WorldWideScience

Sample records for human cyp1a1 cyp1a2

  1. Metabolism of sanguinarine in human and in rat: characterization of oxidative metabolites produced by human CYP1A1 and CYP1A2 and rat liver microsomes using liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Deroussent, Alain; Ré, Micheline; Hoellinger, Henri; Cresteil, Thierry

    2010-07-08

    The quaternary benzo[c]phenanthridine alkaloid, sanguinarine (SA), has been detected in the mustard oil contaminated with Argemone mexicana, which produced severe human intoxications during epidemic dropsy in India. Today, SA metabolism in human and in rat has not yet been fully elucidated. The goal of this study is to investigate the oxidative metabolites of SA formed during incubations with rat liver microsomes (RLM) and recombinant human cytochrome P450 (CYP) and to tentatively identify the CYP isoforms involved in SA detoxification. Metabolites were analyzed by liquid chromatography combined with electrospray ionization-tandem mass spectrometry. Up to six metabolites were formed by RLM and their modified structure has been proposed using their mass spectra and mass shifts from SA (m/z 332). The main metabolite M2 (m/z 320) resulted from ring-cleavage of SA followed by demethylation, whereas M4 (m/z 348) is oxidized by CYP in the presence of NADPH. The diol-sanguinarine metabolite M6 (m/z 366) formed by RLM might derive from a putative epoxy-sanguinarine metabolite M5 (m/z 348). M4 and M6 could be detected in rat urine as their respective glucuronides. 5,6-Dihydrosanguinarine is the prominent derivative formed from SA in cells expressing no CYP. Oxidative biotransformation of SA was investigated using eight human CYPs: only CYP1A1 and CYP1A2 displayed activity.

  2. Modulation of CYP1A1 and CYP1A2 hepatic enzymes after oral administration of Chios mastic gum to male Wistar rats.

    Science.gov (United States)

    Katsanou, Efrosini S; Kyriakopoulou, Katerina; Emmanouil, Christina; Fokialakis, Nikolas; Skaltsounis, Alexios-Leandros; Machera, Kyriaki

    2014-01-01

    Chios mastic gum (CMG), a resin derived from Pistacia lentiscus var. chia, is known since ancient times for its pharmacological activities. CYP1A1 and CYP1A2 enzymes are among the most involved in the biotransformation of chemicals and the metabolic activation of pro-carcinogens. Previous studies referring to the modulation of these enzymes by CMG have revealed findings of unclear biological and toxicological significance. For this purpose, the modulation of CYP1A1 and CYP1A2 enzymes in the liver of male Wistar rats following oral administration of CMG extract (CMGE), at the levels of mRNA and CYP1A1 enzyme activity, was compared to respective enzyme modulation following oral administration of a well-known bioactive natural product, caffeine, as control compound known to involve hepatic enzymes in its metabolism. mRNA levels of Cyp1a1 and Cyp1a2 were measured by reverse transcription real-time polymerase chain reaction and their relative quantification was calculated. CYP1A1 enzyme induction was measured through the activity of ethoxyresorufin-O-deethylase (EROD). The results indicated that administration of CMGE at the recommended pharmaceutical dose does not induce significant transcriptional modulation of Cyp1a1/2 and subsequent enzyme activity induction of CYP1A1 while effects of the same order of magnitude were observed in the same test system following the administration of caffeine at the mean daily consumed levels. The outcome of this study further confirms the lack of any toxicological or biological significance of the specific findings on liver following the administration of CMGE.

  3. Modulation of CYP1A1 and CYP1A2 hepatic enzymes after oral administration of Chios mastic gum to male Wistar rats.

    Directory of Open Access Journals (Sweden)

    Efrosini S Katsanou

    Full Text Available Chios mastic gum (CMG, a resin derived from Pistacia lentiscus var. chia, is known since ancient times for its pharmacological activities. CYP1A1 and CYP1A2 enzymes are among the most involved in the biotransformation of chemicals and the metabolic activation of pro-carcinogens. Previous studies referring to the modulation of these enzymes by CMG have revealed findings of unclear biological and toxicological significance. For this purpose, the modulation of CYP1A1 and CYP1A2 enzymes in the liver of male Wistar rats following oral administration of CMG extract (CMGE, at the levels of mRNA and CYP1A1 enzyme activity, was compared to respective enzyme modulation following oral administration of a well-known bioactive natural product, caffeine, as control compound known to involve hepatic enzymes in its metabolism. mRNA levels of Cyp1a1 and Cyp1a2 were measured by reverse transcription real-time polymerase chain reaction and their relative quantification was calculated. CYP1A1 enzyme induction was measured through the activity of ethoxyresorufin-O-deethylase (EROD. The results indicated that administration of CMGE at the recommended pharmaceutical dose does not induce significant transcriptional modulation of Cyp1a1/2 and subsequent enzyme activity induction of CYP1A1 while effects of the same order of magnitude were observed in the same test system following the administration of caffeine at the mean daily consumed levels. The outcome of this study further confirms the lack of any toxicological or biological significance of the specific findings on liver following the administration of CMGE.

  4. Associations between polymorphisms in the AHR and CYP1A1-CYP1A2 gene regions and habitual caffeine consumption.

    Science.gov (United States)

    Josse, Andrea R; Da Costa, Laura A; Campos, Hannia; El-Sohemy, Ahmed

    2012-09-01

    Recent genome-wide association studies (GWASs) from populations of European descent identified single nucleotide polymorphisms (SNPs) in aryl-hydrocarbon receptor (AHR) and cytochrome P450 1A1 and 1A2 (CYP1A1-CYP1A2) genes that are associated with habitual caffeine and coffee consumption. We examined whether these SNPs (AHR: rs6968865 and rs4410790; CYP1A1-CYP1A2: rs2472297 and rs2470893) and 6 additional tag SNPs in the AHR gene were associated with habitual caffeine consumption in a Costa Rican population. Subjects were from a case-control study of gene-diet interactions and myocardial infarction. Subjects with hypertension or missing information on smoking, caffeine intake, or genotype were excluded. Subjects were genotyped by using polymerase chain reaction with mass spectrometry-based detection, and caffeine intake was assessed by using a validated food-frequency questionnaire. Compared with subjects who consumed caffeine/d, subjects who consumed >400 mg caffeine/d were more likely to be carriers of the T, C, or T allele for rs6968865, rs4410790, and rs2472297, respectively. The corresponding ORs and 95% CIs were 1.41 (1.03, 1.93), 1.41 (1.04, 1.92), and 1.55 (1.01, 2.36). Multivariate-adjusted ORs (95% CIs) for rs6968865 were 1.44 (1.03, 2.00) for all subjects, 1.75 (1.16, 2.65) for nonsmokers, 1.15 (0.58, 2.30) for current smokers, 2.42 (1.45, 4.04) for subjects >57 y old, and 1.00 (0.65, 1.56) for subjects ≤57 y old. A similar effect modification was observed for rs4410790 but not for rs2472297. Our findings show that previous associations between SNPs in AHR and CYP1A1-CYP1A2 and caffeine and coffee consumption from GWASs in European populations are also observed in an ethnically distinct Costa Rican population, but age and smoking are important effect modifiers.

  5. Effect of subchronic 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on immune system and target gene responses in mice: calculation of benchmark doses for CYP1A1 and CYP1A2 related enzyme activities

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, C. [Medical Institute of Environmental Hygiene at the Heinrich Heine University of Duesseldorf, Division of Toxicology, Auf`m Hennekamp 50, D-40225 Duesseldorf (Germany); Donat, S. [Medical Institute of Environmental Hygiene at the Heinrich Heine University of Duesseldorf, Division of Toxicology, Auf`m Hennekamp 50, D-40225 Duesseldorf (Germany); Doehr, O. [Medical Institute of Environmental Hygiene at the Heinrich Heine University of Duesseldorf, Division of Toxicology, Auf`m Hennekamp 50, D-40225 Duesseldorf (Germany); Kremer, J. [Medical Institute of Environmental Hygiene at the Heinrich Heine University of Duesseldorf, Division of Immunology Auf`m Hennekamp 50, D-40225 Duesseldorf (Germany); Esser, C. [Medical Institute of Environmental Hygiene at the Heinrich Heine University of Duesseldorf, Division of Immunology Auf`m Hennekamp 50, D-40225 Duesseldorf (Germany); Roller, M. [Medical Institute of Environmental Hygiene at the Heinrich Heine University of Duesseldorf, Division of Experimental Hygiene Auf`m Hennekamp 50, D-40225 Duesseldorf (Germany); Abel, J. [Medical Institute of Environmental Hygiene at the Heinrich Heine University of Duesseldorf, Division of Toxicology, Auf`m Hennekamp 50, D-40225 Duesseldorf (Germany)

    1997-04-01

    The dose-effect relationships were analysed for several noncarcinogenic endpoints, such as immunological and biochemical responses at subchronic, low dose exposure of female C57BL/6 mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The animals were treated i.p. with TCDD according to the initial- and maintenance-dose principle for a period of 135 days. The initial doses were 1, 10 and 100 ng TCDD/kg, the weekly maintenance doses were 0.2, 2 and 20 ng TCDD/kg, respectively. At days 23, 79 and 135 of TCDD treatment 10 animals of each dose group were killed. As immunological parameters the number of thymocytes and the pattern of thymocyte subpopulations were determined. In liver, lung and thymus, mRNA expression of TGF-{alpha}, TGF-{beta}{sub 1}, TGF-{beta}{sub 2}, TGF-{beta}{sub 3}, TNF-{alpha}, IL-1{beta} and different CYP1 isoforms (CYP1A1, CYP1A2, CYP1B1) was analysed. In the livers, activities of 7-ethoxyresorufin-O-deethylase (EROD) and 7-methoxyresorufin-O-demethylase (MROD) were measured. TCDD content in the liver was determined. The main results are summarized as follows: (1) The TCDD doses were not sufficient to elicit dose-dependent changes of pattern of thymocyte subpopulation. (2) TCDD failed to change the mRNA expression of TGF-{alpha}, TGF-{beta} and TNF-{alpha}, but led to an increase of IL-1{beta} mRNA expression in liver, lung and thymus. The results show that the TCDD induced IL-1{beta} mRNA increase is at least as sensitive a marker as the induction of CYP1A isoforms. (3) The expression of CYP1B1 mRNA remained unchanged at the doses tested, while CYP1A1 and CYP1A2 mRNA expression was dose-dependently enhanced. EROD and MROD activities in the liver paralleled the increases of CYP1A1 and CYP1A2 mRNA expression. (4) Regression analysis of the data showed that most of the parameters tested fit a linear model. (5) From the data, a benchmark dose for EROD/MROD activities in the livers of female C57BL/6 mice of about 0.03 ng TCDD/kg per day was

  6. Induction of CYP1A1, CYP1A2, CYP1B1, increased oxidative stress and inflammation in the lung and liver tissues of rats exposed to incense smoke.

    Science.gov (United States)

    Hussain, Tajamul; Al-Attas, Omar S; Al-Daghri, Nasser M; Mohammed, Arif A; De Rosas, Edgard; Ibrahim, Shebl; Vinodson, Benjamin; Ansari, Mohammed G; El-Din, Khaled I Alam

    2014-06-01

    Incense smoke is increasingly being recognized as a potential environmental contaminant and is linked to malignant and non-malignant respiratory diseases. The detoxification of environmental contaminants including polycyclic aromatic hydrocarbons (PAHs) involves the induction of cytochrome P-450 family enzymes (CYPs) by PAHs. However, the detoxification of PAHs also results in the generation of reactive and unstable intermediary metabolites which are implicated in the oxidative stress, DNA damage, and inflammation. It is unclear whether CYPs are similarly induced by incense smoke, which incidentally contains substantial amounts of PAHs. Here, we examined the impact of long-term incense smoke exposure on the induction of CYPs in male Wister Albino rats. Incense smoke exposure significantly induced the expression of CYP1A1, CYP1A2, and CYP1B1 mRNAs in both lung and liver tissues. The extent of CYP1A1 and CYP1B1 induction was significantly higher in the liver compared to that in the lung, while that of CYP1A2 was greater in the lung than in liver. Incense smoke exposure also increased malondialdehyde and reduced glutathione levels in lung and liver tissues, and the catalase activity in the liver tissues to significant levels. Furthermore incense smoke exposure led to a marked increase in TNF-α and IL-4 levels. The data demonstrate for the first time the capacity of incense smoke to induce CYP1 family enzymes in the target and non-target tissues. Induction of CYPs increased oxidative stress and inflammation appear to be intimately linked to promote the carcinogenesis and health complications in people chronically exposed to incense smoke.

  7. Repeated dose toxicity and relative potency of 1,2,3,4,6,7-hexachloronaphthalene (PCN 66) 1,2,3,5,6,7-hexachloronaphthalene (PCN 67) compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for induction of CYP1A1, CYP1A2 and thymic atrophy in female Harlan Sprague-Dawley rats.

    Science.gov (United States)

    Hooth, Michelle J; Nyska, Abraham; Fomby, Laurene M; Vasconcelos, Daphne Y; Vallant, Molly; DeVito, Michael J; Walker, Nigel J

    2012-11-15

    In this study we assessed the relative toxicity and potency of the chlorinated naphthalenes 1,2,3,4,6,7-hexachloronaphthalene (PCN 66) and 1,2,3,5,6,7-hexachloronaphthalene (PCN 67) relative to that of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Chemicals were administered in corn oil:acetone (99:1) by gavage to female Harlan Sprague-Dawley rats at dosages of 0 (vehicle), 500, 1500, 5000, 50,000 and 500,000 ng/kg (PCN 66 and PCN 67) and 1, 3, 10, 100, and 300 ng/kg (TCDD) for 2 weeks. Histopathologic changes were observed in the thymus, liver and lung of TCDD treated animals and in the liver and thymus of PCN treated animals. Significant increases in CYP1A1 and CYP1A2 associated enzyme activity were observed in all animals exposed to TCDD, PCN 66 and PCN 67. Dose response modeling of CYP1A1, CYP1A2 and thymic atrophy gave ranges of estimated relative potencies, as compared to TCDD, of 0.0015-0.0072, for PCN 66 and 0.00029-0.00067 for PCN 67. Given that PCN 66 and PCN 67 exposure resulted in biochemical and histopathologic changes similar to that seen with TCDD, this suggests that they should be included in the WHO toxic equivalency factor (TEF) scheme, although the estimated relative potencies indicate that these hexachlorinated naphthalenes should not contribute greatly to the overall human body burden of dioxin-like activity.

  8. Caffeine induces CYP1A2 expression in rat hepatocytes but not in human hepatocytes.

    Science.gov (United States)

    Vaynshteyn, David; Jeong, Hyunyoung

    2012-06-01

    Caffeine is the active constituent in coffee. Continual consumption of caffeine can lead to an attenuated response also known as tolerance. Results from rat studies have shown that caffeine is an inducer of CYP1A2, the enzyme responsible for caffeine's metabolism. This suggests that CYP1A2 induction by caffeine may be in part responsible for caffeine tolerance. However, whether caffeine induces CYP1A2 expression in humans remains unknown. Our results from luciferase assays performed in HepG2 cells showed that caffeine is not an activator of the aromatic hydrocarbon receptor (AhR), a major transcription factor involved in upregulation of CYP1A2. Furthermore, caffeine did not induce CYP1A2 expression in primary human hepatocytes at a concentration attained by ordinary coffee drinking. On the other hand, caffeine enhanced CYP1A2 expression by 9-fold in rat hepatocytes. Our results suggest that caffeine from ordinary coffee drinking does not induce CYP1A2 expression in humans and that factors other than CYP1A2 induction by caffeine likely contribute to development of caffeine tolerance in humans.

  9. Epidermal Growth Factor Receptor Kinase Inhibitors Synergize with TCDD to Induce CYP1A1/1A2 in Human Breast Epithelial MCF10A Cells.

    Science.gov (United States)

    Joiakim, Aby; Mathieu, Patricia A; Shelp, Catherine; Boerner, Julie; Reiners, John J

    2016-05-01

    CYP1A1 and CYP1A2 are transcriptionally activated in the human normal breast epithelial cell line MCF10A following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Shifting MCF10A cultures to medium deficient in serum and epidermal growth factor (EGF) caused rapid reductions in the activated (i.e., phosphorylated) forms of extracellular regulated kinases (ERKs) and the epidermal growth factor receptor (EGFR). Shifting to serum/EGF-deficient medium also enhanced TCDD-mediated induction of cytochrome P450 (CYP)1A1 Treatment of cells cultured in complete medium with the EGFR inhibitors gefitinib (Iressa), AG1478, and CI-1033 resulted in concentration-dependent reductions of active EGFR and ERKs, and increased CYP1A1 mRNA content ∼3- to 18-fold above basal level. EGFR inhibitors synergized with TCDD and resulted in transient CYP1A1 and CYP1A2 mRNA accumulations ∼8-fold greater (maximum at 5 hours) than that achieved with only TCDD. AG1478, gefitinib, and TCDD individually induced small increases (∼1.2- to 2.5-fold) in CYP1A1 protein content but did not cause additive or synergistic accumulations of CYP1A1 protein when used in combination. The mitogen-activated protein kinase kinase inhibitor PD184352 inhibited ERK and EGFR activation in a concentration-dependent fashion without causing CYP1A1 mRNA accumulation. However, cotreatment with PD184352 potentiated TCDD-mediated CYP1A1 induction. TCDD-mediated induction of CYP1A1 in MCF7-TET on-EGFR cells, a MCF7 variant in which EGFR expression can be controlled, was not affected by the activity status of EGFR or ERKs. Hence, EGFR signaling mutes both basal and ligand-induced expression of two aryl hydrocarbon receptor-responsive P450s in MCF10A cultures. However, these effects are cell context-dependent. Furthermore, CYP1A1 mRNA and protein abundance are not closely coupled in MCF10A cultures.

  10. Caffeine induces CYP1A2 expression in rat hepatocytes but not in human hepatocytes

    OpenAIRE

    Vaynshteyn, David; Jeong, Hyunyoung

    2012-01-01

    Caffeine is the active constituent in coffee. Continual consumption of caffeine can lead to an attenuated response also known as tolerance. Results from rat studies have shown that caffeine is an inducer of CYP1A2, the enzyme responsible for caffeine’s metabolism. This suggests that CYP1A2 induction by caffeine may be in part responsible for caffeine tolerance. However, whether caffeine induces CYP1A2 expression in humans remains unknown. Our results from luciferase assays performed in HepG2 ...

  11. Augmented oxygen-mediated transcriptional activation of cytochrome P450 (CYP)1A expression and increased susceptibilities to hyperoxic lung injury in transgenic mice carrying the human CYP1A1 or mouse 1A2 promoter in vivo.

    Science.gov (United States)

    Jiang, Weiwu; Couroucli, Xanthi I; Wang, Lihua; Barrios, Roberto; Moorthy, Bhagavatula

    2011-04-01

    Supplemental oxygen administration is frequently administered to pre-term and term infants having pulmonary insufficiency. However, hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Cytochrome P450 (CYP)A enzymes have been implicated in hyperoxic lung injury. In this study, we tested the hypothesis that hyperoxia induces CYP1A1 and 1A2 enzymes by transcriptional activation of the corresponding promoters in vivo, and transgenic mice expressing the human CYP1A1 or the mouse 1A2 promoter would be more susceptible to hyperoxic lung injury than wild type (WT) mice. Adult WT (CD-1) (12week-old) mice, transgenic mice carrying a 10kb human CYP1A1 promoter and the luciferase (luc) reporter gene (CYP1A1-luc), or mice expressing the mouse CYP1A2 promoter (CYP1A2-luc) were maintained in room air or exposed to hyperoxia for 24-72h. Hyperoxia exposure of CYP1A1-luc mice for 24 and 48h resulted in 2.5- and 1.25-fold increases, respectively, in signal intensities, compared to room air controls. By 72h, the induction had declined to control levels. CYP1A2-luc mice also showed enhanced luc expression after 24-48h, albeit to a lesser extent than those expressing the CYP1A1 promoter. Also, these mice showed decreased levels of endogenous CYP1A1 and 1A2 expression after prolonged hyperoxia, and were also more susceptible to lung injury than similarly exposed WT mice, with CYP1A2-luc mice showing the greatest injury. Our results support the hypothesis that hyperoxia induces CYP1A enzymes by transcriptional activation of its corresponding promoters, and that decreased endogenous expression of these enzymes contribute to the increased susceptibilities to hyperoxic lung injury in the transgenic animals. In summary, this is the first report providing direct evidence of hyperoxia-mediated induction of CYP1A1 and CYP1A2 expression in vivo by mechanisms entailing transcriptional activation of the corresponding promoters, a phenomenon that has

  12. The influence of genetic polymorphisms in Ahr, CYP1A1, CYP1A2, CYP1B1, GST M1, GST T1 and UGT1A1 on urine 1-hydroxypyrene glucuronide concentrations in healthy subjects from Rio Grande do Sul, Brazil.

    Science.gov (United States)

    Abnet, Christian C; Fagundes, Renato B; Strickland, Paul T; Kamangar, Farin; Roth, Mark J; Taylor, Philip R; Dawsey, Sanford M

    2007-01-01

    Polymorphisms in genes encoding polycyclic aromatic hydrocarbon (PAH) metabolizing enzymes may alter metabolism of these carcinogens and contribute to inter-individual difference in urine concentrations. We investigated the influence of genetic polymorphism on PAH metabolism in urine from 199 healthy subjects from Southern Brazil. We measured urine 1-hydroxypyrene glucuronide (1-OHPG) concentrations using immunoaffinity chromatography and synchronous fluorescence spectroscopy and genotyped subjects using standard methods. Genetic variants in CYP1B1 (rs1056827, rs1800440, rs10012) were strongly associated with urine 1-OHPG with P-values CYP1B1 (rs10012) and the Ahr, CYP1A1 and CYP1A2 variants listed above were 2.16 and 0.10, 2.16 and 0.41, 2.03 and 0.46, 2.19 and 2.79, respectively. We found no effect of deletions in GST M1 or GST T1, or different alleles of UGT1A1*28. Adjusting for age, sex, place of residence, tobacco smoke exposure, maté drinking, cachaça and barbeque preparation had only a minor impact on the associations. A model containing just exposure variables had an r2 of 0.21; a model with single genotypes for Ahr, CYP1A1, CYP1A2 and CYP1B1 had an r2 of 0.10; and a model combining both exposure and genotype information had a total r2 of 0.33. Our results suggest that CYP1B1 genotypes are strongly associated with urine 1-OHPG concentrations in this population.

  13. Herbicide resistance of transgenic rice plants expressing human CYP1A1.

    Science.gov (United States)

    Kawahigashi, Hiroyuki; Hirose, Sakiko; Ohkawa, Hideo; Ohkawa, Yasunobu

    2007-01-01

    Cytochrome P450 monooxygenases (P450s) metabolize herbicides to produce mainly non-phytotoxic metabolites. Although rice plants endogenously express multiple P450 enzymes, transgenic plants expressing other P450 isoforms might show improved herbicide resistance or reduce herbicide residues. Mammalian P450s metabolizing xenobiotics are reported to show a broad and overlapping substrate specificity towards lipophilic foreign chemicals, including herbicides. These P450s are ideal for enhancing xenobiotic metabolism in plants. A human P450, CYP1A1, metabolizes various herbicides with different structures and modes of herbicide action. We introduced human CYP1A1 into rice plants, and the transgenic rice plants showed broad cross-resistance towards various herbicides and metabolized them. The introduced CYP1A1 enhanced the metabolism of chlorotoluron and norflurazon. The herbicides were metabolized more rapidly in the transgenic rice plants than in non-transgenic controls. Transgenic rice plants expressing P450 might be useful for reducing concentrations of various chemicals in the environment.

  14. Skatole (3-Methylindole Is a Partial Aryl Hydrocarbon Receptor Agonist and Induces CYP1A1/2 and CYP1B1 Expression in Primary Human Hepatocytes.

    Directory of Open Access Journals (Sweden)

    Martin Krøyer Rasmussen

    Full Text Available Skatole (3-methylindole is a product of bacterial fermentation of tryptophan in the intestine. A significant amount of skatole can also be inhaled during cigarette smoking. Skatole is a pulmonary toxin that induces the expression of aryl hydrocarbon receptor (AhR regulated genes, such as cytochrome P450 1A1 (CYP1A1, in human bronchial cells. The liver has a high metabolic capacity for skatole and is the first organ encountered by the absorbed skatole; however, the effect of skatole in the liver is unknown. Therefore, we investigated the impact of skatole on hepatic AhR activity and AhR-regulated gene expression. Using reporter gene assays, we showed that skatole activates AhR and that this is accompanied by an increase of CYP1A1, CYP1A2 and CYP1B1 expression in HepG2-C3 and primary human hepatocytes. Specific AhR antagonists and siRNA-mediated AhR silencing demonstrated that skatole-induced CYP1A1 expression is dependent on AhR activation. The effect of skatole was reduced by blocking intrinsic cytochrome P450 activity and indole-3-carbinole, a known skatole metabolite, was a more potent inducer than skatole. Finally, skatole could reduce TCDD-induced CYP1A1 expression, suggesting that skatole is a partial AhR agonist. In conclusion, our findings suggest that skatole and its metabolites affect liver homeostasis by modulating the AhR pathway.

  15. Identification of Potent and Selective CYP1A1 Inhibitors via Combined Ligand and Structure-Based Virtual Screening and Their in Vitro Validation in Sacchrosomes and Live Human Cells.

    Science.gov (United States)

    Joshi, Prashant; McCann, Glen J P; Sonawane, Vinay R; Vishwakarma, Ram A; Chaudhuri, Bhabatosh; Bharate, Sandip B

    2017-06-26

    Target structure-guided virtual screening (VS) is a versatile, powerful, and inexpensive alternative to experimental high-throughput screening (HTS). To discover potent CYP1A1 enzyme inhibitors for cancer chemoprevention, a commercial library of 50 000 small molecules was utilized for VS guided by both ligand and structure-based strategies. For experimental validation, 300 ligands were proposed based on combined analysis of fitness scores from ligand based e-pharmacophore screening and docking score, prime MMGB/SA binding affinity and interaction pattern analysis from structure-based VS. These 300 compounds were screened, at 10 μM concentration, for in vitro inhibition of CYP1A1-Sacchrosomes (yeast-derived microsomal enzyme) in the ethoxyresorufin-O-de-ethylase assay. Thirty-two compounds displayed >50% inhibition of CYP1A1 enzyme activity at 10 μM. 2-Phenylimidazo-[1,2-a]quinoline (5121780, 119) was found to be the most potent with 97% inhibition. It also inhibited ∼95% activity of CYP1B1 and CYP1A2, the other two CYP1 enzymes. The compound 5121780 (119) showed high selectivity toward inhibition of CYP1 enzymes with respect to CYP2 and CYP3 enzymes (i.e., there was no detectable inhibition of CYP2D6/CYP2C9/CYP2C19 and CYP3A4 at 10 μM). It was further investigated in live CYP-expressing human cell system, which confirmed that compound 5121780 (119) potently inhibited CYP1A1, CYP1A2, CYP1B1 enzymes with IC50 values of 269, 30, and 56 nM, respectively. Like in Sacchrosomes, inhibition of CYP2D6/CYP2C9/CYP2C19 and CYP3A4 enzymes, expressed within live human cells, could hardly be detected at 10 μM. The compound 119 rescued CYP1A1 overexpressing HEK293 cells from CYP1A1 mediated benzo[a]pyrene (B[a]P) toxicity and also overcame cisplatin resistance in CYP1B1 overexpressing HEK293 cells. Molecular dynamics simulations of 5121780 (119) with CYP1 enzymes was performed to understand the interaction pattern to CYP isoforms. Results indicate that VS can successfully

  16. Increased CYP1A1 expression in human exfoliated urothelial cells of cigarette smokers compared to non-smokers

    Energy Technology Data Exchange (ETDEWEB)

    Doerrenhaus, Angelika; Roos, Peter H. [Institute for Occupational Physiology at the University Dortmund, Dortmund (Germany); Mueller, Tina [Institute for Occupational Physiology at the University Dortmund, Dortmund (Germany); University Dortmund, Department of Statistics, Mathematical Statistics with Applications in Biometrics, Dortmund (Germany)

    2007-01-15

    Polycyclic aromatic hydrocarbons, arylamines and nitrosamines, constituents of cigarette smoke, are known inducers of bladder cancer. The biochemical response of the target tissue, the bladder urothelium, following inhalation of cigarette smoke has not been studied so far. We used exfoliated transitional urothelial cells from human urine samples to analyze effects of smoking on induction of the cytochrome P450 enzyme CYP1A1. Samples of 40 subjects, including male and female smokers and non-smokers, were examined. A prerequisite for the immunofluorescence microscopic analysis of the cells was the enrichment of the urothelial cell population. This was achieved by a new method which is based on magnetic cell sorting exploiting specific binding of immobilized Griffonia simplicifolia lectin to the surface of urothelial cells. Immunostaining of the final cell preparation with a monoclonal antibody to CYP1A1 showed that about 6% of the urothelial cells of non-smokers stained positive for CYP1A1. However, this fraction of positive cells was more than 44% of the urothelial cells in samples from cigarette smokers. In spite of the individual variation, the difference was statistically significant. There were no gender-related differences in the portion of CYP1A1 expressing urothelial cells of smokers and non-smokers. In essence, we show for the first time that human urothelial cells respond to cigarette smoking by induction of CYP1A1. The approach opens new fields of mechanistic and biomarker research with respect to the pathogenetic processes of cancer development in the human bladder. (orig.)

  17. Paracetamol-induced spindle disturbances in V79 cells with and without expression of human CYP1A2

    DEFF Research Database (Denmark)

    Jensen, K G; Poulsen, H E; Doehmer, J

    1996-01-01

    Spindle disturbing effects in terms of c-mitosis and cytotoxicity of paracetamol were investigated in two Chinese hamster V79 cell lines, one of which (V79MZh1A2) was transfected with human CYP1A2. This enzyme catalyses the oxidative formation of the reactive paracetamol metabolite, NAPQI, believed...... to initiate hepatoxicity by covalent binding to proteins after overdose. In the native V79 cell line paracetamol increased c-mitosis frequency in a concentration dependent manner from 8.7 + or - 3.5% (control) to 66 + or - 18% at 20 mM. A significant increase to 13.3 + or - 3.5% was first seen at 2.5 m......M in the native cell line (Pparacetamol. At 5 mM paracetamol the c-mitosis frequency was 14.4 + or - 5.0% and 19.0 + or - 3...

  18. CYP1A1 and CYP1B1 in human lymphocytes as biomarker of exposure: effect of dioxin exposure and polymorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Duursen, M. van; Sanderson, T.; Berg, M. van den [Inst. for Risk Assessment Sciences, Utrecht (Netherlands)

    2004-09-15

    There are several known genetic polymorphisms of the CYP1A1 and CYP1B1 genes. A polymorphism in the 3'-untranslated region of the CYP1A1 gene (CYP1A1 MspI or CYP1A1 m1) is often studied in relation with breast or lung cancer, but little is known about the functional effect of this polymorphism. An amino acid substitution in codon 432 (Val to Leu) of the CYP1B1 gene is associated with a lower catalytic activity of the enzyme. However, the involvement of these polymorphisms on the inducibility of CYP1A1 and CYP1B1 gene expression is unclear. CYP1A1 and CYP1B1 mRNA expression levels can be determined in peripheral blood lymphocytes. This makes them potential candidates for use as biomarker of exposure to environmental compounds. Interindividual variations in mRNA expression patterns, catalytic activity and polymorphisms are very important factors when CYP1A1 and CYP1B1 expression patterns are used as biomarker of exposure, but little is known about it. Spencer et al. showed a concentration-dependent increase of CYP1B1 mRNA in lymphocytes upon exposure in vitro to 2,3,7,8-tetrachloro-p-dibenzodioxin (TCDD), the most potent dioxin. Yet, only a few studies describe the in vivo correlation between polymorphisms, mRNA expression level and exposure to environmental factors. In this study, we wanted to obtain a better insight in the CYP1A1 and CYP1B1 mRNA expression and enzyme activity in human lymphocytes. We determined the constitutive CYP1A1 and CYP1B1 mRNA expression in lymphocytes of ten healthy volunteers and the variability in sensitivity toward enzyme induction by TCDD. Further, the CYP1A1 m1 and CYP1B1 Val432Leu polymorphisms were determined.

  19. Effects of artificial sweeteners on the AhR- and GR-dependent CYP1A1 expression in primary human hepatocytes and human cancer cells.

    Science.gov (United States)

    Kamenickova, Alzbeta; Pecova, Michaela; Bachleda, Petr; Dvorak, Zdenek

    2013-12-01

    Food constituents may cause a phenomenon of food-drug interactions. In the current study, we examined the effects of artificial sweeteners (aspartame, acesulfame, cyclamate, saccharin) on the aryl hydrocarbon receptor (AhR) and glucocorticoid receptor (GR)-dependent expression of CYP1A1 in human hepatocytes, hepatic HepG2 and intestinal LS174T cancer cell lines. Sweeteners were tested in concentrations up to those occurring in non-alcoholic beverages. Basal and ligand-inducible AhR- and GR-dependent reporter gene activation in stably transfected HepG2 and HeLa cells, respectively, were not affected by either of the sweeteners tested after 24h of incubation. The expression of CYP1A1 mRNA and protein in primary cultures of human hepatocytes and in LS174T and HepG2 cells was not induced by any of the tested sweeteners. Overall, aspartame, acesulfame, saccharin and cyclamate had no effects on CYP1A1 expression and transcriptional activities of AhR and GR. These data imply the safety of artificial sweeteners in terms of interference with AhR, GR and CYP1A1.

  20. Changes in CYP1A2 activity in humans after 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) administration using caffeine as a probe drug.

    Science.gov (United States)

    Yubero-Lahoz, Samanta; Pardo, Ricardo; Farre, Magí; Mathuna, Brian Ó; Torrens, Marta; Mustata, Cristina; Perez-Mañá, Clara; Langohr, Klaus; Carbó, Marcel Lí; de la Torre, Rafael

    2012-01-01

    3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) is a ring-substituted amphetamine widely used for recreational purposes. MDMA is predominantly O-demethylenated in humans by cytochrome P450 (CYP) 2D6, and is also a potent mechanism-based inhibitor of the enzyme. After assessing the inhibition and recovery of CYP2D6 in a previous study, the aim of this work was to study in humans the activity of CYP1A2 in vivo after CYP2D6 had been inhibited by MDMA, using caffeine as a probe drug. Twelve male and nine female recreational MDMA users were included. In session 1, 100 mg of caffeine was given at 0 h. In session 2, a 1.5 mg/kg MDMA dose (range 75-100 mg) was given at 0 h followed by a 100 mg dose of caffeine 4 h later. Aliquots of plasma were assayed for caffeine (137X) and paraxanthine (17X) and statistically significant differences were assessed with a one-way ANOVA. There were significant gender differences at basal condition, which persisted after MDMA administration. CYP1A2 activity was higher in both genders after drug administration, with an increase in 40% in females and 20% in males. Results show an increase in CYP1A2 activity when CYP2D6 is inhibited by MDMA in both genders, being more pronounced in females.

  1. A predominate role of CYP1A2 for the metabolism of nabumetone to the active metabolite, 6-methoxy-2-naphthylacetic acid, in human liver microsomes.

    Science.gov (United States)

    Turpeinen, Miia; Hofmann, Ute; Klein, Kathrin; Mürdter, Thomas; Schwab, Matthias; Zanger, Ulrich M

    2009-05-01

    Nabumetone, a widely used nonsteroidal anti-inflammatory drug, requires biotransformation into 6-methoxy-2-naphthylacetic acid (6-MNA), a close structural analog to naproxen, to achieve its analgesic and anti-inflammatory effects. Despite its wide use, the enzymes involved in metabolism have not been identified. In the present study, several in vitro approaches were used to identify the cytochrome P450 (P450) enzyme(s) responsible for 6-MNA formation. In human liver microsomes (HLMs) 6-MNA formation displayed monophasic Michaelis-Menten kinetics with apparent K(m) and V(max) values (mean +/- S.D.) of 75.1 +/- 15.3 microM and 1304 +/- 226 pmol/min/mg protein, respectively, and formation rate of 6-MNA varied approximately 5.5-fold (179-983 pmol/min/mg protein). 6-MNA activity correlated strongly with both CYP1A2-mediated phenacetin O-deethylation activity and CYP1A2 protein content (r = 0.85 and 0.74, respectively; p nabumetone, 6-MNA, is predominantly catalyzed by CYP1A2 in HLMs with only minor contribution of other P450s.

  2. Hypoxia perturbs aryl hydrocarbon receptor signaling and CYP1A1 expression induced by PCB 126 in human skin and liver-derived cell lines.

    Science.gov (United States)

    Vorrink, Sabine U; Severson, Paul L; Kulak, Mikhail V; Futscher, Bernard W; Domann, Frederick E

    2014-02-01

    The aryl hydrocarbon receptor (AhR) is an important mediator of toxic responses after exposure to xenobiotics including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dioxin-like polychlorinated biphenyls (PCBs). Activation of AhR responsive genes requires AhR dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT), a heterodimeric partner also shared by the hypoxia-inducible factor-1α (HIF-1α) protein. TCDD-stimulated AhR transcriptional activity can be influenced by hypoxia; however, it less well known whether hypoxia interferes with AhR transcriptional transactivation in the context of PCB-mediated AhR activation in human cells. Elucidation of this interaction is important in liver hepatocytes which extensively metabolize ingested PCBs and experience varying degrees of oxygen tension during normal physiologic function. This study was designed to assess the effect of hypoxia on AhR transcriptional responses after exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB 126). Exposure to 1% O2 prior to PCB 126 treatment significantly inhibited CYP1A1 mRNA and protein expression in human HepG2 and HaCaT cells. CYP1A1 transcriptional activation was significantly decreased upon PCB 126 stimulation under conditions of hypoxia. Additionally, hypoxia pre-treatment reduced PCB 126 induced AhR binding to CYP1 target gene promoters. Importantly, ARNT overexpression rescued cells from the inhibitory effect of hypoxia on XRE-luciferase reporter activity. Therefore, the mechanism of interference of the signaling crosstalk between the AhR and hypoxia pathways appears to be at least in part dependent on ARNT availability. Our results show that AhR activation and CYP1A1 expression induced by PCB 126 were significantly inhibited by hypoxia and hypoxia might therefore play an important role in PCB metabolism and toxicity.

  3. Effect of Flavonoids on Glutathione Level, Lipid Peroxidation and Cytochrome P450 CYP1A1 Expression in Human Laryngeal Carcinoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Lidija Vuković

    2007-01-01

    Full Text Available Flavonoids are phytochemicals exhibiting a wide range of biological activities, among which are antioxidant activity, the ability to modulate activity of several enzymes or cell receptors and possibility to interfere with essential biochemical pathways. Using human laryngeal carcinoma HEp2 cells and their drug-resistant CK2 subline, we examined the effect of five flavonoids, three structurally related flavons (quercetin, fisetin, and myricetin, one flavonol (luteolin and one glycosilated flavanone (naringin for: (i their ability to inhibit mitochondrial dehydrogenases as an indicator of cytotoxic effect, (ii their influence on glutathione level, (iii antioxidant/prooxidant effects and influence on cell membrane permeability, and (iv effect on expression of cytochrome CYP1A1. Cytotoxic action of the investigated flavonoids after 72 hours of treatment follows this order: luteolin>quercetin>fisetin>naringin>myricetin. Our results show that CK2 were more resistant to toxic concentrations of flavonoids as compared to parental cells. Quercetin increased the total GSH level in both cell lines. CK2 cells are less perceptible to lipid peroxidation and damage caused by free radicals. Quercetin showed prooxidant effect in both cell lines, luteolin only in HEp2 cells, whereas other tested flavonoids did not cause lipid peroxidation in the tested cell lines. These data suggest that the same compound, quercetin, can act as a prooxidant, but also, it may prevent damage in cells caused by free radicals, due to the induction of GSH, by forming less harmful complex. Quercetin treatment damaged cell membranes in both cell lines. Fisetin caused higher cell membrane permeability only in HEp2 cells. However, these two compounds did not enhance the damage caused by hydrogen peroxide. Quercetin, naringin, myricetin and fisetin increased the expression of CYP1A1 in both cell lines, while luteolin decreased basal level of CYP1A1 only in HEp2 cells. In conclusion, small

  4. Hypoxia perturbs aryl hydrocarbon receptor signaling and CYP1A1 expression induced by PCB 126 in human skin and liver-derived cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Vorrink, Sabine U. [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Severson, Paul L. [Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ (United States); Kulak, Mikhail V. [Department of Surgery, The University of Iowa, Iowa City, IA (United States); Futscher, Bernard W. [Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ (United States); Domann, Frederick E., E-mail: frederick-domann@uiowa.edu [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Department of Surgery, The University of Iowa, Iowa City, IA (United States)

    2014-02-01

    The aryl hydrocarbon receptor (AhR) is an important mediator of toxic responses after exposure to xenobiotics including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dioxin-like polychlorinated biphenyls (PCBs). Activation of AhR responsive genes requires AhR dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT), a heterodimeric partner also shared by the hypoxia-inducible factor-1α (HIF-1α) protein. TCDD-stimulated AhR transcriptional activity can be influenced by hypoxia; however, it less well known whether hypoxia interferes with AhR transcriptional transactivation in the context of PCB-mediated AhR activation in human cells. Elucidation of this interaction is important in liver hepatocytes which extensively metabolize ingested PCBs and experience varying degrees of oxygen tension during normal physiologic function. This study was designed to assess the effect of hypoxia on AhR transcriptional responses after exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126). Exposure to 1% O{sub 2} prior to PCB 126 treatment significantly inhibited CYP1A1 mRNA and protein expression in human HepG2 and HaCaT cells. CYP1A1 transcriptional activation was significantly decreased upon PCB 126 stimulation under conditions of hypoxia. Additionally, hypoxia pre-treatment reduced PCB 126 induced AhR binding to CYP1 target gene promoters. Importantly, ARNT overexpression rescued cells from the inhibitory effect of hypoxia on XRE-luciferase reporter activity. Therefore, the mechanism of interference of the signaling crosstalk between the AhR and hypoxia pathways appears to be at least in part dependent on ARNT availability. Our results show that AhR activation and CYP1A1 expression induced by PCB 126 were significantly inhibited by hypoxia and hypoxia might therefore play an important role in PCB metabolism and toxicity. - Highlights: • Significant crosstalk exists between AhR and HIF-1α signaling. • Hypoxia perturbs PCB 126 induced AhR function and

  5. Analysis of caffeine and paraxanthine in human saliva with ultra-high-performance liquid chromatography for CYP1A2 phenotyping.

    Science.gov (United States)

    Jordan, Nan Yeun; Mimpen, Jolet Y; van den Bogaard, Willie J M; Flesch, Frits M; van de Meent, Michiel H M; Torano, Javier Sastre

    2015-07-15

    Cytochrome P450 1A2 (CYP1A2) plays an important role in drug metabolism. Caffeine (CAF) is converted into paraxanthine (PX) by this enzyme and is used as a xenobiotic substrate to determine the CYP1A2 phenotype in humans. A method for the quantification of CAF and PX in saliva was developed using liquid-liquid extraction with ethyl acetate and analysis with ultra-high-performance liquid chromatography. Peaks from CAF, PX and internal standard were resolved within 6min. The method was validated from 0.05 to 5μgmL(-1) CAF and 0.025-2.5μgmL(-1) PX. Inter- and intra-day accuracies ranged from 91.2 to 107.2% with precisions concentration ratios from volunteers were 0.26-1.09 with mean ratios of 0.78±0.26 and 0.38±0.10 for regular and light/non-coffee drinkers, respectively.

  6. Understanding the Mechanism of Human P450 CYP1A2 Using Coupled Quantum-Classical Simulations in a Dynamical Environment

    Energy Technology Data Exchange (ETDEWEB)

    Draeger, E W; Bennion, B; Gygi, F; Lightstone, F

    2006-02-10

    The reaction mechanism of the human P450 CYP1A2 enzyme plays a fundamental role in understanding the effects of environmental carcinogens and mutagens on humans. Despite extensive experimental research on this enzyme system, key questions regarding its catalytic cycle and oxygen activation mechanism remain unanswered. In order to elucidate the reaction mechanism in human P450, new computational methods are needed to accurately represent this system. To enable us to perform computational simulations of unprecedented accuracy on these systems, we developed a dynamic quantum-classical (QM/MM) hybrid method, in which ab initio molecular dynamics are coupled with classical molecular mechanics. This will provide the accuracy needed to address such a complex, large biological system in a fully dynamic environment. We also present detailed calculations of the P450 active site, including the relative charge transfer between iron porphine and tetraphenyl porphyrin.

  7. CYP1A2-mediated biotransformation of cardioactive 2-thienylidene-3,4-methylenedioxybenzoylhydrazine (LASSBio-294) by rat liver microsomes and human recombinant CYP enzymes.

    Science.gov (United States)

    Fraga, Aline Guerra M; da Silva, Leandro Louback; Fraga, Carlos Alberto Manssour; Barreiro, Eliezer J

    2011-01-01

    We describe herein the metabolic fate of cardioactive 1,3-benzodioxolyl N-acylhydrazone prototype LASSBio-294 (4) and the structural identification of its major phase I metabolite from rat liver microsomal assays. Our results confirmed the hard-metabolic character of N-acylhydrazone (NAH) framework of LASSBio-294 (4). The development of a reproducible analytical methodology for the major metabolite by using HPLC-MS and the comparison with an authentic synthetic sample, allowed us to identify 2-thienylidene 3,4-dihydroxybenzoylhydrazine derivative (7), formed by oxidative scission of methylenedioxy bridge of LASSBio-294, as the main metabolite formed by action of CYP1A2 isoform. The identification of this isoform in the LASSBio-294 in the clearance of LASSBio-294 (4) oxidation was performed by the use of selective CYP inhibitors or human recombinant CYP enzymes.

  8. CYP1A1 and CYP1B1 expressions in medulloblastoma cells are AhR-independent and have no direct link with resveratrol-induced differentiation and apoptosis.

    Science.gov (United States)

    Wu, Mo-Li; Li, Hong; Wu, Da-Chang; Wang, Xiao-Wei; Chen, Xiao-Yan; Kong, Qing-You; Ma, Jing-Xin; Gao, Ying; Liu, Jia

    Resveratrol induces apoptosis and regulates CYP1A1 and CYP1B1 expression in human medulloblastoma cells. To elucidate the potential correlation of their expressions with the anti-medulloblastoma effects of resveratrol, human medulloblastoma cells, UW228-3, were treated with CYP1A1 selective inhibitor (alpha-naphthoflavone, alpha-NF), selective CYP1A1/1A2 inducer (beta-naphthoflavone, beta-NF) and their combination with resveratrol, respectively. The influences of those treatments on the expressions of CYP1A1, 1A2 and 1B1 as well as the cell growth, differentiation and death were analyzed. It was found that neither alpha-NF nor beta-NF had any effect on cell growth. alpha-NF inhibited resveratrol-induced CYP1A1 expression without interfering cell differentiation and apoptosis. beta-NF could up-regulate resveratrol-induced CYP1A1 expression but not enhance the anti-cancer effects of resveratrol. CYP1A2 was undetectable in the cells irrespective to the treatments. Aryl hydrocarbon receptor (AhR) was absent in UW228-3 cells under normal culture and treated with resveratrol but induced by both alpha- and beta-NF. Immunohistochemical examination performed on 11 pairs of human medulloblastoma and noncancerous cerebellar tissues revealed that AhR was undetectable in either of them, whereas CYP1A1 was expressed in cerebellum but down-regulated or diminished in their malignant counterparts. Our data suggest for the first time that CYP1A1 and 1B1 expressions in human medulloblastoma cells are AhR-independent and have no direct links with resveratrol-induced differentiation and apoptosis. Appearance of CYP1A1 expression may reflect a more maturated status and a better prognosis of medulloblastomas.

  9. CYP1A1 and CYP1B1 gene expression and DNA adduct formation in normal human mammary epithelial cells exposed to benzo[a]pyrene in the absence or presence of chlorophyllin.

    Science.gov (United States)

    John, Kaarthik; Divi, Rao L; Keshava, Channa; Orozco, Christine C; Schockley, Marie E; Richardson, Diana L; Poirier, Miriam C; Nath, Joginder; Weston, Ainsley

    2010-06-28

    Benzo[a]pyrene (BP) is a potent pro-carcinogen and ubiquitous environmental pollutant. Here, we examined the induction and modulation of CYP1A1 and CYP1B1 and 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPdG) adduct formation in DNA from 20 primary normal human mammary epithelial cell (NHMEC) strains exposed to BP (4muM) in the absence or presence of chlorophyllin (5muM). Real-time polymerase chain reaction (RT-PCR) analysis revealed strong induction of both CYP1A1 and CYP1B1 by BP, with high levels of inter-individual variability. Variable BPdG formation was found in all strains by r7, t8-dihydroxy-t-9, 10 epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE)-DNA chemiluminescence assay (CIA). Chlorophyllin mitigated BP-induced CYP1A1 and CYP1B1 gene expression in all 20 strains when administered with BP. Chlorophyllin, administered prior to BP-exposure, mitigated CYP1A1 expression in 18/20 NHMEC strains (pchlorophyllin followed by administration of the carcinogen with chlorophyllin (pchlorophyllin is likely to be a good chemoprotective agent for a large proportion of the human population.

  10. Genome Editing of the CYP1A1 Locus in iPSCs as a Platform to Map AHR Expression throughout Human Development

    Directory of Open Access Journals (Sweden)

    Brenden W. Smith

    2016-01-01

    Full Text Available The aryl hydrocarbon receptor (AHR is a ligand activated transcription factor that increases the expression of detoxifying enzymes upon ligand stimulation. Recent studies now suggest that novel endogenous roles of the AHR exist throughout development. In an effort to create an optimized model system for the study of AHR signaling in several cellular lineages, we have employed a CRISPR/CAS9 genome editing strategy in induced pluripotent stem cells (iPSCs to incorporate a reporter cassette at the transcription start site of one of its canonical targets, cytochrome P450 1A1 (CYP1A1. This cell line faithfully reports on CYP1A1 expression, with luciferase levels as its functional readout, when treated with an endogenous AHR ligand (FICZ at escalating doses. iPSC-derived fibroblast-like cells respond to acute exposure to environmental and endogenous AHR ligands, and iPSC-derived hepatocytes increase CYP1A1 in a similar manner to primary hepatocytes. This cell line is an important innovation that can be used to map AHR activity in discrete cellular subsets throughout developmental ontogeny. As further endogenous ligands are proposed, this line can be used to screen for safety and efficacy and can report on the ability of small molecules to regulate critical cellular processes by modulating the activity of the AHR.

  11. Mitochondrial activity and oxidative stress functions are influenced by the activation of AhR-induced CYP1A1 overexpression in cardiomyocytes.

    Science.gov (United States)

    Zhou, Bing; Wang, Xi; Li, Feng; Wang, Yingting; Yang, Lei; Zhen, Xiaolong; Tan, Wuhong

    2017-07-01

    There is an endemic cardiomyopathy currently occurring in China, termed, Keshan disease (KD). The authors previously compared mitochondrial‑associated gene expression profiles of peripheral blood mononuclear cells (PBMCs) derived from KD patients and normal controls, using mitochondria‑focused cDNA microarray technology. The results detected an upregulation of the enzyme‑associated CYP1A1 gene, (ratios ≥2.0). The aryl hydrocarbon receptor (AhR) regulates the expression of numerous cytochrome P450 (CYP) genes including members of the CYP1 family; CYP1A1 and CYP1A2. Several previous studies have suggested roles for the aryl hydrocarbon receptor (AhR) and the genes that it regulates. An example involves cytochrome P4501A1 (CYP1A1), in the pathogenesis of heart failure, cardiac hypertrophy and other cardiomyopathies. Mitochondria comprise ~30% of the intracellular volume in mammalian cardiomyocytes, and subtle alterations in mitochondria can markedly influence cardiomyopathies. The present study investigated alterations in the activity and functions of mitochondria following AhR‑induced overexpression of CYP1A1. AC16 cells were treated with the CYP1A1 inducer 2,3,7,8‑tetrachlorodibenzo‑p‑dioxin (TCDD), and cytotoxicity was then evaluated in MTT assays. Reverse transcription‑quantitative polymerase chain reactions, western blot analysis and 7‑ethoxyresorufin O‑deacylase assays were performed to analyze the mRNA and protein levels, and the enzymatic activity of CYP1A1. Mitochondrial activity and mass were analyzed using an inverted fluorescence microscope and a fluorescence microplate reader. Reactive oxygen species (ROS) activity was analyzed using flow cytometry. The results of the current study demonstrated that TCDD gradually increased mRNA and protein levels of AhR and CYP1A1, in addition to the enzymatic activity. Mitochondrial activity and the quality of mitochondrial membranes were also significantly attenuated, and mitochondrial ROS

  12. The effect of organic solvents on enzyme kinetic parameters of human CYP3A4 and CYP1A2 in vitro.

    Science.gov (United States)

    Rokitta, Dennis; Pfeiffer, Kay; Streich, Christina; Gerwin, Henrik; Fuhr, Uwe

    2013-10-01

    Abstract Enzyme kinetic parameters provide essential quantitative information about characterization of individual steps in drug metabolism. Such enzymes are located in a (partially) aqueous environment. For in vitro measurements potential lipophilic substrates regularly require organic solvents to achieve concentrations sufficient for access of the drug to the binding site of the enzyme. However, solvents may interact with the enzymes. In this study, we investigated the effects of methanol, ethanol, acetonitrile and dimethyl sulfoxide (1% to 4%) on the assessment of km, Vmax and Clint for the metabolism of midazolam via CYP3A4 to 1-hydroxymidazolam and the metabolism of caffeine to paraxanthine via CYP1A2 using expressed enzymes in vitro. The presence of acetonitrile proved the highest apparent Vmax value for paraxanthine formation but the lowest values for 1-hydroxymidazolam formation. The km value for midazolam showed no systematic effects of organic solvents, while for caffeine km was up to 8-fold lower for solvent free samples compared to solvent containing samples. The present example suggests that effects of solvents may considerably influence enzyme kinetic parameters beyond a mere change in apparent activity. These effects illustrate a difference for individual enzyme--substrate pairs, solvents, and solvent concentrations. What remains is the determination to which extent these effects compromise in vitro-in vivo extrapolations, and which solvents are most appropriate.

  13. Metabolic activation of o-phenylphenol to a major cytotoxic metabolite, phenylhydroquinone: role of human CYP1A2 and rat CYP2C11/CYP2E1.

    Science.gov (United States)

    Ozawa, S; Ohta, K; Miyajima, A; Kurebayashi, H; Sunouchi, M; Shimizu, M; Murayama, N; Matsumoto, Y; Fukuoka, M; Ohno, Y

    2000-10-01

    1. The in vitro metabolic activation of o-phenylphenol has been evaluated as yielding a toxic metabolite, 2,5-dihydroxybiphenyl (phenylhydroquinone), by p-hydroxylation in liver microsomes of rat and human. The involvement of rat CYP2C11, CYP2E1 and human CYP1A2 in the p-hydroxylation of o-phenylphenol is suggested. 2. 2,3- and phenylhydroquinone, which induced DNA single-strand scission in the presence of 1 microM CuCl2, were the most cytotoxic chemicals examined to cultured mammalian cell lines among o-phenylphenol, m-phenylphenol, p-phenylphenol, 2,2'-, 4,4'-, 2,3- and phenylhydroquinone. 3. Rat and human liver microsomes catalysed the formation of phenylhydroquinone, but not 2,3-dihydroxybiphenyl, using o-phenylphenol as a substrate. A higher rate of metabolic activation of o-phenylphenol was observed with livers of the male than the female rats by 5.6- and 2.6-fold respectively. 4. Inhibitory antibodies against the male-specific CYP2C11 inhibited hepatic o-phenylphenol p-hydroxylation in the male F344 and Sprague-Dawley rat by > 70%. Liver microsomes from the isoniazid-treated rats produced 1.8- and 3-fold induction of o-phenylphenol p-hydroxylation and chlorzoxazone 6-hydroxylation (a CYP2E1-dependent activity) respectively. 5. Human CYP1A2, expressed by baculovirus-mediated cDNA expression systems, exhibited a remarkably higher capacity for o-phenylphenol p-hydroxylation at concentrations of 5 (> 5-fold), 50 (> 2-fold) and 500 microM (> 2-fold) than CYP2A, CYP2B, CYP2Cs, CYP2D6, CYP2E1 and CYP3A4 on the basis of pmol P450. 6. Among various CYP inhibitors tested here, 7,8-benzoflavone and furafylline, typical human CYP1A2 inhibitors, inhibited the microsomal p-hydroxylation of o-phenylphenol in human livers most potently by 70 and 50% respectively. 7. The results thus indicate the involvement of rat CYP2C11/CYP2E1 and human CYP1A2 in the hepatic p-hydroxylation of o-phenylphenol.

  14. Aryl hydrocarbon hydroxylase represents CYP1B1, and not CYP1A1, in human freshly isolated white cells: trimodal distribution of Japanese population according to induction of CYP1B1 mRNA by environmental dioxins.

    Science.gov (United States)

    Toide, Kenji; Yamazaki, Hiroshi; Nagashima, Rikako; Itoh, Keisuke; Iwano, Shunsuke; Takahashi, Yoshiki; Watanabe, Shaw; Kamataki, Tetsuya

    2003-03-01

    The expression level of mRNAs for cytochrome P450 (CYP) 1A1 and 1B1 in freshly prepared white cells from 72 subjects exposed to dioxins at waste incinerators was investigated. The amounts of CYP1B1 mRNA ranged from 0.16 to 671 molecules/10(7) molecules of 18S rRNA, whereas the amounts of CYP1A1 mRNA were dioxins. The inducibility of CYP1B1 mRNA in leukocytes, defined as the ratio of CYP1B1 mRNA to the plasma concentration of dioxins, varied among the subjects. It was found that the subjects showed trimodal distribution according to inducibility: 39 (54.2%), 25 (34.7%), and 8 (11.1%) of 72 subjects were judged as poor, intermediate, and high responders to environmental dioxins, respectively. The amounts of CYP1B1 mRNA in leukocytes of the intermediate and high responders were highly correlated with the plasma concentrations of dioxins (P dioxins is involved in aromatic hydrocarbon hydroxylase activities in human lymphocytes.

  15. Itraconazole cis-diastereoisomers activate aryl hydrocarbon receptor AhR and pregnane X receptor PXR and induce CYP1A1 in human cell lines and human hepatocytes.

    Science.gov (United States)

    Stepankova, Martina; Pastorkova, Barbora; Bachleda, Petr; Dvorak, Zdenek

    2017-04-05

    Triazole antimycotic itraconazole contains in its structure three chiral centres; therefore, it forms eight stereoisomers. Commercial preparations of itraconazole are a mixture of four cis-diastereoisomers. There is much evidence that efficacy, adverse effects, and toxicity of chiral drugs may be stereospecific. Therefore, we have prepared 4 pure cis-diastereoisomers of itraconazole and investigated their effects on transcriptional activities of xenoreceptors aryl hydrocarbon receptor AhR and pregnane X receptor PXR. Gene reporter assays showed that itraconazole dose-dependently activated both AhR and PXR, and the activation of AhR but not of PXR was enantiospecific. Itraconazole diastereoisomers transformed AhR and PXR into their DNA-binding forms, as demonstrated by electromobility shift assays. Cytochrome P450 CYP1A1 mRNA and protein were induced by itraconazole diastereoisomers in human hepatoma cells HepG2, human skin cells HaCaT, and in primary human hepatocytes. The expression of CYP3A4 in human intestinal LS180 cells was not influenced by itraconazole, but we observed downregulation of CYP3A4 in human hepatocytes. Collectively, we show that itraconazole is a dual activator of AhR and PXR, with differential effects on the target genes for xenoreceptors. The enantiospecific pattern was observed only in gene reporter assays for AhR. The data presented here might be of toxicological and clinical importance.

  16. Genetic variation in the CYP1A1 gene is related to circulating PCB118 levels in a population-based sample.

    Science.gov (United States)

    Lind, Lars; Penell, Johanna; Syvänen, Anne-Christine; Axelsson, Tomas; Ingelsson, Erik; Morris, Andrew P; Lindgren, Cecilia; Salihovic, Samira; van Bavel, Bert; Lind, P Monica

    2014-08-01

    Several of the polychlorinated biphenyls (PCBs), i.e. the dioxin-like PCBs, are known to induce the P450 enzymes CYP1A1, CYP1A2 and CYP1B1 by activating the aryl hydrocarbon receptor (Ah)-receptor. We evaluated if circulating levels of PCBs in a population sample were related to genetic variation in the genes encoding these CYPs. In the population-based Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study (1016 subjects all aged 70), 21 SNPs in the CYP1A1, CYP1A2 and CYP1B1 genes were genotyped. Sixteen PCB congeners were analysed by high-resolution chromatography coupled to high-resolution mass spectrometry (HRGC/ HRMS). Of the investigated relationships between SNPs in the CYP1A1, CYP1A2 and CYP1B1 and six PCBs (congeners 118, 126, 156, 169, 170 and 206) that captures >80% of the variation of all PCBs measured, only the relationship between CYP1A1 rs2470893 was significantly related to PCB118 levels following strict adjustment for multiple testing (p=0.00011). However, there were several additional SNPs in the CYP1A2 and CYP1B1 that showed nominally significant associations with PCB118 levels (p-values in the 0.003-0.05 range). Further, several SNPs in the CYP1B1 gene were related to both PCB156 and PCB206 with p-values in the 0.005-0.05 range. Very few associations with pPCB126, PCB169 or PCB170. Genetic variation in the CYP1A1 was related to circulating PCB118 levels in the general elderly population. Genetic variation in CYP1A2 and CYP1B1 might also be associated with other PCBs.

  17. Genome-wide meta-analysis identifies regions on 7p21 (AHR and 15q24 (CYP1A2 as determinants of habitual caffeine consumption.

    Directory of Open Access Journals (Sweden)

    Marilyn C Cornelis

    2011-04-01

    Full Text Available We report the first genome-wide association study of habitual caffeine intake. We included 47,341 individuals of European descent based on five population-based studies within the United States. In a meta-analysis adjusted for age, sex, smoking, and eigenvectors of population variation, two loci achieved genome-wide significance: 7p21 (P = 2.4 × 10(-19, near AHR, and 15q24 (P = 5.2 × 10(-14, between CYP1A1 and CYP1A2. Both the AHR and CYP1A2 genes are biologically plausible candidates as CYP1A2 metabolizes caffeine and AHR regulates CYP1A2.

  18. Genetic variation in the CYP1A1 gene is related to circulating PCB118 levels in a population-based sample

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Lars [Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala (Sweden); Penell, Johanna [Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala (Sweden); Syvänen, Anne-Christine; Axelsson, Tomas [Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala (Sweden); Ingelsson, Erik [Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala (Sweden); Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford (United Kingdom); Morris, Andrew P.; Lindgren, Cecilia [Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford (United Kingdom); Salihovic, Samira; Bavel, Bert van [MTM Research Centre, School of Science and Technology, Örebro University, Örebro (Sweden); Lind, P. Monica, E-mail: monica.lind@medsci.uu.se [Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala (Sweden)

    2014-08-15

    Several of the polychlorinated biphenyls (PCBs), i.e. the dioxin-like PCBs, are known to induce the P450 enzymes CYP1A1, CYP1A2 and CYP1B1 by activating the aryl hydrocarbon receptor (Ah)-receptor. We evaluated if circulating levels of PCBs in a population sample were related to genetic variation in the genes encoding these CYPs. In the population-based Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study (1016 subjects all aged 70), 21 SNPs in the CYP1A1, CYP1A2 and CYP1B1 genes were genotyped. Sixteen PCB congeners were analysed by high-resolution chromatography coupled to high-resolution mass spectrometry (HRGC/ HRMS). Of the investigated relationships between SNPs in the CYP1A1, CYP1A2 and CYP1B1 and six PCBs (congeners 118, 126, 156, 169, 170 and 206) that captures >80% of the variation of all PCBs measured, only the relationship between CYP1A1 rs2470893 was significantly related to PCB118 levels following strict adjustment for multiple testing (p=0.00011). However, there were several additional SNPs in the CYP1A2 and CYP1B1 that showed nominally significant associations with PCB118 levels (p-values in the 0.003–0.05 range). Further, several SNPs in the CYP1B1 gene were related to both PCB156 and PCB206 with p-values in the 0.005–0.05 range. Very few associations with p<0.05 were seen for PCB126, PCB169 or PCB170. Genetic variation in the CYP1A1 was related to circulating PCB118 levels in the general elderly population. Genetic variation in CYP1A2 and CYP1B1 might also be associated with other PCBs. - Highlights: • We studied the relationship between PCBs and the genetic variation in the CYP genes. • Cross sectional data from a cohort of elderly were analysed. • The PCB levels were evaluated versus 21 SNPs in three CYP genes. • PCB 118 was related to variation in the CYP1A1 gene.

  19. Epigenetic Determinants of CYP1A1 Induction by the Aryl Hydrocarbon Receptor Agonist 3,3',4,4',5-Pentachlorobiphenyl (PCB 126

    Directory of Open Access Journals (Sweden)

    Sabine U. Vorrink

    2014-08-01

    Full Text Available Many enzymes involved in xenobiotic metabolism, including cytochrome P450 (CYP 1A1, are regulated by the aryl hydrocarbon receptor (AhR. 3,3',4,4',5-Penta chlorobiphenyl (PCB 126 is a potent ligand for AhR and can thus induce the expression of CYP1A1. Interestingly, we observed that human carcinoma cell lines derived from different types of epithelial cells displayed divergent degrees of CYP1A1 induction after exposure to PCB 126. Since epigenetic mechanisms are known to be involved in cell type-specific gene expression, we sought to assess the epigenetic determinants of CYP1A1 induction in these carcinoma cell lines. In contrast to HepG2 hepatocarcinoma cells, HeLa cervical carcinoma cells showed significantly lower levels of CYP1A1 mRNA expression following PCB 126 exposure. Our results show that the two cell lines maintained differences in the chromatin architecture along the CYP1A1 promoter region. Furthermore, treatment with the epigenetic modifiers, trichostatin A (TSA and 5-aza-2'-deoxycytidine (5-Aza-dC, significantly increased the expression of CYP1A1 after PCB 126 treatment in HeLa cells. However, we did not observe apparent differences in methylation levels or specific location of CpG DNA methylation between the two cell lines in the analyzed CYP1A1 promoter region. Taken together, our findings suggest that the differences in CYP1A1 expression between HepG2 and HeLa cells are due to differences in the chromatin architecture of the CYP1A1 promoter and thus establish a role of epigenetic regulation in cell-specific CYP1A1 expression.

  20. Phenotype refinement strengthens the association of AHR and CYP1A1 genotype with caffeine consumption.

    Science.gov (United States)

    McMahon, George; Taylor, Amy E; Davey Smith, George; Munafò, Marcus R

    2014-01-01

    Two genetic loci, one in the cytochrome P450 1A1 (CYP1A1) and 1A2 (CYP1A2) gene region (rs2472297) and one near the aryl-hydrocarbon receptor (AHR) gene (rs6968865), have been associated with habitual caffeine consumption. We sought to establish whether a more refined and comprehensive assessment of caffeine consumption would provide stronger evidence of association, and whether a combined allelic score comprising these two variants would further strengthen the association. We used data from between 4,460 and 7,520 women in the Avon Longitudinal Study of Parents and Children, a longitudinal birth cohort based in the United Kingdom. Self-report data on coffee, tea and cola consumption (including consumption of decaffeinated drinks) were available at multiple time points. Both genotypes were individually associated with total caffeine consumption, and with coffee and tea consumption. There was no association with cola consumption, possibly due to low levels of consumption in this sample. There was also no association with measures of decaffeinated drink consumption, indicating that the observed association is most likely mediated via caffeine. The association was strengthened when a combined allelic score was used, accounting for up to 1.28% of phenotypic variance. This was not associated with potential confounders of observational association. A combined allelic score accounts for sufficient phenotypic variance in caffeine consumption that this may be useful in Mendelian randomization studies. Future studies may therefore be able to use this combined allelic score to explore causal effects of habitual caffeine consumption on health outcomes.

  1. Inhibition of 17β-estradiol activation by CYP1A1: genotype- and regioselective inhibition by St. John's Wort and several natural polyphenols.

    Science.gov (United States)

    Schwarz, Dieter; Kisselev, Pyotr; Schunck, Wolf-Hagen; Roots, Ivar

    2011-01-01

    Several epidemiological studies associate certain CYP1A1 genotypes, alone or in combination, with an increased risk of estrogen-related cancers. Previously we demonstrated that metabolic activation of estrogens by CYP1A1 is a genotype-dependent reaction with the CYP1A1.2 (Ile462Val) variant being the most efficient catalyst (Kisselev et al.). To answer the question whether genotype-dependent inhibition of activation of estrogens by CYP1A1 could also contribute, we studied the inhibition of hydroxylation activity of the most common allelic variants of human CYP1A1 towards 17β-estradiol. We expressed and purified CYP1A1.1 (wild-type), CYP1A1.2 (Ile462Val), and CYP1A1.4 (Thr461Asn) and performed inhibition assays by natural polyphenols of our diet and drugs of NADPH-dependent estradiol hydroxylation in reconstituted CYP1A1 systems. From the polyphenols studied, a St. John's Wort (Hypericum perforatum) extract, some of its main single constituents hypericin, pseudohypericin, and quercetin, as well as the flavonols kaempferol, myricetin and the phytoestrogens resveratrol and tetramethyl-stilbene exhibited strong inhibition. For the St. John's Wort extract and its single constituents hypericin, pseudohypericin, and quercetin, inhibition exhibited a remarkable dependency on the CYP1A1 genotype. Whereas (wild-type) CYP1A1.1 was most inhibited by the whole crude extract, the variant CYP1A1.2 (Ile462Val) was significantly stronger inhibited by the constituents in its pure form: IC₅₀ values for 2-hydroxylation was more than two times lower compared with the wild-type enzyme and the variant CYP1A1.4 (Thr461Asn). Besides this, the inhibition exhibited a remarkable regioselectivity. The data suggest that risk of estrogen-mediated diseases might be not only influenced by CYP1A1 genotype-dependent activation but also its inhibition by natural polyphenols of our diet and drugs.

  2. Genetic association of aromatic hydrocarbon receptor (AHR) and cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) polymorphisms with dioxin blood concentrations among pregnant Japanese women.

    Science.gov (United States)

    Kobayashi, Sumitaka; Sata, Fumihiro; Sasaki, Seiko; Ban, Susumu; Miyashita, Chihiro; Okada, Emiko; Limpar, Mariko; Yoshioka, Eiji; Kajiwara, Jumboku; Todaka, Takashi; Saijo, Yasuaki; Kishi, Reiko

    2013-06-07

    Dioxins are metabolized by cytochrome P450, family 1 (CYP1) via the aromatic hydrocarbon receptor (AHR). We determined whether different blood dioxin concentrations are associated with polymorphisms in AHR (dbSNP ID: rs2066853), AHR repressor (AHRR; rs2292596), CYP1 subfamily A polypeptide 1 (CYP1A1; rs4646903 and rs1048963), CYP1 subfamily A polypeptide 2 (CYP1A2; rs762551), and CYP1 subfamily B polypeptide 1 (CYP1B1; rs1056836) in pregnant Japanese women. These six polymorphisms were detected in 421 healthy pregnant Japanese women. Differences in dioxin exposure concentrations in maternal blood among the genotypes were investigated. Comparisons among the GG, GA, and AA genotypes of AHR showed a significant difference (genotype model: P=0.016 for the mono-ortho polychlorinated biphenyl concentrations and toxicity equivalence quantities [TEQs]). Second, we found a significant association with the dominant genotype model ([TT+TC] vs. CC: P=0.048 for the polychlorinated dibenzo-p-dioxin TEQs; P=0.035 for polychlorinated dibenzofuran TEQs) of CYP1A1 (rs4646903). No significant differences were found among blood dioxin concentrations and polymorphisms in AHRR, CYP1A1 (rs1048963), CYP1A2, and CYP1B1. Thus, polymorphisms in AHR and CYP1A1 (rs4646903) were associated with maternal dioxin concentrations. However, differences in blood dioxin concentrations were relatively low.

  3. Genotype and allele frequencies of polymorphic cytochromes P450 CYP1A2 and CYP2E1 in Mexicans.

    Science.gov (United States)

    Mendoza-Cantú, Ania; Castorena-Torres, Fabiola; Bermudez, Mario; Martínez-Hernández, Roberto; Ortega, Arturo; Salinas, Juan E; Albores, Arnulfo

    2004-01-01

    CYP1A2 and CYP2E1 are two of the main cytochrome P450 isoforms involved in the metabolism of commonly used drugs and xenobiotic compounds considered to be responsible for or possible participants in the development of several human diseases. Individual susceptibility to developing these pathologies relies, among other factors, on genetic polymorphism which depends on ethnic differences, as the frequency of mutant genotypes varies in different human populations. Thus the aim of this study was to investigate the frequency of CYP1A2 5'-flanking region and CYP2E1 Rsa I/Pst I polymorphisms in Mexicans by PCR-RFLP methods. The DNA of 159 subjects was analysed and mutant allele frequencies of 30% for CYP2E1 Rsa I/Pst I sites and 43% for CYP1A2 5'-flanking region were found. These frequencies are higher than those previously reported for other human populations.

  4. Dopamine D2-Receptor Antagonists Down-Regulate CYP1A1/2 and CYP1B1 in the Rat Liver.

    Directory of Open Access Journals (Sweden)

    P Harkitis

    Full Text Available Dopaminergic systems regulate the release of several hormones including growth hormone (GH, thyroid hormones, insulin, glucocorticoids and prolactin (PRL that play significant roles in the regulation of various Cytochrome P450 (CYP enzymes. The present study investigated the role of dopamine D2-receptor-linked pathways in the regulation of CYP1A1, CYP1A2 and CYP1B1 that belong to a battery of genes controlled by the Aryl Hydrocarbon Receptor (AhR and play a crucial role in the metabolism and toxicity of numerous environmental toxicants. Inhibition of dopamine D2-receptors with sulpiride (SULP significantly repressed the constitutive and benzo[a]pyrene (B[a]P-induced CYP1A1, CYP1A2 and CYP1B expression in the rat liver. The expression of AhR, heat shock protein 90 (HSP90 and AhR nuclear translocator (ARNT was suppressed by SULP in B[a]P-treated livers, whereas the AhRR expression was increased by the drug suggesting that the SULP-mediated repression of the CYP1 inducibility is due to inactivation of the AhR regulatory system. At signal transduction level, the D2-mediated down-regulation of constitutive CYP1A1/2 and CYP1B1 expression appears to be mediated by activation of the insulin/PI3K/AKT pathway. PRL-linked pathways exerting a negative control on various CYPs, and inactivation of the glucocorticoid-linked pathways that positively control the AhR-regulated CYP1 genes, may also participate in the SULP-mediated repression of both, the constitutive and induced CYP1 expression. The present findings indicate that drugs acting as D2-dopamine receptor antagonists can modify several hormone systems that regulate the expression of CYP1A1, CYP1A2 and CYP1B1, and may affect the toxicity and carcinogenicity outcome of numerous toxicants and pre-carcinogenic substances. Therefore, these drugs could be considered as a part of the strategy to reduce the risk of exposure to environmental pollutants and pre-carcinogens.

  5. Expression profile of CYP1A1 and CYP1B1 enzymes in colon and bladder tumors.

    Directory of Open Access Journals (Sweden)

    Vasilis P Androutsopoulos

    Full Text Available BACKGROUND: The cytochrome P450 CYP1A1 and CYP1B1 enzymes are involved in carcinogenesis via activation of pro-carcinogenic compounds to carcinogenic metabolites. CYP1A1 and CYP1B1 have shown elevated levels in human tumors as determined by qRT-PCR and immunohistochemical studies. However studies that have examined CYP1 expression by enzyme activity assays are limited. RESULTS: In the current study the expression of CYP1A1 and CYP1B1 was investigated in a panel of human tumors of bladder and colorectal origin by qRT-PCR and enzyme activity assays. The results demonstrated that 35% (7/20 of bladder tumors and 35% (7/20 of colon tumors overexpressed active CYP1 enzymes. CYP1B1 mRNA was overexpressed in 65% and 60% of bladder and colon tumors respectively, whereas CYP1A1 was overexpressed in 65% and 80% of bladder and colon tumors. Mean mRNA levels of CYP1B1 and CYP1A1 along with mean CYP1 activity were higher in bladder and colon tumors compared to normal tissues (p<0.05. Statistical analysis revealed CYP1 expression levels to be independent of TNM status. Moreover, incubation of tumor microsomal protein in 4 bladder and 3 colon samples with a CYP1B1 specific antibody revealed a large reduction (72.5 ± 5.5 % for bladder and 71.8 ± 7.2% for colon in catalytic activity, indicating that the activity was mainly attributed to CYP1B1 expression. CONCLUSIONS: The study reveals active CYP1 overexpression in human tumors and uncovers the potential use of CYP1 enzymes and mainly CYP1B1 as targets for cancer therapy.

  6. Signal integration by the CYP1A1 promoter--a quantitative study.

    Science.gov (United States)

    Schulthess, Pascal; Löffler, Alexandra; Vetter, Silvia; Kreft, Luisa; Schwarz, Michael; Braeuning, Albert; Blüthgen, Nils

    2015-06-23

    Genes involved in detoxification of foreign compounds exhibit complex spatiotemporal expression patterns in liver. Cytochrome P450 1A1 (CYP1A1), for example, is restricted to the pericentral region of liver lobules in response to the interplay between aryl hydrocarbon receptor (AhR) and Wnt/β-catenin signaling pathways. However, the mechanisms by which the two pathways orchestrate gene expression are still poorly understood. With the help of 29 mutant constructs of the human CYP1A1 promoter and a mathematical model that combines Wnt/β-catenin and AhR signaling with the statistical mechanics of the promoter, we systematically quantified the regulatory influence of different transcription factor binding sites on gene induction within the promoter. The model unveils how different binding sites cooperate and how they establish the promoter logic; it quantitatively predicts two-dimensional stimulus-response curves. Furthermore, it shows that crosstalk between Wnt/β-catenin and AhR signaling is crucial to understand the complex zonated expression patterns found in liver lobules. This study exemplifies how statistical mechanical modeling together with combinatorial reporter assays has the capacity to disentangle the promoter logic that establishes physiological gene expression patterns. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. CYP1A1 expression in breast milk cells of Japanese population

    Energy Technology Data Exchange (ETDEWEB)

    Yonemoto, Junzo; Shiizaki, Kazuhiro; Sone, Hideko; Morita, Masatosi [National Institute for Environmental Studies, Tsukuba (Japan); Uechi, Hiroto [Uechi Obstetrics and Gynecology Clinic, Utsunomiya (Japan); Masuzaki, Yuko; Koizumi, Atsuko; Matzumura, Toru [Metocean Environment Inc., Ohigawa (Japan)

    2004-09-15

    Dioxins are persistent, lipophilic compounds that are ubiquitous in the environment. Concern over the reproductive and developmental toxicity of dioxins has been growing since they have endocrine-disrupting properties and have adversely affected the health of offspring in experimental and epidemiological studies. Monitoring of maternal body burdens of dioxins and their biological responses to dioxin exposure is needed to estimate the potential health risk to their offspring. Breast milk has been used for monitoring dioxins in humans for decades. Breast milk has some advantages in exposure monitoring. Sampling is non-invasive, and dioxin levels are relatively high because of the high lipid content. It is assumed that mammary glands are exposed to a higher level of dioxins than other tissues since mammary glands synthesize and store milk fat. Breast milk contains leukocytes and exfoliated ductal epithelial cells. If these cells responded to dioxins and expressed CYP enzymes, a sensitive biomarker for dioxin exposure, they would be useful as biomarkers for dioxin exposure. In the present study, the expression of CYP enzymes in intact milk cells or cells cultured with TCDD was investigated. In addition, breast milk samples were collected from mothers within one week of childbearing, and the expression of CYP1A1 mRNA in milk cells was determined. The relationship between CYP1A1 mRNA expression in milk cells and dioxin levels in the cream layer of breast milk was analyzed.

  8. Association of CYP1A1 gene polymorphism with chronic kidney disease: a case control study.

    Science.gov (United States)

    Siddarth, Manushi; Datta, Sudip K; Ahmed, Rafat S; Banerjee, Basu D; Kalra, Om P; Tripathi, Ashok K

    2013-07-01

    CYP1A1 is an important xenobiotic metabolizing enzyme, present in liver and kidney. Expression of CYP1A1 enzyme increases manifold when kidney cells are exposed to nephrotoxins/chemicals leading to oxidative stress-induced cell damage. To study the association of CYP1A1 gene polymorphism in patients of chronic kidney disease with unknown etiology (CKDU), we recruited 334 CKDU patients and 334 age and sex matched healthy controls. CYP1A1*2A and *2C polymorphisms were studied by PCR-RFLP and allele specific-PCR respectively. Subjects carrying at least one mutant allele of CYP1A1*2A (TC, CC) and *2C (AG, GG) were shown to be associated with 1.4-2-fold increased risk of CKDU. Also, genotypic combinations of hetero-/homozygous mutants of CYP1A1*2A (TC, CC) with hetero-/homozygous mutant genotypes of CYP1A1*2C (AG, GG) i.e. TC/AG (pCKDU with an odd ratio ranging 1.8-3.3 times approximately. This study demonstrates association of CYP1A1 polymorphisms with CKDU. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Association between CYP1A1m1 gene polymorphism and primary open-angle glaucoma.

    Science.gov (United States)

    Costa, N B; Silva, C T X; Frare, A B; Silva, R E; Moura, K K V O

    2014-12-04

    The CYP1A1 gene is related to the generation of secondary metabolites that are capable of inducing DNA damage. The CYP1A1m1 polymorphism has been examined in many studies, and is located in a region near loci that have been linked to glaucoma, including the locus GLC1I. As a result, this polymorphism has been related to several diseases that are influenced by exposure to xenobiotic as well as primary open-angle glaucoma. We compared the prevalence of the CYP1A1m1 polymorphism in 152 Brazilian patients, 100 patients with primary open-angle glaucoma, and 52 normal controls using restriction fragment length polymorphism analysis. The frequency of the homozygous wild-type (w1/w1) CYP1A1 gene among patients with primary open-angle glaucoma (N = 100) was 16%, for genotype w1/m1, the frequency was 77%, and for m1/m1 it was 7%. Among the control group (N = 52), the frequency of the homozygous wild-type (w1/w1) CYP1A1 gene was 54%, the frequency of w1/m1 was 46%, and the frequency of m1/m1 was 0%. The presence of the CYP1A1m1 polymorphism may interfere with xenobiotic metabolism and exacerbate direct or indirect damage to the optic nerve. These CYP1A1m1 polymorphisms may be risk factors for primary open-angle glaucoma.

  10. Genetic association of aromatic hydrocarbon receptor (AHR) and cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) polymorphisms with dioxin blood concentrations among pregnant Japanese women

    OpenAIRE

    Kobayashi, Sumitaka; Sata, Fumihiro; Sasaki, Seiko; Ban, Susumu; Miyashita, Chihiro; Okada, Emiko; Limpar, Mariko; Yoshioka, Eiji; Kajiwara, Jumboku; TODAKA, Takashi; Saijo, Yasuaki; Kishi, Reiko

    2013-01-01

    Dioxins are metabolized by cytochrome P450, family 1 (CYP1) via the aromatic hydrocarbon receptor (AHR). We determined whether different blood dioxin concentrations are associated with polymorphisms in AHR (dbSNP ID: rs2066853), AHR repressor (AHRR; rs2292596), CYP1 subfamily A polypeptide 1 (CYP1A1; rs4646903 and rs1048963), CYP1 subfamily A polypeptide 2 (CYP1A2; rs762551), and CYP1 subfamily B polypeptide 1 (CYP1B1; rs1056836) in pregnant Japanese women. These six polymorphisms were detect...

  11. Effects of Teratogenic Drugs on CYP1A1 Activity in Differentiating Rat Embryo Cells.

    Science.gov (United States)

    Tayeboon, Gh S; Ostad, S N; Nasri, S; Nili-Ahmadabadi, A; Tavakoli, F; Sabzevari, O

    2015-05-01

    CYP1A1, a P450 isoenzyme, is involved in the phase I xenobiotic metabolism including teratogen drugs. In the present study, the ability of teratogens to elevate the embryonic expression of CYP1A1 was examined. Micromass cell cultures prepared from day 13 rat embryo limb buds (LB). LB cells were cultivated and exposed for 5 days to retinoic acid (RA), hydrocortisone (HC), caffeine (CA) and quinine (QN). CYP1A1 protein expression and activity were measured using immunofluorescence staining and ethoxyresorufin O-deethylation (EROD) assay, respectively. The EROD activity increased significantly following LB cells exposure to RA and HC (pteratogens have potency to increase CYP1A1 activity.

  12. Role of CYP1A1 haplotypes in modulating susceptibility to coronary artery disease.

    Science.gov (United States)

    Lakshmi, Sana Venkata Vijaya; Naushad, Shaik Mohammad; Saumya, Kankanala; Rao, Damera Seshagiri; Kutala, Vijay Kumar

    2012-10-01

    To investigate the role of cytochrome P450 1A1 (CYP1A1) haplotypes in modulating susceptibility to coronary artery disease (CAD), a case-control study was conducted by enrolling 352 CAD cases and 282 healthy controls. PCR-RFLP, multiplex PCR, competitive ELISA techniques were employed for the analysis of CYP1A1 [ml (T-->C), m2 (A-->G) and m4 (C-->A)] haplotypes, glutathione-S-transferase (GST)T1/GSTM1 null variants and plasma 8-oxo-2'deoxyguanosine (8-oxodG) respectively. Two CYP1A1 haplotypes, i.e. CAC and TGC showed independent association with CAD risk, while all-wild CYP1A1 haplotype i.e. TAC showed reduced risk for CAD. All the three variants showed mild linkage disequilibrium (D': 0.05 to 0.17). GSTT1 null variant also exerted independent association with CAD risk (OR: 2.53, 95% CI 1.55-4.12). Among the conventional risk factors, smoking showed synergetic interaction with CAC haplotype of CYP1A1 and GSTT1 null genotype in inflating CAD risk. High risk alleles of this pathway showed dose-dependent association with percentage of stenosis and number of vessels affected. Elevated 8-oxodG levels were observed in subjects with CYP1A1 CAC haplotype and GSTT1 null variant. Multiple linear regression model of these xenobiotic variants explained 36% variability in 8-oxodG levels. This study demonstrated the association of CYP1A1 haplotypes and GSTT1 null variant with CAD risk and this association was attributed to increased oxidative DNA damage.

  13. CONSTITUTIVE ANDROSTANE RECEPTOR DEPENDENT AND INDEPENDENT MODULATION OF CYP3A2, CYP1A2 BY PHENOBARBITAL AND FIBRATE IN RATS’ LIVER

    Directory of Open Access Journals (Sweden)

    Zein Shaban Ibrahim

    2013-01-01

    Full Text Available Cytochrome P450 enzymes, CYP3A and CYP1A are major drug metabolizing enzymes in the liver. CYP3A enzymes have a major role in the metabolism of 30-40% of all used drugs. CYP1A2 is a key enzyme having an important role in the metabolic clearance of 5% of currently marketed drugs. CYP1A2 participates in the metabolic activation of chemical mutagens in cooked food, therefore its activity is suspected to be one of the possible risk factors determining the carcinogenicity of heterocyclic amines in human beings. In a previous report, we have reported the induction of CYP3A2 and the inhibition of CYP1A2 by Fibrate (CFA and proved CYP1A2 inhibition to be PPARα-dependent. CYP3A2 and CYP1A2 have been reported to be induced in the liver by Phenobarbital (PB while Fibrates was reported to induce CYP3A2. However the exact mechanism of the induction of CYP3A2 by CFA and PB and induction of CYP1A2 by PB has not been clarified yet whether it is through Constitutive Androstane Receptor (CAR or other receptor as PPARα or Pregnane X Receptor (PXR. We treated Wistar female rats (with normal expression of CAR protein and Wistar femal Kyoto rats (with low expression of CAR protein with PB and Clofibric Acid (CFA. PB caused a high CYP3A2 induction in Wistar female rats and a low induction in (WKY indicating that PB induced CYP3A2 in a CAR-dependent manner. Interestingly, PB treatment induced CYP1A2 in Wistar female rats and failed to induce it in (WKY indicating that the induction of CYP1A2 by PB to be CAR-dependent. Moreover CFA induced CYP3A2 protein similarly in both rat strains indicating that CYP3A2 induction by Fibrates is CAR-independent and most probably to be PXR or PPARα-dependent. For the best of our knowledge this is the first report that shows a clear evidence of the CAR-dependent induction of CYP1A2 and CYP3A2 by PB and the CAR-independent induction of CYP3A2 by fibrates.

  14. Distribution of composite CYP1A1 genotypes in Africans, African-Americans and Caucasians.

    Science.gov (United States)

    Garte, S J; Trachman, J; Crofts, F; Toniolo, P; Buxbaum, J; Bayo, S; Taioli, E

    1996-01-01

    We present the genotype distribution of the CYP1A1 gene in a sample of over 300 subjects of various ethnic origins. Genotypes are presented as composites of eight possible alleles, taking into account the three major polymorphisms, including a recently described African-American-specific MspI RFLP. A new nomenclature system is presented for clarifying the various haplotypes. Interesting interracial differences in allelic frequencies and admixture rates were observed for the three polymorphisms. Because of the importance of the CYP1A1 gene (which encodes the aromatic hydrocarbon hydroxylase) as a biomarker of genetic susceptibility to environmental carcinogens such as polycyclic aromatic hydrocarbons, these data may provide a useful reference for future studies of relationships between CYP1A1 genotype and disease susceptibility.

  15. Pacific Ocean-wide profile of CYP1A1 expression, stable carbon and nitrogen isotope ratios, and organic contaminant burden in sperm whale skin biopsies.

    Science.gov (United States)

    Godard-Codding, Céline A J; Clark, Rebecca; Fossi, Maria Cristina; Marsili, Letizia; Maltese, Silvia; West, Adam G; Valenzuela, Luciano; Rowntree, Victoria; Polyak, Ildiko; Cannon, John C; Pinkerton, Kim; Rubio-Cisneros, Nadia; Mesnick, Sarah L; Cox, Stephen B; Kerr, Iain; Payne, Roger; Stegeman, John J

    2011-03-01

    Ocean pollution affects marine organisms and ecosystems as well as humans. The International Oceanographic Commission recommends ocean health monitoring programs to investigate the presence of marine contaminants and the health of threatened species and the use of multiple and early-warning biomarker approaches. We explored the hypothesis that biomarker and contaminant analyses in skin biopsies of the threatened sperm whale (Physeter macrocephalus) could reveal geographical trends in exposure on an oceanwide scale. We analyzed cytochrome P450 1A1 (CYP1A1) expression (by immunohistochemistry), stable nitrogen and carbon isotope ratios (as general indicators of trophic position and latitude, respectively), and contaminant burdens in skin biopsies to explore regional trends in the Pacific Ocean. Biomarker analyses revealed significant regional differences within the Pacific Ocean. CYP1A1 expression was highest in whales from the Galapagos, a United Nations Educational, Scientific, and Cultural Organization World Heritage marine reserve, and was lowest in the sampling sites farthest away from continents. We examined the possible influence of the whales' sex, diet, or range and other parameters on regional variation in CYP1A1 expression, but data were inconclusive. In general, CYP1A1 expression was not significantly correlated with contaminant burdens in blubber. However, small sample sizes precluded detailed chemical analyses, and power to detect significant associations was limited. Our large-scale monitoring study was successful at identifying regional differences in CYP1A1 expression, providing a baseline for this known biomarker of exposure to aryl hydrocarbon receptor agonists. However, we could not identify factors that explained this variation. Future oceanwide CYP1A1 expression profiles in cetacean skin biopsies are warranted and could reveal whether globally distributed chemicals occur at biochemically relevant concentrations on a global basis, which may

  16. Sulforaphane inhibits CYP1A1 activity and promotes genotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fangxing, E-mail: fxyang@zju.edu.cn [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058 (China); Zhuang, Shulin [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058 (China); Zhang, Chao; Dai, Heping [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 (China); Liu, Weiping, E-mail: wliu@zju.edu.cn [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058 (China)

    2013-06-15

    Increasing environmental pollution by carcinogens such as some of persistent organic pollutants (POPs) has prompted growing interest in searching for chemopreventive compounds which are readily obtainable. Sulforaphane (SFN) is isolated from cruciferous vegetables and has the potentials to reduce carcinogenesis through various pathways. In this study, we studied the effects of SFN on CYP1A1 activity and genotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The results showed that SFN inhibited TCDD-induced CYP1A1 activity in H4IIE cells by directly inhibiting CYP1A1 activity, probably through binding to aryl hydrocarbon receptor and/or CYP1A1 revealed by molecular docking. However, SFN promoted TCDD-induced DNA damage in yeast cells and reduced the viability of initiated yeast cells. Besides, it is surprising that SFN also failed to reduce genotoxicity induced by other genotoxic reagents which possess different mechanisms to lead to DNA damage. Currently, it is difficult to predict whether SFN has the potentials to reduce the risk of TCDD based on the conflicting observations in the study. Therefore, further studies should be urgent to reveal the function and mechanism of SFN in the stress of such POPs on human health. - Highlights: • Sulforaphane inhibited TCDD-induced CYP1A1 activity in H4IIE cells. • Sulforaphane may bind to aryl hydrocarbon receptor and/or CYP1A1. • Sulforaphane promoted TCDD-induced DNA damage in yeast cells. • Sulforaphane may promote DNA damage by DNA strand breaks or DNA alkylation.

  17. Pacific Ocean–Wide Profile of CYP1A1 Expression, Stable Carbon and Nitrogen Isotope Ratios, and Organic Contaminant Burden in Sperm Whale Skin Biopsies

    Science.gov (United States)

    Godard-Codding, Céline A.J.; Clark, Rebecca; Fossi, Maria Cristina; Marsili, Letizia; Maltese, Silvia; West, Adam G.; Valenzuela, Luciano; Rowntree, Victoria; Polyak, Ildiko; Cannon, John C.; Pinkerton, Kim; Rubio-Cisneros, Nadia; Mesnick, Sarah L.; Cox, Stephen B.; Kerr, Iain; Payne, Roger; Stegeman, John J.

    2011-01-01

    Background Ocean pollution affects marine organisms and ecosystems as well as humans. The International Oceanographic Commission recommends ocean health monitoring programs to investigate the presence of marine contaminants and the health of threatened species and the use of multiple and early-warning biomarker approaches. Objective We explored the hypothesis that biomarker and contaminant analyses in skin biopsies of the threatened sperm whale (Physeter macrocephalus) could reveal geographical trends in exposure on an oceanwide scale. Methods We analyzed cytochrome P450 1A1 (CYP1A1) expression (by immunohistochemistry), stable nitrogen and carbon isotope ratios (as general indicators of trophic position and latitude, respectively), and contaminant burdens in skin biopsies to explore regional trends in the Pacific Ocean. Results Biomarker analyses revealed significant regional differences within the Pacific Ocean. CYP1A1 expression was highest in whales from the Galapagos, a United Nations Educational, Scientific, and Cultural Organization World Heritage marine reserve, and was lowest in the sampling sites farthest away from continents. We examined the possible influence of the whales’ sex, diet, or range and other parameters on regional variation in CYP1A1 expression, but data were inconclusive. In general, CYP1A1 expression was not significantly correlated with contaminant burdens in blubber. However, small sample sizes precluded detailed chemical analyses, and power to detect significant associations was limited. Conclusions Our large-scale monitoring study was successful at identifying regional differences in CYP1A1 expression, providing a baseline for this known biomarker of exposure to aryl hydrocarbon receptor agonists. However, we could not identify factors that explained this variation. Future oceanwide CYP1A1 expression profiles in cetacean skin biopsies are warranted and could reveal whether globally distributed chemicals occur at biochemically

  18. CYP1A2 phenotyping in dried blood spots and microvolumes of whole blood and plasma.

    Science.gov (United States)

    De Kesel, Pieter M M; Lambert, Willy E; Stove, Christophe P

    2014-01-01

    Phenotyping, using caffeine as probe substrate, is a proper method to assess CYP1A2 activity. We evaluated the utility of dried blood spots (DBS) for CYP1A2 phenotyping. LC-MS/MS methods were developed and validated for quantitation of caffeine and its metabolite paraxanthine in DBS, whole blood and plasma. All parameters met the pre-established criteria. While recovery, matrix effects and precision were unaffected by hematocrit (Hct), there was a Hct effect on accuracy, although for the evaluated Hct interval (0.36-0.50) it remained within acceptable limits. The phenotyping methods were successfully applied in healthy volunteers. Excellent method performance and highly comparable phenotyping indices in DBS, whole blood and plasma, combined with the benefits of DBS sampling, illustrate the suitability of DBS-based CYP1A2 phenotyping.

  19. Rats fed soy protein isolate (SPI) have impaired hepatic CYP1A1 induction by polycyclic aromatic hydrocarbons as a result of interference with aryl hydrocarbon receptor signaling

    Science.gov (United States)

    Consumption of soy diet has been found to reduce cancer incidence in animals and is associated with reduced cancer risk in humans. Previously, we have demonstrated that female Sprague-Dawley rats fed purified AIN-93G diets with soy protein isolate (SPI) as the sole protein source had reduced CYP1A1 ...

  20. Why dried blood spots are an ideal tool for CYP1A2 phenotyping.

    Science.gov (United States)

    De Kesel, Pieter M M; Lambert, Willy E; Stove, Christophe P

    2014-08-01

    Dried blood spot (DBS) sampling has gained wide interest in bioanalysis during the last decade and has already been successfully applied in pharmacokinetic and phenotyping studies. However, all of the available phenotyping studies used small datasets and did not include a systematic evaluation of DBS-specific parameters. The latter is important since several of these factors still challenge the breakthrough of DBS in routine practice. In this study, caffeine and paraxanthine are determined in capillary DBS, venous DBS, whole blood and plasma for cytochrome P450 (CYP) 1A2 phenotyping. The aim of this study was to explore the usefulness of DBS as a tool for CYP1A2 phenotyping. A CYP1A2 phenotyping study was conducted in 73 healthy volunteers who received a 150 mg oral dose of caffeine. Six hours post-administration, caffeine and paraxanthine concentrations and paraxanthine:caffeine molar concentration ratios, i.e., the actual CYP1A2 phenotyping indices, were determined in capillary DBS (obtained by non-volumetric application, direct from the fingertip), venous DBS, whole blood, and plasma. Furthermore, the impact of DBS-specific parameters, including hematocrit, volume spotted, and punch location, was evaluated. Concentrations of caffeine and paraxanthine in capillary DBS were, respectively, on average 12.7 and 13.8% lower than those in venous DBS and 31.5 and 33.1% lower than those in plasma. While these differences were statistically significant (p phenotyping study to date, we have demonstrated that CYP1A2 phenotyping in capillary DBS is a valid and convenient alternative for the classical plasma-based approach. Additionally, we have provided an objective basis as to why DBS are an ideal tool for CYP1A2 phenotyping.

  1. CYP1A1 and CYP2E1 polymorphism frequencies in a large Brazilian population

    Directory of Open Access Journals (Sweden)

    Renata dos Santos Coura

    2007-01-01

    Full Text Available The enzymes encoded by the polymorphic genes CYP1A1 and CYP2E1 play an important role in the activation and inactivation of xenobiotics. These enzymes have been associated with xenobiotic-induced diseases, such as cancer, therapeutic failure and adverse effects of drugs. The aim of the present study was to determine the allelic and genotypic frequencies of these polymorphisms in a large, ethnically mixed Brazilian population sample from Rio de Janeiro. Polymorphisms CYP1A1 and CYP2E1 were determined in 870 unrelated individuals by PCR-RFLP analysis in peripheral blood DNA. The observed allelic frequencies were 0.90 for CYP1A1*1A and 0.95 for CYP2E1*1A, in the total sample. The allelic frequency of CYP1A1*2C in "pardos" (0.13 and Brazilian whites (0.11 was higher than in Caucasians (0.05, which may be a result of the Amerindian genetic component, that presents the highest frequency of this allele observed up to now. The genotype distributions for both polymorphisms were in Hardy-Weinberg equilibrium and were statistically different between males and females, and among ethnic groups.

  2. Signal integration by the CYP1A1 promoter - a quantitative study

    NARCIS (Netherlands)

    Schulthess, P.; Löffler, A.; Vetter, S.; Kreft, L.; Schwarz, M.; Braeuning, A.; Blüthgen, N.

    2015-01-01

    Genes involved in detoxification of foreign compounds exhibit complex spatiotemporal expression patterns in liver. Cytochrome P450 1A1 (CYP1A1), for example, is restricted to the pericentral region of liver lobules in response to the interplay between aryl hydrocarbon receptor (AhR) and

  3. Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention

    Directory of Open Access Journals (Sweden)

    Tsatsakis Aristidis M

    2009-06-01

    Full Text Available Abstract CYP1A1 is one of the main cytochrome P450 enzymes, examined extensively for its capacity to activate compounds with carcinogenic properties. Continuous exposure to inhalation chemicals and environmental carcinogens is thought to increase the level of CYP1A1 expression in extrahepatic tissues, through the aryl hydrocarbon receptor (AhR. Although the latter has long been recognized as a ligand-induced transcription factor, which is responsible for the xenobiotic activating pathway of several phase I and phase II metabolizing enzymes, recent evidence suggests that the AhR is involved in various cell signaling pathways critical to cell cycle regulation and normal homeostasis. Disregulation of these pathways is implicated in tumor progression. In addition, it is becoming increasingly evident that CYP1A1 plays an important role in the detoxication of environmental carcinogens, as well as in the metabolic activation of dietary compounds with cancer preventative activity. Ultimately the contribution of CYP1A1 to cancer progression or prevention may depend on the balance of procarcinogen activation/detoxication and dietary natural product extrahepatic metabolism.

  4. Signal integration by the CYP1A1 promoter - a quantitative study

    NARCIS (Netherlands)

    Schulthess, P.; Löffler, A.; Vetter, S.; Kreft, L.; Schwarz, M.; Braeuning, A.; Blüthgen, N.

    2015-01-01

    Genes involved in detoxification of foreign compounds exhibit complex spatiotemporal expression patterns in liver. Cytochrome P450 1A1 (CYP1A1), for example, is restricted to the pericentral region of liver lobules in response to the interplay between aryl hydrocarbon receptor (AhR) and Wnt/β-cateni

  5. Urinary mutagenicity, CYP1A2 and NAT2 activity in textile industry workers.

    Science.gov (United States)

    Fanlo, Ana; Sinuès, Blanca; Mayayo, Esteban; Bernal, Luisa; Soriano, Antonia; Martínez-Jarreta, Begoña; Martínez-Ballarín, Enrique

    2004-11-01

    The two major causes of bladder cancer have been recognised to be cigarette smoke and occupational exposure to arylamines. These compounds are present both in tobacco smoke and in the dyes used in textile production. Aromatic amines suffer oxidative metabolism via P450 cytochrome CYP1A2, and detoxification by the polymorphic NAT2. The aim of the present work was to assess the association between occupational-derived exposure to mutagens and CYP1A2 or NAT2 activity. This cross-sectional study included 117 textile workers exposed to dyes and 117 healthy controls. The urinary mutagenicity was determined in 24 h urine using TA98 Salmonella typhimurium strain with microsomal activation S9 (MIS9) or incubation with beta-glucuronidase (MIbeta). Urinary caffeine metabolite ratios: AFMU+1X+1U/17U, and AFMU/AFMU+1X+1U were calculated to assess CYP1A2 and NAT2 activities, respectively. The results show that workers present a strikingly higher urine mutagenicity than controls (p0.05) was compared, and the urinary mutagenicity was not significantly associated with the CYP1A2 activity marker (r=0.04 and r=-0.01 for MIS9 and MIbeta, respectively). This study clearly indicates the need for further protective policies to minimise exposure to the lowest feasible limit in order to avoid unnecessary risks.

  6. Echinacea purpurea up-regulates CYP1A2, CYP3A4 and MDR1 gene expression by activation of pregnane X receptor pathway.

    Science.gov (United States)

    Awortwe, Charles; Manda, Vamshi K; Avonto, Cristina; Khan, Shabana I; Khan, Ikhlas A; Walker, Larry A; Bouic, Patrick J; Rosenkranz, Bernd

    2015-03-01

    1.This study investigated the mechanism underlying Echinacea-mediated induction of CYP1A2, CYP3A4 and MDR1 in terms of human pregnane X receptor (PXR) activation. 2.Crude extracts and fractions of Echinacea purpurea were tested for PXR activation in HepG2 cells by a reporter gene assay. Quantitative real-time PCR was carried out to determine their effects on CYP1A2 and CYP3A4 mRNA expressions. Capsules and fractions were risk ranked as high, intermediate and remote risk of drug-metabolizing enzymes induction based on EC50 values determined for respective CYPs. 3. Fractions F1, F2 and capsule (2660) strongly activated PXR with 5-, 4- and 3.5-fold increase in activity, respectively. Echinacea preparations potentiated up-regulation of CYP1A2, CYP3A4 and MDR1 via PXR activation. 4.Thus E. purpurea preparations cause herb-drug interaction by up-regulating CYP1A2, CYP3A4 and P-gp via PXR activation.

  7. Development and validation of a reversed-phase HPLC method for CYP1A2 phenotyping by use of a caffeine metabolite ratio in saliva.

    Science.gov (United States)

    Begas, Elias; Kouvaras, Evangelos; Tsakalof, Andreas K; Bounitsi, Maria; Asprodini, Eftihia Konstadinos

    2015-11-01

    CYP1A2 is important for metabolizing various clinically used drugs. Phenotyping of CYP1A2 may prove helpful for drug individualization therapy. Several HPLC methods have been developed for quantification of caffeine metabolites in plasma and urine. Aim of the present study was to develop a valid and simple HPLC method for evaluating CYP1A2 activity during exposure in xenobiotics by the use of human saliva. Caffeine and paraxanthine were isolated from saliva by liquid-liquid extraction (chlorophorm/isopropanol 85/15v/v). Extracts were analyzed by reversed-phase HPLC on a C18 column with mobile phase 0.1% acetic acid/methanol/acetonitrile (80/20/2 v/v) and detected at 273nm. Caffeine and paraxanthine elution times were caffeine metabolites. Detector response was linear (0.10-8.00µg/ml, R(2) >0.99), recovery was >93% and bias caffeine. Paraxanthine/caffeine ratio of 34 healthy volunteers was significantly higher in smokers (pcaffeine ratios and urine metabolite ratios were highly correlated (r=0.85, p<0.001). The method can be used for the monitoring of CYP1A2 activity in clinical practice and in studies relevant to exposure to environmental and pharmacological xenobiotics.

  8. Metabolism of the A{sub 1} adenosine receptor PET ligand [{sup 18}F]CPFPX by CYP1A2: implications for bolus/infusion PET studies

    Energy Technology Data Exchange (ETDEWEB)

    Matusch, Andreas [Institute of Medicine, Research Center Juelich GmbH, D-52425 Juelich (Germany); Meyer, Philipp T. [Department of Neurology, University Hospital Aachen, D-52074 Aachen (Germany); Bier, Dirk [Institute for Neuroscience and Biophysics (INB4)-Nuclear Chemistry, Research Center Juelich GmbH, D-52425 Juelich (Germany); Holschbach, Marcus H. [Institute for Neuroscience and Biophysics (INB4)-Nuclear Chemistry, Research Center Juelich GmbH, D-52425 Juelich (Germany); Woitalla, Dirk [Neurological Department, Ruhr-University Bochum, D-44791 Bochum (Germany); Elmenhorst, David [Institute of Medicine, Research Center Juelich GmbH, D-52425 Juelich (Germany); Winz, Oliver H. [Institute of Medicine, Research Center Juelich GmbH, D-52425 Juelich (Germany); Zilles, Karl [Institute of Medicine, Research Center Juelich GmbH, D-52425 Juelich (Germany); Bauer, Andreas [Institute of Medicine, Research Center Juelich GmbH, D-52425 Juelich (Germany)]. E-mail: an.bauer@fz-juelich.de

    2006-10-15

    The A{sub 1} adenosine receptor positron emission tomography (PET) ligand 8-cyclopentyl-3-(3-[{sup 18}F]fluoropropyl)-1-propylxanthine ([{sup 18}F]CPFPX, ) undergoes a fast hepatic metabolism. An optimal design of PET quantitation approaches (e.g., bolus/infusion studies) necessitates the knowledge of factors that influence this metabolism. Metabolites of were separated by radio thin-layer chromatography. Metabolism in vivo, in pooled human liver microsomes and in recombinant human cytochrome isoenzyme preparations was studied. Dynamic PET studies using were performed on three controls and two patients, one treated with the antidepressant and inhibitor of cytochrome CYP1A2 fluvoxamine, the other suffering from liver cirrhosis. CPFPX is metabolized by cytochrome CYP1A2 with high selectivity [K {sub M}=1.1 {mu}M (95% confidence interval, or CI, 0.6-2.0 {mu}M) and V {sub max}=243 pmol min{sup -1} mg{sup -1} (95% CI, 112-373 pmol min{sup -1} mg{sup -1}) corresponding to 2.4 pmol min{sup -1} pmol{sup -1} cytochrome P-450]. This metabolism can competitively be inhibited by fluvoxamine with K {sub I}=68 nM (95% CI, 34-138 nM). At least eight compounds found in human plasma and in the CYP1A2 in vitro preparations have an identical migration pattern and account together for >90% and >80% of the respective metabolite yield. Metabolism was considerably delayed in the two patients. In conclusion, is metabolized by cytochrome CYP1A2. Its metabolism is therefore subdued to disease-related or xenobiotic-induced changes of CYP1A2 activity. The identification of the metabolic pathway of 1 allows to optimize image quantification in A{sub 1} adenosine receptor PET studies.

  9. CYP1A1 genetic polymorphisms and uterine leiomyoma risk: a meta-analysis

    Science.gov (United States)

    Wang, Fen; Chen, Jiying; Wang, Lin; Ma, Yulan; Mayinuer, Niyazi

    2015-01-01

    Background: Some studies assessed the association between CYP1A1 MspI and Ile462Val polymorphisms and uterine leiomyoma (UL) risk. However, the results were controversial. We did this meta-analysis to determine the association between CYP1A1 MspI and Ile462Val polymorphisms and UL risk. Materials and methods: We searched databases containing PubMed, Springer Link, EMBASE, Chinese National Knowledge Infrastructure (CNKI) up to 11 October 2014. Pooled ORs and 95% CIs were used to assess the strength of the associations. Results: In total, 9 case-control studies with 2157 UL cases and 2197 healthy controls were included in this meta-analysis. CYP1A1 Ile462Val polymorphism was significantly associated with UL risk (OR = 2.29, 95% CI 1.75-2.99, P < 0.00001). In the subgroup analysis by race, significantly increased risks were found in the Asians (OR = 2.76, 95% CI 1.86-4.09, P < 0.00001) and Caucasians (OR = 1.87, 95% CI 1.30-2.68, P = 0.0007). However, MspI polymorphism was not significantly associated with UL risk (OR = 1.15, 95% CI 0.90-1.47, P = 0.27). In the subgroup analysis by race, no significant association was found in the Asians (OR = 1.15, 95% CI 0.86-1.54, P = 0.35). Conclusion: In summary, the results of the meta-analysis suggested that CYP1A1 Ile462Val polymorphism was significantly associated with UL risk. PMID:26064254

  10. Relationship between CYP1A1 polymorphisms and invasion and metastasis of breast cancer

    Institute of Scientific and Technical Information of China (English)

    Hua Wang; Wen-Jian Wang

    2013-01-01

    Objective:To investigate the relationship betweenCYP1A1 genetic polymorphisms and the invasion and metastasis of breast cancer.Methods:TheCYP1A1 gene polymorphism(anT-C transversion at nucleotide position3801) was detected by the polymerase chain reaction and restriction fragment length polymorphism in80 cases with breast cancer and60 samples of normal breast tissue.The difference in genotypic distribution frequency between the groups, the correlation between the genotypes and the factors related to prognosis were analyzed.Results:The incidence of homozygous and variant genotypes had no difference between the breast cancer group and controls group(P=0.746).The proportion of variant genotype increased as clinical stage(P=0.006) advanced, as well as with increased numbers of lymph node metastases(P=0.010). Conclusions:In patients with breast cancer there is a correlation between theCYP1A1CC allele and some factors indicating poor prognosis, including more lymph node metastases as well as a more advanced clinical stage.

  11. The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine

    OpenAIRE

    Womack Christopher J; Saunders Michael J; Bechtel Marta K; Bolton David J; Martin Michael; Luden Nicholas D; Dunham Wade; Hancock Melyssa

    2012-01-01

    Abstract Background Although caffeine supplementation improves performance, the ergogenic effect is variable. The cause(s) of this variability are unknown. A (C/A) single nucleotide polymorphism at intron 1 of the cytochrome P450 (CYP1A2) gene influences caffeine metabolism and clinical outcomes from caffeine ingestion. The purpose of this study was to determine if this polymorphism influences the ergogenic effect of caffeine supplementation. Methods Thirty-five trained male cyclists (age = 2...

  12. Mice Deficient in the Gene for Cytochrome P450 (CYP)1A1 Are More Susceptible Than Wild-Type to Hyperoxic Lung Injury: Evidence for Protective Role of CYP1A1 Against Oxidative Stress

    Science.gov (United States)

    Wang, Lihua; Wang, Gangduo; Couroucli, Xanthi I.; Shivanna, Binoy; Welty, Stephen E.; Barrios, Roberto; Khan,  M. Firoze; Nebert, Daniel W.; Roberts, L. Jackson; Moorthy, Bhagavatula

    2014-01-01

    Hyperoxia contributes to acute lung injury in diseases such as acute respiratory distress syndrome in adults and bronchopulmonary dysplasia in premature infants. Cytochrome P450 (CYP)1A1 has been shown to modulate hyperoxic lung injury. The mechanistic role(s) of CYP1A1 in hyperoxic lung injury in vivo is not known. In this investigation, we hypothesized that Cyp1a1(–/–) mice would be more susceptible to hyperoxic lung injury than wild-type (WT) mice, and that the protective role of CYP1A1 is in part due to CYP1A1-mediated decrease in the levels of reactive oxygen species-mediated lipid hydroperoxides, e.g., F2-isoprostanes/isofurans, leading to attenuation of oxidative damage. Eight- to ten-week-old male WT (C57BL/6J) or Cyp1a1(–/–) mice were exposed to hyperoxia (>95% O2) or room air for 24–72 h. The Cyp1a1(–/–) mice were more susceptible to oxygen-mediated lung damage and inflammation than WT mice, as evidenced by increased lung weight/body weight ratio, lung injury, neutrophil infiltration, and augmented expression of IL-6. Hyperoxia for 24–48 h induced CYP1A expression at the mRNA, protein, and enzyme levels in liver and lung of WT mice. Pulmonary F2-isoprostane and isofuran levels were elevated in WT mice after hyperoxia for 24 h. On the other hand, Cyp1a1(–/–) mice showed higher levels after 48–72 h of hyperoxia exposure compared to WT mice. Our results support the hypothesis that CYP1A1 protects against hyperoxic lung injury by decreasing oxidative stress. Future research could lead to the development of novel strategies for prevention and/or treatment of acute lung injury. PMID:24893714

  13. Triclosan activates aryl hydrocarbon receptor (AhR)-dependent apoptosis and affects Cyp1a1 and Cyp1b1 expression in mouse neocortical neurons.

    Science.gov (United States)

    Szychowski, Konrad A; Wnuk, Agnieszka; Kajta, Małgorzata; Wójtowicz, Anna K

    2016-11-01

    Triclosan (TCS) is an antimicrobial agent that is used extensively in personal care and in sanitizing products, such as soaps, toothpastes, and hair products. A number of studies have revealed the presence of TCS in human tissues, such as fat, liver and brain, in addition to blood and breast milk. The aim of the present study was to investigate the impact of TCS on AhR and Cyp1a1/Cyp1b1 signaling in mouse neocortical neurons in primary cultures. In addition to the use of selective ligands and siRNAs, expression levels of mRNA and proteins as well as caspase-3 activity, reactive oxygen species (ROS) formation, and lactate dehydrogenase (LDH) release have been measured. We also studied the involvement of the AhR in TCS-induced LDH release and caspase-3 activation as well as the effect of TCS on ROS generation. Cultures of neocortical neurons were prepared from Swiss mouse embryos on day 15/16 of gestation. The cells were cultured in phenol red-free Neurobasal medium with B27 and glutamine, and the neurons were exposed to 1 and 10µM TCS. Our experiments showed that the expression of AhR and Cyp1a1 mRNA decreased in cells exposed to 10µM TCS for 3 or 6h. In the case of Cyp1b1, mRNA expression remained unchanged compared with the control group following 3h of exposure to TCS, but after 6h, the mRNA expression of Cyp1b1 was decreased. Our results confirmed that the AhR is involved in the TCS mechanism of action, and our data demonstrated that after the cells were transfected with AhR siRNA, the cytotoxic and pro-apoptotic properties of TCS were decreased. The decrease in Cyp1a1 mRNA and protein expression levels accompanied by a decrease in its activity. The stimulation of Cyp1a1 activity produced by the application of an AhR agonist (βNF) was attenuated by TCS, whereas the addition of AhR antagonist (αNF) reversed the inhibitory effects of TCS. In our experiments, TCS diminished Cyp1b1 mRNA and enhanced its protein expression. In case of Cyp1a1 we observed

  14. Genetic polymorphisms of CYP1A1 and risk of leukemia: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Lu J

    2015-10-01

    Full Text Available Jun Lu,1,* Qian Zhao,1,2,* Ya-Jing Zhai,3 Hai-Rong He,1 Li-Hong Yang,1 Fan Gao,1 Rong-Sheng Zhou,4 Jie Zheng,1 Xian-Cang Ma1,51Clinical Research Center, The First Affiliated Hospital, Xi’an Jiaotong University, 2College of Pharmacy, Xi’an Medical University, 3Department of Pharmacy, The First Affiliated Hospital, Xi’an Jiaotong University, 4Department of Anesthesiology, The First Affiliated Hospital, Xi’an Jiaotong University, 5Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China*These authors contributed equally to this workAbstract: The associations between CYP1A1 polymorphisms and risk of leukemia have been studied extensively, but the results have been inconsistent. Therefore, in this study, we performed a meta-analysis to clarify associations of three CYP1A1 polymorphisms (T3801C, A2455G, and C4887A with the risks of acute lymphoblastic leukemia (ALL, acute myeloid leukemia (AML, and chronic myeloid leukemia (CML. Medline, EMBASE, and China National Knowledge Infrastructure databases were searched to collect relevant studies published up to April 20, 2015. The extracted data were analyzed statistically, and pooled odds ratios with 95% confidence intervals were calculated to quantify the associations. Overall, 26 publications were included. Finally, T3801C was associated with an increased risk of AML in Asians under the dominant model. For A2455G, the risk of ALL was increased among Caucasians in the recessive model and the allele-contrast model; A2455G was also associated with an increased risk of CML among Caucasians under the recessive model, dominant model, and allele-contrast model. For C4887A, few of the included studies produced data. In conclusion, the results suggest that Asians carrying the T3801C C allele might have an increased risk of AML and that Caucasians with the A2455G GG genotype might have an increased risk of ALL. Further

  15. Pharmacogenetics and olanzapine treatment: CYP1A2*1F and serotonergic polymorphisms influence therapeutic outcome.

    Science.gov (United States)

    Laika, B; Leucht, S; Heres, S; Schneider, H; Steimer, W

    2010-02-01

    Psychiatric pharmacotherapy with olanzapine is commonplace. We investigated the influence of CYP1A2*1F (-163A, rs762551) and serotonergic polymorphisms on olanzapine serum concentrations and clinical outcome in a naturalistic clinical setting. Included were 124 Caucasian psychiatric inpatients treated with olanzapine for at least 4 weeks with steady-state serum concentrations available for 73 patients. The CYP1A2*1F polymorphism was reported to affect the inducibility of CYP1A2. In our study population, CYP1A2*1F/*1F genotype alone resulted in a 22% reduction of dose-/body weight-normalized olanzapine serum concentrations compared to homo- and heterozygote carriers of CYP1A2*1A (both groups without inducers). This effect was independent of the well-known effect of inducing agents (here tobacco smoke and carbamazepine which led to on average 28% lower concentrations in CYP1A2*1A carriers and 26% lower concentrations in CYP1A2*1F/*1F carriers). Consistently, patients with the CYP1A2*1F/*1F genotype taking inducers had 22% lower concentrations compared to CYP1A2*1A carriers taking inducers. The influence of genotype alone remained significant after Bonferroni's post hoc test. Higher olanzapine concentrations were significantly correlated with better improvement of paranoid and depressive symptoms in patients with schizophrenic disorders (Spearman's r=0.5, P=0.026 and P=0.006, respectively). No relationship between serum concentrations and the side effects (DOTES) score was detected. However, patients with the 5-HTR2A intron 2 (rs7997012) AA genotype suffered from more pronounced side effects compared to carriers of the GA or GG genotype (P=0.018 and P=0.002). Short-term weight gain under olanzapine therapy was significantly lower for 5-HTR2C -759 T-allele carriers (P=0.011). Our data suggest that the CYP1A2*1F/*1F genotype exhibits a significant influence on olanzapine concentrations independent of other inducing factors. Thus, CYP1A2*1F genotyping may be useful for

  16. Genotype frequencies of polymorphic GSTM1, GSTT1, and cytochrome P450 CYP1A1 in Mexicans.

    Science.gov (United States)

    Montero, Regina; Araujo, Antonio; Carranza, Paloma; Mejía-Loza, Vanessa; Serrano, Luis; Albores, Arnulfo; Salinas, Juan E; Camacho-Carranza, Rafael

    2007-06-01

    The genotype frequencies of three metabolic polymorphisms were determined in a sample of a typical community in central Mexico. CYP1A1*3, GSTM1, and GSTT1 polymorphisms were studied in 150 donors born in Mexico and with Mexican ascendants; with respect to ethnicity the subjects can be considered Mestizos. PCR reactions were used to amplify specific fragments of the selected genes from genomic DNA. An unexpected 56.7% frequency of the CYP1A1*3 allele (which depends on the presence of a Val residue in the 462 position of the enzyme, instead of Ile) was found, the highest described for open populations of different ethnic origins (i.e., Caucasian, Asian, African, or African American). The GSTM1 null genotype was found with a frequency of 42.6%, which is not different from other ethnicities, whereas the GSTT1 null genotype had a frequency of 9.3%, one of the lowest described for any ethnic group but comparable to the frequency found in India (9.7%). The frequency of the combined genotype CYP1A1*3/*3 and the GSTM1 null allele is one of the highest observed to date (or perhaps the highest): 13.7% among all the ethnicities studied, including Caucasians and Asians, whereas the combination of CYP1A1*3/*3 with the GSTT1 null allele reached only 2.8%. The GSTM1 null allele combined with the GSTT1 null allele, on the other hand, has one of the lowest frequencies described, 4.24%, comparable to the frequencies found in African Americans and Indians. Finally, the combined CYP1A1*3/*3, GSTM1 null allele, and GSTT1 null allele genotype could not be found in the sample studied; it is assumed that the frequency of carriers of these combined genotypes is less than 1%. CYP1A1*3 and CYP1A1*2 polymorphisms were also evaluated in 50 residents in a community of northern Mexico; the CYP1A1*3 frequency was 54%, similar to that found in the other community studied, and the CYP1A1*2 frequency was 40%, which is high compared to Caucasians and Asians but comparable to the frequency found in

  17. Functional Analysis of the Dioxin Response Elements (DREs of the Murine CYP1A1 Gene Promoter: Beyond the Core DRE Sequence

    Directory of Open Access Journals (Sweden)

    Shuaizhang Li

    2014-04-01

    Full Text Available The aryl hydrocarbon receptor (AhR is a ligand-dependent transcription factor that mediates the biological and toxicological effects of halogenated aromatic hydrocarbons, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. When activated by dioxin, the cytosolic AhR protein complex translocates into the nucleus and dimerizes with the ARNT (Ah receptor nuclear translocator protein. The heteromeric ligand:AhR/Arnt complex then recognizes and binds to its specific DNA recognition site, the dioxin response element (DRE. DREs are located upstream of cytochrome P4501A1 (CYP1A1 and other AhR-responsive genes, and binding of the AhR complex stimulates their transcription. Although CYP1A1 expression has been used as the model system to define the biochemical and molecular mechanism of AhR action, there is still limited knowledge about the roles of each of the seven DREs located in the CYP1A1 promoter. These seven DREs are conserved in mouse, human and rat. Deletion analysis showed that a single DRE at -488 was enough to activate the transcription. Truncation analysis demonstrated that the DRE at site -981 has the highest transcriptional efficiency in response to TCDD. This result was verified by mutation analysis, suggesting that the conserved DRE at site -981 could represent a significant and universal AhR regulatory element for CYP1A1. The reversed substituted intolerant core sequence (5'-GCGTG-3' or 5'-CACGC-3' of seven DREs reduced the transcriptional efficiency, which illustrated that the adjacent sequences of DRE played a vital role in activating transcription. The core DRE sequence (5'-TNGCGTG-3' tends to show a higher transcriptional level than that of the core DRE sequence (5'-CACGCNA-3' triggered by TCDD. Furthermore, in the core DRE (5'-TNGCGTG-3' sequence, when “N” is thymine or cytosine (T or C, the transcription efficiency was stronger compared with that of the other nucleotides. The effects of DRE orientation, DRE adjacent sequences and

  18. Relationship of tobacco smoking, CYP1A1, GSTM1 gene polymorphism and esophageal cancer in Xi'an

    Institute of Scientific and Technical Information of China (English)

    An-Hui Wang; Chang-Sheng Sun; Liang-Shou Li; Jiu-Yi Huang; Qing-Shu Chen

    2002-01-01

    AIM: To analyze the association of tobacco smoking,polymorphism of CYP1A1 (7th exon ) and GSTM1 genotypeand esophageal cancer(EC) in Xi'an.METHODS: A hospital based case-control study, withmolecular epidemiological method, was carried out.Polymorphism of CYP1A1 and GSTM1 of samples from 127EC cases and 101 controls were detected by PCR method.RESULTS: There were no significant difference of age andgender between cases and controls. Tobacco smokingwas the main risk factor(OR= 1.97 ;95% Cl = 1.12-3.48)for EC in Xi'an. The proportions of CYP1A1 lle/lle, lle/Val and Val/Val gene types in cases and controls was19.7%, 45.7%, 34.6% and 30.7%, 47.5%, 21.8%respectively( P= 0.049). Individuals with CYP1A1 Val/Valgenotype compared to those with CYP1A1 lle/llegenotype had higher risk for EC increased (OR = 2.48,95% Cl = 1.12-5.54). The proportions of GSTM1 deletiongenotype in cases and controls were 58.3% and 43.6%(OR= 1.81, 95%Cl = 1.03-3.18, P = 0.028). Analysis ofgene-environment interaction showed that tobaccosmoking and CYP1A1 Val/Val genotype; tobacco smokingand GSTM1 deletion genotype had synergism interactionrespectively. Analysis of gene-gene interaction did notfind synergistic interaction between these two genes. Butin GSTM1 deletion group, there was significant differenceof distribution of CYP1A1 genotype between cases andcontrols (P=0.011).CONCLUSION: CYP1A1 Val/Val and GSrM1 deletiongenotypes are genetic susceptibility biomarkers for EC. Therisk increases, when person with CYP1A1 Val/Val and/orGSTM1 deletion genotype. And these two-metabolic enzymesseem to have interactions with tobacco smoking, in which themechanism still needs further study.

  19. Induction of CYP1A1 in rat liver after ingestion of mussels contaminated by Erika fuel oils

    Energy Technology Data Exchange (ETDEWEB)

    Chaty, Sylvie; Rodius, Francois; Vasseur, Paule [Universite de Metz: CNRS UMR 7146, Lab., Interactions Ecotoxicite, Biodiversite, Ecosystemes, Metz (France); Lanhers, Marie-Claire; Burnel, Daniel [Universite de Nancy I, Faculte de Medecine, Vandoeuvre-les-Nancy (France)

    2008-02-15

    Polycyclic aromatic hydrocarbons (PAH) are known to be specific inducers of CYP1A1 expression in vertebrates. CYP1A1 induction has been widely studied in mammal cell cultures or in vivo, in conditions of exposure to single PAH chemicals. Here, we studied the possible transfer of PAH to rats via the food chain in environmentally-relevant conditions. Rats were fed for 2 days with PAH-contaminated mussels sampled on coasts polluted by the Erika oil-tanker wreck. CYP1A1 expression was investigated by measuring mRNA levels and EROD enzymatic activity over the 84 h following the last ingestion. CYP1A1 expression in treated rats was compared to controls fed with mussels free from PAH contamination. The results showed that ingestion of PAH-contaminated mussels induced CYP1A1 mRNA and EROD activity. Increase of transcriptional level and of EROD activity was transient with a peak within 12 h and a return to basal levels within 36 h. (orig.)

  20. Induction of CYP1A1 and CYP2E1 in rat liver by histamine: binding and kinetic studies.

    Science.gov (United States)

    Dávila-Borja, Víctor M; Belmont, Javier A; Espinosa, J Javier; Moreno-Sánchez, Rafael; Albores, Arnulfo; Montero, Regina D

    2007-10-01

    Histamine (HA) may bind to cytochrome P450 (CYP450) in rat liver microsomes. The CYP450-HA complex seems to regulate some cellular processes such as proliferation. In the present work, it is shown that HA increases the activity and protein level of CYP1A1 and CYP2E1, in vivo. CYP1A1 is associated with polycyclic aromatic hydrocarbon-mediated carcinogenesis and CYP2E1 with liver damage by oxidative stress. Studies of enzyme kinetics and binding with rat liver microsomes and supersomes were carried out to determine whether HA is a substrate of CYP1A1 and/or CYP2E1. The lack of NADPH oxidation in the presence of HA showed that it is not a substrate for CYP1A1. Activity measurements using the O-dealkylation of ethoxyresorufin indicated that HA is a mixed-type inhibitor of CYP1A1 in both microsomes and supersomes. On the other hand, HA induced a significant NADPH oxidation catalyzed by CYP2E1 supersomes, strongly suggesting that HA is a substrate for this isoform. Furthermore, HA is consumed in the presence of CYP2E1-induced microsomes and supersomes, as determined by o-phtalaldehyde complexes with HA by HPLC. The present findings may contribute to understand better the physiological function of CYP450 in relation with inflammation and other physiological processes in which HA may have a relevant role.

  1. Pilot Study on Genetic Polymorphisms CYP1A2*1F on Asthma Patients and Nonasthma in Indonesia

    Directory of Open Access Journals (Sweden)

    Doddy de Queljoe

    2015-03-01

    Full Text Available Genetic polymorphisms of CYP1A2 is related to the theophylline metabolism that may affect drug levels in the blood, which can also affect incidence of adverse drug reaction (ADR and clinical outcomes of asthma therapy. The frequency of CYP1A2 polymorphism is known to vary among ethnic. Allegedly the Indonesian population has high frequency of gene variants of CYP1A2*1F. This study aims to determine the profile of CYP1A2*1F gene polymorphism in a sample of nonasthma and asthma in Indonesia with other populations based on the literature. Data were taken on January–June 2014. Blood samples were obtained from 29 nonasthma samples and 16 patients with asthma. After extraction of genomic DNA, CYP1A2*1F gene polymorphisms determined by PCR-RFLP. The results of this study indicate that the CYP1A2*1F gene polymorphism in nonasthma samples was 10.35% (3/29 for C/C, 37.93% (11/29 for the C/A, and 51.72% (15/29 for A/A. The asthmatics genotype have a frequency distribution of C/A genotype of 81.25% (13/16 and A/A of 18.75% (3/16. There was no significant difference (p=0.276 allele frequencies between samples of nonasthma and asthma patients. The frequency of CYP1A2*1F gene in Indonesian population is higher than the population of Egypt, Japan, and UK, but lower compared to Malaysia. It can be concluded that there is no difference in frequency.

  2. Interaction between maternal passive smoking during pregnancy and CYP1A1 and GSTs polymorphisms on spontaneous preterm delivery.

    Directory of Open Access Journals (Sweden)

    Yi-Juan Luo

    Full Text Available OBJECTIVE: The present study aimed to examine the association between maternal passive smoking during pregnancy and the risk of spontaneous PTD and to explore the potential interaction of the single or joint gene polymorphism of CYP1A1 and GSTs with maternal passive smoking on the risk of spontaneous PTD. METHOD: We investigated whether the association between maternal passive smoking and PTD can be modified by 2 metabolic genes, i.e. cytochrome P4501A1 (CYP1A1 and glutathione S-transferases (GSTs, in a case-control study with 198 spontaneous preterm and 524 term deliveries in Shenzhen and Foshan, China. We used logistic regression to test gene-passive smoking interaction, adjusting for maternal socio-demographics and prepregnancy body mass index. RESULTS: Overall, maternal passive smoking during pregnancy was associated with higher risk of PTD (adjusted odds ratio = 2.20 [95% confidence interval: 1.56-3.12]. This association was modified by CYP1A1 and GSTs together, but not by any single genotype. For cross-categories of CYP1A1 Msp I and GSTs, maternal passive smoking was associated with higher risk of PTD among those women with CYP1A1 "TC/CC"+ GSTs "null", but not among women with other genotypes; and this interaction was significant (OR = 2.66 [95% CI: 1.19-5.97]; P-value: 0.017. For cross-categories of CYP1A1 BsrD I and GSTs, maternal passive smoking was associated with higher risk of PTD only among those women with CYP1A1"AG/GG"+ GSTs "null", but not among women with other genotypes; and this interaction was significant (OR = 3.00 [95% CI: 1.17-7.74]; P-value: 0.023. CONCLUSIONS: Our findings suggest that the combined genotypes of CYP1A1 and GSTs can help to identify vulnerable pregnant women who are subject to high risk of spontaneous PTD due to passive smoking.

  3. Allele and genotype frequencies of the polymorphic cytochrome P450 genes (CYP1A1, CYP3A4, CYP3A5, CYP2C9 and CYP2C19) in the Jordanian population.

    Science.gov (United States)

    Yousef, Al-Motassem; Bulatova, Nailya R; Newman, William; Hakooz, Nancy; Ismail, Said; Qusa, Hisham; Zahran, Farah; Anwar Ababneh, Nidaa; Hasan, Farah; Zaloom, Imad; Khayat, Ghada; Al-Zmili, Rawan; Naffa, Randa; Al-Diab, Ola

    2012-10-01

    Drug metabolizing enzymes participate in the neutralizing of xenobiotics and biotransformation of drugs. Human cytochrome P450, particularly CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5, play an important role in drug metabolism. The genes encoding the CYP enzymes are polymorphic, and extensive data have shown that certain alleles confer reduced enzymatic function. The goal of this study was to determine the frequencies of important allelic variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5 in the Jordanian population and compare them with the frequency in other ethnic groups. Genotyping of CYP1A1(m1 and m2), CYP2C9 (2 and 3), CYP2C19 (2 and 3), CYP3A4 5, CYP3A5 (3 and 6), was carried out on Jordanian subjects. Different variants allele were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). CYP1A1 allele frequencies in 290 subjects were 0.764 for CYP1A1 1, 0.165 for CYP1A1 2A and 0.071 for CYP1A1 2C. CYP2C9 allele frequencies in 263 subjects were 0.797 for CYP2C9 1, 0.135 for CYP2C9 2 and 0.068 for CYP2C9 3. For CYP2C19, the frequencies of the wild type (CYP2C19 1) and the nonfunctional (2 and 3) alleles were 0.877, 0.123 and 0, respectively. Five subjects (3.16 %) were homozygous for 2/2. Regarding CYP3A4 1B, only 12 subjects out of 173 subjects (6.9 %) were heterozygote with none were mutant for this polymorphism. With respect to CYP3A5, 229 were analyzed, frequencies of CYP3A5 1, 3 and 6 were 0.071, 0.925 and 0.0022, respectively. Comparing our data with that obtained in several Caucasian, African-American and Asian populations, Jordanians are most similar to Caucasians with regard to allelic frequencies of the tested variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5.

  4. Association between CYP1A2 and CYP1B1 polymorphisms and colorectal cancer risk: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Xiao-Feng He

    Full Text Available BACKGROUND: The previous published data on the association between CYP1A2*F (rs762551, CYP1B1 Leu432Val (rs1056836, Asn453Ser (rs180040, and Arg48Gly (rs10012 polymorphisms and colorectal cancer risk remained controversial. METHODOLOGY/PRINCIPAL FINDINGS: The purpose of this study is to evaluate the role of CYP1A2*F, CYP1B1 Leu432Val, Asn453Ser, and Arg48Gly genotypes in colorectal cancer susceptibility. We performed a meta-analysis on all the eligible studies that provided 5,817 cases and 6,544 controls for CYP1A2*F (from 13 studies, 9219 cases and 10406 controls for CYP1B1 Leu432Val (from 12 studies, 6840 cases and 7761 controls for CYP1B1 Asn453Ser (from 8 studies, and 4302 cases and 4791 controls for CYP1B1Arg48Gly (from 6 studies. Overall, no significant association was found between CYP1A2*F, CYP1B1 Leu432Val, Asn453Ser, and Arg48Gly and colorectal cancer risk when all the eligible studies were pooled into the meta-analysis. And in the subgroup by ethnicity and source of controls, no evidence of significant association was observed in any subgroup analysis. CONCLUSIONS/SIGNIFICANCE: In summary, this meta-analysis indicates that CYP1A2*F, CYP1B1 Leu432Val, Asn453Ser, and Arg48Gly polymorphisms do not support an association with colorectal cancer, and further studies are needed to investigate the association. In addition, our work also points out the importance of new studies for CYP1A2*F polymorphism in Asians, because high heterogeneity was found (dominant model: I(2  = 81.3%; heterozygote model: I(2  = 79.0.

  5. The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine

    Directory of Open Access Journals (Sweden)

    Womack Christopher J

    2012-03-01

    Full Text Available Abstract Background Although caffeine supplementation improves performance, the ergogenic effect is variable. The cause(s of this variability are unknown. A (C/A single nucleotide polymorphism at intron 1 of the cytochrome P450 (CYP1A2 gene influences caffeine metabolism and clinical outcomes from caffeine ingestion. The purpose of this study was to determine if this polymorphism influences the ergogenic effect of caffeine supplementation. Methods Thirty-five trained male cyclists (age = 25.0 ± 7.3 yrs, height = 178.2 ± 8.8 cm, weight = 74.3 ± 8.8 kg, VO2max = 59.35 ± 9.72 ml·kg-1·min-1 participated in two computer-simulated 40-kilometer time trials on a cycle ergometer. Each test was performed one hour following ingestion of 6 mg·kg-1 of anhydrous caffeine or a placebo administered in double-blind fashion. DNA was obtained from whole blood samples and genotyped using restriction fragment length polymorphism-polymerase chain reaction. Participants were classified as AA homozygotes (N = 16 or C allele carriers (N = 19. The effects of treatment (caffeine, placebo and the treatment × genotype interaction were assessed using Repeated Measures Analysis of Variance. Results Caffeine supplementation reduced 40 kilometer time by a greater (p Conclusions Results suggest that individuals homozygous for the A allele of this polymorphism may have a larger ergogenic effect following caffeine ingestion.

  6. [Evaluation of pharmacokinetic interaction of aphobazole with CYP1A2 drug-substrate in experiments].

    Science.gov (United States)

    Novitskaia, Ia G; Litvin, A A; Viglinskaia, A O; Zherdev, V P

    2013-01-01

    The effect of aphobazole on CYP1A2 (drug-marker caffeine) was studied in rats. Aphobazole was administered orally at doses 5 and 25 mg/kg, caffeine 50 mg/kg. The metabolic ratios (MR) for the caffeine metabolites (theobromine and paraxanthine) were accounted. After aphobazole administration at the effective, anxiolytic dose (5 mg/kg) for 4 days (3 times per day every 3 hours) neither the inhibiting nor the inducing effects on NOD1A2 was revealed. Increasing the aphobazole dose up to 25 mg/kg after 2 days repeated administrations of the drug made it possible to reveal a moderate inducing effect. Longer aphobazole administration (4 days), the inducing effect is amplified. Since the MR values on theobromine and paraxanthine after 2-day administration aphobazole exceed similar values in the control of 2.5 and 3.3 times, respectively. MR values after the 4-days aphobazole administration in dose 25 mg/kg exceed similar values in the control of 4.2 times for theobromine and in 6.1 times for paraxanthine.

  7. Effects of mexiletine, a CYP1A2 inhibitor, on tizanidine pharmacokinetics and pharmacodynamics.

    Science.gov (United States)

    Momo, Kenji; Homma, Masato; Osaka, Yoshiko; Inomata, Shin-ichi; Tanaka, Makoto; Kohda, Yukinao

    2010-03-01

    The aim of this study was to determine whether mexiletine, a CYP1A2 inhibitor, altered the pharmacokinetics and pharmacodynamics of tizanidine. The pharmacokinetics of tizanidine were examined in an open-label study in 12 healthy participants after a single dose of tizanidine (2 mg) with and without mexiletine coadministration (50 mg, 3 times as a pretreatment for a day and 2 times on the study day). Compared with tizanidine alone, mexiletine coadministration increased the peak plasma concentration (1.8 +/- 0.8 vs 5.3 +/- 1.8 ng/mL), area under the curve (4.5 +/- 2.2 vs 15.4 +/- 6.5 ng x h/mL), and the half-life (1.3 +/- 0.2 vs 1.8 +/- 0.7 h) of tizanidine, respectively (P < .05). Reduction in systolic blood pressure (-10 +/- 8 vs -24 +/- 7 mm Hg) and diastolic blood pressure (-10 +/- 7 vs -18 +/- 8 mm Hg) after tizanidine administration was also significantly enhanced by coadministration of mexiletine (P < .01). Of the 15 patients treated with tizanidine and mexiletine, 4 suffered tizanidine-induced adverse effects such as drowsiness and dry mouth in the retrospective survey. Present results suggested that coadministration of mexiletine increased blood tizanidine concentrations and enhanced tizanidine pharmacodynamics in terms of reduction in blood pressure and adverse symptoms.

  8. Interaction models of CYP1A1, GSTM1 polymorphisms and tobacco smoking in intestinal gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Jing Shen; Run-Tian Wang; Yao-Chu Xu; Li-Wei Wang; Xin-Ru Wang

    2005-01-01

    AIM: To explore the interaction models of the cytochrome P-450 (CYP) 1A1 Valv ariant and glutathione S-transferase (GST)M1 null polymorphisms with tobacco smoking in the occurrence of intestinal gastric cancer.METHODS: A community-based case-control study was conducted in Yangzhong. Subjects included 114 intestinal types of gastric cancer with endoscopic and pathological diagnosis during January 1997 and December 1998, and 693 controls selected from their spouse, siblings or siblingsin-law who had no history of digestive system cancer.Logistic regression was used to estimate the interaction models.RESULTS: The frequency of the CYP1A1 Val variant allele in cases did not differ from that in controls. The OR of GSTM1 null genotype was 2.0 (95% confidence interval [95%CI]: 1.2-3.1, P<0.01). It showed a significant type 2 form of interaction model when both CYP1A1 Val variant allele and former tobacco smoking existed (i.e., among the multiplicative effects, the disease risk is increased by the tobacco exposure alone but not by the CYP1A1 variant alone). The interaction index γ was 2.8, and OReg (95%CI)was 5.0 (1.9-13.4). GSTM1 null genotype and former tobacco smoking were significant in a type 4 interaction model (i.e.,the disease risk is increased by GSTM1 null genotype or tobacco exposure alone among the multiplicative effects).The interaction index γ and OReg (95%CI) were 3.4 and 8.4 (3.4-20.9), respectively.CONCLUSION: Different interaction models of CYP1A1 Val variant allele and GSTM1 null genotype with tobacco smoking will contribute to understanding carcinogenic mechanism, but there is a need to further investigate in larger scale studies.

  9. Differences in the Epigenetic Regulation of Cytochrome P450 Genes between Human Embryonic Stem Cell-Derived Hepatocytes and Primary Hepatocytes.

    Science.gov (United States)

    Park, Han-Jin; Choi, Young-Jun; Kim, Ji Woo; Chun, Hang-Suk; Im, Ilkyun; Yoon, Seokjoo; Han, Yong-Mahn; Song, Chang-Woo; Kim, Hyemin

    2015-01-01

    Human pluripotent stem cell-derived hepatocytes have the potential to provide in vitro model systems for drug discovery and hepatotoxicity testing. However, these cells are currently unsuitable for drug toxicity and efficacy testing because of their limited expression of genes encoding drug-metabolizing enzymes, especially cytochrome P450 (CYP) enzymes. Transcript levels of major CYP genes were much lower in human embryonic stem cell-derived hepatocytes (hESC-Hep) than in human primary hepatocytes (hPH). To verify the mechanism underlying this reduced expression of CYP genes, including CYP1A1, CYP1A2, CYP1B1, CYP2D6, and CYP2E1, we investigated their epigenetic regulation in terms of DNA methylation and histone modifications in hESC-Hep and hPH. CpG islands of CYP genes were hypermethylated in hESC-Hep, whereas they had an open chromatin structure, as represented by hypomethylation of CpG sites and permissive histone modifications, in hPH. Inhibition of DNA methyltransferases (DNMTs) during hepatic maturation induced demethylation of the CpG sites of CYP1A1 and CYP1A2, leading to the up-regulation of their transcription. Combinatorial inhibition of DNMTs and histone deacetylases (HDACs) increased the transcript levels of CYP1A1, CYP1A2, CYP1B1, and CYP2D6. Our findings suggest that limited expression of CYP genes in hESC-Hep is modulated by epigenetic regulatory factors such as DNMTs and HDACs.

  10. CYP1A2 rs762551 polymorphism contributes to cancer susceptibility: a meta-analysis from 19 case-control studies

    Directory of Open Access Journals (Sweden)

    Wang Hongge

    2012-11-01

    Full Text Available Abstract Background Genetic polymorphism (rs762551A>C in gene encoding cytochrome P450 1A2 (CYP1A2 has been shown to influence the inducibility of CYP1A2 expression and thus might be associated with risk of several types of human cancer. However, the results of previous studies on the associations of this polymorphism with risk of cancer are not all consistent. To clarify the potential contribution of CYP1A2 rs762551 to cancer risk, we performed a meta-analysis of the published case–control studies. Methods We used PubMed, Embase, OVID, ScienceDirect, and Chinese National Knowledge Infrastructure databases to identify the related publications for this meta-analysis. The pooled odds ratio (OR and 95% confidence interval (CI were calculated using random effect model to evaluate the association of rs762551 with cancer risk. A χ2-based Q-test was used to examine the heterogeneity assumption and the funnel plot and Egger’s test were used to examine the potential publication bias. The leave-one-out sensitivity analysis was conducted to determine whether our assumptions or decisions have a major effect on the results of the review. Results Our analysis of 19 eligible case–control studies showed a significant association between rs762551C variant with risk of cancer in the genetic model of CC versus AA (OR = 1.30, 95% CI = 1.02-1.64 and the dominant model (OR = 1.19, 95% CI = 1.04-1.36. In subgroup analysis based on ethnicity, the rs762551CC genotype was associated with increased cancer risk (OR = 1.29, 95% CI = 1.27-1.63 in co-dominate model and OR = 1.17, 95% CI = 1.02-1.34 in dominant model in Caucasians, but not in Asians and the mixed population. Conclusion These results suggested that CYP1A2 rs762551 polymorphism is likely to be associated with susceptibility to cancer in Caucasians.

  11. CYP1A1 MspI基因多态性与乳腺癌关系的Meta分析%Meta-analysis on Genetic Polymorphism of CYP1A1 MspI and the Risk of Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    徐小乐; 靳雅丽; 沈月平

    2005-01-01

    目的探讨CYP1A1 MspI基因多态性与乳腺癌的关系.方法以乳腺癌组与对照组人群基因型分布的OR值为效应指标,根据一致性检验的结果,选择固定效应模型或随机效应模型对OR进行合并,并进行偏倚评估.结果共查到符合要求的国外文献10篇,病例和对照数分别为3708、5471例.经过异质性检验,10项结果存在异质性(q=17.7898,P=0.037),通过随机效应模型估计,以CYP1A1 MspI野生纯合子为参比组,携带有杂合子或突变纯合子的妇女发生乳腺癌的合并OR为0.95 (95%CI:0.82~1.11).结论 CYP1A1 Msp I基因多态性与乳腺癌易感性无关.

  12. CYP1A1 and GSTM1 polymorphisms in relation to lung cancer risk in Chinese women

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.H.R.; Wacholder, S.; Xu, Z.Y.; Dean, M.; Clark, V.; Gold, B.; Brown, L.M.; Stone, B.J.; Fraumeni, J.F.; Caporaso, N.E. [NCI, Bethesda, MD (US). Division of Epidemiology and Genetics

    2004-10-28

    We examined CYP1A1 (1462V) and GSTM1 null polymorphisms in 200 female cases and 144 female controls selected from a population-based case-control study of lung cancer conducted in northeast China, where the rates of lung cancer among Chinese women are especially high. The CYP1A1 codon 462 point mutation in exon 7 (I462V) causes an Ile-Val substitution near the heme binding site. This mutation correlates with inducibility of aryl hydrocarbon hydrolase (AHH) activity, which activates polycyclic aromatic hydrocarbons (PAHs) in tobacco smoke and in indoor air pollution from coal-burning stoves, a risk factor for lung cancer in this study population. We found that the CYP1A1 I462V genotype (combined ile/val and val/val) was significantly associated with lung cancer risk. The odds ratio (OR) was 2.5 (95% confidence interval (CI), 1.55-4.03) after adjustment for significant risk factors such as age, ever smoking status, family history of cancer, and eye irritation when cooking. The association was more pronounced among non-smokers (OR= 3.67; 95% Cl, 1.85-7.28) than among smokers (OR= 1.74, 95% CI, 0.85-3.54). In contrast, we did not find a significant association with the GSTM1 null genotype. In summary, our case-control study of lung cancer among women in northeast China revealed an elevated risk associated with the CYP1A1 I462V genotype, but no interaction with smoking or indoor air pollution was found.

  13. Polymorphisms of GSTM1 and CYP1A1 genes and their genetic susceptibility to prostate cancer in Chinese men

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Variation in prostate cancer incidence between different racial groups has been well documented,for which genetic polymorphisms are hypothesized to be an explanation.We evaluated the association between polymorphisms in the cytochrome P-450 CYP1A1(CYP1A1)and glutathione S-transferase M1(GSTM1)genes and genetic susceptibility to prostate cancer in Chinese men.Methods Two hundred and eight prostate cancer patients and 230 age matched controls were enrolled in this study.All DNA samples from peripheral blood lymphocytes were genotyped for common genetic polymorphisms of the CYP1A1 and GSTM1 genes using the oligonucleotide microarray(DNA chip)technique and the polymorphism results confirmed by sequencing.The different polymorphisms in prostate cancer patients were also analyzed according to age at diagnosis,prostate specific antigen level,cancer stage and grade(Gleason score).Results The prevalence of the GSTM1(0/0)genotype was significantly higher in prostate cancer patients(58.2%)than in controls(41.7%,P<0.05).Further analysis demonstrated that the prostate cancer patients with a GSTM1(0/0)genotype were younger than those with the GSTM1(+/+)genotype(P=0.024).No significant differences in the frequency distributions of CYP1A1 polymorphisms were observed between prostate cancer patients and controls.Conclusion GSTM1(0/0)gene polymorphism may be linked to prostate cancer risk and early age of onset in Chinese.

  14. CYP1A1, GCLC, AGT, AGTR1 gene-gene interactions in community-acquired pneumonia pulmonary complications.

    Science.gov (United States)

    Salnikova, Lyubov E; Smelaya, Tamara V; Golubev, Arkadiy M; Rubanovich, Alexander V; Moroz, Viktor V

    2013-11-01

    This study was conducted to establish the possible contribution of functional gene polymorphisms in detoxification/oxidative stress and vascular remodeling pathways to community-acquired pneumonia (CAP) susceptibility in the case-control study (350 CAP patients, 432 control subjects) and to predisposition to the development of CAP complications in the prospective study. All subjects were genotyped for 16 polymorphic variants in the 14 genes of xenobiotics detoxification CYP1A1, AhR, GSTM1, GSTT1, ABCB1, redox-status SOD2, CAT, GCLC, and vascular homeostasis ACE, AGT, AGTR1, NOS3, MTHFR, VEGFα. Risk of pulmonary complications (PC) in the single locus analysis was associated with CYP1A1, GCLC and AGTR1 genes. Extra PC (toxic shock syndrome and myocarditis) were not associated with these genes. We evaluated gene-gene interactions using multi-factor dimensionality reduction, and cumulative gene risk score approaches. The final model which included >5 risk alleles in the CYP1A1 (rs2606345, rs4646903, rs1048943), GCLC, AGT, and AGTR1 genes was associated with pleuritis, empyema, acute respiratory distress syndrome, all PC and acute respiratory failure (ARF). We considered CYP1A1, GCLC, AGT, AGTR1 gene set using Set Distiller mode implemented in GeneDecks for discovering gene-set relations via the degree of sharing descriptors within a given gene set. N-acetylcysteine and oxygen were defined by Set Distiller as the best descriptors for the gene set associated in the present study with PC and ARF. Results of the study are in line with literature data and suggest that genetically determined oxidative stress exacerbation may contribute to the progression of lung inflammation.

  15. Polymorphic variation of CYP1A1 and CYP1B1 genes in a Haryana population.

    Science.gov (United States)

    Giri, Shiv Kumar; Yadav, Anita; Kumar, Anil; Dev, Kapil; Gulati, Sachin; Gupta, Ranjan; Aggarwal, Neeraj; Gautam, Sanjeev Kumar

    2013-12-01

    Cytochrome P450 (CYP) 1A1 and CYP1B1 are important phase I xenobiotic metabolizing enzymes involved in the metabolism of numbers of toxins, endogenous hormones, and pharmaceutical drugs. Polymorphisms in these phase I genes can alter enzyme activity and are known to be associated with cancer susceptibility related to environmental toxins and hormone exposure. Their genotypes may also display ethnicity-dependent population frequencies. The present study was aimed to determine the frequencies of commonly known functional polymorphisms of CYP1A1 and CYP1B1 genes in a Haryana state population of North India. The allelic frequency of CYP1A1 polymorphism m1 (MspI) was 29.65% and m2 (Ile(462)Val) was 24.85%. The frequency of CYP1B1 polymorphism m1 (Val(432)Leu) was 45.85% and m2 (Asn(453)Ser) was 16.2%. We observed inter- and intra-ethnic variation in the frequency distribution of these polymorphisms. Analysis of polymorphisms in these genes might help in predicting the risk of cancer. Our results emphasize the need for more such studies in high-risk populations.

  16. Association of CYP2D6 and CYP1A2 gene polymorphism with tardive dyskinesia in Chinese schizophrenic patients

    Institute of Scientific and Technical Information of China (English)

    Yan FU; Chang-he FAN; He-huang DENG; San-hong HU; De-peng LV; Li-hua LI; Jun-jie WANG; Xin-qiao LU

    2006-01-01

    Aim:To investigate the possible association of the CYP2D6 gene C100T polymorphism and the CYP1A2 gene C163A polymorphism with tardive dyskinesia (TD) in Chinese patients with schizophrenia.Methods:The recruited schizophrenic patients were assessed with the Abnormal Involuntary Movement Scale (AIMS),and divided into groups with TD(n=91)and without TD(n=91)according to the AIMS score.Polymorphisms of the CYP2D6 and CYP1A2 genes were determined by polymerase chain reaction(PER)-restriction fragment length polymorphism(RFLP).Results:No allele frequencies deviated from Hardy-Weinberg equilibrium.No significant differences in genotypes frequencies of the CYP2D C100T polymorphism were observed between patients with TD and without TD (x2=4.078,P>0.05),but patients with TD had a significant excess of the T allele compared with those without TD(x2=4.28,P<0.05).Moreover,the frequency of the CYP1A2 C allele in patients with TD was significantly higher than that in those without TD(x2=6.38,P<0.05).An association between TD and the CyP2D6 100T and CYP1A2 163C alleles was observed.Additionally,there were no differences in the mean AIMS scores among different genotypes in TD patients as a group or in smokers.The results of logistic regression anatysls demonstrated that mean age and duration of illness were risk factors for TD,but not sex,cumulative exposure to neuroleptic drugs in years,CYP2D6 or CYP1A2 genotype.Conclusion:The C100T polymorphism of the CYP2D6 gene and the C163A polymorphism of the CYP1A2 gene may be associated with neuroleptic drug-induced tardive dyskinesia in Chinese patients with schizophrenia.However,genetic factors have a weaker association with susceptibility to TD compared with mean age and duration of illness.

  17. NAD(P)H:quinone oxidoreductase expression in Cyp1a-knockout and CYP1A-humanized mouse lines and its effect on bioactivation of the carcinogen aristolochic acid I

    Energy Technology Data Exchange (ETDEWEB)

    Levova, Katerina; Moserova, Michaela [Department of Biochemistry, Faculty of Science, Charles University, Prague (Czech Republic); Nebert, Daniel W. [Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati (United States); Phillips, David H. [Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King' s College London, London (United Kingdom); Frei, Eva [Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg (Germany); Schmeiser, Heinz H. [Research Group Genetic Alterations in Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg (Germany); Arlt, Volker M. [Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King' s College London, London (United Kingdom); Stiborova, Marie, E-mail: stiborov@natur.cuni.cz [Department of Biochemistry, Faculty of Science, Charles University, Prague (Czech Republic)

    2012-12-15

    Aristolochic acid causes a specific nephropathy (AAN), Balkan endemic nephropathy, and urothelial malignancies. Using Western blotting suitable to determine protein expression, we investigated in several transgenic mouse lines expression of NAD(P)H:quinone oxidoreductase (NQO1)—the most efficient cytosolic enzyme that reductively activates aristolochic acid I (AAI). The mouse tissues used were from previous studies [Arlt et al., Chem. Res. Toxicol. 24 (2011) 1710; Stiborova et al., Toxicol. Sci. 125 (2012) 345], in which the role of microsomal cytochrome P450 (CYP) enzymes in AAI metabolism in vivo had been determined. We found that NQO1 levels in liver, kidney and lung of Cyp1a1(−/−), Cyp1a2(−/−) and Cyp1a1/1a2(−/−) knockout mouse lines, as well as in two CYP1A-humanized mouse lines harboring functional human CYP1A1 and CYP1A2 and lacking the mouse Cyp1a1/1a2 orthologs, differed from NQO1 levels in wild-type mice. NQO1 protein and enzymic activity were induced in hepatic and renal cytosolic fractions isolated from AAI-pretreated mice, compared with those in untreated mice. Furthermore, this increase in hepatic NQO1 enzyme activity was associated with bioactivation of AAI and elevated AAI-DNA adduct levels in ex vivo incubations of cytosolic fractions with DNA and AAI. In conclusion, AAI appears to increase its own metabolic activation by inducing NQO1, thereby enhancing its own genotoxic potential. Highlights: ► NAD(P)H:quinone oxidoreductase expression in Cyp1a knockout and humanized CYP1A mice ► Reductive activation of the nephrotoxic and carcinogenic aristolochic acid I (AAI) ► NAD(P)H:quinone oxidoreductase is induced in mice treated with AAI. ► Induced hepatic enzyme activity resulted in elevated AAI-DNA adduct levels.

  18. Association of coffee consumption and CYP1A2 polymorphism with risk of impaired fasting glucose in hypertensive patients.

    Science.gov (United States)

    Palatini, Paolo; Benetti, Elisabetta; Mos, Lucio; Garavelli, Guido; Mazzer, Adriano; Cozzio, Susanna; Fania, Claudio; Casiglia, Edoardo

    2015-03-01

    Whether and how coffee use influences glucose metabolism is still a matter for debate. We investigated whether baseline coffee consumption is longitudinally associated with risk of impaired fasting glucose in a cohort of 18-to-45 year old subjects screened for stage 1 hypertension and whether CYP1A2 polymorphism modulates this association. A total of 1,180 nondiabetic patients attending 17 hospital centers were included. Seventy-four percent of our subjects drank coffee. Among the coffee drinkers, 87% drank 1-3 cups/day (moderate drinkers), and 13% drank over 3 cups/day (heavy drinkers). Genotyping of CYP1A2 SNP was performed by real time PCR in 639 subjects. At the end of a median follow-up of 6.1 years, impaired fasting glucose was found in 24.0% of the subjects. In a multivariable Cox regression coffee use was a predictor of impaired fasting glucose at study end, with a hazard ratio (HR) of 1.3 (95% CI 0.97-1.8) in moderate coffee drinkers and of 2.3 (1.5-3.5) in heavy drinkers compared to abstainers. Among the subjects stratified by CYP1A2 genotype, heavy coffee drinkers carriers of the slow *1F allele (59%) had a higher adjusted risk of impaired fasting glucose (HR 2.8, 95% CI 1.3-5.9) compared to abstainers whereas this association was of borderline statistical significance among the homozygous for the A allele (HR 1.7, 95% CI 0.8-3.8). These data show that coffee consumption increases the risk of impaired fasting glucose in hypertension particularly among carriers of the slow CYP1A2 *1F allele.

  19. Association of genetic variants of xenobiotic and estrogen metabolism pathway (CYP1A1 and CYP1B1) with gallbladder cancer susceptibility.

    Science.gov (United States)

    Sharma, Kiran Lata; Agarwal, Akash; Misra, Sanjeev; Kumar, Ashok; Kumar, Vijay; Mittal, Balraj

    2014-06-01

    Gallbladder carcinoma is a highly aggressive cancer with female predominance. Interindividual differences in the effectiveness of the activation/detoxification of environmental carcinogens and endogenous estrogens may play a crucial role in cancer susceptibility. The present study included 410 patients with carcinoma of the gallbladder (GBC) and 230 healthy subjects. This study examined association of CYP1A1-MspI, CYP1A1-Ile462Val, and CYP1B1-Val432Leu with GBC susceptibility. CYP1A1-MspI [CC] and CYP1A1-Ile462Val [iso/val] genotypes were found to be significantly associated with GBC (p=0.006 and p=0.03, respectively), as compared to healthy controls, while CYP1B1-Val432Leu was not associated with GBC. The CYP1A1 haplotype [C-val] showed a significant association with GBC (p=0.006). On stratification based on gender, the CYP1A1-MspI [CC] genotype showed an increased risk of GBC in females (p=0.018). In case-only analysis, tobacco users with CYP1A1-MspI [CT] genotypes were at a higher risk of GBC (p=0.008). Subdividing the GBC patients on the basis of gallstone status, the CYP1A1 haplotype [C-val] imparted a higher risk in patients without stones when compared to controls (p=0.001). The results remained significant even after applying Bonferroni correction. Multivariate analysis revealed an increased risk of CYP1A1 iso/val and val/val genotypes in GBC patients having BMI >25 (p=0.021). The CYP1A1 polymorphisms may confer increased risk of GBC, probably due to impaired xenobiotic or hormone metabolism through a gallstone-independent pathway.

  20. Evaluations of Zedoary Turmeric Oil on the Activity of Rat CYP1A2%莪术油对大鼠肝微粒体CYP1A2酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    曹高忠; 郑仰明; 胡卢丰; 李军伟; 汤从容; 叶晓兰

    2011-01-01

    Objective: To develop an HPLC - MS determination method of phenaeetin and paracetamol and to investigate the effect of Zedoary Turmeric oil on the activity of rat CYP1 A2 for providing reference to rational drug use in clinic.Methods: Samples were separated on XDB- C 18 (150mm × 2. 1 mm,5μm) column, acetonitrile- 0. 1% formic acid was used as mobile phrase, and the flow rate was 0.4 mL · min-1 ,the column temperature was 30℃. The multiple reaction monitor was adopted to detect the concentration of phenacetin and paracetamol. Phenacetin was used as a probe of CYP1A2. The activity of rat CYP1 A2 was evaluated by an in - vitro experiment which two group involved, experiment group was given Zedoary Turmeric oil and the control group was given saline. Results: The calibration curves were linear in the ranges of 4 ~1600ng · mL-1( r =0.9973) phenacetin and 3 ~2000ng · mL-1( r =0.9973) paracetamol. The ratio of paracetamol/phenacetin in experiment group was 11.30 ± 0.71, the ratio of control group was 9.60 ± 1.04, pair T test was P < 0.05. Conclusion: The method is suitable for determination of phenacetin and paracetamol in rat liver microsomal incubation system. The activity of rat liver CYP1A2 can be enhanced by Zedoary Turmeric oil.%目的:建立非那西丁及其代谢产物的液质联用检测法,研究莪术油对大鼠肝微粒体CYP1A2酶活性的影响,为临床合理用药提供参考.方法:色谱柱为XDB-C18(150mm×2.1mm,5μm),流动相为乙腈-0.1%甲酸,流速:0.4mL·min(-1),柱温:30℃,以多反应监测方式采集数据.以非那西丁为探针药物,采用体外实验,实验组给予莪术油,对照组给予生理盐水,评价药物代谢酶CYP1A2酶活性的变化.结果:非那西丁和对乙酰氨基酚的检测浓度线性范围分别为4-1600ng·mL(-1)(r=0.9973)、3-2000ng·mL(-1)(r=0.9973).实验组测得的扑热息痛/非那西丁的比值:11.30±0.71,对照组:9.60±1.04,t检验显示P<0.05,有统计学意义.结论:本法

  1. Single nucleotide polymorphisms of CYP1A2 and their correlation with prostate cancer%CYP1A2基因多态性与前列腺癌的相关性研究

    Institute of Scientific and Technical Information of China (English)

    魏武; 葛京平; 董杰; 高建平; 张征宇; 龚隽

    2011-01-01

    目的:评价CYP1A2基因单核苷酸多态性(SNPs)与前列腺癌分期分级的相关性.方法:对253例良性前列腺增生(BPH)患者与206例去势前列腺癌患者CYP1A2基因中rs2069514-3859(A>G)位点及rs2069525-1707(C >T)位点进行基因测序,并对各基因表型与前列腺癌的分期分级相关性进行统计学分析.结果:BPH及去势前列腺癌患者的两种CYP1A2单核苷酸多态性的发生率无明显差异(P>0.05),其基因多态性与前列腺癌的病理分期均无相关性(P>0.05);但rs2069525-1707(C>T)中含C等位基因型的前列腺癌Gleason评分多在7分以下(P=0.030,OR=4.658,95% CI:1.222~17.754).结论:CYP1A2基因的SNPs与前列腺癌的病理分级之间可能有一定的相关性,但其发生机制及临床意义有待进一步证实及研究.%Objective: To evaluate the correlation of the single nucleotide polymorphisms (SNPs) of the CYP1A2 gene with the stages and grades of prostate cancer (PCa). Methods-, We conducted gene sequencing of the rs2069514-3859 ( A > G) and rs2069525-1707(C >T) alleles in the CYPIA2 gene in 253 patients with benign prostatic hyperplasia (BPH) and 206 patients with PCa treated by castration therapy, and statistically analyzed their correlations with the genotypes, stages and grades of prostate cancer. Results-. The incidences of the 2 CYP1A2 SNPs showed no significant difference between the BPH and the castrated PCa patients (P > 0.05 ) , and their genotypes were not correlated with the stages of PCa (P > 0.05 ). The Gleason scores were mostly T) allele (P =0.030, OR=4.658,95% CI: 1.222-17.754). Conclusion-. SNPs of the CYP1A2 gene may have some correlations with the pathologic stages of PCa, but their mechanisms and clinical significance need to be further confirmed. Natl J Androl, 2011, 17 (11) -. 998 -1001

  2. CYP1A2 phenotype and genotype in a population from the Carboniferous Region of Coahuila, Mexico.

    Science.gov (United States)

    Castorena-Torres, Fabiola; Mendoza-Cantú, Ania; de León, Mario Bermúdez; Cisneros, Bulmaro; Zapata-Pérez, Omar; López-Carrillo, Lizbeth; Salinas, Juan E; Albores, Arnulfo

    2005-04-28

    CYP1A2 regulation by polycyclic aromatic hydrocarbons (PAHs) exposure and polymorphism was investigated in 46 male volunteers from the Carboniferous Region in northern Coahuila, Mexico. PAH exposure was estimated by the urinary excretion of 1-hydroxypyrene (1-OHP), whereas the regulatory effects were assessed by the caffeine metabolic ratio (CMR). Genotype was evaluated by determining 5'-flanking region (-2964) and intron I (734) polymorphisms. A statistically significant difference in the urinary 1-OHP geometric means of Barroterán, Cloete and Juárez (2.30, 0.45 and 0.04, respectively) was observed. As for the genotype, the intron I distribution was 0% C/C, 46% C/A and 54% A/A, whereas that of the 5'-flanking region was 26% G/G, 42% G/A and 32% A/A. Both distributions were in agreement with the Hardy-Weinberg equilibrium model. A greater enzyme activity was observed in the A/A compared to C/A individuals according to the CMR (P<0.001), whereas the 5'-flanking region polymorphism showed no effect on CYP1A2 enzymatic activity. These results suggest that intron I polymorphism and PAH exposure are relevant factors that modulate CYP1A2 enzymatic activity.

  3. Genetic polymorphisms in promoter and intronic regions of CYP1A2 gene in Roma and Hungarian population samples.

    Science.gov (United States)

    Szalai, Renata; Magyari, Lili; Matyas, Petra; Duga, Balazs; Banfai, Zsolt; Szabo, Andras; Kovesdi, Erzsebet; Melegh, Bela

    2014-11-01

    The purpose of this study was to determine the interethnic differences of four CYP1A2 drug metabolizing enzyme variants. A total of 404 Roma and 396 Hungarian healthy subjects were genotyped for -163C>A, -729C>T, -2467delT and -3860G>A variants of CYP1A2 by RT-PCR and PCR-RFLP technique. The -3860A and -729T allele were not detectable in Roma samples, while in Hungarian samples were present with 2.02% and 0.25% prevalence, respectively. There was a 1.5-fold difference in presence of homozygous -163AA genotype between Hungarian and Roma samples (49.5% vs. 31.9%, pRomas (p=0.025). The -2467delT allele frequency was 6.81% in Roma group and 5.81% in Hungarians. The most frequent allelic constellation was -3860G/-2467T/-729C/-163A in both populations. In conclusion, Hungarians have markedly elevated chance for rapid metabolism of CYP1A2 substrates, intensified procarcinogen activation and increased risk for cancers.

  4. Relationship between polymorphisms of CYP1A1, CYP1B1 genes and susceptibility to recurrent abortion%CYP1A1和CYP1B1基因多态性与RPL易感性

    Institute of Scientific and Technical Information of China (English)

    朱壮彦; 赵富玺; 富晓敏; 穆雅琴; 畅学艳

    2012-01-01

    Objective To investigate the relationship between polymorphisms of CYP1A1 and CYP lBlgenes and the susceptibility to recurrent pregnancy loss(RPL). Methods The Mspl polymorphism of CYP1A1 and the polymorphism in exon 3 codon 432(C-G of CYP1B1) were detected with the methods of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and allele specific-PCR (AS-PCR) in a case-control study including 81 cases of RPL and 98 healthy controls. Results There was no significant correlation between Mspl polymorphism and RPL susceptibility (x2 =0. 335 ,P =0. 846). There were significant differences in the genotype distributions or allele frequencies of CYP1B1 L432V polymorphism between the two groups (x2 = 7. 467 , P = 0. 024;x2 = 9. 129, P = 0. 003). Compared with wild-type C/C,the susceptibility of recurrent abortion with the genotypes of homozygotic mutation G/G and heterozygotic mutation C/G were increased by 2. 620 and 1. 954 times,respectively. Compared with allele C,the risk of recurrent abortion with allele G was increased by 2. 038. Conclusion The gene polymorphism of CYP1B1 in exon 3 condon 432 (C-G) might be a genetic risk factor of RPL and the allelic polymorphism of CYP1B1 L432V increases the risk of recurrent abortion. The results do not show that polymorphism of Mspl is associated with the susceptibility of RPL.%目的 探讨CYP1A1、CYP1B1基因多态性与复发性流产(RPL)遗传易感性关系,为预防和治疗该病提供新靶点.方法 本研究采用等位基因特异性PCR (As-PCR)和聚合酶链反应-限制性片断长度多态性(PCRRFLP)方法,针对CYP1A1基因MspI酶切位点和CYP1B1 L432V多态位点,检测81例患有原因不明RPL病例组和98名有生育史健康女性对照组之间差异.结果 RPL组和对照组CYP1A1 MspI位点3种基因型m1/m1、m1/m2、m2/m2分布频率差异无统计学意义(x2=0.335,P>0.05);CYP1B1 L432V多态位点3种基因型C/C、C/G、G/G在病例组和对照组分

  5. CYP1A1, GSTM1, GSTT1 and TP53 Polymorphisms and Risk of Gallbladder Cancer in Bolivians.

    Science.gov (United States)

    Sakai, Kazuaki; Loza, Ernesto; Roig, Guido Villa-Gomez; Nozaki, Ryoko; Asai, Takao; Ikoma, Toshikazu; Tsuchiya, Yasuo; Kiyohara, Chikako; Yamamoto, Masaharu; Nakamura, Kazutoshi

    2016-01-01

    The Plurinational State of Bolivia (Bolivia) has a high incidence rate of gallbladder cancer (GBC). However, the genetic and environmental risk factors for GBC development are not well understood. We aimed to assess whether or not cytochrome P450 (CYP1A1), glutathione S-transferase mu 1 (GSTM1), theta 1 (GSTT1) and tumor suppressor protein p53 (TP53) genetic polymorphisms modulate GBC susceptibility in Bolivians. This case-control study covered 32 patients with GBC and 86 healthy subjects. GBC was diagnosed on the basis of histological analysis of tissues at the Instituto de Gastroenterologia Boliviano-Japones (IGBJ); the healthy subjects were members of the staff at the IGBJ. Distributions of the CYP1A1 rs1048943 and TP53 rs1042522 polymorphisms were assayed using PCR-restriction fragment length polymorphism assay. GSTM1 and GSTT1 deletion polymorphisms were detected by a multiplex PCR assay. The frequency of the GSTM1 null genotype was significantly higher in GBC patients than in the healthy subjects (odds ratio [OR], 2.35; 95% confidence interval [CI], 1.03-5.37; age-adjusted OR, 3.53; 95% CI, 1.29-9.66; age- and sex-adjusted OR, 3.40; 95% CI, 1.24-9.34). No significant differences were observed in the frequencies of CYP1A1, GSTT1, or TP53 polymorphisms between the two groups. The GSTM1 null genotype was associated with increased GBC risk in Bolivians. Additional studies with larger control and case populations are warranted to confirm the association between the GSTM1 deletion polymorphism and GBC risk suggested in the present study.

  6. Role of CYP1A1 in modulating the vascular and blood pressure benefits of omega-3 polyunsaturated fatty acids.

    Science.gov (United States)

    Agbor, Larry N; Wiest, Elani F; Rothe, Michael; Schunck, Wolf-Hagen; Walker, Mary K

    2014-12-01

    The mechanisms that mediate the cardiovascular protective effects of omega 3 (n-3) polyunsaturated fatty acids (PUFAs) have not been fully elucidated. Cytochrome P450 1A1 efficiently metabolizes n-3 PUFAs to potent vasodilators. Thus, we hypothesized that dietary n-3 PUFAs increase nitric oxide (NO)-dependent blood pressure regulation and vasodilation in a CYP1A1-dependent manner. CYP1A1 wild-type (WT) and knockout (KO) mice were fed an n-3 or n-6 PUFA-enriched diet for 8 weeks and were analyzed for tissue fatty acids and metabolites, NO-dependent blood pressure regulation, NO-dependent vasodilation of acetylcholine (ACh) in mesenteric resistance arterioles, and endothelial NO synthase (eNOS) and phospho-Ser1177-eNOS expression in the aorta. All mice fed the n-3 PUFA diet showed significantly higher levels of n-3 PUFAs and their metabolites, and significantly lower levels of n-6 PUFAs and their metabolites. In addition, KO mice on the n-3 PUFA diet accumulated significantly higher levels of n-3 PUFAs in the aorta and kidney without a parallel increase in the levels of their metabolites. Moreover, KO mice exhibited significantly less NO-dependent regulation of blood pressure on the n-3 PUFA diet and significantly less NO-dependent, ACh-mediated vasodilation in mesenteric arterioles on both diets. Finally, the n-3 PUFA diet significantly increased aortic phospho-Ser1177-eNOS/eNOS ratio in the WT compared with KO mice. These data demonstrate that CYP1A1 contributes to eNOS activation, NO bioavailability, and NO-dependent blood pressure regulation mediated by dietary n-3 PUFAs.

  7. Asian dust storm particles induce a broad toxicological transcriptional program in human epidermal keratinocytes.

    Science.gov (United States)

    Choi, Hyun; Shin, Dong Wook; Kim, Wonnyon; Doh, Seong-Jae; Lee, Soo Hwan; Noh, Minsoo

    2011-01-15

    Exposure to airborne dust particles originated from seasonal Asian dust storms in Chinese and Mongolian deserts results in increased incidence of a range of diseases including asthma, contact dermatitis and conjunctivitis. The areas affected by Asian dust particles extend from East China to the west coast of North America. In order to study toxicological mechanisms in human skin, we evaluated the effects of dust particles collected during Asian dust storms (Asian dust particles) on gene expression in human epidermal keratinocytes (HEK). In HEK, exposure to Asian dust particles significantly increased gene expressions of cytochrome P450 1A1 (CYP1A1), CYP1A2, and CYP1B1, which is an indication of aryl hydrocarbon receptor (AHR) activation. In addition, Asian dust particles increased gene transcription of the cytokines IL-6, IL-8, and GM-CSF, which have broad pro-inflammatory and immunomodulatory properties. Asian dust particles significantly up-regulated expression of caspase 14 in HEK, suggesting that Asian dust particles directly affect keratinocyte differentiation. We also demonstrated that protein extract of pollen, a material frequently adsorbed onto Asian dust particles, potentially contributes to the increased transcription of IL-6, CYP1A1, CYP1A2, and CYP1B1. Taken together, these studies suggest that Asian dust particles can exert toxicological effects on human skin through the activation of the cellular detoxification system, the production of pro-inflammatory and immunomodulatory cytokines, and changes in the expression of proteins essential in normal epidermal differentiation.

  8. Selective Inhibition of Bakuchicin Isolated from Psoralea corylifolia on CYP1A in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Sun Joo Kim

    2016-01-01

    Full Text Available Bakuchicin is a furanocoumarin isolated from Psoralea corylifolia and shows several biological activities. Although there have been studies on the biological effects of bakuchicin, its modulation potency of CYP activities has not been previously investigated. Here, we investigated the inhibitory effects of bakuchicin on the activities of CYP isoforms by using a cocktail of probe substrates in pooled human liver microsomes (HLMs and human recombinant cDNA-expressed CYP. Bakuchicin strongly inhibited CYP1A-mediated phenacetin O-deethylation with an IC50 value of 0.43 μM in HLMs. It was confirmed by human recombinant cDNA-expressed CYP1A1 and CYP1A2 with a Ki value of 0.11 μM and 0.32 μM, respectively. A Lineweaver-Burk plot indicated that the inhibition mechanism of bakuchicin was competitive inhibition. Overall, this is the first study to investigate the potential CYP1A1 and CYP1A2 inhibition associated with bakuchicin and to report its competitive inhibitory effects on HLMs.

  9. CYP1A1 and CYP1B1 polymorphisms and their association with estradiol and estrogen metabolites in women who are premenopausal and perimenopausal.

    Science.gov (United States)

    Sowers, MaryFran R; Wilson, Angela L; Kardia, Sharon R; Chu, Jian; McConnell, Daniel S

    2006-09-01

    The purpose of this study was to relate measured concentrations of estradiol (E2) and the urinary estrogen metabolites 2-hydroxyestrone (2-OHE1) and 16alpha-hydroxyestrone (16alpha-OHE1) to single nucleotide polymorphisms (SNPs) from CYP1A1 and CYP1B1, the primary genes involved in estrogen catabolism. We investigated the association of 4 CYP1A1 SNPs (CYP1A1 rs4646903, CYP1A1 rs1531163, CYP1A1 rs2606345, and CYP1A1 rs1048943) and 2 CYP1B1 SNPs (CYP1B1 rs162555 and CYP1B1 rs1056836) to circulating serum E2 concentrations and the urinary estrogen metabolites 2-OHE1 and 16alpha-OHE1. The associations were evaluated in 1,340 participants of 4 racial/ethnic groups from the Study of Women's Health Across the Nation (SWAN) who were premenopausal and perimenopausal. There was substantial variation in the allele frequencies of the SNPs for African American and Caucasian women. There was, however, remarkable comparability between Chinese and Japanese women; their CYP1A1 and CYP1B1 allele frequencies differed by only < or =11%. There was significant variation in E2 concentrations by genotype within racial/ethnic group for CYP1A1 rs2606345. In particular, Japanese women with the CC genotype had lower E2 concentrations than did Japanese women with the AC genotype. Chinese women with the CC genotype had higher 2-OHE1 concentrations than did Chinese women with the AC genotype. Further, African American women with the CC genotype had higher 16alpha-OHE1 concentrations than did those with other genotypes. CYP1A1 rs2606345 may play an important role in estrogen metabolism in women who are premenopausal and perimenopausal.

  10. Correlation of CYP1A1 and GSTM1 gene polymorphisms and environmental factors to familial aggregation of esophageal cancer among the Kazakh ethnic group in Xinjiang.

    Science.gov (United States)

    Zeng, M; Lv, Y; Wang, H F; Yiguli, H A; Zhang, J R; Yisikandaer, A

    2015-12-29

    This study aimed to investigate the correlation of CYP1A1 and GSTM1 gene polymorphisms and environmental factors to familial aggregation of esophageal cancer (EC) among the Kazakh ethnic group in Xinjiang. CYP1A1 and GSTM1 gene polymorphisms were detected using peripheral blood from 86 subjects belonging to families with EC and 82 control subjects. Additionally, a questionnaire survey was conducted to ascertain environmental risk factors. Combined effects of CYP1A1 and GSTM1 gene polymorphisms and environmental factors in familial aggregation of EC were evaluated. Distribution frequencies of CYP1A1 MspI and GSTM1 genotypes between EC and control families showed significant differences (P = 0.002, P = 0.001). Contribution of interaction between CYP1A1 MspI mutant and GSTM1 deletion polymorphisms to familial aggregation of EC was significant, with OR = 3.571 (95%CI = 1.738-3.346). Logistic multivariate analysis indicated that familial aggregation of EC is correlated with 3 factors: drinking water, intake of fresh vegetables and fruits, and CYP1A1 MspI polymorphism (P = 0.005, P = 0.013, and P = 0.001). Sufficient intake of fresh vegetables and fruits (OR = 0.278, 95%CI = 0.137-0.551) protected against familial aggregation of EC, while drinking water (OR = 3.468, 95%CI = 1.562-6.551) and CYP1A1 MspI polymorphism (OR = 2.732, 95%CI = 1.741-3.886) were the risk factors. In conclusion, CYP1A1 and GSTM1 gene polymorphisms affect familial aggregation of EC among the Kazakh ethnic group in Xinjiang. River water intake and CYP1A1 MspI polymorphism were risk factors that likely contributed to high incidence of EC among families.

  11. Water pipe (Shisha, Hookah, Arghile) Smoking and Secondhand Tobacco Smoke Effects on CYP1A2 and CYP2A6 Phenotypes as Measured by Caffeine Urine Test.

    Science.gov (United States)

    Yılmaz, Şenay Görücü; Llerena, Adrián; De Andrés, Fernando; Karakaş, Ümit; Gündoğar, Hasan; Erciyas, Kamile; Kimyon, Sabit; Mete, Alper; Güngör, Kıvanç; Özdemir, Vural

    2017-03-01

    Public policies to stop or reduce cigarette smoking and exposure to secondhand smoke and associated diseases have yielded successful results over the past decade. Yet, the growing worldwide popularity of another form of tobacco consumption, water pipe smoking, has received relatively less attention. To the best of our knowledge, no study to date has evaluated the effects of water pipe smoking on cytochrome P450 (CYP450) activities and drug interaction potential in humans, whereas only limited information is available on the impact of secondhand smoke on drug metabolism. In a sample of 99 healthy volunteers (28 water pipe smokers, 30 secondhand tobacco smoke exposed persons, and 41 controls), we systematically compared CYP1A2 and CYP2A6 enzyme activities in vivo using caffeine urine test. The median self-reported duration of water pipe smoking was 7.5 h/week and 3 years of exposure in total. The secondhand smoke group had a median of 14 h of self-reported weekly exposure to tobacco smoke indoor where a minimum of five cigarettes were smoked/hour for a total of 3.5 years (median). Analysis of variance did not find a significant difference in CYP1A2 and CYP2A6 activities among the three study groups (p > 0.05). Nor was there a significant association between the extent of water pipe or secondhand smoke exposure and the CYP1A2 and CYP2A6 activities (p > 0.05). Further analysis in a subsample with smoke exposure more than the median values also did not reveal a significant difference from the controls. Although we do not rule out an appreciable possible impact of water pipe smoke and secondhand smoke on in vivo activities of these two drug metabolism pathways, variability in smoke constituents from different tobacco consumption methods (e.g., water pipe) might affect drug metabolism in ways that might differ from that of cigarette smoke. Further studies in larger prospective samples are recommended to evaluate water pipe and secondhand tobacco smoke effects

  12. Caffeine raises the serum melatonin level in healthy subjects: an indication of melatonin metabolism by cytochrome P450(CYP)1A2.

    Science.gov (United States)

    Ursing, C; Wikner, J; Brismar, K; Röjdmark, S

    2003-05-01

    Caffeine is metabolized in the liver by cytochrome P450(CYP)1A2. Recent findings imply that this enzyme may also be of importance for the metabolism of human melatonin (MT). If caffeine and MT are metabolized by the same enzyme, one may expect to find different serum MT levels after ingestion of coffee compared with placebo. Although coffee is consumed by people all over the world, few studies have focused on whether caffeine actually affects serum MT levels in normal subjects. We decided to study that particular topic. For that purpose 12 healthy individuals were tested on two occasions, one week apart. On one of these occasions they were given a capsule containing 200 mg caffeine in the evening. On the other, they received placebo. The experimental order was randomized. Serum MT levels were determined every second hour between 22:00 h and 08:00 h, and the melatonin areas under the curve (MT-AUCs) were calculated. After caffeine the serum MT level rose from 0.09 +/- 0.03 nmol/l at 22:00 h to 0.48 +/- 0.07 nmol/l at 04:00 h. The corresponding rise after placebo was less prominent (from 0.06 +/- 0.01 to 0.35 +/- 0.06 nmol/l). This was reflected by the MT-AUC which was 32% larger after ingestion of caffeine compared with placebo (MT-AUC(caffeine) 3.16 +/- 0.44 nmol/l x h vs MT-AUC(placebo) 2.39 +/- 0.40 nmol/l x h; p < 0.02). These findings imply that caffeine, ingested in the evening at a dose corresponding to two ordinary cups of coffee, augments the nocturnal serum MT level, which in turn supports the notion that cytochrome P450(CYP)1A2 is involved in the hepatic metabolism of human MT.

  13. Associations of CYP1A1 gene polymorphisms and risk of breast cancer in Indian women: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Eloisa Singian

    2015-10-01

    Full Text Available Reported associations of CYP1A1 polymorphisms with breast cancer have been inconsistent. In this meta-analysis examining breast cancer associations of three CYP1A1 polymorphisms (M1, M2 and M4 among Indian women may yield information that may be of clinical and epidemiological use for this particular demography. We searched MEDLINE using PubMed and Embase for association studies. From seven published case-control studies, we estimated overall associations and applied subgroup analysis to explore differential effects. All three polymorphisms exhibited overall increased risk, significant in M1 (OR 1.61-1.65, p = 0.04 and M4 (OR 2.02-3.92, p = 0.02-0.04. Differential effects were observed only in the M1 polymorphism where M1 effects were significant in South Indians (OR 2.20-4.34, p < 0.0001 but not the North population, who were at reduced risk (OR 0.64-0.77, p = 0.03-0.55. These populations were not materially different in regard to M2 and M4 as did the women stratified by menopausal status. In this meta-analysis, M1 and M4 effects may render Indian women susceptible, but may be limited by heterogeneity of the studies. Differential effects of the M1 polymorphism in breast cancer render South Indians susceptible compared to those in the North.

  14. CYP1A2 Genotype Variations Do Not Modify the Benefits and Drawbacks of Caffeine during Exercise: A Pilot Study

    Science.gov (United States)

    Salinero, Juan J.; Lara, Beatriz; Ruiz-Vicente, Diana; Areces, Francisco; Puente-Torres, Carlos; Gallo-Salazar, César; Pascual, Teodoro; Del Coso, Juan

    2017-01-01

    Previous investigations have determined that some individuals have minimal or even ergolytic performance effects after caffeine ingestion. The aim of this study was to analyze the influence of the genetic variations of the CYP1A2 gene on the performance enhancement effects of ingesting a moderate dose of caffeine. In a double-blind randomized experimental design, 21 healthy active participants (29.3 ± 7.7 years) ingested 3 mg of caffeine per kg of body mass or a placebo in testing sessions separated by one week. Performance in the 30 s Wingate test, visual attention, and side effects were evaluated. DNA was obtained from whole blood samples and the CYP1A2 polymorphism was analyzed (rs762551). We obtained two groups: AA homozygotes (n = 5) and C-allele carriers (n = 16). Caffeine ingestion increased peak power (682 ± 140 vs. 667 ± 137 W; p = 0.008) and mean power during the Wingate test (527 ± 111 vs. 518 ± 111 W; p 0.05). Reaction times were similar between caffeine and placebo conditions (276 ± 31 vs. 269 ± 71 milliseconds; p = 0.681) with no differences between AA homozygotes and C-allele carriers. However, 31.3% of the C-allele carriers reported increased nervousness after caffeine ingestion, while none of the AA homozygotes perceived this side effect. Genetic variations of the CYP1A2 polymorphism did not affect the ergogenic effects and drawbacks derived from the ingestion of a moderate dose of caffeine. PMID:28287486

  15. CYP1A2 Genotype Variations Do Not Modify the Benefits and Drawbacks of Caffeine during Exercise: A Pilot Study.

    Science.gov (United States)

    Salinero, Juan J; Lara, Beatriz; Ruiz-Vicente, Diana; Areces, Francisco; Puente-Torres, Carlos; Gallo-Salazar, César; Pascual, Teodoro; Del Coso, Juan

    2017-03-11

    Previous investigations have determined that some individuals have minimal or even ergolytic performance effects after caffeine ingestion. The aim of this study was to analyze the influence of the genetic variations of the CYP1A2 gene on the performance enhancement effects of ingesting a moderate dose of caffeine. In a double-blind randomized experimental design, 21 healthy active participants (29.3 ± 7.7 years) ingested 3 mg of caffeine per kg of body mass or a placebo in testing sessions separated by one week. Performance in the 30 s Wingate test, visual attention, and side effects were evaluated. DNA was obtained from whole blood samples and the CYP1A2 polymorphism was analyzed (rs762551). We obtained two groups: AA homozygotes (n = 5) and C-allele carriers (n = 16). Caffeine ingestion increased peak power (682 ± 140 vs. 667 ± 137 W; p = 0.008) and mean power during the Wingate test (527 ± 111 vs. 518 ± 111 W; p 0.05). Reaction times were similar between caffeine and placebo conditions (276 ± 31 vs. 269 ± 71 milliseconds; p = 0.681) with no differences between AA homozygotes and C-allele carriers. However, 31.3% of the C-allele carriers reported increased nervousness after caffeine ingestion, while none of the AA homozygotes perceived this side effect. Genetic variations of the CYP1A2 polymorphism did not affect the ergogenic effects and drawbacks derived from the ingestion of a moderate dose of caffeine.

  16. Effects of Tibetan Medicine Zuotai on the Activities of CYP1A2 and NAT2 in Rats%藏药佐太对大鼠CYP1A2和NAT2活性的影响

    Institute of Scientific and Technical Information of China (English)

    范雪汝; 朱俊博; 姚星辰; 袁明; 李向阳

    2015-01-01

    目的:研究藏药佐太对大鼠细胞色素氧化酶(CYP1A2)、药物代谢酶N-乙酰基转移酶2(NAT2)活性的影响。方法:将70只SD大鼠随机均分为正常对照(生理盐水)组和佐太低、中、高剂量(1.2、3.8、12 mg/kg)单次给药组和多次给药组(每天1次,连续12 d),分别ig给药。正常对照组、佐太单次给药组于第2天,佐太多次给药组于第13天分别ig给予咖啡因(25 mg/kg),5 h后采集尿液,按10 mg/ml加入维生素C。采用高效液相色谱法测定大鼠尿液中咖啡因代谢物5-乙酰氨基-6-甲酰氨基-3-甲基尿酸(AFMU)、1-甲基黄嘌呤(1X)、1-甲基尿酸(1U)、1,7-二甲基尿酸(17U)的含量,以(AFMU+1X+1U)/17U、AFMU/(AFMU+1X+1U)比值来反映CYP1A2和NAT2活性。结果:与正常对照组比较,佐太中剂量单次给药组及多次给药组、高剂量多次给药组大鼠(AFMU+1X+1U)/17U、AFMU/(AFMU+1X+1U)比值降低,即CYP1A2和NAT2活性降低,差异有统计学意义(P<0.05)。结论:佐太对大鼠CYP1A2和NAT2活性有明显抑制作用。%OBJECTIVE:To study the effects of Tibetan medicine Zuotai on the activities of cytochrome oxidase (CYP1A2) and drug metabolism enzyme N-acetyltransferase 2(NAT2)in rats. METHODS:70 SD rats were equally randomized into a normal control (normal saline) group,the groups of single administration of low,middle and high-dose (1.2,3.8 and 12 mg/kg) Zuotai and the groups of multiple administrations thereof(once daily for 12 consecutive days). The rats were given drugs ig. caffeine(25 mg/kg)was given ig to the rats in the normal control group and the groups of single administration on the 2nd day,and to those in the groups of multiple administrations on the 13th day. 5 h later,their urine was collected and added with vitamin C based on 10 mg/ml. High performance liquid chromatography (HPLC) was adopted to determine the cafeine metabolites contents of 5

  17. Caffeic acid phenethyl ester inhibits 3-MC-induced CYP1A1 expression through induction of hypoxia-inducible factor-1α

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Gyun [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Han, Eun Hee [Division of Life Science, Korea Basic Science Institute, Daejeon (Korea, Republic of); Im, Ji Hye; Lee, Eun Ji; Jin, Sun Woo [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2015-09-25

    Caffeic acid phenethyl ester (CAPE), a natural component of propolis, is reported to have anticarcinogenic properties, although its precise chemopreventive mechanism remains unclear. In this study, we examined the effects of CAPE on 3-methylcholanthrene (3-MC)-induced CYP1A1 expression and activities. CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. Moreover, CAPE inhibited 3-MC-induced CYP1A1 activity, mRNA expression, protein level, and promoter activity. CAPE treatment also decreased 3-MC-inducible xenobiotic-response element (XRE)-linked luciferase, aryl hydrocarbons receptor (AhR) transactivation and nuclear localization. CAPE induced hypoxia inducible factor-1α (HIF-1α) protein level and HIF-1α responsible element (HRE) transcriptional activity. CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 protein expression. Taken together, CAPE decreases 3-MC-mediated CYP1A1 expression, and this inhibitory response is associated with inhibition of AhR and HIF-1α induction. - Highlights: • CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. • CAPE inhibited 3-MC-induced CYP1A1 expression. • CAPE induced HIF-1α induction. • CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 expression.

  18. 3D-QSAR methods on the basis of ligand-receptor complexes. Application of COMBINE and GRID/GOLPE methodologies to a series of CYP1A2 ligands

    Science.gov (United States)

    Lozano, Juan José; Pastor, Manuel; Cruciani, Gabriele; Gaedt, Katrin; Centeno, Nuria B.; Gago, Federico; Sanz, Ferran

    2000-05-01

    Many heterocyclic amines (HCA) present in cooked food exert a genotoxic activity when they are metabolised (N-oxidated) by the human cytochrome P450 1A2 (CYP1A2h). In order to rationalize the observed differences in activity of this enzyme on a series of 12 HCA, 3D-QSAR methods were applied on the basis of models of HCA-CYP1A2h complexes. The CYP1A2h enzyme model has been previously reported and was built by homology modeling based on cytochrome P450 BM3. The complexes were automatically generated applying the AUTODOCK software and refined using AMBER. A COMBINE analysis on the complexes identified the most important enzyme-ligand interactions that account for the differences in activity within the series. A GRID/GOLPE analysis was then performed on just the ligands, in the conformations and orientations found in the modeled complexes. The results from both methods were concordant and confirmed the advantages of incorporating structural information from series of ligand-receptor complexes into 3D-QSAR methodologies.

  19. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  20. Genetic polymorphisms in CYP1A1, CYP1B1 and COMT genes in Greenlandic Inuit and Europeans

    Directory of Open Access Journals (Sweden)

    Mandana Ghisari

    2013-06-01

    Full Text Available Background. The Indigenous Arctic population is of Asian descent, and their genetic background is different from the Caucasian populations. Relatively little is known about the specific genetic polymorphisms in genes involved in the activation and detoxification mechanisms of environmental contaminants in Inuit and its relation to health risk. The Greenlandic Inuit are highly exposed to legacy persistent organic pollutants (POPs such as polychlorinated biphenyls (PCBs and organochlorine pesticides (OCPs, and an elucidation of gene–environment interactions in relation to health risks is needed. Objectives. The aim of this study was to determine and compare the genotype and allele frequencies of the cytochrome P450 CYP1A1 Ile462Val (rs1048943, CYP1B1 Leu432Val (rs1056836 and catechol-O-methyltransferase COMT Val158Met (rs4680 in Greenlandic Inuit (n=254 and Europeans (n=262 and explore the possible relation between the genotypes and serum levels of POPs. Results. The genotype and allele frequency distributions of the three genetic polymorphisms differed significantly between the Inuit and Europeans. For Inuit, the genotype distribution was more similar to those reported for Asian populations. We observed a significant difference in serum polychlorinated biphenyl (CB-153 and the pesticide 1,1-dichloro-2,2-bis(p-chlorophenyl-ethylene (p,p′-DDE levels between Inuit and Europeans, and for Inuit also associations between the POP levels and genotypes for CYP1A1, CYP1B1 and COMT. Conclusion. Our data provide new information on gene polymorphisms in Greenlandic Inuit that might support evaluation of susceptibility to environmental contaminants and warrant further studies.

  1. Agrobacterium-mediated transformation of Ananas comosus with CYP1A1%根癌农杆菌介导CYP1A1转化菠萝的研究

    Institute of Scientific and Technical Information of China (English)

    何业华; 吴会桃; 罗吉; 方少秋; 马均; 卢敏; 彭兵; 伍成厚

    2010-01-01

    将菠萝(Ananas comosus)愈伤组织经含有植物表达重组质粒(pUHA1-CYP1A1)的根癌农杆菌(LBA4404菌株)侵染后,在MS+3.0 mg/L BA+2.0 mg/L NAA+100 μmol/L AS+8 g/L agar上共培养3 d,转入选择培养基(MS+3.0 mg/L BA+2.0 mg/L NAA+20 mg/L Km+400 mg/L Carb+8 g/L agar)上培养约10 d后开始分化出不定芽;28 d后将绿色的抗Km不定芽转入MS+2.0 mg/L NAA+30 mg/L Km+300 mg/L Carb+8 g/L agar上再进行连续2轮选择,随后将绿芽转入MS+1.0 mg/L IBA+30 mg/L Km+8 g/L agar上生根,共获得95株Km抗性植株,转化率0.12%~2.69%.对其中部分的抗Km植株进行PCR检测,PCR阳性植株率达64.29%.经Southern杂交进一步证实,CYP1A1已整合到菠萝基因中.以琼脂为培养基凝固剂、共培养基中添加AS、增加选择次数和逐渐增加新一轮选择培养基中的Km质量浓度等是根癌农杆菌介导菠萝愈伤组织获得转基因植株的重要条件.

  2. A pharmacometric approach to investigate the impact of methylxanthine abstinence and caffeine consumption on CYP1A2 activity.

    Science.gov (United States)

    Perera, Vidya; Gross, Annette S; Forrest, Alan; Landersdorfer, Cornelia B; Xu, Hongmei; Ait-Oudhia, Sihem; McLachlan, Andrew J

    2013-11-01

    This study aimed to investigate the impact of methylxanthine abstinence (MA) periods on CYP1A2 activity in individuals with varying levels of caffeine consumption through development of a population pharmacokinetic model of caffeine and its major metabolite paraxanthine. This study developed and evaluated a mixed-effects pharmacokinetic model for caffeine and paraxanthine concentration-time data derived from a sequential single-dose cross-over study in healthy male volunteers (n = 30) who received oral 100 mg caffeine doses. Participants received caffeine with and without a MA period. Participants were classified as low (0-100 mg/d), medium (100-200 mg/d), or high (>200 mg/d) caffeine consumers (LCCs, MCCs, or HCCs, respectively). All caffeine and paraxanthine concentration-time data were simultaneously modeled. Caffeine pharmacokinetics was described by a two-compartment model with first-order absorption and two first-order elimination pathways. Paraxanthine was described by a one-compartment model with first-order absorption and elimination. Among LCCs (n = 16) and MCCs (n = 9), there was no difference in the mean (95% confidence interval) total apparent caffeine clearance (CL) between the MA period [LCCs: 6.88 (5.61-8.16 l/h); MCCs: 10.09 (7.57-12.60 l/h)] versus the no MA period [LCCs: 6.22 (4.97-7.46 l/h); MCCs: 9.68 (7.12-12.24 l/h)]. The mean CL among HCCs (n = 5) was considerably higher in the MA period [10.48 (5.62-15.33 l/h)] compared with the no MA period [6.30 (3.40-9.20 l/h)] (P caffeine elimination pathways, rather than CYP1A2.

  3. CYP1A1 gene polymorphisms increase lung cancer risk in a high-incidence region of Spain: a case control study

    Directory of Open Access Journals (Sweden)

    San Jose Carmen

    2010-08-01

    Full Text Available Abstract Background A rural region in south-west Spain has one of the highest lung cancer incidence rates of the country, as revealed by a previous epidemiological 10-year follow-up study. The present work was undertaken to ascertain the role of CYP1A1 gene polymorphisms and their interaction with tobacco smoking in the development of the disease in this location. Methods One-hundred-and-three cases of lung cancer and 265 controls participated in the study. The participants were screened for the presence of four CYP1A1 polymorphisms, namely MspI, Ile462Val, T3205C, and Thr461Asn. Lung cancer risk was estimated as odds ratios (OR and 95% confidence intervals (CI using unconditional logistic regression models adjusting for age, sex, and smoking. Results The distribution of the variant CYP1A1 alleles was different from that described for other Caucasian populations, with CYP1A1*2A showing an uncommonly high frequency (p CYP1A1*2B allele (carrying MspI and Ile462Val mutations was strongly associated with high lung cancer risk (OR = 4.59, CI:1.4-12.6, p p p = 0.04. Moreover, the Thr461Asn polymorphism was found to be associated with SCLC in a Caucasian population for the first time to our knowledge (OR = 8.33, CI: 1.3-15.2, p = 0.04. Conclusion The results suggest that CYP1A1 polymorphisms contribute to increase lung cancer susceptibility in an area with an uncommon high incidence rate.

  4. Hepatic CYP1A, 2B, 2C, 2E and 3A regulation by methoxychlor in male and female rats.

    Science.gov (United States)

    Oropeza-Hernández, Luis F; López-Romero, Ricardo; Albores, Arnulfo

    2003-09-15

    The effect on liver cytochrome P450 (CYP) by i.p. injections of methoxychlor (MXC) in corn oil at 0, 100, 150, 200 or 250 mg/kg twice daily for 3 days was investigated in adult male and female Wistar rats. The MXC injection (100 mg/kg b.w.) caused a similar increase of total CYP content in males and females as compared with controls who received the vehicle only. In males, this increase continued up to 250 mg/kg. As to the induction of specific CYP activities, the effect of MXC was found to be sex dependent with three different patterns. Males showed the greatest increases of ethoxy- and methoxyresorufin-O-dealkylase (EROD and MROD, respectively), two CYP1A1/1A2-related activities. On the contrary, females were more responsive than males for pentoxyresorufin-O-dealkylase (PROD) and benzyloxyresorufin-O-dearylase (BROD), two CYP2B-related activities. Finally, p-nitrophenol hydroxylase (PNPH), a CYP2E1-related activity, showed a similar small, although statistically significant, increase for both sexes. As to CYP apoprotein levels, CYP1A1 and CYP2B1/2B2 showed greater increases in females than in males; whereas, interestingly, CYP2E1 induction was higher in males than in females. These results indicate overall that gender modulates CYP expression after MXC injection both qualitatively and quantitatively, and, therefore, this pesticide is not a pure PB inducer. Moreover, the statistically significant increase of CYP3A2 apoprotein expression observed in females and also, to a lower extent, in males, and the decrease of CYP2C11 apoprotein found in males, two sex-related enzymes, may explain the reported endocrine disrupting effect of MXC. The relevance of the different patterns of rat liver CYP induction observed after MXC treatment, in relationship to the speculated endocrine disrupting potential of MXC in humans potentially exposed to this pesticide, needs further investigation.

  5. Antimutagenic properties of Mangifera indica L. stem bark extract and evaluation of its effects on hepatic CYP1A1.

    Science.gov (United States)

    Morffi, Janet; Rodeiro, Idania; Hernández, Sandra Luz; González, Leonora; Herrera, Jose; Espinosa-Aguirre, J Javier

    2012-09-01

    Mangifera indica stem bark extract (MSBE) is a Cuban natural product which has shown strong antioxidant properties. In this work, the antimutagenic effect of MSBE was tested against 10 well-known mutagens/carcinogens in the Ames test in the absence or presence of metabolic fraction (S9). The chemical mutagens tested included: cyclophosphamide, mitomycin C, bleomycin, cisplatin, dimethylnitrosamine (DMNA), benzo[a]pyrene (BP), 2-acetylaminofluorene (2-AAF), sodium azide, 1-nitropyrene (1-NP) and picrolonic acid. Protective effects of the extract were also evaluated by comparing the efficiency of S9 fraction obtained from rats treated during 28 days with oral doses of MSBE (50-500 mg/kg) with that obtained from rats treated with vehicle (control) to activate bleomycin and cyclophosphamide in the Ames test. MSBE concentrations between 50 and 500 μg/plate significantly reduced the mutagenicity mediated by all the chemicals tested with the exception of sodium azide. Higher mutagenicity was found when bleomycin and cyclophosphamide (CP) were activated by control S9 than by MSBE S9. In addition, inhibition of CYP1A1 microsomal activity was observed in the presence of MSBE (10-20 μg/ml). We can conclude that besides its potent antioxidant activity previously reported, MSBE may also exert a chemoprotective effect due to its capacity to inhibit CYP activity.

  6. CYP1A1 and CYP1B1 genetic polymorphisms, smoking and breast cancer risk in a Finnish Caucasian population.

    OpenAIRE

    Sillanpaa, Pia; Heikinheimo, Liisa; Kataja, Vesa; Eskelinen, Matti; Kosma, Veli-Matti; Uusitupa, Matti; Vainio, Harri; Metsola, Katja; Hirvonen, Ari

    2007-01-01

    We investigated the associations between two CYP1A1 polymorphisms (Ile462Val and Thr461Asn) and one CYP1B1 polymorphism (Leu432Val) and breast cancer risk. The study population consisted of 483 breast cancer patients and 482 healthy population controls, all of homogenous Finnish origin. No statistically significant overall associations were found between the CYP1A1 and CYP1B1 genotypes and breast cancer risk. However, a significant increase in the breast cancer risk was seen for women who had...

  7. CYP1A2 and CYP2D6 Gene Polymorphisms in Schizophrenic Patients with Neuroleptic Drug-Induced Side Effects.

    Science.gov (United States)

    Ivanova, S A; Filipenko, M L; Vyalova, N M; Voronina, E N; Pozhidaev, I V; Osmanova, D Z; Ivanov, M V; Fedorenko, O Yu; Semke, A V; Bokhan, N A

    2016-03-01

    Polymorphic variants of CYP1A2 and CYP2D6 genes of the cytochrome P450 system were studied in patients with schizophrenia with drug-induced motor disorders and hyperprolactinemia against the background of long-term neuroleptic therapy. We revealed an association of polymorphic variant C-163A CYP1A2*1F of CYP1A2 gene with tardive dyskinesia and association of polymorphic variant 1846G>A CY2D6*4 and genotype A/A of CYP2D6 gene (responsible for debrisoquin-4-hydroxylase synthesis) with limbotruncal tardive dyskinesia in patients with schizophrenia receiving neuroleptics for a long time.

  8. Systemic uptake of miconazole during vaginal suppository use and effect on CYP1A2 and CYP3A4 associated enzyme activities in women

    DEFF Research Database (Denmark)

    Kjærstad, Mia Birkhøj; Nielsen, Flemming; Nøhr-Jensen, Lene

    2010-01-01

    To investigate if the ordinary use of a vaginal suppository containing miconazole results in systemic absorption that is sufficient to affect the activities of CYP1A2 and CYP3A4, which are major drug- and steroid-metabolising enzymes.......To investigate if the ordinary use of a vaginal suppository containing miconazole results in systemic absorption that is sufficient to affect the activities of CYP1A2 and CYP3A4, which are major drug- and steroid-metabolising enzymes....

  9. A simple chromatographic method for determining norfloxacin and enoxacin in pharmacokinetic study assessing CYP1A2 inhibition.

    Science.gov (United States)

    Kobayashi, Toshimi; Homma, Masato; Momo, Kenji; Kobayashi, Daisuke; Kohda, Yukinao

    2011-04-01

    We developed a simple assay method for the determination of serum and urine norfloxacin and enoxacin using reversed-phase high-performance liquid chromatography and perchloric acid precipitation for sample pre-treatment. Optimized conditions can permit detection of norfloxacin and enoxacin in the same chromatogram, so either compound can be used as an internal standard for another determinant. Supernatants of the precipitated samples were analyzed by the octadecylsilyl silica-gel column under ambient temperature and an ultraviolet wavelength of 272  nm. A mobile phase solvent consisting of 20 mm sodium dihydrogenphosphate (pH 3.0) and acetonitrile (85:15, v/v) was pumped at a flow rate of 1.0 mL/min. The calibration curves for norfloxacin and enoxacin at a concentration of 62.5-1000 ng/mL for serum and 250-4000 ng/mL for urine were linear (r > 0.9997). The recoveries of norfloxacin and enoxacin from serum and urine were >94% with the coefficient of variations (CV) <5%. The CVs for intra- and inter-day assay of norfloxacin and enoxacin were <4.2 and <5.5%, respectively. This method can be applied to the pharmacokinetic study of norfloxacin and enoxacin after repeated administration to assess changes in CYP1A2 activity in healthy subjects. Copyright © 2010 John Wiley & Sons, Ltd.

  10. Differential effect of over-expressing UGT1A1 and CYP1A1 on xenobiotic assault in MCF-7 cells.

    Science.gov (United States)

    Leung, Hau Y; Wang, Yun; Leung, Lai K

    2007-12-05

    Gene mutation has been considered as a major step of carcinogenesis. Some defective genes may induce spontaneous tumorigenesis, while others are required to interact with the environment to induce cancer. CYP1A1 and UGT1A1 are encoded for the respective phase I and II drug-metabolizing enzymes. Their expressions have been associated with breast cancer incidence in women, and some xenobiotics are substrates of these two enzymes. In the current study, cytochrome P450 (CYP) 1A1 and UDP-glucuronosyltransferase (UGT) 1A1 were over-expressed in the breast cancer MCF-7 cells, and potential interactions between these enzymes and estrogen or polycyclic aromatic hydrocarbon were evaluated. Compared with control cells (MCF-7(VEC)), reduced cell proliferation was seen in cells expressing UGT1A1 (MCF-7(UGT1A1)) under estradiol treatment. 7,12-Dimethylbenz[a]anthracene (DMBA) is an established breast cancer initiator in animal model. Over-expressing UGT1A1 reduced the binding of DMBA to DNA, and increased MCF-7(UGT1A1) intact cells under DMBA treatment was verified by comet assay. On the other hand, intensified DMBA binding and damages were observed in MCF-7(CYP1A1) cells. This study supported that UGT1A1 but not CYP1A1 expression could protect against xenobiotic assault.

  11. The synthetic retinoid AGN 193109 but not retinoic acid elevates CYP1A1 levels in mouse embryos and Hepa-1c1c7 cells.

    Science.gov (United States)

    Soprano, D R; Gambone, C J; Sheikh, S N; Gabriel, J L; Chandraratna, R A; Soprano, K J; Kochhar, D M

    2001-07-15

    The synthetic retinoid AGN 193109 is a potent pan retinoic acid receptor (RAR) antagonist. Treatment of pregnant mice with a single oral 1 mg/kg dose of this antagonist on day 8 postcoitum results in severe craniofacial (median cleft face or frontonasal deficiency) and eye malformations in virtually all exposed fetuses. Using differential display analysis, we have determined that CYP1A1 mRNA levels are elevated in mouse embryos 6 h following treatment with AGN 193109. Similarly, an elevation in CYP1A1 mRNA levels, protein levels, and aryl hydrocarbon hydoxylase activity occurs in Hepa-1c1c7 cells, with the maximal elevation observed when the cells were treated with 10(-5) M AGN 193109 for 4 to 8 h. Elevation in CYP1A1 mRNA levels in mouse embryos and Hepa-1c1c7 cells does not occur upon treatment with the natural retinoid, all-trans-retinoic acid. Finally, elevation in CYP1A1 mRNA levels was not observed when mutant Hepa-1c1c7 cells, which are defective in either the aryl hydrocarbon receptor (AhR) or aryl hydrocarbon receptor nuclear translocator (ARNT), were treated with AGN 193109. This suggests that the AhR/ARNT pathway and not the RAR/RXR pathway is mediating the elevation of CYP1A1 mRNA levels by AGN 193109, at least in the Hepa-1c1c7 cells. This is the first example of a retinoid that displays the abililty to regulate both the RAR/RXR and AhR/ARNT transcriptional regulatory pathways.

  12. [CYP1A1 polymorphisms, lack of glutathione S-transferase M1 (GSTM1), cooking oil fumes and lung cancer risk in non-smoking women].

    Science.gov (United States)

    Zhu, Xiao-Xia; Hu, Cheng-Ping; Gu, Qi-Hua

    2010-11-01

    to study the correlation of polymorphisms of CYP1A1 MspI, GSTM1 null genotype, cooking oil fumes independently and in combination with the risk of non-smoking lung cancer in females. one hundred and sixty female non-smoking patients with primary lung cancer and 160 controls were enrolled from Xiangya Hospital of Central South University. PCR-RELP and PCR were used to detect the distribution of CYP1A1 MspI and GSTM1 genotypes respectively. The correlation of these genes and cooking oil fumes with the susceptibility to lung cancer was analyzed. There was a significant difference in the frequencies of cooking oil fumes exposure between cancer cases and controls (χ(2) = 10.734, P 0.05). The combination of CYP1A1 polymorphisms and cooking oil fumes significantly increased the risk of lung cancer. The frequencies of GSTM1 null genotype was significantly different between cancer cases and controls (χ(2) = 0.518, P cooking fumes had a higher risk of cancer than those with only one of them, the OR being 3.617 (95%CI 1.899 - 6.891). The combination of the two genes significantly increased the risk of lung cancer. cooking oil fumes exposure was a risk factor for non-smoking lung cancer in females. The combination of CYP1A1 with cooking oil fume increased the risk of female lung cancer. GSTM1 null genotype was associated with risk of lung cancer in non-smoking females. The combination of GSTM1 null genotype and cooking oil fumes significantly increased the risk of female lung cancer. The combination of CYP1A1 and GSTM1 significantly increased the risk of lung cancer.

  13. Cellular glutathione content modulates the effect of andrographolide on β-naphthoflavone-induced CYP1A1 mRNA expression in mouse hepatocytes.

    Science.gov (United States)

    Kondo, Sachiko; Chatuphonprasert, Waranya; Jaruchotikamol, Atika; Sakuma, Tsutomu; Nemoto, Nobuo

    2011-02-04

    We previously reported that andrographolide (Andro), a major bioactive constituent of Andrographis paniculata, synergistically enhanced the inducible expression of CYP1A1 mRNA. In this study, although the synergism was confirmed at 24h after the start of treatment with Andro and β-naphthoflavone (βNF), a CYP1A inducer, the expression was profoundly suppressed at an earlier phase, namely at 6-12h, when the βNF-induced expression peaked. Although oxidized glutathione (GSSG) levels were higher in co-treated cells at 6 and 24h, levels of reactive oxygen species varied depending on the treatment period and species, indicating no relation to the synergistic expression of CYP1A1 mRNA. Glutathione (GSH) and N-acetyl-l-cysteine (NAC) significantly enhanced the βNF-induced expression, and partly reversed the suppressive effect of Andro in the early phase. At 24h, the addition of GSH or NAC had no effect on βNF-induced CYP1A1 mRNA expression, but significantly reduced the synergistic effect of Andro. The synergistic effect was enhanced by l-buthionine-(S,R)-sulfoximine, a GSH depleter. Furthermore, H(2)O(2) and ascorbic acid further modified the profile of synergism of Andro on βNF-inducible CYP1A1 mRNA expression. These results suggest that GSH status might be involved in βNF-induced CYP1A1 mRNA expression, and the interaction of Andro with GSH might modulate the expression.

  14. Coffee and tea consumption, genotype-based CYP1A2 and NAT2 activity and colorectal cancer risk—Results from the EPIC cohort study

    NARCIS (Netherlands)

    Dik, V.K.; Bueno-de-Mesquita, H.B.; Oijen, van M.G.C.T.; Siersema, P.D.; Uiterwaal, C.S.P.M.; Gils, van C.H.; Duijnhoven, van F.J.B.

    2014-01-01

    Coffee and tea contain numerous antimutagenic and antioxidant components and high levels of caffeine that may protect against colorectal cancer (CRC). We investigated the association between coffee and tea consumption and CRC risk and studied potential effect modification by CYP1A2 and NAT2

  15. Coffee and tea consumption, genotype-based CYP1A2 and NAT2 activity and colorectal cancer risk—Results from the EPIC cohort study

    NARCIS (Netherlands)

    Dik, V.K.; Bueno-de-Mesquita, H.B.; Oijen, van M.G.C.T.; Siersema, P.D.; Uiterwaal, C.S.P.M.; Gils, van C.H.; Duijnhoven, van F.J.B.

    2014-01-01

    Coffee and tea contain numerous antimutagenic and antioxidant components and high levels of caffeine that may protect against colorectal cancer (CRC). We investigated the association between coffee and tea consumption and CRC risk and studied potential effect modification by CYP1A2 and NAT2 genotype

  16. Systemic uptake of miconazole during vaginal suppository use and effect on CYP1A2 and CYP3A4 associated enzyme activities in women

    DEFF Research Database (Denmark)

    Kjærstad, Mia Birkhøj; Nielsen, Flemming; Nøhr-Jensen, Lene;

    2010-01-01

    To investigate if the ordinary use of a vaginal suppository containing miconazole results in systemic absorption that is sufficient to affect the activities of CYP1A2 and CYP3A4, which are major drug- and steroid-metabolising enzymes....

  17. CYP1A1 and CYP1B1 polymorphisms as modifying factors in patients with pneumoconiosis and occupationally related tumours: A pilot study.

    Science.gov (United States)

    Schneider, Joachim; Bernges, Ulrike

    2009-01-01

    CYP1A1 and CYP1B1 are involved in the metabolism of carcinogens. The effect of CYP1A1 and CYP1B1 polymorphisms as genetic modifiers of risk was investigated in individuals with asbestos, silica dust or ionizing radiation-induced occupational tumours compared to exposed non-cancer subjects suffering from pneumoconiosis, particularly in relation to tobacco smoking. CYP1A1 T6235C, CYP1A1 A4889G and CYP1B1 codon 432 polymorphisms were determined by real-time PCR analysis in patients with asbestos-related lung cancer (n=39), patients with diffuse malignant mesotheliomas (n=19), lung cancer in silicosis patients (n=7), uranium miners with lung cancer (UMLC) (n=40), patients with asbestosis (n=181), and silicosis patients (n=204). The results were compared to those from a healthy unexposed control group (n=50) not exposed to carcinogenic (or fibrogenic) agents in the workplace. An additional healthy control group (n=134) comprised smokers and ex-smokers. Allele frequencies were within the range described for Caucasians. Multivariate analysis revealed that patients with occupational diseases with the susceptible CYP1A1 T6235C genotype had a calculated risk ranging from OR=0.5 (95% CI 0.18-1.36) for UMLC to OR=1.23 (95% CI 0.39-4.05) for uranium miners with silicosis. The risk for patients with the susceptible CYP1A1 A4889G allele was calculated as being between OR=0.39 (95% CI 0.10-1.54) for mesothelioma patients and OR=1.54 (95% CI 0.49-4.89) for UMLC. CYP1B1 Val432Leu polymorphisms were associated with a risk of OR=0.56 (95% CI 0.2-1.55) for UMLC and OR=1.52 (95% CI 0.68-3.39) for asbestos-exposed lung cancer patients. By analyzing the interaction between tobacco smoking, type of exposure to carcinogens and the genotypes, it was determined that smoking and the presence of the susceptible genotypes did not have a combined effect. In this pilot study, the analyzed polymorphism had no consistent modifying effect on pneumoconiosis or occupationally related tumours.

  18. Association of CYP1A1 A4889G and T6235C polymorphisms with the risk of sporadic breast cancer in Brazilian women

    Directory of Open Access Journals (Sweden)

    Camila Borges Martins de Oliveira

    2015-10-01

    Full Text Available OBJECTIVES:We examined the influence of CYP1A1 A4889G and T6235C polymorphisms on the risk of sporadic breast cancer.METHODS:DNA from 742 sporadic breast cancer patients and 742 controls was analyzed using the polymerase chain reaction, followed by the restriction fragment length polymorphism technique.RESULTS:More patients had the CYP1A1 4889AG+GG genotype compared to controls (29.0% versus 23.2%, p=0.004. The G allele carriers had a 1.50-fold increased risk (95% CI: 1.14-1.97 of sporadic breast cancer compared to the other study participants. The frequency of the 4889AG+GG genotype among the Caucasian patients was higher than in the non-Caucasian patients (30.4% versus 20.2%, p=0.03 and controls (30.4% versus 23.2%, p=0.002. Caucasians and G allele carriers had a 1.61-fold increased risk (95% CI: 1.20-2.15 of sporadic breast cancer compared to other subjects. The CYP1A1 4889AG+GG genotype was more common among patients with a younger median age at first full-term pregnancy than among controls (33.8% versus 23.2%, p=0.001 and subjects whose first full-term pregnancies occurred at an older age (33.8% versus 26.1%, p=0.03. Women with the CYP1A1 4889AG+GG genotype and earlier first full-term pregnancies had a 1.87-fold (95% CI: 1.32-2.67 increased risk of sporadic breast cancer compared to the other study participants. Excess CYP1A1 4889AG+GG (39.8% versus27.1%, p=0.01 and 6235TC+CC (48.4% versus 35.9%, p=0.02 genotypes were also observed in patients with grade I and II tumors compared to patients with grade III tumors and controls (39.8% versus 23.2%, p=0.04; 48.4% versus 38.6%, p=0.04. The G and C allele carriers had a 2.44-fold (95% CI: 1.48-4.02 and 1.67-fold (95% CI: 1.03-2.69 increased risk, respectively, of developing grade I and II tumors compared to other subjects.CONCLUSIONS:The CYP1A1 A4889G and T6235C polymorphisms may alter the risk of sporadic breast cancer in Brazilian women.

  19. ASSOCIATION OF POLYMORPHISM IN BIOTRANSFORMATION SYSTEM GENES CYP1A1 AND GST WITH RISK OF RELAPSE IN CHILDHOOD ACUTE LEUKEMIA

    Directory of Open Access Journals (Sweden)

    O.A. Gra

    2007-01-01

    Full Text Available Presence of polymorphism in genes coding biotransformation system may play an important role in formation of primary childhood acute leukemia, and affects the incidence and features of relapse. We developed a biological microchip which allows to analyze 14 mutations in eight genes of biotransfor mation system: cyp1a1, cyp2d6, gstt1, gstm1, nat2, mthfr, cyp2c9 and cyp2c19. This biochip has been used to study DNA samples from 332 children with diagnosis of acute lymphoblastic leukemia (all and 71 children with diagnosis of acute myeloblastic leukemia (AML. it was obtained that variant genotype cyp1a1 *1/*2а more often occur in children with relapse of disease than in children with primary diagnosed leukemia (or = 2,11, p = 0,0291. Also it has been shown, that «null» gstt1 genotype is less frequent in children with relapse of disease than in children with primary diagnosed leukemia (or = 0,55, p = 0,0265. Upon sex stratification, boys with relapse of all demonstrated an increased occurrence of the cyp1a1 genotype *1/*2а in combination with the gstt1 «nonnull» genotype relative to patients with primarily diagnosed all (or = 3,09, p = 0,0254. In addition, girls with relapse of acute leukemia displayed a 2,4_fold lower frequency of the «null» gstm1 genotype as compared with the girls group with primary leukemia (or = 0,41, p = 0,0175. Thus, it was shown that studied genotypes cyp1a1 and GST might be prognostic risk factors of relapse in childhood acute leukemia.Key words: acute leukemia, drug resistance, cytochrome p 450, glutathione-s-transferases, polymorphism, oligonucleotide biochips.

  20. CYP1B1, CYP1A1, MPO, and GSTP1 polymorphisms and lung cancer risk in never-smoking Korean women.

    Science.gov (United States)

    Yoon, Kyong-Ah; Kim, Jin Hee; Gil, Hyea-Jin; Hwang, Hyukkee; Hwangbo, Bin; Lee, Jin Soo

    2008-04-01

    Polymorphisms in metabolic genes encoding phase I and phase II enzymes are thought to modulate the risk of lung cancer via changes in enzymatic activity. Recently, the effect of these metabolic enzymes and their interaction with environmental factors has been studied in both smokers and also never-smokers, since never-smokers are a good model in which to study genetic susceptibility at low-dose carcinogen exposure. Here, we investigated the association of CYP1A1 Ile462Val, CYP1B1 Leu432Val, GSTP1 Ile105Val, MPO G-463A polymorphisms and lung cancer risk in never-smoking Korean women. In this case-control study of 213 lung cancer patients and 213 age-matched healthy controls, we found that carrying one variant allele of the CYP1A1 Ile462Val polymorphism was associated with a significantly decreased risk of lung adenocarcinoma (adjusted odds ratio (OR)=0.63; 95% confidence interval (CI), 0.41-0.99). Furthermore, the combination of risk genotypes of CYP1B1 Leu432Val with CYP1A1 Ile462Val was associated with the risk of lung adenocarcinoma (adjusted OR=2.16; 95% CI, 1.02-4.57) as well as overall lung cancer (adjusted OR=2.23; 95% CI 1.01-4.89). The polymorphisms of GSTP1 Ile105Val and MPO G-463A showed no significant association with lung cancer. Theses results suggest that the CYP1A1 Ile462Val polymorphism is associated with a reduced risk of lung adenocarcinoma in never-smoking Korean women, whereas specific combinations of variant genotypes for metabolic enzymes increase lung cancer risk considerably.

  1. Protein expression of CYP1A1, CYP1B1, ALDH1A1, and ALDH2 in young patients with oral squamous cell carcinoma.

    Science.gov (United States)

    Kaminagakura, E; Caris, A; Coutinho-Camillo, C; Soares, F A; Takahama-Júnior, A; Kowalski, L P

    2016-06-01

    The purpose of this study was to evaluate the expression of the enzymes involved in the biotransformation of tobacco and alcohol. A study group of 41 young patients (≤40 years old) with oral squamous cell carcinoma (OSCC) was compared to 59 control subjects (≥50 years old) with tumours of similar clinical stages and topographies. The immunohistochemical expression of CYP1A1, CYP1B1, ALDH1A1, and ALDH2 was evaluated using the tissue microarray technique. There was a predominance of males, smokers, and alcohol drinkers in both groups. Most tumours were located in the tongue (43.9% vs. 50.8%), were well-differentiated (63.4% vs. 56.6%), and were in clinical stages III or IV (80.5% vs. 78.0%). No difference was observed in the expression of CYP1A1, ALDH1A1, or ALDH2 between the two groups. CYP1A1 and ALDH2 protein expression had no influence on the prognosis. The immunoexpression of CYP1B1 was significantly higher in the control group than in the young group (PCYP1B1 overexpression vs. protein underexpression (64% vs. 25%; PCYP1B1. Further studies involving other genes and proteins are necessary to complement the results of this research.

  2. Action of Halowax 1051 on Enzymes of Phase I (CYP1A1 and Phase II (SULT1A and COMT Metabolism in the Pig Ovary

    Directory of Open Access Journals (Sweden)

    Justyna Barć

    2013-01-01

    Full Text Available Polychlorinated naphthalenes (PCNs are a group of organochlorinated compounds exhibiting dioxin-like properties. Previously published data showed the direct action of PCN-rich Halowax 1051 on ovarian follicular steroidogenesis. Taking into consideration that the observed biological effects of PCNs may be frequently side effects of metabolites generated by their detoxification, the aim of this study was to determine the activity and expression of enzymes involved in phase I (cytochrome P450, family 1 (CYP1A1 and phase II (sulfotransferase (SULT1A and catechol-O-methyltransferase (COMT detoxification metabolism. Cocultures of granulosa and theca interna cells collected from sexually mature pigs were exposed to 1 pg/mL to 10 ng/mL of Halowax 1051 for 1 to 48 hours, after which levels and activities of CYP1A1, SULT1A, and COMT were measured. Dose-dependent increases of CYP1A1 activity and expression were observed. High doses of Halowax 1051 were inhibitory to COMT and SULT1A activity and reduced their protein levels. In conclusion, fast activation of phase I enzymes with simultaneous inhibition of phase II enzymes indicates that the previously observed effect of Halowax 1051 on follicular steroidogenesis may partially result from metabolite action occurring locally in ovarian follicles.

  3. Dioxin induces Ahr-dependent robust DNA demethylation of the Cyp1a1 promoter via Tdg in the mouse liver

    Science.gov (United States)

    Amenya, Hesbon Z.; Tohyama, Chiharu; Ohsako, Seiichiroh

    2016-10-01

    The aryl hydrocarbon receptor (Ahr) is a highly conserved nuclear receptor that plays an important role in the manifestation of toxicity induced by polycyclic aromatic hydrocarbons. As a xenobiotic sensor, Ahr is involved in chemical biotransformation through activation of drug metabolizing enzymes. The activated Ahr cooperates with coactivator complexes to induce epigenetic modifications at target genes. Thus, it is conceivable that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent Ahr ligand, may elicit robust epigenetic changes in vivo at the Ahr target gene cytochrome P450 1a1 (Cyp1a1). A single dose of TCDD administered to adult mice induced Ahr-dependent CpG hypomethylation, changes in histone modifications, and thymine DNA glycosylase (Tdg) recruitment at the Cyp1a1 promoter in the liver within 24 hrs. These epigenetic changes persisted until 40 days post-TCDD treatment and there was Cyp1a1 mRNA hyperinduction upon repeat administration of TCDD at this time-point. Our demethylation assay using siRNA knockdown and an in vitro methylated plasmid showed that Ahr, Tdg, and the ten-eleven translocation methyldioxygenases Tet2 and Tet3 are required for the TCDD-induced DNA demethylation. These results provide novel evidence of Ahr-driven active DNA demethylation and epigenetic memory. The epigenetic alterations influence response to subsequent chemical exposure and imply an adaptive mechanism to xenobiotic stress.

  4. CYP1A1 genetic polymorphism and polycyclic aromatic hydrocarbons on pulmonary function in the elderly: haplotype-based approach for gene-environment interaction.

    Science.gov (United States)

    Choi, Yoon-Hyeong; Kim, Jin Hee; Hong, Yun-Chul

    2013-08-29

    Lung function may be impaired by environmental pollutants not only acting alone, but working with genetic factors as well. Few epidemiologic studies have been conducted to explore the interplay of polycyclic aromatic hydrocarbons (PAHs) exposure and genetic polymorphism on lung function in the elderly. For genetic polymorphism, haplotype is considered a more informative unit than single nucleotide polymorphism markers. Therefore, we examined the role of haplotype based-CYP1A1 polymorphism in the effect of PAHs exposure on lung function in 422 participants from a community-based panel of elderly adults in Seoul, Korea. Linear mixed effect models were fit to evaluate the association of PAH exposure markers (urinary 1-hydroxypyrene and 2-naphthol) with FVC, FEV₁, FEV₁/FVC, and FEF₂₅₋₇₅, and then the interaction with CYP1A1 haplotype constructed from three single nucleotide polymorphisms of the gene (rs4646421/rs4646422/rs1048943). Urinary 1-hydroxypyrene levels were inversely associated with FEV₁/FVC (ppolymorphisms on lung functions. Our findings suggest that PAH exposure producing 1-hydroxypyrene as a metabolite compromises lung function in the elderly, and that haplotype-based CYP1A1 polymorphism modifies the risk.

  5. The relationship among IL-13, GSTP1, and CYP1A1 polymorphisms and environmental tobacco smoke in a population of children with asthma in Northern Mexico.

    Science.gov (United States)

    Muñoz, Balam; Magaña, Jonathan J; Romero-Toledo, Israel; Juárez-Pérez, Evelyn; López-Moya, Andrea; Leyva-García, Norberto; López-Campos, Celsa; Dávila-Borja, Víctor M; Albores, Arnulfo

    2012-03-01

    Exposure to environmental tobacco smoke (ETS) during early childhood increases the risk of developing asthma. The intention of this study was to genotype a population of children from Coahuila state in Northern Mexico and to determine whether polymorphisms of the CYP1A1, GSTP1, and IL13 genes are associated with exposure to ETS and subsequently a higher risk for asthma. IL13 plays an important role in the development of allergic response, particularly those related with airway inflammation. CYP1A1 and GSTP1 are xenobiotic-metabolizing enzymes induced by repeated exposure to toxicants. Polymorphisms of these genes have been related with ETS exposure and increased risk for asthma. To assess the effect of IL13 (-1112 C>T and Arg110Gln), GSTP1 (Ile105Val), and CYP1A1 (Ile462Val) on asthma risk and ETS exposure, we recruited 201 unrelated children and classified them into four groups: (1) control without ETS exposure; (2) control with ETS exposure; (3) with asthma and with ETS exposure and (4) with asthma and without ETS exposure. No association among ETS exposure, asthma, and the studied polymorphisms was denoted by multivariate analysis of this population.

  6. Association of the ACE, GSTM1, IL-6, NOS3, and CYP1A1 polymorphisms with susceptibility of mycoplasma pneumoniae pneumonia in Chinese children.

    Science.gov (United States)

    Zhao, Jie; Zhang, Wen; Shen, Li; Yang, Xiaomeng; Liu, Yi; Gai, Zhongtao

    2017-04-01

    Mycoplasma pneumoniae is a common cause of community-acquired pneumonia (CAP) and the clinical presentation of mycoplasma pneumoniae pneumonia (MPP) varies widely. Genetic variability affecting the host response may also influence the susceptibility to MPP. Several studies have investigated the association between single nucleotide polymorphism (SNP) of some genes and the risks of CAP; however, the results were inconsistent. Here, we investigated the association of 5 functional genes and the risks of MPP, including ACE (rs4340), GSTM1 (Ins/del), IL-6 (rs1800795), NOS3 (rs1799983), and CYP1A1 (rs2606345) in a total of 715 subjects (415 cases, 300 controls) by using tetra-primer allele-specific polymerase chain reaction (PCR) and Sanger sequencing. The gene-gene interactions were analyzed using the Multifactor Dimensionality Reduction and cumulative genetic risk score approaches. Our results showed that 3 SNPs of ACE rs4340, IL-6 rs1800795, and NOS3 rs1799983 were significantly associated with the risks of MPP, while no differences were observed in genotype frequencies of GSTM1 (Ins/del) and CYP1A1 rs2606345 between both groups. The combinations of ACE rs4340D/NOS3 rs1799983T/CYP1A1 rs2606345G and ACE rs4340D/NOS3 rs1799983T contribute to the genetic susceptibility of MPP in Chinese children.

  7. Soy isoflavones, CYP1A1, CYP1B1, and COMT polymorphisms, and breast cancer: a case-control study in southwestern China.

    Science.gov (United States)

    Wang, Qiong; Li, Hui; Tao, Ping; Wang, Yuan-Ping; Yuan, Ping; Yang, Chun-Xia; Li, Jia-Yuan; Yang, Fei; Lee, Hui; Huang, Yuan

    2011-08-01

    CYP1A1, CYP1B1, and COMT are key enzymes involved in estrogen metabolism. Soy isoflavones, phytoestrogens found in soy foods, may modify the activity of these enzymes. A case-control study was conducted to assess the associations between soy isoflavone intake and the CYP1A1 Ile462Val, CYP1B1 Val432Leu, and COMT Val158Met polymorphisms and breast cancer, as well as their combined effects on breast cancer. A total of 400 newly diagnosed breast cancer cases and 400 healthy controls were recruited. Participants' daily intake of soy isoflavones (DISI [mg/day]) was calculated and transformed to energy-adjusted DISI by the residual method. Gene sequencing was used to analyze CYP1A1, CYP1B1, and COMT polymorphisms. Adjusted odds ratios (aORs) and 95% confidence intervals (95% CIs) were estimated by conditional logistic regression. A strong protective dose-dependent effect of energy-adjusted DISI on breast cancer was found in both pre- and postmenopausal women (P(trend) CYP1B1 Leu/Leu susceptible genotype carriers had higher risk of breast cancer (aORs > 1, OR 95% CIs exclude 1). In premenopausal women, only carrying CYP1B1 Leu/Leu was associated with breast cancer risk (aOR = 2.05, 95% CI: 1.11-3.79). Carrying CYP1A1 Val/Val was related to breast cancer risk only among all women. A stratified analysis was performed at two levels of energy-adjusted DISI, with wildtype homozygous genotypes and low energy-adjusted DISI as the reference. In the high energy-adjusted DISI subgroup, carrying the CYP1B1 Leu/Leu genotype did not affect breast cancer risk in either all women or in the menopausal subgroups, compared with the reference. Overall, in Han Chinese women, carrying CYP1A1 Val/Val and COMT Met/Met appears to be associated with breast cancer risk, especially in postmenopausal women. CYP1B1 susceptible genotypes (Val/Leu or Leu/Leu) also contribute to increased breast cancer risk, regardless of menopausal status, but high soy isoflavone intake may reduce this risk.

  8. Association of The Common CYP1A1*2C Variant (Ile462Val Polymorphism with Chronic Myeloid Leukemia (CML in Patients Undergoing Imatinib Therapy

    Directory of Open Access Journals (Sweden)

    Samyuktha Lakkireddy

    2015-10-01

    Full Text Available Objective: Cytochrome P450 is one of the major drug metabolizing enzyme families and its role in metabolism of cancer drugs cannot be less emphasized. The association between single nucleotide polymorphisms (SNPs in CYP1A1 and pathogenesis of chronic myeloid leukemia (CML has been investigated in several studies, but the results observed vary based on varied risk factors. The objective of this study was to investigate the risk factors associated with the CYP1A1*2C [rs1048943: A>G] polymorphism in CML patients and its role in therapeutic response to imatinib mesylate (IM affecting clinico-pathological parameters, in the Indian population. Materials and Methods: In this case-control study, CYP1A1*2C was analysed in CML patients. After obtaining approval from the Ethics Committee of oncology hospital, we collected blood samples from 132 CML patients and 140 matched controls. Genomic DNA was extracted and all the samples were analysed for the presence of the CYP1A1*2C polymorphism using allele-specific polymerase chain reaction, and we examined the relationship of genotypes with risk factors such as gender, age, phase of the disease and other clinical parameters. Results: We observed a significant difference in the frequency distribution of CYP1A1*2C genotypes AA (38 vs. 16%, P=0.0001, AG (57 vs. 78%, P=0.0002 and GG (5 vs. 6%, P=0.6635 between patients and controls. In terms of response to IM therapy, significant variation was observed in the frequencies of AA vs AG in major (33 vs 67% and poor (62 vs 31% hematological responders, and AA vs AG in major (34 vs. 65% and poor (78 vs. 22% cytogenetic responders. However, the patients with the GG homozygous genotype did not show any significant therapeutic outcome. Conclusion: The higher frequency of AG in controls indicates that AG may play a protective role against developing CML. We also found that patients with the AG genotype showed favorable treatment response towards imatinib therapy, indicating

  9. Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine

    DEFF Research Database (Denmark)

    Jeppesen, U; Gram, L F; Vistisen, K

    1996-01-01

    OBJECTIVE: The purpose of this pharmacokinetic study was to investigate the dose-dependent inhibition of model substrates for CYP2D6, CYP2C19 and CYP1A2 by four marketed selective serotonin reuptake inhibitors (SSRIs): citalopram, fluoxetine, fluvoxamine and paroxetine. METHODS: The study...... by sparteine (CYP2D6), mephenytoin (CYP2C19) and caffeine (CYP1A2) tests. Fluoxetine was given at 3-week intervals because of the long half-life of fluoxetine and its metabolite norfluoxetine. Citalopram, fluoxetine and paroxetine were given in doses of 10, 20, 40 and 80 mg and fluvoxamine was given in doses...... after fluoxetine intake, although no volunteers changed phenotype from extensive metabolisers to poor metabolisers. Three of the six volunteers changed phenotype from extensive metabolisers to poor metabolisers after intake of 40 or 80 mg paroxetine. There was a statistically significant increase...

  10. The interindividual differences in the 3-demthylation of caffeine alias CYP1A2 is determined by both genetic and environmental factors

    DEFF Research Database (Denmark)

    Rasmussen, Birgitte B; Brix, Thomas H; Kyvik, Kirsten O

    2002-01-01

    This study investigated the role of genetic factors (CYP1A2) in caffeine metabolism. The CYP1A2 activity was determined in 378 Danish twins following oral intake of a single dose of 200 mg caffeine and subsequent determination of the caffeine ratio (AFMU+1MU+1MX)/17DMU in a 6-h urine sample....... The mean (+/- SD) caffeine ratio was 5.9 +/- 3.4. The caffeine ratio was statistically significantly higher in men compared to women, in smoking men and women compared to non-smoking persons of the same gender and in women not taking oral contraceptives compared with women on oral contraceptives. Thus, we....... A biometrical model for the caffeine ratio including only additive genetic factors and unique environmental factors was the overall best fitting model. Estimates based on this model gave a heritability estimate of 0.725 (95% confidence interval 0.577-0.822). Unique environmental effects seem to account...

  11. Coffee and tea consumption, genotype-based CYP1A2 and NAT2 activity and colorectal cancer risk-results from the EPIC cohort study.

    Science.gov (United States)

    Dik, Vincent K; Bueno-de-Mesquita, H B As; Van Oijen, Martijn G H; Siersema, Peter D; Uiterwaal, Cuno S P M; Van Gils, Carla H; Van Duijnhoven, Fränzel J B; Cauchi, Stéphane; Yengo, Loic; Froguel, Philippe; Overvad, Kim; Bech, Bodil H; Tjønneland, Anne; Olsen, Anja; Boutron-Ruault, Marie-Christine; Racine, Antoine; Fagherazzi, Guy; Kühn, Tilman; Campa, Daniele; Boeing, Heiner; Aleksandrova, Krasimira; Trichopoulou, Antonia; Peppa, Eleni; Oikonomou, Eleni; Palli, Domenico; Grioni, Sara; Vineis, Paolo; Tumino, Rosaria; Panico, Salvatore; Peeters, Petra H M; Weiderpass, Elisabete; Engeset, Dagrun; Braaten, Tonje; Dorronsoro, Miren; Chirlaque, María-Dolores; Sánchez, María-José; Barricarte, Aurelio; Zamora-Ros, Raul; Argüelles, Marcial; Jirström, Karin; Wallström, Peter; Nilsson, Lena M; Ljuslinder, Ingrid; Travis, Ruth C; Khaw, Kay-Tee; Wareham, Nick; Freisling, Heinz; Licaj, Idlir; Jenab, Mazda; Gunter, Marc J; Murphy, Neil; Romaguera-Bosch, Dora; Riboli, Elio

    2014-07-15

    Coffee and tea contain numerous antimutagenic and antioxidant components and high levels of caffeine that may protect against colorectal cancer (CRC). We investigated the association between coffee and tea consumption and CRC risk and studied potential effect modification by CYP1A2 and NAT2 genotypes, enzymes involved in the metabolization of caffeine. Data from 477,071 participants (70.2% female) of the European Investigation into Cancer and Nutrition (EPIC) cohort study were analyzed. At baseline (1992-2000) habitual (total, caffeinated and decaffeinated) coffee and tea consumption was assessed with dietary questionnaires. Cox proportional hazards models were used to estimate adjusted hazard ratio's (HR) and 95% confidence intervals (95% CI). Potential effect modification by genotype-based CYP1A2 and NAT2 activity was studied in a nested case-control set of 1,252 cases and 2,175 controls. After a median follow-up of 11.6 years, 4,234 participants developed CRC (mean age 64.7 ± 8.3 years). Total coffee consumption (high vs. non/low) was not associated with CRC risk (HR 1.06, 95% CI 0.95-1.18) or subsite cancers, and no significant associations were found for caffeinated (HR 1.10, 95% CI 0.97-1.26) and decaffeinated coffee (HR 0.96, 95% CI 0.84-1.11) and tea (HR 0.97, 95% CI 0.86-1.09). High coffee and tea consuming subjects with slow CYP1A2 or NAT2 activity had a similar CRC risk compared to non/low coffee and tea consuming subjects with a fast CYP1A2 or NAT2 activity, which suggests that caffeine metabolism does not affect the link between coffee and tea consumption and CRC risk. This study shows that coffee and tea consumption is not likely to be associated with overall CRC. © 2013 UICC.

  12. PAH/METAL MIXTURES: EFFECT ON PAH INDUCTION OF HUMAN CYP1A1 IN HEPG2 CELLS. (R827180)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. The inhibitory effect of Rg1 on TCDD induced CYP1A1 in HepG2 cells%人参皂苷Rg1对TCDD致HepG2细胞CYP1A1诱导的抑制作用

    Institute of Scientific and Technical Information of China (English)

    王宇光; 陈强; 李晗; 马增春; 梁乾德; 肖成荣; 谭洪玲; 汤响林; 高月

    2013-01-01

    目的 人参对多种肿瘤具有非器官特异性的预防作用,该文对人参皂苷Rg1与 2,3,7,8-四氯代二苯并-对-二噁英(2,3,7,8-tetrachlorodibenzo-p-dioxin,TCDD)共同作用HepG2细胞,对CYP1A1在mRNA、蛋白及酶活性3个层面影响进行了研究,同时对CYP1A1转录调控子芳烃受体(AhR)表达情况亦进行了检测,旨在探索人参皂苷与TCDD共同作用时对CYP1A1影响,为干预前致癌物如TCDD等通过CYP1A1代谢活化产生致癌作用提供线索.方法 该实验分别以TCDD 5 nmol·L-1单独作用或与Rg1(1.0、10.0、100.0 μmol·L-1)共同作用于HepG2细胞24 h.溶剂对照组为二甲基亚砜(dimethyl suffoxide,DMSO).利用RT-PCR法和Western blot法检测不同药物处理后HepG2细胞中CYP1A1、AhR的mRNA和蛋白质表达水平的变化,同时采用EROD法测定不同处理组细胞CYP1A1酶活性.结果 与溶剂对照组比较,TCDD能使CYP1A1基因、蛋白表达上调及酶活性水平上升;与TCDD单独处理细胞组比较,Rg1与TCDD共处理组CYP1A1、AhR在mRNA和蛋白质表达水平均较TCDD单独处理组明显降低(P<0.01);同时CYP1A1酶活性也较单独TCDD处理组明显降低(P<0.01).结论 人参皂苷Rg1对TCDD致HepG2细胞CYP1A1诱导在mRNA、蛋白表达及酶活性3个层面均具有抑制作用,为深入研究人参皂苷Rg1 对TCDD 致肝脏损伤的保护作用提供线索.

  14. Lack of association between polymorphisms in the CYP1A2 gene and risk of cancer: evidence from meta-analyses.

    Science.gov (United States)

    Vukovic, Vladimir; Ianuale, Carolina; Leoncini, Emanuele; Pastorino, Roberta; Gualano, Maria Rosaria; Amore, Rosarita; Boccia, Stefania

    2016-02-10

    Polymorphisms in the CYP1A2 genes have the potential to affect the individual capacity to convert pre-carcinogens into carcinogens. With these comprehensive meta-analyses, we aimed to provide a quantitative assessment of the association between the published genetic association studies on CYP1A2 single nucleotide polymorphisms (SNPs) and the risk of cancer. We searched MEDLINE, ISI Web of Science and SCOPUS bibliographic online databases and databases of genome-wide association studies (GWAS). After data extraction, we calculated Odds Ratios (ORs) and 95% confidence intervals (CIs) for the association between the retrieved CYP1A2 SNPs and cancer. Random effect model was used to calculate the pooled ORs. Begg and Egger tests, one-way sensitivity analysis were performed, when appropriate. We conducted stratified analyses by study design, sample size, ethnicity and tumour site. Seventy case-control studies and one GWA study detailing on six different SNPs were included. Among the 71 included studies, 42 were population-based case-control studies, 28 hospital-based case-control studies and one genome-wide association study, including total of 47,413 cancer cases and 58,546 controls. The meta-analysis of 62 studies on rs762551, reported an OR of 1.03 (95% CI, 0.96-1.12) for overall cancer (P for heterogeneity < 0.01; I(2) = 50.4%). When stratifying for tumour site, an OR of 0.84 (95% CI, 0.70-1.01; P for heterogeneity = 0.23, I(2) = 28.5%) was reported for bladder cancer for those homozygous mutant of rs762551. An OR of 0.79 (95% CI, 0.65-0.95; P for heterogeneity = 0.09, I(2) = 58.1%) was obtained for the bladder cancer from the hospital-based studies and on Caucasians. This large meta-analysis suggests no significant effect of the investigated CYP1A2 SNPs on cancer overall risk under various genetic models. However, when stratifying according to the tumour site, our results showed a borderline not significant OR of 0.84 (95% CI, 0.70-1.01) for bladder cancer for those

  15. The interaction between smoking and CYP1A1 MspI polymorphism on lung cancer: a meta-analysis in the Chinese population.

    Science.gov (United States)

    Zhang, L-P; Wang, C-P; Li, L-H; Tang, Y-F; Li, W-C

    2016-02-26

    Many studies have examined the interaction between CYP1A1 MspI gene polymorphism and smoking for the risk of lung cancer risk in Chinese, but their results have been inconsistent. Therefore, a meta-analysis was performed to ascertain this issue. PubMed, Springer Link, Ovid and other Chinese databases were searched to include all the relevant studies. Smoking status was categorised as 'smokers' and 'non-smokers.' The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated using fixed or random effect model. Subgroup analyses according to ethnicity, source of control and geographical location were also conducted. This meta-analysis identified 13 studies containing 2248 lung cases and 3079 controls. Overall, a significant association between lung cancer and the variants of CYP1A1 MspI was found among smokers (type B and type C combined vs. type A: OR = 1.89, 95% CI = 1.15-3.11, P = 0.000 for heterogeneity), whereas not found among non-smokers. Similar to the overall results, stratified analyses showed that the increased risk of lung cancer was observed in population-based studies and north China among smokers (OR = 1.65, 95%CI = 1.03-2.66; OR = 2.00, 95% CI = 1.14-3.53). Our meta-analysis showed that there was an interaction between the CYP1A1 MspI and smoking on the risk of lung cancer in the Chinese population.

  16. Role of glutathione-s-transferase and CYP1A1FNx012A polymorphisms in the therapy outcome of south Indian acute lymphoblastic leukemia patients

    Directory of Open Access Journals (Sweden)

    K J Suneetha

    2011-01-01

    Full Text Available Background: Polymorphisms in the drug-metabolizing enzymes are found to be associated with the inter-individual variation in response to a particular drug. Glutathione S-transferases (GSTs are involved in the metabolism of several anticancer drugs, including alkylating agents, anthracyclines, and cyclophosphamides. Aim: The present study is aimed to examine the association of GST and CYP1A1FNx012A polymorphisms in the susceptibility to acute lymphoblastic leukemia (ALL and the prognostic significance. Materials and Methods: A total of 92 immunophenotyped patients and 150 cord blood controls were genotyped by PCR for GSTM1 and GSTT1, RQ-PCR allelic discrimination assay for GSTP1 and PCR-RFLP for CYP1A1FNx012A polymorphism. Results: We have previously reported the significant association of GSTM1 (null and combined GSTP1 {(Ile/Val/ (Val/Val} /GSTM1 (null genotype with the susceptibility to ALL. No significant association was observed with GSTT1 (P=0.75 and CYP1A1FNx012A (P=0.61 for +/- and P=0.86 for -/- respectively in the susceptibility to ALL. Survival analysis was performed in 50 of the 92 patients who were followed for three years. Kaplan-Meier survival analysis for three years showed significant lower event-free survival in patients harboring GSTP1 (Ile/Val and GSTP1 (Val/Val (P=0.038 and 0.0001, respectively genotype. Cox regression analysis revealed GSTP1 as an independent prognostic marker with 6-fold higher risk with Val/Val genotype (P=0.003. Conclusions: Our results show that GSTP1 (Ile/Val polymorphism has a role in the susceptibility to ALL and also influence treatment outcome.

  17. Association of CYP1A1 MspI polymorphism with oral cancer risk in Asian populations: a meta-analysis.

    Science.gov (United States)

    Xu, J L; Xia, R; Sun, L; Min, X; Sun, Z H; Liu, C; Zhang, H; Zhu, Y M

    2016-05-23

    Numerous studies regarding the association between the CYP1A1 MspI polymorphism and oral cancer risk in Asian populations have shown controversial results. To get a more precise estimation of this relationship, we conducted a comprehensive meta-analysis. PubMed, the Cochrane Library, Elsevier Science Direct, Web of Knowledge, the Chinese National Knowledge Infrastructure, VIP, and Wan Fang Med Online were searched. Pooled odds ratios (ORs) with 95% confidence intervals (95%CIs) were calculated using fixed-effects or random-effects models. Heterogeneity among studies was assessed using the Cochran Q test and I(2) statistics. Twelve articles including 1925 oral cancer patients and 2335 controls were ultimately included in the meta-analysis. Overall, the meta-analysis showed that the CYP1A1 MspI polymorphism was associated with oral cancer risk in Asians (m1/m1 vs m2/m2: OR = 0.46, 95%CI = 0.30-070, POR = 0.000; m1/m1 vs m1/m2+m2/m2: OR = 0.70, 95%CI = 0.51-0.98, POR = 0.037; m1/m1+m1/m2 vs m2/m2: OR = 0.48, 95%CI = 0.35-0.65, POR = 0.000). Subgroup analyses showed that the control source (hospital-based or population-based), the genotyping method [polymerase chain reaction (PCR) or PCR-restriction fragment length polymorphism], the country in which the study was conducted, and Hardy-Weinberg equilibrium (Yes or No) were positively related to the association. Sensitivity analysis suggested that the overall results showed no significant change in three genetic models when any one study was removed, and publication bias was undetected by the Egger test. The CYP1A1 MspI polymorphism may be associated with oral cancer risk in Asian populations.

  18. Cigarette smoking, dietary habits and genetic polymorphisms in GSTT1, GSTM1 and CYP1A1 metabolic genes: A case-control study in oncohematological diseases

    Science.gov (United States)

    Cerliani, María Belén; Pavicic, Walter; Gili, Juan Antonio; Klein, Graciela; Saba, Silvia; Richard, Silvina

    2016-01-01

    AIM To analyze the association between oncohematological diseases and GSTT1/GSTM1/CYP1A1 polymorphisms, dietary habits and smoking, in an argentine hospital-based case-control study. METHODS This hospital-based case-control study involved 125 patients with oncohematological diseases and 310 control subjects. A questionnaire was used to obtain sociodemographic data and information about habits. Blood samples were collected, and DNA was extracted using salting out methods. Deletions in GSTT1 and GSTM1 (null genotypes) were addressed by PCR. CYP1A1 MspI polymorphism was detected by PCR-RFLP. Odds ratio (OR) and 95%CI were calculated to estimate the association between each variable studied and oncohematological disease. RESULTS Women showed lower risk of disease compared to men (OR 0.52, 95%CI: 0.34-0.82, P = 0.003). Higher levels of education (> 12 years) were significantly associated with an increased risk, compared to complete primary school or less (OR 3.68, 95%CI: 1.82-7.40, P tobacco, none of the smoking categories showed association with oncohematological diseases. Regarding dietary habits, consumption of grilled/barbecued meat 3 or more times per month showed significant association with an increased risk of disease (OR 1.72, 95%CI: 1.08-2.75, P = 0.02). Daily consumption of coffee also was associated with an increased risk (OR 1.77, 95%CI: 1.03-3.03, P = 0.03). Results for GSTT1, GSTM1 and CYP1A1 polymorphisms showed no significant association with oncohematological diseases. When analyzing the interaction between polymorphisms and tobacco smoking or dietary habits, no statistically significant associations that modify disease risk were found. CONCLUSION We reported an increased risk of oncohematological diseases associated with meat and coffee intake. We did not find significant associations between genetic polymorphisms and blood cancer. PMID:27777882

  19. 淫羊藿总黄酮对大鼠肝微粒体CYP1A2、CYP3A4和CYP2E1活性的影响%Effect of total flavonoids of epimedium on liver microsomal CYP1A2, CYP3A4 and CYP2E1 activities in rats

    Institute of Scientific and Technical Information of China (English)

    胡道德; 姚慧娟; 顾磊; 王松坡; 刘皋林

    2008-01-01

    To assess the potential effect of total flavonoids of epimedium (TFE) on cytochrome P450 and activity of its main isoforms in rat liver microsomes. TFE (300 mg/kg) was administered once daily to male Sprague-Dowley rats by gavage for fifteen days. The total cytochrome P450 content and its main isoforms CYP1A2, CYP3A4 and CYP2E1 activities in rat liver microsomes were detected. The activity of CYP1A2 was measured by fluorometry and the activities of CYP3A4 and CYP2E1 were determined by measuring the amount of methanal and p-aminophenol formed using UV/Vis spectrophotometer, respec- tively. Administration of TFE significantly increased the total CYP450 content and activities of CYP 1A2, CYP3A4 and CYP2E1 in rat liver microsomes, compared with the control group. Partieularly, the activities of CYP1A2 and CYP2E1 were enhanced significantly (P<0.01). TFE induced the increase in total CYP450 content and its main isoforms CYP1A2, CYP3A4 and CYP2EI activities in rat liver microsomes.%评估淫羊藿总黄酮对大鼠肝细胞色素P450及其主要亚型活性的潜在影响.淫羊藿总黄酮以300 mg/kg/d的剂量对SD大鼠进行连续灌胃处理15天,测定肝微粒体中CYP450含量与CYP1A2、CYP3A4和CYP2E1亚型活性,观察淫羊藿总黄酮的效应.CYP1A2的活性用荧光比色法进行测定,CYP3A4和CYP2E1的活性用紫外可见分光光度法测定.淫羊藿总黄酮处理后的大鼠肝脏CYP450含量及CYP1A2、CYP3A4和LICYP2E1亚型活性均明显增高,其中CYP1A2和CYP2E1活性升高显著(P<0.01).淫羊藿总黄酮对大鼠肝脏CYP450及主要亚型CYP1A2、CYP3A4和CYP2E1活性均有诱导效应.

  20. CYP1A1, CYP2E1 Y RIESGO A CÁNCER GÁSTRICO EN UNA POBLACIÓN COLOMBIANA DE ALTA INCIDENCIA

    Directory of Open Access Journals (Sweden)

    EDUARDO CASTAÑO-MOLINA

    2009-01-01

    Full Text Available El objetivo fue probar la hipótesis de que en casos y controles, de una población colombiana con alta incidencia de cáncer gástrico, muestran diferencias significativas entre las frecuencias de los polimorfismos genéticos CYP1A1*2A y CYP2E1*5A; y a la vez probar si hay diferencias entre el hábito del tabaquismo, el consumo de alcohol y el estrato socioeconómico; así como también sus posibles interacciones. Durante dos años consecutivos se diagnosticaron y confirmaron 87 casos nuevos de pacientes afectados por cáncer gástrico y se colectaron igual número de controles pareados por edad y del mismo grupo poblacional, pertenecientes a la comunidad “paisa” del departamento de Caldas. Se genotipificaron por medio de PCR-RFLPs para los polimorfismos CYP1A1*2A y CYP2E1* 5A. Además, se tuvo en cuenta las variables socioeconómicas y el estilo de vida, con respecto al tabaquismo y al consumo de alcohol. Los resultados encontrados sugieren que los portadores del alelo CYP2E1-c2, asociado con mayor actividad metabólica, tienen mayor riesgo a desarrollar cáncer gástrico (OR=3,6 CI 95% 1,6-8,1/p=0,002. En contraste, la frecuencia del alelo CYP1A1-m2, también asociado con mayor actividad enzimática, mostró similar frecuencia entre los dos grupos. El tabaquismo y el estrato socioeconómico bajo, también mostraron diferencias significativas. En conclusión, se evidencia una interacción significativa entre gen-ambiente, particularmente entre el tabaquismo y los alelos bioactiavantes CYP2E1-c2 y CYP1A1-m2, que pueden alterar la susceptibilidad a cáncer gástrico en esta región Andina del noroeste de Sur América caracterizada por alta incidencia de esta neoplasia.

  1. A relevance study on uterine leiomyoma and gene polymorphisms of CYP1A1 MspⅠand SULT1A1 Arg213His%CYP1A1基因MspⅠ位点和SULT1A1基因Arg213His位点多态性与子宫肌瘤的关联性研究

    Institute of Scientific and Technical Information of China (English)

    周超; 林林; 张英姿; 徐天和; 张磊磊

    2011-01-01

    目的 探讨细胞色素P450(cytochrome P450,CYP)1A1基因MspⅠ位点和硫酸氨基转移酶(sulfotransferase,SULT)1A1基因Arg213His位点多态性与鲁北地区汉族女性子宫肌瘤的关系.方法 采用聚合酶链式反应-限制性片段长度多态性(PCR-RFLP)方法检测123例子宫肌瘤患者和123例健康对照组的CYP1A1基因MspⅠ位点的基因型和SULT1A1基因Arg213His位点的基因型,分析基因多态性与子宫肌瘤的关系.结果 子宫肌瘤组CYP1A1基因MspⅠ位点的基因型与对照组中的分布比较,差异无统计学意义(P=0.927);而子宫肌瘤组SULT1A1基因Arg213His位点的基因型与对照组中的分布比较,差异有统计学意义(P=0.011).CYP1A1基因MspⅠ位点和SULT1A1基因Arg213His位点多态性在子宫肌瘤的发生过程中的交互作用比较,差异有统计学意义(P=0.024).结论 CYP1A1基因MspⅠ位点多态性与鲁北地区汉族女性子宫肌瘤的易感性无显著相关;SULT1A1基因Arg213His位点多态性与鲁北地区汉族女性子宫肌瘤的发生有关,并增加了子宫肌瘤的患病风险;CYP1A1基因MspⅠ位点和SULT1A1基因Arg213His位点多态性在子宫肌瘤的发生过程中具有交互作用.

  2. Detoxification enzyme activities (CYP1A1 and GST) in the skin of humpback whales as a function of organochlorine burdens and migration status.

    Science.gov (United States)

    Bengtson Nash, S; Dawson, A; Burkhard, M; Waugh, C; Huston, W

    2014-10-01

    The activities of glutathione-s-transferase (GST) and cytochrome P-450 1A1 (CYP1A1) enzymes were measured in freshly extracted epidermis of live-biopsied, migrating, southern hemisphere humpback whales (Megaptera novaeangliae). The two quantified enzyme activities did not correlate strongly with each other. Similarly, neither correlated strongly with any of the organochlorine compound groups previously measured in the superficial blubber of the sample biopsy core, likely reflecting the anticipated low levels of typical aryl-hydrocarbon receptor ligands. GST activity did not differ significantly between genders or between northward (early migration) or southward (late migration) migrating cohorts. Indeed, the inter-individual variability in GST measurements was relatively low. This observation raises the possibility that measured activities were basal activities and that GST function was inherently impacted by the fasting state of the sampled animals, as seen in other species. These results do not support the implementation of CYP1A1 or GST as effective biomarkers of organochlorine contaminant burdens in southern hemisphere populations of humpback whales as advocated for other cetacean species. Further investigation of GST activity in feeding versus fasting cohorts may, however, provide some insight into the fasting metabolism of these behaviourally adapted populations.

  3. CYP1A1 Ile462Val polymorphism contributes to lung cancer susceptibility among lung squamous carcinoma and smokers: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Ya-Nan Ji

    Full Text Available Many studies have examined the association between the CYP1A1 Ile462Val gene polymorphisms and lung cancer risk in various populations, but their results have been inconsistent. To assess this relationship more precisely, a meta-analysis was performed. Ultimately, 43 case-control studies, comprising 19,228 subjects were included. A significantly elevated lung cancer risk was associated with 2 Ile462Val genotype variants (for Val/Val vs Ile/Ile: OR = 1.22, 95% CI = 1.08-1.40; for (Ile/Val +Val/Val vs Ile/Ile: OR = 1.15, 95% CI = 1.07-1.23 in overall population. In the stratified analysis, a significant association was found in Asians, Caucasians and lung SCC, not lung AC and lung SCLC. Additionally, a significant association was found in smoker population and not found in non-smoker populations. This meta-analysis suggests that the Ile462Val polymorphisms of CYP1A1 correlate with increased lung cancer susceptibility in Asian and Caucasian populations and there is an interaction with smoking status, but these associations vary in different histological types of lung caner.

  4. Association of CYP1A1, CYP1B1 and CYP17 gene polymorphisms and organochlorine pesticides with benign prostatic hyperplasia.

    Science.gov (United States)

    Kumar, Vivek; Banerjee, Basu Dev; Datta, Sudip Kumar; Yadav, Chandra Shekhar; Singh, Satyender; Ahmed, Rafat Sultana; Gupta, Sanjay

    2014-08-01

    It is well established that steroidal hormones (testosterone and estrogen) increase benign prostatic hyperplasia (BPH) risk. Cytochrome P450 (CYP) enzymes especially CYP1A1, CYP1B1 and CYP17 metabolize these hormones. Apart from that, several endocrine disrupting organochlorine pesticides (OCPs) are reported to mimic the activity of these steroidal hormones. Therefore, functional polymorphisms in these genes and exposure to such pesticides may increase BPH risk further. Our study included 100 newly diagnosed BPH subjects and 100 age-matched healthy male controls. CYP1A1, CYP1B1 and CYP17 polymorphisms were studied using PCR-RFLP and allele-specific PCR method. OCP levels in blood were analyzed by gas chromatography (GC). Levels of p,p'-DDE and endosulfan α were found to be significantly higher amongst BPH subjects as compared to controls (p-values=0.001 and 0.03 respectively) and CYP17 polymorphism was observed to be significantly associated with BPH subjects as compared to controls (p-values=0.03), indicating that these factors may be important risk factors for BPH. However, further studies are required before unequivocal conclusion.

  5. Metabolism of the major Echinacea alkylamide N-isobutyldodeca-2E,4E,8Z,10Z-tetraenamide by human recombinant cytochrome P450 enzymes and human liver microsomes.

    Science.gov (United States)

    Toselli, F; Matthias, A; Bone, K M; Gillam, E M J; Lehmann, R P

    2010-08-01

    Echinacea preparations are used for the treatment and prevention of upper respiratory tract infections. The phytochemicals believed responsible for the immunomodulatory properties are the alkylamides found in ethanolic extracts, with one of the most abundant being the N-isobutyldodeca-2E,4E,8Z,10Z-tetraenamide (1). In this study, we evaluated the human cytochrome P450 enzymes involved in the metabolism of this alkylamide using recombinant P450s, human liver microsomes and pure synthetic compound. Epoxidation, N-dealkylation and hydroxylation products were detected, with different relative amounts produced by recombinant P450s and microsomes. The major forms showing activity toward the metabolism of 1 were CYP1A1, CYP1A2 (both producing the same epoxide and N-dealkylation product), CYP2A13 (producing two epoxides), and CYP2D6 (producing two epoxides and an hydroxylated metabolite). Several other forms showed less activity. In incubations with human liver microsomes and selective inhibitors, CYP2E1 was found to be principally responsible for producing the dominant, hydroxylation product, whereas CYP2C9 was the principal source of the epoxides and CYP1A2 was responsible for the dealkylation product. In summary, in this study the relative impacts of the main human xenobiotic-metabolizing cytochrome P450s on the metabolism of a major Echinacea alkylamide have been established and the metabolites formed have been identified.

  6. Effect of Yi Qi Fu Mai (YQFM) (Lyophilized) on the Activity of Hepatic CYP1 A2 and CYP3A in Rats%Cocktail法评价注射用益气复脉(冻干)对大鼠肝微粒体CYP1A2、CYP3A的诱导作用

    Institute of Scientific and Technical Information of China (English)

    胡冰; 岳洁皓; 段超慧; 叶正良; 周大铮; 李德坤; 马英丽

    2012-01-01

    Objective: To investigate the effect of Yi Qi Fu Mai Injection (YQFM) (Lyophilized) on the activity of cyto-chrome P450 (CYP1A2, CYP3A) in rats. Method: Healthy wistar rats raised ethically were pretreated with YOFM(Lo-phhilized) via the caudal vein once daily for consecutive seven days, and then hepatic microsomes were prepared. A cocktail selective substrates consisting of the phenacetin (PN,CYP1A2) and testosterone (TS,CYP3A) was incubated with rat livermicrosomes. Determined by HPLC method, the formation rates of acetaminophen and 6β-OH testosterone, the metabolites of the probe drugs were used as an indicator to estimate the activity of CYP1A2 and CYP3A. Result: The formation rates of acetaminophen were(18.04 ± 1.00) ,(43. 07 ±2.90) , (27. 6 ±4. 5) ng o ( mg protein)-1 min-1 ,The formation rates of 6β -OH testosterone were(15.79 ± 1.43 ) , (40. 86 ± 3. 32) , (32. 8 ± 3. 67 ) ng o ( mg protein) -1 o min-1. Conclusion; YQFM has an induced effect on the activity of CYP1A2 and CYP3A.%目的:研究注射用益气复脉(冻干)Yi Qi Fu Mai Injection( YQFM) (Lyophilized)对大鼠肝微粒体CYP1A2、CYP3A的诱导作用.方法:将wistar大鼠分为生理盐水对照组,苯巴比妥钠诱导组,YQFM组,连续给药7天后处死,制备肝微粒体.采用Cocktail法,将特异性探针底物非那西丁(CYP1A2)、睾酮(CYP3A)与肝微粒体共孵育,采用高效液相色谱测定孵育所得代谢产物对乙酰氨基酚和6β一羟基睾酮的生成速率,来评价YQFM对CYP1A2、CYP3A的诱导作用.结果:空白对照组、诱导组和YQFM组的对乙酰氨基酚的生成速率分别为(18.04±1.00)、(43.07±2.90)、(27.6±4.5) ng·(mg protein)-1·min-1,6β-羟基睾酮的生成速率分别为(15.79±1.43)、(40.86±3.32)、(32.8±3.67 )ng·(mg protein) -1·min -1.结论:YQFM对大鼠肝微粒体CYP1A2、CYP3A有诱导作用.

  7. Interactions between Cytochromes P450 2B4 (CYP2B4) and 1A2 (CYP1A2) Lead to Alterations in Toluene Disposition and P450 Uncoupling

    Science.gov (United States)

    Reed, James R.; Cawley, George F.; Backes, Wayne L.

    2013-01-01

    The goal of this study was to characterize the effects of CYP1A2•CYP2B4 complex formation on the rates and efficiency of toluene metabolism by comparing the results from simple reconstituted systems containing P450 reductase (CPR) and a single P450 to those using a mixed system containing CPR and both P450s. In the mixed system, the rates of formation of CYP2B4-specific benzyl alcohol and p-cresol were inhibited, whereas that of CYP1A2-specific o-cresol was increased, results consistent with the formation of a CYP1A2•CYP2B4 complex where the CYP1A2 moiety has higher affinity for CPR binding. Comparison of the rates of NADPH oxidation and production of hydrogen peroxide and excess water by the simple and mixed systems indicated that excess water formed at a much lower rate in the mixed system. The commensurate increase in the rate of CYP1A2-specific product formation suggested the P450•P450 interaction increased the putative rate-limiting step of CYP1A2 catalysis, abstraction of a hydrogen radical from the substrate. Cumene hydroperoxide-supported metabolism was measured to determine whether the effects of the P450•P450 interaction required the presence of CPR. Peroxidative metabolism was not affected by the interaction of the two P450s, even with CPR present. However, CPR did stimulate peroxidative metabolism by the simple system containing CYP1A2. These results suggest the major functional effects of the P450•P450 interaction are mediated by changes in the relative abilities of the P450s to receive electrons from CPR. Furthermore, CPR may play an effector role by causing a conformation change in CYP1A2 that makes its metabolism more efficient. PMID:23675771

  8. CYP1A1, CYP2E1 Y RIESGO A CÁNCER GÁSTRICO EN UNA POBLACIÓN COLOMBIANA DE ALTA INCIDENCIA

    Directory of Open Access Journals (Sweden)

    Castaño Eduardo

    2009-12-01

    Full Text Available

    El objetivo fue probar la hipótesis de que en casos y controles, de una población colombiana con alta incidencia de cáncer gástrico, muestran diferencias significativas entre las frecuencias de los polimorfismos genéticos CYP1A1-m2 y CYP2E1-c2; y a la vez, probar si hay diferencias entre el hábito del tabaquismo, el consumo de licor y el estrato socioeconómico; así como también sus posibles interacciones. Ochenta y siete pacientes afectados por cáncer gástrico e igual número de controles, del mismo grupo poblacional, genéticamente aislado, pertenecientes a la comunidad “paisa” del departamento de Caldas, fueron genotipíficados por medio de PCR-RFLPs para los polimorfismos CYP1A1-m2 y CYP2E1-c2. Además, se tuvo en cuenta las variables socioeconómicas y el estilo de vida, con respecto al tabaquismo y al consumo de alcohol. Los resultados encontrados sugieren que los portadores del polimorfismo CYP2E1-c2, asociado con mayor actividad metabólica, tienen mayor riesgo a desarrollar cáncer gástrico (OR=3.6, CI95% 1.6-8.1/p=0,002. En contraste, la frecuencia del polimorfismo CYP1A1*2A (MspI, también asociado con mayor actividad enzimática, mostró similar frecuencia entre los dos grupos. El tabaquismo y el estrato socioeconómico bajo, tambi

  9. CYP1A1, CYP2E1 Y RIESGO A CÁNCER GÁSTRICO EN UNA POBLACIÓN COLOMBIANA DE ALTA INCIDENCIA

    OpenAIRE

    EDUARDO CASTAÑO-MOLINA; MARIO SANTACOLOMA; LÁZARO ARANGO; MAURICIO CAMARGO

    2009-01-01

    El objetivo fue probar la hipótesis de que en casos y controles, de una población colombiana con alta incidencia de cáncer gástrico, muestran diferencias significativas entre las frecuencias de los polimorfismos genéticos CYP1A1*2A y CYP2E1*5A; y a la vez probar si hay diferencias entre el hábito del tabaquismo, el consumo de alcohol y el estrato socioeconómico; así como también sus posibles interacciones. Durante dos años consecutivos se diagnosticaron y confirmaron 87 casos nuevos de pacien...

  10. Intracellular accumulation of mercury enhances P450 CYP1A1 expression and Cl- currents in cultured shark rectal gland cells.

    Science.gov (United States)

    Ke, Qingen; Yang, Yinke; Ratner, Martha; Zeind, John; Jiang, Canwen; Forrest, John N; Xiao, Yong-Fu

    2002-04-21

    The effects of acute and subchronic exposure to mercury on the Cl- current (ICl) were investigated in cultured shark rectal gland (SRG) cells. The effects of intracellular accumulation of mercury on cytochrome P450 (P450) were also assessed. Bath perfusion of a cocktail solution containing forskolin, 1-isobutyl-3-methylxanthine, and 8-bromoadenosine monophosphate enhanced ICl. Addition of 10 microM HgCl2 significantly inhibited the cAMP-activated ICl (p mercury on ICl. In contrast, incubation of SRG cells with 10 microM HgCl2 for 48 hrs markedly increased ICl (p mercury-incubated increase in ICl. The P450-mediated metabolite of arachidonic acid, 11,12-epoxyeicosatrienoic acid (11,12-EET), significantly increased ICl. However, application of 11,12-dihydroxyeicosatrienoic acid (11,12-DHT) did not alter ICl. Mercury incubation for 48 hrs did not alter the protein expression of Cl- channels, but caused an induction of CYP1A1 in cultured SRG cells. In addition, co-incubation of SRG cells with mercury and the P450 inhibitor clotrimazole prevented the mercury-incubated increase in ICl. Our results demonstrate that acute and subchronic application of mercury has opposing effects on ICl in cultured SRG cells. The acute effect of mercury on ICl may result from mercury blockade of Cl- channels. The subchronic effect of mercury on ICl may be due to an induction of P450 CYP1A1 and its mediated metabolites, but not due to an over-expression of Cl- channels.

  11. Cocktail法评价注射用丹参总酚酸对大鼠肝微粒体CYP1A2和CYP3A的诱导作用%Effect of total salvianolic acid injection on the activity of hepatic CYP1A2 and CYP3A in rats by Cocktail method

    Institute of Scientific and Technical Information of China (English)

    胡冰; 段超慧; 岳洁皓; 叶正良; 周大铮; 李德坤; 马英丽

    2012-01-01

    目的:考察注射用丹参总酚酸(TSAI)对大鼠肝微粒体CYP1A2和CYP3A的诱导作用.方法:健康Wistar大鼠随机分为空白对照组、苯巴比妥钠诱导组和给药组,每组6只,雌雄各半,连续给药7d,处死,制备肝微粒体;将特异性探针底物非那西丁、睾酮与肝微粒体共孵育,高效液相色谱测定孵育所得代谢产物对乙酰氨基酚和6β-羟基睾酮的生成速率,评价TSAI对CYP1A2和CYP3A的诱导作用.结果:空白对照组、诱导组和给药组的对乙酰氨基酚的生成速率分别为(18.04±1.00),(43.07±2.90)和(16.03±2.41)ng· mg ·min-,6β-羟基睾酮的生成速率分别为(15.79±1.43),(40.86±3.32)和(17.12±2.65) ng·mg-1·min-1.结论:TSAI对大鼠肝微粒体CYP1A2和CYP3A无诱导作用.%Objective: To investigate the inducing effect of total salvianolic acid injection (TSAI) on CYP1A2 and CYP3A in rat liver microsomes. Methods: Healthy Wistar rats were randomly divided into 3 groups (n =6, 3 males and 3 females) ; blank control, phenobarbital-treated and TSAI groups. The rats were sacrificed 7 days after administration and liver microsomes were prepared. Rat liver microsomes were incubated with the cocktail selective substrates consisting of the phenacetin (PN, CYP1A2) and testosterone (TS, CYP3A). The formation rates of the probe drug metabolites acetaminophen and 6β-OH testosterone were determined by HPLC. The inducing effect of TSAI on CYP1A2 and CYP3A was estimated. Results: The formation rates of acetaminophen were (18. 04 ± 1.00) ng·mg·min-1 in blank control group, (43.07 ± 2.90) ng·mg-1·min-1 in phenobarbital-treated group, and (16.03 ±2.41) ng·mg-1·min-1 in TSAI group, respectively. The formation rates of 6β-OH testosterone were ( 15. 79 ± 1. 43 ), (40.86±3.32) , (17.12 ±2.65) ng·mg-1·min-1, respectively, in the 3 groups. Conclusion: TSAI has no inducing effect on CYP1A2 and CYP3A in rat liver microsomes.

  12. The interindividual differences in the 3-demthylation of caffeine alias CYP1A2 is determined by both genetic and environmental factors

    DEFF Research Database (Denmark)

    Rasmussen, Birgitte B; Brix, Thomas H; Kyvik, Kirsten O;

    2002-01-01

    . The mean (+/- SD) caffeine ratio was 5.9 +/- 3.4. The caffeine ratio was statistically significantly higher in men compared to women, in smoking men and women compared to non-smoking persons of the same gender and in women not taking oral contraceptives compared with women on oral contraceptives. Thus, we...... confirmed that CYP1A2 is more active in men than in women, that it is induced by smoking and inhibited by oral contraceptives. In the subsequent analysis of heritability, we included 49 monozygotic twin pairs and 34 same gender dizygotic twin pairs concordant for non-smoking and non-use of oral...... contraceptives. The intraclass correlation coefficient was 0.798 (95% confidence interval, 0.696-0.900) and 0.394 (95% confidence interval, 0.109-0.680) in the monozygotic and dizygotic twins, respectively. The correlation was statistically significantly higher (P = 0.0015) in the former compared with the latter...

  13. Coffee consumption and CYP1A2 genotype in relation to bone mineral density of the proximal femur in elderly men and women: a cohort study

    Directory of Open Access Journals (Sweden)

    Lind Lars

    2010-02-01

    Full Text Available Abstract Background Drinking coffee has been linked to reduced calcium conservation, but it is less clear whether it leads to sustained bone mineral loss and if individual predisposition for caffeine metabolism might be important in this context. Therefore, the relation between consumption of coffee and bone mineral density (BMD at the proximal femur in men and women was studied, taking into account, for the first time, genotypes for cytochrome P450 1A2 (CYP1A2 associated with metabolism of caffeine. Methods Dietary intakes of 359 men and 358 women (aged 72 years, participants of the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS, were assessed by a 7-day food diary. Two years later, BMD for total proximal femur, femoral neck and trochanteric regions of the proximal femur were measured by Dual-energy X-ray absorptiometry (DXA. Genotypes of CYP1A2 were determined. Adjusted means of BMD for each category of coffee consumption were calculated. Results Men consuming 4 cups of coffee or more per day had 4% lower BMD at the proximal femur (p = 0.04 compared with low or non-consumers of coffee. This difference was not observed in women. In high consumers of coffee, those with rapid metabolism of caffeine (C/C genotype had lower BMD at the femoral neck (p = 0.01 and at the trochanter (p = 0.03 than slow metabolizers (T/T and C/T genotypes. Calcium intake did not modify the relation between coffee and BMD. Conclusion High consumption of coffee seems to contribute to a reduction in BMD of the proximal femur in elderly men, but not in women. BMD was lower in high consumers of coffee with rapid metabolism of caffeine, suggesting that rapid metabolizers of caffeine may constitute a risk group for bone loss induced by coffee.

  14. Impact of Tetrahydropalmatine on the Pharmacokinetics of Probe Drugs for CYP1A2, 2D6 and 3A Isoenzymes in Beagle Dogs.

    Science.gov (United States)

    Zhao, Yong; Liang, Aihua; Zhang, Yushi; Li, Chunying; Yi, Yan; Nilsen, Odd Georg

    2016-06-01

    Tetrahydropalmatine (Tet) exhibit multiple pharmacological activities and is used frequently by clinical practitioners. In this study, we evaluate the in vivo effects of single and repeated oral Tet administrations on CYP1A2, 2D6 and 3A activities in six beagle dogs in a randomized, controlled, open-label, crossover study. A cocktail approach, with dosages of the probe drugs caffeine (3.0 mg/kg), metoprolol (2.33 mg/kg) and midazolam (0.45 mg/kg), was used to measure cytochrome P450 (CYP) metabolic activities. The cocktail was administered orally as a single dose (12 mg/kg) 1 day prior to and 4 days after repeated oral Tet administrations (12 mg/kg three times daily). The probe drugs and their metabolites in plasma were quantified simultaneously by a validated HPLC technique, and non-compartmental parameters were used to evaluate metabolic variables for assessment of CYP inhibition or induction. Tet had no or minor impact on the pharmacokinetics and metabolism of the probe drugs caffeine and metoprolol, CYP1A2 and CYP2D6 substrates, respectively. However, Tet increased AUC0-24 h and decreased AUCratio(0-24 h) (1-hydroxymidazolam/midazolam ratio) for midazolam statistically significant, both in single or multiple dosing of Tet, with up to 39 or 57% increase for AUC0-24 h and 29% or 22 decrease for AUCratio(0-24 h), respectively, in line with previous in vitro findings for its CYP3A4 inhibition. The extensive use of Tet and herbal medicines containing Tet makes Tet a candidate for further evaluation of CYP3A-mediated herb-drug interactions. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Computational prediction of binding affinity for CYP1A2-ligand complexes using empirical free energy calculations

    DEFF Research Database (Denmark)

    Poongavanam, Vasanthanathan; Olsen, Lars; Jørgensen, Flemming Steen

    2010-01-01

    , and methods based on statistical mechanics. In the present investigation, we started from an LIE model to predict the binding free energy of structurally diverse compounds of cytochrome P450 1A2 ligands, one of the important human metabolizing isoforms of the cytochrome P450 family. The data set includes both...... substrates and inhibitors. It appears that the electrostatic contribution to the binding free energy becomes negligible in this particular protein and a simple empirical model was derived, based on a training set of eight compounds. The root mean square error for the training set was 3.7 kJ/mol. Subsequent......Predicting binding affinities for receptor-ligand complexes is still one of the challenging processes in computational structure-based ligand design. Many computational methods have been developed to achieve this goal, such as docking and scoring methods, the linear interaction energy (LIE) method...

  16. Molecular modelling of cytochrome CYP1A1: a putative access channel explains differences in induction potency between the isomers benzo(a)pyrene and benzo(e)pyrene, and 2- and 4-acetylaminofluorene.

    Science.gov (United States)

    Lewis, D F; Ioannides, C; Parke, D V

    1994-05-01

    The present studies were undertaken to provide a rationale for the observation that benzo(a)pyrene and 2-acetylaminofluorene induce the hepatic CYP1A1 protein, whereas their non-carcinogenic isomers benzo(e)pyrene and 4-acetylaminofluorene are, at best, relatively very weak inducers. Using amino acid sequence alignment, a molecular model of the CYP1A1 was constructed by analogy to CYP101, the bacterial protein for which the 3-dimensional structure is known from X-ray crystallographic analysis. The putative structure of the active site of the CYP1A1 protein shows the presence of two phenylalanine residues preferentially aligned in parallel orientation, presumably functioning as a 'sieve' for planar molecules, the established substrates of CYP1A1. The molecular dimensions of this putative access channel show a width and depth of 8.321 and 3.261 A, respectively. The width of 4-acetylaminofluorene, 8.794 A, and benzo(e)pyrene, 9.153 A, precludes their passage through this channel access in contrast to benzo(a)pyrene and 2-acetylaminofluorene having a width of 7.150 and 5.283 A, respectively, explaining their difference in CYP1A1 induction potential.

  17. CYP1A1 and CYP1B1 genetic polymorphisms, smoking and breast cancer risk in a Finnish Caucasian population.

    Science.gov (United States)

    Sillanpää, Pia; Heikinheimo, Liisa; Kataja, Vesa; Eskelinen, Matti; Kosma, Veli-Matti; Uusitupa, Matti; Vainio, Harri; Metsola, Katja; Hirvonen, Ari

    2007-09-01

    We investigated the associations between two CYP1A1 polymorphisms (Ile462Val and Thr461Asn) and one CYP1B1 polymorphism (Leu432Val) and breast cancer risk. The study population consisted of 483 breast cancer patients and 482 healthy population controls, all of homogenous Finnish origin. No statistically significant overall associations were found between the CYP1A1 and CYP1B1 genotypes and breast cancer risk. However, a significant increase in the breast cancer risk was seen for women who had smoked 1-9 cigarettes/day and carried the CYP1B1 432Val allele; the OR was 2.6 (95% CI 1.07-6.46) for women carrying the Leu/Val genotype and 5.1 (95% CI 1.30-19.89, P for trend 0.005) for women with the Val/Val genotype compared to similarly smoking women homozygous for the 432Leu allele. Furthermore, when CYP1B1 genotypes were combined with the previously analyzed N-acetyl transferase (NAT2) genotypes, a significant increase in breast cancer risk was found among women who had at least one CYP1B1 432Val allele together with the NAT2 slow acetylator genotype (OR 1.52; 95% CI 1.03-2.24) compared to women carrying a combination of CYP1B1 Leu/Leu and NAT2 rapid acetylator genotypes. This risk was seen to be confined to ever smokers; the OR was 2.46 (95% CI 1.11-5.45) for ever smokers carrying at least one CYP1B1 432Val allele together with the NAT2 slow acetylator genotype compared to ever smokers with the CYP1B1 Leu/Leu and NAT2 rapid acetylator genotype combination. Our results suggest that the CYP1B1 polymorphism may be an important modifier of breast cancer risk in Finnish Caucasian women who have been exposed to tobacco smoke and/or carry the NAT2 slow acetylator genotype.

  18. 非那西丁探针法动态观测非酒精性脂肪肝大鼠发病进程中的CYP1A2活性%Dynamic Observation of CYP1A2 Activity in Nonalcoholic Fatty Liver Disease Process of Rats by Phenacetin Probe Method

    Institute of Scientific and Technical Information of China (English)

    刘莹; 金涌; 蒋培培; 吴德敏; 方慧子; 周静婷; 季俊虬

    2012-01-01

    OBJECTIVE: To observe the activity of CYP450 in nonalcoholic fatty liver disease process of rats by phenacetin probe method dynamically. METHODS: Nonalcoholic fatty liver rat model was established, and probe drugs were given at Oth, 7th, 9th, 11th, 13th, 15th, 17th week and at the same time urine was collected. The metabolism index of phenacetin metabolite acetaminophen was determined to investigate the activity of CYP1A2 acetaminophen with normal rats as control. HPLC method was used. The determination was performed on Hypersil ODS column with mobile phase consisted of methanol-water (12.5:87.5) at the flow rate of 1.0 mL·min‐1. The detection wavelength was set at 254 nm. RESULTS: The metabolism of acetaminophen per unit body weight reached the peak at 9th week, which is higher than at Oth week and normal group ((15.02 ± 3.12), (10.03 ± 3.60), (9.96±4.00) mg·kg‐1), and then decreased gradually, i.e. the activity of CYP1A2 increased firstly and then decreased. CONCLUSION: This method is simple and reliable for the determination of acetaminophen in rats urine and CYP1A2 activity research.%目的:建立探针法动态观测非酒精性脂肪肝大鼠发病进程中细胞色素(CY)P150酶系的活性.方法:制备非酒精性脂肪肝大鼠模型,分别于造模后第0、7、9、11、13、15、17周给予探针药物非那西丁并收集尿液,检测其中非那西丁代谢产物对乙酰氨基酚的各代谢指标以考察CYP1A2的活性变化情况,同时设立正常大鼠组为对照.含量检测采用高效液相色谱法,色谱柱为HypersilODS,流动相为甲醇-水(12.5∶87.5),流速为1.0mL·min-1,检测波长为254 nm.结果:对乙酰氨基酚的单位体重代谢量在第9周时达到最高,明显高于第0周和正常组(( 15.02±3.12)、( 10.03±3.60)、(9.96±4.00) mg·kg-1),随后又逐渐降低,即CYP1A2的活性先升高后降低.结论:建立的探针法简便可靠,适用于大鼠尿中对乙酰氨基酚的测定以及CYP1A2活性的研究.

  19. CYP1A1, CYP2E1 Y RIESGO A CÁNCER GÁSTRICO EN UNA POBLACIÓN COLOMBIANA DE ALTA INCIDENCIA CYP1A1, CYP2E1 AND GASTRIC CANCER RISK IN A HIGH-INCIDENCE COLOMBIAN POPULATION

    Directory of Open Access Journals (Sweden)

    Eduardo Castaño-Molina

    Full Text Available El objetivo fue probar la hipótesis de que en casos y controles, de una población colombiana con alta incidencia de cáncer gástrico, muestran diferencias significativas entre las frecuencias de los polimorfismos genéticos CYP1A1*2A y CYP2E1*5A; y a la vez, probar si hay diferencias entre el hábito del tabaquismo, el consumo de alcohol y el estrato socioeconómico; así como también sus posibles interacciones. Durante dos años consecutivos se diagnosticaron y confirmaron ochenta y siete casos nuevos de pacientes afectados por cáncer gástrico y se colectaron igual número de controles pareados por edad y del mismo grupo poblacional, pertenecientes a la comunidad “paisa” del departamento de Caldas. Se genotipificaron por medio de PCR-RFLPs para los polimorfismos CYP1A1*2A y CYP2E1*5A. Además, se tuvo en cuenta las variables socioeconómicas y el estilo de vida, con respecto al tabaquismo y al consumo de alcohol. Los resultados encontrados sugieren que los portadores del alelo CYP2E1-c2, asociado con mayor actividad metabólica, tienen mayor riesgo a desarrollar cáncer gástrico (OR=3,6 CI95% 1,6-8,1/p=0,002. En contraste, la frecuencia del alelo CYP1A1-m2, también asociado con mayor actividad enzimática, mostró similar frecuencia entre los dos grupos. El tabaquismo y el estrato socioeconómico bajo, también mostraron diferencias significativas. En conclusión, se evidencia una interacción significativa entre gen-ambiente, particularmente entre el tabaquismo y los alelos bioactiavantes CYP2E1-c2 y CYP1A1-m2, que pueden alterar la susceptibilidad a cáncer gástrico en esta región Andina del noroeste de Sur América caracterizada por alta incidencia de esta neoplasiaThe aim was to test the hypothesis that some cases and controls, in a Colombian population with a high incidence of gastric cancer, show significant differences among the frequencies of CYP1A1*2A, CYP2E1*5A gene polymorphisms and simultaneously to test the

  20. Methoxychlor suppresses the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible CYP1A1 expression in murine Hepa-1c1c7 cells.

    Science.gov (United States)

    Han, Eun Hee; Jeong, Tae Cheon; Jeong, Hye Gwang

    2007-08-01

    Methoxychlor (MXC) is a pesticide that was developed as a replacement for dichlorodiphenyltrichloroethane (DDT). The influence of MXC on CYP1A1 expression or the functions of mouse hepatoma Hepa-1clc7 remain unclear. Cultured Hepa-1c1c7 cells were treated with MXC with or without 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to assess the role of MXC on CYP1A1 expression. MXC alone did not affect CYP1A1-specific 7-ethoxyresorufin O-deethylase (EROD) activity. In contrast, TCDD-inducible EROD activities were markedly reduced upon concomitant treatment with TCDD and MXC in a concentration-dependent manner. Treatment with ICI 182.780, an estrogen-receptor antagonist, did not affect the suppressive effects of MXC on TCDD-inducible EROD activity. TCDD-inducible CYP1A1 mRNA levels were markedly suppressed upon treatment with TCDD and MXC, and this is consistent with their effects on EROD activity. A transient transfection assay using dioxin-response element (DRE)-linked luciferase and an electrophoretic mobility shift assay revealed that MXC reduced the transformation of the aryl hydrocarbons (Ah) receptor to a form capable of specifically binding to the DRE sequence in the promoter region of the CYP1A1 gene. These results suggest that the downregulation of CYP1A1 gene expression by MXC in Hepa-1c1c7 cells might be an antagonism of the DRE binding potential of the nuclear Ah receptor but is not mediated through the estradiol receptor.

  1. 闽南地区抑郁症患者CYP1A2和CYP2D6基因多态性与度洛西汀疗效的关联研究%Association of CYP1A2 and CYP2D6 gene polymorphism with therapeutic efficacy of duloxetine on depression in southern region of Fujian

    Institute of Scientific and Technical Information of China (English)

    陈进东; 徐象珍; 陈彬彬

    2015-01-01

    Objective To explore the influence of CYP1A2 and CYP2D6 gene polymorphism on blood concentration,therapeutic efficacy and adverse effects of anti-depression drug duloxetine on depression patients in southern region of Fujian.Methods 82 patients with depression were selected from southern region of FuJian, China,and all participates received duloxetine for two weeks.Blood concentrations of duloxetine were detected by HPLC-MS,and CYP1A2 and CYP2D6 genotypes were determined by sequencing with the amplified PCR products from peripheral blood DNA.The therapeutic efficacy and adverse effects of duloxetine were evaluated by Hamilton depression scale (HAMD) and treatment emergent symptom scale (TESS) respectively.Results Subjects were divided into GG,GA and AA three groups based on CYP1A2 * 1C genotyping.There was no significant difference in blood concentrations of duloxetine, dose-corrected blood concentrations, the reduction rate of HAMD and the reduction rate of TESS among the three groups.Results were the same with CYP1A2 * 1F,which were divided into CC, CA and AA three groups.Subjects was divided into CC, CT,TT three groups based on CYP2D6 * 10 locus genotyping.Blood concentrations of duloxetine were (13.89±3.22) ng · ml-1 , (16.08±4.24) ng · ml-1 , (17.25±4.62) ng · ml-1 respectively and there was significant difference(F=3.21, P<0.05).CC group was significantly lower than TT group(P<0.05) , and CT group was lower than TT group but without significant difference (P>0.05).Dose-corrected blood concentrations were (304.84± 103.76), (368.13± 143.49), (444.50± 195.58) respectively and there was significant difference(F=4.19, P<0.05), and CC group was significantly lower than TT group (P<0.05).The reduction rate of HAMD were 0.42±0.11,0.46±0.11,0.52±0.09 respectively and there was significant difference (F =6.29, P<0.05), and CC and CT group was significantly lower than TT group(P<0.05).The reduction rate of TESS were 1.14±0.66,1.48±0.69, 1.69

  2. Differences in the action of lower and higher chlorinated polychlorinated naphthalene (PCN) congeners on estrogen dependent breast cancer cell line viability and apoptosis, and its correlation with Ahr and CYP1A1 expression.

    Science.gov (United States)

    Gregoraszczuk, Ewa L; Barć, Justyna; Falandysz, Jerzy

    2016-07-29

    There are data showing that exposition to PCNs mixture increased incidence of gastrointestinal and respiratory neoplasms, but data regarding incidence of hormone-dependent cancer so far not shown. The objective was to determine if exposure to single lower and higher chlorinated PCN congeners is associated with altered proliferation and apoptosis of estrogen dependent breast cancer cells, and whether such effects are related to induction of AhR and CYP1A1 protein expression. MCF-7 cells were exposed to PCN 34, 39, 42, 46, 48, 52, 53, 54, 66, 67, 70, 71, 73 and 74 at concentrations of 100-10,000pg/ml. We evaluated the action of these PCN congeners on cell proliferation, DNA fragmentation and caspase-8,-9 activity. AhR and CYP1A1 protein expression and CYP1A1 activity was evaluated at a concentration of 1000pg/ml. An opposite action of tri- to tetraCNs than of penta-to heptaCNs on cell proliferation and apoptosis was evident. Tetra PCNs increased cell proliferation, but had no effect on DNA fragmentation nor caspase activity. Fast induction of CYP1A1 protein expression under the influence of lower chlorinated PCNs suggests faster metabolism and a possible stimulatory action of locally formed metabolites on cell proliferation. None of the higher chlorinated PCNs affected cell proliferation but all higher chlorinated PCNs increased caspase-8 activity, and hexa PCNs also increased caspase-9 activity. The rapid activation of the Ah receptor and CYP1A1 protein expression by higher chlorinated PCNs point to their toxicity; however, it is not sufficient for potential carcinogenicity. Action of lower chlorinated naphthalenes metabolites should be explored.

  3. The relationship between single nucleotide polymorphisms in estrogen-metabolizing genes CYP1A1,CYP17,COMT and estrogen receptor alpha and the risk of endometrial adenocarcinoma among the Chinese women

    Institute of Scientific and Technical Information of China (English)

    Yang Xingsheng; Liu Jie; Zhong Yanhui; Zhang Xian; Wang Yan

    2007-01-01

    Objective:To explore whether polymorphisms of the genes responsible for catechol estrogen(CE) formation via estrogen biosynthesis (CYP17) and hydroxylation (CYP1A1) and CE inactivation (COMT) and ERa are associated with an elevated risk for endometrial adenocarcinoma in Chinese women.Methods:A multigenic case-control study was conducted,eighty-seven endometrial adenocarcinoma patients and ninety controls were recruited.PCR-RFLP assays were used to determine the genotypes of estrogen-metabolizing genes and ERa gene.Results:The endometrial adenocarcinoma risk associated with individual susceptibility genotypes varied among the six polymorphic sites and was the highest for CYP17,followed by CYP1A1 Ile-Val,CYP1A1 MspI,COMT,ERa XbaI and ERa PvuII.Multivariate logistic regression showed the CYP1A1 MspI genotype was the most significant determinant for endometrial adenocarcinoma development and was associated with a 3.61 fold increase in risk (95% confidence interval,1.73~7.55).Furthermore,a trend of increasing risk for developing endometrial adenocarcinoma was found in women harboring higher numbers of high-risk genotypes.Conclusion:The CYP1A1,CYP17 and ERa XbaI genotypes are related to the susceptibility of endometrial adenocarcinoma,they may be useful markers for predicting endometrial adenocarcinoma susceptibility.The allele encoding for low acticity COMT,ERa PvuII may not be a genetic risk factor for endometrial adenocarcinoma.

  4. The Effect of Dose on 2,3,7,8-TCDD Tissue Distribution, Metabolism and Elimination in CYP1A2 (-/-) Knockout and C57BL/6N Parental Strains of Mice

    Science.gov (United States)

    Numerous metabolism studies have demonstrated that the highly toxic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is poorly metabolized. A hallmark feature of TCDD exposure is induction of hepatic CYP1A2 and subsequent sequestration leading to high liver to fat concentration ratios. This study was in...

  5. The effect of dose on 2,3,7,8-TCDD tissue distribution, metabolism and elimination in CYP1A2(-/_) knockout and C57BL/6N parental strains of mice

    Science.gov (United States)

    Numerous metabolism studies have demonstrated that the toxic contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is poorly metabolized. A hallmark feature of TCDD exposure is induction of hepatic CYP1A2 and subsequent sequestration leading to high liver-to-fat concentration ra...

  6. 高效液相色谱法测定鼠肝微粒体中CYP1A2酶的活性及动力学考察%HPLC determination of activity of CYP1A2 and its pharmacokinetics in rat liver microsomes

    Institute of Scientific and Technical Information of China (English)

    张艳辉; 于超; 郭延垒; 张有金; 杨竹; 王应雄

    2012-01-01

    Objective:To establish a method evaluates cytochrome p450 1A2 (CYP1A2) activity using phenacetin as a probe by high - performance liquid chromatography ( HPLC) - UV detection. Methods: Column for the Shi-madzu Shim - Pack VP - ODS (150 mm 4. 6 mm,5μm) and mobile phase of 100 mmol ? L~-1phosphate buffer (pH 4. 3) - acetonitrile were used. Detection wavelength was 245 nm. Phenacetin was incubated with rat liver mi-crosomes at 37 ℃ for 60 min and the reaction was stopped by cold methanol. The reactive liquid was centrifuged at 12000 r min-1 for 10 min. Finally,the supernatant was analyzed by HPLC. Results:Phenacetin,acetamidophenol and 3 - acetamidophenol were perfectly separated. The detection limit of phenacetin was 50 nmol L-1 and the linear range of method was 0. 1μmol ? L-1 to 10 μmol · L-1. The intraday and interday relative standard deviations were less than 10% respectively. The method recoveries were more than 75%. The methanol was selected as reagent to terminate the reaction catalyzed by CYP1A2 and the incubation time was 60 min. The kinetic parameters was shown that Vmax was 0. 21 nmol · min-1 · mg protein-1 and Km was 20. 39 μmol · L-1. Conclusions;The method is stead-y,accurate and suitable for assaying CYP1A2 activity which can be used to evaluate the pharmacokinetics of CYP1A2 in rat liver microsomes.%目的:建立以非那西丁为探针的高效液相色谱-紫外检测的实验方法,测定大鼠肝微粒体中CYP1 A2酶活性并对其进行动力学考察.方法:采用Shimadzu Shim - Pack VP - ODS柱(150 mm×4.6 mm,5μm),流动相为:100 mmol · L-1磷酸二氢钠缓冲液(pH 4.3)和乙腈,梯度洗脱,流速为1.0 mL·min-1,柱温为室温,检测波长245 nm.非那西丁与大鼠肝微粒体在37℃温孵60 min,加入冰甲醇终止,12000 r·min-1离心10 min,取上清进行HPLC分析,以Lineweaver - Burk作图计算Vmax与Km值.结果:非那西丁、对乙酰氨基酚及其内标间乙酰氨基酚三者分离良好且无内源性干

  7. Cytochrome P450 (CYP and glutathione S-transferases (GST polymorphisms (CYP1A1, CYP1B1, GSTM1, GSTP1 and GSTT1 and urinary levels of 1-hydroxypyrene in Turkish coke oven workers

    Directory of Open Access Journals (Sweden)

    Ahmet Oguz Ada

    2007-01-01

    Full Text Available Genetic polymorphisms of xenobiotic metabolizing enzymes have been associated with cancer risk. We evaluated the influences of genetic polymorphisms of polycyclic aromatic hydrocarbon (PAH metabolizing enzymes on urinary 1-hydroxypyrene (1-OHP excretion in Turkish coke oven workers. Urinary 1-OHP was analyzed by HPLC after enzymatic hydrolysis. Lymphocyte DNA was used for PCR-based genotyping of cytochrome P450 (CYP polymorphisms (CYP1A1 and CYP1B1 and glutathione S-transferases (GST polymorphisms (GSTM1, GSTT1 and GSTP1. The mean urinary 1-OHP levels of coke oven workers were significantly higher than that of controls. No significant difference was detected in the mean urinary 1-OHP levels of smokers and non-smokers either for coke oven workers or controls. Genetic polymorphisms of the CYPs and GSTs studied had no significant influence on 1-OHP excretion in coke oven workers, but in the control group the urinary 1-OHP levels of individuals carrying the GSTT1- genotype were significantly higher than those of individuals carrying GSTT1+ genotype. The duration of occupational exposure and metabolic genotype for GSTT1 were the significant predictors of urinary 1-OHP levels. The control individuals carrying combined GSTM1-/GSTT1- genotypes also had significantly higher levels of urinary 1-OHP than those of individuals carrying GSTM1+/GSTTI+, GSTM1-/GSTT1+, and GSTM1+/GSTT1- genotypes. These results indicate that urinary 1-OHP is a sensitive indicator of recent human exposure to PAHs and that genetic polymorphism of GSTT1 may also to some extent reflect the interindividual variation in susceptibility to PAHs only at low PAH exposure.

  8. Effect of in vitro and in vivo treatment with mitomycin C on activities of CYP2D1/2, CYP2C11, and CYP1A2 in rat liver%丝裂霉素C在体外和体内对大鼠肝脏CYP2D1/2,CYP2C11和CYP1A2活性的影响

    Institute of Scientific and Technical Information of China (English)

    郝福荣; 严敏芬; 童顺高; 许立明; 金一尊

    2004-01-01

    Aim To evaluate the effect of in vitro and in vivo treatment with mitomycin C (MMC) on activities of CYP2D1/2, CYP2C11, and CYP1A2 in the liver of male rats. Methods Using HPLC to determine the activities of the three isoenzymes in rat liver microsomes by detecting the specific metabolites of their substrates after treatment with inducers in vivo or inhibitors in vitro. Results In vitro, MMC inhibited the activity of CYP2D1/2, CYP2C11, and CYP1A2 in dexamethasone-induced microsomes by (19±6)% (P<0.05), (85 ±10)% (P<0.01), and (36±6)% (P<0.05), respectively, and decreased the activity of CYP1A2 in/3-naphthoflavone-induced microsomes by (58 ± 6) % (P < 0. 01 ).Rats were injected intraperitoneally with 20% of the LD50 of MMC for 3 or 6 d. The treatment showed no significant effect on microsomal activities of CYP2D1/2, CYP2C11 or CYP1A2. Conclusion MMC can inhibit the activities of CYP2D1/2, CYP2C11, and CYP1A2 in rat liver microsomes in vitro, but it showed no significant effect on the activities of the three isoenzymes in vivo.%目的研究丝裂霉素C(MMC)在体外和体内对大鼠肝脏CYP2D1/2,CYP2C11和CYP1A2活性的影响.方法用诱导剂和抑制剂分别在体内和体外调节大鼠肝脏P450同工酶活性,并用HPLC检测3种同工酶各自底物的特定代谢产物,以计算同工酶活性.结果在体外,MMC可以使地塞米松诱导的大鼠肝脏微粒体CYP2D1/2,CYP2C11和CYP1A2活性分别抑制(19±6)%(P<0.05),(85±10)%(P<0.01)和(36±6)%(P<0.05),并使β-萘黄酮诱导的CYP1A2活性降低(58±6)%(P<0.01).在体内,以20%LDso的剂量连续3 d或6 d腹腔注射MMC对大鼠肝脏CYP2D1/2,CYP2C11和CYP1A2活性的影响无统计学差异.结论在体外MMC可以抑制大鼠肝微粒体CYP2D1/2,CYP2C11和CYP1A2的活性,但在体内对这3种细胞色素P450同工酶活性的影响无统计学差异.

  9. CYP1A1 (Ile462Val), CYP1B1 (Ala119Ser and Val432Leu), GSTM1 (null), and GSTT1 (null) polymorphisms and bladder cancer risk in a Turkish population.

    Science.gov (United States)

    Berber, Ufuk; Yilmaz, Ismail; Yilmaz, Omer; Haholu, Aptullah; Kucukodaci, Zafer; Ates, Ferhat; Demirel, Dilaver

    2013-01-01

    We aimed to investigate bladder cancer risk with reference to polymorphic variants of cytochrome p450 (CYP) 1A1, CYP1B1, glutathione S-transferase (GST) M1, and GSTT1 genes in a case control study. Polymorphisms were examined in 114 bladder cancer patients and 114 age and sex-matched cancer-free subjects. Genotypes were determined using allele specific PCR for CYP1A1 and CYP1B1 genes, and by multiplex PCR and melting curve analysis for GSTM1 and GSTT1 genes. Our results revealed a statistically significant increased bladder cancer risk for GSTT1 null genotype carriers with an odds ratio of 3.06 (95% confidence interval=1.39-6.74, p=0.006). Differences of CYP1A1, CYP1B1 and GSTM1 genotype frequencies were not statistically significant between patients and controls. However, the specific combination of GSTM1 null, GSTT1 null, and CYP1B1 codon 119 risk allele carriers and specific combination of GSTM1 present, GSTT1 null, and CYP1B1 432 risk allele carriers exhibited increased cancer risk in the combined analysis. We did not observe any association between different genotype groups and prognostic tumor characteristics of bladder cancer. Our results indicate that inherited absence of GSTT1 gene may be associated with bladder cancer susceptibility, and specific combinations of GSTM1, GSTT1 and CYP1B1 gene polymorphisms may modify bladder cancer risk in the Turkish population, without any association being observed for CYP1A1 gene polymorphism and bladder cancer risk.

  10. Análise de polimorfismos nos genes CYP1A1, CYP17, COMT, GSTM1, receptor de estrogênios e progesterona em mulheres com carcinoma de ovário

    OpenAIRE

    Leite,Daniela Batista

    2009-01-01

    Objectives: To evaluate the association between polymorphisms of cytochrome P450c17 (CYP17), progesterone receptor (PROGINS), gluthatione S-transferase (GSTM1), Catechol-O-methyl transferase (COMT), and cytochrome P450c1A1 CYP1A1) genes in patients with and without ovarian cancer and to analyze the eventual association of these polymorphisms with clinical and pathological variables. Methods: A total of 103 ovarian cancer patients were seen at the Oncological Surgery Outpatients Clinic, Depart...

  11. Camel Milk Modulates the Expression of Aryl Hydrocarbon Receptor-Regulated Genes, Cyp1a1, Nqo1, and Gsta1, in Murine hepatoma Hepa 1c1c7 Cells

    Directory of Open Access Journals (Sweden)

    Hesham M. Korashy

    2012-01-01

    Full Text Available There is a traditional belief in the Middle East that camel milk may aid in prevention and treatment of numerous cases of cancer yet, the exact mechanism was not investigated. Therefore, we examined the ability of camel milk to modulate the expression of a well-known cancer-activating gene, Cytochrome P450 1a1 (Cyp1a1, and cancer-protective genes, NAD(PH:quinone oxidoreductase 1 (Nqo1 and glutathione S-transferase a1 (Gsta1, in murine hepatoma Hepa 1c1c7 cell line. Our results showed that camel milk significantly inhibited the induction of Cyp1a1 gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, the most potent Cyp1a1 inducer and known carcinogenic chemical, at mRNA, protein, and activity levels in a concentration-dependent manner. In addition, camel milk significantly decreased the xenobiotic responsive element (XRE-dependent luciferase activity, suggesting a transcriptional mechanism is involved. Furthermore, this inhibitory effect of camel milk was associated with a proportional increase in heme oxygenase 1. On the other hand, camel milk significantly induced Nqo1 and Gsta1 mRNA expression level in a concentration-dependent fashion. The RNA synthesis inhibitor, actinomycin D, completely blocked the induction of Nqo1 mRNA by camel milk suggesting the requirement of de novo RNA synthesis through a transcriptional mechanism. In conclusion, camel milk modulates the expression of Cyp1a1, Nqo1, and Gsta1 at the transcriptional and posttranscriptional levels.

  12. Effects of genetic polymorphisms of CYP1A1, CYP2E1, GSTM1, and GSTT1 on the urinary levels of 1-hydroxypyrene and 2-naphthol in aircraft maintenance workers.

    Science.gov (United States)

    Lee, C Y; Lee, J Y; Kang, J W; Kim, H

    2001-09-15

    This study was undertaken to investigate the effects of genetic polymorphisms of the cytochrome P450 1A1 (CYP1A1) and 2E1 (CYP2E1), and glutathione S-transferases mu (GSTM1) and theta (GSTT1) on urinary 1-hydroxypyrene and 2-naphthol levels, and to estimate the level of exposure to polycyclic aromatic hydrocarbons (PAHs) in aircraft maintenance workers. In 218 Korean aircraft maintenance workers, the geometric means of urinary 1-hydroxypyrene and 2-naphthol were 0.32 and 3.25 micromol/mol creatinine, respectively. These urinary concentrations were approximately at the upper limit of the general population. Mean urinary 2-naphthol concentrations were significantly different between smokers and non-smokers. CYP1A1 and GSTM1 were statistically significant in analyses on both 1-hydroxypyrene and 2-naphthol levels among smokers. The results suggest that smoking has more profound effects on urinary PAH metabolites than does genetic polymorphisms in this population, and that CYP1A1 and GSTM1 activity might be related to the metabolism of 1-hydroxypyrene and 2-naphthol.

  13. Genetic polymorphisms of the CYP1A1, GSTM1, and GSTT1 enzymes and their influence on cardiovascular risk and lipid profile in people who live near a natural gas plant.

    Science.gov (United States)

    Pašalić, Daria; Marinković, Natalija

    2017-03-01

    The aim of this cross-sectional study was to see whether genetic polymorphisms of the enzymes CYP1A1, GSTM1, and GSTT1 are associated with higher risk of coronary artery disease (CAD) and whether they affect lipid profile in 252 subjects living near a natural gas plant, who are likely to be exposed to polycyclic aromatic hydrocarbons (PAHs). Fasting serum concentrations of biochemical parameters were determined with standard methods. Genetic polymorphisms of CYP 1A1 rs4646903, rs1048943, rs4986883, and rs1799814 were genotyped with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFPL), while GSTM1 and GSTT1 deletions were detected with multiplex PCR. Cardiovascular risk was assessed with Framingham risk score, and the subjects divided in two groups: >10% risk and ≤10% risk. The two groups did not differ in the genotype frequencies. MANCOVA analysis, which included lipid parameters, glucose, and BMI with sex, age, hypertension and smoking status as covariates, showed a significant difference between the GSTT1*0 and GSTT1*1 allele carriers (p=0.001). UNIANCOVA with same covariates showed that total cholesterol and triglyceride levels were significantly higher in GSTT1*1 allele carriers than in GSTT1*0 carriers (p<0.001 and p=0.006, respectively). Our findings suggest that CYP1A1, GSTM1, and GSTT1 polymorphisms are not associated with the higher risk of CAD, but that GSTT1 affects lipid profile.

  14. Differences in 4-hydroxyestradiol levels in leukocytes are related to CYP1A1(∗)2C, CYP1B1(∗)3 and COMT Val158Met allelic variants.

    Science.gov (United States)

    Martínez-Ramírez, O C; Pérez-Morales, R; Petrosyan, P; Castro-Hernández, C; Gonsebatt, M E; Rubio, J

    2015-10-01

    Exposure to estrogen and its metabolites, including catechol estrogens (CEs) and catechol estrogen quinones (CE-Qs) is closely related to breast cancer. Polymorphisms of the genes involved in the catechol estrogens metabolism pathway (CEMP) have been shown to affect the production of CEs and CE-Qs. In this study, we measured the induction of CYP1A1, CYP1B1, COMT, and GSTP1 by 17β-estradiol (17β-E2) in leukocytes with CYP1A1(∗)2C, CYP1B1(∗)3, COMT Val158Met and GSTP1 Ile105Val polymorphisms by semi quantitative RT-PCR and compared the values to those of leukocytes with wild type alleles; we also compared the differences in formation of 4- hydroxyestradiol (4-OHE2) and DNA-adducts. The data show that in the leukocytes with mutant alleles treatment with 17β-E2 up-regulates CYP1A1 and CYP1B1 and down-regulates COMT mRNA levels, resulting in major increments in 4-OHE2 levels compared to leukocytes with wild-type alleles. Therefore, we propose induction levels of gene expression and intracellular 4-OHE2 concentrations associated with allelic variants in response to exposure of 17β-E2 as a noninvasive biomarker that can help determine the risk of developing non-hereditary breast cancer in women.

  15. Genotoxicity of tamoxifen, tamoxifen epoxide and toremifene in human lymphoblastoid cells containing human cytochrome P450s.

    Science.gov (United States)

    Styles, J A; Davies, A; Lim, C K; De Matteis, F; Stanley, L A; White, I N; Yuan, Z X; Smith, L L

    1994-01-01

    The clastogenicity of tamoxifen and toremifene was tested in six human lymphoblastoid cell lines each expressing increased monooxygenase activity associated with a specific transfected human cytochrome P450 cDNA (CYP1A1, CYP1A2, CYP2D6, CYP2E1 or CYP3A4). The chemicals were also tested in a cell line (MCL-5) expressing elevated native CYP1A1 and containing transfected CYP1A2, CYP2A6, CYP2E1 and CYP3A4 and epoxide hydrolase, and in a cell line containing only the viral vector (Ho1). Dose-related increases in micronuclei were observed when cells expressing 2E1, 3A4, 2D6 or MCL-5 cells were exposed to tamoxifen. The positive responses in the cell lines were in the order MCL-5 > 2E1 > 3A4 > 2D6. Toremifene also gave positive results with 2E1, 3A4 and MCL-5 cells, although the responses were less marked and the positive effects required higher doses than with tamoxifen. A synthesized epoxide of tamoxifen was also tested in these cell lines and produced similar increases in the incidences of micronucleated cells. The increases in the responses observed with the epoxide were greater than with tamoxifen or toremifene. The P450 isoenzyme activities in these cells were in a range similar to those of human tumour-derived cell lines. Microsomes (1A1, 2A2, 2A6, 2B6, 2E1, 3A4 and 2D6) from these cells all metabolized tamoxifen. The major metabolite detected by HPLC was N-desmethyltamoxifen, and 4-hydroxytamoxifen was also detected in cells with cytochrome P450 2E1 and 2D6. These results are consistent with the following conclusions. (1) Tamoxifen requires metabolic activation to DNA-reactive species by specific CYP monooxygenases in order to exert its genotoxic effects. (2) The positive clastogenic effects elicited in lymphoblastoid cells by tamoxifen epoxide suggest that the genotoxic (and possibly the carcinogenic) effects of tamoxifen may be due to one or more epoxide metabolites that are generated intracellularly, probably in close proximity to the nucleus. (3) Tamoxifen is

  16. Metabolism of sesamin by cytochrome P450 in human liver microsomes.

    Science.gov (United States)

    Yasuda, Kaori; Ikushiro, Shinichi; Kamakura, Masaki; Ohta, Miho; Sakaki, Toshiyuki

    2010-12-01

    Metabolism of sesamin by cytochrome P450 (P450) was examined using yeast expression system and human liver microsomes. Saccharomyces cerevisiae cells expressing each of human P450 isoforms (CYP1A1, 1A2, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, and 3A4) were cultivated with sesamin, and monocatechol metabolite was observed in most of P450s. Kinetic analysis using the microsomal fractions of the recombinant S. cerevisiae cells revealed that CYP2C19 had the largest k(cat)/K(m) value. Based on the kinetic data and average contents of the P450 isoforms in the human liver, the putative contribution of P450s for sesamin metabolism was large in the order of CYP2C9, 1A2, 2C19, and 2D6. A good correlation was observed between sesamin catecholization activity and CYP2C9-specific activity in in vitro studies using 10 individual human liver microsomes, strongly suggesting that CYP2C9 is the most important P450 isoform for sesamin catecholization in human liver. Inhibition studies using each anti-P450 isoform-specific antibody confirmed that CYP2C9 was the most important, and the secondary most important P450 was CYP1A2. We also examined the inhibitory effect of sesamin for P450 isoform-specific activities and found a mechanism-based inhibition of CYP2C9 by sesamin. In contrast, no mechanism-based inhibition by sesamin was observed in CYP1A2-specific activity. Our findings strongly suggest that further studies are needed to reveal the interaction between sesamin and therapeutic drugs mainly metabolized by CYP2C9.

  17. 大鼠肝微粒体代谢研究槲皮素对CYP1A2,CYP2E1,CYP3A2活性的影响及抑制机制%Effect of Quercetin on CYP1A2, CYP2E1, CYP3A2 Activities and its Inhibitory Mechanism Studies in Rat Liver Microsomes

    Institute of Scientific and Technical Information of China (English)

    周江泉; 汤致强

    2005-01-01

    Aim To assess the potential effect of quercetin (QU), an natural plant estrogen, on CYP1A2, CYP2E1, and CYP3A2 activities in rat liver microsomes; and to identify the magnitude of inhibitory effect and the probable inhibitory mechanism of QU. Methods QU and specific substrate were concurrently incubated, with HPLC detection of the substrate metabolites for data analysis. The magnitude of inhibitory effect of QU on CYP3A2 was compared with those of ketoconazole (Ket) and erythromycin (Ery). The mechanism of its inhibitory effect on CYP3A2 and CYP2E1 was derived from Lineweaver-Burk plots. Results HPLC methods were in good linear relationship with r>0.999 1. Relative standard deviations for intra-day and inter-day were<8.4%. Recovery of each analyte in the concentrations studied was between 91.1% and 107.6 %. QU (up to 8 μmol*L-1) showed potent induction to CYP1A2 (338.1% of the negative control)while inhibited CYP2E1 (49.2% of the negative control) and CYP3A2 (60.3% of the negative control) activity. The magnitude of inhibitory effect for QU on CYP3A2 was between those for Ket and Ery (Ket>QU>Ery). QU exhibited competitive inhibition of CYP3A2 dextromethorphan N-demethylation reaction and expressed noncompetitive inhibition of CYP2E1 chlorzoxazone-6-hydroxylation reaction. Conclusion HPLC assay has been validated with precision and accuracy. QU is an effective inhibitor of several CYP isoforms. It may cause relevant drug-drug interactions with CYP3A substrates. As a plant flavonoid, QU has potential not only in molecular advantage but also in CYP450 module capability for further application in cancer chemotherapy.%目的体外代谢研究槲皮素对大鼠肝CYP1A2 , CYP2E1,和CYP3A2 活性的影响.研究其抑制强度及抑制机制.方法 QU与底物共同温孵, HPLC检测底物特定的代谢产物生成量的变化反映对应亚酶的活性变化.比较槲皮素与酮康唑,红霉素在相同浓度下对CYP3A2的抑制能力强

  18. [In vivo evaluation of the metabolic ratio of CYP2C9 and CYP1A2 drug markers after administration of afobazole in comparison to standard inducers and inhibitors of cytochromes].

    Science.gov (United States)

    Novitskaia, Ia G; Gribakina, O G; Kolyvanov, G B; Zherdev, V P; Smirnov, V V; Seredenin, S B

    2013-01-01

    The effect of subchronic peroral administration in effective doses of afobazole (5 mg/kg), and cytochrome P450 inductors (rifampicin, 13.4 mg/kg; phenytoin, 10.4 mg/kg) and inhibitors (fluconazole, 35.7 mg/kg; ciprofloxacin, 44.0 mg/kg) on the metabolic ratio (MR) of drugs-markers of CYP2C9 and CYP1A2 activity was studied in rats. Afobazole did not change the MR of compounds metabolized by the P450 isoforms studied. After peroral administration of standard P450 inductors and inhibitors, statistically significant bidirectional effects were identified, which demonstrated the expedience of administering a complex of selected compounds, markers, and CYP2C9 and CYP1A2 activity modificators for comparative evaluation of the effects of new drugs in rats. It is recommended to evaluate the activity of CYP1A2 by determining the MR for one of two caffeine metabolites, paraxanthine or theobromine, and the activity of CYP2C9 by determining the MR of metabolite Exp-3174 to losartan.

  19. Bimodal action of miroestrol and deoxymiroestrol, phytoestrogens from Pueraria candollei var. mirifica, on hepatic CYP2B9 and CYP1A2 expressions and antilipid peroxidation in mice.

    Science.gov (United States)

    Udomsuk, Latiporn; Juengwatanatrakul, Thaweesak; Putalun, Waraporn; Jarukamjorn, Kanokwan

    2012-01-01

    Miroestrol and deoxymiroestrol are phytoestrogens isolated from Pueraria candollei var. mirifica. The influence of miroestrol and dexoymirosestrol on hepatic cytochrome P450 (P450) enzymes and antioxidative activity in brain was examined in C57BL/6 mice compared with that of a synthetic female sex hormone estradiol. We hypothesized that miroestrol and deoxymiroestrol would induce CYP2B9 expression, whereas CYP1A2 expression would be suppressed compared with estradiol. Miroestrol and deoxymiroestrol treatment significantly increased uterus weight and volume. In addition, both of these phytoestrogens induced the expression of CYP2B9 and suppressed the expression of CYP1A2, as expected. Hepatic P450 activities correspondingly showed that both compounds increased benzyloxyresorufin O-dealkylase activity, whereas methoxyresorufin O-dealkylase activity was reduced. These observations suggested that miroestrol and deoxymiroestrol might affect hepatic P450 enzymes, including the CYP2B9 and CYP1A2 P450 isoforms. Assessment of lipid peroxidation demonstrated that miroestrol and deoxymiroestrol markedly decreased levels of malondialdehyde formation in the mouse brain. This is the first report suggesting miroestrol and deoxymiroestrol as potential alternative medicines to estradiol because of their distinctive ability to regulate mouse hepatic P450 expression and their beneficial antioxidative activities.

  20. Polymorphisms in the cytochrome P450 genes CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1, CYP19A1 and colorectal cancer risk

    Directory of Open Access Journals (Sweden)

    Withey Laura

    2007-07-01

    Full Text Available Abstract Background Cytochrome P450 (CYP enzymes have the potential to affect colorectal cancer (CRC risk by determining the genotoxic impact of exogenous carcinogens and levels of sex hormones. Methods To investigate if common variants of CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1 and CYP19A1 influence CRC risk we genotyped 2,575 CRC cases and 2,707 controls for 20 single nucleotide polymorphisms (SNPs that have not previously been shown to have functional consequence within these genes. Results There was a suggestion of increased risk, albeit insignificant after correction for multiple testing, of CRC for individuals homozygous for CYP1B1 rs162558 and heterozygous for CYP1A2 rs2069522 (odds ratio [OR] = 1.36, 95% confidence interval [CI]: 1.03–1.80 and OR = 1.34, 95% CI: 1.00–1.79 respectively. Conclusion This study provides some support for polymorphic variation in CYP1A2 and CYP1B1 playing a role in CRC susceptibility.

  1. Mixed-ligand copper(II) complexes activate aryl hydrocarbon receptor AhR and induce CYP1A genes expression in human hepatocytes and human cell lines.

    Science.gov (United States)

    Kubešová, Kateřina; Dořičáková, Aneta; Trávníček, Zdeněk; Dvořák, Zdeněk

    2016-07-25

    The effects of four copper(II) mixed-ligand complexes [Cu(qui1)(L)]NO3·H2O (1-3) and [Cu(qui2)(phen)]NO3 (4), where qui1=2-phenyl-3-hydroxy-4(1H)-quinolinone, Hqui2=2-(4-amino-3,5-dichlorophenyl)-N-propyl-3-hydroxy-4(1H)-quinolinone-7-carboxamide, L=1,10-phenanthroline (phen) (1), 5-methyl-1,10-phenanthroline (mphen) (2), bathophenanthroline (bphen) (3), on transcriptional activities of steroid receptors, nuclear receptors and xenoreceptors have been studied. The complexes (1-4) did not influence basal or ligand-inducible activities of glucocorticoid receptor, androgen receptor, thyroid receptor, pregnane X receptor and vitamin D receptor, as revealed by gene reporter assays. The complexes 1 and 2 dose-dependently induced luciferase activity in stable gene reporter AZ-AhR cell line, and this induction was reverted by resveratrol, indicating involvement of aryl hydrocarbon receptor (AhR) in the process. The complexes 1, 2 and 3 induced CYP1A1 mRNA in LS180 cells and CYP1A1/CYP1A2 in human hepatocytes through AhR. Electrophoretic mobility shift assay EMSA showed that the complexes 1 and 2 transformed AhR in its DNA-binding form. Collectively, we demonstrate that the complexes 1 and 2 activate AhR and induce AhR-dependent genes in human hepatocytes and cancer cell lines. In conclusion, the data presented here might be of toxicological importance, regarding the multiple roles of AhR in human physiology and pathophysiology.

  2. POLYCYCLIC AROMATIC HYDROCARBON (PAH)/METAL MIXTURES: EFFECT ON PAH INDUCTION OF CYP1A1 IN HUMAN HEPG2 CELLS. (R827180)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  3. POLYCYCLIC AROMATIC HYDROCARBON/METAL MIXTURES: EFFECT ON PAH INDUCTION OF CYP1A1 IN HUMAN HEPG2 CELLS. (R827180)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  4. EFFECT OF BINARY, TERNARY, AND QUATERNARY MIXTURES OF PAHS ON CYP1A1 INDUCTION IN HUMAN HEPG2 CELLS. (R827180)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  5. Intrarenal alterations of the angiotensin-converting enzyme type 2/angiotensin 1-7 complex of the renin-angiotensin system do not alter the course of malignant hypertension in Cyp1a1-Ren-2 transgenic rats.

    Science.gov (United States)

    Husková, Zuzana; Kopkan, Libor; Červenková, Lenka; Doleželová, Šárka; Vaňourková, Zdeňka; Škaroupková, Petra; Nishiyama, Akira; Kompanowska-Jezierska, Elzbieta; Sadowski, Janusz; Kramer, Herbert J; Červenka, Luděk

    2016-04-01

    The role of the intrarenal renin-angiotensin system (RAS) in the pathophysiology of malignant hypertension is not fully understood. Accumulating evidence indicates that the recently discovered vasodilator axis of the RAS, angiotensin-converting enzyme (ACE) type 2 (ACE2)/angiotensin 1-7 (ANG 1-7), constitutes an endogenous system counterbalancing the hypertensiogenic axis, ACE/angiotensin II (ANG II)/AT1 receptor. This study aimed to evaluate the role of the intrarenal vasodilator RAS axis in the pathophysiology of ANG II-dependent malignant hypertension in Cyp1a1-Ren-2 transgenic rats. ANG II-dependent malignant hypertension was induced by 13 days' dietary administration of indole-3-carbinol (I3C), a natural xenobiotic that activates the mouse renin gene in Cyp1a1-Ren-2 transgenic rats. It was hypothesized that pharmacologically-induced inhibition of the ACE2/ANG 1-7 complex should aggravate, and activation of this axis should attenuate, the course of ANG II-dependent malignant hypertension. Blood pressure (BP) was monitored by radiotelemetry. ACE2 inhibitor (DX 600, 0.2 μg/day) and ACE2 activator (DIZE, 1 mg/day) were administrated via osmotic minipumps. Even though ACE2 inhibitor significantly decreased and ACE2 activator increased intrarenal ANG 1-7 concentrations, the course of BP, as well as of albuminuria, cardiac hypertrophy and renal glomerular damage, were not altered. It was shown that intrarenal alterations in the ACE2/ANG 1-7 complex did not significantly modify the course of malignant hypertension in I3C-induced Cyp1a1-Ren-2 transgenic rats. Thus, in our experimental setting alterations of this intrarenal vasodilator complex of the RAS do not significantly modify the form of malignant hypertension that clearly depends on the inappropriately increased activity of the ACE/ANG II/AT1 receptor axis.

  6. GSTM1, GSTT1, GSTP1 and CYP1A1 genetic polymorphisms and susceptibility to esophageal cancer in a French population:Different pattern of squamous cell carcinoma and adenocarcinoma

    Institute of Scientific and Technical Information of China (English)

    Ahmed Abbas; Karine Delvinquière; Mathilde Lechevrel; Pierre Lebailly; Pascal Gauduchon; Guy Launoy; Fran(c)ois Sichel

    2004-01-01

    AIM: To evaluate the association between CYP1A1 and GSTs genetic polymorphisms and susceptibility to esophageal squamous cell carcinoma (SCC) and esophageal adenocarcinoma (ADC) in a high risk area of northwest of France.METHODS: A case-control study was conducted to investigate the genetic polymorphisms of these enzymes (CYP1A1 *2C and GSTP1 exon 7 Val alleles, GSTM1*2/*2and GSTT1*2/*2 null genotypes). A total of 79 esophageal cancer cases and 130 controls were recruited.RESULTS: GSTM1*2/*2 and CYP1A1*1A/*2C genotype frequencies were higher among squamous cell carcinomas at a level close to statistical significance (OR = 1.83, 95% CI 0.88-3.83, P= 0.11; OR = 3.03, 95% CI 0.93-9.90, P= 0.07,respectively). For GSTP1 polymorphism, no difference was found between controls and cases, whatever their histological status. Lower frequency of GSTT1 deletion was observed in ADC group compared to controls with a statistically significant difference (OR = 13.31, 95% CI 1.66-106.92, P<0.01).CONCLUSION: In SCC, our results are consistent with the strong association of this kind of tumour with tobacco exposure. In ADC, our results suggest 3 distinct hypotheses:(1) activation of exogenous procarcinogens, such as small halogenated compounds by GSTT1; (2) contribution of GSTT1 to the inflammatory response of esophageal mucosa, which is known to be a strong risk factor for ADC,possibly through leukotriene synthesis; (3) higher sensitivity to the inflammatory process associated with intracellular depletion of glutathione.

  7. Association of polymorphisms in AhR, CYP1A1, GSTM1, and GSTT1 genes with levels of DNA damage in peripheral blood lymphocytes among coke-oven workers

    Energy Technology Data Exchange (ETDEWEB)

    Yongwen Chen; Yun Bai; Jing Yuan; Weihong Chen; Jianya Sun; Hong Wang; Huashan Liang; Liang Guo; Xiaobo Yang; Hao Tan; Yougong Su; Qingyi Wei; Tangchun Wu [Huazhong University of Science and Technology, Wuhan (China). Institute of Occupational Medicine and Ministry of Education Key Lab of Environment and Health

    2006-09-15

    Accumulating evidence has shown that both DNA damage caused by the metabolites of polycyclic aromatic hydrocarbons (PAH) and genetic polymorphisms in PAH-metabolic genes contribute to individual susceptibility to PAH-induced carcinogenesis. However, the functional relevance of genetic polymorphisms in PAH-metabolic genes in exposed individuals is still unclear. In this study of 240 coke-oven workers (the exposed group) and 123 non-coke-oven workers (the control group), we genotyped for polymorphisms in the AhR, CYP1A1, GSTM1, and GSTT1 genes by PCR methods, and determined the levels of DNA damage in peripheral blood lymphocytes using the alkaline comet assay. It was found that the ln-transformed Olive tail moment (Olive TM) values in the exposed group were significantly higher than those in the control group. Furthermore, in the exposed group, the Olive TM values in subjects with the AhR Lys{sup 554} variant genotype were higher than those with the AhR Arg{sup 554}/Arg{sup 554} genotype. Similarly, the Olive TM values in the non-coke-oven workers with the CYP1A1 MspI CC + CT genotype were lower than the values of those with the CYP1A1 MspI TT genotype. However, these differences were not evident for GSTM1 and GSTT1. These results suggested that the polymorphism of AhR might modulate the effects of PAHs in the exposed group; however, the underlying molecular mechanisms by which this polymorphism may have affected the levels of PAH-induced DNA damage warrant further investigation.

  8. Genetic polymorphism of T6235C mutation in 3 non-coding region of CYP1A1 and GSTM1 genes and lung cancer susceptibility in the Mongolian population

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To estimate the relative risk for lung cancer associated with genetic polymorphism of T6235C mutation in 3' non-coding region(MspⅠ)of cytochrome P450 1A1(CYP1A1)and glutathione S-transferase M1(GSTM1)in the Mongolian population in Inner Mongolian Region of China.Methods Polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP)and multiplex PCR methods were used to analyze blood samples obtained from 263 case subjects and 263 control subjects to determine their genotypes for CYP1...

  9. Cytogenetic damage in Turkish coke oven workers exposed to polycyclic aromatic hydrocarbons: Association with CYP1A1, CYP1B1, EPHX1, GSTM1, GSTT1, and GSTP1 gene polymorphisms.

    Science.gov (United States)

    Ada, Ahmet Oguz; Demiroglu, Canan; Yilmazer, Meltem; Suzen, Halit Sinan; Demirbag, Ali Eba; Efe, Sibel; Alemdar, Yilmaz; Iscan, Mumtaz; Burgaz, Sema

    2013-09-01

    The aim of this study was to determine the frequencies of chromosomal aberrations (CA) and cytochalasin-blocked micronuclei (CBMN) in peripheral blood lymphocytes from Turkish coke oven workers and the influence of CYP1A1, CYP1B1, EPHX1, GSTM1, GSTT1, and GSTP1 gene polymorphisms on these biomarkers. Cytogenetic analysis showed that occupational exposure significantly increased the CA and CBMN frequencies. Gene polymorphisms, on the other hand, did not affect CA or CBMN in either exposed or control subjects. However, due to the limited sample size, our findings need to be verified in future studies with a larger sample.

  10. 哺乳期暴露2,3,7,8-四氯二苯并-p-二(噁)英的子代小鼠生殖发育以及肺组织CYP1A1水平%Reproductive Development and Pulmonary CYP1A1 Levels in Mice Offspring Exposed to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) During Lactation

    Institute of Scientific and Technical Information of China (English)

    谭凤珠; 张建军; 马聪兴; 周晓云; 刘世朋; 张巍丽

    2008-01-01

    目的 探讨哺乳期暴露2,3,7,8-四氯二苯并-P-二(噁)英(TCDD)对子代小鼠生长发育及细胞色素P4501A1(CYP1A1)表达的影响.方法 采用清洁级昆明小鼠,设40μg/kg和20μg/kg TCDD染毒组,并分设相应的两个溶剂对照组及-个动物空白对照组.每组母鼠3只,仔鼠25~28只.母鼠分娩后的第1、3、5天腹腔注射TCDD,子代小鼠通过乳汁暴露于TCDD.观察不同生长期仔鼠的体重改变和生殖系统发育等.仔鼠生后第35天被处死,采用免疫组化法分析肺组织CYP1A1的表达.结果 TCDD染毒组的仔鼠体重明显降低,雌性仔鼠的阴道平均开放时间明显缩短,雄性仔鼠的睾丸平均下降时间明显延长.TCDD染毒组的肺泡结构紊乱,炎症细胞浸润,肺泡壁增厚水肿,CYP1A1表达量明显升高,并且雌性仔鼠的肺组织反应比雄性仔鼠严重.而对照组中雌雄间差异没有显著性.结论 单一哺乳期暴露于TCDD可使子代小鼠体重下降,雌性仔鼠性成熟提前,雄性仔鼠性成熟延缓.仔鼠肺组织CYP1A1表达明显增加,并存在性别差异.

  11. Breast cancer risk, fungicide exposure and CYP1A1*2A gene-environment interactions in a province-wide case control study in Prince Edward Island, Canada.

    Science.gov (United States)

    Ashley-Martin, Jillian; VanLeeuwen, John; Cribb, Alastair; Andreou, Pantelis; Guernsey, Judith Read

    2012-05-01

    Scientific certainty regarding environmental toxin-related etiologies of breast cancer, particularly among women with genetic polymorphisms in estrogen metabolizing enzymes, is lacking. Fungicides have been recognized for their carcinogenic potential, yet there is a paucity of epidemiological studies examining the health risks of these agents. The association between agricultural fungicide exposure and breast cancer risk was examined in a secondary analysis of a province-wide breast cancer case-control study in Prince Edward Island (PEI) Canada. Specific objectives were: (1) to derive and examine the level of association between estimated fungicide exposures, and breast cancer risk among women in PEI; and (2) to assess the potential for gene-environment interactions between fungicide exposure and a CYP1A1 polymorphism in cases versus controls. After 1:3 matching of 207 cases to 621 controls by age, family history of breast cancer and menopausal status, fungicide exposure was not significantly associated with an increased risk of breast cancer (OR = 0.74; 95% CI: 0.46-1.17). Moreover, no statistically significant interactions between fungicide exposure and CYP1A1*2A were observed. Gene-environment interactions were identified. Though interpretations of findings are challenged by uncertainty of exposure assignment and small sample sizes, this study does provide grounds for further research.

  12. Changes in persistent contaminant concentration and CYP1A1 protein expression in biopsy samples from northern bottlenose whales, Hyperoodon ampullatus, following the onset of nearby oil and gas development.

    Science.gov (United States)

    Hooker, Sascha K; Metcalfe, Tracy L; Metcalfe, Chris D; Angell, Carolyn M; Wilson, Joanna Y; Moore, Michael J; Whitehead, Hal

    2008-03-01

    A small population of endangered northern bottlenose whales (Hyperoodon ampullatus) inhabits "The Gully" a Marine Protected Area on the Scotian Shelf, eastern Canada. Amid concerns regarding nearby oil and gas development, we took 36 skin and blubber biopsy samples in 1996-1997 (prior to major development) and 2002-2003 (five years after development began), and three samples from a population in the Davis Strait, Labrador in 2003. These were analysed for cytochrome P4501A1 (CYP1A1) protein expression (n=36), and for persistent contaminants (n=23). CYP1A1 showed generally low expression in whales from The Gully, but higher levels during 2003, potentially coincident with recorded oil spills, and higher levels in Davis Strait whales. A range of PCB congeners and organochlorine compounds were detected, with concentrations similar to other North Atlantic odontocetes. Concentrations were higher in whales from The Gully than from the Davis Strait, with significant increases in 4,4'-DDE and trans-nonachlor in 2002-2003 relative to 1996-1997.

  13. Changes in persistent contaminant concentration and CYP1A1 protein expression in biopsy samples from northern bottlenose whales, Hyperoodon ampullatus, following the onset of nearby oil and gas development

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, Sascha K. [Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J1 (Canada); Sea Mammal Research Unit, University of St Andrews, FIFE KY16 8YG (United Kingdom)], E-mail: s.hooker@st-andrews.ac.uk; Metcalfe, Tracy L.; Metcalfe, Chris D. [Environmental and Resource Studies, Trent University, Peterborough, Ontario K9J 7B8 (Canada); Angell, Carolyn M.; Wilson, Joanna Y.; Moore, Michael J. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Whitehead, Hal [Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J1 (Canada)

    2008-03-15

    A small population of endangered northern bottlenose whales (Hyperoodon ampullatus) inhabits 'The Gully' a Marine Protected Area on the Scotian Shelf, eastern Canada. Amid concerns regarding nearby oil and gas development, we took 36 skin and blubber biopsy samples in 1996-1997 (prior to major development) and 2002-2003 (five years after development began), and three samples from a population in the Davis Strait, Labrador in 2003. These were analysed for cytochrome P4501A1 (CYP1A1) protein expression (n = 36), and for persistent contaminants (n = 23). CYP1A1 showed generally low expression in whales from The Gully, but higher levels during 2003, potentially coincident with recorded oil spills, and higher levels in Davis Strait whales. A range of PCB congeners and organochlorine compounds were detected, with concentrations similar to other North Atlantic odontocetes. Concentrations were higher in whales from The Gully than from the Davis Strait, with significant increases in 4,4'-DDE and trans-nonachlor in 2002-2003 relative to 1996-1997. - Whale contaminants highlight concerns from oil and gas development near a marine protected area.

  14. Alteration in the Expression of Cytochrome P450s (CYP1A1, CYP2E1, and CYP3A11 in the Liver of Mouse Induced by Microcystin-LR

    Directory of Open Access Journals (Sweden)

    Bangjun Zhang

    2015-03-01

    Full Text Available Microcystins (MCs are cyclic heptapeptide toxins and can accumulate in the liver. Cytochrome P450s (CYPs play an important role in the biotransformation of endogenous substances and xenobiotics in animals. It is unclear if the CYPs are affected by MCs exposure. The objective of this study was to evaluate the effects of microcystin-LR (MCLR on cytochrome P450 isozymes (CYP1A1, CYP2E1, and CYP3A11 at mRNA level, protein content, and enzyme activity in the liver of mice the received daily, intraperitoneally, 2, 4, and 8 µg/kg body weight of MCLR for seven days. The result showed that MCLR significantly decreased ethoxyresorufin-O-deethylase (EROD (CYP1A1 and erythromycin N-demthylase (ERND (CYP3A11 activities and increased aniline hydroxylase (ANH activity (CYP2E1 in the liver of mice during the period of exposure. Our findings suggest that MCLR exposure may disrupt the function of CYPs in liver, which may be partly attributed to the toxicity of MCLR in mice.

  15. Effects of 4-nonylphenol on hepatic gene expression of peroxisome proliferator-activated receptors and cytochrome P450 isoforms (CYP1A1 and CYP3A4) in juvenile sole (Solea solea).

    Science.gov (United States)

    Cocci, Paolo; Mosconi, Gilberto; Palermo, Francesco Alessandro

    2013-10-01

    The objective of the present study was to investigate the modulatory effects of the xenoestrogen 4-nonylphenol (4-NP) on hepatic peroxisome proliferator-activated receptor (PPAR) α and β gene expression patterns in relation to the detoxification pathways mediated by cytochrome P450 isoforms (CYP1A1 and CYP3A4). Waterborne 4-NP-induced effects were compared with those of 10(-8)M 17β-estradiol (E2) by using in vivo dose-response experiments carried out with juvenile sole (Solea solea). Compared to the controls, significantly higher levels of PPARα mRNAs were found in fish treated with E2 or 4-NP (10(-6)M) 3 d after exposure; the highest dose of 4-NP also caused up-regulation of retinoid X receptor α (RXRα) transcript levels. On the contrary, PPARβ gene expression was not modulated by E2 or 4-NP. Our data show that 4-NP-induced PPARα mRNA levels coincide with suppression of CYP1A1 and CYP3A4 expression similarly to E2. The results from these in vivo studies suggest the presence of cross-talk between nuclear receptor-mediated signaling pathways and PPARα that may result in modulation of CYP450 isoforms expression following 4-NP treatment in sole liver. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Enantioselective metabolism of the endocrine disruptor pesticide methoxychlor by human cytochromes P450 (P450s): major differences in selective enantiomer formation by various P450 isoforms.

    Science.gov (United States)

    Hu, Yiding; Kupfer, David

    2002-12-01

    Methoxychlor, a currently used pesticide that in mammals elicits proestrogenic/estrogenic activity and reproductive toxicity, has been classified as a prototype endocrine disruptor. Methoxychlor is prochiral, and its metabolites 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane (mono-OH-M); 1,1,1-trichloro- 2-(4-methoxyphenyl)-2-(3, 4-dihydroxyphenyl)ethane (catechol-M); and 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(3, 4-dihydroxyphenyl)ethane (tris-OH-M) are chiral; whereas 1,1,1-trichloro-2, 2-bis(4-hydroxyphenyl)ethane (bis-OH-M) is achiral. These metabolites are formed during methoxychlor incubation with liver microsomes or recombinant cytochrome p450s (rp450s). Since methoxychlor-metabolite enantiomers may have different estrogenic/antiestrogenic/antiandrogenic activities than corresponding racemates, the possibility that p450s preferentially generate or use R or S enantiomers, was examined. Indeed, rCYP1A2 and r2A6 mono-demethylated methoxychlor primarily into (R)-mono-OH-M at 91 and 75%, respectively, whereas rCYP1A1, 2B6, 2C8, 2C9, 2C19, and 2D6 formed the (S)-enantiomer at 69, 66, 75, 95, 96, and 80%, respectively. However, rCYP3A4, 3A5, and 2B1(rat) weakly demethylated methoxychlor without enantioselectivity. Human liver microsomes generated (S)-mono-OH-M (77-87%), suggesting that CYP1A2 and 2A6 display only minor catalytic contribution. P450 inhibitors demonstrated that CYP2C9 and possibly 2C19 are major hepatic catalysts forming (S)-mono-OH-M, and CYP1A2 is primarily involved in forming the (R)-mono-OH-M. Demethylation rate of (S)-mono-OH-M versus (R)-mono-OH-M forming achiral bis-OH-M by rCYP1A2 was 97/3, compared with 15/85 and 17/83 for rCYP2C9 and 2C19, respectively, indicating opposite substrate enantioselectivity of rCYP1A2 versus 2C9 and 2C19. Also, rCYP1A2 preferentially O-demethylated (R)-catechol-M into (R)-tris-OH-M (at 80%), contrasting r2C9 and r2C19 that yielded (S)-tris-OH-M at 80 and 77%, respectively. Ortho-hydroxylation of

  17. Joint effect among p53, CYP1A1, GSTM1 polymorphism combinations and smoking on prostate cancer risk: an exploratory genotype-environment interaction study%p53、CYP1A1、GSTM1多态性组合和吸烟对前列腺癌风险的联合效应:基因型和环境相互作用的探测性研究

    Institute of Scientific and Technical Information of China (English)

    Luis A.Qui(n)ones; Carlos E.Irarrázabal; Claudio R.Rojas; Cristian E.Orellana; Cristian Acevedo; Christian Huidobro; Nelson E.Varela; Dante D.Cáceres

    2006-01-01

    Aim: To assess the role of several genetic factors in combination with an environmental factor as modulators of prostate cancer risk. We focus on allele variants of low-penetrance genes associated with cell control, the detoxification processes and smoking. Methods: In a case-control study we compared people carrying p53cd72 Pro allele,CYP1A1 M1 allele and GSTM1 null genotypes with their prostate cancer risk. Results: The joint risk for smokers carrying Pro* and M1*, Pro* and GSTMlnull or GSTM1 null and CYP1A1 M1* variants was significantly higher (odds ratio [OR]: 13.13, 95% confidence interval [CI]: 2.41-71.36; OR: 3.97, 95% CI: 1.13-13.95 and OR: 6.87,95% CI: 1.68-27.97, respectively) compared with that for the reference group, and for non-smokers was not significant.OR for combinations among p53cd72, GSTM1 and CYP1A1 M1 in smokers were positively and significantly associated with prostate cancer risk compared with non-smokers and compared with the putative lowest risk group (OR: 8.87, 95% CI: 1.25-62.71). Conclusion: Our results suggest that a combination of p53cd72, CYP1A1, GSTM1 alleles and smoking plays a significant role in modified prostate cancer risk on the study population, which means that smokers carrying susceptible genotypes might have a significantly higher risk than those carrying non-susceptible genotypes.%目的:评估若干遗传学因素与一个环境因素对患前列腺癌风险的联合调节作用.本文重点关注与细胞调控有关的低外显基因的等位变体、解毒过程和吸烟这几个因素.方法:本研究设了病例对照.研究分析了携p53cd72 Pro等位基因、CYP1A1 M1等位基因和GSTM1 null基因型的人群与他们患前列腺癌的风险之间的关联.结果:携Pro*和M1*,Pro*和GSTM1null或GSTM1 null和CYP1A1 M1*等位变体的吸烟者的联合患病风险显著高于对照组(优势比[odds ratio:OR]:13.13,95%置信区间[CI]:2.41-71.36;OR:3.97,95%CI:1.13-13.95;OR:6.87,95%CI:1.68-27.97),非吸烟组的

  18. Characterization of the transgenic CA-AhR mouse - cell specific expression of the CA-AhR using CYP1A1 as a marker

    Energy Technology Data Exchange (ETDEWEB)

    Brunnberg, S.; Lindstam, M.; Andersson, P.; Hanberg, A. [Institute of Environmental Medicine, Stockholm (Sweden); Poellinger, L. [Department of Cell and Molecular Biology, Stockholm (Sweden)

    2004-09-15

    The risk assessments of dioxins and dioxin-like PCBs performed by WHO and EU lead to major concerns. The tolerable daily intake for humans has been assessed to be within the range of human exposures occurring in the general population today. Dioxins are known to adversely impair reproduction and affect development of reproductive organs, as well as the early development of the immune and the nervous systems. The Aryl hydrocarbon Receptor (AhR) mediates most toxic effects of dioxins, such as 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD) and PCBs. In order to study the mechanisms of toxicity of ligands of the Ah receptor we have created a transgenic mouse model expressing a constitutively active Ah receptor (CA-AhR). The mutant Ah receptor is expressed and functionally active in most (or all) organs. Consequently, the CA-AhR mice show several of the well-known effects of dioxin exposure. Since the CA-AhR is continuously active at a relatively low level and from early development, this model resembles the human exposure scenario and is thus suitable for studies on mechanisms of action of Ah receptor ligands.

  19. Polimorfismos en los genes de desintoxicación CYP1A1, CYP2E1, GSTT1 y GSTM1 en la susceptibilidad al cáncer gástrico

    Directory of Open Access Journals (Sweden)

    Auxiliadora González

    2004-09-01

    Full Text Available Las enzimas de las familias P450 y Glutation S-transferasa están relacionadas en la activación y desintoxicación de sustancias que podrían actuar como cancerígenas. Polimorfismos genéticos en estas enzimas han sido asociados con un incremento en el riesgo de desarrollar cáncer específicamente con un mayor riesgo de desarrollar cáncer gástrico. En esta investigación se estudió un grupo de costarricenses con alto riesgo de cáncer gástrico. Se estudiaron 31 individuos con cáncer gástrico, 51 controles normales confirmados por rayos X (serie gastroduenal de doble contraste o por endoscopía y 58 individuos con otras lesiones gástricas. Se estudiaron los polimorfismos de desintoxicación química CYP1A1 MspI y CYP2E1 PstI, los cuales presentan una mayor expresión enzimática y los polimorfismos de los genes GSTT1 y GSTM1 que carecen de un producto proteínico funcional y su relación con lesiones gástricas leves y cáncer gástrico. El ADN de los pacientes fue aislado a partir de leucocitos de sangre periférica. Los polimorfismos de los genes GSTT1 y GSTM1 fueron evaluados mediante un PCR múltiple y para los polimorfismos CYP2E1 PstI y CYP1A1 MspI se realizó un PCR seguido por la digestión con las enzimas de restricción PstI y MspI respectivamente. La prevalencia del polimorfismo CYP1A1 MspI, y de los polimorfismos GSTT1 y GSTM1 sin actividad enzimática, fue similar en los tres grupos estudiados (p=0.73, p=0.88 y p= 0.89 respectivamente. Los resultados sugieren que el alelo CYP2E1 Pst1 podría actuar como factor protector contra el cáncer gástrico (OR=0.09, IC al 95%: 0.01-0.83.Polymorphisms in detoxification genes CYP1A1, CYP2E1, GSTT1 and GSTM1 in gastric cancer susceptibility. Cytochrome P450 (CYP and glutathione S-transferase (GST enzymes are involved in activation and detoxification of many potential carcinogens. Genetic polymorphisms in those enzymes have been found to influence the interindividual susceptibility to

  20. Optical isomers of dihydropyridine calcium channel blockers display enantiospecific effects on the expression and enzyme activities of human xenobiotics-metabolizing cytochromes P450.

    Science.gov (United States)

    Štěpánková, Martina; Krasulová, Kristýna; Dořičáková, Aneta; Kurka, Ondřej; Anzenbacher, Pavel; Dvořák, Zdeněk

    2016-11-16

    Dihydropyridine calcium channel blockers (CCBs) are used as anti-hypertensives and in the treatment of angina pectoris. Structurally, CCBs have at least one chiral center in the molecule, thereby existing in two or more different enantiomers. In the current paper we examined effects of benidipine, felodipine and isradipine enantiomers on the expression and enzyme activities of human xenobiotics-metabolizing cytochromes P450. All CCBs dose-dependently activated aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR), as revealed by gene reporter assays. Activation of AhR, but not PXR, was enantiospecific. Consistently, CCBs induced CYP1A1 and CYP1A2 mRNAs, but not protein, in human hepatocytes and HepG2 cells, with following pattern: benidipine (-)>(+), isradipine (-)>(+) and felodipine (+)>(-). All CCBs induced CYP2A6, CYP2B6 and CYP3A4 mRNA and protein in human hepatocytes, and there were not differences between the enantiomers. All CCBs transformed AhR in its DNA-binding form, as revealed by electromobility shift assay. Tested CCBs inhibited enzyme activities of CYP3A4 (benidipine (+)>(-); felodipine (-)>(+); isradipine (-)-(+)) and CYP2C9 (benidipine (-)>(+); felodipine (+)>(-); isradipine (-)>(+)). The data presented here might be of toxicological and clinical importance.

  1. Areca nut components affect COX-2, cyclin B1/cdc25C and keratin expression, PGE2 production in keratinocyte is related to reactive oxygen species, CYP1A1, Src, EGFR and Ras signaling.

    Directory of Open Access Journals (Sweden)

    Mei-Chi Chang

    Full Text Available Chewing of betel quid (BQ increases the risk of oral cancer and oral submucous fibrosis (OSF, possibly by BQ-induced toxicity and induction of inflammatory response in oral mucosa.Primary gingival keratinocytes (GK cells were exposed to areca nut (AN components with/without inhibitors. Cytotoxicity was measured by 3-(4,5-dimethyl- thiazol- 2-yl-2,5-diphenyl-tetrazolium bromide (MTT assay. mRNA and protein expression was evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR and western blotting. PGE2/PGF2α production was measured by enzyme-linked immunosorbent assays.Areca nut extract (ANE stimulated PGE2/PGF2α production, and upregulated the expression of cyclooxygenase-2 (COX-2, cytochrome P450 1A1 (CYP1A1 and hemeoxygenase-1 (HO-1, but inhibited expression of keratin 5/14, cyclinB1 and cdc25C in GK cells. ANE also activated epidermal growth factor receptor (EGFR, Src and Ras signaling pathways. ANE-induced COX-2, keratin 5, keratin 14 and cdc25C expression as well as PGE2 production were differentially regulated by α-naphthoflavone (a CYP 1A1/1A2 inhibitor, PD153035 (EGFR inhibitor, pp2 (Src inhibitor, and manumycin A (a Ras inhibitor. ANE-induced PGE2 production was suppressed by piper betle leaf (PBL extract and hydroxychavicol (two major BQ components, dicoumarol (aQuinone Oxidoreductase--NQO1 inhibitor and curcumin. ANE-induced cytotoxicity was inhibited by catalase and enhanced by dicoumarol, suggesting that AN components may contribute to the pathogenesis of OSF and oral cancer via induction of aberrant differentiation, cytotoxicity, COX-2 expression, and PGE2/PGF2α production.CYP4501A1, reactive oxygen species (ROS, EGFR, Src and Ras signaling pathways could all play a role in ANE-induced pathogenesis of oral cancer. Addition of PBL into BQ and curcumin consumption could inhibit the ANE-induced inflammatory response.

  2. Role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to organophosphate pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Satyender [Division of Biochemistry and Biotechnology, National Centre for Disease Control 22, Sham Nath Marg, Delhi-110054 (India); Kumar, Vivek [Environmental Biochemistry and Molecular Biology laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital, University of Delhi, Dilshad Garden, Delhi-110095 (India); Vashisht, Kapil; Singh, Priyanka [Division of Biochemistry and Biotechnology, National Centre for Disease Control 22, Sham Nath Marg, Delhi-110054 (India); Banerjee, Basu Dev, E-mail: banerjeebd@hotmail.com [Environmental Biochemistry and Molecular Biology laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital, University of Delhi, Dilshad Garden, Delhi-110095 (India); Rautela, Rajender Singh; Grover, Shyam Sunder; Rawat, Devendra Singh; Pasha, Syed Tazeen [Division of Biochemistry and Biotechnology, National Centre for Disease Control 22, Sham Nath Marg, Delhi-110054 (India); Jain, Sudhir Kumar [Centre for Epidemiology and Parasitic Diseases, National Centre for Disease Control 22, Sham Nath Marg, Delhi-110054 (India); Rai, Arvind [Division of Biochemistry and Biotechnology, National Centre for Disease Control 22, Sham Nath Marg, Delhi-110054 (India)

    2011-11-15

    Organophosphate pesticides (OPs) are primarily metabolized by several xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticide-exposed workers. The present study was designed to determine the role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to OPs. We examined 284 subjects including 150 workers occupationally exposed to OPs and 134 normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using PCR-RFLP. The results revealed that the PONase activity toward paraoxonase and AChE activity was found significantly lowered in workers as compared to control subjects (p < 0.001). Workers showed significantly higher DNA damage compared to control subjects (14.37 {+-} 2.15 vs. 6.24 {+-} 1.37 tail% DNA, p < 0.001). Further, the workers with CYP2D6*3 PM and PON1 (QQ and MM) genotypes were found to have significantly higher DNA damage when compared to other genotypes (p < 0.05). In addition, significant increase in DNA damage was also observed in workers with concomitant presence of certain CYP2D6 and PON1 (Q192R and L55M) genotypes which need further extensive studies. In conclusion, the results indicate that the PON1 and CYP2D6 genotypes can modulate DNA damage elicited by some OPs possibly through gene-environment interactions. -- Highlights: Black-Right-Pointing-Pointer Role of CYP1A1, CYP3A5, CYP2C, CYP2D6 and PON1 genotypes on DNA damage. Black-Right-Pointing-Pointer Workers exposed to some OPs demonstrated increased DNA damage. Black-Right-Pointing-Pointer CYP2D6 *3 PM and PON1 (Q192R and L55M) genotypes are associated with DNA damage. Black-Right-Pointing-Pointer Concomitant presence of certain CYP2D6 and PON1 genotypes can increase DNA damage.

  3. Characterization of the structural determinants required for potent mechanism-based inhibition of human cytochrome P450 1A1 by cannabidiol.

    Science.gov (United States)

    Yamaori, Satoshi; Okushima, Yoshimi; Yamamoto, Ikuo; Watanabe, Kazuhito

    2014-05-25

    We previously demonstrated that cannabidiol (CBD) was a potent mechanism-based inhibitor of human cytochrome P450 1A1 (CYP1A1). However, the moiety of CBD that contributes to the potent mechanism-based inhibition of human CYP1A1 remains unknown. Thus, the effects of compounds structurally related to CBD on CYP1A1 activity were examined with recombinant human CYP1A1 in order to characterize the structural requirements for potent inactivation by CBD. When preincubated in the presence of NADPH for 20min, olivetol, which corresponds to the pentylresorcinol moiety of CBD, enhanced the inhibition of the 7-ethoxyresorufin O-deethylase activity of CYP1A1. In contrast, d-limonene, which corresponds to the terpene moiety of CBD, failed to inhibit CYP1A1 activity in a metabolism-dependent manner. Pentylbenzene, which lacks two free phenolic hydroxyl groups, also did not enhance CYP1A1 inhibition. On the other hand, preincubation of the CBD-2'-monomethyl ether (CBDM) and CBD-2',6'-dimethyl ether (CBDD) enhanced the inhibition of CYP1A1 activity. Inhibition by cannabidivarin (CBDV), which possessed a propyl side chain, was strongly potentiated by its preincubation. Orcinol, which has a methyl group, augmented CYP1A1 inhibition, whereas its derivative without an alkyl side chain, resorcinol, did not exhibit any metabolism-dependent inhibition. The preincubation of CBD-hydroxyquinone did not markedly enhance CYP1A1 inhibition. We further confirmed that olivetol, CBDM, CBDD, CBDV, and orcinol, as well as CBD (kinact=0.215min(-1)), inactivated CYP1A1 activity; their kinact values were 0.154, 0.0638, 0.0643, 0.226, and 0.0353min(-1), respectively. These results suggest that the methylresorcinol structure in CBD may have structurally important roles in the inactivation of CYP1A1.

  4. Role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to organophosphate pesticides.

    Science.gov (United States)

    Singh, Satyender; Kumar, Vivek; Vashisht, Kapil; Singh, Priyanka; Banerjee, Basu Dev; Rautela, Rajender Singh; Grover, Shyam Sunder; Rawat, Devendra Singh; Pasha, Syed Tazeen; Jain, Sudhir Kumar; Rai, Arvind

    2011-11-15

    Organophosphate pesticides (OPs) are primarily metabolized by several xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticide-exposed workers. The present study was designed to determine the role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to OPs. We examined 284 subjects including 150 workers occupationally exposed to OPs and 134 normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using PCR-RFLP. The results revealed that the PONase activity toward paraoxonase and AChE activity was found significantly lowered in workers as compared to control subjects (pdamage compared to control subjects (14.37±2.15 vs. 6.24±1.37 tail% DNA, pdamage when compared to other genotypes (pdamage was also observed in workers with concomitant presence of certain CYP2D6 and PON1 (Q192R and L55M) genotypes which need further extensive studies. In conclusion, the results indicate that the PON1 and CYP2D6 genotypes can modulate DNA damage elicited by some OPs possibly through gene-environment interactions. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts.

    Science.gov (United States)

    Ding, Xinxin; Kaminsky, Laurence S

    2003-01-01

    Cytochrome P450 (CYP) enzymes in extrahepatic tissues often play a dominant role in target tissue metabolic activation of xenobiotic compounds. They may also determine drug efficacy and influence the tissue burden of foreign chemicals or bioavailability of therapeutic agents. This review focuses on xenobiotic-metabolizing CYPs of the human respiratory and gastrointestinal tracts, including the lung, trachea, nasal respiratory and olfactory mucosa, esophagus, stomach, small intestine, and colon. Many CYPs are expressed in one or more of these organs, including CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP2F1, CYP2J2, CYP2S1, CYP3A4, CYP3A5, and CYP4B1. Of particular interest are the preferential expression of certain CYPs in the respiratory tract and the regional differences in CYP expression profile in different parts of the gastrointestinal tract. Current research activities on the characterization of CYP expression, function, and regulation in these tissues, as well as future research needs, are discussed.

  6. Human hepatic cytochrome P450-specific metabolism of the organophosphorus pesticides methyl parathion and diazinon.

    Science.gov (United States)

    Ellison, Corie A; Tian, Yuan; Knaak, James B; Kostyniak, Paul J; Olson, James R

    2012-01-01

    Organophosphorus pesticides (OPs) are a public health concern due to their worldwide use and documented human exposures. Phosphorothioate OPs are metabolized by cytochrome P450s (P450s) through either a dearylation reaction to form an inactive metabolite, or through a desulfuration reaction to form an active oxon metabolite, which is a potent cholinesterase inhibitor. This study investigated the rate of desulfuration (activation) and dearylation (detoxification) of methyl parathion and diazinon in human liver microsomes. In addition, recombinant human P450s were used to determine the P450-specific kinetic parameters (K(m) and V(max)) for each compound for future use in refining human physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models of OP exposure. The primary enzymes involved in bioactivation of methyl parathion were CYP2B6 (K(m) = 1.25 μM; V(max) = 9.78 nmol · min(-1) · nmol P450(-1)), CYP2C19 (K(m) = 1.03 μM; V(max) = 4.67 nmol · min(-1) · nmol P450(-1)), and CYP1A2 (K(m) = 1.96 μM; V(max) = 5.14 nmol · min(-1) · nmol P450(-1)), and the bioactivation of diazinon was mediated primarily by CYP1A1 (K(m) = 3.05 μM; V(max) = 2.35 nmol · min(-1) · nmol P450(-1)), CYP2C19 (K(m) = 7.74 μM; V(max) = 4.14 nmol · min(-1) · nmol P450(-1)), and CYP2B6 (K(m) = 14.83 μM; V(max) = 5.44 nmol · min(-1) · nmol P450(-1)). P450-mediated detoxification of methyl parathion only occurred to a limited extent with CYP1A2 (K(m) = 16.8 μM; V(max) = 1.38 nmol · min(-1) · nmol P450(-1)) and 3A4 (K(m) = 104 μM; V(max) = 5.15 nmol · min(-1) · nmol P450(-1)), whereas the major enzyme involved in diazinon detoxification was CYP2C19 (K(m) = 5.04 μM; V(max) = 5.58 nmol · min(-1) · nmol P450(-1)). The OP- and P450-specific kinetic values will be helpful for future use in refining human PBPK/PD models of OP exposure.

  7. Influence of Jinlingzi powder with different compatibility on activity of cytochrome P1A2 from rat liver microsomes%金铃子散不同配比方对大鼠肝药酶CYP1A2活性的影响

    Institute of Scientific and Technical Information of China (English)

    成龙; 王怡薇; 杨庆; 王岚; 王彦礼; 梁日欣; 杨伟鹏; 王伟; 胡楠; 殷小杰; 翁小刚

    2012-01-01

    To illustrate the compability rule of Jinlingizi powder, by investigating the effects of Jinlingzi Powder with different compatibility on the enzymatic activity of cytochrome PI A2 ( CYP1A2) from rat liver microsome. The different compability of Jinlingizi powder is designed, based on the orthogonal array L, ( 34 ). In vitro test, rat liver microsomes incubation system is applied to detect the 50% inhibitory concentraton of Jinlingzi powder with different compatibility to cytochrome P1A2 (CYP1A2) enzyme. In vivo experiments , rats is treated orally with the different compability of Jinlingizi powder for 5 days, then be injected with probe drug phenacetin. The biosample from liver tissue is obtained by microdialysis probe, then analysisd by HPLC. The concentration-time data are modulated by software WinNonlin. IC50 data show no significant inhibitory activty to cytochrome PI A2. Acetaminophen and phenacetin PK parameters indicate that the different compability of Jinlingizi powder can modulate the CYP 1A2 mediated metabolism, which is associate with the compatibility of Jinlingzi powder.%目的:通过比较金铃子散不同配比方对大鼠肝药酶CYPI A2活性的影响,探讨其配伍规律.方法:按L9(34)正交表,设计9个不同配比组方.体外实验采用大鼠肝药酶孵育体系,测定不同配比方对CYP1 A2的半数抑制浓度(IC50);体内实验采用大鼠口服金铃子散不同配比方5d后注射探针药物非那西丁,通过微透析探针采集肝脏部位样品,HPLC测定非那西丁及其代谢物对乙酰氨基酚浓度,winNonlin软件统计拟合药代参数.结果:川楝子、延胡索单味提取物和配比方1~9对肝药酶CYP1A2的IC50分别为(0.025 2±0.005 2),(0.012 1±0.007 9),(0.091 9±0.015 0),(0.071 9±0.005 3),(0.028 2±0.004 5),(0.075 4±0.015 5),(0.062 8±0.003 3),(0.091 9±0.015 0),(0.197 6±0.027 3),(0.159 1±0.008 1),(0.131 1±0.008 5)g· L-1,无显著抑制酶CYP1 A2活性.体内实验,药代参数显示金铃子

  8. Mangifera indica L. extract and mangiferin modulate cytochrome P450 and UDP-glucuronosyltransferase enzymes in primary cultures of human hepatocytes.

    Science.gov (United States)

    Rodeiro, Idania; José Gómez-Lechón, M; Perez, Gabriela; Hernandez, Ivones; Herrera, José Alfredo; Delgado, Rene; Castell, José V; Teresa Donato, M

    2013-05-01

    The aqueous stem bark extract of Mangifera indica L. (MSBE) has been reported to have antioxidant, anti-inflammatory and analgesic properties. In previous studies, we showed that MSBE and mangiferin, its main component, lower the activity of some cytochrome P-450 (P450) enzymes in rat hepatocytes and human liver microsomes. In the present study, the effects of MSBE and mangiferin on several P450 enzymes and UDP-glucuronosyltransferases (UGTs) in human-cultured hepatocytes have been examined. After hepatocytes underwent a 48-h treatment with sub-cytotoxic concentrations of the products (50-250 µg/mL), a concentration-dependent decrease of the activity of the five P450 enzymes measured (CYP1A2, 2A6, 2C9, 2D6 and 3A4) was observed. For all the activities, a reduction of at least 50% at the highest concentration (250 µg/mL) was observed. In addition, UGT activities diminished. MSBE considerably reduced UGT1A9 activity (about 60% at 250 µg/mL) and lesser effects on the other UGTs. In contrast, 250 µg/mL mangiferin had greater effects on UGT1A1 and 2B7 than on UGT1A9 (about 55% vs. 35% reduction, respectively). Quantification of specific mRNAs revealed reduced CYP3A4 and 3A5 mRNAs content, and an increase in CYP1A1, CYP1A2, UGT1A1 and UGT1A9 mRNAs. No remarkable effects on the CYP2A6, 2B6, 2C9, 2C19, 2D6 and 2E1 levels were observed. Our results suggest that the activity and/or expression of major P450 and UGT enzymes is modulated by MSBE and that potential herb-drugs interactions could arise after a combined intake of this extract with conventional medicines. Therefore, the potential safety risks of this natural product derived by altering the ADMET properties of co-administered drugs should be examined.

  9. QUANTITATION OF CYP1A1 AND 1B1 MRNA IN POLYCYCLIC AROMATIC HYDROCARBON-TREATED HUMAN T-47D AND HEPG2 CELLS BY A MODIFIED BDNA ASSAY USING FLUORESCENCE DETECTION. (R827180)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. Aloe vera inhibits proliferation of human breast and cervical cancer cells and acts synergistically with cisplatin.

    Science.gov (United States)

    Hussain, Arif; Sharma, Chhavi; Khan, Saniyah; Shah, Kruti; Haque, Shafiul

    2015-01-01

    Many of the anti-cancer agents currently used have an origin in natural sources including plants. Aloe vera is one such plant being studied extensively for its diverse health benefits, including cancer prevention. In this study, the cytotoxic potential of Aloe vera crude extract (ACE) alone or in combination with cisplatin in human breast (MCF-7) and cervical (HeLa) cancer cells was studied by cell viability assay, nuclear morphological examination and cell cycle analysis. Effects were correlated with modulation of expression of genes involved in cell cycle regulation, apoptosis and drug metabolism by RT-PCR. Exposure of cells to ACE resulted in considerable loss of cell viability in a dose- and time-dependent fashion, which was found to be mediated by through the apoptotic pathway as evidenced by changes in the nuclear morphology and the distribution of cells in the different phases of the cell cycle. Interestingly, ACE did not have any significant cytotoxicity towards normal cells, thus placing it in the category of safe chemopreventive agent. Further, the effects were correlated with the downregulation of cyclin D1, CYP 1A1, CYP 1A2 and increased expression of bax and p21 in MCF-7 and HeLa cells. In addition, low dose combination of ACE and cisplatin showed a combination index less than 1, indicating synergistic growth inhibition compared to the agents applied individually. In conclusion, these results signify that Aloe vera may be an effective anti-neoplastic agent to inhibit cancer cell growth and increase the therapeutic efficacy of conventional drugs like cispolatin. Thus promoting the development of plant-derived therapeutic agents appears warranted for novel cancer treatment strategies.

  11. Arecoline inhibits the 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cytochrome P450 1A1 activation in human hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Eddy Essen [Lab. of Molecular Toxicology, Div. of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan (China); Miao Zhifeng [Lab. of Molecular Toxicology, Div. of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan (China); Lee, W.-J. [Dept. of Environmental Engineering, National Cheng Kung Univ., Tainan 701, Taiwan (China)]|[Sustainable Environment Research Center, National Cheng Kung Univ., Tainan 701, Taiwan (China); Chao, H.-R. [Dept. of Environmental Science and Engineering, National Pingtung Univ. of Science and Technology, Pingtung 912, Taiwan (China); Li, Lih-Ann [Lab. of Molecular Toxicology, Div. of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan (China); Wang, Y.-F. [Dept. of Chemical Engineering, Chung Yuan Christian University, Chungli 320, Taiwan (China); Ko, Y.-C. [Lab. of Molecular Toxicology, Div. of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan (China)]|[Dept. of Public Health, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Tsai, F.-Y. [Lab. of Molecular Toxicology, Div. of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan (China); Yeh, S.C. [Lab. of Molecular Toxicology, Div. of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan (China); Tsou, T.-C. [Lab. of Molecular Toxicology, Div. of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan (China)]. E-mail: tctsou@nhri.org.tw

    2007-07-19

    In the present study, we investigated the effect of arecoline, a major areca nut alkaloid, on the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced activation of cytochrome P4501A1 (CYP1A1) in a human hepatoma cell line Huh-7. We treated Huh-7 cells with 10 nM TCDD in the presence of different concentrations of arecoline (50-300 {mu}M). Our results indicated that arecoline attenuated the TCDD-induced CYP1A1 enzyme activation with an inhibitory effect on cell proliferation. By using real-time RT-PCR, we demonstrated that arecoline inhibited the TCDD-induced activations of CYP1A1 and AhR repressor (AhRR) mRNA expression in a similar pattern. Our results revealed that arecoline inhibited AhR mRNA expression with no direct effect on CYP1A1 enzyme activity. Therefore, in our present study, the observed inhibitory effect of arecoline on CYP1A1 activation was not due to the up-regulation of AhRR or direct inhibitory effect on CYP1A1. Taken together, here we have demonstrated that arecoline attenuates the TCDD-induced CYP1A1 activation mainly via down-regulation of AhR expression in human hepatoma cells, suggesting the possible involvement of arecoline in the AhR-mediated metabolism of environmental toxicants in liver.

  12. Arecoline inhibits the 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cytochrome P450 1A1 activation in human hepatoma cells.

    Science.gov (United States)

    Chang, Eddy Essen; Miao, Zhi-Feng; Lee, Wen-Jhy; Chao, How-Ran; Li, Lih-Ann; Wang, Ya-Fen; Ko, Ying-Chin; Tsai, Feng-Yuan; Yeh, Szu Ching; Tsou, Tsui-Chun

    2007-07-19

    In the present study, we investigated the effect of arecoline, a major areca nut alkaloid, on the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced activation of cytochrome P4501A1 (CYP1A1) in a human hepatoma cell line Huh-7. We treated Huh-7 cells with 10nM TCDD in the presence of different concentrations of arecoline (50-300 microM). Our results indicated that arecoline attenuated the TCDD-induced CYP1A1 enzyme activation with an inhibitory effect on cell proliferation. By using real-time RT-PCR, we demonstrated that arecoline inhibited the TCDD-induced activations of CYP1A1 and AhR repressor (AhRR) mRNA expression in a similar pattern. Our results revealed that arecoline inhibited AhR mRNA expression with no direct effect on CYP1A1 enzyme activity. Therefore, in our present study, the observed inhibitory effect of arecoline on CYP1A1 activation was not due to the up-regulation of AhRR or direct inhibitory effect on CYP1A1. Taken together, here we have demonstrated that arecoline attenuates the TCDD-induced CYP1A1 activation mainly via down-regulation of AhR expression in human hepatoma cells, suggesting the possible involvement of arecoline in the AhR-mediated metabolism of environmental toxicants in liver.

  13. Effects of individual polychlorinated naphthalene (PCN) components of Halowax 1051 and two defined, artificial PCN mixtures on AHR and CYP1A1 protein expression, steroid secretion and expression of enzymes involved in steroidogenesis (CYP17, 17β-HSD and CYP19) in porcine ovarian follicles.

    Science.gov (United States)

    Barć, Justyna; Gregoraszczuk, Ewa Łucja

    2014-08-01

    In this study we tried to answer a question which component of Halowax 1051 is responsible for, observed in previously published study, androgenic effects of the mixture, and whether it is possible to draw conclusions about the action of mixtures by examining the effect of an indicator congener. Ovarian follicles were incubated with individual congeners of an artificial mixture for 6-24h. At the end of the incubation period, media were collected for determination of progesterone (P4), androstenedione (A4), testosterone (T) and estradiol (E2) levels by enzyme immunoassay, and follicles were retained for an examination of aryl hydrocarbon receptor (AHR), cytochrome p450 enzymes (CYP1A1, CYP17, CYP19), and 17β-hydroxysteroid dehydrogenase (17β-HSD) protein expression by Western blotting. CN73 in dose 50pg/ml after 6h had no effect and decreased AHR expression after 24h, while at dose 400pg/ml increased AHR protein expression after 6h of exposure which remained elevated after 24h. CN74 and CN75 at both concentrations tested (25 and 50pg/ml) stimulated AHR protein expression after 6h and decreased it after 24h of exposure. Individual congeners induced a rapid increase in CYP1A1 protein expression, with a rank order of efficacy of CN73>CN74=CN75. All congeners increased P4/A4 and T/E2 secretion ratios in association with a decrease in the A4/T ratio, pointing to androgenic and anti-estrogenic properties of PCNs in ovarian follicles. The most potent congener in this context was CN73. The effects of mixtures were comparable to those of CN74 and CN75, and were not as strong as those observed for CN73. Collectively, these data suggest antagonistic actions of single congeners in a mixture, indicating that the actions of a mixture cannot be predicted based on the actions of individual congeners.

  14. A mechanism-based mathematical model of aryl hydrocarbon receptor-mediated CYP1A induction in rats using beta-naphthoflavone as a tool compound.

    Science.gov (United States)

    Chen, Emile P; Chen, Liangfu; Ji, Yan; Tai, Guoying; Wen, Yuan H; Ellens, Harma

    2010-12-01

    β-Naphthoflavone (BNF) is a synthetic flavone that selectively and potently induces CYP1A enzymes via aryl hydrocarbon receptor activation. Mechanism-based mathematical models of CYP1A enzyme induction were developed to predict the time course of enzyme induction and quantitatively evaluate the interrelationship between BNF plasma concentrations, hepatic CYP1A1 and CYP1A2 mRNA levels, and CYP1A enzyme activity in rats in vivo. Male Sprague-Dawley rats received a continuous intravenous infusion of vehicle or 1.5 or 6 mg · kg(-1) · h(-1) BNF for 6 h, with blood and liver sampling. Plasma BNF concentrations were determined by liquid chromatography-tandem mass spectrometry. Hepatic mRNA levels of CYP1A1 and CYP1A2 were determined by TaqMan. Ethoxyresorufin O-deethylation was used to measure the increase in CYP1A enzyme activity as a result of induction. The induction of hepatic CYP1A1/CYP1A2 mRNA and CYP1A activity occurred within 2 h after BNF administration. This caused a rapid increase in metabolic clearance of BNF, resulting in plasma concentrations declining during the infusion. Overall, the enzyme induction models developed in this study adequately captured the time course of BNF pharmacokinetics, CYP1A1/CYP1A2 mRNA levels, and increases in CYP1A enzyme activity data for both dose groups simultaneously. The model-predicted degradation half-life of CYP1A enzyme activity is comparable with previously reported values. The present results also confirm a previous in vitro finding that CYP1A1 is the predominant contributor to CYP1A induction. These physiologically based models provide a basis for predicting drug-induced toxicity in humans from in vitro and preclinical data and can be a valuable tool in drug development.

  15. Study on the relationship between the gene polymorphisms of cytochrome P450 1A1 or glutathione transferase P1 and anti-tuberculosis drug-induced liver injury%CYP1 A1和 GSTP1基因多态性与抗结核药物性肝损伤的关系

    Institute of Scientific and Technical Information of China (English)

    贺蕾; 高丽; 史哲; 李世明; 张朋; 郑国颖; 李云; 胡泊; 冯福民

    2015-01-01

    Objective To retrospectively investigate the relationship be-tween the gene polymorphisms of cytochrome P450 1 A1 \\glutathione transferase P1 ( CYP1 A1 or GSTP1 ) and anti -tuberculosis drug -induced liver injury ( ADLI).Methods Total 127 cases and 127 con-trols were collected in 1∶1 match.Their exposure data of data and blood samples were collected. The genotypes were detected by polymerase chain reaction and restriction fragment length polymorphism technique ( PCR -RFLP ) method SPSS 17.0 software was used to do Logistic regression analysis on environmental factors and genotype univariate and multivariate analysis.Results The allele frequencies of gene CYP1 A1 genes in two groups had no statistical difference.While the frequencies of AA, AG and GG genotypes at Ile105 Val site of GSTP1 gene were 55.91%, 32.28%, 11.81% in case group and 70.08%, 26.77%, 3.15%in control group.The analysis demonstrated that the frequencies of GSTP1 gene Ile105 Val genotypes in case group were significantly higher than those in control group ( P<0.05 ) .Univariate Logistic re-gression analysis showed that alcohol was the risk factor of ADLI, and after the regulation of certain factor in multivariate analysis, the GG genotype at Ile105 Val site of GSTP1 gene was still the risk factor of ADLI.Conclusion The polymorphim of Ile105 Val site of GSTP1 gene is correlated with the occur-rence of ADLI and GG carriers are considered as risk population.%目的:分析细胞色素P4501A1(CYP1A1)和谷胱甘肽转移酶P1(GSTP1)基因多态性与抗结核药物性肝损伤( ADLI )的相关性。方法抗结核治疗致肝损伤的结核病患者127例为病例组,127例无肝损伤者为对照组,收集其环境因素暴露资料及静脉血。 CYP1A1基因Msp I位点和GSTP1基因 Ile105 Val位点多态性检测用聚合酶链反应限制性片段长度多态法( PCR-RFLP )。用SPSS 17.0软件对环境因素和基因型进行单因素和多因素条件Logistic

  16. Inhibition of human cytochrome P450 enzymes by the natural hepatotoxin safrole.

    Science.gov (United States)

    Ueng, Yune-Fang; Hsieh, Chih-Hang; Don, Ming-Jaw

    2005-05-01

    The hepatotoxin, safrole is a methylenedioxy phenyl compound, found in sassafras oil and certain other essential oils. Recombinant cytochrome P450 (CYP, P450) and human liver microsomes were studied to investigate the selective inhibitory effects of safrole on human P450 enzymes and the mechanisms of action. Using Escherichia coli-expressed human P450, our results demonstrated that safrole was a non-selective inhibitor of CYP1A2, CYP2A6, CYP2D6, CYP2E1, and CYP3A4 in the IC(50) order CYP2E1 Safrole strongly inhibited CYP1A2, CYP2A6, and CYP2E1 activities with IC(50) values less than 20 microM. Safrole caused competitive, non-competitive, and non-competitive inhibition of CYP1A2, CYP2A6 and CYP2E1 activities, respectively. The inhibitor constants were in the order CYP1A2 safrole strongly inhibited 7-ethoxyresorufin O-deethylation, coumarin hydroxylation, and chlorzoxazone hydroxylation activities. These results revealed that safrole was a potent inhibitor of human CYP1A2, CYP2A6, and CYP2E1. With relatively less potency, CYP2D6 and CYP3A4 were also inhibited.

  17. Inhibition of Cytochrome P450 by Propolis in Human Liver Microsomes.

    Science.gov (United States)

    Ryu, Chang Seon; Oh, Soo Jin; Oh, Jung Min; Lee, Ji-Yoon; Lee, Sang Yoon; Chae, Jung-Woo; Kwon, Kwang-Il; Kim, Sang Kyum

    2016-07-01

    Although propolis is one of the most popular functional foods for human health, there have been no comprehensive studies of herb-drug interactions through cytochrome P450 (CYP) inhibition. The purpose of this study was to determine the inhibitory effects of propolis on the activities of CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1 and 3A4 using pooled human liver microsomes (HLMs). Propolis inhibited CYP1A2, CYP2E1 and CYP2C19 with an IC50 value of 6.9, 16.8, and 43.1 μg/mL, respectively, whereas CYP2A6, 2B6, 2C9, 2D6, and 3A4 were unaffected. Based on half-maximal inhibitory concentration shifts between microsomes incubated with and without nicotinamide adenine dinucleotide phosphate, propolis-induced CYP1A2, CYP2C19, and CYP2E1 inhibition was metabolism-independent. To evaluate the interaction potential between propolis and therapeutic drugs, the effects of propolis on metabolism of duloxetine, a serotonin-norepinephrine reuptake inhibitor, were determined in HLMs. CYP1A2 and CYP2D6 are involved in hydroxylation of duloxetine to 4-hydroxy duloxetine, the major metabolite, which was decreased following propolis addition in HLMs. These results raise the possibility of interactions between propolis and therapeutic drugs metabolized by CYP1A2.

  18. Cytochrome P450 1A1 and 1B1 in human blood lymphocytes are not suitable as biomarkers of exposure to dioxin-like compounds: polymorphisms and interindividual variation in expression and inducibility.

    Science.gov (United States)

    van Duursen, Majorie B M; Sanderson, J Thomas; van den Berg, Martin

    2005-05-01

    Cytochrome P450 1A1 (CYP1A1) and 1B1 (CYP1B1) are phase I enzymes, the expression of which can be affected by many environmental compounds, including dioxins and dioxin-like compounds. Because CYP1A1 and CYP1B1 expression can easily be determined in peripheral blood lymphocytes, it is often suggested as biomarker of exposure to these compounds. In this study we investigated the interindividual differences in constitutive and induced CYP1A1-catalyzed ethoxyresorufin-O-deethylase (EROD) activity and CYP1A1 and CYP1B1 gene expression in human blood lymphocytes in a group of ten non-smoking females. Freshly isolated lymphocytes were cultured in medium containing the mitogen PHA and were exposed to the most potent dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or the less potent dioxin-like polychlorinated biphenyl 126 (PCB126). In addition, we determined the occurrence of the CYP1A1 MspI and CYP1B1 Leu432Val polymorphisms. All individuals showed a concentration-dependent increase of EROD activity by TCDD, which was significantly correlated with an increase in CYP1A1, but not CYP1B1 expression. The maximum induced EROD activity by TCDD was very different among the individuals, but the EC50 values were about the same. PCB126 also caused a concentration-dependent increase of EROD activity, but was a factor 100-1000 less potent than TCDD among the individuals. The allele frequencies for CYP1A1 MspI and CYP1B1 Leu432Val reflected a normal Caucasian population and in this study the polymorphisms had no apparent effect on the expression and activity of these enzymes. Our study shows a large interindividual variability in constitutive and induced EROD activity, and CYP1A1 and CYP1B1 expression in human lymphocytes. In addition, dioxin concentrations at which effects were observed in our in vitro study are about 10-fold higher than the human blood levels found in vivo, indicating that EROD activity and CYP1A1 and CYP1B1 expression in human lymphocytes might not be

  19. Effects of two novel sugar drug candidates on CYP450 isoforms in different sexed Chinese human liver microsome in vitro

    Institute of Scientific and Technical Information of China (English)

    SHI Jie; ZHANG Xin-hui; SU Jia-ru

    2008-01-01

    The sex-based differences between the effects of two novel sugar-based drug candidates, a sulfated polymannuroguluronate (SPMG-911) and an acidic oligosaccharide sugar chain compound (AOSC-971), on the enzymes CYP 1A2, CYP2E1 and CYP3A4 of Chinese human liver microsome were investigated. The results showed that neither SPMG-911 nor AOSC-971 have any effect on CYP3A4, AOSC-971 induced the CYP 2E1 in men but have no effect on CYP1A2, SPMG-911 inhibit the CYP1A2 also in men but have no effect on CYP2E1. The results are useful for their safety evaluation, as well as for the prediction of interdrug interactions associated with the two drugs.

  20. Novel Functional Association of Serine Palmitoyltransferase Subunit 1-A Peptide in Sphingolipid Metabolism with Cytochrome P4501A1 Transactivation and Proliferative Capacity of the Human Glioma LN18 Brain Tumor Cell Line

    Directory of Open Access Journals (Sweden)

    J. Stewart

    2006-09-01

    Full Text Available Some chemical modulators of cytochrome P4501A1, Cyp1A1, expression also perturb the activity of serine palmitoyltransferase, SPT, a heterodimeric protein responsible for catalyzing the first reaction in sphingolipid biosynthesis. The effect of altered SPT activity on Cyp1A1 expression has generally been attributed to changes in the composition of bioactive sphingolipids, generated downstream in the SPT metabolic pathway, but the precise mechanism remains poorly defined. A generally accepted model for chemical-induced transactivation of the Cyp1A1 gene involves intracellular signaling mediated by proteins including the arylhydrocarbon receptor, AhR, whose interaction with the 90 kilo Dalton heat shock protein, Hsp90, is essential for maintaining a high affinity ligandbinding receptor conformation. Because ligand-induced Cyp1A1 expression is important in the bioactivation of environmentally relevant compounds to genotoxic derivatives capable of perturbing cellular processes, binding to Hsp90 represents an important regulatory point in the cytotoxicity process. In the present study, based on evidence that indicates subunit 1 of serine palmitoyltransferase, SPT1, interacts with Hsp90, both ligand-induced Cyp1A1 transactivation and capacity for proliferation were evaluated using the wild type Glioma LN18 human brain cancer cell line and its recombinant counterparts expressing green fluorescent SPT1 fusion proteins. Exposure to the prototypical Cyp1A1 inducer, 3-methylcholanthrene, 3-MC, resulted in the translocation of SPT1 from a primarily cytoplasmic domain to sites of focal adhesion complexes. Immunolabel for Hsp90, which was dispersed throughout the cell, became primarily cytoplasmic, while the distribution of AhR remained unaffected. When compared to the wild type, cells transfected with recombinant SPT1-GFP vectors had significantly attenuated levels of 3-MC-induced Cyp1A1 mRNA, as determined by quantitative reverse transcription PCR. Although

  1. In vitro metabolism of genistein and tangeretin by human and murine cytochrome p450s

    DEFF Research Database (Denmark)

    Breinholt, Vibeke; Rasmussen, Salka; Brøsen, Kim

    2003-01-01

    Recombinant cytochrome P450 (CYP) 1A2, 3A4, 2C9 or 2D6 enzymes obtained from Escherichia coli and human liver microsomes samples were used to investigate the ability of human CYP enzymes to metabolize the two dietary flavonoids, genistein and tangeretin. Analysis of the metabolic profile from...

  2. Bioconversion of Mono- and Sesquiterpenoids by Recombinant Human Cytochrome P450 Monooxygenases

    NARCIS (Netherlands)

    Julsing, Mattijs K.; Fichera, Mario A.; Malz, Frank; Ebbelaar, Monique; Bos, Rein; Woerdenbag, Herman J.; Quax, Wim J.; Kayser, Oliver

    2008-01-01

    Cytochrome P450 monooxygenases play an important role in the biosynthesis and metabolism of terpenoids. We explored the potential of recombinant human liver cytochrome P450 monooxygenases CYP1A2, CYP2C9, and CYP3A4, heterologously expressed in Escherichia coli, to convert mono- and sesquiterpenoids

  3. Mammalian Cytochrome P450-Dependent Metabolism of Polychlorinated Dibenzo-p-dioxins and Coplanar Polychlorinated Biphenyls

    OpenAIRE

    Hideyuki Inui; Toshimasa Itoh; Keiko Yamamoto; Shin-Ichi Ikushiro; Toshiyuki Sakaki

    2014-01-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and coplanar polychlorinated biphenyls (PCBs) contribute to dioxin toxicity in humans and wildlife after bioaccumulation through the food chain from the environment. The authors examined human and rat cytochrome P450 (CYP)-dependent metabolism of PCDDs and PCBs. A number of human CYP isoforms belonging to the CYP1 and CYP2 families showed remarkable activities toward low-chlorinated PCDDs. In particular, human CYP1A1, CYP1A2, and CYP1B1 showed high ac...

  4. Expression of xenobiotic and steroid hormone metabolizing enzymes in human breast carcinomas.

    Science.gov (United States)

    Haas, Susanne; Pierl, Christiane; Harth, Volker; Pesch, Beate; Rabstein, Sylvia; Brüning, Thomas; Ko, Yon; Hamann, Ute; Justenhoven, Christina; Brauch, Hiltrud; Fischer, Hans-Peter

    2006-10-15

    The potential to metabolize endogenous and exogenous substances may influence breast cancer development and tumor growth. Therefore, the authors investigated the protein expression of Glutathione S-transferase (GST) isoforms and cytochrome P450 (CYP) known to be involved in the metabolism of steroid hormones and endogenous as well as exogenous carcinogens in breast cancer tissue to obtain new information on their possible role in tumor progression. Expression of GST pi, mu, alpha and CYP1A1/2, 1A2, 3A4/5, 1B1, 2E1 was assessed by immunohistochemistry for primary breast carcinomas of 393 patients from the German GENICA breast cancer collection. The percentages of positive tumors were 50.1 and 44.5% for GST mu and CYP2E1, and ranged from 13 to 24.7% for CYP1A2, GST pi, CYP1A1/2, CYP3A4/5, CYP1B1. GST alpha was expressed in 1.8% of tumors. The authors observed the following associations between strong protein expression and histopathological characteristics: GST expression was associated with a better tumor differentiation (GST mu, p = 0.018) and with reduced lymph node metastasis (GST pi, p = 0.02). In addition, GST mu expression was associated with a positive estrogen receptor and progesterone receptor status (p CYP1B1 was associated with poor tumor differentiation (p = 0.049). Our results demonstrate that the majority of breast carcinomas expressed xenobiotic and drug metabolizing enzymes. They particularly suggest that GST mu and pi expression may indicate a better prognosis and that strong CYP3A4/5 and CYP1B1 expression may be key features of nonfavourable prognosis.

  5. Molecular mechanisms of cold-induced CYP1A activation in rat liver microsomes.

    Science.gov (United States)

    Perepechaeva, Maria; Kolosova, Natalia; Grishanova, Alevtina

    2011-12-01

    Cytochrome P4501A (the CYP1A1 and CYP1A2 enzymes) is known to metabolize anthropogenic xenobiotics to carcinogenic and mutagenic compounds. CYP1A1 transcriptional activation is regulated via the aryl hydrocarbon receptor (AhR)-dependent signal transduction pathway. CYP1A2 activation may occur through the AhR-dependent or AhR-independent signal transduction pathways. We used male Wistar rats to explore possible mechanisms of CYP1A activation induced by exposure to cold and the effects of the protein-tyrosine kinase inhibitors genistein, herbimycin A, and geldanamycin on the properties of hepatic CYP1A1 and CYP1A2 proteins following exposure to cold and to classic CYP1A inducers. The molecular mechanisms of cold-induced CYP1A1 and CYP1A2 activation are different. The CYP1A2 activation apparently occurs at the post-transcriptional level. The CYP1A1 activation, whether caused by exposure to cold or by classic CYP1A inducers, is AhR-dependent and occurs at the transcriptional level. Protein tyrosine kinase inhibitors have no effect on benzo(a)pyrene-induced CYP1A expression but alter cold-induced CYP1A1 activity and the CYP1A1 mRNA level. Thus, treatment with herbimycin A or geldanamycin leads to an increase in CYP1A1 activity, while treatment with genistein increases CYP1A1 mRNA expression and decreases CYP1A2 activity. These data elucidate the molecular mechanisms of cold-induced CYP1A activation and the role of protein kinases in the regulation of CYP1A during exposure to cold. Our results can also help identify the differences between the molecular mechanisms underlying the effects of the classic CYP1A inducers and the effects of cooling.

  6. Basal and inducible CYP1 mRNA quantitation and protein localization throughout the mouse gastrointestinal tract.

    Science.gov (United States)

    Uno, Shigeyuki; Dragin, Nadine; Miller, Marian L; Dalton, Timothy P; Gonzalez, Frank J; Nebert, Daniel W

    2008-02-15

    The CYP1A1, CYP1A2, and CYP1B1 enzymes are inducible by benzo[a]pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD); metabolism of BaP by these enzymes leads to electrophilic intermediates and genotoxicity. Throughout the gastrointestinal (GI) tract, we systematically compared basal and inducible levels of the CYP1 mRNAs by Q-PCR, and localized the CYP1 proteins by immunohistochemistry. Cyp1(+/+) wild-type were compared with the Cyp1a1(-/-), Cyp1a2(-/-), and Cyp1b1(-/-) single-knockout and Cyp1a1/1b1(-/-) and Cyp1a2/1b1(-/-) double-knockout mice. Oral BaP was compared with intraperitoneal TCDD. In general, maximal CYP1A1 mRNA levels were 3-10 times greater than CYP1B1, which were 3-10 times greater than CYP1A2 mRNA levels. Highest inducible concentrations of CYP1A1 and CYP1A2 occurred in proximal small intestine, whereas the highest basal and inducible levels of CYP1B1 mRNA occurred in esophagus, forestomach, and glandular stomach. Ablation of either Cyp1a2 or Cyp1b1 gene resulted in a compensatory increase in CYP1A1 mRNA - but only in small intestine. Also in small intestine, although BaP- and TCDD-mediated CYP1A1 inductions were roughly equivalent, oral BaP-mediated CYP1A2 mRNA induction was approximately 40-fold greater than TCDD-mediated CYP1A2 induction. CYP1B1 induction by TCDD in Cyp1(+/+) and Cyp1a2(-/-) mice was 4-5 times higher than that by BaP; however, in Cyp1a1(-/-) animals CYP1B1 induction by TCDD or BaP was approximately equivalent. CYP1A1 and CYP1A2 proteins were generally localized nearer to the lumen than CYP1B1 proteins, in both squamous and glandular epithelial cells. These GI tract data suggest that the inducible CYP1A1 enzyme, both in concentration and in location, might act as a "shield" in detoxifying oral BaP and, hence, protecting the animal.

  7. Enzyme kinetic study of a new cardioprotective agent, KR-32570 using human liver microsomes and recombinant CYP isoforms.

    Science.gov (United States)

    Kim, Hyojin; Seo, Kyung-Ah; Kim, Hyunmi; Lee, Hye Suk; Lee, Choong-Hwan; Shin, Jae-Gook; Liu, Kwang-Hyeon

    2007-04-01

    KR-32570 (5-(2-Methoxy-5-chlorophenyl)furan-2-ylcarbonyl)guanidine) is a new cardioprotective agent for preventing ischemia-reperfusion injury. Human liver microsomal incubation of KR-32570 in the presence of NADPH resulted in the formation of two metabolites, hydroxy-KR-32570 and O-desmethyl-KR-32570. In this study, a kinetic analysis of the metabolism of two metabolites from KR-32570 was performed in human liver microsomes, and recombinant CYP1A2, and CYP3A4. The metabolism for hydroxy- and O-desmethyl-KR-32570 formation from KR-32570 by human liver microsomes was best described by a Michaelis-Menten equation and a Hill equation, respectively. The Cl(int) values of hydroxy- and O-desmethyl-KR-32570 formation were similar to each other (0.03 vs 0.04 microL/min/pmol CYP, respectively). CYP3A4 mediated the formation of hydroxy-KR-32570 from KR-32570 with Cl(int) = 0.24 microL/min/pmol CYP3A4. The intrinsic clearance for O-desmethyl-KR-32570 formation by CYP1A2 was 0.83 AL/min/pmol CYP1A2. These findings suggest that CYP3A4 and CYP1A2 enzymes are major enzymes contributing to the metabolism of KR-32570.

  8. Comparison of metabolism of sesamin and episesamin by drug-metabolizing enzymes in human liver.

    Science.gov (United States)

    Yasuda, Kaori; Ikushiro, Shinichi; Wakayama, Shuto; Itoh, Toshimasa; Yamamoto, Keiko; Kamakura, Masaki; Munetsuna, Eiji; Ohta, Miho; Sakaki, Toshiyuki

    2012-10-01

    Sesamin and episesamin are two epimeric lignans that are found in refined sesame oil. Commercially available sesamin supplements contain both sesamin and episesamin at an approximate 1:1 ratio. Our previous study clarified the sequential metabolism of sesamin by cytochrome P450 (P450) and UDP-glucuronosyltransferase in human liver. In addition, we revealed that sesamin caused a mechanism-based inhibition (MBI) of CYP2C9, the P450 enzyme responsible for sesamin monocatecholization. In the present study, we compared the metabolism and the MBI of episesamin with those of sesamin. Episesamin was first metabolized to the two epimers of monocatechol, S- and R-monocatechols in human liver microsomes. The P450 enzymes responsible for S- and R-monocatechol formation were CYP2C9 and CYP1A2, respectively. The contribution of CYP2C9 was much larger than that of CYP1A2 in sesamin metabolism, whereas the contribution of CYP2C9 was almost equal to that of CYP1A2 in episesamin metabolism. Docking of episesamin to the active site of CYP1A2 explained the stereoselectivity in CYP1A2-dependent episesamin monocatecholization. Similar to sesamin, the episesamin S- and R-monocatechols were further metabolized to dicatechol, glucuronide, and methylate metabolites in human liver; however, the contribution of each reaction was significantly different between sesamin and episesamin. The liver microsomes from CYP2C19 ultra-rapid metabolizers showed a significant amount of episesamin dicatechol. In this study, we have revealed significantly different metabolism by P450, UDP-glucuronosyltransferase, and catechol-O-methyltransferase for sesamin and episesamin, resulting in different biological effects.

  9. Characterization of human cytochrome P450 enzymes involved in the metabolism of cyamemazine.

    Science.gov (United States)

    Arbus, Christophe; Benyamina, Amine; Llorca, Pierre-Michel; Baylé, Franck; Bromet, Norbert; Massiere, Frédéric; Garay, Ricardo P; Hameg, Ahcène

    2007-12-01

    Recombinant human liver microsomal enzymes of the cytochrome P450 family (CYP1A2, CYP2A6, CYP3A4, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1) were used to determine the metabolic fate of the antipsychotic anxiolytic agent cyamemazine. An LC/MS-MS tandem methodology was developed specifically for identifying the presence of cyamemazine and its metabolites in reaction media. All P450 enzymes investigated, with the exception of CYP2A6 and CYP2E1, degraded cyamemazine, albeit to a different extent, with CYP1A2, CYP2C8 and CYP2C19 being the most efficient (>80%). However, in microsomes prepared from native human hepatocytes, only relatively specific competitors (inhibitors and/or substrates) of CYP1A2, CYP2C8, CYP2C9 and CYP3A4 reduced notably the degradation cyamemazine. The main routes of cyamemazine biotransformation are N-mono-demethylation (CYP1A2, CYP3A4 and CYP2C8) and mono-oxidation (either S-oxidized or hydroxylated derivatives which could not be discriminated because characterized by the same mass value) by CYP1A2 and CYP2C9. Secondary metabolic routes yields N,N-di-demethylated and N-demethylated mono-oxidized products. Thus, under in vitro conditions, cyamemazine is extensively degraded by at least four distinct P450 enzymes, into two primary hydrophilic metabolites. These results suggest that cyamemazine detoxification process is unlikely to be significantly impaired by co-administration of therapeutic agents that are substrates of the CYP metabolic system.

  10. Sustained induction of cytochrome P4501A1 in human hepatoma cells by co-exposure to benzo[a]pyrene and 7H-dibenzo[c,g]carbazole underlies the synergistic effects on DNA adduct formation

    Energy Technology Data Exchange (ETDEWEB)

    Gábelová, Alena, E-mail: alena.gabelova@savba.sk [Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava (Slovakia); Poláková, Veronika [Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava (Slovakia); Prochazka, Gabriela [Department of Biosciences and Nutrition, Karolinska Institute, Novum, SE-141 83 Huddinge (Sweden); Department of Medical Epidemiology and Biostatistics, Karolinska Institute, SE-171 77 Stockholm (Sweden); Kretová, Miroslava; Poloncová, Katarína; Regendová, Eva; Luciaková, Katarína [Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava (Slovakia); Segerbäck, Dan [Department of Biosciences and Nutrition, Karolinska Institute, Novum, SE-141 83 Huddinge (Sweden)

    2013-08-15

    To gain a deeper insight into the potential interactions between individual aromatic hydrocarbons in a mixture, several benzo[a]pyrene (B[a]P) and 7H-dibenzo[c,g]carbazole (DBC) binary mixtures were studied. The biological activity of the binary mixtures was investigated in the HepG2 and WB-F344 liver cell lines and the Chinese hamster V79 cell line that stably expresses the human cytochrome P4501A1 (hCYP1A1). In the V79 cells, binary mixtures, in contrast to individual carcinogens, caused a significant decrease in the levels of micronuclei, DNA adducts and gene mutations, but not in cell survival. Similarly, a lower frequency of micronuclei and levels of DNA adducts were found in rat liver WB-F344 cells treated with a binary mixture, regardless of the exposure time. The observed antagonism between B[a]P and DBC may be due to an inhibition of Cyp1a1 expression because cells exposed to B[a]P:DBC showed a decrease in Cyp1a1 mRNA levels. In human liver HepG2 cells exposed to binary mixtures for 2 h, a reduction in micronuclei frequency was also found. However, after a 24 h treatment, synergism between B[a]P and DBC was determined based on DNA adduct formation. Accordingly, the up-regulation of CYP1A1 expression was detected in HepG2 cells exposed to B[a]P:DBC. Our results show significant differences in the response of human and rat cells to B[a]P:DBC mixtures and stress the need to use multiple experimental systems when evaluating the potential risk of environmental pollutants. Our data also indicate that an increased expression of CYP1A1 results in a synergistic effect of B[a]P and DBC in human cells. As humans are exposed to a plethora of noxious chemicals, our results have important implications for human carcinogenesis. - Highlights: • B[a]P:DBC mixtures were less genotoxic in V79MZh1A1 cells than B[a]P and DBC alone. • An antagonism between B[a]P and DBC was determined in rat liver WB-F344 cells. • The inhibition of CYP1a1 expression by B[a]P:DBC mixture

  11. TLR2 Controls Intestinal Carcinogen Detoxication by CYP1A1

    DEFF Research Database (Denmark)

    Do, Khoa; Fink, Lisbeth Nielsen; Jensen, Thomas Elbenhardt;

    2012-01-01

    factor consisting of the arylhydrocarbon receptor (AHR) and the AHR nuclear translocator (ARNT). So far, no interference has been noted between the regulation of CYP1 and the activation of Toll-like receptor 2 (TLR2), which modulates the inflammatory response to bacterial cell wall components in immune...

  12. Effect of tetrachlorodibenzo-p-dioxin on the expression of cytochrome P4501A1 in human SZ95 sebocytes and its significance%四氯二苯并二恶英对SZ95人皮脂腺细胞细胞色素P4501A1表达的影响及其意义

    Institute of Scientific and Technical Information of China (English)

    余茜; 胡婷婷; 莫小辉; 章楚光; 夏隆庆; Christos C.Zouboulis; 鞠强

    2013-01-01

    目的 探讨环境污染物2,3,7,8-四氯二苯并二恶英(TCDD)影响人皮脂腺细胞的细胞色素P4501A1 (CYP1A1)分子信号途径及氯痤疮的发生机制.方法 实时荧光PCR研究10 nmol/L TCDD作用SZ95人皮脂腺细胞2h后CYP1A1 mRNA表达的变化;细胞免疫组化和斑点印迹法研究10 nmol/L TCDD作用SZ95人皮脂腺细胞3d后蛋白表达变化情况.结果 实时荧光PCR研究显示,CYP1A1 mRNA在SZ95人皮脂腺细胞呈低量表达,在10 nmol/L TCDD作用下,CYP1A1 mRNA表达增强了5.622倍,差异有统计学意义(P<0.05).细胞免疫组化显示,CYP1A1蛋白在SZ95人皮脂腺细胞核及胞质中低量表达,在10 nmol/L TCDD作用下表达明显增强.斑点印迹法证实,10 nmol/LTCDD作用于SZ95人皮脂腺细胞3d后CYP1A1蛋白相对定量值(4.233±0.252)显著高于未加药的阴性对照组(0.123±0.208),差异有统计学意义(P<0.05).结论 CYP1A1 mRNA和蛋白在SZ95人皮脂腺细胞上呈低量表达,但在TCDD作用下表达被激活,体外证明CYP1A1是TCDD影响人皮脂腺细胞异常分化的AhR下游靶位基因之一.%Objective To estimate the effect of the enviromental pollutant 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD),a representative of the dioxin family,on the expression of cytochrome P4501A1 (CYP1A1) in cultured human immortalized SZ95 sebocytes in vitro,so as to improve understanding of the pathogenesis of chloracne.Methods SZ95 sebocytes were cultured with or without the presence of 10 nmol/L TCDD for two hours or three days.Real time fluorescence-based PCR was performed to quantify the mRNA expression of CYP1A1,immunohistochemistry and Western blot to determine the expression level of CYP1A1 protein,in the SZ95 cells.Chi-square test was done to compare the protein and mRNA expressions of CYP1A1 between untreated and treated SZ95 cells.Results Real time PCR showed that the mRNA expression of CYP1A1 was low in SZ95 sebocytes,and increased by 5.622 times after 2-hour treatment with TCDD(P

  13. Ultrastructural changes, increased oxidative stress, inflammation, and altered cardiac hypertrophic gene expressions in heart tissues of rats exposed to incense smoke.

    Science.gov (United States)

    Al-Attas, Omar S; Hussain, Tajamul; Ahmed, Mukhtar; Al-Daghri, Nasser; Mohammed, Arif A; De Rosas, Edgard; Gambhir, Dikshit; Sumague, Terrance S

    2015-07-01

    Incense smoke exposure has recently been linked to cardiovascular disease risk, heart rate variability, and endothelial dysfunction. To test the possible underlying mechanisms, oxidative stress, and inflammatory markers, gene expressions of cardiac hypertrophic and xenobiotic-metabolizing enzymes and ultrastructural changes were measured, respectively, using standard, ELISA-based, real-time PCR, and transmission electron microscope procedures in heart tissues of Wistar rats after chronically exposing to Arabian incense. Malondialdehyde, tumor necrosis alpha (TNF)-α, and IL-4 levels were significantly increased, while catalase and glutathione levels were significantly declined in incense smoke-exposed rats. Incense smoke exposure also resulted in a significant increase in atrial natriuretic peptide, brain natriuretic peptide, β-myosin heavy chain, CYP1A1 and CYP1A2 messenger RNAs (mRNAs). Rats exposed to incense smoke displayed marked ultrastructural changes in heart muscle with distinct cardiac hypertrophy, which correlated with the augmented hypertrophic gene expression as well as markers of cardiac damage including creatine kinase-myocardial bound (CK-MB) and lactate dehydrogenase (LDH). Increased oxidative stress, inflammation, altered cardiac hypertrophic gene expression, tissue damage, and architectural changes in the heart may collectively contribute to increased cardiovascular disease risk in individuals exposed to incense smoke. Increased gene expressions of CYP1A1 and CYP1A2 may be instrumental in the incense smoke-induced oxidative stress and inflammation. Thus, incense smoke can be considered as a potential environmental pollutant and its long-term exposure may negatively impact human health.

  14. CYP-specific bioactivation of four organophosphorothioate pesticides by human liver microsomes.

    Science.gov (United States)

    Buratti, Franca M; Volpe, Maria Teresa; Meneguz, Annarita; Vittozzi, Luciano; Testai, Emanuela

    2003-02-01

    The bioactivation of azinphos-methyl (AZIN), chlorpyrifos (CPF), diazinon (DIA), and parathion (PAR), four widely used organophosphorothioate (OPT) pesticides has been investigated in human liver microsomes (HLM). In addition, the role of human cytochrome P450 (CYPs) in OPT desulfuration at pesticide levels representative of human exposure have been defined by means of correlation and immunoinhibition studies. CYP-mediated oxon formation from the four OPTs is efficiently catalyzed by HLM, although showing a high variability (>40-fold) among samples. Two distinct phases were involved in the desulfuration of AZIN, DIA, and PAR, characterized by different affinity constants (K(mapp1) = 0.13-9 microM and K(mapp2) = 5- 269 microM). Within the range of CPF concentrations tested, only the high-affinity component was evidenced (K(mapp1) = 0.27-0.94 microM). Oxon formation in phenotyped individual HLM showed a significant correlation with CYP1A2-, 3A4-, and 2B6-related activities, at different levels depending on the OPT concentration. Anti-human CYP1A2, 2B6, and 3A4 antibodies significantly inhibited oxon formation, showing the same OPT concentration dependence. Our data indicated that CYP1A2 is mainly involved in OPT desulfuration at low pesticide concentrations, while the role of CYP3A4 is more significant to the low-affinity component of OPT bioactivation. The contribution of CYP2B6 to total hepatic oxon formation was relevant in a wide range of pesticide concentrations, being a very efficient catalyst of both the high- and low-affinity phase. These results suggest CYP1A2 and 2B6 as possible metabolic biomarkers of susceptibility to OPT toxic effect at the actual human exposure levels.

  15. Effects of Eupatilin and Jaceosidin on Cytochrome P450 Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Ji Hyun Jeong

    2010-09-01

    Full Text Available Eupatilin and jaceosidin are bioactive flavones found in the medicinal herbs of the genus Artemisia. These bioactive flavones exhibit various antioxidant, antiinflammatory, antiallergic, and antitumor activities. The inhibitory potentials of eupatilin and jaceosidin on the activities of seven major human cytochrome P450 enzymes in human liver microsomes were investigated using a cocktail probe assay. Eupatilin and jaceosidin potently inhibited CYP1A2-catalyzed phenacetin O-deethylation with 50% inhibitory concentration (IC50 values of 9.4 mM and 5.3 mM, respectively, and CYP2C9-catalyzed diclofenac 4-hydroxylation with IC50 values of 4.1 mM and 10.2 mM, respectively. Eupatilin and jaceosidin were also found to moderately inhibit CYP2C19-catalyzed [S]-mephenytoin 4¢-hydroxylation, CYP2D6-catalyzed bufuralol 1¢-hydroxylation, and CYP2C8-catalyzed amodiaquine N-deethylation. Kinetic analysis of human liver microsomes showed that eupatilin is a competitive inhibitor of CYP1A2 with a Ki value of 2.3 mM and a mixed-type inhibitor of CYP2C9 with a Ki value of 1.6 mM. Jaceosidin was shown to be a competitive inhibitor of CYP1A2 with a Ki value of 3.8 mM and a mixed-type inhibitor of CYP2C9 with Ki value of 6.4 mM in human liver microsomes. These in vitro results suggest that eupatilin and jaceosidin should be further examined for potential pharmacokinetic drug interactions in vivo due to inhibition of CYP1A2 and CYP2C9.

  16. Constitutive expression and activity of cytochrome P450 in conventional pigs.

    Science.gov (United States)

    Nielsen, Søren Drud; Bauhaus, Yvonne; Zamaratskaia, Galia; Junqueira, Matheus Antunes; Blaabjerg, Karoline; Petrat-Melin, Bjørn; Young, Jette Feveile; Rasmussen, Martin Krøyer

    2017-04-01

    Pigs have often been suggested to be a useful model for humans, when investigating CYP dependent events, like drug metabolism. However, comprehensive knowledge about the constitutive expression of the major CYP and corresponding transcription factors is limited. We compared the constitutive mRNA expression of aryl hydrocarbon receptor, constitutive androstane receptor and pregnane X receptor and CYP1A1, CYP1A2, CYP2A, CYP2E1 and CYP3A in liver, adipose tissue, muscle and small intestine in pigs, as well as the expression along the length of the small intestine and colon. Tissue samples were taken from female pigs, and analyzed for gene expression, as well as CYP dependent activity using qPCR and specific probe substrates, respectively. For all investigated transcription factors and CYPs the mRNA expression and activity was highest in the liver. CYP1A1 and CYP3A mRNA expression and activity was shown in all investigated tissues. Along the small intestine and colon the mRNA expression and activity of CYP1A1 and CYP3A was gradually decreased. The results demonstrated, similarity to that reported for humans, and hence adds to the use of pigs as a model for humans.

  17. EGF receptor signaling blocks aryl hydrocarbon receptor-mediated transcription and cell differentiation in human epidermal keratinocytes

    OpenAIRE

    Sutter, Carrie Hayes; Yin, Hong; Li, Yunbo; Mammen, Jennifer S.; Bodreddigari, Sridevi; Stevens, Gaylene; Cole, Judith A; Sutter, Thomas R.

    2009-01-01

    Dioxin is an extremely potent carcinogen. In highly exposed people, the most commonly observed toxicity is chloracne, a pathological response of the skin. Most of the effects of dioxin are attributed to its activation of the aryl hydrocarbon receptor (AHR), a transcription factor that binds to the Ah receptor nuclear translocator (ARNT) to regulate the transcription of numerous genes, including CYP1A1 and CYP1B1. In cultures of normal human epidermal keratinocytes dioxin accelerates cell diff...

  18. The Mitochondria-Targeted Antioxidant SkQ1 Downregulates Aryl Hydrocarbon Receptor-Dependent Genes in the Retina of OXYS Rats with AMD-Like Retinopathy

    Directory of Open Access Journals (Sweden)

    M. L. Perepechaeva

    2014-01-01

    Full Text Available The mitochondria-targeted antioxidant SkQ1 is a novel drug thought to retard development of age-related diseases. It has been shown that SkQ1 reduces clinical signs of retinopathy in senescence-accelerated OXYS rats, which are a known animal model of human age-related macular degeneration (AMD. The aim of this work was to test whether SkQ1 affects transcriptional activity of AhR (aryl hydrocarbon receptor and Nrf2 (nuclear factor erythroid 2-related factor 2, which are considered as AMD-associated genes in the retina of OXYS and Wistar rats. Our results showed that only AhR and AhR-dependent genes were sensitive to SkQ1. Dietary supplementation with SkQ1 decreased the AhR mRNA level in both OXYS and Wistar rats. At baseline, the retinal Cyp1a1 mRNA level was lower in OXYS rats. SkQ1 supplementation decreased the Cyp1a1 mRNA level in Wistar rats, but this level remained unchanged in OXYS rats. Baseline Cyp1a2 and Cyp1b1 mRNA expression was stronger in OXYS than in Wistar rats. In the OXYS strain, Cyp1a2 and Cyp1b1 mRNA levels decreased as a result of SkQ1 supplementation. These data suggest that the Cyp1a2 and Cyp1b1 enzymes are involved in the pathogenesis of AMD-like retinopathy of OXYS rats and are possible therapeutic targets of SkQ1.

  19. Mammalian Cytochrome P450-Dependent Metabolism of Polychlorinated Dibenzo-p-dioxins and Coplanar Polychlorinated Biphenyls

    Directory of Open Access Journals (Sweden)

    Hideyuki Inui

    2014-08-01

    Full Text Available Polychlorinated dibenzo-p-dioxins (PCDDs and coplanar polychlorinated biphenyls (PCBs contribute to dioxin toxicity in humans and wildlife after bioaccumulation through the food chain from the environment. The authors examined human and rat cytochrome P450 (CYP-dependent metabolism of PCDDs and PCBs. A number of human CYP isoforms belonging to the CYP1 and CYP2 families showed remarkable activities toward low-chlorinated PCDDs. In particular, human CYP1A1, CYP1A2, and CYP1B1 showed high activities toward monoCDDs, diCDDs, and triCDDs but no detectable activity toward 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-tetraCDD. Large amino acids located at putative substrate-recognition sites and the F-G loop in rat CYP1A1 contributed to the successful metabolism of 2,3,7,8-tetraCDD. Rat, but not human, CYP1A1 metabolized 3,3',4,4',5-pentachlorobiphenyl (CB126 to two hydroxylated metabolites. These metabolites are probably less toxic than is CB126, due to their higher solubility. Homology models of human and rat CYP1A1s and CB126 docking studies indicated that two amino acid differences in the CB126-binding cavity were important for CB126 metabolism. In this review, the importance of CYPs in the metabolism of dioxins and PCBs in mammals and the species-based differences between humans and rats are described. In addition, the authors reveal the molecular mechanism behind the binding modes of dioxins and PCBs in the heme pocket of CYPs.

  20. Mammalian cytochrome P450-dependent metabolism of polychlorinated dibenzo-p-dioxins and coplanar polychlorinated biphenyls.

    Science.gov (United States)

    Inui, Hideyuki; Itoh, Toshimasa; Yamamoto, Keiko; Ikushiro, Shin-Ichi; Sakaki, Toshiyuki

    2014-08-13

    Polychlorinated dibenzo-p-dioxins (PCDDs) and coplanar polychlorinated biphenyls (PCBs) contribute to dioxin toxicity in humans and wildlife after bioaccumulation through the food chain from the environment. The authors examined human and rat cytochrome P450 (CYP)-dependent metabolism of PCDDs and PCBs. A number of human CYP isoforms belonging to the CYP1 and CYP2 families showed remarkable activities toward low-chlorinated PCDDs. In particular, human CYP1A1, CYP1A2, and CYP1B1 showed high activities toward monoCDDs, diCDDs, and triCDDs but no detectable activity toward 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-tetraCDD). Large amino acids located at putative substrate-recognition sites and the F-G loop in rat CYP1A1 contributed to the successful metabolism of 2,3,7,8-tetraCDD. Rat, but not human, CYP1A1 metabolized 3,3',4,4',5-pentachlorobiphenyl (CB126) to two hydroxylated metabolites. These metabolites are probably less toxic than is CB126, due to their higher solubility. Homology models of human and rat CYP1A1s and CB126 docking studies indicated that two amino acid differences in the CB126-binding cavity were important for CB126 metabolism. In this review, the importance of CYPs in the metabolism of dioxins and PCBs in mammals and the species-based differences between humans and rats are described. In addition, the authors reveal the molecular mechanism behind the binding modes of dioxins and PCBs in the heme pocket of CYPs.

  1. Differential effects of omeprazole and lansoprazole enantiomers on aryl hydrocarbon receptor in human hepatocytes and cell lines.

    Science.gov (United States)

    Novotna, Aneta; Srovnalova, Alzbeta; Svecarova, Michaela; Korhonova, Martina; Bartonkova, Iveta; Dvorak, Zdenek

    2014-01-01

    Proton pump inhibitors omeprazole and lansoprazole contain chiral sulfur atom and they are administered as a racemate, i.e. equimolar mixture of S- and R-enantiomers. The enantiopure drugs esomeprazole and dexlansoprazole have been developed and introduced to clinical practice due to their improved clinical and therapeutic properties. Since omeprazole and lansoprazole are activators of aryl hydrocarbon receptor (AhR) and inducers of CYP1A genes, we examined their enantiospecific effects on AhR-CYP1A pathway in human cancer cells and primary human hepatocytes. We performed gene reporter assays for transcriptional activity of AhR, RT-PCR analyses for CYP1A1/2 mRNAs, western blots for CYP1A1/2 proteins and EROD assay for CYP1A1/2 catalytic activity. Lansoprazole and omeprazole enantiomers displayed differential effects on AhR-CYP1A1/2 pathway. In general, S-enantiomers were stronger activators of AhR and inducers of CYP1A genes as compared to R-enantiomers in lower concentrations, i.e. 1-10 µM for lansoprazole and 10-100 µM for omeprazole. In contrast, R-enantiomers were stronger AhR activators and CYP1A inducers than S-enantiomers in higher concentrations, i.e. 100 µM for lansoprazole and 250 µM for omeprazole. In conclusion, we provide the first evidence of enantiospecific effects of omeprazole and lansoprazole on AhR signaling pathway.

  2. Impurities contained in antifungal drug ketoconazole are potent activators of human aryl hydrocarbon receptor.

    Science.gov (United States)

    Grycová, Aneta; Dořičáková, Aneta; Dvořák, Zdeněk

    2015-12-03

    Antifungal drug ketoconazole is a mixture of (+)/(-) cis-enantiomers, which also contains several impurities. Ketoconazole was identified as an activator of aryl hydrocarbon receptor AhR by three independent research teams. In the current paper we demonstrate that impurities contained in ketoconazole preparations are strong activators of human AhR and inducers of CYP1A1. Impurity IMP-C had similar potency (EC50), but 10-15 times higher efficacy (magnitude of induction) towards AhR, comparing to (+)-ketoconazole, as revealed by gene reporter assay in AZ-AHR stably transfected cells. Impurities IMP-B and IMP-C, and in lesser extent IMP-E, induced a formation of AhR-DNA complex, as demonstrated by electromobility shift assay EMSA. Impurities IMP-C and IMP-E dose-dependently induced CYP1A1 mRNA after 24 h, and their effects were comparable to those by (+)-ketoconazole. The level of CYP1A1 protein in HepG2 cells was strongly increased by IMP-C after 48h. In conclusion, our data further elucidated molecular effects of ketoconazole towards AhR signaling pathway, with possible implications in ketoconazole role in skin chemoprevention and/or damage, involving AhR.

  3. Metabolism of 7-benzyloxy-4-trifluoromethyl-coumarin by human hepatic cytochrome P450 isoforms.

    Science.gov (United States)

    Renwick, A B; Surry, D; Price, R J; Lake, B G; Evans, D C

    2000-10-01

    1. The metabolism of 7-benzyloxy-4-trifluoromethylcoumarin (BFC) to 7-hydroxy-4-trifluoromethylcoumarin (HFC) was studied in human liver microsomal preparations and in cDNA-expressed human cytochrome P450 (CYP) isoforms. 2. Kinetic analysis of the NADPH-dependent metabolism of BFC to HFC in four preparations of pooled human liver microsomes revealed mean (+/- SEM) Km and Vmax of 8.3 +/- 1.3 microM and 454 +/- 98 pmol/min/mg protein respectively. 3. The metabolism of BFC to HFC was determined in a characterized bank of 24 individual human liver microsomal preparations employing BFC substrate concentrations of 20 and 50 microM (i.e. about two and six times Km respectively). With 20 microM BFC the highest correlations were observed between BFC metabolism and markers of CYP1A2 (r2 = 0.784-0.797) and then with CYP3A (r2 = 0.434-0.547) isoforms, whereas with 50 microM BFC the highest correlations were observed between BFC metabolism and markers of CYP3A (r2 = 0.679-0.837) and then with CYP1A2 (r2 = 0.421-0.427) isoforms. At both BFC substrate concentrations, lower correlations were observed between BFC metabolism and enzymatic markers for CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP4A9/11. 4. Using human beta-lymphoblastoid cell microsomes containing cDNA-expressed CYP isoforms, 20 microM BFC was metabolized by CYP1A2 and CYP3A4, with lower rates of metabolism being observed with CYP2C9 and CYP2C19. Kinetic studies with the CYP1A2 and CYP3A4 preparations demonstrated a lower Km with the CYP1A2 preparation, but a higher Vmax with the CYP3A4 preparation. 5. The metabolism of 20 microM BFC in human liver microsomes was inhibited to 37-48% of control by 5-100 microM of the mechanism-based CYP1A2 inhibitor furafylline and to 64-69% of control by 5-100 microM of the mechanism-based CYP3A4 inhibitor troleandomycin. While some inhibition of BFC metabolism was observed in the presence of 100 and 200 microM diethyldithiocarbamate, the addition of 2-50 micro

  4. Determination of the inhibitory potential of 6 fluoroquinolones on CYPIA2 and CYP2C9 in human liver microsomes

    Institute of Scientific and Technical Information of China (English)

    Li ZHANG; Min-ji WEI; Cai-yun ZHAO; Hui-min QI

    2008-01-01

    Aim: To determine the inhibitory potential of 2 new fluoroquinolones, caderofloxacin and antofloxacin, together with 4 marketed fluoroquinolones, moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin, on the activity of cytochrome P450 isoforms 1A2 (CYP1A2) and 2C9 (CYP2C9). Methods: Probe substrates, phenacetin (CYP1A2), and tolbutamide (CYP2C9) were incubated with human liver microsomes and the metabolites were analyzed by liquid chromatography/mass spectrometry using electrospray ionization in positive or negative mode. Glipizide was used as the internal standard in both modes. The inhibitory potential of fluoroquinolones on CYP1A2 and CYP2C9 was investigated. Results: The IC50 values (μmol/L) determined with the cocktail were in agreement with individual probe substrates (α-naphthoflavone: 0.27 vs 0.26; sulfaphenazole: 0.49 vs 0.37). Ciprofloxacin showed weak inhibition on both the activity of CYPIA2 (IC50 135 μmol/L) and CYP2C9 (IC50 180 μmol/L), whereas levofloxacin inhibited only CYP2C9 (IC50 210 μmol/L). Caderofloxacin, antofloxacin, moxifloxacin, and gatifloxacin showed little or no inhibition on the activity of CYPIA2 or CYP2C9 when tested at comparable concentrations (0-200 mg/L). Conclusion: Caderofloxacin, antofloxacin, moxifloxacin, and gatifloxacin are negligible inhibitors to CYP1A2 and CYP2C9. The in vitro system can be used as a high-throughput model to screen similar compounds for the early identification of drug-drug interaction potential.

  5. Inhibition of Human Cytochrome P450 Enzymes by Allergen Removed Rhus verniciflua Stoke Standardized Extract and Constituents

    Directory of Open Access Journals (Sweden)

    Hyunsik Jung

    2014-01-01

    Full Text Available Objective. Potential interactions between herbal extracts and the cytochrome P450 (CYP system lead to serious adverse events or decreased drug efficacy. Rhus verniciflua stoke (RVS and its constituents have been reported to have various pharmacological properties. We evaluated the inhibitory potential of RVS and its constituents on the major CYP isoforms. Methods. The effects of allergen removed RVS (aRVS standardized extract and major components, fustin and fisetin isolated from aRVS, were evaluated on CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 isoenzyme activity by a luminescent CYP recombinant human enzyme assay. Results. The aRVS extract showed relative potent inhibitory effects on the CYP2C9 (IC50, <0.001 μg/mL, CYP2C19 (IC50, 9.68 μg/mL, and CYP1A2 (IC50, 10.0 μg/mL. However, it showed weak inhibition on CYP3A4 and CYP2D6. Fustin showed moderate inhibitory effects on the CYP2C19 (IC50, 64.3 μg/mL and weak inhibition of the other CYP isoforms similar to aRVS. Fisetin showed potent inhibitory effects on CYP2C9, CYP2C19, and CYP1A2. Fisetin showed moderate inhibition of CYP2D6 and weak inhibition of CYP3A4. Conclusions. These results indicate that aRVS, a clinically available herbal medicine, could contribute to herb-drug interactions when orally coadministered with drugs metabolized by CYP2C9, CYP2C19, and CYP1A2.

  6. In vitro toxicity of naphthalene, 1-naphthol, 2-naphthol and 1,4-naphthoquinone on human CFU-GM from female and male cord blood donors.

    Science.gov (United States)

    Croera, C; Ferrario, D; Gribaldo, L

    2008-09-01

    In animal models, naphthalene toxicity has been studied in different target organs and has been shown to be gender-dependent and metabolism related. In humans, it is readily absorbed and is metabolised by several cytochrome P450's. Naphthalene and its metabolites can cross the placental barrier and consequently may affect foetal tissues. The aim of this study was to compare the in vitro toxicity of naphthalene and its metabolites, 1-naphthol, 2-naphthol and 1,4-naphthoquinone, on human haematopoietic foetal progenitors (CFU-GM) derived from newborn male and female donors. The mRNA expression of Cyp1A2 and Cyp3A4 was also evaluated. Naphthalene did not affect CFU-GM proliferation, while 1-naphthol, 2-naphthol and particularly 1,4-naphthoquinone strongly inhibited the clonogenicity of progenitors, from both male and female donors. mRNA of Cyp1A2 and Cyp3A4 was not expressed neither at the basal level, nor after naphthalene treatment, while treatment with 1,4-naphthoquinone induced expression of both enzymes in both genders, with Cyp1A2 being expressed four times more than Cyp3A4. Female CFU-GM was significantly more sensitive to 1,4-naphthoquinone than male and after treatment both enzymes were expressed twice as much as in the male precursors. These results suggest that a gender-specific 1,4-naphthoquinone metabolic pathway may exist, which gives rise to unknown toxic metabolites.

  7. Cytochrome P450-mediated metabolism of tumour promoters modifies the inhibition of intercellular communication: a modified assay for tumour promotion

    DEFF Research Database (Denmark)

    Vang, Ole; Wallin, H.; Doehmer, J.;

    1993-01-01

    The role of metabolism of tumour promoters on the inhibition of intercellular communication was investigated in a modified V79 metabolic cooperation system. V79 cells, which stably express different rat cytochrome P450 enzymes (CYP1A1, CYP1A2 or CYP2B1), were used in the metabolic cooperation ass...

  8. Inhibition of CYP1 by berberine, palmatine, and jatrorrhizine: Selectivity, kinetic characterization, and molecular modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Sheng-Nan [National Research Institute of Chinese Medicine, Taipei 112, Taiwan, ROC (China); Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan, ROC (China); Chang, Yu-Ping; Tsai, Keng-Chang [National Research Institute of Chinese Medicine, Taipei 112, Taiwan, ROC (China); Chang, Chia-Yu [National Research Institute of Chinese Medicine, Taipei 112, Taiwan, ROC (China); Institute of Medical Sciences, Taipei Medical University, Taipei 101, Taiwan, ROC (China); Wu, Tian-Shung [Department of Chemistry, National Chung-Kung University, Tainan 701, Taiwan, ROC (China); Ueng, Yune-Fang, E-mail: ueng@nricm.edu.tw [National Research Institute of Chinese Medicine, Taipei 112, Taiwan, ROC (China); Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan, ROC (China); Institute of Medical Sciences, Taipei Medical University, Taipei 101, Taiwan, ROC (China)

    2013-11-01

    Cytochrome P450 (P450, CYP) 1 family plays a primary role in the detoxification and bioactivation of polycyclic aromatic hydrocarbons. Human CYP1A1, CYP1A2, and CYP1B1 exhibit differential substrate specificity and tissue distribution. Berberine, palmatine, and jatrorrhizine are protoberberine alkaloids present in several medicinal herbs, such as Coptis chinensis (Huang-Lian) and goldenseal. These protoberberines inhibited CYP1A1.1- and CYP1B1.1-catalyzed 7-ethoxyresorufin O-deethylation (EROD) activities, whereas CYP1A2.1 activity was barely affected. Kinetic analysis revealed that berberine noncompetitively inhibited EROD activities of CYP1A1.1 and CYP1B1.1, whereas palmatine and jatrorrhizine caused either competitive or mixed type of inhibition. Among protoberberines, berberine caused the most potent and selective inhibitory effect on CYP1B1.1 with the least K{sub i} value of 44 ± 16 nM. Berberine also potently inhibited CYP1B1.1 activities toward 7-ethoxycoumarin and 7-methoxyresorufin, whereas the inhibition of benzo(a)pyrene hydroxylation activity was less pronounced. Berberine inhibited the polymorphic variants, CYP1B1.3 (V432L) and CYP1B1.4 (N453S), with IC{sub 50} values comparable to that for CYP1B1.1 inhibition. Berberine-mediated inhibition was abolished by a mutation of Asn228 to Thr in CYP1B1.1, whereas the inhibition was enhanced by a reversal mutation of Thr223 to Asn in CYP1A2.1. This result in conjugation with the molecular modeling revealed the crucial role of hydrogen-bonding interaction of Asn228 on CYP1B1.1 with the methoxy moiety of berberine. These findings demonstrate that berberine causes a selective CYP1B1-inhibition, in which Asn228 appears to be crucial. The inhibitory effects of berberine on CYP1B1 activities toward structurally diverse substrates can be different. - Highlights: • Berberine preferentially inhibited CYP1B1 activity. • Berberine caused similar inhibitory effects on CYP1B1.1, CYP1B1.3 and CYP1B1.4. • Asn228 in CYP

  9. Genetic polymorphisms in CYP1A1, CYP1B1 and COMT genes in Greenlandic Inuit and Europeans

    OpenAIRE

    Ghisari, Mandana; Long, Manhai; Bonefeld-Jørgensen, Eva Cecilie

    2013-01-01

    Background. The Indigenous Arctic population is of Asian descent, and their genetic background is different from the Caucasian populations. Relatively little is known about the specific genetic polymorphisms in genes involved in the activation and detoxification mechanisms of environmental contaminants in Inuit and its relation to health risk. The Greenlandic Inuit are highly exposed to legacy persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and organochlorine pes...

  10. Assay for quantitative determination of CYP1A1 enzyme activity using 7-Ethoxyresorufin as standard substrate (EROD assay)

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Afshin Mohammadi-Bardbori ### Abstract The activity of the enzyme 7-ethoxy-resorufin-O-deethylase (EROD) has been extensively employed in biomonitoring studies of persistent organic pollutants (POPs) for more than a decade. Although the procedure is simple, convenient, sensitive and accurate. The cytochrome P450 monooxygenase 1A (CYP1A) is induced by several planar toxic compounds and endogenous chemicals, and the induction of this protein is often measured in terms of EROD a...

  11. Genetic polymorphisms in CYP1A1, CYP1B1 and COMT genes in Greenlandic Inuit and Europeans

    DEFF Research Database (Denmark)

    Ghisari, Mandana; Long, Manhai; Bonefeld-Jørgensen, Eva Cecilie

    2013-01-01

    contaminants in Inuit and its relation to health risk. The Greenlandic Inuit are highly exposed to legacy persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), and an elucidation of gene–environment interactions in relation to health risks is needed....... Our data provide new information on gene polymorphisms in Greenlandic Inuit that might support evaluation of susceptibility to environmental contaminants and warrant further studies....

  12. Cardiac remodeling during and after renin-angiotensin system stimulation in Cyp1a1-Ren2 transgenic rats

    DEFF Research Database (Denmark)

    Heijnen, Bart Fj; Pelkmans, Leonie Pj; Danser, Ah Jan

    2013-01-01

    . Hypertrophic genes were highly upregulated, whereas in substantial activation a fibrotic response was absent. Four weeks after withdrawal of I3C, (pro)renin levels were normalized in all IHR. While in adult IHR BP returned to normal, hypertension was sustained in young IHR. Despite the latter, myocardial...... administration of indole-3-carbinol (I3C). Young (four-weeks old) and adult (30-weeks old) IHR were fed I3C for four weeks (leading to systolic BP >200 mmHg). RAS-stimulation was stopped and animals were followed-up for a consecutive period. Cardiac function and geometry was determined echocardiographically...... hypertrophy was fully regressed in both young and adult IHR. We conclude that (pro)renin-induced severe hypertension in IHR causes an age-independent fully reversible myocardial concentric hypertrophic remodeling, despite a continued elevated BP in young IHR....

  13. Glutathione S-transferase M1 and T1, CYP1A2-2467T/delT ...

    African Journals Online (AJOL)

    Bв€™chir Fatma

    2012-06-16

    Jun 16, 2012 ... small-cell lung cancer risk in Tunisian sample. B'chir Fatma a,b, ... factors such as diet, air pollution and occupational exposures to carcinogens [3]. ... tobacco smoke, such as monohalomethane and ethylene oxide. [8].

  14. Glutathione S-transferase M1 and T1, CYP1A2-2467T/delT ...

    African Journals Online (AJOL)

    Bв€™chir Fatma

    2012-06-16

    Jun 16, 2012 ... National Institute of Research and Physical–Chemical Analysis. (INRAP), Technopole Sidi .... Other variables, such occupational exposure, family history of cancer, were available but not ..... nomenclature. Cancer Epidemiol ...

  15. Metformin inhibits 7,12-dimethylbenz[a]anthracene-induced breast carcinogenesis and adduct formation in human breast cells by inhibiting the cytochrome P4501A1/aryl hydrocarbon receptor signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Maayah, Zaid H. [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Ghebeh, Hazem [Stem Cell & Tissue Re-Engineering, King Faisal Specialist Hospital and Research Center, Riyadh 11211 (Saudi Arabia); Alhaider, Abdulqader A. [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Camel Biomedical Research Unit, College of Pharmacy and Medicine, King Saud University, Riyadh 11451 (Saudi Arabia); El-Kadi, Ayman O.S. [Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton (Canada); Soshilov, Anatoly A.; Denison, Michael S. [Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616 (United States); Ansari, Mushtaq Ahmad [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Korashy, Hesham M., E-mail: hkorashy@ksu.edu.sa [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia)

    2015-04-15

    Recent studies have established that metformin (MET), an oral anti-diabetic drug, possesses antioxidant activity and is effective against different types of cancer in several carcinogen-induced animal models and cell lines. However, whether MET can protect against breast cancer has not been reported before. Therefore, the overall objectives of the present study are to elucidate the potential chemopreventive effect of MET in non-cancerous human breast MCF10A cells and explore the underlying mechanism involved, specifically the role of cytochrome P4501A1 (CYP1A1)/aryl hydrocarbon receptor (AhR) pathway. Transformation of the MCF10A cells into initiated breast cancer cells with DNA adduct formation was conducted using 7,12-dimethylbenz[a]anthracene (DMBA), an AhR ligand. The chemopreventive effect of MET against DMBA-induced breast carcinogenesis was evidenced by the capability of MET to restore the induction of the mRNA levels of basic excision repair genes, 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endonuclease1 (APE1), and the level of 8-hydroxy-2-deoxyguanosine (8-OHdG). Interestingly, the inhibition of DMBA-induced DNA adduct formation was associated with proportional decrease in CYP1A1 and in NAD(P)H:quinone oxidoreductase 1 (NQO1) gene expression. Mechanistically, the involvements of AhR and nuclear factor erythroid 2-related factor-2 (Nrf2) in the MET-mediated inhibition of DMBA-induced CYP1A1 and NQO1 gene expression were evidenced by the ability of MET to inhibit DMBA-induced xenobiotic responsive element and antioxidant responsive element luciferase reporter gene expression which suggests an AhR- and Nrf2-dependent transcriptional control. However, the inability of MET to bind to AhR suggests that MET is not an AhR ligand. In conclusion, the present work shows a strong evidence that MET inhibits the DMBA-mediated carcinogenicity and adduct formation by inhibiting the expression of CYP1A1 through an AhR ligand-independent mechanism

  16. Expression of the aryl hydrocarbon receptor pathway and cyclooxygenase-2 in dog tumors.

    Science.gov (United States)

    Giantin, M; Vascellari, M; Lopparelli, R M; Ariani, P; Vercelli, A; Morello, E M; Cristofori, P; Granato, A; Buracco, P; Mutinelli, F; Dacasto, M

    2013-02-01

    In humans, the aryl hydrocarbon receptor (AHR) gene battery constitutes a set of contaminant-responsive genes, which have been recently shown to be involved in the regulation of several patho-physiological conditions, including tumorigenesis. As the domestic dog represents a valuable animal model in comparative oncology, mRNA levels of cytochromes P450 1A1, 1A2 and 1B1 (CYP1A1, 1A2 and 1B1), AHR, AHR nuclear translocator (ARNT), AHR repressor (AHRR, whose partial sequence was here obtained) and cyclooxygenase-2 (COX2) were measured in dog control tissues (liver, skin, mammary gland and bone), in 47 mast cell tumors (MCTs), 32 mammary tumors (MTs), 5 osteosarcoma (OSA) and related surgical margins. Target genes were constitutively expressed in the dog, confirming the available human data. Furthermore, their pattern of expression in tumor biopsies was comparable to that already described in a variety of human cancers; in particular, both AHR and COX2 genes were up-regulated and positively correlated, while CYP1A1 and CYP1A2 mRNAs were generally poorly expressed. This work demonstrated for the first time that target mRNAs are expressed in neoplastic tissues of dogs, thereby increasing the knowledge about dog cancer biology and confirming this species as an useful animal model for comparative studies on human oncology.

  17. In Vitro Inhibitory Effects of Scutellarin on Six Human/Rat Cytochrome P450 Enzymes and P-glycoprotein

    Directory of Open Access Journals (Sweden)

    Yong-Long Han

    2014-05-01

    Full Text Available Inhibition of cytochrome P450 (CYP and P-glycoprotein (P-gp are regarded as the most frequent and clinically important pharmacokinetic causes among the various possible factors for drug-drug interactions. Scutellarin is a flavonoid which is widely used for the treatment of cardiovascular diseases. In this study, the in vitro inhibitory effects of scutellarin on six major human CYPs (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 and six rat CYPs (CYP1A2, CYP2C7, CYP2C11, CYP2C79, CYP2D4, and CYP3A2 activities were examined by using liquid chromatography-tandem mass spectrometry. Meanwhile, the inhibitory effects of scutellarin on P-gp activity were examined on a human metastatic malignant melanoma cell line WM-266-4 by calcein-AM fluorometry screening assay. Results demonstrated that scutellarin showed negligible inhibitory effects on the six major CYP isoenzymes in human/rat liver microsomes with almost all of the IC50 values exceeding 100 μM, whereas it showed values of 63.8 μM for CYP2C19 in human liver microsomes, and 63.1 and 85.6 μM for CYP2C7 and CYP2C79 in rat liver microsomes, respectively. Scutellarin also showed weak inhibitory effect on P-gp. In conclusion, this study demonstrates that scutellarin is unlikely to cause any clinically significant herb-drug interactions in humans when co-administered with substrates of the six CYPs (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 and P-gp.

  18. Deferasirox pharmacogenetic influence on pharmacokinetic, efficacy and toxicity in a cohort of pediatric patients.

    Science.gov (United States)

    Allegra, Sarah; De Francia, Silvia; Cusato, Jessica; Arduino, Arianna; Massano, Davide; Longo, Filomena; Piga, Antonio; D'Avolio, Antonio

    2017-04-01

    We aimed to evaluate the influence of genetic polymorphisms involved in deferasirox metabolism and transport on its pharmacokinetics and treatment toxicity, in a cohort of β-thalassaemic children. Drug plasma concentrations were measured by a HPLC-UV method. Allelic discrimination for UGT1A1, UGT1A3, CYP1A1, CYP1A2, CYP2D6, MRP2 and BCRP1 polymorphisms was performed by real-time PCR. CYP1A1 rs2606345AA influenced Ctrough (p = 0.001) and t1/2 (p = 0.042), CYP1A1 rs4646903TC/CC (p = 0.005) and BCRP1 rs2231142GA/AA (p = 0.005) influenced Tmax and CYP2D6 rs1135840CG/GG influenced Cmax (p = 0.044). UGT1A1 rs887829TT (p = 0.002) and CYP1A2 rs762551CC (p = 0.019) resulted as predictive factor of ferritin levels and CYP1A1 rs2606345CA/AA (p = 0.021) and CYP1A2 rs762551AC/CC (p = 0.027) of liver iron concentration. Our data suggest the usefulness of deferasirox pharmacogenetics in pediatric treatment optimization.

  19. Changes in cytochrome P450 gene expression and enzyme activity induced by xenobiotics in rabbits in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Orsolya Palócz

    2017-06-01

    Full Text Available As considerable inter-species differences exist in xenobiotic metabolism, developing new pharmaceutical therapies for use in different species is fraught with difficulties. For this reason, very few medicines have been registered for use in rabbits, despite their importance in inter alia meat and fur production. We have developed a rapid and sensitive screening system for drug safety in rabbits based on cytochrome P450 enzyme assays, specifically CYP1A1, CYP1A2 and CYP3A6, employing an adaptation of the luciferin-based clinical assay currently used in human drug screening. Short-term (4-h cultured rabbit primary hepatocytes were treated with a cytochrome inducer (phenobarbital and 2 inhibitors (alpha-naphthoflavone and ketoconazole. In parallel, and to provide verification, New Zealand white rabbits were dosed with 80 mg/kg phenobarbital or 40 mg/kg ketoconazole for 3 d. Ketoconazole significantly increased CYP3A6 gene expression and decreased CYP3A6 activity both in vitro and in vivo. CYP1A1 activity was decreased by ketoconazole in vitro and increased in vivo. This is the first report of the inducer effect of ketoconazole on rabbit cytochrome isoenzymes in vivo. Our data support the use of a luciferin-based assay in short-term primary hepatocytes as an appropriate tool for xenobiotic metabolism assays and short-term toxicity testing in rabbits.

  20. Significant interactions between maternal PAH exposure and single nucleotide polymorphisms in candidate genes on B[a]P-DNA adducts in a cohort of non-smoking Polish mothers and newborns.

    Science.gov (United States)

    Iyer, Shoba; Wang, Ya; Xiong, Wei; Tang, Deliang; Jedrychowski, Wieslaw; Chanock, Stephen; Wang, Shuang; Stigter, Laura; Mróz, Elzbieta; Perera, Frederica

    2016-08-26

    Polycyclic aromatic hydrocarbons (PAH) are a class of chemicals common in the environment. Certain PAH are carcinogenic, although the degree to which genetic variation influences susceptibility to carcinogenic PAH remains unclear. Also unknown is the influence of genetic variation on the procarcinogenic effect of in utero exposures to PAH. Benzo[a]pyrene (B[a]P) is a well-studied PAH that is classified as a known human carcinogen. Within our Polish cohort, we explored interactions between maternal exposure to airborne PAH during pregnancy and maternal and newborn single nucleotide polymorphisms (SNPs) in plausible B[a]P metabolism genes on B[a]P-DNA adducts in paired cord blood samples. The study subjects included non-smoking women (n = 368) with available data on maternal PAH exposure, paired cord adducts, and genetic data who resided in Krakow, Poland. We selected eight common variants in maternal and newborn candidate genes related to B[a]P metabolism, detoxification, and repair for our analyses: CYP1A1, CYP1A2, CYP1B1, GSTM1, GSTT2, NQO1, and XRCC1 We observed significant interactions between maternal PAH exposure and SNPs on cord B[a]P-DNA adducts in the following genes: maternal CYP1A1 and GSTT2, and newborn CYP1A1 and CYP1B1 These novel findings highlight differences in maternal and newborn genetic contributions to B[a]P-DNA adduct formation and have the potential to identify at-risk subpopulations who are susceptible to the carcinogenic potential of B[a]P.

  1. Metabolic detoxification pathways for 5-methoxy-sterigmatocystin in primary tracheal epithelial cells.

    Science.gov (United States)

    Cabaret, Odile; Puel, Olivier; Botterel, Françoise; Delaforge, Marcel; Bretagne, Stéphane

    2014-01-01

    1.  The health effects of inhaled mycotoxins remain poorly documented despite their presence in bioaerosols. 5-methoxy-sterigmatocystin is produced in association with sterigmatocystin by some Aspergillus spp., sometimes in larger amounts than sterigmatocystin. Whereas sterigmatocystin can be metabolized through cytochromes P450 (CYP), UDP-glucuronosyltransferases and sulfotransferases in airway epithelial cells, little is known about 5-methoxy-sterigmatocystin. 2.  The 5-methoxy-sterigmatocystin metabolites were analyzed using human recombinant CYP and porcine tracheal epithelial cell (PTEC) primary cultures at an air-liquid interface. The induction of xenobiotic-metabolizing enzymes was examined by real-time quantitative PCR for mRNA expression and 7-ethoxyresorufin O-deethylation activity. 3.  CYP1A1 metabolized 5-methoxy-sterigmatocystin into hydroxy-nor-methoxy-sterigmatocystin, nor-methoxy-sterigmatocystin and dihydroxy-methoxy-sterigmatocystin. CYP1A2 led to monohydroxy-methoxy-sterigmatocystin. In PTEC, 5-methoxy-sterigmatocystin metabolism resulted into a glucuroconjugate of 5-methoxy-sterigmatocystin, a sulfoconjugate and a glucuroconjugate of monohydroxy-methoxy-sterigmatocystin. The exposure of PTEC for 24 h to 1 µM 5-methoxy-sterigmatocystin induced a significant increase in the mRNA levels of CYP1A1, without significant induction of the 7-ethoxyresorufin O-deethylation activity. 4.  These data suggest that 5-methoxy-sterigmatocystin is mainly detoxified in airway cells through conjugation, as sterigmatocystin. However, while CYP produced a reactive metabolite of sterigmatocystin, no such metabolite was detected with 5-methoxy-sterigmatocystin. Nevertheless, 5-methoxy-sterigmatocystin increases the CYP1A1 mRNA levels. The long-term consequences remain unknown.

  2. Short-term fasting alters cytochrome P450-mediated drug metabolism in humans.

    Science.gov (United States)

    Lammers, Laureen A; Achterbergh, Roos; de Vries, Emmely M; van Nierop, F Samuel; Klümpen, Heinz-Josef; Soeters, Maarten R; Boelen, Anita; Romijn, Johannes A; Mathôt, Ron A A

    2015-06-01

    Experimental studies indicate that short-term fasting alters drug metabolism. However, the effects of short-term fasting on drug metabolism in humans need further investigation. Therefore, the aim of this study was to evaluate the effects of short-term fasting (36 h) on P450-mediated drug metabolism. In a randomized crossover study design, nine healthy subjects ingested a cocktail consisting of five P450-specific probe drugs [caffeine (CYP1A2), S-warfarin (CYP2C9), omeprazole (CYP2C19), metoprolol (CYP2D6), and midazolam (CYP3A4)] on two occasions (control study after an overnight fast and after 36 h of fasting). Blood samples were drawn for pharmacokinetic analysis using nonlinear mixed effects modeling. In addition, we studied in Wistar rats the effects of short-term fasting on hepatic mRNA expression of P450 isoforms corresponding with the five studied P450 enzymes in humans. In the healthy subjects, short-term fasting increased oral caffeine clearance by 20% (P = 0.03) and decreased oral S-warfarin clearance by 25% (P fasting increased mRNA expression of the orthologs of human CYP1A2, CYP2C19, CYP2D6, and CYP3A4 (P fasting alters cytochrome P450-mediated drug metabolism in a nonuniform pattern. Therefore, short-term fasting is another factor affecting cytochrome P450-mediated drug metabolism in humans.

  3. In vitro inhibition and induction of human liver cytochrome P450 enzymes by gentiopicroside: potent effect on CYP2A6.

    Science.gov (United States)

    Deng, Yating; Wang, Lu; Yang, Yong; Sun, Wenji; Xie, Renming; Liu, Xueying; Wang, Qingwei

    2013-01-01

    Gentiopicroside (GE), a naturally occurring iridoid glycoside, has been developed into a Novel Traditional Chinese Drug named gentiopicroside injection, and it was approved for the treatment of acute jaundice and chronic active hepatitis by SFDA. However, the inhibitory and inducible effects of GE on the activity of cytochrome P450 (CYP450) are unclear. The purpose of this study was to evaluate the ability of GE to inhibit and induce human cytochrome P450 enzymes in vitro. In human liver microsomes, GE inhibited CYP2A6 and CYP2E1 in a concentration-dependent manner, with IC₅₀ values of 21.8 µg/ml and 594 µg/ml, respectively, and the IC₅₀ of CYP2A6 was close to the C(max) value observed clinically. GE was a non-competitive inhibitor of CYP2A6 at lower concentrations and a competitive inhibitor at higher concentrations. GE did not produce inhibition of CYP2C9, CYP2D6, CYP1A2 or CYP3A4 activities. However, a significant increase of CYP1A2 and CYP3A4 activity was observed at high concentrations. In cultured human hepatocytes no significant induction of CYP1A2, CYP3A4 or CYP2B6 was observed. Given these results, the in vivo potential inhibition of GE on CYP2A6 deserves further investigation, and it seems that the hepatoprotective effect of GE is irrelevant to its effect on P450s.

  4. Lack of direct immunosuppressive effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on human peripheral blood lymphocyte subsets in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lang, D.S. (Center for Environmental Medicine and Lung Biology, Univ. of North Carolina, Chapel Hill, NC (United States)); Becker, S. (TCR-Environmental Corp., Inc., Chapel Hill, NC (United States)); Clark, G.C. (National Inst of Environmental Health Science, Lab. of Biochemical Risk Analysis, RTP, NC (United States)); Devlin, R.B. (US Environmental Protection Agency, Health Effects Research Lab., RTP, NC (United States)); Koren, H.S. (US Environmental Protection Agency, Health Effects Research Lab., RTP, NC (United States))

    1994-05-01

    The direct effects of dioxin on human PBL subpopulations have been studied, in order to determine their usefulness as sensitive biomarkers for human dioxin exposure. Lymphocyte cultures from healthy individuals were treated with 10[sup -7] M-10[sup -14] M TCDD in the absence and presence of stimulation with pokeweed mitogen (PWM) or anti-CD3 monoclonal antibody (moAb; OKT3) for 3 days. Cytochrome P450 (CYP1A1) enzyme induction, one of the best studied direct biological effects of TCDD on numerous cell types, was assayed in parallel by ethoxyresorufin-O-deethylase (EROD) activity. Percentages of the different lymphocytes subsets, including CD2 (T cells); CD4; CD45 RA (subpressor-inducer/virgin T cells); CD4 CD29; CD8; CD19 (B cells) as well as interleukin 2 (IL-2) receptor (CD25) and class II antigen (HLA-DR) expression, were analyzed by flow cytometry. DNA synthesis was determined by [sup 3]H-thymidine uptake after 3 days of culture. In the present study, all stimulated lymphocyte cultures showed a dose-dependent significant increase of CYP1A1 activity at dioxin concentrations of 10[sup -7] and 10[sup -9] M. No enzyme activity could be detected at lower concentrations of TCDD. On the other hand, neither alteration in surface marker distribution nor suppression of lymphocyte proliferation could be demonstrated in mitogen-activated cells following any concentration of TCDD treatment. These data suggest that the inducibility of CYP1A1 enzyme activity is not correlated with direct immunotoxic effects in vitro in human PBL. (orig./MG)

  5. AhR Activation Underlies the CYP1A Autoinduction by A-998679 in Rats

    Directory of Open Access Journals (Sweden)

    Michael J. Liguori

    2012-10-01

    Full Text Available Xenobiotic-mediated induction of cytochrome P450 (CYP drug metabolizing enzymes (DMEs is frequently encountered in drug discovery and can influence disposition, pharmacokinetic, and toxicity profiles. The CYP1A subfamily of DMEs plays a central role in the biotransformation of several drugs and environmental chemicals. Autoinduction of drugs through CYP3A enzymes is a common mechanism for their enhanced clearance. However, autoinduction via CYP1A is encountered less frequently. In this report, an experimental compound, A-998679 (3-(5-pyridin-3-yl-1,2,4-oxadiazol-3-yl benzonitrile, was shown to enhance its own clearance via induction of CYP1A1 and CYP1A2. Rats were dosed for 5 days with 30, 100, and 200 mg/kg/day A-998679. During the dosing period, the compound’s plasma AUC decreased at 30 mg/kg (95% and 100 mg/kg (80%. Gene expression analysis and immunohistochemistry of the livers showed a large increase in the mRNA and protein levels of CYP1A, which was involved in the biotransformation of A-998679. Induction of CYP1A was confirmed in primary rat, human, and dog hepatocytes. The compound also weakly inhibited CYP1A2 in human liver microsomes. A-998679 activated the aryl hydrocarbon receptor (AhR in a luciferase gene reporter assay in HepG2 cells, upregulated expression of genes associated with AhR activation in rat liver, and enhanced nuclear migration of AhR in HepG2 cells. Collectively these results demonstrate that A-998679 is an AhR activator that induces CYP1A1 and CYP1A2 expression, resulting in an autoinduction phenomenon. The unique properties of A-998679, along with its novel structure distinct from classical polycyclic aromatic hydrocarbons, may warrant its further evaluation as a tool compound for use in studies involving AhR biology and CYP1A related mechanisms of drug metabolism and toxicity.

  6. Diazinon is activated by CYP2C19 in human liver.

    Science.gov (United States)

    Kappers, W A; Edwards, R J; Murray, S; Boobis, A R

    2001-11-15

    Phosphorothioate compounds are used throughout the world as agricultural and domestic pesticides. Here, the activation of the phosphorothioate diazinon to diazoxon in human liver is described. In an initial study using three human liver microsomal samples, K(m) for diazoxon formation varied markedly (31, 208, and 660 microM; V(max) 1125, 685, and 1028 pmol/min/mg protein, respectively), suggesting the involvement of more than one P450 enzyme. A wide variation in activity was found using 50 microM diazinon as substrate, (11-648 pmol/min/mg protein, n = 15), whereas, with 500 microM, variation was less (164-978 pmol/min/mg protein). Among eight P450-catalyzed reactions, the putative high-affinity component (50 microM diazinon) correlated with S-mephenytoin 4'-hydroxylase activity (r = 0.686, p diazinon) correlated with both S-mephenytoin 4'-hydroxylase (r = 0.714; p diazinon (500 microM) at the fastest rate, followed by CYP3A4, CYP1A2, and CYP2C9. Both hepatic microsomal S-mephenytoin 4'-hydroxylase and high-affinity phenacetin O-deethylase activities were strongly inhibited by diazinon (IC50 diazinon activation in human liver, while other enzymes including CYP1A2 may play a more minor role.

  7. CYP2C subfamily, primarily CYP2C9, catalyses the enantioselective demethylation of the endocrine disruptor pesticide methoxychlor in human liver microsomes: use of inhibitory monoclonal antibodies in P450 identification.

    Science.gov (United States)

    Hu, Y; Krausz, K; Gelboin, H V; Kupfer, D

    2004-02-01

    1. The endocrine disruptor pesticide methoxychlor undergoes O-demethylation by mammalian liver microsomes forming chiral mono-phenolic (1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane, i.e. mono-OH-M) and achiral bis-phenolic oestrogenic metabolites. Human liver microsomes (HLM) generated primarily the S-mono-OH-M. 2. Inhibitory monoclonal antibodies (MAb) identified those P450s catalysing the enantioselective O-demethylation of methoxychlor. In HLM, O-demethylation was inhibited by MAb anti-2C9 (30-40%), diminishing the per cent of S-mono-OH-M from about 80 to 55-60%. MAb anti-CYP1A2, 2A6, 2B6, 2C8, 2C19, 2D6 and 3A4 did not affect the demethylation rate in HLM. Nevertheless, MAb anti-CYP1A2 decreased the formation of R-mono-OH-M from 21-23 to 10-17%, indicating that CYP1A2 exhibits a role in generating the R-enantiomer. 3. Among cDNA-expressed human P450s (supersomes), CYP2C19 was the most active in demethylation, but in HLM, CYP2C19 appeared inactive (no inhibition by MAb anti-CYP2C19). There was a substantial difference in the per cent inhibition of demethylation by MAb anti-CYP2C9 and anti-rat CYP2C (MAb inhibiting all human CYP2C forms) and in altering the enantioselectivity, suggesting that demethylation by combined CYP2C8, 2C18 and 2C19 was significant (20-30%). 4. Polymorphism of methoxychlor demethylation was examined with supersomes and HLM-expressing CYP2C9 allelic variants. CYP2C9*1 and 2C9*2 were highly active; however, CYP2C9*3 appeared inactive.

  8. Modulation of pharmacokinetics of theophylline by antofloxacin, a novel 8-amino-fluoroquinolone, in humans

    Institute of Scientific and Technical Information of China (English)

    Li LIU; Xian PAN; Hai-yan LIU; Xiao-dong LIU; Hui-wen YANG; Lin XIE; Jun-lin CHENG; Hong-wei FAN; Da-wei XIAO

    2011-01-01

    Aim:To evaluate the pharmacokinetic interactions between theophylline and antofloxacin in vivo and in vitro.Methods:A randomized,5-day treatment and 3-way crossover design was documented in 12 healthy subjects.The subjects were orally administered with antofloxacin (400 mg on d 1 and 200 mg on d 2 to 5),theophylline (100 mg twice a day and morning dose 200 mg on d 1 and 5),or theophylline plus antofloxacin.The plasma and urinary pharmacokinetics of antofloxacin and theophylline were characterized after the first and last dose.The effect of antofioxacin on theophylline metabolism was also investigated in pooled human liver microsomes.Results:The 5-day treatment with antofioxacin significantly increased the area of the plasma concentration-time curve and peak plasma concentration of theophylline,accompanied by a decrease in the excretion of theophylline metabolites.On the contrary,theophylline did not affect the pharmacokinetics of antofloxacin.In vitro studies using pooled human hepatic microsomes demonstrated that antofloxacin was a weak reversible and mechanism-based inhibitor of CYP1A2.The clinical interaction between theophylline and antofloxacin was further validated by the in vitro results.Conclusion:The results showed that antofloxacin increases the plasma theophylline concentration,partly by acting as a mechanismbased inhibitor of CYP1A2.

  9. Inhibition of human P450 enzymes by natural extracts used in traditional medicine.

    Science.gov (United States)

    Rodeiro, Idania; Donato, María T; Jimenez, Nuria; Garrido, Gabino; Molina-Torres, Jorge; Menendez, Roberto; Castell, José V; Gómez-Lechón, María J

    2009-02-01

    Different medicinal plants are widely used in Cuba and Mexico to treat several disorders. This paper reports in vitro inhibitory effects on the P450 system of herbal products commonly used by people in Cuba and Mexico in traditional medicine for decades. Experiments were conducted in human liver microsomes. The catalytic activities of CYP1A1/2, 2D6, and 3A4 were measured using specific probe substrates. The Heliopsis longipes extract exhibited a concentration-dependent inhibition of the three enzymes, and similar effects were produced by affinin (an alkamide isolated from the H. longipes extract) and two catalytically reduced alkamides. Mangifera indica L. and Thalassia testudinum extracts, two natural polyphenol-rich extracts, diminished CYP1A1/2 and 3A4 activities, but not the CYP2D6 activity. These results suggest that these herbs inhibit the major human P450 enzymes involved in drug metabolism and could induce potential herbal-drug interactions.

  10. Oxidation of 1-chloropyrene by human CYP1 family and CYP2A subfamily cytochrome P450 enzymes: catalytic roles of two CYP1B1 and five CYP2A13 allelic variants.

    Science.gov (United States)

    Shimada, Tsutomu; Murayama, Norie; Kakimoto, Kensaku; Takenaka, Shigeo; Lim, Young-Ran; Yeom, Sora; Kim, Donghak; Yamazaki, Hiroshi; Guengerich, F Peter; Komori, Masayuki

    2017-07-21

    1. 1-Chloropyrene, one of the major chlorinated polycyclic aromatic hydrocarbon contaminants, was incubated with human cytochrome P450 (P450 or CYP) enzymes including CYP1A1, 1A2, 1B1, 2A6, 2A13, 2B6, 2C9, 2D6, 2E1, 3A4 and 3A5. Catalytic differences in 1-chloropyrene oxidation by polymorphic two CYP1B1 and five CYP2A13 allelic variants were also examined. 2. CYP1A1 oxidized 1-chloropyrene at the 6- and 8-positions more actively than at the 3-position, while both CYP1B1.1 and 1B1.3 preferentially catalyzed 6-hydroxylation. 3. Five CYP2A13 allelic variants oxidized 8-hydroxylation much more than 6- and 3-hydroxylation, and the variant CYP2A13.3 was found to slowly catalyze these reactions with a lower kcat value than other CYP2A13.1 variants. 4. CYP2A6 catalyzed 1-chloropyrene 6-hydroxylation at a higher rate than the CYP2A13 enzymes, but the rate was lower than the CYP1A1 and 1B1 variants. Other human P450 enzymes had low activities towards 1-chloropyrene. 5. Molecular docking analysis suggested differences in the interaction of 1-chloropyrene with active sites of CYP1 and 2 A enzymes. In addition, a naturally occurring Thr134 insertion in CYP2A13.3 was found to affect the orientation of Asn297 in the I-helix in interacting with 1-chloropyrene (and also 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, NNK) and caused changes in the active site of CYP2A13.3 as compared with CYP2A13.1.

  11. Evaluation of the Effects of S-Allyl-L-cysteine, S-Methyl-L-cysteine, trans-S-1-Propenyl-L-cysteine, and Their N-Acetylated and S-Oxidized Metabolites on Human CYP Activities.

    Science.gov (United States)

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji

    2016-01-01

    Three major organosulfur compounds of aged garlic extract, S-allyl-L-cysteine (SAC), S-methyl-L-cysteine (SMC), and trans-S-1-propenyl-L-cysteine (S1PC), were examined for their effects on the activities of five major isoforms of human CYP enzymes: CYP1A2, 2C9, 2C19, 2D6, and 3A4. The metabolite formation from probe substrates for the CYP isoforms was examined in human liver microsomes in the presence of organosulfur compounds at 0.01-1 mM by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Allicin, a major component of garlic, inhibited CYP1A2 and CYP3A4 activity by 21-45% at 0.03 mM. In contrast, a CYP2C9-catalyzed reaction was enhanced by up to 1.9 times in the presence of allicin at 0.003-0.3 mM. SAC, SMC, and S1PC had no effect on the activities of the five isoforms, except that S1PC inhibited CYP3A4-catalyzed midazolam 1'-hydroxylation by 31% at 1 mM. The N-acetylated metabolites of the three compounds inhibited the activities of several isoforms to a varying degree at 1 mM. N-Acetyl-S-allyl-L-cysteine and N-acetyl-S-methyl-L-cysteine inhibited the reactions catalyzed by CYP2D6 and CYP1A2, by 19 and 26%, respectively, whereas trans-N-acetyl-S-1-propenyl-L-cysteine showed weak to moderate inhibition (19-49%) of CYP1A2, 2C19, 2D6, and 3A4 activities. On the other hand, both the N-acetylated and S-oxidized metabolites of SAC, SMC, and S1PC had little effect on the reactions catalyzed by the five isoforms. These results indicated that SAC, SMC, and S1PC have little potential to cause drug-drug interaction due to CYP inhibition or activation in vivo, as judged by their minimal effects (IC50>1 mM) on the activities of five major isoforms of human CYP in vitro.

  12. Basal and inducible CYP1 mRNA quantitation and protein localization throughout the mouse gastrointestinal tract

    OpenAIRE

    Uno, Shigeyuki; Dragin, Nadine; Miller, Marian L.; Dalton, Timothy P.; Gonzalez, Frank J.; Nebert, Daniel W

    2007-01-01

    The CYP1A1, CYP1A2, and CYP1B1 enzymes are inducible by benzo[a]pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD); metabolism of BaP by these enzymes leads to electrophilic intermediates and genotoxicity. Throughout the gastrointestinal (GI) tract, we systematically compared basal and inducible levels of the CYP1 mRNAs by Q-PCR, and localized the CYP1 proteins by immunohistochemistry. Cyp1(+/+) wild-type were compared with the Cyp1a1(−/−), Cyp1a2(−/−), and Cyp1b1(−/−) single-knockou...

  13. 7,12-Dimethylbenzanthracene induces apoptosis in RL95-2 human endometrial cancer cells: Ligand-selective activation of cytochrome P450 1B1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Young [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); Lee, Seung Gee [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Chung, Jin-Yong [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); Kim, Yoon-Jae [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Park, Ji-Eun [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); Oh, Seunghoon [Department of Physiology, College of Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); Lee, Se Yong [Department of Obstetrics and Gynecology, Busan Medical Center, Busan 611-072 (Korea, Republic of); Choi, Hong Jo [Department of General Surgery, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Yoo, Young Hyun, E-mail: yhyoo@dau.ac.kr [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); and others

    2012-04-15

    7,12-Dimethylbenzanthracene (DMBA), a polycyclic aromatic hydrocarbon, exhibits mutagenic, carcinogenic, immunosuppressive, and apoptogenic properties in various cell types. To achieve these functions effectively, DMBA is modified to its active form by cytochrome P450 1 (CYP1). Exposure to DMBA causes cytotoxicity-mediated apoptosis in bone marrow B cells and ovarian cells. Although uterine endometrium constitutively expresses CYP1A1 and CYP1B1, their apoptotic role after exposure to DMBA remains to be elucidated. Therefore, we chose RL95-2 endometrial cancer cells as a model system for studying DMBA-induced cytotoxicity and cell death and hypothesized that exposure to DMBA causes apoptosis in this cell type following CYP1A1 and/or CYP1B1 activation. We showed that DMBA-induced apoptosis in RL95-2 cells is associated with activation of caspases. In addition, mitochondrial changes, including decrease in mitochondrial potential and release of mitochondrial cytochrome c into the cytosol, support the hypothesis that a mitochondrial pathway is involved in DMBA-induced apoptosis. Exposure to DMBA upregulated the expression of AhR, Arnt, CYP1A1, and CYP1B1 significantly; this may be necessary for the conversion of DMBA to DMBA-3,4-diol-1,2-epoxide (DMBA-DE). Although both CYP1A1 and CYP1B1 were significantly upregulated by DMBA, only CYP1B1 exhibited activity. Moreover, knockdown of CYP1B1 abolished DMBA-induced apoptosis in RL95-2 cells. Our data show that RL95-2 cells are susceptible to apoptosis by exposure to DMBA and that CYP1B1 plays a pivotal role in DMBA-induced apoptosis in this system. -- Highlights: ► Cytotoxicity-mediated apoptogenic action of DMBA in human endometrial cancer cells. ► Mitochondrial pathway in DMBA-induced apoptosis of RL95-2 endometrial cancer cells. ► Requirement of ligand-selective activation of CYP1B1 in DMBA-induced apoptosis.

  14. Effect of Honokiol on Cytochrome P450 and UDP-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Yong Yeon Cho

    2013-09-01

    Full Text Available Honokiol is a bioactive component isolated from the medicinal herbs Magnolia officinalis and Magnolia grandiflora that has antioxidative, anti-inflammatory, antithrombotic, and antitumor activities. The inhibitory potentials of honokiol on eight major human cytochrome P450 (CYP enzymes 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4, and four UDP-glucuronosyltransferases (UGTs 1A1, 1A4, 1A9, and 2B7 in human liver microsomes were investigated using liquid chromatography-tandem mass spectrometry. Honokiol strongly inhibited CYP1A2-mediated phenacetin O-deethylation, CYP2C8-mediated amodiaquine N-deethylation, CYP2C9-mediated diclofenac 4-hydroxylation, CYP2C19-mediated [S]-mephenytoin 4-hydroxylation, and UGT1A9-mediated propofol glucuronidation with Ki values of 1.2, 4.9, 0.54, 0.57, and 0.3 μM, respectively. Honokiol also moderately inhibited CYP2B6-mediated bupropion hydroxylation and CYP2D6-mediated bufuralol 1'-hydroxylation with Ki values of 17.5 and 12.0 μM, respectively. These in vitro results indicate that honokiol has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP1A2, CYP2C8, CYP2C9, CYP2C19, and UGT1A9.

  15. Environmental polychlorinated biphenyl exposure and cytochromes P450 in raccoons (Procyon lotor).

    Science.gov (United States)

    Smith, Philip N; Bandiera, Stelvio M; Skipper, Sherry L; Johnson, Kevin A; McMurry, Scott T

    2003-02-01

    An investigation involving raccoons as a sentinel species at the Paducah Gaseous Diffusion Plant (PGDP) and Ballard Wildlife Management Area in western Kentucky (USA) delineated the extent of exposure to polychlorinated biphenyls (PCBs). Three separate measures of hepatic cytochrome P450 (CYP) induction were used to evaluate raccoon physiological responses to PCB exposure. Hepatic CYP induction was estimated via determination of total CYP, dealkylase activities, and immunoreactive proteins. There were no differences in raccoon biomarker responses between study sites. Significant relationships between and among PCB residues and biomarkers indicated that hepatic CYP induction had occurred in response to PCB exposure. Pentoxyresorufin O-deethylase (PROD) activity, CYP1A1, and CYP1A2 were biomarkers most closely associated with PCB exposure. The rank order of responses was CYP1A1 > CYP1A2 > PROD > ethoxyresorufin O-deethylase (EROD) as related to raccoon liver PCB concentrations, whereas the order was CYP1A1 > PROD > EROD > CYP1A2 when regressed with total PCB concentrations in abdominal fat.

  16. Chlorophyllin significantly reduces benzo[a]pyrene-DNA adduct formation and alters cytochrome P450 1A1 and 1B1 expression and EROD activity in normal human mammary epithelial cells.

    Science.gov (United States)

    Keshava, Channa; Divi, Rao L; Einem, Tracey L; Richardson, Diana L; Leonard, Sarah L; Keshava, Nagalakshmi; Poirier, Miriam C; Weston, Ainsley

    2009-03-01

    We hypothesized that chlorophyllin (CHLN) would reduce benzo[a]pyrene-DNA (BP-DNA) adduct levels. Using normal human mammary epithelial cells (NHMECs) exposed to 4 microM BP for 24 hr in the presence or absence of 5 microM CHLN, we measured BP-DNA adducts by chemiluminescence immunoassay (CIA). The protocol included the following experimental groups: BP alone, BP given simultaneously with CHLN (BP+CHLN) for 24 hr, CHLN given for 24 hr followed by BP for 24 hr (preCHLN, postBP), and CHLN given for 48 hr with BP added for the last 24 hr (preCHLN, postBP+CHLN). Incubation with CHLN decreased BPdG levels in all groups, with 87% inhibition in the preCHLN, postBP+CHLN group. To examine metabolic mechanisms, we monitored expression by Affymetrix microarray (U133A), and found BP-induced up-regulation of CYP1A1 and CYP1B1 expression, as well as up-regulation of groups of interferon-inducible, inflammation and signal transduction genes. Incubation of cells with CHLN and BP in any combination decreased expression of many of these genes. Using reverse transcription real time PCR (RT-PCR) the maximal inhibition of BP-induced gene expression, >85% for CYP1A1 and >70% for CYP1B1, was observed in the preCHLN, postBP+CHLN group. To explore the relationship between transcription and enzyme activity, the ethoxyresorufin-O-deethylase (EROD) assay was used to measure the combined CYP1A1 and CYP1B1 activities. BP exposure caused the EROD levels to double, when compared with the unexposed controls. The CHLN-exposed groups all showed EROD levels similar to the unexposed controls. Therefore, the addition of CHLN to BP-exposed cells reduced BPdG formation and CYP1A1 and CYP1B1 expression, but EROD activity was not significantly reduced.

  17. Heritability of caffeine metabolism

    DEFF Research Database (Denmark)

    Matthaei, Johannes; Tzvetkov, Mladen V; Strube, Jakob

    2016-01-01

    Heritability of caffeine pharmacokinetics and CYP1A2 activity is controversial. Here we analyzed the pharmacokinetics of caffeine, an in vivo probe drug for CYP1A2 and arylamine N-acetyltransferase 2 (NAT2) activity, in monozygotic and dizygotic twins. In the entire group, common and unique...... environmental effects explained most variation in caffeine AUC. Apparently, smoking and hormonal contraceptives masked the genetic effects on CYP1A2 activity. However, when excluding smokers and users of hormonal contraceptives, 89% of caffeine AUC variation was due to genetic effects and even in the entire...... group, 8% of caffeine AUC variation could be explained by a CYP1A1/1A2 promotor polymorphism (rs2470893). In contrast, nearly all of the variation (99%) of NAT2 activity was explained by genetic effects. This study illustrates two very different situations in pharmacogenetics, from an almost exclusively...

  18. Identification of CYP isozymes involved in benzbromarone metabolism in human liver microsomes.

    Science.gov (United States)

    Kobayashi, Kaoru; Kajiwara, Eri; Ishikawa, Masayuki; Oka, Hidenobu; Chiba, Kan

    2012-11-01

    Benzbromarone (BBR) is metabolized to 1'-hydroxy BBR and 6-hydroxy BBR in the liver. 6-Hydroxy BBR is further metabolized to 5,6-dihydroxy BBR. The aim of this study was to identify the CYP isozymes involved in the metabolism of BBR to 1'-hydroxy BBR and 6-hydroxy BBR and in the metabolism of 6-hydroxy BBR to 5,6-dihydroxy BBR in human liver microsomes. Among 11 recombinant P450 isozymes examined, CYP3A4 showed the highest formation rate of 1'-hydroxy BBR. The formation rate of 1'-hydroxy BBR significantly correlated with testosterone 6β-hydroxylation activity in a panel of 12 human liver microsomes. The formation of 1'-hydroxy BBR was completely inhibited by ketoconazole in pooled human liver microsomes. On the other hand, the highest formation rate of 6-hydroxy BBR was found in recombinant CYP2C9. The highest correlation was observed between the formation rate of 6-hydroxy BBR and diclofenac 4'-hydroxylation activity in 12 human liver microsomes. The formation of 6-hydroxy BBR was inhibited by tienilic acid in pooled human liver microsomes. The formation of 5,6-dihydroxy BBR from 6-hydroxy BBR was catalysed by recombinant CYP2C9 and CYP1A2. The formation rate of 5,6-dihydroxy BBR was significantly correlated with diclofenac 4'-hydroxylation activity and phenacetin O-deethylation activity in 12 human liver microsomes. The formation of 5,6-dihydroxy BBR was inhibited with either tienilic acid or α-naphthoflavone in human liver microsomes. These results suggest that (i) the formation of 1'-hydroxy BBR and 6-hydroxy BBR is mainly catalysed by CYP3A4 and CYP2C9, respectively, and (ii) the formation of 5,6-dihydroxy BBR is catalysed by CYP2C9 and CYP1A2 in human liver microsomes.

  19. Análise dos genes CYP1A1,CYP1B1 e CYP17 em meninas com puberdade precoce central

    OpenAIRE

    Cezar Noboru Matsuzaki

    2013-01-01

    INTRODUÇÃO: Os fatores genéticos que influenciam o início da puberdade precoce ainda não são totalmente conhecidos. Assim, investigar os mecanismos gênicos que estariam envolvidos na sua gênese é muito importante, pois, além de possibilitar o diagnóstico em fases iniciais, pode contribuir para o desenvolvimento de novas terapias, com melhora do prognóstico. Para alguns investigadores, o estradiol também seria um fator contribuinte no determinismo da puberdade. OBJETIVOS: Estudar três genes qu...

  20. Activation of thiazide-sensitive co-transport by angiotensin II in the cyp1a1-Ren2 hypertensive rat.

    Directory of Open Access Journals (Sweden)

    Ali Ashek

    Full Text Available Transgenic rats with inducible expression of the mouse Ren2 gene were used to elucidate mechanisms leading to the development of hypertension and renal injury. Ren2 transgene activation was induced by administration of a naturally occurring aryl hydrocarbon, indole-3-carbinol (100 mg/kg/day by gastric gavage. Blood pressure and renal parameters were recorded in both conscious and anesthetized (butabarbital sodium; 120 mg/kg IP rats at selected time-points during the development of hypertension. Hypertension was evident by the second day of treatment, being preceded by reduced renal sodium excretion due to activation of the thiazide-sensitive sodium-chloride co-transporter. Renal injury was evident after the first day of transgene induction, being initially limited to the pre-glomerular vasculature. Mircoalbuminuria and tubuloinsterstitial injury developed once hypertension was established. Chronic treatment with either hydrochlorothiazide or an AT1 receptor antagonist normalized sodium reabsorption, significantly blunted hypertension and prevented renal injury. Urinary aldosterone excretion was increased ≈ 20 fold, but chronic mineralocorticoid receptor antagonism with spironolactone neither restored natriuretic capacity nor prevented hypertension. Spironolactone nevertheless ameliorated vascular damage and prevented albuminuria. This study finds activation of sodium-chloride co-transport to be a key mechanism in angiotensin II-dependent hypertension. Furthermore, renal vascular injury in this setting reflects both barotrauma and pressure-independent pathways associated with direct detrimental effects of angiotensin II and aldosterone.

  1. Modulation of CYP1A1, CYP1B1 and DNA adducts level by green and white tea in Balb/c mice.

    Science.gov (United States)

    Kumar, Manoj; Jain, Mridula; Sehgal, Amit; Sharma, V L

    2012-12-01

    In the current investigation the ameliorative effect of 2% extract of green tea (GT) and white tea (WT) against benzo(a)pyrene (BaP) induced toxicity and DNA damage has been studied in liver and lung of Balb/c mice (8 animals per group). The activities of phase I enzymes such as 7-ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-depentylase (PROD) were found to be increased (plung of BaP treated (125 mg/kg b.w. orally) group. The enhanced activities of EROD and PROD were inhibited in group that received pretreatment with GT and WT for 35 days. Pretreatment with GT and WT also elevated (ptea as a cancer chemopreventive agent.

  2. Enantiospecific effects of ketoconazole on aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Aneta Novotna

    Full Text Available Azole antifungal ketoconazole (KET was demonstrated to activate aryl hydrocarbon receptor (AhR. Since clinically used KET is a racemic mixture of two cis-enantiomers (2R,4S-(+-KET and (2S,4R-(--KET, we examined the effects of KET enantiomers on AhR signaling pathway. (+-KET dose-dependently activated AhR in human gene reporter cell line AZ-AHR, and displayed 5-20× higher agonist activity (efficacy, as compared to (--KET; both enantiomers were AhR antagonists with equal potency (IC50. Consistently, (+-KET strongly induced CYP1A1 mRNA and protein in human HepG2 cells, while (--KET exerted less than 10% of (+-KET activity. In primary human hepatocytes, both enantiomers preferentially induced CYP1A2 over CYP1A1 mRNA and protein, and the potency of (+-KET was slightly higher as compared to (--KET. Ligand binding assay with guinea pig liver cytosols revealed that both (+-KET and (--KET are weak ligands of AhR that displaced [3H]-TCDD with comparable potency. Similarly, both enantiomers weakly transformed AhR to DNA-binding form with similar potency, as showed by EMSA, in guinea pig liver cytosolic extracts and nuclear extracts from mouse Hepa-1 cells. We also examined effects of KET on glucocorticoid receptor (GR, a regulator of AhR activity. Both KET enantiomers antagonized GR with similar potency, as revealed by gene reporter assay in AZ-GR cell line and down-regulation of tyrosine aminotransferase mRNA in human hepatocytes. Finally, we demonstrate enantiospecific antifungal activities of KET enantiomers in six Candida spp. strains. In conclusion, the significance of current study is providing the first evidence of enatiospecific effects of cis-enantiomers of ketoconazole on AhR-CYP1A pathway.

  3. Antipsychotic-induced tardive dyskinesia and polymorphic variations in COMT, DRD2, CYP1A2 and MnSOD genes: a meta-analysis of pharmacogenetic interactions.

    Science.gov (United States)

    Bakker, P R; van Harten, P N; van Os, J

    2008-05-01

    Despite accumulating evidence pointing to a genetic basis for tardive dyskinesia, results to date have been inconsistent owing to limited statistical power and limitations in molecular genetic methodology. A Medline, EMBASE and PsychINFO search for literature published between 1976 and June 2007 was performed, yielding 20 studies from which data were extracted for calculation of pooled estimates using meta-analytic techniques. Evidence from pooled data for genetic association with tardive dyskinesia (TD) showed (1) in COMT(val158met), using Val-Val homozygotes as reference category, a protective effect for Val-Met heterozygotes (OR=0.63, 95% CI: 0.46-0.86, P=0.004) and Met carriers (OR=0.66, 95% CI: 0.49-0.88, P=0.005); (2) in Taq1A in DRD2, using the A1 variant as reference category, a risk-increasing effect for the A2 variant (OR=1.30, 95% CI: 1.03-1.65, P=0.026), and A2-A2 homozygotes using A1-A1 as reference category (OR=1.80, 95% CI: 1.03-3.15, P=0.037); (3) in MnSOD Ala-9Val, using Ala-Ala homozygotes as reference category, a protective effect for Ala-Val (OR=0.37, 95% CI: 0.17-0.79, P=0.009) and for Val carriers (OR=0.49, 95% CI: 0.24-1.00, P=0.047). These analyses suggest multiple genetic influences on TD, indicative of pharmacogenetic interactions. Although associations are small, the effects underlying them may be subject to interactions with other loci that, when identified, may have acceptable predictive power. Future genetic research will take advantage of new genomic knowledge. Molecular Psychiatry (2008) 13, 544-556; doi:10.1038/sj.mp.4002142; published online 8 January 2008.

  4. [Inhibitory effect of imperatorin and isoimperatorin on activity of cytochrome P450 enzyme in human and rat liver microsomes].

    Science.gov (United States)

    Cao, Yan; Zhong, Yu-Huan; Yuan, Mei; Li, Hua; Zhao, Chun-Jie

    2013-04-01

    Imperatorin (IM) and isoimperatorin (ISOIM) are major active components of common herbal medicines from Umbelliferae plants, and widely used in clinic. This article studies the inhibitory effect of IM and ISOIM on the activity of cytochrome P450 (CYP) enzyme, and assesses their potential drug-drug interaction. IM and ISOIM were incubated separately with human or rat liver microsomes for 30 min, with phenacetin, bupropion, tolbutamide, S-mephenytoin, dextromethorphan and midazolam as probe substrates. Metabolites of the CYP probe substrates were determined by LC-MS/MS, and IC50 values were calculated to assess the inhibitory effect of the two drugs on human CYP1A2, 2B6, 2C9, 2C19, 2D6 and 3A4 enzymes, as well as on rat CYP1A2, 2B6, 2D2 and 3A1/2, and grade their inhibitory intensity. In human liver microsomes, IM and ISOIM showed different inhibitory effects on all of the six CYP isoenzymes. They were strong inhibitors for 1A2 and 2B6. The IC50 values were 0.05 and 0.20 micromol x L(-1) for 1A2, and 0.18 and 1.07 micromol x L(-1) for 2B6, respectively. They also showed moderate inhibitory effect on 2C19, and weak effect on 2C9, 2D6 and 3A4. In rat liver microsomes, IM and ISOIM were identified as moderate inhibitors for 1A2, with IC50 values of 1.95 and 2.98 micromol x L(-1). They were moderate and weak inhibitors for 2B6, with IC50 values of 6.22 and 21.71 micromol x L(-1), respectively. They also had weaker inhibitory effect on 2D2 and 3A1/2. The results indicated that IM and ISOIM had extensive inhibitory effects on human CYP enzymes. They are strong inhibitors of CYP1 A2 and 2B6 enzymes. However, it is worth noting the interaction arising from the inhibitory effect of CYP enzymes in clinic.

  5. Congener-specific metabolism and sequestration of dioxin-like compounds by cytochrome P450 1A induced in the liver of crows from Tokyo, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, M.; Iwata, H.; Tanabe, S. [Ehime Univ., Matsuyama (Japan); Yoneda, K.; Hashimoto, T. [Japan Wildlife Research Center, Tokyo (Japan)

    2004-09-15

    Jungle crow (JC; Corvus macrorhynchos) is a useful bioindicator for monitoring contaminants in urban areas, because this species is residential, occupies a same habitat as human, and feeds variety of foods including domestic waste and garbage. Therefore, JCs may accumulate environmental contaminants such as polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and coplanar polychlorinated biphenyls (Co-PCBs), which are released by human activities. Induction of cytochrome P450 (CYP) 1A is a responsive mechanism elicited by exposure to dioxinlike compounds including PCDDs/DFs and Co-PCBs. Toxicokinetic behavior of dioxin-like compounds in organisms is controlled by excretion, metabolism and absorption. These processes are, at least partly, dependent on CYP1A expression in addition to chemical structure and number of chlorine substitution of each congener. Low chlorinated congeners such as 2378-T{sub 4}CDD, 2378- T{sub 4}CDF, 12378-P{sub 5}CDD and 33'44'-PCB were easily metabolized by CYP1A1/2 in rat liver microsomes. PCDDs/DFs accumulate in hepatic tissue to a greater extent than adipose tissue in rats and mice. Recent study using transgenic CYP1A2 knockout mice demonstrated that CYP1A2 is responsible for the sequestration of 2378-T{sub 4}CDD and 23478-P{sub 5}CDF in hepatic tissue. Therefore, CYP1A is considered as a key factor responsible for toxicokinetics of dioxin-like compounds. However, there's no comprehensive data on the contribution of CYP1A to the toxicokinetics of dioxin-like congeners in wild populations. In this study, we investigated contamination levels of PCDDs/DFs and Co-PCBs in liver and breast muscle of JCs from Tokyo, Japan, and interactions of dioxin-like congeners with hepatic CYP to elucidate congener-specific toxicokinetics related to CYP expression in JC.

  6. Metabolism of (-)-cis- and (-)-trans-rose oxide by cytochrome P450 enzymes in human liver microsomes.

    Science.gov (United States)

    Nakahashi, Hiroshi; Yamamura, Yuuki; Usami, Atsushi; Rangsunvigit, Pramoch; Malakul, Pomthong; Miyazawa, Mitsuo

    2015-12-01

    The in vitro metabolism of (-)-cis- and (-)-trans-rose oxide was investigated using human liver microsomes and recombinant cytochrome P450 (P450 or CYP) enzymes for the first time. Both isomers of rose oxide were incubated with human liver microsomes, and the formation of the respective 9-oxidized metabolite were determined using gas chromatography-mass spectrometry (GC-MS). Of 11 different recombinant human P450 enzymes used, CYP2B6 and CYP2C19 were the primary enzymes catalysing the metabolism of (-)-cis- and (-)-trans-rose oxide. CYP1A2 also efficiently oxidized (-)-cis-rose oxide at the 9-position but not (-)-trans-rose oxide. α-Naphthoflavone (a selective CYP1A2 inhibitor), thioTEPA (a CYP2B6 inhibitor) and anti-CYP2B6 antibody inhibited (-)-cis-rose oxide 9-hydroxylation catalysed by human liver microsomes. On the other hand, the metabolism of (-)-trans-rose oxide was suppressed by thioTEPA and anti-CYP2B6 at a significant level in human liver microsomes. However, omeprazole (a CYP2C19 inhibitor) had no significant effects on the metabolism of both isomers of rose oxide. Using microsomal preparations from nine different human liver samples, (-)-9-hydroxy-cis- and (-)-9-hydroxy-trans-rose oxide formations correlated with (S)-mephenytoin N-demethylase activity (CYP2B6 marker activity). These results suggest that CYP2B6 plays important roles in the metabolism of (-)-cis- and (-)-trans-rose oxide in human liver microsomes.

  7. Effect of honokiol on the induction of drug-metabolizing enzymes in human hepatocytes.

    Science.gov (United States)

    Cho, Yong-Yeon; Jeong, Hyeon-Uk; Kim, Jeong-Han; Lee, Hye Suk

    2014-01-01

    Honokiol, 2-(4-hydroxy-3-prop-2-enyl-phenyl)-4-prop-2-enyl-phenol, an active component of Magnolia officinalis and Magnolia grandiflora, exerts various pharmacological activities such as antitumorigenic, antioxidative, anti-inflammatory, neurotrophic, and antithrombotic effects. To investigate whether honokiol acts as a perpetrator in drug interactions, messenger ribonucleic acid (mRNA) levels of phase I and II drug-metabolizing enzymes, including cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT), and sulfotransferase 2A1 (SULT2A1), were analyzed by real-time reverse transcription polymerase chain reaction following 48-hour honokiol exposure in three independent cryopreserved human hepatocyte cultures. Honokiol treatment at the highest concentration tested (50 μM) increased the CYP2B6 mRNA level and CYP2B6-catalyzed bupropion hydroxylase activity more than two-fold in three different hepatocyte cultures, indicating that honokiol induces CYP2B6 at higher concentrations. However, honokiol treatment (0.5-50 μM) did not significantly alter the mRNA levels of phase I enzymes (CYP1A2, CYP3A4, CYP2C8, CYP2C9, and CYP2C19) or phase II enzymes (UGT1A1, UGT1A4, UGT1A9, UGT2B7, and SULT2A1) in cryopreserved human hepatocyte cultures. CYP1A2-catalyzed phenacetin O-deethylase and CYP3A4-catalyzed midazolam 1'-hydroxylase activities were not affected by 48-hour honokiol treatment in cryopreserved human hepatocytes. These results indicate that honokiol is a weak CYP2B6 inducer and is unlikely to increase the metabolism of concomitant CYP2B6 substrates and cause pharmacokinetic-based drug interactions in humans.

  8. Significant interactions between maternal PAH exposure and haplotypes in candidate genes on B[a]P-DNA adducts in a NYC cohort of non-smoking African-American and Dominican mothers and newborns.

    Science.gov (United States)

    Iyer, Shoba; Perera, Frederica; Zhang, Bingzhi; Chanock, Stephen; Wang, Shuang; Tang, Deliang

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAH) are a class of chemicals common in the environment. Certain PAH are carcinogenic, although the degree to which genetic variation influences susceptibility to carcinogenic PAH remains unclear. Also unknown is the influence of genetic variation on the procarcinogenic effect of in utero exposures to PAH. Benzo[a]pyrene (B[a]P) is a well-studied PAH that is classified as a probable human carcinogen. Within our New York City-based cohort, we explored interactions between maternal exposure to airborne PAH during pregnancy and maternal and newborn haplotypes (and in one case, a single-nucleotide polymorphism) in key B[a]P metabolism genes on B[a]P-DNA adducts in paired cord blood samples. The study subjects included non-smoking African-American (n = 132) and Dominican (n = 235) women with available data on maternal PAH exposure, paired cord adducts and genetic data who resided in the Washington Heights, Central Harlem and South Bronx neighborhoods of New York City. We selected seven maternal and newborn genes related to B[a]P metabolism, detoxification and repair for our analyses: CYP1A1, CYP1A2, CYP1B1, GSTM3, GSTT2, NQO1 and XRCC1. We found significant interactions between maternal PAH exposure and haplotype on cord B[a]P-DNA adducts in the following genes: maternal CYP1B1, XRCC1 and GSTM3, and newborn CYP1A2 and XRCC1 in African-Americans; and maternal XRCC1 and newborn NQO1 in Dominicans. These novel findings highlight differences in maternal and newborn genetic contributions to B[a]P-DNA adduct formation, as well as ethnic differences in gene-environment interactions, and have the potential to identify at-risk subpopulations who are susceptible to the carcinogenic potential of B[a]P.

  9. Gene expression profiling of cytochromes P450, ABC transporters and their principal transcription factors in the amygdala and prefrontal cortex of alcoholics, smokers and drug-free controls by qRT-PCR.

    Science.gov (United States)

    Toselli, Francesca; de Waziers, Isabelle; Dutheil, Mary; Vincent, Marc; Wilce, Peter A; Dodd, Peter R; Beaune, Philippe; Loriot, Marie-Anne; Gillam, Elizabeth M J

    2015-01-01

    1. Ethanol consumption and smoking alter the expression of certain drug-metabolizing enzymes and transporters, potentially influencing the tissue-specific effects of xenobiotics. 2. Amygdala (AMG) and prefrontal cortex (PFC) are brain regions that modulate the effects of alcohol and smoking, yet little is known about the expression of cytochrome P450 enzymes (P450s) and ATP-binding cassette (ABC) transporters in these tissues. 3. Here, we describe the first study on the expression of 19 P450s, their redox partners, three ABC transporters and four related transcription factors in the AMG and PFC of smokers and alcoholics by quantitative RT-PCR. 4. CYP1A1, CYP1B1, CYP2B6, CYP2C8, CYP2C18, CYP2D6, CYP2E1, CYP2J2, CYP2S1, CYP2U1, CYP4X1, CYP46, adrenodoxin and NADPH-P450 reductase, ABCB1, ABCG2, ABCA1, and transcription factors aryl hydrocarbon receptor AhR and proliferator-activated receptor α were quantified in both areas. CYP2A6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, adrenodoxin reductase and the nuclear receptors pregnane X receptor and constitutive androstane receptor were detected but below the limit of quantification. CYP1A2 and CYP2W1 were not detected. 5. Adrenodoxin expression was elevated in all case groups over controls, and smokers showed a trend toward higher CYP1A1 and CYP1B1 expression. 6. Our study shows that most xenobiotic-metabolizing P450s and associated redox partners, transporters and transcription factors are expressed in human AMG and PFC.

  10. Quantitative Atlas of Cytochrome P450, UDP-Glucuronosyltransferase, and Transporter Proteins in Jejunum of Morbidly Obese Subjects.

    Science.gov (United States)

    Miyauchi, Eisuke; Tachikawa, Masanori; Declèves, Xavier; Uchida, Yasuo; Bouillot, Jean-Luc; Poitou, Christine; Oppert, Jean-Michel; Mouly, Stéphane; Bergmann, Jean-François; Terasaki, Tetsuya; Scherrmann, Jean-Michel; Lloret-Linares, Célia

    2016-08-01

    Protein expression levels of drug-metabolizing enzymes and transporters in human jejunal tissues excised from morbidly obese subjects during gastric bypass surgery were evaluated using quantitative targeted absolute proteomics. Protein expression levels of 15 cytochrome P450 (CYP) enzymes, 10 UDP-glucuronosyltransferase (UGT) enzymes, and NADPH-P450 reductase (P450R) in microsomal fractions from 28 subjects and 49 transporters in plasma membrane fractions from 24 of the same subjects were determined using liquid chromatography-tandem mass spectrometry. Based on average values, UGT1A1, UGT2B15, UGT2B17, SGLT1, and GLUT2 exhibited high expression levels (over 10 fmol/μg protein), though UGT2B15 expression was detected at a high level in only one subject. CYP2C9, CYP2D6, CYP3A5, UGT1A6, P450R, ABCG2, GLUT5, PEPT1, MCT1, 4F2 cell-surface antigen heavy chain (4F2hc), LAT2, OSTα, and OSTβ showed intermediate levels (1-10 fmol/μg protein), and CYP1A1, CYP1A2, CYP1B1, CYP2C18, CYP2C19, CYP2J2, CYP3A7, CYP4A11, CYP51A1, UGT1A3, UGT1A4, UGT1A8, UGT2B4, ABCC1, ABCC4, ABCC5, ABCC6, ABCG8, TAUT, OATP2A1, OATP2B1, OATP3A1, OATP4A1, OCTN1, CNT2, PCFT, MCT4, GLUT4, and SLC22A18 showed low levels (less than 1 fmol/μg protein). The greatest interindividual difference (364-fold) was detected for UGT2B17. However, differences in expression levels of other quantified UGTs (except UGT2B15 and UGT2B17), CYPs (except CYP1A1 and CYP3A5), and P450R, and all quantified transporters, were within 10-fold. Expression levels of CYP1A2 and GLUT4 were significantly correlated with body-mass index. The levels of 4F2hc showed significant gender differences. Smokers showed increased levels of UGT1A1 and UGT1A3. These findings provide a basis for understanding the changes in molecular mechanisms of jejunal metabolism and transport, as well as their interindividual variability, in morbidly obese patients.

  11. Inhibition selectivity of grapefruit juice components on human cytochromes P450.

    Science.gov (United States)

    Tassaneeyakul, W; Guo, L Q; Fukuda, K; Ohta, T; Yamazoe, Y

    2000-06-15

    Five compounds including furanocoumarin monomers (bergamottin, 6', 7'-dihydroxybergamottin (DHB)), furanocoumarin dimers (4-¿¿6-hydroxy-71-¿(1-hydroxy-1-methyl)ethyl-4-methyl-6-(7-oxo-7H- furo¿3,2-g1benzopyran-4-yl)-4-hexenyl]oxy]-3,7-dimethyl- 2-octenyl]oxy]-7H-furo[3,2-g]¿1benzopyran-7-one (GF-I-1) and 4-¿¿6-hydroxy-7¿¿4-methyl-1-(1-methylethenyl)-6-(7-oxo-7H-furo¿3, 2-g1benzopyran-4-yl)-4-hexenylŏxy-3, 7-dimethyl-2-octenylŏxy-7H-furo¿3,2-g1benzopyran-7-one (GF-I-4)), and a sesquiterpene nootkatone have been isolated from grapefruit juice and screened for their inhibitory effects toward human cytochrome P450 (P450) forms using selective substrate probes. Addition of ethyl acetate extract of grapefruit juice into an incubation mixture resulted in decreased activities of CYP3A4, CYP1A2, CYP2C9, and CYP2D6. All four furanocoumarins clearly inhibited CYP3A4-catalyzed nifedipine oxidation in concentration- and time-dependent manners, suggesting that these compounds are mechanism-based inhibitors of CYP3A4. Of the furanocoumarins investigated, furanocoumarin dimers, GF-I-1 and GF-I-4, were the most potent inhibitors of CYP3A4. Inhibitor concentration required for half-maximal rate of inactivation (K(I)) values for bergamottin, DHB, GF-I-1, and GF-I-4 were calculated, respectively, as 40.00, 5. 56, 0.31, and 0.13 microM, whereas similar values were observed on their inactivation rate constant at infinite concentration of inhibitor (k(inact), 0.05-0.08 min(-1)). Apparent selectivity toward CYP3A4 does occur with the furanocoumarin dimers. In contrast, bergamottin showed rather stronger inhibitory effect on CYP1A2, CYP2C9, CYP2C19, and CYP2D6 than on CYP3A4. DHB inhibited CYP3A4 and CYP1A2 activities at nearly equivalent potencies. Among P450 forms investigated, CYP2E1 was the least sensitive to the inhibitory effect of furanocoumarin components. A sesquiterpene nootkatone has no significant effect on P450 activities investigated except for CYP2A6 and CYP2C19

  12. AM-2201 Inhibits Multiple Cytochrome P450 and Uridine 5′-Diphospho-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Kim

    2017-03-01

    Full Text Available AM-2201 is a synthetic cannabinoid that acts as a potent agonist at cannabinoid receptors and its abuse has increased. However, there are no reports of the inhibitory effect of AM-2201 on human cytochrome P450 (CYP or uridine 5′-diphospho-glucuronosyltransferase (UGT enzymes. We evaluated the inhibitory effect of AM-2201 on the activities of eight major human CYPs (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4 and six major human UGTs (1A1, 1A3, 1A4, 1A6, 1A9, and 2B7 enzymes in pooled human liver microsomes using liquid chromatography–tandem mass spectrometry to investigate drug interaction potentials of AM-2201. AM-2201 potently inhibited CYP2C9-catalyzed diclofenac 4′-hydroxylation, CYP3A4-catalyzed midazolam 1′-hydroxylation, UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation, and UGT2B7-catalyzed naloxone 3-glucuronidation with IC50 values of 3.9, 4.0, 4.3, and 10.0 μM, respectively, and showed mechanism-based inhibition of CYP2C8-catalyzed amodiaquine N-deethylation with a Ki value of 2.1 μM. It negligibly inhibited CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, UGT1A1, UGT1A4, UGT1A6, and UGT1A9 activities at 50 μM in human liver microsomes. These in vitro results indicate that AM-2201 needs to be examined for potential pharmacokinetic drug interactions in vivo due to its potent inhibition of CYP2C8, CYP2C9, CYP3A4, UGT1A3, and UGT2B7 enzyme activities.

  13. AM-2201 Inhibits Multiple Cytochrome P450 and Uridine 5'-Diphospho-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes.

    Science.gov (United States)

    Kim, Ju-Hyun; Kwon, Soon-Sang; Kong, Tae Yeon; Cheong, Jae Chul; Kim, Hee Seung; In, Moon Kyo; Lee, Hye Suk

    2017-03-10

    AM-2201 is a synthetic cannabinoid that acts as a potent agonist at cannabinoid receptors and its abuse has increased. However, there are no reports of the inhibitory effect of AM-2201 on human cytochrome P450 (CYP) or uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes. We evaluated the inhibitory effect of AM-2201 on the activities of eight major human CYPs (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4) and six major human UGTs (1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) enzymes in pooled human liver microsomes using liquid chromatography-tandem mass spectrometry to investigate drug interaction potentials of AM-2201. AM-2201 potently inhibited CYP2C9-catalyzed diclofenac 4'-hydroxylation, CYP3A4-catalyzed midazolam 1'-hydroxylation, UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation, and UGT2B7-catalyzed naloxone 3-glucuronidation with IC50 values of 3.9, 4.0, 4.3, and 10.0 μM, respectively, and showed mechanism-based inhibition of CYP2C8-catalyzed amodiaquine N-deethylation with a Ki value of 2.1 μM. It negligibly inhibited CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, UGT1A1, UGT1A4, UGT1A6, and UGT1A9 activities at 50 μM in human liver microsomes. These in vitro results indicate that AM-2201 needs to be examined for potential pharmacokinetic drug interactions in vivo due to its potent inhibition of CYP2C8, CYP2C9, CYP3A4, UGT1A3, and UGT2B7 enzyme activities.

  14. Human metabolic interactions of environmental chemicals.

    Science.gov (United States)

    Hodgson, Ernest; Rose, Randy L

    2007-01-01

    Investigations utilizing recombinant human xenobiotic-metabolizing enzymes as well as human hepatocytes have revealed a number of interactions not only between different environmental chemicals (ECs) but also between ECs and endogenous metabolites. Organophosphorus insecticides (OPs) are potent inhibitors of the human metabolism of carbaryl, carbofuran, DEET and fipronil, as well as the jet fuel components, nonane and naphthalene. OPs are potent irreversible inhibitors of testosterone metabolism by cytochrome P450 (CYP) 3A4 and of estradiol metabolism by CYP3A4 and CYP1A2. All of these CYP inhibitions are believed to be due to the release of reactive sulfur during CYP-catalyzed oxidative desulfuration. It has also been shown that the esterase(s) responsible for the initial step in permethrin metabolism in human liver is inhibited by both chlorpyrifos oxon and carbaryl. A number of pesticides, including chlorpyrifos, fipronil and permethrin, and the repellent, DEET, have been shown to be inducers of CYP isoforms in human hepatocytes, with fipronil being the most potent. Several agrochemicals, including fipronil and the pyrethroids, permethrin and deltamethrin, show toxicity toward human hepatocytes with fipronil being the most potent in this regard. Endosulfan-alpha, which has shown promise as a model substrate for phenotyping CYP3A4 and CYP2B6 in human liver microsomes, is also an inducer of CYP2B6, acting through the PXR receptor.

  15. In vitro inhibitory effects of asiaticoside and madecassoside on human cytochrome P450.

    Science.gov (United States)

    Winitthana, T; Niwattisaiwong, N; Patarapanich, C; Tantisira, M H; Lawanprasert, S

    2011-06-01

    The inhibitory effects and types of inhibition of asiaticoside and madecassoside on human CYPs were studied in vitro using recombinant human CYPs. The median inhibitory concentrations (IC50) of asiaticoside and madecassoside were determined for CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4. Asiaticoside inhibited CYP2C19 (IC50 = 412.68 ± 15.44 μM) and CYP3A4 (IC50=343.35 ± 29.35 μM). Madecassoside also inhibited CYP2C19 (IC50 = 539.04 ± 14.18 μM) and CYP3A4 (IC50 = 453.32 ± 39.33 μM). Asiaticoside and madecassoside had no effect on the activities of CYP1A2, CYP2C9 and CYP2D6 and CYP2E1. Assessment of mechanism-based inhibition and the type of inhibition were performed for asiaticoside and madecassoside with CYP2C19 and CYP3A4. These results suggested that madecassoside is a mechanism-based inhibitor of CYP2C19 and CYP3A4. Assessment of mechanism-based inhibition by asiaticoside was limited by its low solubility. Asiaticoside exhibited non-competitive inhibition of CYP2C19 (Ki=385.24 ± 8.75 μM) and CYP3A4 (Ki = 535.93 ± 18.99 μM). Madecassoside also showed non-competitive inhibition of CYP2C19 (Ki = 109.62 ± 6.14 μM) and CYP3A4 (Ki = 456.84 ± 16.43 μM). These results suggest that asiaticoside and madecassoside could cause drug-drug interactions via inhibition of CYP2C19 and CYP3A4. An in vivo study is needed to examine this further.

  16. The anticarcinogen 3,3'-diindolylmethane is an inhibitor of cytochrome P-450.

    Science.gov (United States)

    Stresser, D M; Bjeldanes, L F; Bailey, G S; Williams, D E

    1995-08-01

    Dietary indole-3-carbinol inhibits carcinogenesis in rodents and trout. Several mechanisms of inhibition may exist. We reported previously that 3,3'-diindolylmethane, an in vivo derivative of indole-3-carbinol, is a potent noncompetitive inhibitor of trout cytochrome P450 (CYP) 1A-dependent ethoxyresorufin O-deethylase with Ki values in the low micromolar range. We now report a similar potent inhibition by 3,3'-diindolylmethane of rat and human CYP1A1, human CYP1A2, and rat CYP2B1 using various CYP-specific or preferential activity assays. 3,3'-Diindolylmethane also inhibited in vitro CYP-mediated metabolism of the ubiquitous food contaminant and potent hepatocarcinogen, aflatoxin B1. There was no inhibition of cytochrome c reductase. In addition, we found 3,3'-diindolylmethane to be a substrate for rat hepatic microsomal monooxygenase(s) and tentatively identified a monohydroxylated metabolite. These observations indicate that 3,3'-diindolylmethane can inhibit the catalytic activities of a range of CYP isoforms from lower and higher vertebrates in vitro. This broadly based inhibition of CYP-mediated activation of procarcinogens may be an indole-3-carbinol anticarcinogenic mechanism applicable to all species, including humans.

  17. Cytochrome P450 1B1, a novel chemopreventive target for benzo[a]pyrene-initiated human esophageal cancer.

    Science.gov (United States)

    Wen, Xia; Walle, Thomas

    2007-02-08

    Esophageal cancer is common worldwide, with poor prognosis. Smoking, including exposure to polyaromatic hydrocarbons like benzo[a]pyrene (BaP), is a major risk factor. In human esophageal HET-1A cells, we found that time-dependent BaP-DNA binding was associated with upregulation of CYP1B1, but not CYP1A1, mRNA and protein. The dietary flavonoid 5,7-dimethoxyflavone significantly inhibited BaP-DNA binding and down-regulated BaP-induced CYP1B1 mRNA and protein. 3',4'-Dimethoxyflavone was an even more potent inhibitor of CYP1B1 expression, while resveratrol had no effect. Thus, dietary methoxylated flavones inhibited BaP-induced CYP1B1 transcription in a cell-specific manner and hold promise as chemopreventive agents in esophageal carcinogenesis.

  18. Inhibition of human cytochrome P450 enzymes by Bacopa monnieri standardized extract and constituents.

    Science.gov (United States)

    Ramasamy, Seetha; Kiew, Lik Voon; Chung, Lip Yong

    2014-02-24

    Bacopa monnieri and the constituents of this plant, especially bacosides, possess various neuropharmacological properties. Like drugs, some herbal extracts and the constituents of their extracts alter cytochrome P450 (CYP) enzymes, causing potential herb-drug interactions. The effects of Bacopa monnieri standardized extract and the bacosides from the extract on five major CYP isoforms in vitro were analyzed using a luminescent CYP recombinant human enzyme assay. B. monnieri extract exhibited non-competitive inhibition of CYP2C19 (IC50/Ki = 23.67/9.5 µg/mL), CYP2C9 (36.49/12.5 µg/mL), CYP1A2 (52.20/25.1 µg/mL); competitive inhibition of CYP3A4 (83.95/14.5 µg/mL) and weak inhibition of CYP2D6 (IC50 = 2061.50 µg/mL). However, the bacosides showed negligible inhibition of the same isoforms. B. monnieri, which is orally administered, has a higher concentration in the gut than the liver; therefore, this herb could exhibit stronger inhibition of intestinal CYPs than hepatic CYPs. At an estimated gut concentration of 600 µg/mL (based on a daily dosage of 300 mg/day), B. monnieri reduced the catalytic activities of CYP3A4, CYP2C9 and CYP2C19 to less than 10% compared to the total activity (without inhibitor = 100%). These findings suggest that B. monnieri extract could contribute to herb-drug interactions when orally co-administered with drugs metabolized by CYP1A2, CYP3A4, CYP2C9 and CYP2C19.

  19. Inhibition of Human Cytochrome P450 Enzymes by Bacopa monnieri Standardized Extract and Constituents

    Directory of Open Access Journals (Sweden)

    Seetha Ramasamy

    2014-02-01

    Full Text Available Bacopa monnieri and the constituents of this plant, especially bacosides, possess various neuropharmacological properties. Like drugs, some herbal extracts and the constituents of their extracts alter cytochrome P450 (CYP enzymes, causing potential herb-drug interactions. The effects of Bacopa monnieri standardized extract and the bacosides from the extract on five major CYP isoforms in vitro were analyzed using a luminescent CYP recombinant human enzyme assay. B. monnieri extract exhibited non-competitive inhibition of CYP2C19 (IC50/Ki = 23.67/9.5 µg/mL, CYP2C9 (36.49/12.5 µg/mL, CYP1A2 (52.20/25.1 µg/mL; competitive inhibition of CYP3A4 (83.95/14.5 µg/mL and weak inhibition of CYP2D6 (IC50 = 2061.50 µg/mL. However, the bacosides showed negligible inhibition of the same isoforms. B. monnieri, which is orally administered, has a higher concentration in the gut than the liver; therefore, this herb could exhibit stronger inhibition of intestinal CYPs than hepatic CYPs. At an estimated gut concentration of 600 µg/mL (based on a daily dosage of 300 mg/day, B. monnieri reduced the catalytic activities of CYP3A4, CYP2C9 and CYP2C19 to less than 10% compared to the total activity (without inhibitor = 100%. These findings suggest that B. monnieri extract could contribute to herb-drug interactions when orally co-administered with drugs metabolized by CYP1A2, CYP3A4, CYP2C9 and CYP2C19.

  20. Identification of metabolic pathways involved in the biotransformation of tolperisone by human microsomal enzymes.

    Science.gov (United States)

    Dalmadi, Balázs; Leibinger, János; Szeberényi, Szabolcs; Borbás, Tímea; Farkas, Sándor; Szombathelyi, Zsolt; Tihanyi, Károly

    2003-05-01

    The in vitro metabolism of tolperisone, 1-(4-methyl-phenyl)-2-methyl-3-(1-piperidino)-1-propanone-hydrochloride, a centrally acting muscle relaxant, was examined in human liver microsomes (HLM) and recombinant enzymes. Liquid chromatography-mass spectrometry measurements revealed methyl-hydroxylation (metabolite at m/z 261; M1) as the main metabolic route in HLM, however, metabolites of two mass units greater than the parent compound and the hydroxy-metabolite were also detected (m/z 247 and m/z 263, respectively). The latter was identified as carbonyl-reduced M1, the former was assumed to be the carbonyl-reduced parent compound. Isoform-specific cytochrome P450 (P450) inhibitors, inhibitory antibodies, and experiments with recombinant P450s pointed to CYP2D6 as the prominent enzyme in tolperisone metabolism. CYP2C19, CYP2B6, and CYP1A2 are also involved to a smaller extent. Hydroxymethyl-tolperisone formation was mediated by CYP2D6, CYP2C19, CYP1A2, but not by CYP2B6. Tolperisone competitively inhibited dextromethorphan O-demethylation and bufuralol hydroxylation (K(i) = 17 and 30 microM, respectively). Tolperisone inhibited methyl p-tolyl sulfide oxidation (K(i) = 1200 microM) in recombinant flavin-containing monooxygenase 3 (FMO3) and resulted in a 3-fold (p tolperisone undergoes P450-dependent and P450-independent microsomal biotransformations to the same extent. On the basis of metabolites formed and indirect evidences of inhibition studies, a considerable involvement of a microsomal reductase is assumed.

  1. Tumor-specific expression of cytochrome P450 CYP1B1.

    Science.gov (United States)

    Murray, G I; Taylor, M C; McFadyen, M C; McKay, J A; Greenlee, W F; Burke, M D; Melvin, W T

    1997-07-15

    Cytochrome P450 CYP1B1 is a recently cloned dioxin-inducible form of the cytochrome P450 family of xenobiotic metabolizing enzymes. An antibody raised against a peptide specific for CYP1B1 was found to recognize CYP1B1 expressed in human lymphoblastoid cells but not to recognize other forms of cytochrome P450, particularly CYP1A1 and CYP1A2. Using this antibody, the cellular distribution and localization of CYP1B1 were investigated by immunohistochemistry in a range of malignant tumors and corresponding normal tissues. CYP1B1 was found to be expressed at a high frequency in a wide range of human cancers of different histogenetic types, including cancers of the breast, colon, lung, esophagus, skin, lymph node, brain, and testis. There was no detectable immunostaining for CYP1B1 in normal tissues. These results provide the basis for the development of novel methods of cancer diagnosis based on the identification of CYP1B1 in tumor cells and the development of anticancer drugs that are selectively activated in tumors by CYP1B1.

  2. Metabolism-mediated interaction potential of standardized extract of Tinospora cordifolia through rat and human liver microsomes

    Directory of Open Access Journals (Sweden)

    Shiv Bahadur

    2016-01-01

    Full Text Available Objective: Tinospora cordifolia is used for treatment of several diseases in Indian system of medicine. In the present study, the inhibition potential of T. cordifolia extracts and its constituent tinosporaside to cause herb-drug interactions through rat and human liver cytochrome enzymes was evaluated. Materials and Methods: Bioactive compound was quantified through reverse phase high-performance liquid chromatography, to standardize the plant extracts and interaction potential of standardized extract. Interaction potential of the test sample was evaluated through cytochrome P450-carbon monoxide complex (CYP450-CO assay with pooled rat liver microsome. Influence on individual recombinant human liver microsomes such as CYP3A4, CYP2D6, CYP2C9, and CYP1A2 isozymes was analyzed through fluorescence microplate assay, and respective IC 50 values were determined. Results: The content of tinosporaside was found to be 1.64% (w/w in T. cordifolia extract. Concentration-dependent inhibition was observed through T. cordifolia extract. Observed IC 50 (μg/ml value was 136.45 (CYP3A4, 144.37 (CYP2D6, 127.55 (CYP2C9, and 141.82 (CYP1A2. Tinosporaside and extract showed higher IC 50 (μg/ml value than the known inhibitors. T. cordifolia extract showed significantly less interaction potential and indicates that the selected plant has not significant herb-drug interactions relating to the inhibition of major CYP450 isozymes. Conclusions: Plant extract showed significantly higher IC 50 value than respective positive inhibitors against CYP3A4, 2D6, 2C9, and 1A2 isozymes. Consumption of T. cordifolia may not cause any adverse effects when consumed along with other xenobiotics.

  3. Metabolism-mediated interaction potential of standardized extract of Tinospora cordifolia through rat and human liver microsomes

    Science.gov (United States)

    Bahadur, Shiv; Mukherjee, Pulok K.; Milan Ahmmed, S. K.; Kar, Amit; Harwansh, Ranjit K.; Pandit, Subrata

    2016-01-01

    Objective: Tinospora cordifolia is used for treatment of several diseases in Indian system of medicine. In the present study, the inhibition potential of T. cordifolia extracts and its constituent tinosporaside to cause herb-drug interactions through rat and human liver cytochrome enzymes was evaluated. Materials and Methods: Bioactive compound was quantified through reverse phase high-performance liquid chromatography, to standardize the plant extracts and interaction potential of standardized extract. Interaction potential of the test sample was evaluated through cytochrome P450-carbon monoxide complex (CYP450-CO) assay with pooled rat liver microsome. Influence on individual recombinant human liver microsomes such as CYP3A4, CYP2D6, CYP2C9, and CYP1A2 isozymes was analyzed through fluorescence microplate assay, and respective IC50 values were determined. Results: The content of tinosporaside was found to be 1.64% (w/w) in T. cordifolia extract. Concentration-dependent inhibition was observed through T. cordifolia extract. Observed IC50 (μg/ml) value was 136.45 (CYP3A4), 144.37 (CYP2D6), 127.55 (CYP2C9), and 141.82 (CYP1A2). Tinosporaside and extract showed higher IC50 (μg/ml) value than the known inhibitors. T. cordifolia extract showed significantly less interaction potential and indicates that the selected plant has not significant herb-drug interactions relating to the inhibition of major CYP450 isozymes. Conclusions: Plant extract showed significantly higher IC50 value than respective positive inhibitors against CYP3A4, 2D6, 2C9, and 1A2 isozymes. Consumption of T. cordifolia may not cause any adverse effects when consumed along with other xenobiotics. PMID:27721546

  4. Khellin and visnagin differentially modulate AHR signaling and downstream CYP1A activity in human liver cells.

    Directory of Open Access Journals (Sweden)

    Radim Vrzal

    Full Text Available Khellin and visnagin are two furanochromones that can be frequently found in ethnomedical formulations in Asia and the Middle East. Both compounds possess anti-inflammatory and analgesic properties, therefore modern medicine uses these compounds or structurally related derivatives for treatment of vitiligo, bronchial asthma and renal colics. Despite their frequent usage, the potential toxic properties of visnagin and khellin are not well characterized up-to-now. Many natural compounds modulate the expression and activity of cytochrome P450 1A1 (CYP1A1, which is well-known to bioactivate pro-carcinogens. The expression of this enzyme is controlled by the aryl hydrocarbon receptor (AHR, a ligand-activated transcription factor and regulator of drug metabolism. Here, we investigated the influence of both furanochromones on AHR signaling in human HepG2 hepatocarcinoma cells and primary human hepatocytes. Both compounds transactivated xenobiotic response element (XRE-driven reporter gene activity in a dose-dependent manner and induced CYP1A1 transcription in HepG2 cells and primary hepatocytes. The latter was abolished in presence of a specific AHR antagonist. CYP1A enzyme activity assays done in HepG2 cells and primary hepatocytes revealed an inhibition of enzyme activity by both furanochromones, which may become relevant regarding the metabolism of xenobiotics and co-administered therapeutic drugs. The observed induction of several other members of the AHR gene battery, whose gene products are involved in regulation of cell growth, differentiation and migration, indicates that a further toxicological characterization of visnagin and khelllin is urgently required in order to minimize potential drug-drug interactions and other toxic side-effects that may occur during therapeutic usage of these furanochromones.

  5. Biotransformation of 6-methoxy-3-(3',4',5'-trimethoxy-benzoyl)-1H-indole (BPR0L075), a novel antimicrotubule agent, by mouse, rat, dog, and human liver microsomes.

    Science.gov (United States)

    Yao, Hsien-Tsung; Wu, Yu-Shan; Chang, Yi-Wei; Hsieh, Hsing-Pang; Chen, Wei-Cheng; Lan, Shih-Jung; Chen, Chiung-Tong; Chao, Yu-Sheng; Chang, Ling; Sun, Hsu-Yi; Yeh, Teng-Kuang

    2007-07-01

    6-Methoxy-3-(3',4',5'-trimethoxy-benzoyl)-1H-indole (BPR0L075) is a novel synthetic indole compound with microtubule binding activity. Incubation of BPR0L075 with mouse, rat, dog, and human liver microsomes in the presence of NADPH resulted in the formation of six metabolites. Liquid chromatography-tandem mass spectrometry and comparison with the synthetic reference standards identified two metabolites (M1 and M5) as the products derived from hydroxylation on the indole moiety of the molecule. M3 was also identified as a product derived from hydroxylation, but the structure of this metabolite was not identified because of the lack of a reference standard. M2, M4, and M6 were identified as the products derived from O-demethylation. M2, 6-desmethyl-BPR0L075, was the major metabolite formed by the liver microsomes of the four species. No qualitative species difference in the metabolism of BPR0L075 was observed. There was quantitative species difference in the metabolism of BPR0L075 among the four species. Whereas mouse and rat liver microsomes metabolized BPR0L075 predominantly via O-demethylation, dog liver microsomes metabolized BPR0L075 by O-demethylation and hydroxylation to about the same extent. The rank order of intrinsic clearance rates for the conversion of BPR0L075 to 6-desmethyl-BPR0L075 was mouse > rat > human > dog. Incubation of BPR0L075 with baculovirus-insect cell-expressed human cytochrome P450 (P450) isozymes showed that CYP1A2, 2C9, 2C19, 2D6, 2E1, and 3A4 all catalyzed the O-demethylation and hydroxylation of BPR0L075 but to a different degree. Among the six P450 isozymes tested, CYP1A2 and 2D6 were most active on catalyzing the metabolism of BPR0L075. CYP1A2 catalyzed mainly the formation of M1, M2, and M3. M2 was the predominant metabolite formed by CYP2D6.

  6. AhR- and ER-mediated activities in human blood samples collected from PCB-contaminated and background region in Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Pliskova, M. [Veterinary Researcch Institute, Brno (Czech Republic); Canton, R.F.; Duursen, M.B.M. van [Utrecht Univ. (NL). Institute for Risk Assessment Sciences (IRAS)] (and others)

    2004-09-15

    Endocrine disruption mediated through activation of aryl hydrocarbon receptor (AhR) and estrogen receptor (ER) by polychlorinated biphenyls (PCBs) and other persistent organic pollutants (POPs) has been studied extensively both in vivo and in vitro. Non-ortho- and mono-ortho-substituted polychlorinated biphenyls (PCBs) are potent AhR agonists therefore, increased dioxin-like activity of complex blood samples might reflect an increased exposure to PCBs. The induction of expression of CYP1A1 and CYP1B1 in different tissues, including lymphocytes, also depends on activation of AhR and it could be useful as a potential biomarker of exposure to dioxin-like compounds. Using various in vivo and in vitro models, the exposure to PCBs or hydroxy-PCBs has been reported to lead to either induction of ER-mediated activity or to an antiestrogenic effect associated with a suppression of estradiol-induced ER-dependent gene expression. Nevertheless, relative (anti)estrogenic potencies of a large set of prevalent environmental PCBs have not been yet compared in a single bioassay. A cross-talk between AhR and ER has been suggested to lead to a suppression of ER-mediated gene expression. Therefore, presence of dioxin-like compounds in blood could potentially suppress the ER-mediated activity. Additionally, AhR-dependent induction of CYP1A1 and especially CYP1B1, two enzymes involved in oxidative metabolism of estradiol and other estrogens, might enhance the metabolism of estradiol and it has been suggested to cause a potential depression of estrogen levels in the body. The aim of the present study was to determine dioxin-like, estrogenic and antiestrogenic activities in human blood samples collected in two Eastern Slovakia regions differently polluted with PCBs using established in vitro bioassays. We also studied mRNA expression of CYP1A1 and 1B1 in lymphocytes and the genotypes of CYP1B1 as possible biomarkers of exposure for PCBs and related compounds. The biological data obtained

  7. Active Site Mutations as a Suitable Tool Contributing to Explain a Mechanism of Aristolochic Acid I Nitroreduction by Cytochromes P450 1A1, 1A2 and 1B1.

    Science.gov (United States)

    Milichovský, Jan; Bárta, František; Schmeiser, Heinz H; Arlt, Volker M; Frei, Eva; Stiborová, Marie; Martínek, Václav

    2016-02-05

    Aristolochic acid I (AAI) is a plant drug found in Aristolochia species that causes aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. AAI is activated via nitroreduction producing genotoxic N-hydroxyaristolactam, which forms DNA adducts. The major enzymes responsible for the reductive bioactivation of AAI are quinone oxidoreductase and cytochromes P450 (CYP) 1A1 and 1A2. Using site-directed mutagenesis we investigated the possible mechanisms of CYP1A1/1A2/1B1-catalyzed AAI nitroreduction. Molecular modelling predicted that the hydroxyl groups of serine122/threonine124 (Ser122/Thr124) amino acids in the CYP1A1/1A2-AAI binary complexes located near to the nitro group of AAI, are mechanistically important as they provide the proton required for the stepwise reduction reaction. In contrast, the closely related CYP1B1 with no hydroxyl group containing residues in its active site is ineffective in catalyzing AAI nitroreduction. In order to construct an experimental model, mutant forms of CYP1A1 and 1A2 were prepared, where Ser122 and Thr124 were replaced by Ala (CYP1A1-S122A) and Val (CYP1A2-T124V), respectively. Similarly, a CYP1B1 mutant was prepared in which Ala133 was replaced by Ser (CYP1B1-A133S). Site-directed mutagenesis was performed using a quickchange approach. Wild and mutated forms of these enzymes were heterologously expressed in Escherichia coli and isolated enzymes characterized using UV-vis spectroscopy to verify correct protein folding. Their catalytic activity was confirmed with CYP1A1, 1A2 and 1B1 marker substrates. Using (32)P-postlabelling we determined the efficiency of wild-type and mutant forms of CYP1A1, 1A2, and 1B1 reconstituted with NADPH:CYP oxidoreductase to bioactivate AAI to reactive intermediates forming covalent DNA adducts. The S122A and T124V mutations in CYP1A1 and 1A2, respectively, abolished the efficiency of CYP1A1 and 1A2 enzymes to generate AAI-DNA adducts. In contrast, the

  8. Ethanolic Neem (Azadirachta indica Leaf Extract Prevents Growth of MCF-7 and HeLa Cells and Potentiates the Therapeutic Index of Cisplatin

    Directory of Open Access Journals (Sweden)

    Chhavi Sharma

    2014-01-01

    Full Text Available The present study was designed to gain insight into the antiproliferative activity of ethanolic neem leaves extract (ENLE alone or in combination with cisplatin by cell viability assay on human breast (MCF-7 and cervical (HeLa cancer cells. Nuclear morphological examination and cell cycle analysis were performed to determine the mode of cell death. Further, to identify its molecular targets, the expression of genes involved in apoptosis, cell cycle progression, and drug metabolism was analyzed by RT-PCR. Treatment of MCF-7, HeLa, and normal cells with ENLE differentially suppressed the growth of cancer cells in a dose- and time-dependent manner through apoptosis. Additionally, lower dose combinations of ENLE with cisplatin resulted in synergistic growth inhibition of these cells compared to the individual drugs (combination index <1. ENLE significantly modulated the expression of bax, cyclin D1, and cytochrome P450 monooxygenases (CYP 1A1 and CYP 1A2 in a time-dependent manner in these cells. Conclusively, these results emphasize the chemopreventive ability of neem alone or in combination with chemotherapeutic treatment to reduce the cytotoxic effects on normal cells, while potentiating their efficacy at lower doses. Thus, neem may be a prospective therapeutic agent to combat gynecological cancers.

  9. Combined Docking and Quantum Chemical Study on CYP-Mediated Metabolism of Estrogens in Man.

    Science.gov (United States)

    Lábas, Anikó; Krámos, Balázs; Oláh, Julianna

    2017-02-20

    Long-term exposure to estrogens seriously increases the incidence of various diseases including breast cancer. Experimental studies indicate that cytochrome P450 (CYP) enzymes catalyze the bioactivation of estrogens to catechols, which can exert their harmful effects via various routes. It has been shown that the 4-hydroxylation pathway of estrogens is the most malign, while 2-hydroxylation is considered a benign pathway. It is also known experimentally that with increasing unsaturation of ring B of estrogens the prevalence of the 4-hydroxylation pathway significantly increases. In this study, we used a combination of structural analysis, docking, and quantum chemical calculations at the B3LYP/6-311+G* level to investigate the factors that influence the regioselectivity of estrogen metabolism in man. We studied the structure of human estrogen metabolizing enzymes (CYP1A1, CYP1A2, CYP1B1, and CYP3A4) in complex with estrone using docking and investigated the susceptibility of estrone, equilin, and equilenin (which only differ in the unsaturation of ring B) to undergo 2- and 4-hydroxylation using several models of CYP enzymes (Compound I, methoxy, and phenoxy radical). We found that even the simplest models could account for the experimental difference between the 2- and 4- hydroxylation pathways and thus might be used for fast screening purposes. We also show that reactivity indices, specifically in this case the radical and nucleophilic condensed Fukui functions, also correctly predict the likeliness of estrogen derivatives to undergo 2- or 4-hydroxylation.

  10. 10-(6'-Plastoquinonyl)decyltriphenylphosphonium (SkQ1) Does Not Increase the Level of Cytochromes P450 in Rat Liver and Human Hepatocyte Cell Culture.

    Science.gov (United States)

    Myasoedova, K N; Silachev, D N; Petrov, A D

    2016-12-01

    Mitochondria-targeted antioxidant SkQ1 did not increase the content of cytochromes P450 in livers of rats that were given SkQ1 in drinking water for 5 days in a dose (2.5 µmol per kg body weight) that exceeded 10 times the SkQ1 therapeutic dose. SkQ1 did not affect the levels of cytochrome P450 forms CYP1A2, CYP2B6, and CYP3A4 in monolayer cultures of freshly isolated human hepatocytes, while specific inducers of these forms (omeprazole, phenobarbital, and rifampicin, respectively) significantly increased expression of the cytochromes P450 under the same conditions. We conclude that therapeutic doses of SkQ1 do not induce cytochromes P450 in liver, and the absence of the inducing effect cannot be explained by poor availability of hepatocytes to SkQ1 in vivo.

  11. Cytochrome P450 isoenzymes in rat and human liver microsomes associate with the metabolism of total coumarins in Fructus Cnidii.

    Science.gov (United States)

    Hu, Xiao; Huang, Wei; Yang, Yuan

    2015-12-01

    Fructus Cnidii (Cnidium) is isolated from the dry and ripe fruit of Cnidium monnier (L.) Cuss (umbelifera), an annual herb. It is demonstrated that the active constituents of Fructus Cnidii are coumarins, known as Total Coumarins of Cnidium Monnier (TCCM). Osthole (Ost) and imperatorin (Imp) are the most active constituents of TCCM which are usually regarded as the quality indicators of medicinal Fructus Cnidii. The aim is to study the metabolism of Fructus Cnidii effective monomer osthole and imperatorin in vitro by liver microsomes. CYP3A4 inhibitor ketoconazole, CYP2D6 inhibitor qunidine, CYP2C8 inhibitor trimethoprim, CYP2C9 inhibitor sulfaphenazole, and CYP1A2 inhibitor α-naphthoflavone were used to investigate the metabolism from incubation time, substrate concentration and liver microsomal concentration, respectively. The concentration of liver microsomes was 0.2 mg/ml. Ost (0.8/3.2/12.8 uM) was incubated at 37 °C for 20 min while Imp (1.6/6.4/19.2 uM) was incubated for 30 min. Qunidine, trimethoprim and α-naphthoflavone could significantly inhibit the disappearance of Imp; meanwhile ketoconazole, sulfaphenazole and qunidine could inhibit the disappearance of Ost. CYP1A, CYP2C are involved in the metabolism of Imp and CYP3A mediates the metabolism of Ost in rat liver microsomes. In human liver microsomes, CYP1A2, CYP2C8, CYP2D6 are involved in the metabolism of Imp; CYP3A4 is involved in the metabolism of Ost at all the tested concentrations of Ost, while CYP2C9, CYP2D6 mediate the metabolism at high concentration of Ost.

  12. Combination Effects of (TriAzole Fungicides on Hormone Production and Xenobiotic Metabolism in a Human Placental Cell Line

    Directory of Open Access Journals (Sweden)

    Svenja Rieke

    2014-09-01

    Full Text Available Consumers are exposed to multiple residues of different pesticides via the diet. Therefore, EU legislation for pesticides requires the evaluation of single active substances as well as the consideration of combination effects. Hence the analysis of combined effects of substances in a broad dose range represents a key challenge to current experimental and regulatory toxicology. Here we report evidence for additive effects for (triazole fungicides, a widely used group of antifungal agents, in the human placental cell line Jeg-3. In addition to the triazoles cyproconazole, epoxiconazole, flusilazole and tebuconazole and the azole fungicide prochloraz also pesticides from other chemical classes assumed to act via different modes of action (i.e., the organophosphate chlorpyrifos and the triazinylsulfonylurea herbicide triflusulfuron-methyl were investigated. Endpoints analysed include synthesis of steroid hormone production (progesterone and estradiol and gene expression of steroidogenic and non-steroidogenic cytochrome-P-450 (CYP enzymes. For the triazoles and prochloraz, a dose dependent inhibition of progesterone production was observed and additive effects could be confirmed for several combinations of these substances in vitro. The non-triazoles chlorpyrifos and triflusulfuron-methyl did not affect this endpoint and, in line with this finding, no additivity was observed when these substances were applied in mixtures with prochloraz. While prochloraz slightly increased aromatase expression and estradiol production and triflusulfuron-methyl decreased estradiol production, none of the other substances had effects on the expression levels of steroidogenic CYP-enzymes in Jeg-3 cells. For some triazoles, prochloraz and chlorpyrifos a significant induction of CYP1A1 mRNA expression and potential combination effects for this endpoint were observed. Inhibition of CYP1A1 mRNA induction by the AhR inhibitor CH223191 indicated AhR receptor dependence this

  13. Combination Effects of (Tri)Azole Fungicides on Hormone Production and Xenobiotic Metabolism in a Human Placental Cell Line

    Science.gov (United States)

    Rieke, Svenja; Koehn, Sophie; Hirsch-Ernst, Karen; Pfeil, Rudolf; Kneuer, Carsten; Marx-Stoelting, Philip

    2014-01-01

    Consumers are exposed to multiple residues of different pesticides via the diet. Therefore, EU legislation for pesticides requires the evaluation of single active substances as well as the consideration of combination effects. Hence the analysis of combined effects of substances in a broad dose range represents a key challenge to current experimental and regulatory toxicology. Here we report evidence for additive effects for (tri)azole fungicides, a widely used group of antifungal agents, in the human placental cell line Jeg-3. In addition to the triazoles cyproconazole, epoxiconazole, flusilazole and tebuconazole and the azole fungicide prochloraz also pesticides from other chemical classes assumed to act via different modes of action (i.e., the organophosphate chlorpyrifos and the triazinylsulfonylurea herbicide triflusulfuron-methyl) were investigated. Endpoints analysed include synthesis of steroid hormone production (progesterone and estradiol) and gene expression of steroidogenic and non-steroidogenic cytochrome-P-450 (CYP) enzymes. For the triazoles and prochloraz, a dose dependent inhibition of progesterone production was observed and additive effects could be confirmed for several combinations of these substances in vitro. The non-triazoles chlorpyrifos and triflusulfuron-methyl did not affect this endpoint and, in line with this finding, no additivity was observed when these substances were applied in mixtures with prochloraz. While prochloraz slightly increased aromatase expression and estradiol production and triflusulfuron-methyl decreased estradiol production, none of the other substances had effects on the expression levels of steroidogenic CYP-enzymes in Jeg-3 cells. For some triazoles, prochloraz and chlorpyrifos a significant induction of CYP1A1 mRNA expression and potential combination effects for this endpoint were observed. Inhibition of CYP1A1 mRNA induction by the AhR inhibitor CH223191 indicated AhR receptor dependence of this effect. PMID

  14. Utility of intersystem extrapolation factors in early reaction phenotyping and the quantitative extrapolation of human liver microsomal intrinsic clearance using recombinant cytochromes P450.

    Science.gov (United States)

    Chen, Yuan; Liu, Liling; Nguyen, Khanh; Fretland, Adrian J

    2011-03-01

    Reaction phenotyping using recombinant human cytochromes P450 (P450) has great utility in early discovery. However, to fully realize the advantages of using recombinant expressed P450s, the extrapolation of data from recombinant systems to human liver microsomes (HLM) is required. In this study, intersystem extrapolation factors (ISEFs) were established for CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 using 11 probe substrates, based on substrate depletion and/or metabolite formation kinetics. The ISEF values for CYP2C9, CYP2D6, and CYP3A4 determined using multiple substrates were similar across substrates. When enzyme kinetics of metabolite formation for CYP1A2, 2C9, 2D6, and 3A4 were used, the ISEFs determined were generally within 2-fold of that determined on the basis of substrate depletion. Validation of ISEFs was conducted using 10 marketed drugs by comparing the extrapolated data with published data. The major isoforms responsible for the metabolism were identified, and the contribution of the predominant P450s was similar to that of previously reported data. In addition, phenotyping data from internal compounds, extrapolated using the rhP450-ISEF method, were comparable to those obtained using an HLM-based inhibition assay approach. Moreover, the intrinsic clearance (CL(int)) calculated from extrapolated rhP450 data correlated well with measured HLM CL(int). The ISEF method established in our laboratory provides a convenient tool in early reaction phenotyping for situations in which the HLM-based inhibition approach is limited by low turnover and/or unavailable metabolite formation. Furthermore, this method allows for quantitative extrapolation of HLM intrinsic clearance from rhP450 phenotyping data simultaneously to obtaining the participating metabolizing enzymes.

  15. Urinary Metabolites of the Dietary Carcinogen PhIP are Predictive of Colon DNA Adducts After a Low Dose Exposure in Humans

    Energy Technology Data Exchange (ETDEWEB)

    Malfatti, M; Dingley, K; Nowell, S; Ubick, E; Mulakken, N; Nelson, D; Lang, N; Felton, J; Turteltaub, K

    2006-04-28

    Epidemiologic evidence indicates that exposure to heterocyclic amines (HAs) in the diet is an important risk factor for the development of colon cancer. Well-done cooked meats contain significant levels of HAs which have been shown to cause cancer in laboratory animals. To better understand the mechanisms of HA bioactivation in humans, the most mass abundant HA, 2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was used to assess the relationship between PhIP metabolism and DNA adduct formation. Ten human volunteers were administered a dietary relevant dose of [{sup 14}C]PhIP 48-72 h prior to surgery to remove colon tumors. Urine was collected for 24 h after dosing for metabolite analysis, and DNA was extracted from colon tissue and analyzed by accelerator mass spectrometry for DNA adducts. All ten subjects were phenotyped for CYP1A2, NAT2, and SULT1A1 enzyme activity. Twelve PhIP metabolites were detected in the urine samples. The most abundant metabolite in all volunteers was N-hydroxy-PhIP-N{sup 2}-glucuronide. Metabolite levels varied significantly between the volunteers. Interindividual differences in colon DNA adducts levels were observed between each individual. The data showed that individuals with a rapid CYP1A2 phenotype and high levels of urinary N-hydroxy-PhIP-N{sup 2}-glucuronide, had the lowest level of colon PhIP-DNA adducts. This suggests that glucuronidation plays a significant role in detoxifying N-hydroxy-PhIP. The levels of urinary N-hydroxy-PhIP-N{sup 2}-glucuronide were negatively correlated to colon DNA adduct levels. Although it is difficult to make definite conclusions from a small data set, the results from this pilot study have encouraged further investigations using a much larger study group.

  16. Fipronil induces CYP isoforms and cytotoxicity in human hepatocytes.

    Science.gov (United States)

    Das, Parikshit C; Cao, Yan; Cherrington, Nathan; Hodgson, Ernest; Rose, Randy L

    2006-12-15

    Recent studies have demonstrated the potential of pesticides to either inhibit or induce xenobiotic metabolizing enzymes in humans. Exposure of human hepatocytes to doses of fipronil (5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl) sulfinyl]-1H-pyrazole-3-carbonitrile) ranging from 0.1 to 25 microM resulted in a dose dependent increase in CYP1A1 mRNA expression (3.5 to approximately 55-fold) as measured by the branched DNA assay. In a similar manner, CYP3A4 mRNA expression was also induced (10-30-fold), although at the higher doses induction returned to near control levels. CYP2B6 and 3A5 were also induced by fipronil, although at lower levels (2-3-fold). Confirmation of bDNA results were sought through western blotting and/or enzyme activity assays. Western blots using CYP3A4 antibody demonstrated a dose responsive increase from 0.5 to 1 microM followed by decreasing responses at higher concentrations. Similar increases and decreases were observed in CYP3A4-specific activity levels as measured using 6beta-hydroxytestosterone formation following incubation with testosterone. Likewise, activity levels for a CYP1A1-specific substrate, luciferin CEE, demonstrated that CYP1A1 enzyme activities were maximally induced by 1 microM fipronil followed by dramatically declining activity measurements at 10 and 25 microM. Cytotoxic effects of fipronil and fipronil sulfone were examined using the adenylate kinase and the trypan blue exclusion assays in HepG2 cells and human hepatocytes. The results indicate both that HepG2 cells and primary human hepatocytes are sensitive to the cytotoxic effects of fipronil. The maximum induction of adenylate kinase was ca. 3-fold greater than the respective controls in HepG2 and 6-10-fold in the case of primary hepatocytes. A significant time- and dose-dependent induction of adenylate kinase activity in HepG2 cells was noted from 0.1 to 12.5 microM fipronil followed by decreasing activities at 25 and 50 microM. For

  17. Transfer of PCBs via lactation simultaneously induces the expression of P450 isoenzymes and the protooncogenes c-Ha-ras and c-raf in neonates.

    Science.gov (United States)

    Borlak, J T; Scott, A; Henderson, C J; Jenke, H J; Wolf, C R

    1996-02-23

    At the first day of lactation, maternal rats were injected with a single i.p. dose of 100 or 250 mg/kg body weight of a mixture of polychlorinated biphenyls (Aroclor 1254). This treatment caused significant increases in both material and neonatal hepatic cytochrome P-450, cytochrome b5, and cytochrome-c-(P-450) reductase. Transfer of PCBs via lactation resulted in significant increases in hepatic enzyme activities catalysed by neonatal CYP1A1, CYP1A2, CYP2B1, CYP3A1, and CYP2E1 using a variety of substrates. In contrast, the metabolism of dimethylnitrosamine and aminopyrine was only marginally (up to 2-fold) increased in maternal animals four days post treatment. Further measurements showed significant increases in maternal and neonatal epoxide hydrolase, glutathione-S-transferase, and UDP-glucuronyl transferase activities, thus suggesting a coordinated response for an induction of CYP1A1, CYP1A2, CYP2A1, CYP2B1, CYP2E1, CYP3A1, and CYP4A1 in both maternal and neonatal CYP2C6, and at the higher dose the expression of neonatal CYP2E1 was significantly reduced. Northern blot analysis provided further evidence for significant increases in maternal and neonatal hepatic CYP1A1, CYP1A2, CYP2B1, and CYP2E1 mRNA, but reduced amounts of CYP2C7 and CYP4A1 mRNA. Additional Northern blot hybridization experiments may suggest an increased expression of the protooncogenes c-Ha-ras and c-raf in the mother and the neonate upon treatment of maternal rats with Aroclor 1254. Lactation itself may result in an increased expression of the latter protooncogenes, but the mRNA of the protooncogenes c-erb A and c-erb B was not detected in any of the tissues examined.

  18. Inhibitory Effect of Selaginellins from Selaginella tamariscina (Beauv. Spring against Cytochrome P450 and Uridine 5′-Diphosphoglucuronosyltransferase Isoforms on Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Jae-Kyung Heo

    2017-09-01

    Full Text Available Selaginella tamariscina (Beauv. has been used for traditional herbal medicine for treatment of cancer, hepatitis, and diabetes in the Orient. Numerous bioactive compounds including alkaloids, flavonoids, lignans, and selaginellins have been identified in this medicinal plant. Among them, selaginellins having a quinone methide unit and an alkylphenol moiety have been known to possess anticancer, antidiabetic, and neuroprotective activity. Although there have been studies on the biological activities of selaginellins, their modulatory potential of cytochrome P450 (P450 and uridine 5′-diphosphoglucuronosyltransferase (UGT activities have not been previously evaluated. In this study, we investigated the drug interaction potential of two selaginellins on ten P450 isoforms (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 2J2 and 3A and six UGT isoforms (UGT1A1, 1A3, 1A4, 1A6, 1A9 and 2B7 using human liver microsomes and liquid chromatography-tandem mass spectrometry. Selaginellin and selaginellin M had high inhibitory potential for CYP2C8-mediated amodiaquine O-demethylation with IC50 values of 0.5 and 0.9 μM, respectively. Selaginellin and selaginellin M also showed medium inhibitory potential against CYP2C9, CYP2J2, UGT1A1, and UGT1A3 (1 μM < IC50 < 5 μM. These two selaginellins had low inhibitory potential against CYP1A2, CYP2A6, CYP2E1, and UGT1A6 (IC50 > 25 μM. This information might be helpful to predict possible drug interaction potential of between selaginellins and co-administered drugs.

  19. Polymorphisms of Cytochrome P450 Genes in Three Ethnic Groups from Russia

    OpenAIRE

    Korytina, Gülnaz; Kochetova, Olga; Akhmadishina, Leysan; Viktorova, Elena; Victorova, Tatyana

    2012-01-01

    Objective: To determine the prevalence of the most common allelic variants of CYP1A1, CYP1A2, CYP1B1, CYP2C9, CYP2E1, CYP2F1, CYP2J2 and CYP2S1 in a representative sample of the three ethnic groups (Russians, Tatars and Bashkirs) from Republic of Bashkortostan (Russia), and compare the results with existing data published for other populations. Material and Methods: CYPs genotypes were determined in 742 DNA samples of healthy unrelated individuals representative of three ethnic gro...

  20. Polymorphisms of Cytochrome P450 Genes in Three Ethnic Groups from Russia

    OpenAIRE

    Elena Viktorova; Leysan Akhmadishina; Olga Kochetova; Gülnaz Korytina; Tatyana Victorova

    2012-01-01

    Objective: To determine the prevalence of the most common allelic variants of CYP1A1, CYP1A2, CYP1B1, CYP2C9, CYP2E1, CYP2F1, CYP2J2 and CYP2S1 in a representative sample of the three ethnic groups (Russians, Tatars and Bashkirs) from Republic of Bashkortostan (Russia), and compare the results with existing data published for other populations.Material and Methods: CYPs genotypes were determined in 742 DNA samples of healthy unrelated individuals representative of three ethnic groups. The CY...

  1. Cytochromes P450 are Expressed in Proliferating Cells in Barrett's Metaplasia

    OpenAIRE

    Hughes, Steven J.; Morse, Mark A.; Weghorst, Christopher M.; Hyesook Kim; Watkins, Paul B.; Peter Guengerich, F.; Orringer, Mark B.; Beer, David G.

    1999-01-01

    The expression of cytochromes P450 (CYP) in Barrett's esophagus and esophageal squamous mucosa was investigated. Esophagectomy specimens from 23 patients were examined for CYP expression of CYP1A2, CYP3A4, CYP2C9/10, and CYP2E1 by immunohistochemical analysis, and the expression of CYP1A1, CYP3A4, CYP1B1, CYP2E1, and CYP2C9/10 in these tissues was further confirmed by reverse transcription polymerase chain reaction. Immunohistochemical analysis of esophageal squamous mucosa (n = 12) showed ex...

  2. The Effect of Oxidation on Berberine-Mediated CYP1 Inhibition: Oxidation Behavior and Metabolite-Mediated Inhibition.

    Science.gov (United States)

    Lo, Sheng-Nan; Shen, Chien-Chang; Chang, Chia-Yu; Tsai, Keng-Chang; Huang, Chiung-Chiao; Wu, Tian-Shung; Ueng, Yune-Fang

    2015-07-01

    The protoberberine alkaloid berberine carries methylenedioxy moiety and exerts a variety of pharmacological effects, such as anti-inflammation and lipid-lowering effects. Berberine causes potent CYP1B1 inhibition, whereas CYP1A2 shows resistance to the inhibition. To reveal the influence of oxidative metabolism on CYP1 inhibition by berberine, berberine oxidation and the metabolite-mediated inhibition were determined. After NADPH-fortified preincubation of berberine with P450, the inhibition of CYP1A1 and CYP1B1 variants (CYP1B1.1, CYP1B1.3, and CYP1B1.4) by berberine was not enhanced, and CYP1A2 remained resistant. Demethyleneberberine was identified as the most abundant metabolite of CYP1A1- and CYP1B1-catalyzed oxidations, and thalifendine was generated at a relatively low rate. CYP1A1-catalyzed berberine oxidation had the highest maximal velocity (V max) and exhibited positive cooperativity, suggesting the assistance of substrate binding when the first substrate was present. In contrast, the demethylenation by CYP1B1 showed the property of substrate inhibition. CYP1B1-catalyzed berberine oxidation had low K m values, but it had V max values less than 8% of those of CYP1A1. The dissociation constants generated from the binding spectrum and fluorescence quenching suggested that the low K m values of CYP1B1-catalyzed oxidation might include more than the rate constants describing berberine binding. The natural protoberberine/berberine fmetabolites with methylenedioxy ring-opening (palmatine, jatrorrhizine, and demethyleneberberine) and the demethylation (thalifendine and berberrubine) caused weak CYP1 inhibition. These results demonstrated that berberine was not efficiently oxidized by CYP1B1, and metabolism-dependent irreversible inactivation was minimal. Metabolites of berberine caused a relatively weak inhibition of CYP1.

  3. Differential selectivity of cytochrome P450 inhibitors against probe substrates in human and rat liver microsomes

    Science.gov (United States)

    Eagling, Victoria A; Tjia, John F; Back, David J

    1998-01-01

    Aims Chemical inhibitors of cytochrome P450 (CYP) are a useful tool in defining the role of individual CYPs involved in drug metabolism. The aim of the present study was to evaluate the selectivity and rank the order of potency of a range of isoform-selective CYP inhibitors and to compare directly the effects of these inhibitors in human and rat hepatic microsomes. Methods Four chemical inhibitors of human cytochrome P450 isoforms, furafylline (CYP1A2), sulphaphenazole (CYP2C9), diethyldithiocarbamate (CYP2E1), and ketoconazole (CYP3A4) were screened for their inhibitory specificity towards CYP-mediated reactions in both human and rat liver microsomal preparations. Phenacetin O-deethylation, tolbutamide 4-hydroxylation, chlorzoxazone 6-hydroxylation and testosterone 6β-hydroxylation were monitored for enzyme activity. Results Furafylline was a potent, selective inhibitor of phenacetin O-deethylation (CYP1A2-mediated) in human liver microsomes (IC50 = 0.48 μm), but inhibited both phenacetin O-deethylation and tolbutamide 4-hydroxylation (CYP2C9-mediated) at equimolar concentrations in rat liver microsomes (IC50 = 20.8 and 24.0 μm respectively). Sulphaphenazole demonstrated selective inhibition of tolbutamide hydroxylation in human liver microsomes but failed to inhibit this reaction in rat liver microsomes. DDC demonstrated a low level of selectivity as an inhibitory probe for chlorzoxazone 6-hydroxylation (CYP2E1-mediated). DDC also inhibited testosterone 6β-hydroxylation (CYP3A-mediated) in man and rat, and tolbutamide 4-hydroxylase activity in rat. Ketoconazole was a very potent, selective inhibitor of CYP3A4 activity in human liver (IC50 = 0.04 μm). Although inhibiting CYP3A in rat liver it also inhibited all other reactions at concentrations ≤5 μm. Conclusions It is evident that CYP inhibitors do not exhibit the same selectivity in human and rat liver microsomes. This is due to differential selectivity of the inhibitors and/or differences in the CYP

  4. Influence of Sulforaphane Metabolites on Activities of Human Drug-Metabolizing Cytochrome P450 and Determination of Sulforaphane in Human Liver Cells.

    Science.gov (United States)

    Vanduchova, Alena; Tomankova, Veronika; Anzenbacher, Pavel; Anzenbacherova, Eva

    2016-12-01

    The influence of metabolites of sulforaphane, natural compounds present in broccoli (Brassica oleracea var. botrytis italica) and in other cruciferous vegetables, on drug-metabolizing cytochrome P450 (CYP) enzymes in human liver microsomes and possible entry of sulforaphane into human hepatic cells were investigated. Metabolites studied are compounds derived from sulforaphane by the mercapturic acid pathway (conjugation with glutathione and by following reactions), namely sulforaphane glutathione and sulforaphane cysteine conjugates and sulforaphane-N-acetylcysteine. Their possible effect on four drug-metabolizing CYP enzymes, CYP3A4 (midazolam 1'-hydroxylation), CYP2D6 (bufuralol 1'-hydroxylation), CYP1A2 (7-ethoxyresorufin O-deethylation), and CYP2B6 (7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation), was tested. Inhibition of four prototypical CYP activities by sulforaphane metabolites was studied in pooled human liver microsomes. Sulforaphane metabolites did not considerably affect biological function of drug-metabolizing CYPs in human liver microsomes except for CYP2D6, which was found to be inhibited down to 73-78% of the original activity. Analysis of the entry of sulforaphane into human hepatocytes was done by cell disruption by sonication, methylene chloride extraction, and modified high-performance liquid chromatography method. The results have shown penetration of sulforaphane into the human hepatic cells.

  5. The inhibition effect of 2,3,7,8-tetrachlorinated dibenzo-p-dioxin-induced aryl hydrocarbon receptor activation in human hepatoma cells with the treatment of cadmium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Chao, How-Ran [Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan (China); Emerging Compounds Research Center, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan (China); Tsou, Tsui-Chun [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan (China); Chen, Hung-Ta [Sustainable Environment Research Center, National Cheng Kung University, Tainan 701, Taiwan (China); Chang, Eddy Essen; Tsai, Feng-Yuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan (China); Lin, Ding-Yan [Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan (China); Chen, Fu-An [Graduate Institute of Pharmaceutical Science, Department of Pharmacy, Tajen University, Yan-Pu, Pingtung 907, Taiwan (China); Wang, Ya-Fen, E-mail: yfwang@cycu.edu.tw [Department of Bioenvironmental Engineering, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan (China); R and D Center of Membrane Technology, Chung Yuan Christian University, Chungli 320, Taiwan (China)

    2009-10-15

    Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), considered as endocrine disruptors, tend to accumulate in fatty tissues. Dioxin-responsive element chemical activated luciferase gene expression assay (DRE-luciferase assay) has been recognized as a semi-quantitative method for screening dioxins for its fast and low-cost as compared with HRGC/HRMS. However, some problems with the bioassay, including specificity, detection variation resulted from different cleanup strategies, and uncertainty of false-negative or false-positive results, remain to be overcome. Cadmium is a prevalent environmental contaminant around the world. This study was aimed to examine the effects of cadmium on the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced activation of aryl hydrocarbon receptor (AhR)-mediated gene expression in human hepatoma cells (Huh7-DRE-Luc cells and Huh7 cells). Ethoxyresorufin-O-deethylase (EROD) and DRE-luciferase assay were employed to determine the enzyme activity of cytochrome P450 1A1 (CYP1A1) and activation of AhR, respectively. The results showed that Cd{sup 2+} levels significantly inhibited the induction of TCDD-induced CYP1A1 and DRE luciferase activation in hepatoma cells. The 50% inhibited concentrations (IC{sub 50}) of CdCl{sub 2} were 0.414 {mu}M (95% confidence interval (C.I.): 0.230-0.602 {mu}M) in Huh7-DRE-Luc cells and 23.2 {mu}M (95% C.I.: 21.7-25.4 {mu}M) in Huh7 cells. Accordingly, prevention of interference with non-dioxin-like compounds in a DRE-luciferase assay is of great importance in an extensive cleanup procedure.

  6. Effect of honokiol on the induction of drug-metabolizing enzymes in human hepatocytes

    Directory of Open Access Journals (Sweden)

    Cho YY

    2014-11-01

    Full Text Available Yong-Yeon Cho,1 Hyeon-Uk Jeong,1 Jeong-Han Kim,2 Hye Suk Lee1 1College of Pharmacy, The Catholic University of Korea, Bucheon, Korea; 2Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea Abstract: Honokiol, 2-(4-hydroxy-3-prop-2-enyl-phenyl-4-prop-2-enyl-phenol, an active component of Magnolia officinalis and Magnolia grandiflora, exerts various pharmacological activities such as antitumorigenic, antioxidative, anti-inflammatory, neurotrophic, and antithrombotic effects. To investigate whether honokiol acts as a perpetrator in drug interactions, messenger ribonucleic acid (mRNA levels of phase I and II drug-metabolizing enzymes, including cytochrome P450 (CYP, UDP-glucuronosyltransferase (UGT, and sulfotransferase 2A1 (SULT2A1, were analyzed by real-time reverse transcription polymerase chain reaction following 48-hour honokiol exposure in three independent cryopreserved human hepatocyte cultures. Honokiol treatment at the highest concentration tested (50 µM increased the CYP2B6 mRNA level and CYP2B6-catalyzed bupropion hydroxylase activity more than two-fold in three different hepatocyte cultures, indicating that honokiol induces CYP2B6 at higher concentrations. However, honokiol treatment (0.5–50 µM did not significantly alter the mRNA levels of phase I enzymes (CYP1A2, CYP3A4, CYP2C8, CYP2C9, and CYP2C19 or phase II enzymes (UGT1A1, UGT1A4, UGT1A9, UGT2B7, and SULT2A1 in cryopreserved human hepatocyte cultures. CYP1A2-catalyzed phenacetin O-deethylase and CYP3A4-catalyzed midazolam 1'-hydroxylase activities were not affected by 48-hour honokiol treatment in cryopreserved human hepatocytes. These results indicate that honokiol is a weak CYP2B6 inducer and is unlikely to increase the metabolism of concomitant CYP2B6 substrates and cause pharmacokinetic-based drug interactions in humans. Keywords: honokiol, human hepatocytes, drug interactions, cytochrome P450, UDP-glucuronosyltransferases

  7. In vitro profiling of the metabolism and drug-drug interaction of tofogliflozin, a potent and highly specific sodium-glucose co-transporter 2 inhibitor, using human liver microsomes, human hepatocytes, and recombinant human CYP.

    Science.gov (United States)

    Yamane, Mizuki; Kawashima, Kosuke; Yamaguchi, Koji; Nagao, Shunsuke; Sato, Mika; Suzuki, Masayuki; Honda, Kiyofumi; Hagita, Hitoshi; Kuhlmann, Olaf; Poirier, Agnes; Fowler, Stephen; Funk, Christoph; Simon, Sandrine; Aso, Yoshinori; Ikeda, Sachiya; Ishigai, Masaki

    2015-03-01

    Abstract 1. The metabolism and drug-drug interaction (DDI) risk of tofogliflozin, a potent and highly specific sodium-glucose co-transporter 2 inhibitor, were evaluated by in vitro studies using human liver microsomes, human hepatocytes, and recombinant human CYPs. 2. The main metabolite of tofogliflozin was the carboxylated derivative (M1) in human hepatocytes, which was the same as in vivo. The metabolic pathway of tofogliflozin to M1 was considered to be as follows: first, tofogliflozin was catalyzed to the primary hydroxylated derivative (M4) by CYP2C18, CYP4A11 and CYP4F3B, then M4 was oxidized to M1. 3. Tofogliflozin had no induction potential on CYP1A2 and CYP3A4. Neither tofogliflozin nor M1 had inhibition potential on CYPs, with the exception of a weak CYP2C19 inhibition by M1. 4. Not only are multiple metabolic enzymes involved in the tofogliflozin metabolism, but the drug is also excreted into urine after oral administration, indicating that tofogliflozin is eliminated through multiple pathways. Thus, the exposure of tofogliflozin would not be significantly altered by DDI caused by any co-administered drugs. Also, tofogliflozin seems not to cause significant DDI of co-administered drugs because tofogliflozin has no CYP induction or inhibition potency, and the main metabolite M1 has no clinically relevant CYP inhibition potency.

  8. Inhibitory effect of imperatorin and isoimperatorin on activity of cytochrome P450 enzyme in human and rat liver microsomes%欧前胡素和异欧前胡素对人和大鼠肝微粒体细胞色素P450酶活性的抑制作用

    Institute of Scientific and Technical Information of China (English)

    曹艳; 钟玉环; 原梅; 李桦; 赵春杰

    2013-01-01

    欧前胡索(IM)和异欧前胡素(ISOIM)是伞形科常用中药的主要有效成分,在临床上广泛应用.该文研究了IM和ISOIM对人和大鼠肝微粒体细胞色素P450酶(CYP)活性的抑制作用,并评价它们的相互作用潜能.在体外将系列浓度的IM和ISOIM与人和大鼠肝微粒体孵育30 min,以非那西丁、安非他酮、甲苯磺丁脲、S-美芬妥英、右美沙芬和咪达唑仑为CYP探针底物,应用LC-MS/MS定量检测各探针底物的代谢产物生成量,计算得到的IC50,评价两药对人肝CYP1 A2,2B6,2C9,2C19,206,3A4酶,以及大鼠肝CYP1 A2,2B6,2D2,3A1/2酶的抑制活性,并对抑制强度进行分级.在人肝微粒体中,IM和ISOIM对6个CYP同工酶均有不同程度的抑制作用.它们是1A2和2B6的强抑制剂,抑制1A2的IC50分别为0.05,0.20 μmol·L-1;抑制2B6的IC50分别为0.18,1.07 μmol·L-1.两药还是2C19的中等抑制剂,以及2C9,2D6,3A4的弱抑制剂.在大鼠肝微粒体中,IM和ISOIM是1A2的中等抑制剂,IC50分别为1.95,2.98 μmol·L-1.它们分别是2B6的中等和弱抑制剂,IC50为6.22,21.71 μmol·L-1.两药还是2D2,3A1/2的弱抑制剂.结果表明IM,ISOIM对人肝CYP酶有广泛的抑制作用,它们是CYP1A2和2B6酶的强抑制剂,临床用药时应注意因CYP酶抑制引起的相互作用.%Imperatorin (IM) and isoimperatorin (ISOIM) are major active components of common herbal medicines from Umbelliferae plants,and widely used in clinic.This article studies the inhibitory effect of IM and ISOIM on the activity of cytochrome P450 (CYP) enzyme,and assesses their potential drug-drug interaction.IM and ISOIM were incubated separately with human or rat liver microsomes for 30 min,with phenacetin,bupropion,tolbutamide,S-mephenytoin,dextromethorphan and midazolam as probe substrates.Metabolites of the CYP probe substrates were determined by LC-MS/MS,and IC50values were calculated to assess the inhibitory effect of the two drugs on human CYP1A2,2B6,2C9,2C19,2D6 and 3A4

  9. Influence of heredity on human sensitivity to environmental chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Weber, W.W. [Univ. of Michigan, Ann Arbor, MI (United States)

    1995-12-31

    Hereditary peculiarities in individual responses to environmental chemicals are a common occurrence in human populations. Genetic variation in glutathione S-transferase, CYP1A2, N-acetyltransferase, and paraoxonase exemplify the relationship of metabolic variation to individual susceptibility to cancer and other toxicants of environmental origin. Heritable receptor protein variants, a subset of proteins of enormous pharmacogenetic, potential that have not thus far been extensively explored form the pharmacogenetic standpoint, and also considered. Examples of interest that are considered include receptor variants associated with retinoic acid resistance in acute promyelocytic leukemia, with paradoxical responses to antiandrogens in prostate cancer, and with retinitis pigmentosa. Additional heritable protein variants of pharmacogenetic interest that result in antibiotic-induced deafness, glucocorticoid-remediable aldosteronism and hypertension, the long-QT syndrome, and beryllium-induced lung disease are also discussed. These traits demonstrate how knowledge of the molecular basis and mechanism of the variant response may contribute to its prevention in sensitive persons as well as to improved therapy for genetically conditioned disorders that arise form environmental chemicals. 99 refs.

  10. Baicalin Protects Mice from Aristolochic Acid I-Induced Kidney Injury by Induction of CYP1A through the Aromatic Hydrocarbon Receptor

    Directory of Open Access Journals (Sweden)

    Ke Wang

    2015-07-01

    Full Text Available Exposure to aristolochic acid I (AAI can lead to aristolochic acid nephropathy (AAN, Balkan endemic nephropathy (BEN and urothelial cancer. The induction of hepatic CYP1A, especially CYP1A2, was considered to detoxify AAI so as to reduce its nephrotoxicity. We previously found that baicalin had the strong ability to induce CYP1A2 expression; therefore in this study, we examined the effects of baicalin on AAI toxicity, metabolism and disposition, as well as investigated the underlying mechanisms. Our toxicological studies showed that baicalin reduced the levels of blood urea nitrogen (BUN and creatinine (CRE in AAI-treated mice and attenuated renal injury induced by AAI. Pharmacokinetic analysis demonstrated that baicalin markedly decreased AUC of AAI in plasma and the content of AAI in liver and kidney. CYP1A induction assays showed that baicalin exposure significantly increased the hepatic expression of CYP1A1/2, which was completely abolished by inhibitors of the Aromatic hydrocarbon receptor (AhR, 3ʹ,4ʹ-dimethoxyflavone and resveratrol, in vitro and in vivo, respectively. Moreover, the luciferase assays revealed that baicalin significantly increased the luciferase activity of the reporter gene incorporated with the Xenobiotic response elements recognized by AhR. In summary, baicalin significantly reduced the disposition of AAI and ameliorated AAI-induced kidney toxicity through AhR-dependent CYP1A1/2 induction in the liver.

  11. Polymorphisms in metabolic genes related to tobacco smoke and the risk of gastric cancer in the European prospective investigation into cancer and nutrition.

    Science.gov (United States)

    Agudo, Antonio; Sala, Núria; Pera, Guillem; Capellá, Gabriel; Berenguer, Antonio; García, Nadia; Palli, Domenico; Boeing, Heiner; Del Giudice, Giuseppe; Saieva, Calogero; Carneiro, Fatima; Berrino, Franco; Sacerdote, Carlotta; Tumino, Rosario; Panico, Salvatore; Berglund, Göran; Simán, Henrik; Stenling, Roger; Hallmans, Göran; Martínez, Carmen; Bilbao, Roberto; Barricarte, Aurelio; Navarro, Carmen; Quirós, José R; Allen, Naomi; Key, Tim; Bingham, Sheila; Khaw, Kay-Tee; Linseisen, Jakob; Nagel, Gabriele; Overvad, Kim; Tjonneland, Anne; Olsen, Anja; Bueno-de-Mesquita, H Bas; Boshuizen, Hendriek C; Peeters, Petra H; Numans, Mattijs E; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie-Christine; Trichopoulou, Antonia; Lund, Eiliv; Offerhaus, Johan; Jenab, Mazda; Ferrari, Pietro; Norat, Teresa; Riboli, Elio; González, Carlos A

    2006-12-01

    Metabolizing enzymes, which often display genetic polymorphisms, are involved in the activation of compounds present in tobacco smoke that may be relevant to gastric carcinogenesis. We report the results of a study looking at the association between risk of gastric adenocarcinoma and polymorphisms in genes CYP1A1, CYP1A2, EPHX1, and GSTT1. A nested case-control study was carried out within the European Prospective Investigation into Cancer and Nutrition, developed in 10 European countries. The study includes 243 newly diagnosed cases of histologically confirmed gastric adenocarcinoma and 946 controls matched by center, age, sex, and date of blood collection. Genotypes were determined in nuclear DNA from WBCs. We found an increased risk of gastric cancer for homozygotes for C (histidine) variant in Y113H of EPHX1 (odds ratio, 1.91; 95% confidence interval, 1.19-3.07) compared with subjects with TC/TT. There was also a significant increased risk for smokers carrying at least one variant allele A in Ex7+129C>A (m4) of CYP1A1 and never smokers with null GSTT1 and allele A in the locus -3859G>A of CYP1A2. Most of these genes are involved in the activation and detoxification of polycyclic aromatic hydrocarbons, suggesting a potential role of these compounds in gastric carcinogenesis.

  12. Polymorphisms of estrogen synthesizing and metabolizing genes and breast cancer susceptibility%雌激素合成及代谢基因的多态性与乳腺癌易感性

    Institute of Scientific and Technical Information of China (English)

    姜永冬; 刘晶; 庞达

    2009-01-01

    Estrogens,the major risk factors for breast cancer,are speculated to affect breast cancer risk through estrogens receptor(ER), thus, genetic polymorphisms of the genes involved in the estrogens biosynthesis and metabolism are expected as the main risk factors for breast cancer. Polymorphisms of the genes involved in estrogens biosynthesis (CYP11A1, CYP17, CYP19) and metabolism (CYP1A1, CYP1B1, CYP1A2) in modulating the susceptibility of breast cancer is important.%雌激素是乳腺癌的主要危险因素,推测是通过雌激素受体影响乳腺癌的发病风险.因此,与雌激素合成和代谢相关的基因多态性被认为是乳腺癌的主要危险因子.与雌激素合成基因(CYP11A1、CYP17、CYP19)和代谢基因(CYP1A1、CYP1B1、CYP1A2)相关的基因多态性在调节乳腺癌易感性中具有一定意义.

  13. An in vivo and in vitro comparison of CYP gene induction in mice using liver slices and quantitative RT-PCR.

    Science.gov (United States)

    Martignoni, Marcella; de Kanter, Ruben; Grossi, Pietro; Saturno, Grazia; Barbaria, Elena; Monshouwer, Mario

    2006-02-01

    The scope of this study was to compare in vitro and in vivo cytochrome P450 (CYP) gene induction in mice, using liver slices as an in vitro model. We have chosen to study mice to be able to better interpret CYP induction during long-term safety studies in this species. Mouse liver slices were incubated with beta-naphthoflavone (betaNF), phenobarbital (PB) or dexamethasone (DEX) for 24 h. In addition, in an in vivo study, mice were treated with the same compounds for three days. The mRNA expression of cyp1a1, cyp1a2, cyp2b10 and cyp3a11, which are important for drug metabolism and inducible by xenobiotics, were investigated in vivo and in vitro by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). Both in mouse liver slices and in vivo, betaNF was found to be a potent inducer of cyp1a1 and to a lesser extent of cyp1a2. All three compounds induced cyp2b10 mRNA levels, while the cyp3a11 mRNA level was induced only by DEX. Overall, these data demonstrated a good predictive in vitro-in vivo correlation of CYP induction.

  14. β-Naphthoflavone protects mice from aristolochic acid-l-induced acute kidney injury in a CYP1A dependent mechanism

    Institute of Scientific and Technical Information of China (English)

    Ying XIAO; Xiang XUE; Yuan-feng WU; Guo-zhengXIN; Yong QIAN; Tian-pei XIE; Li-kun GONG; Jin REN

    2009-01-01

    Aim: The role of CYP1A in the protection of aristolochic acid (AA)l-induced nephrotoxicity has been suggested. In the present study we investigated the effects of P-naphthoflavone (BNF), a non-carcinogen CYP1A inducer, on Aal-induced kidney injury.Methods: Mice were pretreated with 80 mg/kg BNF by daily intraperitoneal injection (ip) for 3 days followed by a single ip of 10 mg/kg AAI. AAI and its major metabolites in blood, liver and kidney, the expression of CYP1A1 and CYP1A2 in microsomes of liver and kidney, as well as the nephrotoxicity were evaluated.Results: BNF pretreatment prevented Aal-induced renal damage by facilitating the disposal of AAI in liver. BNF pretreatment induced the expression of CYP1A1 in both liver and kidney; but the induction of CYP1A2 was only observed in liver. Conclusion: BNF prevents Aal-induced kidney toxicity primarily through CYP1A induction.

  15. Modulation of the Rat Hepatic Cytochrome P4501A Subfamily Using Biotin Supplementation

    Science.gov (United States)

    Ronquillo-Sánchez, M. D.; Camacho-Carranza, R.; Fernandez-Mejia, C.; Hernández-Ojeda, S.; Elinos-Baez, M.; Espinosa-Aguirre, J. J.

    2013-01-01

    Studies have found that biotin favors glucose and lipid metabolism, and medications containing biotin have been developed. Despite the use of biotin as a pharmacological agent, few studies have addressed toxicity aspects including the possible interaction with cytochrome P450 enzyme family. This study analyzed the effects of pharmacological doses of biotin on the expression and activity of the cytochrome P4501A subfamily involved in the metabolism of xenobiotics. Wistar rats were treated daily with biotin (2 mg/kg, i.p.), while the control groups were treated with saline. All of the rats were sacrificed by cervical dislocation after 1, 3, 5, or 7 days of treatment. CYP1A1 and CYP1A2 mRNAs were modified by biotin while enzyme activity and protein concentration were not affected. The lack of an effect of biotin on CYP1A activity was confirmed using other experimental strategies, including (i) cotreatment of the animals with biotin and a known CYP1A inducer; (ii) the addition of biotin to the reaction mixtures for the measurement of CYP1A1 and CYP1A2 activities; and (iii) the use of an S9 mixture that was prepared from control and biotin-treated rats to analyze the activation of benzo[a]pyrene (BaP) into mutagenic metabolites using the Ames test. The results suggest that biotin does not influence the CYP1A-mediated metabolism of xenobiotics. PMID:23984390

  16. Modulation of the Rat Hepatic Cytochrome P4501A Subfamily Using Biotin Supplementation

    Directory of Open Access Journals (Sweden)

    M. D. Ronquillo-Sánchez

    2013-01-01

    Full Text Available Studies have found that biotin favors glucose and lipid metabolism, and medications containing biotin have been developed. Despite the use of biotin as a pharmacological agent, few studies have addressed toxicity aspects including the possible interaction with cytochrome P450 enzyme family. This study analyzed the effects of pharmacological doses of biotin on the expression and activity of the cytochrome P4501A subfamily involved in the metabolism of xenobiotics. Wistar rats were treated daily with biotin (2 mg/kg, i.p., while the control groups were treated with saline. All of the rats were sacrificed by cervical dislocation after 1, 3, 5, or 7 days of treatment. CYP1A1 and CYP1A2 mRNAs were modified by biotin while enzyme activity and protein concentration were not affected. The lack of an effect of biotin on CYP1A activity was confirmed using other experimental strategies, including (i cotreatment of the animals with biotin and a known CYP1A inducer; (ii the addition of biotin to the reaction mixtures for the measurement of CYP1A1 and CYP1A2 activities; and (iii the use of an S9 mixture that was prepared from control and biotin-treated rats to analyze the activation of benzo[a]pyrene (BaP into mutagenic metabolites using the Ames test. The results suggest that biotin does not influence the CYP1A-mediated metabolism of xenobiotics.

  17. ASSOCIATION BETWEEN POLYCYCLIC AROMATIC HYDROCARBON-DNA ADDUCT LEVELS IN MATERNAL AND NEWBORN WHITE BLOOD CELLS AND GLUTATHIONE S-TRANSFERASE P1 AND CYP1A1 POLYMORPHISMS. (R827027)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. Cyp1a1, cyp2e1 y riesgo a cáncer gástrico en una población colombiana de alta incidencia

    OpenAIRE

    Castaño Eduardo

    2009-01-01

    El objetivo fue probar la hipótesis de que en casos y controles, de una población colombiana con alta incidencia de cáncer gástrico, muestran diferencias significativas entre las frecuencias de los polimorfismos genéticos Modulatory effects of Kaempferia parviflora extract on mouse hepatic cytochrome P450 enzymes.

    Science.gov (United States)

    Mekjaruskul, Catheleeya; Jay, Michael; Sripanidkulchai, Bungorn

    2012-06-14

    Kaempferia parviflora is a herbal plant, the extracts of which are commonly used as alternative medicines. It widely uses as aphrodisiac, anti-inflammation, anti-microbacterial, and anti-peptic ulcer. In order to obtain an effective utilization and safety of the herb, the influence of Kaempferia parviflora on hepatic CYP450 metabolizing enzymes including CYP1A1, CYP1A2, CYP2B, CYP2E1, and CYP3A was investigated. The impact of Kaempferia parviflora on CYP450 both in vitro and in vivo was examined by using ethoxyresorufin O-dealkylation, methoxyresorufin O-dealkylation, pentoxyresorufin O-dealkylation, p-nitrophenol hydroxylation, and erythromycin N-demethylation assays, respectively. In vitro studies using non-induced mouse hepatic microsomes in the presence or absence of Kaempferia parviflora extract showed that Kaempferia parviflora extract altered CYP1A1, CYP1A2, CYP2B, and CYP2E1 activities by non-competitive, mixed-competitive, competitive, and uncompetitive mechanisms, respectively. Among these enzymes, CYP1A2 was affected by Kaempferia parviflora based on the highest value of V(max) (15.276±0.206 nmol/min) and lowest of K(i) value (0.008±0.002 μg/ml). In addition, the plant extract also modulated CYP2B activity based on the low K(m) value (1.599±0.147 pmol). For in vivo studies, mice were orally treated with 250 mg/kg of Kaempferia parviflora extract for 7, 14, and 21 days. The results demonstrated that Kaempferia parviflora extract significantly induced CYP1A1, CYP1A2 enzyme activities following short-term treatment. CYP2B enzyme activities were markedly increased all Kaempferia parviflora extract treatment timepoints, whereas Kaempferia parviflora extract significantly enhanced CYP2E1 activity only after long-term treatment. However, Kaempferia parviflora extract did not affect the CYP3A enzyme activity. Kaempferia parviflora extract modulated several CYP450 enzyme activities, thus, its utilization with drugs or other herbs should raise concern for

  19. In vitro metabolism of a novel synthetic cannabinoid, EAM-2201, in human liver microsomes and human recombinant cytochrome P450s.

    Science.gov (United States)

    Kim, Ju Hyun; Kim, Hee Seung; Kong, Tae Yeon; Lee, Joo Young; Kim, Jin Young; In, Moon Kyo; Lee, Hye Suk

    2016-02-05

    In vitro metabolism of a new synthetic cannabinoid, EAM-2201, has been investigated with human liver microsomes and major cDNA-expressed cytochrome P450 (CYP) isozymes using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Incubation of EAM-2201 with human liver microsomes in the presence of NADPH resulted in the formation of 37 metabolites, including nine hydroxy-EAM-2201 (M1-M9), five dihydroxy-EAM-2201 (M10-M14), dihydrodiol-EAM-2201 (M15), oxidative defluorinated EAM-2201 (M16), two hydroxy-M16 (M17 and M18), three dihydroxy-M16 (M19-M21), N-dealkyl-EAM-2201 (M22), two hydroxy-M22 (M23 and M24), dihydroxy-M22 (M25), EAM-2201 N-pentanoic acid (M26), hydroxy-M26 (M27), dehydro-EAM-2201 (M28), hydroxy-M28 (M29), seven dihydroxy-M28 (M30-M36), and oxidative defluorinated hydroxy-M28 (M37). Multiple CYPs, including CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2J2, 3A4, and 3A5, were involved in the metabolism of EAM-2201. In conclusion, EAM-2201 is extensively metabolized by CYPs and its metabolites can be used as an indicator of EAM-2201 abuse.

  1. CYP1A2*1C, CYP2E1*5B, and GSTM1 polymorphisms are predictors of risk and poor outcome in head and neck squamous cell carcinoma patients

    DEFF Research Database (Denmark)

    Olivieri, Eloisa Helena Ribeiro; da Silva, Sabrina Daniela; Mendonça, Fernando Fernandes

    2009-01-01

    Head and neck squamous cell carcinoma (HNSCC) is associated with environmental factors, especially tobacco and alcohol consumption. Most of the carcinogens present in tobacco smoke are converted into DNA-reactive metabolites by cytochrome P450 (CYPs) enzymes and detoxification of these substances...... and GSTT1 copy number polymorphisms (CNPs) were analyzed by PCR-multiplex. As expected, a significant difference was detected for tobacco and alcohol consumption between cases and controls (P

  2. COMPARISON OF OVERALL METABOLISM OF 1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN (PECDD) IN CYP1A2(-L-)KNOCKOUT (KO) AND C57BL/6N PARENTAL STRAINS OF MICE

    Science.gov (United States)

    Assessment of immune responses to Penicillium chrysogenum and characterization of its allergensYongjoo Chung1, Michael E Viana2, Lisa B Copeland3, and MaryJane K Selgrade3, Marsha D W Ward3. 1 UNC, SPH, Chapel Hill, NC, 2NCSU, CVM, Raleigh, NC, 3US EPA, ORD, NHEERL, RTP,...

  3. Coffee diterpenes prevent benzo[a]pyrene genotoxicity in rat and human culture systems.

    Science.gov (United States)

    Cavin, C; Bezencon, C; Guignard, G; Schilter, B

    2003-06-27

    The coffee-specific diterpenes cafestol and kahweol (C+K) have been identified as two important chemoprotective agents in coffee. In the present study, the potential preventive effects of C+K against the genotoxicity of B[a]P were investigated in rat primary hepatocytes and in human bronchial Beas-2B cells. Several independent mechanisms were identified and their respective contribution to the overall protective effects was determined. A marked dose-dependent inhibition by C+K of B[a]P DNA-binding was found in cells of both origins. However, data showed that the significant induction by C+K of the detoxifying enzyme GST-Yp subunit is the key mechanism of protection against B[a]P DNA-binding in rat liver. In contrast, the phase I-mediated mechanism where C+K produce an inhibition of CYP 1A1 induction by B[a]P is of key significance for the C+K protection in human Beas-2B cells. Moreover, this effect suggests a novel mechanism of chemoprotection by the coffee diterpenes cafestol and kahweol.

  4. Profile of stress and toxicity gene expression in human hepatic cells treated with Efavirenz.

    Science.gov (United States)

    Gomez-Sucerquia, Leysa J; Blas-Garcia, Ana; Marti-Cabrera, Miguel; Esplugues, Juan V; Apostolova, Nadezda

    2012-06-01

    Hepatic toxicity and metabolic disorders are major adverse effects elicited during the pharmacological treatment of the human immunodeficiency virus (HIV) infection. Efavirenz (EFV), the most widely used non-nucleoside reverse transcriptase inhibitor (NNRTI), has been associated with these events, with recent studies implicating it in stress responses involving mitochondrial dysfunction and oxidative stress in human hepatic cells. To expand these findings, we analyzed the influence of EFV on the expression profile of selected stress and toxicity genes in these cells. Significant up-regulation was observed with Cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1), which indicated metabolic stress. Several genes directly related to oxidative stress and damage exhibited increased expression, including Methalothionein 2A (MT2A), Heat shock 70kDa protein 6 (HSPA6), Growth differentiation factor 15 (GDF15) and DNA-damage-inducible transcript 3 (DDIT3). In addition, Early growth response protein 1 (EGR1) was enhanced, whereas mRNA levels of the inflammatory genes Chemokine (C-X-C motif) ligand 10 (CXCL10) and Serpin peptidase inhibitor (nexin, plasminogen activator inhibitor type 1), member 1 (SERPINE1) decreased and increased, respectively. This profile of gene expression supports previous data demonstrating altered mitochondrial function and presence of oxidative stress/damage in EFV-treated hepatic cells, and may be of relevance in the search for molecular targets with therapeutic potential to be employed in the prevention, diagnosis and treatment of the hepatic toxicity associated with HIV therapy.

  5. Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies.

    Science.gov (United States)

    Qiu, Jia-Xuan; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Zhou, Shu-Feng; Zhu, Shengrong

    2015-01-01

    Ginger is one of the most commonly used herbal medicines for the treatment of numerous ailments and improvement of body functions. It may be used in combination with prescribed drugs. The coadministration of ginger with therapeutic drugs raises a concern of potential deleterious drug interactions via the modulation of the expression and/or activity of drug-metabolizing enzymes and drug transporters, resulting in unfavorable therapeutic outcomes. This study aimed to determine the molecular interactions between 12 main active ginger components (6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol, 10-shogaol, ar-curcumene, β-bisabolene, β-sesquiphelandrene, 6-gingerdione, (-)-zingiberene, and methyl-6-isogingerol) and human cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6, and 3A4 and to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the 12 ginger components using computational approaches and comprehensive literature search. Docking studies showed that ginger components interacted with a panel of amino acids in the active sites of CYP1A2, 2C9, 2C19, 2D6, and 3A4 mainly through hydrogen bond formation, to a lesser extent, via π-π stacking. The pharmacokinetic simulation studies showed that the [I]/[Ki ] value for CYP2C9, 2C19, and 3A4 ranged from 0.0002 to 19.6 and the R value ranged from 1.0002 to 20.6 and that ginger might exhibit a high risk of drug interaction via inhibition of the activity of human CYP2C9 and CYP3A4, but a low risk of drug interaction toward CYP2C19-mediated drug metabolism. Furthermore, it has been evaluated that the 12 ginger components possessed a favorable ADMET profiles with regard to the solubility, absorption, permeability across the blood-brain barrier, interactions with CYP2D6, hepatotoxicity, and plasma protein binding. The validation results showed that there was no remarkable effect of ginger on the metabolism of warfarin in humans, whereas concurrent use of ginger and nifedipine exhibited a

  6. Cytochrome P450 gene polymorphism and cancer.

    Science.gov (United States)

    Agundez, Jose A G

    2004-06-01

    Human cytochrome P450 (CYP) enzymes play a key role in the metabolism of drugs and environmental chemicals. Several CYP enzymes metabolically activate procarcinogens to genotoxic intermediates. Phenotyping analyses revealed an association between CYP enzyme activity and the risk to develop several forms of cancer. Research carried out in the last decade demonstrated that several CYP enzymes are polymorphic due to single nucleotide polymorphisms, gene duplications and deletions. As genotyping procedures became available for most human CYP, an impressive number of association studies on CYP polymorphisms and cancer risk were conducted. Here we review the findings obtained in these studies regarding CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP3A7, CYP8A1 and CYP21 gene polymorphisms. Consistent evidences for association between CYP polymorphisms and lung, head and neck, and liver cancer were reported. Controversial findings suggest that colorectal and prostate cancers may be associated to CYP polymorphisms, whereas no evidences for a relevant association with breast or bladder cancers were reported. We summarize the available information related to the association of CYP polymorphisms with leukaemia, lymphomas and diverse types of cancer that were investigated only for some CYP genes, including brain, esophagus, stomach, pancreas, pituitary, cervical epithelium, melanoma, ovarian, kidney, anal and vulvar cancers. This review discusses on causes of heterogeneity in the proposed associations, controversial findings on cancer risk, and identifies topics that require further investigation. In addition, some recommendations on study design, in order to obtain more conclusive findings in further studies, are provided.

  7. Cytochromes P450 are Expressed in Proliferating Cells in Barrett's Metaplasia

    Directory of Open Access Journals (Sweden)

    Steven J. Hughes

    1999-06-01

    Full Text Available The expression of cytochromes P450 (CYP in Barrett's esophagus and esophageal squamous mucosa was investigated. Esophagectomy specimens from 23 patients were examined for CYP expression of CYP1A2, CYP3A4, CYP2C9/10, and CYP2E1 by immunohistochemical analysis, and the expression of CYP1A1, CYP3A4, CYP1B1, CYP2E1, and CYP2C9/10 in these tissues was further confirmed by reverse transcription polymerase chain reaction. Immunohistochemical analysis of esophageal squamous mucosa (n = 12 showed expression of CYP1A2, CYP3A4, CYP2E1, and CYP2C9/10 proteins, but it was noted that cells within the basal proliferative zone did not express CYPs. Immunohistochemical analysis of Barrett's esophagus (n = 13 showed expression of CYP1A2, CYP3A4, CYP2E1, and CYP2C9/10 that was prominent in the basal glandular regions, which are areas containing a high percentage of actively proliferating cells. Immunohistochemical staining for both proliferating cell nuclear antigen and the CYPs further supported the colocalization of CYP expression to areas of active cell proliferation in Barrett's esophagus, whereas in the esophageal squamous epithelium, CYP expression is limited to cells that are not proliferating. RT-PCR with amplification product sequence analysis confirmed CYP1A1, CYP3A4, CYP1B1, CYP2E1, and CYP2C9/10 mRNA expression in Barrett's esophagus. These data suggest that the potential ability of cells in Barrett's esophagus to both activate carcinogens and proliferate may be important risk factors affecting carcinogenesis in this metaplastic tissue.

  8. Differential inhibition of CYP1-catalyzed regioselective hydroxylation of estradiol by berberine and its oxidative metabolites.

    Science.gov (United States)

    Chang, Yu-Ping; Huang, Chiung-Chiao; Shen, Chien-Chang; Tsai, Keng-Chang; Ueng, Yune-Fang

    2015-10-01

    Berberine is a pharmacologically active alkaloid present in widely used medicinal plants, such as Coptis chinensis (Huang-Lian). The hormone estradiol is oxidized by cytochrome P450 (CYP) 1B1 to primarily form the genotoxic metabolite 4-hydroxyestradiol, whereas CYP1A1 and CYP1A2 predominantly generate 2-hydroxyestradiol. To illustrate the effect of berberine on the regioselective oxidation of estradiol, effects of berberine and its metabolites on CYP1 activities were studied. Among CYP1s, CYP1B1.1, 1.3 (L432V), and 1.4 (N453S)-catalyzed 4-hydroxylation were preferentially inhibited by berberine. Differing from the competitive inhibition of CYP1B1.1 and 1.3, N453S substitution in CYP1B1 allowed a non-competitive or mixed-type pattern. An N228T in CYP1B1 highly decreased its activity and preference to 4-hydroxylation. A reverse mutation of T223N in CYP1A2 retained its 2-hydroxylation preference, but enhanced its inhibition susceptibility to berberine. Compared with berberine, metabolites demethyleneberberine and thalifendine caused weaker inhibition of CYP1A1 and CYP1B1 activities. Unexpectedly, thalifendine was more potent than berberine in the inhibition of CYP1A2, in which case an enhanced interaction through polar hydrogen-π bond was predicted from the docking analysis. These results demonstrate that berberine preferentially inhibits the estradiol 4-hydroxylation activity of CYP1B1 variants, suggesting that 4-hydroxyestradiol-mediated toxicity might be reduced by berberine, especially in tissues/tumors highly expressing CYP1B1.

  9. Cytochromes P450 are expressed in proliferating cells in Barrett's metaplasia.

    Science.gov (United States)

    Hughes, S J; Morse, M A; Weghorst, C M; Kim, H; Watkins, P B; Guengerich, F P; Orringer, M B; Beer, D G

    1999-06-01

    The expression of cytochromes P450 (CYP) in Barrett's esophagus and esophageal squamous mucosa was investigated. Esophagectomy specimens from 23 patients were examined for CYP expression of CYP1A2, CYP3A4, CYP2C9/10, and CYP2E1 by immunohistochemical analysis, and the expression of CYP1A1, CYP3A4, CYP1B1, CYP2E1, and CYP2C9/10 in these tissues was further confirmed by reverse transcription polymerase chain reaction. Immunohistochemical analysis of esophageal squamous mucosa (n = 12) showed expression of CYP1A2, CYP3A4, CYP2E1, and CYP2C9/10 proteins, but it was noted that cells within the basal proliferative zone did not express CYPs. Immunohistochemical analysis of Barrett's esophagus (n = 13) showed expression of CYP1A2, CYP3A4, CYP2E1, and CYP2C9/10 that was prominent in the basal glandular regions, which are areas containing a high percentage of actively proliferating cells. Immunohistochemical staining for both proliferating cell nuclear antigen and the CYPs further supported the colocalization of CYP expression to areas of active cell proliferation in Barrett's esophagus, whereas in the esophageal squamous epithelium, CYP expression is limited to cells that are not proliferating. RT-PCR with amplification product sequence analysis confirmed CYP1A1, CYP3A4, CYP1B1, CYP2E1, and CYP2C9/10 mRNA expression in Barrett's esophagus. These data suggest that the potential ability of cells in Barrett's esophagus to both activate carcinogens and proliferate may be important risk factors affecting carcinogenesis in this metaplastic tissue.

  10. Inhibition of Re Du Ning Injection on Enzyme Activities of Rat Liver Microsomes Using Cocktail Method

    Institute of Scientific and Technical Information of China (English)

    Xiao-qian Xu; Ting Geng; She-bing Zhang; Dan-yu Kang; Yan-jing Li; Gang Ding; Wen-zhe Huang; Zhen-zhong Wang; Wei Xiao

    2016-01-01

    Objective Re Du Ning Injection(RDN), a Chinese materia medica injection, is made from the extracts of Lonicerae Japonicae Flos, Gardeniae Fructus, and Artemisiae Annuae Herba. Since last decade, RDN has been widely used in China for the treatment of viral infection, fever, and inflammation. To assess the potential interacting of RDN with co-administered drugs, the inhibitory effects of RDN on the enzyme activities(CYP1A1, CYP1A2, CYP2C11, CYP2D1, and CYP3A1/2) of rat liver microsomes were investigated by a cocktail method. Methods A sensitive and specific LC-MS method capable of simultaneous quantification of five metabolites in rat liver microsomes was developed and validated. Then RDN(0.625%–1.0%) was incubated with rat liver microsomes and specific substrates. The enzyme activities were expressed as the formation rate of the specific metabolites of the substrates(pmol·mg·protein-1·min-1). Results RDN competitively inhibited the activities of CYP1A2 and CYP2C11, with inhibition constant(Ki) values determined to be 0.18% and 0.63%, respectively. RDN exhibited the mixed inhibition on the activity of CYP2D1, with a Ki value of 0.15%. The activities of CYP1A1 and CYP3A1/2 were not markedly inhibited even by 1.0% RDN. Conclusion RDN could inhibit the rat enzyme activities of CYP1A2, 2C11, and 2D1 in vitro with different inhibition modes, which is worthy of promoting safety and efficacy of RDN.

  11. Polymorphisms of Cytochrome P450 Genes in Three Ethnic Groups from Russia

    Directory of Open Access Journals (Sweden)

    Elena Viktorova

    2012-09-01

    Full Text Available Objective: To determine the prevalence of the most common allelic variants of CYP1A1, CYP1A2, CYP1B1, CYP2C9, CYP2E1, CYP2F1, CYP2J2 and CYP2S1 in a representative sample of the three ethnic groups (Russians, Tatars and Bashkirs from Republic of Bashkortostan (Russia, and compare the results with existing data published for other populations.Material and Methods: CYPs genotypes were determined in 742 DNA samples of healthy unrelated individuals representative of three ethnic groups. The CYPs gene polymorphisms were examined using the PCR-RLFP method.Results: Analysis of the CYP1A1 (rs1048943, rs4646903, CYP1A2 (rs762551, CYP2E1 (rs2031920 allele, genotype and haplotype frequencies revealed significant differences among healthy residents of the Republic of Bashkortostan of different ethnicities. Distribution of allele and genotype frequencies of CYP1A2 (rs35694136, CYP1B1 (rs1056836, CYP2C9 (rs1799853, rs1057910, CYP2F1 (rs11399890, CYP2J2 (rs890293, CYP2S1 (rs34971233, rs338583 genes were similar in Russians, Tatars, and Bashkirs. Analysis of the CYPs genes allele frequency distribution patterns among the ethnic groups from the Republic of Bashkortostan in comparison with the different populations worldwide was conducted.Conclusion: The peculiarities of the allele frequency distribution of CYPs genes in the ethnic groups of the Republic of Bashkortostan should be taken into consideration in association and pharmacogenetic studies. The results of the present investigation will be of great help in elucidating the genetic background of drug response, susceptibility to cancer and complex diseases, as well as in determining the toxic potentials of environmental pollutants in our region.

  12. Differential inducing effect of benzo[a]pyrene on gene expression and enzyme activity of cytochromes P450 1A1 and 1A2 in Sprague-Dawley and Wistar rats.

    Science.gov (United States)

    Floreani, Maura; Gabbia, Daniela; Barbierato, Massimo; DE Martin, Sara; Palatini, Pietro

    2012-01-01

    The objective of this study was to compare RT-PCR, Western blot and determination of enzyme activity in the assessment of the induction of cytochromes P450 (CYPs) 1A1 and 1A2 by benzo[a]pyrene (BaP) in Sprague-Dawley and Wistar rats. Inhibition studies and kinetic analyses confirmed literature data indicating that methoxyresorufin is a specific CYP1A2 substrate in both uninduced and BaP-treated rats, whereas ethoxyresorufin is a specific CYP1A1 substrate only in BaP-treated rats. BaP treatment increased mRNA and protein expressions of both CYP1A enzymes to a greater extent in Wistar than Sprague-Dawley rats. It consistently caused a higher increase in mRNA and protein expression of the aryl hydrocarbon receptor in the former rats. By contrast, CYP1A2 enzyme activity was much more markedly increased in Sprague-Dawley than Wistar rats and CYP1A1 activity was induced to similar levels. A BaP-induced increase in the turnover number of CYP1A enzymes in Sprague-Dawley rats, relative to Wistar rats, may provide a plausible explanation for the differential effect of BaP on gene expression and enzyme activity. These results have methodological implications, since they show that RT-PCR and Western blot may not provide a quantitative measure of induction of CYP1A activity, which is the actual measure of the change in CYP1A-mediated metabolism.

  13. Role of cytochrome P450 and UDP-glucuronosyltransferases in metabolic pathway of homoegonol in human liver microsomes.

    Science.gov (United States)

    Kwon, Soon Sang; Kim, Ju Hyun; Jeong, Hyeon-Uk; Ahn, Kyung-Seop; Oh, Sei-Ryang; Lee, Hye Suk

    2015-08-01

    Homoegonol is being evaluated for the development of a new antiasthmatic drug. Based on a pharmacokinetic study of homoegonol in rats, homoegonol is almost completely eliminated via metabolism, but no study on its metabolism has been reported in animals and humans. Incubation of homoegonol in human liver microsomes in the presence of the reduced form of nicotinamide adenine dinucleotide phosphate and UDP-glucuronic acid resulted in the formation of five metabolites: 4-O-demethylhomoegonol (M1), hydroxyhomoegonol (M2 and M3), 4-O-demethylhomoegonol glucuronide (M4), and homoegonol glucuronide (M5). We characterized the cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes responsible for homoegonol metabolism using human liver microsomes, and cDNA-expressed CYP and UGT enzymes. CYP1A2 played a more prominent role than CYP3A4 and CYP2D6 in the 4-O-demethylation of homoegonol to M1. CYP3A4 was responsible for the hydroxylation of homoegonol to M2. The hydroxylation of homoegonol to M3 was insufficient to characterize CYP enzymes. Glucuronidation of homoegonol to M5 was mediated by UGT1A1, UGT1A3, UGT1A4, and UGT2B7 enzymes, whereas M4 was formed from 4-O-demethylhomoegonol by UGT1A1, UGT1A8, UGT1A10, and UGT2B15 enzymes.

  14. Polycyclic aromatic hydrocarbon (PAH) metabolizing enzyme activities in human lung, and their inducibility by exposure to naphthalene, phenanthrene, pyrene, chrysene, and benzo(a)pyrene as shown in the rat lung and liver

    Energy Technology Data Exchange (ETDEWEB)

    Elovaara, Eivor; Mikkola, Jouni; Stockmann-Juvala, Helene; Vainio, Harri [Finnish Institute of Occupational Health, Helsinki (Finland); Luukkanen, Leena [Finnish Institute of Occupational Health, Helsinki (Finland); University of Helsinki, Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Helsinki (Finland); Keski-Hynnilae, Helena; Kostiainen, Risto [University of Helsinki, Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Helsinki (Finland); Pasanen, Markku [University of Oulu, Department of Pharmacology and Toxicology, Oulu (Finland); University of Kuopio, Department of Pharmacology and Toxicology, Kuopio (Finland); Pelkonen, Olavi [University of Oulu, Department of Pharmacology and Toxicology, Oulu (Finland)

    2007-03-15

    In order to survey changes and activities in the polycyclic aromatic hydrocarbon (PAH)-metabolizing enzymes implicated in lung cancer susceptibility studies, we investigated enzyme induction by 2-5-ring-sized 'biomarker' PAHs in rat liver and lung, and the activities in five human lung specimens. Naphthalene, phenanthrene, pyrene, chrysene, and benzo[a]pyrene (BaP) were administered to rats for 3 days (25-128 mg/kg/day) and the responses compared with those of model inducers. PAH treatment increased the CYP1A-catalyzed activity of pyrene 1-hydroxylation and 7-ethoxyresorufin O-deethylation in rat liver by up to 28- and 279-fold, and in rat lung by up to 22- and 51-fold, respectively. 1-Naphthol (hUGT1A6), 1-hydroxypyrene (hUGT1A6/1A9), and entacapone (hUGT1A9) are markers of PAH-glucuronidating human uridine diphosphate-glucuronosyltransferases (UGT). These activities increased up to 6.4-fold in rat liver and up to 1.9-fold in rat lung. NADPH:quinone oxidoreductase 1 (NQO1) and glutathione S-transferase activities increased up to 5.3- and 1.6-fold (liver), and up to 4.4- and 1.4-fold (lung), respectively. CYP1A showed the best liver-to-lung relationship (R {sup 2} = 0.90). The inducing efficiency by PAHs differed extensively: control {<=} naphthalene < phenanthrene, pyrene << chrysene < BaP. In human lung (non-smokers), the marker activities of CYP1A1, UGT1A6/1A9, and NQO1 were lower than those in rat lung. Epoxide hydrolase activity was 1,000-fold higher than the pulmonary CYP1A1 activities. Human UGT and NQO1 displayed large variations (>60-fold), many times greater than the experimental (inducible/constitutive) variation in the rat. Kinetics of 1-hydroxypyrene glucuronidation showed two low-K{sub m} forms both in rat and human lung. Since the 2-4-ring PAHs (major constituents) were poor enzyme inducers, it appears that the PAH-metabolizing pathways are mainly induced by BaP-type minor constituents. Gene-environmental interactions which magnify

  15. Comparative Analysis of Gene Regulation by the Transcription Factor PPARα between Mouse and Human

    Science.gov (United States)

    Rakhshandehroo, Maryam; Hooiveld, Guido; Müller, Michael; Kersten, Sander

    2009-01-01

    Background Studies in mice have shown that PPARα is an important regulator of hepatic lipid metabolism and the acute phase response. However, little information is available on the role of PPARα in human liver. Here we set out to compare the function of PPARα in mouse and human hepatocytes via analysis of target gene regulation. Methodology/Principal Findings Primary hepatocytes from 6 human and 6 mouse donors were treated with PPARα agonist Wy14643 and gene expression profiling was performed using Affymetrix GeneChips followed by a systems biology analysis. Baseline PPARα expression was similar in human and mouse hepatocytes. Depending on species and time of exposure, Wy14643 significantly induced the expression of 362–672 genes. Surprisingly minor overlap was observed between the Wy14643-regulated genes from mouse and human, although more substantial overlap was observed at the pathway level. Xenobiotics metabolism and apolipoprotein synthesis were specifically regulated by PPARα in human hepatocytes, whereas glycolysis-gluconeogenesis was regulated specifically in mouse hepatocytes. Most of the genes commonly regulated in mouse and human were involved in lipid metabolism and many represented known PPARα targets, including CPT1A, HMGCS2, FABP1, ACSL1, and ADFP. Several genes were identified that were specifically induced by PPARα in human (MBL2, ALAS1, CYP1A1, TSKU) or mouse (Fbp2, lgals4, Cd36, Ucp2, Pxmp4). Furthermore, several putative novel PPARα targets were identified that were commonly regulated in both species, including CREB3L3, KLF10, KLF11 and MAP3K8. Conclusions/Significance Our results suggest that PPARα activation has a major impact on gene regulation in human hepatocytes. Importantly, the role of PPARα as master regulator of hepatic lipid metabolism is generally well-conserved between mouse and human. Overall, however, PPARα regulates a mostly divergent set of genes in mouse and human hepatocytes. PMID:19710929

  16. Comparative analysis of gene regulation by the transcription factor PPARalpha between mouse and human.

    Directory of Open Access Journals (Sweden)

    Maryam Rakhshandehroo

    Full Text Available BACKGROUND: Studies in mice have shown that PPARalpha is an important regulator of hepatic lipid metabolism and the acute phase response. However, little information is available on the role of PPARalpha in human liver. Here we set out to compare the function of PPARalpha in mouse and human hepatocytes via analysis of target gene regulation. METHODOLOGY/PRINCIPAL FINDINGS: Primary hepatocytes from 6 human and 6 mouse donors were treated with PPARalpha agonist Wy14643 and gene expression profiling was performed using Affymetrix GeneChips followed by a systems biology analysis. Baseline PPARalpha expression was similar in human and mouse hepatocytes. Depending on species and time of exposure, Wy14643 significantly induced the expression of 362-672 genes. Surprisingly minor overlap was observed between the Wy14643-regulated genes from mouse and human, although more substantial overlap was observed at the pathway level. Xenobiotics metabolism and apolipoprotein synthesis were specifically regulated by PPARalpha in human hepatocytes, whereas glycolysis-gluconeogenesis was regulated specifically in mouse hepatocytes. Most of the genes commonly regulated in mouse and human were involved in lipid metabolism and many represented known PPARalpha targets, including CPT1A, HMGCS2, FABP1, ACSL1, and ADFP. Several genes were identified that were specifically induced by PPARalpha in human (MBL2, ALAS1, CYP1A1, TSKU or mouse (Fbp2, lgals4, Cd36, Ucp2, Pxmp4. Furthermore, several putative novel PPARalpha targets were identified that were commonly regulated in both species, including CREB3L3, KLF10, KLF11 and MAP3K8. CONCLUSIONS/SIGNIFICANCE: Our results suggest that PPARalpha activation has a major impact on gene regulation in human hepatocytes. Importantly, the role of PPARalpha as master regulator of hepatic lipid metabolism is generally well-conserved between mouse and human. Overall, however, PPARalpha regulates a mostly divergent set of genes in mouse and

  17. Cytochrome P450 1 enzyme inhibition and anticancer potential of chromene amides from Amyris plumieri.

    Science.gov (United States)

    Badal, S; Williams, S A; Huang, G; Francis, S; Vedantam, P; Vendantam, P; Dunbar, O; Jacobs, H; Tzeng, T J; Gangemi, J; Delgoda, R

    2011-03-01

    Cytochrome P450 (CYP) enzyme inhibitory properties of six chromenylated amide compounds (CAs) from Amyris plumieri are described. Inhibition of CYP microsomes (CYP1A1, CYP1A2, CYP1B1, CYP2D6, CYP3A4 and CYP2C19) was monitored using a fluorescent assay. Potent inhibition was found against CYP1A1 with IC(50) and K(i) for CA1 (acetamide), being the lowest at 1.547 ± 1.0 μM and 0.37 μM respectively, displaying non-competitive kinetics. The selectivity for CYP1A1 was increased in CA3 (butanamide), which also exhibited cytotoxicity against breast cancer cells, MCF7 with an IC(50) of 47.46 ± 1.62 μM. Structure-activity relationship studies provide insight at a molecular level for CAs with implications in chemoprevention and chemotherapy. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Analysis of cellular responses to aflatoxin B{sub 1} in yeast expressing human cytochrome P450 1A2 using cDNA microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yingying [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Breeden, Linda L. [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Fan, Wenhong [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Zhao Lueping [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Eaton, David L. [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Zarbl, Helmut [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States) and Fred Hutchinson Cancer Research Center, Seattle, WA (United States)]. E-mail: hzarbl@fhcrc.org

    2006-01-29

    Aflatoxin B1 (AFB{sub 1}) is a potent human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In human, AFB{sub 1} is bioactivated by cytochrome P450 (CYP450) enzymes, primarily CYP1A2, to the genotoxic epoxide that forms N{sup 7}-guanine DNA adducts. To characterize the transcriptional responses to genotoxic insults from AFB{sub 1}, a strain of Saccharomyces cerevisiae engineered to express human CYP1A2 was exposed to doses of AFB{sub 1} that resulted in minimal lethality, but substantial genotoxicity. Flow cytometric analysis demonstrated a dose and time dependent S phase delay under the same treatment conditions, indicating a checkpoint response to DNA damage. Replicate cDNA microarray analyses of AFB{sub 1} treated cells showed that about 200 genes were significantly affected by the exposure. The genes activated by AFB{sub 1}-treatment included RAD51, DUN1 and other members of the DNA damage response signature reported in a previous study with methylmethane sulfonate and ionizing radiation [A.P. Gasch, M. Huang, S. Metzner, D. Botstein, S.J. Elledge, P.O. Brown, Genomic expression responses to DNA-damaging agents and the reg