMV disease in transplant patients and new born babies. In spite of numerous attempts successful licensure of a HCMV vaccine formulation remains elusive. Here we have developed a novel chimeric vaccine strategy based on a replication-deficient adenovirus which encodes the extracellular domain of gB protein and multiple HLA class I & II-restricted CTL epitopes from HCMV as a contiguous polypeptide. Immunisation with this chimeric vaccine consistently generated strong HCMV-specific CD8(+ and CD4(+ T-cells which co-expressed IFN-gamma and TNF-alpha, while the humoral response induced by this vaccine showed strong virus neutralizing capacity. More importantly, immunization with adenoviral chimeric vaccine also afforded protection against challenge with recombinant vaccinia virus encoding HCMV antigens and this protection was associated with the induction of a pluripotent antigen-specific cellular and antibody response. Furthermore, in vitro stimulation with this adenoviral chimeric vaccine rapidly expanded multiple antigen-specific human CD8(+ and CD4(+ T-cells from healthy virus carriers. These studies demonstrate that the adenovirus chimeric HCMV vaccine provides an excellent platform for reconstituting protective immunity to prevent HCMV diseases in different clinical settings.

  14. Molecular detection of cytomegalovirus, herpes simplex virus 2, human papillomavirus 16-18 in Turkish pregnants

    Directory of Open Access Journals (Sweden)

    Bedia Dinc

    2010-12-01

    Full Text Available OBJECTIVE: Human cytomegalovirus (CMV is the most common cause of viral intrauterine infections in the world. Herpes simplex virus type 2 (HSV-2 and human papillomavirus (HPV are the main agents of viral sexually transmitted diseases, which cause genital ulcers and genital warts, respectively. HPV infection has been linked to the majority of the anogenital malignancies. The aim of this study was to detect the existence of CMV, HSV-2 and HPV type 16-18 in Turkish pregnants by using sensitive molecular assays. METHODS: One hundred thirty-four women (18-41 years old; mean age ± SD: 27 ± 8 applied to outpatient clinic of Obstetrics and Gynecology, in between 18th - 22nd weeks of their pregnancy and a control group of 99 healthy women (15-39 years old; mean age ± SD: 24 ± 8 were included in the study. Cervical smear samples were used for DNA extraction. CMV, HSV-2 and HPV 16-18 detections were carried out by real time PCR and in house PCR method, respectively. RESULTS: Three patients (3/134; 2.2% were found to be positive for each HPV and HSV-2. Dual infection with HPV and HSV was found in just one patient. HPV 18 was detected in all positive samples. CMV was found to be positive in two patients (2/134; 1.4 %. CONCLUSION: HPV, HSV and CMV must be screened due to high prevalence of these viruses in pregnants by using sensitive molecular methods.

  15. Study of Soluble HLA-G in Congenital Human Cytomegalovirus Infection

    Science.gov (United States)

    Gabrielli, Liliana; Bortolotti, Daria; Gentili, Valentina; Piccirilli, Giulia; Chiereghin, Angela; Pavia, Claudia; Bolzani, Silvia; Guerra, Brunella; Simonazzi, Giuliana; Cervi, Francesca; Capretti, Maria Grazia; Luca, Dario Di; Landini, Maria Paola; Lazzarotto, Tiziana

    2016-01-01

    Human leukocyte antigen-G (HLA-G) is a nonclassical HLA class I antigen that is expressed during pregnancy contributing to maternal-fetal tolerance. HLA-G can be expressed as membrane-bound and soluble forms. HLA-G expression increases strongly during viral infections such as congenital human cytomegalovirus (HCMV) infections, with functional consequences in immunoregulation. In this work we investigated the expression of soluble (s)HLA-G and beta-2 microglobulin (component of HLA) molecules in correlation with the risk of transmission and severity of congenital HCMV infection. We analyzed 182 blood samples from 130 pregnant women and 52 nonpregnant women and 56 amniotic fluid samples from women experiencing primary HCMV infection. The median levels of sHLA-G in maternal serum of women with primary HCMV infection were higher in comparison with nonprimary and uninfected pregnant women (p < 0.001). AF from HCMV symptomatic fetuses presented higher sHLA-G levels in comparison with infected asymptomatic fetuses (p < 0.001), presence of HLA-G free-heavy chain, and a concentration gradient from amniotic fluid to maternal blood. No significant statistical difference of beta-2 microglobulin median levels was observed between all different groups. Our results suggest the determination of sHLA-G molecules in both maternal blood and amniotic fluid as a promising biomarker of diagnosis of maternal HCMV primary infection and fetal HCMV disease. PMID:27699182

  16. Human cytomegaloviruses expressing yellow fluorescent fusion proteins--characterization and use in antiviral screening.

    Science.gov (United States)

    Straschewski, Sarah; Warmer, Martin; Frascaroli, Giada; Hohenberg, Heinrich; Mertens, Thomas; Winkler, Michael

    2010-02-11

    Recombinant viruses labelled with fluorescent proteins are useful tools in molecular virology with multiple applications (e.g., studies on intracellular trafficking, protein localization, or gene activity). We generated by homologous recombination three recombinant cytomegaloviruses carrying the enhanced yellow fluorescent protein (EYFP) fused with the viral proteins IE-2, ppUL32 (pp150), and ppUL83 (pp65). In growth kinetics, the three viruses behaved all like wild type, even at low multiplicity of infection (MOI). The expression of all three fusion proteins was detected, and their respective localizations were the same as for the unmodified proteins in wild-type virus-infected cells. We established the in vivo measurement of fluorescence intensity and used the recombinant viruses to measure inhibition of viral replication by neutralizing antibodies or antiviral substances. The use of these viruses in a pilot screen based on fluorescence intensity and high-content analysis identified cellular kinase inhibitors that block viral replication. In summary, these viruses with individually EYFP-tagged proteins will be useful to study antiviral substances and the dynamics of viral infection in cell culture.

  17. Human cytomegaloviruses expressing yellow fluorescent fusion proteins--characterization and use in antiviral screening.

    Directory of Open Access Journals (Sweden)

    Sarah Straschewski

    Full Text Available Recombinant viruses labelled with fluorescent proteins are useful tools in molecular virology with multiple applications (e.g., studies on intracellular trafficking, protein localization, or gene activity. We generated by homologous recombination three recombinant cytomegaloviruses carrying the enhanced yellow fluorescent protein (EYFP fused with the viral proteins IE-2, ppUL32 (pp150, and ppUL83 (pp65. In growth kinetics, the three viruses behaved all like wild type, even at low multiplicity of infection (MOI. The expression of all three fusion proteins was detected, and their respective localizations were the same as for the unmodified proteins in wild-type virus-infected cells. We established the in vivo measurement of fluorescence intensity and used the recombinant viruses to measure inhibition of viral replication by neutralizing antibodies or antiviral substances. The use of these viruses in a pilot screen based on fluorescence intensity and high-content analysis identified cellular kinase inhibitors that block viral replication. In summary, these viruses with individually EYFP-tagged proteins will be useful to study antiviral substances and the dynamics of viral infection in cell culture.

  18. 人类巨细胞病毒感染对血管平滑肌细胞脂代谢相关基因表达的影响%Research on influence of human cytomegalovirus infection on expression of vascular smooth muscle cell lipid metabolism-related gene

    Institute of Scientific and Technical Information of China (English)

    谢明英; 李景苏

    2014-01-01

    Objective To investigate the change of intracellular cholesterol lipid metabolism and related gene expression after vascular smooth muscle cells infection by human cytomegalovirus(HCMV).Methods By separating the primary umbilical artery vascular smooth muscle cells with a multiplicity of infection of HCMV attack as the experimental group and the control group a-dopted the DMEM/F12 medium containing 3% bovine serum for simulating infection.The change of cholesterol content in the smooth muscle cells after virus attack was detected and the gene expression gene was detected by the gene expression profiling chip method.Results After vascular smooth muscle cells were infected by HCMV,the intracellular gene expression changed significant-ly,in which low-density lipoprotein receptor-related protein 10,11,12 and HMG-CoA synthase,HMG-CoA reductase and B scaven-ger receptor were upregulated.Apolipoprotein A1 and apolipoprotein M were downregulated.Conclusion HCMV infecting vascular smooth muscle cells may alter the lipid metabolism pathway related gene expression,enhance intracellular cholesterol synthesis,re-sult in the cholesterol metabolism imbalance,thus participate in the pathogenesis process of atherosclerosis.%目的:探讨血管平滑肌细胞被感染人类巨细胞病毒后,其细胞内胆固醇脂代谢及相关基因表达的变化情况。方法通过分离原代脐动脉血管平滑肌细胞,以1个感染复数的人类巨细胞病毒攻击作为实验组,对照组则采用含3%小牛血清的DMEM/F12培养基模拟感染。检测平滑肌细胞内胆固醇含量在病毒攻击后的变化情况,以基因表达谱芯片技术检测基因表达情况。结果血管平滑肌细胞被感染人类巨细胞病毒后,细胞内相关基因表达发生显著变化,其中低密度脂蛋白受体相关蛋白10、11、12以及 HMG-CoA 合成酶,HMG-CoA 还原酶,B 型清道夫受体表达上调。载脂蛋白 A1、载脂蛋白 M 表达下调。结

  19. SEQUENCE VARIABILITY OF HUMAN CYTOMEGALOVIRUS UL144 OPEN READING FRAME IN LOW-PASSAGE CLINICAL ISOLATES

    Institute of Scientific and Technical Information of China (English)

    Rong He; Yao-hua Ji; Qiang Ruan; Chang Xia; Lan-qing Liu; Sheng-min Lü; Ying Lu; Ying Qi; Yan-ping Ma; Qing Liu

    2004-01-01

    Objective To explore the relationship between human cytomegalovirus (HCMV) UL144 sequence variability and clinical disease.Methods HCMV UL144 open reading frame (ORF) was amplified by PCR assay in 72 lowpassage isolates [65 congenitally infective children and 7 healthy children who were HCMV-DNA positive by quantitative PCR (qPCR)]. All positive PCR products were analyzed by heteroduplex mobility assay and single-stranded conformation polymorphism (HMA-SSCP) and 32 of them were sequenced.Resuits Fifty-five patient isolates and five healthy children isolates were HCMV-UL144 positive by PCR. Sequencing and HMA-SSCP analysis showed that significant strain-specific variability was present in the UL144 ORF. Phylogenetic analysis indicated that the nucleotide sequences could be separated into 3 major genotypes. Comparing between UL144 sequences and the corresponding symptoms showed that genotype 2 did not exist in megacolon isolates. And genotype 1 and 3 were the major types among microcephaly and jaundice isolates respectively.Conclusions HCMV-UL144 existed in most of low passage isolates and sequences were hypervariable. The UL144ORF and its predicted product with the high level of sequence variability in different kinds of isolates suggest that UL144ORF might play a role in HCMV infectivity and subsequent diseases.

  20. Human Cytomegalovirus US28 Facilitates Cell-to-Cell Viral Dissemination

    Directory of Open Access Journals (Sweden)

    Vanessa M. Noriega

    2014-03-01

    Full Text Available Human cytomegalovirus (HCMV encodes a number of viral proteins with homology to cellular G protein-coupled receptors (GPCRs. These viral GPCRs, including US27, US28, UL33, and UL78, have been ascribed numerous functions during infection, including activating diverse cellular pathways, binding to immunomodulatory chemokines, and impacting virus dissemination. To investigate the role of US28 during virus infection, two variants of the clinical isolate TB40/E were generated: TB40/E-US28YFP expressing a C-terminal yellow fluorescent protein tag, and TB40/E-FLAGYFP in which a FLAG-YFP cassette replaces the US28 coding region. The TB40/E-US28YFP protein localized as large perinuclear fluorescent structures at late times post-infection in fibroblasts, endothelial, and epithelial cells. Interestingly, US28YFP is a non-glycosylated membrane protein throughout the course of infection. US28 appears to impact cell-to-cell spread of virus, as the DUS28 virus (TB40/E-FLAGYFP generated a log-greater yield of extracellular progeny whose spread could be significantly neutralized in fibroblasts. Most strikingly, in epithelial cells, where dissemination of virus occurs exclusively by the cell-to-cell route, TB40/E-FLAGYFP (DUS28 displayed a significant growth defect. The data demonstrates that HCMV US28 may contribute at a late stage of the viral life cycle to cell-to-cell dissemination of virus.

  1. Impact of Persistent Cytomegalovirus Infection on Dynamic Changes in Human Immune System Profile

    Science.gov (United States)

    Vescovini, Rosanna; Telera, Anna Rita; Pedrazzoni, Mario; Abbate, Barbara; Rossetti, Pietro; Verzicco, Ignazio; Arcangeletti, Maria Cristina; Medici, Maria Cristina; Calderaro, Adriana; Volpi, Riccardo; Sansoni, Paolo; Fagnoni, Francesco Fausto

    2016-01-01

    Human cytomegalovirus (HCMV) imprints the immune system after primary infection, however its effect during chronic infection still needs to be deciphered. In this study we report the variation of blood cell count along with anti-HCMV IgG and T cell responses to pp-65 and IE-1 antigens, that occurred after an interval of five years in a cohort of 25 seropositive healthy adults. We found increased anti-viral IgG antibody responses and intracellular interferon-gamma secreting CD8+ T cell responses to pp-65: a result consistent with memory inflation. With the only exception of shortage in naive CD8+ T cells most memory T cell subsets as well as total CD8+ T cells, T cells, lymphocytes, monocytes and leukocytes had increased. By contrast, none of the cell types tested were found to have increased in 14 subjects stably seronegative. Rather, in addition to a shortage in naive CD8+ T cells, also memory T cell subsets and most other cell types decreased, either in a statistically significant or non-significant manner. The trend of T cell pool representation with regard to CD4/CD8 ratio was in the opposing directions depending on HCMV serology. Globally, this study demonstrates different dynamic changes of most blood cell types depending on presence or absence of HCMV infection. Therefore, HCMV plays a continual role in modulating homeostasis of blood T cells and a broader expanding effect on other cell populations of lymphoid and myeloid origin. PMID:26990192

  2. Genomic and Functional Characteristics of Human Cytomegalovirus Revealed by Next-Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Steven Sijmons

    2014-03-01

    Full Text Available The complete genome of human cytomegalovirus (HCMV was elucidated almost 25 years ago using a traditional cloning and Sanger sequencing approach. Analysis of the genetic content of additional laboratory and clinical isolates has lead to a better, albeit still incomplete, definition of the coding potential and diversity of wild-type HCMV strains. The introduction of a new generation of massively parallel sequencing technologies, collectively called next-generation sequencing, has profoundly increased the throughput and resolution of the genomics field. These increased possibilities are already leading to a better understanding of the circulating diversity of HCMV clinical isolates. The higher resolution of next-generation sequencing provides new opportunities in the study of intrahost viral population structures. Furthermore, deep sequencing enables novel diagnostic applications for sensitive drug resistance mutation detection. RNA-seq applications have changed the picture of the HCMV transcriptome, which resulted in proof of a vast amount of splicing events and alternative transcripts. This review discusses the application of next-generation sequencing technologies, which has provided a clearer picture of the intricate nature of the HCMV genome. The continuing development and application of novel sequencing technologies will further augment our understanding of this ubiquitous, but elusive, herpesvirus.

  3. The Cyclin-Dependent Kinase Ortholog pUL97 of Human Cytomegalovirus Interacts with Cyclins

    Directory of Open Access Journals (Sweden)

    Laura Graf

    2013-12-01

    Full Text Available The human cytomegalovirus (HCMV-encoded protein kinase, pUL97, is considered a cyclin-dependent kinase (CDK ortholog, due to shared structural and functional characteristics. The primary mechanism of CDK activation is binding to corresponding cyclins, including cyclin T1, which is the usual regulatory cofactor of CDK9. This study provides evidence of direct interaction between pUL97 and cyclin T1 using yeast two-hybrid and co-immunoprecipitation analyses. Confocal immunofluorescence revealed partial colocalization of pUL97 with cyclin T1 in subnuclear compartments, most pronounced in viral replication centres. The distribution patterns of pUL97 and cyclin T1 were independent of HCMV strain and host cell type. The sequence domain of pUL97 responsible for the interaction with cyclin T1 was between amino acids 231–280. Additional co-immunoprecipitation analyses showed cyclin B1 and cyclin A as further pUL97 interaction partners. Investigation of the pUL97-cyclin T1 interaction in an ATP consumption assay strongly suggested phosphorylation of pUL97 by the CDK9/cyclin T1 complex in a substrate concentration-dependent manner. This is the first demonstration of interaction between a herpesviral CDK ortholog and cellular cyclins.

  4. Detection of Human Cytomegalovirus in Different Histopathological Types of Glioma in Iraqi Patients

    Directory of Open Access Journals (Sweden)

    Haidar A. Shamran

    2015-01-01

    Full Text Available Human Cytomegalovirus (HCMV is an endemic herpes virus that reemerges in cancer patients enhancing oncogenic potential. HCMV infection is associated with certain types of cancer morbidity such as glioblastomas. HCMV, like all other herpes viruses, has the ability to remain latent within the body of the host and can contribute in chronic inflammation. To determine the role of HCMV in glioma pathogenesis, paraffin-embedded blocks from glioma patients (n=50 and from benign meningioma patients (n=30 were obtained and evaluated by immunohistochemistry and polymerase chain reaction for the evidence of HCMV antigen expression and the presence of viral DNA. We detected HCMV antigen and DNA for IEI-72, pp65, and late antigen in 33/36, 28/36, and 26/36 in glioblastoma multiforme patients whereas 12/14, 10/14, and 9/14 in anaplastic astrocytoma patients, respectively. Furthermore, 84% of glioma patients were positive for immunoglobulin G (IgG compared to 72.5% among control samples (P=0.04. These data indicate the presence of the HCMV virus in a high percentage of glioma samples demonstrating distinct histopathological grades and support previous reports showing the presence of HCMV infection in glioma tissue. These studies demonstrate that detection of low-levels of latent viral infections may play an active role in glioma development and pathogenesis.

  5. Human Cytomegalovirus Secretome Contains Factors That Induce Angiogenesis and Wound Healing

    Energy Technology Data Exchange (ETDEWEB)

    Dumortier, Jerome; Streblow, Daniel N.; Moses, Ashlee V.; Jacobs, Jon M.; Kreklywich, Craig N.; Camp, David G.; Smith, Richard D.; Orloff, Susan L.; Nelson, Jay

    2008-07-01

    Human cytomegalovirus (HCMV) is implicated in the acceleration of a number of vascular diseases including transplant vascular sclerosis (TVS), the lesion associated with chronic rejection (CR) of solid organ transplants. Although the virus persists in the allograft throughout the course of disease, few cells are directly infected by CMV. This observation is in contrast to the global effects that CMV has on the acceleration of TVS/CR, suggesting that CMV infection indirectly promotes the vascular disease process. Recent transcriptome analysis of CMV-infected heart allografts indicates that the virus induces cytokines and growth factors associated with angiogenesis (AG) and wound healing (WH), suggesting that CMV may accelerate TVS/CR through the induction and secretion of AG/WH factors from infected cells. We analyzed virus-free supernatants from HCMV-infected cells (HCMV secretomes) for growth factors, by mass spectrometry and immunoassays, and found that the HCMV secretome contains over 1,000 cellular proteins, many of which are involved in AG/WH. Importantly, functional assays demonstrated that CMV but not herpes simplex virus secretomes not only induce AG/WH but also promote neovessel stabilization and endothelial cell survival for 2 weeks. These findings suggest that CMV acceleration of TVS occurs through virus-induced growth factors and cytokines in the CMV secretome.

  6. Human Cytomegalovirus Immediate Early Interaction with Host Nuclear Structures: Definition of an Immediate Transcript Environment

    Science.gov (United States)

    Ishov, Alexander M.; Stenberg, Richard M.; Maul, Gerd G.

    1997-01-01

    The development of an induced transcript environment was investigated at the supramolecular level through comparative localization of the human cytomegalovirus immediate early (IE) transcripts and specific nuclear domains shortly after infection. Compact aggregates of IE transcripts form only adjacent to nuclear domain 10 (ND10), and the viral protein IE86 accumulates exclusively juxtaposed to the subpopulation of ND10 with transcripts. The stream of transcripts is funneled from ND10 into the spliceosome assembly factor SC35 domain through the accumulation of IE86 protein, which recruits some components of the basal transcription machinery. Concomitantly the IE72 protein binds to ND10 and later disperses them. The domain containing the zinc finger region of IE72 is essential for this dispersal. Positional analysis of proteins IE86 and IE72, IE transcripts, ND10, the spliceosome assembly factor SC35, and basal transcription factors defines spatially and temporally an immediate transcript environment, the basic components of which exist in the cell before viral infection, providing the structural environment for the virus to usurp. PMID:9214377

  7. Preparation of the Human Cytomegalovirus Nuclear Egress Complex and Associated Proteins.

    Science.gov (United States)

    Sharma, Mayuri; Kamil, Jeremy P; Coen, Donald M

    2016-01-01

    Herpesviruses, like most DNA viruses, replicate their genomes in the host cell nucleus. Their DNA is then packaged and assembled into viral nucleocapsids, which, in most cases, are too large to pass through the nuclear pore complex. Instead, herpesviruses use a complex multistep pathway, termed nuclear egress, to exit the nucleus. Key players in this process include two conserved viral proteins that form the nuclear egress complex (NEC). In human cytomegalovirus, these NEC proteins are UL50, embedded in the inner nuclear membrane, and its nucleoplasmic partner UL53. Both are essential for viral nuclear egress. However, other viral components as well as host nuclear envelope proteins may also participate in nuclear egress. Identifying these viral and cellular factors may provide important insight into the herpesvirus lifecycle and its relationship to the underlying, yet still-mysterious, host nuclear egress pathway. We developed an immunoprecipitation-based protocol, described herein, to identify protein-protein interactions involving the NEC from the nuclear fraction of infected cells that express an epitope-tagged version of NEC subunit UL53.

  8. Human Cytomegalovirus UL138 Open Reading Frame Is Highly Conserved in Clinical Strains

    Institute of Scientific and Technical Information of China (English)

    Ying Qi; Rong He; Yan-ping Ma; Zheng-rong Sun; Yao-hua Ji; Qiang Ruan

    2009-01-01

    To investigate the variability of human cytomegalovirus (HCMV) UL138 open reading flame (ORF) in clinical strains.Methods HCMV UL138 ORF was amplified by polymerase chain reaction (PCR) and PCR amplification products were sequenced directly, and the data were analyzed in 19 clinical strains.Results UL138 ORF in all 30 clinical strains was amplified successfully. Compared with that of Toledo strain, the nucleotide and amino acid sequence identities of UL138 ORF in all strains were 97.41% to 99.41% and 98.24% to 99.42%, respectively. All of the nucleotide mutations were substitutions. The spatial structure and post-translational modification sites of UL138 encoded proteins were conserved. The result of phylogenetic tree showed that HCMV UL138 sequence variations were not definitely related with different clinical symptoms.Conclusion HCMV UL138 ORF in clinical strains is high conservation, which might be helpful for UL138 encoded protein to play a role in latent infection of HCMV.

  9. Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide.

    Science.gov (United States)

    Bhushan, Shashi; Meyer, Helge; Starosta, Agata L; Becker, Thomas; Mielke, Thorsten; Berninghausen, Otto; Sattler, Michael; Wilson, Daniel N; Beckmann, Roland

    2010-10-08

    Specific regulatory nascent chains establish direct interactions with the ribosomal tunnel, leading to translational stalling. Despite a wealth of biochemical data, structural insight into the mechanism of translational stalling in eukaryotes is still lacking. Here we use cryo-electron microscopy to visualize eukaryotic ribosomes stalled during the translation of two diverse regulatory peptides: the fungal arginine attenuator peptide (AAP) and the human cytomegalovirus (hCMV) gp48 upstream open reading frame 2 (uORF2). The C terminus of the AAP appears to be compacted adjacent to the peptidyl transferase center (PTC). Both nascent chains interact with ribosomal proteins L4 and L17 at tunnel constriction in a distinct fashion. Significant changes at the PTC were observed: the eukaryotic-specific loop of ribosomal protein L10e establishes direct contact with the CCA end of the peptidyl-tRNA (P-tRNA), which may be critical for silencing of the PTC during translational stalling. Our findings provide direct structural insight into two distinct eukaryotic stalling processes.

  10. Virological and immunological characteristics of human cytomegalovirus infection associated with Alzheimer disease.

    Science.gov (United States)

    Lurain, Nell S; Hanson, Barbara A; Martinson, Jeffrey; Leurgans, Sue E; Landay, Alan L; Bennett, David A; Schneider, Julie A

    2013-08-15

    Serum, cerebrospinal fluid (CSF), and cryopreserved lymphocytes from subjects in the Rush Alzheimer's Disease Center Religious Orders Study were analyzed for associations between cytomegalovirus (CMV) infection and clinical and pathological markers of Alzheimer disease. CMV antibody levels were associated with neurofibrillary tangles (NFTs). CSF interferon γ was only detected in seropositive subjects and was significantly associated with NFTs. The percentage of senescent T cells (CD4+ or CD8+CD28-CD57+) was significantly higher for CMV-seropositive as compared to CMV-seronegative subjects and was marginally associated with the pathologic diagnosis of Alzheimer disease (CD4+) or amyloid-β (CD8+). Immunocytochemical analysis showed induction of amyloid-β in human foreskin fibroblasts (HFFs) infected with each of 3 clinical CMV strains. In the same subjects, there was no association of herpes simplex virus type 1 (HSV-1) antibody levels with CMV antibody levels or clinical or pathological markers of Alzheimer disease. HSV-1 infection of HFFs did not induce amyloid-β. These data support an association between CMV and the development of Alzheimer disease.

  11. The Effect of Human Cytomegalovirus on the Formation of CFU-MK In Vitro

    Institute of Scientific and Technical Information of China (English)

    姚军霞; 宋善俊; 胡丽华

    2004-01-01

    To investigate the mechanism and the suppressive effect of human cytomegalovirus (HCMV) on colony forming unit-megakaryocyte (CFU-MK), semi-solid culture system was used to observe the effect of HCMV AD169 strain on CFU-MK's growth of 18 cord blood samples. HCMV DNA and immediate early (IE) protein mRNA in CFU-MK was detected by PCR and reverse transcription-polymerase chain reaction (RT-PCR). Our results showed that HCMV AD169 significantly suppressed the formation of CFU-MK in vitro. Compared with the mock group, the CFUMK colonies decreased by 21. 6 %, 33. 8 % and 46.3 %, respectively, in all the 3 infected groups (P<0. 05), suggesting the suppression and the titer of the virus was dose-dependent. Both HCMV DNA and the expression of HCMV IE protein mRNA were positively detected in the colony cells of viral infected group,. It is concluded that HCMV AD169 strain could inhibit the differentiation and proliferation of CFU-MK by directly infecting their progenitors. There was early transcription of HCMV IE protein in CFU-MK infected by virus.

  12. Human Cytomegalovirus and Human Umbilical Vein Endothelial Cells: Restriction of Primary Isolation to Blood Samples and Susceptibilities of Clinical Isolates from Other Sources to Adaptation

    OpenAIRE

    2002-01-01

    In immunocompromised patients with disseminated infection, human cytomegalovirus (HCMV) is widespread in the microvascular endothelium of multiple organs. Human umbilical vein endothelial cells (HUVEC) were used in parallel to human embryonic lung fibroblasts (HELF) to recover HCMV from blood samples of immunocompromised patients. Using the shell vial technique, comparable median numbers of p72-positive HUVEC and HELF cells were found with the 26 HCMV-positive buffy coat samples out of 150 ex...

  13. MECHANISMS OF CELL RESISTANCE TO CYTOMEGALOVIRUS ARE CONNECTED WITH CELL PROLIFERATION STATE AND TRANSCRIPTION ACTIVITY OF LEUKOCYTE AND IMMUNE INTERFERON GENES

    Directory of Open Access Journals (Sweden)

    T. M. Sokolova

    2007-01-01

    Full Text Available Abstract. Cytomegalovirus (CMV infection in diploid human fibroblasts (HF and levels of cell resistance to this virus were shown to be in direct correlation with high α-interferon (IFNα gene activity and induction of IFNγ gene transcription. Regulation of IFNα mRNA transcription was revealed to be positively associated with cellular DNA synthesis. At the same time, activities of IFNβ and IFNγ genes were at the constantly low level and were not induced in DNA-synthetic phase (S-phase of the cells. Levels of IFNα mRNA synthesis are quite different for G0- vs S-phase-synchronized HF110044 cell cultures: appropriate values for dividing cells (S-phase proved to be 100-fold higher than in resting state (G0. The mode of CMV infection in resting HF-cell could be considered either as acute, or a productive one. On the contrary, proliferating cells exhibited lagging viral syntheses and delayed cell death. Arrest of CMV replication may be, to some extent, comparable with latent infectious state, being associated with high production of IFNα. Both basal and induced levels of IFNα mRNA in CMV-resistant adult human skin fibroblast cells (HSF-1608 were 10-fold higher than in human embryo lung cell line (HELF-977, which is highly sensitive to CMV. Moreover, a short-time induction of IFNγ genes was observed in resistant cells, whereas no such effect was noticed in highly sensitive cells. CMV reproduction in sensitive cell lines (HELF-977 and HELF-110044 partially inhibits IFNα mRNA transcription at the later stages of infection (24 to 48 hours. Thus, cellular resistance and control of CMV infection in diploid fibroblasts are associated predominantly with high transcription of IFNα gene, and with temporal induction of IFNγ gene. We did not reveal any participation of IFNβ genes in protection of human diploid fibroblasts from CMV.

  14. Inactivation of retinoblastoma protein does not overcome the requirement for human cytomegalovirus UL97 in lamina disruption and nuclear egress.

    Science.gov (United States)

    Reim, Natalia I; Kamil, Jeremy P; Wang, Depeng; Lin, Alison; Sharma, Mayuri; Ericsson, Maria; Pesola, Jean M; Golan, David E; Coen, Donald M

    2013-05-01

    Human cytomegalovirus (HCMV) encodes one conventional protein kinase, UL97. During infection, UL97 phosphorylates the retinoblastoma tumor suppressor protein (pRb) on sites ordinarily phosphorylated by cyclin-dependent kinases (CDK), inactivating the ability of pRb to repress host genes required for cell cycle progression to S phase. UL97 is important for viral DNA synthesis in quiescent cells, but this function can be replaced by human papillomavirus type 16 E7, which targets pRb for degradation. However, viruses in which E7 replaces UL97 are still defective for virus production. UL97 is also required for efficient nuclear egress of viral nucleocapsids, which is associated with disruption of the nuclear lamina during infection, and phosphorylation of lamin A/C on serine 22, which antagonizes lamin polymerization. We investigated whether inactivation of pRb might overcome the requirement of UL97 for these roles, as pRb inactivation induces CDK1, and CDK1 phosphorylates lamin A/C on serine 22. We found that lamin A/C serine 22 phosphorylation during HCMV infection correlated with expression of UL97 and was considerably delayed in UL97-null mutants, even when E7 was expressed. E7 failed to restore gaps in the nuclear lamina seen in wild-type but not UL97-null virus infections. In electron microscopy analyses, a UL97-null virus expressing E7 was as impaired as a UL97-null mutant in cytoplasmic accumulation of viral nucleocapsids. Our results demonstrate that pRb inactivation is insufficient to restore efficient viral nuclear egress of HCMV in the absence of UL97 and instead argue further for a direct role of UL97 in this stage of the infectious cycle.

  15. Cytomegalovirus iritis.

    Science.gov (United States)

    Cheng, L; Rao, N A; Keefe, K S; Avila, C P; Macdonald, J C; Freeman, W R

    1998-11-01

    We describe a case of focal cytomegalovirus iritis in a patient with acquired immunodeficiency syndrome (AIDS) who had CMV retinitis. The autopsy showed histologic evidence of focal iritis in the left eye. This iritis was characterized by infiltration of acute inflammatory cells mixed with cytomegalic cells, which was confirmed by CMV-specific immunohistochemical staining. The case suggested that cytomegalovirus could be a direct causative agent of infectious iritis in AIDS patients.

  16. Rapid intrahost evolution of human cytomegalovirus is shaped by demography and positive selection.

    Science.gov (United States)

    Renzette, Nicholas; Gibson, Laura; Bhattacharjee, Bornali; Fisher, Donna; Schleiss, Mark R; Jensen, Jeffrey D; Kowalik, Timothy F

    2013-01-01

    Populations of human cytomegalovirus (HCMV), a large DNA virus, are highly polymorphic in patient samples, which may allow for rapid evolution within human hosts. To understand HCMV evolution, longitudinally sampled genomic populations from the urine and plasma of 5 infants with symptomatic congenital HCMV infection were analyzed. Temporal and compartmental variability of viral populations were quantified using high throughput sequencing and population genetics approaches. HCMV populations were generally stable over time, with ~88% of SNPs displaying similar frequencies. However, samples collected from plasma and urine of the same patient at the same time were highly differentiated with approximately 1700 consensus sequence SNPs (1.2% of the genome) identified between compartments. This inter-compartment differentiation was comparable to the differentiation observed in unrelated hosts. Models of demography (i.e., changes in population size and structure) and positive selection were evaluated to explain the observed patterns of variation. Evidence for strong bottlenecks (>90% reduction in viral population size) was consistent among all patients. From the timing of the bottlenecks, we conclude that fetal infection occurred between 13-18 weeks gestational age in patients analyzed, while colonization of the urine compartment followed roughly 2 months later. The timing of these bottlenecks is consistent with the clinical histories of congenital HCMV infections. We next inferred that positive selection plays a small but measurable role in viral evolution within a single compartment. However, positive selection appears to be a strong and pervasive driver of evolution associated with compartmentalization, affecting ≥ 34 of the 167 open reading frames (~20%) of the genome. This work offers the most detailed map of HCMV in vivo evolution to date and provides evidence that viral populations can be stable or rapidly differentiate, depending on host environment. The

  17. Rapid intrahost evolution of human cytomegalovirus is shaped by demography and positive selection.

    Directory of Open Access Journals (Sweden)

    Nicholas Renzette

    Full Text Available Populations of human cytomegalovirus (HCMV, a large DNA virus, are highly polymorphic in patient samples, which may allow for rapid evolution within human hosts. To understand HCMV evolution, longitudinally sampled genomic populations from the urine and plasma of 5 infants with symptomatic congenital HCMV infection were analyzed. Temporal and compartmental variability of viral populations were quantified using high throughput sequencing and population genetics approaches. HCMV populations were generally stable over time, with ~88% of SNPs displaying similar frequencies. However, samples collected from plasma and urine of the same patient at the same time were highly differentiated with approximately 1700 consensus sequence SNPs (1.2% of the genome identified between compartments. This inter-compartment differentiation was comparable to the differentiation observed in unrelated hosts. Models of demography (i.e., changes in population size and structure and positive selection were evaluated to explain the observed patterns of variation. Evidence for strong bottlenecks (>90% reduction in viral population size was consistent among all patients. From the timing of the bottlenecks, we conclude that fetal infection occurred between 13-18 weeks gestational age in patients analyzed, while colonization of the urine compartment followed roughly 2 months later. The timing of these bottlenecks is consistent with the clinical histories of congenital HCMV infections. We next inferred that positive selection plays a small but measurable role in viral evolution within a single compartment. However, positive selection appears to be a strong and pervasive driver of evolution associated with compartmentalization, affecting ≥ 34 of the 167 open reading frames (~20% of the genome. This work offers the most detailed map of HCMV in vivo evolution to date and provides evidence that viral populations can be stable or rapidly differentiate, depending on host environment

  18. In vitro inhibition of human cytomegalovirus replication by calcium trinatrium diethylenetriaminepentaacetic acid.

    Science.gov (United States)

    Cinatl, J; Hoffmann, F; Cinatl, J; Weber, B; Scholz, M; Rabenau, H; Stieneker, F; Kabickova, H; Blasko, M; Doerr, H W

    1996-06-01

    Desferrioxamine (DFO) has been shown to inhibit human cytomegalovirus (CMV) replication in vitro. In the present study, we compared antiviral effects of DFO in human foreskin fibroblast (HFF) cells against several CMV strains with those of other chelators that interact with iron and other ions from different pools. DFO, a hydrophilic chelator, that may chelate both intracellular and extracellular ions inhibited production of CMV late antigen at 50% effective concentrations (EC50S) ranging from 6.2 to 8.9 microM. EC50S for calcium trinatrium diethylenetriaminepentaacetic acid (CaDTPA) ranged from 6.1 to 9.9 microM. EC50S for 2,2'-bipyridine (BPD), a hydrophobic chelator, which diffuses into cell membranes ranged from 65 to 72 microM. Concentrations which inhibited BrdU incorporation into cellular DNA by 50% (IC50S) ranged from 8.2 to 12.0 microM (DFO), from 65 to 89 microM (BPD), and from 139 to 249 microM (CaDTPA). CaDTPA was the only chelator which completely inhibited production of infectious virus in HFF and vascular endothelial cells at concentrations which had no significant effects on cellular DNA synthesis and growth. Addition of stoichiometric amounts of Fe3+ in the culture medium of HFF cells completely eliminated antiviral effects of DFO while antiviral effects of CaDTPA and BPD were only moderately affected. Fe2+ and Cu2+ were stronger inhibitors of CaDTPA than Fe3+; however, Mn2+ and Zn2+ completely suppressed antiviral effects of CaDTPA. The results show that CaDTPA is a novel nontoxic inhibitor of CMV replication. The antiviral activity of CaDTPA is suppressed by metal ions with a decreasing potency order of Mn2+/Zn2+ > Fe2+ > Cu2+ > Fe3+.

  19. Human cytomegalovirus induces alteration of (-actin mRNA and microfilaments in human embryo fibroblast cells

    Institute of Scientific and Technical Information of China (English)

    林茂芳; 魏国庆; 黄河; 蔡真

    2004-01-01

    Objective: To investigate the infection of human embryo fibroblast cell line HF cells by CMV as well as the effects of CMV on β-actin mRNA and microfilaments. Methods: HF cells shape was observed after the infection of CMV. RT-PCR assay was used to detect the mRNA expression of CMV immediate early (IE) gene, β-actin and GAPDH genes of HF cells infected by CMV. CMV particles and cell microfilaments were detected with electron microscope. Results: Shape of HF cell changed after the infection by CMV. HF cells infected by CMV could express IE mRNA and the expression of β-actin mRNA decreased in a time- and titer-dependent manner compared with the uninfected HF cells whose expression of GAPDH mRNA did not change much. CMV particles were found with electron microscope in the cells. Microfilaments were ruptured and shortened after the infection of CMV. Conclusion: CMV can not only infect human embryo fibroblast cells line HF cells and replicate in the cells, but can also affect the expression of β-actin mRNA and the microfilaments.

  20. Human cytomegalovirus UL7, a homologue of the SLAM-family receptor CD229, impairs cytokine production.

    Science.gov (United States)

    Engel, Pablo; Pérez-Carmona, Natàlia; Albà, M Mar; Robertson, Kevin; Ghazal, Peter; Angulo, Ana

    2011-10-01

    Human cytomegalovirus (HCMV), the β-herpesvirus prototype, has evolved a wide spectrum of mechanisms to counteract host immunity. Among them, HCMV uses cellular captured genes encoding molecules capable of interfering with the original host function or of fulfilling new immunomodulatory tasks. Here, we report on UL7, a novel HCMV heavily glycosylated transmembrane protein, containing an Ig-like domain that exhibits remarkable amino acid similarity to CD229, a cell-surface molecule of the signalling lymphocyte-activation molecule (SLAM) family involved in leukocyte activation. The UL7 Ig-like domain, which is well-preserved in all HCMV strains, structurally resembles the SLAM-family N-terminal Ig-variable domain responsible for the homophilic and heterophilic interactions that trigger signalling. UL7 is transcribed with early-late kinetics during the lytic infectious cycle. Using a mAb generated against the viral protein, we show that it is constitutively shed, through its mucine-like stalk, from the cell-surface. Production of soluble UL7 is enhanced by PMA and reduced by a broad-spectrum metalloproteinase inhibitor. Although UL7 does not hold the ability to interact with CD229 or other SLAM-family members, it shares with them the capacity to mediate adhesion to leukocytes, specifically to monocyte-derived DCs. Furthermore, we demonstrate that UL7 expression attenuates the production of proinflammatory cytokines TNF, IL-8 and IL-6 in DCs and myeloid cell lines. Thus, the ability of UL7 to interfere with cellular proinflammatory responses may contribute to viral persistence. These results enhance our understanding of those HCMV-encoded molecules involved in sustaining the balance between HCMV and the host immune system.

  1. The eIF4AIII RNA helicase is a critical determinant of human cytomegalovirus replication

    Energy Technology Data Exchange (ETDEWEB)

    Ziehr, Ben; Lenarcic, Erik; Cecil, Chad; Moorman, Nathaniel J., E-mail: nmoorman@med.unc.edu

    2016-02-15

    Human cytomegalovirus (HCMV) was recently shown to encode a large number of spliced mRNAs. While the nuclear export of unspliced viral transcripts has been extensively studied, the role of host mRNA export factors in HCMV mRNA trafficking remains poorly defined. We found that the eIF4AIII RNA helicase, a component of the exon junction complex, was necessary for efficient virus replication. Depletion of eIF4AIII limited viral DNA accumulation, export of viral mRNAs from the nucleus, and the production of progeny virus. However eIF4AIII was dispensable for the association of viral transcripts with ribosomes. We found that pateamine A, a natural compound that inhibits both eIF4AI/II and eIF4AIII, has potent antiviral activity and inhibits HCMV replication throughout the virus lytic cycle. Our results demonstrate that eIF4AIII is required for efficient HCMV replication, and suggest that eIF4A family helicases may be a new class of targets for the development of host-directed antiviral therapeutics. - Highlights: • The host eIF4AIII RNA helicase is required for efficient HCMV replication. • Depleting eIF4AIII inhibited the nuclear export of HCMV mRNAs. • HCMV mRNAs did not require eIF4AIII to associate with polyribosomes. • The eIF4A family helicases may be new targets for host-directed antiviral drugs.

  2. The next generation recombinant human cytomegalovirus vaccine candidates-beyond gB.

    Science.gov (United States)

    Lilja, Anders E; Mason, Peter W

    2012-11-19

    Human cytomegalovirus (HCMV) infects the majority of the global population and persists within the infected host for life; infection of healthy adults rarely leads to severe acute clinical symptoms. In contrast, HCMV is a leading infectious cause of congenital disease and a common cause of complications in transplant recipients. A vaccine to prevent HCMV disease in these populations is a widely recognized medical need. We review recent advances in our understanding of the candidate vaccine antigens and published clinical trial data for the four most recent HCMV vaccine candidates: a gB subunit adjuvanted with MF59, a DNA vaccine expressing gB and pp65, alphavirus replicon particles (VRPs) expressing gB and a pp65-IE1 fusion protein, and a pp65 peptide vaccine. The candidates are safe, although some adverse events were reported for an adjuvanted variant of the pp65 peptide vaccine. The gB/MF59 vaccine elicited strong humoral responses with limited durability. The gB/pp65 DNA vaccine elicited cellular immunity, and the pp65 peptide vaccine elicited modest cellular immunity, but only when formulated with an adjuvant. Only the VRP vaccine expressing gB and pp65-IE1 elicited both humoral and cellular immunity. The gB/MF59 vaccine showed a short-term 50% efficacy at preventing infection of seronegative women and significantly reduced viremia and need for antivirals in solid organ transplant recipients, and the gB/pp65 DNA vaccine showed signs of clinical benefit in hematopoietic stem cell transplant recipients. Importantly, the partial efficacy of the subunit and DNA vaccines is new evidence that both humoral and cellular immunity contribute to controlling HCMV-related disease. These data show the clinical feasibility of a recombinant HCMV vaccine. We discuss areas for potential improvements in the next generation of vaccine candidates.

  3. Diagnosis and Management of Human Cytomegalovirus Infection in the Mother, Fetus, and Newborn Infant

    Science.gov (United States)

    Revello, Maria Grazia; Gerna, Giuseppe

    2002-01-01

    Human cytomegalovirus (HCMV) is the leading cause of congenital viral infection and mental retardation. HCMV infection, while causing asymptomatic infections in most immunocompetent subjects, can be transmitted during pregnancy from the mother with primary (and also recurrent) infection to the fetus. Hence, careful diagnosis of primary infection is required in the pregnant woman based on the most sensitive serologic assays (immunoglobulin M [IgM] and IgG avidity assays) and conventional virologic and molecular procedures for virus detection in blood. Maternal prognostic markers of fetal infection are still under investigation. If primary infection is diagnosed in a timely manner, prenatal diagnosis can be offered, including the search for virus and virus components in fetal blood and amniotic fluid, with fetal prognostic markers of HCMV disease still to be defined. However, the final step for definite diagnosis of congenital HCMV infection is detection of virus in the blood or urine in the first 1 to 2 weeks of life. To date, treatment of congenital infection with antiviral drugs is only palliative both prior to and after birth, whereas the only efficacious preventive measure seems to be the development of a safe and immunogenic vaccine, including recombinant, subunit, DNA, and peptide-based vaccines now under investigation. The following controversial issues are discussed in the light of the most recent advances in the field: the actual perception of the problem; universal serologic screening before pregnancy; the impact of correct counseling on decision making by the couple involved; the role of prenatal diagnosis in ascertaining transmission of virus to the fetus; the impact of preconceptional and periconceptional infections on the prevalence of congenital infection; and the prevalence of congenitally infected babies born to mothers who were immune prior to pregnancy compared to the number born to mothers undergoing primary infection during pregnancy. PMID

  4. HIGH VARIABILITY OF HUMAN CYTOMEGALOVIRUS UL150 OPEN READING FRAME IN LOW-PASSAGED CLINICAL ISOLATES

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To investigate the polymorphism of human cytomegalovirus (HCMV) UL150 open reading frame(ORF) in low-passaged clinical isolates, and to study the relationship between the polymorphism and different pathogenesis of congenital HCMV infection.Methods PCR was performed to amplify the entire HCMV UL150 ORF region of 29 clinical isolates, which hadbeen proven containing detectable HCMV-DNA using fluorescence quantitative PCR. PCR amplifcation products weresequenced directly, and the data were analyzed.Results Totally 25 among 29 isolates were amplified, and 18 isolates were sequenced successfully. HCMVUL150 ORF sequences derived from congenitally infected infants were high variability. The UL150 ORF in all 18 clinical isolates shifted backward by 8 nucleotides leading to frame-shift, and contained a single nucleotide deletion at nucleotide position 226 compared with that of Toledo strain. The nucleotide diversity was 0. 1% to 6. 8% and the amino acid diversity was 0. 2% to 19. 2% related to Toledo strain. However, the nucleotide diversity was 0. 1% to 6.4% and amino acid diversity was 0. 2% to 8.3% by compared with Merlin strain. Compared with Toledo, 4 new cysteine residues and 13 additional posttranslational modification sites were observed in UL150 putative proteins of clinical isolates. Moreover, the UL150 putative protein contained an additional transmembrane helix at position of 4-17 amino acid related to Toledo.Conclusion HCMV UL150 ORF and deduced amino acid sequences of clinical strains are hypervariability. No obvious linkage between the polymorphism and different pathogenesis of congenital HCMV infection is found.

  5. Identification of novel allosteric modulators for the G-protein coupled US28 receptor of human cytomegalovirus.

    Science.gov (United States)

    Kralj, Ana; Wetzel, Alexander; Mahmoudian, Shohreh; Stamminger, Thomas; Tschammer, Nuska; Heinrich, Markus R

    2011-09-15

    The highly constitutively active G-protein coupled receptor US28 of human cytomegalovirus (HCMV) is an interesting pharmacological target because of its implication on viral dissemination, cardiovascular diseases and tumorigenesis. We found that dihydroisoquinolinone and tetrahydroisoquinoline scaffolds may be promising lead structures for novel US28 allosteric inverse agonists. These scaffolds were rapidly synthesized by radical carboamination reactions followed by non-radical transformations. Our novel US28 allosteric modulators provide valuable scaffolds for further ligand optimization and may be helpful chemical tools to investigate molecular mechanisms of US28 constitutive signaling and its role in pathogenesis.

  6. Transient Oral Human Cytomegalovirus Infections Indicate Inefficient Viral Spread from Very Few Initially Infected Cells.

    Science.gov (United States)

    Mayer, Bryan T; Krantz, Elizabeth M; Swan, David; Ferrenberg, James; Simmons, Karen; Selke, Stacy; Huang, Meei-Li; Casper, Corey; Corey, Lawrence; Wald, Anna; Schiffer, Joshua T; Gantt, Soren

    2017-06-15

    Cytomegalovirus (CMV) is acquired by the oral route in children, and primary infection is associated with abundant mucosal replication, as well as the establishment of latency in myeloid cells that results in lifelong infection. The efficiency of primary CMV infection in humans following oral exposure, however, is unknown. We consistently detected self-limited, low-level oral CMV shedding events, which we termed transient CMV infections, in a prospective birth cohort of 30 highly exposed CMV-uninfected infants. We estimated the likelihood of transient oral CMV infections by comparing their observed frequency to that of established primary infections, characterized by persistent high-level shedding, viremia, and seroconversion. We developed mathematical models of viral dynamics upon initial oral CMV infection and validated them using clinical shedding data. Transient infections comprised 76 to 88% of oral CMV shedding events. For this high percentage of transient infections to occur, we identified two mathematical prerequisites: a very small number of initially infected oral cells (1 to 4) and low viral infectivity (<1.5 new cells infected/cell). These observations indicate that oral CMV infection in infants typically begins with a single virus that spreads inefficiently to neighboring cells. Thus, although the incidence of CMV infection is high during infancy, our data provide a mechanistic framework to explain why multiple CMV exposures are typically required before infection is successfully established. These findings imply that a sufficiently primed immune response could prevent CMV from establishing latent infection in humans and support the achievability of a prophylactic CMV vaccine.IMPORTANCE CMV infects the majority of the world's population and is a major cause of birth defects. Developing a vaccine to prevent CMV infection would be extremely valuable but would be facilitated by a better understanding of how natural human CMV infection is acquired. We

  7. Novel Cytomegalovirus UL54 DNA Polymerase Gene Mutations Selected In Vitro That Confer Brincidofovir Resistance

    Science.gov (United States)

    Ercolani, Ronald J.; Lanier, E. Randall

    2016-01-01

    Eight in vitro selection experiments under brincidofovir pressure elicited the known cytomegalovirus DNA polymerase amino acid substitutions N408K and V812L and the novel exonuclease domain substitutions D413Y, E303D, and E303G, which conferred ganciclovir and cidofovir resistance with 6- to 11-fold resistance to brincidofovir or 17-fold when E303G was combined with V812L. The new exonuclease domain I resistance mutations selected under brincidofovir pressure add to the single instance previously reported and show the expected patterns of cross-resistance. PMID:27044553

  8. Human cytomegalovirus infection leads to elevated levels of transplant arteriosclerosis in a humanized mouse aortic xenograft model.

    Science.gov (United States)

    Abele-Ohl, S; Leis, M; Wollin, M; Mahmoudian, S; Hoffmann, J; Müller, R; Heim, C; Spriewald, B M; Weyand, M; Stamminger, T; Ensminger, S M

    2012-07-01

    Recent findings emphasized an important role of human cytomegalovirus (HCMV) infection in the development of transplant arteriosclerosis. Therefore, the aim of this study was to develop a human peripheral blood lymphocyte (hu-PBL)/Rag-2(-/-) γc(-/-) mouse-xenograft-model to investigate both immunological as well as viral effector mechanisms in the progression of transplant arteriosclerosis. For this, sidebranches from the internal mammary artery were recovered during coronary artery bypass graft surgery, tissue-typed and infected with HCMV. Then, size-matched sidebranches were implanted into the infrarenal aorta of Rag-2(-/-) γc(-/-) mice. The animals were reconstituted with human peripheral blood mononuclear cells (PBMCs) 7 days after transplantation. HCMV-infection was confirmed by Taqman-PCR and immunofluorescence analyses. Arterial grafts were analyzed by histology on day 40 after transplantation. PBMC-reconstituted Rag-2(-/-) γc(-/-) animals showed splenic chimerism levels ranging from 1-16% human cells. After reconstitution, Rag-2(-/-) γc(-/-) mice developed human leukocyte infiltrates in their grafts and vascular lesions that were significantly elevated after infection. Cellular infiltration revealed significantly increased ICAM-1 and PDGF-R-β expression after HCMV-infection of the graft. Arterial grafts from unreconstituted Rag-2(-/-) γc(-/-) recipients showed no vascular lesions. These data demonstrate a causative relationship between HCMV-infection as an isolated risk factor and the development of transplant-arteriosclerosis in a humanized mouse arterial-transplant-model possibly by elevated ICAM-1 and PDGF-R-β expression.

  9. History of the molecular biology of cytomegaloviruses.

    Science.gov (United States)

    Stinski, Mark F

    2014-01-01

    The history of the molecular biology of cytomegaloviruses from the purification of the virus and the viral DNA to the cloning and expression of the viral genes is reviewed. A key genetic element of cytomegalovirus (the CMV promoter) contributed to our understanding of eukaryotic cell molecular biology and to the development of lifesaving therapeutic proteins. The study of the molecular biology of cytomegaloviruses also contributed to the development of antivirals to control the viral infection.

  10. Efficacy and Mechanism of Action of Low Dose Emetine against Human Cytomegalovirus

    Science.gov (United States)

    Mukhopadhyay, Rupkatha; Roy, Sujayita; Venkatadri, Rajkumar; Su, Yu-Pin; Ye, Wenjuan; Barnaeva, Elena; Mathews Griner, Lesley; Southall, Noel; Hu, Xin; Wang, Amy Q.; Xu, Xin; Dulcey, Andrés E.; Marugan, Juan J.; Ferrer, Marc; Arav-Boger, Ravit

    2016-01-01

    Infection with human cytomegalovirus (HCMV) is a threat for pregnant women and immunocompromised hosts. Although limited drugs are available, development of new agents against HCMV is desired. Through screening of the LOPAC library, we identified emetine as HCMV inhibitor. Additional studies confirmed its anti-HCMV activities in human foreskin fibroblasts: EC50−40±1.72 nM, CC50−8±0.56 μM, and selectivity index of 200. HCMV inhibition occurred after virus entry, but before DNA replication, and resulted in decreased expression of viral proteins. Synergistic virus inhibition was achieved when emetine was combined with ganciclovir. In a mouse CMV (MCMV) model, emetine was well-tolerated, displayed long half-life, preferential distribution to tissues over plasma, and effectively suppressed MCMV. Since the in vitro anti-HCMV activity of emetine decreased significantly in low-density cells, a mechanism involving cell cycle regulation was suspected. HCMV inhibition by emetine depended on ribosomal processing S14 (RPS14) binding to MDM2, leading to disruption of HCMV-induced MDM2-p53 and MDM2-IE2 interactions. Irrespective of cell density, emetine induced RPS14 translocation into the nucleus during infection. In infected high-density cells, MDM2 was available for interaction with RPS14, resulting in disruption of MDM2-p53 interaction. However, in low-density cells the pre-existing interaction of MDM2-p53 could not be disrupted, and RPS14 could not interact with MDM2. In high-density cells the interaction of MDM2-RPS14 resulted in ubiquitination and degradation of RPS14, which was not observed in low-density cells. In infected-only or in non-infected emetine-treated cells, RPS14 failed to translocate into the nucleus, hence could not interact with MDM2, and was not ubiquitinated. HCMV replicated similarly in RPS14 knockdown or control cells, but emetine did not inhibit virus replication in the former cell line. The interaction of MDM2-p53 was maintained in infected

  11. Xenotransplantation and porcine cytomegalovirus.

    Science.gov (United States)

    Denner, Joachim

    2015-01-01

    Porcine microorganisms may be transmitted to the human recipient when xenotransplantation with pig cells, tissues, and organs will be performed. Most of such microorganisms can be eliminated from the donor pig by specified or designated pathogen-free production of the animals. As human cytomegalovirus causes severe transplant rejection in allotransplantation, considerable concern is warranted on the potential pathogenicity of porcine cytomegalovirus (PCMV) in the setting of xenotransplantation. On the other hand, despite having a similar name, PCMV is different from HCMV. The impact of PCMV infection on pigs is known; however, the influence of PCMV on the human transplant recipient is unclear. However, first transplantations of pig organs infected with PCMV into non-human primates were associated with a significant reduction of the survival time of the transplants. Sensitive detection methods and strategies for elimination of PCMV from donor herds are required.

  12. Cytomegalovirus immediate-early promoter efficiently drives heterogeneous gene expression in Spodoptera frugiperda (Sf9) insect cells.

    Science.gov (United States)

    Li, S; Zhang, Q N; Zhang, X T; Zheng, X Y; Lv, Y F; Hao, Z M

    2014-03-05

    Recently, wide attention has been given to the potential of recombinant baculovirus as a gene transfer vehicle for mammalian gene therapy. In this study, we packaged the recombinant baculoviruses with cytomegalovirus immediate-early (CMV-IE) promoter in Spodoptera frugiperda (Sf9) insect cells, and found that the CMV-IE promoter could efficiently drive the exogenic gene expression in the cells 12 h post-infection (h.p.i.). The expression level at 72 h.p.i. was only around half of that driven by polyhedrin promoter (Ppolh). However, the biological activity of the reporter proteins at 72 h.p.i. were similar with that driven by Ppolh. In addition, the Sf9 cells transfected with CMV-IE-containing plasmids also expressed foreign genes, suggesting that the CMV-IE-directed heterogeneous gene expression in the Sf9 cells was baculovirus-independent. These results demonstrate that the CMV-IE promoter might be used as a regular promoter in Sf9 cells.

  13. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Inoue-Toyoda, Maki [Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Kato, Kohsuke [Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp [University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Yoshikawa, Hiroyuki [Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan)

    2015-02-27

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX.

  14. Human cytomegalovirus-induces cytokine changes in the placenta with implications for adverse pregnancy outcomes.

    Directory of Open Access Journals (Sweden)

    Stuart T Hamilton

    Full Text Available Human cytomegalovirus (CMV infection of the developing fetus can result in adverse pregnancy outcomes including death in utero. Fetal injury results from direct viral cytopathic damage to the CMV-infected fetus, although evidence suggests CMV placental infection may indirectly cause injury to the fetus, possibly via immune dysregulation with placental dysfunction. This study investigated the effects of CMV infection on expression of the chemokine MCP-1 (CCL2 and cytokine TNF-α in placentae from naturally infected stillborn babies, and compared these changes with those found in placental villous explant histocultures acutely infected with CMV ex vivo. Tissue cytokine protein levels were assessed using quantitative immunohistochemistry. CMV-infected placentae from stillborn babies had significantly elevated MCP-1 and TNF-α levels compared with uninfected placentae (p = 0.001 and p = 0.007, which was not observed in placentae infected with other microorganisms (p = 0.62 and p = 0.71 (n = 7 per group. Modelling acute clinical infection using ex vivo placental explant histocultures showed infection with CMV laboratory strain AD169 (0.2 pfu/ml caused significantly elevated expression of MCP-1 and TNF-α compared with uninfected explants (p = 0.0003 and p<0.0001 (n = 25 per group. Explant infection with wild-type Merlin at a tenfold lower multiplicity of infection (0.02 pfu/ml, caused a significant positive correlation between increased explant infection and upregulation of MCP-1 and TNF-α expression (p = 0.0001 and p = 0.017. Cytokine dysregulation has been associated with adverse outcomes of pregnancy, and can negatively affect placental development and function. These novel findings demonstrate CMV infection modulates the placental immune environment in vivo and in a multicellular ex vivo model, suggesting CMV-induced cytokine modulation as a potential initiator and/or exacerbator of placental and fetal injury.

  15. [Viral infection of herpes simplex, Epstein-Barr, varicela zoster, human papilloma, cytomegalovirus, or adenovirus are not related to sinonasal adenocarcinomas].

    Science.gov (United States)

    Pérez Escuredo, Jhudit; Llorente, José Luis; Melón, Santiago; de Oña, María; García Martínez, Jorge; Alvarez Marcos, César; Hermsen, Mario

    2007-01-01

    Several types of virus have been implicated in the development of head and neck tumors. However, until now sinonasal adenocarcinomas (ACN) have not been studied. The aim of this study is to screen a series of ACN for the presence of a number of viruses known to play a role in cancer. Viral DNA sequences of herpes simplex virus, Epstein-Barr, varicela zoster, human papilloma, cytomegalovirus, and adenovirus were analysed by PCR in 37 primary ACN. Three tumors (8.1%) were positive for Epstein-Barr virus and 1 case (2.7%) for cytomegalovirus. Viral infections do not seem to play a role in the etiology of ACN.

  16. Identification of common mechanisms by which human and mouse cytomegalovirus seven-transmembrane receptor homologues contribute to in vivo phenotypes in a mouse model

    DEFF Research Database (Denmark)

    Farrell, Helen E; Abraham, Alexander M; Cardin, Rhonda D

    2013-01-01

    The mouse cytomegalovirus chemokine receptor homologue (CKR) M33 is required for salivary gland tropism and efficient reactivation from latency, phenotypes partially rescued by the human cytomegalovirus CKR US28. Herein, we demonstrate that complementation of salivary gland tropism is mediated...... predominantly by G protein-dependent signaling conserved with that of M33; in contrast, both G protein-dependent and -independent pathways contribute to the latency phenotypes. A novel M33-dependent replication phenotype in cultured bone marrow macrophages is also described....

  17. Effects of cytomegalovirus infection in human neural precursor cells depend on their differentiation state

    OpenAIRE

    2015-01-01

    © 2015, Journal of NeuroVirology, Inc. Cytomegalovirus (CMV) is the most common cause of congenital infection in developed countries and a major cause of neurological disability in children. Although CMV can affect multiple organs, the most important sequelae of intrauterine infection are related to lesions of the central nervous system. However, little is known about the pathogenesis and the cellular events responsible for neuronal damage in infants with congenital infection. Some studies ha...

  18. [{sup 11}C]FMAU and [{sup 18}F]FHPG as PET tracers for herpes simplex virus thymidine kinase enzyme activity and human cytomegalovirus infections

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Erik F.J. de E-mail: e.f.j.de.vries@pet.azg.nl; Waarde, Aren van; Harmsen, Marco C.; Mulder, Nanno H.; Vaalburg, Willem; Hospers, Geke A.P

    2000-02-01

    [{sup 11}C]-2'-Fluoro-5-methyl-1-{beta}-D-arabinofuranosyluracil ([{sup 11}C]FMAU) and [{sup 18}F]-9-[(3-fluoro-1-hydroxy-2-propoxy)methyl]guanine ([{sup 18}F]FHPG), radiolabeled representatives of two classes of antiviral agents, were evaluated as tracers for measuring herpes simplex virus thymidine kinase (HSV-tk) enzyme activity after gene transfer and as tracers for localization of active human cytomegalovirus (HCMV) infections. In vitro accumulation experiments revealed that both [{sup 11}C]FMAU and [{sup 18}F]FHPG accumulated significantly more in HSV-tk expressing cells than they did in control cells. [{sup 18}F]FHPG uptake in HSV-tk expressing cells, however, was found to depend strongly on the cell line used, which might be due to cell type dependent membrane transport or cell type dependent substrate specific susceptibility of the enzyme. In vitro, both tracers exhibited a good selectivity for accumulation in HCMV-infected human umbilical vein endothelial cells over uninfected cells. In contrast to [{sup 18}F]FHPG, [{sup 11}C]FMAU uptake in control cells was relatively high due to phosphorylation of the tracer by host kinases. Therefore, [{sup 18}F]FHPG appears to be the more selective tracer not only to predict HSV-tk gene therapy outcome, but also to localize active HCMV infections with PET.

  19. A "coiled-coil" motif is important for oligomerization and DNA binding properties of human cytomegalovirus protein UL77.

    Directory of Open Access Journals (Sweden)

    Christina Sylvia Meissner

    Full Text Available Human cytomegalovirus (HCMV UL77 gene encodes the essential protein UL77, its function is characterized in the present study. Immunoprecipitation identified monomeric and oligomeric pUL77 in HCMV infected cells. Immunostaining of purified virions and subviral fractions showed that pUL77 is a structural protein associated with capsids. In silico analysis revealed the presence of a coiled-coil motif (CCM at the N-terminus of pUL77. Chemical cross-linking of either wild-type pUL77 or CCM deletion mutant (pUL77ΔCCM implicated that CCM is critical for oligomerization of pUL77. Furthermore, co-immunoprecipitations of infected and transfected cells demonstrated that pUL77 interacts with the capsid-associated DNA packaging motor components, pUL56 and pUL104, as well as the major capsid protein. The ability of pUL77 to bind dsDNA was shown by an in vitro assay. Binding to certain DNA was further confirmed by an assay using biotinylated 36-, 250-, 500-, 1000-meric dsDNA and 966-meric HCMV-specific dsDNA designed for this study. The binding efficiency (BE was determined by image processing program defining values above 1.0 as positive. While the BE of the pUL56 binding to the 36-mer bio-pac1 containing a packaging signal was 10.0 ± 0.63, the one for pUL77 was only 0.2±0.03. In contrast to this observation the BE of pUL77 binding to bio-500 bp or bio-1000 bp was 2.2 ± 0.41 and 4.9 ± 0.71, respectively. By using pUL77ΔCCM it was demonstrated that this protein could not bind to dsDNA. These data indicated that pUL77 (i could form homodimers, (ii CCM of pUL77 is crucial for oligomerization and (iii could bind to dsDNA in a sequence independent manner.

  20. Human cytomegalovirus immediate early proteins promote degradation of connexin 43 and disrupt gap junction communication: implications for a role in gliomagenesis.

    Science.gov (United States)

    Khan, Zahidul; Yaiw, Koon-Chu; Wilhelmi, Vanessa; Lam, Hoyin; Rahbar, Afsar; Stragliotto, Giuseppe; Söderberg-Nauclér, Cecilia

    2014-01-01

    A lack of gap junctional intercellular communication (GJIC) is common in cancer. Many oncogenic viruses have been shown to downregulate the junctional protein connexin 43 (Cx43) and reduce GJIC. Human cytomegalovirus (HCMV) is a ubiquitous, species-specific betaherpesvirus that establishes life-long latency after primary infection. It encodes two viral gene products, immediate early (IE) proteins IE1 and IE2, which are crucial in viral replication and pathogenesis of many diseases. Emerging evidence demonstrates that HCMV DNA and proteins are highly prevalent in glioblastoma multiforme (GBM) and in other tumors, but HCMV's role in tumorigenesis remains obscure. In the present study, we examined the effects of HCMV infection on Cx43 expression and GJIC as well as the viral mechanism mediating the effects in human GBM cells and tissue samples. We found that HCMV downregulated Cx43 protein, resulting in disruption of functional GJIC as assayed by fluorescent dye transfer assay. We show that both HCMV-IE72 and IE86 mediate downregulation of Cx43 by silencing RNA targeting either IE72 or IE86 coupled with ganciclovir. This finding was further validated by transfection with expression vectors encoding IE72 or IE86, and we show that viral-mediated Cx43 depletion involved proteasomal degradation. Importantly, we also observed that the Cx43 protein levels and IE staining correlated inversely in 10 human GBM tissue specimens. Thus, HCMV regulates Cx43 expression and GJIC, which may contribute to gliomagenesis.

  1. Deregulation of type I IFN-dependent genes correlates with increased susceptibility to cytomegalovirus acute infection of dicer mutant mice.

    Directory of Open Access Journals (Sweden)

    Eleonore Ostermann

    Full Text Available Regulation of gene expression by microRNAs (miRNAs is now considered as an essential mechanism for cell development and homeostasis. Indeed, numerous studies have reported that modulating their expression, maturation, or activity can affect cell survival, identity or activation. In particular, miRNAs are key players in the tight regulation of signaling cascades, and as such, they appear as perfectly suited immunomodulators. Several immune-related processes, including inflammation, have recently been demonstrated to require specific miRNAs. In addition, the discovery of herpesvirus-encoded miRNAs has reinforced this assumption. To decipher the potential roles of miRNAs in innate antiviral immune response, we developed an in vivo model based on the inoculation of mouse cytomegalovirus (MCMV in mice. Furthermore, we exploited a mouse line carrying a hypomorphic mutation in the Dicer gene to visualize the impact of impaired miRNA biogenesis upon the anti-MCMV response. Our data indicate that miRNAs are important actors in mounting an efficient response against herpesviruses. We suggest that a rapid and transient interferon response following viral infection requires miRNA-dependent repressor release. In addition, our in vivo efforts identified several miRNA targets, thus providing a conceptual framework for future analyzes on the regulation of specific actors involved in the Type I interferon pathway.

  2. Association of vitamin D receptor FokI and ApaI polymorphisms with human cytomegalovirus disease in the first three months following kidney transplantation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yu-gang; SHI Bing-yi; XIAO Li; QIAN Ye-yong; FENG Kai; HE Xiu-yun; XU Xiao-guang

    2012-01-01

    Background Untreated human cytomegalovirus (CMV) disease (CMVD) is an identified risk factor for reduced rates of patient (and graft) survival,death or retransplantation in kidney transplant recipients due to increased immunological tolerance after transplant.Vitamin D receptor (VDR) gene polymorphisms have an obvious relationship with autoimmune diseases but the relationship between VDR gene polymorphisms and CMVD are not well understood.This study investigated the relationship between VDR Fokl and Apal gene polymorphisms and CMVD,and their value for predicting risk of CMVD.Methods Ninety-eight kidney transplantation recipients were randomly chosen for which peripheral blood samples and case histories for the first three months after kidney transplantation were obtained.Using polymerase chain reaction-restriction fragment length polymorphisms,30 recipients were found to be homozygous for the Fokl gene (FF),47 heterozygous (Ff),and 21 were homozygous (ff).Likewise,similar analyses determined that 12 recipients were homozygous for the Apa/ gene (AA),36 heterozygous (Aa),and 50 homozygous (aa).Factors affecting the prognosis of the kidney transplantation were compared for all genotypes by statistical analysis before operation.Infection by CMV for all recipients was detected by immunofluorescence assay to diagnose CMVD.Results No statistical significance was observed for the factors affecting the prognosis of the kidney transplantation between both genotypes; however,statistical differences in CMVD among the Fokl genotypes were identified.It was determined that the risk of CMVD was significantly increased for recipients of the ff genotype than for other genotypes.There was no statistical significance observed for CMVD among Apal genotypes.Conclusions The recessive f allelic gene of VDR can be regarded as a risk factor of CMVD while FF recipients have lower incidence of CMVD after kidney transplantation.Apal genotypes showed no relationship with predisposition to CMVD

  3. Cytomegalovirus ileitis in an immunocompetent elderly adult

    Institute of Scientific and Technical Information of China (English)

    Kum Hei Ryu; Sun Young Yi

    2006-01-01

    Cytomegalovirus enteritis is most usually associated with patients positive for human immunodeficiency virus or immunosuppressed transplant patients. The gastrointestinal tract may be affected anywhere from the esophagus to the colon, but the small bowel involvement is rare. We report a case of cytomegalovirus ileitis in an immunocompetent adult, which was confirmed by histopathologic findings through colonoscopic biopsy.

  4. The carboxyl terminus of human cytomegalovirus-encoded 7 transmembrane receptor US28 camouflages agonism by mediating constitutive endocytosis

    DEFF Research Database (Denmark)

    Waldhoer, Maria; Casarosa, Paola; Rosenkilde, Mette M;

    2003-01-01

    US28 is one of four 7 transmembrane (7TM) chemokine receptors encoded by human cytomegalovirus and has been shown to both signal and endocytose in a ligand-independent, constitutively active manner. Here we show that the constitutive activity and constitutive endocytosis properties of US28...... that the cytoplasmic tail domain of US28 per se regulates receptor endocytosis, independent of the signaling ability of the core domain of US28. The constitutive endocytic property of the US28 c-tail was transposable to other 7TM receptors, the herpes virus 8-encoded ORF74 and the tachykinin NK1 receptor (ORF74-US28......-ctail and NK1-US28-ctail). Deletion of the US28 C terminus resulted in reduced constitutive endocytosis and consequently enhanced signaling capacity of all receptors tested as assessed by inositol phosphate turnover, NF-kappa B, and cAMP-responsive element-binding protein transcription assays. We...

  5. Structure of human cytomegalovirus UL141 binding to TRAIL-R2 reveals novel, non-canonical death receptor interactions.

    Directory of Open Access Journals (Sweden)

    Ivana Nemčovičová

    2013-03-01

    Full Text Available The TRAIL (TNF-related apoptosis inducing ligand death receptors (DRs of the tumor necrosis factor receptor superfamily (TNFRSF can promote apoptosis and regulate antiviral immunity by maintaining immune homeostasis during infection. In turn, human cytomegalovirus (HCMV expresses immunomodulatory proteins that down-regulate cell surface expression of TNFRSF members as well as poliovirus receptor-related proteins in an effort to inhibit host immune effector pathways that would lead to viral clearance. The UL141 glycoprotein of human cytomegalovirus inhibits host defenses by blocking cell surface expression of TRAIL DRs (by retention in ER and poliovirus receptor CD155, a nectin-like Ig-fold molecule. Here we show that the immunomodulatory function of HCMV UL141 is associated with its ability to bind diverse proteins, while utilizing at least two distinct binding sites to selectively engage TRAIL DRs or CD155. Binding studies revealed high affinity interaction of UL141 with both TRAIL-R2 and CD155 and low affinity binding to TRAIL-R1. We determined the crystal structure of UL141 bound to TRAIL-R2 at 2.1 Å resolution, which revealed that UL141 forms a homodimer that engages two TRAIL-R2 monomers 90° apart to form a heterotetrameric complex. Our structural and biochemical data reveal that UL141 utilizes its Ig-domain to facilitate non-canonical death receptor interactions while UL141 partially mimics the binding site of TRAIL on TRAIL-R2, which we found to be distinct from that of CD155. Moreover, UL141 also binds to an additional surface patch on TRAIL-R2 that is distinct from the TRAIL binding site. Therefore, the breadth of UL141-mediated effects indicates that HCMV has evolved sophisticated strategies to evade the immune system by modulating multiple effector pathways.

  6. Structure of human cytomegalovirus UL141 binding to TRAIL-R2 reveals novel, non-canonical death receptor interactions.

    Science.gov (United States)

    Nemčovičová, Ivana; Benedict, Chris A; Zajonc, Dirk M

    2013-03-01

    The TRAIL (TNF-related apoptosis inducing ligand) death receptors (DRs) of the tumor necrosis factor receptor superfamily (TNFRSF) can promote apoptosis and regulate antiviral immunity by maintaining immune homeostasis during infection. In turn, human cytomegalovirus (HCMV) expresses immunomodulatory proteins that down-regulate cell surface expression of TNFRSF members as well as poliovirus receptor-related proteins in an effort to inhibit host immune effector pathways that would lead to viral clearance. The UL141 glycoprotein of human cytomegalovirus inhibits host defenses by blocking cell surface expression of TRAIL DRs (by retention in ER) and poliovirus receptor CD155, a nectin-like Ig-fold molecule. Here we show that the immunomodulatory function of HCMV UL141 is associated with its ability to bind diverse proteins, while utilizing at least two distinct binding sites to selectively engage TRAIL DRs or CD155. Binding studies revealed high affinity interaction of UL141 with both TRAIL-R2 and CD155 and low affinity binding to TRAIL-R1. We determined the crystal structure of UL141 bound to TRAIL-R2 at 2.1 Å resolution, which revealed that UL141 forms a homodimer that engages two TRAIL-R2 monomers 90° apart to form a heterotetrameric complex. Our structural and biochemical data reveal that UL141 utilizes its Ig-domain to facilitate non-canonical death receptor interactions while UL141 partially mimics the binding site of TRAIL on TRAIL-R2, which we found to be distinct from that of CD155. Moreover, UL141 also binds to an additional surface patch on TRAIL-R2 that is distinct from the TRAIL binding site. Therefore, the breadth of UL141-mediated effects indicates that HCMV has evolved sophisticated strategies to evade the immune system by modulating multiple effector pathways.

  7. Rapid quantitative PCR assays for the simultaneous detection of herpes simplex virus, varicella zoster virus, cytomegalovirus, Epstein-Barr virus, and human herpesvirus 6 DNA in blood and other clinical specimens

    NARCIS (Netherlands)

    Engelmann, I.; Petzold, D. R.; Kosinska, A.; Hepkema, B. G.; Schulz, T. F.; Heim, A.

    Rapid diagnosis of human herpesvirus primary infections or reactivations is facilitated by quantitative PCRs. Quantitative PCR assays with a standard thermal cycling profile permitting simultaneous detection of herpes simplex virus (HSV), varicella zoster virus (VZV), cytomegalovirus (CMV),

  8. Properties of virion transactivator proteins encoded by primate cytomegaloviruses

    Directory of Open Access Journals (Sweden)

    Barry Peter A

    2009-05-01

    Full Text Available Abstract Background Human cytomegalovirus (HCMV is a betaherpesvirus that causes severe disease in situations where the immune system is immature or compromised. HCMV immediate early (IE gene expression is stimulated by the virion phosphoprotein pp71, encoded by open reading frame (ORF UL82, and this transactivation activity is important for the efficient initiation of viral replication. It is currently recognized that pp71 acts to overcome cellular intrinsic defences that otherwise block viral IE gene expression, and that interactions of pp71 with the cell proteins Daxx and ATRX are important for this function. A further property of pp71 is the ability to enable prolonged gene expression from quiescent herpes simplex virus type 1 (HSV-1 genomes. Non-human primate cytomegaloviruses encode homologs of pp71, but there is currently no published information that addresses their effects on gene expression and modes of action. Results The UL82 homolog encoded by simian cytomegalovirus (SCMV, strain Colburn, was identified and cloned. This ORF, named S82, was cloned into an HSV-1 vector, as were those from baboon, rhesus monkey and chimpanzee cytomegaloviruses. The use of an HSV-1 vector enabled expression of the UL82 homologs in a range of cell types, and permitted investigation of their abilities to direct prolonged gene expression from quiescent genomes. The results show that all UL82 homologs activate gene expression, and that neither host cell type nor promoter target sequence has major effects on these activities. Surprisingly, the UL82 proteins specified by non-human primate cytomegaloviruses, unlike pp71, did not direct long term expression from quiescent HSV-1 genomes. In addition, significant differences were observed in the intranuclear localization of the UL82 homologs, and in their effects on Daxx. Strikingly, S82 mediated the release of Daxx from nuclear domain 10 substructures much more rapidly than pp71 or the other proteins tested. All

  9. Letermovir and inhibitors of the terminase complex: a promising new class of investigational antiviral drugs against human cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Melendez DP

    2015-08-01

    Full Text Available Dante P Melendez,1,2 Raymund R Razonable1,2 1Division of Infectious Diseases, 2William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA Abstract: Infection with cytomegalovirus is prevalent in immunosuppressed patients. In solid organ transplant and hematopoietic stem cell transplant recipients, cytomegalovirus infection is associated with high morbidity and preventable mortality. Prevention and treatment of cytomegalovirus with currently approved antiviral drugs is often associated with side effects that sometimes preclude their use. Moreover, cytomegalovirus has developed mutations that confer resistance to standard antiviral drugs. During the last decade, there have been calls to develop novel antiviral drugs that could provide better options for prevention and treatment of cytomegalovirus. Letermovir (AIC246 is a highly specific antiviral drug that is currently undergoing clinical development for the management of cytomegalovirus infection. It acts by inhibiting the viral terminase complex. Letermovir is highly potent in vitro and in vivo against cytomegalovirus. Because of a distinct mechanism of action, it does not exhibit cross-resistance with other antiviral drugs. It is predicted to be active against strains that are resistant to ganciclovir, foscarnet, and cidofovir. To date, early-phase clinical trials suggest a very low incidence of adverse effects. Herein, we present a comprehensive review on letermovir, from its postulated novel mechanism of action to the results of most recent clinical studies. Keywords: cytomegalovirus, letermovir, AIC246, terminase, antivirals, transplantation 

  10. Myeloblastic Cell Lines Mimic Some but Not All Aspects of Human Cytomegalovirus Experimental Latency Defined in Primary CD34+ Cell Populations

    Science.gov (United States)

    Albright, Emily R.

    2013-01-01

    Human cytomegalovirus (HCMV) is a significant human pathogen that achieves lifelong persistence by establishing latent infections in undifferentiated cells of the myeloid lineage, such as CD34+ hematopoietic progenitor cells. When latency is established, viral lytic gene expression is silenced in part by a cellular intrinsic defense consisting of Daxx and histone deacetylases (HDACs) because pp71, the tegument transactivator that travels to the nucleus and inactivates this defense at the start of a lytic infection in differentiated cells, remains in the cytoplasm. Because the current in vitro and ex vivo latency models have physiological and practical limitations, we evaluated two CD34+ myeloblastic cell lines, KG-1 and Kasumi-3, for their ability to establish, maintain, and reactivate HCMV experimental latent infections. Tegument protein pp71 was cytoplasmic, and immediate-early (IE) genes were silenced as in primary CD34+ cells. However, in contrast to what occurs in primary CD34+ cells ex vivo or in NT2 and THP-1 in vitro model systems, viral IE gene expression from the laboratory-adapted AD169 genome was not induced in the presence of HDAC inhibitors in either KG-1 or Kasumi-3 cells. Furthermore, while the clinical strain FIX was able to reactivate from Kasumi-3 cells, AD169 was not, and neither strain reactivated from KG-1 cells. Thus, KG-1 and Kasumi-3 experimental latent infections differ in important parameters from those in primary CD34+ cell populations. Aspects of latency illuminated through the use of these myeloblastoid cell lines should not be considered independently but integrated with results obtained in primary cell systems when paradigms for HCMV latency are proposed. PMID:23824798

  11. The Cytomegalovirus UL146 Gene Product vCXCL1 Targets Both CXCR1 and CXCR2 as an Agonist

    DEFF Research Database (Denmark)

    Luttichau, H.R.

    2010-01-01

    Large DNA viruses, such as herpesvirus and poxvirus, encode proteins that target and exploit the chemokine system of their host. UL146 and UL147 in the cytomegalovirus (CMV) genome encode the two CXC chemokines vCXCL1 and vCXCL2. In this study, vCXCL1 was probed against a panel of the 18 classified...... human chemokine receptors. In calcium mobilization assays vCXCL1 acted as an agonist on both CXCR1 and CXCR2 but did not activate or block any of the other 16 chemokine receptors. vCXCL1 was characterized and compared with CXCL1/GRO alpha, CXCL2/GRO beta, CXCL3/GRO gamma, CXCL5/ENA-78, CXCL6/GCP2, CXCL7....../NAP-2 and CXCL8/IL-8 in competition binding, calcium mobilization, inositol triphosphate turnover, and chemotaxis assays using CXCR1- and CXCR2-expressing Chinese hamster ovary, 300.19, COS7, and L1.2 cells. The affinities of vCXCL1 for the CXCR1 and CXCR2 receptors were 44 and 5.6 nM, respectively...

  12. Human cytomegalovirus gH stability and trafficking are regulated by ER-associated degradation and transmembrane architecture.

    Science.gov (United States)

    Gardner, Thomas J; Hernandez, Rosmel E; Noriega, Vanessa M; Tortorella, Domenico

    2016-03-30

    The prototypic betaherpesvirus human cytomegalovirus (CMV) establishes life-long persistence within its human host. While benign in healthy individuals, CMV poses a significant threat to the immune compromised, including transplant recipients and neonates. The CMV glycoprotein complex gH/gL/gO mediates infection of fibroblasts, and together with the gH/gL/UL128/130/131 a pentameric complex permits infection of epithelial, endothethial, and myeloid cells. Given the central role of the gH/gL complex during infection, we were interested in studying cellular trafficking of the gH/gL complex through generation of human cells that stably express gH and gL. When expressed alone, CMV gH and gL were degraded through the ER-associated degradation (ERAD) pathway. However, co-expression of these proteins stabilized the polypeptides and enhanced their cell-surface expression. To further define regulatory factors involved in gH/gL trafficking, a CMV gH chimera in which the gH transmembrane and cytoplasmic tail were replaced with that of human CD4 protein permitted cell surface gH expression in absence of gL. We thus demonstrate the ability of distinct cellular processes to regulate the trafficking of viral glycoproteins. Collectively, the data provide insight into the processing and trafficking requirements of CMV envelope protein complexes and provide an example of the co-opting of cellular processes by CMV.

  13. Donor killer immunoglobulin-like receptor genes and reactivation of cytomegalovirus after HLA-matched hematopoietic stem-cell transplantation: HLA-C allotype is an essential cofactor

    Directory of Open Access Journals (Sweden)

    Carolyn E. Behrendt

    2013-02-01

    Full Text Available Natural Killer (NK cells whose killer immunoglobulin-like receptors (KIR recognize human leukocyte antigen (HLA ligand are licensed for activity. In contrast, non-licensed NK cells display KIRs for which ligand is absent from the self genotype and are usually hyporesponsive. Surprisingly, non-licensed cells are active in tumor control after hematopoietic stem-cell transplantation (HSCT and dominate NK response to murine cytomegalovirus (CMV infection. From those reports, we hypothesized that control of human CMV early after HSCT is influenced by donor KIR genes whose HLA ligand is absent-from-genotype of HLA-matched donor and recipient. To investigate, we studied CMV reactivation through Day 100 after grafts involving CMV-seropositive donor and/or recipient. A multivariate proportional rates model controlled for variability in surveillance and established covariates including acute graft-versus-host disease; statistical significance was adjusted for testing of multiple KIRs with identified HLA class I ligand (2DL1, 2DL2/3, 2DS1, 2DS2, full-length 2DS4, 3DL1/3DS1, 3DL2. Among HSCT recipients (n=286, CMV reactivation-free survival time varied with individual donor KIR genes evolutionarily-specific for HLA-C: when ligand was absent from the donor/recipient genotype, inhibitory KIRs 2DL2 (P<0.0001 and 2DL1 (P=0.015 each predicted inferior outcome, and activating KIRs 2DS2 (P<0.0001, 2DS1 (P=0.016, and 2DS4 (P=0.016 each predicted superior outcome. Otherwise, with ligand present-in-genotype, donor KIR genes had no effect. In conclusion, early after HLA-matched HSCT, individual inhibitory and activating KIR genes have qualitatively different effects on risk of CMV reactivation; unexpectedly, absence of HLA-C ligand from the donor/recipient genotype constitutes an essential cofactor in these associations. Being KIR and HLA-C specific, these findings are independent of licensing via alternate NK cell receptors (NKG2A, NKG2C that recognize HLA-E.

  14. Immunobiology of congenital cytomegalovirus infection of the central nervous system—the murine cytomegalovirus model.

    Science.gov (United States)

    Slavuljica, Irena; Kveštak, Daria; Huszthy, Peter Csaba; Kosmac, Kate; Britt, William J; Jonjić, Stipan

    2015-03-01

    Congenital human cytomegalovirus infection is a leading infectious cause of long-term neurodevelopmental sequelae, including mental retardation and hearing defects. Strict species specificity of cytomegaloviruses has restricted the scope of studies of cytomegalovirus infection in animal models. To investigate the pathogenesis of congenital human cytomegalovirus infection, we developed a mouse cytomegalovirus model that recapitulates the major characteristics of central nervous system infection in human infants, including the route of neuroinvasion and neuropathological findings. Following intraperitoneal inoculation of newborn animals with mouse cytomegalovirus, the virus disseminates to the central nervous system during high-level viremia and replicates in the brain parenchyma, resulting in a focal but widespread, non-necrotizing encephalitis. Central nervous system infection is coupled with the recruitment of resident and peripheral immune cells as well as the expression of a large number of pro-inflammatory cytokines. Although infiltration of cellular constituents of the innate immune response characterizes the early immune response in the central nervous system, resolution of productive infection requires virus-specific CD8(+) T cells. Perinatal mouse cytomegalovirus infection results in profoundly altered postnatal development of the mouse central nervous system and long-term motor and sensory disabilities. Based on an enhanced understanding of the pathogenesis of this infection, prospects for novel intervention strategies aimed to improve the outcome of congenital human cytomegalovirus infection are proposed.

  15. THE ANALYSIS OF HUMAN CYTOMEGALOVIRUS INFECTION DURING PREGNANCY IN QINBA MOUNTAINOUS AREA

    Institute of Scientific and Technical Information of China (English)

    李芬; 韩蓁; 于学文; 李琦; 李燕琴; 史小薇; 张富昌

    2003-01-01

    Objective To study the epidemiology of cytomegalovirus (CMV) infection in Qinba mountainous area Shaanxi Province China, where there was high prevalence of mental retardation(MR) in children. Methods 367 pregnant women in Qinba mountainous area were monitored with ELISA and PCR and presented with questionnaire. We detected the following: CMV-DNA in urine of 63 neonates born within two weeks whose mother infected CMV during pregnancy and CMV-DNA in breast milk post-delivery within two weeks of 61 women infected and 84 women non-infected. Results Infection rate of CMV in mental retardation prevalent area was 19.62%, the incidence of transmission in uterus was 33.33%, the incidence of excretion by breast milk was 39.34%, CMV infection during pregnancy relates to age, education, economic states, pregnant frequency and pathological delivery. It has no relation with gestational age. Conclusion The study points out that attention should also be paid to detecting CMV infection during pregnancy in mental retardation prevalence. Less education, worse financial condition, more frequent or pathological delivery should be regarded as high risk factors of CMV infection during pregnancy.

  16. Sero-prevalence of Human Cytomegalovirus among blood donors in Lahore, Pakistan

    Directory of Open Access Journals (Sweden)

    Chahat Batool Rizvi

    2015-08-01

    Full Text Available Background: Transfusion-transmitted cytomegalovirus (TT-CMV infection can cause severe illness and even death among immunocompromised patients; therefore, the spread of CMV through blood products should be prevented. To our knowledge, no study has been carried out in Pakistan to determine the seroprevalence of CMV in general population as well as among blood donors. The goal of this study was to determine CMV seropositivity among blood donors at the blood bank of INMOL Hospital, Lahore, Pakistan. Methods: A sero-epidemiological cross-sectional study was conducted. Sera from 91 blood donors were screened for CMV specific IgG antibodies by enzyme-linked immunosorbent assay (ELISA based kit. Results: The CMV-specific IgG antibodies were detected in 89 blood donors, which gave seroprevalence rate of 97.8%. The statistical analysis of results was done using pearson chi-square test and appeared non-significant with values 0.625 and 0.705 for different age groups and blood groups of donors. Conclusion: Because of high seroprevalence in this study area, an adequate supply of CMV seronegative blood is difficult to maintain. Therefore, we propose that the future strategies for the prevention of post-transfusion CMV infection in recipients should include the transfusion of leukoreduced blood products. Further a prospective study with much greater population can be done to identify major causative risk factors for such highest prevalence rate.

  17. Molecular Imprint of Exposure to Naturally Occurring Genetic Variants of Human Cytomegalovirus on the T cell Repertoire

    Science.gov (United States)

    Smith, Corey; Gras, Stephanie; Brennan, Rebekah M.; Bird, Nicola L.; Valkenburg, Sophie A.; Twist, Kelly-Anne; Burrows, Jacqueline M.; Miles, John J.; Chambers, Daniel; Bell, Scott; Campbell, Scott; Kedzierska, Katherine; Burrows, Scott R.; Rossjohn, Jamie; Khanna, Rajiv

    2014-02-01

    Exposure to naturally occurring variants of herpesviruses in clinical settings can have a dramatic impact on anti-viral immunity. Here we have evaluated the molecular imprint of variant peptide-MHC complexes on the T-cell repertoire during human cytomegalovirus (CMV) infection and demonstrate that primary co-infection with genetic variants of CMV was coincident with development of strain-specific T-cell immunity followed by emergence of cross-reactive virus-specific T-cells. Cross-reactive CMV-specific T cells exhibited a highly conserved public T cell repertoire, while T cells directed towards specific genetic variants displayed oligoclonal repertoires, unique to each individual. T cell recognition foot-print and pMHC-I structural analyses revealed that the cross-reactive T cells accommodate alterations in the pMHC complex with a broader foot-print focussing on the core of the peptide epitope. These findings provide novel molecular insight into how infection with naturally occurring genetic variants of persistent human herpesviruses imprints on the evolution of the anti-viral T-cell repertoire.

  18. Preparation and Identification of HLA-A*1101 Tetramer Loading with Human Cytomegalovirus pp65 Antigen Peptide

    Institute of Scientific and Technical Information of China (English)

    Fengyao Li; Lihui Xu; Qingbing Zha; Xiaoyun Chi; Qiantao Jia; Xianhui He

    2007-01-01

    MHC/peptide tetramer technology has been widely used to study antigen-specific T cells, especially for identifying virus-specific CD8+ T cells in humans. The tetramer molecule is composed of HLA heavy chain, β2-microglobulin (β2m), an antigenic peptide, and fluorescent-labeled streptavidin. To further investigate the HLA-A*1101-restricted CD8+ T cell responses against human cytomegalovirus (HCMV), we established an approach to prepare HLA-A*1101 tetramer complexed with a peptide from HCMV. The cDNA encoding HLA-A*1101 heavy chain was cloned and the prokaryotic expression vector for the ectodomain of HLA-A*1101 fused with a BirA substrate peptide (HLA-A*1101-BSP) at its carboxyl terminus was constructed. The fusion protein was highly expressed as inclusion bodies under optimized conditions in Escherichia coli. Moreover, HLA-A*1101-BSP protein was refolded in the presence of β2m and an HCMV peptide pp6516-24 (GPISGHVLK, GPI). Soluble HLA-A*1101-GPI monomer was biotinylated and purified to a purity of 95%, which was subsequently combined with streptavidin to form tetramers at a yield of > 80%. The HLA-A*1101-GPI tetramers could bind to virus-specific CD8+ T cells,suggesting soluble HLA-A*1101-GPI tetramers were biologically functional. This study provides the basis for further evaluation of HLA-A*1101-restricted CD8+ T cell responses against HCMV infection.

  19. Human cytomegalovirus infection inhibits tumor necrosis factor alpha (TNF-alpha) signaling by targeting the 55-kilodalton TNF-alpha receptor.

    Science.gov (United States)

    Baillie, J; Sahlender, D A; Sinclair, J H

    2003-06-01

    Infection with human cytomegalovirus (HCMV) results in complex interactions between viral and cellular factors which perturb many cellular functions. HCMV is known to target the cell cycle, cellular transcription, and immunoregulation, and it is believed that this optimizes the cellular environment for viral DNA replication during productive infection or during carriage in the latently infected host. Here, we show that HCMV infection also prevents external signaling to the cell by disrupting the function of TNFRI, the 55-kDa receptor for tumor necrosis factor alpha (TNF-alpha), one of the receptors for a potent cytokine involved in eliciting a wide spectrum of cellular responses, including antiviral responses. HCMV infection of fully permissive differentiated monocytic cell lines and U373 cells resulted in a reduction in cell surface expression of TNFRI. The reduction appeared to be due to relocalization of TNFRI from the cell surface and was reflected in the elimination of TNF-alpha-induced Jun kinase activity. Analysis of specific phases of infection suggested that viral early gene products were responsible for this relocalization. However, a mutant HCMV in which all viral gene products known to be involved in down-regulation of major histocompatibility complex (MHC) class I were deleted still resulted in relocalization of TNFRI. Consequently, TNFRI relocalization by HCMV appears to be mediated by a novel viral early function not involved in down-regulation of cell surface MHC class I expression. We suggest that upon infection, HCMV isolates the cell from host-mediated signals, forcing the cell to respond only to virus-specific signals which optimize the cell for virus production and effect proviral responses from bystander cells.

  20. Human cytomegalovirus chemokine receptor US28 induces migration of cells on a CX3CL1-presenting surface

    DEFF Research Database (Denmark)

    Hjortø, Gertrud M; Kiilerich-Pedersen, Katrine; Selmeczi, David

    2013-01-01

    Human cytomegalovirus (HCMV)-encoded G protein-coupled-receptor US28 is believed to participate in virus dissemination through modulation of cell migration and immune evasion. US28 binds different CC chemokines and the CX3C chemokine CX3CL1. Membrane-anchored CX3CL1 is expressed by immune......-activated endothelial cells, causing redirection of CX3CR1-expressing leukocytes in the blood to sites of infection. Here, we used stable transfected cell lines to examine how US28 expression affects cell migration on immobilized full-length CX3CL1, to model how HCMV-infected leukocytes interact with inflamed...... endothelium. We observed that US28-expressing cells migrated more than CX3CR1-expressing cells when adhering to immobilized CX3CL1. US28-induced migration was G protein-signalling dependent and was blocked by the phospholipase Cβ inhibitor U73122 and the intracellular calcium chelator BAPTA-AM. In addition...

  1. The Carboxy Terminal Region of the Human Cytomegalovirus Immediate Early 1 (IE1 Protein Disrupts Type II Inteferon Signaling

    Directory of Open Access Journals (Sweden)

    Bindu Raghavan

    2014-04-01

    Full Text Available Interferons (IFNs activate the first lines of defense against viruses, and promote innate and adaptive immune responses to viruses. We report that the immediate early 1 (IE1 protein of human cytomegalovirus (HCMV disrupts signaling by IFNγ. The carboxyl-terminal region of IE1 is required for this function. We found no defect in the initial events in IFNγ signaling or in nuclear accumulation of signal transducer and activator of transcription 1 (STAT1 in IE1-expressing cells. Moreover, we did not observe an association between disruption of IFNγ signaling and nuclear domain 10 (ND10 disruption. However, there is reduced binding of STAT1 homodimers to target gamma activated sequence (GAS elements in the presence of IE1. Co-immunoprecipitation studies failed to support a direct interaction between IE1 and STAT1, although these studies revealed that the C-terminal region of IE1 was required for interaction with STAT2. Together, these results indicate that IE1 disrupts IFNγ signaling by interfering with signaling events in the nucleus through a novel mechanism.

  2. High incidence of Epstein-Barr virus, cytomegalovirus and human herpesvirus 6 infections in children with cancer

    Directory of Open Access Journals (Sweden)

    Horvath Radek

    2002-01-01

    Full Text Available Abstract Background A prospective single-center study was performed to study infection with lymphotropic herpesviruses (LH Epstein-Barr virus (EBV, cytomegalovirus (CMV and human herpesvirus 6 (HHV-6 in children with cancer. Methods The group of 186 children was examined for the presence of LH before, during and 2 months after the end of anticancer treatment. Serology of EBV and CMV was monitored in all children, serology of HHV-6 and DNA analysis of all three LH was monitored in 70 children. Results At the time of cancer diagnosis (pre-treatment, there was no difference between cancer patients and age-matched healthy controls in overall IgG seropositivity for EBV (68.8% vs. 72.0%; p = 0.47 and CMV (37.6% vs. 41.7%; p = 0.36. During anticancer therapy, primary or reactivated EBV and CMV infection was present in 65 (34.9% and 66 (35.4% of 186 patients, respectively, leading to increased overall post-treatment IgG seropositivity that was significantly different from controls for EBV (86.6% vs. 72.0%; p = 0.0004 and CMV (67.7% vs. 41.7%; p Conclusion EBV, CMV and HHV-6 infections are frequently present during therapy of pediatric malignancy.

  3. The highly conserved human cytomegalovirus UL136 ORF generates multiple Golgi-localizing protein isoforms through differential translation initiation.

    Science.gov (United States)

    Liao, Huanan; Lee, Jung-Hyun; Kondo, Rikita; Katata, Marei; Imadome, Ken-Ichi; Miyado, Kenji; Inoue, Naoki; Fujiwara, Shigeyoshi; Nakamura, Hiroyuki

    2014-01-22

    The UL133-UL138 locus in the unique long b' (ULb') region of the human cytomegalovirus (HCMV) genome is considered to play certain roles in viral replication, dissemination and latency in a host cell type-dependent manner. Here we characterized the proteins encoded by UL136, one of the open reading frames (ORFs) in the locus. Comparative sequence analysis of UL136 among clinical isolates and laboratory strains indicates that its predicted amino-acid sequence is highly conserved. A polyclonal antibody against UL136 proteins (pUL136s) was raised against its carboxy-terminal region and this antibody specifically recognized at least five UL136-encoded protein isoforms of 29-17 kDa both in HCMV-infected cells and in cells transfected with a construct expressing pUL136. Immunofluorescence analysis with this antibody revealed localization of pUL136 in the Golgi apparatus. Analysis of several pUL136 mutants indicated that the putative transmembrane domain of pUL136 is required for its Golgi localization. Mutational analysis of multiple AUG codons in UL136 demonstrated that translation initiation from these AUG codons contributes in the generation of pUL136 isoforms.

  4. Comparative evaluation of the cytomegalovirus DNA load in polymorphonuclear leukocytes and plasma of human immunodeficiency virus-infected subjects.

    Science.gov (United States)

    Boivin, G; Handfield, J; Toma, E; Murray, G; Lalonde, R; Bergeron, M G

    1998-02-01

    The cytomegalovirus (CMV) DNA load was determined in polymorphonuclear leukocytes (PMNL) and plasma samples from 106 human immunodeficiency virus-infected subjects at risk of developing CMV disease (group 1) and from 27 AIDS patients with documented CMV disease (group 2). For both groups, the number of CMV copies in PMNL was significantly higher than in plasma when results were derived from an equivalent blood volume (P < .001, PMNL vs. plasma). Additionally, group 2 (symptomatic) patients had a greater viral DNA load than group 1 (asymptomatic) subjects (P < .001 for both PMNL and plasma). The sensitivity, specificity, and positive and negative predictive values of qualitative polymerase chain reaction using PMNL (PCR-PMNL) for the presence of CMV disease were 100%, 58%, 38%, and 100%, respectively, compared with 70%, 93%, 74%, and 92% for qualitative PCR-plasma and 93%, 92%, 76%, and 98% for quantitative PCR-PMNL using a cutoff of 16,000 copies/mL. Thus, the best strategy for diagnosing CMV disease in these individuals relies on quantitative assessment of the viral DNA load in PMNL.

  5. The Role of RhoA, RhoB and RhoC GTPases in Cell Morphology, Proliferation and Migration in Human Cytomegalovirus (HCMV Infected Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Melpomeni Tseliou

    2016-01-01

    Full Text Available Background/Aims: Rho GTPases are crucial regulators of the actin cytoskeleton, membrane trafficking and cell signaling and their importance in cell migration and invasion is well- established. The human cytomegalovirus (HCMV is a widespread pathogen responsible for generally asymptomatic and persistent infections in healthy people. Recent evidence indicates that HCMV gene products are expressed in over 90% of malignant type glioblastomas (GBM. In addition, the HCMV Immediate Early-1 protein (IE1 is expressed in >90% of tumors analyzed. Methods: RhoA, RhoB and RhoC were individually depleted in U373MG glioblastoma cells as well as U373MG cells stably expressing the HCMV IE1 protein (named U373MG-IE1 cells shRNA lentivirus vectors. Cell proliferation assays, migration as well as wound-healing assays were performed in uninfected and HCMV-infected cells. Results: The depletion of RhoA, RhoB and RhoC protein resulted in significant alterations in the morphology of the uninfected cells, which were further enhanced by the cytopathic effect caused by HCMV. Furthermore, in the absence or presence of HCMV, the knockdown of RhoB and RhoC proteins decreased the proliferation rate of the parental and the IE1-expressing glioblastoma cells, whereas the knockdown of RhoA protein in the HCMV infected cell lines restored their proliferation rate. In addition, wound healing assays in U373MG cells revealed that depletion of RhoA, RhoB and RhoC differentially reduced their migration rate, even in the presence or the absence of HCMV. Conclusion: Collectively, these data show for the first time a differential implication of Rho GTPases in morphology, proliferation rate and motility of human glioblastoma cells during HCMV infection, further supporting an oncomodulatory role of HCMV depending on the Rho isoforms' state.

  6. Requirement of the N-terminal residues of human cytomegalovirus UL112-113 proteins for viral growth and oriLyt-dependent DNA replication.

    Science.gov (United States)

    Kim, Young-Eui; Park, Mi Young; Kang, Kyeong Jin; Han, Tae Hee; Lee, Chan Hee; Ahn, Jin-Hyun

    2015-08-01

    The UL112-113 region of the human cytomegalovirus (HCMV) genome encodes four phosphoproteins of 34, 43, 50, and 84 kDa that promote viral DNA replication. Co-transfection assays have demonstrated that self-interaction of these proteins via the shared N-termini is necessary for their intranuclear distribution as foci and for the efficient relocation of a viral DNA polymerase processivity factor (UL44) to the viral replication sites. However, the requirement of UL112-113 N-terminal residues for viral growth and DNA replication has not been fully elucidated. Here, we investigated the effect of deletion of the N-terminal regions of UL112-113 proteins on viral growth and oriLyt-dependent DNA replication. A deletion of the entire UL112 region or the region encoding the 25 N-terminal amino-acid residues from the HCMV (Towne strain) bacmid impaired viral growth in bacmid-transfected human fibroblast cells, indicating their requirement for viral growth. In co-immunoprecipitation assays using the genomic gene expressing the four UL112-113 proteins together, the 25 N-terminal amino-acid residues were found to be necessary for stable expression of UL112-113 proteins and their self-interaction. These residues were also required for efficient binding to and relocation of UL44, but not for interaction with IE2, an origin-binding transcription factor. In co-transfection/replication assays, replication of the oriLyt-containing plasmid was promoted by expression of intact UL112-113 proteins, but not by the expression of 25-amino-acid residue-deleted proteins. Our results demonstrate that the 25 N-terminal amino-acid residues of UL112-113 proteins that mediate self-interaction contribute to viral growth by promoting their binding to UL44 and the initiation of oriLyt-dependent DNA replication.

  7. The Major Immediate-Early Protein IE2 of Human Cytomegalovirus Is Sufficient to Induce Proteasomal Degradation of CD83 on Mature Dendritic Cells

    Science.gov (United States)

    Heilingloh, Christiane S.; Grosche, Linda; Kummer, Mirko; Mühl-Zürbes, Petra; Kamm, Lisa; Scherer, Myriam; Latzko, Melanie; Stamminger, Thomas; Steinkasserer, Alexander

    2017-01-01

    Human cytomegalovirus (HCMV) is the prototypic beta-herpesvirus and widespread throughout the human population. While infection is asymptomatic in healthy individuals, it can lead to high morbidity and mortality in immunocompromised persons. Importantly, HCMV evolved multiple strategies to interfere with immune cell function in order to establish latency in infected individuals. As mature DCs (mDCs) are antigen-presenting cells able to activate naïve T cells they play a crucial role during induction of effective antiviral immune responses. Interestingly, earlier studies demonstrated that the functionally important mDC surface molecule CD83 is down-regulated upon HCMV infection resulting in a reduced T cell stimulatory capacity of the infected cells. However, the viral effector protein and the precise mechanism of HCMV-mediated CD83 reduction remain to be discovered. Using flow cytometric analyses, we observed significant down-modulation of CD83 surface expression becoming significant already 12 h after HCMV infection. Moreover, Western bot analyses revealed that, in sharp contrast to previous studies, loss of CD83 is not restricted to the membrane-bound molecule, but also occurs intracellularly. Furthermore, inhibition of the proteasome almost completely restored CD83 surface expression during HCMV infection. Results of infection kinetics and cycloheximide-actinomycin D-chase experiments, strongly suggested that an HCMV immediate early gene product is responsible for the induction of CD83 down-modulation. Consequently, we were able to identify the major immediate early protein IE2 as the viral effector protein that induces proteasomal CD83 degradation. PMID:28203230

  8. Activation of nucleotide oligomerization domain 2 (NOD2 by human cytomegalovirus initiates innate immune responses and restricts virus replication.

    Directory of Open Access Journals (Sweden)

    Arun Kapoor

    Full Text Available Nucleotide-binding oligomerization domain 2 (NOD2 is an important innate immune sensor of bacterial pathogens. Its induction results in activation of the classic NF-κB pathway and alternative pathways including type I IFN and autophagy. Although the importance of NOD2 in recognizing RNA viruses has recently been identified, its role in sensing DNA viruses has not been studied. We report that infection with human cytomegalovirus (HCMV results in significant induction of NOD2 expression, beginning as early as 2 hours post infection and increasing steadily 24 hours post infection and afterwards. Infection with human herpesvirus 1 and 2 does not induce NOD2 expression. While the HCMV-encoded glycoprotein B is not required for NOD2 induction, a replication competent virion is necessary. Lentivirus-based NOD2 knockdown in human foreskin fibroblasts (HFFs and U373 glioma cells leads to enhanced HCMV replication along with decreased levels of interferon beta (IFN-β and the pro-inflammatory cytokine, IL8. NOD2 induction in HCMV-infected cells activates downstream NF-κB and interferon pathways supported by reduced nuclear localization of NF-κB and pIRF3 in NOD2 knockdown HFFs. Stable overexpression of NOD2 in HFFs restricts HCMV replication in association with increased levels of IFN-β and IL8. Similarly, transient overexpression of NOD2 in U373 cells or its downstream kinase, RIPK2, results in decreased HCMV replication and enhanced cytokine responses. However, overexpression of a mutant NOD2, 3020insC, associated with severe Crohn's disease, results in enhanced HCMV replication and decreased levels of IFN-β in U373 cells. These results show for the first time that NOD2 plays a significant role in HCMV replication and may provide a model for studies of HCMV recognition by the host cell and HCMV colitis in Crohn's disease.

  9. Evaluation of the AMPLICOR cytomegalovirus test with specimens from human immunodeficiency virus-infected subjects.

    Science.gov (United States)

    Boivin, G; Handfield, J; Toma, E; Murray, G; Lalonde, R; Tevere, V J; Sun, R; Bergeron, M G

    1998-09-01

    The AMPLICOR cytomegalovirus (CMV) test, a new qualitative assay for the detection of CMV DNA in plasma, was compared to conventional methods and quantitative PCR (Q-PCR) assays by using leukocytes and plasma from 179 blood samples from subjects with AIDS. For the diagnosis of CMV disease, cell-based assays such as a Q-PCR with polymorphonuclear leukocytes (Q-PCR-PMNL) and a pp65 antigenemia assay had the highest sensitivities but suffered from a lack of specificity. The best agreement between the results of the Q-PCR-PMNL assay and those of the AMPLICOR test was found when a threshold diagnostic value of 690 copies per 10(5) cells was selected for the Q-PCR-PMNL assay. In that context, the AMPLICOR CMV test had a sensitivity of 96.4% and a specificity of 95.3% when results were compared to results of the cell-based PCR assay. This threshold was close to the one described as associated with the best sensitivity and specificity for the diagnosis of CMV disease in a recently published study (4). Blood samples that tested positive by the Q-PCR-PMNL assay but negative by the AMPLICOR CMV test were associated with viral loads (mean, 785 copies, median, 96 copies per 10(5) leukocytes) lower than the viral loads of blood samples that tested positive by both assays (mean, 21,452 copies; median, 9,784 copies per 10(5) leukocytes) (P = 0.003). The AMPLICOR CMV test gave positive results at least 48 days before the development of symptomatic CMV disease in a longitudinal analysis of a limited subset of patients (n = 6) from whom sequential specimens were available for testing. In conclusion, the AMPLICOR CMV test is a very convenient assay combining rapidity, simplicity, and the possibility of batch testing. A positive result by this test seems particularly important since this implies, in most instances, the presence or the imminence of CMV disease, although a negative test result does not rule out disease.

  10. Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNγ-Like Response.

    Directory of Open Access Journals (Sweden)

    Thomas Harwardt

    2016-07-01

    Full Text Available The human cytomegalovirus (hCMV major immediate-early 1 protein (IE1 is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445 in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420 deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication.

  11. Dual-color bioluminescent assay using infected HepG2 cells sheds new light on Chlamydia pneumoniae and human cytomegalovirus effects on human cholesterol 7α-hydroxylase (CYP7A1) transcription.

    Science.gov (United States)

    Michelini, Elisa; Donati, Manuela; Aldini, Rita; Cevenini, Luca; Mezzanotte, Laura; Nardini, Paola; Foschi, Claudio; Zvi, Ido Ben; Cevenini, Monica; Montagnani, Marco; Marangoni, Antonella; Roda, Aldo; Cevenini, Roberto

    2012-11-01

    Chlamydia pneumoniae and human cytomegalovirus (HCMV) are intracellular pathogens able to infect hepatocytes, causing an increase in serum triglycerides and cholesterol levels due to the production of inflammatory cytokines. We investigated whether these pathogens could interfere with cholesterol metabolism by affecting activity of hepatic cholesterol 7α-hydroxylase (CYP7A1) promoter. CYP7A1 is the rate-limiting enzyme responsible for conversion of cholesterol to bile acids, which represents the main route of cholesterol catabolism. A straightforward dual-reporter bioluminescent assay was developed to simultaneously monitor CYP7A1 transcriptional regulation and cell viability in infected human hepatoblastoma HepG2 cells. C. pneumoniae and HCMV infection significantly decreased CYP7A1 promoter activity in a dose-dependent manner, with maximal inhibitions of 33±10% and 32±4%, respectively, at a multiplicity of infection of 1. To support in vitro experiments, serum cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and glucose levels were also measured in Balb/c mice infected with C. pneumoniae. Serum cholesterol and triglycerides also increased in infected mice compared with controls. Although further investigation is required, this work presents the first experimental evidence that C. pneumoniae and HCMV inhibit CYP7A1 gene transcription in the cultured human hepatoblastoma cell line.

  12. Human cytomegalovirus infant infection adversely affects growth and development in maternally HIV-exposed and unexposed infants in Zambia.

    Science.gov (United States)

    Gompels, U A; Larke, N; Sanz-Ramos, M; Bates, M; Musonda, K; Manno, D; Siame, J; Monze, M; Filteau, S

    2012-02-01

    Human immunodeficiency virus (HIV) and human cytomegalovirus (HCMV) coinfections have been shown to increase infant morbidity, mortality, and AIDS progression. In HIV-endemic regions, maternal HIV-exposed but HIV-uninfected infants, which is the majority of children affected by HIV, also show poor growth and increased morbidity. Although nutrition has been examined, the effects of HCMV infection have not been evaluated. We studied the effects of HCMV infection on the growth, development, and health of maternally HIV-exposed and unexposed infants in Zambia. Infants were examined in a cohort recruited to a trial of micronutrient-fortified complementary foods. HIV-infected mothers and infants had received perinatal antiretroviral therapy to prevent mother-to-child HIV transmission. Growth, development, and morbidity were analyzed by linear regression analyses in relation to maternal HIV exposure and HCMV infection, as screened by sera DNA for viremia at 6 months of age and by antibody for infection at 18 months. All HCMV-seropositive infants had decreased length-for-age by 18 months compared with seronegative infants (standard deviation [z]-score difference: -0.44 [95% confidence interval {CI}, -.72 to -.17]; P = .002). In HIV-exposed infants, those who were HCMV positive compared with those who were negative, also had reduced head size (mean z-score difference: -0.72 [95% CI, -1.23 to -.22]; P = .01) and lower psychomotor development (Bayley test score difference: -4.1 [95% CI, -7.8 to -.5]; P = .03). HIV-exposed, HCMV-viremic infants were more commonly referred for hospital treatment than HCMV-negative infants. The effects of HCMV were unaffected by micronutrient fortification. HCMV affects child growth, development, and morbidity of African infants, particularly in those maternally exposed to HIV. HCMV is therefore a risk factor for child health in this region.

  13. Human cytomegalovirus alters localization of MHC class II and dendrite morphology in mature Langerhans cells.

    Science.gov (United States)

    Lee, Andrew W; Hertel, Laura; Louie, Ryan K; Burster, Timo; Lacaille, Vashti; Pashine, Achal; Abate, Davide A; Mocarski, Edward S; Mellins, Elizabeth D

    2006-09-15

    Hemopoietic stem cell-derived mature Langerhans-type dendritic cells (LC) are susceptible to productive infection by human CMV (HCMV). To investigate the impact of infection on this cell type, we examined HLA-DR biosynthesis and trafficking in mature LC cultures exposed to HCMV. We found decreased surface HLA-DR levels in viral Ag-positive as well as in Ag-negative mature LC. Inhibition of HLA-DR was independent of expression of unique short US2-US11 region gene products by HCMV. Indeed, exposure to UV-inactivated virus, but not to conditioned medium from infected cells, was sufficient to reduce HLA-DR on mature LC, implicating particle binding/penetration in this effect. Reduced surface levels reflected an altered distribution of HLA-DR because total cellular HLA-DR was not diminished. Accumulation of HLA-DR was not explained by altered cathepsin S activity. Mature, peptide-loaded HLA-DR molecules were retained within cells, as assessed by the proportion of SDS-stable HLA-DR dimers. A block in egress was implicated, as endocytosis of surface HLA-DR was not increased. Immunofluorescence microscopy corroborated the intracellular retention of HLA-DR and revealed markedly fewer HLA-DR-positive dendritic projections in infected mature LC. Unexpectedly, light microscopic analyses showed a dramatic loss of the dendrites themselves and immunofluorescence revealed that cytoskeletal elements crucial for the formation and maintenance of dendrites are disrupted in viral Ag-positive cells. Consistent with these dendrite effects, HCMV-infected mature LC exhibit markedly reduced chemotaxis in response to lymphoid chemokines. Thus, HCMV impedes MHC class II molecule trafficking, dendritic projections, and migration of mature LC. These changes likely contribute to the reduced activation of CD4+ T cells by HCMV-infected mature LC.

  14. Cis and trans acting factors involved in human cytomegalovirus experimental and natural latent infection of CD14 (+ monocytes and CD34 (+ cells.

    Directory of Open Access Journals (Sweden)

    Cyprian C Rossetto

    Full Text Available The parameters involved in human cytomegalovirus (HCMV latent infection in CD14 (+ and CD34 (+ cells remain poorly identified. Using next generation sequencing we deduced the transcriptome of HCMV latently infected CD14 (+ and CD34 (+ cells in experimental as well as natural latency settings. The gene expression profile from natural infection in HCMV seropositive donors closely matched experimental latency models, and included two long non-coding RNAs (lncRNAs, RNA4.9 and RNA2.7 as well as the mRNAs encoding replication factors UL84 and UL44. Chromatin immunoprecipitation assays on experimentally infected CD14 (+ monocytes followed by next generation sequencing (ChIP-Seq were employed to demonstrate both UL84 and UL44 proteins interacted with the latent viral genome and overlapped at 5 of the 8 loci identified. RNA4.9 interacts with components of the polycomb repression complex (PRC as well as with the MIE promoter region where the enrichment of the repressive H3K27me3 mark suggests that this lncRNA represses transcription. Formaldehyde Assisted Isolation of Regulatory Elements (FAIRE, which identifies nucleosome-depleted viral DNA, was used to confirm that latent mRNAs were associated with actively transcribed, FAIRE analysis also showed that the terminal repeat (TR region of the latent viral genome is depleted of nucleosomes suggesting that this region may contain an element mediating viral genome maintenance. ChIP assays show that the viral TR region interacts with factors associated with the pre replication complex and a plasmid subclone containing the HCMV TR element persisted in latently infected CD14 (+ monocytes, strongly suggesting that the TR region mediates viral chromosome maintenance.

  15. Expression of the UL16 glycoprotein of Human Cytomegalovirus protects the virus-infected cell from attack by natural killer cells

    Directory of Open Access Journals (Sweden)

    Browne Helena

    2003-03-01

    Full Text Available Abstract Background Human Cytomegalovirus (HCMV has acquired through evolution a number of genes to try to evade immune recognition of the virus-infected cell. Many of these mechanisms act to inhibit the MHC class I antigen presentation pathway, but any virus-infected cell which has down-regulated cell surface expression of MHC class I proteins, to avoid CTL attack, would be expected to become susceptible to lysis by Natural Killer cells. Surprisingly, however, HCMV infected fibroblasts were found to be resistant to NK cell mediated cytotoxicity. Expression of the UL16 glycoprotein could represent one mechanism to help the virus to escape from NK cell attack, as it has been shown to bind, in vitro, some of the ligands for NKG2D, the NK cell activating receptor. Here, we explored the role of UL16, in the context of a viral infection, by comparing the susceptibility to NK lysis of cells infected with HCMV and cells infected with a UL16 deletion mutant of this virus. Results Cells infected with the UL16 knockout virus were killed at substantially higher levels than cells infected with the wild-type virus. This increased killing could be correlated with a UL16-dependent reduction in surface expression of ligands for the NK cell activating receptor NKG2D. Conclusions Expression of the UL16 glycoprotein was associated with protection of HCMV-infected cells from NK cell attack. This observation could be correlated with the downregulation of cell surface expression of NKG2D ligands. These data represent a first step towards understanding the mechanism(s of action of the UL16 protein.

  16. Human Cytomegalovirus Nuclear Egress Proteins Ectopically Expressed in the Heterologous Environment of Plant Cells are Strictly Targeted to the Nuclear Envelope.

    Science.gov (United States)

    Lamm, Christian E; Link, Katrin; Wagner, Sabrina; Milbradt, Jens; Marschall, Manfred; Sonnewald, Uwe

    2016-03-10

    In all eukaryotic cells, the nucleus forms a prominent cellular compartment containing the cell's nuclear genome. Although structurally similar, animal and plant nuclei differ substantially in details of their architecture. One example is the nuclear lamina, a layer of tightly interconnected filament proteins (lamins) underlying the nuclear envelope of metazoans. So far no orthologous lamin genes could be detected in plant genomes and putative lamin-like proteins are only poorly described in plants. To probe for potentially conserved features of metazoan and plant nuclear envelopes, we ectopically expressed the core nuclear egress proteins of human cytomegalovirus pUL50 and pUL53 in plant cells. pUL50 localizes to the inner envelope of metazoan nuclei and recruits the nuclear localized pUL53 to it, forming heterodimers. Upon expression in plant cells, a very similar localization pattern of both proteins could be determined. Notably, pUL50 is specifically targeted to the plant nuclear envelope in a rim-like fashion, a location to which coexpressed pUL53 becomes strictly corecruited from its initial nucleoplasmic distribution. Using pUL50 as bait in a yeast two-hybrid screening, the cytoplasmic re-initiation supporting protein RISP could be identified. Interaction of pUL50 and RISP could be confirmed by coexpression and coimmunoprecipitation in mammalian cells and by confocal laser scanning microscopy in plant cells, demonstrating partial pUL50-RISP colocalization in areas of the nuclear rim and other intracellular compartments. Thus, our study provides strong evidence for conserved structural features of plant and metazoan nuclear envelops and identifies RISP as a potential pUL50-interacting plant protein.

  17. Expression of a synthetic gene encoding human insulin-like growth factor I in cultured mouse fibroblasts.

    OpenAIRE

    Bayne, M L; Cascieri, M A; Kelder, B; Applebaum, J; Chicchi, G; Shapiro, J A; Pasleau, F.; Kopchick, J. J.

    1987-01-01

    A synthetic gene encoding human insulin-like growth factor I (hIGF-I) was assembled and inserted into an expression vector containing the cytomegalovirus immediate early (CMV-IE) transcriptional regulatory region and portions of the bovine growth hormone gene. The recombinant plasmid encodes a 97 amino acid fusion protein containing the first 27 amino acids of the bovine growth hormone precursor and the 70 amino acids of hIGF-I. This plasmid, when transiently introduced into cultured mouse fi...

  18. Is human cytomegalovirus infection associated with essential hypertension? A meta-analysis of 11,878 participants.

    Science.gov (United States)

    Wang, Zuoguang; Peng, Xiaoyun; Li, Mei; Jin, Fei; Zhang, Bei; Wang, Hao; Wei, Yongxiang

    2016-05-01

    Human cytomegalovirus (HCMV) has been reported to be highly expressed in essential hypertension (EH), and it has been proposed that HCMV infection may contribute to EH development. However, different studies showed opposite results. The present meta-analysis was performed to investigate the association between HCMV infection and the risk of EH. All relevant literature from 1980 to 2015 was extracted from six electronic databases. Odds ratios (OR) and 95% confidence intervals (CI) were used to assess the strength of the association of HCMV infection and risk of EH. Sensitivity analysis and examination for bias were conducted to evaluate cumulative evidence of the association. The random-effect model using the Mantel-Haenszel method was used to give the individual effect-size estimates. Of the 11,878 participants included in this study, there were 3,864 EH patients and 8,014 control subjects. Meta-analysis of nine studies performed in a random-effect model found that EH patients had a higher risk of HCMV infection than normal control subjects (OR = 1.47, 95%CI: 1.13-1.90, P = 0.004; heterogeneity: I(2)  = 66%, P = 0.002). Sensitivity analysis and bias examination showed the overall quality and consistency of the studies to be acceptable. For subgroup analysis, studies of Chinese populations were selected for further analysis. There was a significant association between HCMV infection and EH among Chinese patients (OR = 2.18, 95%CI:1.43-3.31, P = 0.0003) but not among other ethnic groups (OR = 1.11, 95%CI:0.95-1.31, P = 0.19). These findings provide quantitative support for the association between HCMV infection and high risk of EH in individuals of Chinese ethnicity.

  19. High prevalence of human cytomegalovirus proteins and nucleic acids in primary breast cancer and metastatic sentinel lymph nodes.

    Directory of Open Access Journals (Sweden)

    Chato Taher

    Full Text Available BACKGROUND: Breast cancer is a leading cause of death among women worldwide. Increasing evidence implies that human cytomegalovirus (HCMV infection is associated with several malignancies. We aimed to examine whether HCMV is present in breast cancer and sentinel lymph node (SLN metastases. MATERIALS AND METHODS: Formalin-fixed paraffin-embedded tissue specimens from breast cancer and paired sentinel lymph node (SLN samples were obtained from patients with (n = 35 and without SLN metastasis (n = 38. HCMV immediate early (IE and late (LA proteins were detected using a sensitive immunohistochemistry (IHC technique and HCMV DNA by real-time PCR. RESULTS: HCMV IE and LA proteins were abundantly expressed in 100% of breast cancer specimens. In SLN specimens, 94% of samples with metastases (n = 34 were positive for HCMV IE and LA proteins, mostly confined to neoplastic cells while some inflammatory cells were HCMV positive in 60% of lymph nodes without metastases (n = 35. The presence of HCMV DNA was confirmed in 12/12 (100% of breast cancer and 10/11 (91% SLN specimens from the metastatic group, but was not detected in 5/5 HCMV-negative, SLN-negative specimens. There was no statistically significant association between HCMV infection grades and progesterone receptor, estrogen receptor alpha and Elston grade status. CONCLUSIONS: The role of HCMV in the pathogenesis of breast cancer is unclear. As HCMV proteins were mainly confined to neoplastic cells in primary breast cancer and SLN samples, our observations raise the question whether HCMV contributes to the tumorigenesis of breast cancer and its metastases.

  20. A targeted spatial-temporal proteomics approach implicates multiple cellular trafficking pathways in human cytomegalovirus virion maturation.

    Science.gov (United States)

    Moorman, Nathaniel J; Sharon-Friling, Ronit; Shenk, Thomas; Cristea, Ileana M

    2010-05-01

    The assembly of infectious virus particles is a complex event. For human cytomegalovirus (HCMV) this process requires the coordinated expression and localization of at least 60 viral proteins that comprise the infectious virion. To gain insight into the mechanisms controlling this process, we identified protein binding partners for two viral proteins, pUL99 (also termed pp28) and pUL32 (pp150), which are essential for HCMV virion assembly. We utilized HCMV strains expressing pUL99 or pUL32 carboxyl-terminal green fluorescent protein fusion proteins from their native location in the HCMV genome. Based on the presence of ubiquitin in the pUL99 immunoisolation, we discovered that this viral protein colocalizes with components of the cellular endosomal sorting complex required for transport (ESCRT) pathway during the initial stages of virion assembly. We identified the nucleocapsid and a large number of tegument proteins as pUL32 binding partners, suggesting that events controlling trafficking of this viral protein in the cytoplasm regulate nucleocapsid/tegument maturation. The finding that pUL32, but not pUL99, associates with clathrin led to the discovery that the two viral proteins traffic via distinct pathways during the early stages of virion assembly. Additional investigation revealed that the majority of the major viral glycoprotein gB initially resides in a third compartment. Analysis of the trafficking of these three viral proteins throughout a time course of virion assembly allowed us to visualize their merger into a single large cytoplasmic structure during the late stages of viral assembly. We propose a model of HCMV virion maturation in which multiple components of the virion traffic independently of one another before merging.

  1. Human cytomegalovirus induces alteration of β-actin mRNA and microfilaments in human embryo fibroblast cells

    Institute of Scientific and Technical Information of China (English)

    林茂芳; 魏国庆; 黄河; 蔡真

    2004-01-01

    Objective: To investigate the infection of human embryo fibroblast cell line HF cells by CMV as well as the effects of CMV on β-actin mRNA and microfilaments. Methods: HF cells shape was observed after the infection of CMV.RT-PCR assay was used to detect the mRNA expression of CMV immediate early (IE) gene, β-actin and GAPDH genes of HF cells infected by CMV. CMV particles and cell microfilaments were detected with electron microscope. Results: Shape of HF cell changed after the infection by CMV. HF cells infected by CMV could express IE mRNA and the expression of β-actin mRNA decreased in a time-and titer-dependent manner compared with the uninfected HF cells whose expression of GAPDH mRNA did not change much. CMV particles were found with electron microscope in the cells. Microfilaments were ruptured and shortened after the infection of CMV. Conclusion: CMV can not only infect human embryo fibroblast cells line HF cells and replicate in the cells, but can also affect the expression of β-actin mRNA and the microfilaments.

  2. A First-in-Human Study To Assess the Safety and Pharmacokinetics of Monoclonal Antibodies against Human Cytomegalovirus in Healthy Volunteers.

    Science.gov (United States)

    Dole, Kiran; Segal, Florencia Pereyra; Feire, Adam; Magnusson, Baldur; Rondon, Juan C; Vemula, Janardhana; Yu, Jing; Pang, Yinuo; Pertel, Peter

    2016-05-01

    Human cytomegalovirus (HCMV) can cause significant disease in immunocompromised patients and treatment options are limited by toxicities. CSJ148 is a combination of two anti-HCMV human monoclonal antibodies (LJP538 and LJP539) that bind to and inhibit the function of viral HCMV glycoprotein B (gB) and the pentameric complex, consisting of glycoproteins gH, gL, UL128, UL130, and UL131. Here, we evaluated the safety, tolerability, and pharmacokinetics of a single intravenous dose of LJP538 or LJP539 or their combination in healthy volunteers. Adverse events and laboratory abnormalities occurred sporadically with similar incidence between antibody and placebo groups and without any apparent relationship to dose. No subject who received antibody developed a hypersensitivity, infusion-related reaction or anti-drug antibodies. After intravenous administration, both LJP538 and LJP539 demonstrated typical human IgG1 pharmacokinetic properties, with slow clearances, limited volumes of distribution, and long terminal half-lives. The pharmacokinetic parameters were linear and dose proportional for both antibodies across the 50-fold range of doses evaluated in the study. There was no apparent impact on pharmacokinetics when the antibodies were administered alone or in combination. CSJ148 and the individual monoclonal antibodies were safe and well tolerated, with pharmacokinetics as expected for human immunoglobulin.

  3. Human Gene Therapy: Genes without Frontiers?

    Science.gov (United States)

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  4. Incidence of human herpes virus-6 and human cytomegalovirus infections in donated bone marrow and umbilical cord blood hematopoietic stem cells

    Directory of Open Access Journals (Sweden)

    Behzad-Behbahani A

    2008-01-01

    Full Text Available This study examined the incidence of human herpes virus-6 (HHV-6 and human cytomegalovirus (HCMV infections that are potentially transmitted to haematopoietic stem cells (HSC transplant recipients via bone marrow (BM or umbilical cord blood (UCB. Bone marrow progenitor cells were collected from 30 allogenic BM donors. UCB HSC were collected from 34 subjects. The extracted DNA was then processed using nested polymerase chain reaction (nPCR technique. HCMV and HHV-6 serological status were determined by enzyme immunoassay (EIA. Nested PCR identified HCMV in 22 (73% of 30 samples of BM progenitor cells but in only eight (23.5% of 34 samples of UBC HSC ( P = 0.001. HHV-6 DNA was detected in 11 (36.6% of 30 BM progenitor cells and in only one (2.9% of 34 UBC cells ( P = 0.002. Both HHV-6 and HCMV infections were determined in nine (26.5% of 34 bone marrow samples. The results indicate that, the risk of HCMV and HHV-6 via BM progenitor cells is higher than transmission by UCB cells ( P= 0.04.

  5. Human Cytomegalovirus gH/gL Forms a Stable Complex with the Fusion Protein gB in Virions.

    Directory of Open Access Journals (Sweden)

    Adam L Vanarsdall

    2016-04-01

    Full Text Available Human cytomegalovirus (HCMV is a ubiquitous virus that is a major pathogen in newborns and immunocompromised or immunosuppressed patients. HCMV infects a wide variety of cell types using distinct entry pathways that involve different forms of the gH/gL glycoprotein: gH/gL/gO and gH/gL/UL128-131 as well as the viral fusion glycoprotein, gB. However, the minimal or core fusion machinery (sufficient for cell-cell fusion is just gH/gL and gB. Here, we demonstrate that HCMV gB and gH/gL form a stable complex early after their synthesis and in the absence of other viral proteins. gH/gL can interact with gB mutants that are unable to mediate cell-cell fusion. gB-gH/gL complexes included as much as 16-50% of the total gH/gL in HCMV virus particles. In contrast, only small amounts of gH/gL/gO and gH/gL/UL128-131 complexes were found associated with gB. All herpesviruses express gB and gH/gL molecules and most models describing herpesvirus entry suggest that gH/gL interacts with gB to mediate membrane fusion, although there is no direct evidence for this. For herpes simplex virus (HSV-1 it has been suggested that after receptor binding gH/gL binds to gB either just before, or coincident with membrane fusion. Therefore, our results have major implications for these models, demonstrating that HCMV gB and gH/gL forms stable gB-gH/gL complexes that are incorporated virions without receptor binding or membrane fusion. Moreover, our data is the best support to date for the proposal that gH/gL interacts with gB.

  6. Human Cytomegalovirus gH/gL Forms a Stable Complex with the Fusion Protein gB in Virions.

    Science.gov (United States)

    Vanarsdall, Adam L; Howard, Paul W; Wisner, Todd W; Johnson, David C

    2016-04-01

    Human cytomegalovirus (HCMV) is a ubiquitous virus that is a major pathogen in newborns and immunocompromised or immunosuppressed patients. HCMV infects a wide variety of cell types using distinct entry pathways that involve different forms of the gH/gL glycoprotein: gH/gL/gO and gH/gL/UL128-131 as well as the viral fusion glycoprotein, gB. However, the minimal or core fusion machinery (sufficient for cell-cell fusion) is just gH/gL and gB. Here, we demonstrate that HCMV gB and gH/gL form a stable complex early after their synthesis and in the absence of other viral proteins. gH/gL can interact with gB mutants that are unable to mediate cell-cell fusion. gB-gH/gL complexes included as much as 16-50% of the total gH/gL in HCMV virus particles. In contrast, only small amounts of gH/gL/gO and gH/gL/UL128-131 complexes were found associated with gB. All herpesviruses express gB and gH/gL molecules and most models describing herpesvirus entry suggest that gH/gL interacts with gB to mediate membrane fusion, although there is no direct evidence for this. For herpes simplex virus (HSV-1) it has been suggested that after receptor binding gH/gL binds to gB either just before, or coincident with membrane fusion. Therefore, our results have major implications for these models, demonstrating that HCMV gB and gH/gL forms stable gB-gH/gL complexes that are incorporated virions without receptor binding or membrane fusion. Moreover, our data is the best support to date for the proposal that gH/gL interacts with gB.

  7. The Expression of Human Cytomegalovirus MicroRNA MiR-UL148D during Latent Infection in Primary Myeloid Cells Inhibits Activin A-triggered Secretion of IL-6.

    Science.gov (United States)

    Lau, Betty; Poole, Emma; Krishna, Benjamin; Sellart, Immaculada; Wills, Mark R; Murphy, Eain; Sinclair, John

    2016-08-05

    The successful establishment and maintenance of human cytomegalovirus (HCMV) latency is dependent on the expression of a subset of viral genes. Whilst the exact spectrum and functions of these genes are far from clear, inroads have been made for protein-coding genes. In contrast, little is known about the expression of non-coding RNAs. Here we show that HCMV encoded miRNAs are expressed de novo during latent infection of primary myeloid cells. Furthermore, we demonstrate that miR-UL148D, one of the most highly expressed viral miRNAs during latent infection, directly targets the cellular receptor ACVR1B of the activin signalling axis. Consistent with this, we observed upregulation of ACVR1B expression during latent infection with a miR-UL148D deletion virus (ΔmiR-UL148D). Importantly, we observed that monocytes latently infected with ΔmiR-UL148D are more responsive to activin A stimulation, as demonstrated by their increased secretion of IL-6. Collectively, our data indicates miR-UL148D inhibits ACVR1B expression in latently infected cells to limit proinflammatory cytokine secretion, perhaps as an immune evasion strategy or to postpone cytokine-induced reactivation until conditions are more favourable. This is the first demonstration of an HCMV miRNA function during latency in primary myeloid cells, implicating that small RNA species may contribute significantly to latent infection.

  8. CC and CX3C chemokines differentially interact with the N terminus of the human cytomegalovirus-encoded US28 receptor

    DEFF Research Database (Denmark)

    Casarosa, Paola; Waldhoer, Maria; LiWang, Patricia J;

    2005-01-01

    , that displays homology to the human chemokine receptor CCR1 and binds several chemokines of the CC family as well as the CX3C chemokine fractalkine with high affinity. Most importantly, following HCMV infection, US28 activates several intracellular pathways, either constitutively or in a chemokine-dependent...... binding to US28, whereas receptor activation depends on the presence of the N terminus of CCL4, as shown previously for CCR5.......Human cytomegalovirus (HCMV) is the causative agent of life-threatening systemic diseases in immunocompromised patients as well as a risk factor for vascular pathologies, like atherosclerosis, in immunocompetent individuals. HCMV encodes a G-protein-coupled receptor (GPCR), referred to as US28...

  9. Analysis of memory-like natural killer cells in human cytomegalovirus-infected children undergoing αβ+T and B cell-depleted hematopoietic stem cell transplantation for hematological malignancies.

    Science.gov (United States)

    Muccio, Letizia; Bertaina, Alice; Falco, Michela; Pende, Daniela; Meazza, Raffaella; Lopez-Botet, Miguel; Moretta, Lorenzo; Locatelli, Franco; Moretta, Alessandro; Della Chiesa, Mariella

    2016-03-01

    We analyzed the impact of human cytomegalovirus infection on the development of natural killer cells in 27 pediatric patients affected by hematological malignancies, who had received a HLA-haploidentical hematopoietic stem cell transplantation, depleted of both α/β+ T cells and B cells. In line with previous studies in adult recipients of umbilical cord blood transplantation, we found that human cytomegalovirus reactivation accelerated the emergence of mature natural killer cells. Thus, most children displayed a progressive expansion of a memory-like natural killer cell subset expressing NKG2C, a putative receptor for human cytomegalovirus, and CD57, a marker of terminal natural killer cell differentiation. NKG2C(+)CD57(+) natural killer cells were detectable by month 3 following hematopoietic stem cell transplantation and expanded until at least month 12. These cells were characterized by high killer Ig-like receptors (KIRs) and leukocyte inhibitory receptor 1 (LIR-1) and low Siglec-7, NKG2A and Interleukin-18Rα expression, killed tumor targets and responded to cells expressing HLA-E (a NKG2C ligand). In addition, they were poor Interferon-γ producers in response to Interleukin-12 and Interleukin-18. The impaired response to these cytokines, together with their highly differentiated profile, may reflect their skewing toward an adaptive condition specialized in controlling human cytomegalovirus. In conclusion, in pediatric patients receiving a type of allograft different from umbilical cord blood transplantation, human cytomegalovirus also induced memory-like natural killer cells, possibly contributing to controlling infections and reinforcing anti-leukemia effects. Copyright© Ferrata Storti Foundation.

  10. Can we build it better? Using BAC genetics to engineer more effective cytomegalovirus vaccines

    OpenAIRE

    Mark R. Schleiss

    2010-01-01

    The magnitude and durability of immunity to human cytomegalovirus (HCMV) following natural infection is compromised by the presence of immune modulation genes that appear to promote evasion of host clearance mechanisms. Since immunity to HCMV offers limited protection, rational design of effective vaccines has been challenging. In this issue of the JCI, Slavuljica and colleagues employ techniques to genetically modify the highly related mouse CMV (MCMV), in the process generating a virus that...

  11. Human cytomegalovirus persistent infection in a human central nervous system cell line: production of a variant virus with different growth characteristics.

    Science.gov (United States)

    Ogura, T; Tanaka, J; Kamiya, S; Sato, H; Ogura, H; Hatano, M

    1986-12-01

    The susceptibility of human central nervous system cell lines to human cytomegalovirus (HCMV) and the fate of infected cultures were studied. Significant amounts of infectious progeny virus were produced in 118MGC glioma and IMR-32 neuroblastoma, but not in KGC oligodendroglioma cells when the cultures were infected with wild-type virus (HCMVwt) at an m.o.i. of 10 p.f.u. per cell. Further passage of infected 118MGC cells resulted in the establishment of a long-term persistent infection. This infection, designated 118MGC/Towne, continuously produced infectious virus (HCMVpi) with titres ranging from 10(2) to 10(5) p.f.u./10(6) cells up to 360 days post-infection (corresponding to 50 subcultures). Since no temperature-sensitive mutants, defective interfering particles or interferon-like activity were found in the 118MGC/Towne cultures, maintenance of the persistent infection seemed to be due to a balance between the release of infectious virus and the growth of uninfected cells. The HCMVpi produced in long-term persistently infected cultures was shown to be different from the HCMVwt originally used to infect by the following characteristics: HCMVpi replicated slowly and yielded lower amounts of progeny virus than HCMVwt; HCMVpi induced a 73,000 mol. wt. immediate early protein that was not synthesized in HCMVwt-infected cells; HCMVpi had a different DNA structure from that of HCMVwt. These results suggest that HCMVpi is a slower growing variant of HCMVwt and probably plays an important role in the maintenance of the persistent infection.

  12. Cytomegalovirus (CMV) and Pregnancy

    Science.gov (United States)

    ... Close contact includes activities like changing diapers and kissing. What is congenital cytomegalovirus (congenital CMV)? Pregnant women ... or saliva. Try to avoid mouth-to-mouth kissing with children in day-care. Do not share ...

  13. [Mononucleosis caused by cytomegalovirus].

    Science.gov (United States)

    Lajo Plaza, A; del Castillo Martín, F; Martínez Zapico, R

    1990-01-01

    Sixteen cases of mononucleosis due to cytomegalovirus, are presented. The selection of patients was based on clinical criteria. Symptoms are compared with another series of patients affected with mononucleosis by Epstein-Barr virus. We have not found differences comparing the fever, cervical adenopathies and faringoamigdalitis. Differences were significant in hepatomegaly. We conclude that the clinical picture of cytomegalovirus mononucleosis is very similar to those of the Epstein-Barr mononucleosis.

  14. Sensitive non-isotopic DNA hybridisation assay or immediate-early antigen detection for rapid identification of human cytomegalovirus in urine.

    Science.gov (United States)

    Kimpton, C P; Morris, D J; Corbitt, G

    1991-04-01

    A sensitive non-radioactive DNA hybridisation assay employing digoxigenin-labelled probes was compared with immediate-early antigen detection and conventional virus isolation for the identification of human cytomegalovirus (HCMV) in 249 urine samples. Of 44 specimens yielding HCMV by virus isolation, more were positive by DNA hybridisation (32; 73%) than by immediate-early antigen detection (25; 52%) (P = 0.05). The specificity of the hybridisation assay in 45 apparently falsely positive specimens was supported by detection of HCMV DNA in 40 of these specimens using the polymerase chain reaction. Many urine specimens may thus contain large amounts of non-viable virus or free viral DNA. Evaluation of various protocols for the extraction and denaturation of virus DNA prior to hybridisation showed that proteinase K digestion with phenol/chloroform extraction was the most sensitive and reliable procedure. We conclude that the non-radioactive DNA hybridisation assay described is a potentially valuable routine diagnostic test.

  15. Advances in the study of human cytomegalovirus glycoprotein B%人巨细胞病毒gB糖蛋白研究进展

    Institute of Scientific and Technical Information of China (English)

    李敏环; 范骏

    2011-01-01

    The envelope glycoprotein B(gB) of human cytomegalovirus(HCMV) is required in the course of virus entry and cell-to-cell spread.In addition,it takes an important part in inducing the immune response in host.In this article,gB structure,genotypes,biological characteristics,gB-specific monoclonal antibodies and vaccines are reviewed.%人巨细胞病毒(HCMV)的包膜gB糖蛋白在病毒穿入宿主细胞、细胞间传播,以及诱导宿主的免疫应答中起着重要作用.此文就gB的结构、基因分型、生物学特性、单克隆抗体及HCMV疫苗情况进行了综述.

  16. Detection of human cytomegalovirus and Epstein-Barr Virus in symptomatic and asymptomatic apical periodontitis lesions by real-time PCR

    Science.gov (United States)

    Ozbek, Selcuk M.; Yavuz, Muhammed S.

    2013-01-01

    Objectives: Recent studies have investigated the occurrence of human cytomegalovirus and Epstein-Barr Virus in samples from apical periodontitis lesions and a role in the pathogenesis of this disease has been suggested. Because genotype distribution and seroprevalence of EBV and HCMV differ among populations, it is important to determine the presence of these viruses in endodontic periapical lesions of different populations. The aims of this study were to determine the presence of HCMV and EBV DNAs in samples from Turkish patients with symptomatic and asymptomatic apical periodontitis lesions using real-time polymerase chain reaction method and to evaluate their presence in both symptomatic and asymptomatic apical periodontitis lesions. Study Design: Periapical samples were collected from 12 asymptomatic and 16 symptomatic periapical lesions in conjunction with apicectomy. HCMV and EBV DNAs were identified in the samples by real-time PCR. The chi-squared test with Yates’s correction or the Fisher’s exact test was used to analyse the significance of differences. Results: HCMV DNA was detected in 10 of the 16 (62.5%) symptomatic and in five of the 12 (41.7 %) asymptomatic periapical study lesions. The EBV DNA was identified in seven of the 16 (43.7 %) symptomatic and three of the 12 (25 %) asymptomatic periapical lesions. The difference in occurrence of HCMV and EBV DNA between symptomatic and asymptomatic periapical lesions was not statistically significant. (All comparisons have p > 0.05). Conclusions: Our findings suggest that HCMV and EBV is a frequent inhabitant of both symptomatic and asymptomatic apical periodontitis lesions of endodontic origin in Turkish population. Key words:Human cytomegalovirus, Epstein-Barr Virus, apical periodontitis, Polymerase chain reaction method. PMID:23722135

  17. Recent progress in genetic engineering vaccines of human cytomegalovirus%人巨细胞病毒基因工程疫苗研究新进展

    Institute of Scientific and Technical Information of China (English)

    葛俊; 王明丽

    2011-01-01

    人巨细胞病毒(human cytomegalovirus,HCMV)在人群中感染普遍,而HCMV感染是导致免疫抑制或免疫缺陷患者发病率和死亡率高的重要原因,也是目前胎儿出生缺陷的主要病因.因此,研制HCMV疫苗具有重要意义.研究发现,抗病毒体液免疫应答主要针对病毒包膜糖蛋白gB,而细胞免疫应答主要针对被膜蛋白pp65.以这些蛋白设计的候选基因工程疫苗,包括亚单位疫苗、DNA疫苗、病毒载体疫苗等,已得到了较广泛的临床研究.此文就上述疫苗的研究进展做一综述.%Human cytomegalovirus (HCMV) is ubiquitous in all populations.HCMV infection might cause high morbidity and mortality in immunosuppressive or immunodeficiency patients and is the main reason of fetal birth defects.Development of HCMV vaccines is important,but so far there have been no vaccines approved for sale.The researchers found that the viral glycoprotein gB and membrane protein pp65 could induce antiviral humoral and cellular immune responses,respectively.The genetic engineering vaccines based on these proteins,including subunit vaccines,DNA vaccines and virus vector vaccines,have been studied widely in clinical trials.This review describes the research progress of the above-mentioned vaccines.

  18. Restriction enzyme analysis of the human cytomegalovirus genome in specimens collected from immunodeficient patients in Belém, State of Pará, Brazil

    Directory of Open Access Journals (Sweden)

    Dorotéa Lobato da Silva

    2011-10-01

    Full Text Available INTRODUCTION: Human cytomegalovirus is an opportunistic betaherpesvirus that causes persistent and serious infections in immunodeficient patients. Recurrent infections occur due to the presence of the virus in a latent state in some cell types. It is possible to examine the virus using molecular methods to aid in the immunological diagnosis and to generate a molecular viral profile in immunodeficient patients. The objective of this study was to characterize cytomegalovirus genotypes and to generate the epidemiological and molecular viral profile in immunodeficient patients. METHODS: A total of 105 samples were collected from immunodeficient patients from the City of Belém, including newborns, hemodialysis patients, transplant recipients and HIV+ patients. An IgG and IgM antibody study was completed using ELISA, and enzymatic analysis by restriction fragment length polymorphism (RFLP was performed to characterize viral genotypes. RESULTS: It was observed that 100% of the patients had IgG antibodies, 87% of which were IgG+/IgM-, consistent with a prior infection profile, 13% were IgG+/IgM+, suggestive of recent infection. The newborn group had the highest frequency (27% of the IgG+/IgM+ profile. By RFLP analysis, only one genotype was observed, gB2, which corresponded to the standard AD169 strain. CONCLUSIONS: The presence of IgM antibodies in new borns indicates that HCMV continues to be an important cause of congenital infection. The low observed genotypic diversity could be attributed to the small sample size because newborns were excluded from the RFLP analysis. This study will be continued including samples from newborns to extend the knowledge of the general and molecular epidemiology of HCMV in immunodeficient patients.

  19. Prevalence of cytomegalovirus antibodies in blood donars at the ...

    African Journals Online (AJOL)

    Transmission of cytomegalovirus infection through blood transfusion is ... Objective: To determine the prevalence CMV IgG and IgM antibodies among blood ... deficiency syndrome (AIDS) due to human immunodeficiency virus infections (HIV) ...

  20. [Audiologic and molecular screening for hearing loss by 35delG mutation in connexin 26 gene and congenital cytomegalovirus infection].

    Science.gov (United States)

    Streitenberger, Edgardo Raúl; Suárez, Ariel Ignacio; Masciovecchio, María Verónica; Laurnagaray, Diana; Alda, Ernesto

    2011-12-01

    Hearing loss may be attributed to genetic and environmental factors. Mutations in the gene of the CX26 protein (connexin 26), are responsible for 30-80% of all cases of non-syndromic profound hearing loss. The 35delG is the most frequent variant in the caucasian population. As to environmental factors, the cytomegalovirus (CMV) is the main cause of congenital infection. To determine the prevalence of congenital CMV infection and the frequency of the 35delG mutation in newborns. To identify those at risk of suffering hearing loss in order to do an audiologic follow-up of detected cases. One thousand and twenty samples of dry blood spots corresponding to newborns were tested using conventional and real time PCR. Audiologic screening was performed to all newborns before hospital discharge. Fifteen out of 1020 subjects were heterozygous for the mutation. No homozygous patients were found. Six out of the samples tested positive for CMV (confirmed by a urine sample), out of which only one newborn was symptomatic. The auditory brainstem response was recorded in all these children. Hearing loss was found in three children with congenital CMV infection and two with 35delG mutation. The frecuency of 35delG mutation carriers in our population was 1.3% and the CMV congenital infection prevalence was 0.6%. Audiologic monitoring of these two populations allowed detection of hearing loss of late onset.

  1. Preliminary exploration of HLA-A 1101-restricted human cytomegalovirus glycoprotein B-specific CD8⁺ T cells in allogeneic stem-cell transplant recipients.

    Science.gov (United States)

    Liu, Anbing; Hu, Jianhua; Wu, Wei; Huang, Yaping; Liang, Hanying; Wang, Huiqi; Yang, Rong; Fan, Jun

    2014-08-08

    T-cell responses directed against human cytomegalovirus (HCMV) glycoprotein B (gB) contribute to protective immunity against HCMV infection in both animal models and humans. However, the gB-specific human CD8(+) T cell responses remain poorly understood. gB antigen-specific CD8(+) T cells were stained with seven major histocompatibility complex (MHC)-peptide pentamers in 16 human leukocyte antigen (HLA)-A 1101-positive, HCMV-seropositive patients following hematopoietic stem cell transplantation (HSCT). Of these seven pentamers, the most frequent CD8(+) T-cell responses were directed against the gB332-340 peptide. These gB332-340-specific CD8(+) T cells were strongly associated with the presence of plasma HCMV immunoglobulin M in all HSCT recipients and exhibited a probable causal relationship with the level of pp65 antigenemia. Together, these data suggest a role for gB332-340-specific CD8(+) T cells in HCMV reactivation after HSCT. Furthermore, the pentamer assay may be valuable in detecting antigen-specific CD8(+) T cells.

  2. Human cytomegalovirus-encoded miR-US4-1 promotes cell apoptosis and benefits discharge of infectious virus particles via down-regulation of glutaminyl-tRNA synthetase, QARS in HCMV-infected HELF cells

    Indian Academy of Sciences (India)

    Yaozhong Shao; Ying Qi; Yujing Huang; Zhongyang Liu; Yanping Ma; Xin Guo; Shujuan Jiang; Zhengrong Sun; Qiang Ruan

    2016-06-01

    Human cytomegalovirus (HCMV) can cause congenital diseases and opportunistic infections in immunocompromised individuals. Its functional proteins and microRNAs (miRNAs) facilitate efficient viral propagation by altering host cell behaviour. Identification of functional target genes of miRNAs is an important step in studies on HCMV pathogenesis. In this study, Glutaminyl-tRNA Synthetase (QARS), which could regulate signal transduction pathways for cellular apoptosis, was identified as a direct target of hcmv-miR-US4-1. Apoptosis assay revealed that as silence of QARS by ectopic expression of hcmv-miR-US4-1 and specific small interference RNA of QARS can promote cell apoptosis in HCMV-infected HELF cells. Moreover, viral growth curve assays showed that hcmv-miR-US4-1 benefits the discharge of infectious virus particles. However, silence of hcmv-miR-US4-1 by its specific inhibitor overturned these effects. These results imply that hcmv-miR-US4-1 might have the same effects during HCMV nature infection. In general, hcmv-miR-US4-1 may involve in promoting cell apoptosis and benefiting discharge of infectious virus particles via down-regulation of QARS in HCMV-infected HELF cells.

  3. HOXB6-mRNA and its gene expression in the differentiation process of human cytomegalovirus-infected hematopoietic stem progenitor cells into granulocyte and erythrocyte progenitor cells%经人巨细胞病毒感染人脐血造血干细胞向粒-巨噬系和红系祖细胞增殖过程中HOXB6-mRNA及其基因表达

    Institute of Scientific and Technical Information of China (English)

    刘文君; 陈艾; 陈红英; 冉伶; 郭渠莲

    2008-01-01

    BACKGROUND: Is the inhibition of the hematopoietic stem progenitor cell (HSPC) proliferation and differentiation after human cytomegalovirus (HCMV) infection associated with abnormal expression of infected cell proliferated gene?OBJECTIVE: To observe the HOXB6-mRNA expression in the process of proliferation and differentiation of HCMV-infected HSPC into colony-forming unit granulocyte-macrophage (CFU-GM) and colony-forming unit erythroid (CFU-E).DESIGN: A controlled observation.SETTING: Laboratory for Molecular Biology, Affiliated Hospital of Luzhou Medical College, Lanzhou, Gansu Province, China.MATERIALS: All cord blood (CB) specimens were provided by the Obstetrics Department of Affiliated Hospital of Luzhon Medical College. They were collected from the umbilical vein of normal term neonates delivered spontaneously. All neonate mothers were healthy and HBS-Ag-negative. HCMV-IgM antibody revealed by routine ELUSA and HCMV-DNA checked by PCR were undetectable. Written informed consent for the laboratory measurements was obtained from each neonate mother, and the protocol was approved by the hospital's Ethics Committee. HCMV-AD169 strains were obtained from the Institute of Virology, Chinese Academy of Preventive Medicine. All-trans retinoic acid (ATRA, lot No. 20010126) was provided by Chongqing Huapont Pharm. Co., Ltd., China.METHODS: This study was performed at the Laboratory of Molecular Biology (state-level), Affiliated Hospital of Luzhou Medical College of Luzhou Medical College from April 2006 to April 2007. Cord blood mononuclear cells were separated for HSPC culture. According to different interventions, the study consisted of 4 groups. Control group: no HCMV virus solution was added and equal volume of culture medium was added instead. HCMV group: 105 PFU/mL HCMV-AD169 virus solution was added to the culture system. ATRA group: ATRA was added into the cultivation system at the final concentration of 60 μ mol/L. HCMV+ATRA group: ATRA was added into the

  4. Human cytomegalovirus-encoded UL33 and UL78 heteromerize with host CCR5 and CXCR4 impairing their HIV coreceptor activity.

    Science.gov (United States)

    Tadagaki, Kenjiro; Tudor, Daniela; Gbahou, Florence; Tschische, Pia; Waldhoer, Maria; Bomsel, Morgane; Jockers, Ralf; Kamal, Maud

    2012-05-24

    Human cytomegalovirus (HCMV) encodes four 7-transmembrane-spanning (7TM) proteins, US28, US27, UL33, and UL78, which present important sequence homology with human chemokine receptors. Whereas US28 binds a large range of chemokines and disturbs host cell signaling at different levels, the others are orphans with largely unknown functions. Assembly of 2 different 7TM proteins into hetero-oligomeric complexes may profoundly change their respective functional properties. We show that HCMV-encoded UL33 and UL78 form heteromers with CCR5 and CXCR4 chemokine receptors in transfected human embryonic kidney 293T cells and monocytic THP-1 cells. Expression of UL33 and UL78 had pleiotropic, predominantly negative, effects on CCR5 and CXCR4 cell surface expression, ligand-induced internalization, signal transduction, and migration without modifying the chemokine binding properties of CCR5 and CXCR4. Importantly, the coreceptor activity of CCR5 and CXCR4 for HIV was largely impaired in the presence of UL33 and UL78 without affecting expression of the primary HIV entry receptor CD4 and its interaction with CCR5 and CXCR4. Collectively, we identified the first molecular function for the HCMV-encoded orphan UL33 and UL78 7TM proteins, namely the regulation of cellular chemokine receptors through receptor heteromerization.

  5. Neutralization of Diverse Human Cytomegalovirus Strains Conferred by Antibodies Targeting Viral gH/gL/pUL128-131 Pentameric Complex

    Science.gov (United States)

    Ha, Sha; Li, Fengsheng; Troutman, Matthew C.; Freed, Daniel C.; Tang, Aimin; Loughney, John W.; Wang, I-Ming; Vlasak, Josef; Nickle, David C.; Rustandi, Richard R.; Hamm, Melissa; DePhillips, Pete A.; Zhang, Ningyan; McLellan, Jason S.; Zhu, Hua; Adler, Stuart P.; McVoy, Michael A.; An, Zhiqiang

    2017-01-01

    ABSTRACT Human cytomegalovirus (HCMV) is the leading cause of congenital viral infection, and developing a prophylactic vaccine is of high priority to public health. We recently reported a replication-defective human cytomegalovirus with restored pentameric complex glycoprotein H (gH)/gL/pUL128-131 for prevention of congenital HCMV infection. While the quantity of vaccine-induced antibody responses can be measured in a viral neutralization assay, assessing the quality of such responses, including the ability of vaccine-induced antibodies to cross-neutralize the field strains of HCMV, remains a challenge. In this study, with a panel of neutralizing antibodies from three healthy human donors with natural HCMV infection or a vaccinated animal, we mapped eight sites on the dominant virus-neutralizing antigen—the pentameric complex of glycoprotein H (gH), gL, and pUL128, pUL130, and pUL131. By evaluating the site-specific antibodies in vaccine immune sera, we demonstrated that vaccination elicited functional antiviral antibodies to multiple neutralizing sites in rhesus macaques, with quality attributes comparable to those of CMV hyperimmune globulin. Furthermore, these immune sera showed antiviral activities against a panel of genetically distinct HCMV clinical isolates. These results highlighted the importance of understanding the quality of vaccine-induced antibody responses, which includes not only the neutralizing potency in key cell types but also the ability to protect against the genetically diverse field strains. IMPORTANCE HCMV is the leading cause of congenital viral infection, and development of a preventive vaccine is a high public health priority. To understand the strain coverage of vaccine-induced immune responses in comparison with natural immunity, we used a panel of broadly neutralizing antibodies to identify the immunogenic sites of a dominant viral antigen—the pentameric complex. We further demonstrated that following vaccination of a replication

  6. Gene conversion in human rearranged immunoglobulin genes.

    Science.gov (United States)

    Darlow, John M; Stott, David I

    2006-07-01

    Over the past 20 years, many DNA sequences have been published suggesting that all or part of the V(H) segment of a rearranged immunoglobulin gene may be replaced in vivo. Two different mechanisms appear to be operating. One of these is very similar to primary V(D)J recombination, involving the RAG proteins acting upon recombination signal sequences, and this has recently been proven to occur. Other sequences, many of which show partial V(H) replacements with no addition of untemplated nucleotides at the V(H)-V(H) joint, have been proposed to occur by an unusual RAG-mediated recombination with the formation of hybrid (coding-to-signal) joints. These appear to occur in cells already undergoing somatic hypermutation in which, some authors are convinced, RAG genes are silenced. We recently proposed that the latter type of V(H) replacement might occur by homologous recombination initiated by the activity of AID (activation-induced cytidine deaminase), which is essential for somatic hypermutation and gene conversion. The latter has been observed in other species, but not in human Ig genes, so far. In this paper, we present a new analysis of sequences published as examples of the second type of rearrangement. This not only shows that AID recognition motifs occur in recombination regions but also that some sequences show replacement of central sections by a sequence from another gene, similar to gene conversion in the immunoglobulin genes of other species. These observations support the proposal that this type of rearrangement is likely to be AID-mediated rather than RAG-mediated and is consistent with gene conversion.

  7. Effects of Jinye Baidu Granule(金叶败毒颗粒) on Fetal Growth and Development with Maternal Active Human Cytomegalovirus Infection

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To evaluate the effects of Jinye Baidu Granule (金叶败毒颗粒, JYBDG), a traditional Chinese medicine compound prescription, on fetal growth and development with maternal active human cytomegalovirus infection. Methods: A prospective, randomized and controlled trial was adopted during January 1996 to June 2002. From the pregnant women with an abnormal pregnant history, 240 cases were screened to be infected by human cytomegalovirus (HCMV) by enzyme-linked immunoabsorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT-PCR). They were assigned according to the random number table to two groups. The 122 cases in the treatment group were administrated with JYBDG, one package each time, three times a day for two continuous weeks, while the other 118 in the control group did not receive any treatment. The negative conversion rate of both HCMV-IgM and HCMV late mRNA,the positive rate of HCMV-DNA in placenta and the intrauterine transmission rate between the two groups were compared, and fetal growth and development in partial fetuses were also observed. Results: The negative conversion rate of both HCMV-IgM and HCMV late mRNA, the positive rate of HCMV-DNA in placenta and the intrauterine transmission rate in the treatment group were 77. 05% (94/122), 48. 98% (48/98) and 21.74% (10/46) respectively, while those in the control group were 38. 14% (45/118), 67.50% (54/80)and 52.63% (20/38) respectively, all showing significant difference between the two groups (P<0.01).Totally 35 normal infants and 11 abnormal infants were born in the treatment group, and the number in the control group was 20 and 18 respectively, and comparison between the two groups showed significant difference (P<0.01). Six months of child birth, the scores of both mental development index (MDI) and psychomotor development index (PDI) of infants were higher in the treatment group (20 cases) than those in the control group (20 cases), but there was no significant

  8. The Human Cytomegalovirus IE1 Protein Antagonizes PML Nuclear Body-Mediated Intrinsic Immunity via the Inhibition of PML De Novo SUMOylation.

    Science.gov (United States)

    Schilling, Eva-Maria; Scherer, Myriam; Reuter, Nina; Schweininger, Johannes; Muller, Yves A; Stamminger, Thomas

    2017-02-15

    PML nuclear bodies (NBs) are accumulations of cellular proteins embedded in a scaffold-like structure built by SUMO-modified PML/TRIM19. PML and other NB proteins act as cellular restriction factors against human cytomegalovirus (HCMV); however, this intrinsic defense is counteracted by the immediate early protein 1 (IE1) of HCMV. IE1 directly interacts with the PML coiled-coil domain via its globular core region and disrupts NB foci by inducing a loss of PML SUMOylation. Here, we demonstrate that IE1 acts via abrogating the de novo SUMOylation of PML. In order to overcome reversible SUMOylation dynamics, we made use of a cell-based assay that combines inducible IE1 expression with a SUMO mutant resistant to SUMO proteases. Interestingly, we observed that IE1 expression did not affect preSUMOylated PML; however, it clearly prevented de novo SUMO conjugation. Consistent results were obtained by in vitro SUMOylation assays, demonstrating that IE1 alone is sufficient for this effect. Furthermore, IE1 acts in a selective manner, since K160 was identified as the main target lysine. This is strengthened by the fact that IE1 also prevents As2O3-mediated hyperSUMOylation of K160, thereby blocking PML degradation. Since IE1 did not interfere with coiled-coil-mediated PML dimerization, we propose that IE1 affects PML autoSUMOylation either by directly abrogating PML E3 ligase function or by preventing access to SUMO sites. Thus, our data suggest a novel mechanism for how a viral protein counteracts a cellular restriction factor by selectively preventing the de novo SUMOylation at specific lysine residues without affecting global protein SUMOylation. The human cytomegalovirus IE1 protein acts as an important antagonist of a cellular restriction mechanism that is mediated by subnuclear structures termed PML nuclear bodies. This function of IE1 is required for efficient viral replication and thus constitutes a potential target for antiviral strategies. In this paper, we further

  9. Importance of Highly Conserved Peptide Sites of Human Cytomegalovirus gO for Formation of the gH/gL/gO Complex.

    Science.gov (United States)

    Stegmann, Cora; Abdellatif, Mohamed E A; Laib Sampaio, Kerstin; Walther, Paul; Sinzger, Christian

    2017-01-01

    The glycoprotein O (gO) is betaherpesvirus specific. Together with the viral glycoproteins H and L, gO forms a covalent trimeric complex that is part of the viral envelope. This trimer is crucial for cell-free infectivity of human cytomegalovirus (HCMV) but dispensable for cell-associated spread. We hypothesized that the amino acids that are conserved among gOs of different cytomegaloviruses are important for the formation of the trimeric complex and hence for efficient virus spread. In a mutational approach, nine peptide sites, containing all 13 highly conserved amino acids, were analyzed in the context of HCMV strain TB40-BAC4 with regard to infection efficiency and formation of the gH/gL/gO complex. Mutation of amino acids (aa) 181 to 186 or aa 193 to 198 resulted in the loss of the trimer and a complete small-plaque phenotype, whereas mutation of aa 108 or aa 249 to 254 caused an intermediate phenotype. While individual mutations of the five conserved cysteines had little impact, their relevance was revealed in a combined mutation, which abrogated both complex formation and cell-free infectivity. C343 was unique, as it was sufficient and necessary for covalent binding of gO to gH/gL. Remarkably, however, C218 together with C167 rescued infectivity in the absence of detectable covalent complex formation. We conclude that all highly conserved amino acids contribute to the function of gO to some extent but that aa 181 to 198 and cysteines 343, 218, and 167 are particularly relevant. Surprisingly, covalent binding of gO to gH/gL is required neither for its incorporation into virions nor for proper function in cell-free infection. Like all herpesviruses, the widespread human pathogen HCMV depends on glycoproteins gB, gH, and gL for entry into target cells. Additionally, gH and gL have to bind gO in a trimeric complex for efficient cell-free infection. Homologs of gO are shared by all cytomegaloviruses, with 13 amino acids being highly conserved. In a mutational

  10. Cytomegalovirus Hepatitis During Pregnancy

    Directory of Open Access Journals (Sweden)

    Ying Chan

    1995-01-01

    Full Text Available Background: Although cytomegalovirus (CMV is an uncommon cause of viral hepatitis during pregnancy, a definitive diagnosis is important because of the potential for congenital CMV. In the case reported here, a diagnosis of hepatitis caused by CMV was made after the more common viral pathogens had been ruled out.

  11. Cytomegalovirus Destruction of Focal Adhesions Revealed in a High-Throughput Western Blot Analysis of Cellular Protein Expression† ▿

    OpenAIRE

    Stanton, Richard James; McSharry, Brian Patrick; Rickards, Carole Ruth; Wang, Edward Chung Yern; Tomasec, Peter; Wilkinson, Gavin William Grahame

    2007-01-01

    Human cytomegalovirus (HCMV) systematically manages the expression of cellular functions, rather than exerting the global shutoff of host cell protein synthesis commonly observed with other herpesviruses during the lytic cycle. While microarray technology has provided remarkable insights into viral control of the cellular transcriptome, HCMV is known to encode multiple mechanisms for posttranscriptional and posttranslation regulation of cellular gene expression. High-throughput Western blotti...

  12. Human Lacrimal Gland Gene Expression

    Science.gov (United States)

    Aakalu, Vinay Kumar; Parameswaran, Sowmya; Maienschein-Cline, Mark; Bahroos, Neil; Shah, Dhara; Ali, Marwan; Krishnakumar, Subramanian

    2017-01-01

    Background The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas. PMID:28081151

  13. Human cytomegalovirus and mucoepidermoid carcinoma of salivary glands: cell-specific localization of active viral and oncogenic signaling proteins is confirmatory of a causal relationship.

    Science.gov (United States)

    Melnick, Michael; Sedghizadeh, Parish P; Allen, Carl M; Jaskoll, Tina

    2012-02-01

    Human cytomegalovirus (hCMV) infection is common. Although still controversial, there is growing evidence that active hCMV infection is associated with a variety of malignancies, including brain, breast, lung, colon, and prostate. Given that hCMV is frequently resident in salivary gland (SG) ductal epithelium, we hypothesized that hCMV would be important to the pathogenesis of SG mucoepidermoid carcinoma (MEC). This was initially supported by our finding that purified CMV induces malignant transformation in SG cells in an in vitro mouse model, and utilizes a pathogenic pathway previously reported for human MEC. Here we present the histologic and molecular characterizations of 39 human SG MECs selected randomly from a repository of cases spanning 2004-2011. Serial sections were obtained from formalin-fixed, paraffin embedded, tissue blocks from previous incisional or excisional biopsies. Immunohistochemical assays were performed for active hCMV proteins (IE1 and pp65) and the activated COX/AREG/EGFR/ERK signaling pathway. All four prospective causal criteria for viruses and cancer are fully satisfied: (1) protein markers for active hCMV are present in 97% of MECs; (2) markers of active hCMV are absent in non-neoplastic SG tissues; (3) hCMV-specific proteins (IE1, pp65) are in specific cell types and expression is positively correlated with severity; (4) hCMV correlates and colocalizes with an upregulation and activation of an established oncogenic signaling pathway (COX/AREG/EGFR/ERK). Thus, the evidential support reported here and previously in a mouse model is strongly confirmatory of a causal relationship between hCMV and SG mucoepidermoid carcinoma. To our knowledge, this is the first demonstration of hCMV's role in human oncogenesis that fully responds to all of Koch's Postulates as revised for viruses and cancer. In the absence of any contrary evidence, hCMV can reasonably be designated an "oncovirus."

  14. Cytomegalovirus pp71 protein is expressed in human glioblastoma and promotes pro-angiogenic signaling by activation of stem cell factor.

    Directory of Open Access Journals (Sweden)

    Lisa A Matlaf

    Full Text Available Glioblastoma multiforme (GBM is a highly malignant primary central nervous system neoplasm characterized by tumor cell invasion, robust angiogenesis, and a mean survival of 15 months. Human cytomegalovirus (HCMV infection is present in >90% of GBMs, although the role the virus plays in GBM pathogenesis is unclear. We report here that HCMV pp71, a viral protein previously shown to promote cell cycle progression, is present in a majority of human GBMs and is preferentially expressed in the CD133+, cancer stem-like cell population. Overexpression of pp71 in adult neural precursor cells resulted in potent induction of stem cell factor (SCF, an important pro-angiogenic factor in GBM. Using double immunofluorescence, we demonstrate in situ co-localization of pp71 and SCF in clinical GBM specimens. pp71 overexpression in both normal and transformed glial cells increased SCF secretion and this effect was specific, since siRNA mediated knockdown of pp71 or treatment with the antiviral drug cidofovir resulted in decreased expression and secretion of SCF by HCMV-infected cells. pp71- induced upregulation of SCF resulted in downstream activation of its putative endothelial cell receptor, c-kit, and angiogenesis as measured by increased capillary tube formation in vitro. We demonstrate that pp71 induces a pro-inflammatory response via activation of NFΚB signaling which drives SCF expression. Furthermore, we show that pp71 levels and NFKB activation are selectively augmented in the mesenchymal subtype of human GBMs, characterized by worst patient outcome, suggesting that HCMV pp71-induced paracrine signaling may contribute to the aggressive phenotype of this human malignancy.

  15. Proteomic analyses of human cytomegalovirus strain AD169 derivatives reveal highly conserved patterns of viral and cellular proteins in infected fibroblasts.

    Science.gov (United States)

    Reyda, Sabine; Büscher, Nicole; Tenzer, Stefan; Plachter, Bodo

    2014-01-07

    Human cytomegalovirus (HCMV) particle morphogenesis in infected cells is an orchestrated process that eventually results in the release of enveloped virions. Proteomic analysis has been employed to reveal the complexity in the protein composition of these extracellular particles. Only limited information is however available regarding the proteome of infected cells preceding the release of HCMV virions. We used quantitative mass spectrometry to address the pattern of viral and cellular proteins in cells, infected with derivatives of the AD169 laboratory strain. Our analyses revealed a remarkable conservation in the patterns of viral and of abundant cellular proteins in cells, infected for 2 hours, 2 days, or 4 days. Most viral proteins increased in abundance as the infection progressed over time. Of the proteins that were reliably detectable by mass spectrometry, only IE1 (pUL123), pTRS1, and pIRS1 were downregulated at 4 days after infection. In addition, little variation of viral proteins in the virions of the different viruses was detectable, independent of the expression of the major tegument protein pp65. Taken together these data suggest that there is little variation in the expression program of viral and cellular proteins in cells infected with related HCMVs, resulting in a conserved pattern of viral proteins ultimately associated with extracellular virions.

  16. Distinct functional domains within the acidic cluster of tegument protein pp28 required for trafficking and cytoplasmic envelopment of human cytomegalovirus.

    Science.gov (United States)

    Seo, Jun-Young; Jeon, Hyejin; Hong, Sookyung; Britt, William J

    2016-10-01

    Human cytomegalovirus UL99-encoded tegument protein pp28 contains a 16 aa acidic cluster that is required for pp28 trafficking to the assembly compartment (AC) and the virus assembly. However, functional signals within the acidic cluster of pp28 remain undefined. Here, we demonstrated that an acidic cluster rather than specific sorting signals was required for trafficking to the AC. Recombinant viruses with chimeric pp28 proteins expressing non-native acidic clusters exhibited delayed viral growth kinetics and decreased production of infectious virus, indicating that the native acidic cluster of pp28 was essential for wild-type virus assembly. These results suggested that the acidic cluster of pp28 has distinct functional domains required for trafficking and for efficient virus assembly. The first half (aa 44-50) of the acidic cluster was sufficient for pp28 trafficking, whereas the native acidic cluster consisting of aa 51-59 was required for the assembly of wild-type levels of infectious virus.

  17. Evaluation of a Probe-Based PCR-ELISA System for Simultaneous Semi Quantitative Detection and Genotyping of Human Cytomegalovirus (HCMV) Infection in Clinical Specimens.

    Science.gov (United States)

    Talkhabifard, Majid; Javid, Naeme; Moradi, Abdolvahab; Ghaemi, Amir; Tabarraei, Alijan

    2017-01-01

    Human cytomegalovirus (HCMV) is a common opportunistic pathogen that causes serious complications in immunosuppressed patients and infected newborns. In this study, PCR-ELISA was optimized for semi-quantitative detection of infection in clinical specimens and simultaneous genotyping of glycoprotein B for 4 major genotypes, due to its significance. During DIG-labeling PCR, a pair of primers amplifies a fragment of variable region of the glycoprotein B encoding sequence. Under optimized conditions, labeled Target amplicons hybridize to biotinated specific probes and are detected in an ELISA system. PCR-ELISA system showed specific performance with detection limit of approximately 100 copies of CMV DNA. The linear correlation was observed between the PCR-ELISA results (OD) and logarithmic scale of CMV (r=0.979). Repeatability of PCR-ELISA detection system for intra-assay and inter-assay was evaluated for negative and positive samples. In optimized conditions of hybridization, differentiation between genotypes of glycoprotein B was feasible using genotype-specific probes in PCR-ELISA genotyping system. In comparison with sequencing method, genotyping system was confirmed with kappa index of 1. PCR-ELISA is proposed as an applicable and reliable technique for semi-quantitative diagnosis and typing of the infection. This technique is flexible to apply in a variety of molecular fields.

  18. Human cytomegalovirus-induced NKG2C(hi) CD57(hi) natural killer cells are effectors dependent on humoral antiviral immunity.

    Science.gov (United States)

    Wu, Zeguang; Sinzger, Christian; Frascaroli, Giada; Reichel, Johanna; Bayer, Carina; Wang, Li; Schirmbeck, Reinhold; Mertens, Thomas

    2013-07-01

    Recent studies indicate that expansion of NKG2C-positive natural killer (NK) cells is associated with human cytomegalovirus (HCMV); however, their activity in response to HCMV-infected cells remains unclear. We show that NKG2C(hi) CD57(hi) NK cells gated on CD3(neg) CD56(dim) cells can be phenotypically identified as HCMV-induced NK cells that can be activated by HCMV-infected cells. Using HCMV-infected autologous macrophages as targets, we were able to show that these NKG2C(hi) CD57(hi) NK cells are highly responsive to HCMV-infected macrophages only in the presence of HCMV-specific antibodies, whereas they are functionally poor effectors of natural cytotoxicity. We further demonstrate that NKG2C(hi) CD57(hi) NK cells are intrinsically responsive to signaling through CD16 cross-linking. Our findings show that the activity of pathogen-induced innate immune cells can be enhanced by adaptive humoral immunity. Understanding the activity of NKG2C(hi) CD57(hi) NK cells against HCMV-infected cells will be of relevance for the further development of adoptive immunotherapy.

  19. Toll-like receptor 4 is involved in the cell cycle modulation and required for effective human cytomegalovirus infection in THP-1 macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Arcangeletti, Maria-Cristina, E-mail: mariacristina.arcangeletti@unipr.it [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy); Germini, Diego; Rodighiero, Isabella [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy); Mirandola, Prisco [Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma (Italy); De Conto, Flora; Medici, Maria-Cristina [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy); Gatti, Rita [Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma (Italy); Chezzi, Carlo; Calderaro, Adriana [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy)

    2013-05-25

    Suitable host cell metabolic conditions are fundamental for the effective development of the human cytomegalovirus (HCMV) lytic cycle. Indeed, several studies have demonstrated the ability of this virus to interfere with cell cycle regulation, mainly by blocking proliferating cells in G1 or G1/S. In the present study, we demonstrate that HCMV deregulates the cell cycle of THP-1 macrophages (a cell line irreversibly arrested in G0) by pushing them into S and G2 phases. Moreover, we show that HCMV infection of THP-1 macrophages leads to Toll-like receptor 4 (TLR4) activation. Since various studies have indicated TLR4 to be involved in promoting cell proliferation, here we investigate the possible role of TLR4 in the observed HCMV-induced cell cycle perturbation. Our data strongly support TLR4 as a mediator of HCMV-triggered cell cycle activation in THP-1 macrophages favouring, in turn, the development of an efficient viral lytic cycle. - Highlights: ► We studied HCMV infection impact on THP-1 macrophage cell cycle. ► We analysed the role played by Toll-like receptor (TLR) 4 upon HCMV infection. ► HCMV pushes THP-1 macrophages (i.e. resting cells) to re-enter the cell cycle. ► TLR4 pathway inhibition strongly affects the effectiveness of HCMV replication. ► TLR4 pathway inhibition significantly decreases HCMV-induced cell cycle re-entry.

  20. Comparison of the performance of polymerase chain reaction and pp65 antigenemia for the detection of human cytomegalovirus in immunosuppressed patients

    Directory of Open Access Journals (Sweden)

    Patrícia Borba Martiny

    2011-06-01

    Full Text Available INTRODUCTION: Human cytomegalovirus (HCMV is often reactive in latently infected immunosuppressed patients. Accordingly, HCMV remains one of the most common infections following solid organ and hemopoietic stem cell transplantations, resulting in significant morbidity, graft loss and occasional mortality. The early diagnosis of HCMV disease is important in immunosuppressed patients, since in these individuals, preemptive treatment is useful. The objective of this study was to compare the performance of the in-house qualitative polymerase chain reaction (PCR and pp65 antigenemia to HCMV infection in immunosuppressed patients in the Hospital de Clínicas of Porto Alegre (HCPA. METHODS: A total of 216 blood samples collected between August 2006 and January 2007 were investigated. RESULTS: Among the samples analyzed, 81 (37.5% were HCMV-positive by PCR, while 48 (22.2% were positive for antigenemia. Considering antigenemia as the gold standard, sensitivity, specificity, positive predictive values and negative predictive values for PCR were 87.5%, 76.8%, 51.8% and 95.5% respectively. CONCLUSIONS: These results demonstrated that qualitative PCR has high sensitivity and negative predictive value (NPV. Consequently PCR is especially indicated for the initial diagnosis of HCMV infection. In the case of preemptive treatment strategy, identification of patients at high-risk for HCMV disease is fundamental and PCR can be useful tool.

  1. Isolation of Endoplasmic Reticulum, Mitochondria, and Mitochondria-Associated Membrane and Detergent Resistant Membrane Fractions from Transfected Cells and from Human Cytomegalovirus-Infected Primary Fibroblasts.

    Science.gov (United States)

    Williamson, Chad D; Wong, Daniel S; Bozidis, Petros; Zhang, Aiping; Colberg-Poley, Anamaris M

    2015-09-01

    Increasingly mechanistic virology studies require dependable and sensitive methods for isolating purified organelles containing functional cellular sub-domains. The mitochondrial network is, in part, closely apposed to the endoplasmic reticulum (ER). The mitochondria-associated membrane (MAM) fraction provides direct physical contact between the ER and mitochondria. Characterization of the dual localization and trafficking of human cytomegalovirus (HCMV) UL37 proteins required establishing protocols in which the ER and mitochondria could be reliably separated. Because of its documented role in lipid and ceramide transfer from the ER to mitochondria, a method to purify MAM from infected cells was also developed. Two robust procedures were developed to efficiently isolate mitochondria, ER, and MAM fractions while providing substantial protein yields from HCMV-infected primary fibroblasts and from transfected HeLa cells. Furthermore, this unit includes protocols for isolation of detergent resistant membranes from subcellular fractions as well as techniques that allow visualization of the mitochondrial network disruption that occurs in permissively infected cells by their optimal resolution in Percoll gradients. Copyright © 2015 John Wiley & Sons, Inc.

  2. Human cytomegalovirus glycoprotein B genotypes in blood of AIDS patients: lack of association with either the viral DNA load in leukocytes or presence of retinitis.

    Science.gov (United States)

    Gilbert, C; Handfield, J; Toma, E; Lalonde, R; Bergeron, M G; Boivin, G

    1999-09-01

    It has been suggested that human cytomegalovirus (HCMV) glycoprotein B (gB) genotypes could be used as a marker for viral virulence in patients with AIDS. The present study was designed to evaluate a possible association between specific gB genotypes, the presence of HCMV retinitis, and the HCMV viral load. Fifty-four blood samples were obtained from 54 HIV- and HCMV-infected patients. Twenty-seven of these patients were asymptomatic for HCMV, whereas the other 27 patients had been diagnosed recently with HCMV retinitis. HCMV gB genotyping was carried out by using restriction enzyme analysis of PCR-amplified PMNL extracts. Determination of the HCMV viral load in the same specimens was carried out using a quantitative-PCR. HCMV gB genotype 2 was found more frequently than other genotypes in PCR-amplified polymorphonuclear leukocytes (PMNL) of patients with AIDS (P < 0.05) but not more frequently in samples from patients with HCMV retinitis. No significant association was found between any HCMV gB genotypes and the viral load in blood. In conclusion, the actual HCMV gB genotyping system using PMNL provides no additional benefit over the viral load in blood for identification of HIV-infected subjects at risk of HCMV disease.

  3. The advent of Cytomegalovirus infection in HIV infected patients: A review

    Directory of Open Access Journals (Sweden)

    Sundar Isaac Kirubakaran

    2004-03-01

    Full Text Available Cytomegalovirus is considered as one among the long list of latent infections in humans that although normally controlled by the cellular immune response, gets activated after HIV infection takes its role on infecting the T4 lymphocytes. Clinical disease due to Cytomegalovirus has been recognized in up to 40% of patients with advanced HIV disease. The clinical syndromes most commonly associated include chorioretinitis, esophagitis, colitis, pneumonitis, adrenalitis and neurological disorders. Cytomegalovirus infections are usually diagnosed clinically and by serological tests for CMV immunoglobulin. Chemotherapy using systemic agents, including ganciclovir, intravenous foscarnet and intravenous cidofovir is effective. New agents, as for example an anti-sense agent against cytomegalovirus, appear promising.

  4. The human crystallin gene families

    Directory of Open Access Journals (Sweden)

    Wistow Graeme

    2012-12-01

    Full Text Available Abstract Crystallins are the abundant, long-lived proteins of the eye lens. The major human crystallins belong to two different superfamilies: the small heat-shock proteins (α-crystallins and the βγ-crystallins. During evolution, other proteins have sometimes been recruited as crystallins to modify the properties of the lens. In the developing human lens, the enzyme betaine-homocysteine methyltransferase serves such a role. Evolutionary modification has also resulted in loss of expression of some human crystallin genes or of specific splice forms. Crystallin organization is essential for lens transparency and mutations; even minor changes to surface residues can cause cataract and loss of vision.

  5. Roles of phosphatidylinositol 3-kinase and NF-kappaB in human cytomegalovirus-mediated monocyte diapedesis and adhesion: strategy for viral persistence.

    Science.gov (United States)

    Smith, M Shane; Bivins-Smith, Elizabeth R; Tilley, A Michael; Bentz, Gretchen L; Chan, Gary; Minard, Jessica; Yurochko, Andrew D

    2007-07-01

    Infected peripheral blood monocytes are proposed to play a key role in the hematogenous dissemination of human cytomegalovirus (HCMV) to tissues, a critical step in the establishment of HCMV persistence and the development of HCMV-associated diseases. We recently provided evidence for a unique strategy involved in viral dissemination: HCMV infection of primary human monocytes promotes their transendothelial migration and differentiation into proinflammatory macrophages permissive for the replication of the original input virus. To decipher the mechanism of hematogenous spread, we focused on the viral dysregulation of early cellular processes involved in transendothelial migration. Here, we present evidence that both phosphatidylinositol 3-kinase [PI(3)K] and NF-kappaB activities were crucial for the HCMV induction of monocyte motility and firm adhesion to endothelial cells. We found that the beta(1) integrins, the beta(2) integrins, intracellular adhesion molecule 1 (ICAM-1), and ICAM-3 were upregulated following HCMV infection and that they played a key role in the firm adhesion of infected monocytes to the endothelium. The viral regulation of adhesion molecule expression is complex, with PI(3)K and NF-kappaB affecting the expression of each adhesion molecule at different stages of the expression cascade. Our data demonstrate key roles for PI(3)K and NF-kappaB signaling in the HCMV-induced cellular changes in monocytes and identify the biological rationale for the activation of these pathways in infected monocytes, which together suggest a mechanism for how HCMV promotes viral spread to and persistence within host organs.

  6. Cytomegalovirus and Langerhans Cell Histiocytosis: Is There a Link?

    Science.gov (United States)

    Khoddami, Maliheh; Nadji, Seyed-Alireza; Dehghanian, Paria; Vahdatinia, Mahsa; Shamshiri, Ahmad-Reza

    2016-01-01

    Background: Langerhans cell histiocytosis is a rare proliferative histiocytic disease of unknown etiology. Histologically, it is characterized by granuloma-like proliferation of Langerhans-type dendritic cells derived from bone marrow. Many investigators have suggested the possible role of viruses such as Epstein-Barr virus, human herpesvirus-6 (HHV-6), herpes simplex virus (HSV) types 1 and 2, and Cytomegalovirus in the pathogenesis of Langerhans cell histiocytosis. Objectives: In this study, we have investigated the presence of Cytomegalovirus in Langerhans cell histiocytosis in Iranian children. Patients and Methods: In this retrospective study, we have investigated the presence of Cytomegalovirus DNA expression, using paraffin-embedded tissue samples of 30 patients with Langerhans cell histiocytosis and 30 age and site-matched controls by qualitative Polymerase Chain Reaction (PCR) method. Results: No significant difference in prevalence of Cytomegalovirus presence between patients and controls was found. Cytomegalovirus was found by qualitative PCR in only 2 (6.66%) out of 30 patients and in 1 (3.3%) of 30 control samples with a P value of 1 (1.00 > 0.05) using chi-square test with OR: 2.07; 95% CI of OR: 0.18 - 24.15. Conclusions: Our findings do not support the hypothesis of a possible role for Cytomegalovirus in the pathogenesis of Langerhans cell histiocytosis. PMID:27307972

  7. Cytomegalovirus and Langerhans Cell Histiocytosis: Is There a Link?

    Directory of Open Access Journals (Sweden)

    Maliheh Khoddami

    2016-02-01

    Full Text Available Background: Langerhans cell histiocytosis is a rare proliferative histiocytic disease of unknown etiology. Histologically, it is characterized by granuloma-like proliferation of Langerhans-type dendritic cells derived from bone marrow. Many investigators have suggested the possible role of viruses such as Epstein-Barr virus, human herpesvirus-6 (HHV-6, herpes simplex virus (HSV types 1 and 2, and Cytomegalovirus in the pathogenesis of Langerhans cell histiocytosis. Objectives: In this study, we have investigated the presence of Cytomegalovirus in Langerhans cell histiocytosis in Iranian children. Patients and Methods: In this retrospective study, we have investigated the presence of Cytomegalovirus DNA expression, using paraffin-embedded tissue samples of 30 patients with Langerhans cell histiocytosis and 30 age and site-matched controls by qualitative Polymerase Chain Reaction (PCR method. Results: No significant difference in prevalence of Cytomegalovirus presence between patients and controls was found. Cytomegalovirus was found by qualitative PCR in only 2 (6.66% out of 30 patients and in 1 (3.3% of 30 control samples with a P value of 1 (1.00 > 0.05 using chi-square test with OR: 2.07; 95% CI of OR: 0.18 - 24.15. Conclusions: Our findings do not support the hypothesis of a possible role for Cytomegalovirus in the pathogenesis of Langerhans cell histiocytosis.

  8. Association of interferon lambda-1 with herpes simplex viruses-1 and -2, Epstein-Barr virus, and human cytomegalovirus in chronic periodontitis.

    Science.gov (United States)

    Muzammil; Jayanthi, D; Faizuddin, Mohamed; Noor Ahamadi, H M

    2017-05-01

    Periodontal tissues facilitate the homing of herpes viruses that elicit the immune-inflammatory response releasing the interferons (IFN). IFN lambda-1 (λ1) can suppress the replication of viruses, and induces the antiviral mechanism. The aim of the present study was to evaluate the association between IFN-λ1 and periodontal herpes viruses in the immunoregulation of chronic periodontal disease. The cross-sectional study design included 30 chronic periodontitis patients with a mean age of 42.30 ± 8.63 years. Gingival crevicular fluid collected was assessed for IFN-λ1 using enzyme-linked immunosorbent assay and four herpes viruses were detected using multiplex polymerase chain reaction technique. IFN-λ1 levels were compared between virus-positive and -negative patients for individual and total viruses. Fifty per cent (n = 15) of patients were positive for the four herpes viruses together; 50% (n = 15), 30% (n = 9), 26.7% (n = 8), and 40% (n = 12) were positive for herpes simplex virus (HSV)-1, Epstein-Barr virus, HSV-2, and human cytomegalovirus, respectively. The mean concentrations of IFN-λ1 in virus-positive patients (14.38 ± 13.95) were lower than those of virus-negative patients (228.26 ± 215.35). INF-λ1 levels in individual virus groups were also lower in virus-positive patients compared to virus-negative patients, with P < 0.001. These results suggest that IFN-λ1 could have antiviral and therapeutic value against the viruses in the pathogenesis of chronic periodontitis. © 2015 Wiley Publishing Asia Pty Ltd.

  9. A mutation deleting sequences encoding the amino terminus of human cytomegalovirus UL84 impairs interaction with UL44 and capsid localization.

    Science.gov (United States)

    Strang, Blair L; Bender, Brian J; Sharma, Mayuri; Pesola, Jean M; Sanders, Rebecca L; Spector, Deborah H; Coen, Donald M

    2012-10-01

    Protein-protein interactions are required for many biological functions. Previous work has demonstrated an interaction between the human cytomegalovirus DNA polymerase subunit UL44 and the viral replication factor UL84. In this study, glutathione S-transferase pulldown assays indicated that residues 1 to 68 of UL84 are both necessary and sufficient for efficient interaction of UL84 with UL44 in vitro. We created a mutant virus in which sequences encoding these residues were deleted. This mutant displayed decreased virus replication compared to wild-type virus. Immunoprecipitation assays showed that the mutation decreased but did not abrogate association of UL84 with UL44 in infected cell lysate, suggesting that the association in the infected cell can involve other protein-protein interactions. Further immunoprecipitation assays indicated that IRS1, TRS1, and nucleolin are candidates for such interactions in infected cells. Quantitative real-time PCR analysis of viral DNA indicated that the absence of the UL84 amino terminus does not notably affect viral DNA synthesis. Western blotting experiments and pulse labeling of infected cells with [(35)S]methionine demonstrated a rather modest downregulation of levels of multiple proteins and particularly decreased levels of the minor capsid protein UL85. Electron microscopy demonstrated that viral capsids assemble but are mislocalized in nuclei of cells infected with the mutant virus, with fewer cytoplasmic capsids detected. In sum, deletion of the sequences encoding the amino terminus of UL84 affects interaction with UL44 and virus replication unexpectedly, not viral DNA synthesis. Mislocalization of viral capsids in infected cell nuclei likely contributes to the observed decrease in virus replication.

  10. Human cytomegalovirus tegument protein pp65 is detected in all intra- and extra-axial brain tumours independent of the tumour type or grade.

    Directory of Open Access Journals (Sweden)

    Sylwia Libard

    Full Text Available Human cytomegalovirus (HCMV has been indicated being a significant oncomodulator. Recent reports have suggested that an antiviral treatment alters the outcome of a glioblastoma. We analysed the performance of commercial HCMV-antibodies applying the immunohistochemical (IHC methods on brain sample obtained from a subject with a verified HCMV infection, on samples obtained from 14 control subjects, and on a tissue microarray block containing cores of various brain tumours. Based on these trials, we selected the best performing antibody and analysed a cohort of 417 extra- and intra-axial brain tumours such as gliomas, medulloblastomas, primary diffuse large B-cell lymphomas, and meningiomas. HCMV protein pp65 immunoreactivity was observed in all types of tumours analysed, and the IHC expression did not depend on the patient's age, gender, tumour type, or grade. The labelling pattern observed in the tumours differed from the labelling pattern observed in the tissue with an active HCMV infection. The HCMV protein was expressed in up to 90% of all the tumours investigated. Our results are in accordance with previous reports regarding the HCMV protein expression in glioblastomas and medulloblastomas. In addition, the HCMV protein expression was seen in primary brain lymphomas, low-grade gliomas, and in meningiomas. Our results indicate that the HCMV protein pp65 expression is common in intra- and extra-axial brain tumours. Thus, the assessment of the HCMV expression in tumours of various origins and pathologically altered tissue in conditions such as inflammation, infection, and even degeneration should certainly be facilitated.

  11. Human Cytomegalovirus UL97 Kinase Activity Is Required for the Hyperphosphorylation of Retinoblastoma Protein and Inhibits the Formation of Nuclear Aggresomes

    Energy Technology Data Exchange (ETDEWEB)

    Prichard, Mark N.; Sztul, Elizabeth; Daily, Shannon L.; Perry, Amie L.; Frederick, Samuel L.; Gill, Rachel B.; Hartline, Caroll B.; Streblow, Daniel N.; Varnum, Susan M.; Smith, Richard D.; Kern, Earl R.

    2008-05-01

    Cells infected with human cytomegalovirus in the absence of UL97 kinase activity produce large nuclear aggregates that sequester considerable quantities of viral proteins. A transient expression assay suggested that pp71 and IE1 were also involved in this process, and this suggestion was significant, since both proteins have been reported to interact with components of promyelocytic leukemia (PML) bodies (ND10) and also interact functionally with retinoblastoma pocket proteins (RB). PML bodies have been linked to the formation of nuclear aggresomes, and colocalization studies suggested that viral proteins were recruited to these structures and that UL97 kinase activity inhibited their formation. Proteins associated with PML bodies were examined by Western blot analysis, and pUL97 appeared to specifically affect the phosphorylation of RB in a kinasedependent manner. Three consensus RB binding motifs were identified in the UL97 kinase, and recombinant viruses were constructed in which each was mutated to assess a potential role in the phosphorylation of RB and the inhibition of nuclear aggresome formation. The mutation of either the conserved LxCxE RB binding moti for the lysine required for kinase activity impaired the ability of the virus to stabilize and phosphorylate RB. We concluded from these studies that both UL97 kinase activity and the LxCxE RB binding motif are required for the phosphorylation and stabilization of RB in infected cells and that this effect can be antagonized by the antiviral drug maribavir. These data also suggest a potential link between RB function and the formation of aggresomes.

  12. Monitoring of Human Cytomegalovirus and Virus-Specific T-Cell Response in Young Patients Receiving Allogeneic Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Lilleri, Daniele; Gerna, Giuseppe; Zelini, Paola; Chiesa, Antonella; Rognoni, Vanina; Mastronuzzi, Angela; Giorgiani, Giovanna; Zecca, Marco; Locatelli, Franco

    2012-01-01

    In allogeneic hematopoietic stem-cell transplantation (HSCT) recipients, outcome of human cytomegalovirus (HCMV) infection results from balance between viral load/replication and pathogen-specific T-cell response. Using a cut-off of 30,000 HCMV DNA copies/ml blood for pre-emptive therapy and cut-offs of 1 and 3 virus-specific CD4+ and CD8+ T cells/µl blood for T-cell protection, we conducted in 131 young patients a prospective 3-year study aimed at verifying whether achievement of such immunological cut-offs protects from HCMV disease. In the first three months after transplantation, 55/89 (62%) HCMV-seropositive patients had infection and 36/55 (65%) were treated pre-emptively, whereas only 7/42 (17%) HCMV-seronegative patients developed infection and 3/7 (43%) were treated. After 12 months, 76 HCMV-seropositive and 9 HCMV-seronegative patients (cumulative incidence: 90% and 21%, respectively) displayed protective HCMV-specific immunity. Eighty of these 85 (95%) patients showed spontaneous control of HCMV infection without additional treatment. Five patients after reaching protective T-cell levels needed pre-emptive therapy, because they developed graft-versus-host disease (GvHD). HSCT recipients reconstituting protective levels of HCMV-specific T-cells in the absence of GvHD are no longer at risk for HCMV disease, at least within 3 years after transplantation. The decision to treat HCMV infection in young HSCT recipients may be taken by combining virological and immunological findings. PMID:22848556

  13. Monitoring human cytomegalovirus viral load in peripheral blood leukocytes of renal transplant recipients by a simple limiting dilution-PCR assay

    Directory of Open Access Journals (Sweden)

    O.L. Caballero

    1999-12-01

    Full Text Available To assess the clinical relevance of a semi-quantitative measurement of human cytomegalovirus (HCMV DNA in renal transplant recipients within the typical clinical context of a developing country where virtually 100% of both receptors and donors are seropositive for this virus, we have undertaken HCMV DNA quantification using a simple, semi-quantitative, limiting dilution polymerase chain reaction (PCR. We evaluated this assay prospectively in 52 renal transplant patients from whom a total of 495 serial blood samples were collected. The samples scored HCMV positive by qualitative PCR had the levels of HCMV DNA determined by end-point dilution-PCR. All patients were HCMV DNA positive during the monitoring period and a diagnosis of symptomatic infection was made for 4 of 52 patients. In symptomatic patients the geometric mean of the highest level of HCMV DNAemia was 152,000 copies per 106 leukocytes, while for the asymptomatic group this value was 12,050. Symptomatic patients showed high, protracted HCMV DNA levels, whereas asymptomatic patients demonstrated intermittent low or moderate levels. Using a cut-off value of 100,000 copies per 106 leukocytes, the limiting dilution assay had sensitivity of 100%, specificity of 92%, a positive predictive value of 43% and a negative predictive value of 100% for HCMV disease. In this patient group, there was universal HCMV infection but relatively infrequent symptomatic HCMV disease. The two patient groups were readily distinguished by monitoring with the limiting dilution assay, an extremely simple technology immediately applicable in any clinical laboratory with PCR capability.

  14. Human cytomegalovirus prevalence and distribution of glycoprotein B, O genotypes among hospitalized children with respiratory infections in West China, 2009-2014.

    Science.gov (United States)

    Chen, Jia-Yi; Zheng, Tian-Li; Zhou, Tao; Hu, Peng-Wei; Huang, Meng-Jiao; Xu, Xin; Pei, Xiao-Fang

    2016-11-01

    Human cytomegalovirus (HCMV) is an important pathogen causing morbidity and mortality in children. HCMV prevalence in children with respiratory infections has not been investigated in West China. Previous studies have suggested that glycoproteins genotypes may be associated with different clinical presentations, but the associations were controversial. The aim of this study was to determine the prevalence of HCMV infection in children with respiratory infections, the distributions of gB, gO genotypes among these isolates and their potential predictive roles for the development of symptoms in children. A total of 1709 respiratory specimens were obtained from hospitalised children with respiratory symptoms from 2009 to 2014 for the confirmation of HCMV infection. Glycoprotein B,O genotyping was carried out by multiplex nested PCR and sequencing. The overall infection rate was 10.8%, and dominant genotypes were gB1 (74.2%) and gO1 (37.1%). Clinical characteristics differed between infants and children >1 year of age. Infants infected with HCMV had a higher frequency of fever (P < 0.001), cough (P < 0.001), rhinorrhea (P < 0.001), expectoration (P = 0.001) and diarrhoea (P = 0.005). Children <1 year age infected with gB1 had a higher rate of cough (P = 0.0192). Infants infected with HCMV had a severe clinical outcome. gB1 may negatively associate with clinical presentations and quality of life in these children. The prevalence of HCMV infection and genotype distribution emphasises the importance of HCMV screening, vaccination and control for transmission. © 2016 John Wiley & Sons Ltd.

  15. Identification of human cytomegalovirus phosphoprotein 65 in C57BL/6 and BXSB mice as a potential trigger of systemic lupus erythematosus related serum markers

    Institute of Scientific and Technical Information of China (English)

    Yuan; Zhang; Ting-Ting; Jia; Yang; Pan; Wen-Li; Li; Yu; Sun; Jin-Ming; Li; Lu-Nan; Wang

    2015-01-01

    Objective:To investigate the potential role of human cytomegalovirus lower matrix phosphoprotein 65(HCMV-pp65) in murine systemic lupus erythematosus(SLE).Methods:The prokaryotic plasmid pET-28b-pp65 was constructed to express the HCMVpp65 protein.BXSB mice and C57BL/6 mice were inoculated with pp65 eukarvotic plasmid pcDNA3.0-pp65 intramuscularly 5 times at 2-week intervals,and then the blood of the mice was subsequently collected via the retro-orbital vein.Indirect ELISAs were used to evaluate the concentration of anti-pp65 immunoglobulin G,anti-double-stranded DNA and antinuclear antibodies.lnterleukin-1β and tumor necrosis factor-α were also determined by competitive ELISA.At the same time,3 major SLE-related circulating microRNAs were examined by quantitative RT-PCR.Results:The early production of autoantibodies was observed in pp65-immunized male BXSB as well as C57BL/6 mice.Overexpression of interleukin-1β and tumor necrosis factor-a were detected in pp65-immunized male BXSB mice.Quantitative RT-PCR analyses showed that three SLE related microRNAs(microRNA-126,microRNA-125 a,and microRKA-146a) were dovvnrcgulatcd in peripheral blood mononuclear cells of pp65-immunizcd mice.Conclusions:Our findings indicate that HCMV-pp65 immunization strongly triggers the development and progression of" SLE-like disease in both BXSB and C57BL/6 mice,which indicates that the immune responses induced by HCMV-pp65 may be involved in the development of SLE.

  16. Progresses in diagnosis and treatment of intrauterine infection with cytomegalovirus and human parvovirus B19%巨细胞病毒和人细小病毒B19宫内感染的诊治进展

    Institute of Scientific and Technical Information of China (English)

    吴婉芳

    2003-01-01

    @@ 近20年来,国内外学者对TORCH感染做了大量工作,取得了很大的成绩.但也还有许多尚未解决的问题.现仅就巨细胞病毒(cytomegalovirus, CMV)和人细小病毒B19(human parvovirus B19,HPV B19)宫内感染的某些方面,提出以下意见供同道参考.

  17. Quantitation of cytomegalovirus (CMV) DNA in leukocytes of human immunodeficiency virus-infected subjects with and without CMV disease by using PCR and the SHARP Signal Detection System.

    Science.gov (United States)

    Boivin, G; Handfield, J; Murray, G; Toma, E; Lalonde, R; Lazar, J G; Bergeron, M G

    1997-02-01

    We report the development of a simple and rapid PCR assay for quantitation of the cytomegalovirus (CMV) DNA load in polymorphonuclear leukocytes. Using this system, a very good correlation was found between a high number of CMV copies in the blood and the presence of CMV disease in subjects with AIDS.

  18. Antiviral Drug- and Multidrug Resistance in Cytomegalovirus Infected SCT Patients

    Directory of Open Access Journals (Sweden)

    Katharina Göhring

    2015-01-01

    Full Text Available In pediatric and adult patients after stem cell transplantation (SCT disseminated infections caused by human cytomegalovirus (HCMV can cause life threatening diseases. For treatment, the three antivirals ganciclovir (GCV, foscarnet (PFA and cidofovir (CDV are approved and most frequently used. Resistance to all of these antiviral drugs may induce a severe problem in this patient cohort. Responsible for resistance phenomena are mutations in the HCMV phosphotransferase-gene (UL97 and the polymerase-gene (UL54. Most frequently mutations in the UL97-gene are associated with resistance to GCV. Resistance against all three drugs is associated to mutations in the UL54-gene. Monitoring of drug resistance by genotyping is mostly done by PCR-based Sanger sequencing. For phenotyping with cell culture the isolation of HCMV is a prerequisite. The development of multidrug resistance with mutation in both genes is rare, but it is often associated with a fatal outcome. The manifestation of multidrug resistance is mostly associated with combined UL97/UL54-mutations. Normally, mutations in the UL97 gene occur initially followed by UL54 mutation after therapy switch. The appearance of UL54-mutation alone without any detection of UL97-mutation is rare. Interestingly, in a number of patients the UL97 mutation could be detected in specific compartments exclusively and not in blood.

  19. [Cycloferon therapy of cytomegalovirus infection in monkeys].

    Science.gov (United States)

    Mezentseva, M V; Agrba, V Z; Karal-ogly, D D; Agumava, A A

    2012-01-01

    Cytomegalovirus (CMV) infection is a wide-spread disease throw humans and monkeys, which and associated with various diseases. The development of this infection in human organism is much like that in rhesus macaque, which makes CMV-infected monkeys adequate model for studying and elaborating prophylactic and therapeutic measures against this disease in humans. This article presents data on the efficiency of cycloferon action on animals with the M. mulatta CMV infection. Cycloferon stimulated an increase in the IFN-alpha production and promoted the period of remission in CMV-infected animals.

  20. Human cytomegalovirus Fcγ binding proteins gp34 and gp68 antagonize Fcγ receptors I, II and III.

    Directory of Open Access Journals (Sweden)

    Eugenia Corrales-Aguilar

    2014-05-01

    Full Text Available Human cytomegalovirus (HCMV establishes lifelong infection with recurrent episodes of virus production and shedding despite the presence of adaptive immunological memory responses including HCMV immune immunoglobulin G (IgG. Very little is known how HCMV evades from humoral and cellular IgG-dependent immune responses, the latter being executed by cells expressing surface receptors for the Fc domain of IgG (FcγRs. Remarkably, HCMV expresses the RL11-encoded gp34 and UL119-118-encoded gp68 type I transmembrane glycoproteins which bind Fcγ with nanomolar affinity. Using a newly developed FcγR activation assay, we tested if the HCMV-encoded Fcγ binding proteins (HCMV FcγRs interfere with individual host FcγRs. In absence of gp34 or/and gp68, HCMV elicited a much stronger activation of FcγRIIIA/CD16, FcγRIIA/CD32A and FcγRI/CD64 by polyclonal HCMV-immune IgG as compared to wildtype HCMV. gp34 and gp68 co-expression culminates in the late phase of HCMV replication coinciding with the emergence of surface HCMV antigens triggering FcγRIII/CD16 responses by polyclonal HCMV-immune IgG. The gp34- and gp68-dependent inhibition of HCMV immune IgG was fully reproduced when testing the activation of primary human NK cells. Their broad antagonistic function towards FcγRIIIA, FcγRIIA and FcγRI activation was also recapitulated in a gain-of-function approach based on humanized monoclonal antibodies (trastuzumab, rituximab and isotypes of different IgG subclasses. Surface immune-precipitation showed that both HCMV-encoded Fcγ binding proteins have the capacity to bind trastuzumab antibody-HER2 antigen complexes demonstrating simultaneous linkage of immune IgG with antigen and the HCMV inhibitors on the plasma membrane. Our studies reveal a novel strategy by which viral FcγRs can compete for immune complexes against various Fc receptors on immune cells, dampening their activation and antiviral immunity.

  1. Cytomegalovirus hepatitis and myopericarditis

    Institute of Scientific and Technical Information of China (English)

    Leire Zubiaurre; Eva Zapata; Luis Bujanda; María Castillo; Igor Oyarzabal; Maria A Gutiérrez-Stampa; Angel Cosme

    2007-01-01

    Cytomegalovirus (CMV) infection in inmunocompetent hosts generally is asymptomatic or may present as a mononucleosis syndrome but rarely can lead to severe organ complications. We report a case of simultaneous hepatic and pericardic CMV infection in a 36-year old immunocompetent man. He was admitted to coronary unit with fever, chest pain radiated to shoulders,changes on electrocardiogram with diffuse ST elevation and modest laboratory elevations in the MB fraction of creatine kinase (CK-MB) of 33.77 μg/L (0.1-6.73), serum cardiac troponin T of 0.904 ng/mL (0-0.4), creatine kinase of 454 U/L (20-195) and myoglobin of 480.4 μg/L (28-72). Routine laboratory test detected an elevation of aminotransferase level: alanine aminotransferase 1445 U/L, aspartate aminotransferase 601 U/L. We ruled out other causes of hepatitis with normal results except IgM CMV. The patient was diagnosed with myopericarditis and hepatitis caused by cytomegalovirus and started symptomatic treatment with salicylic acid. In few days the laboratory findings became normal and the patient was discharged.

  2. Human Cytomegalovirus miR-UL112-3p Targets TLR2 and Modulates the TLR2/IRAK1/NFκB Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Igor Landais

    2015-05-01

    Full Text Available Human Cytomegalovirus (HCMV encodes multiple microRNAs (miRNAs whose functions are just beginning to be uncovered. Using in silico approaches, we identified the Toll-Like Receptor (TLR innate immunity pathway as a possible target of HCMV miRNAs. Luciferase reporter assay screens further identified TLR2 as a target of HCMV miR-UL112-3p. TLR2 plays a major role in innate immune response by detecting both bacterial and viral ligands, including HCMV envelope proteins gB and gH. TLR2 activates a variety of signal transduction routes including the NFκB pathway. Furthermore, TLR2 plays an important role in controlling CMV infection both in humans and in mice. Immunoblot analysis of cells transfected with a miR-UL112-3p mimic revealed that endogenous TLR2 is down-regulated by miR-UL112-3p with similar efficiency as a TLR2-targeting siRNA (siTLR2. We next found that TLR2 protein level decreases at late times during HCMV infection and correlates with miR-UL112-3p accumulation in fibroblasts and monocytic THP1 cells. Confirming direct miR-UL112-3p targeting, down-regulation of endogenous TLR2 was not observed in cells infected with HCMV mutants deficient in miR-UL112-3p expression, but transfection of miR-UL112-3p in these cells restored TLR2 down-regulation. Using a NFκB reporter cell line, we found that miR-UL112-3p transfection significantly inhibited NFκB-dependent luciferase activity with similar efficiency as siTLR2. Consistent with this observation, miR-UL112-3p transfection significantly reduced the expression of multiple cytokines (IL-1β, IL-6 and IL-8 upon stimulation with a TLR2 agonist. Finally, miR-UL112-3p transfection significantly inhibited the TLR2-induced post-translational activation of IRAK1, a kinase located in the upstream section of the TLR2/NFκB signaling axis. To our knowledge, this is the first identified mechanism of TLR2 modulation by HCMV and is the first report of functional targeting of TLR2 by a viral miRNA. These

  3. Activities of Human Gene Nomenclature Committee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-16

    The objective of this project, shared between NIH and DOE, has been and remains to enable the medical genetics communities to use common names for genes that are discovered by different gene hunting groups, in different species. This effort provides consistent gene nomenclature and approved gene symbols to the community at large. This contributes to a uniform and consistent understanding of genomes, particularly the human as well as functional genomics based on comparisons between homologous genes in related species (human and mice).

  4. Mutual Interplay between the Human Cytomegalovirus Terminase Subunits pUL51, pUL56, and pUL89 Promotes Terminase Complex Formation.

    Science.gov (United States)

    Neuber, Sebastian; Wagner, Karen; Goldner, Thomas; Lischka, Peter; Steinbrueck, Lars; Messerle, Martin; Borst, Eva Maria

    2017-06-15

    Human cytomegalovirus (HCMV) genome encapsidation requires several essential viral proteins, among them pUL56, pUL89, and the recently described pUL51, which constitute the viral terminase. To gain insight into terminase complex assembly, we investigated interactions between the individual subunits. For analysis in the viral context, HCMV bacterial artificial chromosomes carrying deletions in the open reading frames encoding the terminase proteins were used. These experiments were complemented by transient-transfection assays with plasmids expressing the terminase components. We found that if one terminase protein was missing, the levels of the other terminase proteins were markedly diminished, which could be overcome by proteasome inhibition or providing the missing subunit in trans These data imply that sequestration of the individual subunits within the terminase complex protects them from proteasomal turnover. The finding that efficient interactions among the terminase proteins occurred only when all three were present together is reminiscent of a folding-upon-binding principle leading to cooperative stability. Furthermore, whereas pUL56 was translocated into the nucleus on its own, correct nuclear localization of pUL51 and pUL89 again required all three terminase constituents. Altogether, these features point to a model of the HCMV terminase as a multiprotein complex in which the three players regulate each other concerning stability, subcellular localization, and assembly into the functional tripartite holoenzyme.IMPORTANCE HCMV is a major risk factor in immunocompromised individuals, and congenital CMV infection is the leading viral cause for long-term sequelae, including deafness and mental retardation. The current treatment of CMV disease is based on drugs sharing the same mechanism, namely, inhibiting viral DNA replication, and often results in adverse side effects and the appearance of resistant virus strains. Recently, the HCMV terminase has emerged as

  5. Stimulation of the Replication of ICP0-Null Mutant Herpes Simplex Virus 1 and pp71-Deficient Human Cytomegalovirus by Epstein-Barr Virus Tegument Protein BNRF1

    Science.gov (United States)

    Lu, Yongxu; Orr, Anne

    2016-01-01

    ABSTRACT It is now well established that several cellular proteins that are components of promyelocytic leukemia nuclear bodies (PML NBs, also known as ND10) have restrictive effects on herpesvirus infections that are countered by viral proteins that are either present in the virion particle or are expressed during the earliest stages of infection. For example, herpes simplex virus 1 (HSV-1) immediate early (IE) protein ICP0 overcomes the restrictive effects of PML-NB components PML, Sp100, hDaxx, and ATRX while human cytomegalovirus (HCMV) IE protein IE1 targets PML and Sp100, and its tegument protein pp71 targets hDaxx and ATRX. The functions of these viral regulatory proteins are in part interchangeable; thus, both IE1 and pp71 stimulate the replication of ICP0-null mutant HSV-1, while ICP0 increases plaque formation by pp71-deficient HCMV. Here, we extend these studies by examining proteins that are expressed by Epstein-Barr virus (EBV). We report that EBV tegument protein BNRF1, discovered by other investigators to target the hDaxx/ATRX complex, increases the replication of both ICP0-null mutant HSV-1 and pp71-deficient HCMV. In addition, EBV protein EBNA-LP, which targets Sp100, also augments ICP0-null mutant HSV-1 replication. The combination of these two EBV regulatory proteins had a greater effect than each one individually. These findings reinforce the concept that disruption of the functions of PML-NB proteins is important for efficient herpesvirus infections. IMPORTANCE Whether a herpesvirus initiates a lytic infection in a host cell or establishes quiescence or latency is influenced by events that occur soon after the viral genome has entered the host cell nucleus. Certain cellular proteins respond in a restrictive manner to the invading pathogen's DNA, while viral functions are expressed that counteract the cell-mediated repression. One aspect of cellular restriction of herpesvirus infections is mediated by components of nuclear structures known as

  6. The Human Cytomegalovirus MHC Class I Homolog UL18 Inhibits LIR-1+ but Activates LIR-1− NK Cells1

    OpenAIRE

    Prod’Homme, Virginie; Griffin, Cora; Rebecca J. Aicheler; Wang, Eddie C.Y.; McSharry, Brian P.; Rickards, Carole R.; Stanton, Richard J; Borysiewicz, Leszek K.; López-Botet, Miguel; Wilkinson, Gavin W. G.; Tomasec, Peter

    2007-01-01

    The inhibitory leukocyte Ig-like receptor 1 (LIR-1, also known as ILT2, CD85j, or LILRB1) was identified by its high affinity for the human CMV (HCMV) MHC class I homolog gpUL18. The role of this LIR-1-gpUL18 interaction in modulating NK recognition during HCMV infection has previously not been clearly defined. In this study, LIR-1+ NKL cell-mediated cytotoxicity was shown to be inhibited by transduction of targets with a replication-deficient adenovirus vector encoding UL18 (RAd-UL18). Fibro...

  7. Human cytomegalovirus and Epstein-Barr virus infection impact on {sup 18}F-FDG PET/CT SUVmax, CT volumetric and KRAS-based parameters of patients with locally advanced rectal cancer treated with neoadjuvant therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sole, Claudio V. [Instituto de Radiomedicina, Department of Radiation Oncology, Santiago (Chile); School of Medicine Complutense University, Madrid (Spain); Calvo, Felipe A. [Hospital General Universitario Gregorio Maranon, Department of Oncology, Madrid (Spain); School of Medicine Complutense University, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute for Sanitary Research, Madrid (Spain); Ferrer, Carlos [Hospital Provincial de Castellon, Institute of Oncology, Castellon de la Plana (Spain); School of Medicine Cardenal Herrera-CEU University, Castellon de la Plana (Spain); Alvarez, Emilio [School of Medicine Complutense University, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Department of Pathology, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute for Sanitary Research, Madrid (Spain); Carreras, Jose L. [School of Medicine Complutense University, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Department of Radiology and Medical Physics, Madrid (Spain); Ochoa, Enrique [Hospital Provincial de Castellon, Institute of Oncology, Castellon de la Plana (Spain)

    2014-10-01

    It has long been debated whether human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) are associated with rectal cancer. The gene products of HCMV and EBV contribute to cell-cycle progression, mutagenesis, angiogenesis and immune evasion. The aim of this prospective study was to analyse the association between infection of a tumour by HCMV and EBV and clinical, histological, metabolic ({sup 18}F-FDG uptake), volumetric (from CT) and molecular (KRAS status) features and long-term outcomes in a homogeneously treated group of patients with locally advanced rectal cancer. HCMV and EBV were detected in pretreatment biopsies using polymerase chain reaction (PCR). The Cox proportional hazards regression model was used to explore associations between viral infection and disease-free survival (DFS) and overall survival (OS). We analysed 37 patients with a median follow-up of 74 months (range 5-173 months). Locoregional control, OS and DFS at 5 years were 93 %, 74 % and 71 %, respectively. Patients with HCMV/EBV coinfection had a significantly higher maximum standardized uptake value than patients without viral coinfection (p = 0.02). Significant differences were also observed in staging and percentage relative reduction in tumour volume between patients with and without HCMV infection (p < 0.01) and EBV infection (p < 0.01). KRAS wildtype status was significantly more frequently observed in patients with EBV infection (p <0.01) and HCMV/EBV co-infection (p = 0.04). No significant differences were observed in OS or DFS between patients with and without EBV infection (p = 0.88 and 0.73), HCMV infection (p = 0.84 and 0.79), and EBV/CMV coinfection (p = 0.24 and 0.39). This pilot study showed that viral infections were associated with metabolic staging differences, and differences in the evolution of metabolic and volumetric parameters and KRAS mutations. Further findings of specific features will help determine the best candidates for metabolic and volumetric staging and

  8. Cytomegalovirus retinitis after initiation of antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Zahra Ahmadinejad

    2013-10-01

    Full Text Available Patients with human immunodeficiency virus (HIV infection receiving antiretroviral therapy (ART, despite a reduced viral load and improved immune responses, may experience clinical deterioration. This so called "immune reconstitution inflammatory syndrome (IRIS" is caused by inflammatory response to both intact subclinical pathogens and residual antigens. Cytomegalovirus retinitis is common in HIV-infected patients on ART with a cluster differentiation 4 (CD4+ counts less than 50 cells/mm3. We reported a patient with blurred vision while receiving ART. She had an unmasking classic CMV retinitis after ART.

  9. Clinical relevance between human cytomegalovirus infection and colorectal cancer%人巨细胞病毒感染与大肠癌临床相关性

    Institute of Scientific and Technical Information of China (English)

    叶梦思; 何云; 杨守醒; 林豪; 薛战雄; 蔡振寨

    2016-01-01

    目的:探讨大肠癌患者人巨细胞病毒(human cytomegalovirus,HCMV)感染情况及其临床相关性.方法:采用化学发光(CLIA)法对大肠癌组∽=60)、大肠息肉组0=60)及健康对照组∞=60)的外周血清进行HCMV免疫球蛋白G(immunoglobulin G,lgG)、IgM抗体检测;巢式PCR技术结合原位杂交方法检测32例大肠癌组织及癌旁正常肠黏膜组织中HCMV-UL 138基因表达;用Fisher确切概率法比较两组间阳性率,均数比较采用t检验或单因素方差分析.P<0.05为差异有统计学意义.结果:大肠癌组、大肠息肉组、健康对照组血清HCMV-IgG阳性率为分别为95.0%(57/60)、98.3%(59/60)、96.7%(58/60);血清HCMV-IgM阳性率分别为5.0%(3/60)、1.7%(1/60)、1.7%(1/60),3组血清HCMV-IgG、IgM差异无统计学意义(P>0.05).32例大肠癌组织巢式PCR检测HCMV-UL138阳性率为65.6%(19/32),相应癌旁正常肠黏膜组织中为12.5%(4/32),原位杂交法检测癌组织HCMV-UL138阳性率为62.5%(20/32),癌旁正常肠黏膜组织中为9.4%(3/32),大肠癌组织HCMV阳性检出率较癌旁正常组织显著升高(P<0.01).未发现HCMV感染与大肠癌患者的年龄、性别、肿块位置、肿块大小、组织病理分化类型、转移及Dukes分期有显著性关联.结论:大肠癌组织中存在HCMV感染,且HCMV相较于癌旁正常组织更倾向感染癌灶,提示HCMV感染可能参与大肠癌的发生发展过程.

  10. Coinfection of Epstein-Barr virus, cytomegalovirus, herpes simplex virus, human papillomavirus and anal intraepithelial neoplasia in HIV patients in Amazon, Brazil

    Directory of Open Access Journals (Sweden)

    Adriana Gonçalves Daumas Pinheiro Guimarães

    2012-03-01

    Full Text Available OBJECTIVE: The prevention of anal cancer is a goal of worldwide Aids support centers. Despite the efforts that have been made and progress in the antiretroviral therapy, effective disease control remains elusive. Difficulty in preventing anal cancer may result from the ineffectiveness of highly active antiretroviral therapy on the human papillomavirus (HPV since the coinfection with HIV and HPV appears to increase the risk of HPV-infected cells, becoming cancerous. METHODS: We evaluated 69 HIV-positive and 30 HIV-negative male patients who underwent cytological evaluation by RT-PCR for the presence of HPV, Epstein-Barr virus, cytomegalovirus and herpes virus types (HSV 1 and 2, and histopathology analysis of the anal canal. RESULTS: The prevalence of anal intraepithelial neoplasia was 35% and it was restricted to HIV-positive patients. Patients infected with high-risk HPV and with fewer than 50 TCD4 cells/µL showed an anal intraepithelial neoplasia rate of 85.7% compared to those with TCD4 cells >200 cells/µL (pOBJETIVO: A prevenção do câncer anal tem sido aplicada pelos centros de apoio a pacientes com Aids em todo o mundo. Apesar dos esforços empregados, o eficaz controle da doença permanece distante. A dificuldade na prevenção do câncer anal pode resultar, em parte, da ineficácia da ação da terapia antirretroviral sobre o papilomavírus humano (HPV, pois a coinfecção com HIV e HPV parece aumentar o risco das células infectadas pelo HPV em tornarem-se cancerosas. MÉTODOS: Foram avaliados 69 HIV-positivos e 30 pacientes HIV-negativos do sexo masculino, que foram submetidos à avaliação citológica anal por real time-PCR para a presença de HPV, vírus Epstein-Barr, citomegalovírus e herpes vírus tipos (HSV 1 e 2 além da análise histopatológica de fragmento de mucosa do canal anal. RESULTADOS: A prevalência de neoplasia intraepitelial anal foi de 35% e foi restrita a pacientes HIV-positivos. Os pacientes infectados com o

  11. Genes Causing Male Infertility in Humans

    Institute of Scientific and Technical Information of China (English)

    Lawrence C. Layman

    2002-01-01

    There are an accumulating number of identified gene mutations that cause infertility in humans. Most of the known gene mutations impair normal puberty and subsequently cause infertility by either hypothalamic /pituitary deficiency of important tropic factors to the gonad or by gonadal genes.

  12. Rapid detection of cytomegalovirus in bronchoalveolar lavage fluid and serum samples by polymerase chain reaction: correlation of virus isolation and clinical outcome for patients with human immunodeficiency virus infection

    DEFF Research Database (Denmark)

    Hansen, K K; Vestbo, Jørgen; Benfield, T;

    1997-01-01

    Bronchoalveolar lavage (BAL) fluids and serum samples from 153 patients with pulmonary symptoms who were infected with human immunodeficiency virus (HIV) and underwent BAL were examined for the presence of cytomegalovirus (CMV) by conventional culture and by polymerase chain reaction (PCR.......0; confidence interval [CI], 3.8-16.8) or the finding of CMV DNA in serum (RR, 7.4; CI, 3.2-17.3) or BAL fluid (RR, 8.0; CI, 3.1-20.7) by PCR. Mortality was found to be similar for patients who did or did not have CMV detected by either culture or PCR. Detection of CMV DNA by PCR was a more rapid and sensitive...

  13. UltramicroELISA indirecto para la deteccion de anticuerpos totales a citomegalovirus en suero humano Indirect Ultramicroelisa assay for the detection of human antibodies to cytomegalovirus using human serum samples

    Directory of Open Access Journals (Sweden)

    Jose Laferte

    1992-02-01

    Full Text Available Se normalizó un ultramicroELISA indirecto para la detección de anticuerpos a Citomegalovirus (CMV humano (UMELISA CMV. Se determinó la concentración óptima de antígeno en 30 ug/ml, la dilución de los sueros fue de 1:40 y la dilución de trabajo del conjugado fue de 1:1500. El UMELISA CMV fue comparado con las técnicas de aglutinación de latex para anticuerpos anti-CMV (Dupont de Neumors y la inmunofluorescencia indirecta (EFT. Los resultados mostraron un alto grado de concordancia y elevada copositividad y conegatividad del UMELISA con respecto a estos dos ensayos. El método es válido para el pesquisaje de anticuerpos en banco de sangre asi como para el diagnóstico de la infección mediante sueros pareados.We have standardized an indirect ultramicro ELISA assay for detecting antibodies to human Cytomegalovirus (CMV using human serum samples (UMELISA CMV. The optimal concentration of coating antigen (30 ug/ml, serum dilution (1:40 and anti-human conjugate working dilution (1:1500, were determined by a check board titration method. The UMELISA CMV was compared with the latex agglutination test for antibodies to CMV (Dupont de Nemours and with an indiret immunofluorescent method. The results have showed the high coincidence, sensitivity and especificity of the proposed assay regarding the two methods compared with, and supporting its use either for a blood donors screening or in the serological diagnosis of this infection by paired serum samples.

  14. B cell line epitopes prediction of human cytomegalovirus glycoprotein B%人巨细胞病毒包膜糖蛋白B线性B细胞抗原表位的预测

    Institute of Scientific and Technical Information of China (English)

    闫晶晶; 吕茂民; 赵雄; 尹惠琼; 章金刚

    2015-01-01

    目的:通过生物信息学方法分析人巨细胞病毒( human cytomegalovirus ,HCMV)包膜糖蛋白B ( glycopro-tein B,gB)的结构及理化特性,预测gB的线性B细胞抗原表位。方法基于HCMV gB的序列,利用两种在线B细胞表位预测程序及DNAstar软件对gB进行预测;利用SWISS-MODEL服务器同源构建gB三级结构模型,进行进一步验证。结果与结论综合多项分析,预测得到HCMVgB的多个线性B细胞表位,为后续验证其优势中和表位,建立富含高效价中和抗体的原料血浆的筛选方法奠定了基础。%Objective To predict the B cell line epitopes of human cytomegalovirus glycoprotein (gB)by analyzing its structure and physicochemical properties using bioinformatics approaches .Methods Based on the sequence of the HCMV gB,the probable B cell epitopes are predicted using two online prediction programs and DNAstar software .Meanwhile,the tertiary structure of gB was constructed by homologous modeling with the assistance of SWISS -MODEL server to rule out im-possible B cell epitopes .Results and Conclusion The B cell line epitopes of gB are predicted , which provides a theoreti-cal basis for further verification of gB immunodominant epitopes and screening the source plasma with high HCMV IgG titer .

  15. Epigenetic Control of Cytomegalovirus Latency and Reactivation

    Directory of Open Access Journals (Sweden)

    Mary Hummel

    2013-05-01

    Full Text Available Cytomegalovirus (CMV gene expression is repressed in latency due to heterochromatinization of viral genomes. In murine CMV (MCMV latently infected mice, viral genomes are bound to histones with heterochromatic modifications, to enzymes that mediate these modifications, and to adaptor proteins that may recruit co-repressor complexes. Kinetic analyses of repressor binding show that these repressors are recruited at the earliest time of infection, suggesting that latency may be the default state. Kidney transplantation leads to epigenetic reprogramming of latent viral chromatin and reactivation of immediate early gene expression. Inflammatory signaling pathways, which activate transcription factors that regulate the major immediate early promoter (MIEP, likely mediate the switch in viral chromatin.

  16. Advanced studies on human gene ZNF322

    Institute of Scientific and Technical Information of China (English)

    LI Yongqing; WANG Yuequn; YUAN Wuzhou; DENG Yun; ZHU Chuanbing; WU Xiushan

    2007-01-01

    The human novel gene of ZNF322 is cloned from human fetal eDNA library using the primers on the basis of the ZNF322 sequence analyzed with computer.The gene is located on Chromosome 6p22.1,and encodes a protein consisting of 402 amino acid residues and containing nine tandem C2H2-type zinc-finger motifs.Northern blot result shows that the gene is expressed in all examined adult tissues.Subcellular location study indicates that ZNF322-EGFP fusion protein is distributed in the nucleus and cytoplasm.Reporter gene assays show that ZNF322 is a potential transcriptional activator.

  17. Cytomegalovirus reinfections stimulate CD8 T-memory inflation

    OpenAIRE

    Trgovcich, J; Kincaid, M; Thomas, A.; Griessl, M.; Zimmerman, P; Dwivedi, V; Bergdall, V; Klenerman, P.; Cook, CH

    2016-01-01

    Cytomegalovirus (CMV) has been shown to induce large populations of CD8 T-effector memory cells that unlike central memory persist in large quantities following infection, a phenomenon commonly termed “memory inflation”. Although murine models to date have shown very large and persistent CMV-specific T-cell expansions following infection, there is considerable variability in CMV-specific T-memory responses in humans. Historically such memory inflation in humans has been assumed a consequence ...

  18. Genome editing for human gene therapy.

    Science.gov (United States)

    Meissner, Torsten B; Mandal, Pankaj K; Ferreira, Leonardo M R; Rossi, Derrick J; Cowan, Chad A

    2014-01-01

    The rapid advancement of genome-editing techniques holds much promise for the field of human gene therapy. From bacteria to model organisms and human cells, genome editing tools such as zinc-finger nucleases (ZNFs), TALENs, and CRISPR/Cas9 have been successfully used to manipulate the respective genomes with unprecedented precision. With regard to human gene therapy, it is of great interest to test the feasibility of genome editing in primary human hematopoietic cells that could potentially be used to treat a variety of human genetic disorders such as hemoglobinopathies, primary immunodeficiencies, and cancer. In this chapter, we explore the use of the CRISPR/Cas9 system for the efficient ablation of genes in two clinically relevant primary human cell types, CD4+ T cells and CD34+ hematopoietic stem and progenitor cells. By using two guide RNAs directed at a single locus, we achieve highly efficient and predictable deletions that ablate gene function. The use of a Cas9-2A-GFP fusion protein allows FACS-based enrichment of the transfected cells. The ease of designing, constructing, and testing guide RNAs makes this dual guide strategy an attractive approach for the efficient deletion of clinically relevant genes in primary human hematopoietic stem and effector cells and enables the use of CRISPR/Cas9 for gene therapy.

  19. Cytomegalovirus infection in transplant recipients

    Directory of Open Access Journals (Sweden)

    Luiz Sergio Azevedo

    2015-07-01

    Full Text Available Cytomegalovirus infection is a frequent complication after transplantation. This infection occurs due to transmission from the transplanted organ, due to reactivation of latent infection, or after a primary infection in seronegative patients and can be defined as follows: latent infection, active infection, viral syndrome or invasive disease. This condition occurs mainly between 30 and 90 days after transplantation. In hematopoietic stem cell transplantation in particular, infection usually occurs within the first 30 days after transplantation and in the presence of graft-versus-host disease. The major risk factors are when the recipient is cytomegalovirus seronegative and the donor is seropositive as well as when lymphocyte-depleting antibodies are used. There are two methods for the diagnosis of cytomegalovirus infection: the pp65 antigenemia assay and polymerase chain reaction. Serology has no value for the diagnosis of active disease, whereas histology of the affected tissue and bronchoalveolar lavage analysis are useful in the diagnosis of invasive disease. Cytomegalovirus disease can be prevented by prophylaxis (the administration of antiviral drugs to all or to a subgroup of patients who are at higher risk of viral replication or by preemptive therapy (the early diagnosis of viral replication before development of the disease and prescription of antiviral treatment to prevent the appearance of clinical disease. The drug used is intravenous or oral ganciclovir; oral valganciclovir; or, less frequently, valacyclovir. Prophylaxis should continue for 90 to 180 days. Treatment is always indicated in cytomegalovirus disease, and the gold-standard drug is intravenous ganciclovir. Treatment should be given for 2 to 3 weeks and should be continued for an additional 7 days after the first negative result for viremia.

  20. Human proton/oligopeptide transporter (POT) genes

    DEFF Research Database (Denmark)

    Botka, C. W.; Wittig, T. W.; Graul, R. C.

    2000-01-01

    The proton-dependent oligopeptide transporters (POT) gene family currently consists of approximately 70 cloned cDNAs derived from diverse organisms. In mammals, two genes encoding peptide transporters, PepT1 and PepT2 have been cloned in several species including humans, in addition to a rat...... histidine/peptide transporter (rPHT1). Because the Candida elegans genome contains five putative POT genes, we searched the available protein and nucleic acid databases for additional mammalian/human POT genes, using iterative BLAST runs and the human expressed sequence tags (EST) database. The apparent...... human orthologue of rPHT1 (expression largely confined to rat brain and retina) was represented by numerous ESTs originating from many tissues. Assembly of these ESTs resulted in a contiguous sequence covering approximately 95% of the suspected coding region. The contig sequences and analyses revealed...

  1. Gene Expression in the Human Endolymphatic Sac

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Kirkeby, Svend; Vikeså, Jonas

    2015-01-01

    OBJECTIVES/HYPOTHESIS: The purpose of the present study is to explore, demonstrate, and describe the expression of genes related to the solute carrier (SLC) molecules of ion transporters in the human endolymphatic sac. STUDY DESIGN: cDNA microarrays and immunohistochemistry were used for analyses...... of fresh human endolymphatic sac tissue samples. METHODS: Twelve tissue samples of the human endolymphatic sac were obtained during translabyrinthine surgery for vestibular schwannoma. Microarray technology was used to investigate tissue sample expression of solute carrier family genes, using adjacent dura...... mater as control. Immunohistochemistry was used for verification of translation of selected genes, as well as localization of the specific protein within the sac. RESULTS: An extensive representation of the SLC family genes were upregulated in the human endolymphatic sac, including SLC26a4 Pendrin, SLC4...

  2. Rapid genotyping of cytomegalovirus in dried blood spots by multiplex real-time PCR assays targeting the envelope glycoprotein gB and gH genes.

    Science.gov (United States)

    de Vries, Jutte J C; Wessels, Els; Korver, Anna M H; van der Eijk, Annemiek A; Rusman, Lisette G; Kroes, Aloys C M; Vossen, Ann C T M

    2012-02-01

    Genotyping of cytomegalovirus (CMV) is useful to examine potential differences in the pathogenicity of strains and to demonstrate coinfection with multiple strains involved in CMV disease in adults and congenitally infected newborns. Studies on genotyping of CMV in dried blood spots (DBS) are rare and have been hampered by the small amount of dried blood available. In this study, two multiplex real-time PCR assays for rapid gB and gH genotyping of CMV in DBS were developed. Validation of the assays with 39 CMV-positive plasma samples of transplant recipients and 21 urine specimens of congenitally infected newborns was successful in genotyping 100% of the samples, with gB1 and gB3 being the most prevalent genotypes. Multiple gB and gH genotypes were detected in 36% and 33% of the plasma samples, respectively. One urine sample from a newborn with symptomatic congenital CMV was positive for gB1 and gB2. DBS of congenitally infected newborns (n = 41) were tested using 9 μl of dried blood, and genotypes were detected in 81% (gB) and 73% (gH) of the samples, with gB3 being the most prevalent genotype. No clear association of specific genotypes with clinical outcome was observed. In conclusion, the CMV gB and gH PCR assays were found to be rapid, sensitive for detecting mixed infections, and suitable for direct usage on DBS. These assays are efficient tools for genotyping of CMV in DBS of congenitally infected newborns.

  3. Expression of human factor IX in rabbit hepatocytes by retrovirus-mediated gene transfer: Potential for gene therapy of hemophilia B

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.R. (Univ. of Washington, Seattle (USA) Puget Sound Blood Center, Seattle, WA (USA)); Darlington, G. (Baylor College of Medicine, Houston, TX (USA)); Armentano, D.; Woo, S.L.C.

    1990-08-01

    Hemophilia B (Christmas disease) is a chromosome X-linked blood clotting disorder which results when factor IX is deficient or functionally defective. The enzyme is synthesized in the liver, and the existence of animal models for this genetic disease will permit the development of somatic gene therapy protocols aimed at transfer of the functional gene into the liver. The authors report the construction of an N2-based recombinant retroviral vector, NCMVFIX, for efficient transfer and expression of human factor IX cDNA in primary rabbit hepatocytes. In this construct the human cytomegalovirus immediate early promoter directs the expression of factor IX. Hepatocytes were isolated from 3-week-old New Zealand White rabbits, infected with the recombinant virus, and analyzed for secretion of active factor IX. The infected rabbit hepatocytes produced human factor IX that is indistinguishable from enzyme derived from normal human plasma. The recombinant protein is sufficiently {gamma}-carboxylated and is functionally active in clotting assays. These results establish the feasibility of using infected hepatocytes for the expression of this protein and are a step toward the goal of correcting hemophilia B by hepatic gene transfer.

  4. Human cytomegalovirus UL144 open reading frame: sequence variability in Guangzhou congenital infected children%广州地区HCMV临床病毒株UL144 ORF的序列变异研究

    Institute of Scientific and Technical Information of China (English)

    王波; 李月琴; 叶宁; 胡兢晶; 何震宇; 田传军; 张纯青; 叶铁真; 周天鸿

    2008-01-01

    目的 研究广州地区先天性感染的人巨细胞病毒(HCMV)临床低传代分离病毒株UL144基因序列的多态性,探讨UL144基因在HCMV致病中的作用.方法 对3株经多重PCR鉴定HCMV DNA为阳性的临床低传代分离株进行HCMV UL144基因全序列PCR扩增,PCR产物克隆到pMD18-T载体上再测序,将其序列与GenBank中公布的其它10株临床分离株UL144基因一起进行分析.结果 本实验克隆并测序了HCMV临床低传代D3、D2和D52病毒株的UL144基因,提交GenBank,已被GenBank收录,序列号分别为DQ180368、DQ180382和DQ180355.HCMV临床低传代D3、D2和D52病毒株的UL144基因均全长531 bp.通过blast分析,从GenBank中找到了10株HCMV病毒株的UL144与D3、D2和D52的UL144基因具有较高的同源性,经过序列的比对,发现UL144基因DNA序列比较保守,只在4处有变异,且变异均为碱基替换,无插入或缺失,编码蛋白由176个氨基酸残基组成,氨基酸序列也比较保守,各分离株中变异率为1.1%;HCMV UL144编码蛋白翻译后修饰位点在所有分离株中均高度保守;所有分离株UL144蛋白的等电点均为8.97.结论 广州地区临床低传代分离株HCMV UL144基因DNA及其编码产物的氨基酸序列是比较保守的,但仍存在一定的多态性.提示UL144基因在先天性感染中可能具有重要作用.%Objective To investigate the polymorphism of human cytomegalovirus (HCMV) UL144 gene of the low passage clinical isolates in Guangzhou and explore the role of UL144 gene in HCMV pathogenicity. Methods The clinical isolates of HCMV were obtained from the urine sample collected from those infants with intra-uterus HCMV infection in Guangzhou. The virus genome DNA was extracted. According to the genome sequence of Toledo, primers for UL144 gene were designed and used to amplify the complete open reading frames (ORF) of the UL144 gene in our 3 different clinical isolates. These ORFs of the UL144 gene were cloned into pMD18-T vector

  5. Murine cytomegalovirus protein pM79 is a key regulator for viral late transcription.

    Science.gov (United States)

    Chapa, Travis J; Johnson, L Steven; Affolter, Christopher; Valentine, Mark C; Fehr, Anthony R; Yokoyama, Wayne M; Yu, Dong

    2013-08-01

    Herpesvirus genes are temporally expressed during permissive infections, but how their expression is regulated at late times is poorly understood. Previous studies indicate that the human cytomegalovirus (CMV) gene, UL79, is required for late gene expression. However, the mechanism remains to be fully elucidated, and UL79 homologues in other CMVs have not been studied. Here, we characterized the role of the conserved murine CMV (MCMV) gene M79. We showed that M79 encoded a protein (pM79) which was expressed with early-late kinetics and localized to nuclear viral replication compartments. M79 transcription was significantly decreased in the absence of viral DNA synthesis but markedly stimulated by pM79. To investigate its role, we created the recombinant virus SMin79, in which pM79 expression was disrupted. While marker-rescued virus grew efficiently in fibroblasts, SMin79 failed to produce infectious progeny but was rescued by pM79 expression in trans. During SMin79 infection, representative viral immediate-early and early gene products as well as viral DNA accumulated sufficiently. Formation of viral replication compartments also appeared normal. Pulsed-field gel electrophoresis analysis indicated that the overall structure of replicating viral DNA was indistinguishable between wild-type and SMin79 infection. Viral tiled array and quantitative PCR analysis revealed that many late transcripts sensitive to a viral DNA synthesis inhibitor (phosphonoacetic acid) were markedly reduced by pM79 mutation. This study indicates that cytomegaloviruses use a conserved mechanism to promote transcription at late stages of infection and that pM79 is a critical regulator for at least a subset of viral DNA synthesis-dependent transcripts.

  6. Effective Detection of Porcine Cytomegalovirus Using Non-Invasively Taken Samples from Piglets.

    Science.gov (United States)

    Morozov, Vladimir A; Heinrichs, Gerd; Denner, Joachim

    2017-01-12

    Shortage of human organs forced the development of xenotransplantation using cells, tissues, and organs from pigs. Xenotransplantation may be associated with the transmission of porcine zoonotic microorganisms, among them the porcine cytomegalovirus (PCMV). To prevent virus transmission, pigs have to be screened using sensitive methods. In order to perform regular follow-ups and further breeding of the animals, samples for testing should be collected by low-invasive or non-invasive methods. Sera, ear biopsies, as well as oral and anal swabs were collected from ten 10-day-old Aachen minipigs (AaMP) and tested for PCMV using sensitive nested polymerase chain reaction (PCR) as well as uniplex and duplex real-time PCR. Porcine cytomegalovirus DNA was detected most frequently in oral and anal swabs. Comparison of duplex and uniplex real-time PCR systems for PCMV detection demonstrated a lower sensitivity of duplex real-time PCR when the copy numbers of the target genes were low (less 200). Therefore, to increase the efficacy of PCMV detection in piglets, early testing of oral and anal swabs by uniplex real-time PCR is recommended.

  7. Effective Detection of Porcine Cytomegalovirus Using Non-Invasively Taken Samples from Piglets

    Directory of Open Access Journals (Sweden)

    Vladimir A. Morozov

    2017-01-01

    Full Text Available Shortage of human organs forced the development of xenotransplantation using cells, tissues, and organs from pigs. Xenotransplantation may be associated with the transmission of porcine zoonotic microorganisms, among them the porcine cytomegalovirus (PCMV. To prevent virus transmission, pigs have to be screened using sensitive methods. In order to perform regular follow-ups and further breeding of the animals, samples for testing should be collected by low-invasive or non-invasive methods. Sera, ear biopsies, as well as oral and anal swabs were collected from ten 10-day-old Aachen minipigs (AaMP and tested for PCMV using sensitive nested polymerase chain reaction (PCR as well as uniplex and duplex real-time PCR. Porcine cytomegalovirus DNA was detected most frequently in oral and anal swabs. Comparison of duplex and uniplex real-time PCR systems for PCMV detection demonstrated a lower sensitivity of duplex real-time PCR when the copy numbers of the target genes were low (less 200. Therefore, to increase the efficacy of PCMV detection in piglets, early testing of oral and anal swabs by uniplex real-time PCR is recommended.

  8. [Immune response genes products in human physiology].

    Science.gov (United States)

    Khaitov, R M; Alekseev, L P

    2012-09-01

    Current data on physiological role of human immune response genes' proteomic products (antigens) are discussed. The antigens are specified by a very high level of diversity that mediates a wide specter ofphysiological functions. They actually provide integrity and biological stability of human as species. These data reveal new ideas on many pathological processes as well as drafts new approaches for prophylaxis and treatment.

  9. Expression of polarity genes in human cancer.

    Science.gov (United States)

    Lin, Wan-Hsin; Asmann, Yan W; Anastasiadis, Panos Z

    2015-01-01

    Polarity protein complexes are crucial for epithelial apical-basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function.

  10. MOLECULAR CLONING OF HUMAN NEUROTROPHIN-4 GENE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective Cloning and sequencing of the human neurotrophin-4(hNT-4) gene.Methods With the chromosomal DNA of human blood lymphocytes as template,hNT-4 coding genes were amplified by polymerase chain reaction(PCR) and recombinated into phage vector pGEM-T Easy,which were sequenced by using Sanger's single stranded DNA terminal termination method.Results The sequence of the cloned gene is completely the same as that reported in the literature(GenBank data base,M86528).Conclusion This study successfully cloning and sequenced the gene of mhNT-4,and it would be convenient for us to study the expression of mhNT-4 in eukaryote,and to continue the research on the gene therapy of Alzheimer's disease intensively.This study indicate that the hNT-4 is conservative in different races and individuals.

  11. Microgravity Analogues of Herpes Virus Pathogenicity: Human Cytomegalovirus (hCMV) and Varicella Zoster (VZV) Infectivity in Human Tissue Like Assemblies (TLAs)

    Science.gov (United States)

    Goodwin, T. J.; McCarthy, M.; Albrecht, T.; Cohrs, R.

    2009-01-01

    The old adage we are our own worst enemies may perhaps be the most profound statement ever made when applied to man s desire for extraterrestrial exploration and habitation of Space. Consider the immune system protects the integrity of the entire human physiology and is comprised of two basic elements the adaptive or circulating and the innate immune system. Failure of the components of the adaptive system leads to venerability of the innate system from opportunistic microbes; viral, bacteria, and fungal, which surround us, are transported on our skin, and commonly inhabit the human physiology as normal and imunosuppressed parasites. The fine balance which is maintained for the preponderance of our normal lives, save immune disorders and disease, is deregulated in microgravity. Thus analogue systems to study these potential Risks are essential for our progress in conquering Space exploration and habitation. In this study we employed two known physiological target tissues in which the reactivation of hCMV and VZV occurs, human neural and lung systems created for the study and interaction of these herpes viruses independently and simultaneously on the innate immune system. Normal human neural and lung tissue analogues called tissue like assemblies (TLAs) were infected with low MOIs of approximately 2 x 10(exp -5) pfu hCMV or VZV and established active but prolonged low grade infections which spanned .7-1.5 months in length. These infections were characterized by the ability to continuously produce each of the viruses without expiration of the host cultures. Verification and quantification of viral replication was confirmed via RT_PCR, IHC, and confocal spectral analyses of the respective essential viral genomes. All host TLAs maintained the ability to actively proliferate throughout the entire duration of the experiments as is analogous to normal in vivo physiological conditions. These data represent a significant advance in the ability to study the triggering

  12. Microgravity Analogues of Herpes Virus Pathogenicity: Human Cytomegalovirus (hCMV) and Varicella Zoster (VZV) Infectivity in Human Tissue Like Assemblies (TLAs)

    Science.gov (United States)

    Goodwin, T. J.; McCarthy, M.; Albrecht, T.; Cohrs, R.

    2009-01-01

    The old adage we are our own worst enemies may perhaps be the most profound statement ever made when applied to man s desire for extraterrestrial exploration and habitation of Space. Consider the immune system protects the integrity of the entire human physiology and is comprised of two basic elements the adaptive or circulating and the innate immune system. Failure of the components of the adaptive system leads to venerability of the innate system from opportunistic microbes; viral, bacteria, and fungal, which surround us, are transported on our skin, and commonly inhabit the human physiology as normal and imunosuppressed parasites. The fine balance which is maintained for the preponderance of our normal lives, save immune disorders and disease, is deregulated in microgravity. Thus analogue systems to study these potential Risks are essential for our progress in conquering Space exploration and habitation. In this study we employed two known physiological target tissues in which the reactivation of hCMV and VZV occurs, human neural and lung systems created for the study and interaction of these herpes viruses independently and simultaneously on the innate immune system. Normal human neural and lung tissue analogues called tissue like assemblies (TLAs) were infected with low MOIs of approximately 2 x 10(exp -5) pfu hCMV or VZV and established active but prolonged low grade infections which spanned .7-1.5 months in length. These infections were characterized by the ability to continuously produce each of the viruses without expiration of the host cultures. Verification and quantification of viral replication was confirmed via RT_PCR, IHC, and confocal spectral analyses of the respective essential viral genomes. All host TLAs maintained the ability to actively proliferate throughout the entire duration of the experiments as is analogous to normal in vivo physiological conditions. These data represent a significant advance in the ability to study the triggering

  13. Correlation between human cytomegalovirus and CD4+ T cell's cytokines in biliary atresia%人巨细胞病毒感染与胆道闭锁CD4+T细胞因子的相关性研究

    Institute of Scientific and Technical Information of China (English)

    张锐忠; 余家康; 谢丽芳; 欧阳润仙; 夏慧敏

    2011-01-01

    目的 检测胆道闭锁患儿肝脏组织中人巨细胞病毒滴度与11种CD4+T细胞因子表达水平之间的相关性,并探讨其意义.方法 分别采用荧光定量PCR和流式微球技术对29例胆道闭锁患儿肝脏组织中的巨细胞病毒滴度和CD4+T细胞表达的11种细胞因子(IL-12p70、IFN-γ、IL-2、IL-10、IL-8、IL-6、IL4、IL5、IL-1β、TNF-α和TNF-β)进行定量检测,并统计两者之间的相关系数.结果 人巨细胞病毒阳性者15例(51.7%),15例胆道闭锁患儿肝脏组织中人巨细胞病毒滴度与11种细胞因子具有不同程度的相关性,其中与部分细胞因子(IFN-γ、IL-2、IL-10、IL-4、TNF-α及TNF-β)呈强正相关,以IFN-γ的相关性最强(r=0.796),且该病毒的滴度与Th1类细胞因子总量(r=0.914)、促炎因子总量(r=0.913)及11种细胞因子总量(r=0.893)呈强正相关.结论 胆道闭锁可能是由人巨细胞病毒感染所促发,主要由CD4+Th1细胞及其细胞因子所介导的免疫炎症性疾病.%Objective To examine the relationship between human cytomegalovirus and CD4+ T cell's cytokines in biliary atresia. Methods HCMV titres and 11 cytokines (IL-12p70,IFN-γ,IL-2,IL-10, IL-8, IL-6, IL-4, IL- 5, IL- 1β, TNF-α and TNF-β) were assayed with Fluorescent quantitative PCR(FQ-PCR) and flowing microsphere technology respectively. The correlation coefficients were then calculated. Results Fifteen liver specimens(51.7%)were positive for HCMV. The titers of human cytomegalovirus showed different correlations with the 11 cytokines and strong positive correlation with some cytokines( IFN-γ、 IL-2、IL-1 0 、 IL-4 、 TNF-α and TNF-β), IFN-γ is the strongest one( r = 0. 796).Moreover, it shows strong positive correlation with the total of Th1 cytokines(r = 0. 914), pro-inflammatory cytokines(r = 0. 913)and the total of 11 cytokines(r= 0. 893). Conclusions The immune reaction of biliary atreisa may be triggered by the human cytomegalovirus, promoted by the CD4+ Th1

  14. Amebic and cytomegalovirus colitis mimic ulcerative colitis

    Directory of Open Access Journals (Sweden)

    Meng-Tzu Weng

    2016-06-01

    Full Text Available Here we present a 50-year-old man who suffered from progressively bloody diarrhea for 2 months. A colonoscopy revealed pancolonic mucosal inflammation, ulceration, and spontaneous bleeding. Ulcerative colitis was initially diagnosed and sulfasalazine was prescribed. Hypoalbuminemia and renal function deterioration developed 1 year later. Steroids were prescribed for suspected nephrotic syndrome. His bloody diarrhea and abdominal symptoms worsened after steroid use. Progressive sepsis and acute renal function deterioration also developed. Positive human immunodeficiency virus (HIV antibody was found during routine hemodialysis screening. An episode of colon perforation occurred and surgery was performed. The resected colon showed amoeba, cytomegalovirus, and fungal infection. The patient died of sepsis. In this report, we discuss how to diagnose ulcerative colitis. It is important to exclude infection before using an immunosuppressive agent.

  15. Duplicability of self-interacting human genes.

    LENUS (Irish Health Repository)

    Pérez-Bercoff, Asa

    2010-01-01

    BACKGROUND: There is increasing interest in the evolution of protein-protein interactions because this should ultimately be informative of the patterns of evolution of new protein functions within the cell. One model proposes that the evolution of new protein-protein interactions and protein complexes proceeds through the duplication of self-interacting genes. This model is supported by data from yeast. We examined the relationship between gene duplication and self-interaction in the human genome. RESULTS: We investigated the patterns of self-interaction and duplication among 34808 interactions encoded by 8881 human genes, and show that self-interacting proteins are encoded by genes with higher duplicability than genes whose proteins lack this type of interaction. We show that this result is robust against the system used to define duplicate genes. Finally we compared the presence of self-interactions amongst proteins whose genes have duplicated either through whole-genome duplication (WGD) or small-scale duplication (SSD), and show that the former tend to have more interactions in general. After controlling for age differences between the two sets of duplicates this result can be explained by the time since the gene duplication. CONCLUSIONS: Genes encoding self-interacting proteins tend to have higher duplicability than proteins lacking self-interactions. Moreover these duplicate genes have more often arisen through whole-genome rather than small-scale duplication. Finally, self-interacting WGD genes tend to have more interaction partners in general in the PIN, which can be explained by their overall greater age. This work adds to our growing knowledge of the importance of contextual factors in gene duplicability.

  16. Early-life environment influencing susceptibility to cytomegalovirus infection

    DEFF Research Database (Denmark)

    Mortensen, Laust Hvas; Maier, A B; Slagbom, P E

    2012-01-01

    Human cytomegalovirus (CMV) is a common herpesvirus establishing lifelong persisting infection, which has been implicated in immunosenescence and mortality in the elderly. Little is known about how and when susceptibility to CMV infection is determined. We measured CMV seroprevalence in two genet......--even under continuous within-partnership exposure--appears to be more strongly influenced by early-life environment than by genetic factors and adult environment....

  17. Cytomegalovirus pp65 limits dissemination but is dispensable for persistence

    OpenAIRE

    Malouli, Daniel; Hansen, Scott G.; Nakayasu, Ernesto S.; Marshall, Emily E.; Hughes, Colette M.; Ventura, Abigail B.; Gilbride, Roxanne M.; Lewis, Matthew S.; Xu, Guangwu; Kreklywich, Craig; Whizin, Nathan; Fischer, Miranda; Legasse, Alfred W.; Viswanathan, Kasinath; Siess, Don

    2014-01-01

    The most abundantly produced virion protein in human cytomegalovirus (HCMV) is the immunodominant phosphoprotein 65 (pp65), which is frequently included in CMV vaccines. Although it is nonessential for in vitro CMV growth, pp65 displays immunomodulatory functions that support a potential role in primary and/or persistent infection. To determine the contribution of pp65 to CMV infection and immunity, we generated a rhesus CMV lacking both pp65 orthologs (RhCMVΔpp65ab). While ...

  18. Seropositivity of cytomegalovirus in patients with recurrent pregnancy loss

    OpenAIRE

    Roya Sherkat; Mohsen Meidani; Hossein Zarabian; Abbas Rezaei; Ali Gholamrezaei

    2014-01-01

    Background: Some evidence has shown a relationship between human cytomegalovirus (CMV) infection and pregnancy loss. However, whether recurrent or latent CMV infection or altered immune response to CMV is related to recurrent pregnancy loss (RPL) is unclear. We evaluated CMV infection and avidity of antibodies to CMV in women with RPL. Materials and Methods: This case-control study was conducted on 43 women with RPL referred to a clinical immunology out-patient clinic in Isfahan (Iran), and 4...

  19. Cloning of the genomes of human cytomegalovirus strains Toledo, TownevarRIT3, and Towne long as BACs and site-directed mutagenesis using a PCR-based technique.

    Science.gov (United States)

    Hahn, Gabriele; Rose, Dietlind; Wagner, Markus; Rhiel, Sylvia; McVoy, Michael A

    2003-03-01

    The 230-kb human cytomegalovirus genome is among the largest of the known viruses. Experiments to determine the genetic determinants of attenuation, pathogenesis, and tissue tropism are underway; however, a lack of complete sequence data for multiple strains and substantial problems with genetic instability during in vitro propagation create serious complications for such studies. For example, recent findings suggest that common laboratory strains Towne and AD169 passaged in cultured human fibroblasts are missing up to 15 kb of genetic information relative to clinical isolates. To establish standard, genetically stable genomes that can be sequenced, disseminated, and repeatedly reconstituted to produce virus stocks, we have undertaken to clone two variants of Towne, designated Towne(long) and Towne(short) (referred to as TownevarRIT3) (A., Proc. Natl. Acad. Sci. USA 98, 7829-7834), and the pathogenic strain Toledo into bacterial artificial chromosomes (BACs). We further demonstrate the ease with which mutagenesis can be achieved by deleting 13.5 kb from the Toledo genome using a PCR-based technique.

  20. Human gene therapy and imaging: cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Joseph C. [Stanford University School of Medicine, Department of Medicine, Stanford, CA (United States); Yla-Herttuala, Seppo [University of Kuopio, A.I.Virtanen Institute, Kuopio (Finland)

    2005-12-01

    This review discusses the basics of cardiovascular gene therapy, the results of recent human clinical trials, and the rapid progress in imaging techniques in cardiology. Improved understanding of the molecular and genetic basis of coronary heart disease has made gene therapy a potential new alternative for the treatment of cardiovascular diseases. Experimental studies have established the proof-of-principle that gene transfer to the cardiovascular system can achieve therapeutic effects. First human clinical trials provided initial evidence of feasibility and safety of cardiovascular gene therapy. However, phase II/III clinical trials have so far been rather disappointing and one of the major problems in cardiovascular gene therapy has been the inability to verify gene expression in the target tissue. New imaging techniques could significantly contribute to the development of better gene therapeutic approaches. Although the exact choice of imaging modality will depend on the biological question asked, further improvement in image resolution and detection sensitivity will be needed for all modalities as we move from imaging of organs and tissues to imaging of cells and genes. (orig.)

  1. Advances in gene technology: Human genetic disorders

    Energy Technology Data Exchange (ETDEWEB)

    Scott, W.A.; Ahmad, F.; Black, S.; Schultz, J.; Whelan, W.J.

    1984-01-01

    This book discusses the papers presented at the conference on the subject of ''advances in Gene technology: Human genetic disorders''. Molecular biology of various carcinomas and inheritance of metabolic diseases is discussed and technology advancement in diagnosis of hereditary diseases is described. Some of the titles discussed are-Immunoglobulin genes translocation and diagnosis; hemophilia; oncogenes; oncogenic transformations; experimental data on mice, hamsters, birds carcinomas and sarcomas.

  2. Genes of periodontopathogens expressed during human disease.

    Science.gov (United States)

    Song, Yo-Han; Kozarov, Emil V; Walters, Sheila M; Cao, Sam Linsen; Handfield, Martin; Hillman, Jeffrey D; Progulske-Fox, Ann

    2002-12-01

    Since many bacterial genes are environmentally regulated, the screening for virulence-associated factors using classical genetic and molecular biology approaches can be biased under laboratory growth conditions of a given pathogen, because the required conditions for expression of many virulence factors may not occur during in vitro growth. Thus, technologies have been developed during the past several years to identify genes that are expressed during disease using animal models of human disease. However, animal models are not always truly representative of human disease, and with many pathogens, there is no appropriate animal model. A new technology, in vivo-induced antigen technology (IVIAT) was thus engineered and tested in our laboratory to screen for genes of pathogenic organisms induced specifically in humans, without the use of animal or artificial models of infection. This technology uses pooled sera from patients to probe for genes expressed exclusively in vivo (or ivi, in vivo-induced genes). IVIAT was originally designed for the study of Actinobacillus actinomycetemcomitans pathogenesis, but we have now extended it to other oral pathogens including Porphyromonas gingivalis. One hundred seventy-one thousand (171,000) clones from P. gingivalis strain W83 were screened and 144 were confirmed positive. Over 300,000 A. actinomycetemcomitans clones were probed, and 116 were confirmed positive using a quantitative blot assay. MAT has proven useful in identifying previously unknown in vivo-induced genes that are likely involved in virulence and are thus excellent candidates for use in diagnostic : and therapeutic strategies, including vaccine design.

  3. Human proton/oligopeptide transporter (POT) genes

    DEFF Research Database (Denmark)

    Botka, C. W.; Wittig, T. W.; Graul, R. C.

    2000-01-01

    The proton-dependent oligopeptide transporters (POT) gene family currently consists of approximately 70 cloned cDNAs derived from diverse organisms. In mammals, two genes encoding peptide transporters, PepT1 and PepT2 have been cloned in several species including humans, in addition to a rat...... the presence of several possible splice variants of hPHT1. A second closely related human EST-contig displayed high identity to a recently cloned mouse cDNA encoding cyclic adenosine monophosphate (cAMP)-inducible 1 protein (gi:4580995). This contig served to identify a PAC clone containing deduced exons...

  4. Can we build it better? Using BAC genetics to engineer more effective cytomegalovirus vaccines.

    Science.gov (United States)

    Schleiss, Mark R

    2010-12-01

    The magnitude and durability of immunity to human cytomegalovirus (HCMV) following natural infection is compromised by the presence of immune modulation genes that appear to promote evasion of host clearance mechanisms. Since immunity to HCMV offers limited protection, rational design of effective vaccines has been challenging. In this issue of the JCI, Slavuljica and colleagues employ techniques to genetically modify the highly related mouse CMV (MCMV), in the process generating a virus that was rapidly cleared by NK cells. The virus functioned as a safe and highly effective vaccine. Demonstration of the ability to engineer a safe and highly effective live virus vaccine in a relevant rodent model of CMV infection may open the door to clinical trials of safer and more immunogenic HCMV vaccines.

  5. GROWTH INHIBITION OF HUMAN LARYNGEAL CANCER CELL WITH THE ADENOVIRUS-MEDIATED p53 GENE

    Institute of Scientific and Technical Information of China (English)

    WANG Qi; HAN De-min; WANG Wen-ge; WU Zu-ze; ZHANG Wei

    1999-01-01

    Objective: In most laryngeal cancers, the function of p53 gene is down regulated. To explore the potential use of p53 in gene therapy of laryngeal cancer, by introducing wild-type p53 into laryngeal cancer cell line via a recombinant adenoviral vector, Ad5CMV-p53 and analyzing its effects on cell and tumor growth. Methods: A human laryngeal cancer cell line Hep-2 was used.Recombinant cytomegalovirus-promoted adenoviruses containing human wild-type p53 cDNA was transiently introduced into Hep-2 line. The growth suppression of the Hep-2 cells and established s.c. squamous carcinoma model was examined. The p53 protein expression was detected using immunohistochemical analysis. Results: The transduction efficiencies of Hep-2 cell line were 100% at a multiplicity of 100 or greater. The p53 protein expression peaked on day 2 after infection and lasted far 5 days. In vitro growth assays revealed cell death following Ad5CMV-p53 infected. In vivo studies, Ad5CMV-p53 inhibited the tumorigenicity of Hep-2 cell, and in nude mice with established s.c. squamous carcinoma nodules showed that tumor volumes were significantly reduced in mice that received peritumoral infiltration of Ad5CMV-p53. Conclusion: Adenovirus-mediated antitumor therapy carrying the p53 gene is an efficient method to inhibit laryngeal cancer growth. Transfection of laryngeal cancer cells with the wild-type p53 gene via Ad5CMV-p53 is a potential novel approach to the therapy of laryngeal cancer.

  6. Cytomegalovirus infection associated with inflammatory bowel disease.

    Science.gov (United States)

    Siegmund, Britta

    2017-05-01

    Refractory colitis in patients with inflammatory bowel disease is a complicated clinical disorder that might, in some patients, even necessitate surgery. Hence the diagnosis of additional complications is of utmost importance. Colitis mediated by cytomegalovirus is one such complication. The high seroprevalence and latent nature of cytomegalovirus, with the possibility of viral replication without mediating disease, poses a real challenge for the diagnosis of cytomegalovirus-mediated colitis. The challenge in daily clinical practice is to distinguish cytomegalovirus replication from cytomegalovirus-mediated colitis in patients with inflammatory bowel disease who have refractory colitis. This Review discusses the scientific literature and provides a diagnostic and therapeutic algorithm for clinical practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The Influence of Cytomegalovirus on Expression of HLA-G and its Ligand KIR2DL4 by Human Peripheral Blood Leucocyte Subsets.

    Science.gov (United States)

    Albayati, Z; Alyami, A; Alomar, S; Middleton, D; Bonnett, L; Aleem, S; Flanagan, B F; Christmas, S E

    2017-08-17

    HLA-G is a non-classical class I HLA antigen, normally expressed in high levels only on extravillous cytotrophoblast. It has immunosuppressive properties in pregnancy and has also been found to be upregulated on leucocytes in viral infection. In this study, proportions of all leucocyte subsets expressing HLA-G were found to be low in healthy subjects positive or negative for cytomegalovirus (CMV). Significantly greater proportions of CD4+ CD69+ and CD56+ T cells expressed HLA-G compared to other T cells. However, following stimulation with CMV antigens or intact CMV, proportions of CD4+, CD8+, CD69+ and CD56+ T cells, and also B cells expressing HLA-G, were significantly increased in CMV+ subjects. Despite some subjects having alleles of HLA-G associated with high levels of expression, no relationship was found between HLA-G genotype and expression levels. Purified B cells from CMV+ subjects stimulated in mixed culture with CMV antigens showed significantly increased HLA-G mRNA expression by real-time polymerase chain reaction. Serum levels of soluble HLA-G were similar in CMV- and CMV+ subjects but levels in culture supernatants were significantly higher in cells from CMV+ than from CMV- subjects stimulated with CMV antigens. The HLA-G ligand KIR2DL4 was mainly expressed on NK cells and CD56+ T cells with no differences between CMV+ and CMV- subjects. Following stimulation with IL-2, an increase in the proportion of CD56+ T cells positive for KIR2DL4 was found, together with a significant decrease in CD56dimCD16+ NK cells. The results show that CMV influences HLA-G expression in healthy subjects and may contribute to viral immune evasion. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  8. Stepwise adaptation of murine cytomegalovirus to cells of a foreign host for identification of host range determinants.

    Science.gov (United States)

    Ostermann, Eleonore; Pawletko, Kerstin; Indenbirken, Daniela; Schumacher, Uwe; Brune, Wolfram

    2015-06-01

    Ever since their first isolation 60 years ago, cytomegaloviruses have been recognized as being highly species specific. They replicate only in cells of their own or a closely related host species, while cells of phylogenetically more distant hosts are usually not permissive for viral replication. For instance, human cytomegalovirus replicates in human and chimpanzee fibroblasts but not in rodent cells, and murine cytomegalovirus (MCMV) replicates in cells of mice and rats but not in primate cells. However, the viral and cellular factors determining the narrow host range of cytomegaloviruses have remained largely unknown. We show that MCMV can be adapted stepwise to replicate in cultured human retinal pigment epithelial (RPE-1) cells and human fibroblasts. The human RPE-1 cells used for the initial adaptation step showed a pronounced contact inhibition and produced very low level of interferon-β transcripts upon cytomegalovirus infection, suggesting that these cells provide a particularly favorable environment for adaptation. By whole genome sequencing of the 230 kbp viral genomes of several adapted mutants, a limited number of mutations were detected. Comparison of several human cell-adapted MCMV clones and introduction of specific mutations into the wild-type MCMV genome by site-directed mutagenesis allows for the identification of viral host range determinants and provides the basis for elucidating the molecular basis of the cytomegalovirus host species specificity.

  9. Rapid detection of cytomegalovirus in bronchoalveolar lavage fluid and serum samples by polymerase chain reaction: correlation of virus isolation and clinical outcome for patients with human immunodeficiency virus infection

    DEFF Research Database (Denmark)

    Hansen, K K; Vestbo, Jørgen; Benfield, T;

    1997-01-01

    Bronchoalveolar lavage (BAL) fluids and serum samples from 153 patients with pulmonary symptoms who were infected with human immunodeficiency virus (HIV) and underwent BAL were examined for the presence of cytomegalovirus (CMV) by conventional culture and by polymerase chain reaction (PCR......) for detection of CMV DNA. PCR detected CMV more frequently than did cultures of BAL fluid (PCR of BAL fluid, 53%; PCR of serum, 40%; and culture, 30%). In a multivariate model, development of extrapulmonary CMV disease was predicted by the finding of CMV in BAL fluid by culture (relative risk [RR], 8.......0; confidence interval [CI], 3.8-16.8) or the finding of CMV DNA in serum (RR, 7.4; CI, 3.2-17.3) or BAL fluid (RR, 8.0; CI, 3.1-20.7) by PCR. Mortality was found to be similar for patients who did or did not have CMV detected by either culture or PCR. Detection of CMV DNA by PCR was a more rapid and sensitive...

  10. Amino acid composition of alpha1/alpha2 domains and cytoplasmic tail of MHC class I molecules determine their susceptibility to human cytomegalovirus US11-mediated down-regulation.

    Science.gov (United States)

    Barel, Martine T; Pizzato, Nathalie; van Leeuwen, Daphne; Bouteiller, Philippe Le; Wiertz, Emmanuel J H J; Lenfant, Francoise

    2003-06-01

    During co-evolution with its host, human cytomegalovirus has acquired multiple defense mechanisms to escape from immune recognition. In this study, we focused on US11, which binds to MHC class I heavy chains and mediates their dislocation to the cytosol and subsequent degradation by proteasomes. To examine which domains of class I heavy chains are involved in this process, we constructed chimeric HLA molecules of US11-sensitive and -insensitive class I molecules (HLA-A2 and HLA-G, respectively). Pulse-chase experiments were performed to evaluate protein stability and interactions between class I heavy chains and US11. Flow cytometry was employed to assess the effect of US11 on surface expression of the different chimeras. Our results indicate that the alpha1 and alpha2 domains of HLA molecules are important for the affinity of US11 association. However, the degradation efficiency seems to rely mostly on cytosolic tail residues. We found that the nonclassical HLA-G molecule is insensitive to US11-mediated degradation solely because it lacks essential tail residues. A deletion of the last two tail residues in full-length MHC class I molecules already caused a severe reduction in degradation efficiency. Altogether, our data provide new insights into the mechanism by which US11 down-regulates MHC class I molecules.

  11. Rapid detection of cytomegalovirus in bronchoalveolar lavage fluid and serum samples by polymerase chain reaction: correlation of virus isolation and clinical outcome for patients with human immunodeficiency virus infection

    DEFF Research Database (Denmark)

    Hansen, K K; Vestbo, Jørgen; Benfield, T

    1997-01-01

    Bronchoalveolar lavage (BAL) fluids and serum samples from 153 patients with pulmonary symptoms who were infected with human immunodeficiency virus (HIV) and underwent BAL were examined for the presence of cytomegalovirus (CMV) by conventional culture and by polymerase chain reaction (PCR......) for detection of CMV DNA. PCR detected CMV more frequently than did cultures of BAL fluid (PCR of BAL fluid, 53%; PCR of serum, 40%; and culture, 30%). In a multivariate model, development of extrapulmonary CMV disease was predicted by the finding of CMV in BAL fluid by culture (relative risk [RR], 8.......0; confidence interval [CI], 3.8-16.8) or the finding of CMV DNA in serum (RR, 7.4; CI, 3.2-17.3) or BAL fluid (RR, 8.0; CI, 3.1-20.7) by PCR. Mortality was found to be similar for patients who did or did not have CMV detected by either culture or PCR. Detection of CMV DNA by PCR was a more rapid and sensitive...

  12. Genomics of the human carnitine acyltransferase genes

    NARCIS (Netherlands)

    van der Leij, FR; Huijkman, NCA; Boomsma, C; Kuipers, JRG; Bartelds, B

    2000-01-01

    Five genes in the human genome are known to encode different active forms of related carnitine acyltransferases: CPT1A for liver-type carnitine palmitoyltransferase I, CPT1B for muscle-type carnitine palmitoyltransferase I, CPT2 for carnitine palmitoyltransferase II, CROT for carnitine octanoyltrans

  13. Cross-Species Rhesus Cytomegalovirus Infection of Cynomolgus Macaques

    Science.gov (United States)

    Bimber, Benjamin N.; Reed, Jason S.; Uebelhoer, Luke S.; Bhusari, Amruta; Hammond, Katherine B.; Klug, Alex; Legasse, Alfred W.; Axthelm, Michael K.; Nelson, Jay A.; Streblow, Daniel N.; Picker, Louis J.; Früh, Klaus; Sacha, Jonah B.

    2016-01-01

    Cytomegaloviruses (CMV) are highly species-specific due to millennia of co-evolution and adaptation to their host, with no successful experimental cross-species infection in primates reported to date. Accordingly, full genome phylogenetic analysis of multiple new CMV field isolates derived from two closely related nonhuman primate species, Indian-origin rhesus macaques (RM) and Mauritian-origin cynomolgus macaques (MCM), revealed distinct and tight lineage clustering according to the species of origin, with MCM CMV isolates mirroring the limited genetic diversity of their primate host that underwent a population bottleneck 400 years ago. Despite the ability of Rhesus CMV (RhCMV) laboratory strain 68–1 to replicate efficiently in MCM fibroblasts and potently inhibit antigen presentation to MCM T cells in vitro, RhCMV 68–1 failed to productively infect MCM in vivo, even in the absence of host CD8+ T and NK cells. In contrast, RhCMV clone 68–1.2, genetically repaired to express the homologues of the HCMV anti-apoptosis gene UL36 and epithelial cell tropism genes UL128 and UL130 absent in 68–1, efficiently infected MCM as evidenced by the induction of transgene-specific T cells and virus shedding. Recombinant variants of RhCMV 68–1 and 68–1.2 revealed that expression of either UL36 or UL128 together with UL130 enabled productive MCM infection, indicating that multiple layers of cross-species restriction operate even between closely related hosts. Cumulatively, these results implicate cell tropism and evasion of apoptosis as critical determinants of CMV transmission across primate species barriers, and extend the macaque model of human CMV infection and immunology to MCM, a nonhuman primate species with uniquely simplified host immunogenetics. PMID:27829026

  14. Bioinformatic prediction and functional characterization of human KIAA0100 gene

    OpenAIRE

    He Cui; Xi Lan; Shemin Lu; Fujun Zhang; Wanggang Zhang

    2017-01-01

    Our previous study demonstrated that human KIAA0100 gene was a novel acute monocytic leukemia-associated antigen (MLAA) gene. But the functional characterization of human KIAA0100 gene has remained unknown to date. Here, firstly, bioinformatic prediction of human KIAA0100 gene was carried out using online softwares; Secondly, Human KIAA0100 gene expression was downregulated by the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system in U937 cells...

  15. HCMV 持续性感染对 BALB/c 小鼠中枢神经系统的影响%The effects of human cytomegalovirus persistent infection on the central nervous system of BALB/c mice

    Institute of Scientific and Technical Information of China (English)

    张俊玲; 黄维; 刘倩; 王明丽

    2014-01-01

    Objective To investigate the effects of human cytomegalovirus ( HCMV) persistent in-fection on the central nervous system of BALB/c mice.Methods Thirty specific-pathogen-free mice of 6-8 weeks old were randomly divided into three groups including HCMV infected group , inactivated HCMV group and human embryo fibroblast ( HF) control group .Each mouse in the three groups was intraperitoneally inoc-ulated with 1.8 ×107 PFU of HCMV, 1.8 ×107 PFU inactivated HCMV and 1 ×105 HF cells, respectively. All mice were housed in microisolator cages for three months and their behavior and body weight were ob -served.Then three tests including autonomic activities test , Morris Water Maze and step-down passive avoid-ance task were performed on all mice to evaluate the changes of their behavior .Cerebral cortex tissues were collected from all mice to detect HCMV and to conduct polymerase chain reaction (PCR) analysis.Brain tis-sues were stained by HE method to evaluate the pathological damages .Transmission electron microscope was used to observe the ultrastructure of neuron cells and the existence of virus particles .Results (1) The body weight of mice showed no significant differences among the three groups ( P>0 .05 ) .( 2 ) The frequency of autonomic activities were decreases in HCMV infected group in comparison with other two groups , but there was no significant differences among the three groups (P>0.05).(3)The place navigation test demonstra-ted that the escape latency of mice from HCMV infected group as well as HF group showed significant differ -ence after training for different periods of time (P0.05).Compared with the mice in two control groups , the mice in HCMV infected group showed a lower frequency of crossing the quadrant where the platform had been located on pre -vious trials in the probe trial test (P<0.05).Moreover, the time of first crossings was also longer than that of mice from two control groups (P<0.05).(4)In the learning phase the mice from HCMV

  16. HCMV感染影响HUVEC中ADAMTS13表达水平的研究%Study on the effect of human cytomegalovirus infection on the ADAMTS13 expression level of human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    何文竹; 尹宗智; 魏兆莲; 李韵

    2015-01-01

    目的:探讨人巨细胞病毒( HCMV)感染对人脐静脉内皮细胞( HUVEC)中ADAMTS13表达水平的影响. 方法:通过培养原代HUVEC,建立HCMV感染HUVEC细胞模型. Western blot法检测 HUVEC 细胞中 ADAMTS13 蛋白表达水平的情况. 结果:100 PFU或更高毒力的 HCMV 可感染 HUVEC 细胞,导致明显的细胞病变:病毒感染后24h,细胞部分开始出现变圆,细胞内颗粒增多;48h后,部分细胞开始出现细胞膜破裂、细胞坏死;随着病毒感染时间的延长,细胞坏死比例逐渐增加. 原代培养的HUVEC细胞裂解液及细胞上清中均有大量的ADAMTS13表达;与未感染HCMV细胞比较,感染HCMV 48h后,HUVEC细胞裂解液及细胞上清中的ADAMTS13蛋白表达水平均显著下降,差异具有显著性( P<0 . 05 ). 结论:HCMV可感染HUVEC并通过抑制细胞中ADAMTS13的表达促进血栓形成.%Objective:To explore the human cytomegalovirus ( HCMV ) infection on ADAMTS13 expression level of human umbilical vein endothelial cells ( HUVEC ) . Methods:By cultivating the original generation of HUVEC,the HCMV infection HUVEC cell model was established . Western blot was used to detect the ADAMTS13 protein expression level of HUVEC cells. Results:100 PFU or higher toxicity of HCMV infected HUVEC cells,lead to obvious cell lesions:24h after virus infection,membrane of part cells turned round and the intracellular par-ticles increased. After 48h infection,some cells began to membrane of rupture,and cellular nei-roses appeared. With the extension of the time of infection,cell death ratio increased gradually. Primary cultured HUVEC cell lysates and cell supernatants showed high expression of AD-AMTS13. Compared with uninfected cells,48h after HCMV infection,ADAMTS13 protein levels of HUVEC cell lysates and cell supernatants significantly decreased ( P<0 . 05 ) . Conclusion:HCMV can infect HUVEC and may promote the formation of thrombosis by inhibiting the ex-pression of ADAMTS13 in cells.

  17. Peripheral Blood Leukocytes and Serum Nested Polymerase Chain Reaction Are Complementary Methods for Monitoring Active Cytomegalovirus Infection in Transplant Patients

    Directory of Open Access Journals (Sweden)

    PD Andrade

    2013-01-01

    Full Text Available BACKGROUND: Human cytomegalovirus is an important cause of morbidity and mortality in immunocompromised patients. Qualitative polymerase chain reaction (PCR has proven to be a sensitive and effective technique in defining active cytomegalovirus infection, in addition to having low cost and being a useful test for situations in which there is no need for quantification. Real-time PCR has the advantage of quantification; however, the high cost of this methodology makes it impractical for routine use.

  18. Soluble Human Cytomegalovirus gH/gL/pUL128-131 Pentameric Complex, but Not gH/gL, Inhibits Viral Entry to Epithelial Cells and Presents Dominant Native Neutralizing Epitopes.

    Science.gov (United States)

    Loughney, John W; Rustandi, Richard R; Wang, Dai; Troutman, Matthew C; Dick, Lawrence W; Li, Guanghua; Liu, Zhong; Li, Fengsheng; Freed, Daniel C; Price, Colleen E; Hoang, Van M; Culp, Timothy D; DePhillips, Pete A; Fu, Tong-Ming; Ha, Sha

    2015-06-26

    Congenital infection of human cytomegalovirus (HCMV) is one of the leading causes of nongenetic birth defects, and development of a prophylactic vaccine against HCMV is of high priority for public health. The gH/gL/pUL128-131 pentameric complex mediates HCMV entry into endothelial and epithelial cells, and it is a major target for neutralizing antibody responses. To better understand the mechanism by which antibodies interact with the epitopes of the gH/gL/pUL128-131 pentameric complex resulting in viral neutralization, we expressed and purified soluble gH/gL/pUL128-131 pentameric complex and gH/gL from Chinese hamster ovary cells to >95% purity. The soluble gH/gL, which exists predominantly as (gH/gL)2 homodimer with a molecular mass of 220 kDa in solution, has a stoichiometry of 1:1 and a pI of 6.0-6.5. The pentameric complex has a molecular mass of 160 kDa, a stoichiometry of 1:1:1:1:1, and a pI of 7.4-8.1. The soluble pentameric complex, but not gH/gL, adsorbs 76% of neutralizing activities in HCMV human hyperimmune globulin, consistent with earlier reports that the most potent neutralizing epitopes for blocking epithelial infection are unique to the pentameric complex. Functionally, the soluble pentameric complex, but not gH/gL, blocks viral entry to epithelial cells in culture. Our results highlight the importance of the gH/gL/pUL128-131 pentameric complex in HCMV vaccine design and emphasize the necessity to monitor the integrity of the pentameric complex during the vaccine manufacturing process.

  19. Regulation of gene expression in human tendinopathy

    Science.gov (United States)

    2011-01-01

    Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics. PMID:21539748

  20. Reevaluation of the Coding Potential and Proteomic Analysis of the BAC Derived Rhesus Cytomegalovirus Strain 68-1

    Energy Technology Data Exchange (ETDEWEB)

    Malouli, Daniel; Nakayasu, Ernesto S.; Viswanathan, Kasinath; Camp, David G.; Chang, W. L.; Barry, Peter A.; Smith, Richard D.; Fruh, Klaus

    2012-09-01

    Cytomegaloviruses are highly host restricted resulting in co-speciation with their hosts. As a natural pathogen of rhesus macaques (RM), Rhesus Cytomegalovirus (RhCMV) has therefore emerged as a highly relevant experimental model for pathogenesis and vaccine development due to its close evolutionary relationship to human CMV (HCMV). To date, most in vivo experiments performed with RhCMV employed strain 68-1 cloned as bacterial artificial chromosome (BAC). However, the complete genome sequence of the 68-1 BAC has not been determined. Furthermore, the gene content of the RhCMV genome is unknown and previous open reading frame (ORF) predictions relied solely on uninterrupted ORFs with an arbitrary cutoff of 300bp. To obtain a more precise picture of the actual proteins encoded by the most commonly used molecular clone of RhCMV we re-evaluated the RhCMV 68-1 BAC-genome by whole genome shotgun sequencing and determined the protein content of the resulting RhCMV virions by proteomics. By additionally comparing the RhCMV genome to that of several closely related Old World Monkey (OWM) CMVs we were able to filter out many unlikely ORFs and obtain a simplified map of the RhCMV genome. This comparative genomics analysis eliminated many genes previously characterized as RhCMV-specific while consolidating a high conservation of ORFs among OWM-CMVs and between RhCMV and HCMV. Moreover, virion proteomics independently validated the revised ORF predictions since only proteins encoded by predicted ORFs could be detected. Taken together these data suggest a much higher conservation of genome and virion structure between CMVs of humans, apes and OWMs than previously assumed. Remarkably, BAC-derived RhCMV is able to establish and maintain persistent infection despite the lack of multiple genes homologous to HCMV genes involved in tissue tropism.

  1. Cytomegalovirus Retinitis in an Immunocompetent Pregnant Woman

    African Journals Online (AJOL)

    Cytomegalovirus (CMV) is a beta-herpes virus. It belongs ... common virus that results in opportunistic infections ... ganciclovir therapy, and 2 weeks later blurred vision .... Barr Virus Viral Capsid Antigen Antibody, IgM: Immunoglobulin M, IgG: ...

  2. Mapping genes on human chromosome 20

    Energy Technology Data Exchange (ETDEWEB)

    Keith, T.; Phipps, P.; Serino, K. [Collaborative Research, Inc., Waltham, MA (United States)] [and others

    1994-09-01

    While a substantial number of genes have been physically localized to human chromosome 20, few have been genetically mapped. In the process of developing a genetic linkage map of chromosome 20, we have mapped microsatellite polymorphisms associated with six genes. Three of these had highly informative polymorphisms (greater than 0.70) that were originally identified by other investigators. These include avian sarcoma oncogene homolog (SRC), ribophorin II (RPN2), and phosphoenolpyruvate carboxykinase (PCK1). Polymorphisms associated with two genes were determined following a screen of their DNA sequences in GenBank. These include dinucleotide polymorphisms in introl II of cystatin c (CST3) and in the promoter region of neuroendocrine convertase 2 (NEC2) with heterozygosities of 0.52 and 0.54, respectively. A sixth gene, prodynorphin (PDYN) was mapped following the identification of a dinucleotide repeat polymorphism (heterozygosity of 0.35) in a cosmid subclone from a YAC homologous to the original phage clone. CA-positive cosmid subclones from a YAC for an additional gene, guanine nucleotide binding protein, alpha (GNAS10), have been identified and sequencing is in progress. Similar efforts were utilized to identify a microsatellite polymorphism from a half-YAC cloned by W. Brown and localized by FISH to 20pter. This polymorphism is highly informative, with a heterozygosity of 0.83, and serves to delimit the genetic map of the short arm of this chromosome.

  3. The time course of development and impact from viral resistance against ganciclovir in cytomegalovirus infection

    DEFF Research Database (Denmark)

    Cunha-Bang, C da; Kirkby, N; Sønderholm, M

    2013-01-01

    (Val)ganciclovir is used to treat cytomegalovirus (CMV) infection following solid organ (SOT) or hematopoietic stem cell (HSCT) transplantation. Treatment failures occur, but the contribution from 39 known ganciclovir-related mutations (GRMs) in the CMV-UL97 gene remains controversial. We propose...

  4. HCMV AD169株大鼠慢性感染模型的初步探讨%An experimental study of rat infeected with human cytomegalovirus AD168 strain

    Institute of Scientific and Technical Information of China (English)

    孟红; 孙德刚; 王健; 刘菊华; 孙广莲; 李焱; 张家驹; 张维东

    2000-01-01

    Objective To Study the sensitivity of rat to human cytomegalovirus (HCMV) infection and to es-tablish a stable animal model. Methods Two kinds of rat experiments were carried out: 1)30 SD rats were divided intothree groups randomly,they were virus inoculated group,inactivated virus inoculated group and the normal rat group re-spectively; 2)40 Wistar rats were randomly divided into two groups,they were the virus inoculated group and the inacti-vated virus inoculated group. All the rats were inoculated through tail vein.90 d later,the rat's tissue lesions were ob-served by pathological techniques,HCMV antigen was detected by immunohistochemical method and the HCMV DNA wasanalyzed by in situ hybridization. Results The extensive pathological damages in tissues of HCMV infected rats wereobserved. Meanwhile,the viral antigen and viral DNA were also demonstrated in many tissues of HCMV infected rats.Conchusion Rat is sensitive to iridectiion of HCMV AD1168 strain, hut, as an animal model study,we stoll have a lot of works to do.%目的 探讨人巨细胞病毒(Human Cytomegalovirus,HCMV)感染大鼠的敏感性和稳定性,探讨建立大鼠感染HCMV动物模型的可行性。方法 第一次动物试验:SD大鼠30只,随机均分为3组,分别为接种病毒组、灭活病毒组和正常对照组,病毒接种途径为尾静脉注射;第二次动物试验:Wistar大鼠40只,分别为接种病毒组(20只)、灭活病毒组(20只),病毒接种途径同第一次动物试验。两次试验动物均于90d后分别以病理学方法 研究动物组织损伤特点,以免疫组化方法 检查病毒抗原,原位杂交方法 检测动物组织细胞中HCMV基因。结果 两次静脉途径接种HCMV AD169株90d的动物,组织发生广泛病理损害,免疫组化方法 和原位杂交方法 在多种组织细胞内查到HCMV抗原和基因表达。结论 HCMV AD169株可感染健康大鼠,可望作为HCMV动物慢性感染模型。

  5. Cytomegalovirus Infection and Pre-Eclampsia

    Directory of Open Access Journals (Sweden)

    Rădulescu Carmen

    2016-06-01

    Full Text Available Introduction: Pre-eclampsia is a pregnancy-specific disease characterized by hypertension after 20 weeks of gestation and proteinuria. It is a major cause of maternal and perinatal morbidity and mortality. The pathogenesis of pre-eclampsia is not completely understood. In our study we investigated if there is a potential link between cytomegalovirus infection and pre-eclampsia and if cytomegalovirus infection is the triggering factor of pre-eclampsia.

  6. Cytomegalovirus Infection and Pre-Eclampsia

    OpenAIRE

    Rădulescu Carmen; Huţanu Adina; Gabor Rozalia; Şincu Nina

    2016-01-01

    Introduction: Pre-eclampsia is a pregnancy-specific disease characterized by hypertension after 20 weeks of gestation and proteinuria. It is a major cause of maternal and perinatal morbidity and mortality. The pathogenesis of pre-eclampsia is not completely understood. In our study we investigated if there is a potential link between cytomegalovirus infection and pre-eclampsia and if cytomegalovirus infection is the triggering factor of pre-eclampsia.

  7. Reconstitution of Human Cytomegalovirus-Specific CD4+ T Cells is Critical for Control of Virus Reactivation in Hematopoietic Stem Cell Transplant Recipients but Does Not Prevent Organ Infection.

    Science.gov (United States)

    Gabanti, Elisa; Lilleri, Daniele; Ripamonti, Francesco; Bruno, Francesca; Zelini, Paola; Furione, Milena; Colombo, Anna A; Alessandrino, Emilio P; Gerna, Giuseppe

    2015-12-01

    The relative contribution of human cytomegalovirus (HMCV)-specific CD4(+) and CD8(+) T cells to the control of HCMV infection in hematopoietic stem cell transplant (HSCT) recipients is still controversial. HCMV reactivation and HCMV-specific CD4(+) and CD8(+) T cell reconstitution were monitored for 1 year in 63 HCMV-seropositive patients receiving HSCT. HCMV reactivation was detected in all but 2 patients. In 20 of 63 (31.7%) patients (group 1) HCMV infection resolved spontaneously, whereas 32 of 63 (50.8%) patients (group 2) controlled the infection after a single short-course of pre-emptive therapy and the remaining 9 (14.3%) patients (group 3) suffered from relapsing episodes of HCMV infection, requiring multiple courses of antiviral therapy. The kinetics and magnitude of HCMV-specific CD8(+) T cell reconstitution were comparable among the 3 groups, but HCMV-specific CD4(+) T cells were lower in number in patients requiring antiviral treatment. HCMV-seronegative donors, as well as unrelated donors (receiving antithymocyte globulin) and acute graft-versus-host disease (GVHD) were associated with both delayed HCMV-specific CD4(+) T cell reconstitution and severity of infection. Conversely, these risk factors had no impact on HCMV-specific CD8(+) T cells. Eight patients with previous GVHD suffered from HCMV gastrointestinal disease, although in the presence of HCMV-specific CD4(+) and CD8(+) systemic immunity and undetectable HCMV DNA in blood. Reconstitution of systemic HCMV-specific CD4(+) T cell immunity is required for control of HCMV reactivation in adult HSCT recipients, but it may not be sufficient to prevent late-onset organ localization in patients with GVHD. HCMV-specific CD8(+) T cells contribute to control of HCMV infection, but only after HCMV-specific CD4(+) T cell reconstitution.

  8. Off-the-Shelf Virus-Specific T Cells to Treat BK Virus, Human Herpesvirus 6, Cytomegalovirus, Epstein-Barr Virus, and Adenovirus Infections After Allogeneic Hematopoietic Stem-Cell Transplantation.

    Science.gov (United States)

    Tzannou, Ifigeneia; Papadopoulou, Anastasia; Naik, Swati; Leung, Kathryn; Martinez, Caridad A; Ramos, Carlos A; Carrum, George; Sasa, Ghadir; Lulla, Premal; Watanabe, Ayumi; Kuvalekar, Manik; Gee, Adrian P; Wu, Meng-Fen; Liu, Hao; Grilley, Bambi J; Krance, Robert A; Gottschalk, Stephen; Brenner, Malcolm K; Rooney, Cliona M; Heslop, Helen E; Leen, Ann M; Omer, Bilal

    2017-08-07

    Purpose Improvement of cure rates for patients treated with allogeneic hematopoietic stem-cell transplantation (HSCT) will require efforts to decrease treatment-related mortality from severe viral infections. Adoptively transferred virus-specific T cells (VSTs) generated from eligible, third-party donors could provide broad antiviral protection to recipients of HSCT as an immediately available off-the-shelf product. Patient and Methods We generated a bank of VSTs that recognized five common viral pathogens: Epstein-Barr virus (EBV), adenovirus (AdV), cytomegalovirus (CMV), BK virus (BKV), and human herpesvirus 6 (HHV-6). The VSTs were administered to 38 patients with 45 infections in a phase II clinical trial. Results A single infusion produced a cumulative complete or partial response rate of 92% (95% CI, 78.1% to 98.3%) overall and the following rates by virus: 100% for BKV (n = 16), 94% for CMV (n = 17), 71% for AdV (n = 7), 100% for EBV (n = 2), and 67% for HHV-6 (n = 3). Clinical benefit was achieved in 31 patients treated for one infection and in seven patients treated for multiple coincident infections. Thirteen of 14 patients treated for BKV-associated hemorrhagic cystitis experienced complete resolution of gross hematuria by week 6. Infusions were safe, and only two occurrences of de novo graft-versus host disease (grade 1) were observed. VST tracking by epitope profiling revealed persistence of functional VSTs of third-party origin for up to 12 weeks. Conclusion The use of banked VSTs is a feasible, safe, and effective approach to treat severe and drug-refractory infections after HSCT, including infections from two viruses (BKV and HHV-6) that had never been targeted previously with an off-the-shelf product. Furthermore, the multispecificity of the VSTs ensures extensive antiviral coverage, which facilitates the treatment of patients with multiple infections.

  9. Reg gene family and human diseases

    Institute of Scientific and Technical Information of China (English)

    Yu-Wei Zhang; Liu-Song Ding; Mao-De Lai

    2003-01-01

    Regenerating gene (Reg or REG) family, within the superfamily of C-type lectin, is mainly involved in the liver,pancreatic, gastric and intestinal cell proliferation or differentiation. Considerable attention has focused on Reg family and its structurally related molecules. Over the last 15 years, 17 members of the Reg family have been cloned and sequenced. They have been considered as members of a conserved protein family sharing structural and some functional properties being involved in injury, inflammation,diabetes and carcinogenesis. We previously identified Reg Ⅳ as a strong candidate for a gene that was highly expressed in colorectal adenoma when compared to normal mucosa based on suppression subtractive hybridization (SSH),reverse Northern blot, semi-quantitative reverse transcriptase PCR (RT-PCR)and Northern blot. In situ hybridization results further support that overexpression of Reg Ⅳ may be an early event in colorectal carcinogenesis. We suggest that detection of Reg Ⅳ overexpression might be useful in the early diagnosis of carcinomatous transformation of adenoma.This review summarizes the roles of Reg family in diseases in the literature as well as our recent results of Reg Ⅳ in colorectal cancer. The biological properties of Reg family and its possible roles in human diseases are discussed. We particularly focus on the roles of Reg family as sensitive reactants of tissue injury, prognostic indicators of tumor survival and early biomarkers of carcinogenesis. In addition to our current understanding of Reg gene functions, we postulate that there might be relationships between Reg family and microsatellite instability, apoptosis and cancer with a poor prognosis. Investigation of the correlation between tumor Reg expression and survival rate, and analysis of the Reg gene status in human maliganancies, are required to elucidate the biologic consequences of Reg gene expression, the implications for Reg gene regulation of cell growth, tumorigenesis

  10. The human T cell receptor alpha variable (TRAV) genes.

    Science.gov (United States)

    Scaviner, D; Lefranc, M P

    2000-01-01

    'Human T Cell Receptor Alpha Variable (TRAV) Genes', the eighth report of the 'IMGT Locus in Focus' section, comprises four tables: (1) 'Number of human germline TRAV genes at 14q11 and potential repertoire'; (2) 'Human germline TRAV genes at 14q11'; (3) 'Human TRAV allele table', and (4) 'Correspondence between the different human TRAV gene nomenclatures'. These tables are available at the IMGT Marie-Paule page of IMGT, the international ImMunoGeneTics database (http://imgt.cines.fr:8104) created by Marie-Paule Lefranc, Université Montpellier II, CNRS, France. Copyright 2000 S. Karger AG, Basel

  11. Dietary methanol regulates human gene activity.

    Directory of Open Access Journals (Sweden)

    Anastasia V Shindyapina

    Full Text Available Methanol (MeOH is considered to be a poison in humans because of the alcohol dehydrogenase (ADH-mediated conversion of MeOH to formaldehyde (FA, which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD. There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling.

  12. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes...

  13. Cytomegalovirus

    Science.gov (United States)

    ... virus, your doctor may suggest a test called amniocentesis. During this test, a needle is inserted into ... familydoctor.org editorial staff Tags: Allergy and Immunologic, Amniocentesis, child, fever, infant, jaundice, newborn, Throat Pain, weakness ...

  14. Injury, inflammation and the emergence of human specific genes

    Science.gov (United States)

    2016-07-12

    indistinguishable.6 Interestingly, just as we noted the expression of human -specific genes in human immune cells (Table 1), Long and colleagues noted the wide...nervous system, it presumably alters a7AChR activities on human cognition and memory . In other examples, the human antimicrobial defensins are highly...genes in circulating and resident human immune cells can be studied in mice after the transplantation and engraft- ment of human hemato-lymphoid immune

  15. Investigation of the Role of the Cytomegalovirus as a Respiratory Pathogen in HIV-Infected Patients

    Directory of Open Access Journals (Sweden)

    Rafael E de la Hoz

    1996-01-01

    Full Text Available OBJECTIVE: To investigate the occurrence of cytomegalovirus (CMV pneumonitis in the setting of human immunodeficiency virus (HIV infection and whether the presence of CMV as copathogen is associated with increased clinical severity or short term mortality in patients with Pneumocystis carinii pneumonia.

  16. The downmodulation of the foreign body reaction by cytomegalovirus encoded interleukin-10

    NARCIS (Netherlands)

    van Putten, S.M.; Wubben, M.; Hennink, W.E.; van Luyna, M.J.A.; Harmsen, M.C.

    2009-01-01

    The foreign body reaction (FBR) is of great importance for the function and turnover of biomaterial scaffolds. The development of biological tools that modulate the FBR will augment scaffold functionality and benefit regenerative medicine. The human cytomegalovirus encodes a functional homolog of

  17. The downmodulation of the foreign body reaction by cytomegalovirus encoded interleukin-10

    NARCIS (Netherlands)

    van Putten, S. M.; Hennink, W. E.; van Luyna, M. J. A.; Harmsen, M. C.; Wubben, Maike

    The foreign body reaction (FBR) is of great importance for the function and turnover of biomaterial scaffolds. The development of biological tools that modulate the FBR will augment scaffold functionality and benefit regenerative medicine. The human cytomegalovirus encodes a functional homolog of

  18. An In Vitro Mouse Model of Congenital Cytomegalovirus-induced Pathogenesis of the Inner Ear Cochlea

    Science.gov (United States)

    Melnick, Michael; Jaskoll, Tina

    2015-01-01

    Congenital human cytomegalovirus (CMV) infection is the leading nongenetic etiology of sensorineural hearing loss (SNHL) at birth and prelingual SNHL not expressed at birth. The paucity of temporal bone autopsy specimens from infants with congenital CMV infection has hindered the critical correlation of histopathology with pathogenesis. Here, we present an in vitro embryonic mouse model of CMV-infected cochleas that mimics the human sites of viral infection and associated pathology. There is a striking dysplasia/hyperplasia in mouse CMV-infected cochlear epithelium and mesenchyme, including organ of Corti hair and supporting cells and stria vascularis. This is concomitant with significant dysregulation of p19, p21, p27, and Pcna gene expression, as well as proliferating cell nuclear antigen (PCNA) protein expression. Other pathologies similar to those arising from known deafness gene mutations include downregulation of KCNQ1 protein expression in the stria vascularis, as well as hypoplastic and dysmorphic melanocytes. Thus, this model provides a relevant and reliable platform within which the detailed cell and molecular biology of CMV-induced deafness may be studied. PMID:23281115

  19. Construction of a cytomegalovirus-based amplicon: a vector with a unique transfer capacity.

    Science.gov (United States)

    Borst, Eva Maria; Messerle, Martin

    2003-07-01

    Cytomegalovirus (CMV) has a number of interesting properties that qualifies it as a vector for gene transfer. Especially appealing is the ability of the CMV genome to persist in hematopoietic progenitor cells and the packaging capacity of the viral capsid that accommodates a DNA genome of 230 kbp. In order to exploit the packaging capacity of the CMV capsid we investigated whether the principles of an amplicon vector can be applied to CMV. Amplicons are herpesviral vectors, which contain only the cis-active sequences required for replication and packaging of the vector genome. For construction of a CMV amplicon the sequences comprising the lytic origin of replication (orilyt) and the cleavage packaging recognition sites (pac) of human CMV were cloned onto a plasmid. A gene encoding the green fluorescent protein was used as a model transgene. The amplicon plasmid replicated in the presence of a CMV helper virus and was packaged into CMV particles, with replication and packaging being dependent on the presence of the orilyt and pac sequences. The packaged amplicon could be transferred to recipient cells and reisolated from the transduced cells. Analysis of the DNA isolated from CMV capsids revealed that the CMV amplicon was packaged as a concatemer with a size of approximately 210 kbp. The CMV amplicon vector has the potential to transfer therapeutic genes with a size of more than 200 kbp and thus provides a unique transfer capacity among viral vectors.

  20. Monoallelic expression of the human FOXP2 speech gene.

    Science.gov (United States)

    Adegbola, Abidemi A; Cox, Gerald F; Bradshaw, Elizabeth M; Hafler, David A; Gimelbrant, Alexander; Chess, Andrew

    2015-06-02

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations.

  1. Cytomegalovirus Restructures Lipid Rafts via a US28/CDC42-Mediated Pathway, Enhancing Cholesterol Efflux from Host Cells.

    Science.gov (United States)

    Low, Hann; Mukhamedova, Nigora; Cui, Huanhuan L; McSharry, Brian P; Avdic, Selmir; Hoang, Anh; Ditiatkovski, Michael; Liu, Yingying; Fu, Ying; Meikle, Peter J; Blomberg, Martin; Polyzos, Konstantinos A; Miller, William E; Religa, Piotr; Bukrinsky, Michael; Soderberg-Naucler, Cecilia; Slobedman, Barry; Sviridov, Dmitri

    2016-06-28

    Cytomegalovirus (HCMV) contains cholesterol, but how HCMV interacts with host cholesterol metabolism is unknown. We found that, in human fibroblasts, HCMV infection increased the efflux of cellular cholesterol, despite reducing the abundance of ABCA1. Mechanistically, viral protein US28 was acting through CDC42, rearranging actin microfilaments, causing association of actin with lipid rafts, and leading to a dramatic change in the abundance and/or structure of lipid rafts. These changes displaced ABCA1 from the cell surface but created new binding sites for apolipoprotein A-I, resulting in enhanced cholesterol efflux. The changes also reduced the inflammatory response in macrophages. HCMV infection modified the host lipidome profile and expression of several genes and microRNAs involved in cholesterol metabolism. In mice, murine CMV infection elevated plasma triglycerides but did not affect the level and functionality of high-density lipoprotein. Thus, HCMV, through its protein US28, reorganizes lipid rafts and disturbs cell cholesterol metabolism.

  2. Cytomegalovirus infection causes an increase of arterial blood pressure.

    Directory of Open Access Journals (Sweden)

    Jilin Cheng

    2009-05-01

    Full Text Available Cytomegalovirus (CMV infection is a common infection in adults (seropositive 60-99% globally, and is associated with cardiovascular diseases, in line with risk factors such as hypertension and atherosclerosis. Several viral infections are linked to hypertension, including human herpes virus 8 (HHV-8 and HIV-1. The mechanisms of how viral infection contributes to hypertension or increased blood pressure are not defined. In this report, the role of CMV infection as a cause of increased blood pressure and in forming aortic atherosclerotic plaques is examined. Using in vivo mouse model and in vitro molecular biology analyses, we find that CMV infection alone caused a significant increase in arterial blood pressure (ABp (p<0.01 approximately 0.05, measured by microtip catheter technique. This increase in blood pressure by mouse CMV (MCMV was independent of atherosclerotic plaque formation in the aorta, defined by histological analyses. MCMV DNA was detected in blood vessel samples of viral infected mice but not in the control mice by nested PCR assay. MCMV significantly increased expression of pro-inflammatory cytokines IL-6, TNF-alpha, and MCP-1 in mouse serum by enzyme-linked immunosorbent assay (ELISA. Using quantitative real time reverse transcriptase PCR (Q-RT-PCR and Western blot, we find that CMV stimulated expression of renin in mouse and human cells in an infectious dose-dependent manner. Co-staining and immunofluorescent microscopy analyses showed that MCMV infection stimulated renin expression at a single cell level. Further examination of angiotensin-II (Ang II in mouse serum and arterial tissues with ELISA showed an increased expression of Ang II by MCMV infection. Consistent with the findings of the mouse trial, human CMV (HCMV infection of blood vessel endothelial cells (EC induced renin expression in a non-lytic infection manner. Viral replication kinetics and plaque formation assay showed that an active, CMV persistent infection in

  3. State-of-the-art human gene therapy: part I. Gene delivery technologies.

    Science.gov (United States)

    Wang, Dan; Gao, Guangping

    2014-01-01

    Safe and effective gene delivery is a prerequisite for successful gene therapy. In the early age of human gene therapy, setbacks due to problematic gene delivery vehicles plagued the exciting therapeutic outcome. However, gene delivery technologies rapidly evolved ever since. With the advancement of gene delivery techniques, gene therapy clinical trials surged during the past decade. As the first gene therapy product (Glybera) has obtained regulatory approval and reached clinic, human gene therapy finally realized the promise that genes can be medicines. The diverse gene delivery techniques available today have laid the foundation for gene therapy applications in treating a wide range of human diseases. Some of the most urgent unmet medical needs, such as cancer and pandemic infectious diseases, have been tackled by gene therapy strategies with promising results. Furthermore, combining gene transfer with other breakthroughs in biomedical research and novel biotechnologies opened new avenues for gene therapy. Such innovative therapeutic strategies are unthinkable until now, and are expected to be revolutionary. In part I of this review, we introduced recent development of non-viral and viral gene delivery technology platforms. As cell-based gene therapy blossomed, we also summarized the diverse types of cells and vectors employed in ex vivo gene transfer. Finally, challenges in current gene delivery technologies for human use were discussed.

  4. Congenital and perinatal cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Chun Soo Kim

    2010-01-01

    Full Text Available Cytomegalovirus (CMV is currently the most common agent of congenital infection and the leading infectious cause of brain damage and hearing loss in children. Symptomatic congenital CMV infections usually result from maternal primary infection during early pregnancy. One half of symptomatic infants have cytomegalic inclusion disease (CID, which is characterized by involvement of multiple organs, in particular, the reticuloendothelial and central nervous system (CNS. Moreover, such involvement may or may not include ocular and auditory damage. Approximately 90% of infants with congenital infection are asymptomatic at birth. Preterm infants with perinatal CMV infection can have symptomatic diseases such as pneumonia, hepatitis, and thrombocytopenia. Microcephaly and abnormal neuroradiologic imaging are associated with a poor prognosis. Hearing loss may occur in both symptomatic and asymptomatic infants with congenital infection and may progress through childhood. Congenital infection is defined by the isolation of CMV from infants within the first 3 weeks of life. Ganciclovir therapy can be considered for infants with symptomatic congenital CMV infection involving the CNS. Pregnant women of seronegative state should be counseled on the importance of good hand washing and other control measures to prevent CMV infection. Heat treatment of infected breast milk at 72?#608;for 5 seconds can eliminate CMV completely.

  5. Cytomegalovirus Immunoglobulin After Thoracic Transplantation

    Science.gov (United States)

    Grossi, Paolo; Mohacsi, Paul; Szabolcs, Zoltán; Potena, Luciano

    2016-01-01

    Abstract Cytomegalovirus (CMV) is a highly complex pathogen which, despite modern prophylactic regimens, continues to affect a high proportion of thoracic organ transplant recipients. The symptomatic manifestations of CMV infection are compounded by adverse indirect effects induced by the multiple immunomodulatory actions of CMV. These include a higher risk of acute rejection, cardiac allograft vasculopathy after heart transplantation, and potentially bronchiolitis obliterans syndrome in lung transplant recipients, with a greater propensity for opportunistic secondary infections. Prophylaxis for CMV using antiviral agents (typically oral valganciclovir or intravenous ganciclovir) is now almost universal, at least in high-risk transplants (D+/R−). Even with extended prophylactic regimens, however, challenges remain. The CMV events can still occur despite antiviral prophylaxis, including late-onset infection or recurrent disease, and patients with ganciclovir-resistant CMV infection or who are intolerant to antiviral therapy require alternative strategies. The CMV immunoglobulin (CMVIG) and antiviral agents have complementary modes of action. High-titer CMVIG preparations provide passive CMV-specific immunity but also exert complex immunomodulatory properties which augment the antiviral effect of antiviral agents and offer the potential to suppress the indirect effects of CMV infection. This supplement discusses the available data concerning the immunological and clinical effects of CMVIG after heart or lung transplantation. PMID:26900989

  6. Rare presentations of cytomegalovirus infection in renal allograft recipients.

    Science.gov (United States)

    Ardalan, Mohammadreza

    2012-01-01

    Cytomegalovirus is the most common viral infection after kidney transplantation. Clinical presentations of cytomegalovirus infection range from asymptomatic infection to organ-specific involvement. Most symptomatic infections manifest as fever and cytopenia. The gastrointestinal tract is the most common site of tissue-invasive infection, often presenting as diarrhea or gastrointestinal bleeding. Gastrointestinal obstruction, perforation, thrombosis of large gastrointestinal veins, splenic artery thrombosis, and pancreatitis are rare gastrointestinal presentations of cytomegalovirus infection. Renal-allograft ureteral stricture and skin involvement are other rare presentations of cytomegalovirus infection. hemophagocytic syndrome, thrombotic microangiopathy, adrenal insufficiency, and renal allograft artery stenosis are other rare symptoms of cytomegalovirus infection.

  7. Comparative Analysis of gO Isoforms Reveals that Strains of Human Cytomegalovirus Differ in the Ratio of gH/gL/gO and gH/gL/UL128-131 in the Virion Envelope

    Science.gov (United States)

    Zhou, Momei; Yu, Qin; Wechsler, Anya

    2013-01-01

    Herpesvirus glycoprotein complex gH/gL provides a core entry function through interactions with the fusion protein gB and can also influence tropism through receptor interactions. The Epstein-Barr virus gH/gL and gH/gL/gp42 serve both functions for entry into epithelial and B cells, respectively. Human cytomegalovirus (HCMV) gH/gL can be bound by the UL128-131 proteins or gO. The phenotypes of gO and UL128-131 mutants suggest that gO-gH/gL interactions are necessary for the core entry function on all cell types, whereas the binding of UL128-131 to gH/gL likely relates to a distinct receptor-binding function for entry into some specific cell types (e.g., epithelial) but not others (e.g., fibroblasts and neurons). There are at least eight isoforms of gO that differ by 10 to 30% of amino acids, and previous analysis of two HCMV strains suggested that some isoforms of gO function like chaperones, disassociating during assembly to leave unbound gH/gL in the virion envelope, while others remain bound to gH/gL. For the current report, we analyzed the gH/gL complexes present in the virion envelope of several HCMV strains, each of which encodes a distinct gO isoform. Results indicate that all strains of HCMV contain stable gH/gL/gO trimers and gH/gL/UL128-131 pentamers and little, if any, unbound gH/gL. TR, TB40/e, AD169, and PH virions contained vastly more gH/gL/gO than gH/gL/UL128-131, whereas Merlin virions contained mostly gH/gL/UL128-131, despite abundant unbound gO remaining in the infected cells. Suppression of UL128-131 expression during Merlin replication dramatically shifted the ratio toward gH/gL/gO. These data suggest that Merlin gO is less efficient than other gO isoforms at competing with UL128-131 for binding to gH/gL. Thus, gO diversity may influence the pathogenesis of HCMV through effects on the assembly of the core versus tropism gH/gL complexes. PMID:23804643

  8. Conserved retinoblastoma protein-binding motif in human cytomegalovirus UL97 kinase minimally impacts viral replication but affects susceptibility to maribavir

    Directory of Open Access Journals (Sweden)

    Chou Sunwen

    2009-01-01

    Full Text Available Abstract The UL97 kinase has been shown to phosphorylate and inactivate the retinoblastoma protein (Rb and has three consensus Rb-binding motifs that might contribute to this activity. Recombinant viruses containing mutations in the Rb-binding motifs generally replicated well in human foreskin fibroblasts with only a slight delay in replication kinetics. Their susceptibility to the specific UL97 kinase inhibitor, maribavir, was also examined. Mutation of the amino terminal motif, which is involved in the inactivation of Rb, also renders the virus hypersensitive to the drug and suggests that the motif may play a role in its mechanism of action.

  9. THE CLONING OF HUMAN NEUROTROPHIN-3 GENE

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    In the present study, we have cloned the gene of human neurotrophin-3 (hNT-3) from the genomic DNA of white blood cells (WBC) by polymerase chain reaction (PCR). The amplification products were cloned into pUC19 and sequenced. Genomic sequence comparison of the cloned fragment and the reported hNT-3 (GenBank M61180) reveals 7 base differences: 1 in the signal peptide, 3 in the prepro peptide, and 3 in the mature hNT-3. Except the 2 varied bases (16th, T to G; 285th, A to C) in the signal peptide and pro-sequence resulted in the change of their encoded amino-acids (Tyr→Asp; Gln→His), the other varied bases have no influence on their respective encoded amino-acids, and all the changes have no influence on the open reading frame (ORF) of the hNT-3.

  10. Proposed clinical case definition for cytomegalovirus-immune recovery retinitis.

    Science.gov (United States)

    Ruiz-Cruz, Matilde; Alvarado-de la Barrera, Claudia; Ablanedo-Terrazas, Yuria; Reyes-Terán, Gustavo

    2014-07-15

    Cytomegalovirus (CMV) retinitis has been extensively described in patients with advanced or late human immunodeficiency virus (HIV) disease under ineffective treatment of opportunistic infection and antiretroviral therapy (ART) failure. However, there is limited information about patients who develop active cytomegalovirus retinitis as an immune reconstitution inflammatory syndrome (IRIS) after successful initiation of ART. Therefore, a case definition of cytomegalovirus-immune recovery retinitis (CMV-IRR) is proposed here. We reviewed medical records of 116 HIV-infected patients with CMV retinitis attending our institution during January 2003-June 2012. We retrospectively studied HIV-infected patients who had CMV retinitis on ART initiation or during the subsequent 6 months. Clinical and immunological characteristics of patients with active CMV retinitis were described. Of the 75 patients under successful ART included in the study, 20 had improvement of CMV retinitis. The remaining 55 patients experienced CMV-IRR; 35 of those developed CMV-IRR after ART initiation (unmasking CMV-IRR) and 20 experienced paradoxical clinical worsening of retinitis (paradoxical CMV-IRR). Nineteen patients with CMV-IRR had a CD4 count of ≥50 cells/µL. Six patients with CMV-IRR subsequently developed immune recovery uveitis. There is no case definition for CMV-IRR, although this condition is likely to occur after successful initiation of ART, even in patients with high CD4 T-cell counts. By consequence, we propose the case definitions for paradoxical and unmasking CMV-IRR. We recommend close follow-up of HIV-infected patients following ART initiation. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. A human gut microbial gene catalogue established by metagenomic sequencing

    DEFF Research Database (Denmark)

    dos Santos, Marcelo Bertalan Quintanilha; Sicheritz-Pontén, Thomas; Nielsen, Henrik Bjørn

    2010-01-01

    , from faecal samples of 124 European individuals. The gene set, ,150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes......To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence...

  12. 先天性人巨细胞病毒肝炎小鼠模型的建立%Development of a mouse model of congenital human cytomegalovirus hepatitis

    Institute of Scientific and Technical Information of China (English)

    张俐; 彭丽; 李德丽; 孟繁峥

    2011-01-01

    Objective To define that Human Cytom egalovirus(HCMV) can cross the placenta of the BALB/C mice and initiate congenital human cytom egalovirus hepatitis of the newborn mice.Methods HCMV-AD169 was injected into the intraperitoneum of mice when they were about 10 weeks old .Then, these of mice were arranged formating at random.After the neonatal mice were given birth,their livers were removed and were used for virus isolates,pathology testing and in situ hybridization .Results The results observed showed that pathological changes consisting of pointor multifocal necrosis,megakaryocytes.Inflammatory cells infiltrated in the necrotic area.Inclusion body located on one end of the cell nucleus,which made the cell like an "owe eye".Histology revealed the portal area inflammation.some local envelope thickened.Meanwhile the presence of virus sequences was confirmed by in situ hybridization, however, nothing was found in the normal controls.HCMV han also been isolated from the tissue supernatant.Conclusion Our research suggested that congenital human cytom egalovirus hepatitis of a neonatal mouse may be a result of transplacental transmission of HCMV during maternal infection.The mouse model will allow the study of the development of therapeutic agents on the congenital human cytom egalovirus hepatitis.%目的 探讨建立人巨细胞病毒(HCMV)先天性感染致新生鼠肝炎模型的可行性.方法 将HCMV-AD169接种至10周龄Balb/c雌雄小鼠腹腔后,随机选择配对.待雌鼠分娩后取出新生鼠肝脏,进行病毒分离、病理学检测及原位分子杂交检测.结果 病理学研究结果证实,HCMV感染的新生小鼠肝组织中见点、灶状坏死,并可见巨核细胞.坏死区炎细胞浸润.核内可见偏于一端的包涵体,使细胞呈"猫头鹰眼"样,汇管区可见炎细胞浸润.局部肝脏包膜增厚.原位杂交结果显示,病毒核酸存在于受感染肝细胞内.病毒分离结果证实在新生鼠肝组织上清液

  13. STATE-OF-THE-ART HUMAN GENE THERAPY: PART II. GENE THERAPY STRATEGIES AND APPLICATIONS

    OpenAIRE

    2014-01-01

    In Part I of this Review, we introduced recent advances in gene delivery technologies and explained how they have powered some of the current human gene therapy applications. In Part II, we expand the discussion on gene therapy applications, focusing on some of the most exciting clinical uses. To help readers to grasp the essence and to better organize the diverse applications, we categorize them under four gene therapy strategies: (1) gene replacement therapy for monogenic diseases, (2) gene...

  14. Mutation analysis of the MCHR1 gene in human obesity

    DEFF Research Database (Denmark)

    Wermter, Anne-Kathrin; Reichwald, Kathrin; Büch, Thomas

    2005-01-01

    The importance of the melanin-concentrating hormone (MCH) system for regulation of energy homeostasis and body weight has been demonstrated in rodents. We analysed the human MCH receptor 1 gene (MCHR1) with respect to human obesity....

  15. Karyotypic analysis of gene transformed human keratinocyte line

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    @@ INTRODUCTION In order to solve the difficult problem of long term in vitro culture of human keratinocytes, the technique of gene transfer was utilized to transform human keratinocytes with simian virus 40 (SV40).

  16. Mechanisms Underlying T Cell Immunosenescence: Aging and Cytomegalovirus Infection

    Science.gov (United States)

    Tu, Wenjuan; Rao, Sudha

    2016-01-01

    The ability of the human immune system to protect against infectious disease declines with age and efficacy of vaccination reduces significantly in the elderly. Aging of the immune system, also termed as immunosenescence, involves many changes in human T cell immunity that is characterized by a loss in naïve T cell population and an increase in highly differentiated CD28- memory T cell subset. There is extensive data showing that latent persistent human cytomegalovirus (HCMV) infection is also associated with age-related immune dysfunction in the T cells, which might enhance immunosenescence. Understanding the molecular mechanisms underlying age-related and HCMV-related immunosenescence is critical for the development of effective age-targeted vaccines and immunotherapies. In this review, we will address the role of both aging and HCMV infection that contribute to the T cell senescence and discuss the potential molecular mechanisms in aged T cells. PMID:28082969

  17. Cytomegalovirus retinitis associated with acquired immunodeficiency syndrome

    Institute of Scientific and Technical Information of China (English)

    GENG Shuang; YE Jun-jie; ZHAO Jia-liang; LI Tai-sheng; HAN Yang

    2011-01-01

    Background Cytomegalovirus (CMV) retinitis is the most severe intraocular complication that results in total retinal destruction and loss of visual acuity in patients with acquired immunodeficiency syndrome (AIDS). This study aimed to investigate the fundus characteristics, systemic manifestations and therapeutic outcomes of CMV retinitis associated with AIDS.Methods It was a retrospective case series. CMV retinitis was present in 39 eyes (25 patients). Best corrected visual acuities, anterior segment, fundus features, fundus fluorescence angiography (FFA) and CD4+ T-lymphocyte counts of the patients with CMV retinitis associated with AIDS were analyzed. Intravitreal injections of ganciclovir (400 μg) were performed in 4 eyes (2 patients).Results Retinal vasculitis, dense, full-thickness, yellow-white lesions along vascular distribution with irregular granules at the border, and hemorrhage on the retinal surface were present in 28 eyes. The vitreous was clear or mildly opaque.Late stage of the retinopathy was demonstrated in 8 eyes characterized as atrophic retina, sclerotic and attenuated vessels, retinal pigment epithelium (RPE) atrophy, and optic nerve atrophy. Retinal detachment was found in 3 eyes. The average CD4+ T-lymphocyte count in peripheral blood of the patients with CMV retinitis was (30.6±25.3) ×106/L (range,(0-85) × 106/L). After intravitreal injections of ganciclovir, visual acuity was improved and fundus lesions regressed.Conclusions CMV retinitis is the most severe and the most common intraocular complication in patients with AIDS. For the patients with yellow-white retinal lesions, hemorrhage and retinal vasculitis without clear cause, human immunodeficiency virus (HIV) serology should be performed. Routine eye examination is also indicated in HIV positive patients.

  18. Bioinformatic prediction and functional characterization of human KIAA0100 gene

    Directory of Open Access Journals (Sweden)

    He Cui

    2017-02-01

    Full Text Available Our previous study demonstrated that human KIAA0100 gene was a novel acute monocytic leukemia-associated antigen (MLAA gene. But the functional characterization of human KIAA0100 gene has remained unknown to date. Here, firstly, bioinformatic prediction of human KIAA0100 gene was carried out using online softwares; Secondly, Human KIAA0100 gene expression was downregulated by the clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated (Cas 9 system in U937 cells. Cell proliferation and apoptosis were next evaluated in KIAA0100-knockdown U937 cells. The bioinformatic prediction showed that human KIAA0100 gene was located on 17q11.2, and human KIAA0100 protein was located in the secretory pathway. Besides, human KIAA0100 protein contained a signalpeptide, a transmembrane region, three types of secondary structures (alpha helix, extended strand, and random coil , and four domains from mitochondrial protein 27 (FMP27. The observation on functional characterization of human KIAA0100 gene revealed that its downregulation inhibited cell proliferation, and promoted cell apoptosis in U937 cells. To summarize, these results suggest human KIAA0100 gene possibly comes within mitochondrial genome; moreover, it is a novel anti-apoptotic factor related to carcinogenesis or progression in acute monocytic leukemia, and may be a potential target for immunotherapy against acute monocytic leukemia.

  19. 人巨细胞病毒感染与高血压的关系研究%Relationship between human cytomegalovirus infections and high blood pressure

    Institute of Scientific and Technical Information of China (English)

    苏怀勇; 鹿克风; 侯晓阳; 王勇; 李敏

    2015-01-01

    .00% ,56 .67% and 3 .33% respectively of the control group .In HCMV specific neutralizing antibody tests , the average geometric drop degree of the observation group was (37 .55 ± 20 .06) ,it was (59 .69 ± 24 .32) in the control group .For each index ,the results of the control group were better than the observation group ,and the differences among HCMV ,HCMV UL93DNA and HCMV IgG levels were significant (P<0 .05) .CONCLUSION The HCMV infection rate of the high blood pressure group is significantly higher than that of healthy group with lowered specific neutralizing antibody levels ,which shows that HCMV humoral immunity is weak and human cy‐tomegalovirus is significantly associated with hypertension .

  20. Prevention of maternal cytomegalovirus infection: current status and future prospects

    Directory of Open Access Journals (Sweden)

    Jessica L Nyholm

    2010-02-01

    Full Text Available Jessica L Nyholm1, Mark R Schleiss21Department of Obstetrics, Gynecology, and Women’s Health, and 2Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN, USAAbstract: Human cytomegalovirus (CMV infection is the most common cause of perinatal viral infection in the developed world, resulting in approximately 40,000 congenitally infected infants in the United States each year. Congenital CMV infection can produce varying degrees of neurodevelopmental disabilities. The significant impact of congenital CMV has led the Institute of Medicine to rank development of a CMV vaccine as a top priority. Vaccine development has been ongoing; however no licensed CMV vaccine is currently available. Treatment of pregnant women with CMV hyperimmune globulin has shown promising results, but has not been studied in randomized controlled trials. Education on methods to prevent CMV transmission, particularly among young women of child-bearing age, should continue until a CMV vaccine becomes available. The epidemiology, clinical manifestations, prevention strategies, and treatment of CMV infections are reviewed.Keywords: cytomegalovirus, CMV vaccines, congenital CMV, CMV infection, immunoglobulin

  1. Bioinformatics Assisted Gene Discovery and Annotation of Human Genome

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    As the sequencing stage of human genome project is near the end, the work has begun for discovering novel genes from genome sequences and annotating their biological functions. Here are reviewed current major bioinformatics tools and technologies available for large scale gene discovery and annotation from human genome sequences. Some ideas about possible future development are also provided.

  2. 巨细胞病毒感染所致脑性瘫痪的临床特征%Analysis of the clinical characteristics of cerebral palsy caused by human cytomegalovirus infection

    Institute of Scientific and Technical Information of China (English)

    陈星; 陈见南; 杨路; 陈春花; 邱纪方

    2015-01-01

    Objective To Analyze the clinical characteristics of cerebral palsy caused by human cytomegalovirus (CMV) infection.Methods Fifty-one cases of CMV infection were studied by analyzeing related clinical symptoms of cerebral palsy,finding its characteristics,and analyzing its causes by comparing with control group of 50 patients with cerebral palsy caused by other etiologies.Results The clinical symptoms of cerebral palsy caused by CMV infection were similar to those of cerebral palsy caused by other etiologies,however,the clinical symptoms of cerebral palsy caused by other reasons were more severe; 37.25% of cases with cerebral palsy caused by CMV infection showed damage to liver function.Developmental quotient determination of cerebral palsy caused by CMV infection was 90.20% which was moderate to severe,whereas that of 52.6% of cases with cerbral palsy caused by other causes were moderate to severe.There was a significant difference between the two groups with respect to their developmental quotient.The motor function in 88.23% of patients with cerebral palsy caused by human CMV infection was class Ⅱ-Ⅲ,which was mainly in mild to moderate damage.Conclusions The motor function of cerebral palsy caused by CMV was mostly in the slight to moderat damage,however the mental development obviously was mostly in moderate to severe defects,which showed that the mental damage was much greater than the motor function damage.In patients with cerebral palsy caused by other causes,the degree of motor function damage was higher than the degree of intelligence damage.Besides,the children with cerebral palsy caused by CMV infection were easy to suffer multiple organ injury such as liver damage.%目的 对临床证实由巨细胞病毒(CMV)感染所致的脑性瘫痪的患儿进行临床特点分析.方法 对51例明确由CMV感染的脑性瘫痪进行相关临床症状分析,找出其特性,并分析其发生的原因.结果 在CMV感染所致的脑性瘫痪的临床

  3. Detection of human cytomegalovirus antigen after renal transplantation and its clinical significance%肾移植术后巨细胞病毒抗原检测及其临床意义

    Institute of Scientific and Technical Information of China (English)

    徐鸿绪; 郑克立; 曾文涛; 陈连周; 傅茜; 洪良庆; 王晓波

    2000-01-01

    目的 建立一种早期、快速诊断人巨细胞病毒(human cytomegalovirus,HCMV)感染的抗原检测方法,以了解 肾移植术后受者的HCMV感染情况并探讨其临床意义。方法 利用抗HCMV前早期抗原和早期抗原的单克隆抗体,建立了 免疫组化EnvisionTM二步法。用于检测外周血多形核白细胞(PMNL)中HCMV抗原(前早期抗原和早期抗原),诊断HCMV 活动性感染。结果 检测肾移植术后受者86例,HCMV抗原阳性39例,阳性率45.3%。抗原阳性细胞数平均为16.5个/5万 PMNL。其中,HCMV病患者和无症状HCMV感染者平均分别为24.5±18.2个/5万PMNL和1 2.0±10.6个/5万PMNL。 15名正常人(抗HCMV血清抗体阴性)作为对照同时检测HCMV抗原,结果均为阴性。结论该法具有简便、快速等优点,且 能区分潜伏感染和活动性感染,适用于临床对HCMV感染的早期快速诊断和作为指导排斥治疗以及判断预后的主要手段, 有推广应用价值。%Objective To provide a rapid and early antigen diagnostic technique for the patients with human cy tomegalovirus(HCMV) infection after renal transplantation and discuss its clinical significance. Methods A two-step tech- nique of immunohistochemical EnvisionTM was developed to detect antigen in peripheral blood polymorphonuclear leucocytes (PMNL) using HCMV monoclonal antibody of immediate early antigen(IEA) and early antigen (EA) to diagnose active infec tion of HCMV. Results This assay was not disturbed by background and nonspecificity of stain. It is easy to distinguish posi tive cells from negative cells. HCMV antigen positive cell were counted in every 5. 0× 104 PMNL. Among 86 renal transplan- tation recipients, 39 were positive for HCMV antigen, the positive rate was 45.3%, the average count of positive cells were 16. 5/5. 0×104 PMNL. In patients suffering form the HCMV disease and the subclinical infection the average counts of posi- tive cells were 24.5±18.2/5. 0

  4. In-silico human genomics with GeneCards

    Directory of Open Access Journals (Sweden)

    Stelzer Gil

    2011-10-01

    Full Text Available Abstract Since 1998, the bioinformatics, systems biology, genomics and medical communities have enjoyed a synergistic relationship with the GeneCards database of human genes (http://www.genecards.org. This human gene compendium was created to help to introduce order into the increasing chaos of information flow. As a consequence of viewing details and deep links related to specific genes, users have often requested enhanced capabilities, such that, over time, GeneCards has blossomed into a suite of tools (including GeneDecks, GeneALaCart, GeneLoc, GeneNote and GeneAnnot for a variety of analyses of both single human genes and sets thereof. In this paper, we focus on inhouse and external research activities which have been enabled, enhanced, complemented and, in some cases, motivated by GeneCards. In turn, such interactions have often inspired and propelled improvements in GeneCards. We describe here the evolution and architecture of this project, including examples of synergistic applications in diverse areas such as synthetic lethality in cancer, the annotation of genetic variations in disease, omics integration in a systems biology approach to kidney disease, and bioinformatics tools.

  5. Complexity of Host Micro-RNA Response to Cytomegalovirus Reactivation After Organ Transplantation.

    Science.gov (United States)

    Egli, A; Lisboa, L F; O'Shea, D; Asberg, A; Mueller, T; Emery, V; Kumar, D; Humar, A

    2016-02-01

    Human (Homo sapiens) micro-RNAs (hsa-miRNAs) regulate virus and host-gene translation, but the biological impact in patients with human cytomegalovirus (hCMV) infection is not well defined in a clinically relevant model. First, we compared hsa-miRNA expression profiles in peripheral blood mononuclear cells from 35 transplant recipients with and without CMV viremia by using a microarray chip covering 847 hsa-miRNAs. This approach demonstrated a set of 142 differentially expressed hsa-miRNAs. Next, we examined the effect of each of these miRNAs on viral growth by using human fibroblasts (human foreskin fibroblast-1) infected with the hCMV Towne strain, identifying a subset of proviral and antiviral hsa-miRNAs. miRNA-target prediction software indicated potential binding sites within the hCMV genome (e.g., hCMV-UL52 and -UL100 [UL = unique long]) and host-genes (e.g., interleukin-1 receptor, IRF1). Luciferase-expressing plasmid constructs and immunoblotting confirmed several predicted miRNA targets. Finally, we determined the expression of selected proviral and antiviral hsa-miRNAs in 242 transplant recipients with hCMV-viremia. We measured hsa-miRNAs before and after antiviral therapy and correlated hsa-miRNA expression levels to hCMV-replication dynamics. One of six antiviral hsa-miRNAs showed a significant increase during treatment, concurrent with viral decline. In contrast, six of eight proviral hsa-miRNAs showed a decrease during viral decline. Our results indicate that a complex and multitargeted hsa-miRNA response occurs during CMV replication in immunosuppressed patients. This study provides mechanistic insight and potential novel biomarkers for CMV replication. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  6. Human reporter genes: potential use in clinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Serganova, Inna [Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Ponomarev, Vladimir [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Blasberg, Ronald [Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States)], E-mail: blasberg@neuro1.mskcc.org

    2007-10-15

    The clinical application of positron-emission-tomography-based reporter gene imaging will expand over the next several years. The translation of reporter gene imaging technology into clinical applications is the focus of this review, with emphasis on the development and use of human reporter genes. Human reporter genes will play an increasingly more important role in this development, and it is likely that one or more reporter systems (human gene and complimentary radiopharmaceutical) will take leading roles. Three classes of human reporter genes are discussed and compared: receptors, transporters and enzymes. Examples of highly expressed cell membrane receptors include specific membrane somatostatin receptors (hSSTrs). The transporter group includes the sodium iodide symporter (hNIS) and the norepinephrine transporter (hNET). The endogenous enzyme classification includes human mitochondrial thymidine kinase 2 (hTK2). In addition, we also discuss the nonhuman dopamine 2 receptor and two viral reporter genes, the wild-type herpes simplex virus 1 thymidine kinase (HSV1-tk) gene and the HSV1-tk mutant (HSV1-sr39tk). Initial applications of reporter gene imaging in patients will be developed within two different clinical disciplines: (a) gene therapy and (b) adoptive cell-based therapies. These studies will benefit from the availability of efficient human reporter systems that can provide critical monitoring information for adenoviral-based, retroviral-based and lenteviral-based gene therapies, oncolytic bacterial and viral therapies, and adoptive cell-based therapies. Translational applications of noninvasive in vivo reporter gene imaging are likely to include: (a) quantitative monitoring of gene therapy vectors for targeting and transduction efficacy in clinical protocols by imaging the location, extent and duration of transgene expression; (b) monitoring of cell trafficking, targeting, replication and activation in adoptive T-cell and stem/progenitor cell therapies

  7. Human gene therapy: a brief overview of the genetic revolution.

    Science.gov (United States)

    Misra, Sanjukta

    2013-02-01

    Advances in biotechnology have brought gene therapy to the forefront of medical research. The prelude to successful gene therapy i.e. the efficient transfer and expression of a variety of human gene into target cells has already been accomplished in several systems. Safe methods have been devised to do this, using several viral and no-viral vectors. Two main approaches emerged: in vivo modification and ex vivo modification. Retrovirus, adenovirus, adeno-associated virus are suitable for gene therapeutic approaches which are based on permanent expression of the therapeutic gene. Non-viral vectors are far less efficient than viral vectors, but they have advantages due to their low immunogenicity and their large capacity for therapeutic DNA. To improve the function of non-viral vectors, the addition of viral functions such as receptor mediated uptake and nuclear translocation of DNA may finally lead to the development of an artificial virus. Gene transfer protocols have been approved for human use in inherited diseases, cancers and acquired disorders. In 1990, the first successful clinical trial of gene therapy was initiated for adenosine deaminase deficiency. Since then, the number of clinical protocols initiated worldwide has increased exponentially. Although preliminary results of these trials are somewhat disappointing, but human gene therapy dreams of treating diseases by replacing or supplementing the product of defective or introducing novel therapeutic genes. So definitely human gene therapy is an effective addition to the arsenal of approaches to many human therapies in the 21st century.

  8. The structure and expression of the human neuroligin-3 gene.

    Science.gov (United States)

    Philibert, R A; Winfield, S L; Sandhu, H K; Martin, B M; Ginns, E I

    2000-04-04

    The neuroligins are a family of proteins that are thought to mediate cell to cell interactions between neurons. During the sequencing at an Xq13 locus associated with a mental retardation syndrome in some studies, we discovered a portion of the human orthologue of the rat neuroligin-3 gene. We now report the structure and the expression of that gene. The gene spans approximately 30kb and contains eight exons. Unlike the rat gene, it codes for at least two mRNAs and at least one of which is expressed outside the CNS. Interestingly, the putative promoter for the gene overlaps the last exon of the neighboring HOPA gene and is located less than 1kb from an OPA element in which a polymorphism associated with mental retardation is found. These findings suggest a possible role for the neuroligin gene in mental retardation and that the role of the gene in humans may differ from its role in rats.

  9. Evaluation of reference genes for gene expression studies in human brown adipose tissue.

    Science.gov (United States)

    Taube, Magdalena; Andersson-Assarsson, Johanna C; Lindberg, Kristin; Pereira, Maria J; Gäbel, Markus; Svensson, Maria K; Eriksson, Jan W; Svensson, Per-Arne

    2015-01-01

    Human brown adipose tissue (BAT) has during the last 5 year been subjected to an increasing research interest, due to its putative function as a target for future obesity treatments. The most commonly used method for molecular studies of human BAT is the quantitative polymerase chain reaction (qPCR). This method requires normalization to a reference gene (genes with uniform expression under different experimental conditions, e.g. similar expression levels between human BAT and WAT), but so far no evaluation of reference genes for human BAT has been performed. Two different microarray datasets with samples containing human BAT were used to search for genes with low variability in expression levels. Seven genes (FAM96B, GNB1, GNB2, HUWE1, PSMB2, RING1 and TPT1) identified by microarray analysis, and 8 commonly used reference genes (18S, B2M, GAPDH, LRP10, PPIA, RPLP0, UBC, and YWHAZ) were selected and further analyzed by quantitative PCR in both BAT containing perirenal adipose tissue and subcutaneous adipose tissue. Results were analyzed using 2 different algorithms (Normfinder and geNorm). Most of the commonly used reference genes displayed acceptably low variability (geNorm M-values genes identified by microarray displayed an even lower variability (M-values genes for qPCR analysis of human BAT and we recommend that they are included in future gene expression studies of human BAT.

  10. Human cytomegalovirus infections in premature infants by ...

    African Journals Online (AJOL)

    Owner

    clinical importance of CMV infection in premature infants by breast-feeding is still unclear. This mini- ... Transmission of CMV by natural routes relates ... infection from the fresh breast milk containing the virus. ... As a result of transmission during the course of delivery ... hepatitis was speculated to be caused by primary.

  11. Functional impairment of Tax-specific but not cytomegalovirus-specific CD8+ T lymphocytes in a minor population of asymptomatic human T-cell leukemia virus type 1-carriers

    Directory of Open Access Journals (Sweden)

    Takamori Ayako

    2011-12-01

    Full Text Available Abstract Background Human T-cell leukemia virus type 1 (HTLV-1 causes adult T-cell leukemia (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP in a small percentage of infected individuals. ATL is often associated with general immune suppression and an impaired HTLV-1-specific T-cell response, an important host defense system. We previously found that a small fraction of asymptomatic HTLV-1-carriers (AC already showed impaired T-cell responses against the major target antigen, Tax. However, it is unclear whether the impaired HTLV-1 Tax-specific T-cell response in these individuals is an HTLV-1-specific phenomenon, or merely reflects general immune suppression. In this study, in order to characterize the impaired HTLV-1-specific T-cell response, we investigated the function of Tax-specific CD8+ T-cells in various clinical status of HTLV-1 infection. Results By using tetramers consisting of HLA-A*0201, -A*2402, or -A*1101, and corresponding Tax epitope peptides, we detected Tax-specific CD8+ T-cells in the peripheral blood from 87.0% of ACs (n = 20/23 and 100% of HAM/TSP patients (n = 18/18 tested. We also detected Tax-specific CD8+ T-cells in 38.1% of chronic type ATL (cATL patients (n = 8/21, although its frequencies in peripheral blood CD8+ T cells were significantly lower than those of ACs or HAM/TSP patients. Tax-specific CD8+ T-cells detected in HAM/TSP patients proliferated well in culture and produced IFN-γ when stimulated with Tax peptides. However, such functions were severely impaired in the Tax-specific CD8+ T-cells detected in cATL patients. In ACs, the responses of Tax-specific CD8+ T-cells were retained in most cases. However, we found one AC sample whose Tax-specific CD8+ T-cells hardly produced IFN-γ, and failed to proliferate and express activation (CD69 and degranulation (CD107a markers in response to Tax peptide. Importantly, the same AC sample contained cytomegalovirus (CMV pp65-specific CD8+ T

  12. 婴幼儿人巨细胞病毒感染的临床表现和糖蛋白B基因分型%Clinical manifestations of human cytomegalovirus infection of infants and genotype of glycoprotein B

    Institute of Scientific and Technical Information of China (English)

    陆晓东; 单小云; 袁青; 朱以军; 郑雅萍; 徐瑞龙

    2011-01-01

    Objective: To understand the clinical manifestations of human cytomegalovirus (HCMV) activate infection of infants and its relationship with genotype of glycoprotein B. Methods: ELISA method was used to detect 51 infants with positive HCMV diagnosed by HCMV - IgM, and the different clinical symptoms were analyzed. Genotyping of HCMV glycoprotein B was performed among 43 infants by nested PCR and restriction fragment length polymorphism (RFLP) . Results: Among 51 infants with HCMV infection, 25. 49% of them were systemic infection and 74. 51% of them were single organ infection, the proportions of HCMV inclusion disease and hepatitis were 25.49% and 21.57%, respectively. The results of genotyping of HCMV glycoprotein B among 43 infants: 20 infants with glycoprotein B Ⅰ genotype, 7 infants with glycoprotein B Ⅱ genotype, 9 infants with glycoprotein B Ⅲ genotype, 4 infants with glycoprotein B Ⅰ genotype and glycoprotein B Ⅱ genotype, 2 infants with glycoprotein B Ⅰ genotype and glycoprotein B Ⅲ genotype, one infant with glycoprotein B Ⅱ genotype and glycoprotein B Ⅲ genotype, no infant was found with glycoprotein B Ⅳ genotype; glycoprotein B Ⅰ genotype accounted for 46. 51%.Conclusion: The clinical manifestations of infantile HCMV infection are various; glycoprotein B Ⅰ genotype is in the majority among HCMV infected infants.%目的:了解婴幼儿人巨细胞病毒(HCMV)活动性感染的临床表现,以及与糖蛋白B(gB)基因型的关系.方法:ELISA法检测HCMV-lgM确定的HCMV阳性的婴幼儿51例,对其不同临床症状进行分析.对其中43例患儿使用套式PCR(nPCR)法加限制性长度多态性分析(RFLP)进行HCMV gB基因分型.结果:在51例HCMV感染患儿中全身性感染和单脏器感染分别占25.49%和74.51%,HCMV包涵体病和肝炎分别占25.49%和21.57%.43例患儿HCMV gB的基因分型结果为,gBI型20例,gBⅡ型7例,gBⅢ型9例,gB Ⅰ、Ⅱ混合型4例,gBⅠ、Ⅲ混合型2

  13. Detecção de Citomegalovírus Humano e Herpesvírus Simples tipo 2 em amostras cervicais Detection of Human Cytomegalovirus and Herpes Simplex Virus type 2 in cervical sample

    Directory of Open Access Journals (Sweden)

    Danielle Albuquerque Pires Rocha

    2012-11-01

    Full Text Available OBJETIVO: Testar a presença de DNA de Citomegalovírus Humano (HCMV e Herpesvírus Simples tipo 2 (HSV-2 em amostras cervicais de mulheres atendidas em um serviço de atenção primária à saúde no município de Coari, Amazonas, Brasil. MÉTODOS: Participaram deste estudo 361 mulheres sexualmente ativas, variando entre 18 e 78 anos, atendidas em Unidades Básicas de Saúde para exame ginecológico de rotina. As amostras cervicais foram coletadas por meio de escova endocervical. A detecção dos vírus deu-se por meio de Reação em Cadeia da Polimerase (PCR em tempo real. RESULTADOS: A média de idade das mulheres participantes foi de 36,4 anos (desvio-padrão (DP=13,4. Foi encontrado DNA de HCMV em amostras cervicais de 30 mulheres (8,3%; IC95% 5,8 - 11,8 e de HSV-2 em 2 mulheres (0,6%; IC95% 0,1 - 2,2. Duas mulheres relataram ser portadoras do HIV, estando uma delas infectada com o HCMV. Não foram encontradas associações estatisticamente significativas entre a infecção pelos patógenos estudados e as variáveis socioeconômicas, clínicas e comportamentais. CONCLUSÕES: A prevalência de infecção pelo HCMV encontrada na amostra estudada chama a atenção para a necessidade do rastreio desse vírus na gestação e da vigilância nos pacientes imunocomprometidos. A baixa prevalência do HSV-2 deve-se provavelmente ao fato de a amostra cervical não ser adequada para este tipo de estudo por causa das características da biologia viral relacionadas à neurolatência.PURPOSE: To detect the presence of Human Cytomegalovirus (HCMV and Herpes Simplex Virus type 2 (HSV-2 DNA in cervical samples from women assisted in a primary health care clinic in the city of Coari, Amazonas, Brazil. METHODS: Participated in this study 361 sexually active women between 18 and 78 years. They were been assisted in a Basic Health Care Clinic for routine gynecological exam. The cervical samples were collected using endocervical brush. The viruses were detected

  14. Different level of population differentiation among human genes

    Directory of Open Access Journals (Sweden)

    Zhang Ya-Ping

    2011-01-01

    Full Text Available Abstract Background During the colonization of the world, after dispersal out of African, modern humans encountered changeable environments and substantial phenotypic variations that involve diverse behaviors, lifestyles and cultures, were generated among the different modern human populations. Results Here, we study the level of population differentiation among different populations of human genes. Intriguingly, genes involved in osteoblast development were identified as being enriched with higher FST SNPs, a result consistent with the proposed role of the skeletal system in accounting for variation among human populations. Genes involved in the development of hair follicles, where hair is produced, were also found to have higher levels of population differentiation, consistent with hair morphology being a distinctive trait among human populations. Other genes that showed higher levels of population differentiation include those involved in pigmentation, spermatid, nervous system and organ development, and some metabolic pathways, but few involved with the immune system. Disease-related genes demonstrate excessive SNPs with lower levels of population differentiation, probably due to purifying selection. Surprisingly, we find that Mendelian-disease genes appear to have a significant excessive of SNPs with high levels of population differentiation, possibly because the incidence and susceptibility of these diseases show differences among populations. As expected, microRNA regulated genes show lower levels of population differentiation due to purifying selection. Conclusion Our analysis demonstrates different level of population differentiation among human populations for different gene groups.

  15. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  16. De Novo Origin of Human Protein-Coding Genes

    Science.gov (United States)

    Wu, Dong-Dong; Irwin, David M.; Zhang, Ya-Ping

    2011-01-01

    The de novo origin of a new protein-coding gene from non-coding DNA is considered to be a very rare occurrence in genomes. Here we identify 60 new protein-coding genes that originated de novo on the human lineage since divergence from the chimpanzee. The functionality of these genes is supported by both transcriptional and proteomic evidence. RNA–seq data indicate that these genes have their highest expression levels in the cerebral cortex and testes, which might suggest that these genes contribute to phenotypic traits that are unique to humans, such as improved cognitive ability. Our results are inconsistent with the traditional view that the de novo origin of new genes is very rare, thus there should be greater appreciation of the importance of the de novo origination of genes. PMID:22102831

  17. THE GENE EXPRESSION PROFILE OF HIGHLY METASTATIC HUMAN OVARIAN CANCER CELL LINE BY GENE CHIP

    Institute of Scientific and Technical Information of China (English)

    吕桂泉; 许沈华; 牟瀚舟; 朱赤红; 羊正炎; 高永良; 楼洪坤; 刘祥麟; 杨文; 程勇

    2001-01-01

    To study the gene expression of high metastatic human ovarian carcinoma cell line (HO-8910PM) and to screen for novel metastasis- associated genes by cDNA microarray. Methods: The cDNA was retro-transcribed from equal quantity mRNA derived from tissues of highly metastatic ovarian carcinoma cell line and normal ovarian, and was labeled with Cy5 and Cy3 fluorescence as probes. The mixed probes were hybridized with BioDoor 4096 double dot human whole gene chip. The chip was scanned by scanArray 3000 laser scanner. The acquired image was analyzed by ImaGene 3.0 software. Results: By applying the cDNA microarray we found: A total of 323 genes whose expression level were 3 times higher or lower in HO-8910PM cell than normal ovarian epithelium cell were screened out, with 71 higher and 252 lower respectively. Among these 10 were new genes. 67 genes showed expression difference bigger than 6 times between HO-8910PM cell and normal ovarian epithelium cell, among these genes 12 were higher, 55 lower, and two new genes were found. Conclusion: cDNA microarray technique is effective in screening the differentially expressed genes between human ovarian cancer cell line (HO-8910PM) and normal ovarian epithelium cell. Using the cDNA microarray to analyze of human ovarian cancer cell line gene expression profile difference will help the gene diagnosis, treatment and protection.

  18. Cytomegalovirus and chronic allograft rejection in liver transplantation

    Institute of Scientific and Technical Information of China (English)

    Liang-Hui Gao; Shu-Sen Zheng

    2004-01-01

    Cytomegalovirus (CMV) remains one of the most frequent viral infections and the most common cause of death after liver transplantation (LT). Chronic allograft liver rejection remains the major obstacle to long-term allograft survival and CMV infection is one of the suggested risk factors for chronic allograft rejection. The precise relationship between cytomegalovirus and chronic rejection remains uncertain.This review addresses the morbidity of cytomegalovirus infection and the risk factors associated with it, the relationship between cytomegalovirus and chronic allograft liver rejection and the potential mechanisms of it.

  19. Acute cervicitis and vulvovaginitis may be associated with Cytomegalovirus

    OpenAIRE

    Abou, Magali; Dällenbach, Patrick

    2013-01-01

    Cytomegalovirus (CMV) infection in immunocompetent hosts is generally asymptomatic or may present as a mononucleosic syndrome. Its association with acute cervicitis and vulvovaginitis has rarely been reported.

  20. Mutations in the human TWIST gene.

    Science.gov (United States)

    Gripp, K W; Zackai, E H; Stolle, C A

    2000-01-01

    Saethre-Chotzen syndrome is a relatively common craniosynostosis disorder with autosomal dominant inheritance. Mutations in the TWIST gene have been identified in patients with Saethre-Chotzen syndrome. The TWIST gene product is a transcription factor with DNA binding and helix-loop-helix domains. Numerous missense and nonsense mutations cluster in the functional domains, without any apparent mutational hot spot. Two novel point mutations and one novel polymorphism are included in this review. Large deletions including the TWIST gene have been identified in some patients with learning disabilities or mental retardation, which are not typically part of the Saethre-Chotzen syndrome. Comprehensive studies in patients with the clinical diagnosis of Saethre-Chotzen syndrome have demonstrated a TWIST gene abnormality in about 80%, up to 37% of which may be large deletions [Johnson et al., 1998]. The gene deletions and numerous nonsense mutations are suggestive of haploinsufficiency as the disease-causing mechanism. No genotype phenotype correlation was apparent.

  1. Human brain evolution: from gene discovery to phenotype discovery.

    Science.gov (United States)

    Preuss, Todd M

    2012-06-26

    The rise of comparative genomics and related technologies has added important new dimensions to the study of human evolution. Our knowledge of the genes that underwent expression changes or were targets of positive selection in human evolution is rapidly increasing, as is our knowledge of gene duplications, translocations, and deletions. It is now clear that the genetic differences between humans and chimpanzees are far more extensive than previously thought; their genomes are not 98% or 99% identical. Despite the rapid growth in our understanding of the evolution of the human genome, our understanding of the relationship between genetic changes and phenotypic changes is tenuous. This is true even for the most intensively studied gene, FOXP2, which underwent positive selection in the human terminal lineage and is thought to have played an important role in the evolution of human speech and language. In part, the difficulty of connecting genes to phenotypes reflects our generally poor knowledge of human phenotypic specializations, as well as the difficulty of interpreting the consequences of genetic changes in species that are not amenable to invasive research. On the positive side, investigations of FOXP2, along with genomewide surveys of gene-expression changes and selection-driven sequence changes, offer the opportunity for "phenotype discovery," providing clues to human phenotypic specializations that were previously unsuspected. What is more, at least some of the specializations that have been proposed are amenable to testing with noninvasive experimental techniques appropriate for the study of humans and apes.

  2. [Structural organization of the human p53 gene. I. Molecular cloning of the human p53 gene].

    Science.gov (United States)

    Bukhman, V L; Ninkina, N N; Chumakov, P M; Khilenkova, M A; Samarina, O P

    1987-09-01

    Human p53 gene was cloned from the normal human placenta DNA and DNA from the strain of human kidney carcinoma transplanted into nude mice. Representative gene library from tumor strain of human kidney carcinoma and library of 15 kb EcoRI fragments of DNA from normal human placenta were constructed. Maniatis gene library was also used. Five clones were isolated from kidney carcinoma library; they covered 27 kb and included full-length p53 gene of 19.5 kb and flanking sequences. From normal placenta libraries three overlapped clones were obtained. Restriction map of cloned sequences was constructed and polarity of the p53 gene determined. The first intron of the gene is large (10.4 kb); polymorphic BglII site was observed in this intron, which allows to discriminate between allelic genes. One of these (BglII-) is ten times more abundant that the other (BglII+). Both allelic genes are able to synthesize the 2.8 kb p53 gene.

  3. Mucin gene expression in human middle ear epithelium.

    Science.gov (United States)

    Kerschner, Joseph Edward

    2007-09-01

    To investigate the expression of recently identified human mucin genes in human middle ear epithelial (MEE) specimens from in vivo middle ear (ME) tissue and to compare this mucin gene expression with mucin gene expression in an immortalized cell culture in vitro source of human MEE. Human MEE was harvested as in vivo specimens, and human MEE cell cultures were established for in vitro experimentation. RNA was extracted from MEE and primers designed for reverse-transcription polymerase chain reaction to assess for mucin gene MUC1, MUC2, MUC3, MUC4, MUC5AC, MUC5B, MUC6, MUC7, MUC8, MUC9, MUC11, MUC12, MUC13, MUC15, MUC16, MUC18, MUC19, and MUC20 expression. Mucin gene expression in the in vivo and in vitro ME tissue was compared against tissues with known expression of the mucin genes in question. Mucin genes MUC1, MUC2, MUC3, MUC4, MUC5AC, MUC5B, MUC7, MUC8, MUC9, MUC11, MUC13, MUC15, MUC16, MUC18, MUC19, and MUC20 were identified and expressed in both the in vivo and in vitro samples of MEE. Mucin genes MUC6, MUC12, and MUC17 were not identified in either tissue samples. Many of the mucin genes that have been recently identified are expressed in human MEE. These genes are expressed in a similar manner in both in vivo and in vitro models. Understanding the mechanisms in which these genes regulate the physiology and pathophysiology of MEE will provide a more thorough understanding of the molecular mechanics of the MEE and disease conditions such as otitis media.

  4. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  5. The mechanism of gene targeting in human somatic cells.

    Directory of Open Access Journals (Sweden)

    Yinan Kan

    2014-04-01

    Full Text Available Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB repair known as homologous recombination (HR. The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells.

  6. The mechanism of gene targeting in human somatic cells.

    Science.gov (United States)

    Kan, Yinan; Ruis, Brian; Lin, Sherry; Hendrickson, Eric A

    2014-04-01

    Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB) repair known as homologous recombination (HR). The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells.

  7. Structure and in vitro transcription of human globin genes.

    Science.gov (United States)

    Proudfoot, N J; Shander, M H; Manley, J L; Gefter, M L; Maniatis, T

    1980-09-19

    The alpha-like and beta-like subunits of human hemoglobin are encoded by a small family of genes that are differentially expressed during development. Through the use of molecular cloning procedures, each member of this gene family has been isolated and extensively characterized. Although the alpha-like and beta-like globin genes are located on different chromosomes, both sets of genes are arranged in closely linked clusters. In both clusters, each of the genes is transcribed from the same DNA strand, and the genes are arranged in the order of their expressions during development. Structural comparisons of immediately adjacent genes within each cluster have provided evidence for the occurrence of gene duplication and correction during evolution and have led to the discovery of pseudogenes, genes that have acquired numerous mutations that prevent their normal expression. Recently, in vivo and in vitro systems for studying the expression of cloned eukaryotic genes have been developed as a means of identifying DNA sequences that are necessary for normal gene function. This article describes the application of an in vitro transcription procedure to the study of human globin gene expression.

  8. Genic insights from integrated human proteomics in GeneCards.

    Science.gov (United States)

    Fishilevich, Simon; Zimmerman, Shahar; Kohn, Asher; Iny Stein, Tsippi; Olender, Tsviya; Kolker, Eugene; Safran, Marilyn; Lancet, Doron

    2016-01-01

    GeneCards is a one-stop shop for searchable human gene annotations (http://www.genecards.org/). Data are automatically mined from ∼120 sources and presented in an integrated web card for every human gene. We report the application of recent advances in proteomics to enhance gene annotation and classification in GeneCards. First, we constructed the Human Integrated Protein Expression Database (HIPED), a unified database of protein abundance in human tissues, based on the publically available mass spectrometry (MS)-based proteomics sources ProteomicsDB, Multi-Omics Profiling Expression Database, Protein Abundance Across Organisms and The MaxQuant DataBase. The integrated database, residing within GeneCards, compares favourably with its individual sources, covering nearly 90% of human protein-coding genes. For gene annotation and comparisons, we first defined a protein expression vector for each gene, based on normalized abundances in 69 normal human tissues. This vector is portrayed in the GeneCards expression section as a bar graph, allowing visual inspection and comparison. These data are juxtaposed with transcriptome bar graphs. Using the protein expression vectors, we further defined a pairwise metric that helps assess expression-based pairwise proximity. This new metric for finding functional partners complements eight others, including sharing of pathways, gene ontology (GO) terms and domains, implemented in the GeneCards Suite. In parallel, we calculated proteome-based differential expression, highlighting a subset of tissues that overexpress a gene and subserving gene classification. This textual annotation allows users of VarElect, the suite's next-generation phenotyper, to more effectively discover causative disease variants. Finally, we define the protein-RNA expression ratio and correlation as yet another attribute of every gene in each tissue, adding further annotative information. The results constitute a significant enhancement of several Gene

  9. Cellular functions of genetically imprinted genes in human and mouse as annotated in the gene ontology.

    Science.gov (United States)

    Hamed, Mohamed; Ismael, Siba; Paulsen, Martina; Helms, Volkhard

    2012-01-01

    By analyzing the cellular functions of genetically imprinted genes as annotated in the Gene Ontology for human and mouse, we found that imprinted genes are often involved in developmental, transport and regulatory processes. In the human, paternally expressed genes are enriched in GO terms related to the development of organs and of anatomical structures. In the mouse, maternally expressed genes regulate cation transport as well as G-protein signaling processes. Furthermore, we investigated if imprinted genes are regulated by common transcription factors. We identified 25 TF families that showed an enrichment of binding sites in the set of imprinted genes in human and 40 TF families in mouse. In general, maternally and paternally expressed genes are not regulated by different transcription factors. The genes Nnat, Klf14, Blcap, Gnas and Ube3a contribute most to the enrichment of TF families. In the mouse, genes that are maternally expressed in placenta are enriched for AP1 binding sites. In the human, we found that these genes possessed binding sites for both, AP1 and SP1.

  10. A Homolog Pentameric Complex Dictates Viral Epithelial Tropism, Pathogenicity and Congenital Infection Rate in Guinea Pig Cytomegalovirus.

    Science.gov (United States)

    Coleman, Stewart; Choi, K Yeon; Root, Matthew; McGregor, Alistair

    2016-07-01

    In human cytomegalovirus (HCMV), tropism to epithelial and endothelial cells is dependent upon a pentameric complex (PC). Given the structure of the placenta, the PC is potentially an important neutralizing antibody target antigen against congenital infection. The guinea pig is the only small animal model for congenital CMV. Guinea pig cytomegalovirus (GPCMV) potentially encodes a UL128-131 HCMV PC homolog locus (GP128-GP133). In transient expression studies, GPCMV gH and gL glycoproteins interacted with UL128, UL130 and UL131 homolog proteins (designated GP129 and GP131 and GP133 respectively) to form PC or subcomplexes which were determined by immunoprecipitation reactions directed to gH or gL. A natural GP129 C-terminal deletion mutant (aa 107-179) and a chimeric HCMV UL128 C-terminal domain swap GP129 mutant failed to form PC with other components. GPCMV infection of a newly established guinea pig epithelial cell line required a complete PC and a GP129 mutant virus lacked epithelial tropism and was attenuated in the guinea pig for pathogenicity and had a low congenital transmission rate. Individual knockout of GP131 or 133 genes resulted in loss of viral epithelial tropism. A GP128 mutant virus retained epithelial tropism and GP128 was determined not to be a PC component. A series of GPCMV mutants demonstrated that gO was not strictly essential for epithelial infection whereas gB and the PC were essential. Ectopic expression of a GP129 cDNA in a GP129 mutant virus restored epithelial tropism, pathogenicity and congenital infection. Overall, GPCMV forms a PC similar to HCMV which enables evaluation of PC based vaccine strategies in the guinea pig model.

  11. State-of-the-art human gene therapy: part II. Gene therapy strategies and clinical applications.

    Science.gov (United States)

    Wang, Dan; Gao, Guangping

    2014-09-01

    In Part I of this Review (Wang and Gao, 2014), we introduced recent advances in gene delivery technologies and explained how they have powered some of the current human gene therapy applications. In Part II, we expand the discussion on gene therapy applications, focusing on some of the most exciting clinical uses. To help readers to grasp the essence and to better organize the diverse applications, we categorize them under four gene therapy strategies: (1) gene replacement therapy for monogenic diseases, (2) gene addition for complex disorders and infectious diseases, (3) gene expression alteration targeting RNA, and (4) gene editing to introduce targeted changes in host genome. Human gene therapy started with the simple idea that replacing a faulty gene with a functional copy can cure a disease. It has been a long and bumpy road to finally translate this seemingly straightforward concept into reality. As many disease mechanisms unraveled, gene therapists have employed a gene addition strategy backed by a deep knowledge of what goes wrong in diseases and how to harness host cellular machinery to battle against diseases. Breakthroughs in other biotechnologies, such as RNA interference and genome editing by chimeric nucleases, have the potential to be integrated into gene therapy. Although clinical trials utilizing these new technologies are currently sparse, these innovations are expected to greatly broaden the scope of gene therapy in the near future.

  12. Construction and Evaluation of Cytomegalovirus DNA Quantification System with Real-Time Detection Polymerase Chain Reaction

    OpenAIRE

    Hatayama, Yuki; Hashimoto, Yuki; Hara, Ayako; Motokura, Toru

    2016-01-01

    Background For patients with reactivation of human cytomegalovirus (CMV), a highly sensitive and accurate CMV quantification system is essential to monitor viral load. Methods We constructed a real-time detection PCR (RTD-PCR) system for CMV DNA and evaluated its linearity, lower detection limit, dynamic range and accuracy using two CMV standards. We used 219 clinical samples derived from 101 patients to compare the system with the pp65 antigen test. Results The 95% detection limit was determ...

  13. Development and preclinical evaluation of an alphavirus replicon particle vaccine for cytomegalovirus

    OpenAIRE

    Elizabeth A Reap; Morris, John; Dryga, Sergey A.; Maughan, Maureen; Talarico, Todd; Esch, Robert E.; Negri, Sarah; Burnett,Bruce; Graham, Andrew; Olmsted, Robert A.; Jeffrey D. Chulay

    2007-01-01

    We used a replication-incompetent, single-cycle, alphavirus replicon vector system to produce virus-like replicon particles (VRP) expressing the extracellular domain of human cytomegalovirus (CMV) glycoprotein B or a pp65/IE1 fusion protein. Efficient production methods were scaled to produce pilot lots and clinical lots of each alphavirus replicon vaccine component. The vaccine induced high-titered antibody responses in mice and rabbits, as measured by ELISA and CMV neutralization assays, an...

  14. Transient Antiphospholipid Syndrome Associated with Primary Cytomegalovirus Infection: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Nakayama

    2014-01-01

    Full Text Available Viral infection is known to induce transient autoimmunity in humans. Acute cytomegalovirus (CMV infection is implicated in occasional thrombosis formation. We here, for the first time, report a 19-year-old female who had an acute CMV infection, leading to a deep venous thrombosis and a pulmonary embolism along with transient appearance of lupus anticoagulant. The pathological role of antiphospholipid antibodies in CMV-mediated thrombosis is discussed.

  15. Gene Therapy of Human Breast Cancer

    Science.gov (United States)

    1996-10-01

    1987. Partial characterization of chicken spleen cell culture supernatants stimulated with Staphylococcus aureus. Developmental & Comparative...Immunology 1 1: 191. 8. Schoof, D. D., and C. H. Tempelis. 1 986. The role of soluble protein A in chicken spleen cell activation. Developmental...promoter upstream of the neomycin phosphotransferase gene. No other eukarjotic genes are expressed. Other sequences include an intron and poly(A) site

  16. Characterization of specific antibodies against cytomegalovirus (CMV)-encoded interleukin 10 produced by 28 % of CMV-seropositive blood donors

    DEFF Research Database (Denmark)

    de Lemos Rieper, Carina; Galle, Pia Søndergaard; Pedersen, Bente Klarlund

    2011-01-01

    Cytomegalovirus (CMV) has evolved multiple immunological evasion strategies, including the encoding of viral interleukin (IL)-10 homologues (cmvIL-10). In this study, cmvIL-10 bound avidly to the same receptors on blood mononuclear cells and was as bio-potent as native human IL-10. Seventeen...

  17. A physical map of 30,000 human genes.

    Science.gov (United States)

    Deloukas, P; Schuler, G D; Gyapay, G; Beasley, E M; Soderlund, C; Rodriguez-Tomé, P; Hui, L; Matise, T C; McKusick, K B; Beckmann, J S; Bentolila, S; Bihoreau, M; Birren, B B; Browne, J; Butler, A; Castle, A B; Chiannilkulchai, N; Clee, C; Day, P J; Dehejia, A; Dibling, T; Drouot, N; Duprat, S; Fizames, C; Fox, S; Gelling, S; Green, L; Harrison, P; Hocking, R; Holloway, E; Hunt, S; Keil, S; Lijnzaad, P; Louis-Dit-Sully, C; Ma, J; Mendis, A; Miller, J; Morissette, J; Muselet, D; Nusbaum, H C; Peck, A; Rozen, S; Simon, D; Slonim, D K; Staples, R; Stein, L D; Stewart, E A; Suchard, M A; Thangarajah, T; Vega-Czarny, N; Webber, C; Wu, X; Hudson, J; Auffray, C; Nomura, N; Sikela, J M; Polymeropoulos, M H; James, M R; Lander, E S; Hudson, T J; Myers, R M; Cox, D R; Weissenbach, J; Boguski, M S; Bentley, D R

    1998-10-23

    A map of 30,181 human gene-based markers was assembled and integrated with the current genetic map by radiation hybrid mapping. The new gene map contains nearly twice as many genes as the previous release, includes most genes that encode proteins of known function, and is twofold to threefold more accurate than the previous version. A redesigned, more informative and functional World Wide Web site (www.ncbi.nlm.nih.gov/genemap) provides the mapping information and associated data and annotations. This resource constitutes an important infrastructure and tool for the study of complex genetic traits, the positional cloning of disease genes, the cross-referencing of mammalian genomes, and validated human transcribed sequences for large-scale studies of gene expression.

  18. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    Science.gov (United States)

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  19. Human DJ-1-specific Transcriptional Activation of Tyrosine Hydroxylase Gene*

    Science.gov (United States)

    Ishikawa, Shizuma; Taira, Takahiro; Takahashi-Niki, Kazuko; Niki, Takeshi; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M. M.

    2010-01-01

    Loss-of-function mutation in the DJ-1 gene causes a subset of familial Parkinson disease. The mechanism underlying DJ-1-related selective vulnerability in the dopaminergic pathway is, however, not known. DJ-1 has multiple functions, including transcriptional regulation, and one of transcriptional target genes for DJ-1 is the tyrosine hydroxylase (TH) gene, the product of which is a key enzyme for dopamine biosynthesis. It has been reported that DJ-1 is a neuroprotective transcriptional co-activator that sequesters a transcriptional co-repressor polypyrimidine tract-binding protein-associated splicing factor (PSF) from the TH gene promoter. In this study, we found that knockdown of human DJ-1 by small interference RNA in human dopaminergic cell lines attenuated TH gene expression and 4-dihydroxy-l-phenylalanine production but that knockdown or knock-out of mouse DJ-1 in mouse cell lines or in mice did not affect such expression and TH activity. In reporter assays using the human TH gene promoter linked to the luciferase gene, stimulation of TH promoter activity was observed in human cells, but not mouse cells, that had been transfected with DJ-1. Although human DJ-1 and mouse DJ-1 were associated either with human or with mouse PSF, TH promoter activity inhibited by PSF was restored by human DJ-1 but not by mouse DJ-1. Chromatin immunoprecipitation assays revealed that the complex of PSF with DJ-1 bound to the human but not the mouse TH gene promoter. These results suggest a novel species-specific transcriptional regulation of the TH promoter by DJ-1 and one of the mechanisms for no reduction of TH in DJ-1-knock-out mice. PMID:20938049

  20. Molecular cloning of the cDNA and chromosomal localization of the gene for a putative seven-transmembrane segment (7-TMS) receptor isolated from human spleen

    Energy Technology Data Exchange (ETDEWEB)

    Federsppiel, B.; Melhado, I.G.; Delaney, A.; Clark-Lewis, I. (Univ. of British Columbia, Vancouver (Canada)); Duncan, A.M.V. (Queens Univ., Kinston, Ontario (Canada)); Jirik, F.R. (Hospital for Sick Children, Toronto, Ontario (Canada))

    1993-06-01

    A family of proinflammatory cytokines sharing several structural features has been described and includes, for example, interleukin-8, monocyte chemoattractant protein-1, and melanocyte growth stimulatory activity. Recently, the receptors for interleukin-8 have been isolated and found to belong to the seven-transmembrane domain class of G protein-coupled receptors. As other members of this cytokine family likely interact with similar receptors, the polymerase chain reaction was employed to isolate related receptors from human peripheral blood adherent cells. Degenerate oligonucleotide primers based on the rabbit interleukin-8 receptor sequence were used. The corresponding full-length cDNA was isolated from a human spleen cDNA library. The predicted protein sequence of this clone, designated pBE1.3, was 93% identical to that of a cDNA isolated from bovine locus coeruleus, which apparently encodes a neuropeptide Y receptor, and also shows similarity with the interleukin-8 receptor and the human cytomegalovirus US28 sequences. The gene, designated D2S201E, was localized to human chromosome 2q21. By Northern blotting, transcripts hybridizing to this cDNA were present in a variety of tissues and cells, including those of hemopoietic origin. 32 refs., 5 figs.

  1. Comparison of the canine and human olfactory receptor gene repertoires

    NARCIS (Netherlands)

    Quignon, P; Kirkness, E; Cadieu, E; Touleimat, N; Guyon, R; Renier, C; Hitte, C; Andre, C; Fraser, C; Galibert, F

    2003-01-01

    Background: Olfactory receptors (ORs), the first dedicated molecules with which odorants physically interact to arouse an olfactory sensation, constitute the largest gene family in vertebrates, including around 900 genes in human and 1,500 in the mouse. Whereas dogs, like many other mammals, have a

  2. Polymorphic GGC repeat differentially regulates human reelin gene expression levels.

    Science.gov (United States)

    Persico, A M; Levitt, P; Pimenta, A F

    2006-10-01

    The human gene encoding Reelin (RELN), a pivotal protein in neurodevelopment, includes a polymorphic GGC repeat in its 5' untranslated region (UTR). CHO cells transfected with constructs encompassing the RELN 5'UTR with 4-to-13 GGC repeats upstream of the luciferase reporter gene show declining luciferase activity with increasing GGC repeat number (P autism.

  3. Gene expression profiles of the developing human retina

    Institute of Scientific and Technical Information of China (English)

    WANG Feng; LI Huiming; LIU Wenwen; XU Ping; HU Gengxi; CHENG Yidong; JIA Libin; HUANG Qian

    2004-01-01

    Retina is a multilayer and highly specialized tissue important in converting light into neural signals. In humans, the critical period for the formation of complex multiplayer structure takes place during embryogenesis between 12 and 28 weeks. The morphologic changes during retinal development in humans have been studied but little is known about the molecular events essential for the formation of the retina. To gain further insights into this process, cDNA microarrays containing 16361 human gene probes were used to measure the gene expression levels in retinas. Of the 16361 genes, 68.7%, 71.4% and 69.7% showed positive hybridization with cDNAs made from 12-16 week fetal, 22-26 week fetal and adult retinas. A total of 814 genes showed a minimum of 3-fold changes between the lowest and highest expression levels among three time points and among them, 106 genes had expression levels with the hybridization intensity above 100 at one or more time points. The clustering analysis suggested that the majority of differentially expressed genes were down-regulated during the retinal development. The differentially expressed genes were further classified according to functions of known genes, and were ranked in decreasing order according to frequency: development, differentiation, signal transduction, protein synthesis and translation, metabolism, DNA binding and transcription, DNA synthesis-repair-recombination, immuno-response, ion channel- transport, cell receptor, cytoskeleton, cell cycle, pro-oncogene, stress and apoptosis related genes. Among these 106 differentially expressed genes, 60 are already present in NEI retina cDNA or EST Databank but the remaining 46 genes are absent and thus identified as "function unknown". To validate gene expression data from the microarray, real-time RT-PCR was performed for 46 "function unknown" genes and 6 known retina specific expression genes, and β-actin was used as internal control. Twenty-seven of these genes showed very similar

  4. Case report: persistent cytomegalovirus (CMV) infection after haploidentical hematopoietic stem cell transplantation using in vivo alemtuzumab: emergence of resistant CMV due to mutations in the UL97 and UL54 genes.

    Science.gov (United States)

    Oshima, Kumi; Kanda, Yoshinobu; Kako, Shinichi; Asano-Mori, Yuki; Watanabe, Takuro; Motokura, Toru; Chiba, Shigeru; Shiraki, Kimiyasu; Kurokawa, Mineo

    2008-10-01

    Addition of in vivo alemtuzumab to the conditioning regimen enabled 2- or 3-locus-mismatched hematopoietic stem cell transplantation with an acceptable incidence of graft-versus-host-disease. However, the procedure was associated with a high incidence of cytomegalovirus (CMV) reactivation. Although preemptive therapy with ganciclovir prevented successfully severe CMV diseases and CMV-related mortality, a patient developed persistent positive CMV antigenemia for more than 1 year after transplantation and CMV disease, despite the use of ganciclovir and foscarnet. The in vitro susceptibility assay showed that the clinical isolate was resistant to foscarnet, moderately resistant to ganciclovir, but sensitive to cidofovir. Therefore, cidofovir was administered. CMV antigenemia became negative within 2 weeks and never developed again. Nucleotide sequence of the UL54 and UL97 of the clinical isolate showed 4 amino acid substitutions (V11L, Q578H, S655L, and G874R) in UL54 and 2 mutations (A140V and A594V) in UL97 compared with the Towne and AD169 strains. Ganciclovir resistance was suspected to be caused by both A594V of UL97 and Q578H of UL54, whereas foscarnet resistance was due mainly to Q578H of UL54. In conclusion, the in vitro susceptibility assay as well as nucleotide sequence of clinical isolate is important to choose appropriate antiviral agents for patients who have persistent CMV reactivation after stem cell transplantation.

  5. Complementation of Yeast Genes with Human Genes as an Experimental Platform for Functional Testing of Human Genetic Variants.

    Science.gov (United States)

    Hamza, Akil; Tammpere, Erik; Kofoed, Megan; Keong, Christelle; Chiang, Jennifer; Giaever, Guri; Nislow, Corey; Hieter, Philip

    2015-11-01

    While the pace of discovery of human genetic variants in tumors, patients, and diverse populations has rapidly accelerated, deciphering their functional consequence has become rate-limiting. Using cross-species complementation, model organisms like the budding yeast, Saccharomyces cerevisiae, can be utilized to fill this gap and serve as a platform for testing human genetic variants. To this end, we performed two parallel screens, a one-to-one complementation screen for essential yeast genes implicated in chromosome instability and a pool-to-pool screen that queried all possible essential yeast genes for rescue of lethality by all possible human homologs. Our work identified 65 human cDNAs that can replace the null allele of essential yeast genes, including the nonorthologous pair yRFT1/hSEC61A1. We chose four human cDNAs (hLIG1, hSSRP1, hPPP1CA, and hPPP1CC) for which their yeast gene counterparts function in chromosome stability and assayed in yeast 35 tumor-specific missense mutations for growth defects and sensitivity to DNA-damaging agents. This resulted in a set of human-yeast gene complementation pairs that allow human genetic variants to be readily characterized in yeast, and a prioritized list of somatic mutations that could contribute to chromosome instability in human tumors. These data establish the utility of this cross-species experimental approach. Copyright © 2015 by the Genetics Society of America.

  6. Effect of a 14-day course of foscarnet on cytomegalovirus (CMV) blood markers in a randomized study of human immunodeficiency virus-infected patients with persistent CMV viremia. Agence National de Recherche du SIDA 023 Study Group.

    Science.gov (United States)

    Salmon-Céron, D; Fillet, A M; Aboulker, J P; Gérard, L; Houhou, N; Carrière, I; Ostinelli, J; Vildé, J L; Brun-Vézinet, F; Leport, C

    1999-04-01

    A randomized open-label phase 2 trial compared the virological and clinical effects on cytomegalovirus (CMV) infection of a 14-day course of intravenous foscarnet (100 mg/[kg x 12 h]) or no treatment in 42 HIV-infected patients with virus load rapidly increased. The probability of CMV disease at 6 months was 43% in both groups. Patients who had or who achieved a negative blood culture at any time had a reduced risk of CMV disease (RR = 2.64; 95% CI = 1.24-5.62; P = .02). This study suggests that sequential courses of intravenous foscarnet might not be a good strategy for preemptive therapy in this population and that in patients with a positive blood marker, treatment able to induce and maintain negative CMV blood cultures could constitute an effective intervention.

  7. Mapping gene associations in human mitochondria using clinical disease phenotypes.

    Directory of Open Access Journals (Sweden)

    Curt Scharfe

    2009-04-01

    Full Text Available Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects

  8. Severe Cytomegalovirus Gastritis During Natalizumab-Mediated Immunosuppression

    Science.gov (United States)

    Hassan, Adil; Hassan, Anjum; Hassan, Tariq

    2017-01-01

    We report a 35-year-old female receiving natalizumab as monotherapy for multiple sclerosis who subsequently developed severe cytomegalovirus gastritis. As cytomegalovirus gastritis has not been previously described during natalizumab treatment, we discuss the biological plausibility of this potential association and avenues for further study. PMID:28331881

  9. GWAS, Cytomegalovirus Infection, and Schizophrenia

    DEFF Research Database (Denmark)

    Grove, Jakob; Børglum, Anders; Pearce, Brad D

    2014-01-01

    In recent years, good progress has been made in uncovering the genetic underpinnings of schizophrenia. Even so, as a polygenic disorder, schizophrenia has a complex etiology that is far from understood. Meanwhile, data are being collected enabling the study of interactions between genes...... and the environment. A confluence of data from genetic and environmental exposure studies point to the role of infections and immunity in the pathophysiology of schizophrenia. In a recent study by Børglum et al., a single nucleotide polymorphism (SNP) in the gene CTNNA3 was identified that may provide clues to gene......-environment interactions. The carriers of the minor allele for the SNP had a fivefold risk of later developing schizophrenia if their mothers were CMV positive, while the children not carrying the allele had no excess risk from maternal CMV. In the current paper, we summarize recent advances to clarify a possible...

  10. Diagnosis and Treatment of Cytomegalovirus Keratitis%巨细胞病毒性角膜炎的诊断与治疗

    Institute of Scientific and Technical Information of China (English)

    王玉珏; 朱丹; 陶勇

    2016-01-01

    Cytomegalovirus is widespread in nature, is a high rate of human infection of a virus, it can infringe the human body organs, so that the human body for a long time to carry the virus. In the research of cytomegalovirus, we ifnd the cytomegalovirus can infect cornea, which is called cytomegalovirus keratitis. The clinical features of cytomegalovirus keratitis were corneal edema, Keratic Precipitates (KP), intraocular pressure, repeated infection and corneal endothelial cells decreased. Cytomegalovirus keratitis can be diagnosed by real-time PCR, and this diagnosis can not only diagnose cytomegalovirus infection, but also evaluate the severity of the disease. Currently the prevention and treatment of cytomegalovirus keratitis of drugs, including: ganciclovir and phosphonoformate, cidofovir, poly I-C etc., these drugs in largely improves the doctor of cytomegalovirus infection prevention and control capacity. The diagnosis and treatment of cytomegalovirus keratitis are discussed in this paper.%巨细胞病毒在自然界中广泛存在,是人类感染率极高的一种病毒,它可侵犯人体的各个器官,使人体长期以致终生携带病毒。在对巨细胞病毒的研究中表明巨细胞病毒可感染角膜引起角膜炎症,称巨细胞病毒性角膜炎。巨细胞病毒性角膜炎的临床特征是不同程度的角膜水肿、角膜后沉淀物、高眼压、反复感染和角膜内皮细胞减少。巨细胞病毒性角膜炎可以利用实时定量荧光PCR进行诊断,这种诊断方法不仅可以确诊巨细胞病毒感染,还可评估疾病的严重性。目前预防和治疗巨细胞病毒性角膜炎的药物包括更昔洛韦、膦甲酸、西多福韦、聚肌胞等,这些药物在很大程度上提高了医生对巨细胞病毒感染的防治能力。本文将对巨细胞病毒性角膜炎的诊断与治疗做系统论述。

  11. Novel definition files for human GeneChips based on GeneAnnot

    Directory of Open Access Journals (Sweden)

    Ferrari Sergio

    2007-11-01

    Full Text Available Abstract Background Improvements in genome sequence annotation revealed discrepancies in the original probeset/gene assignment in Affymetrix microarray and the existence of differences between annotations and effective alignments of probes and transcription products. In the current generation of Affymetrix human GeneChips, most probesets include probes matching transcripts from more than one gene and probes which do not match any transcribed sequence. Results We developed a novel set of custom Chip Definition Files (CDF and the corresponding Bioconductor libraries for Affymetrix human GeneChips, based on the information contained in the GeneAnnot database. GeneAnnot-based CDFs are composed of unique custom-probesets, including only probes matching a single gene. Conclusion GeneAnnot-based custom CDFs solve the problem of a reliable reconstruction of expression levels and eliminate the existence of more than one probeset per gene, which often leads to discordant expression signals for the same transcript when gene differential expression is the focus of the analysis. GeneAnnot CDFs are freely distributed and fully compliant with Affymetrix standards and all available software for gene expression analysis. The CDF libraries are available from http://www.xlab.unimo.it/GA_CDF, along with supplementary information (CDF libraries, installation guidelines and R code, CDF statistics, and analysis results.

  12. Structure of the human 4-hydroxyphenylpyruvic acid dioxygenase gene (HPD)

    Energy Technology Data Exchange (ETDEWEB)

    Awata, H.; Endo, F.; Matsuda, I. [Kumamoto Univ. (Japan)

    1994-10-01

    4-Hydroxyphenylpyruvic acid dioxygenase (HPD) is an important enzyme in tyrosine catabolism in most organisms. The activity of this enzyme is expressed mainly in the liver and developmentally regulated in mammals, and a genetic deficiency in this enzyme in humans and mice leads to hereditary tyrosinemia type 3. Using human HPD cDNA as a probe, a chromosomal gene related to HPD was isolated from human gene libraries. The human HPD gene is over 30 kb long and is split into 14 exons. The extract sizes and boundaries of exon blocks were determined, and all of the splice donor and acceptor sites conformed to the GT/AG rule. Analysis of the 5{prime} flanking sequence of the gene suggests that expression of the gene is regulated by hepatocyte-specific and liver-enriched transcription factors, as well as by hormones. These features of the 5{prime} flanking region of the gene are similar to those of other genes that are specifically expressed in hepatocytes and that are developmentally regulated. 41 refs., 2 figs., 1 tab.

  13. Translational selection in human: More pronounced in housekeeping genes

    KAUST Repository

    Ma, Lina

    2014-07-10

    Background: Translational selection is a ubiquitous and significant mechanism to regulate protein expression in prokaryotes and unicellular eukaryotes. Recent evidence has shown that translational selection is weakly operative in highly expressed genes in human and other vertebrates. However, it remains unclear whether translational selection acts differentially on human genes depending on their expression patterns.Results: Here we report that human housekeeping (HK) genes that are strictly defined as genes that are expressed ubiquitously and consistently in most or all tissues, are under stronger translational selection.Conclusions: These observations clearly show that translational selection is also closely associated with expression pattern. Our results suggest that human HK genes are more efficiently and/or accurately translated into proteins, which will inevitably open up a new understanding of HK genes and the regulation of gene expression.Reviewers: This article was reviewed by Yuan Yuan, Baylor College of Medicine; Han Liang, University of Texas MD Anderson Cancer Center (nominated by Dr Laura Landweber) Eugene Koonin, NCBI, NLM, NIH, United States of America Sandor Pongor, International Centre for Genetic Engineering and biotechnology (ICGEB), Italy. © 2014 Ma et al.; licensee BioMed Central Ltd.

  14. Are mice pigmentary genes throwing light on humans?

    Directory of Open Access Journals (Sweden)

    Bose S

    1993-01-01

    Full Text Available In this article the rapid advances made in the molecular genetics of inherited disorders of hypo and hyperpigmentation during the past three years are reviewed. The main focus is on studies in mice as compared to homologues in humans. The main hypomelanotic diseases included are, piebaldism (white spotting due to mutations of c-KIT, PDGF and MGF genes; vitiligo (microphathalmia mice mutations of c-Kit and c-fms genes; Waardenburg syndrome (splotch locus mutations of mice PAX-3 or human Hup-2 genes; albinism (mutations of tyrosinase genes, Menkes disease (Mottled mouse, premature graying (mutations in light/brown locus/gp75/ TRP-1; Griscelli disease (mutations in TRP-1 and steel; Prader-willi and Angelman syndromes, tyrosinase-positive oculocutaneous albinism and hypomelanosis of lto (mutations of pink-eyed dilution gene/mapping to human chromosomes 15 q 11.2 - q12; and human platelet storage pool deficiency diseases due to defects in pallidin, an erythrocyte membrane protein (pallid mouse / mapping to 4.2 pallidin gene. The genetic characterization of hypermelanosis includes, neurofibromatosis 1 (Café-au-lait spots and McCune-Albright Syndrome. Rapid evolving knowledge about pigmentary genes will increase further the knowledge about these hypo and hyperpigmentary disorders.

  15. Identification of Haemophilus ducreyi genes expressed during human infection.

    Science.gov (United States)

    Bauer, Margaret E; Fortney, Kate R; Harrison, Alistair; Janowicz, Diane M; Munson, Robert S; Spinola, Stanley M

    2008-04-01

    To identify Haemophilus ducreyi transcripts that are expressed during human infection, we used selective capture of transcribed sequences (SCOTS) with RNA isolated from pustules obtained from three volunteers infected with H. ducreyi, and with RNA isolated from broth-grown bacteria used to infect volunteers. With SCOTS, competitive hybridization of tissue-derived and broth-derived sequences identifies genes that may be preferentially expressed in vivo. Among the three tissue specimens, we identified 531 genes expressed in vivo. Southern blot analysis of 60 genes from each tissue showed that 87 % of the identified genes hybridized better with cDNA derived from tissue specimens than with cDNA derived from broth-grown bacteria. RT-PCR on nine additional pustules confirmed in vivo expression of 10 of 11 selected genes in other volunteers. Of the 531 genes, 139 were identified in at least two volunteers. These 139 genes fell into several functional categories, including biosynthesis and metabolism, regulation, and cellular processes, such as transcription, translation, cell division, DNA replication and repair, and transport. Detection of genes involved in anaerobic and aerobic respiration indicated that H. ducreyi likely encounters both microenvironments within the pustule. Other genes detected suggest an increase in DNA damage and stress in vivo. Genes involved in virulence in other bacterial pathogens and 32 genes encoding hypothetical proteins were identified, and may represent novel virulence factors. We identified three genes, lspA1, lspA2 and tadA, known to be required for virulence in humans. This is the first study to broadly define transcripts expressed by H. ducreyi in humans.

  16. Localization of b-defensin genes in non human primates

    Directory of Open Access Journals (Sweden)

    M Ventura

    2009-06-01

    Full Text Available Defensins are a family of host defence peptides that play an important role in the innate immunity of mammalian and avian species. In humans, four b-defensins have been isolated so far, corresponding to the products of the genes DEFB1 (h-BD1, GenBank accession number NM_005218; DEFB4 (h-Bd2, NM_004942.2, DEFB103 (h-BD3, NM_018661; and DEFB104 (hBD4, NM_080389 mapping on chromosome 8p23.22. We have localized b- defensin genes on metaphasic chromosomes of great apes and several non-human primate species to determine their physical mapping. Using fluorescent in situ hybridization and BAC probes containing the four b-defensin genes, we have mapped the homologous regions to the b-defensin genes on chromosome 8p23-p.22 in non-human primates, while no signals were detected on prosimians chromosomes.

  17. Functional Insight From Fruit Flies on Human ADHD Candidate Genes

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Demontis, Ditte; Arvidson, Sandra Marie Neumann

    2015-01-01

    , and increased risk of mental comorbidities, makes ADHD a disorder with high individual and societal costs. We use Drosophila melanogaster as a model to investigate the phenotypic consequences of gene disruption of 14 genes with human orthologs, selected by their proposed contribution to increased risk...... for other mutants. Decreased activity level, when treated with dexamphetamine, is seen when using other ADHD animal models. Our findings suggest involvement of the proposed candidate genes Genes, Brain, and Behavior 2015 36 Talk Abstracts in hyperactivity in D. melanogaster, providing functional evidence...

  18. Massive alimentary tract bleeding due to cytomegalovirus infection in an elderly patient

    Directory of Open Access Journals (Sweden)

    Bora Koc

    2014-09-01

    Full Text Available In recent years, cytomegalovirus (CMV has been recognized as an important common pathogen in immunocompromized patients. This is due to the increasing number of immunosuppressive medications, intensive cancer chemotherapy use, recurrent transplantations, progressively aging population, and the higher number of human immunodeficiency virus infections. Cytomegalovirus infection especially interests the gastrointestinal tract, anywhere, from the mouth to the anus. Namely, the most commonly affected area is the colon, followed by duodenum, stomach, esophagus and small intestine. The most frequent manifestations of CMV colitis are: diarrhea, fever, gastrointestinal bleeding and abdominal pain. We report here the case of an 82-year-old woman, who was treated for non-Hodgkin lymphoma; she was admitted to the emergency department for abdominal pain and diffuse arthralgia, following massive upper- and lower- gastrointestinal bleeding, due to duodenal and colonic ulcers related to CMV infection.

  19. Evolutionary conservation in genes underlying human psychiatric disorders

    OpenAIRE

    Lisa Michelle Ogawa; Eric Joseph Vallender

    2014-01-01

    Many psychiatric diseases observed in humans have tenuous or absent analogs in other species. Most notable among these are schizophrenia and autism. One hypothesis has posited that these diseases have arisen as a consequence of human brain evolution, for example, that the same processes that led to advances in cognition, language, and executive function also resulted in novel diseases in humans when dysfunctional. Here, the molecular evolution of the protein-coding regions of genes associated...

  20. Automated discovery of functional generality of human gene expression programs.

    Directory of Open Access Journals (Sweden)

    Georg K Gerber

    2007-08-01

    Full Text Available An important research problem in computational biology is the identification of expression programs, sets of co-expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of these programs. The use of human expression data compendia for discovery of such programs presents several challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples, uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram, a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data, we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-kappaB transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to infection will be useful for guiding future biological experiments; genes from programs with low generality scores might serve as new drug targets that exhibit minimal

  1. 皮肌炎伴人类巨细胞病毒IgM阳性的临床分析%Clinical analysis of dermatomyositis associated with human IgM cytomegalovirus

    Institute of Scientific and Technical Information of China (English)

    赵琳; 张晓莉

    2016-01-01

    目的:分析人类巨细胞病毒(HCMV)特异性IgM抗体阳性的皮肌炎患者的临床特点。方法随机选取2012年6月至2015年8月在中国医科大学附属盛京医院风湿免疫科就诊的HCMV-IgM抗体阳性的18例皮肌炎患者(感染组)和HCMV-IgM阴性的38例皮肌炎患者(非感染组),对这两组患者的临床表现及实验室数据进行分析比较。同时,按照患者是否为初治分别分为感染初治组和非感染初治组,并且也对这两组的实验室数据进行比较分析。结果(1)HCMV-IgM阳性组与HCMV-IgM阴性组比较,CRP升高、免疫球蛋白升高、补体下降、Ro52阳性、肺间质纤维化和死亡总数差异均有统计学意义(P<0.05),而发热、血液系统的改变、Jo-1阳性、抗核抗体滴度阳性、CD4+T细胞和CD8+T细胞改变差异均无统计学意义(P>0.05)。(2)HCMV-IgM阳性感染初治组与HCMV-IgM阴性非感染初治组比较,补体下降、Ro52阳性、死亡总数差异均有统计学意义(P<0.05),而发热、CRP升高、血液系统的改变、Jo-1阳性、免疫球蛋升高、抗核抗体滴度阳性、CD4+T细胞和CD8+T细胞改变、肺间质纤维化差异均无统计学意义(P>0.05)。结论 HCMV-IgM阳性和阴性的皮肌炎患者临床表现不同,阳性组病情更严重,且HCMV-IgM阳性皮肌炎患者肺间质纤维化及死亡率高于HCMV-IgM阴性皮肌炎患者。%ObjectiveTo review the clinical data of dermatomyositis patients with human cytomegalovirus (HCMV) specific IgM antibody.MethodsRetrospectively reviewed clinical manifestation, laboratory data of 18 cases of dermatomyositis with positive HCMV-IgM and 38 cases of dermatomyositis with negative HCMV-IgM in Department of Rheumatology of Shengjing Hospital, China Medical University from June 2012 to August 2015. All the data were compared. Meanwhile, the patients were divided to HCMV-IgM positive early treatment group and HCMV

  2. 温州市区育龄妇女孕前巨细胞病毒感染现状调查%Investigation of human cytomegalovirus infection among women before pregnancy in Wenzhou region

    Institute of Scientific and Technical Information of China (English)

    吕静娟; 胡文胜; 余坚; 郑晓群

    2011-01-01

    目的 了解温州地区育龄妇女孕前人巨细胞病毒(HCMV)感染的状况.方法 收集2008年10月至2010年6日参加温州市龙湾区免费孕前优生筛查的妇女血标本2869份,采用酶联免疫吸附试验(ELISA)检测血清HCMV IgG/IgM抗体;HCMV IgM抗体阳性标本,采用实时荧光定量聚合酶链反应(FQ-PCR)检测血HCMV DNA载量;HCMV IgG/IgM抗体双阳性标本,采用尿素变性结合ELISA技术检测IgG抗体亲和力指教(AI).结果 2869份孕前妇女血清中HC-MV IgG抗体阳性检出率为97.77%(2805/2869),HCMV IgM抗体阳性检出率为0.77%(22/2 869),IgG/IgM抗体均阳性检出率占0.17%(5/2 869);22份HCMV IgM阳性标本中,血HCMV DNA阳性检出率为68.18%(15/22);5份HCMVIgG/IgM双阳性标本中,检出低亲和力IgG抗体1份,中等亲和力IgG抗体2份,高亲和力IgG抗体2份.结论 温州市区育龄妇女孕前HCMV IgC抗体阳性率高;时HCMV IgM抗体阳性孕前妇女应进行多指标检测以判断HCMV感染的状态,为减少出生缺陷、做好优生优育服务提供依据.%Objective: To investigate the infection state of human cytomegalovirus among women before pregnancy in Wenzhou region. Methods: Blood samples of 2869 free pre - pregnancy eugenic screening women in Lonwan District of Wenzhou City from Oct.2008 to Jun. 2010 were detected by enzyme- linked immunosorbent assay (ELISA) for HCMV IgG/IgM antibodies; HCMV DNA load was detected by real -time fluorescence quantitative polymerase chain reaction (FQ -PCR) in HCMV IgM antibody positive samples; IgG antibody avidity index (AI) was detected by urea degeneration combining ELISA in specimens which were positive of both HCMV IgG and IgM antibodies. Results: In 2 869 specimens of pre - pregnancy women, serum HCMV IgG antibodies positive rate was 97.77% (2 805/2 869), HCMV IgM antibodies positive rate was 0. 77% (22/2 869); IgG/IgM antibodies positive rate accounted for 0. 17% (5/2 869); in 22 HCMV IgM positive samples, blood HCMV DNA

  3. Effect of human cytomegalovirus on proliferation of hematopoietic progenitor cells of cord blood%人类巨细胞病毒感染对脐血造血祖细胞增殖的影响

    Institute of Scientific and Technical Information of China (English)

    刘文君; 金润铭; 付晓冬; 刘斌; 郭渠莲; 邓正华

    2006-01-01

    目的探讨人类巨细胞病毒(HCMV)感染对脐血造血祖细胞(CFU-GM、CFU-E、BFU-E、CFU-Mix及CFU-Mk)体外增殖的抑制作用及其机制.方法20例脐血标本收集于正常足月顺产新生儿.实验共分5组:(1)3个HCMV感染组,每个感染组分别加入0.1 mL的103、104及105空斑形成单位(PFU)HCMV-AD169病毒液于培养体系中;(2)灭活对照组,加入同体积灭活HCMV病毒液;(3)空白对照组,不加HCMV病毒液,代之以同体积的IMDM.采用造血祖细胞体外半固体培养技术,培养、观察、计数HCMV-AD169株对脐血CFU-GM、CFU-E、BFU-E、CFU-Mix及CFU-Mk集落数、抑制率和集落维持时间;并用聚合酶链反应(PCR)技术检测集落细胞内HCMV-DNA.结果(1)在造血祖细胞培养体系中加入不同滴度的HCMV-AD169后,104和105PFU滴度感染对CFU-GM、CFU-E、BFU-E、CFU-Mix及CFU-Mk集落形成均有显著的抑制作用,103PFU滴度感染对CFU-Mix及CFU- Mk集落形成有显著的抑制作用,与空白对照组和灭活对照组比较,差异有显著性(P<0.05).病毒滴度越高,抑制程度越明显(P<0.05).(2)104和105 PFU滴度感染组CFU-GM、CFU-E、BFU-E、CFU-Mix及CFU-Mk集落维持时间较对照组明显缩短(P<0.01),103 PFU滴度感染组CFU-Mix和CFU-Mk集落维持时间较对照组明显缩短(P<0.01).(3)PCR显示3个感染组的CFU-GM、CFU-E、CFU-Mix及CFU-Mk集落细胞内均有HCMV-AD169 DNA存在.结论HCMV-AD169能直接感染CFU-GM、CFU-E、BFU-E、CFU-Mix及CFU-Mk造血祖细胞,并抑制造血祖细胞的增殖,这可能与HCMV感染患儿出现粒细胞减少、血小板减少和贫血等造血功能紊乱有关.%Objective This study was designed to investigate the effect of human cytomegalovirus (HCMV) on the proliferation of colony forming unit granulocyte-macrophage ( CFU-GM ), CFU-erythroid ( CFU-E), burst forming uniterythroid (BFU-E), CFU-multipotential (CFU-Mix) and CFU-megakaryocytic (CFU-Mk) progenitor cells of cord blood in vitro as well as

  4. Genes Expressed in Human Tumor Endothelium

    Science.gov (United States)

    St. Croix, Brad; Rago, Carlo; Velculescu, Victor; Traverso, Giovanni; Romans, Katharine E.; Montgomery, Elizabeth; Lal, Anita; Riggins, Gregory J.; Lengauer, Christoph; Vogelstein, Bert; Kinzler, Kenneth W.

    2000-08-01

    To gain a molecular understanding of tumor angiogenesis, we compared gene expression patterns of endothelial cells derived from blood vessels of normal and malignant colorectal tissues. Of over 170 transcripts predominantly expressed in the endothelium, 79 were differentially expressed, including 46 that were specifically elevated in tumor-associated endothelium. Several of these genes encode extracellular matrix proteins, but most are of unknown function. Most of these tumor endothelial markers were expressed in a wide range of tumor types, as well as in normal vessels associated with wound healing and corpus luteum formation. These studies demonstrate that tumor and normal endothelium are distinct at the molecular level, a finding that may have significant implications for the development of anti-angiogenic therapies.

  5. LINE FUSION GENES: a database of LINE expression in human genes

    Directory of Open Access Journals (Sweden)

    Park Hong-Seog

    2006-06-01

    Full Text Available Abstract Background Long Interspersed Nuclear Elements (LINEs are the most abundant retrotransposons in humans. About 79% of human genes are estimated to contain at least one segment of LINE per transcription unit. Recent studies have shown that LINE elements can affect protein sequences, splicing patterns and expression of human genes. Description We have developed a database, LINE FUSION GENES, for elucidating LINE expression throughout the human gene database. We searched the 28,171 genes listed in the NCBI database for LINE elements and analyzed their structures and expression patterns. The results show that the mRNA sequences of 1,329 genes were affected by LINE expression. The LINE expression types were classified on the basis of LINEs in the 5' UTR, exon or 3' UTR sequences of the mRNAs. Our database provides further information, such as the tissue distribution and chromosomal location of the genes, and the domain structure that is changed by LINE integration. We have linked all the accession numbers to the NCBI data bank to provide mRNA sequences for subsequent users. Conclusion We believe that our work will interest genome scientists and might help them to gain insight into the implications of LINE expression for human evolution and disease. Availability http://www.primate.or.kr/line

  6. Human gene correlation analysis (HGCA): a tool for the identification of transcriptionally co-expressed genes.

    Science.gov (United States)

    Michalopoulos, Ioannis; Pavlopoulos, Georgios A; Malatras, Apostolos; Karelas, Alexandros; Kostadima, Myrto-Areti; Schneider, Reinhard; Kossida, Sophia

    2012-06-06

    Bioinformatics and high-throughput technologies such as microarray studies allow the measure of the expression levels of large numbers of genes simultaneously, thus helping us to understand the molecular mechanisms of various biological processes in a cell. We calculate the Pearson Correlation Coefficient (r-value) between probe set signal values from Affymetrix Human Genome Microarray samples and cluster the human genes according to the r-value correlation matrix using the Neighbour Joining (NJ) clustering method. A hyper-geometric distribution is applied on the text annotations of the probe sets to quantify the term overrepresentations. The aim of the tool is the identification of closely correlated genes for a given gene of interest and/or the prediction of its biological function, which is based on the annotations of the respective gene cluster. Human Gene Correlation Analysis (HGCA) is a tool to classify human genes according to their coexpression levels and to identify overrepresented annotation terms in correlated gene groups. It is available at: http://biobank-informatics.bioacademy.gr/coexpression/.

  7. Gene × Smoking Interactions on Human Brain Gene Expression: Finding Common Mechanisms in Adolescents and Adults

    Science.gov (United States)

    Wolock, Samuel L.; Yates, Andrew; Petrill, Stephen A.; Bohland, Jason W.; Blair, Clancy; Li, Ning; Machiraju, Raghu; Huang, Kun; Bartlett, Christopher W.

    2013-01-01

    Background: Numerous studies have examined gene × environment interactions (G × E) in cognitive and behavioral domains. However, these studies have been limited in that they have not been able to directly assess differential patterns of gene expression in the human brain. Here, we assessed G × E interactions using two publically available datasets…

  8. Study of the Gene Expression Profile of Human Ovarian Carcinoma by a Gene Chip

    Institute of Scientific and Technical Information of China (English)

    Shenhua Xu; Hanzhou Mou; Chihong Zhu; Lijuan Qian; Zhengyan Yang; Ye Ying; Xianglin Liu

    2005-01-01

    OBJECTIVE To study the difference in gene expression between human ovarian carcinoma and normal ovarian tissues, and screen the novel associated genes by cDNA microarrays.METHODS Total RNA from 10 cases of ovarian cancer and from normal ovarian tissues were extracted by a single step method. The cDNA was retro-transcribed from an equal quantity of mRNA derived from the 10 cases of ovarian carcinoma and normal ovarian tissues, followed by labeling the cDNA strands with Cy5 and Cy3 fluorescence as probes. The mixed probes were hybridized with BiostarH 8464 dot human somatic cell genes.Fluorescence signals were assessed by a ScanArray 4000 laser scanner and the images analyzed by Gene Pix Pro 3.0 software with a digital computer.RESULTS By applying the cDNA microarray we found a total of 185 genes for which expression levels differed more than 5 times comparing human ovarian carcinoma with normal ovarian epithelium. Among these genes 86 were up-regulated >5 times and 99 were down regulated <0.2.CONCLUSION The cDNA microarray technique is effective in screening the differential gene expression between human ovarian cancers and normal ovarian epithelium. It is suggested that these genes identified are related to the genesis and development of ovarian carcinoma.

  9. Gene × Smoking Interactions on Human Brain Gene Expression: Finding Common Mechanisms in Adolescents and Adults

    Science.gov (United States)

    Wolock, Samuel L.; Yates, Andrew; Petrill, Stephen A.; Bohland, Jason W.; Blair, Clancy; Li, Ning; Machiraju, Raghu; Huang, Kun; Bartlett, Christopher W.

    2013-01-01

    Background: Numerous studies have examined gene × environment interactions (G × E) in cognitive and behavioral domains. However, these studies have been limited in that they have not been able to directly assess differential patterns of gene expression in the human brain. Here, we assessed G × E interactions using two publically available datasets…

  10. 携带BARF1基因的重组巨细胞病毒的构建%Construction of the recombinant cytomegalovirus carrying BARF1 gene

    Institute of Scientific and Technical Information of China (English)

    张长风; 于魁; 朱丽华; 李淑英

    2016-01-01

    目的 依据细菌人工染色体(Bacterial artificial chromosome,BAC)能够克隆大段DNA病毒的特点,通过galk为基础的同源重组,将EB病毒编码BARF1基因插入巨细胞病毒(cytomegalovirus,CMV),构建重组病毒.方法 PCR扩增带有巨细胞病毒UL57基因左右同源臂的galk及BARF1基因片段,经过电转化,进行同源重组,经含有galk培养基及脱galk培养基筛选,获得带有BARF1的巨细胞病毒细菌人工染色体克隆,提取质粒,转染到ARPE-19细胞,观察带有BARF1基因的巨细胞病毒对ARPE-19细胞的影响.结果 感染带有BARF1基因的巨细胞病毒的ARPE-19细胞形态由原来的长梭形变为变圆、肿胀、胞浆颗粒增多,并且细胞生长失去接触抑制,出现重叠生长现象.结论 建立了携带BARF1基因的重组巨细胞病毒;同时表明利用细菌人工染色体,可方便地对病毒基因组进行准确操作.

  11. Hidden Markov Models for Human Genes

    DEFF Research Database (Denmark)

    Baldi, Pierre; Brunak, Søren; Chauvin, Yves

    1997-01-01

    We analyse the sequential structure of human genomic DNA by hidden Markov models. We apply models of widely different design: conventional left-right constructs and models with a built-in periodic architecture. The models are trained on segments of DNA sequences extracted such that they cover...

  12. Update of human and mouse forkhead box (FOX gene families

    Directory of Open Access Journals (Sweden)

    Jackson Brian C

    2010-06-01

    Full Text Available Abstract The forkhead box (FOX proteins are transcription factors that play complex and important roles in processes from development and organogenesis to regulation of metabolism and the immune system. There are 50 FOX genes in the human genome and 44 in the mouse, divided into 19 subfamilies. All human FOX genes have close mouse orthologues, with one exception: the mouse has a single Foxd4, whereas the human gene has undergone a recent duplication to a total of seven (FOXD4 and FOXD4L1 → FOXD4L6. Evolutionarily ancient family members can be found as far back as the fungi and metazoans. The DNA-binding domain, the forkhead domain, is an example of the winged-helix domain, and is very well conserved across the FOX family and across species, with a few notable exceptions in which divergence has created new functionality. Mutations in FOX genes have been implicated in at least four familial human diseases, and differential expression may play a role in a number of other pathologies -- ranging from metabolic disorders to autoimmunity. Furthermore, FOX genes are differentially expressed in a large number of cancers; their role can be either as an oncogene or tumour suppressor, depending on the family member and cell type. Although some drugs that target FOX gene expression or activity, notably proteasome inhibitors, appear to work well, much more basic research is needed to unlock the complex interplay of upstream and downstream interactions with FOX family transcription factors.

  13. Natural selection on genes that underlie human disease susceptibility

    Science.gov (United States)

    Blekhman, Ran; Man, Orna; Herrmann, Leslie; Boyko, Adam R.; Indap, Amit; Kosiol, Carolin; Bustamante, Carlos D.; Teshima, Kosuke M.; Przeworski, Molly

    2008-01-01

    What evolutionary forces shape genes that contribute to the risk of human disease? Do similar selective pressures act on alleles that underlie simple vs. complex disorders? [1-3]. Answers to these questions will shed light on the origin of human disorders (e.g., [4]), and help to predict the population frequencies of alleles that contribute to disease risk, with important implications for the efficient design of mapping studies [5-7]. As a first step towards addressing them, we created a hand-curated version of the Mendelian Inheritance in Man database (OMIM). We then examined selective pressures on Mendelian disease genes, genes that contribute to complex disease risk and genes known to be essential in mouse, by analyzing patterns of human polymorphism and of divergence between human and rhesus macaque. We find that Mendelian disease genes appear to be under widespread purifying selection, especially when the disease mutations are dominant (rather than recessive). In contrast, the class of genes that influence complex disease risk shows little signs of evolutionary conservation, possibly because this category includes both targets of purifying and positive selection. PMID:18571414

  14. Crowdsourcing the Moral Limits of Human Gene Editing?

    Science.gov (United States)

    Juengst, Eric T

    2017-05-01

    In 2015, a flourish of "alarums and excursions" by the scientific community propelled CRISPR/Cas9 and other new gene-editing techniques into public attention. At issue were two kinds of potential gene-editing experiments in humans: those making inheritable germ-line modifications and those designed to enhance human traits beyond what is necessary for health and healing. The scientific consensus seemed to be that while research to develop safe and effective human gene editing should continue, society's moral uncertainties about these two kinds of experiments needed to be better resolved before clinical trials of either type should be attempted. In the United States, the National Academies of Science, Engineering and Medicine (NASEM) convened the Committee on Human Gene Editing: Scientific, Medical and Ethical Considerations to pursue that resolution. The committee's 2017 consensus report has been widely interpreted as "opening the door" to inheritable human genetic modification and holding a line against enhancement interventions. But on a close reading it does neither. There are two reasons for this eccentric conclusion, both of which depend upon the strength of the committee's commitment to engaging diverse public voices in the gene-editing policy-making process. © 2017 The Hastings Center.

  15. Cytomegalovirus shapes long-term immune reconstitution after allogeneic stem cell transplantation

    Science.gov (United States)

    Itzykson, Raphael; Robin, Marie; Moins-Teisserenc, Helene; Delord, Marc; Busson, Marc; Xhaard, Aliénor; de Fontebrune, Flore Sicre; de Latour, Régis Peffault; Toubert, Antoine; Socié, Gérard

    2015-01-01

    Immune reconstitution after allogeneic stem cell transplantation is a dynamic and complex process depending on the recipient and donor characteristics, on the modalities of transplantation, and on the occurrence of graft-versus-host disease. Multivariate methods widely used for gene expression profiling can simultaneously analyze the patterns of a great number of biological variables on a heterogeneous set of patients. Here we use these methods on flow cytometry assessment of up to 25 lymphocyte populations to analyze the global pattern of long-term immune reconstitution after transplantation. Immune patterns were most distinct from healthy controls at six months, and had not yet fully recovered as long as two years after transplant. The two principal determinants of variability were linked to the balance of B and CD8+ T cells and of natural killer and B cells, respectively. Recipient’s cytomegalovirus serostatus, cytomegalovirus replication, and chronic graft-versus-host disease were the main factors shaping the immune pattern one year after transplant. We identified a complex signature of under- and over-representation of immune populations dictated by recipient’s cytomegalovirus seropositivity. Finally, we identified dimensions of variance in immune patterns as significant predictors of long-term non-relapse mortality, independently of chronic graft-versus-host disease. PMID:25261095

  16. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    Science.gov (United States)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  17. Relation between HLA genes, human skin volatiles and attractiveness of humans to malaria mosquitoes

    NARCIS (Netherlands)

    Verhulst, N.O.; Beijleveld, H.; Qiu, Y.T.; Maliepaard, C.A.; Verduyn, W.; Haasnoot, G.W.; Claas, F.H.J.; Mumm, R.; Bouwmeester, H.J.; Takken, W.; Loon, van J.J.A.; Smallegange, R.C.

    2013-01-01

    Chemical cues are considered to be the most important cues for mosquitoes to find their hosts and humans can be ranked for attractiveness to mosquitoes based on the chemical cues they emit. Human leukocyte antigen (HLA) genes are considered to be involved in the regulation of human body odor and may

  18. Changes of multiple genes in human gastric carcinomas

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the mutual relation of the changesamong multiple genes in human gastric carcinomas (GC). Methods: By means of software package about social science (SPSS) and statistics analysis system (SAS), the mutual relation of the expression of oncogenes (p21, p185) and tumor suppressor genes (RB, p53, p16, nm23) in 78 GC is discussed. Results: There existed correlations among some genes, i.e., p21 and p185, RB and p16, p16 and p53 as well as p16 and nm23; It is relatively uncommon that the carcinogenesis of GC simultaneously related to more changes of multiple genes; The inactivation of p16 gene was independent factor to predict the metastasis of lymphaden, the mutation of p53 gene and the inactivation of p16 gene were independent factors to predict the invasive depth. Conclusion: There are not only the changes of multiple genes including oncogenes activation and tumor suppressor genes inactivation, but also they may play an important role in carcinogenesis of GC through mutual cooperation. The inactivation of p16 gene is one of the most useful index to predict the prognosis of patient with GC.

  19. ANALYSES ON DIFFERENTIALLY EXPRESSED GENES ASSOCIATED WITH HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    MENG Xu-li; DING Xiao-wen; XU Xiao-hong

    2006-01-01

    Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods: Two hundred and eighty-eight human tumor related genes were chosen for preparation of the oligochips probe. mRNA was extracted from 16 breast cancer tissues and the corresponding normal breast tissues, and cDNA probe was prepared through reverse-transcription and hybridized with the gene chip. A laser focused fluorescent scanner was used to scan the chip. The different gene expressions were thereafter automatically compared and analyzed between the two sample groups. Cy3/Cy5>3.5 meant significant up-regulation. Cy3/Cy5<0.25 meant significant down-regulation. Results: The comparison between the breast cancer tissues and their corresponding normal tissues showed that 84 genes had differential expression in the Chip. Among the differently expressed genes, there were 4 genes with significant down-regulation and 6 with significant up-regulation. Compared with normal breast tissues, differentially expressed genes did partially exist in the breast cancer tissues. Conclusion: Changes in multi-gene expression regulations take place during the occurrence and development of breast cancer; and the research on related genes can help understanding the mechanism of tumor occurrence.

  20. Evolutionary conservation in genes underlying human psychiatric disorders.

    Science.gov (United States)

    Ogawa, Lisa M; Vallender, Eric J

    2014-01-01

    Many psychiatric diseases observed in humans have tenuous or absent analogs in other species. Most notable among these are schizophrenia and autism. One hypothesis has posited that these diseases have arisen as a consequence of human brain evolution, for example, that the same processes that led to advances in cognition, language, and executive function also resulted in novel diseases in humans when dysfunctional. Here, the molecular evolution of the protein-coding regions of genes associated with these and other psychiatric disorders are compared among species. Genes associated with psychiatric disorders are drawn from the literature and orthologous sequences are collected from eleven primate species (human, chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, baboon, marmoset, squirrel monkey, and galago) and 34 non-primate mammalian species. Evolutionary parameters, including dN/dS, are calculated for each gene and compared between disease classes and among species, focusing on humans and primates compared to other mammals, and on large-brained taxa (cetaceans, rhinoceros, walrus, bear, and elephant) compared to their small-brained sister species. Evidence of differential selection in humans to the exclusion of non-human primates was absent, however elevated dN/dS was detected in catarrhines as a whole, as well as in cetaceans, possibly as part of a more general trend. Although this may suggest that protein changes associated with schizophrenia and autism are not a cost of the higher brain function found in humans, it may also point to insufficiencies in the study of these diseases including incomplete or inaccurate gene association lists and/or a greater role of regulatory changes or copy number variation. Through this work a better understanding of the molecular evolution of the human brain, the pathophysiology of disease, and the genetic basis of human psychiatric disease is gained.

  1. Origins of De Novo Genes in Human and Chimpanzee.

    Directory of Open Access Journals (Sweden)

    Jorge Ruiz-Orera

    2015-12-01

    Full Text Available The birth of new genes is an important motor of evolutionary innovation. Whereas many new genes arise by gene duplication, others originate at genomic regions that did not contain any genes or gene copies. Some of these newly expressed genes may acquire coding or non-coding functions and be preserved by natural selection. However, it is yet unclear which is the prevalence and underlying mechanisms of de novo gene emergence. In order to obtain a comprehensive view of this process, we have performed in-depth sequencing of the transcriptomes of four mammalian species--human, chimpanzee, macaque, and mouse--and subsequently compared the assembled transcripts and the corresponding syntenic genomic regions. This has resulted in the identification of over five thousand new multiexonic transcriptional events in human and/or chimpanzee that are not observed in the rest of species. Using comparative genomics, we show that the expression of these transcripts is associated with the gain of regulatory motifs upstream of the transcription start site (TSS and of U1 snRNP sites downstream of the TSS. In general, these transcripts show little evidence of purifying selection, suggesting that many of them are not functional. However, we find signatures of selection in a subset of de novo genes which have evidence of protein translation. Taken together, the data support a model in which frequently-occurring new transcriptional events in the genome provide the raw material for the evolution of new proteins.

  2. Origins of De Novo Genes in Human and Chimpanzee.

    Science.gov (United States)

    Ruiz-Orera, Jorge; Hernandez-Rodriguez, Jessica; Chiva, Cristina; Sabidó, Eduard; Kondova, Ivanela; Bontrop, Ronald; Marqués-Bonet, Tomàs; Albà, M Mar

    2015-12-01

    The birth of new genes is an important motor of evolutionary innovation. Whereas many new genes arise by gene duplication, others originate at genomic regions that did not contain any genes or gene copies. Some of these newly expressed genes may acquire coding or non-coding functions and be preserved by natural selection. However, it is yet unclear which is the prevalence and underlying mechanisms of de novo gene emergence. In order to obtain a comprehensive view of this process, we have performed in-depth sequencing of the transcriptomes of four mammalian species--human, chimpanzee, macaque, and mouse--and subsequently compared the assembled transcripts and the corresponding syntenic genomic regions. This has resulted in the identification of over five thousand new multiexonic transcriptional events in human and/or chimpanzee that are not observed in the rest of species. Using comparative genomics, we show that the expression of these transcripts is associated with the gain of regulatory motifs upstream of the transcription start site (TSS) and of U1 snRNP sites downstream of the TSS. In general, these transcripts show little evidence of purifying selection, suggesting that many of them are not functional. However, we find signatures of selection in a subset of de novo genes which have evidence of protein translation. Taken together, the data support a model in which frequently-occurring new transcriptional events in the genome provide the raw material for the evolution of new proteins.

  3. The human protein disulfide isomerase gene family

    Directory of Open Access Journals (Sweden)

    Galligan James J

    2012-07-01

    Full Text Available Abstract Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs. These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX. As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR. Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR.

  4. Mapping the genetic architecture of gene expression in human liver.

    Directory of Open Access Journals (Sweden)

    Eric E Schadt

    2008-05-01

    Full Text Available Genetic variants that are associated with common human diseases do not lead directly to disease, but instead act on intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease traits has the potential to provide the functional information required to not only identify and validate the susceptibility genes that are directly affected by changes in DNA, but also to understand the molecular networks in which such genes operate and how changes in these networks lead to changes in disease traits. Toward that end, we profiled more than 39,000 transcripts and we genotyped 782,476 unique single nucleotide polymorphisms (SNPs in more than 400 human liver samples to characterize the genetic architecture of gene expression in the human liver, a metabolically active tissue that is important in a number of common human diseases, including obesity, diabetes, and atherosclerosis. This genome-wide association study of gene expression resulted in the detection of more than 6,000 associations between SNP genotypes and liver gene expression traits, where many of the corresponding genes identified have already been implicated in a number of human diseases. The utility of these data for elucidating the causes of common human diseases is demonstrated by integrating them with genotypic and expression data from other human and mouse populations. This provides much-needed functional support for the candidate susceptibility genes being identified at a growing number of genetic loci that have been identified as key drivers of disease from genome-wide association studies of disease. By using an integrative genomics approach, we highlight how the gene RPS26 and not ERBB3 is supported by our data as the most likely susceptibility gene for a novel type 1 diabetes locus recently identified in a large

  5. Human estrogen sulfotransferase gene (STE): Cloning, structure, and chromosomal localization

    Energy Technology Data Exchange (ETDEWEB)

    Her, Chengtao; Aksoy, I.A.; Weinshilboum, M. [Mayo Foundation, Rochester, MI (United States)] [and others

    1995-09-01

    Sulfation is an important pathway in the metabolism of estrogens. We recently cloned a human liver estrogen sulfotransferase (EST) cDNA. We have now determined the structure and chromosomal localization of the EST gene, STE, as a step toward molecular genetic studies of the regulation of EST in humans. STE spans approximately 20 kb and consists of 8 exons, ranging in length from 95 to 181 bp. The locations of most exon-intron splice junctions within STE are identical to those found in a human phenol ST (PST) gene, STM, and in a rat PST gene. In addition, the locations of five STE introns are also conserved in the human dehydroepiandrosterone (DBEA) ST gene, STD. The 5{prime} flanking region of STE contains one CCAAT and two TATA sequences. The location of one of the TATA box elements is in excellent agreement with the site of transcription initiation as determined by 5{prime}-rapid amplification of cDNA ends. STE was mapped to human chromosome 4q13.1 by fluorescence in situ hybridization. Cloning and structural characterization of STE will now make it possible to study potential molecular genetic mechanisms involved in the regulation of EST in human tissues. 50 refs., 6 figs., 1 tab.

  6. 利用酵母双杂交系统筛选与人巨细胞病毒皮层蛋白pUL23相互作用的病毒编码蛋白%Screening of Human Cytomegalovirus Tegument Protein pUL23 Interacting Partner via Yeast Two-hybrid System

    Institute of Scientific and Technical Information of China (English)

    肖静; 李弘剑; 胡嘉淼; 肖小平; 员月明; 刘明亮; 曾宝娟; 李婧惠; 周天鸿; 冉艳红

    2011-01-01

    人巨细胞病毒(HCMV)UL23基因编码病毒皮层蛋白,该基因缺失时,病毒在人包皮成纤维细胞(HEF)中的繁殖速度加快.为进一步阐述HCMV UL23基因编码产物pUL23的功能及调控机制,采用鸟枪法构建了融合于GAL4活性区域的HCMV Towne株基因组随机表达文库.利用酵母双杂交技术,以pGBKT7-UL23为诱饵质粒,从构建的HCMV基因组表达文库中筛选到与pUL23相互作用的病毒编码蛋白pUL24.GST-pull down实验和免疫共沉淀实验进一步确认两种病毒蛋白之间的相互作用.结果表明,构建的HCMV基因组表达文库能够用于GAL40酵母双杂交系统筛选与诱饵蛋白相互作用的病毒自身编码蛋白.病毒蛋白pUL23和pUL24之间具有相互作用,这为进一步阐述pUL23在HCMV感染过程中的功能提供依据.该研究为揭示HCMV病毒感染机制奠定了基础.%Human cytomegalovirus(HCMV) UL23 gene codes a tegument protein pUL23, and the UL23 deletion HCMV mutant exhibited enhanced growth in HFF cells. In order to provide an effective tool for further study of the function and regulatory mechanism of HCMV pUL23, a random genomic library of HCMV strains Towne fused to the GAL4 activation domain was constructed by shot-gun method. Using this library, we performed yeast two-hybrid screening with a bait plasmid encoding a fusion of the GAL4 DNA binding domain (GAL4-BD) with the UL23 open reading frame. One of the interacting clones corresponds to HCMV protein pUL24. GST-pull down and co-immunoprecipitation assays confirmed the interaction between these two vial proteins. These results demonstrated that the viral genomic library could be applied to GAL4 yeast two-hybrid assay for screening HCMV proteins which interact with the bait protein. And the interaction between HCMV proteins pUL23 and pUL24 will be further characterized to elucidate the functions of pUL23 during HCMV infection. It was laid a foundation for further study of the infection mechanism of

  7. Strongyloides Hyperinfection Syndrome Combined with Cytomegalovirus Infection

    Science.gov (United States)

    Alsaeed, Mohammed; Ballool, Sulafa; Attia, Ashraf

    2016-01-01

    The mortality in Strongyloides hyperinfection syndrome (SHS) is alarmingly high. This is particularly common in bone marrow, renal, and other solid organ transplant (SOT) patients, where figures may reach up to 50–85%. Immunosuppressives, principally corticosteroids, are the primary triggering factor. In general, the clinical features of Strongyloides stercoralis hyperinfection are nonspecific; therefore, a high index of suspicion is required for early diagnosis and starting appropriate therapy. Although recurrent Gram-negative sepsis and meningitis have been previously reported, the combination of both cytomegalovirus (CMV) and strongyloidiasis had rarely been associated. We here describe a patient who survived SHS with recurrent Escherichia coli (E. coli) urosepsis and CMV infection. PMID:27703835

  8. Strongyloides Hyperinfection Syndrome Combined with Cytomegalovirus Infection

    Directory of Open Access Journals (Sweden)

    Fatehi Elnour Elzein

    2016-01-01

    Full Text Available The mortality in Strongyloides hyperinfection syndrome (SHS is alarmingly high. This is particularly common in bone marrow, renal, and other solid organ transplant (SOT patients, where figures may reach up to 50–85%. Immunosuppressives, principally corticosteroids, are the primary triggering factor. In general, the clinical features of Strongyloides stercoralis hyperinfection are nonspecific; therefore, a high index of suspicion is required for early diagnosis and starting appropriate therapy. Although recurrent Gram-negative sepsis and meningitis have been previously reported, the combination of both cytomegalovirus (CMV and strongyloidiasis had rarely been associated. We here describe a patient who survived SHS with recurrent Escherichia coli (E. coli urosepsis and CMV infection.

  9. Murine cytomegalovirus targets transcription factor ATF4 to exploit the unfolded-protein response.

    Science.gov (United States)

    Qian, Zhikang; Xuan, Baoqin; Chapa, Travis J; Gualberto, Nathaniel; Yu, Dong

    2012-06-01

    The unfolded-protein response (UPR), activated by sensor molecules PERK, ATF6, and IRE1 to resolve endoplasmic reticulum (ER) stress, has emerged as a key target for host cells and viruses to control the infection outcomes. The UPR regulates ER protein folding, controls cell fate upon ER stress, and plays an important role in innate immunity. We and others have shown that human cytomegalovirus (HCMV) modulates the UPR. We show here that murine CMV (MCMV), the widely used CMV model for small animal infection, regulated the UPR in a manner similar to that of HCMV. This modulatory ability was triggered by virion entry and enhanced by viral immediate-early and early gene expression. Thus, while vulnerable at early times, MCMV became resistant to exogenous ER stress at late times of infection. MCMV activated the PERK-ATF4 pathway but only induced a subset of represen