WorldWideScience

Sample records for human corneal stroma

  1. Gene Expression Profile of Extracellular Matrix and Adhesion Molecules in the Human Normal Corneal Stroma.

    Science.gov (United States)

    Liu, Ying; Huang, Hu; Sun, Guoying; Alwadani, Saeed; Semba, Richard D; Lutty, Gerard A; Yiu, Samuel; Edward, Deepak P

    2017-04-01

    There is limited information on region-specific gene expression in the human corneal stroma. In this study, we aimed to investigate the expression profile of the extracellular matrix and adhesion molecules in the normal corneal stroma using laser capture microdissection (LCM) and molecular techniques. Frozen sections of human cornea without ocular disease were used to isolate the central and peripheral corneal stromal keratocytes by LCM. RNA was extracted from LCM-captured tissues and the RT2 Profiler PCR Arrays were used to examine the expression profile of extracellular matrix and adhesion molecules in the central and peripheral stroma. Real-time quantitative PCR was used to quantify gene expression. Proteomic and western blotting (WB) analyses were performed to confirm gene expression at protein level. Function association network was generated via the web tools String and Cytoscape. The gene expression profiling demonstrated that 35 out of the 84 extracellular matrix and adhesion molecules represented in the array were expressed in stromal keratocytes. Among them, 24 genes were not previously described in the corneal stroma. Two genes were found more abundantly expressed in the central stroma than in the periphery: TGFBI, COL6A2 (p < 0.05). ADAMTS13 was detected only in the central stroma. Proteomics and WB analysis confirmed the expression of 10 genes. Functional analysis revealed that most identified genes were presented in a core cluster that had multiple and strong associations with other genes. This study identified genes not previously described in the corneal stroma, revealed regional differences in gene expression between central and peripheral stroma, and also detected some interesting candidate genes that may play important roles in corneal function. These observations serve as the foundation to further investigate the molecular and cellular mechanisms regulating the pathogenesis of regional corneal stromal disorders such as keratoconus.

  2. Clinical study on human lamellar keratoplasty for fungal corneal ulcers with porcine acellular corneal stroma

    OpenAIRE

    Fu-Hong Liao; Zi-Zhong Yu; Bin Hu

    2017-01-01

    AIM: To observe the transplantation of acellular porcine corneal stroma on the treatment of superficial keratitis by drug-resistant fungal. METHODS: We performed a retrospective analysis of 16 cases of fungal keratitis received the transplantation of acellular porcine corneal matrix from June 2015 to March 2016 with a follow-up of 6mo. We analyzed on items as postoperative visual acuity, corneal graft status, postoperative recurrence and postoperative complications. RESULTS: We observed a hea...

  3. Clinical study on human lamellar keratoplasty for fungal corneal ulcers with porcine acellular corneal stroma

    Directory of Open Access Journals (Sweden)

    Fu-Hong Liao

    2017-09-01

    Full Text Available AIM: To observe the transplantation of acellular porcine corneal stroma on the treatment of superficial keratitis by drug-resistant fungal. METHODS: We performed a retrospective analysis of 16 cases of fungal keratitis received the transplantation of acellular porcine corneal matrix from June 2015 to March 2016 with a follow-up of 6mo. We analyzed on items as postoperative visual acuity, corneal graft status, postoperative recurrence and postoperative complications. RESULTS: We observed a healing time of corneal epithelium in 7 to 10d postoperatively generally and the absence of corneal edema in 1mo, while the cornea gradually returned transparent in the 16 cases. Two cases required medication for an epithelial recovery and 3 cases received intervention for decreasing intraocular pressure to a certain level. During the follow-up we observed no cases of cornea degeneration, recurrence of infection or rejection. The vision acuity showed 1.27±0.22, 1.11±0.13, 0.79±0.22 in 1, 3 and 6mo after operation respectively. There was no statistical difference between vision in 1mo and the vision before surgery(P=0.06; while we found a statistical difference when comparing the vision of 3 and 6mo with vision before surgery(P=0.01,0.001. The vision in 6mo increased with a statistic difference to the vision at 1 and 3mo(PP=0.11. CONCLUSION: Transplantation of acellular porcine corneal matrix is a safe and efficient treatment for fungal keratitis.

  4. Effect of Isolation Technique and Location on the Phenotype of Human Corneal Stroma-Derived Cells

    Directory of Open Access Journals (Sweden)

    Richárd Nagymihály

    2017-01-01

    Full Text Available Purpose. To determine the effect of the isolation technique and location upon the phenotype of human corneal stroma-derived cells (CSCs. Methods. CSCs were isolated from the corneal stroma center and periphery using the explant or enzymatic digestion technique. The native tissue was stained for functional markers, while cultured cells were analysed by FACS. PCR was used to determine gene expression in the cultured versus native cells. Results. The native stroma was positive for α-actinin, ALDH1A1, CD31, CD34, Collagen I, and Vimentin. Cultured cells expressed CD73, CD90, CD105, CD51, Nestin, CD49a, CD49d, ABCG2, and CD47. PCR demonstrated a significant upregulation of ALDH1A1, AQP1, ITGB4, KLF4, CD31, CD34, and CXCR4 in the native tissue, while the expression of ABCG2, ITGAV, Nestin, CD73, CD90, CD105, and Vimentin were significantly higher in the cultured cells. GPC did not change. Conclusion. The study finds no significant difference between the phenotype of CSCs generated by the explant or enzymatic digestion technique from the center or periphery of the stroma. Isolation of the cells can be performed without regard to the location and isolation technique used for research. Cultivated CSCs undergo a complete surface marker and genotype profile change compared to the state in situ.

  5. Corneal stroma microfibrils

    KAUST Repository

    Hanlon, Samuel D.

    2015-03-01

    Elastic tissue was first described well over a hundred years ago and has since been identified in nearly every part of the body. In this review, we examine elastic tissue in the corneal stroma with some mention of other ocular structures which have been more thoroughly described in the past. True elastic fibers consist of an elastin core surrounded by fibrillin microfibrils. However, the presence of elastin fibers is not a requirement and some elastic tissue is comprised of non-elastin-containing bundles of microfibrils. Fibers containing a higher relative amount of elastin are associated with greater elasticity and those without elastin, with structural support. Recently it has been shown that the microfibrils, not only serve mechanical roles, but are also involved in cell signaling through force transduction and the release of TGF-β. A well characterized example of elastin-free microfibril bundles (EFMBs) is found in the ciliary zonules which suspend the crystalline lens in the eye. Through contraction of the ciliary muscle they exert enough force to reshape the lens and thereby change its focal point. It is believed that the molecules comprising these fibers do not turn-over and yet retain their tensile strength for the life of the animal. The mechanical properties of the cornea (strength, elasticity, resiliency) would suggest that EFMBs are present there as well. However, many authors have reported that, although present during embryonic and early postnatal development, EFMBs are generally not present in adults. Serial-block-face imaging with a scanning electron microscope enabled 3D reconstruction of elements in murine corneas. Among these elements were found fibers that formed an extensive network throughout the cornea. In single sections these fibers appeared as electron dense patches. Transmission electron microscopy provided additional detail of these patches and showed them to be composed of fibrils (~10nm diameter). Immunogold evidence clearly

  6. Corneal Stroma Regeneration with Acellular Corneal Stroma Sheets and Keratocytes in a Rabbit Model.

    Science.gov (United States)

    Ma, Xiao Yun; Zhang, Yun; Zhu, Dan; Lu, Yang; Zhou, Guangdong; Liu, Wei; Cao, Yilin; Zhang, Wen Jie

    2015-01-01

    Acellular corneal stroma matrix has been used for corneal stroma engineering. However, because of its compact tissue structure, regrowth of keratocytes into the scaffold is difficult. Previously, we developed a sandwich model for cartilage engineering using acellular cartilage sheets. In the present study, we tested this model for corneal stroma regeneration using acellular porcine corneal stroma (APCS) sheets and keratocytes. Porcine corneas were decellularized by NaCl treatment, and the APCS was cut into 20-μm-thick sheets. A rabbit corneal stroma defect model was created by lamellar keratoplasty and repaired by transplantation of five pieces of APCS sheets with keratocytes. Six months after transplantation, transparent corneas were present in the experimental group, which were confirmed by anterior segment optical coherence tomography examination and transmittance examination. The biomechanical properties in the experimental group were similar to those of normal cornea. Histological analyses showed an even distribution of keratocytes and well-oriented matrix in the stroma layer in the experimental group. Together, these results demonstrated that the sandwich model using acellular corneal stroma sheets and keratocytes could be potentially useful for corneal stroma regeneration.

  7. Corneal Stroma Regeneration with Acellular Corneal Stroma Sheets and Keratocytes in a Rabbit Model.

    Directory of Open Access Journals (Sweden)

    Xiao Yun Ma

    Full Text Available Acellular corneal stroma matrix has been used for corneal stroma engineering. However, because of its compact tissue structure, regrowth of keratocytes into the scaffold is difficult. Previously, we developed a sandwich model for cartilage engineering using acellular cartilage sheets. In the present study, we tested this model for corneal stroma regeneration using acellular porcine corneal stroma (APCS sheets and keratocytes. Porcine corneas were decellularized by NaCl treatment, and the APCS was cut into 20-μm-thick sheets. A rabbit corneal stroma defect model was created by lamellar keratoplasty and repaired by transplantation of five pieces of APCS sheets with keratocytes. Six months after transplantation, transparent corneas were present in the experimental group, which were confirmed by anterior segment optical coherence tomography examination and transmittance examination. The biomechanical properties in the experimental group were similar to those of normal cornea. Histological analyses showed an even distribution of keratocytes and well-oriented matrix in the stroma layer in the experimental group. Together, these results demonstrated that the sandwich model using acellular corneal stroma sheets and keratocytes could be potentially useful for corneal stroma regeneration.

  8. Regulation of Corneal Stroma Extracellular Matrix Assembly

    Science.gov (United States)

    Chen, Shoujun; Mienaltowski, Michael J.; Birk, David E.

    2014-01-01

    The transparent cornea is the major refractive element of the eye. A finely controlled assembly of the stromal extracellular matrix is critical to corneal function, as well as in establishing the appropriate mechanical stability required to maintain corneal shape and curvature. In the stroma, homogeneous, small diameter collagen fibrils, regularly packed with a highly ordered hierarchical organization, are essential for function. This review focuses on corneal stroma assembly and the regulation of collagen fibrillogenesis. Corneal collagen fibrillogenesis involves multiple molecules interacting in sequential steps, as well as interactions between keratocytes and stroma matrix components. The stroma has the highest collagen V:I ratio in the body. Collagen V regulates the nucleation of protofibril assembly, thus controlling the number of fibrils and assembly of smaller diameter fibrils in the stroma. The corneal stroma is also enriched in small leucine-rich proteoglycans (SLRPs) that cooperate in a temporal and spatial manner to regulate linear and lateral collagen fibril growth. In addition, the fibril-associated collagens (FACITs) such as collagen XII and collagen XIV have roles in the regulation of fibril packing and inter-lamellar interactions. A communicating keratocyte network contributes to the overall and long-range regulation of stromal extracellular matrix assembly, by creating micro-domains where the sequential steps in stromal matrix assembly are controlled. Keratocytes control the synthesis of extracellular matrix components, which interact with the keratocytes dynamically to coordinate the regulatory steps into a cohesive process. Mutations or deficiencies in stromal regulatory molecules result in altered interactions and deficiencies in both transparency and refraction, leading to corneal stroma pathobiology such as stromal dystrophies, cornea plana and keratoconus. PMID:25819456

  9. Preparation and Biomechanical Properties of an Acellular Porcine Corneal Stroma.

    Science.gov (United States)

    Li, Qing; Wang, Hongmei; Dai, Zhenye; Cao, Yichen; Jin, Chuanyu

    2017-11-01

    To construct an acellular porcine corneal stroma (aPCS) as a human corneal stroma alternative and to further explore its biomechanical properties. A combination of DNA-RNA enzymes and ultrasound technology was used to strip the native porcine corneal cells. The microstructure of aPCS was observed by H&E staining, DAPI staining, and α-Gal tests. The mechanical properties were detected by a tension machine. Cytotoxicity of aPCS was measured by the MTT assay. The subcutaneous embedding experiment in rats was also used to detect immunity and degradation. The aPCS was transplanted into the rabbit cornea by lamellar keratoplasty, general observations were made at 3 days, 1 week, 1 month, and 3 months after implantation, respectively. The microstructure and mechanical properties of aPCS were not damaged during the decellularization process. The aPCS extracts had no significant cytotoxicity on human corneal stroma cells. Moreover, the subcutaneous embedding experiment in rats demonstrated that aPCS could not be degraded and induced no immune reaction in and around the transplanted discs. More important is that the aPCS reconstructed normal corneal stroma and maintained corneal transparency and thickness, with almost no neovascularization and inflammation at 3 months after surgery. The aPCS prepared in this study had good biocompatibility, safety, and low antigenicity, which has great potential for corneal disease treatment.

  10. Ultrastructure of the posterior corneal stroma.

    Science.gov (United States)

    Schlötzer-Schrehardt, Ursula; Bachmann, Bjoern O; Tourtas, Theofilos; Torricelli, Andre A M; Singh, Arun; González, Sheyla; Mei, Hua; Deng, Sophie X; Wilson, Steven E; Kruse, Friedrich E

    2015-04-01

    To reinvestigate the ultrastructure of the posterior stroma of the human cornea and to correlate the findings with the stromal behavior after big-bubble creation. Observational consecutive 3-center case series. Fresh corneoscleral buttons from human donors (n = 19) and organ-cultured corneoscleral buttons (n = 10) obtained after Descemet's membrane endothelial keratoplasty. Corneal specimens were divided into central (3 mm), mid peripheral (8 mm), and peripheral parts by trephination and processed for transmission electron microscopic and immunohistochemical analyses. A big bubble was created by air injection into the stroma of organ-cultured corneas before fixation. The distance of keratocytes to Descemet's membrane, number of collagen lamellae between keratocytes and Descemet's membrane, diameter and arrangement of collagen fibrils, thickness of stromal lamella created by air injection, and immunopositivity for collagen types III, IV, and VI. Stromal keratocytes were observed at variable distances from Descemet's membrane, increasing from 1.5 to 12 μm (mean, 4.97±2.19 μm) in the central, 3.5 to 14 μm (mean, 8.03±2.47 μm) in the midperipheral, and 4.5 to 18 μm (mean, 9.77±2.90 μm) in the peripheral regions. The differences in mean distances were significant (P collagen lamellae between Descemet's membrane and most posterior keratocytes varied from 2 to 10 and the diameter of collagen fibrils averaged 23.5±1.8 nm and corresponded with that of the remaining stroma. A thin layer (0.5-1.0 μm thick) of randomly arranged, unaligned collagen fibers, which was positive for collagen types III and VI, was observed at the Descemet-stroma interface. The residual stromal sheet separated by air injection in 8 of 10 donor corneas varied in thickness from 4.5 to 27.5 μm, even within individual corneas (≤3-fold), and was composed of 5 to 11 collagen lamellae that revealed keratocytes on their anterior surface and in between. Barring an anchoring zone of interwoven

  11. The corneal stroma during contact lens wear.

    Science.gov (United States)

    Jalbert, Isabelle; Stapleton, Fiona

    2005-03-01

    Recent technological advances have lead to novel descriptions of the microanatomy of the corneal stroma. In the first section of this review, these findings and the role they play in the maintenance of vital properties such as corneal transparency, mechanical strength, homeostasis, wound-healing response and metabolism are described. In the second part, contact lens induced stromal alterations such as acidosis, oedema, striae, thinning and opacities are reviewed as well as the more recently described phenomenon of microdot deposits and keratocyte loss with an emphasis on how lens wearing stromal effects can be minimised.

  12. UV absorbance of a bioengineered corneal stroma substitute in the 240-400 nm range.

    Science.gov (United States)

    Ionescu, Ana-Maria; de la Cruz Cardona, Juan; González-Andrades, Miguel; Alaminos, Miguel; Campos, Antonio; Hita, Enrique; del Mar Pérez, María

    2010-08-01

    To determine the UV absorbance of a bioengineered human corneal stroma construct based on fibrin and fibrin-agarose scaffolds in the 240-400 nm range. Three types of artificial substitutes of the human corneal stroma were developed by tissue engineering using fibrin and fibrin with 0.1% and 0.2% agarose scaffolds with human keratocytes immersed within. After 28 days of culture, the UV absorbance of each sample was determined using a spectrophotometer. The thickness of corneal stroma samples was determined by light microscope. For all the 3 types of corneal stroma substitutes studied, the range of the UV absorbance values was similar to that of the native human corneal stroma, although the fibrin with 0.1% agarose stroma substitute had the best UV filtering properties. The higher UV absorbance of the artificial substitute of the human corneal stroma was in the UV-B and -A ranges, suggesting that these artificial tissues could have potential clinical usefulness and proper UV light-absorption capabilities. Our data suggest that the bioengineered human corneal substitute of fibrin with 0.1% agarose is an effective absorber of harmful UV radiation and could therefore be potentially useful.

  13. Riboflavin concentration in corneal stroma after intracameral injection

    Directory of Open Access Journals (Sweden)

    Na Li

    2015-06-01

    Full Text Available AIM:To evaluate the enrichment of riboflavin in the corneal stroma after intracameral injection to research the barrier ability of the corneal endothelium to riboflavin in vivo.METHODS:The right eyes of 30 New Zealand white rabbits were divided into three groups. Different concentrations riboflavin-balanced salt solutions (BSS were injected into the anterior chamber (10 with 0.5%, 10 with 1%, and 10 with 2%. Eight corneal buttons of 8.5 mm in diameter from each group were dissected at 30min after injection and the riboflavin concentrations in the corneal stroma were determined using high-performance liquid chromatography (HPLC after removing the epithelium and endothelium. The other two rabbits in every group were observed for 24h and sacrificed. As a comparison, the riboflavin concentrations from 16 corneal stromal samples were determined using HPLC after instillation of 0.1% riboflavin-BSS solution for 30min on the corneal surface (8 without epithelium and 8 with intact epithelium.RESULTS: The mean riboflavin concentrations were 11.19, 18.97, 25.08, 20.18, and 1.13 µg/g for 0.5%, 1%, 2%, de-epithelialzed samples, and the transepithelial groups, respectively. The color change of the corneal stroma and the HPLC results showed that enrichment with riboflavin similar to classical de-epithelialized corneal collagen crosslinking (CXL could be achieved by intracameral1% riboflavin-BSS solution after 30min; the effect appeared to be continuous for at least 30min.CONCLUSION:Riboflavin can effectively penetrate the corneal stroma through the endothelium after an intracameral injection in vivo, so it could be an enhancing method that could improve the corneal riboflavin concentration in transepithelial CXL.

  14. Swelling studies of camel and bovine corneal stroma

    Directory of Open Access Journals (Sweden)

    Turki Almubrad

    2010-09-01

    Full Text Available Turki Almubrad, Mohammad Faisal Jamal Khan, Saeed AkhtarCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Saudi ArabiaAbstract: In the present study we investigated the swelling characteristics of fresh camel and bovine cornea in sodium salt solutions. Swelling studies were carried out at 20 minutes, 14 hours, and 46 hours on five fresh camel and 5 five fresh bovine corneas. During the 20-minute hydration of fresh corneal stroma was investigated using sodium chloride (NaCl, sodium bicarbonate (NaHCO3, sodium acetate (CH3COONa, sodium thiocyanate (NaSCN, and sodium floride (NaF at 2-minute time intervals. During a 46-hour time period, the hydration study was carried out using NaCl (150, 300 mM and NaF (150 mM at random intervals. The 14-hour study was carried out to assess the rehydration of corneal stroma after 6 hours of drying. During the 20-minute swelling studies in the first 2 minutes the rate of hydration in both camel and bovine corneas was high but gradually reduced in the 2–20-minute period. The rates and levels of hydration of camel and bovine cornea were not significantly different from each other in all the strengths of solutions. During the 46-hour swelling studies, the initial rate of hydration (0–2 hours of camel and bovine stroma, in all solutions was significantly higher (Z = 0.056 compared to hydration during later hours (2–46 hours. Camel stromal hydration (high in 150 mM NaCl was significantly higher compared to bovine stromal hydration in the same solution during the 10–24, and 24–46-hour time periods. Rehydration in camel stroma was significantly lower than bovine in 150 mM NaF. The 20-minute study showed that there was no selective affinity for particular ions in camel or bovine corneal stroma. Initial swelling in both corneal and bovine stroma is faster and more prominant compared to later swelling. The swelling in camel cornea is more prominant compared

  15. A novel method in preparation of acellularporcine corneal stroma tissue for lamellar keratoplasty.

    Science.gov (United States)

    Shao, Yi; Tang, Jing; Zhou, Yueping; Qu, Yangluowa; He, Hui; Liu, Qiuping; Tan, Gang; Li, Wei; Liu, Zuguo

    2015-01-01

    Our objective was to develop a novel lamellar cornealbiomaterial for corneal reconstruction.Theporcine acellular corneal stroma discs (ACSDs) were prepared from de-epithelized fresh porcine corneas (DFPCs) by incubation with 100% fresh human serum and additional electrophoresis at 4°C. Such manipulation removed theanterior corneal stromal cells without residual of DNA content and α-Galantigen. Human serum decellularizing activity on porcineanterior corneal stroma cells is through apoptosis, and associated with the presence of α-Gal epitopes in anterior stroma. ACSDs displayed similar optical, biomechanical properties and ultrastructure to DFPCs, and showed good histocompatibility in rabbit corneal stromal pockets and anterior chamber. Rabbit corneallamellar keratoplasty (LKP) using ACSDs showed no rejection and high transparency of cornea at 2 months after surgery. In vivo confocal laser scanning microscopy and immunostaining analysis showed complete re-epithelization and stromal cell in growth of ACSDs without inflammatory cell infiltration, new blood vessel ingrowth and excessive wound healing. In conclusion, this novel decellularization method may be valuable for preparation of xenogenic corneal tissue for clinical application, ACSDs resulted from this method may be served as a matrix equivalent for LKP in corneal xenotransplantation.

  16. A novel method in preparation of acellularporcine corneal stroma tissue for lamellar keratoplasty

    Science.gov (United States)

    Shao, Yi; Tang, Jing; Zhou, Yueping; Qu, Yangluowa; He, Hui; Liu, Qiuping; Tan, Gang; Li, Wei; Liu, Zuguo

    2015-01-01

    Our objective was to develop a novel lamellar cornealbiomaterial for corneal reconstruction.Theporcine acellular corneal stroma discs (ACSDs) were prepared from de-epithelized fresh porcine corneas (DFPCs) by incubation with 100% fresh human serum and additional electrophoresis at 4°C. Such manipulation removed theanterior corneal stromal cells without residual of DNA content and α-Galantigen. Human serum decellularizing activity on porcineanterior corneal stroma cells is through apoptosis, and associated with the presence of α-Gal epitopes in anterior stroma. ACSDs displayed similar optical, biomechanical properties and ultrastructure to DFPCs, and showed good histocompatibility in rabbit corneal stromal pockets and anterior chamber. Rabbit corneallamellar keratoplasty (LKP) using ACSDs showed no rejection and high transparency of cornea at 2 months after surgery. In vivo confocal laser scanning microscopy and immunostaining analysis showed complete re-epithelization and stromal cell in growth of ACSDs without inflammatory cell infiltration, new blood vessel ingrowth and excessive wound healing. In conclusion, this novel decellularization method may be valuable for preparation of xenogenic corneal tissue for clinical application, ACSDs resulted from this method may be served as a matrix equivalent for LKP in corneal xenotransplantation. PMID:26885261

  17. Understanding of the Viscoelastic Response of the Human Corneal Stroma Induced by Riboflavin/UV-A Cross-Linking at the Nano Level

    Science.gov (United States)

    Labate, Cristina; De Santo, Maria Penelope; Lombardo, Giuseppe; Lombardo, Marco

    2015-01-01

    Purpose To investigate the viscoelastic changes of the human cornea induced by riboflavin/UV-A cross-linking using Atomic Force Microscopy (AFM) at the nano level. Methods Seven eye bank donor corneas were investigated, after gently removing the epithelium, using a commercial AFM in the force spectroscopy mode. Silicon cantilevers with tip radius of 10 nm and spring elastic constants between 26- and 86-N/m were used to probe the viscoelastic properties of the anterior stroma up to 3 µm indentation depth. Five specimens were tested before and after riboflavin/UV-A cross-linking; the other two specimens were chemically cross-linked using glutaraldehyde 2.5% solution and used as controls. The Young’s modulus (E) and the hysteresis (H) of the corneal stroma were quantified as a function of the application load and scan rate. Results The Young’s modulus increased by a mean of 1.1-1.5 times after riboflavin/UV-A cross-linking (Physteresis decreased, by a mean of 0.9-1.5 times, in all specimens after riboflavin/UV-A cross-linking (P<0.05). A substantial decrease of H, ranging between 2.6 and 3.5 times with respect to baseline values, was observed in glutaraldehyde-treated corneas (P<0.05). Conclusions The present study provides the first evidence that riboflavin/UV-A cross-linking induces changes of the viscoelastic properties of the cornea at the scale of stromal molecular interactions. PMID:25830534

  18. Understanding of the viscoelastic response of the human corneal stroma induced by riboflavin/UV-a cross-linking at the nano level.

    Directory of Open Access Journals (Sweden)

    Cristina Labate

    Full Text Available To investigate the viscoelastic changes of the human cornea induced by riboflavin/UV-A cross-linking using Atomic Force Microscopy (AFM at the nano level.Seven eye bank donor corneas were investigated, after gently removing the epithelium, using a commercial AFM in the force spectroscopy mode. Silicon cantilevers with tip radius of 10 nm and spring elastic constants between 26- and 86-N/m were used to probe the viscoelastic properties of the anterior stroma up to 3 µm indentation depth. Five specimens were tested before and after riboflavin/UV-A cross-linking; the other two specimens were chemically cross-linked using glutaraldehyde 2.5% solution and used as controls. The Young's modulus (E and the hysteresis (H of the corneal stroma were quantified as a function of the application load and scan rate.The Young's modulus increased by a mean of 1.1-1.5 times after riboflavin/UV-A cross-linking (P<0.05. A higher increase of E, by a mean of 1.5-2.6 times, was found in chemically cross-linked specimens using glutaraldehyde 2.5% (P<0.05. The hysteresis decreased, by a mean of 0.9-1.5 times, in all specimens after riboflavin/UV-A cross-linking (P<0.05. A substantial decrease of H, ranging between 2.6 and 3.5 times with respect to baseline values, was observed in glutaraldehyde-treated corneas (P<0.05.The present study provides the first evidence that riboflavin/UV-A cross-linking induces changes of the viscoelastic properties of the cornea at the scale of stromal molecular interactions.

  19. Cellular invasion and collagen type IX in the primary corneal stroma in vitro.

    Science.gov (United States)

    Cai, C X; Fitch, J M; Svoboda, K K; Birk, D E; Linsenmayer, T F

    1994-11-01

    During different stages in the development of the avian cornea, various collagen types have been shown to participate in matrix formation and have been implicated in morphogenesis. One of these is the fibril-associated collagen type IX. This molecule is present when the primary corneal stroma is in a compact state, but rapidly disappears just prior to stromal swelling and its invasion by mesenchymal cells. The temporospatial pattern of the disappearance of type IX collagen in the developing cornea suggests that this molecule may be involved in stabilizing the primary corneal stromal matrix by interacting either with other type IX collagen molecules or with other matrix components. To explore further whether the removal of type IX collagen is involved in stromal swelling, we have employed an in vitro culture system in which swelling of the primary stroma and mesenchymal cell invasion can be experimentally manipulated by culturing chick corneal explants on a Nuclepore filter support in the presence or absence of an associated lens. We have also examined the effect of exogenously added human recombinant tissue inhibitor of metalloproteinases (TIMP-1) on the presence of type IX collagen and cellular invasion. When stage 25-26+ corneal explants were cultured with an associated lens, the primary stroma did not swell; immunohistochemically detectable type IX collagen was still present, and mesenchymal cell invasion failed to occur. Conversely, when the same stages of corneal explants were cultured without an associated lens, the primary stroma swelled; type IX collagen disappeared, and mesenchymal cell migration occurred. Under both conditions, however, the type II collagen of the stroma, which is known to be a component of the striated fibrils, remained clearly detectable and with time even seemed to increase in amount. This result is consistent with the proposition that type IX collagen is one factor involved in maintaining the primary stroma as a compact matrix

  20. Biocompatibility and functionality of a tissue-engineered living corneal stroma transplanted in the feline eye.

    Science.gov (United States)

    Boulze Pankert, Marie; Goyer, Benjamin; Zaguia, Fatma; Bareille, Myriam; Perron, Marie-Claude; Liu, Xinling; Cameron, J Douglas; Proulx, Stéphanie; Brunette, Isabelle

    2014-10-02

    Corneal tissue shortage has become a major concern worldwide, which has motivated the search for alternative solutions to eye bank human eyes for corneal transplantation. Minimally invasive lamellar transplantation and tissue engineering may offer new opportunities for the rehabilitation of diseased corneas. The aim of this study was to evaluate the biocompatibility and functionality of stromal lamellar grafts tissue-engineered (TE) in vitro and transplanted in vivo in the cornea of a feline model. The corneal stromas were engineered in culture from corneal stromal cells using the self-assembly approach, without the addition of exogenous material or scaffold. Eight healthy animals underwent two intrastromal grafts in one eye and the contralateral eye was used as a control. Animals were followed with slit-lamp ophthalmic examination, corneal esthesiometry and optical coherent tomography. Confocal microscopy, immunofluorescence, histology, and transmission electron microscopy (TEM) were performed at 4 months. Four months after transplantation, the TE-stromal grafts were transparent, functional, and well tolerated by the eye. All grafts remained avascular, with no signs of immune rejection, despite a short course of low-dose topical steroids. Corneal sensitivity returned to preoperative level and reinnervation of the grafts was confirmed by confocal microscopy and immunofluorescence. Histology and TEM of the TE-grafts showed a lamellar stromal structure with regular collagen fibril arrangement. These results open the way to an entirely new therapeutic modality. Intracorneal filling using a biocompatible, transparent, and malleable TE-stroma could be the basis for multiple types of novel therapeutic options in corneal interventional surgery. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  1. Collagen fibril assembly in the developing avian primary corneal stroma.

    Science.gov (United States)

    Fitch, J M; Linsenmayer, C M; Linsenmayer, T F

    1994-03-01

    "unmasked" in deeper stromal layers by brief digestions with bacterial collagenase as well as by inhibition of cross-link formation. The extent of such unmasking of type II, however, is more limited in older corneas, suggesting that some of the putatively masked epitopes at these stages may in fact be proteolytically degraded. These results conform with previous studies suggesting that the type II and type IX collagens of the primary stroma are derived from the epithelium. They also suggest that (1) the assembly and maturation of the heterotypic fibrils, including the addition of the fibril-associated collagen type IX and covalent cross-link formation, occur shortly after synthesis and secretion of the molecules; (2) most, if not all, of the corneal type IX collagen becomes fibril-associated; and (3) during much of corneal development the N-telopeptide epitope in type II collagen is largely retained in a sterically masked form, but in later stages, during remodeling it may be removed by proteolytic degradation.

  2. Corneal layer plate removal with Fluconazole injected corneal stroma and autologous conjunctival transplantation for keratomycosis

    Directory of Open Access Journals (Sweden)

    Li-Dong Yang

    2013-08-01

    Full Text Available AIM: To investigate the clinical effect of corneal layer plate removal with Fluconazole injected corneal stroma and autologous conjunctival transplantation for keratomycosis.METHODS: There were 168 cases suffered keratomycosis that the focus located shallow of the cornea and was not obvious to drug, who registered in our hospital from March 2005 to June 2010. In surgery we removed plate layer to cormea clear, the region was greater than focus for 0.5mm,then we injected fluconazole which is 2g/L density in corneal stroma to make the edema area greater than Removal of area for 0.5mm. At last we took pedicle conjunctival flap to cover the plant bed by continuous suture. Postoperative day use drug to drop eye and to observe that whether recurrent of the keratomycosis and how was the edema degrade, the blood supply of conjunctival graft pieces, how about the stimulating signs of the surgery eye, the vision.RESULTS: The improvement rate was 96.2% after surgery for seven days and the cure rate was 95.5% after surgery for one months. We found in 157 eyes accepted trigeminy surgery there were 6 eyes recurrence and the recurrence rate was 3.8%. The mean time of corneal stromal edema faded away was 13.4 hours. After surgery for one month there were 39 eyes(24.8%whose vision removed than preoperative, there were 91 eyes(58.0%whose vision were same as preoperative and there were 27 eyes(17.2%whose vision lower than preoperative. In these operations the loss ratio of corneal endothelium was from 0%-8%, the mean was 2.9%. The irritative symptoms postoperative were mild for 87%, moderate for 10% and severe for 3%. By this surgery the mean length of stay was 7.3 days so the mean hospitalization expenses only were 2160 RMB. Three months after surgery, 4 cases were slight corneal ectasia.CONCLUSION: This operation combined corneal layer plate removal, Fluconazole injected corneal stroma and autologous conjunctival transplantation for keratomycosis which was in

  3. Cellular invasion and collagen type IX in the primary corneal stroma in vitro

    National Research Council Canada - National Science Library

    Cai, C X; Fitch, J M; Svoboda, K K; Birk, D E; Linsenmayer, T F

    1994-01-01

    .... One of these is the fibril-associated collagen type IX. This molecule is present when the primary corneal stroma is in a compact state, but rapidly disappears just prior to stromal swelling and its invasion by mesenchymal cells...

  4. Ultrastructure Organization of Collagen Fibrils and Proteoglycans of Stingray and Shark Corneal Stroma

    Directory of Open Access Journals (Sweden)

    Saud A. Alanazi

    2015-01-01

    Full Text Available We report here the ultrastructural organization of collagen fibrils (CF and proteoglycans (PGs of the corneal stroma of both the stingray and the shark. Three corneas from three stingrays and three corneas from three sharks were processed for electron microscopy. Tissues were embedded in TAAB 031 resin. The corneal stroma of both the stingray and shark consisted of parallel running lamellae of CFs which were decorated with PGs. In the stingray, the mean area of PGs in the posterior stroma was significantly larger than the PGs of the anterior and middle stroma, whereas, in the shark, the mean area of PGs was similar throughout the stroma. The mean area of PGs of the stingray was significantly larger compared to the PGs, mean area of the shark corneal stroma. The CF diameter of the stingray was significantly smaller compared to the CF diameter in the shark. The ultrastructural features of the corneal stroma of both the stingray and the shark were similar to each other except for the CFs and PGs. The PGs in the stingray and shark might be composed of chondroitin sulfate (CS/dermatan sulfate (DS PGs and these PGs with sutures might contribute to the nonswelling properties of the cornea of the stingray and shark.

  5. [Relationship between corneal neovascularization and various relevant biological factors in surrounding cornea stroma of rats].

    Science.gov (United States)

    Wang, Ting; Shi, Wei-yun; Li, Su-xia; Liu, Ming-na

    2009-02-01

    To study the relationship between corneal neovascularization and various biological factors in corneal stroma of rats. It was an experimental study. Corneal neovascularization was induced by alkali burn in 40 rats. Transforming growth factor-beta1 (TGF-beta1), alpha-smooth muscle actin (alpha-SMA) and fibroblast activation protein (FAP) in the stroma surrounding corneal neovascularization were detected by immunohistochemical studies on day 1, 3 and 7 after chemical burn. Platelet-endothelial cell adhesion molecule-1 (CD31) was used to identify the vascular endothelial cells. RT-PCR was used to identify FAP in the cornea 3 and 7 days after chemical burn. Picrosirius staining and polarization microscopy were used to detect changes of collagen types I and III in the cornea. After alkali burn, TGF-beta1 was first expressed in the cornea stroma. Then, some stroma cells expressed both alpha-SMA and FAP. The FAP(+) keratocytes were found surrounding the CD31(+) endothelium of angiogenesis. RT-PCR study showed that FAP mRNA was only present in neovascularized cornea and not in normal cornea. Polarization microscopy revealed that the collagen types I and III were rearranged in neovascularized cornea. Various biological factors in corneal stroma are changed when the cornea shows neovascularization. FAP(+) keratocytes are present in the stroma, and the appearance of these cells parallels the growth of vascular endothelial cells. Collagen types I and III are rearranged during the process of angiogenesis.

  6. AAV serotype influences gene transfer in corneal stroma in vivo

    OpenAIRE

    Sharma, Ajay; Jonathan C K Tovey; Ghosh, Arkasubhra; Mohan, Rajiv R.

    2010-01-01

    This study evaluated the cellular tropism and relative transduction efficiency of three AAV serotypes, AAV6, AAV8 and AAV9, for corneal gene delivery using mouse cornea in vivo and donor human cornea ex vivo. The AAV6, AAV8 and AAV9 serotypes having AAV2 plasmid encoding for alkaline phosphatase (AP) gene were generated by transfecting HEK293 cell line with pHelper, pARAP4 and pRep/Cap plasmids. Viral vectors (109 vg/μl) were topically applied onto mouse cornea in vivo and human cornea ex viv...

  7. Xeno-Free Cultivation of Mesenchymal Stem Cells From the Corneal Stroma.

    Science.gov (United States)

    Matthyssen, Steffi; Ní Dhubhghaill, Sorcha; Van Gerwen, Veerle; Zakaria, Nadia

    2017-05-01

    The human cornea has recently been described as a source of corneal stroma-derived mesenchymal stem cells (hMSCs). In vitro expansion of these cells involves basal medium supplemented with fetal bovine serum (FBS). As animal-derived serum can confer a risk of disease transmission and can be subject to considerable lot-to-lot variability, it does not comply with newer Good Manufacturing Practice (GMP)-required animal component-free culture protocols for clinical translation. This study investigated animal-free alternatives to FBS for cultivation of human corneal stromal MSCs. Proliferative capacity was studied for cultures supplemented with different concentrations (2.5%, 5%, and 10%) of FBS, human AB serum, human platelet lysate (HPL), and XerumFree. Unsupplemented basal medium was used as a control. The expression of specific hMSC markers (CD73+, CD90+, CD105+, CD19-, CD34-, CD79α-, CD11b-, CD14-, CD45-, and HLA-DR-) and trilineage differentiation (adipogenesis, osteogenesis, and chondrogenesis) were compared for the two outperforming supplements: 10% FBS and HPL. HPL is the only consistent non-xeno supplement where hMSC cultures show significantly higher proliferation than the 10% FBS-supplemented cultures. Both FBS- and HPL-supplemented hMSC cultures showed plastic adherence and trilineage differentiation, and no significant differences were found in the expression of the hMSC marker panel. No significant differences in stemness were detected between FBS and HPL cultures. We conclude that HPL is the best supplement for expansion of human corneal stromal MSCs. HPL significantly outperforms human AB serum, the chemically defined XerumFree, and even the gold standard, FBS. The xeno-free nature of HPL additionally confers preferred standing for use in GMP-regulated clinical trials using human corneal stromal MSCs.

  8. Collagen types in healing alkali-burned corneal stroma in rabbits.

    Science.gov (United States)

    Saika, S; Ooshima, A; Shima, K; Tanaka, S; Ohnishi, Y

    1996-01-01

    We evaluated the change in the type of collagen found during healing in the alkali-burned corneal stroma of rabbits. We estimated the relative proportions of alpha chains in pepsin-solubilized collagen, using sodium dodecylsulfate polyacrylamide gel electrophoresis. Bands of alpha 1(I), alpha 2(I), alpha 1(V), and alpha 1(III) chains stained with Coomassie Blue were separated. The alpha 1(III) and alpha 1(V) chains showed a transient proportional increase in healing corneal stroma in the area exposed to alkali. No significant alterations in collagen alpha chains were detected in peripheral corneal stroma that had not been directly exposed to alkali. Our results suggest that the keratocytes which repopulate the alkali-injured corneal stroma early in healing synthesize a higher proportion of collagen types III and V than type I, and then switch to synthesizing predominantly type I collagen as stromal healing progresses. Collagen types III and V thus appear to be of primary importance in the healing of the corneal stroma.

  9. EDC/NHS cross-linked collagen foams as scaffolds for artificial corneal stroma.

    Science.gov (United States)

    Vrana, N E; Builles, N; Kocak, H; Gulay, P; Justin, V; Malbouyres, M; Ruggiero, F; Damour, O; Hasirci, V

    2007-01-01

    In this study, a highly porous collagen-based biodegradable scaffold was developed as an alternative to synthetic, non-degradable corneal implants. The developed method involved lyophilization and subsequent stabilization through N-ethyl-N'-[3-dimethylaminopropyl] carbodiimide/N-hydroxy succinimide (EDC/NHS) cross-linking to yield longer lasting, porous scaffolds with a thickness similar to that of native cornea (500 microm). For collagen-based scaffolds, cross-linking is essential; however, it has direct effects on physical characteristics crucial for optimum cell behavior. Hence, the effect of cross-linking was studied by examining the influence of cross-linking on pore size distribution, bulk porosity and average pore size. After seeding the foam with human corneal keratocytes, cell proliferation, cell penetration into the scaffold and ECM production within the scaffold were studied. After a month of culture microscopical and immunohistochemical examinations showed that the foam structure did not undergo any significant loss of integrity, and the human corneal keratocytes populated the scaffold with cells migrating both longitudinally and laterally, and secreted some of the main constituents of the corneal ECM, namely collagen types I, V and VI. The foams had a layer of lower porosity (skin layer) both at the top and the bottom. Foams had an optimal porosity (93.6%), average pore size (67.7 microm), and chemistry for cell attachment and proliferation. They also had a sufficiently rapid degradation rate (73.6+/-1.1% in 4 weeks) and could be produced at a thickness close to that of the natural corneal stroma. Cells were seeded at the top surface of the foams and their numbers there was higher than the rest, basically due to the presence of the skin layer. This is considered to be an advantage when epithelial cells need to be seeded for the construction of hemi or full thickness cornea.

  10. AAV serotype influences gene transfer in corneal stroma in vivo.

    Science.gov (United States)

    Sharma, Ajay; Tovey, Jonathan C K; Ghosh, Arkasubhra; Mohan, Rajiv R

    2010-09-01

    This study evaluated the cellular tropism and relative transduction efficiency of three AAV serotypes, AAV6, AAV8 and AAV9, for corneal gene delivery using mouse cornea in vivo and donor human cornea ex vivo. The AAV6, AAV8 and AAV9 serotypes having AAV2 plasmid encoding for alkaline phosphatase (AP) gene were generated by transfecting HEK 293 cell line with pHelper, pARAP4 and pRep/Cap plasmids. Viral vectors (10(9) vg/microl) were topically applied onto mouse cornea in vivo and human cornea ex vivo after removing the epithelium. Human corneas were processed for transgene delivery at day 5 after viral vector application. Mouse corneas were harvested at 4, 14 and 30 days after vector application for AP staining. Transduction efficiency was calculated by quantifying pixels of AP-stained area using Image J software and also confirmed by functional AP enzyme activity in the corneal lysates. Cellular toxicity of the three AAV serotypes was tested with TUNEL assay. Inflammatory response was detected by immunostaining for CD11b and F4/80. All three AAV serotypes successfully transduced mouse and human corneas. The order of transduction efficiency was AAV9 > AAV8 > AAV6. The transduction efficiency of AAV9 was 1.1-1.4 fold higher (p > 0.05) as compared to AAV8 and 3.5-5.5 fold higher (p AAV6. The level of transgene expression for all the three serotypes was greater at 14 days compared to 4 days and this high level of transgene expression was maintained up to the tested time point of 30 days. Corneas exposed to any of the three AAV serotypes did not show significant TUNEL positive cells or any inflammatory response as tested by CD11b or F4/80 staining suggesting that tested AAV serotypes do not induce cell death or inflammation and are safe for corneal gene therapy. Published by Elsevier Ltd.

  11. Type V collagen and Bowman's membrane. Quantitation of mRNA in corneal epithelium and stroma.

    Science.gov (United States)

    Gordon, M K; Foley, J W; Birk, D E; Fitch, J M; Linsenmayer, T F

    1994-10-07

    Bowman's membrane is an acellular matrix of the cornea which lies between the epithelial basal lamina and the corneal stroma. By immunoelectron microscopy, we have determined that types I and V collagen are components of the collagen fibrils in Bowman's membrane of the chick cornea. Although these same components are found in the fibrils of the stroma, the fibrils of Bowman's membrane are smaller in diameter and less uniform than those of the stroma. At early stages of development, the corneal epithelium synthesizes the types I and II collagen of the primary stroma. We therefore asked whether it might also be capable of synthesizing the type V collagen found in Bowman's membrane at later stages of development. Our results, using competitive polymerase chain reaction to quantitate mRNA from avian corneal cells, indicate that the amount of alpha 1(V) collagen mRNA present in epithelia, relative to alpha 2(I) collagen mRNA, is greater than that in stromal fibroblasts. We postulate that this enables the epithelium to synthesize a higher ratio of type V to type I collagen than the stroma and that this proportionally higher amount of type V might account for the ultrastructural appearance of the fibrils in Bowman's membrane.

  12. Effect of culture medium on propagation and phenotype of corneal stroma-derived stem cells.

    Science.gov (United States)

    Sidney, Laura E; Branch, Matthew J; Dua, Harminder S; Hopkinson, Andrew

    2015-12-01

    The limbal area of the corneal stroma has been identified as a source of mesenchymal-like stem cells, which have potential for exploitation as a cell therapy. However, the optimal culture conditions are disputed and few direct media comparisons have been performed. In this report, we evaluated several media types to identify the optimal for inducing an in vitro stem cell phenotype. Primary human corneal stroma-derived stem cells (CSSCs) were extracted from corneoscleral rims. Culture in seven different media types was compared: Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum (FBS); M199 with 20% FBS; DMEM-F12 with 20% serum replacement, basic fibroblast growth factor and leukemia inhibitory factor (SCM); endothelial growth medium (EGM); semi-solid MethoCult; serum-free keratinocyte medium (K-SFM); and StemPro-34. Effects on proliferation, morphology, protein and messenger RNA expression were evaluated. All media supported proliferation of CSSCs with the exception of K-SFM and StemPro-34. Morphology differed between media: DMEM produced large cells, whereas EGM produced very small cells. Culture in M199 produced a typical mesenchymal stromal cell phenotype with high expression of CD105, CD90 and CD73 but not CD34. Culture in SCM produced a phenotype more reminiscent of a progenitor cell type with expression of CD34, ABCG2, SSEA-4 and PAX6. Culture medium can significantly influence CSSC phenotype. SCM produced a cell phenotype closest to that of a pluripotent stem cell, and we consider it to be the most appropriate for development as a clinical-grade medium for the production of CSSC phenotypes suitable for cell therapy. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  13. The P2X7 receptor regulates proteoglycan expression in the corneal stroma

    Science.gov (United States)

    Mankus, Courtney; Chi, Cheryl; Rich, Celeste; Ren, Ruiyi

    2012-01-01

    Purpose Previously, the authors demonstrated that the lack of the P2X7 receptor impairs epithelial wound healing and stromal collagen organization in the cornea. The goal here is to characterize specific effects of the P2X7 receptor on components of the corneal stroma extracellular matrix. Methods Unwounded corneas from P2X7 knockout mice (P2X7−/−) and C57BL/6J wild type mice (WT) were fixed and prepared for quantitative and qualitative analysis of protein expression and localization using Real Time PCR and immunohistochemistry. Corneas were stained also with Cuprolinic blue for electron microscopy to quantify proteoglycan sulfation in the stroma. Results P2X7−/− mice showed decreased mRNA expression in the major components of the corneal stroma: collagen types I and V and small leucine-rich proteoglycans decorin, keratocan, and lumican. In contrast P2X7−/− mice showed increased mRNA expression in lysyl oxidase and biglycan. Additionally, we observed increases in syndecan 1, perlecan, and type III collagen. There was a loss of perlecan along the basement membrane and enhanced expression throughout the stroma, in contrast with the decreased localization of other proteoglycans throughout the stroma. In the absence of lyase digestion there was a significantly smaller number of proteoglycan units per 100 nm of collagen fibrils in the P2X7−/− compared to WT mice. While digestion was more pronounced in the WT group, double digestion with Keratanase I and Chondroitinase ABC removed 88% of the GAG filaments in the WT, compared to 72% of those in the P2X7−/− mice, indicating that there are more heparan sulfate proteoglycans in the latter. Conclusions Our results indicate that loss of P2X7 alters both the expression of proteins and the sulfation of proteoglycans in the corneal stroma. PMID:22275804

  14. The P2X(7) receptor regulates proteoglycan expression in the corneal stroma.

    Science.gov (United States)

    Mankus, Courtney; Chi, Cheryl; Rich, Celeste; Ren, Ruiyi; Trinkaus-Randall, Vickery

    2012-01-01

    Previously, the authors demonstrated that the lack of the P2X(7) receptor impairs epithelial wound healing and stromal collagen organization in the cornea. The goal here is to characterize specific effects of the P2X(7) receptor on components of the corneal stroma extracellular matrix. Unwounded corneas from P2X(7) knockout mice (P2X(7) (-/-)) and C57BL/6J wild type mice (WT) were fixed and prepared for quantitative and qualitative analysis of protein expression and localization using Real Time PCR and immunohistochemistry. Corneas were stained also with Cuprolinic blue for electron microscopy to quantify proteoglycan sulfation in the stroma. P2X(7) (-/-) mice showed decreased mRNA expression in the major components of the corneal stroma: collagen types I and V and small leucine-rich proteoglycans decorin, keratocan, and lumican. In contrast P2X(7) (-/-) mice showed increased mRNA expression in lysyl oxidase and biglycan. Additionally, we observed increases in syndecan 1, perlecan, and type III collagen. There was a loss of perlecan along the basement membrane and enhanced expression throughout the stroma, in contrast with the decreased localization of other proteoglycans throughout the stroma. In the absence of lyase digestion there was a significantly smaller number of proteoglycan units per 100 nm of collagen fibrils in the P2X(7) (-/-) compared to WT mice. While digestion was more pronounced in the WT group, double digestion with Keratanase I and Chondroitinase ABC removed 88% of the GAG filaments in the WT, compared to 72% of those in the P2X(7) (-/-) mice, indicating that there are more heparan sulfate proteoglycans in the latter. Our results indicate that loss of P2X(7) alters both the expression of proteins and the sulfation of proteoglycans in the corneal stroma.

  15. A physiological perspective on the swelling properties of the mammalian corneal stroma.

    Science.gov (United States)

    Doughty, Michael J

    2003-09-01

    The present studies were designed to assess whether measurement of corneal stroma swelling in the laboratory, especially in non-physiological solutions, was associated with a measurable effect on the keratocytes. Complete corneal stroma preparations were made from quality- and age-selected recent post-mortem cattle eyes. These were either assessed immediately or incubated in three different solutions, namely a balanced salts solution with glucose (BSSG), isotonic phosphate buffered saline (PBS) or pure water. Incubations were carried out at 37 degrees C for 9h, and repeated measures of wet mass made so that the rates and extent of swelling could be determined. After incubation, an aqueous extract was made of the stroma for measurements of the levels the enzymes lactate dehydrogenase (LDH), aldehyde dehydrogenase (ALDH) and N-acetyl-beta-glucosaminidase. The initial rates of swelling were lowest in BSSG, marginally faster in PBS and much faster in water. The secondary rates of swelling showed the same sequence being 10.0%/h in BSSG, 14.8%/h in PBS and 34.2%/h in water. Compared to non-incubated preparations, reductions in all three enzyme activities occurred. For LDH, these were 15% with BSSG, 40% in PBS and 80% with water. Similar results were seen with ALDH activity when comparing the three incubation solutions, while incubation in BSSG also resulted in a substantial (40%) reduction in N-acetyl-glucosaminidase activity. When immersed in an isotonic BSSG with added glucose at 37 degrees C, the swelling of a complete bovine corneal stroma is much less than smaller pieces of stroma, and also slightly less than if isotonic PBS was used. With the use of BSSG, little or no change in cytoplasmic enzyme activities occurred, but measurable decreases were noted with PBS and very substantial decreases when water was used, indicating a toxic effect on the keratocytes. The observation that substantial decreases in a lysosomal enzyme activity could occur even with the use of

  16. Collagen type I and type V are present in the same fibril in the avian corneal stroma

    OpenAIRE

    1988-01-01

    The distribution, supramolecular form, and arrangement of collagen types I and V in the chicken embryo corneal stroma were studied using electron microscopy, collagen type-specific monoclonal antibodies, and a preembedding immunogold method. Double-label immunoelectron microscopy with colloidal gold-tagged monoclonal antibodies was used to simultaneously localize collagen type I and type V within the chick corneal stroma. The results definitively demonstrate, for the first time, that both col...

  17. Collagen type I and type V are present in the same fibril in the avian corneal stroma.

    Science.gov (United States)

    Birk, D E; Fitch, J M; Babiarz, J P; Linsenmayer, T F

    1988-03-01

    The distribution, supramolecular form, and arrangement of collagen types I and V in the chicken embryo corneal stroma were studied using electron microscopy, collagen type-specific monoclonal antibodies, and a preembedding immunogold method. Double-label immunoelectron microscopy with colloidal gold-tagged monoclonal antibodies was used to simultaneously localize collagen type I and type V within the chick corneal stroma. The results definitively demonstrate, for the first time, that both collagens are codistributed within the same fibril. Type I collagen was localized to striated fibrils throughout the corneal stroma homogeneously. Type V collagen could be localized only after pretreatment of the tissue to partially disrupt collagen fibril structure. After such pretreatments the type V collagen was found in regions where fibrils were partially dissociated and not in regions where fibril structure was intact. When pretreated tissues were double labeled with antibodies against types I and V collagen coupled to different size gold particles, the two collagens colocalized in areas where fibril structure was partially disrupted. Antibodies against type IV collagen were used as a control and were nonreactive with fibrils. These results indicate that collagen types I and V are assembled together within single fibrils in the corneal stroma such that the interaction of these collagen types within heterotypic fibrils masks the epitopes on the type V collagen molecule. One consequence of the formation of such heterotypic fibrils may be the regulation of corneal fibril diameter, a condition essential for corneal transparency.

  18. Corneal Opacity in Lumican-Null Mice: Defects in Collagen Fibril Structure and Packing in the Posterior Stroma

    Science.gov (United States)

    Chakravarti, Shukti; Petroll, W. Matthew; Hassell, John R.; Jester, James V.; Lass, Jonathan H.; Paul, Jennifer; Birk, David E.

    2015-01-01

    Purpose Gene targeted lumican-null mutants (lumtm1sc/lumtm1sc) have cloudy corneas with abnormally thick collagen fibrils. The purpose of the present study was to analyze the loss of transparency quantitatively and to define the associated corneal collagen fibril and stromal defects. Methods Backscattering of light, a function of corneal haze and opacification, was determined regionally using in vivo confocal microscopy in lumican-deficient and wild-type control mice. Fibril organization and structure were analyzed using transmission electron microscopy. Biochemical approaches were used to quantify glycosaminoglycan contents. Lumican distribution in the cornea was elucidated immunohistochemically. Results Compared with control stromas, lumican-deficient stromas displayed a threefold increase in backscattered light with maximal increase confined to the posterior stroma. Confocal microscopy through-focusing (CMTF) measurement profiles also indicated a 40% reduction in stromal thickness in the lumican-null mice. Transmission electron microscopy indicated significant collagen fibril abnormalities in the posterior stroma, with the anterior stroma remaining relatively unremarkable. The lumican-deficient posterior stroma displayed a pronounced increase in fibril diameter, large fibril aggregates, altered fibril packing, and poor lamellar organization. Immunostaining of wild-type corneas demonstrated high concentrations of lumican in the posterior stroma. Biochemical assessment of keratan sulfate (KS) content of whole eyes revealed a 25% reduction in KS content in the lumican-deficient mice. Conclusions The structural defects and maximum backscattering of light clearly localized to the posterior stroma of lumican-deficient mice. In normal mice, an enrichment of lumican was observed in the posterior stroma compared with that in the anterior stroma. Taken together, these observations indicate a key role for lumican in the posterior stroma in maintaining normal fibril

  19. Cells from the adult corneal stroma can be reprogrammed to a neuron-like cell using exogenous growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Carol Ann, E-mail: carol.greene@auckland.ac.nz; Chang, Chuan-Yuan; Fraser, Cameron J.; Nelidova, Dasha E.; Chen, Jing A.; Lim, Angela; Brebner, Alex; McGhee, Jennifer; Sherwin, Trevor; Green, Colin R.

    2014-03-10

    Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. The switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors.

  20. Human corneal epithelial subpopulations

    DEFF Research Database (Denmark)

    Søndergaard, Chris Bath

    2013-01-01

    subpopulations in human corneal epithelium using a combination of laser capture microdissection and RNA sequencing for global transcriptomic profiling. We compared dissociation cultures, using either expansion on γ-irradiated NIH/3T3 feeder cells in serum-rich medium or expansion directly on plastic in serum......-free EpiLife medium, using a range of physiologically relevant oxygen concentrations (2%, 5%, 10%, 15% and 20%). Using immunocytochemistry and advanced fluorescence microscopy, cells were characterized regarding growth, cell cycle distribution, colony-forming efficiency (CFE), phenotypes...... was not dependent on the system used for propagation (Bath et al. 2013a). Laser capture microdissection was used to isolate cellular subpopulations in situ from the spatially defined differentiation pathway in human corneal epithelium according to an optimized protocol for maintenance of expression profiles...

  1. BMP7 gene transfer via gold nanoparticles into stroma inhibits corneal fibrosis in vivo.

    Directory of Open Access Journals (Sweden)

    Ashish Tandon

    Full Text Available This study examined the effects of BMP7 gene transfer on corneal wound healing and fibrosis inhibition in vivo using a rabbit model. Corneal haze in rabbits was produced with the excimer laser performing -9 diopters photorefractive keratectomy. BMP7 gene was introduced into rabbit keratocytes by polyethylimine-conjugated gold nanoparticles (PEI2-GNPs transfection solution single 5-minute topical application on the eye. Corneal haze and ocular health in live animals was gauged with stereo- and slit-lamp biomicroscopy. The levels of fibrosis [α-smooth muscle actin (αSMA, F-actin and fibronectin], immune reaction (CD11b and F4/80, keratocyte apoptosis (TUNEL, calcification (alizarin red, vonKossa and osteocalcin, and delivered-BMP7 gene expression in corneal tissues were quantified with immunofluorescence, western blotting and/or real-time PCR. Human corneal fibroblasts (HCF and in vitro experiments were used to characterize the molecular mechanism mediating BMP7's anti-fibrosis effects. PEI2-GNPs showed substantial BMP7 gene delivery into rabbit keratocytes in vivo (2×10(4 gene copies/ug DNA. Localized BMP7 gene therapy showed a significant corneal haze decrease (1.68±0.31 compared to 3.2±0.43 in control corneas; p88%; p<0.0001, and immunoblotting of BMP7-transefected HCFs grown in the presence of TGFβ demonstrated significantly enhanced pSmad-1/5/8 (95%; p<0.001 and Smad6 (53%, p<0.001, and decreased αSMA (78%; p<0.001 protein levels. These results suggest that localized BMP7 gene delivery in rabbit cornea modulates wound healing and inhibits fibrosis in vivo by counter balancing TGFβ1-mediated profibrotic Smad signaling.

  2. Animal study on transplantation of human umbilical vein endothelial cells for corneal endothelial decompensation

    Directory of Open Access Journals (Sweden)

    Li Cui

    2014-06-01

    Full Text Available AIM: To explore the feasibility of culturing human umbilical vein endothelial cells(HUVECon acellular corneal stroma and performing the posterior lamellar endothelial keratoplasty(PLEKtreating corneal endothelial decompensation.METHODS: Thirty New-Zealand rabbits were divided into three groups randomly, 10 rabbits for experimental group, 10 for stroma group and 10 for control group. Corneal endothelial cells were removed to establish animal model of corneal endothelial failure. PLEK was performed on the rabbits of experimental group and stroma group, and nothing was transplantated onto the rabbits of control group with the deep layer excised only. Postoperative observation was taken for 3mo. The degree of corneal edema and central corneal thickness were recorded for statistical analysis.RESULTS: Corneas in experimental group were relieved in edema obviously compared with that in stroma group and the control group, and showed increased transparency 7d after the operation. The average density of endothelial cells was 2 026.4±129.3cells/mm2, and average central corneal thickness was 505.2±25.4μm in experimental group, while 1 535.6±114.5μm in stroma group and 1 493.5±70.2μm in control group 3mo after operation.CONCLUSION:We achieved preliminary success in our study that culturing HUVEC on acellular corneal stroma and performing PLEK for corneal endothelial decompensation. HUVEC transplanted could survive in vivo, and have normal biological function of keeping cornea transparent. This study provides a new idea and a new way clinically for the treatment of corneal endothelial diseases.

  3. Patient age, refractive index of the corneal stroma, and outcomes of uneventful laser in situ keratomileusis.

    Science.gov (United States)

    Patel, Sudi; Alió, Jorge L; Walewska, Anna; Amparo, Francisco; Artola, Alberto

    2013-03-01

    To determine the influence of age and the corneal stromal refractive index on the difference between the predicted and actual postoperative refractive error after laser in situ keratomileusis (LASIK) and whether the precision of outcomes could be improved by considering age and the refractive index. Vissum Instituto Oftalmologico de Alicante, Alicante, Spain. Case series. Flaps were created using a mechanical microkeratome. The stromal refractive index was measured using a VCH-1 refractometer after flap lifting. Refractive data were obtained 1, 3, and 6 months postoperatively. Uneventful LASIK was performed in 133 eyes. The mean age, refractive index, and applied corrections were 33.4 years ± 9.49 (SD), 1.368 ± 0.006, and -2.43 ± 3.36 diopters (D), respectively. The difference between the predicted and actual postoperative refractive error = 2.315-0.021 age-1.106 refractive index (F = 3.647, r = 0.254, P=.029; n = 109) at 1 month and = 11.820-0.023 age-7.976 refractive index (F = 3.392, r = 0.261, P=.022, n = 106) at 3 months. A correlation between the actual and calculated postoperative refraction improved from r = -0.178 (P=.064; n = 75) to r = -0.418 (Prefractive index 6 months postoperatively. The predicted outcomes of LASIK can be improved by inputting the refractive index of the individual corneal stroma. Unexpected outcomes (>0.50 D) of LASIK could be avoided by considering patient age and the refractive index and by adjusting the applied correction accordingly. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  4. Does chondroitin sulfate have a role to play in the morphogenesis of the chick primary corneal stroma?

    Science.gov (United States)

    Bansal, M K; Ross, A S; Bard, J B

    1989-05-01

    This paper makes three points about how the chick corneal epithelium lays down the primary stroma, an orthogonally arranged array of well-spaced, 20-nm-diameter collagen fibrils. (1) Isolated corneal epithelia will, when cultured, lay down de novo stromas whose fibril-diameter distribution, fibril spacing, and proteoglycan profile are similar to those laid down in vivo. They differ from embryonic stromas in two ways: first, much of the chondroitin sulfate is released to the medium and, second, there is a relatively small amount of orthogonal organization. Epithelia seem only to lay down such stromas if they are separated from their original stromas with dispase, which leaves an intact basal lamina, and spread out, basal lamina downward, on a Nuclepore filter (poresize, 0.1 micron). (2) Chondroitin sulfate (CS), the predominant proteoglycan (greater than 85%), seems to play no significant role in collagen fibrillogenesis in vitro. Stromas laid down in its absence were indistinguishable from controls as assayed by fibril diameter, organization, and spacing and the amount of collagen synthesized. For these experiments, epithelia were cultured in the presence of hyaluronidase, which degrades CS, and p-nitrophenyl beta-D-xyloside, which inhibits the formation of links between the core protein and glycosaminoglycan side chains in the PG; the absence of intact CS was confirmed by gel filtration. We suggest that, in vivo, CS may facilitate the interfibrillar movement that takes place as the cornea grows. We have also found that keratinase, which degrades the very small amount of keratan sulfate present in the primary stroma, has no effect on stromal deposition. (3) There are substantial amounts of unidentified matrix components in primary stromas laid down both in vivo and in vitro. This conclusion was drawn from SEM observations on both types of stroma after they had been freeze-dried, a process which does not condense hydrated macromolecules. Even after being treated

  5. Acellular ostrich corneal stroma used as scaffold for construction of tissue-engineered cornea

    Directory of Open Access Journals (Sweden)

    Xian-Ning Liu

    2016-03-01

    Full Text Available AIM: To assess acellular ostrich corneal matrix used as a scaffold to reconstruct a damaged cornea. METHODS: A hypertonic saline solution combined with a digestion method was used to decellularize the ostrich cornea. The microstructure of the acellular corneal matrix was observed by transmission electron microscopy (TEM and hematoxylin and eosin (H&E staining. The mechanical properties were detected by a rheometer and a tension machine. The acellular corneal matrix was also transplanted into a rabbit cornea and cytokeratin 3 was used to check the immune phenotype. RESULTS: The microstructure and mechanical properties of the ostrich cornea were well preserved after the decellularization process. In vitro, the methyl thiazolyl tetrazolium results revealed that extracts of the acellular ostrich corneas (AOCs had no inhibitory effects on the proliferation of the corneal epithelial or endothelial cells or on the keratocytes. The rabbit lamellar keratoplasty showed that the transplanted AOCs were transparent and completely incorporated into the host cornea while corneal turbidity and graft dissolution occurred in the acellular porcine cornea (APC transplantation. The phenotype of the reconstructed cornea was similar to a normal rabbit cornea with a high expression of cytokeratin 3 in the superficial epithelial cell layer. CONCLUSION: We first used AOCs as scaffolds to reconstruct damaged corneas. Compared with porcine corneas, the anatomical structures of ostrich corneas are closer to those of human corneas. In accordance with the principle that structure determines function, a xenograft lamellar keratoplasty also confirmed that the AOC transplantation generated a superior outcome compared to that of the APC graft.

  6. Biocompatibility and Biomechanical Effect of Single Wall Carbon Nanotubes Implanted in the Corneal Stroma: A Proof of Concept Investigation

    Directory of Open Access Journals (Sweden)

    Alfredo Vega-Estrada

    2016-01-01

    Full Text Available Corneal ectatic disorders are characterized by a progressive weakening of the tissue due to biomechanical alterations of the corneal collagen fibers. Carbon nanostructures, mainly carbon nanotubes (CNTs and graphene, are nanomaterials that offer extraordinary mechanical properties and are used to increase the rigidity of different materials and biomolecules such as collagen fibers. We conducted an experimental investigation where New Zealand rabbits were treated with a composition of CNTs suspended in balanced saline solution which was applied in the corneal tissue. Biocompatibility of the composition was assessed by means of histopathology analysis and mechanical properties by stress-strain measurements. Histopathology samples stained with blue Alcian showed that there were no fibrous scaring and no alterations in the mucopolysaccharides of the stroma. It also showed that there were no signs of active inflammation. These were confirmed when Masson trichrome staining was performed. Biomechanical evaluation assessed by means of tensile test showed that there is a trend to obtain higher levels of rigidity in those corneas implanted with CNTs, although these changes are not statistically significant (p>0.05. Implanting CNTs is biocompatible and safe procedure for the corneal stroma which can lead to an increase in the rigidity of the collagen fibers.

  7. [The expression level of MMP-2 and collagen of hydroxyapatite modified titanium for keratoprosthesis in the corneal stroma of rabbits].

    Science.gov (United States)

    Yang, Min; Du, Gai-ping; Wang, Li-qiang; Wang, Xiao-ping; Cui, Fu-zhai; Lu, Yu-jie; Huang, Yi-fei

    2013-10-01

    To investigate the expression level of metalloproteinases-2(MMP-2) and Collagen in a hydroxyapatite surfaced-modified of three Pan type titanium keratoprosthesis after that implanted into the corneal stroma of rabbits, further evaluate its biological compatibility. Experimental study. Twenty-four New Zealand white rabbits, 2.0-2.5 kg, were respectively divided into three groups. Surgery was performed in right eye of all animals. skirt of HA-Ti and Ti were respectively inserted into the corneal stroma of rabbit of experimental group A and group B; only a sack was made without implantation in control group C . Cornea edema and corneal neovascularization were observed at scheduled times after operation; animals were sacrificed 2, 4 and 16 weeks after operation and their cornea was removed and examined under light microscopy; the surface of skirt was observed under scanning electron microscope. During the study period, all skirts were stable without infected, dissolved and excluded. Different degree of cornea edema and neovascularization was revealed after surgery. MMP-2 were absent in the normal corneal matrix. The expression level of MMP-2 in group A was higher than group C at all time points (F = 6.083, P collagen and yellow red type I collagen, 16 weeks corneal mainly for bright red when within the collagen type I, still have a small amount of collagen type III. Rabbit cornea implanted HA-Ti skirts cause MMP-2 activation, continuous high expression didn't cause the cornea to dissolve; Collagen -III turned into collagen-I gradually in the extracellular matrix around the skirts. Hydroxyapatite modified titanium for Keratoprosthesis promoted the corneal neovascularization and improve the interfacial bio integration of skirt and host cornea.

  8. Riboflavin/UVA collagen cross-linking-induced changes in normal and keratoconus corneal stroma.

    Directory of Open Access Journals (Sweden)

    Sally Hayes

    Full Text Available PURPOSE: To determine the effect of Ultraviolet-A collagen cross-linking with hypo-osmolar and iso-osmolar riboflavin solutions on stromal collagen ultrastructure in normal and keratoconus ex vivo human corneas. METHODS: Using small-angle X-ray scattering, measurements of collagen D-periodicity, fibril diameter and interfibrillar spacing were made at 1 mm intervals across six normal post-mortem corneas (two above physiological hydration (swollen and four below (unswollen and two post-transplant keratoconus corneal buttons (one swollen; one unswollen, before and after hypo-osmolar cross-linking. The same parameters were measured in three other unswollen normal corneas before and after iso-osmolar cross-linking and in three pairs of swollen normal corneas, in which only the left was cross-linked (with iso-osmolar riboflavin. RESULTS: Hypo-osmolar cross-linking resulted in an increase in corneal hydration in all corneas. In the keratoconus corneas and unswollen normal corneas, this was accompanied by an increase in collagen interfibrillar spacing (p<0.001; an increase in fibril diameter was also seen in two out of four unswollen normal corneas and one unswollen keratoconus cornea (p<0.001. Iso-osmolar cross-linking resulted in a decrease in tissue hydration in the swollen normal corneas only. Although there was no consistent treatment-induced change in hydration in the unswollen normal samples, iso-osmolar cross-linking of these corneas did result in a compaction of collagen fibrils and a reduced fibril diameter (p<0.001; these changes were not seen in the swollen normal corneas. Collagen D-periodicity was not affected by either treatment. CONCLUSION: The observed structural changes following Ultraviolet-A cross-linking with hypo-osmolar or iso-osmolar riboflavin solutions are more likely a consequence of treatment-induced changes in tissue hydration rather than cross-linking.

  9. Viability of human corneal keratocytes during organ culture

    DEFF Research Database (Denmark)

    Møller-Pedersen, T; Møller, H J

    1996-01-01

    The viability of human corneal keratocytes was assessed during four weeks of 'closed system' organ culture at 31 degrees C. After 28 days of culturing, the entire keratocyte population was still alive and viable because all cells incorporated uridine; a parameter for RNA-synthesis. During the fir...... of keratan sulphate proteoglycan suggested that approximately 1% of the total content was lost during the period. In conclusion, our current organ culture technique can maintain a viable keratocyte population for four weeks; a viable stroma can be grafted within this period....

  10. Construction of Anterior Hemi-Corneal Equivalents Using Nontransfected Human Corneal Cells and Transplantation in Dog Models.

    Science.gov (United States)

    Xu, Bin; Song, Zhan; Fan, Tingjun

    2017-11-01

    Tissue-engineered human anterior hemi-cornea (TE-aHC) is a promising equivalent for treating anterior lamellar keratopathy to surmount the severe shortage of donated corneas. This study was intended to construct a functional TE-aHC with nontransfected human corneal stromal (ntHCS) and epithelial (ntHCEP) cells using acellular porcine corneal stromata (aPCS) as a carrier scaffold, and evaluate its biological functions in a dog model. To construct a TE-aHC, ntHCS cells were injected into an aPCS scaffold and cultured for 3 days; then, ntHCEP cells were inoculated onto the Bowman's membrane of the scaffold and cultured for 5 days under air-liquid interface condition. After its morphology and histological structure were characterized, the constructed TE-aHC was transplanted into dog eyes via lamellar keratoplasty. The corneal transparency, thickness, intraocular pressure, epithelial integrity, and corneal regeneration were monitored in vivo, and the histological structure and histochemical property were examined ex vivo 360 days after surgery, respectively. The results showed that the constructed TE-aHC was highly transparent and composed of a corneal epithelium of 7-8 layer ntHCEP cells and a corneal stroma of regularly aligned collagen fibers and well-preserved glycosaminoglycans with sparsely distributed ntHCS cells, mimicking a normal anterior hemi-cornea (aHC). Moreover, both ntHCEP and ntHCS cells maintained positive expression of their marker and functional proteins. After transplantation into dog eyes, the constructed TE-aHC acted naturally in terms of morphology, structure and inherent property, and functioned well in maintaining corneal clarity, thickness, normal histological structure, and composition in dog models by reconstructing a normal aHC, which could be used as a promising aHC equivalent in corneal regenerative medicine and aHC disorder therapy. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  11. Human corneal fibrillogenesis. Collagen V structural analysis and fibrillar assembly by stromal fibroblasts in culture.

    Science.gov (United States)

    Ruggiero, F; Burillon, C; Garrone, R

    1996-08-01

    The stroma of the developing cornea is a highly organized extracellular matrix formed essentially by uniform, small-diameter collagen fibrils with constant interfibrillar spacing. Unlike the fibrillogenesis of chicken cornea, the assembly and maturation of human corneal fibrils have been poorly investigated. In the current study, the authors aimed to ascertain the heterotypic organization (collagens I and V) of the human corneal fibrils at the supramolecular level. To gain more insight into the molecular structure of collagen V, its cellular source, and its role in fibrillogenesis, the authors used cultured human corneal fibroblasts. The structure of human corneal stroma after brief homogenization of the tissue was analyzed by immunogold labeling using specific polyclonal antibodies and rotary shadowing. Biochemical, electron microscopic, and immunolabeling approaches were used to investigate the collagen fibril formation and the extracellular matrix synthesis using human corneal fibroblasts grown in culture as a model system. The authors showed that in human corneal stroma, collagen I is distributed uniformly along the striated fibrils, in contrast to collagen V, which could be identified only at sites at which the fibrils partially were disrupted. Rotary shadowing observations of the homogenate revealed that collagen VI, a major component of the human cornea, was associated closely with the collagen fibril surface. Corneal fibroblasts synthesize and deposit a collagenous matrix with fibrils resembling those of the human cornea in appearance and collagen composition. Biochemical data indicate that a high concentration (20% to 30%) of collagen V is synthesized by stromal fibroblasts and that collagen V molecules are processed similarly to matrix forms in which the extension peptides are retained on the molecules. The heterotypic nature (collagens I and V) of human corneal fibrils was determined. Results indicate that human corneal fibroblasts synthesize the major

  12. Substrates for Expansion of Corneal Endothelial Cells towards Bioengineering of Human Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Jesintha Navaratnam

    2015-09-01

    Full Text Available Corneal endothelium is a single layer of specialized cells that lines the posterior surface of cornea and maintains corneal hydration and corneal transparency essential for vision. Currently, transplantation is the only therapeutic option for diseases affecting the corneal endothelium. Transplantation of corneal endothelium, called endothelial keratoplasty, is widely used for corneal endothelial diseases. However, corneal transplantation is limited by global donor shortage. Therefore, there is a need to overcome the deficiency of sufficient donor corneal tissue. New approaches are being explored to engineer corneal tissues such that sufficient amount of corneal endothelium becomes available to offset the present shortage of functional cornea. Although human corneal endothelial cells have limited proliferative capacity in vivo, several laboratories have been successful in in vitro expansion of human corneal endothelial cells. Here we provide a comprehensive analysis of different substrates employed for in vitro cultivation of human corneal endothelial cells. Advances and emerging challenges with ex vivo cultured corneal endothelial layer for the ultimate goal of therapeutic replacement of dysfunctional corneal endothelium in humans with functional corneal endothelium are also presented.

  13. Biomechanics of the anterior human corneal tissue investigated with atomic force microscopy.

    Science.gov (United States)

    Lombardo, Marco; Lombardo, Giuseppe; Carbone, Giovanni; De Santo, Maria P; Barberi, Riccardo; Serrao, Sebastiano

    2012-02-29

    To investigate the biomechanics of the anterior human corneal stroma using atomic force microscopy (AFM). AFM measurements were performed in liquid on the anterior stroma of human corneas, after gently removing the epithelium, using an atomic force microscope in the force spectroscopy mode. Rectangular silicon cantilevers with tip radius of 10 nm and spring elastic constants of 25- and 33-N/m were used. Each specimen was subjected to increasing loads up to a maximum of 2.7 μN with scan speeds ranging between 3- and 95-μm/s. The anterior stromal hysteresis during the extension-retraction cycle was quantified as a function of the application load and scan rate. The elastic modulus of the anterior stroma was determined by fitting force curve data to the Sneddon model. The anterior stroma exhibited significant viscoelasticity at micrometric level: asymmetry in the curve loading-unloading response with considerable hysteresis dependent both on the application load and scan rate (P < 0.01). The mean elastic modulus ranged between 1.14 and 2.63 MPa and was constant over the range of indentation depths between 1.0 and 2.7 μm in the stroma. At microscale level, the mechanical response of the most anterior stroma is complex and nonlinear. The microstructure (fibers' packing, number of cross-links, water content) and the combination of elastic (collagen fibers) and viscous (matrix) components of the tissue influence the type of viscoelastic response. Efforts in modeling the biomechanics of human corneal tissue at micrometric level are needed.

  14. Swelling of the collagen-keratocyte matrix of the bovine corneal stroma ex vivo in various solutions and its relationship to tissue thickness.

    Science.gov (United States)

    Doughty, M J

    2000-12-01

    The mammalian corneal stroma, like some other connective tissues, can absorb fluid, swell and become oedematous. Since studies on the corneal stroma have been carried out with different types of preparations and solutions, inter-study comparisons are very difficult. A study was thus undertaken on a standardised preparation to assess the relative magnitude of this swelling and its relationship to thickness of the preparations. From selected recent post-mortem eyes of adult cattle, stroma preparations were cut from the central part of the cornea. These preparations were immersed in various solutions of known pH and osmolality, and the time-dependent changes in wet mass were assessed over 9 h at 37 degrees C. The relative rates and magnitude of the swelling of the tissue were then compared. A reference value for stromal swelling was obtained by incubation in a 35 mM bicarbonate-buffered mixed salts solution equilibrated with 5% CO2-air (pH 7.60) where a 3.39-fold increase in wet mass and a 4.58-fold increase in thickness was realised in 9 h, at an initial rate of 76 +/- 3%/h. The swelling was essentially the same in an organic buffer-mixed salt solution (pH 7.5) but progressively greater in phosphate-buffered saline (pH 7.5), a range of phosphate buffers (10-67 mM, pH 7.5), NaCl solutions (0.025-1%) and with gross swelling observed in water (where a 15.9-fold increase in wet mass occurred along with a 25-fold increase in thickness, at an initial rate of 643 +/- 62%/h). Overall, the wet mass changes were strongly related to thickness (P stroma has been overestimated in the past, and that a similar discrepancy may also exist for studies on other connective tissues ex vivo when non-physiological experimental solutions are used.

  15. Multi-layered silk film coculture system for human corneal epithelial and stromal stem cells.

    Science.gov (United States)

    Gosselin, Emily A; Torregrosa, Tess; Ghezzi, Chiara E; Mendelsohn, Alexandra C; Gomes, Rachel; Funderburgh, James L; Kaplan, David L

    2017-06-10

    With insufficient options to meet the clinical demand for cornea transplants, one emerging area of emphasis is on cornea tissue engineering. In the present study, the goal was to combine the corneal stroma and epithelium into one coculture system, to monitor both human corneal stromal stem cell (hCSSC) and human corneal epithelial cell (hCE) growth and differentiation into keratocytes and differentiated epithelium in these three-dimensional tissue systems in vitro. Coculture conditions were first optimized, including the medium, air-liquid interface culture, and surface topography and chemistry of biomaterial scaffold films based on silk protein. The silk was used as scaffolding for both stromal and epithelial tissue layers because it is cell compatible, can be surface patterned, and is optically clear. Next, the effects of proliferating and differentiating hCEs and hCSSCs were studied in this in vitro system, including the effects on cell proliferation, matrix formation by immunochemistry, and gene expression by quantitative reverse transcription-polymerase chain reaction. The incorporation of both cell types into the coculture system demonstrated more complete differentiation and growth for both cell types compared to the corneal stromal cells and corneal epithelial cells alone. Silk films for corneal epithelial culture were optimized to combine a 4.0-μm-scale surface pattern with bulk-loaded collagen type IV. Differentiation of each cell type was in evidence based on increased expression of corneal stroma and epithelial proteins and transcript levels after 6 weeks in coculture on the optimized silk scaffolds. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Human tears reveal insights into corneal neovascularization.

    Science.gov (United States)

    Zakaria, Nadia; Van Grasdorff, Sigi; Wouters, Kristien; Rozema, Jos; Koppen, Carina; Lion, Eva; Cools, Nathalie; Berneman, Zwi; Tassignon, Marie-José

    2012-01-01

    Corneal neovascularization results from the encroachment of blood vessels from the surrounding conjunctiva onto the normally avascular cornea. The aim of this study is to identify factors in human tears that are involved in development and/or maintenance of corneal neovascularization in humans. This could allow development of diagnostic tools for monitoring corneal neovascularization and combination monoclonal antibody therapies for its treatment. In an observational case-control study we enrolled a total of 12 patients with corneal neovascularization and 10 healthy volunteers. Basal tears along with reflex tears from the inferior fornix, superior fornix and using a corneal bath were collected along with blood serum samples. From all patients, ocular surface photographs were taken. Concentrations of the pro-angiogenic cytokines interleukin (IL)-6, IL-8, Vascular Endothelial Growth Factor (VEGF), Monocyte Chemoattractant Protein 1 (MCP-1) and Fas Ligand (FasL) were determined in blood and tear samples using a flow cytometric multiplex assay. Our results show that the concentration of pro-angiogenic cytokines in human tears are significantly higher compared to their concentrations in serum, with highest levels found in basal tears. Interestingly, we could detect a significantly higher concentration of IL- 6, IL-8 and VEGF in localized corneal tears of patients with neovascularized corneas when compared to the control group. This is the first study of its kind demonstrating a significant difference of defined factors in tears from patients with neovascularized corneas as compared to healthy controls. These results provide the basis for future research using animal models to further substantiate the role of these cytokines in the establishment and maintenance of corneal neovascularization.

  17. Value of recombinant human epidermal growth factor in corneal wound repair after corneal foreign body elimination

    OpenAIRE

    Hong-Jie Han

    2013-01-01

    AIM: To investigate the repair efficacy of recombinant human epidermal growth factor on corneal epithelium after corneal foreign body eliminating operation. METHODS: There were 102 patients with corneal foreign body(188 affected eyes)chosen for the study. All patients were divided into treatment group and control group according to the random number table. Both groups received corneal foreign body elimination by slit lamp. Postoperatively, the treatment group was given eye drops containing ep...

  18. Composition of the Stroma in the Human Endometrium and Endometriosis.

    Science.gov (United States)

    Konrad, Lutz; Kortum, Jessica; Nabham, Rai; Gronbach, Judith; Dietze, Raimund; Oehmke, Frank; Berkes, Eniko; Tinneberg, Hans-Rudolf

    2017-01-01

    To analyze whether the endometrial and endometriotic microenvironment is involved in the pathogenesis of endometriosis, we characterized the stromal composition. We used CD90 for fibroblasts, α-smooth muscle actin for myofibroblasts as well as CD10 and CD140b for mesenchymal stromal cells. Quantification of eutopic endometrial stroma of cases without endometriosis showed a high percentage of stromal cells positive for CD140b (80.7%) and CD10 (67.4%), a moderate number of CD90-positive cells (57.9%), and very few α-smooth muscle actin-positive cells (8.5%). These values are highly similar to cases with endometriosis showing only minor changes: CD140b (76.7%), CD10 (63%), CD90 (53.9%), and α-smooth muscle actin (6.9%). There are no significant differences in the composition of CD140b- and CD10-positive stromal cells between the eutopic endometrial stroma and the 3 different endometriotic entities (ovarian, peritoneal, and deep infiltrating endometriosis), except for a significant difference between CD10-positive stromal cells in peritoneal lesions compared to ovarian lesions. However, the percentage of CD90-positive stromal cells was reduced in the 3 different endometriotic entities compared to the endometrium, especially significant in the ovarian lesions. In contrast, the percentage of α-smooth muscle actin-positive cells in the ovary was moderately increased. Taken together, the marker signature of eutopic endometrial and endometriotic stromal cells resembles mostly mesenchymal stromal cells. Our results show clearly that the proportion of the different stromal cell types in the endometrium with or without endometriosis does not differ significantly, thus suggesting that the stromal eutopic endometrial microenvironment does not contribute to the pathogenesis of endometriosis.

  19. Biomechanical Strengthening of the Human Cornea Induced by Nanoplatform-Based Transepithelial Riboflavin/UV-A Corneal Cross-Linking.

    Science.gov (United States)

    Labate, Cristina; Lombardo, Marco; Lombardo, Giuseppe; De Santo, Maria Penelope

    2017-01-01

    The purpose of this study was to investigate the biomechanical stiffening effect induced by nanoplatform-based transepithelial riboflavin/UV-A cross-linking protocol using atomic force microscopy (AFM). Twelve eye bank donor human sclerocorneal tissues were investigated using a commercial atomic force microscope operated in force spectroscopy mode. Four specimens underwent transepithelial corneal cross-linking using a hypotonic solution of 0.1% riboflavin with biodegradable polymeric nanoparticles of 2-hydroxypropyl-β-cyclodextrin plus enhancers (trometamol and ethylenediaminetetraacetic acid) and UV-A irradiation with a 10 mW/cm2 device for 9 minutes. After treatment, the corneal epithelium was removed using the Amoils brush, and the Young's modulus of the most anterior stroma was quantified as a function of scan rate by AFM. The results were compared with those collected from four specimens that underwent conventional riboflavin/UV-A corneal cross-linking and four untreated specimens. The average Young's modulus of the most anterior stroma after the nanoplatform-based transepithelial and conventional riboflavin/UV-A corneal cross-linking treatments was 2.5 times (P corneal cross-linking procedures (P corneal cross-linking treatments, ranging from an average of 2.4 ± 0.3 μm in untreated samples to an average of 1.2 ± 0.1 μm and 1.8 ± 0.1 μm after nanoplatform-based transepithelial and conventional cross-linking, respectively. The present nanotechnology-based transepithelial riboflavin/UV-A corneal cross-linking was effective to improve the biomechanical strength of the most anterior stroma of the human cornea.

  20. Transepithelial riboflavin/ultraviolet. a corneal cross-linking in keratoconus: morphologic studies on human corneas.

    Science.gov (United States)

    Mencucci, Rita; Paladini, Iacopo; Sarchielli, Erica; Favuzza, Eleonora; Vannelli, Gabriella Barbara; Marini, Mirca

    2013-11-01

    To evaluate histologic and molecular changes in human keratoconic corneas after the procedure of transepithelial collagen cross-linking (CXL), without the removal of corneal epithelium. Experimental laboratory investigation. Thirty corneal buttons were examined, 18 of which were from patients affected by severe keratoconus and submitted to penetrating keratoplasty (PK). Among these, 8 were analyzed without any treatment, 4 were treated with transepithelial CXL 2 hours before PK, and 6 were treated with transepithelial CXL 3 months before PK. Twelve normal corneal buttons from healthy donors were used as controls. The corneal buttons were then evaluated by hematoxylin-eosin staining and by immunostaining with markers of epithelial junction proteins (ß-catenin and connexin 43), of stromal keratocytes (CD34), of apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling [TUNEL] assay), and of collagen type I fibers. The analysis of epithelial markers showed a clear defective expression in keratoconic corneas before and soon after the transepithelial CXL treatment, returning to normal in corneas analyzed 3 months after transepithelial CXL. The analysis of stroma components indicated a loss of keratocytes in the upper stroma of keratoconic corneas and a trend toward a normal situation 3 months after transepithelial CXL; similarly, collagen fibers appeared disorganized in keratoconus, while their pattern appears to be close to normal 3 months after treatment. Histologic and immunohistochemical findings on human keratoconic corneas showed the presence of biochemical and morphologic alterations in the epithelium and the upper stroma that are significantly improved 3 months after transepithelial CXL. However, further studies are necessary to assess to what extent these results correlate with measurable biomechanical effects. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Polysaccharide coating of human corneal endothelium

    DEFF Research Database (Denmark)

    Schroder, H D; Sperling, S

    1977-01-01

    Electron microscopy revealed the presence of a 600-1500 A thick layer of polysaccharide on the surface of human corneal endothelial cells. The surface layer was visualized by combined fixation and staining in a mixture of ruthenium red and osmium tetroxide. The coating material was stable...

  2. Adherens junction proteins are expressed in collagen corneal equivalents produced in vitro with human cells.

    Science.gov (United States)

    Giasson, Claude J; Deschambeault, Alexandre; Carrier, Patrick; Germain, Lucie

    2014-01-01

    To test whether adherens junction proteins are present in the epithelium and the endothelium of corneal equivalents. Corneal cell types were harvested from human eyes and grown separately. Stromal equivalents were constructed by seeding fibroblasts into a collagen gel on which epithelial and endothelial cells were added on each side. Alternatively, bovine endothelial cells were used. At maturity, sections of stromal equivalents were processed for Masson's trichrome or indirect immunofluorescence using antibodies against pan-, N-, or E-cadherins or α- or β-catenins. Alternatively, stromal equivalents were dissected, to separate the proteins from the epithelium, endothelium, and stroma with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Western blots of the transferred proteins exposed to these primary antibodies were detected with chemiluminescence. Native corneas were processed similarly. Three or four layers of epithelial cells reminiscent of the native cornea (basal cuboidal and superficial flatter cells) lay over a stromal construct containing fibroblastic cells under which an endothelium is present. Western blots and indirect immunofluorescence revealed that, similarly to the native cornea, the epithelium reacted positively to antibodies against catenins (α and β) and E-cadherin. The endothelium of corneal constructs, whether of human or bovine origin, reacted mildly to catenins and N-cadherin. This collagen-based corneal equivalent simulated the native cornea. Cells from the epithelial and endothelial layers expressed adherens junction proteins, indicating the presence of cell-cell contacts and the existence of polarized morphology of these layers over corneal equivalents.

  3. Experimental assessment of human corneal hysteresis.

    Science.gov (United States)

    Elsheikh, Ahmed; Wang, Defu; Rama, Paolo; Campanelli, Marino; Garway-Heath, David

    2008-03-01

    Hysteresis is a viscoelastic property characterized by the difference in behavior under loading and unloading. The aim of the study was to determine corneal hysteresis using experimental means. Twenty-nine human corneas with 50-95 year age were subjected to cycles of pressure loading and unloading. Two pressure application rates were adopted to approximate static and dynamic loading conditions. The behavior under both loading and unloading was found to stiffen with increased age. The unloading behavior appeared to be largely independent of the pressure level at which unloading started. The difference between the behavior patterns under loading and unloading was quantified and used as a measure of corneal hysteresis. The hysteresis area was significantly larger with faster loading and with decreased age. The trend for hysteresis to decrease with age is in agreement with previous clinical observations. Hysteresis was also found to increase with faster pressure application.

  4. Innervation of tissue-engineered recombinant human collagen-based corneal substitutes: a comparative in vivo confocal microscopy study.

    Science.gov (United States)

    Lagali, Neil; Griffith, May; Fagerholm, Per; Merrett, Kimberley; Huynh, Melissa; Munger, Rejean

    2008-09-01

    To compare reinnervation in recombinant human collagen-based corneal substitutes with allografts during a 1-year postimplantation follow-up period in pigs. A retrospective comparison to innervation in porcine collagen-based biosynthetic grafts was also performed. Pigs received a corneal allograft or a substitute made of either recombinant human type-I or -III collagen. In vivo confocal microscopic examination of the central cornea of surgical and untouched control eyes before surgery and at 2, 6, and 12 months after surgery was performed to quantify the number, density, and diameter of nerves at various corneal depths. By 12 months after surgery, the number and density of regenerated nerves in the anterior and deep anterior corneal stroma recovered to preoperative and control levels in both types of substitute grafts and in the allografts. In the subepithelial and subbasal regions, however, significantly fewer nerves were detected relative to those in control subjects at 12 months, regardless of graft type (P collagen-based biosynthetic grafts. An absence of thick stromal nerve trunks (diameter, >10 mum) in all grafts, irrespective of material type, indicated that nerve regeneration in grafts was accompanied by persistent morphologic changes. Nerve regeneration in recombinant human collagen-based biosynthetic corneal grafts proceeded similarly to that in allograft tissue, demonstrating the suitability of recombinant human collagen constructs as nerve-friendly corneal substitutes. Furthermore, only minor differences were noted between type-I and -III collagen grafts, indicating an insensitivity of nerve regeneration to initial collagen type.

  5. Developing vasculature and stroma in engineered human myocardium.

    Science.gov (United States)

    Kreutziger, Kareen L; Muskheli, Veronica; Johnson, Pamela; Braun, Kathleen; Wight, Thomas N; Murry, Charles E

    2011-05-01

    We recently developed a scaffold-free patch of human myocardium with human embryonic stem cell-derived cardiomyocytes and showed that stromal and endothelial cells form vascular networks in vitro and improve cardiomyocyte engraftment. Here, we hypothesize that stromal cells regulate the angiogenic phenotype by modulating the extracellular matrix (ECM). Human marrow stromal cells (hMSCs) support the greatest degree of endothelial cell organization, at 1.3- to 2.4-fold higher than other stromal cells tested. Stromal cells produce abundant ECM components in patches, including fibrillar collagen, hyaluronan, and versican. We identified two clonal hMSC lines that supported endothelial networks poorly and robustly. Interestingly, the pro-angiogenic hMSCs express high levels of versican, a chondroitin sulfate proteglycan that modulates angiogenesis and wound healing, whereas poorly angiogenic hMSCs produce little versican. When transplanted onto uninjured athymic rat hearts, patches with proangiogenic hMSCs develop ~ 50-fold more human vessels and form anastomoses with the host circulation, resulting in chimeric vessels containing erythrocytes. Thus, stromal cells play a key role in supporting vascularization of engineered human myocardium. Different stromal cell types vary widely in their proangiogenic ability, likely due in part to differences in ECM synthesis. Comparison of these cells defines an in vitro predictive platform for studying vascular development.

  6. GT198 Expression Defines Mutant Tumor Stroma in Human Breast Cancer.

    Science.gov (United States)

    Yang, Zheqiong; Peng, Min; Cheng, Liang; Jones, Kimya; Maihle, Nita J; Mivechi, Nahid F; Ko, Lan

    2016-05-01

    Human breast cancer precursor cells remain to be elucidated. Using breast cancer gene product GT198 (PSMC3IP; alias TBPIP or Hop2) as a unique marker, we revealed the cellular identities of GT198 mutant cells in human breast tumor stroma. GT198 is a steroid hormone receptor coactivator and a crucial factor in DNA repair. Germline mutations in GT198 are present in breast and ovarian cancer families. Somatic mutations in GT198 are present in ovarian tumor stromal cells. Herein, we show that human breast tumor stromal cells carry GT198 somatic mutations and express cytoplasmic GT198 protein. GT198(+) stromal cells share vascular smooth muscle cell origin, including myoepithelial cells, adipocytes, capillary pericytes, and stromal fibroblasts. Frequent GT198 mutations are associated with GT198(+) tumor stroma but not with GT198(-) tumor cells. GT198(+) progenitor cells are mostly capillary pericytes. When tested in cultured cells, mutant GT198 induces vascular endothelial growth factor promoter, and potentially promotes angiogenesis and adipogenesis. Our results suggest that multiple lineages of breast tumor stromal cells are mutated in GT198. These findings imply the presence of mutant progenitors, whereas their descendants, carrying the same GT198 mutations, are collectively responsible for forming breast tumor microenvironment. GT198 expression is, therefore, a specific marker of mutant breast tumor stroma and has the potential to facilitate diagnosis and targeted treatment of human breast cancer. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Ultrastructural organization of human corneal nerves.

    Science.gov (United States)

    Müller, L J; Pels, L; Vrensen, G F

    1996-03-01

    Although the human cornea is densely innervated, observations of the nerve fiber distribution and ultrastructure are scarce. This study aimed to provide a detailed electron microscopic analysis of nerve fibers in the central and peripheral human cornea. Samples from seven fresh corneas, obtained from the eyes of persons with melanoma, were processed for light and electron microscopic examinations. Both frontal and cross-sections were studied. Furthermore, serial ultrathin sections from the mid-epithelium to the anterior stroma were used. Unmyelinated nerve fiber bundles (as many as 30 nerve fibers and cross-section as large as 20 micrometers) run parallel to the stromal collagen fibers. Nerve fibers contain clear, dense cored and dense vesicles and are ensheathed by thin rims of Schwann cell protrusions and amorphic matrix. Some nerve fibers invaginate the cytoplasm of keratocytes. After passing through Bowman's membrane, bundles of straight fibers (cross-section 0.1 to 0.5 micrometers) and single-beaded nerve fibers, which both lack Schwann cell ensheathment, run parallel in an alternating manner. Beaded nerve fibers, containing many mitochondria and glycogen (cross-section as large as 2 micrometers), turn upward and invaginate both basal and wing cells. Except for the presence of myelinated nerve fibers in the peripheral stroma, no differences in the central cornea were observed. Nerve fibers invaginating epithelial cells and keratocytes suggest that both cell types are directly innervated. The presence of vesicles, mitochondria, and glycogen in stromal and epithelial nerve fibers suggest that classical and peptidergic transmitters, probably of sensory origin, innervate the human cornea. Peptidergic transmitters in nerve fibers may be involved in neuroimmunomodulation of the cornea.

  8. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma.

    Directory of Open Access Journals (Sweden)

    G-Andre Banat

    Full Text Available Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+, cytotoxic-T cells (CD8+, T-helper cells (CD4+, B cells (CD20+, macrophages (CD68+, mast cells (CD117+, mononuclear cells (CD11c+, plasma cells, activated-T cells (MUM1+, B cells, myeloid cells (PD1+ and neutrophilic granulocytes (myeloperoxidase+ compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition.

  9. Development of human corneal epithelium on organized fibrillated transparent collagen matrices synthesized at high concentration.

    Science.gov (United States)

    Tidu, Aurélien; Ghoubay-Benallaoua, Djida; Lynch, Barbara; Haye, Bernard; Illoul, Corinne; Allain, Jean-Marc; Borderie, Vincent M; Mosser, Gervaise

    2015-08-01

    Several diseases can lead to opacification of cornea requiring transplantation of donor tissue to restore vision. In this context, transparent collagen I fibrillated matrices have been synthesized at 15, 30, 60 and 90 mg/mL. The matrices were evaluated for fibril organizations, transparency, mechanical properties and ability to support corneal epithelial cell culture. The best results were obtained with 90 mg/mL scaffolds. At this concentration, the fibril organization presented some similarities to that found in corneal stroma. Matrices had a mean Young's modulus of 570 kPa and acellular scaffolds had a transparency of 87% in the 380-780 nm wavelength range. Human corneal epithelial cells successfully colonized the surface of the scaffolds and generated an epithelium with characteristics of corneal epithelial cells (i.e. expression of cytokeratin 3 and presence of desmosomes) and maintenance of stemness during culture (i.e. expression of ΔNp63α and formation of holoclones in colony formation assay). Presence of cultured epithelium on the matrices was associated with increased transparency (89%). Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Infiltrating inflammatory cell phenotypes and apoptosis in rejected human corneal allografts.

    Science.gov (United States)

    Larkin, D F; Alexander, R A; Cree, I A

    1997-01-01

    The aim of this study was to survey the histopathological and immunohistochemical features of rejected human corneal allografts. Following graft failure in each case due to rejection, paraffin-embedded specimens of 17 corneal transplants which had been replaced were examined by light microscopy and immunohistochemistry. Specimens were either first (n = 9), second (n = 4) or third (n = 4) grafts and were removed at varying intervals from 4 weeks following documented rejection. Those grafts which were removed earliest following onset of rejection had the most intense graft inflammatory infiltrates. Immunohistochemical staining showed a high proportion of graft stroma-infiltrating cells expressing leucocyte common antigen, and many of these cells also bore T cell or macrophage markers. Leucocyte-keratocyte apposition and regional loss of keratocytes were observed in all rejection specimens, but not in non-rejected control grafts. In situ end-labelling of DNA double-strand breaks and morphological features identified keratocyte apoptosis in 5 of 12 specimens examined for this phenomenon. Corneal endothelial cells were absent in 7 specimens and present in reduced numbers in the remaining 10 specimens. Endothelial cell monolayer attenuation and keratocyte loss are consistent findings in grafts removed subsequent to clinically observed endothelial rejection. Death of donor corneal cells is mediated, at least in part, by apoptosis. The stromal inflammatory infiltrate consists mainly of T lymphocytes and macrophages, which may be responsible for induction of keratocyte apoptosis.

  11. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors

    National Research Council Canada - National Science Library

    Salmon, Hélène; Franciszkiewicz, Katarzyna; Damotte, Diane; Dieu-Nosjean, Marie-Caroline; Validire, Pierre; Trautmann, Alain; Mami-Chouaib, Fathia; Donnadieu, Emmanuel

    2012-01-01

    .... Studies using fixed tumor samples from human patients have shown that T cells accumulate more efficiently in the stroma than in tumor islets, but the mechanisms by which this occurs are unknown...

  12. Development of a Transgenic Mouse with R124H Human TGFBI Mutation Associated with Granular Corneal Dystrophy Type 2.

    Science.gov (United States)

    Yamazoe, Katsuya; Yoshida, Satoru; Yasuda, Miyuki; Hatou, Shin; Inagaki, Emi; Ogawa, Yoko; Tsubota, Kazuo; Shimmura, Shigeto

    2015-01-01

    To investigate the phenotype and predisposing factors of a granular corneal dystrophy type 2 transgenic mouse model. Human TGFBI cDNA with R124H mutation was used to make a transgenic mouse expressing human protein (TGFBIR124H mouse). Reverse transcription PCR (RT-PCR) was performed to analyze TGFBIR124H expression. A total of 226 mice including 23 homozygotes, 106 heterozygotes and 97 wild-type mice were examined for phenotype. Affected mice were also examined by histology, immunohistochemistry and electron microcopy. RT-PCR confirmed the expression of TGFBIR124H in transgenic mice. Corneal opacity defined as granular and lattice deposits was observed in 45.0% of homozygotes, 19.4% of heterozygotes. The incidence of corneal opacity was significantly higher in homozygotes than in heterozygotes (p = 0.02). Histology of affected mice was similar to histology of human disease. Lesions were Congo red and Masson Trichrome positive, and were observed as a deposit of amorphous material by electron microscopy. Subepithelial stroma was also stained with thioflavin T and LC3, a marker of autophagy activation. The incidence of corneal opacity was higher in aged mice in each group. Homozygotes were not necessarily more severe than heterozygotes, which deffers from human cases. We established a granular corneal dystrophy type 2 mouse model caused by R124H mutation of human TGFBI. Although the phenotype of this mouse model is not equivalent to that in humans, further studies using this model may help elucidate the pathophysiology of this disease.

  13. Value of recombinant human epidermal growth factor in corneal wound repair after corneal foreign body elimination

    Directory of Open Access Journals (Sweden)

    Hong-Jie Han

    2013-11-01

    Full Text Available AIM: To investigate the repair efficacy of recombinant human epidermal growth factor on corneal epithelium after corneal foreign body eliminating operation. METHODS: There were 102 patients with corneal foreign body(188 affected eyeschosen for the study. All patients were divided into treatment group and control group according to the random number table. Both groups received corneal foreign body elimination by slit lamp. Postoperatively, the treatment group was given eye drops containing epidermal growth factor(JinYinShucombined with tobramycin while the control group was only administrated with tobramycin. Treatment effects were compared 3d after treatment. RESULTS: Three days after treatment, the cure rate in the treatment group(93.7%, was significantly higher than that in the control group(76.6%(PPCONCLUSION: The recombinant human epidermal growth factor is capable of integrating with corneal epithelial cells and endothelial cell receptor, shortening healing time of corneal epithelial wound, thus making it an effective treatment of traumatic corneal epithelial defect.

  14. Three-dimensional analysis of collagen lamellae in the anterior stroma of the human cornea visualized by second harmonic generation imaging microscopy.

    Science.gov (United States)

    Morishige, Naoyuki; Takagi, Yuki; Chikama, Tai-ichiro; Takahara, Atsushi; Nishida, Teruo

    2011-02-16

    The structure of collagen lamellae in the anterior stroma of the human cornea is thought to be an important determinant of corneal rigidity. The three-dimensional structure of such collagen lamellae in normal human corneas was examined. The anterior portion of 27 normal human corneas was obtained from donor tissue for Descemet's stripping automated endothelial keratoplasty (DSAEK) surgery, and blocks (∼3-mm square) of the central cornea were examined by second harmonic generation (SHG) imaging microscopy. Each cornea was scanned from the surface of Bowman's layer to a depth of 150 μm, and SHG forward signals were collected. The angles of collagen lamellae immediately below to a depth of 30 μm below Bowman's layer (sutural lamellae) as well as of those at a depth of 50 or 100 μm were measured. The density and width of sutural lamellae were also evaluated. Collagen lamellae in the anterior stroma were evenly distributed and randomly oriented. The angle of sutural lamellae relative to Bowman's layer was 19.19 ± 4.34° (mean ± SD). The angles of collagen lamellae at depths of 50 or 100 μm were 8.91 ± 2.91 and 6.91 ± 2.11°, respectively. The density of sutural lamellae was 910.0 ± 480.4/mm(2), and their width was 13.14 ± 5.03 and 7.11 ± 3.00 μm in the region immediately beneath and 30 μm below Bowman's layer, respectively. Collagen lamellae in the anterior stroma of the normal human cornea are interwoven in three dimensions and adhere densely to Bowman's layer. This structure may contribute to the rigidity and curvature of the anterior portion of the cornea.

  15. A selective inhibitor of the Rho kinase pathway, Y-27632, and its influence on wound healing in the corneal stroma.

    Science.gov (United States)

    Yamamoto, Mayumi; Quantock, Andrew J; Young, Robert D; Okumura, Naoki; Ueno, Morio; Sakamoto, Yuji; Kinoshita, Shigeru; Koizumi, Noriko

    2012-01-01

    Our study examined the effect of a selective Rho kinase inhibitor, Y-27632, on corneal wound healing and potential stromal scarring after superficial keratectomy. Rabbit keratocytes were induced into myofibroblasts by transforming growth factor β1 (TGFβ1) either with or without Y-27632. Then α-smooth muscle actin (α-SMA) was examined by immunohistochemistry and western blotting, and the contractility of the seeded collagen gels was measured. Y-27632 eye drops (or vehicle only) were administered to eyes after a superficial keratectomy, and the tissue was examined by immunohistochemistry for α-SMA, collagen types I, II, and III, and keratan sulfate. Electron microscopy was conducted with and without histochemical contrasting of sulfated proteoglycans. Spindle-like cells in culture constituted 99.5±1.1% with TGFβ1 stimulation, but 3.5±1.0% after TGFβ1 and Y-27632 treatment (pcollagen gels. After superficial keratectomies, collagen type I and keratan sulfate were unchanged by Y-27632 application. Collagen type II was not detected in Y-27632 or vehicle-only corneas. With Y-27632 treatment, α-SMA expression increased and the collagen type III signal became in the weaker subepithelial area. Interestingly, bundles of aligned and uniformly spaced collagen fibrils were more prevalent in keratocytes in Y-27632-treated corneas, which is reminiscent of fibripositor-like structures that have been proposed as a mechanism of matrix deposition in embryonic connective tissues. Y-27632 inhibits keratocyte-to-myofibroblast transition, and its topical application after a superficial lamellar keratectomy elicits an altered wound healing response, with evidence of an embryonic-type deposition of collagen fibrils.

  16. [Transplantation of corneal endothelial cells].

    Science.gov (United States)

    Amano, Shiro

    2002-12-01

    culture of HCECs was possible using adult human serum. We reconstructed the cornea using cultured HCECs and human corneal stroma. The corneal stroma, on which the cell suspension of HCECs was poured, was mildly centrifuged to enhance the HCECs attachment to the stroma. The cell density of HCECs on the reconstructed cornea reached 2,500 cells/mm2. The pump function of the reconstructed cornea was measured with an Ussing chamber. The potential difference in the reconstructed cornea and normal cornea was 0.30 mV and 0.40 mV, respectively; indicating that the pump function of the reconstructed cornea is 75% of that of the normal cornea. The reconstructed cornea was transplanted to a rabbit eye and stayed transparent for 6 months after the operation. Fluorescein labeled cultured HCECs remained on the graft 1 month after the transplantation, indicating that transplanted HCECs contributed to the transparency of the graft. The possibility of using artificial stroma or porcine corneal stroma as a carrier of cultured HCECs was investigated. The artificial stroma made of alkaline-treated collagen could not be sutured but showed good transparency, biocompatibility, and cell-attachability. Porcine corneal stroma, expressing little xeno-sugar antigen alpha-gal epitope, induced no super acute rejection but mild cellular rejection when transplanted in the cornea of animals possessing natural antibody to alpha-gal epitope. The cornea reconstructed with porcine corneal stroma and HCECs had an average cell density of 1721/mm2 and had approximately 60% of the pump function of a normal cornea. As new technologies in corneal transplantation, the application of self immature cells and the direct delivery of cultured HCECs into the anterior chamber were investigated. Part of rat mononuclear cells that were obtained from the bone marrow and injected into the rat anterior chamber transformed into corneal endothelium-like cells, suggesting that self immature cells can transform into corneal

  17. Identification of prognostic molecular features in the reactive stroma of human breast and prostate cancer.

    Directory of Open Access Journals (Sweden)

    Anne Planche

    Full Text Available Primary tumor growth induces host tissue responses that are believed to support and promote tumor progression. Identification of the molecular characteristics of the tumor microenvironment and elucidation of its crosstalk with tumor cells may therefore be crucial for improving our understanding of the processes implicated in cancer progression, identifying potential therapeutic targets, and uncovering stromal gene expression signatures that may predict clinical outcome. A key issue to resolve, therefore, is whether the stromal response to tumor growth is largely a generic phenomenon, irrespective of the tumor type or whether the response reflects tumor-specific properties. To address similarity or distinction of stromal gene expression changes during cancer progression, oligonucleotide-based Affymetrix microarray technology was used to compare the transcriptomes of laser-microdissected stromal cells derived from invasive human breast and prostate carcinoma. Invasive breast and prostate cancer-associated stroma was observed to display distinct transcriptomes, with a limited number of shared genes. Interestingly, both breast and prostate tumor-specific dysregulated stromal genes were observed to cluster breast and prostate cancer patients, respectively, into two distinct groups with statistically different clinical outcomes. By contrast, a gene signature that was common to the reactive stroma of both tumor types did not have survival predictive value. Univariate Cox analysis identified genes whose expression level was most strongly associated with patient survival. Taken together, these observations suggest that the tumor microenvironment displays distinct features according to the tumor type that provides survival-predictive value.

  18. Effects of riboflavin/UVA corneal cross-linking on keratocytes and collagen fibres in human cornea.

    Science.gov (United States)

    Mencucci, Rita; Marini, Mirca; Paladini, Iacopo; Sarchielli, Erica; Sgambati, Eleonora; Menchini, Ugo; Vannelli, Gabriella B

    2010-01-01

    To evaluate the effects of corneal cross-linking on keratocytes and collagen fibres in human corneas. Fifteen corneal buttons were examined. Ten were from patients with keratoconus submitted to penetrating keratoplasty and five of them were treated with cross-linking 6 months before penetrating keratoplasty. Five normal corneal buttons from healthy donors were used as controls. All samples were prepared for TUNEL assay and Western blot analysis for the detection of keratocyte apoptosis and immunohistochemical analysis for the morphological evaluation of keratocytes and collagen fibre diameter. Normal corneas exhibited no TUNEL-positive keratocytes and keratoconic and cross-linked corneas showed moderate apoptotic cells mainly in the anterior part of the stroma. This apoptotic trend was confirmed by the cleavage of poly (ADP-ribose) polymerase assessed using Western blot. The Ki-67 staining showed a significant increase in the keratocyte proliferation in cross-linked corneas compared with normal and keratoconus. In cross-linked corneas CD34-positive keratocytes were regularly distributed throughout the whole corneal stroma as in the control, and keratoconus was associated with patchy loss of immunoreactivity. The immunohistochemical analysis of collagen type I showed a significant increase in fibre diameter of cross-linked corneas compared with control and keratoconus. Corneal cross-linking leads to keratocyte damage; after 6 months a repopulation by proliferating cells, a distribution of CD34-positive keratocytes as in control and an increase in collagen fibre diameter were observed. These modifications are the morphological correlate of the process leading to an increase in biomechanical stability.

  19. A human corneal equivalent constructed from SV40-immortalised corneal cell lines.

    Science.gov (United States)

    Zorn-Kruppa, Michaela; Tykhonova, Svitlana; Belge, Gazanfer; Bednarz, Jürgen; Diehl, Horst A; Engelke, Maria

    2005-02-01

    Within the last decade, extensive research in the field of tissue and organ engineering has focused on the development of in vitro models of the cornea. The use of organotypic, three-dimensional corneal equivalents has several advantages over simple monolayer cultures. The aim of this study was to develop a corneal equivalent model composed of the same cell types as in the natural human tissue, but by using immortalised cell lines to ensure reproducibility and to minimise product variation. We report our success in the establishment of an SV40-immortalised human corneal keratocyte cell line (designated HCK). A collagen matrix, built up with these cells, displayed the morphological characteristics of the human stromal tissue and served as a biomatrix for the immortalised human corneal epithelial and endothelial cells. Histological cross-sections of the whole-cornea equivalents resemble human corneas in tissue structure. This organotypic in vitro model may serve as a research tool for the ophthalmic science community, as well as a model system for testing for eye irritancy and drug efficacy.

  20. 3D map of the human corneal endothelial cell

    OpenAIRE

    Zhiguo He; Fabien Forest; Philippe Gain; Damien Rageade; Aurélien Bernard; Sophie Acquart; Michel Peoc’h; Dennis M. Defoe; Gilles Thuret

    2016-01-01

    Corneal endothelial cells (CECs) are terminally differentiated cells, specialized in regulating corneal hydration and transparency. They are highly polarized flat cells that separate the cornea from the aqueous humor. Their apical surface, in contact with aqueous humor is hexagonal, whereas their basal surface is irregular. We characterized the structure of human CECs in 3D using confocal microscopy of immunostained whole corneas in which cells and their interrelationships remain intact. Hexa...

  1. Imatinib mesylate inhibits proliferation and exerts an antifibrotic effect in human breast stroma fibroblasts.

    Science.gov (United States)

    Gioni, Vassiliki; Karampinas, Theodoros; Voutsinas, Gerassimos; Roussidis, Andreas E; Papadopoulos, Savvas; Karamanos, Nikos K; Kletsas, Dimitris

    2008-05-01

    Tumor stroma plays an important role in cancer development. In a variety of tumors, such as breast carcinomas, a desmoplastic response, characterized by stromal fibroblast and collagen accumulation, is observed having synergistic effects on tumor progression. However, the effect of known anticancer drugs on stromal cells has not been thoroughly investigated. Imatinib mesylate is a selective inhibitor of several protein tyrosine kinases, including the receptor of platelet-derived growth factor, an important mediator of desmoplasia. Recently, we have shown that imatinib inhibits the growth and invasiveness of human epithelial breast cancer cells. Here, we studied the effect of imatinib on the proliferation and collagen accumulation in breast stromal fibroblasts. We have shown that it blocks the activation of the extracellular signal-regulated kinase and Akt signaling pathways and up-regulates cyclin-dependent kinase inhibitor p21(WAF1), leading to the inhibition of fibroblast proliferation, by arresting them at the G(0)/G(1) phase of the cell cycle. Imatinib inhibits more potently the platelet-derived growth factor-mediated stimulation of breast fibroblast proliferation. By using specific inhibitors, we have found that this is due to the inhibition of the Akt pathway. In addition, imatinib inhibits fibroblast-mediated collagen accumulation. Conventional and quantitative PCR analysis, as well as gelatin zymography, indicates that this is due to the down-regulation of mRNA synthesis of collagen I and collagen III-the main collagen types in breast stroma-and not to the up-regulation or activation of collagenases matrix metalloproteinase 2 and matrix metalloproteinase 9. These data indicate that imatinib has an antifibrotic effect on human breast stromal fibroblasts that may inhibit desmoplastic reaction and thus tumor progression.

  2. Metalloproteinases in corneal diseases: degradation and processing.

    Science.gov (United States)

    Sakimoto, Tohru; Sawa, Mitsuru

    2012-11-01

    Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases with the potential to degrade all types of extracellular matrix. The ADAM (a disintegrin and metalloproteinase) family of peptidases was recently identified as cleaving the extracellular domain of transmembrane proteins. This was termed ectodomain shedding. We investigated the MMP expression in patients with corneal diseases and the potential role of ADAMs in corneal pathophysiology. We detected upregulation of the active form of MMP-2 and MMP-9 in the tear fluid from patients with corneal melting or recurrent corneal erosion. Using human corneal epithelial cells, we observed ADAM17-dependent ectodomain shedding of soluble tumor necrosis factor receptor 1 and soluble interleukin-6 (IL-6) receptor (sIL-6R). The production of sIL-6R was also induced by messenger RNA splicing in the human corneal epithelial cells. IL-6/sIL-6R-induced signal transducer and activator of transcription 3 phosphorylation was observed in cultured human corneal fibroblasts, suggesting that IL-6 trans-signaling induced inflammatory cellular signaling in the human corneal fibroblasts. We demonstrated that MMPs are significantly upregulated in collagen-destructive disorders of the cornea. Additionally, we observed that ectodomain shedding by ADAMs in corneal epithelial cells mediated the production of soluble cytokine receptors. Trans-signaling of IL-6 can induce an inflammatory response in corneal stroma, indicating the significance of IL-6 trans-signaling in ocular surface inflammation. Thus, MMPs and ADAMs play an important role in the pathophysiology of corneal diseases.

  3. Using Human Stem Cells to Study the Role of the Stroma in the Initiation of Prostate Cancer

    Science.gov (United States)

    2011-03-01

    prostatic tumour stroma and hormonal carcinogenesis. The Innovative Minds in Prostate Cancer Today (IMPacT) Conference, Orlando, Florida , USA. (Poster...2001 Comparative studies of the estrogen receptors beta and alpha and the androgen receptor in normal human prostate glands, dysplasia , and in primary

  4. Heterologous corneal endothelial cell transplantation--human corneal endothelial cell transplantation in Lewis rats.

    OpenAIRE

    Tchah, H.

    1992-01-01

    A heterologous corneal endothelial transplantation was attempted using human endothelial cells and a Lewis rat penetrating keratoplasty model. Cultured human endothelial cells were seeded to a Lewis rat cornea, which was denuded of its endothelium. When grafted into the syngeneic Lewis rat, the graft remained clear for at least five days, and then became opaque and edematous because of immune rejection reaction. In contrast, corneas denuded of their endothelium became opaque and edematous imm...

  5. Morphological evaluation of normal human corneal epithelium

    DEFF Research Database (Denmark)

    Ehlers, Niels; Heegaard, Steffen; Hjortdal, Jesper

    2010-01-01

    eyes were evaluated. The central epithelial, stromal and total corneal thickness was measured as 36.0 µm, 618 µm and 651µm, respectively, with a variation coefficient from 0.21 to 0.22. Pathological appearances were found in 27% of corneas, including thickened basement membrane and alterations...

  6. Corneal dystrophies

    Directory of Open Access Journals (Sweden)

    Klintworth Gordon K

    2009-02-01

    Full Text Available Abstract The term corneal dystrophy embraces a heterogenous group of bilateral genetically determined non-inflammatory corneal diseases that are restricted to the cornea. The designation is imprecise but remains in vogue because of its clinical value. Clinically, the corneal dystrophies can be divided into three groups based on the sole or predominant anatomical location of the abnormalities. Some affect primarily the corneal epithelium and its basement membrane or Bowman layer and the superficial corneal stroma (anterior corneal dystrophies, the corneal stroma (stromal corneal dystrophies, or Descemet membrane and the corneal endothelium (posterior corneal dystrophies. Most corneal dystrophies have no systemic manifestations and present with variable shaped corneal opacities in a clear or cloudy cornea and they affect visual acuity to different degrees. Corneal dystrophies may have a simple autosomal dominant, autosomal recessive or X-linked recessive Mendelian mode of inheritance. Different corneal dystrophies are caused by mutations in the CHST6, KRT3, KRT12, PIP5K3, SLC4A11, TACSTD2, TGFBI, and UBIAD1 genes. Knowledge about the responsible genetic mutations responsible for these disorders has led to a better understanding of their basic defect and to molecular tests for their precise diagnosis. Genes for other corneal dystrophies have been mapped to specific chromosomal loci, but have not yet been identified. As clinical manifestations widely vary with the different entities, corneal dystrophies should be suspected when corneal transparency is lost or corneal opacities occur spontaneously, particularly in both corneas, and especially in the presence of a positive family history or in the offspring of consanguineous parents. Main differential diagnoses include various causes of monoclonal gammopathy, lecithin-cholesterol-acyltransferase deficiency, Fabry disease, cystinosis, tyrosine transaminase deficiency, systemic lysosomal storage

  7. Expansion and cryopreservation of porcine and human corneal endothelial cells.

    Science.gov (United States)

    Marquez-Curtis, Leah A; McGann, Locksley E; Elliott, Janet A W

    2017-08-01

    Impairment of the corneal endothelium causes blindness that afflicts millions worldwide and constitutes the most often cited indication for corneal transplants. The scarcity of donor corneas has prompted the alternative use of tissue-engineered grafts which requires the ex vivo expansion and cryopreservation of corneal endothelial cells. The aims of this study are to culture and identify the conditions that will yield viable and functional corneal endothelial cells after cryopreservation. Previously, using human umbilical vein endothelial cells (HUVECs), we employed a systematic approach to optimize the post-thaw recovery of cells with high membrane integrity and functionality. Here, we investigated whether improved protocols for HUVECs translate to the cryopreservation of corneal endothelial cells, despite the differences in function and embryonic origin of these cell types. First, we isolated endothelial cells from pig corneas and then applied an interrupted slow cooling protocol in the presence of dimethyl sulfoxide (Me 2 SO), with or without hydroxyethyl starch (HES). Next, we isolated and expanded endothelial cells from human corneas and applied the best protocol verified using porcine cells. We found that slow cooling at 1 °C/min in the presence of 5% Me 2 SO and 6% HES, followed by rapid thawing after liquid nitrogen storage, yields membrane-intact cells that could form monolayers expressing the tight junction marker ZO-1 and cytoskeleton F-actin, and could form tubes in reconstituted basement membrane matrix. Thus, we show that a cryopreservation protocol optimized for HUVECs can be applied successfully to corneal endothelial cells, and this could provide a means to address the need for off-the-shelf cryopreserved cells for corneal tissue engineering and regenerative medicine. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Increased Immunostaining of Fibulin-1, an Estrogen-Regulated Protein in the Stroma of Human Ovarian Epithelial Tumors

    OpenAIRE

    Roger, Pascal; Pujol, Pascal; Lucas, Annick; Baldet, Pierre; Rochefort, Henri

    1998-01-01

    Fibulin-1, an extracellular matrix protein, is secreted by human ovarian metastatic cancer cell lines under estrogen stimulation. Fibulin-1 expression was quantified by immunohistochemistry and computer-aided image analysis in 44 human ovarian epithelial tumors and 14 normal ovaries. The fibulin-1 staining intensity in proximal stroma, close to the surface of epithelial cells and tumor cells, progressively increased from normal ovaries to serous carcinomas. In all lesions, excluding cystadeno...

  9. Myofibroblasts are responsible for collagen synthesis in the stroma of human hepatocellular carcinoma: an in vivo and in vitro study.

    Science.gov (United States)

    Faouzi, S; Le Bail, B; Neaud, V; Boussarie, L; Saric, J; Bioulac-Sage, P; Balabaud, C; Rosenbaum, J

    1999-02-01

    Marked changes in extracellular matrix occur in the stroma of hepatocellular carcinoma, as compared to normal or cirrhotic liver. The cell types responsible for extracellular matrix synthesis within hepatocellular carcinoma have not been clearly identified. In vivo collagen synthesis was studied by in situ hybridization and immunohistochemistry for types I, IV, V and VI collagen, together with immunolabeling of alpha-smooth muscle actin, a myofibroblast marker, and CD34, an endothelial cell marker. In vitro, extracellular matrix deposition by cultured myofibroblasts was studied by reticulin staining, immunocytochemistry and RNase protection. All collagens studied were expressed in the stroma of the tumor, with a higher level of type VI and IV collagens than of type I and V. The majority of the cells expressing collagen transcripts in human hepatocellular carcinoma stroma were alpha-actin positive and CD 34 negative. In vitro experiments demonstrated that the hepatocellular carcinoma cell lines HepG2, HuH7 and Hep3B markedly increased extracellular matrix deposition by human liver myofibroblasts. This increase was mediated by a soluble mediator present in tumor cell conditioned medium. It was not explained by an increase in mRNA levels of extracellular matrix components, nor by a decrease in the secretion of matrix-degrading proteinases by myofibroblasts. Myofibroblasts are the main source of collagens in the stroma of hepatocellular carcinoma. Our data also indicate that tumoral hepatocytes increase extracellular matrix deposition by cultured myofibroblasts, probably by post-transcriptional mechanisms. The generation of hepatocellular carcinoma stroma by myofibroblasts could thus be under control of tumoral cells.

  10. Histologic features of transplanted amniotic membrane: implications for corneal wound healing.

    Science.gov (United States)

    Said, Dalia G; Nubile, Mario; Alomar, Thaer; Hopkinson, Andy; Gray, Trevor; Lowe, James; Dua, Harminder S

    2009-07-01

    To evaluate the histologic changes occurring in the transplanted amniotic membrane in human eyes. Observational consecutive case series. Seven consecutive patients who underwent amniotic membrane transplantation (AMT) for bullous keratopathy and subsequently had a penetrating keratoplasty (PK). Corneal buttons obtained at PK were examined by light and electron microscopy and by immunohistology with antibodies against CD34 (keratocytes), alpha smooth muscle actin and vimentin (myofibroblasts and fibroblasts respectively). Time from AMT to PK ranged from 2 to 32 months. Immunophenotypic characteristics of cells populating transplanted amniotic stroma. Amniotic tissue was covered with stratified corneal epithelium with well-defined desmosomes and hemidesmosomes. Transformed corneal stroma-derived cells (CSDCs) could be seen migrating from the anterior stroma, through breaks in the Bowman's zone, into connective tissue of the amniotic membrane. Immunohistology showed that the cells populating amniotic stroma were CD34 negative but positive for vimentin and alpha smooth muscle actin. In 2 samples in which corneal transplants were performed approximately 1 year or more after AMT, some cells in the amniotic stroma showed CD34+ staining. Features of increased metabolic activity and formation of new collagen were seen on electron microscopy. In 2 cases, epithelial cell nests were seen in the amniotic stroma. The amniotic basement membrane facilitates epithelial cell migration and adhesion. The amniotic stroma supports CSDCs and epithelial cells. Repopulation of the amniotic stroma by CSDCs migrating through breaks in Bowman's zone integrates the amnion with corneal tissue and allows for rebuilding of corneal stroma. Over time, some CSDCs may revert to the resting keratocyte immunophenotype.

  11. Positive regulation of corneal type V collagen mRNA: analysis by chicken-human heterokaryon formation.

    Science.gov (United States)

    Linsenmayer, T F; Igoe, F; Gibney, E; Gordon, M K; Birk, D E

    1996-10-10

    Our previous studies have suggested that type V collagen is at least one factor responsible for the characteristically small, uniform diameter of striated collagen fibrils of the corneal stroma. These fibrils, which are heterotypic combinations of collagen types I and V, contain four- to fivefold more type V collagen than those of tendon and sclera. The latter are much larger and more heterodisperse. This high content of type V collagen in cornea is reflected by an equally elevated content of alpha1(V) chain mRNA in corneal fibroblasts. Thus, the increased production of the molecule in cornea appears to be regulated at the level of transcription and/or mRNA stability. One possible explanation for this is that corneal fibroblasts contain positive regulatory factors that specifically upregulate transcription of the type V collagen genes and/or increase their mRNA stability. To test this possibility, we have produced transient heterokaryons by fusing chicken corneal fibroblasts with two human noncorneal cell lines selected as containing little if any alpha1(V) mRNA. If the chicken corneal cells contain positive regulators that can act across species, these regulators should result in increased levels of the human alpha1(V) transcript. The results were evaluated by reverse transcript-polymerase chain reaction employing a primer pair selected for its ability specifically to amplify part of the human alpha1(V) mRNA. In fusions between chicken corneal fibroblasts and the human cell lines, after a lag of 10-14 h the heterokaryon-containing cultures showed de novo appearance or upregulation of human alpha1(V) chain mRNA, compared with that of the parental cell lines. Cultures of the mixed cell types that had not been fused showed no such upregulation, so the effect was not mediated by diffusible substances acting between the cells. Chicken tendon fibroblasts, a low producer of type V collagen, when tested in the same assay, evoked no detectible increase in the human

  12. Human Ovarian Cancer Stroma Contains Luteinized Theca Cells Harboring Tumor Suppressor Gene GT198 Mutations*

    Science.gov (United States)

    Peng, Min; Zhang, Hao; Jaafar, Lahcen; Risinger, John I.; Huang, Shuang; Mivechi, Nahid F.; Ko, Lan

    2013-01-01

    Ovarian cancer is a highly lethal gynecological cancer, and its causes remain to be understood. Using a recently identified tumor suppressor gene, GT198 (PSMC3IP), as a unique marker, we searched for the identity of GT198 mutant cells in ovarian cancer. GT198 has germ line mutations in familial and early onset breast and ovarian cancers and recurrent somatic mutations in sporadic fallopian tube cancers. GT198 protein has been shown as a steroid hormone receptor coregulator and also as a crucial factor in DNA repair. In this study, using GT198 as a marker for microdissection, we find that ovarian tumor stromal cells harboring GT198 mutations are present in various types of ovarian cancer including high and low grade serous, endometrioid, mucinous, clear cell, and granulosa cell carcinomas and in precursor lesions such as inclusion cysts. The mutant stromal cells consist of a luteinized theca cell lineage at various differentiation stages including CD133+, CD44+, and CD34+ cells, although the vast majority of them are differentiated overexpressing steroidogenic enzyme CYP17, a theca cell-specific marker. In addition, wild type GT198 suppresses whereas mutant GT198 protein stimulates CYP17 expression. The chromatin-bound GT198 on the human CYP17 promoter is decreased by overexpressing mutant GT198 protein, implicating the loss of wild type suppression in mutant cells. Together, our results suggest that GT198 mutant luteinized theca cells overexpressing CYP17 are common in ovarian cancer stroma. Because first hit cancer gene mutations would specifically mark cancer-inducing cells, the identification of mutant luteinized theca cells may add crucial evidence in understanding the cause of human ovarian cancer. PMID:24097974

  13. Human ovarian cancer stroma contains luteinized theca cells harboring tumor suppressor gene GT198 mutations.

    Science.gov (United States)

    Peng, Min; Zhang, Hao; Jaafar, Lahcen; Risinger, John I; Huang, Shuang; Mivechi, Nahid F; Ko, Lan

    2013-11-15

    Ovarian cancer is a highly lethal gynecological cancer, and its causes remain to be understood. Using a recently identified tumor suppressor gene, GT198 (PSMC3IP), as a unique marker, we searched for the identity of GT198 mutant cells in ovarian cancer. GT198 has germ line mutations in familial and early onset breast and ovarian cancers and recurrent somatic mutations in sporadic fallopian tube cancers. GT198 protein has been shown as a steroid hormone receptor coregulator and also as a crucial factor in DNA repair. In this study, using GT198 as a marker for microdissection, we find that ovarian tumor stromal cells harboring GT198 mutations are present in various types of ovarian cancer including high and low grade serous, endometrioid, mucinous, clear cell, and granulosa cell carcinomas and in precursor lesions such as inclusion cysts. The mutant stromal cells consist of a luteinized theca cell lineage at various differentiation stages including CD133(+), CD44(+), and CD34(+) cells, although the vast majority of them are differentiated overexpressing steroidogenic enzyme CYP17, a theca cell-specific marker. In addition, wild type GT198 suppresses whereas mutant GT198 protein stimulates CYP17 expression. The chromatin-bound GT198 on the human CYP17 promoter is decreased by overexpressing mutant GT198 protein, implicating the loss of wild type suppression in mutant cells. Together, our results suggest that GT198 mutant luteinized theca cells overexpressing CYP17 are common in ovarian cancer stroma. Because first hit cancer gene mutations would specifically mark cancer-inducing cells, the identification of mutant luteinized theca cells may add crucial evidence in understanding the cause of human ovarian cancer.

  14. Effects of tobacco smoking on human corneal wound healing.

    Science.gov (United States)

    Jetton, Jacquelyn A; Ding, Kai; Kim, Yoonsang; Stone, Donald U

    2014-05-01

    To evaluate the effect of tobacco smoking on healing of corneal abrasions and keratitis in humans. A retrospective chart review of patients diagnosed with corneal abrasions and corneal ulcers from 1990 to 2010 at the Dean McGee Eye Institute was performed. The primary outcome measured was time from initial examination to epithelial closure; tobacco smoking was the primary exposure variable. Comorbidity variables were also examined as potential confounding factors. The data were analyzed using Kaplan-Meier curves and Cox proportional hazards models. Eighty-seven patients met the inclusion criteria for corneal abrasion and 52 for keratitis. The mean healing time was 4.8 days in nonsmokers and 5.9 days in smokers in the abrasion arm, and 15.5 days in nonsmokers and 39.4 days in smokers in the keratitis arm. After controlling for comorbidities, treatment, and demographic variables, the healing time in both arms was significantly delayed in smokers when compared with nonsmokers (P = 0.01 and P = 0.03, respectively). The comorbidities were also studied after adjusting for smoking. A statistically significant delay was seen with previous keratoplasty and steroid treatment for the abrasion arm. In the keratitis arm, neurotrophic corneas and fungal infections were associated with a delay in healing after correcting for smoking. Epithelial healing is delayed by 1.1 days on average in smokers when compared with nonsmokers with corneal abrasions. Patients who had undergone a previous keratoplasty had delayed healing from corneal abrasions regardless of the smoking status. Epithelial healing is delayed by 23.9 days on average in patients with keratitis who report smoking. Neurotrophic corneas and fungal infections also had prolonged time to healing.

  15. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium.

    Directory of Open Access Journals (Sweden)

    Ryuhei Hayashi

    Full Text Available Induced pluripotent stem (iPS cells can be established from somatic cells. However, there is currently no established strategy to generate corneal epithelial cells from iPS cells. In this study, we investigated whether corneal epithelial cells could be differentiated from iPS cells. We tested 2 distinct sources: human adult dermal fibroblast (HDF-derived iPS cells (253G1 and human adult corneal limbal epithelial cells (HLEC-derived iPS cells (L1B41. We first established iPS cells from HLEC by introducing the Yamanaka 4 factors. Corneal epithelial cells were successfully induced from the iPS cells by the stromal cell-derived inducing activity (SDIA differentiation method, as Pax6(+/K12(+ corneal epithelial colonies were observed after prolonged differentiation culture (12 weeks or later in both the L1B41 and 253G1 iPS cells following retinal pigment epithelial and lens cell induction. Interestingly, the corneal epithelial differentiation efficiency was higher in L1B41 than in 253G1. DNA methylation analysis revealed that a small proportion of differentially methylated regions still existed between L1B41 and 253G1 iPS cells even though no significant difference in methylation status was detected in the specific corneal epithelium-related genes such as K12, K3, and Pax6. The present study is the first to demonstrate a strategy for corneal epithelial cell differentiation from human iPS cells, and further suggests that the epigenomic status is associated with the propensity of iPS cells to differentiate into corneal epithelial cells.

  16. Functional significance of thermosensitive transient receptor potential melastatin channel 8 (TRPM8) expression in immortalized human corneal endothelial cells.

    Science.gov (United States)

    Mergler, Stefan; Mertens, Charlotte; Valtink, Monika; Reinach, Peter S; Székely, Violeta Castelo; Slavi, Nefeli; Garreis, Fabian; Abdelmessih, Suzette; Türker, Ersal; Fels, Gabriele; Pleyer, Uwe

    2013-11-01

    Human corneal endothelial cells (HCEC) maintain appropriate tissue hydration and transparency by eliciting net ion transport coupled to fluid egress from the stroma into the anterior chamber. Such activity offsets tissue swelling caused by stromal imbibition of fluid. As corneal endothelial (HCE) transport function is modulated by temperature changes, we probed for thermosensitive transient receptor potential melastatin 8 (TRPM8) functional activity in immortalized human corneal endothelial cells (HCEC-12) and freshly isolated human corneal endothelial cells (HCEC) as a control. This channel is either activated upon lowering to 28 °C or by menthol, eucalyptol and icilin. RT-PCR and quantitative real-time PCR (qPCR) verified TRPM8 gene expression. Ca(2+) transients induced by either menthol (500 μmol/l), eucalyptol (3 mmol/l), or icilin (2-60 μmol/l) were identified using cell fluorescence imaging. The TRP channel blocker lanthanum III chloride (La(3+), 100 μmol/l) as well as the TRPM8 blockers BCTC (10 μmol/l) and capsazepine (CPZ, 10 μmol/l) suppressed icilin-induced Ca(2+) increases. In and outward currents induced by application of menthol (500 μmol/l) or icilin (50 μmol/l) were detected using the planar patch-clamp technique. A thermal transition from room temperature to ≈ 18 °C led to Ca(2+) increases that were inhibited by a TRPM8 blocker BCTC (10 μmol/l). Other thermosensitive TRP pathways whose heterogeneous Ca(2+) response patterns are suggestive of other Ca(2+) handling pathways were also detected upon strong cooling (≈10 °C). Taken together, functional TRPM8 expression in HCEC-12 and freshly dissociated HCEC suggests that HCE function can adapt to thermal variations through activation of this channel subtype. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Treatment of progressive keratoconus by riboflavin-UVA-induced cross-linking of corneal collagen: ultrastructural analysis by Heidelberg Retinal Tomograph II in vivo confocal microscopy in humans.

    Science.gov (United States)

    Mazzotta, Cosimo; Balestrazzi, Angelo; Traversi, Claudio; Baiocchi, Stefano; Caporossi, Tomaso; Tommasi, Cristina; Caporossi, Aldo

    2007-05-01

    To assess ultrastructural stromal modifications after riboflavin-UVA-induced cross-linking of corneal collagen in patients with progressive keratoconus. This was a second-phase prospective nonrandomized open study in 10 patients with progressive keratoconus treated by riboflavin-UVA-induced cross-linking of corneal collagen and assessed by means of Heidelberg Retinal Tomograph II Rostock Corneal Module (HRT II-RCM) in vivo confocal microscopy. The eye in the worst clinical condition was treated for each patient. Treatment under topical anesthesia included corneal deepithelization (9-mm diameter) and instillation of 0.1% riboflavin phosphate-20% dextran T 500 solution at 5 minutes before UVA irradiation and every 5 minutes for a total of 30 minutes. UVA irradiation was 7 mm in diameter. Patients were assessed by HRT II-RCM confocal microscopy in vivo at 1, 3, and 6 months after treatment. Rarefaction of keratocytes in the anterior and intermediate stroma, associated with stromal edema, was observed immediately after treatment. The observation at 3 months after the operation detected keratocyte repopulation in the central treated area, whereas the edema had disappeared. Cell density increased progressively over the postoperative period. At approximately 6 months, keratocyte repopulation was complete, accompanied by increased density of stromal fibers. No endothelial damage was observed at any time. Reduction in anterior and intermediate stromal keratocytes followed by gradual repopulation has been confirmed directly in vivo in humans by HRT II-RCM confocal microscopy after riboflavin-UVA-induced corneal collagen cross-linking.

  18. Tissue Engineering of Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Satoru Yamagami

    2012-10-01

    Full Text Available Human corneal endothelial cells (HCECs do not replicate after wounding. Therefore, corneal endothelial deficiency can result in irreversible corneal edema. Descemet stripping automated endothelial keratoplasty (DSAEK allows selective replacement of the diseased corneal endothelium. However, DSAEK requires a donor cornea and the worldwide shortage of corneas limits its application. This review presents current knowledge on the tissue engineering of corneal endothelium using cultured HCECs. We also provide our recent work on tissue engineering for DSAEK grafts using cultured HCECs. We reconstructed DSAEK grafts by seeding cultured DiI-labelled HCECs on collagen sheets. Then HCEC sheets were transplanted onto the posterior stroma after descemetorhexis in the DSAEK group. Severe stromal edema was detected in the control group, but not in the DSAEK group throughout the observation period. Fluorescein microscopy one month after surgery showed numerous DiI-labelled cells on the posterior corneal surface in the DSAEK group. Frozen sections showed a monolayer of DiI-labelled cells on Descemet’s membrane. These findings indicate that cultured adult HCECs, transplanted with DSAEK surgery, maintain corneal transparency after transplantation and suggest the feasibility of performing DSAEK with HCECs to treat endothelial dysfunction.

  19. Equine corneal stromal abscesses

    DEFF Research Database (Denmark)

    Henriksen, M. D. L.; Andersen, P. H.; Plummer, C. E.

    2013-01-01

    The last 30 years have seen many changes in the understanding of the pathogenesis and treatment of equine corneal stromal abscesses (SAs). Stromal abscesses were previously considered an eye problem related to corneal bacterial infection, equine recurrent uveitis, corneal microtrauma and corneal...... foreign bodies in horses. They were more commonly diagnosed in horses living in subtropical climatic areas of the world. Therapeutic recommendations to treat equine SAs were historically nearly always a medical approach directed at bacteria and the often associated severe iridocyclitis. Today...... the pathogenesis of most equine SAs appears to be more often related to fungal inoculation of the anterior corneal stroma followed by posterior migration of the fungi deeper into the corneal stroma. There is also now an increased incidence of diagnosis of corneal SAs in horses living in more temperate climates...

  20. Human corneal anatomy redefined: a novel pre-Descemet's layer (Dua's layer).

    Science.gov (United States)

    Dua, Harminder S; Faraj, Lana A; Said, Dalia G; Gray, Trevor; Lowe, James

    2013-09-01

    To define and characterize a novel pre-Descemet's layer in the human cornea. Clinical and experimental study. We included 31 human donor sclerocorneal discs, including 6 controls (mean age, 77.7 years). Air was injected into the stroma of donor whole globes (n = 4) and sclerocorneal discs (n = 21) as in the clinical deep anterior lamellar keratoplasty procedure with the big bubble (BB) technique. The following experiments were performed: (1) creation of BB followed by peeling of the Descemet's membrane (DM); (2) peeling off of the DM followed by creation of the BB, and (3) creation of the BB and continued inflation until the bubble popped to measure the popping pressure. Tissue obtained from these experiments was subjected to histologic examination. Demonstration of a novel pre-Descemet's layer (Dua's layer) in the human cornea. Three types of BB were obtained. Type-1, is a well-circumscribed, central dome-shaped elevation up to 8.5 mm in diameter (n = 14). Type-2, is a thin-walled, large BB of maximum 10.5 mm diameter, which always started at the periphery, enlarging centrally to form a large BB (n = 5), and a mixed type (n = 3). With type-1 BB, unlike type-2 BB, it was possible to peel off DM completely without deflating the BB, indicating the presence of an additional layer of tissue. A type-1 BB could be created after first peeling off the DM (n = 5), confirming that DM was not essential to create a type-1 BB. The popping pressure was 1.45 bar and 0.6 bar for type-1 BB and type-2 BB, respectively. Histology confirmed that the cleavage occurred beyond the last row of keratocytes. This layer was acellular, measured 10.15 ± 3.6 microns composed of 5 to 8 lamellae of predominantly type-1 collagen bundles arranged in transverse, longitudinal, and oblique directions. There exists a novel, well-defined, acellular, strong layer in the pre-Descemet's cornea. This separates along the last row of keratocytes in most cases performed with the BB technique. Its recognition

  1. The effect of riboflavin/UVA collagen cross-linking therapy on the structure and hydrodynamic behaviour of the ungulate and rabbit corneal stroma.

    Directory of Open Access Journals (Sweden)

    Sally Hayes

    Full Text Available PURPOSE: To examine the effect of riboflavin/UVA corneal crosslinking on stromal ultrastructure and hydrodynamic behaviour. METHODS: One hundred and seventeen enucleated ungulate eyes (112 pig and 5 sheep and 3 pairs of rabbit eyes, with corneal epithelium removed, were divided into four treatment groups: Group 1 (28 pig, 2 sheep and 3 rabbits were untreated; Group 2 (24 pig were exposed to UVA light (3.04 mW/cm(2 for 30 minutes and Group 3 (29 pig and Group 4 (31 pig, 3 sheep and 3 rabbits had riboflavin eye drops applied to the corneal surface every 5 minutes for 35 minutes. Five minutes after the initial riboflavin instillation, the corneas in Group 4 experienced a 30 minute exposure to UVA light (3.04 mW/cm(2. X-ray scattering was used to obtain measurements of collagen interfibrillar spacing, spatial order, fibril diameter, D-periodicity and intermolecular spacing throughout the whole tissue thickness and as a function of tissue depth in the treated and untreated corneas. The effect of each treatment on the hydrodynamic behaviour of the cornea (its ability to swell in saline solution and its resistance to enzymatic digestion were assessed using in vitro laboratory techniques. RESULTS: Corneal thickness decreased significantly following riboflavin application (p<0.01 and also to a lesser extent after UVA exposure (p<0.05. With the exception of the spatial order factor, which was higher in Group 4 than Group 1 (p<0.01, all other measured collagen parameters were unaltered by cross-linking, even within the most anterior 300 microns of the cornea. The cross-linking treatment had no effect on the hydrodynamic behaviour of the cornea but did cause a significant increase in its resistance to enzymatic digestion. CONCLUSIONS: It seems likely that cross-links formed during riboflavin/UVA therapy occur predominantly at the collagen fibril surface and in the protein network surrounding the collagen.

  2. The Effect of Riboflavin/UVA Collagen Cross-linking Therapy on the Structure and Hydrodynamic Behaviour of the Ungulate and Rabbit Corneal Stroma

    Science.gov (United States)

    Hayes, Sally; Kamma-Lorger, Christina S.; Boote, Craig; Young, Robert D.; Quantock, Andrew J.; Rost, Anika; Khatib, Yasmeen; Harris, Jonathan; Yagi, Naoto; Terrill, Nicholas; Meek, Keith M.

    2013-01-01

    Purpose To examine the effect of riboflavin/UVA corneal crosslinking on stromal ultrastructure and hydrodynamic behaviour. Methods One hundred and seventeen enucleated ungulate eyes (112 pig and 5 sheep) and 3 pairs of rabbit eyes, with corneal epithelium removed, were divided into four treatment groups: Group 1 (28 pig, 2 sheep and 3 rabbits) were untreated; Group 2 (24 pig) were exposed to UVA light (3.04 mW/cm2) for 30 minutes and Group 3 (29 pig) and Group 4 (31 pig, 3 sheep and 3 rabbits) had riboflavin eye drops applied to the corneal surface every 5 minutes for 35 minutes. Five minutes after the initial riboflavin instillation, the corneas in Group 4 experienced a 30 minute exposure to UVA light (3.04 mW/cm2). X-ray scattering was used to obtain measurements of collagen interfibrillar spacing, spatial order, fibril diameter, D-periodicity and intermolecular spacing throughout the whole tissue thickness and as a function of tissue depth in the treated and untreated corneas. The effect of each treatment on the hydrodynamic behaviour of the cornea (its ability to swell in saline solution) and its resistance to enzymatic digestion were assessed using in vitro laboratory techniques. Results Corneal thickness decreased significantly following riboflavin application (pcollagen parameters were unaltered by cross-linking, even within the most anterior 300 microns of the cornea. The cross-linking treatment had no effect on the hydrodynamic behaviour of the cornea but did cause a significant increase in its resistance to enzymatic digestion. Conclusions It seems likely that cross-links formed during riboflavin/UVA therapy occur predominantly at the collagen fibril surface and in the protein network surrounding the collagen. PMID:23349690

  3. Expression of glutathione transferases in corneal cell lines, corneal tissues and a human cornea construct.

    Science.gov (United States)

    Kölln, Christian; Reichl, Stephan

    2016-06-15

    Glutathione transferase (GST) expression and activity were examined in a three-dimensional human cornea construct and were compared to those of excised animal corneas. The objective of this study was to characterize phase II enzyme expression in the cornea construct with respect to its utility as an alternative to animal cornea models. The expression of the GSTO1-1 and GSTP1-1 enzymes was investigated using immunofluorescence staining and western blotting. The level of total glutathione transferase activity was determined using 1-chloro-2,4- dinitrobenzene as the substrate. Furthermore, the levels of GSTO1-1 and GSTP1-1 activity were examined using S-(4-nitrophenacyl)glutathione and ethacrynic acid, respectively, as the specific substrates. The expression and activity levels of these enzymes were examined in the epithelium, stroma and endothelium, the three main cellular layers of the cornea. In summary, the investigated enzymes were detected at both the protein and functional levels in the cornea construct and the excised animal corneas. However, the enzymatic activity levels of the human cornea construct were lower than those of the animal corneas. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Controlling human corneal stromal stem cell contraction to mediate rapid cell and matrix organization of real architecture for 3-dimensional tissue equivalents.

    Science.gov (United States)

    Mukhey, Dev; Phillips, James B; Daniels, Julie T; Kureshi, Alvena K

    2017-12-05

    The architecture of the human corneal stroma consists of a highly organized extracellular matrix (ECM) interspersed with keratocytes. Their progenitor cells; corneal stromal stem cells (CSSC) are located at the periphery, in the limbal stroma. A highly organized corneal ECM is critical for effective transmission of light but this structure may be compromised during injury or disease, resulting in loss of vision. Re-creating normal organization in engineered tissue equivalents for transplantation often involves lengthy culture times that are inappropriate for clinical use or utilisation of synthetic substrates that bring complications such as corneal melting. CSSC have great therapeutic potential owing to their ability to reorganize a disorganized matrix, restoring transparency in scarred corneas. We examined CSSC contractile behavior to assess whether this property could be exploited to rapidly generate cell and ECM organization in Real Architecture For 3D Tissues (RAFT) tissue equivalents (TE) for transplantation. Free-floating collagen gels were characterized to assess contractile behavior of CSSC and establish optimum cell density and culture times. To mediate cell and collagen organization, tethered collagen gels seeded with CSSC were cultured and subsequently stabilized with the RAFT process. We demonstrated rapid creation of biomimetic RAFT TE with tunable structural properties. These displayed three distinct regions of varying degrees of cellular and collagen organization. Interestingly, increased organization coincided with a dramatic loss of PAX6 expression in CSSC, indicating rapid differentiation into keratocytes. The organized RAFT TE system could be a useful bioengineering tool to rapidly create an organized ECM while simultaneously controlling cell phenotype. For the first time, we have demonstrated that human CSSC exhibit the phenomenon of cellular self-alignment in tethered collagen gels. We found this mediated rapid co-alignment of collagen fibrils

  5. Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for corneal tissue engineering

    OpenAIRE

    Gil, Eun Seok; Mandal, Biman B.; Park, Sang-Hyug; Marchant, Jeffrey K.; Omenetto, Fiorenzo G.; Kaplan, David L.

    2010-01-01

    RGD-coupled silk protein-biomaterial lamellar systems were prepared and studied with human cornea fibroblasts (hCFs) to match functional requirements. A strategy for corneal tissue engineering was pursued to replicate the structural hierarchy of human corneal stroma within thin stacks of lamellae-like tissues, in this case constructed from scaffolds constructed with RGD-coupled, patterned, porous, mechanically robust and transparent silk films. The influence of RGD-coupling on the orientation...

  6. Aloe vera extract activity on human corneal cells.

    Science.gov (United States)

    Woźniak, Anna; Paduch, Roman

    2012-02-01

    Ocular diseases are currently an important problem in modern societies. Patients suffer from various ophthalmologic ailments namely, conjunctivitis, dry eye, dacryocystitis or degenerative diseases. Therefore, there is a need to introduce new treatment methods, including medicinal plants usage. Aloe vera [Aloe barbadensis Miller (Liliaceae)] possesses wound-healing properties and shows immunomodulatory, anti-inflammatory or antioxidant activities. NR uptake, MTT, DPPH• reduction, Griess reaction, ELISA and rhodamine-phalloidin staining were used to test toxicity, antiproliferative activity, reactive oxygen species (ROS) reduction, nitric oxide (NO) and cytokine level, and distribution of F-actin in cells, respectively. The present study analyzes the effect of Aloe vera extracts obtained with different solvents on in vitro culture of human 10.014 pRSV-T corneal cells. We found no toxicity of ethanol, ethyl acetate and heptane extracts of Aloe vera on human corneal cells. No ROS reducing activity by heptane extract and trace action by ethanol (only at high concentration 125 µg/ml) extract of Aloe vera was observed. Only ethyl acetate extract expressed distinct free radical scavenging effect. Plant extracts decreased NO production by human corneal cells as compared to untreated controls. The cytokine (IL-1β, IL-6, TNF-α and IL-10) production decreased after the addition of Aloe vera extracts to the culture media. Aloe vera contains multiple pharmacologically active substances which are capable of modulating cellular phenotypes and functions. Aloe vera ethanol and ethyl acetate extracts may be used in eye drops to treat inflammations and other ailments of external parts of the eye such as the cornea.

  7. Cell pattern in adult human corneal endothelium.

    Directory of Open Access Journals (Sweden)

    Carlos H Wörner

    Full Text Available A review of the current data on the cell density of normal adult human endothelial cells was carried out in order to establish some common parameters appearing in the different considered populations. From the analysis of cell growth patterns, it is inferred that the cell aging rate is similar for each of the different considered populations. Also, the morphology, the cell distribution and the tendency to hexagonallity are studied. The results are consistent with the hypothesis that this phenomenon is analogous with cell behavior in other structures such as dry foams and grains in polycrystalline materials. Therefore, its driving force may be controlled by the surface tension and the mobility of the boundaries.

  8. Cytotoxicity of Voriconazole on Cultured Human Corneal Endothelial Cells▿

    OpenAIRE

    Han, Sang Beom; Shin, Young Joo; Hyon, Joon Young; Wee, Won Ryang

    2011-01-01

    The purpose of the present study was to evaluate the toxicity of voriconazole on cultured human corneal endothelial cells (HCECs). HCECs were cultured and exposed to various concentrations of voriconazole (5.0 to 1,000 μg/ml). Cell viability was measured using a Cell Counting Kit-8 (CCK-8) and live/dead viability/cytotoxicity assays. Cell damage was assessed using phase-contrast microscopy after 24 h of exposure to voriconazole. To analyze the effect of voriconazole on the intercellular barri...

  9. The scale of substratum topographic features modulates proliferation of corneal epithelial cells and corneal fibroblasts.

    Science.gov (United States)

    Liliensiek, S J; Campbell, S; Nealey, P F; Murphy, C J

    2006-10-01

    The cornea is a complex tissue composed of different cell types, including corneal epithelial cells and keratocytes. Each of these cell types are directly exposed to rich nanoscale topography from the basement membrane or surrounding extracellular matrix. Nanoscale topography has been shown to influence cell behaviors, including orientation, alignment, differentiation, migration, and proliferation. We investigated whether proliferation of SV40-transformed human corneal epithelial cells (SV40-HCECs), primary human corneal epithelial cells (HCECs), and primary corneal fibroblasts is influenced by the scale of topographic features of the substratum. Using basement membrane feature sizes as our guide and the known dimensions of collagen fibrils of the corneal stroma (20-60 nm), we fabricated polyurethane molded substrates, which contain anisotropic feature sizes ranging from 200-2000 nm on pitches ranging from 400 to 4000 nm (pitch = ridge width + groove width). The planar regions separating each of the six patterned regions served as control surfaces. Primary corneal and SV40-HCEC proliferation decreased in direct response to decreasing nanoscale topographies down to 200 nm. In contrast to corneal epithelial cells, corneal fibroblasts did not exhibit significantly different response to any of the topographies when compared with planar controls at 5 days. However, decreased proliferation was observed on the smallest feature sizes after 14 days in culture. Results from these experiments are relevant in understanding the potential mechanisms involved in the control of proliferation and differentiation of cells within the cornea. (c) 2006 Wiley Periodicals, Inc

  10. Activation of JNK signaling mediates connective tissue growth factor expression and scar formation in corneal wound healing.

    Directory of Open Access Journals (Sweden)

    Long Shi

    Full Text Available Connective Tissue Growth Factor (CTGF and Transforming growth factor-β1 (TGF-β1 are key growth factors in regulating corneal scarring. Although CTGF was induced by TGF-β1 and mediated many of fibroproliferative effects of TGF-β1, the signaling pathway for CTGF production in corneal scarring remains to be clarified. In the present study, we firstly investigated the effects of c-Jun N-terminal kinase (JNK on CTGF expression induce by TGF-β1 in Telomerase-immortalized human cornea stroma fibroblasts (THSF. Then, we created penetrating corneal wound model and determined the effect of JNK in the pathogenesis of corneal scarring. TGF-β1 activated MAPK pathways in THSF cells. JNK inhibitor significantly inhibited CTGF, fibronectin and collagen I expression induced by TGF-β1 in THSF. In corneal wound healing, the JNK inhibitor significantly inhibited CTGF expression, markedly improved the architecture of corneal stroma and reduced corneal scar formation, but did not have a measurable impact on corneal wound healing in vivo. Our results indicate that JNK mediates the expression of CTGF and corneal scarring in corneal wound healing, and might be considered as specific targets of drug therapy for corneal scarring.

  11. Structural response of human corneal and scleral tissues to collagen cross-linking treatment with riboflavin and ultraviolet A light.

    Science.gov (United States)

    Choi, Samjin; Lee, Seung-Chan; Lee, Hui-Jae; Cheong, Youjin; Jung, Gyeong-Bok; Jin, Kyung-Hyun; Park, Hun-Kuk

    2013-09-01

    High success rates in clinical trials on keratoconic corneas suggest the possibility of efficient treatment against myopic progression. This study quantitatively investigated the in vitro ultrastructural effects of a photooxidative collagen cross-linking treatment with photosensitizer riboflavin and UVA light in human corneo-scleral collagen fibrils. A total of 30.8 × 2 mm corneo-scleral strips from donor tissue were sagittally dissected using a scalpel. The five analytic parameters namely fibril density, fibril area, corneo-scleral thickness, fibril diameter, and fibril arrangement were investigated before and after riboflavin-UVA-catalyzed collagen cross-linking treatment. Collagen cross-linking effects were measured at the corneo-scleral stroma and were based on clinical corneal cross-linking procedures. The structural response levels were assessed by histology, digital mechanical caliper measurement, scanning electron microscopy, and atomic force microscopy. Riboflavin-UVA-catalyzed collagen cross-linking treatment led to an increase in the area, density, and diameters of both corneal (110, 112, and 103 %) and scleral (133, 133, and 127 %) stromal collagens. It also led to increases in corneal (107 %) and scleral (105 %) thickness. Collagen cross-linking treatment through riboflavin-sensitized photoreaction may cause structural property changes in the collagen fibril network of the cornea and sclera due to stromal edema and interfibrillar spacing narrowing. These changes were particularly prominent in the sclera. This technique can be used to treat progressive keratoconus in the cornea as well as progressive myopia in the sclera. Long-term collagen cross-linking treatment of keratoconic and myopic progression dramatically improves weakened corneo-scleral tissues.

  12. Cytotoxicity of Voriconazole on Cultured Human Corneal Endothelial Cells▿

    Science.gov (United States)

    Han, Sang Beom; Shin, Young Joo; Hyon, Joon Young; Wee, Won Ryang

    2011-01-01

    The purpose of the present study was to evaluate the toxicity of voriconazole on cultured human corneal endothelial cells (HCECs). HCECs were cultured and exposed to various concentrations of voriconazole (5.0 to 1,000 μg/ml). Cell viability was measured using a Cell Counting Kit-8 (CCK-8) and live/dead viability/cytotoxicity assays. Cell damage was assessed using phase-contrast microscopy after 24 h of exposure to voriconazole. To analyze the effect of voriconazole on the intercellular barrier, immunolocalization of zonula occludens 1 (ZO1) was performed. A flow cytometric assay was performed to evaluate the apoptotic and necrotic effects of voriconazole on HCECs. Cytotoxicity tests demonstrated the dose-dependent toxic effect of voriconazole on HCECs. Voriconazole concentrations of ≥100 μg/ml led to a significant reduction in cell viability. The morphological characteristics of HCECs also changed in a dose-dependent manner. Increasing concentrations of voriconazole resulted in fading staining for ZO1. Higher concentrations of voriconazole resulted in an increased number of propidium iodide (PI)-positive cells, indicating activation of the proapoptotic pathway. In conclusion, voriconazole may have a dose-dependent toxic effect on cultured HCECs. The results of this study suggest that although voriconazole concentrations of up to 50 μg/ml do not decrease cell viability, intracameral voriconazole concentrations of ≥100 μg/ml may increase the risk of corneal endothelial damage. PMID:21768517

  13. Characterization of DLK1(PREF1+/CD34+ cells in vascular stroma of human white adipose tissue

    Directory of Open Access Journals (Sweden)

    Marit E. Zwierzina

    2015-09-01

    Full Text Available Sorting of native (unpermeabilized SVF-cells from human subcutaneous (sWAT for cell surface staining (cs of DLK1 and CD34 identified three main populations: ~10% stained cs-DLK1+/cs-CD34−, ~20% cs-DLK1+/cs-CD34+dim and ~45% cs-DLK1−/cs-CD34+. FACS analysis after permeabilization showed that all these cells stained positive for intracellular DLK1, while CD34 was undetectable in cs-DLK1+/cs-CD34− cells. Permeabilized cs-DLK1−/cs-CD34+ cells were positive for the pericyte marker α-SMA and the mesenchymal markers CD90 and CD105, albeit CD105 staining was dim (cs-DLK1−/cs-CD34+/CD90+/CD105+dim/α-SMA+/CD45−/CD31−. Only these cells showed proliferative and adipogenic capacity. Cs-DLK1+/cs-CD34− and cs-DLK1+/cs-CD34+dim cells were also α-SMA+ but expressed CD31, had a mixed hematopoietic and mesenchymal phenotype, and could neither proliferate nor differentiate into adipocytes. Histological analysis of sWAT detected DLK1+/CD34+ and DLK1+/CD90+ cells mainly in the outer ring of vessel-associated stroma and at capillaries. DLK1+/α-SMA+ cells were localized in the CD34− perivascular ring and in adventitial vascular stroma. All these DLK1+ cells possess a spindle-shaped morphology with extremely long processes. DLK1+/CD34+ cells were also detected in vessel endothelium. Additionally, we show that sWAT contains significantly more DLK1+ cells than visceral (vWAT. We conclude that sWAT has more DKL1+ cells than vWAT and contains different DLK1/CD34 populations, and only cs-DLK1−/cs-CD34+/CD90+/CD105+dim/α-SMA+/CD45−/CD31− cells in the adventitial vascular stroma exhibit proliferative and adipogenic capacity.

  14. Second Harmonic Generation Imaging Analysis of Collagen Arrangement in Human Cornea

    OpenAIRE

    Park, Choul Yong; Lee, Jimmy K.; Chuck, Roy S.

    2015-01-01

    In this paper, we imaged human cornea using a second harmonic generation imaging technique. The horizontal collagen bundle arrangement of corneal stroma as a function of depth and location was analyzed.

  15. Successful transplantation of in vitro expanded human corneal endothelial precursors to corneal endothelial surface using a nanocomposite sheet

    Directory of Open Access Journals (Sweden)

    Parikumar P

    2011-01-01

    Full Text Available Background: Though the transplantation of in vitro expanded human corneal endothelial precursors in animal models of endothelial damage by injecting into the anterior chamber has been reported, the practical difficulties of accomplishing such procedure in human patients have been a hurdle to clinical translation. Here we report the successful transplantation of in vitro expanded human corneal precursor cells to an animal eye using a transparent Nano-composite sheet and their engraftment.Materials and Methods: Human Corneal endothelial cells (HCEC were isolated from human cadaver eyes with informed consent and expanded in the lab using a sphere forming assay in a novel Thermoreversible Gelation Polymer (TGP for 26 days. HCEC obtained by sphere forming assay were seeded in a novel Nano-composite sheet, which was made of PNIPA-NC gels by in-situ, free-radical polymerization of NIPA monomer in the presence of exfoliated clay (synthetic hectorite “Laponite XLG” uniformly dispersed in aqueous media. After a further seven days in vitro culture of HCEC in the Nano-composite sheet, cells were harvested and transplanted on cadaver-bovine eyes (n=3. The cells were injected between the corneal endothelial layer and the Nano-composite sheet that had been placed prior to the injection in close proximity to the endothelial layer. After three hours, the transplanted Nano-composite sheets were removed from the bovine eyes and subjected to microscopic examination. The corneas were subjected to Histo-pathological studies along with controls. Results: HCEC formed sphere like colonies in TGP which expressed relevant markers as confirmed by RT-PCR. Microscopic studies of the Nanosheets and histopathological studies of the cornea of the Bull’s eye revealed that the HCEC got engrafted to the corneal endothelial layer of the bovine eyes with no remnant cells in the Nanosheet. Conclusion: Transplantation of in vitro expanded donor human corneal endothelial cells

  16. Biomechanical changes in the human cornea after transepithelial corneal crosslinking using iontophoresis.

    Science.gov (United States)

    Lombardo, Marco; Serrao, Sebastiano; Rosati, Marianna; Ducoli, Pietro; Lombardo, Giuseppe

    2014-10-01

    To evaluate the corneal response to variable intraocular pressure (IOP) in human eye globes after ultraviolet-A (UVA) transepithelial corneal crosslinking using iontophoresis. Fondazione G.B. Bietti IRCCS, Rome, Italy. Experimental study. Four human donor eye globes were treated with transepithelial crosslinking using iontophoresis and rapid UVA corneal irradiation, and 4 globes had standard crosslinking. Inflation experiments were performed on the globes before and after crosslinking. Topographic maps of the anterior and posterior cornea were acquired using Scheimpflug topography. Images were obtained using a mechanical regimen to analyze corneal strain in response to cyclic stress. Corneal shape changes were analyzed as a function of IOP, and corneal stress-strain curves were generated. Before crosslinking, instillation of hypotonic riboflavin-5-phosphate sodium 0.1% solution using iontophoresis increased corneal thickness by 5% and instillation of dextran-enriched riboflavin 0.1% solution decreased corneal thickness by 13%. Five minutes after treatment, both crosslinking procedures reduced corneal thickness by 2%. Young's modulus (E) of the anterior cornea increased by a mean of 1.8 times (from 1.6 to 2.9 MPa) and 1.9 times (from 1.3 to 2.5 MPa) after transepithelial crosslinking using iontophoresis and standard crosslinking, respectively. The E value of the posterior cornea also increased after both procedures (mean 1.7 times versus 3.1 times). Transepithelial crosslinking using iontophoresis increased the biomechanical strength of human corneal tissue in inflation testing of donor eye globes. The effect on corneal stiffness was almost comparable to that of standard crosslinking. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  17. Concise Review: An Update on the Culture of Human Corneal Endothelial Cells for Transplantation.

    Science.gov (United States)

    Parekh, Mohit; Ferrari, Stefano; Sheridan, Carl; Kaye, Stephen; Ahmad, Sajjad

    2016-02-01

    The cornea forms the front window of the eye, enabling the transmission of light to the retina through a crystalline lens. Many disorders of the cornea lead to partial or total blindness, and therefore corneal transplantation becomes mandatory. Recently, selective corneal layer (as opposed to full thickness) transplantation has become popular because this leads to earlier rehabilitation and visual outcomes. Corneal endothelial disorders are a common cause of corneal disease and transplantation. Corneal endothelial transplantation is successful but limited worldwide because of lower donor corneal supply. Alternatives to corneal tissue for endothelial transplantation therefore require immediate attention. The field of human corneal endothelial culture for transplantation is rapidly emerging as a possible viable option. This manuscript provides an update regarding these developments. Significance: The cornea is the front clear window of the eye. It needs to be kept transparent for normal vision. It is formed of various layers of which the posterior layer (the endothelium) is responsible for the transparency of the cornea because it allows the transport of ions and solutes to and from the other layers of the cornea. Corneal blindness that results from the corneal endothelial dysfunction can be treated using healthy donor tissues. There is a huge demand for human donor corneas but limited supply, and therefore there is a need to identify alternatives that would reduce this demand. Research is underway to understand the isolation techniques for corneal endothelial cells, culturing these cells in the laboratory, and finding possible options to transplant these cells in the patients. This review article is an update on the recent developments in this field. ©AlphaMed Press.

  18. Keratoconus corneal architecture after riboflavin/ultraviolet A cross-linking: Ultrastructural studies

    Science.gov (United States)

    Almubrad, Turki; Paladini, Iacopo; Mencucci, Rita

    2013-01-01

    Purpose Study to investigate the effects of collagen cross-linking on the ultrastructural organization of the corneal stroma in the human keratoconus cornea (KC). Methods Three normal, three keratoconus (KC1, KC2, KC3), and three cross-linked keratoconus (CXL1, CXL2, CXL3) corneas were analyzed. The KC corneas were treated with a riboflavin-ultraviolet A (UVA) treatment (CXL) method described by Wollensak et al. Penetrating keratoplasty (PKP) was performed 6 months after treatment. All samples were processed for electron microscopy. Results The riboflavin-UVA-treated CXL corneal stroma showed interlacing lamellae in the anterior stroma followed by well-organized parallel running lamellae. The lamellae contained uniformly distributed collagen fibrils (CFs) decorated with normal proteoglycans (PGs). The CF diameter and interfibrillar spacing in the CXL cornea were significantly increased compared to those in the KC cornea. The PG area in the CXL corneas were significantly smaller than the PGs in the KC cornea. The epithelium and Bowman’s layer were also normal. On rare occasions, a thick basement membrane and collagenous pannus were also observed. Conclusions Corneal cross-linking leads to modifications of the cornea stroma. The KC corneal structure showed a modification in the CF diameter, interfibrillar spacing, and PG area. This resulted in a more uniform distribution of collagen fibrils, a key feature for corneal transparency. PMID:23878503

  19. Human Corneal MicroRNA Expression Profile in Fungal Keratitis.

    Science.gov (United States)

    Boomiraj, Hemadevi; Mohankumar, Vidyarani; Lalitha, Prajna; Devarajan, Bharanidharan

    2015-12-01

    MicroRNAs (miRNAs) are small, stable, noncoding RNA molecules with regulatory function and marked tissue specificity that posttranscriptionally regulate gene expression. However, their role in fungal keratitis remains unknown. The purpose of this study was to identify the miRNA profile and its regulatory role in fungal keratitis. Normal donor (n = 3) and fungal keratitis (n = 5) corneas were pooled separately, and small RNA deep sequencing was performed using a sequencing platform. A bioinformatics approach was applied to identify differentially-expressed miRNAs and their targets, and select miRNAs were validated by real-time quantitative PCR (qPCR). The regulatory functions of miRNAs were predicted by combining miRNA target genes and pathway analysis. The mRNA expression levels of select target genes were further analyzed by qPCR. By deep sequencing, 75 miRNAs were identified as differentially expressed with fold change greater than 2 and probability score greater than 0.9 in fungal keratitis corneas. The highly dysregulated miRNAs (miR-511-5p, miR-142-3p, miR-155-5p, and miR-451a) may regulate wound healing as they were predicted to specifically target wound inflammatory genes. Moreover, the increased expression of miR-451a in keratitis correlated with reduced expression of its target, macrophage migration inhibitory factor, suggesting possible regulatory functions. This is, to our knowledge, the first report on comprehensive human corneal miRNA expression profile in fungal keratitis. Several miRNAs with high expression in fungal keratitis point toward their potential role in regulation of pathogenesis. Further insights in understanding their role in corneal wound inflammation may help design new therapeutic strategies.

  20. Dental pulp stem cells: a new cellular resource for corneal stromal regeneration.

    Science.gov (United States)

    Syed-Picard, Fatima N; Du, Yiqin; Lathrop, Kira L; Mann, Mary M; Funderburgh, Martha L; Funderburgh, James L

    2015-03-01

    Corneal blindness afflicts millions of individuals worldwide and is currently treated by grafting with cadaveric tissues; however, there are worldwide donor tissue shortages, and many allogeneic grafts are eventually rejected. Autologous stem cells present a prospect for personalized regenerative medicine and an alternative to cadaveric tissue grafts. Dental pulp contains a population of adult stem cells and, similar to corneal stroma, develops embryonically from the cranial neural crest. We report that adult dental pulp cells (DPCs) isolated from third molars have the capability to differentiate into keratocytes, cells of the corneal stoma. After inducing differentiation in vitro, DPCs expressed molecules characteristic of keratocytes, keratocan, and keratan sulfate proteoglycans at both the gene and the protein levels. DPCs cultured on aligned nanofiber substrates generated tissue-engineered, corneal stromal-like constructs, recapitulating the tightly packed, aligned, parallel fibrillar collagen of native stromal tissue. After injection in vivo into mouse corneal stroma, human DPCs produced corneal stromal extracellular matrix containing human type I collagen and keratocan and did not affect corneal transparency or induce immunological rejection. These findings demonstrate a potential for the clinical application of DPCs in cellular or tissue engineering therapies for corneal stromal blindness. ©AlphaMed Press.

  1. Multipotent nestin-positive stem cells reside in the stroma of human eccrine and apocrine sweat glands and can be propagated robustly in vitro.

    Directory of Open Access Journals (Sweden)

    Sabine Nagel

    Full Text Available Human skin harbours multiple different stem cell populations. In contrast to the relatively well-characterized niches of epidermal and hair follicle stem cells, the localization and niches of stem cells in other human skin compartments are as yet insufficiently investigated. Previously, we had shown in a pilot study that human sweat gland stroma contains Nestin-positive stem cells. Isolated sweat gland stroma-derived stem cells (SGSCs proliferated in vitro and expressed Nestin in 80% of the cells. In this study, we were able to determine the precise localization of Nestin-positive cells in both eccrine and apocrine sweat glands of human axillary skin. We established a reproducible isolation procedure and characterized the spontaneous, long-lasting multipotent differentiation capacity of SGSCs. Thereby, a pronounced ectodermal differentiation was observed. Moreover, the secretion of prominent cytokines demonstrated the immunological potential of SGSCs. The comparison to human adult epidermal stem cells (EpiSCs and bone marrow stem cells (BMSCs revealed differences in protein expression and differentiation capacity. Furthermore, we found a coexpression of the stem cell markers Nestin and Iα6 within SGSCs and human sweat gland stroma. In conclusion the initial results of the pilot study were confirmed, indicating that human sweat glands are a new source of unique stem cells with multilineage differentiation potential, high proliferation capacity and remarkable self renewal. With regard to the easy accessibility of skin tissue biopsies, an autologous application of SGSCs in clinical therapies appears promising.

  2. Decellularization of porcine corneas and repopulation with human corneal cells for tissue-engineered xenografts.

    Science.gov (United States)

    Yoeruek, Efdal; Bayyoud, Tarek; Maurus, Christine; Hofmann, Johanna; Spitzer, Martin S; Bartz-Schmidt, Karl-Ulrich; Szurman, Peter

    2012-03-01

    To evaluate the potential use of decellularized porcine corneas (DPCs) as a carrier matrix for cultivating human corneal cells in tissue engineering. Corneal cells were isolated from human corneoscleral rims. Porcine corneas were decellularized using hypotonic tris buffer, ethylene diamine tetra-acetic acid (EDTA, 0.1%), aprotinin (10 KIU/ml) and 0.3% sodium dodecyl sulphate. Haematoxylin-eosin (HE) and 4,6-diamidino-2-phenylindole (DAPI) staining were performed to confirm removal of the corneal cells. Quantitative analysis was performed to determine levels of desoxyribonucleic acid (DNA) using DNA Purification Kit (Fermentas, St. Leon-Rot, Germany). Alcian blue staining was carried out to analyse the structure of the extracellular matrix (ECM). Corneal stromal cells were injected into the DPCs; limbal corneal epithelial cells and corneal endothelial cells were seeded onto the anterior and posterior surfaces of the DPCs, respectively. Evaluation was undertaken at days 14 and 30. The phenotypical properties of the cultivated corneal cells were investigated using Immunolocalization of type I collagen, keratocan, lumican, cytokeratin 3 (AE5) and type VIII collagen. Haematoxylin-eosin and DAPI staining showed efficient elimination of porcine corneal cells, whereas alcian blue confirmed gross preservation of the ECM. The quantitative analysis of the DNA content showed a significant reduction (mean before decellularization: 75.45 ± 13.71 ng/mg; mean after decellularization: 9.87 ± 2.04 ng/mg, p types of corneal cells were efficiently cultured and expanded on the DPCs. Decellularized porcine corneas might serve as a potential scaffold for tissue engineering of the cornea, possibly providing xenogenic substrate for corneal transplantation. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.

  3. Nuclear localization of E-cadherin but not beta-catenin in human ovarian granulosa cell tumours and normal ovarian follicles and ovarian stroma.

    Science.gov (United States)

    Ohishi, Yoshihiro; Oda, Yoshinao; Kurihara, Shuichi; Kaku, Tsunehisa; Kobayashi, Hiroaki; Wake, Norio; Tsuneyoshi, Masazumi

    2011-02-01

    The role of misregulated Wnt/beta-catenin signalling in human ovarian granulosa cell tumour (GCT) has not been well characterized. The aim of this study was to confirm subcellular localization of key molecules of Wnt signalling (beta-catenin and E-cadherin) in human ovarian GCTs. Tissue samples taken from 32 human ovarian GCTs and 19 human normal ovaries containing 68 follicles were stained immunohistochemically using monoclonal anti-beta-catenin and anti-E-cadherin antibodies. None of the 32 GCTs and none of the 68 ovarian follicles showed beta-catenin nuclear expression (0%). On the other hand, 28 of 32 GCTs (88%) and 53 of 68 normal ovarian follicles (78%) showed nuclear expression of E-cadherin in granulosa cells. The ovarian stroma in all 19 normal ovaries showed nuclear expression of E-cadherin but not beta-catenin. Membranous and cytoplasmic expression was observed variously in ovarian GCT, follicles and stroma. We have confirmed frequent nuclear localization of E-cadherin but not beta-catenin in human ovarian GCT, ovarian follicles and stroma. There is no evidence of misregulated Wnt/beta-catenin signalling (represented by nuclear expression of beta-catenin) in human ovarian GCT. Nuclear translocation of E-cadherin might contribute to ovarian folliculogenesis or granulosa/stromal cell differentiation. © 2011 Blackwell Publishing Limited.

  4. Corneal Regeneration After Photorefractive Keratectomy: A Review☆

    Science.gov (United States)

    Tomás-Juan, Javier; Murueta-Goyena Larrañaga, Ane; Hanneken, Ludger

    2014-01-01

    Photorefractive keratectomy (PRK) remodels corneal stroma to compensate refractive errors. The removal of epithelium and the ablation of stroma provoke the disruption of corneal nerves and a release of several peptides from tears, epithelium, stroma and nerves. A myriad of cytokines, growth factors, and matrix metalloproteases participate in the process of corneal wound healing. Their balance will determine if reepithelization and stromal remodeling are appropriate. The final aim is to achieve corneal transparency for restoring corneal function, and a proper visual quality. Therefore, wound-healing response is critical for a successful refractive surgery. Our goal is to provide an overview into how corneal wounding develops following PRK. We will also review the influence of intraoperative application of mitomycin C, bandage contact lenses, anti-inflammatory and other drugs in preventing corneal haze and post-PRK pain. PMID:25444646

  5. Corneal Regeneration After Photorefractive Keratectomy: A Review.

    Science.gov (United States)

    Tomás-Juan, Javier; Murueta-Goyena Larrañaga, Ane; Hanneken, Ludger

    2015-01-01

    Photorefractive keratectomy (PRK) remodels corneal stroma to compensate refractive errors. The removal of epithelium and the ablation of stroma provoke the disruption of corneal nerves and a release of several peptides from tears, epithelium, stroma and nerves. A myriad of cytokines, growth factors, and matrix metalloproteases participate in the process of corneal wound healing. Their balance will determine if reepithelization and stromal remodeling are appropriate. The final aim is to achieve corneal transparency for restoring corneal function, and a proper visual quality. Therefore, wound-healing response is critical for a successful refractive surgery. Our goal is to provide an overview into how corneal wounding develops following PRK. We will also review the influence of intraoperative application of mitomycin C, bandage contact lenses, anti-inflammatory and other drugs in preventing corneal haze and post-PRK pain. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  6. Cultivation of Human Microvascular Endothelial Cells on Topographical Substrates to Mimic the Human Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Jie Shi Chua

    2013-03-01

    Full Text Available Human corneal endothelial cells have a limited ability to replicate in vivo and in vitro. Allograft transplantation becomes necessary when an accident or trauma results in excessive cell loss. The reconstruction of the cornea endothelium using autologous cell sources is a promising alternative option for therapeutic or in vitro drug testing applications. The native corneal endothelium rests on the Descemet’s membrane, which has nanotopographies of fibers and pores. The use of synthetic topographies mimics the native environment, and it is hypothesized that this can direct the behavior and growth of human microvascular endothelial cells (HMVECs to resemble the corneal endothelium. In this study, HMVECs are cultivated on substrates with micron and nano-scaled pillar and well topographies. Closely packed HMVEC monolayers with polygonal cells and well-developed tight junctions were formed on the topographical substrates. Sodium/potassium (Na+/K+ adenine triphosphatase (ATPase expression was enhanced on the microwells substrate, which also promotes microvilli formation, while more hexagonal-like cells are found on the micropillars samples. The data obtained suggests that the use of optimized surface patterning, in particular, the microtopographies, can induce HMVECs to adopt a more corneal endothelium-like morphology with similar barrier and pump functions. The mechanism involved in cell contact guidance by the specific topographical features will be of interest for future studies.

  7. Fourier transform method to determine human corneal endothelial morphology

    Science.gov (United States)

    Masters, Barry R.; Lee, Yim-Kul; Rhodes, William T.

    1991-08-01

    The statistical evaluation of the size, shape, density and regularity of the cells in the human corneal endothelium is an important diagnostic technique. A method based on the Fourier transform of the cell boundaries was developed which can yield these statistical properties. The development of a hybrid optical/digital technique to obtain these statistical perimeters is our goal. The input images were tracings of human endothelial cell patterns. The optical Fourier transform of each image was obtained, and the radial projection and the angular correlation function were plotted versus distance and angle respectively. The average size of the cells was obtained from the first peak of the radial projection. The width of this peak is related to the coefficient of variation of the average cell size. The separation of the peaks in the normalized angular correlation plot is related to cell shape. This method is suitable for rapid analysis of large numbers of endothelial cell images. This technique may have potential for diagnostic ophthalmology.

  8. Optimization of Human Corneal Endothelial Cells for Culture: The Removal of Corneal Stromal Fibroblast Contamination Using Magnetic Cell Separation

    Directory of Open Access Journals (Sweden)

    Gary S. L. Peh

    2012-01-01

    Full Text Available The culture of human corneal endothelial cells (CECs is critical for the development of suitable graft alternative on biodegradable material, specifically for endothelial keratoplasty, which can potentially alleviate the global shortage of transplant-grade donor corneas available. However, the propagation of slow proliferative CECs in vitro can be hindered by rapid growing stromal corneal fibroblasts (CSFs that may be coisolated in some cases. The purpose of this study was to evaluate a strategy using magnetic cell separation (MACS technique to deplete the contaminating CSFs from CEC cultures using antifibroblast magnetic microbeads. Separated “labeled” and “flow-through” cell fractions were collected separately, cultured, and morphologically assessed. Cells from the “flow-through” fraction displayed compact polygonal morphology and expressed Na+/K+ATPase indicative of corneal endothelial cells, whilst cells from the “labeled” fraction were mostly elongated and fibroblastic. A separation efficacy of 96.88% was observed. Hence, MACS technique can be useful in the depletion of contaminating CSFs from within a culture of CECs.

  9. Human Bone Derived Collagen for the Development of an Artificial Corneal Endothelial Graft. In Vivo Results in a Rabbit Model.

    Directory of Open Access Journals (Sweden)

    Natalia Vázquez

    Full Text Available Corneal keratoplasty (penetrating or lamellar using cadaveric human tissue, is nowadays the main treatment for corneal endotelial dysfunctions. However, there is a worldwide shortage of donor corneas available for transplantation and about 53% of the world's population have no access to corneal transplantation. Generating a complete cornea by tissue engineering is still a tough goal, but an endothelial lamellar graft might be an easier task. In this study, we developed a tissue engineered corneal endothelium by culturing human corneal endothelial cells on a human purified type I collagen membrane. Human corneal endothelial cells were cultured from corneal rims after corneal penetrating keratoplasty and type I collagen was isolated from remnant cancellous bone chips. Isolated type I collagen was analyzed by western blot, liquid chromatography -mass spectrometry and quantified using the exponentially modified protein abundance index. Later on, collagen solution was casted at room temperature obtaining an optically transparent and mechanically manageable membrane that supports the growth of human and rabbit corneal endothelial cells which expressed characteristic markers of corneal endothelium: zonula ocluddens-1 and Na+/K+ ATPase. To evaluate the therapeutic efficiency of our artificial endothelial grafts, human purified type I collagen membranes cultured with rabbit corneal endothelial cells were transplanted in New Zealand white rabbits that were kept under a minimal immunosuppression regimen. Transplanted corneas maintained transparency for as long as 6 weeks without obvious edema or immune rejection and maintaining the same endothelial markers that in a healthy cornea. In conclusion, it is possible to develop an artificial human corneal endothelial graft using remnant tissues that are not employed in transplant procedures. This artificial endothelial graft can restore the integrality of corneal endothelium in an experimental model of

  10. All-trans retinoic acid (ATRA) enhances maintenance of primitive human hematopoietic progenitors and skews them towards myeloid differentiation in a stroma-noncontact culture system

    OpenAIRE

    Leung, Anskar Y. H.; Verfaillie, Catherine

    2005-01-01

    OBJECTIVE: We have previously shown that hematopoietic progenitor cells (HPCs) from umbilical cord blood (UCB) can be maintained in a cytokine-supplemented stroma-noncontact (SNC) system. Here, we tested if all-trans retinoic acid (ATRA), known to improve expansion of murine hematopoietic stem cells, would enhance human HPC maintenance in a SNC culture system. METHODS: CD34+CD38-Lin- cells from UCB were cultured in transwells above AFT024 in the presence of Flt-3 ligand (FLT) and thrombopoiet...

  11. Progress of research on corneal collagen cross-linking for corneal melting

    Directory of Open Access Journals (Sweden)

    Ke-Ren Xiao

    2016-06-01

    Full Text Available Corneal collagen cross-linking(CXLcould increase the mechanical strength, biological stability and halt ectasia progression due to covalent bond formed by photochemical reaction between ultraviolet-A and emulsion of riboflavin between collagen fibers in corneal stroma. Corneal melting is an autoimmune related noninfectious corneal ulcer. The mechanism of corneal melting, major treatment, the basic fundamental of ultraviolet-A riboflavin induced CXL and the clinical researches status and experiment in CXL were summarized in the study.

  12. Human mesenchymal stroma/stem cells exchange membrane proteins and alter functionality during interaction with different tumor cell lines.

    Science.gov (United States)

    Yang, Yuanyuan; Otte, Anna; Hass, Ralf

    2015-05-15

    To analyze effects of cellular interaction between human mesenchymal stroma/stem cells (MSC) and different cancer cells, direct co-cultures were performed and revealed significant growth stimulation of the tumor populations and a variety of protein exchanges. More than 90% of MCF-7 and primary human HBCEC699 breast cancer cells as well as NIH:OVCAR-3 ovarian adenocarcinoma cells acquired CD90 proteins during MSC co-culture, respectively. Furthermore, SK-OV-3 ovarian cancer cells progressively elevated CD105 and CD90 proteins in co-culture with MSC. Primary small cell hypercalcemic ovarian carcinoma cells (SCCOHT-1) demonstrated undetectable levels of CD73 and CD105; however, both proteins were significantly increased in the presence of MSC. This co-culture-mediated protein induction was also observed at transcriptional levels and changed functionality of SCCOHT-1 cells by an acquired capability to metabolize 5'cAMP. Moreover, exchange between tumor cells and MSC worked bidirectional, as undetectable expression of epithelial cell adhesion molecule (EpCAM) in MSC significantly increased after co-culture with SK-OV-3 or NIH:OVCAR-3 cells. In addition, a small population of chimeric/hybrid cells appeared in each MSC/tumor cell co-culture by spontaneous cell fusion. Immune fluorescence demonstrated nanotube structures and exosomes between MSC and tumor cells, whereas cytochalasin-D partially abolished the intercellular protein transfer. More detailed functional analysis of FACS-separated MSC and NIH:OVCAR-3 cells after co-culture revealed the acquisition of epithelial cell-specific properties by MSC, including increased gene expression for cytokeratins and epithelial-like differentiation factors. Vice versa, a variety of transcriptional regulatory genes were down-modulated in NIH:OVCAR-3 cells after co-culture with MSC. Together, these mutual cellular interactions contributed to functional alterations in MSC and tumor cells.

  13. Biomechanics of Corneal Ring Implants

    OpenAIRE

    Daxer, Albert

    2015-01-01

    Purpose: To evaluate the biomechanics of corneal ring implants by providing a related mathematical theory and biomechanical model for the treatment of myopia and keratoconus. Methods: The spherical dome model considers the inhomogeneity of the tunica of the eye, dimensions of the cornea, lamellar structure of the corneal stroma, and asphericity of the cornea. It is used in this study for calculating a strengthening factor sf for the characterization of different ring-shaped corneal implant de...

  14. Adherens junction proteins are expressed in collagen corneal equivalents produced in vitro with human cells

    OpenAIRE

    Giasson, Claude J.; Deschambeault, Alexandre; Carrier, Patrick; Germain, Lucie

    2014-01-01

    Purpose To test whether adherens junction proteins are present in the epithelium and the endothelium of corneal equivalents. Methods Corneal cell types were harvested from human eyes and grown separately. Stromal equivalents were constructed by seeding fibroblasts into a collagen gel on which epithelial and endothelial cells were added on each side. Alternatively, bovine endothelial cells were used. At maturity, sections of stromal equivalents were processed for Masson's trichrome or indirect...

  15. Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice.

    Directory of Open Access Journals (Sweden)

    Hongshan Liu

    Full Text Available BACKGROUND: Keratoplasty is the most effective treatment for corneal blindness, but suboptimal medical conditions and lack of qualified medical personnel and donated cornea often prevent the performance of corneal transplantation in developing countries. Our study aims to develop alternative treatment regimens for congenital corneal diseases of genetic mutation. METHODOLOGY/PRINCIPAL FINDINGS: Human mesenchymal stem cells isolated from neonatal umbilical cords were transplanted to treat thin and cloudy corneas of lumican null mice. Transplantation of umbilical mesenchymal stem cells significantly improved corneal transparency and increased stromal thickness of lumican null mice, but human umbilical hematopoietic stem cells failed to do the same. Further studies revealed that collagen lamellae were re-organized in corneal stroma of lumican null mice after mesenchymal stem cell transplantation. Transplanted umbilical mesenchymal stem cells survived in the mouse corneal stroma for more than 3 months with little or no graft rejection. In addition, these cells assumed a keratocyte phenotype, e.g., dendritic morphology, quiescence, expression of keratocyte unique keratan sulfated keratocan and lumican, and CD34. Moreover, umbilical mesenchymal stem cell transplantation improved host keratocyte functions, which was verified by enhanced expression of keratocan and aldehyde dehydrogenase class 3A1 in lumican null mice. CONCLUSIONS/SIGNIFICANCE: Umbilical mesenchymal stem cell transplantation is a promising treatment for congenital corneal diseases involving keratocyte dysfunction. Unlike donated corneas, umbilical mesenchymal stem cells are easily isolated, expanded, stored, and can be quickly recovered from liquid nitrogen when a patient is in urgent need.

  16. Quantification of confocal images of human corneal endothelium

    Science.gov (United States)

    Laird, Jeffery A.; Beuerman, Roger W.; Kaufman, Stephen C.

    1996-05-01

    Real-time, in vivo, confocal microscopic examination permits visualization of human corneal endothelium cells as bright bodies organized into a densely packed hexagonal arrangement. Quantification of endothelial cell number would be useful in assessing the condition of this cell layer in various disease states. In this study, we sought to use an image analysis method developed in this laboratory that utilizes digital filtering techniques and morphological operations to determine the boundaries of each cell. Images were corrected to establish a uniform luminance level, and then convolved by various matrices until distinct peaks in luminance value were identified. These peaks were used as seed points from which cell boundaries were recursively expanded until they collided with other cell boundaries. This method automatically counts the number of cells and determines the size and position of each cell. The resulting histograms of cell size are readily indicative of changes in cellular density, cell loss, and deviation from uniform arrangement. The numbers of cells counted by this method are consistently within 3% of the numbers counted manually. Results relating cell counts obtained by manual and computerized methods are as follows: 200/184; 276/262; 87/87; 234/232; 236/232; 299/297; 145/147; 119/122; 237/243; 119/119; 245/253; 189/193. Thus, confocal microscopy coupled with these image analysis and statistical procedures provides an accurate quantitative approach to monitoring the endothelium under normal, pathological, and experimental conditions, such as those following surgery and trauma or in the evaluation of the efficacy of topical therapeutic agents.

  17. Corneal reconstruction by stem cells and bioengineering

    Directory of Open Access Journals (Sweden)

    Arjamaa O

    2012-09-01

    Full Text Available Olli ArjamaaDepartment of Biology, University of Turku, Turku, FinlandAbstract: Almost 300 million people are visually impaired worldwide due to various eye diseases such as cataracts, glaucoma, age-related macular degeneration, diabetic retinopathy, and corneal diseases. Notably, ten million people are blind because of severe ocular surface diseases and the majority of cases occur in developing countries. Blinding ocular surface diseases have, however, become treatable by grafting of surface layers, or by full-thickness transplantation of the cornea. As the demand for human corneal tissue for surface reconstruction and transplantation far exceeds the supply, methods are being developed to supplement tissue donation. Xenotransplantation of the cornea or cells from genetically modified pigs may become one of the solutions. Transplantation of limbal stem cells within tissue biopsies, to restore the transparency of the cornea is another remarkable method, which has shown its potential in several clinical studies. The combination of stem cell technology and engineering of biocompatible tissue equivalent, still at preclinical stage, has shown us how synthetic corneal tissue is able to guide cultured corneal stromal stem cells of human origin, to become native-like stroma, the most important layer of the cornea. These findings give hope for a large-quantity production of biomaterial for corneal reconstruction. As such, clinical ophthalmologists should become more familiar with the methods of laboratory science.Keywords: eye, grafting, keratoplasty, xenotransplantation, cell reservoir, biocompatible tissue equivalent

  18. Rapid, automated mosaicking of the human corneal subbasal nerve plexus.

    Science.gov (United States)

    Vaishnav, Yash J; Rucker, Stuart A; Saharia, Keshav; McNamara, Nancy A

    2017-11-27

    Corneal confocal microscopy (CCM) is an in vivo technique used to study corneal nerve morphology. The largest proportion of nerves innervating the cornea lie within the subbasal nerve plexus, where their morphology is altered by refractive surgery, diabetes and dry eye. The main limitations to clinical use of CCM as a diagnostic tool are the small field of view of CCM images and the lengthy time needed to quantify nerves in collected images. Here, we present a novel, rapid, fully automated technique to mosaic individual CCM images into wide-field maps of corneal nerves. We implemented an OpenCV image stitcher that accounts for corneal deformation and uses feature detection to stitch CCM images into a montage. The method takes 3-5 min to process and stitch 40-100 frames on an Amazon EC2 Micro instance. The speed, automation and ease of use conferred by this technique is the first step toward point of care evaluation of wide-field subbasal plexus (SBP) maps in a clinical setting.

  19. Corneal Ring Infiltrates Caused by Serratia marcescens in a Patient with Human Immunodeficiency Virus

    Directory of Open Access Journals (Sweden)

    Winai Chaidaroon

    2016-07-01

    Full Text Available Purpose: To describe corneal ring infiltrates caused by Serratia marcescens in a patient with human immunodeficiency virus (HIV-1 who wore contact lenses. Methods: A case study of a patient with keratitis due to an infection caused by S. marcescens and exhibiting corneal ring infiltrates was reviewed for history, clinical manifestation, microscopic study, and management. Results: A 29-year-old man who had a history of contact lens wear and HIV-1 infection was admitted to hospital because of blurred vision, redness, and corneal infiltrates in the shape of a ring in the left eye. The visual acuity (VA in both eyes was hand movement (uncorrected. Corneal scrapings were performed. The culture results of the corneal specimens revealed S. marcescens. The culture results of the contact lens disclosed the same organism. The corneal ulcer responded well to treatment with topical gentamycin sulfate 14 mg/ml. The final VA remained hand movement. Conclusions: S. marcescens can cause ring infiltrates in a HIV-1 patient who wears contact lenses. The treatment result for S. marcescens keratitis in a HIV-1 patient who wore contact lenses was favorable after intensive use of fortified topical antibiotics.

  20. Corneal Laceration

    Medline Plus

    Full Text Available ... What Is Corneal Laceration? Corneal Laceration Symptoms What Causes Corneal Laceration? Corneal Laceration Diagnosis Corneal Laceration Treatment ... the corneal laceration is deep enough it can cause a full thickness laceration. This is when the ...

  1. Corneal Laceration

    Medline Plus

    Full Text Available ... What Is Corneal Laceration? Corneal Laceration Symptoms What Causes Corneal Laceration? Corneal Laceration Diagnosis Corneal Laceration Treatment What Is Corneal Laceration? Leer en Español: ¿Qué ...

  2. Massive corneal edema treated with corneal cross-linking.

    Science.gov (United States)

    Laborante, A; Buzzonetti, L; Longo, C

    2012-01-01

    Massive corneal edema disrupts the fine architecture of corneal stroma that guarantees its transparency, causing opacities that seriously impair clear vision and are usually solved by corneal transplant. Corneal cross-linking, a treatment developed to halt keratoconus progression, results in a loss of water and a compaction of corneal stroma. It might therefore be useful to improve the pathologic edematous condition of some corneas, ameliorating visual acuity and allowing more time for a surgical procedure of keratoplasty. Six patients with visual impairing corneal edemas further to lens phacoemulsification, penetrating keratoplasty, or post-infective neovascularization were treated with corneal cross-linking alone, or in combination with amniotic membrane apposition with or without anti-angiogenic therapy. All patients partly resolved the edematous condition, improving both corneal transparency and visual acuity. Corneal cross-linking appears to be a useful method to treat massive corneal edemas, so that keratoplasty can be at least delayed, and need not to be an emergency treatment in these cases.

  3. Expression and regulation of cornified envelope proteins in human corneal epithelium.

    Science.gov (United States)

    Tong, Louis; Corrales, Rosa M; Chen, Zhuo; Villarreal, Arturo L; De Paiva, Cintia S; Beuerman, Roger; Li, De-Quan; Pflugfelder, Stephen C

    2006-05-01

    Stratified squamous epithelial cells assemble a specialized protective barrier structure on their periphery, termed the cornified envelope. The purpose of this study was to evaluate the presence and distribution of cornified envelope precursors in human corneal epithelium, their expression in human corneal epithelial cell cultures, and the effect of ultraviolet radiation (UVB) and transglutaminase (TG) inhibition on their expression. Tissue distribution of small proline-rich proteins (SPRRs) and filaggrin and involucrin was studied in human cornea sections by immunofluorescence staining. Primary human corneal epithelial cells (HCECs) from limbal explants were used in cell culture experiments. A single dose of UVB at 20 mJ/cm2 was used to stimulate these cells, in the presence or absence of mono-dansyl cadaverine (MDC), a TG inhibitor. SPRR2 and involucrin protein levels were studied by immunofluorescence staining and Western blot analysis. Gene expression of 12 proteins was investigated by semiquantitative reverse transcription-polymerase chain reaction. In human cornea tissue, SPRR1, SPRR2, filaggrin, and involucrin protein expression were detected in the central and peripheral corneal and limbal epithelium. In HCECs, SPRR2 and involucrin proteins were detected in the cytosolic fraction, and involucrin levels increased after UVB. Both SPRR2 and involucrin levels accumulated in the presence of MDC. Nine genes including involucrin, SPRR (types 1A, 1B, 2A, 2B, and 3), late envelope protein (LEP) 1 and 16, and filaggrin were expressed by HCECs. SPRR 4, loricrin, and LEP 6 transcripts were not detected. UVB downregulated SPRR (2A, 2B) and LEP 1 transcripts. Various envelope precursors are expressed in human corneal epithelium and in HCECs, acute UVB stress differentially alters their expression in HCECs. The expression of envelope precursors and their rapid modulation by UVB supports the role of these proteins in the regulation of ocular surface stress. TG function may

  4. Effects of organophosphorus flame retardant TDCPP on normal human corneal epithelial cells: Implications for human health.

    Science.gov (United States)

    Xiang, Ping; Liu, Rong-Yan; Li, Chao; Gao, Peng; Cui, Xin-Yi; Ma, Lena Q

    2017-11-01

    Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) is one of the most detected organophosphorus flame retardants (OPFRs) in the environment, especially in indoor dust. Continuous daily exposure to TDCPP-containing dust may adversely impact human cornea. However, its detrimental effects on human corneal epithelium are largely unknown. In this study, we investigated the cell apoptosis in normal human corneal epithelial cells (HCECs) after TDCPP exposure and elucidated the underlying molecular mechanisms. Our data indicated a dose-dependent decrease of cell viability after TDCPP exposure with LC 50 at 202 μg/mL. A concentration-dependent apoptotic sign was observed in HCECs after exposing to ≥2 μg/mL TDCPP. Endoplasmic reticulum stress induction was evidenced by up-regulation of its biomarker genes (ATF-4, CHOP, BiP, and XBP1). Furthermore, alternation of Bcl-2/Bax expression, mitochondrial membrane potential loss, cellular ATP content decrease, and caspase-3 and -9 activity increase were observed after exposing to 2 or 20 μg/mL TDCPP. Taken together, the data implicated the involvement of endoplasmic reticulum stress in TDCPP-induced HCEC apoptosis, probably mediated by mitochondrial apoptotic pathway. Our findings showed TDCPP exposure induced toxicity to human cornea. Due to TDCPP's presence at high levels in indoor dust, further study is warranted to evaluate its health risk on human corneas. Published by Elsevier Ltd.

  5. Effects of topical 0.2% Cyclosporine A on corneal neovascularization induced by xenologous amniotic membrane implantation into a corneal stroma micropocket of rats Efeitos do uso tópico da Ciclosporina A (CsA 0,2% na neovascularização corneal induzida pelo implante de membrana amniótica xenógena em microbolsa no estroma da córnea de ratos

    Directory of Open Access Journals (Sweden)

    Juliana F. Milani

    2008-08-01

    Full Text Available The objective of the study was to evaluate the topical effects of 0.2% Cyclosporine A (CsA on corneal neovascularization of rats following surgical implantation of equine amniotic membrane into a corneal stroma micropocket. The implantation of xenologous amniotic membrane was performed bilaterally in 90 rats. In the same day of the surgery each right eye started receiving topical CsA twice a day. The left eye received no medication and served as a control. The evaluation of corneal neovascularization was performed by computerized image analysis and histopathological evaluation at 1, 3, 7, 15, 30 and 60 days postoperatively. For the image analysis 10 animals were used per time period, and for the histopathological examination, five animals were used per time period. Image analysis found that corneal neovascularization began on the 3rd postoperative day, reached its peak on the 7th day, and then progressively and rapidly decreased. Statistic analysis indicated that neovascularization of the CsA treated eye on the 7th day was significantly higher than that observed in untreated eyes. On the 30th day, however, this pattern was reversed with the neovascularization observed in the CsA treated eyes declining to the low levels observed on the 3rd day. The degree of neovascularization in the untreated eyes on the 30th day declined to the baseline levels found on day 3 at the 60th day. Histopathological analysis indicated that deposition of collagen in the implanted tissue was completed by the 15th day. Therefore, we concluded that (1 equine amniotic membrane in rat corneal stroma produced an intense neovascularization until the 15th day postoperatively and then regressed, (2 deposition of collagen of the implanted tissue was completed on the 15th day postoperatively, and (3 use of CsA was associated with increase in the corneal neovascularization initially, followed by a quick and intense regression.Este estudo teve como objetivo a avaliação dos

  6. Corneal wound healing after excimer laser keratectomy.

    Science.gov (United States)

    Kaji, Yuichi; Yamashita, Hidetoshi; Oshika, Tetsuro

    2003-03-01

    Excimer laser keratectomy is widely used to correct refractive errors. Several complications of excimer laser keratectomy are reported including corneal infection, regression, corneal haze formation, glare and halo. Most of the complications are closely related to the corneal stromal wound healing process. In order to perform the excimer laser keratectomy with minimum complications, we should understand the mechanism of the corneal stroma wound healing process. In addition, such knowledge will help us to regulate the corneal stromal wound healing process in the future. In the present article, we discuss the molecular mechanism of the corneal stromal wound healing process after excimer laser keratectomy and its regulation by anti-inflammatory agents.

  7. Organization of fibrillar collagen in the human and bovine cornea: collagen types V and III.

    Science.gov (United States)

    White, J; Werkmeister, J A; Ramshaw, J A; Birk, D E

    1997-01-01

    The localization and fibrillar organization of collagen types V and III in the human and bovine corneal stromas were studied. In the chicken cornea, type V co-assembles with type I collagen as heterotypic fibrils and this interaction is involved in the regulation of fibril diameter necessary for corneal transparency. To determine whether this is a regulatory mechanism common to the corneas of different species the human and bovine corneal stroma were studied. Collagen type V was found in the epithelium and Bowman's membrane in the untreated adult human and bovine cornea using immunofluorescence microscopy. In the absence of any treatment, there was no type V reactivity within the stroma. However, type V collagen was detected homogeneously throughout the corneal stroma after treatments that partially disrupt fibril structure. The reactivity was strongest in the cornea, weaker in the limbus and weakest in the sclera. Fetal corneas showed similar reactivity for type V collagen, but unlike the adult, the stroma was slightly reactive. Immunoelectron microscopy demonstrated that type V collagen was associated with disrupted, but not with intact, fibrils in both human and bovine corneal stroma. Type III collagen reactivity was not detected in the cornea, but was present subepithelially in the limbus and in the scleral stroma. These data indicate that type V collagen is a component of striated collagen fibrils throughout the human and bovine corneal stromas. The interaction of type I and V collagen as heterotypic fibrils masks the helical epitope recognized by the monoclonal antibody against type V collagen. The heterotypic interactions of collagen type V indicate a role in the regulation of fibril diameter analogous to that described in the avian cornea.

  8. Airbag-induced corneal flap.

    Science.gov (United States)

    Liyanage, Sidath E; Mearza, Ali A

    2009-02-01

    To describe a case of airbag-induced corneal flap in a previously normal cornea. Case report. A 27-year-old woman presented with complete loss of vision in her left eye following a road traffic accident which involved airbag deployment. There was no previous ocular history. Examination revealed a large corneal flap of 6mm in diameter, extending to the depth of anterior stroma. This was accompanied by a traumatic optic neuropathy. One month follow-up revealed complete reattachment of the corneal flap. This is the first reported case of a corneal flap induced by airbag deployment in a cornea with previously normal architecture.

  9. Adhesion and metabolic activity of human corneal cells on PCL based nanofiber matrices.

    Science.gov (United States)

    Stafiej, Piotr; Küng, Florian; Thieme, Daniel; Czugala, Marta; Kruse, Friedrich E; Schubert, Dirk W; Fuchsluger, Thomas A

    2017-02-01

    In this work, polycaprolactone (PCL) was used as a basic polymer for electrospinning of random and aligned nanofiber matrices. Our aim was to develop a biocompatible substrate for ophthalmological application to improve wound closure in defects of the cornea as replacement for human amniotic membrane. We investigated whether blending the hydrophobic PCL with poly (glycerol sebacate) (PGS) or chitosan (CHI) improves the biocompatibility of the matrices for cell expansion. Human corneal epithelial cells (HCEp) and human corneal keratocytes (HCK) were used for in vitro biocompatibility studies. After optimization of the electrospinning parameters for all blends, scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and water contact angle were used to characterize the different matrices. Fluorescence staining of the F-actin cytoskeleton of the cells was performed to analyze the adherence of the cells to the different matrices. Metabolic activity of the cells was measured by cell counting kit-8 (CCK-8) for 20days to compare the biocompatibility of the materials. Our results show the feasibility of producing uniform nanofiber matrices with and without orientation for the used blends. All materials support adherence and proliferation of human corneal cell lines with oriented growth on aligned matrices. Although hydrophobicity of the materials was lowered by blending PCL, no increase in biocompatibility or proliferation, as was expected, could be measured. All tested matrices supported the expansion of human corneal cells, confirming their potential as substrates for biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Corneal distribution of riboflavin prior to collagen cross-linking.

    Science.gov (United States)

    Søndergaard, Anders P; Hjortdal, Jesper; Breitenbach, Thomas; Ivarsen, Anders

    2010-02-01

    To evaluate the distribution of riboflavin in the corneal stroma, under varying concentrations and application time. In 54 porcine eyes, the central corneal epithelium was removed, and 0.035, 0.1, or 0.2% riboflavin-5-phosphate (in 20% Dextran T-500) was applied for 10, 20, or 30 min (3 x 6 corneas in each of the 3 groups). Trephined corneal buttons were examined using confocal fluorescence microscopy. Stromal riboflavin distribution and concentration was determined by measuring riboflavin fluorescence in optical sections at 10 microm intervals through the entire cornea. The procedure was repeated in 7 human corneal donor grafts using 0.1% riboflavin-5-phosphate for 20 or 30 min. In porcine corneas, fluorescence intensity peaked within the first 50 microm followed by a steep decline to baseline. Increasing the riboflavin concentration from 0.1 to 0.2% did not increase stromal depth propagation, although a higher concentration in the anterior 200 microm was observed. Reducing the riboflavin application time from 30 to 20 min had no impact on corneal depth propagation or total riboflavin uptake. However, a 10-min further reduction of the application time caused a significantly reduced riboflavin uptake. In all human corneas, fluorescence peaked within the anterior 50 microm, followed by a steep decline to baseline over the next 200 microm; similar to the observations in porcine corneas. The human corneas imbibed more riboflavin compared to the porcine corneas. In human and porcine corneas, riboflavin does not appear to fully load the corneal stroma using the current clinical procedure. Instead, the uptake appears to be limited to the anterior approximately 200 microm. Changes in application time and riboflavin concentration have only little influence on stromal depth diffusion.

  11. A Tumor-stroma Targeted Oncolytic Adenovirus Replicated in Human Ovary Cancer Samples and Inhibited Growth of Disseminated Solid Tumors in Mice

    Science.gov (United States)

    Lopez, M Veronica; Rivera, Angel A; Viale, Diego L; Benedetti, Lorena; Cuneo, Nicasio; Kimball, Kristopher J; Wang, Minghui; Douglas, Joanne T; Zhu, Zeng B; Bravo, Alicia I; Gidekel, Manuel; Alvarez, Ronald D; Curiel, David T; Podhajcer, Osvaldo L

    2012-01-01

    Targeting the tumor stroma in addition to the malignant cell compartment is of paramount importance to achieve complete tumor regression. In this work, we modified a previously designed tumor stroma-targeted conditionally replicative adenovirus (CRAd) based on the SPARC promoter by introducing a mutated E1A unable to bind pRB and pseudotyped with a chimeric Ad5/3 fiber (Ad F512v1), and assessed its replication/lytic capacity in ovary cancer in vitro and in vivo. AdF512v1 was able to replicate in fresh samples obtained from patients: (i) with primary human ovary cancer; (ii) that underwent neoadjuvant treatment; (iii) with metastatic disease. In addition, we show that four intraperitoneal (i.p.) injections of 5 × 1010 v.p. eliminated 50% of xenografted human ovary tumors disseminated in nude mice. Moreover, AdF512v1 replication in tumor models was enhanced 15–40-fold when the tumor contained a mix of malignant and SPARC-expressing stromal cells (fibroblasts and endothelial cells). Contrary to the wild-type virus, AdF512v1 was unable to replicate in normal human ovary samples while the wild-type virus can replicate. This study provides evidence on the lytic capacity of this CRAd and highlights the importance of targeting the stromal tissue in addition to the malignant cell compartment to achieve tumor regression. PMID:22948673

  12. Multidrug resistance-associated protein (MRP1, 2, 4 and 5) expression in human corneal cell culture models and animal corneal tissue.

    Science.gov (United States)

    Verstraelen, Jessica; Reichl, Stephan

    2014-07-07

    Preclinical studies addressing the transcorneal absorption of ophthalmic drugs are mainly performed using ex vivo animal corneas and in vitro corneal cell culture models, leaving open the question of transferability to humans in an in vivo situation. While passive drug absorption through corneal tissue is well understood, little is known about the expression of transporter proteins and active drug transport in human and animal corneas as well as corneal cell culture models. Therefore, the aim of this study was to conduct an expression analysis of four multidrug resistance-associated proteins (MRP1, 2, 4 and 5) in various in vitro and ex vivo corneal models, leading to a better understanding of the comparability of different corneal models regarding drug absorption and transferability to humans. Two well-established in vitro human corneal models, the HCE-T epithelial model and the more organotypic Hemicornea construct, both of which are based on the SV40 immortalized human corneal epithelial cell line HCE-T, were analyzed, as were excised rabbit and porcine cornea. Specimens of abraded epithelia from human donor corneas were also tested. MRP mRNA expression was determined via reverse transcriptase polymerase chain reaction. Protein expression was examined using Western blot experiments and immunohistochemistry. The functional activity of the MRP efflux transporter was detected in transport assays using specific marker and inhibitor substances. The functional expression of all of the tested MRP transporters was detected in the HCE-T epithelial model. Hemicornea constructs displayed a similar expression pattern for MRP1, 4 and 5, whereas no MRP2 protein expression or activity was detected. However, excised animal corneas exhibited different expression profiles. In porcine cornea, no functional expression of MRP1, 2, or 5 was observed, and we failed to detect MRP4 expression in rabbit cornea. The results suggest that MRP1, 2, 4, and 5 are expressed in the human corneal

  13. Intrastromal corneal ring implants for corneal thinning disorders: an evidence-based analysis.

    Science.gov (United States)

    2009-01-01

    generally performed by either corneal specialists or refractive surgeons. It involves creating tunnels in the corneal stroma to secure the implants either by a diamond knife or laser calibrated to an approximate depth of 70% of the cornea. Variable approaches have been employed by surgeons in selecting ring segment size, number and position. Generally, two segments of equal thickness are placed superiorly and inferiorly to manage symmetrical patterns of corneal thinning whereas one segment may be placed to manage asymmetric thinning patterns. Following implantation, the major safety concerns are for potential adverse events including corneal perforation, infection, corneal infiltrates, corneal neovascularization, ring migration and extrusion and corneal thinning. Technical results can be unsatisfactory for several reasons. Treatment may result in an over or under-correction of refraction and may induce astigmatism or asymmetry of the cornea. Progression of the corneal cone with corneal opacities is also invariably an indication for progression to corneal transplant. Other reasons for treatment failure or patient dissatisfaction include foreign body sensation, unsatisfactory visual quality with symptoms such as double vision, fluctuating vision, poor night vision or visual side effects related to ring edge or induced or unresolved astigmatism. The literature search strategy employed keywords and subject headings to capture the concepts of 1) intrastromal corneal rings and 2) corneal diseases, with a focus on keratoconus, astigmatism, and corneal ectasia. The initial search was run on April 17, 2008, and a final search was run on March 6, 2009 in the following databases: Ovid MEDLINE (1996 to February Week 4 2009), OVID MEDLINE In-Process and Other Non-Indexed Citations, EMBASE (1980 to 2009 Week 10), OVID Cochrane Library, and the Centre for Reviews and Dissemination/International Agency for Health Technology Assessment. Parallel search strategies were developed for the

  14. SV40-transformed human corneal keratocytes: optimisation of serum-free culture conditions.

    Science.gov (United States)

    Manzer, Anna Katharina; Lombardi-Borgia, Simone; Schäfer-Korting, Monika; Seeber, Judith; Zorn-Kruppa, Michaela; Engelke, Maria

    2009-01-01

    Aiming at the replacement of animal experiments in eye irritation testing, we have established a multilay ered cornea model comprising the co-culture of all three corneal cell types. It was the objective of this study to optimise serum-free culture conditions to preserve both growth and phenotype of an SV40-immortalised human corneal keratocyte cell line (HCK). Our results revealed that HCK continue to proliferate in both monolayer cultures as well as after seeding in a collagen matrix and resemble primary corneal keratocytes in morphology and functional characteristics under defined serum-free conditions. Furthermore, HCK were shown to transform into activated corneal fibroblast phenotypes in response to serum and TGF(beta)1. In summary, HCK cells mimic their in vivo (primary) precursors, both in sustaining the quiescent keratocyte phenotype (serum-starved conditions) and in responding to growth factor stimulation. Hence, this cell line may provide a useful tool to study the toxicity and wound healing response of corneal keratocytes in vitro.

  15. Efficient and safe gene delivery to human corneal endothelium using magnetic nanoparticles.

    Science.gov (United States)

    Czugala, Marta; Mykhaylyk, Olga; Böhler, Philip; Onderka, Jasmine; Stork, Björn; Wesselborg, Sebastian; Kruse, Friedrich E; Plank, Christian; Singer, Bernhard B; Fuchsluger, Thomas A

    2016-07-01

    To develop a safe and efficient method for targeted, anti-apoptotic gene therapy of corneal endothelial cells (CECs). Magnetofection (MF), a combination of lipofection with magnetic nanoparticles (MNPs; PEI-Mag2, SO-Mag5, PalD1-Mag1), was tested in human CECs and in explanted human corneas. Effects on cell viability and function were investigated. Immunocompatibility was assessed in human peripheral blood mononuclear cells. Silica iron-oxide MNPs (SO-Mag5) combined with X-tremeGENE-HP achieved high transfection efficiency in human CECs and explanted human corneas, without altering cell viability or function. Magnetofection caused no immunomodulatory effects in human peripheral blood mononuclear cells. Magnetofection with anti-apoptotic P35 gene effectively blocked apoptosis in CECs. Magnetofection is a promising tool for gene therapy of corneal endothelial cells with potential for targeted on-site delivery.

  16. Acute cytotoxic effects of marketed ophthalmic formulations on human corneal epithelial cells.

    Science.gov (United States)

    Hakkarainen, Jenni J; Reinisalo, Mika; Ragauskas, Symantas; Seppänen, Aila; Kaja, Simon; Kalesnykas, Giedrius

    2016-09-10

    The purpose of the study was to devise a fast, reliable and sensitive cell viability assay for assessment of acute cytotoxicity on human corneal epithelial cells by using a clinically relevant exposure time. Acute cytotoxic effects of the pharmaceutical excipients benzalkonium chloride (BAC), macrogolglycerol hydroxystearate (MGHS40), polysorbate 80 (PS80) and marketed ophthalmic formulations (Lumigan(®), Monoprost(®), Taflotan(®), Travatan(®), Xalatan(®)) containing these excipients were tested. Human corneal epithelial cell (HCE-T) viability was assessed by measuring the reduction of resazurin to highly fluorescent resorufin. Expression of the tight junction proteins in HCE-T cells were characterized by immunofluorescence staining. Presence of tight junction proteins in HCE-T cells was demonstrated. BAC preserved ophthalmic formulations showed concentration-dependent and time-dependent cytotoxicity to human corneal epithelium. In contrast, no acute cytotoxicity of non-ionic stabilizing/solubilizing excipients (MGSH40 and PS80) or ophthalmic formulation containing these excipients was observed. Marketed ophthalmic formulations used for glaucoma medication show differential toxicity on human corneal epithelial cells. The present study revealed that BAC-preserved ophthalmic formulations were able to induce acute cytotoxic effects even during a clinically relevant exposure time, which was not observed with MGSH40 and PS80 excipients or ophthalmic formulations containing these excipients. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effects of phthalates on the human corneal endothelial cell line B4G12

    DEFF Research Database (Denmark)

    Krüger, Tanja; Cao, Yi; Kjærgaard, Søren K.

    2012-01-01

    Phthalates are industrial chemicals used in many cosmetics. We evaluated an in vitro model for eye irritancy testing using the human corneal endothelial cell line B4G12. Cell proliferation and toxicity were assessed after exposing to di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di-2...

  18. The effect of 193 nm excimer laser radiation on the human corneal endothelial cell density

    Energy Technology Data Exchange (ETDEWEB)

    Isager, P.; Hjortdal, J.Oe.; Ehlers, N. [Aarhus Univ. Hospital, Dept. of Ophthalmology, Aarhus (Denmark)

    1996-06-01

    The effect of 193 nm excimer laser radiation on human corneal endothelial cell density was examined. Fifty-five eyes from 35 patients underwent photorefractive keratectomy for myopia. Photomicrographs of the endothelium were taken a short time before the operation and on an average of 7 months postoperatively with a specular microscope. The average endothelial cell densities were preoperatively 3375 {+-} 266 cells/mm{sup 2} (means {+-} SD) and postoperatively 3348 {+-} 287 cells/mm{sup 2}, corresponding to a fall of 27 cells/mm{sup 2} (N = 55). This fall in endothelial cell density was not statistically significant. A significant correlation between the change in cell density and age of the patient was found, with older patients losing more cells (N = 35, 2p < 0.05). The magnification of the specular microscope was found to change with corneal thickness. The importance of correcting the endothelial cell densities for corneal thickness is discussed. (au) 14 refs.

  19. Rho GTPases and regulation of cell migration and polarization in human corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Aihua Hou

    Full Text Available PURPOSE: Epithelial cell migration is required for regeneration of tissues and can be defective in a number of ocular surface diseases. This study aimed to determine the expression pattern of Rho family small G-proteins in human corneal epithelial cells to test their requirement in directional cell migration. METHODS: Rho family small G-protein expression was assessed by reverse transcription-polymerase chain reaction. Dominant-inhibitory constructs encoding Rho proteins or Rho protein targeting small interfering RNA were transfected into human corneal epithelial large T antigen cells, and wound closure rate were evaluated by scratch wounding assay, and a complementary non-traumatic cell migration assay. Immunofluorescence staining was performed to study cell polarization and to assess Cdc42 downstream effector. RESULTS: Cdc42, Chp, Rac1, RhoA, TC10 and TCL were expressed in human corneal epithelial cells. Among them, Cdc42 and TCL were found to significantly affect cell migration in monolayer scratch assays. These results were confirmed through the use of validated siRNAs directed to Cdc42 and TCL. Scramble siRNA transfected cells had high percentage of polarized cells than Cdc42 or TCL siRNA transfected cells at the wound edge. We showed that the Cdc42-specific effector p21-activated kinase 4 localized predominantly to cell-cell junctions in cell monolayers, but failed to translocate to the leading edge in Cdc42 siRNA transfected cells after monolayer wounding. CONCLUSION: Rho proteins expressed in cultured human corneal epithelial cells, and Cdc42, TCL facilitate two-dimensional cell migration in-vitro. Although silencing of Cdc42 and TCL did not noticeably affect the appearance of cell adhesions at the leading edge, the slower migration of these cells indicates both GTP-binding proteins play important roles in promoting cell movement of human corneal epithelial cells.

  20. Plastic compressed collagen as a novel carrier for expanded human corneal endothelial cells for transplantation.

    Directory of Open Access Journals (Sweden)

    Hannah J Levis

    Full Text Available Current treatments for reversible blindness caused by corneal endothelial cell failure involve replacing the failed endothelium with donor tissue using a one donor-one recipient strategy. Due to the increasing pressure of a worldwide donor cornea shortage there has been considerable interest in developing alternative strategies to treat endothelial disorders using expanded cell replacement therapy. Protocols have been developed which allow successful expansion of endothelial cells in vitro but this approach requires a supporting material that would allow easy transfer of cells to the recipient. We describe the first use of plastic compressed collagen as a highly effective, novel carrier for human corneal endothelial cells. A human corneal endothelial cell line and primary human corneal endothelial cells retained their characteristic cobblestone morphology and expression of tight junction protein ZO-1 and pump protein Na+/K+ ATPase α1 after culture on collagen constructs for up to 14 days. Additionally, ultrastructural analysis suggested a well-integrated endothelial layer with tightly opposed cells and apical microvilli. Plastic compressed collagen is a superior biomaterial in terms of its speed and ease of production and its ability to be manipulated in a clinically relevant manner without breakage. This method provides expanded endothelial cells with a substrate that could be suitable for transplantation allowing one donor cornea to potentially treat multiple patients.

  1. Plastic compressed collagen as a novel carrier for expanded human corneal endothelial cells for transplantation.

    Science.gov (United States)

    Levis, Hannah J; Peh, Gary S L; Toh, Kah-Peng; Poh, Rebekah; Shortt, Alex J; Drake, Rosemary A L; Mehta, Jodhbir S; Daniels, Julie T

    2012-01-01

    Current treatments for reversible blindness caused by corneal endothelial cell failure involve replacing the failed endothelium with donor tissue using a one donor-one recipient strategy. Due to the increasing pressure of a worldwide donor cornea shortage there has been considerable interest in developing alternative strategies to treat endothelial disorders using expanded cell replacement therapy. Protocols have been developed which allow successful expansion of endothelial cells in vitro but this approach requires a supporting material that would allow easy transfer of cells to the recipient. We describe the first use of plastic compressed collagen as a highly effective, novel carrier for human corneal endothelial cells. A human corneal endothelial cell line and primary human corneal endothelial cells retained their characteristic cobblestone morphology and expression of tight junction protein ZO-1 and pump protein Na+/K+ ATPase α1 after culture on collagen constructs for up to 14 days. Additionally, ultrastructural analysis suggested a well-integrated endothelial layer with tightly opposed cells and apical microvilli. Plastic compressed collagen is a superior biomaterial in terms of its speed and ease of production and its ability to be manipulated in a clinically relevant manner without breakage. This method provides expanded endothelial cells with a substrate that could be suitable for transplantation allowing one donor cornea to potentially treat multiple patients.

  2. Generation of novel monoclonal antibodies for the enrichment and characterization of human corneal endothelial cells (hCENC) necessary for the treatment of corneal endothelial blindness.

    Science.gov (United States)

    Ding, Vanessa; Chin, Angela; Peh, Gary; Mehta, Jodhbir S; Choo, Andre

    2014-01-01

    Corneal transplantation is the primary treatment option to restore vision for patients with corneal endothelial blindness. Although the success rate of treatment is high, limited availability of transplant grade corneas is a major obstacle. Tissue-engineered corneal endothelial grafts constructed using cultivated human corneal endothelial cells (hCENC) isolated from cadaveric corneas may serve as a potential graft source. Currently, tools for the characterization of cultured hCENC and enrichment of hCENC from potential contaminating cells such as stromal fibroblasts are lacking. In this study, we describe the generation and characterization of novel cell surface monoclonal antibodies (mAbs) specific for hCENC. These mAbs could be used for enrichment and characterization of hCENC. Out of a total of 389 hybridomas, TAG-1A3 and TAG-2A12 were found to be specific to the corneal endothelial monolayer by immunostaining of frozen tissue sections. Both mAbs were able to clearly identify hCENC with good 'cobblestone-like' morphology from multiple donors. The antigen targets for TAG-1A3 and TAG-2A12 were found to be CD166/ALCAM and Peroxiredoxin-6 (Prdx-6), respectively, both of which have not been previously described as markers of hCENC. Additionally, unlike other Prdx-6 mAbs, TAG-2A12 was found to specifically bind cell surface Prdx-6, which was only expressed on hCENC and not on other cell types screened such as human corneal stromal fibroblasts (hCSF) and human pluripotent stem cells (hPSC). From our studies, we conclude that TAG-1A3 and TAG-2A12 are promising tools to quantitatively assess hCENC quality. It is also noteworthy that the binding specificity of TAG-2A12 could be used for the enrichment of hCENC from cell mixtures of hCSF and hPSC.

  3. Discovery of molecular markers to discriminate corneal endothelial cells in the human body.

    Directory of Open Access Journals (Sweden)

    Masahito Yoshihara

    Full Text Available The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant number of CECs results in corneal edema called bullous keratopathy which can lead to severe visual loss. Corneal transplantation is the most effective method to treat corneal endothelial dysfunction, where it suffers from donor shortage. Therefore, regeneration of CECs from other cell types attracts increasing interests, and specific markers of CECs are crucial to identify actual CECs. However, the currently used markers are far from satisfactory because of their non-specific expression in other cell types. Here, we explored molecular markers to discriminate CECs from other cell types in the human body by integrating the published RNA-seq data of CECs and the FANTOM5 atlas representing diverse range of cell types based on expression patterns. We identified five genes, CLRN1, MRGPRX3, HTR1D, GRIP1 and ZP4 as novel markers of CECs, and the specificities of these genes were successfully confirmed by independent experiments at both the RNA and protein levels. Notably none of them have been documented in the context of CEC function. These markers could be useful for the purification of actual CECs, and also available for the evaluation of the products derived from other cell types. Our results demonstrate an effective approach to identify molecular markers for CECs and open the door for the regeneration of CECs in vitro.

  4. Transplantation of tissue-engineered human corneal endothelium in cat models.

    Science.gov (United States)

    Fan, Tingjun; Ma, Xiya; Zhao, Jun; Wen, Qian; Hu, Xiuzhong; Yu, Haoze; Shi, Weiyun

    2013-01-01

    To evaluate the performance of reconstructed tissue-engineered human corneal endothelium (TE-HCE) by corneal transplantation in cat models. TE-HCE reconstruction was performed by culturing 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled monoclonal HCE cells on denuded amniotic membranes (dAMs) in 20% fetal bovine serum-containing Dulbecco's Modified Eagle's Medium/Ham's Nutrient Mixture F12 (1:1) medium and 5% CO(2) at 37 ° C on a 24-well culture plate. The reconstructed TE-HCE was transplanted into cat corneas via lamellar keratoplasty with all of the endothelium and part of Descemet's membrane stripped. Postsurgical corneas were monitored daily with their histological properties examined during a period of 104 days after transplantation. The reconstructed TE-HCE at a density of 3,413.33 ± 111.23 cells/mm(2) in average established intense cell-cell and cell-dAM junctions. After lamellar keratoplasty surgery, no obvious edema was found in TE-HCE-transplanted cat corneas, which were transparent throughout the monitoring period. In contrast, intense corneal edema developed in dAM-transplanted cat corneas, which were turbid. The corneal thickness gradually decreased to 751.33 ± 11.37 μm on day 104 after TE-HCE transplantation, while that of dAM eye was over 1,000 μm in thickness during the monitoring period. A monolayer of endothelium consisting of TE-HCE-originated cells at a density of 2,573.33 ± 0.59 cells/mm(2) attached tightly to the surface of remnant Descemet's membrane over 104 days; this was similar to the normal eye control in cell density. The reconstructed TE-HCE was able to function as a corneal endothelium equivalent and restore corneal function in cat models.

  5. Discovery of molecular markers to discriminate corneal endothelial cells in the human body.

    Science.gov (United States)

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant number of CECs results in corneal edema called bullous keratopathy which can lead to severe visual loss. Corneal transplantation is the most effective method to treat corneal endothelial dysfunction, where it suffers from donor shortage. Therefore, regeneration of CECs from other cell types attracts increasing interests, and specific markers of CECs are crucial to identify actual CECs. However, the currently used markers are far from satisfactory because of their non-specific expression in other cell types. Here, we explored molecular markers to discriminate CECs from other cell types in the human body by integrating the published RNA-seq data of CECs and the FANTOM5 atlas representing diverse range of cell types based on expression patterns. We identified five genes, CLRN1, MRGPRX3, HTR1D, GRIP1 and ZP4 as novel markers of CECs, and the specificities of these genes were successfully confirmed by independent experiments at both the RNA and protein levels. Notably none of them have been documented in the context of CEC function. These markers could be useful for the purification of actual CECs, and also available for the evaluation of the products derived from other cell types. Our results demonstrate an effective approach to identify molecular markers for CECs and open the door for the regeneration of CECs in vitro.

  6. All-trans retinoic acid (ATRA) enhances maintenance of primitive human hematopoietic progenitors and skews them towards myeloid differentiation in a stroma-noncontact culture system.

    Science.gov (United States)

    Leung, Anskar Y H; Verfaillie, Catherine M

    2005-04-01

    We have previously shown that hematopoietic progenitor cells (HPCs) from umbilical cord blood (UCB) can be maintained in a cytokine-supplemented stroma-noncontact (SNC) system. Here, we tested if all-trans retinoic acid (ATRA), known to improve expansion of murine hematopoietic stem cells, would enhance human HPC maintenance in a SNC culture system. CD34+CD38-Lin- cells from UCB were cultured in transwells above AFT024 in the presence of Flt-3 ligand (FLT) and thrombopoietin (TPO), with or without ATRA. Total nucleated cells (TNC), colony-forming units (CFUs), long-term culture-initiating cells (LTC-ICs), myeloid-lymphoid initiating cells (ML-ICs) and SCID repopulating cells (SRCs) were evaluated 1 to 5 weeks after culture. All-trans retinoic acid (1 mumol/L) reduced expansion of CD34+CD38-Lin- TNC and CFUs after 2 to 5 weeks of culture. However, it significantly increased LTC-IC expansion after 1 to 3 and, even more so, 5 weeks of culture. ATRA also increased recovery of more primitive ML-ICs and SRCs. Increased HPC recovery appeared dependent on the presence of stromal cells, as LTC-IC expansion was significantly reduced when ATRA was added to stroma-free cultures. All-trans retinoic acid increases expansion of early HPCs in a stromal cell-dependent fashion.

  7. Novel model of innate immunity in corneal infection.

    Science.gov (United States)

    Rajaiya, Jaya; Zhou, Xiaohong; Barequet, Irina; Gilmore, Michael S; Chodosh, James

    2015-09-01

    The cornea functions as the major refractive interface for vision and protects the internal eye from insult. Current understanding of innate immune responses to corneal infection derives from a synthesis of in vitro and in vivo analyses. However, monolayer cell cultures and mouse models do not accurately duplicate all aspects of innate immunity in human patients. Here, we describe a three-dimensional culture system that incorporates human cells and extracellular matrix to more completely simulate the human cornea for studies of infection. Human corneal stromal fibroblasts were mixed with type I collagen in 3-μm pore size transwell inserts, and overlayed with Matrigel to simulate a human corneal stroma and epithelial basement membrane. These were then infected with a cornea-tropic adenovirus, and exposed on their inferior side to leukocytes derived from human peripheral blood. Subsequent analyses were performed with histology, confocal microscopy, ELISA, and fluorescence-activated cell sorting (FACS). CXCL8, a neutrophil chemokine shown previously as the first cytokine induced in infection of human corneal cells, increased upon adenovirus infection of facsimiles in a dose-responsive fashion. Myeloperoxidase-positive cells infiltrated infected corneal facsimiles in a sub-Matrigel location, possibly due to CXCL8 colocalization with heparan sulfate, a Matrigel constituent. Cellular infiltration was significantly inhibited by treatment with chemical inhibitors of p38 MAPK and Src kinase, both constituents of a signaling cascade previously suggested to regulate inflammation after adenovirus infection. FACS analysis determined that both virus and corneal fibroblasts were necessary for the induction of leukocyte migration into the facsimiles. The corneal facsimile, literally a cornea in a test tube, permits mechanistic studies on human tissue in a highly tractable system.

  8. [An experimental research of recombinant human epidermal growth factor on corneal wound healing].

    Science.gov (United States)

    Zheng, R; Jin, X; Yang, B; Li, B; Li, L; Xu, Z; Zhu, H

    1998-05-01

    To investigate the effects of recombinant human epidermal growth factor (rhEGF) eye drops on corneal wound healing. Twenty-four white rabbits were randomly divided into 4 groups, 6 rabbits 12 eyes each. Anterior keratectomy of 8 mm in diameter and 1/3 cornea in thickness was performed on each eye. Each of the following concentrations of rhEGF: 1, 10, 100 microg/ml eye drops or normal saline (control) was applied four times daily for a week respectively for one group. The wound area was determined by computer imaging analysis. The mean epithelial healing rate of rhEGF 1, 10, 100 microg/ml groups was 9.31, 9.96, 9.31 mm(2)/day respectively, significantly greater than 8.11 mm(2)/day of the control group. The action of rhEGF of 10 microg/ml was somewhat better than that of 1 or 100 microg/ml, and no significant difference was noticed among the three rhEGF groups. Moderate inflammation and corneal neovascularization were induced in the rhEGF 100 microg/ml treated group. rhEGF 1 - 10 microg/ml can accelerate corneal wound healing in the rabbit with no adverse side-effects. It may be used to treat serious corneal trauma and ulcer clinically.

  9. Innervation of Tissue-Engineered Recombinant Human Collagen-Based Corneal Substitutes: A Comparative In Vivo Confocal Microscopy Study

    National Research Council Canada - National Science Library

    Lagali, Neil; Griffith, May; Fagerholm, Per; Merrett, Kimberley; Huynh, Melissa; Munger, Rejean

    2008-01-01

    ...; and the 3 Department of Ophthalmology, Linköping University Hospital, Linköping, Sweden. METHODS . Pigs received a corneal allograft or a substitute made of either recombinant human type-I or -III collagen...

  10. The theory and art of corneal cross-linking

    Directory of Open Access Journals (Sweden)

    Rebecca McQuaid

    2013-01-01

    Full Text Available Before the discovery of corneal cross-linking (CXL, patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma.

  11. The theory and art of corneal cross-linking.

    Science.gov (United States)

    McQuaid, Rebecca; Cummings, Arthur B; Mrochen, Michael

    2013-08-01

    Before the discovery of corneal cross-linking (CXL), patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs) that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL) would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A) light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma.

  12. Innervation of tissue-engineered recombinant human collagen-based corneal substitutes : A comparative in vivo confocal microscopy study

    OpenAIRE

    Lagali, Neil; Griffith, May; Fagerholm, Per; Merrett, Kimberley; Huynh, Melissa; Munger, Rejean

    2008-01-01

    PURPOSE. To compare reinnervation in recombinant human collagen-based corneal substitutes with allografts during a 1-year postimplantation follow-up period in pigs. A retrospective comparison to innervation in porcine collagen-based biosynthetic grafts was also performed. METHODS. Pigs received a corneal allograft or a substitute made of either recombinant human type-I or -III collagen. In vivo confocal microscopic examination of the central cornea of surgical and untouched control eyes befor...

  13. Effects of aberrant Pax6 gene dosage on mouse corneal pathophysiology and corneal epithelial homeostasis.

    Directory of Open Access Journals (Sweden)

    Richard L Mort

    Full Text Available Altered dosage of the transcription factor PAX6 causes multiple human eye pathophysiologies. PAX6⁺/⁻ heterozygotes suffer from aniridia and aniridia-related keratopathy (ARK, a corneal deterioration that probably involves a limbal epithelial stem cell (LESC deficiency. Heterozygous Pax6(+/Sey-Neu (Pax6⁺/⁻ mice recapitulate the human disease and are a good model of ARK. Corneal pathologies also occur in other mouse Pax6 mutants and in PAX77(Tg/- transgenics, which over-express Pax6 and model human PAX6 duplication.We used electron microscopy to investigate ocular defects in Pax6⁺/⁻ heterozygotes (low Pax6 levels and PAX77(Tg/- transgenics (high Pax6 levels. As well as the well-documented epithelial defects, aberrant Pax6 dosage had profound effects on the corneal stroma and endothelium in both genotypes, including cellular vacuolation, similar to that reported for human macular corneal dystrophy. We used mosaic expression of an X-linked LacZ transgene in X-inactivation mosaic female (XLacZ(Tg/- mice to investigate corneal epithelial maintenance by LESC clones in Pax6⁺/⁻ and PAX77(Tg/- mosaic mice. PAX77(Tg/- mosaics, over-expressing Pax6, produced normal corneal epithelial radial striped patterns (despite other corneal defects, suggesting that centripetal cell movement was unaffected. Moderately disrupted patterns in Pax6⁺/⁻ mosaics were corrected by introducing the PAX77 transgene (in Pax6⁺/⁻, PAX77(Tg/- mosaics. Pax6(Leca4/+, XLacZ(Tg/- mosaic mice (heterozygous for the Pax6(Leca4 missense mutation showed more severely disrupted mosaic patterns. Corrected corneal epithelial stripe numbers (an indirect estimate of active LESC clone numbers declined with age (between 15 and 30 weeks in wild-type XLacZ(Tg/- mosaics. In contrast, corrected stripe numbers were already low at 15 weeks in Pax6⁺/⁻ and PAX77(Tg/- mosaic corneas, suggesting Pax6 under- and over-expression both affect LESC clones.Pax6⁺/⁻ and PAX77(Tg

  14. Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for corneal tissue engineering.

    Science.gov (United States)

    Gil, Eun Seok; Mandal, Biman B; Park, Sang-Hyug; Marchant, Jeffrey K; Omenetto, Fiorenzo G; Kaplan, David L

    2010-12-01

    RGD-coupled silk protein-biomaterial lamellar systems were prepared and studied with human cornea fibroblasts (hCFs) to match functional requirements. A strategy for corneal tissue engineering was pursued to replicate the structural hierarchy of human corneal stroma within thin stacks of lamellae-like tissues, in this case constructed from scaffolds constructed with RGD-coupled, patterned, porous, mechanically robust and transparent silk films. The influence of RGD-coupling on the orientation, proliferation, ECM organization, and gene expression of hCFs was assessed. RGD surface modification enhanced cell attachment, proliferation, alignment and expression of both collagens (type I and V) and proteoglycans (decorin and biglycan). Confocal and histological images of the lamellar systems revealed that the bio-functionalized silk human cornea 3D constructs exhibited integrated corneal stroma tissue with helicoidal multi-lamellar alignment of collagen-rich and proteoglycan-rich extracellular matrix, with transparency of the construct. This biomimetic approach to replicate corneal stromal tissue structural hierarchy and architecture demonstrates a useful strategy for engineering human cornea. Further, this approach can be exploited for other tissue systems due to the pervasive nature of such helicoids in most human tissues. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Inhibition of TGF-β signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine.

    Directory of Open Access Journals (Sweden)

    Naoki Okumura

    Full Text Available Corneal endothelial dysfunctions occurring in patients with Fuchs' endothelial corneal dystrophy, pseudoexfoliation syndrome, corneal endotheliitis, and surgically induced corneal endothelial damage cause blindness due to the loss of endothelial function that maintains corneal transparency. Transplantation of cultivated corneal endothelial cells (CECs has been researched to repair endothelial dysfunction in animal models, though the in vitro expansion of human CECs (HCECs is a pivotal practical issue. In this study we established an optimum condition for the cultivation of HCECs. When exposed to culture conditions, both primate and human CECs showed two distinct phenotypes: contact-inhibited polygonal monolayer and fibroblastic phenotypes. The use of SB431542, a selective inhibitor of the transforming growth factor-beta (TGF-β receptor, counteracted the fibroblastic phenotypes to the normal contact-inhibited monolayer, and these polygonal cells maintained endothelial physiological functions. Expression of ZO-1 and Na(+/K(+-ATPase maintained their subcellular localization at the plasma membrane. Furthermore, expression of type I collagen and fibronectin was greatly reduced. This present study may prove to be the substantial protocol to provide the efficient in vitro expansion of HCECs with an inhibitor to the TGF-β receptor, and may ultimately provide clinicians with a new therapeutic modality in regenerative medicine for the treatment of corneal endothelial dysfunctions.

  16. Corneal Laceration

    Medline Plus

    Full Text Available ... Corneal Laceration? Corneal Laceration Diagnosis Corneal Laceration Treatment What Is Corneal Laceration? Leer en Español: ¿Qué Es una Laceración de la Córnea? Written By: Daniel ...

  17. Protective effect of bilberry (Vaccinium myrtillus L.) extracts on cultured human corneal limbal epithelial cells (HCLEC).

    Science.gov (United States)

    Song, Juxian; Li, Yiqing; Ge, Jian; Duan, Yongheng; Sze, Stephen Cho-Wing; Tong, Yao; Shaw, Pang-Chui; Ng, Tzi-Bun; Tsui, Kam Chuen; Zhuo, Yehong; Zhang, Kalin Yanbo

    2010-04-01

    The use of bilberry (Vaccinium myrtillus L.) as a food and medicine for improving human vision has a long history all over the world. However, there is lack of convincing evidence from rigorous clinical trials or scientific research. This study investigated the effects of different concentrations of bilberry extracts on the cell viability, cell cycle and the expression of hyaluronic acid and glycosaminoglycans of cultured human corneal limbal epithelial cells. The data showed that bilberry extracts had no cytotoxicity to the corneal limbal epithelial cells at a wide range of concentrations (10(-9)-10(-4) M, equalized to the content of cyanidin-3-O-glucoside). Bilberry extract (10(-6), 10(-5) and 10(-4) M) increased cell viability after 48 h incubation. The number of cells decreased in G(0)/G(1) phase and increased prominently in S and G(2)/M phases after treatment with bilberry extracts at a high concentration (10(-4) M). The expression of glycosaminoglycans increased prominently after incubation with bilberry extracts (10(-7) and 10(-4) M) for 48 h while no significant changes were observed for the expression of hyaluronic acid. The results indicated that bilberry extract may be beneficial for the physiological renewal and homeostasis of corneal epithelial cells. Copyright (c) 2010 John Wiley & Sons, Ltd.

  18. Effects of osmoprotectants on hyperosmolar stress in cultured human corneal epithelial cells.

    Science.gov (United States)

    Corrales, Rosa M; Luo, Lihui; Chang, Eliseu Y; Pflugfelder, Stephen C

    2008-06-01

    Increased tear osmolarity in dry eye disease has been found to stimulate production of inflammatory cytokines and matrix metalloproteinases by ocular surface epithelial cells. Prokaryotic and mammalian organ system cells maintain normal function under hypertonic conditions by the synthesis or accumulation of osmoprotectant compounds. This study assessed the effect of osmoprotectant compounds on the activation state of mitogen-activated protein (MAP) kinases in human corneal epithelial cells incubated in hyperosmolar conditions. Human corneal epithelial cells were incubated in media of isotonic, physiological osmolarity (300 mOsm) and in hyperosmolar media (400 mOsm), in the presence and absence of osmoprotectants, including several amino acids (L-carnitine and betaine), glycerol, and the polyol erythritol. The phosphorylation (activation) states of c-Jun N-terminal kinases (JNK) and p38 MAP kinases were monitored by Western blot and bead-based immunoassays. Hyperosmolar conditions achieved by addition of sodium chloride or sucrose increased ratios of phosphorylated JNK and p38 to total JNK and p38. Compared with controls, 10 mM L-carnitine or 40 mM erythritol significantly lowered levels of activated MAP kinases in response to hyperosmolar stress. They also lowered ratios of phosphorylated to total kinases to barely detectable levels in cells cultured in isotonic media. The osmoprotectants L-carnitine and erythritol, alone or in combination, were found to protect against stress activation of corneal epithelial cells cultured in hyperosmolar media.

  19. Corneal collagen cross-linking: a confocal, electron, and light microscopy study of eye bank corneas.

    Science.gov (United States)

    Dhaliwal, Jasmeet S; Kaufman, Stephen C

    2009-01-01

    The purpose of this study was to evaluate morphological changes induced by corneal collagen cross-linking in a human ex vivo cornea, using confocal, electron, and light microscopy. The central epithelium was partially removed from ex vivo human corneal buttons. Riboflavin 0.1% solution was applied before ultraviolet A light treatment and then for every 2 minutes for 30 minutes while the corneas were exposed to ultraviolet A light at a wavelength of 370 nm and intensity of 3 mW/cm(2). Each cornea was evaluated using confocal, electron, and light microscopy. Confocal microscopy demonstrated normal-appearing corneas on their initial pretreatment examination, with reduced stromal detail. After treatment, a superficial layer of highly reflective spherical structures (4-10 microm) was observed. Many of these hyperreflective structures appeared up to a depth of 300 microm. The remainder of the corneal stroma and endothelium appeared normal. Electron microscopy showed keratocyte apoptotic changes to a depth of 300 microm. No observable pathologic changes were seen on histology. Based on clinical studies, corneal cross-linking is a promising treatment that appears to be safe and to halt ectatic corneal disease progression. Initial European studies used animal models to extrapolate human protocols. In conjunction with clinical studies, we believe that human ex vivo corneal studies provide a means to evaluate the structural and morphological changes associated with this procedure, within human corneas, in a manner that cannot be accomplished in vivo.

  20. Evaluation of Corneal Cross-Linking for Treatment of Fungal Keratitis: Using Confocal Laser Scanning Microscopy on an Ex Vivo Human Corneal Model.

    Science.gov (United States)

    Alshehri, Jawaher M; Caballero-Lima, David; Hillarby, M Chantal; Shawcross, Susan G; Brahma, Arun; Carley, Fiona; Read, Nick D; Radhakrishnan, Hema

    2016-11-01

    Some previous reports have established the use of photoactivated chromophore-induced corneal cross-linking (PACK-CXL) in treating fungal keratitis. The results of these case reports have often been conflicting. To systematically study the effect of PACK-CXL in the management of Fusarium keratitis, we have developed an ex vivo model of human corneal infection using eye-banked human corneas. Sixteen healthy ex vivo human corneas were divided into four study groups: (1) untreated control, (2) cross-linked, (3) infected with fungal spores, and (4) infected with fungal spores and then cross-linked. All infected corneas were inoculated with Fusarium oxysporum spores. The PACK-CXL procedure was performed 24 hours post inoculation for group 4. For PACK-CXL treatment, the corneas were debrided of epithelium; then 1% (wt/vol) isotonic riboflavin was applied dropwise at 5-minute intervals for 30 minutes and during the course of UV-A cross-linking for another 30 minutes. The corneas were imaged using a confocal microscope at 48 hours post inoculation, and the Fusarium hyphal volume and spore concentration were calculated. The infected and then cross-linked group had a significantly lower volume of Fusarium hyphae, compared to the infected (P = 0.001) group. In the infected and then cross-linked group there was significant inhibition of Fusarium sporulation compared with the infected (P = 0.007) group. A model of human corneal infection was successfully developed for investigation of the effects of PACK-CXL on fungal keratitis. A treatment regimen of combined UV-A/riboflavin-induced corneal cross-linking appears to be a valuable approach to inhibit the growth and sporulation of Fusarium and suppress the progression of fungal keratitis.

  1. The hollow fiber bioreactor as a stroma-supported, serum-free ex vivo expansion platform for human umbilical cord blood cells.

    Science.gov (United States)

    Xue, Cao; Kwek, Kenneth Y C; Chan, Jerry K Y; Chen, Qingfeng; Lim, Mayasari

    2014-07-01

    The bone marrow microenvironment plays an integral role in the regulation of hematopoiesis. Residing stromal cells and the extracellular matrix in the bone marrow microenvironment provide biological signals that control hematopoietic stem cell (HSC) function. In this study, we developed a bio-mimetic co-culture platform using the hollow fiber bioreactor (HFBR) for ex vivo expansion of HSCs. We evaluated the efficacy of such a platform in comparison to standard cultures performed on tissue culture polystyrene (TCP), using a human stromal cell line (HS-5) as stromal support, co-cultured with lineage-depleted human cord blood cells in serum-free medium supplemented with a cytokine cocktail. Our results showed that the performance of the HFBR in supporting total cell and CD34(+) progenitor cell expansion was comparable to that of cultures on TCP. Cells harvested from the HFBR had a higher clonogenic ability. The performance of ex vivo-expanded cells from the HFBR in hematopoietic reconstitution in humanized mice was comparable to that of the TCP control. Scanning electron microscopy revealed that stroma cell growth inside the HFBR created a three-dimensional cell matrix architecture. These findings demonstrate the feasibility of utilizing the HFBR for creating a complex cell matrix architecture, which may provide good in vitro mimicry of the bone marrow, supporting large-scale expansion of HSCs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Noninvasive corneal stromal collagen imaging using two-photon-generated second-harmonic signals.

    Science.gov (United States)

    Morishige, Naoyuki; Petroll, W Matthew; Nishida, Teruo; Kenney, M Cristina; Jester, James V

    2006-11-01

    To investigate the feasibility of using femtosecond-pulse lasers to produce second-harmonic generated (SHG) signals to noninvasively assess corneal stromal collagen organization. The Eye Institute, University of California, Irvine, California, USA. Mouse, rabbit, and human corneas were examined by two-photon confocal microscopy using a variable-wavelength femtosecond lasers to produce SHG signals. Two types were detected: forward scattered and backward scattered. Wavelength dependence of the SHG signal was confirmed by spectral separation using the 510 Meta (Zeiss). To verify the spatial relation between SHG signals and corneal cells, staining of cytoskeletons and nuclei was performed. Second-harmonic-generated signal intensity was strongest with an excitation wavelength of 800 nm for all 3 species. Second-harmonic-generated forward signals showed a distinct fibrillar pattern organized into bands suggesting lamellae, while backscattered SHG signals appeared more diffuse and indistinct. Reconstruction of SHG signals showed two patterns of lamellar organization: highly interwoven in the anterior stroma and orthogonally arranged in the posterior stroma. Unique to the human cornea was the presence of transverse, sutural lamellae that inserted into Bowman's layer, suggesting an anchoring function. Using two-photon confocal microscopy to generate SHG signals from the corneal collagen provides a powerful new approach to noninvasively study corneal structure. Human corneas had a unique organizational pattern with sutural lamellae to provide important biomechanical support that was not present in mouse or rabbit corneas.

  3. Human cadaver retina model for retinal heating during corneal surgery with a femtosecond laser

    Science.gov (United States)

    Sun, Hui; Fan, Zhongwei; Yun, Jin; Zhao, Tianzhuo; Yan, Ying; Kurtz, Ron M.; Juhasz, Tibor

    2014-02-01

    Femtosecond lasers are widely used in everyday clinical procedures to perform minimally invasive corneal refractive surgery. The intralase femtosecond laser (AMO Corp. Santa Ana, CA) is a common example of such a laser. In the present study a numerical simulation was developed to quantify the temperature rise in the retina during femtosecond intracorneal surgery. Also, ex-vivo retinal heating due to laser irradiation was measured with an infrared thermal camera (Fluke Corp. Everett, WA) as a validation of the simulation. A computer simulation was developed using Comsol Multiphysics to calculate the temperature rise in the cadaver retina during femtosecond laser corneal surgery. The simulation showed a temperature rise of less than 0.3 degrees for realistic pulse energies for the various repetition rates. Human cadaver retinas were irradiated with a 150 kHz Intralase femtosecond laser and the temperature rise was measured withan infrared thermal camera. Thermal camera measurements are in agreement with the simulation. During routine femtosecond laser corneal surgery with normal clinical parameters, the temperature rise is well beneath the threshold for retina damage. The simulation predictions are in agreement with thermal measurements providing a level of experimental validation.

  4. Co-Targeting Prostate Cancer Epithelium and Bone Stroma by Human Osteonectin-Promoter-Mediated Suicide Gene Therapy Effectively Inhibits Androgen-Independent Prostate Cancer Growth.

    Directory of Open Access Journals (Sweden)

    Shian-Ying Sung

    Full Text Available Stromal-epithelial interaction has been shown to promote local tumor growth and distant metastasis. We sought to create a promising gene therapy approach that co-targets cancer and its supporting stromal cells for combating castration-resistant prostate tumors. Herein, we demonstrated that human osteonectin is overexpressed in the prostate cancer epithelium and tumor stroma in comparison with their normal counterpart. We designed a novel human osteonectin promoter (hON-522E containing positive transcriptional regulatory elements identified in both the promoter and exon 1 region of the human osteonectin gene. In vitro reporter assays revealed that the hON-522E promoter is highly active in androgen receptor negative and metastatic prostate cancer and bone stromal cells compared to androgen receptor-positive prostate cancer cells. Moreover, in vivo prostate-tumor-promoting activity of the hON-522E promoter was confirmed by intravenous administration of an adenoviral vector containing the hON-522E promoter-driven luciferase gene (Ad-522E-Luc into mice bearing orthotopic human prostate tumor xenografts. In addition, an adenoviral vector with the hON-522E-promoter-driven herpes simplex virus thymidine kinase gene (Ad-522E-TK was highly effective against the growth of androgen-independent human prostate cancer PC3M and bone stromal cell line in vitro and in pre-established PC3M tumors in vivo upon addition of the prodrug ganciclovir. Because of the heterogeneity of human prostate tumors, hON-522E promoter-mediated gene therapy has the potential for the treatment of hormone refractory and bone metastatic prostate cancers.

  5. Serum-free corneal organ culture medium (SFM) but not conventional minimal essential organ culture medium (MEM) protects human corneal endothelial cells from apoptotic and necrotic cell death.

    Science.gov (United States)

    Jäckel, Thekla; Knels, Lilla; Valtink, Monika; Funk, Richard H W; Engelmann, Katrin

    2011-01-01

    To evaluate the influence of organ culture media on corneal endothelial cell survival. The human corneal endothelial cell line HCEC-12 was cultured in five different media: human corneal endothelial cell (HCEC) growth medium (F99(HCEC)), standard minimal essential corneal organ culture medium (MEM)+2% fetal calf serum (FCS), MEM+5% FCS, and humanised, endothelial serum-free medium (SFM) (with and without antibiotics). A portion of the cells was treated with 0.5 μmol/l staurosporine and examined for signs of apoptosis by assessing mitochondrial membrane polarisation state (intravital JC-1 staining), by YO-PRO-1 and propidium iodide staining, by determining fragmentation of nuclei by sub-G1 DNA content, by immunocytochemistry for cleaved caspase-3, cleaved caspase-8, Bcl2-associated X protein (Bax) and B-cell lymphoma 2 (Bcl-2), and by western blotting for cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase (PARP). The number of apoptotic cells in untreated control cultures was significantly higher in MEM compared with F99(HCEC) and SFM. Staurosporine treatment induced apoptosis in all tested cultures to varying degrees. Cells cultured in MEM showed stronger staining for cleaved caspase-3, cleaved caspase-8, Bax, Bcl-2 and cleaved PARP, increased sub-G1 DNA content, more propidium iodide- and YO-PRO-1-positive cells, and more mitochondria with depolarised membranes. All parameters were significantly higher in MEM compared with F99(HCEC) and SFM. SFM cultures were significantly less susceptible to cell stress. SFM is superior to MEM in promoting HCEC survival.

  6. Expression analysis of the transmembrane mucin MUC20 in human corneal and conjunctival epithelia.

    Science.gov (United States)

    Woodward, Ashley M; Argüeso, Pablo

    2014-08-28

    Cell surface mucins are a group of highly O-glycosylated transmembrane glycoproteins responsible for the protection of epithelial cells on mucosal surfaces. The aim of this study was to investigate the localization and regulation of mucin 20 (MUC20) at the ocular surface. Localization of MUC20 in human corneal and conjunctival epithelia was evaluated by immunofluorescence microscopy. Immortalized corneal (HCLE) and conjunctival (HCjE) cell lines were grown at different stages of differentiation and subjected to quantitative PCR and Western blot analyses. Cell surface proteins on apical cell membranes were biotinylated and isolated by neutravidin chromatography. The MUC20 was detected throughout the entire human ocular surface epithelia, predominantly in cell membranes within intermediate cell layers. In conjunctiva, MUC20 also was observed in the cytoplasm of apical cells within the stratified squamous epithelium, but not in goblet cells. Quantitative PCR and immunoblotting demonstrated expression of MUC20 in HCLE and HCjE cells. Induction of differentiation with serum-containing medium resulted in upregulation of MUC20 mRNA and protein. Biotin labeling of the surface of stratified cultures revealed low levels of MUC20 protein on apical glycocalyces. Further, MUC20 was not detected in the cell culture media or in human tears, suggesting that the extracellular domain of MUC20 is not released from the ocular surface as described previously for other cell surface mucins. Our results indicate that MUC20 is a novel transmembrane mucin expressed by the human corneal and conjunctival epithelia, and suggest that differential expression of MUC20 during differentiation has a role in maintaining ocular surface homeostasis. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  7. Corneal Cross-Linking: An Example of Photoinduced Polymerization as a Treatment Modality in Keratoconus.

    Science.gov (United States)

    Kubrak-Kisza, Magdalena; Kisza, Krystian Jerzy; Misiuk-Hojło, Marta

    2016-01-01

    The cornea is one of the principal refractive elements in the human eye and plays a crucial role in the process of vision. Keratoconus is the most common corneal dystrophy, found mostly among young adults. It is characterized by a reduced number of collagen cross-links in the corneal stroma, resulting in reduced biomechanical stability and an abnormal shape of the cornea. These changes lead to progressive myopia, corneal thinning, central scarring and irregular astigmatism, causing severely impaired vision. Hard contact lenses, photorefractive keratectomy or intracorneal rings are the most common treatment options for refractive error caused by keratoconus. However, these techniques do not treat the underlying cause of the corneal ectasia and therefore are not able to stop the progression of the disease. Riboflavin photoinduced polymerization of corneal collagen, also known as corneal cross-linking (CXL), has been introduced as the first therapy which, by stabilizing the structure of the cornea, prevents the progression of keratoconus. It stiffens the cornea using the photo-sensitizer riboflavin in combination with ultraviolet irradiation. This is a current review of the CXL procedure as a therapy for keratoconus, which relies on photoinduced polymerization of human tissue. We have focused on its biomechanical and physiological influences on the human cornea and have reviewed the previous and current biochemical theories behind cross-linking reactions in the cornea.

  8. A novel quantitative methodology for age evaluation of the human corneal endothelium

    Science.gov (United States)

    Rannou, Klervi; Thuret, Gilles; Gain, Philippe; Pinoli, Jean-Charles; Gavet, Yann

    2017-03-01

    The human corneal endothelium regulates the cornea transparency. Its cells, that cannot regenerate after birth, form a tesselated mosaic with almost perfect hexagonal cells during childhood, becoming progressively bigger and less ordered during aging. This study included 50 patients (in 10 decades groups) and 10 specular microscopy observations per patient. Five different criteria were measured on the manually segmented cells: area and perimeter of the cells as well as reduced Minkowski functionals. All these criteria were used to assess the probability of age group membership. We demonstrated that the age evaluation is near the reality, although a high variability was observed for patients between 30 and 70 years old.

  9. Corneal Ulcer

    Science.gov (United States)

    ... Español Eye Health / Eye Health A-Z Corneal Ulcer Sections What Is a Corneal Ulcer? Corneal Ulcer ... Diagnosis Corneal Ulcer Treatment What Is a Corneal Ulcer? Leer en Español: ¿Qué es una Úlcera de ...

  10. Apatinib-loaded nanoparticles suppress vascular endothelial growth factor-induced angiogenesis and experimental corneal neovascularization.

    Science.gov (United States)

    Lee, Jung Eun; Kim, Koung Li; Kim, Danbi; Yeo, Yeongju; Han, Hyounkoo; Kim, Myung Goo; Kim, Sun Hwa; Kim, Hyuncheol; Jeong, Ji Hoon; Suh, Wonhee

    2017-01-01

    Pathological angiogenesis is one of the major symptoms of severe ocular diseases, including corneal neovascularization. The blockade of vascular endothelial growth factor (VEGF) action has been recognized as an efficient strategy for treating corneal neovascularization. In this study, we aimed to investigate whether nanoparticle-based delivery of apatinib, a novel and selective inhibitor of VEGF receptor 2, inhibits VEGF-mediated angiogenesis and suppresses experimental corneal neovascularization. Water-insoluble apatinib was encapsulated in nanoparticles composed of human serum albumin (HSA)-conjugated polyethylene glycol (PEG). In vitro angiogenesis assays showed that apatinib-loaded HSA-PEG (Apa-HSA-PEG) nanoparticles potently inhibited VEGF-induced tube formation, scratch wounding migration, and proliferation of human endothelial cells. In a rat model of alkali burn injury-induced corneal neovascularization, a subconjunctival injection of Apa-HSA-PEG nanoparticles induced a significant decrease in neovascularization compared to that observed with an injection of free apatinib solution or phosphate-buffered saline. An in vivo distribution study using HSA-PEG nanoparticles loaded with fluorescent hydrophobic model drugs revealed the presence of a substantial number of nanoparticles in the corneal stroma within 24 h after injection. These in vitro and in vivo results demonstrate that apatinib-loaded nanoparticles may be promising for the prevention and treatment of corneal neovascularization-related ocular disorders.

  11. Corneal haze induced by excimer laser photoablation in rabbits is reduced by preserved human amniotic membrane graft

    Science.gov (United States)

    Wang, Ming X.; Gray, Trevor; Prabhasawat, Pinnita; Ma, Xiong; Culbertson, William; Forster, Richard; Hanna, Khalil; Tseng, Scheffer C. G.

    1998-06-01

    We conducted a study to determine if preserved human amniotic membrane can reduce corneal haze induced by excimer laser photoablation. Excimer photoablation was performed bilaterally on 40 New Zealand white rabbits with a 6 mm ablation zone and 120 micrometer depth (PTK) using the VISX Star. One eye was randomly covered with a preserved human amniotic membrane and secured using four interrupted 10 - 0 nylon sutures; the other eye served as control. The amniotic membranes were removed at one week, and the corneal haze was graded with a slit-lamp biomicroscopy by three masked corneal specialists (WC, KH and RF) biweekly for the ensuing 12 weeks. Histology and in situ TUNEL staining (for fragmented DNA as an index for apoptosis) was performed at days 1, 3 and 7 and at 12 weeks. One week after excimer photoablation, the amniotic membrane-covered corneas showed more anterior stromal edema, which resolved at the second week. A consistent grading of organized reticular corneal haze was noted among the three masked observers. Such corneal haze peaked at the seventh week in both groups. The amniotic membrane-covered group showed statistically significant less corneal haze (0.50 plus or minus 0.15) than the control groups (1.25 plus or minus 0.35) (p less than 0.001). The amniotic membrane-covered corneas had less inflammatory response at days 1 and 3, showing nearly nil DNA fragmentation on keratocytes on the ablated anterior stromal and less stromal fibroblast activation. There is less altered epithelial cell morphology and less epithelial hyperplasia at 1 week in these amniotic membrane-treated eyes. We concluded from this study that amniotic membrane matrix is effective in reducing corneal haze induced by excimer photoablation in rabbits and may have clinical applications.

  12. Corneal endothelial autocrine trophic factor VIP in a mechanism-based strategy to enhance human donor cornea preservation for transplantation.

    Science.gov (United States)

    Koh, Shay-Whey Margaret

    2012-02-01

    Vasoactive intestinal peptide (VIP) and ciliary neurotrophic factor (CNTF) are identified as autocrines of human corneal endothelial (CE) cells working in concert to maintain the differentiated state and promote the survival of the corneal endothelium. From VIP gene knockdown study, endogenous VIP is shown to maintain the level of the differentiation marker, the adhesion molecule N-cadherin, CE cell size, shape, and retention, in situ in the human donor corneoscleral explants. Exogenous VIP protects the corneal endothelium against the killing effect of oxidative stress, in part by upholding ATP levels in CE cells dying of oxidative stress-induced injury, allowing them to die of an apoptotic death instead of an acute necrotic one. The switch from the acute necrosis to the programmed cell death (apoptosis) may have allowed the injured CE cell to be rescued by the VIP-upregulated pathways, including those of Bcl-2 and N-cadherin, and resulted in long-term CE cell survival. The endogenous VIP in CE cells is upregulated by CNTF, which is released by CE cells surviving the oxidative stress. The CNTF receptor (CNTFRα) is expressed in CE cells in human donor corneoscleral explant and gradually becomes lost during corneal storage. VIP treatment (10(-8) M, 37 °C, 30 min) prior to storage of freshly dissected human donor corneoscleral explants increases their CE cell CNTFRα level and responsiveness to CNTF in upregulating the gap junctional protein connexin-43 expression. VIP treatment of both fresh and preserved corneoscleral explants reduces CE damage in the corneoscleral explants and in the corneal buttons trephined from them. CE cell loss is a critical risk factor in corneal graft failure at any time in the life of the graft, which can be as late as 5-10 years after an initially successful transplant. A new procedure, Descemet's stripping automated endothelial keratoplasty (DSAEK), which is superior to the traditional full thickness transplantation in many aspects

  13. Discovery of Molecular Markers to Discriminate Corneal Endothelial Cells in the Human Body

    NARCIS (Netherlands)

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji; Forrest, Alistair R. R.; Rehli, Michael; Baillie, J. Kenneth; de Hoon, Michiel J. L.; Haberle, Vanja; Lassmann, Timo; Kulakovskiy, Ivan V.; Lizio, Marina; Andersson, Robin; Mungall, Christopher J.; Meehan, Terrence F.; Schmeier, Sebastian; Bertin, Nicolas; Jørgensen, Mette; Dimont, Emmanuel; Arner, Erik; Schmidl, Christian; Schaefer, Ulf; Medvedeva, Yulia A.; Plessy, Charles; Vitezic, Morana; Severin, Jessica; Semple, Colin A.; Ishizu, Yuri; Francescatto, Margherita; Alam, Intikhab; Albanese, Davide; Altschuler, Gabriel M.; Archer, John A. C.; Arner, Peter; Babina, Magda; Baker, Sarah; Balwierz, Piotr J.; Beckhouse, Anthony G.; Pradhan-Bhatt, Swati; Blake, Judith A.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Brombacher, Frank; Burroughs, A. Maxwell; Califano, Andrea; Cannistraci, Carlo V.; Carbajo, Daniel; Chen, Yun; Chierici, Marco; Ciani, Yari; Clevers, Hans C.; Dalla, Emiliano; Davis, Carrie A.; Detmar, Michael; Diehl, Alexander D.; Dohi, Taeko; Drabløs, Finn; Edge, Albert S. B.; Edinger, Matthias; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Fagiolini, Michela; Fairbairn, Lynsey; Fang, Hai; Farach-Carson, Mary C.; Faulkner, Geoffrey J.; Favorov, Alexander V.; Fisher, Malcolm E.; Frith, Martin C.; Fujita, Rie; Fukuda, Shiro; Furlanello, Cesare; Furuno, Masaaki; Furusawa, Jun-ichi; Geijtenbeek, Teunis B.; Gibson, Andrew; Gingeras, Thomas; Goldowitz, Daniel; Gough, Julian; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas J.; Hamaguchi, Masahide; Hara, Mitsuko; Harbers, Matthias; Harshbarger, Jayson; Hasegawa, Akira; Hasegawa, Yuki; Hashimoto, Takehiro; Herlyn, Meenhard; Hitchens, Kelly J.; Ho Sui, Shannan J.; Hofmann, Oliver M.; Hoof, Ilka; Hori, Fumi; Huminiecki, Lukasz; Iida, Kei; Ikawa, Tomokatsu; Jankovic, Boris R.; Jia, Hui; Joshi, Anagha; Jurman, Giuseppe; Kaczkowski, Bogumil; Kai, Chieko; Kaida, Kaoru; Kaiho, Ai; Kajiyama, Kazuhiro; Kanamori-Katayama, Mutsumi; Kasianov, Artem S.; Kasukawa, Takeya; Katayama, Shintaro; Kato, Sachi; Kawaguchi, Shuji; Kawamoto, Hiroshi; Kawamura, Yuki I.; Kawashima, Tsugumi; Kempfle, Judith S.; Kenna, Tony J.; Kere, Juha; Khachigian, Levon M.; Kitamura, Toshio; Klinken, S. Peter; Knox, Alan J.; Kojima, Miki; Kojima, Soichi; Kondo, Naoto; Koseki, Haruhiko; Koyasu, Shigeo; Krampitz, Sarah; Kubosaki, Atsutaka; Kwon, Andrew T.; Laros, Jeroen F. J.; Lee, Weonju; Lennartsson, Andreas; Li, Kang; Lilje, Berit; Lipovich, Leonard; Mackay-sim, Alan; Manabe, Ri-ichiroh; Mar, Jessica C.; Marchand, Benoit; Mathelier, Anthony; Mejhert, Niklas; Meynert, Alison; Mizuno, Yosuke; Morais, David A. de Lima; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Motakis, Efthymios; Motohashi, Hozumi; Mummery, Christine L.; Murata, Mitsuyoshi; Nagao-Sato, Sayaka; Nakachi, Yutaka; Nakahara, Fumio; Nakamura, Toshiyuki; Nakamura, Yukio; Nakazato, Kenichi; van Nimwegen, Erik; Ninomiya, Noriko; Nishiyori, Hiromi; Noma, Shohei; Nozaki, Tadasuke; Ogishima, Soichi; Ohkura, Naganari; Ohno, Hiroshi; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A.; Pain, Arnab; Passier, Robert; Patrikakis, Margaret; Persson, Helena; Piazza, Silvano; Prendergast, James G. D.; Rackham, Owen J. L.; Ramilowski, Jordan A.; Rashid, Mamoon; Ravasi, Timothy; Rizzu, Patrizia; Roncador, Marco; Roy, Sugata; Rye, Morten B.; Saijyo, Eri; Sajantila, Antti; Saka, Akiko; Sakaguchi, Shimon; Sakai, Mizuho; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Schneider, Claudio; Schultes, Erik A.; Schulze-Tanzil, Gundula G.; Schwegmann, Anita; Sengstag, Thierry; Sheng, Guojun; Shimoji, Hisashi; Shimoni, Yishai; Shin, Jay W.; Simon, Christophe; Sugiyama, Daisuke; Sugiyama, Takaaki; Suzuki, Masanori; Swoboda, Rolf K.; 't Hoen, Peter A. C.; Tagami, Michihira; Takahashi, Naoko; Takai, Jun; Tanaka, Hiroshi; Tatsukawa, Hideki; Tatum, Zuotian; Thompson, Mark; Toyoda, Hiroo; Toyoda, Tetsuro; Valen, Eivind; van de Wetering, Marc; van den Berg, Linda M.; Verardo, Roberto; Vijayan, Dipti; Vorontsov, Ilya E.; Wasserman, Wyeth W.; Watanabe, Shoko; Wells, Christine A.; Winteringham, Louise N.; Wolvetang, Ernst; Wood, Emily J.; Yamaguchi, Yoko; Yamamoto, Masayuki; Yoneda, Misako; Yonekura, Yohei; Yoshida, Shigehiro; Zabierowski, Suzan E.; Zhang, Peter G.; Zhao, Xiaobei; Zucchelli, Silvia; Summers, Kim M.; Suzuki, Harukazu; Daub, Carsten O.; Kawai, Jun; Heutink, Peter; Hide, Winston; Freeman, Tom C.; Lenhard, Boris; Bajic, Vladimir B.; Taylor, Martin S.; Makeev, Vsevolod J.; Sandelin, Albin; Hume, David A.; Carninci, Piero

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant

  14. Local anesthetic lidocaine induces apoptosis in human corneal stromal cells in vitro

    Directory of Open Access Journals (Sweden)

    Xin Zhou

    2013-12-01

    Full Text Available AIM: To demonstrate the apoptosis-inducing effect of lidocaine on human corneal stromal (HCS cells in vitro, and provide experimental basis for safety anesthetic usage in clinic of ophthalmology.METHODS: In vitro cultured HCS cells were treated with lidocaine at different doses and times, and their morphology was monitored successively with inverted phase contrast microscopy. The membrane permeability of them was detected by acridine orange/ethidium bromide (AO/EB double staining. The DNA fragmentation of them was examined by agarose gel electrophoresis, and their ultrastructure was observed by transmission electron microscopy (TEM, respectively.RESULTS: Exposure to lidocaine at doses from 0.3125g/L to 20g/L induced morphological changes of HCS cells such as cytoplasmic vacuolation, cellular shrinkage, and turning round, and elevated membrane permeability of these cells in AO/EB staining. The change of morphology and membrane permeability was dose- and time-dependent, while lidocaine at dose below 0.15625g/L could not induce these changes. Furthermore, lidocaine induced DNA fragmentation and ultrastructural changes such as cytoplasmic vacuolation, structural disorganization, chromatin condensation, and apoptotic body appearance of the cells.CONCLUSION: Lidocaine has significant cytotoxicity on human corneal stromal cells in vitro in a dose- and time-dependent manner by inducing apoptosis of these cells. The established experimental model and findings based on this model here help provide new insight into the apoptosis-inducing effect of local anesthetics in eye clinic.

  15. Establishment of a transgenic mouse model of corneal dystrophy overexpressing human BIGH3.

    Science.gov (United States)

    Liao, Xin; Cui, Hongping; Wang, Fang

    2013-11-01

    This study aimed to establish a transgenic mouse model of corneal dystrophy (CD) overexpressing the human transforming growth factor, β-induced, 68 kDa (TGFBI, also known as BIGH3) gene. A purified and linearized recombinant plasmid carrying the expression cassette BIGH3‑IRES‑EGFP was microinjected into the pronuclei of C57BL/6J mouse fertilized eggs under the control of the phosphoglycerate kinase (PGK) promoter. The expression of human BIGH3 in the transgenic mice was confirmed by PCR using DNA extracted from tail tissue. Four founder transgenic mice were identified by PCR and the increased expression of BIGH3 was observed in the corneas of the transgenic mice by RT-PCR and western blot analysis. The abnormal corneas with central opacity were observed in the transgenic mice by corneal photography. We concluded that the exogenous gene, BIGH3, was integrated successfully into the mouse genome through microinjection. In addition, the phenotype observed in this BIGH3 transgenic mouse model was similar to CD. Therefore, this transgenic model may prove useful in the investigation of the pathogenesis of CD.

  16. Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold.

    Science.gov (United States)

    Fagerholm, Per; Lagali, Neil S; Ong, Jeb A; Merrett, Kimberley; Jackson, W Bruce; Polarek, James W; Suuronen, Erik J; Liu, Yuwen; Brunette, Isabelle; Griffith, May

    2014-03-01

    We developed cell-free implants, comprising carbodiimide crosslinked recombinant human collagen (RHC), to enable corneal regeneration by endogenous cell recruitment, to address the worldwide shortage of donor corneas. Patients were grafted with RHC implants. Over four years, the regenerated neo-corneas were stably integrated without rejection, without the long immunosuppression regime needed by donor cornea patients. There was no recruitment of inflammatory dendritic cells into the implant area, whereas, even with immunosuppression, donor cornea recipients showed dendritic cell migration into the central cornea and a rejection episode was observed. Regeneration as evidenced by continued nerve and stromal cell repopulation occurred over the four years to approximate the micro-architecture of healthy corneas. Histopathology of a regenerated, clear cornea from a regrafted patient showed normal corneal architecture. Donor human cornea grafted eyes had abnormally tortuous nerves and stromal cell death was found. Implanted patients had a 4-year average corrected visual acuity of 20/54 and gained more than 5 Snellen lines of vision on an eye chart. The visual acuity can be improved with more robust materials for better shape retention. Nevertheless, these RHC implants can achieve stable regeneration and therefore, represent a potentially safe alternative to donor organ transplantation. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Induction of corneal epithelium-like cells from cynomolgus monkey embryonic stem cells and their experimental transplantation to damaged cornea.

    Science.gov (United States)

    Kumagai, Yuta; Kurokawa, Manae S; Ueno, Hiroki; Kayama, Maki; Tsubota, Kazuo; Nakatsuji, Norio; Kondo, Yasushi; Ueno, Satoki; Suzuki, Noboru

    2010-04-01

    We previously reported the successful transplantation of corneal epithelium-like cells derived from mouse embryonic stem (ES) cells onto injured mouse cornea. Here, we tested whether nonhuman primate ES cells have ability to differentiate into corneal epithelial cells and whether monkey ES cell-derived corneal epithelium-like cells were applicable for the experimental transplantation to damaged cornea. Monkey ES cells were cultivated on type IV collagen-coated dishes for various days to induce differentiation into corneal epithelium-like cells. The differentiation was evaluated by reverse transcription-polymerase chain reaction and immunostaining. The corneal epithelium-like cells were transplanted to the injured mouse cornea. Reconstitution of the corneal epithelium was evaluated by immunostaining. The cells cultured on type IV collagen showed cobblestone-like appearance resembling epithelial cells. They expressed messenger RNA of pax6, p63, E-cadherin, CD44, proliferating cell nuclear antigen, keratin 3, and keratin 12. Protein expressions of pax6, keratin 3/12, p63, proliferating cell nuclear antigen, E-cadherin, and CD44 were confirmed by immunostaining. When the corneal epithelium-like cells were transplanted, they adhered to the corneal stroma, leading to formation of multiple cell layers. The grafted cells were stained with anti-human nuclear protein antibody, which cross-reacted with nuclei of monkey cells but not with those of mouse cells. They retained the expressions of keratin 3/12, E-cadherin, and CD44. We induced corneal epithelium-like cells from monkey ES cells with moderate efficiency. The cells were successfully transplanted onto the injured mouse cornea. This is the first demonstration that nonhuman primate ES cells were induced to differentiate into corneal epithelium-like cells, which were applicable for transplantation to an animal model of corneal injury.

  18. Structure of corneal layers, collagen fibrils, and proteoglycans of tree shrew cornea.

    Science.gov (United States)

    Almubrad, Turki; Akhtar, Saeed

    2011-01-01

    The stroma is the major part of the cornea, in which collagen fibrils and proteoglycans are distributed uniformly. We describe the ultrastructure of corneal layers, collagen fibrils (CF), and proteoglycans (PGs) in the tree shrew cornea. Tree shrew corneas (5, 6, and 10 week old animals) and normal human corneas (24, 25, and 54 years old) were fixed in 2.5% glutaraldehyde containing cuprolinic blue in a sodium acetate buffer. The tissue was processed for electron microscopy. The 'iTEM Olympus Soft Imaging Solutions GmbH' program was used to measure the corneal layers, collagen fibril diameters and proteoglycan areas. The tree shrew cornea consists of 5 layers: the epithelium, Bowman's layer, stroma, Descemet's membrane, and endothelium. The epithelium was composed of squamous cells, wing cells and basal cells. The Bowman's layer was 5.5±1.0 µm thick and very similar to a normal human Bowman's layer. The stroma was 258±7.00 µm thick and consisted of collagen fibril lamellae. The lamellae were interlaced with one another in the anterior stroma, but ran parallel to one another in the middle and posterior stroma. Collagen fibrils were decorated with proteoglycan filaments with an area size of 390 ±438 nm(2). The collagen fibril had a minimum diameter of 39±4.25 nm. The interfibrillar spacing was 52.91±6.07 nm. Within the collagen fibrils, very small electron-dense particles were present. The structure of the tree shrew cornea is very similar to that of the normal human cornea. As is the case with the human cornea, the tree shrew cornea had a Bowman's layer, lamellar interlacing in the anterior stroma and electron-dense particles within the collagen fibrils. The similarities of the tree shrew cornea with the human cornea suggest that it could be a good structural model to use when studying changes in collagen fibrils and proteoglycans in non-genetic corneal diseases, such as ectasia caused after LASIK (laser-assisted in situ keratomileusis).

  19. Structure of corneal layers, collagen fibrils, and proteoglycans of tree shrew cornea

    Science.gov (United States)

    Almubrad, Turki

    2011-01-01

    Purpose The stroma is the major part of the cornea, in which collagen fibrils and proteoglycans are distributed uniformly. We describe the ultrastructure of corneal layers, collagen fibrils (CF), and proteoglycans (PGs) in the tree shrew cornea. Methods Tree shrew corneas (5, 6, and 10 week old animals) and normal human corneas (24, 25, and 54 years old) were fixed in 2.5% glutaraldehyde containing cuprolinic blue in a sodium acetate buffer. The tissue was processed for electron microscopy. The ‘iTEM Olympus Soft Imaging Solutions GmbH’ program was used to measure the corneal layers, collagen fibril diameters and proteoglycan areas. Results The tree shrew cornea consists of 5 layers: the epithelium, Bowman’s layer, stroma, Descemet’s membrane, and endothelium. The epithelium was composed of squamous cells, wing cells and basal cells. The Bowman’s layer was 5.5±1.0 µm thick and very similar to a normal human Bowman’s layer. The stroma was 258±7.00 µm thick and consisted of collagen fibril lamellae. The lamellae were interlaced with one another in the anterior stroma, but ran parallel to one another in the middle and posterior stroma. Collagen fibrils were decorated with proteoglycan filaments with an area size of 390 ±438 nm2. The collagen fibril had a minimum diameter of 39±4.25 nm. The interfibrillar spacing was 52.91±6.07 nm. Within the collagen fibrils, very small electron-dense particles were present. Conclusions The structure of the tree shrew cornea is very similar to that of the normal human cornea. As is the case with the human cornea, the tree shrew cornea had a Bowman's layer, lamellar interlacing in the anterior stroma and electron-dense particles within the collagen fibrils. The similarities of the tree shrew cornea with the human cornea suggest that it could be a good structural model to use when studying changes in collagen fibrils and proteoglycans in non-genetic corneal diseases, such as ectasia caused after LASIK (laser

  20. Expression of vitamin D receptor and cathelicidin in human corneal epithelium cells during fusarium solani infection.

    Science.gov (United States)

    Cong, Lin; Xia, Yi-Ping; Zhao, Gui-Qiu; Lin, Jing; Xu, Qiang; Hu, Li-Ting; Qu, Jian-Qiu; Peng, Xu-Dong

    2015-01-01

    To observe the expression of vitamin D receptor (VDR) in human specimen and immortalized human corneal epithelium cells (HCEC) when challenged with fusarium solani. Moreover, we decided to discover the pathway of VDR expression. Also, we would like to detect the expression of cathelicidin antimicrobial peptide (CAMP) in the downstream pathway of VDR. Immunohistochemistry was used to examine the VDR expression in HCEC from healthy and fungal keratitis patients. Real time quantitative polymerase chain reaction (qPCR) was performed to observe the messenger ribonucleic acid (mRNA) change of VDR when immortalized HCEC were challenged with fusarium solani for different hours. CAMP was detected at both mRNA and protein levels. We found out that the VDR expression in fusarium solani keratitis patients' specimen was much more than that in healthy people. The mRNA and protein expression of VDR increased when we stimulated HCEC with fusarium solani antigen (Pfusarium solani antigen stimulation (Pfusarium solani antigen.

  1. Phase dependencies between longitudinal corneal apex displacement of human eye and cardiovascular system

    Science.gov (United States)

    Danielewska, M.; Kowalska, M.; Kasprzak, H.

    2008-12-01

    Intraocular pressure (IOP) varies quasi-periodically due to blood pulsation in vessels inside the eye globe. This variations cause the eye deformations and displacements of the outer surface of the eye. The aim of this paper is to calculate the correlation between longitudinal corneal apex displacement and cardiovascular activity. Using ultrasound transducer at sampling frequency of 100Hz we have measured longitudinal corneal apex displacement (LCAD) of the left eye for 5 subjects. Synchronically we have registered ECG and blood pulsation signals at the same sampling frequency. Cross-correlation function was applied to investigate dependencies between these signals. To find time shift between LCAD and ECG or pulse, the time window of 3 seconds length have been chosen from all signals and had been shifting with the step of 0.01 seconds from 0 to 7s. For each shift the cross-correlation function and its extrema were calculated in the window area. We have obtained information about extrema position of cross-correlation function and its stability in time for particular subjects. The time shift between LCAD and ECG or pulse is individual feature of each subject. Such calculations may lead us to better understanding of pulse propagation in human eye and creation a non invasive method of eye hemodynamics and ocular diagnosis.

  2. Histologic, ultrastructural, and immunofluorescent evaluation of human laser-assisted in situ keratomileusis corneal wounds.

    Science.gov (United States)

    Dawson, Daniel G; Kramer, Theresa R; Grossniklaus, Hans E; Waring, George O; Edelhauser, Henry F

    2005-06-01

    To evaluate human corneas after laser-assisted in situ keratomileusis at different postoperative intervals. Thirty-eight postmortem corneas from 20 patients with postoperative intervals from 2 months to 6.5 years after laser-assisted in situ keratomileusis surgery were collected from eye banks. The corneas were trisected and processed for conventional histologic analysis, transmission electron microscopy, and immunofluorescence. Light microscopy and transmission electron microscopy showed focal undulations in Bowman layer, focal epithelial hypertrophic modifications, and a variably thick (range, 0.4-16.4-mum) lamellar stromal interface scar in all specimens. The flap wound margin, which was adjacent to the epithelium, healed by producing an approximately 8-mum-thick hypercellular fibrotic stromal scar, whereas the central and paracentral wound regions healed differently because a thinner (approximately 5-mum) hypocellular primitive stromal scar was present in all the corneas examined. Immunofluorescence identified increased type 3 collagen and myofibroblasts in the hypercellular fibrotic scar regions and decreased or absent levels of all corneal stromal components other than type 1 collagen in the hypocellular primitive scar regions. After laser-assisted in situ keratomileusis surgery, the keratocyte-mediated production of a variably thick lamellar corneal stromal scar occurs, resulting in 2 regional types of scarring. The hypercellular fibrotic scar at the wound margin is usually visible clinically and functions to hold the flap in place, while the more central hypocellular primitive scar is not visible clinically and allows easy lifting of the flap postoperatively.

  3. ROS, MAPK/ERK and PKC play distinct roles in EGF-stimulated human corneal cell proliferation and migration.

    Science.gov (United States)

    Huo, Y-N; Chen, W; Zheng, X-X

    2015-11-08

    Cornea is at the outermost surface of eye globe, and it easily receives damage from ultraviolet light exposure, physiology wounding, and infections. It is essential to understand the mechanisms controlling human corneal epithelial (HCE) cell proliferation and wound healing. Epidermal growth factor (EGF) could stimulate cell proliferation and migration in various cell types. Therefore, we investigated the roles and mechanisms of EGF on HCE cell proliferation and migration. CCK-8 kit and wound healing experiment were used to investigate HCE cell proliferation and cell migration, respectively. ROS activity was quantified by DCFDA and flow cytometry. Western blot and Q-PCR were performed to examine protein and RNA levels. EGF could promote HCE cell proliferation and migration in both physiology status and UV irradiation conditions, which is used to mimic the disease condition in human corneal epithelial cells. Interestingly, the promotion effect of EGF on HCE cell proliferation is mainly mediated by activated ROS signaling under disease condition. However, the EGF function is mediated by ROS and MAPK/ERK pathway in EGF-treated corneal epithelial cells in physiology status, in which ROS and MAPK/ERK pathway have no mutual influence on the other signaling pathway in EGF-stimulated corneal epithelial cells. We also revealed that MAPK/ERK pathway instead of ROS mediates EGF-stimulated HCE cell migration. Interestingly, we found that PKC proteins were downregulated by EGF in HCE cells that is partially mediated by ROS signaling, while PKC pathway was not involved in EGF-stimulated corneal cell proliferation and migration. EGF promotes human corneal cell proliferation and migration both in physiology and disease conditions, and ROS, MAPK/ERK and PKC pathways play different roles in these processes.

  4. Diffusion and Monod kinetics to determine in vivo human corneal oxygen-consumption rate during soft contact-lens wear.

    Science.gov (United States)

    Chhabra, Mahendra; Prausnitz, John M; Radke, C J

    2009-07-01

    The rate of oxygen consumption is an important parameter to assess the physiology of the human cornea. Metabolism of oxygen in the cornea is influenced by contact-lens-induced hypoxia, diseases such as diabetes, surgery, and drug treatment. Therefore, estimation of in vivo corneal oxygen-consumption rate is essential for gauging adequate oxygen supply to the cornea. Phosphorescence quenching of a dye coated on the posterior of a soft contact lens provides a powerful technique to measure tear-film oxygen tension (Harvitt and Bonanno, Invest Ophthalmol Vis Sci 1996;37:1026-1036; Bonanno et al., Invest Ophthalmol Vis Sci 2002;43:371-376). Unfortunately, previous work in establishing oxygen-consumption kinetics from transient postlens tear-film oxygen tensions relies on the simplistic assumption of a constant corneal-consumption rate. A more realistic model of corneal metabolism is needed to obtain reliable oxygen-consumption kinetics. Here, physiologically relevant nonlinear Monod kinetics is adopted for describing the local oxygen-consumption rate, thus avoiding aphysical negative oxygen tensions in the cornea. We incorporate Monod kinetics in an unsteady-state reactive-diffusion model for the cornea contact-lens system to determine tear-film oxygen tension as a function of time when changing from closed-eye to open-eye condition. The model was fit to available experimental data of in vivo human postlens tear-film oxygen tension to determine the corneal oxygen-consumption rate. Reliance on corneal oxygen diffusivity and solubility data obtained from rabbits is no longer requisite. Excellent agreement is obtained between the proposed model and experiment. We calculate the spatial-averaged in vivo human maximum corneal oxygen-consumption rate as Q(c)(max) = 1.05 x 10(-4) mL/(cm(3) s). The calculated Monod constant is K(m) = 2.2 mmHg. (c) 2008 Wiley Periodicals, Inc.

  5. Corneal endothelial cytotoxicity of the Calotropis procera (ushaar) plant.

    Science.gov (United States)

    Al-Mezaine, Hani S; Al-Amry, Mohammed A; Al-Assiri, Abdullah; Fadel, Talal S; Tabbara, Khalid F; Al-Rajhi, Ali A

    2008-05-01

    To report 6 eyes of 5 patients with transient corneal edema after exposure to the milky latex of Calotropis procera (ushaar). Interventional case series. Intracorneal penetration of ushaar latex can lead to permanent endothelial cell loss with morphologic alteration. Corneal edema resolved completely in approximately 2 weeks in all cases, despite reduced endothelial cell count and abnormal morphology. Corneal endothelial toxicity of ushaar latex is caused by its ability to penetrate the corneal stroma and induce permanent loss of endothelial cells. Corneal edema resolves if sufficient endothelial cell viability is still present after resolution of ushaar keratitis.

  6. High-irradiance CXL combined with myopic LASIK: flap and residual stroma biomechanical properties studied ex-vivo.

    Science.gov (United States)

    Kanellopoulos, Anastasios John; Asimellis, George; Salvador-Culla, Borja; Chodosh, James; Ciolino, Joseph B

    2015-06-01

    To evaluate ex vivo biomechanical and enzymatic digestion resistance differences between standard myopic laser in-situ keratomileusis (LASIK) compared with LASIK+CXL, in which high-irradiance cross-linking (CXL) is added. Eight human donor corneas were subjected to femtosecond-assisted myopic LASIK. Group A (n=4) served as a control group (no CXL). The corneas in LASIK+CXL group B were subjected to concurrent prophylactic high-irradiance CXL (n=4). Saline-diluted (0.10%) riboflavin was instilled on the stroma, subsequently irradiated with UV-A through the repositioned flap. The cornea stroma and flap specimens were separately subjected to transverse biaxial resistance measurements; biomechanical differences were assessed via stress and Young's shear modulus. Subsequently, the specimens were subjected to enzymatic degradation. For the corneal stroma specimen, stress at 10% strain was 128±11 kPa for control group A versus 293±20 kPa for the LASIK+CXL group B (relative difference Δ=+129%, pbiomechanical, as well as enzymatic degradation tests showed no significant differences. LASIK+CXL appears to provide significant increase in underlying corneal stromal rigidity, up to +130%. Additionally, there is significant relevant enzymatic digestion resistance confirmatory to the above. LASIK flaps appear unaffected biomechanically by the LASIK+CXL procedure, suggesting effective CXL just under the flap. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Effects of ablation depth and repair time on the corneal elastic modulus after laser in situ keratomileusis.

    Science.gov (United States)

    Wang, Xiaojun; Li, Xiaona; Chen, Weiyi; He, Rui; Gao, Zhipeng; Feng, Pengfei

    2017-01-17

    The biomechanical properties of the cornea should be taken into account in the refractive procedure in order to perform refractive surgery more accurately. The effects of the ablation depth and repair time on the elastic modulus of the rabbit cornea after laser in situ keratomileusis (LASIK) are still unclear. In this study, LASIK was performed on New Zealand rabbits with different ablation depth (only typical LASIK flaps were created; residual stroma bed was 50 or 30% of the whole cornea thickness respectively). The animals without any treatment were served as normal controls. The corneal thickness was measured by ultrasonic pachymetry before animals were humanly killed after 7 or 28 days post-operatively. The corneal elastic modulus was measured by uniaxial tensile testing. A mathematical procedure considering the actual geometrics of the cornea was created to analyze the corneal elastic modulus. There were no obvious differences among all groups in the elastic modulus on after 7 days post-operatively. However, after 28th days post-operatively, there was a significant increase in the elastic modulus with 50 and 30% residual stroma bed; only the elastic modulus of the cornea with 30% residual stroma bed was significantly higher than that of 7 days. Changes in elastic modulus after LASIK suggest that this biomechanical effect may correlate with the ablation depth and repair time.

  8. Analysis of sphingolipids in human corneal fibroblasts from normal and keratoconus patients.

    Science.gov (United States)

    Qi, Hui; Priyadarsini, Shrestha; Nicholas, Sarah E; Sarker-Nag, Akhee; Allegood, Jeremy; Chalfant, Charles E; Mandal, Nawajes A; Karamichos, Dimitrios

    2017-04-01

    The pathophysiology of human keratoconus (KC), a bilateral progressive corneal disease leading to protrusion of the cornea, stromal thinning, and scarring, is not well-understood. In this study, we investigated a novel sphingolipid (SPL) signaling pathway through which KC may be regulated. Using human corneal fibroblasts (HCFs) and human KC cells (HKCs), we examined the SPL pathway modulation. Both cell types were stimulated by the three transforming growth factor (TGF)-β isoforms: TGF-β1 (T1), TGF-β2 (T2), and TGF-β3 (T3). All samples were analyzed using lipidomics and real-time PCR. Our data showed that HKCs have increased levels of signaling SPLs, ceramide (Cer), and sphingosine 1-phosphate (S1P). Treatment with T1 reversed the increase in Cer in HKCs and treatment with T3 reversed the increase in S1P. S1P3 receptor mRNA levels were also significantly upregulated in HKCs, but were reduced to normal levels following T3 treatment. Furthermore, stimulation with Cer and S1P led to significant upregulation of fibrotic markers in HCFs, but not in HKCs. Additionally, stimulation with a Cer synthesis inhibitor (FTY720) led to significant downregulation of specific fibrotic markers in HKCs (TGF-β1, collagen type III, and α smooth muscle actin) without an effect on healthy HCFs, suggesting a causative role of Cer and S1P in fibrogenesis. Overall, this study suggests an association of the SPL signaling pathway in KC disease and its relation with the TGF-β pathway.

  9. Tissue-engineered recombinant human collagen-based corneal substitutes for implantation: performance of type I versus type III collagen.

    Science.gov (United States)

    Merrett, Kimberley; Fagerholm, Per; McLaughlin, Christopher R; Dravida, Subhadra; Lagali, Neil; Shinozaki, Naoshi; Watsky, Mitchell A; Munger, Rejean; Kato, Yasuhiro; Li, Fengfu; Marmo, Christopher J; Griffith, May

    2008-09-01

    To compare the efficacies of recombinant human collagens types I and III as corneal substitutes for implantation. Recombinant human collagen (13.7%) type I or III was thoroughly mixed with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide. The final homogenous solution was either molded into sheets for in vitro studies or into implants with the appropriate corneal dimensions for transplantation into minipigs. Animals with implants were observed for up to 12 months after surgery. Clinical examinations of the cornea included detailed slit lamp biomicroscopy, in vivo confocal microscopy, and fundus examination. Histopathologic examinations were also performed on corneas harvested after 12 months. Both cross-linked recombinant collagens had refractive indices of 1.35, with optical clarity similar to that in human corneas. Their chemical and mechanical properties were similar, although RHC-III implants showed superior optical clarity. Implants into pig corneas over 12 months show comparably stable integration, with regeneration of corneal cells, tear film, and nerves. Optical clarity was also maintained in both implants, as evidenced by fundus examination. Both RHC-I and -III implants can be safely and stably integrated into host corneas. The simple cross-linking methodology and recombinant source of materials makes them potentially safe and effective future corneal matrix substitutes.

  10. Effect of recombinant human epidermal growth factor eye drops and deproteinized calf blood extract eye drops on corneal edema after phacoemulsification

    Directory of Open Access Journals (Sweden)

    Jia Wang

    2017-08-01

    Full Text Available AIM:To compare the effect of recombinant human epidermal growth factor eye drops and deproteinized calf blood extract eye drops on corneal edema after phacoemulsification. METHODS:Totally 72 cases(72 eyesof patients undergoing phacoemulsification were selected and divided into the observation group and the control group by random number table method. After surgery, the observation group were treated with deproteinized calf blood extract eye drops while the control group were treated with recombinant human epidermal growth factor eye drops. The degree of corneal edema, subjective symptom score, corneal endothelium count, changes of corneal thickness and postoperative visual acuity recovery were compared between the two groups at different time points after surgery. RESULTS:Corneal edema in the two groups was significantly milder at 1wk after surgery than that on the 1st day after surgery(PP>0.05. Compared with 1d after surgery, the subjective symptom score and corneal thickness of the two groups significantly decreased on the 7th day after surgery(PPPCONCLUSION:Both of recombinant human epidermal growth factor eye drops and deproteinized calf blood extract eye drops can significantly relieve corneal edema and improve visual acuity of patients after phacoemulsification. However, the latter has obvious advantages over the former in the repair of corneal endothelial cell injury after surgery.

  11. Technique of cultivating limbal derived corneal epithelium on human amniotic membrane for clinical transplantation

    Directory of Open Access Journals (Sweden)

    Fatima A

    2006-01-01

    Full Text Available Background : The technique of transplantation of cultivated limbal epithelium rather than direct limbal tissue isa novel method of "cell therapy" involved in reconstructing the ocular surface in severe limbal stem celldeficiency [LSCD], caused by chemical burns. Aim : To describe a simple feeder-cell free technique of cultivating limbal epithelium on human amniotic membrane[HAM]. Materials and Methods : The limbal tissues (2 mm were harvested from patients with LSCD. These tissueswere proliferated in vitro on HAM supplemented by human corneal epithelial cell medium and autologousserum. Cultures covering more ?50% area of 2.5x5 cm HAM were considered adequate for clinical use. Thecultured epithelium was characterized by histopathology and immunophenotyping.Results: A total of 542 cultures out of 250 limbal tissues were cultivated in the laboratory from January 2001through July 2005. The culture explants showed that clusters of cells emerging from the edge of the explantsin one-three days formed a complete monolayer within 10-14 days. In 86% of cultures (464 of 542, thegrowth was observed within one-two days. Successful explant cultures were observed in 98.5% (534 of 542cultures with 91% explant cultures showing an area of ?6.25 cm2 (6.25 - 12.5 cm2 range. The cultivatedepithelium was terminated between 10-14 days for clinical transplantation. The problems encountered wereinadequate growth (2 of 542 and contamination (2 of 542. Conclusions : We demonstrate a simple technique of generating a sheet of corneal epithelium from a limbalbiopsy. This new technique could pave the way for a novel form of cell therapy.

  12. Cytotoxicity of atropine to human corneal endothelial cells by inducing mitochondrion-dependent apoptosis.

    Science.gov (United States)

    Wen, Qian; Fan, Ting-Jun; Tian, Cheng-Lei

    2016-07-01

    Atropine, a widely used topical anticholinergic drug, might have adverse effects on human corneas in vivo. However, its cytotoxic effect on human corneal endothelium (HCE) and its possible mechanisms are unclear. Here, we investigated the cytotoxicity of atropine and its underlying cellular and molecular mechanisms using an in vitro model of HCE cells and verified the cytotoxicity using cat corneal endothelium (CCE) in vivo. Our results showed that atropine at concentrations above 0.3125 g/L could induce abnormal morphology and viability decline in a dose- and time-dependent manner in vitro. The cytotoxicity of atropine was proven by the induced density decrease and abnormality of morphology and ultrastructure of CCE cells in vivo. Meanwhile, atropine could also induce dose- and time-dependent elevation of plasma membrane permeability, G1 phase arrest, phosphatidylserine externalization, DNA fragmentation, and apoptotic body formation of HCE cells. Moreover, 2.5 g/L atropine could also induce caspase-2/-3/-9 activation, mitochondrial transmembrane potential disruption, downregulation of anti-apoptotic Bcl-2 and Bcl-xL, upregulation of pro-apoptotic Bax and Bad, and upregulation of cytoplasmic cytochrome c and apoptosis-inducing factor. In conclusion, atropine above 1/128 of its clinical therapeutic dosage has a dose- and time-dependent cytotoxicity to HCE cells in vitro which is confirmed by CCE cells in vivo, and its cytotoxicity is achieved by inducing HCE cell apoptosis via a death receptor-mediated mitochondrion-dependent signaling pathway. Our findings provide new insights into the cytotoxicity and apoptosis-inducing effect of atropine which should be used with great caution in eye clinic. © 2016 by the Society for Experimental Biology and Medicine.

  13. Effect of different culture media and deswelling agents on survival of human corneal endothelial and epithelial cells in vitro.

    Science.gov (United States)

    Valtink, Monika; Donath, Patricia; Engelmann, Katrin; Knels, Lilla

    2016-02-01

    To examine the effects of media and deswelling agents on human corneal endothelial and epithelial cell viability using a previously developed screening system. The human corneal endothelial cell line HCEC-12 and the human corneal epithelial cell line HCE-T were cultured in four different corneal organ culture media (serum-supplemented: MEM +2 % FCS, CorneaMax®/CorneaJet®, serum-free: Human Endothelial-SFM, Stemalpha-2 and -3) with and without 6 % dextran T500 or 7 % HES 130/0.4. Standard growth media F99HCEC and DMEM/F12HCE-T served as controls. In additional controls, the stress inducers staurosporine or hydrogen peroxide were added. After 5 days in the test media, cell viability was assessed by flow cytometrically quantifying apoptotic and necrotic cells (sub-G1 DNA content, vital staining with YO-PRO-1® and propidium iodide) and intracellular reactive oxygen species (ROS). The MEM-based media were unable to support HCEC-12 and HCE-T survival under stress conditions, resulting in significantly increased numbers of apoptotic and necrotic cells. HCEC-12 survival was markedly improved in SFM-based media even under staurosporine or hydrogen peroxide. Likewise, HCE-T survival was improved in SFM with or without dextran. The media CorneaMax®, CorneaJet®, and CorneaMax® with HES supported HCEC-12 survival better than MEM-based media, but less well than SFM-based media. HCE-T viability was also supported by CorneaJet®, but not by CorneaMax® with or without HES. Stemalpha-based media were not suitable for maintaining viability of HCEC-12 or HCE-T in the applied cell culture system. The use of serum-supplemented MEM-based media for corneal organ culture should be discontinued in favour of serum-free media like SFM.

  14. Comparison of 2 Different Methods of Transepithelial Corneal Collagen Cross-Linking: Analysis of Corneal Histology and Hysteresis.

    Science.gov (United States)

    Park, Young Min; Kim, Ho Yoon; Lee, Jong Soo

    2017-07-01

    To compare the effect of 2 different methods of transepithelial corneal collagen cross-linking (CXL) on corneal histology and hysteresis. The right eyes of New Zealand white rabbits (n = 50) were treated using one of the 2 transepithelial CXL methods. The eyes were then divided into 2 groups: group 1, transepithelial CXL using continuous ultraviolet A (UVA); group 2, accelerated transepithelial CXL using pulsed UVA. Both groups showed a postoperative increase in central corneal thickness. In both groups, an increase in corneal hysteresis was found after CXL, but the changes were not significant when compared with the baseline value. The corneal resistance factor and corneal-compensated intraocular pressure also remained unchanged in both groups after treatment. In both groups, the CXL effect reached the anterior-mid part of the corneal stroma. In group 1, CXL mostly affected the anterior-mid part stroma, whereas group 2 showed stromal keratocyte loss, and an acellular zone, in the deep stroma. More signs of keratocyte apoptosis were observed in group 2 than in group 1. Accelerated transepithelial CXL using pulsed UVA showed considerably deeper effect in the stroma with keratocyte loss than transepithelial CXL using continuous UVA.

  15. Technology needs for corneal transplant surgery

    Science.gov (United States)

    Vaddavalli, Pravin K.; Yoo, Sonia H.

    2011-03-01

    Corneal transplant surgery has undergone numerous modifications over the years with improvements in technique, instrumentation and eye banking. The main goals of corneal transplantation are achieving excellent optical clarity with long-term graft survival. Penetrating, anterior and posterior lamellar surgery along with femtosecond laser technology have partially met these goals, but outcomes are often unpredictable and surgeon dependent. Technology to predictably separate stroma from Descemet's membrane, techniques to minimize endothelial cell loss, improvements in imaging technology and emerging techniques like laser welding that might replace suturing, eventually making corneal transplantation a refractively predictable procedure are on the wish list of the cornea surgeon.

  16. Corneal elasticity after oxygen enriched high intensity corneal cross linking assessed using atomic force microscopy.

    Science.gov (United States)

    Diakonis, Vasilios F; Likht, Nikita Y; Yesilirmak, Nilufer; Delgado, Desiree; Karatapanis, Andreas E; Yesilirmak, Yener; Fraker, Christopher; Yoo, Sonia H; Ziebarth, Noël M

    2016-12-01

    The purpose of this study was to assess anterior and mid corneal stromal elasticity after high intensity (HI) corneal cross linking (CXL), with and without oxygen (O2) enrichment, and compare these results to conventional CXL. Experiments were performed on 25 pairs of human cadaver eyes, divided into four different groups. Group 1 included corneas that did not receive treatment and served as controls; Group 2 included corneas that received conventional CXL treatment (Dresden Protocol: corneal epithelial debridement, 30 min of riboflavin pretreatment followed by 30 min of exposure to 3 mW/cm(2) of ultraviolet light); Group 3 included corneas that received HI CXL treatment (corneal epithelial debridement, 30 min of riboflavin pretreatment followed by 3 min of exposure to 30mW/cm(2) of ultraviolet light); and Group 4 included corneas that received the same treatment as Group 3, except that they were enriched with oxygen (4 L per minute pure O2 gas stream) during ultraviolet irradiation. In each group, corneas were subdivided to assess anterior stromal elasticity and mid stromal elasticity. Corneal stromal elasticity was quantified using Atomic Force Microscopy (AFM) through micro-indentation. Young's modulus for the anterior corneal stroma was 14.5 ± 6.0 kPa, 80.7 ± 44.6 kPa, 36.6 ± 10.5 kPa, and 30.6 ± 9.2 kPa, for groups 1, 2, 3 and 4 respectively. Young's modulus for the mid corneal stroma was 5.8 ± 2.0 kPa, 20.7 ± 4.3 kPa, 12.1 ± 4.9 kPa, and 11.7 ± 3.7 kPa, for groups 1, 2, 3 and 4, respectively. In the anterior stromal region, conventional CXL demonstrated a significantly different result from the control, whereas the two HI CXL protocols were not significantly different from the control. There were no statistical differences between the two HI CXL protocols, although only the HI CXL protocol with O2 enrichment was significantly different from the conventional CXL group. In the mid stromal region, once again only

  17. Stings of the Ant Wasmannia auropunctata (Hymenoptera: Formicidae) as Cause of Punctate Corneal Lesions in Humans and Other Animals.

    Science.gov (United States)

    Rosselli, Diego; Wetterer, James K

    2017-09-25

    Numerous researchers have observed a form of punctate corneal lesions causing leukomas (corneal opacities) in humans, domestic animals, and wild animals in different parts of the world. This condition has been reported under different names, including West Indian (or Caribbean) punctate keratopathy, West Indian dots, tropical punctate keratopathy, Rice's keratopathy, Florida keratopathy, and Florida spots. Many of these cases, appear to have a common cause, the stings of a small red ant, Wasmannia auropunctata (Hymenoptera: Formicidae), originally from the Neotropics, but spread to other parts of the world through human commerce. The purpose of this article is to link disparate literature on punctate or nummular corneal lesions published in medical, veterinary, wildlife, and entomology journals, because many researchers seem largely unaware of the literature from disciplines other than their own. Recognizing a common cause of this corneal condition is important to insure proper medical treatment and foster efforts to limit the spread and negative impact of W. auropunctata. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. The effect of standard and transepithelial ultraviolet collagen cross-linking on human corneal nerves: an ex vivo study.

    Science.gov (United States)

    Al-Aqaba, Mouhamed; Calienno, Roberta; Fares, Usama; Otri, Ahmad Muneer; Mastropasqua, Leonardo; Nubile, Mario; Dua, Harminder S

    2012-02-01

    To evaluate the early effect of standard and transepithelial collagen cross-linking on human corneal nerves in donor eyes by ex vivo confocal microscopy and acetylcholinesterase staining. Experimental laboratory investigation. Eight human eye bank corneal buttons (mean age, 73.6 years) were included. Ultraviolet A collagen cross-linking was performed postmortem on 3 corneas with the standard protocol involving epithelial debridement and 4 corneas by the transepithelial approach. One cornea served as a control. Corneal nerves were evaluated using confocal microscopy and acetylcholinesterase histology. Confocal microscopy demonstrated the absence of subbasal nerves in corneas treated by the standard technique. These nerves were preserved in corneas treated by the transepithelial approach. Stromal nerves were visible in both groups. Histology of corneas treated by the standard technique revealed localized swellings of the stromal nerves with disruption of axonal membrane and loss of axonal continuity within the treatment zone. These changes were absent in corneas treated by the transepithelial approach. This study highlights the immediate effects of collagen cross-linking on the corneal nerves in an ex vivo model. The absence of subbasal nerves in the early phase of treatment appears to be attributable mainly to mechanical removal of epithelium, rather than ultraviolet light-induced damage. Localized swelling of the stromal nerves was the main difference between the 2 treatment protocols. Further research on laboratory animals would be necessary to verify these changes over a specified time course without the super-addition of postmortem changes. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Deep stroma investigation by confocal microscopy

    Science.gov (United States)

    Rossi, Francesca; Tatini, Francesca; Pini, Roberto; Valente, Paola; Ardia, Roberta; Buzzonetti, Luca; Canovetti, Annalisa; Malandrini, Alex; Lenzetti, Ivo; Menabuoni, Luca

    2015-03-01

    Laser assisted keratoplasty is nowadays largely used to perform minimally invasive surgery and partial thickness keratoplasty [1-3]. The use of the femtosecond laser enables to perform a customized surgery, solving the specific problem of the single patient, designing new graft profiles and partial thickness keratoplasty (PTK). The common characteristics of the PTKs and that make them eligible respect to the standard penetrating keratoplasty, are: the preservation of eyeball integrity, a reduced risk of graft rejection, a controlled postoperative astigmatism. On the other hand, the optimal surgical results after these PTKs are related to a correct comprehension of the deep stroma layers morphology, which can help in the identification of the correct cleavage plane during surgeries. In the last years some studies were published, giving new insights about the posterior stroma morphology in adult subjects [4,5]. In this work we present a study performed on two groups of tissues: one group is from 20 adult subjects aged 59 +/- 18 y.o., and the other group is from 15 young subjects, aged 12+/-5 y.o.. The samples were from tissues not suitable for transplant in patients. Confocal microscopy and Environmental Scanning Electron Microscopy (ESEM) were used for the analysis of the deep stroma. The preliminary results of this analysis show the main differences in between young and adult tissues, enabling to improve the knowledge of the morphology and of the biomechanical properties of human cornea, in order to improve the surgical results in partial thickness keratoplasty.

  20. Clinical applications of corneal confocal microscopy

    Directory of Open Access Journals (Sweden)

    Mitra Tavakoli

    2008-06-01

    Full Text Available Mitra Tavakoli1, Parwez Hossain2, Rayaz A Malik11Division of Cardiovascular Medicine, University of Manchester and Manchester Royal Infirmary, Manchester, UK; 2University of Southampton, Southampton Eye Unit, Southampton General Hospital, Southampton, UKAbstract: Corneal confocal microscopy is a novel clinical technique for the study of corneal cellular structure. It provides images which are comparable to in-vitro histochemical techniques delineating corneal epithelium, Bowman’s layer, stroma, Descemet’s membrane and the corneal endothelium. Because, corneal confocal microscopy is a non invasive technique for in vivo imaging of the living cornea it has huge clinical potential to investigate numerous corneal diseases. Thus far it has been used in the detection and management of pathologic and infectious conditions, corneal dystrophies and ecstasies, monitoring contact lens induced corneal changes and for pre and post surgical evaluation (PRK, LASIK and LASEK, flap evaluations and Radial Keratotomy, and penetrating keratoplasty. Most recently it has been used as a surrogate for peripheral nerve damage in a variety of peripheral neuropathies and may have potential in acting as a surrogate marker for endothelial abnormalities.Keywords: corneal confocal microscopy, cornea, infective keratitis, corneal dystrophy, neuropathy

  1. The molecular basis of corneal transparency.

    Science.gov (United States)

    Hassell, John R; Birk, David E

    2010-09-01

    The cornea consists primarily of three layers: an outer layer containing an epithelium, a middle stromal layer consisting of a collagen-rich extracellular matrix (ECM) interspersed with keratocytes and an inner layer of endothelial cells. The stroma consists of dense, regularly packed collagen fibrils arranged as orthogonal layers or lamellae. The corneal stroma is unique in having a homogeneous distribution of small diameter 25-30 nm fibrils that are regularly packed within lamellae and this arrangement minimizes light scattering permitting transparency. The ECM of the corneal stroma consists primarily of collagen type I with lesser amounts of collagen type V and four proteoglycans: three with keratan sulfate chains; lumican, keratocan, osteoglycin and one with a chondroitin sulfate chain; decorin. It is the core proteins of these proteoglycans and collagen type V that regulate the growth of collagen fibrils. The overall size of the proteoglycans are small enough to fit in the spaces between the collagen fibrils and regulate their spacing. The stroma is formed during development by neural crest cells that migrate into the space between the corneal epithelium and corneal endothelium and become keratoblasts. The keratoblasts proliferate and synthesize high levels of hyaluronan to form an embryonic corneal stroma ECM. The keratoblasts differentiate into keratocytes which synthesize high levels of collagens and keratan sulfate proteoglycans that replace the hyaluronan/water-rich ECM with the densely packed collagen fibril-type ECM seen in transparent adult corneas. When an incisional wound through the epithelium into stroma occurs the keratocytes become hypercellular myofibroblasts. These can later become wound fibroblasts, which provides continued transparency or become myofibroblasts that produce a disorganized ECM resulting in corneal opacity. The growth factors IGF-I/II are likely responsible for the formation of the well organized ECM associated with transparency

  2. Current treatment options for corneal ectasia.

    Science.gov (United States)

    Tan, Donald T H; Por, Yong-Ming

    2007-07-01

    The approach to the management of various forms of corneal ectasia is changing, with the advent of new surgical and nonsurgical options. The purpose of this review is to summarize and evaluate relevant studies on new treatments for keratoconus, postrefractive surgery keratectasia, and peripheral ectatic corneal disorders. Various alternatives to corneal transplantation for the management of keratoconus aim to enhance corneal rigidity by means of nonsurgical collagen cross-linking, or with the use of intrastromal corneal ring segments, and studies suggest that these treatments may reduce astigmatism or ectatic progression to varying degrees. Recent developments in anterior lamellar keratoplasty enable targeted replacement or augmentation of corneal stroma without replacement of endothelium, and include procedures such as deep anterior lamellar keratoplasty, microkeratome or laser-assisted anterior lamellar surgery, and peripheral tectonic lamellar keratoplasty procedures demonstrate successful reinforcement of peripheral stroma to reduce astigmatism. These new forms of surgery are viable alternatives to conventional penetrating keratoplasty and bring added safety profiles for long-term visual rehabilitation and restoration of tectonic integrity in central and peripheral forms of corneal ectasia.

  3. Altered corneal stromal matrix organization is associated with mucopolysaccharidosis I, III and VI.

    Science.gov (United States)

    Alroy, J; Haskins, M; Birk, D E

    1999-05-01

    The presence of cloudy corneas is a prominent feature of mucopolysaccharidosis (MPS) types I and VI, but not MPS IIIA or IIIB. The cause of corneal cloudiness in MPS I and VI is speculative. Transparency of the cornea is dependent on the uniform diameter and the regular spacing and arrangement of the collagen fibrils within the stroma. Alterations in the spacing of collagen fibrils in a variety of conditions including corneal edema, scars, and macular corneal dystrophy is clinically manifested as corneal opacity. The purpose of this study was to compare the structural organization of the stromal extracellular matrix of normal corneas with that of MPS corneas. The size and arrangement of collagen fibrils in cloudy corneas from patients with MPS I were examined. The alterations observed were an increased mean fibril diameter with a broader distribution in the MPS corneas. The MPS I corneas also had altered fibril spacing and more irregular packing compared with normal control corneas. The clear corneas of patients with MPS IIIA and IIIB also showed increases in mean fibril diameter and fibril spacing. However, there was less variation indicating more regularity than seen in MPS I. In addition, corneas from cat models of certain MPS were compared to the human corneas. Cats with MPS I and VI, as well as normal control cats, were examined. Structural alterations comparable to those seen in human MPS corneas were seen in MPS I and VI cats relative to normal clear corneas. The findings suggest that cloudy corneas in MPS I and VI are in part a consequence of structural alterations in the corneal stroma, including abnormal spacing, size, and arrangement of collagen fibrils. Copyright 1999 Academic Press.

  4. Enhanced regeneration of corneal tissue via a bioengineered collagen construct implanted by a nondisruptive surgical technique.

    Science.gov (United States)

    Koulikovska, Marina; Rafat, Mehrdad; Petrovski, Goran; Veréb, Zoltán; Akhtar, Saeed; Fagerholm, Per; Lagali, Neil

    2015-03-01

    Severe shortage of donor corneas for transplantation, particularly in developing countries, has prompted the advancement of bioengineered tissue alternatives. Bioengineered corneas that can withstand transplantation while maintaining transparency and compatibility with host cells, and that are additionally amenable to standardized low-cost mass production are sought. In this study, a bioengineered porcine construct (BPC) was developed to function as a biodegradable scaffold to promote corneal stromal regeneration by host cells. Using high-purity medical-grade type I collagen, high 18% collagen content and optimized EDC-NHS cross-linker ratio, BPCs were fabricated into hydrogel corneal implants with over 90% transparency and four-fold increase in strength and stiffness compared with previous versions. Remarkably, optical transparency was achieved despite the absence of collagen fibril organization at the nanoscale. In vitro testing indicated that BPC supported confluent human epithelial and stromal-derived mesenchymal stem cell populations. With a novel femtosecond laser-assisted corneal surgical model in rabbits, cell-free BPCs were implanted in vivo in the corneal stroma of 10 rabbits over an 8-week period. In vivo, transparency of implanted corneas was maintained throughout the postoperative period, while healing occurred rapidly without inflammation and without the use of postoperative steroids. BPC implants had a 100% retention rate at 8 weeks, when host stromal cells began to migrate into implants. Direct histochemical evidence of stromal tissue regeneration was observed by means of migrated host cells producing new collagen from within the implants. This study indicates that a cost-effective BPC extracellular matrix equivalent can incorporate cells passively to initiate regenerative healing of the corneal stroma, and is compatible with human stem or organ-specific cells for future therapeutic applications as a stromal replacement for treating blinding

  5. A role for topographic cues in the organization of collagenous matrix by corneal fibroblasts and stem cells.

    Directory of Open Access Journals (Sweden)

    Dimitrios Karamichos

    Full Text Available Human corneal fibroblasts (HCF and corneal stromal stem cells (CSSC each secrete and organize a thick stroma-like extracellular matrix in response to different substrata, but neither cell type organizes matrix on tissue-culture polystyrene. This study compared cell differentiation and extracellular matrix secreted by these two cell types when they were cultured on identical substrata, polycarbonate Transwell filters. After 4 weeks in culture, both cell types upregulated expression of genes marking differentiated keratocytes (KERA, CHST6, AQP1, B3GNT7. Absolute expression levels of these genes and secretion of keratan sulfate proteoglycans were significantly greater in CSSC than HCF. Both cultures produced extensive extracellular matrix of aligned collagen fibrils types I and V, exhibiting cornea-like lamellar structure. Unlike HCF, CSSC produced little matrix in the presence of serum. Construct thickness and collagen organization was enhanced by TGF-ß3. Scanning electron microscopic examination of the polycarbonate membrane revealed shallow parallel grooves with spacing of 200-300 nm, similar to the topography of aligned nanofiber substratum which we previously showed to induce matrix organization by CSSC. These results demonstrate that both corneal fibroblasts and stromal stem cells respond to a specific pattern of topographical cues by secreting highly organized extracellular matrix typical of corneal stroma. The data also suggest that the potential for matrix secretion and organization may not be directly related to the expression of molecular markers used to identify differentiated keratocytes.

  6. A role for topographic cues in the organization of collagenous matrix by corneal fibroblasts and stem cells.

    Science.gov (United States)

    Karamichos, Dimitrios; Funderburgh, Martha L; Hutcheon, Audrey E K; Zieske, James D; Du, Yiqin; Wu, Jian; Funderburgh, James L

    2014-01-01

    Human corneal fibroblasts (HCF) and corneal stromal stem cells (CSSC) each secrete and organize a thick stroma-like extracellular matrix in response to different substrata, but neither cell type organizes matrix on tissue-culture polystyrene. This study compared cell differentiation and extracellular matrix secreted by these two cell types when they were cultured on identical substrata, polycarbonate Transwell filters. After 4 weeks in culture, both cell types upregulated expression of genes marking differentiated keratocytes (KERA, CHST6, AQP1, B3GNT7). Absolute expression levels of these genes and secretion of keratan sulfate proteoglycans were significantly greater in CSSC than HCF. Both cultures produced extensive extracellular matrix of aligned collagen fibrils types I and V, exhibiting cornea-like lamellar structure. Unlike HCF, CSSC produced little matrix in the presence of serum. Construct thickness and collagen organization was enhanced by TGF-ß3. Scanning electron microscopic examination of the polycarbonate membrane revealed shallow parallel grooves with spacing of 200-300 nm, similar to the topography of aligned nanofiber substratum which we previously showed to induce matrix organization by CSSC. These results demonstrate that both corneal fibroblasts and stromal stem cells respond to a specific pattern of topographical cues by secreting highly organized extracellular matrix typical of corneal stroma. The data also suggest that the potential for matrix secretion and organization may not be directly related to the expression of molecular markers used to identify differentiated keratocytes.

  7. Spatial and temporal variations in extracellular matrix of periocular and corneal regions during corneal stromal development.

    Science.gov (United States)

    Doane, K J; Ting, W H; McLaughlin, J S; Birk, D E

    1996-03-01

    The development of the avian corneal stroma occurs in discrete developmental stages. During this sequence of events, the neural crest-derived corneal fibroblast precursor cells are surrounded by distinct extracellular matrices which change both spatially and temporally. To elucidate the role of these matrices, extracellular matrix components in the periocular mesenchyme and cornea were analysed prior to and during migration and differentiation of corneal fibroblasts using antibodies against collagens, proteoglycans and glycoproteins. Previous work has concentrated on the matrix of the corneal stroma rather than the matrix of the periocular mesenchyme. Since the precursors of the corneal fibroblasts are present within the must migrate through the periocular mesenchyme prior to entry into the cornea proper, this environment was fully evaluated. The present study documents the matrix composition of both the cornea and periocular mesenchyme at developmental stages that are prior to and after initiation of corneal invasion by the corneal fibroblast precursors. Variations in matrix molecules comprising both the periocular mesenchyme and cornea were demonstrated. These include changes in the distribution of collagen types I, II, III, IV and VI; the proteoglycans decorin and lumican; as well as the adhesive glycoproteins tenascin, fibronectin and laminin. It is hypothesized that the variations in matrix localization are important in the regulation of cell migration and differentiation during normal corneal development. Any regulation is likely to involve a combination of components found in the extracellular matrices and therefore, a consideration of the matrix rather than isolated components is required.

  8. Thermal and infrared-diode laser effects on indocyanine-green-treated corneal collagen

    Science.gov (United States)

    Timberlake, George T.; Patmore, Ann; Shallal, Assaad; McHugh, Dominic; Marshall, John

    1993-07-01

    It has been suggested that laser welds of collagenous tissues form by interdigitation and chemical bonding of thermally 'unraveled' collagen fibrils. We investigated this proposal by attempting to weld highly collagenous, avascular corneal tissue with an infrared (IR) diode laser as follows. First, the temperature at which corneal collagen shrinks and collagen fibrils 'split' into subfibrillary components was determined. Second, since use of a near-IR laser wavelength necessitated addition of an absorbing dye (indocyanine green (ICG) to the cornea, we measured absorption spectra of ICG-treated tissue to ensure that peak ICG absorbance did not change markedly when ICG was present in the cornea. Third, using gel electrophoresis of thermally altered corneal collagen, we searched for covalently crosslinked compounds predicted by the proposed welding mechanism. Finally, we attempted to weld partial thickness corneal incisions infused with ICG. Principal experimental findings were as follows: (1) Human corneal (type I) collagen splits into subfibrillary components at approximately 63 degree(s)C, the same temperature that produces collagen shrinkage. (2) Peak ICG absorption does not change significantly in corneal stroma or with laser heating. (3) No evidence was found for the formation of novel compounds or the loss of proteins as a result of tissue heating. All tissue treated with ICG, however, exhibited a novel 244 kD protein band indicating chemical activity between collagen and corneal stromal components. (4) Laser welding corneal incisions was unsuccessful possibly due to shrinkage of the sides of the incision, lack of incision compression during heating, or a less than optimal combination of ICG concentration and radiant exposure. In summary, these experiments demonstrate the biochemical and morphological complexity of ICG-enhanced IR laser-tissue welding and the need for further investigation of laser welding mechanisms.

  9. Riboflavin-UV--a crosslinking for fixation of biosynthetic corneal collagen implants.

    Science.gov (United States)

    Wand, Kerstin; Neuhann, Raphael; Ullmann, Andrea; Plank, Katharina; Baumann, Michael; Ritter, Roland; Griffith, May; Lohmann, Chris P; Kobuch, Karin

    2015-05-01

    To evaluate riboflavin-UV-A crosslinking as an alternative suture-free fixation method for biosynthetic corneal collagen implants. A range of cell-free corneal implants consisting of recombinant human collagen type III were examined. In vitro, the implants were crosslinked with different riboflavin solutions and irradiations. Ex vivo, the biosynthetic corneal implants were placed on the anterior cornea of porcine and rabbit eyes after performing deep anterior lamellar keratoplasty with a trephine, femtosecond laser, or excimer laser. UV-A crosslinking was performed with isotonic or hypotonic riboflavin at either standard or rapid procedure. The corneas were excised, fixed in PFA 4%, and embedded in paraffin. Crosslinking effects on the implants and the adhesion between implant and corneal bed were evaluated by slit-lamp biomicroscopy, optical coherence tomography (OCT) images, and histologically. After the crosslinking procedure, the implants showed different degrees of thinning. The accuracy of cutting the corneal bed was highest with the excimer laser. Good adhesion of the implant in the corneal bed could be demonstrated in OCT images. This was more accurate in porcine eyes than in rabbit eyes. Histologically, crosslinks between implant and corneal stroma were demonstrated. There was no difference between standard and rapid crosslinking procedures. Riboflavin-UV-A crosslinking as a fixation method for biosynthetic corneal collagen implants was demonstrated to be promising. It can reduce suture-related complications such as haze formation and surface irregularity. Stability of the implants, especially shrinkage after riboflavin-UV-A crosslinking, needs to be further evaluated. Biostability, integration, and long-term outcome are further evaluated in in vivo animal experiments.

  10. Effects of exogenous recombinant human bone morphogenic protein-7 on the corneal epithelial mesenchymal transition and fibrosis.

    Science.gov (United States)

    Chung, Jin Kwon; Park, Shin Ae; Hwang, Hee Sun; Kim, Kwang Sung; Cho, Yang Je; You, Yong Sung; Kim, Young Sik; Jang, Ju Woong; Lee, Sung Jin

    2017-01-01

    To evaluate the effect of exogenous recombinant human bone morphogenic protein-7 (rhBMP-7) on transforming growth factor-β (TGF-β)-induced epithelial mesenchymal cell transition (EMT) and assessed its antifibrotic effect via topical application. The cytotoxic effect of rhBMP-7 was evaluated and the EMT of human corneal epithelial cells (HECEs) was induced by TGF-β. HECEs were then cultured in the presence of rhBMP-7 and/or hyaluronic acid (HA). EMT markers, fibronectin, E-cadherin, α-smooth muscle actin (α-SMA), and matrix metaloproteinase-9 (MMP-9), were evaluated. The level of corneal fibrosis and the reepithelization rate were evaluated using a rabbit keratectomy model. Expression of α-SMA in keratocytes were quantified following treatment with different concentrations of rhBMP-7. Treatment with rhBMP-7 attenuated TGF-β-induced EMT in HECEs. It significantly attenuated fibronectin secretion (31.6%; PHECEs compared with cells grown in the presence of TGF-β alone. E-cadherin expression was significantly enhanced (289.7%; P<0.01) in the presence of rhBMP-7. Topical application of rhBMP-7 combined with 0.1% HA significantly reduced the amount of α-SMA+ cells by 43.18% (P<0.05) at a concentration of 2.5 µg/mL and by 47.73% (P<0.05) at 25 µg/mL, compared with the control group, without disturbing corneal reepithelization. rhBMP-7 attenuates TGF-β-induced EMT in vitro, and topical application of rhBMP-7 reduces keratocyte myodifferentiation during the early wound healing stages in vivo without hindering reepithelization. Topical rhBMP-7 application as biological eye drops seems to be feasible in diseases involving TGF-β-related corneal fibrosis with corneal reepithelization disorders.

  11. The structural and optical properties of type III human collagen biosynthetic corneal substitutes

    Science.gov (United States)

    Hayes, Sally; Lewis, Phillip; Islam, M. Mirazul; Doutch, James; Sorensen, Thomas; White, Tomas; Griffith, May; Meek, Keith M.

    2015-01-01

    The structural and optical properties of clinically biocompatible, cell-free hydrogels comprised of synthetically cross-linked and moulded recombinant human collagen type III (RHCIII) with and without the incorporation of 2-methacryloyloxyethyl phosphorylcholine (MPC) were assessed using transmission electron microscopy (TEM), X-ray scattering, spectroscopy and refractometry. These findings were examined alongside similarly obtained data from 21 human donor corneas. TEM demonstrated the presence of loosely bundled aggregates of fine collagen filaments within both RHCIII and RHCIII-MPC implants, which X-ray scattering showed to lack D-banding and be preferentially aligned in a uniaxial orientation throughout. This arrangement differs from the predominantly biaxial alignment of collagen fibrils that exists in the human cornea. By virtue of their high water content (90%), very fine collagen filaments (2–9 nm) and lack of cells, the collagen hydrogels were found to transmit almost all incident light in the visible spectrum. They also transmitted a large proportion of UV light compared to the cornea which acts as an effective UV filter. Patients implanted with these hydrogels should be cautious about UV exposure prior to regrowth of the epithelium and in-growth of corneal cells into the implants. PMID:26159106

  12. The structural and optical properties of type III human collagen biosynthetic corneal substitutes.

    Science.gov (United States)

    Hayes, Sally; Lewis, Phillip; Islam, M Mirazul; Doutch, James; Sorensen, Thomas; White, Tomas; Griffith, May; Meek, Keith M

    2015-10-01

    The structural and optical properties of clinically biocompatible, cell-free hydrogels comprised of synthetically cross-linked and moulded recombinant human collagen type III (RHCIII) with and without the incorporation of 2-methacryloyloxyethyl phosphorylcholine (MPC) were assessed using transmission electron microscopy (TEM), X-ray scattering, spectroscopy and refractometry. These findings were examined alongside similarly obtained data from 21 human donor corneas. TEM demonstrated the presence of loosely bundled aggregates of fine collagen filaments within both RHCIII and RHCIII-MPC implants, which X-ray scattering showed to lack D-banding and be preferentially aligned in a uniaxial orientation throughout. This arrangement differs from the predominantly biaxial alignment of collagen fibrils that exists in the human cornea. By virtue of their high water content (90%), very fine collagen filaments (2-9 nm) and lack of cells, the collagen hydrogels were found to transmit almost all incident light in the visible spectrum. They also transmitted a large proportion of UV light compared to the cornea which acts as an effective UV filter. Patients implanted with these hydrogels should be cautious about UV exposure prior to regrowth of the epithelium and in-growth of corneal cells into the implants. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Effect of recombinant human epidermal growth factor eye drops and deproteinized calf blood extract eye drops on corneal edema after phacoemulsification

    National Research Council Canada - National Science Library

    Jia Wang

    2017-01-01

    AIM:To compare the effect of recombinant human epidermal growth factor eye drops and deproteinized calf blood extract eye drops on corneal edema after phacoemulsification. METHODS:Totally 72 cases(72 eyes...

  14. Paradigm shifts in corneal transplantation.

    Science.gov (United States)

    Tan, Donald T H; Anshu, Arundhati; Mehta, Jodhbir S

    2009-04-01

    Conventional corneal transplantation, in the form of penetrating keratoplasty (PK), involves full-thickness replacement of the cornea, and is a highly successful procedure. However, the cornea is anatomically a multi-layered structure. Pathology may only affect individual layers of the cornea, hence selective lamellar surgical replacement of only the diseased corneal layers whilst retaining unaffected layers represents a new paradigm shift in the field. Recent advancements in surgical techniques and instrumentation have resulted in several forms of manual, microkeratome and femto-second laser-assisted lamellar transplantation procedures. Anterior lamellar keratoplasty (ALK) aims at replacing only diseased or scarred corneal stroma, whilst retaining the unaffected corneal endothelial layer, thus obviating the risk of endothelial allograft rejection. Posterior lamellar keratoplasty/endothelial keratoplasty (PLK/EK) involves the replacement of the dysfunctional endothelial cell layer only. Whilst significant technical and surgical challenges are involved in performing lamellar micro-dissection of a tissue which is only 0.5 mm thick, the benefits of a more controlled surgical procedure and improved graft survival rates have resulted in a shift away from conventional PK. This review details the current advances in emerging lamellar corneal surgical procedures and highlights the main advantages and disadvantages of these new lamellar corneal procedures.

  15. Corneal transplant - slideshow

    Science.gov (United States)

    ... ency/presentations/100082.htm Corneal transplant - series—Normal anatomy To use the sharing features on this page, ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  16. Corneal Laceration

    Medline Plus

    Full Text Available ... or apply pressure to eye avoid giving aspirin, ibuprofen or other non-steroidal, anti-inflammatory drugs. These ... lost sight from a corneal scar as a child. Now that I’m older, will a corneal ...

  17. Corneal Laceration

    Medline Plus

    Full Text Available ... rub or apply pressure to eye avoid giving aspirin, ibuprofen or other non-steroidal, anti-inflammatory drugs. ... lost sight from a corneal scar as a child. Now that I’m older, will a corneal ...

  18. Corneal Laceration

    Medline Plus

    Full Text Available ... Now that I’m older, will a corneal transplant help me? May 15, 2015 Why Do My ... May Have A Future Alternative to Full Corneal Transplantation Nov 29, 2016 Combating Eye Injuries from Air ...

  19. Binding of transmembrane mucins to galectin-3 limits herpesvirus 1 infection of human corneal keratinocytes.

    Science.gov (United States)

    Woodward, A M; Mauris, J; Argüeso, P

    2013-05-01

    Epithelial cells lining mucosal surfaces impose multiple barriers to viral infection. At the ocular surface, the carbohydrate-binding protein galectin-3 maintains barrier function by cross-linking transmembrane mucins on the apical glycocalyx. Despite these defense mechanisms, many viruses have evolved to exploit fundamental cellular processes on host cells. Here, we use affinity assays to show that herpes simplex virus type 1 (HSV-1), but not HSV-2, binds human galectin-3. Knockdown of galectin-3 in human corneal keratinocytes by small interfering RNA significantly impaired HSV-1 infection, but not expression of nectin-1, indicating that galectin-3 is a herpesvirus entry mediator. Interestingly, exposure of epithelial cell cultures to transmembrane mucin isolates decreased viral infectivity. Moreover, HSV-1 failed to elute the biological counterreceptor MUC16 from galectin-3 affinity columns, suggesting that association of transmembrane mucins to galectin-3 provides protection against viral infection. Together, these results indicate that HSV-1 exploits galectin-3 to enhance virus attachment to host cells and support a protective role for transmembrane mucins under physiological conditions by masking viral entry mediators on the epithelial glycocalyx.

  20. Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation

    Science.gov (United States)

    Li, Fengfu; Carlsson, David; Lohmann, Chris; Suuronen, Erik; Vascotto, Sandy; Kobuch, Karin; Sheardown, Heather; Munger, Rejean; Nakamura, Masatsugu; Griffith, May

    2003-12-01

    Our objective was to determine whether key properties of extracellular matrix (ECM) macromolecules can be replicated within tissue-engineered biosynthetic matrices to influence cellular properties and behavior. To achieve this, hydrated collagen and N-isopropylacrylamide copolymer-based ECMs were fabricated and tested on a corneal model. The structural and immunological simplicity of the cornea and importance of its extensive innervation for optimal functioning makes it an ideal test model. In addition, corneal failure is a clinically significant problem. Matrices were therefore designed to have the optical clarity and the proper dimensions, curvature, and biomechanical properties for use as corneal tissue replacements in transplantation. In vitro studies demonstrated that grafting of the laminin adhesion pentapeptide motif, YIGSR, to the hydrogels promoted epithelial stratification and neurite in-growth. Implants into pigs' corneas demonstrated successful in vivo regeneration of host corneal epithelium, stroma, and nerves. In particular, functional nerves were observed to rapidly regenerate in implants. By comparison, nerve regeneration in allograft controls was too slow to be observed during the experimental period, consistent with the behavior of human cornea transplants. Other corneal substitutes have been produced and tested, but here we report an implantable matrix that performs as a physiologically functional tissue substitute and not simply as a prosthetic device. These biosynthetic ECM replacements should have applicability to many areas of tissue engineering and regenerative medicine, especially where nerve function is required. regenerative medicine | tissue engineering | cornea | implantation | innervation

  1. Mechanisms of corneal tissue cross-linking in response to treatment with topical riboflavin and long-wavelength ultraviolet radiation (UVA).

    Science.gov (United States)

    McCall, A Scott; Kraft, Stefan; Edelhauser, Henry F; Kidder, George W; Lundquist, Richard R; Bradshaw, Helen E; Dedeic, Zinaida; Dionne, Megan J C; Clement, Ethan M; Conrad, Gary W

    2010-01-01

    Treatment of de-epithelialized human corneas with riboflavin (RF) + long-wavelength ultraviolet light (UVA; RFUVA) increases corneal stroma tensile strength significantly. RFUVA treatment retards the progression of keratoconus, perhaps by cross-linking of collagen molecules, but exact molecular mechanisms remain unknown. Research described here tested possible chemical mechanisms of cross-linking. Corneas of rabbits and spiny dogfish sharks were de-epithelialized mechanically, subjected to various chemical pretreatments, exposed to RFUVA, and then subjected to destructive tensile stress measurements. Tensile strength was quantified with a digital force gauge to measure degree of tissue cross-linking. For both rabbit and shark corneas, RFUVA treatment causes significant cross-linking by mechanism(s) that can be blocked by the presence of sodium azide. Conversely, such cross-linking is greatly enhanced in the presence of deuterium oxide (D(2)O), even when RF is present at only one tenth the currently used clinical concentrations. Blocking carbonyl groups preexisting in the stroma with 2,4-dinitrophenylhydrazide or hydroxylamine blocks essentially all corneal cross-linking. In contrast, blocking free amine groups preexisting in the stroma with acetic anhydride or ethyl acetimidate does not affect RFUVA corneal cross-linking. When both carbonyl groups are blocked and singlet oxygen is quenched, no RFUVA cross-linking occurs, indicating the absence of other cross-linking mechanisms. RFUVA catalyzes cross-linking reactions that require production of singlet oxygen ((1)O(2)), whose half-life is extended by D(2)O. Carbonyl-based cross-linking reactions dominate in the corneal stroma, but other possible reaction schemes are proposed. The use of D(2)O as solution media for RF would enable concentration decreases or significant strength enhancement in treated corneas.

  2. An unusual case of feline acute corneal hydrops: atypical disease presentation and possible in vivo detection of Descemet's membrane detachment in the cat's unaffected eye.

    Science.gov (United States)

    Schlesener, Brittany N; Scott, Erin M; Vallone, Lucien V

    2017-11-07

    A 1-year-old, female spayed, domestic shorthair cat presented for blepharospasm of the right eye. Slit-lamp biomicroscopic examination showed focal corneal ulceration and presumptive keratomalacia of the right eye. Examination of the left eye was normal apart from a focal endothelial opacity. Within the first 24 h of medical management, the right eye developed marked corneal edema and globular anterior protrusion of the corneal surface consistent with feline acute corneal hydrops (FACH). Surgical management consisted of a bridge conjunctival graft, nictitating membrane flap, and temporary tarsorrhaphy. Resolution of corneal edema and pain occurred in the right eye within 24 days. Spectral domain optical coherence tomography (SD-OCT) of the anterior segment was performed in both eyes. Conjunctival tissue from the bridge graft precluded examination of deeper corneal structures in the right eye. The left eye displayed a focal separation of the corneal endothelium and Descemet's membrane from the overlying stroma. These SD-OCT findings are similar to the analogous syndrome found in humans and represent a potential etiology for FACH of the right eye in the case presented here. Unfortunately, the cat was lost to follow-up and the progression of this lesion to FACH in the left eye could not be determined. © 2017 American College of Veterinary Ophthalmologists.

  3. Cellular structure of the healthy and keratoconic human cornea imaged in-vivo with sub-micrometer axial resolution OCT(Conference Presentation)

    Science.gov (United States)

    Bizheva, Kostadinka; Tan, Bingyao; Mason, Erik; Carter, Kirsten; Haines, Lacey; Sorbara, Luigina

    2017-02-01

    Keratoconus causes progressive morphological changes in the corneal epithelium (EPI), Bowman's membrane (BM) and anterior stroma. However, it is still not well understood if KC originates in the corneal epithelium and propagates to the anterior stroma through disruptions of the BM, or vice versa. In this study we used a sub-micrometer axial resolution OCT system to image in-vivo the cellular structure of the EPI layer and the fibrous structure of the BM and the anterior stroma in mild to advanced keratoconics, as well as healthy subjects. The imaging study was approved by the University of Waterloo Human Research Ethics Committee. The OCT system operates in the 800 nm spectral region at 34 kHz image acquisition rate and provides 0.95 um axial and < 2 um lateral resolution in corneal tissue, which is sufficient to visualize the cellular structure of the corneal epithelium and the fibrous structure of the BM. In some subjects, localized thinning and thickening of the EPI layer was observed, while there was no visible damage to the BM or anterior stroma. In other subjects, localized breakage of the stromal collagen fibrils was observed with no significant morphological changes of the corneal EPI.

  4. Human corneal basement membrane heterogeneity: topographical differences in the expression of type IV collagen and laminin isoforms.

    Science.gov (United States)

    Ljubimov, A V; Burgeson, R E; Butkowski, R J; Michael, A F; Sun, T T; Kenney, M C

    1995-04-01

    The corneal epithelium converges at the peripheral zone (limbus) with the conjunctival epithelium, forming a continuous sheet with phenotypically distinct regions--central, limbal, and conjunctival. The epithelial basement membrane (EBM) is important for corneal functions and cell adhesion, but its regional composition is poorly understood. Current literature is controversial as to the occurrence of type IV collagen in the cornea. The aim of this study was to investigate in detail corneal basement membrane (BM) composition and correlate it with the differentiation state of contributing cells. Adult human corneas (N = 8) were cryosectioned and analyzed by immunofluorescence with antibodies to 15 BM components and to keratin 3, a marker of corneal epithelial differentiation. A novel type of spatial heterogeneity ("horizontal") in the EBM composition was found between the central cornea, limbus, and conjunctiva. Central EBM had type IV collagen alpha 3-alpha 5 chains, whereas limbal and conjunctival EBM contained alpha 1-alpha 2 chains and also laminin alpha 2 and beta 2 chains. Limbal EBM in addition had alpha 5(IV) chain. Laminin-1 (alpha 1 beta 1 gamma 1), laminin-5 (alpha 3 beta 3 gamma 2), perlecan, fibronectin, entactin/nidogen, and type VII collagen were seen in the entire EBM. Another novel type of BM heterogeneity ("vertical") was typical for the corneal Descemet's membrane: its stromal face had alpha 1(IV) and alpha 2(IV) chains and fibronectin, whereas alpha 3(IV)-alpha 5(IV) chains, entactin/nidogen, laminin-1, and perlecan were present on the endothelial face. Type IV collagen controversy is the result of the shifts of isoforms in the limbus and conjunctiva. These shifts and the appearance of additional laminins in the limbus may be related to the differentiation state of corneal cells contributing to the EBM formation. Novel types of BM heterogeneity in the human cornea are described: regional (horizontal) in the EBM and vertical in the Descemet

  5. Impact of Mycotoxins Secreted by Aspergillus Molds on the Inflammatory Response of Human Corneal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Yélian Marc Bossou

    2017-06-01

    Full Text Available Exposure to molds and mycotoxins not only contributes to the onset of respiratory disease, it also affects the ocular surface. Very few published studies concern the evaluation of the effect of mycotoxin exposure on ocular cells. The present study investigates the effects of aflatoxin B1 (AFB1 and gliotoxin, two mycotoxins secreted by Aspergillus molds, on the biological activity of the human corneal epithelial (HCE cells. After 24, 48, and 72 h of exposure, cellular viability and inflammatory response were assessed. Both endpoint cell viability colorimetric assays and continuous cell impedance measurements, providing noninvasive real-time assessment of the effect on cells, were performed. Cytokine gene expression and interleukin-8 release were quantified. Gliotoxin appeared more cytotoxic than AFB1 but, at the same time, led to a lower increase of the inflammatory response reflecting its immunosuppressive properties. Real-time cell impedance measurement showed a distinct profile of cytotoxicity for both mycotoxins. HCE cells appeared to be a well-suited in vitro model to study ocular surface reactivity following biological contaminant exposure. Low, but persistent inflammation, caused by environmental factors, such as fungal toxins, leads to irritation and sensitization, and could be responsible for allergic manifestations which, in turn, could lead to mucosal hyper-reactivity.

  6. Transforming growth factor-β2 induces morphological alteration of human corneal endothelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2014-10-01

    Full Text Available AIM:To investigate the morphological altering effect of transforming growth factor-β2 (TGF-β2 on untransfected human corneal endothelial cells (HCECs in vitro.METHODS: After untransfected HCECs were treated with TGF-β2 at different concentrations, the morphology, cytoskeleton distribution, and type IV collagen expression of the cells were examined with inverted contrast light microscopy, fluorescence microscopy, immunofluorescence or Western Blot.RESULTS:TGF-β2 at the concentration of 3-15 μg/L had obviously alterative effects on HCECs morphology in dose and time-dependent manner, and 9 μg/L was the peak concentration. TGF-β2 (9 μg/L altered HCE cell morphology after treatment for 36h, increased the mean optical density (P<0.01 and the length of F-actin, reduced the mean optical density (P<0.01 of the collagen type IV in extracellular matrix (ECM and induced the rearrangement of F-actin, microtubule in cytoplasm and collagen type IV in ECM after treatment for 72h. CONCLUTION:TGF-β2 has obviously alterative effect on the morphology of HCECs from polygonal phenotype to enlarged spindle-shaped phenotype, in dose and time-dependence manner by inducing more, elongation and alignment of F-actin, rearrangement of microtubule and larger spread area of collagen type IV.

  7. Application of cyclic biamperometry to viability and cytotoxicity assessment in human corneal epithelial cells.

    Science.gov (United States)

    Rahimi, Mehdi; Youn, Hyun-Yi; McCanna, David J; Sivak, Jacob G; Mikkelsen, Susan R

    2013-05-01

    The application of cyclic biamperometry to viability and cytotoxicity assessments of human corneal epithelial cells has been investigated. Electrochemical measurements have been compared in PBS containing 5.0 mM glucose and minimal essential growth medium. Three different lipophilic mediators including dichlorophenol indophenol, 2-methyl-1,4-naphthoquinone (also called menadione or vitamin K3) and N,N,N',N'-tetramethyl-p-phenylenediamine have been evaluated for shuttling electrons across the cell membrane to the external medium. Transfer of these electrons to ferricyanide in the extra cellular medium results in the accumulation of ferrocyanide. The amount of ferrocyanide is then determined using cyclic biamperometry and is related to the extent of cell metabolic activity and therefore cell viability. To illustrate cytotoxicity assessment of chemicals, hydrogen peroxide, benzalkonium chloride and sodium dodecyl sulfate have been chosen as sample toxins, the cytotoxicities of which have been evaluated and compared to values reported in the literature. Similar values have been reported using colorimetric assays; however, the simplicity of this electrochemical assay can, in principle, open the way to miniaturization onto lab-on-chip devices and its incorporation into tiered-testing approaches for cytotoxicity assessment.

  8. NPR-B natriuretic peptide receptors in human corneal epithelium: mRNA, immunohistochemistochemical, protein, and biochemical pharmacology studies.

    Science.gov (United States)

    Katoli, Parvaneh; Sharif, Najam A; Sule, Anupam; Dimitrijevich, Slobodan D

    2010-07-07

    To demonstrate the presence of natriuretic peptide receptors (NPRs) in primary human corneal epithelial cells (p-CEPI), SV40-immortalized CEPI cells (CEPI-17-CL4) and in human corneal epithelium, and to define the pharmacology of natriuretic peptide (NP)-induced cGMP accumulation. NPR presence was shown by RT-PCR, western blot analysis, and indirect immunofluoresence. cGMP accumulation was determined using an enzyme immunoassay. p-CEPI and CEPI-17-CL4 cells expressed mRNAs for NPR-A and NPR-B. Proteins for both NPRs were present in these cells and in human corneal epithelium. C-type NP (CNP), atrial NP (ANP) and brain NP (BNP) stimulated the accumulation of cGMP in a concentration-dependent manner in p-CEPI cells (potency; EC(50s)): CNP (1-53 amino acids) EC(50)=24+/-5 nM; CNP fragment (32-53 amino acids) EC(50)=51+/-8 nM; ANP (1-28 amino acids) EC(50)=>10 microM; BNP (32 amino acids) EC(50)>10 microM (all n=3-4). While the NPs were generally more potent in the CEPI-17-CL4 cells than in p-CEPI cells (n=4-9; p<0.01), the rank order of potency of the peptides was essentially the same in both cell types. Effects of CNP fragment in p-CEPI and CEPI-17-CL4 cells were potently blocked by HS-142-1, an NPR-B receptor subtype-selective antagonist (K(i)=0.25+/-0.05 microM in CEPI-CL4-17; K(i)=0.44+/-0.09 microM in p-CEPIs; n=6-7) but less so by an NPR-A receptor antagonist, isatin (K(i)=5.3-7.8 microM, n=3-7). Our studies showed the presence of NPR-A and NPR-B (mRNAs and protein) in p-CEPI and CEPI-17-CL4 cells and in human corneal epithelial tissue. However, detailed pharmacological studies revealed NPR-B to be the predominant functionally active receptor in both cell-types whose activation leads to the generation of cGMP. While the physiologic role(s) of the NP system in corneal function remains to be delineated, our multidisciplinary findings pave the way for such future investigations.

  9. [Efficacy of protein-free calf blood extract for mechanical corneal epithelial defects in human eyes].

    Science.gov (United States)

    Qiu, Xiao-di; Gong, Lan; Sun, Xing-huai; Zhao, Nai-qing; Zhu, Zhao-rong; Li, Yu-min; Yao, Ke; Zhao, Wu-ling

    2008-08-01

    To evaluate the clinical efficacy between protein-free calf blood extract eye drops and recombinant human epidermal growth factor (rhEGF) eye drops for mechanical corneal epithelial defects in human eyes. A multi-center, randomized and double-blind study with a parallel, positive-control designation was carried out from April to November in 2005 at Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Xinhua Hospital of Shanghai Jiaotong University, the First Hospital of Zhejiang University, the Second Hospital of Zhejiang University and Qingdao Municipal Hospital. 240 patients (240 eyes) with confirmed diagnosis of corneal epithelial defects at that six hospitals were enrolled in this study and were randomly arranged into two groups in average. One group (120 eyes) were treated by 20% protein-free calf blood extract eye drops which was defined as the experimental group while the other (120 eyes) by 5000 IU/ml recombinant human epidermal growth factor (rhEGF) eye drops as the positive control group. The drug was delivered in both groups 4 times per day, one drop each time in the 14 days duration. The symptoms and signs were scored and the safety was evaluated on the pre-delivery day, the third post-delivery day (day 3), day 7 and day 14. The variants in the study were tested for the different efficacy and safety between the two drugs using non-inferiority test, paired t-test, Wilcoxon signed-rank test, chi-square test, continuity correction chi-square test, Fisher's exact probabilities, analysis of variance, Cochran-Mantel-Haenszel chi-square test and so on. The criterion for statistical significance was P recombinant human epidermal growth factor group (day 3: X2 = 1.5677, P = 0.4566, day 7: X2 = 1.7152, P = 0.4242, day 14: X2 = 3.0814, P = 0.2142). The total scores of symptoms and signs in experimental group had a obvious descending (6.009 +/- 3.030) compared with the positive control group with a descending of (5.177 +/- 2

  10. The keratoconus corneal proteome: loss of epithelial integrity and stromal degeneration.

    Science.gov (United States)

    Chaerkady, Raghothama; Shao, Hanjuan; Scott, Sherri-Gae; Pandey, Akhilesh; Jun, Albert S; Chakravarti, Shukti

    2013-07-11

    Keratoconus is a thinning corneal dystrophy that begins in the early teenage years and ultimately requires cornea transplantation to restore vision. Here we conducted a highly sensitive mass spectrometric analysis of the epithelium and the stroma from keratoconus and normal donor corneas. We identified a total of 932 and 1157 proteins in the consolidated data of the epithelium and stroma, respectively. Technical replicates showed strong correlations (≥0.88) in levels of all common proteins, indicating very low technical variations in the data. Analysis of the most increased (≥1.5 fold) and decreased (≤0.8 fold) proteins in the keratoconus corneal epithelial protein extracts identified proteins related to dermal diseases, inflammation, epithelial stratification and mesenchymal changes. Increased proteins included keratins 6A, 16 and vimentin, while the iron transporter lactotransferrin was decreased. The keratoconus stromal proteome suggests endoplasmic reticular stress, oxidative stress and widespread decreases in many extracellular matrix proteoglycan core proteins, lumican and keratocan, collagen types I, III, V and XII. Marked increase in apoptosis and endocytosis-related proteins suggest degenerative changes in keratocytes, the resident cells of the stroma. This is the most comprehensive proteome analysis of the cornea that highlights similarities of keratoconus with other neurodegenerative diseases. This study provides, to our knowledge, the most comprehensive proteomic analysis of the vision threatening disease keratoconus, which affects a significant portion of the US and global populations. Using iTRAQ and LC/MS/MS, we have identified significant changes in the human corneal epithelium and stromal proteome that correlate to in vivo clinical findings. The protein changes identified will lead to molecular insights into disease pathogenesis and provide candidate genes for genetic studies of keratoconus. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Corneal biomechanical properties from air-puff corneal deformation imaging

    Science.gov (United States)

    Marcos, Susana; Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos

    2014-02-01

    The combination of air-puff systems with real-time corneal imaging (i.e. Optical Coherence Tomography (OCT), or Scheimpflug) is a promising approach to assess the dynamic biomechanical properties of the corneal tissue in vivo. In this study we present an experimental system which, together with finite element modeling, allows measurements of corneal biomechanical properties from corneal deformation imaging, both ex vivo and in vivo. A spectral OCT instrument combined with an air puff from a non-contact tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal deformation of the corneal apex. Quantitative analysis allows direct extraction of several deformation parameters, such as apex indentation across time, maximal indentation depth, temporal symmetry and peak distance at maximal deformation. The potential of the technique is demonstrated and compared to air-puff imaging with Scheimpflug. Measurements ex vivo were performed on 14 freshly enucleated porcine eyes and five human donor eyes. Measurements in vivo were performed on nine human eyes. Corneal deformation was studied as a function of Intraocular Pressure (IOP, 15-45 mmHg), dehydration, changes in corneal rigidity (produced by UV corneal cross-linking, CXL), and different boundary conditions (sclera, ocular muscles). Geometrical deformation parameters were used as input for inverse finite element simulation to retrieve the corneal dynamic elastic and viscoelastic parameters. Temporal and spatial deformation profiles were very sensitive to the IOP. CXL produced a significant reduction of the cornea indentation (1.41x), and a change in the temporal symmetry of the corneal deformation profile (1.65x), indicating a change in the viscoelastic properties with treatment. Combining air-puff with dynamic imaging and finite element modeling allows characterizing the corneal biomechanics in-vivo.

  12. Development of a rabbit corneal equivalent using an acellular corneal matrix of a porcine substrate.

    Science.gov (United States)

    Xu, Yong-Gen; Xu, Yong-Sheng; Huang, Chen; Feng, Yun; Li, Ying; Wang, Wei

    2008-01-01

    The tissue equivalent that mimics the structure and function of normal tissue is a major bioengineering challenge. Tissue engineered replacement of diseased or damaged tissue has become a reality for some types of tissue such as skin and cartilage. The tissue engineered corneal epithelium, stroma, and endothelium scaffold are promising concepts in overcoming the current limitations of a cornea replacement with an allograft. The acellular corneal matrix from porcine (ACMP) was examined as a potential corneal cell sheet frame. The physical and mechanical properties of strength, expansion, transparency, and water content of the ACMP were measured. The major antigens of the cell components were completely removed with series of extraction methods, the major antigens of the cell components were identified by hematoxylin and eosin (HE), immunofluorescence staining, and scanning electron microscopy. The structural properties were investigated by HE stain and scanning electron microscopy. The three types of rabbit corneal cells were cultured in vitro, and characteristics were investigated by colony formation efficiency (CFE), BrdU staining, immunofluorescence staining, and western blot assay of keratin 3 (K3), vimentin, and aquaporin A. The biocompatibility of the ACMP was investigated for one month using rabbit corneal stroma and three types of cultured corneal cells both in vivo and in vitro. The three types of cultured rabbit corneal cells were seeded onto ACMP of each side at a cell density of 5.0 x 10(3) cells/mm(2). The optical and mechanical properties of the ACMP were similar to the normal porcine cornea. The collagen fiber interconnected to the network, formed regular collagen bundles of the ACMP, and was parallel to the corneal surface. The ACMP was transferred to the rabbit cornea stroma, which showed an intact epithelium and keratocytes in the implant region. There were no inflamed cells or new vessel invasion one month after transplantation. The three types of

  13. CORNEAL BLINDNESS AND XENOTRANSPLANTATION

    Science.gov (United States)

    Lamm, Vladimir; Hara, Hidetaka; Mammen, Alex; Dhaliwal, Deepinder; Cooper, David K.C.

    2014-01-01

    Approximately 39 million people are blind worldwide, with an estimated 285 million visually impaired. The developing world shoulders 90% of the world’s blindness, with 80% of causative diseases being preventable or treatable. Blindness has a major detrimental impact on the patient, community, and healthcare spending. Corneal diseases are significant causes of blindness, affecting at least 4 million people worldwide. The prevalence of corneal disease varies among parts of the world. Trachoma, for instance, is the second leading cause of blindness in Africa, after cataracts, but is rarely found today in developed nations. When preventive strategies have failed, corneal transplantation is the most effective treatment for advanced corneal disease. The major surgical techniques for corneal transplantation include penetrating keratoplasty (PK), anterior lamellar keratoplasty (ALK), and endothelial keratoplasty (EK). Indications for corneal transplantation vary among countries, with Fuchs’ dystrophy being the leading indication in the U.S. and keratoconus in Australia. With the exception of the US, where EK will soon overtake PK as the most common surgical procedure, PK is the overwhelming procedure of choice. Success using corneal grafts in developing nations, such as Nepal, demonstrates the feasibility of corneal transplantation on a global scale. The number of suitable corneas from deceased human donors that becomes available will never be sufficient, and so research into various alternatives, e.g., stem cells, amniotic membrane transplantation, synthetic and biosynthetic corneas, and xenotransplantation, is progressing. While each of these has potential, we suggest that xenotransplantation holds the greatest potential for a corneal replacement. With the increasing availability of genetically-engineered pigs, pig corneas may alleviate the global shortage of corneas in the near future. PMID:25268248

  14. Role of Decorin Core Protein in Collagen Organisation in Congenital Stromal Corneal Dystrophy (CSCD)

    Science.gov (United States)

    Kamma-Lorger, Christina S.; Pinali, Christian; Martínez, Juan Carlos; Harris, Jon; Young, Robert D.; Bredrup, Cecilie; Crosas, Eva; Malfois, Marc; Rødahl, Eyvind

    2016-01-01

    The role of Decorin in organising the extracellular matrix was examined in normal human corneas and in corneas from patients with Congenital Stromal Corneal Dystrophy (CSCD). In CSCD, corneal clouding occurs due to a truncating mutation (c.967delT) in the decorin (DCN) gene. Normal human Decorin protein and the truncated one were reconstructed in silico using homology modelling techniques to explore structural changes in the diseased protein. Corneal CSCD specimens were also examined using 3-D electron tomography and Small Angle X-ray diffraction (SAXS), to image the collagen-proteoglycan arrangement and to quantify fibrillar diameters, respectively. Homology modelling showed that truncated Decorin had a different spatial geometry to the normal one, with the truncation removing a major part of the site that interacts with collagen, compromising its ability to bind effectively. Electron tomography showed regions of abnormal stroma, where collagen fibrils came together to form thicker fibrillar structures, showing that Decorin plays a key role in the maintenance of the order in the normal corneal extracellular matrix. Average diameter of individual fibrils throughout the thickness of the cornea however remained normal. PMID:26828927

  15. Role of Decorin Core Protein in Collagen Organisation in Congenital Stromal Corneal Dystrophy (CSCD.

    Directory of Open Access Journals (Sweden)

    Christina S Kamma-Lorger

    Full Text Available The role of Decorin in organising the extracellular matrix was examined in normal human corneas and in corneas from patients with Congenital Stromal Corneal Dystrophy (CSCD. In CSCD, corneal clouding occurs due to a truncating mutation (c.967delT in the decorin (DCN gene. Normal human Decorin protein and the truncated one were reconstructed in silico using homology modelling techniques to explore structural changes in the diseased protein. Corneal CSCD specimens were also examined using 3-D electron tomography and Small Angle X-ray diffraction (SAXS, to image the collagen-proteoglycan arrangement and to quantify fibrillar diameters, respectively. Homology modelling showed that truncated Decorin had a different spatial geometry to the normal one, with the truncation removing a major part of the site that interacts with collagen, compromising its ability to bind effectively. Electron tomography showed regions of abnormal stroma, where collagen fibrils came together to form thicker fibrillar structures, showing that Decorin plays a key role in the maintenance of the order in the normal corneal extracellular matrix. Average diameter of individual fibrils throughout the thickness of the cornea however remained normal.

  16. Surgical compensation of presbyopia with corneal inlays.

    Science.gov (United States)

    Konstantopoulos, Aris; Mehta, Jodhbir S

    2015-05-01

    Presbyopia, the physiological change in near vision that develops with ageing, gradually affects individuals older than 40 years and is a growing cause of visual disability due to ageing demographics of the global population. The routine use of computers and 'smartphones', combined with the affluence of the 'baby boomers' generation has set high standards for near vision correction. Corneal inlays are a relatively new treatment modality that is effective at compensating for presbyopia. The dimensions of these devices vary from 2 to 3.8 mm in diameter and 5 to 32 μm in thickness. They are implanted in the anterior corneal stroma of the non-dominant eye, most commonly, in a femtosecond laser created corneal pocket. They improve near vision by increasing the depth of focus, creating a hyper-prolate region of increased central cornea power or providing a refractive add power. This article reviews the literature on the efficacy and safety of corneal inlays.

  17. Alterations of extracellular matrix components and proteinases in human corneal buttons with INTACS for post-laser in situ keratomileusis keratectasia and keratoconus.

    Science.gov (United States)

    Maguen, Ezra; Rabinowitz, Yaron S; Regev, Lee; Saghizadeh, Mehrnoosh; Sasaki, Takako; Ljubimov, Alexander V

    2008-06-01

    To perform an immunohistochemical evaluation of corneas with INTACS for post-laser in situ keratomileusis (LASIK) keratectasia and keratoconus, obtained after corneal transplantation. Corneas from 1 patient with INTACS for post-LASIK keratectasia and 2 patients with INTACS for keratoconus were obtained within 3 hours after penetrating keratoplasty, and cryostat sections were analyzed by immunostaining for 35 extracellular matrix (ECM) components and proteinases. In the stroma of all corneas next to an INTACS implant, ECM components typically associated with fibrosis were observed. These included tenascin-C, fibrillin-1, and types III, IV (alpha1/alpha2 chains), and XIV collagen. Also, significant deposition of perlecan, nidogen-2, and cellular fibronectin was revealed in the same locations. The keratoconus cases displayed typical Bowman layer breaks and subepithelial fibrosis with deposition of various ECM components. In all cases, some keratocytes around INTACS were positive for specific proteinases associated with stromal remodeling, including cathepsins F and H, matrix metalloproteinase (MMP)-1, MMP-3, and MMP-10. Staining for MMP-7 was variable; MMP-2 and MMP-9 were mostly negative. Patterns of type IV collagen alpha 3, alpha 4, and alpha 6 chains; types VI and VIII collagen; laminin-332, alpha 4, alpha 5, beta1, beta2, and gamma 1 laminin chains; vitronectin; thrombospondin-1; urokinase; EMMPRIN; and cathepsins B and L were unchanged around INTACS in all 3 cases compared with normal. Abnormal accumulation of fibrotic ECM components and proteinases near INTACS suggests ongoing lysis and remodeling of corneal stroma. Specific changes observed in each case may be related to underlying pathology.

  18. Horizontal transmission of malignancy: in-vivo fusion of human lymphomas with hamster stroma produces tumors retaining human genes and lymphoid pathology.

    Directory of Open Access Journals (Sweden)

    David M Goldenberg

    Full Text Available We report the in-vivo fusion of two Hodgkin lymphomas with golden hamster cheek pouch cells, resulting in serially-transplanted (over 5-6 years GW-532 and GW-584 heterosynkaryon tumor cells displaying both human and hamster DNA (by FISH, lymphoma-like morphology, aggressive metastasis, and retention of 7 human genes (CD74, CXCR4, CD19, CD20, CD71, CD79b, and VIM out of 24 tested by PCR. The prevalence of B-cell restricted genes (CD19, CD20, and CD79b suggests that this uniform population may be the clonal initiating (malignant cells of Hodgkin lymphoma, despite their not showing translation to their respective proteins by immunohistochemical analysis. This is believed to be the first report of in-vivo cell-cell fusion of human lymphoma and rodent host cells, and may be a method to disclose genes regulating both organoid and metastasis signatures, suggesting that the horizontal transfer of tumor DNA to adjacent stromal cells may be implicated in tumor heterogeneity and progression. The B-cell gene signature of the hybrid xenografts suggests that Hodgkin lymphoma, or its initiating cells, is a B-cell malignancy.

  19. CCL20, (gamma)(delta) T cells, and IL-22 in corneal epithelial healing

    Science.gov (United States)

    After corneal epithelial abrasion, leukocytes and platelets rapidly enter the corneal stroma, and CCR6 (+) IL-17(+) gamma delta T cells migrate into the epithelium. Gamma delta T-cell-deficient (TCRd(-/-)) mice have significantly reduced inflammation and epithelial wound healing. Epithelial CCL20 mR...

  20. Corneal inflammation is inhibited by the LFA-1 antagonist, lifitegrast (SAR 1118).

    Science.gov (United States)

    Sun, Yan; Zhang, Rui; Gadek, Thomas R; O'Neill, Charles A; Pearlman, Eric

    2013-05-01

    Sterile corneal infiltrates can cause pain, blurred vision, and ocular discomfort in silicone hydrogel contact-lens users. The current study investigates the potential for the synthetic lymphocyte functional antigen-1 (LFA-1) antagonist lifitegrast (SAR 1118) to block corneal inflammation using a murine model. The role of LFA-1 (CD11a/CD18) was examined either in CD18(-/-) mice, by intraperitoneal injection of anti-CD11a, or by topical application of lifitegrast. Corneal inflammation was induced by epithelial abrasion and exposure to either tobramycin-killed Pseudomonas aeruginosa or Staphylococcus aureus in the presence of a 2-mm-diameter punch from a silicone hydrogel contact lens. After 24 h, corneal thickness and haze were examined by in vivo confocal microscopy, and neutrophil recruitment to the corneal stroma was detected by immunohistochemistry. Neutrophil recruitment to the corneal stroma and development of stromal haze were significantly impaired in CD18(-/-) mice or after injection of anti-CD11a. Topical lifitegrast also inhibited P. aeruginosa- and S. aureus-induced inflammation, with the optimal application being a 1% solution applied either 2 or 3 times prior. As LFA-1-dependent neutrophil recruitment to the corneal stroma can be blocked by topical lifitegrast, this reagent could be used in combination with antibiotics to prevent leukocyte infiltration to the corneal stroma in association with contact-lens wear.

  1. Protective Effects of L-Carnitine Against Oxidative Injury by Hyperosmolarity in Human Corneal Epithelial Cells.

    Science.gov (United States)

    Hua, Xia; Deng, Ruzhi; Li, Jin; Chi, Wei; Su, Zhitao; Lin, Jing; Pflugfelder, Stephen C; Li, De-Quan

    2015-08-01

    L-carnitine suppresses inflammatory responses in human corneal epithelial cells (HCECs) exposed to hyperosmotic stress. In this study, we determined if L-carnitine induces this protective effect through suppression of reactive oxygen species (ROS)-induced oxidative damage in HCECs. Primary HCECs were established from donor limbal explants. A hyperosmolarity dry-eye model was used in which HCECs are cultured in 450 mOsM medium with or without L-carnitine for up to 48 hours. Production of reactive oxygen species (ROS), oxidative damage markers, oxygenases and antioxidative enzymes were analyzed by 2',7'-dichlorofluorescein diacetate (DCFDA) kit, semiquantitative PCR, immunofluorescence, and/or Western blotting. Reactive oxygen species production increased in HCECs upon substitution of the isotonic medium with the hypertonic medium. L-carnitine supplementation partially suppressed this response. Hyperosmolarity increased cytotoxic membrane lipid peroxidation levels; namely, malondialdehyde (MDA) and hydroxynonenal (HNE), as well as mitochondria DNA release along with an increase in 8-OHdG and aconitase-2. Interestingly, these oxidative markers were significantly decreased by coculture with L-carnitine. Hyperosmotic stress also increased the mRNA expression and/or protein production of heme oxygenase-1 (HMOX1) and cyclooxygenase-2 (COX2), but inhibited the levels of antioxidant enzymes, superoxide dismutase-1 (SOD1), glutathione peroxidase-1 (GPX1), and peroxiredoxin-4 (PRDX4). However, L-carnitine partially reversed this altered imbalance between oxygenases and antioxidant enzymes induced by hyperosmolarity. Our findings demonstrate for the first time that L-carnitine protects HCECs from oxidative stress by lessening the declines in antioxidant enzymes and suppressing ROS production. Such suppression reduces membrane lipid oxidative damage markers and mitochondrial DNA damage.

  2. Dectin-1 agonist curdlan modulates innate immunity to Aspergillus fumigatus in human corneal epithelial cells

    Directory of Open Access Journals (Sweden)

    Cheng-Cheng Zhu

    2015-08-01

    Full Text Available AIM: To explore the immunomodulatory effects of curdlan on innate immune responses against Aspergillus fumigatus (A. fumigatus in cultured human corneal epithelial cells (HCECs, and whether C-type lectin receptor Dectin-1 mediates the immunomodulatory effects of curdlan.METHODS:The HCECs were stimulated by curdlan in different concentrations (50, 100, 200, 400 μg/mL for various time. Then HCECs pretreated with or without laminarin (Dectin-1 blocker, 0.3 mg/mL and curdlan were stimulated by A. fumigatus hyphae. The mRNA and protein production of tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6 were determined by real-timequantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The protein level of Dectin-1 was measured by Western blot.RESULTS: Curdlan stimulated mRNA expression of TNF-α and IL-6 in a dose and time dependent manner in HCECs. Curdlan pretreatment before A. fumigatus hyphae stimulation significantly enhanced the expression of TNF-α and IL-6 at mRNA and protein levels compared with A. fumigatus hyphae stimulation group (P<0.05. Both curdlan and A. fumigatus hyphae up-regulated Dectin-1 protein expression in HCECs, and Dectin-1 expression was elevated to 1.5- to 2-fold by curdlan pretreatment followed hyphaestimulation. The Dectin-1 blocker laminarin suppressed the mRNA expression and protein production of TNF-α and IL-6 induced by curdlan and hyphae (P<0.05.CONCLUSION:These findings demonstrated that curdlan pretreatment enhanced the inflammatory response induced by A. fumigatus hyphae in HCECs. Dectin-1 is essential for the immunomodulatory effects of curdlan. Curdlan may have high clinical application values in fungal keratitis treatment.

  3. Inhibition of zymosan-induced cytokine and chemokine expression in human corneal fibroblasts by triptolide

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available AIM: To investigate the effects of triptolide on proinflammatory cytokine and chemokine expression induced by the fungal component zymosan in cultured human corneal fibroblasts (HCFs. METHODS: HCFs were cultured in the absence or presence of zymosan or triptolide. The release of interleukin (IL-6, IL-8, and monocyte chemoattractant protein-1 (MCP-1 into culture supernatants was measured with enzyme-linked immunosorbent assays. The cellular abundance of the mRNAs for these proteins was determined by reverse transcription and real-time polymerase chain reaction analysis. The phosphorylation of mitogen-activated protein kinases (MAPKs and the endogenous nuclear factor-κB (NF-κB inhibitor IκB-α was examined by immunoblot analysis. The release of lactate dehydrogenase (LDH activity from HCFs was measured with a colorimetric assay. RESULTS: Triptolide inhibited the zymosan-induced release of IL-6, IL-8, and MCP-1 from HCFs in a concentration- and time-dependent manner. It also inhibited the zymosan-induced up-regulation of IL-6, IL-8, and MCP-1 mRNA abundance in these cells. Furthermore, triptolide attenuated zymosan-induced phosphorylation of the MAPKs extracellular signal-regulated kinase (ERK, c-Jun NH2-terminal kinase (JNK, and p38 as well as the phosphorylation and degradation of IκB-α. Triptolide did not exhibit cytotoxicity for HCFs. CONCLUSION: Triptolide inhibited proinflammatory cytokine and chemokine production by HCFs exposed to zymosan, with this action likely being mediated by suppression of MAPK and NF-κB signaling pathways. This compound might thus be expected to limit the infiltration of inflammatory cells into the cornea associated with fungal infection.

  4. Riboflavin for corneal cross-linking.

    Science.gov (United States)

    O'Brart, D P S

    2016-06-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet A (UVA) radiation is the first therapeutic modality that appears to arrest the progression of keratoconus and other corneal ectasias. Riboflavin is central to the process, acting as a photosensitizer for the production of oxygen singlets and riboflavin triplets. These free radicals drive the CXL process within the proteins of the corneal stroma, altering its biomechanical properties. Riboflavin also absorbs the majority of the UVA radiation, which is potentially cytotoxic and mutagenic, within the anterior stroma, preventing damage to internal ocular structures, such as the corneal endothelium, lens and retina. Clinical studies report cessation of ectatic progression in over 90% of cases and the majority document significant improvements in visual, keratometric and topographic parameters. Clinical follow-up is limited to 5-10 years, but suggests sustained stability and enhancement in corneal shape. Sight-threatening complications are rare. The optimal stromal riboflavin dosage for CXL is as yet undetermined. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.

  5. [Corneal biomechanics].

    Science.gov (United States)

    Torres, R M; Merayo-Lloves, J; Jaramillo, M A; Galvis, V

    2005-04-01

    To review the corneal biomechanic concepts and to analyse, clarify and understand their relevance in refractive surgery. A literature review has been done using different databases. Corneal biomechanic concepts are not new and are applied implicitly in numerous surgical procedures. Their origin is related to tonometry studies, but they gained in popularity when they were linked to the treatment of keratoconus, a pathology in which the mechanical properties of the cornea are altered. Factors determining corneal stability were thus defined. Corneal biomechanics have also been used following refractive surgery to study post-operative keratectasia and to improve ablation patterns, which ignores the corneal response. The new ablation systems need to include the biomechanical factors, which motivate research conducted in physical-mathematical models and in corneal wound healing, improving our knowledge about the corneal biomechanical response. The corneal biomechanic concepts have gained in popularity with the advent of refractive surgery, although they did exist previously. Their relevance is linked to improvements in the ablation systems used in an attempt to obtain more accurate and reliable results.

  6. Corneal Laceration

    Medline Plus

    Full Text Available ... Answers How often and for how long should I use a hair dryer to treat my Fuchs’ dystrophy? May 06, 2017 I lost sight from a corneal scar as a child. Now that I’m older, will a corneal transplant help me? ...

  7. Corneal Laceration

    Medline Plus

    Full Text Available ... Tips & Prevention News Ask an Ophthalmologist Patient Stories Español Eye Health / Eye Health A-Z Corneal Laceration ... Laceration Treatment What Is Corneal Laceration? Leer en Español: ¿Qué Es una Laceración de la Córnea? Written ...

  8. Corneal Laceration

    Medline Plus

    Full Text Available ... Health Find an Ophthalmologist Academy Store Eye Health A-Z Symptoms Glasses & Contacts Tips & Prevention News Ask ... Ophthalmologist Patient Stories Español Eye Health / Eye Health A-Z Corneal Laceration Sections What Is Corneal Laceration? ...

  9. Conservative treatment of keratoconus by riboflavin-uva-induced cross-linking of corneal collagen: qualitative investigation.

    Science.gov (United States)

    Mazzotta, C; Traversi, C; Baiocchi, S; Sergio, P; Caporossi, T; Caporossi, A

    2006-01-01

    To assess corneal tissue modifications after riboflavin-UVA-induced cross-linking of corneal collagen in patients with progressive keratoconus as well as regeneration of epithelium and subepithelial nerve plexus by in vivo HRT II system confocal microscopy in humans. Ten patients with progressive keratoconus were treated by riboflavin-UVA-induced cross-linking of corneal collagen, involving assessment of ultrastructural modifications of the corneal epithelium and subepithelial nerve plexus by HRT II system confocal microscopy. Treatment included instillation of 0.1% riboflavin-20% dextrane solution 5 minutes before UVA irradiation and every 5 minutes for a total of 30 minutes. Radiant energy was 3 mW/cm 2 or 5.4 Joule/cm 2 and the source was dual UVA (370 nm) light-emitting LED. The protocol included the operation followed by antibiotic medication and eye dressing with a soft therapeutic contact lens. Changes in epithelium and subepithelial and stromal nerve plexus were assessed by HRT II system confocal microscopy in vivo. After 5 days of soft contact lens wearing, corneal epithelium has a regular morphology and density. Disappearance of subepithelial stromal nerve fibers was observed in the central irradiated area where, 1 month after the operation, initial reinnervation was microscopically observed. No changes in nerve fibers were observed in the peripheral untreated with a clear lateral transition between the two areas. Six months after the operation, the anterior subepithelial stroma was recolonized by nerve fibers with restoration of corneal sensitivity. HRT II system confocal microscopy confirms corneal epithelium restore and re-innervation after riboflavin-UVA-induced collagen cross-linking directly in vivo in humans.

  10. Corneal structure and transparency

    Science.gov (United States)

    Meek, Keith M.; Knupp, Carlo

    2015-01-01

    The corneal stroma plays several pivotal roles within the eye. Optically, it is the main refracting lens and thus has to combine almost perfect transmission of visible light with precise shape, in order to focus incoming light. Furthermore, mechanically it has to be extremely tough to protect the inner contents of the eye. These functions are governed by its structure at all hierarchical levels. The basic principles of corneal structure and transparency have been known for some time, but in recent years X-ray scattering and other methods have revealed that the details of this structure are far more complex than previously thought and that the intricacy of the arrangement of the collagenous lamellae provides the shape and the mechanical properties of the tissue. At the molecular level, modern technologies and theoretical modelling have started to explain exactly how the collagen fibrils are arranged within the stromal lamellae and how proteoglycans maintain this ultrastructure. In this review we describe the current state of knowledge about the three-dimensional stromal architecture at the microscopic level, and about the control mechanisms at the nanoscopic level that lead to optical transparency. PMID:26145225

  11. Endothelin-1 enhances corneal fibronectin deposition and promotes corneal epithelial wound healing after photorefractive keratectomy in rabbits.

    Science.gov (United States)

    Lai, Yu-Hung; Wang, Hwei-Zu; Lin, Chang-Ping; Hong, Show-Jen; Chang, Shun-Jen

    2008-05-01

    The objective was to study the effects of endothelin-1 (ET1) on corneal wound healing after photorefractive keratectomy (PRK) in rabbit corneas. Following PRK, 18 New Zealand white rabbits were treated with ET1 in the right eyes and with phosphate-buffered salt solution (PBS) in the left eyes. Corneal epithelial wound size, corneal haze and corneal thickness were recorded. Corneal extracellular matrixes, including collagen types 3, 4 and 7, chondroitin sulfate and fibronectin, were investigated using immunohistochemistry study. ET1 increased the rate of healing of corneal epithelial wounds in rabbits. Anti-fibronectin fluorescence was present at week 12 and week 24 in ET1-treated eyes but not in the control eyes. There were no significant differences in corneal haze, corneal thickness and changes in other extracellular matrixes between ET1- and PBS-treated eyes. ET1 can enhance the deposition of fibronectin in corneal stroma and promote corneal epithelial wound healing after PRK. The increase in fibronectin probably explains the increased healing rate of corneal epithelial wounds.

  12. Endothelin-1 Enhances Corneal Fibronectin Deposition and Promotes Corneal Epithelial Wound Healing after Photorefractive Keratectomy in Rabbits

    Directory of Open Access Journals (Sweden)

    Yu-Hung Lai

    2008-05-01

    Full Text Available The objective was to study the effects of endothelin-1 (ET1 on corneal wound healing after photorefractive keratectomy (PRK in rabbit corneas. Following PRK, 18 New Zealand white rabbits were treated with ET1 in the right eyes and with phosphate-buffered salt solution (PBS in the left eyes. Corneal epithelial wound size, corneal haze and corneal thickness were recorded. Corneal extracellular matrixes, including collagen types 3, 4 and 7, chondroitin sulfate and fibronectin, were investigated using immunohistochemistry study. ET1 increased the rate of healing of corneal epithelial wounds in rabbits. Anti-fibronectin fluorescence was present at week 12 and week 24 in ET1-treated eyes but not in the control eyes. There were no significant differences in corneal haze, corneal thickness and changes in other extracellular matrixes between ET1- and PBS-treated eyes. ET1 can enhance the deposition of fibronectin in corneal stroma and promote corneal epithelial wound healing after PRK. The increase in fibronectin probably explains the increased healing rate of corneal epithelial wounds.

  13. Effect of human autologous serum and fetal bovine serum on human corneal epithelial cell viability, migration and proliferation in vitro

    Directory of Open Access Journals (Sweden)

    Ming-Feng Wu

    2017-06-01

    Full Text Available AIM: To analyze the concentration-dependent effects of autologous serum (AS and fetal bovine serum (FBS on human corneal epithelial cell (HCEC viability, migration and proliferation. METHODS: AS was prepared from 13 patients with non-healing epithelial defects Dulbecco's modified eagle medium/Ham’s F12 (DMEM/F12 with 5% FBS, 0.5% dimethyl sulphoxide (DMSO, 10 ng/mL human epidermal growth factor, 1% insulin-transferrin-selenium, then were incubated in serum media: DMEM/F12 supplemented by 5%, 10%, 15% or 30% AS or FBS. HCEC viability was analyzed using cell proliferation kit XTT, migration using a wound healing assay, proliferation by the cell proliferation enzyme-linked immunosorbent assay (ELISA BrdU kit. Statistical analysis was performed using the generalized linear model, the values at 30% AS or 30% FBS were used as the baselines. RESULTS: HCEC viability was the highest at 30% AS or 15% FBS and the lowest at 10% AS or 30% FBS application. HCEC migration was the quickest through 30% AS or 30% FBS and the slowest through 5% AS or 5% FBS concentrations. Proliferation was the most increased through 15% AS or 5% FBS and the least increased through 30% AS or 30% FBS concentrations. HCEC viability at 10% and 15% AS was significantly worse (P=0.001, P=0.023 compared to baseline and significantly better at 15% FBS (P=0.003 concentrations. HCEC migration was significantly worse (P≤0.007 and HCEC proliferation significantly better (P<0.001 in all concentration groups compared to baseline. CONCLUSION: For the best viability of HCEC 30% AS or 15% FBS, for HCEC migration 30% AS or 30% FBS, for proliferation 15% AS or 5% FBS should be used. Therefore, we suggest the use of 30% AS in clinical practice.

  14. Effect of human autologous serum and fetal bovine serum on human corneal epithelial cell viability, migration and proliferation in vitro.

    Science.gov (United States)

    Wu, Ming-Feng; Stachon, Tanja; Seitz, Berthold; Langenbucher, Achim; Szentmáry, Nóra

    2017-01-01

    To analyze the concentration-dependent effects of autologous serum (AS) and fetal bovine serum (FBS) on human corneal epithelial cell (HCEC) viability, migration and proliferation. AS was prepared from 13 patients with non-healing epithelial defects Dulbecco's modified eagle medium/Ham's F12 (DMEM/F12) with 5% FBS, 0.5% dimethyl sulphoxide (DMSO), 10 ng/mL human epidermal growth factor, 1% insulin-transferrin-selenium, then were incubated in serum media: DMEM/F12 supplemented by 5%, 10%, 15% or 30% AS or FBS. HCEC viability was analyzed using cell proliferation kit XTT, migration using a wound healing assay, proliferation by the cell proliferation enzyme-linked immunosorbent assay (ELISA) BrdU kit. Statistical analysis was performed using the generalized linear model, the values at 30% AS or 30% FBS were used as the baselines. HCEC viability was the highest at 30% AS or 15% FBS and the lowest at 10% AS or 30% FBS application. HCEC migration was the quickest through 30% AS or 30% FBS and the slowest through 5% AS or 5% FBS concentrations. Proliferation was the most increased through 15% AS or 5% FBS and the least increased through 30% AS or 30% FBS concentrations. HCEC viability at 10% and 15% AS was significantly worse (P=0.001, P=0.023) compared to baseline and significantly better at 15% FBS (P=0.003) concentrations. HCEC migration was significantly worse (P≤0.007) and HCEC proliferation significantly better (Pmigration 30% AS or 30% FBS, for proliferation 15% AS or 5% FBS should be used. Therefore, we suggest the use of 30% AS in clinical practice.

  15. Biomechanics of Corneal Ring Implants

    Science.gov (United States)

    2015-01-01

    Purpose: To evaluate the biomechanics of corneal ring implants by providing a related mathematical theory and biomechanical model for the treatment of myopia and keratoconus. Methods: The spherical dome model considers the inhomogeneity of the tunica of the eye, dimensions of the cornea, lamellar structure of the corneal stroma, and asphericity of the cornea. It is used in this study for calculating a strengthening factor sf for the characterization of different ring-shaped corneal implant designs. The strengthening factor is a measure of the amount of strengthening of the cornea induced by the implant. Results: For ring segments and incomplete rings, sf = 1.0, which indicates that these implants are not able to strengthen the cornea. The intracorneal continuous complete ring (MyoRing) has a strengthening factor of up to sf = 3.2. The MyoRing is, therefore, able to strengthen the cornea significantly. Conclusions: The result of the presented biomechanical analysis of different ring-shaped corneal implant designs can explain the different postoperative clinical results of different implant types in myopia and keratoconus. PMID:26312619

  16. Biomechanics of Corneal Ring Implants.

    Science.gov (United States)

    Daxer, Albert

    2015-11-01

    To evaluate the biomechanics of corneal ring implants by providing a related mathematical theory and biomechanical model for the treatment of myopia and keratoconus. The spherical dome model considers the inhomogeneity of the tunica of the eye, dimensions of the cornea, lamellar structure of the corneal stroma, and asphericity of the cornea. It is used in this study for calculating a strengthening factor sf for the characterization of different ring-shaped corneal implant designs. The strengthening factor is a measure of the amount of strengthening of the cornea induced by the implant. For ring segments and incomplete rings, sf = 1.0, which indicates that these implants are not able to strengthen the cornea. The intracorneal continuous complete ring (MyoRing) has a strengthening factor of up to sf = 3.2. The MyoRing is, therefore, able to strengthen the cornea significantly. The result of the presented biomechanical analysis of different ring-shaped corneal implant designs can explain the different postoperative clinical results of different implant types in myopia and keratoconus.

  17. Distribution of non-gal antigens in pig cornea: relevance to corneal xenotransplantation.

    Science.gov (United States)

    Cohen, David; Miyagawa, Yuko; Mehra, Ruhina; Lee, Whayoung; Isse, Kumiko; Long, Cassandra; Ayares, David L; Cooper, David K C; Hara, Hidetaka

    2014-04-01

    The aim of this study was to investigate the distribution of antigens other than galactose-α-1,3-galactose (Gal) (non-Gal) recognized by human and rhesus monkey serum antibodies in the α-1,3-galactosyltransferase gene-knockout (GTKO) pig cornea. The distribution of non-Gal, specifically N-glycolylneuraminic acid (NeuGc), in the corneas from wild-type (WT) and GTKO pigs was identified. Corneal sections from WT and GTKO pigs were incubated with human or rhesus monkey serum to determine immunoglobulin (Ig)M and IgG binding to corneal tissue by means of fluorescent microscopy. Strong expression of NeuGc was found in all layers of both WT and GTKO pig corneas. In both humans and monkeys, antibody binding (IgG > IgM) to GTKO was found to be weaker than that to entire WT pig corneas, but in both, most antibody binding, especially IgG, was to the epithelium. There was weak diffuse antibody binding, especially of IgG, to the corneal stroma, suggesting binding to antigens expressed on collagen. There was no or minimal binding of IgM/IgG to the corneal endothelium. Although the cornea is avascular, antibodies in primate serum can bind to pig antigens, especially on epithelial cells and stromal collagen. Although the binding to entire GTKO corneas was weaker than that to WT corneas, deletion of the expression of NeuGc and expression of human complement-regulatory proteins in the pig cornea will be important if prolonged clinical corneal xenograft survival is to be achieved.

  18. Transduction efficiency of AAV 2/6, 2/8 and 2/9 vectors for delivering genes in human corneal fibroblasts

    OpenAIRE

    Sharma, Ajay; Ghosh, Arkasubhra; Hansen, Eric T.; Newman, Jason M.; Mohan, Rajiv R.

    2009-01-01

    In the present study, cellular tropism and relative transduction efficiency of AAV2/6, AAV2/8 and AAV2/9 vectors have been tested for the cornea using primary cultures of human corneal fibroblasts. The AAV6, AAV8 and AAV9 serotypes having AAV2 ITR plasmid encoding for alkaline phosphatase (AP) gene were generated by transfecting HEK293 cell line with pHelper, pARAP4 and pRep/Cap plasmids. Primary cultures of human corneal fibroblasts were exposed to AAV infectious particles at two different d...

  19. Corneal topography.

    Science.gov (United States)

    Seitz, B; Behrens, A; Langenbucher, A

    1997-08-01

    In the review period, limitations of individual Placido disk-based topography systems have been studied and new principles, such as raster photogrammetry, pancorneal slit topography, laser holographic interferometry, and confocal laser scanning topography, have been introduced for laboratory or clinical work. Both Fourier analysis and Zernike decomposition of topographic height data seem to be powerful new tools for cross-sectional analysis of complex topographic corneal images, such as after cataract surgery, penetrating keratoplasty, and refractive surgery, as well as for longitudinal studies of corneal changes, such as in schoolchildren. Subdividing into rational optical components may improve consistency and standardization of topography data from different systems. Topography-based flying-spot-mode excimer laser photoablation after Zernike decomposition of topography height data has been proposed for correction of irregular corneal astigmatism. Topography-based central power measurements are of increasing value for intraocular lens power calculation before cataract surgery in eyes with irregular corneal surfaces, such as in keratoconus or after refractive surgery procedures. Quantitative and qualitative classification of corneal topography maps after corneal transplantation following conventional mechanical and nonmechanical trephination or after refractive surgery may lead to a better understanding of impaired visual acuity despite a clear graft or despite significantly reduced ametropia or corneal astigmatism.

  20. Human adenovirus type 8 epidemic keratoconjunctivitis with large corneal epithelial full-layer detachment: an endemic outbreak with uncommon manifestations

    Directory of Open Access Journals (Sweden)

    Lee YC

    2015-05-01

    Full Text Available Yueh-Chang Lee,1 Nancy Chen,1 I-Tsong Huang,2–4 Hui-Hua Yang,2 Chin-Te Huang,1 Li-Kuang Chen,2–5 Min-Muh Sheu1,6,7 1Department of Ophthalmology, 2Taiwan CDC Collaborating Laboratories of Virology, 3Department of Laboratory Medicine, Buddhist Tzu-Chi General Hospital, Hualien, Taiwan; 4Graduate Institute of Medical Sciences, 5Department of Laboratory Diagnosis, 6Department of Ophthalmology and Visual Science, Tzu-Chi University, Hualien, Taiwan; 7Department of Ophthalmology, Mennonite Christian Hospital, Hualien, Taiwan Abstract: Epidemic viral conjunctivitis is a highly contagious disease that is encountered year-round. The causative agents are mainly adenoviruses and enteroviruses. It occurs most commonly upon infection with subgroup D adenoviruses of types 8, 19, or 37. For common corneal involvement of human adenovirus type 8 epidemic keratoconjunctivitis, full-layer epithelial detachment is rarely seen. Herein, we report three cases of epidemic keratoconjunctivitis during an outbreak which manifested as large corneal epithelial full-layer detachment within a few days. The lesions healed without severe sequelae under proper treatment. The unique manifestation of this outbreak may indicate the evolution of human adenovirus type 8. Keywords: EKC, HAdV-8, cornea, virology, epidemic viral conjunctivitis

  1. Glutaminolysis is Essential for Energy Production and Ion Transport in Human Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Wenlin Zhang

    2017-02-01

    Full Text Available Corneal endothelium (CE is among the most metabolically active tissues in the body. This elevated metabolic rate helps the CE maintain corneal transparency by its ion and fluid transport properties, which when disrupted, leads to visual impairment. Here we demonstrate that glutamine catabolism (glutaminolysis through TCA cycle generates a large fraction of the ATP needed to maintain CE function, and this glutaminolysis is severely disrupted in cells deficient in NH3:H+ cotransporter Solute Carrier Family 4 Member 11 (SLC4A11. Considering SLC4A11 mutations leads to corneal endothelial dystrophy and sensorineural deafness, our results indicate that SLC4A11-associated developmental and degenerative disorders result from altered glutamine catabolism. Overall, our results describe an important metabolic mechanism that provides CE cells with the energy required to maintain high level transport activity, reveal a direct link between glutamine metabolism and developmental and degenerative neuronal diseases, and suggest an approach for protecting the CE during ophthalmic surgeries.

  2. Corneal donor tissue preparation for endothelial keratoplasty.

    Science.gov (United States)

    Woodward, Maria A; Titus, Michael; Mavin, Kyle; Shtein, Roni M

    2012-06-12

    Over the past ten years, corneal transplantation surgical techniques have undergone revolutionary changes. Since its inception, traditional full thickness corneal transplantation has been the treatment to restore sight in those limited by corneal disease. Some disadvantages to this approach include a high degree of post-operative astigmatism, lack of predictable refractive outcome, and disturbance to the ocular surface. The development of Descemet's stripping endothelial keratoplasty (DSEK), transplanting only the posterior corneal stroma, Descemet's membrane, and endothelium, has dramatically changed treatment of corneal endothelial disease. DSEK is performed through a smaller incision; this technique avoids 'open sky' surgery with its risk of hemorrhage or expulsion, decreases the incidence of postoperative wound dehiscence, reduces unpredictable refractive outcomes, and may decrease the rate of transplant rejection. Initially, cornea donor posterior lamellar dissection for DSEK was performed manually resulting in variable graft thickness and damage to the delicate corneal endothelial tissue during tissue processing. Automated lamellar dissection (Descemet's stripping automated endothelial keratoplasty, DSAEK) was developed to address these issues. Automated dissection utilizes the same technology as LASIK corneal flap creation with a mechanical microkeratome blade that helps to create uniform and thin tissue grafts for DSAEK surgery with minimal corneal endothelial cell loss in tissue processing. Eye banks have been providing full thickness corneas for surgical transplantation for many years. In 2006, eye banks began to develop methodologies for supplying precut corneal tissue for endothelial keratoplasty. With the input of corneal surgeons, eye banks have developed thorough protocols to safely and effectively prepare posterior lamellar tissue for DSAEK surgery. This can be performed preoperatively at the eye bank. Research shows no significant difference in

  3. Corneal and scleral collagens--a microscopist's perspective.

    Science.gov (United States)

    Meek, K M; Fullwood, N J

    2001-04-01

    This paper reviews our existing understanding of the distribution and organisation of collagen types within the corneal and scleral stroma from a microscopical perspective. The contribution of various types of light microscopy, electron microscopy and atomic force microscopy to this field are separately discussed. Light microscopy was used in the earliest studies of the cornea and lead to the first description of the lamellar structure of the stroma. More recently polarised light microscopy has been used to obtain specific information on fibril orientation within individual lamellae. Light microscope immunolabelling techniques have been utilised to determine the distribution of several collagen types within the cornea and sclera, while recent developments in confocal microscopy have allowed detailed observations to be made on live cornea. Scanning electron microscopy has proved useful in determining the 3D organisation of lamellae within both corneal and scleral stroma. The transmission electron microscope was responsible for first revealing the regular diameter and high degree of order of the collagen fibrils present in the corneal stroma and contrasting this with the irregular diameter of fibrils present in sclera. This finding lead directly to the formulation of a theory of corneal transparency based on the uniformity of fibril diameter and packing. The use of specialised stains such as cuprolinic blue allowed direct observation of the glycosaminoglycan chains on proteoglycan molecules in cornea and sclera. These images allowed the binding sites of the proteoglycans along the collagen fibrils to be identified and provided convincing evidence for the importance of the proteoglycan molecules in collagen fibril organisation. Immunogold labelling has been used to map the distribution of several collagen types within the corneal and scleral stroma at the ultrastructural level and provided critical evidence for the role of type V collagen in the regulation of fibril

  4. Angiopoietin 2 expression in the cornea and its control of corneal neovascularisation.

    Science.gov (United States)

    Ferrari, Giulio; Giacomini, Chiara; Bignami, Fabio; Moi, Davide; Ranghetti, Anna; Doglioni, Claudio; Naldini, Luigi; Rama, Paolo; Mazzieri, Roberta

    2016-07-01

    To define proangiogenic angiopoietin 2 (ANG2) expression and role(s) in human and mouse vascularised corneas. Further, to evaluate the effect of ANG2 inhibition on corneal neovascularisation (CNV). CNV was induced in FVB mice by means of intrastromal suture placement. One group of animals was sacrificed 10 days later; corneas were immunostained for ANG2 and compared with (i) mouse non-vascularised corneas and (ii) human vascularised and non-vascularised corneas. A second group of CNV animals was treated systemically with an anti-ANG2 antibody. After 10 days, the corneas were whole-mounted, stained for CD31 and LYVE1 and lymphatic/blood vessels quantified. In another set of experiments, the corneal basal Bowman membrane was either (i) removed or (ii) left in place. After 2 or 10 days the corneas were removed and immunostained for collagen IV, ANG2, CD31, LYVE1, CD11b and MRC1 markers. In human beings and mice, ANG2 is expressed only in the epithelium, and, mildly, in the endothelium, of the avascular cornea. Instead, it is expressed in the epithelium, endothelium and stroma of vascularised corneas. Disruption of the Bowman membrane is associated with a significant increase of (i) ANG2 stromal expression and (ii) proangiogenic macrophage infiltration in the corneal stroma. Finally, blocking ANG2 significantly reduced hemangiogenesis, lymphangiogenesis and macrophage infiltration. Balancing proper healing and good vision is crucial in the cornea, constantly exposed to potential injuries. In this paper, we suggest the existence of a mechanism regulating the onset of inflammation (and associated CNV) depending on injury severity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. Hypocellular scar formation or aberrant fibrosis induced by an intrastromal corneal ring: a case report

    Directory of Open Access Journals (Sweden)

    Ramkumar Hema L

    2011-08-01

    Full Text Available Abstract Introduction Intrastromal corneal rings or segments are approved for the treatment of myopia and astigmatism associated with keratoconus. We describe a clinicopathological case of intrastromal corneal rings. For the first time, the molecular pathological findings of intrastromal corneal rings in the cornea are illustrated. Case presentation A 47-year-old African-American man with a history of keratoconus and failure in using a Rigid Gas Permeable contact lens received an intrastromal corneal ring implant in his left eye. Due to complications, penetrating keratoplasty was performed. The intrastromal corneal ring channels were surrounded by a dense acellular (channel haze and/or hypocellular (acidophilic densification collagen scar and slightly edematous keratocytes. Mild macrophage infiltration was found near the inner aspect of the intrastromal corneal rings. Molecular analyses of the microdissected cells surrounding the intrastromal corneal ring channels and central corneal stroma revealed 10 times lower relative expression of IP-10/CXCL10 mRNA and two times higher CCL5 mRNA in the cells surrounding the intrastromal corneal ring, as compared to the central corneal stroma. IP-10/CXCL10 is a fibrotic and angiostatic chemokine produced by macrophages, endothelial cells and fibroblasts. Conclusion An intrastromal corneal ring implant can induce hypocellular scar formation and mild inflammation, which may result from aberrant release of fibrosis-related chemokines.

  6. Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Hong [Department of Ophthalmology, Qilu Hospital, Shandong University, 107, Wenhua Xi Road, Jinan 250012 (China); The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, 107, Wenhua Xi Road, Jinan 250012 (China); Wu, Xinyi, E-mail: xywu8868@163.com [Department of Ophthalmology, Qilu Hospital, Shandong University, 107, Wenhua Xi Road, Jinan 250012 (China)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Hypoxia attenuates Acanthamoeba-induced the production of IL-8 and IFN-{beta}. Black-Right-Pointing-Pointer Hypoxia inhibits TLR4 expression in a time-dependent manner in HCECs. Black-Right-Pointing-Pointer Hypoxia inhibits Acanthamoeba-induced the activation of NF-{kappa}B and ERK1/2 in HCECs. Black-Right-Pointing-Pointer Hypoxia decreases Acanthamoeba-induced inflammatory response via TLR4 signaling. Black-Right-Pointing-Pointer LPS-induced the secretion of IL-6 and IL-8 is abated by hypoxia via TLR4 signaling. -- Abstract: Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-{beta} (IFN-{beta}) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-{kappa}B) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-{beta}. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-{kappa}B and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88

  7. Corneal Laceration

    Medline Plus

    Full Text Available ... by something sharp flying into the eye. It can also be caused by something striking the eye ... If the corneal laceration is deep enough it can cause a full thickness laceration. This is when ...

  8. Corneal Laceration

    Medline Plus

    Full Text Available ... itself. A corneal laceration is a very serious injury and requires immediate medical attention to avoid severe ... 27, 2015 Dark Spot in Vision After Blunt Trauma Dec 21, 2014 Pain a Year After Eyelid ...

  9. Corneal Laceration

    Medline Plus

    Full Text Available ... the blood and may increase bleeding after you have finished protecting the eye, see a physician immediately ... Jun 30, 2017 People with Advanced Keratoconus May Have A Future Alternative to Full Corneal Transplantation Nov ...

  10. Corneal Laceration

    Medline Plus

    Full Text Available ... People with Advanced Keratoconus May Have A Future Alternative to Full Corneal Transplantation Nov 29, 2016 Combating Eye Injuries from ... of Service For Advertisers For Media Ophthalmology Job Center © American Academy of Ophthalmology 2017 ...

  11. Corneal Laceration

    Medline Plus

    Full Text Available ... inflammatory drugs. These drugs thin the blood and may increase bleeding after you have finished protecting the ... a hair dryer to treat my Fuchs’ dystrophy? May 06, 2017 I lost sight from a corneal ...

  12. Corneal Laceration

    Medline Plus

    Full Text Available ... By: Devin A Harrison MD Sep. 01, 2017 The cornea is the clear front window of the eye . A corneal laceration is a cut on the cornea. It is usually caused by something sharp ...

  13. Corneal Laceration

    Medline Plus

    Full Text Available ... itself. A corneal laceration is a very serious injury and requires immediate medical attention to avoid severe ... Ask an Ophthalmologist Answers Did my traumatic brain injury cause early cataracts? Jan 21, 2018 Did I ...

  14. Corneal Laceration

    Medline Plus

    Full Text Available ... caused by something striking the eye with significant force, like a metallic hand tool. A corneal laceration ... and preserving your vision. Privacy Policy Related Top 5 Eye Health Stories of 2017 Dec 21, 2017 ...

  15. Corneal Laceration

    Medline Plus

    Full Text Available ... itself. A corneal laceration is a very serious injury and requires immediate medical attention to avoid severe ... Dangerous for Your Eyes Sep 20, 2017 Eye Injuries from Laundry Packets On the Rise Jun 30, ...

  16. Cat keratoplasty wound healing and corneal astigmatism.

    Science.gov (United States)

    Tripoli, N K; Cohen, K L; Proia, A D

    1992-01-01

    A major contributor to postkeratoplasty astigmatism may be donor/recipient disparity. Deficient or excess cornea at the wound is thought to influence the directions of the steep and flat meridians. Using an established model of penetrating keratoplasty in the cat, this study evaluated the morphometry of histopathologic wound features in the steep and flat meridians. Thirteen cats had successful penetrating keratoplasties after intentionally misshapen donor corneas were misaligned in misshapen recipient beds. At 9.50 +/- 0.32 (mean +/- 1 SEM) months after keratoplasty, photokeratography was performed and analyzed, corneas were sectioned along the steep and flat meridians, and four histologic sections were processed. Features of the wounds were measured using a Zeiss Videoplan. The relationships between the morphometry of each feature and every other feature, between the morphometry of each feature and eccentricity, and between the steep and flat section morphometry of each feature were statistically evaluated. Epithelial thickness, area of lamellar alteration, length of Descemet's membrane produced postoperatively, and the depth that preoperative Descemet's membrane was embedded in the stroma were correlated with eccentricity (corneal astigmatism). Stromal thickness and the presence or absence of folded and fragmented Descemet's membrane were not correlated with eccentricity. Wound morphometry at the steep meridians was neither correlated with nor significantly different from wound morphometry at the flat meridians. Differences between healing at the steep and flat meridians were not likely contributors to astigmatism. Disproportionate availability of tissue in wound regions may have affected healing throughout the entire wound over time. The absence of Bowman's layer in cats restricts application of our results to understanding the etiology of corneal astigmatism after penetrating keratoplasty in humans.

  17. Partial-thickness corneal tissue restoration after a chemical burn

    Directory of Open Access Journals (Sweden)

    Galan A

    2016-04-01

    Full Text Available Alessandro Galan, Anton Giulio Catania, Giuseppe Lo Giudice San Paolo Ophthalmic Center, San Antonio Hospital, Padova, Italy Purpose: We describe a case of full-thickness corneal restoration after an acute corneal burn with an acid agent. Methods: A 32-year-old male reported painful discomfort, redness, photophobia, and a decrease in visual acuity in the left eye after a unilateral burn with an acid agent. Slit-lamp examination revealed massive corneal melting involving necrotic sequestrum of the entire corneal surface. Surgical approach was carried out in order to preserve residual ocular tissues. Results: Extensive corneal–conjunctival layer curettage of the necrotic tissue was performed showing perfectly clear undamaged deep lamellar corneal layers. The patient underwent multilayered amniotic membrane transplantation and total capsular–conjunctival flap in order to preserve ocular tissue from further melting or corneal perforation. A complete and spontaneous “restitutio ad integrum” of the corneal layers was shown during the follow-up. The cornea was perfectly clear with restored normal anatomical architecture. Conclusion: In this case, a spontaneous full-thickness corneal tissue restoration occurred after an acute chemical burn. Studies about the mechanisms whereby different cells interact and replicate within the stroma may unveil the biology behind corneal regeneration and transparency. Keywords: amniotic membrane, chemical burn, corneal healing

  18. Collagen Cross-Linking Using Riboflavin and Ultraviolet-A for Corneal Thinning Disorders

    Science.gov (United States)

    Pron, G; Ieraci, L; Kaulback, K

    2011-01-01

    Executive Summary Objective The main objectives for this evidence-based analysis were to determine the safety and effectiveness of photochemical corneal collagen cross-linking with riboflavin (vitamin B2) and ultraviolet-A radiation, referred to as CXL, for the management of corneal thinning disease conditions. The comparative safety and effectiveness of corneal cross-linking with other minimally invasive treatments such as intrastromal corneal rings was also reviewed. The Medical Advisory Secretariat (MAS) evidence-based analysis was performed to support public financing decisions. Subject of the Evidence-Based Analysis The primary treatment objective for corneal cross-linking is to increase the strength of the corneal stroma, thereby stabilizing the underlying disease process. At the present time, it is the only procedure that treats the underlying disease condition. The proposed advantages for corneal cross-linking are that the procedure is minimally invasive, safe and effective, and it can potentially delay or defer the need for a corneal transplant. In addition, corneal cross-linking does not adversely affect subsequent surgical approaches, if they are necessary, or interfere with corneal transplants. The evidence for these claims for corneal cross-linking in the management of corneal thinning disorders such as keratoconus will be the focus of this review. The specific research questions for the evidence review were as follows: Technical: How technically demanding is corneal cross-linking and what are the operative risks? Safety: What is known about the broader safety profile of corneal cross-linking? Effectiveness - Corneal Surface Topographic Affects: What are the corneal surface remodeling effects of corneal cross-linking? Do these changes interfere with subsequent interventions, particularly corneal transplant known as penetrating keratoplasty (PKP)? Effectiveness -Visual Acuity: What impacts does the remodeling have on visual acuity? Are these impacts

  19. Corneal collagens.

    Science.gov (United States)

    Robert, L; Legeais, J M; Robert, A M; Renard, G

    2001-05-01

    Cornea is a highly differentiated tissue rich in extracellular matrix (ECM) specifically distributed in space in order to insure its dual role--transparency and protection of inner eye-tissues. Corneal ECM is especially rich in collagens. Since the characterisation of a number of distinct collagen types it appeared that most of them are present in the cornea. Their synthesis follows a specific program of sequential expression of the different collagen types to be synthesised during the development and maturation of the cornea. The precise regulation of the diameter and orientation of fibers, and of the interfibrillar spaces is partially at least attributed to interactions between glycosaminoglycans and collagens. The 'program' of vectorial collagen synthesis and GAG-collagen interactions changes also with age and in several pathological conditions as corneal dystrophies and wound healing. The Maillard reaction, especially in diabetes, is one of these important factors involved in age-dependent modifications of corneal structure and function. Far from being inert, corneal collagens were shown to have relatively short half-lives. The biosynthesis of corneal collagens was studied also during wound healing. The refibrillation of wounded corneas does not follow the original 'program' of ECM-synthesis as shown by the comparative study of wound healing using biochemical and morphometric methods. This review recapitulates briefly previous and recent studies on corneal collagens in order to present to clinicians and scientists an overview of the state of the art of this important field at the intersection of eye research and matrix biology.

  20. Evaluation of UVA Cytotoxicity for Human Endothelium in an Ex Vivo Corneal Cross-linking Experimental Setting.

    Science.gov (United States)

    Mooren, Pepijn; Gobin, Laure; Bostan, Nezahat; Wouters, Kristien; Zakaria, Nadia; Mathysen, Danny G P; Koppen, Carina

    2016-01-01

    To evaluate endothelial cytotoxicity after exposure of human corneas to ultraviolet-A (UVA) (λ = 365 nm; 5.4 J/cm(2)) in an experimental ex vivo corneal cross-linking setting. Sixteen pairs of human donor corneas were cut into two pieces. One piece of each cornea was treated with 0.025% riboflavin solution prior to UVA irradiation (5 minutes; 18 mW/cm(2)), whereas the other piece was not irradiated but treated with riboflavin (right eye) or preservation medium (left eye). By irradiating from the endothelial side, the UVA dosage applied to endothelial cells exceeded at least eight times the cytotoxic threshold established in animal models (0.65 J/cm(2)). Endothelial cell counts were performed by two independent investigators after storage (4 to 5 days at 31 °C) and staining (trypan blue, alizarin red). Normality (Q-Q plot; Shapiro-Wilk test) and equivalence (mixed-effects modeling with a 10% equivalence threshold) of the endothelial cell counts of the different groups were evaluated. Equivalence of mean endothelial cell density between both groups was observed: 2,237 ± 208 cells/mm(2) in UVA-irradiated pieces and 2,290 ± 281 cells/mm(2) in control pieces (mean difference of 53 ± 240 cells/mm(2) between both groups). Despite direct irradiation of human donor endothelium using the clinical dosage for cross-linking, equivalence in endothelial cell counts was observed between irradiated tissues and controls. Ex vivo human corneal endothelial cells seem to be far more resistant to riboflavin-enhanced UVA irradiation than previously estimated by animal experiments. Copyright 2016, SLACK Incorporated.

  1. Corneal collagen crosslinking for keratoconus. A review

    Directory of Open Access Journals (Sweden)

    M. M. Bikbov

    2014-01-01

    Full Text Available Photochemical crosslinking is widely applied in ophthalmology. Its biochemical effect is due to the release of singlet oxygen that promotes anaerobic photochemical reaction. Keratoconus is one of the most common corneal ectasia affecting 1 in 250 to 250 000 persons. Currently, the rate of iatrogenic ectasia following eximer laser refractive surgery increases due to biomechanical weakening of the cornea. Morphologically and biochemically, ectasia is characterized by corneal layers thinning, contact between the stroma and epithelium resulting from Bowman’s membrane rupture, chromatin fragmentation in keratocyte nuclei, phagocytosis, abnormal staining and arrangement of collagen fibers, enzyme system disorders, and keratocyte apoptosis. In corneal ectasia, altered enzymatic processes result in the synthesis of abnormal collagen. Collagen packing is determined by the activity of various extracellular matrix enzymes which bind amines and aldehydes of collagen fiber amino acids. In the late stage, morphological changes of Descemet’s membrane (i.e., rupture and detachment develop. Abnormal hexagonal-shaped keratocytes and their apoptosis are the signs of endothelial dystrophy. The lack of analogs in domestic ophthalmology encouraged the scientists of Ufa Eye Research Institute to develop a device for corneal collagen crosslinking. The parameters of ultraviolet (i.e., wavelength, exposure time, power to achieve the desired effect were identified. The specifics of some photosensitizers in the course of the procedure were studied. UFalink, a device for UV irradiation of cornea, and photosensitizer Dextralink were developed and adopted. Due to the high risk of endothelial damage, this treatment is contraindicated in severe keratoconus (CCT less than 400 microns. Major effects of corneal collagen crosslinking are the following: Young’s modulus (modulus of elasticity increase by 328.9 % (on average, temperature tolerance increase by 5

  2. Corneal collagen crosslinking for keratoconus. A review

    Directory of Open Access Journals (Sweden)

    M. M. Bikbov

    2014-10-01

    Full Text Available Photochemical crosslinking is widely applied in ophthalmology. Its biochemical effect is due to the release of singlet oxygen that promotes anaerobic photochemical reaction. Keratoconus is one of the most common corneal ectasia affecting 1 in 250 to 250 000 persons. Currently, the rate of iatrogenic ectasia following eximer laser refractive surgery increases due to biomechanical weakening of the cornea. Morphologically and biochemically, ectasia is characterized by corneal layers thinning, contact between the stroma and epithelium resulting from Bowman’s membrane rupture, chromatin fragmentation in keratocyte nuclei, phagocytosis, abnormal staining and arrangement of collagen fibers, enzyme system disorders, and keratocyte apoptosis. In corneal ectasia, altered enzymatic processes result in the synthesis of abnormal collagen. Collagen packing is determined by the activity of various extracellular matrix enzymes which bind amines and aldehydes of collagen fiber amino acids. In the late stage, morphological changes of Descemet’s membrane (i.e., rupture and detachment develop. Abnormal hexagonal-shaped keratocytes and their apoptosis are the signs of endothelial dystrophy. The lack of analogs in domestic ophthalmology encouraged the scientists of Ufa Eye Research Institute to develop a device for corneal collagen crosslinking. The parameters of ultraviolet (i.e., wavelength, exposure time, power to achieve the desired effect were identified. The specifics of some photosensitizers in the course of the procedure were studied. UFalink, a device for UV irradiation of cornea, and photosensitizer Dextralink were developed and adopted. Due to the high risk of endothelial damage, this treatment is contraindicated in severe keratoconus (CCT less than 400 microns. Major effects of corneal collagen crosslinking are the following: Young’s modulus (modulus of elasticity increase by 328.9 % (on average, temperature tolerance increase by 5

  3. Generation and evaluation of a human corneal model cell system for ophthalmologic issues using the HPV16 E6/E7 oncogenes as uniform immortalization platform.

    Science.gov (United States)

    Schulz, Simon; Steinberg, Thorsten; Beck, David; Tomakidi, Pascal; Accardi, Rosita; Tommasino, Massimo; Reinhard, Thomas; Eberwein, Philipp

    2013-01-01

    The present study aimed at employing the human papillomavirus type 16 (HPV16) E6/E7 gene platform, to create a uniform authentic in vitro model cell system of the human cornea for ophthalmologic issues and here especially for prospective biomaterial evaluations for therapeutic regenerative approaches. Therefore, HPV16 E6/E7 genes were employed as uniform platform to immortalize primary human corneal keratinocytes (IHCK), fibroblasts (IHCF), and endothelial (IHCE) cells. qPCR revealed that E6/E7 mRNA transcription persisted at rising passages and FISH detection of the chromosome portfolio 1, 8, 10 and 18 showed fairly the disomic cytogenetic status. Hot spot passages proved oscillation of aneuploidies in the entire passage spectrum under study, while hot spot aneuploidies annotated prevalence for distinct chromosomes. Though IIF revealed general endurance, tissue-innate corneal biomarkers were modulated, i.e. expressed in a temporal-confluence, temporal-spatial or passage-dependent manner. In summary, by the fairly normal chromosomal status, and expression of tissue-innate biomarkers, we created for the first time a uniform authentic in vitro model cell system of the human cornea, by application of the HPV16 E6/E7 immortalization platform only. This system renders a precious tool for prospective iterative in vitro studies on issues such as corneal tissue homeostasis, pharmaceutical generics, and/or evaluation of new biomaterials for clinical corneal applications. Copyright © 2013 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  4. OVOL2 Maintains the Transcriptional Program of Human Corneal Epithelium by Suppressing Epithelial-to-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Koji Kitazawa

    2016-05-01

    Full Text Available In development, embryonic ectoderm differentiates into neuroectoderm and surface ectoderm using poorly understood mechanisms. Here, we show that the transcription factor OVOL2 maintains the transcriptional program of human corneal epithelium cells (CECs, a derivative of the surface ectoderm, and that OVOL2 may regulate the differential transcriptional programs of the two lineages. A functional screen identified OVOL2 as a repressor of mesenchymal genes to maintain CECs. Transduction of OVOL2 with several other transcription factors induced the transcriptional program of CECs in fibroblasts. Moreover, neuroectoderm derivatives were found to express mesenchymal genes, and OVOL2 alone could induce the transcriptional program of CECs in neural progenitors by repressing these genes while activating epithelial genes. Our data suggest that the difference between the transcriptional programs of some neuroectoderm- and surface ectoderm-derivative cells may be regulated in part by a reciprocally repressive mechanism between epithelial and mesenchymal genes, as seen in epithelial-to-mesenchymal transition.

  5. Collagen based film with well epithelial and stromal regeneration as corneal repair materials: Improving mechanical property by crosslinking with citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xuan; Liu, Yang; Li, Weichang; Long, Kai; Wang, Lin; Liu, Sa; Wang, Yingjun [School of Materials Science and Engineering, South China University of Technology, Guangzhou (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou (China); Ren, Li, E-mail: psliren@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou (China)

    2015-10-01

    Corneal disease can lead to vision loss. It has become the second greatest cause of blindness in the world, and keratoplasty is considered as an effective treatment method. This paper presents the crosslinked collagen (Col)–citric acid (CA) films developed by making use of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The results showed that the Col–CA films had necessary optical performance, water content. The collagenase resistance of CA crosslinked films was superior to that of EDC crosslinked films. And CA5 film (Col:CA:EDC:NHS = 60:3:10:10) had the best mechanical properties. Cell experiments showed that CA5 film was non-cytotoxic and human corneal epithelial cells could proliferate well on the films. Lamellar keratoplasty showed that the CA5 film could be sutured in the rabbit eyes and was epithelialized completely in about 10 days, and the transparency was restored quickly in 30 ± 5 days. No inflammation and corneal neovascularization were observed at 6 months. Corneal stroma had been repaired; stromal cells and neo-stroma could be seen in the area of operation from the hematoxylin–eosin stained histologic sections and anterior segment optical coherence tomography images. These results indicated that Col–CA films were highly promising biomaterials that could be used in corneal tissue engineering and a variety of other tissue engineering applications. - Highlights: • Adding different amounts of citric acid could change the properties of films. • The crosslinked films had better mechanical property than non-modified films. • Crosslinked collagen–citric acid films could tolerate suture during operation. • The films showed good ability of epithelial and stromal repair.

  6. Corneal Transplantation

    DEFF Research Database (Denmark)

    Hjortdal, Jesper Østergaard

    Corneal transplantation has been performed for more than 100 years. Until 15 years ago the state-of-the art type of transplantation was penetrating keratoplasty, but since the start of this millennium, newly designed surgical techniques have developed considerably. Today, the vast majority...... with less risk of rejection episodes. Besides covering updated chapters on penetrating keratoplasty, and anterior and posterior lamellar procedures, this textbook also gives a thorough overview of the history of corneal transplantation and a detailed presentation of the microstructural components....... Economic considerations on cost and benefi t of medical treatment and surgical procedures are today an integrated part of the health system in many countries, and a chapter covers these aspects of corneal transplantation. This textbook is aimed at presenting an updated review of the new techniques...

  7. Proteoglycan biosynthesis by human corneas from patients with types 1 and 2 macular corneal dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Midura, R.J.; Hascall, V.C.; MacCallum, D.K.; Meyer, R.F.; Thonar, E.J.; Hassell, J.R.; Smith, C.F.; Klintworth, G.K. (National Institute of Dental Research, Bethesda, MD (USA))

    1990-09-15

    Corneal buttons were obtained from patients with types 1 and 2 macular corneal dystrophy (MCD) and from control patients with Fuchs' dystrophy or keratoconus. Buttons were incubated for 20 h in the presence of (3H)glucosamine or (2-3H)mannose. Radiolabeled proteoglycans and lactosaminoglycan-glycoproteins (L-GPs) were purified using chromatography on Q-Sepharose, Superose 6, and octyl-Sepharose. They were identified using chondroitinase ABC, keratanase or endo-beta-galactosidase digestion, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis or Superose 6 chromatography. This study confirms previous reports that type 1 MCD corneas synthesize a normal dermatan sulfate-proteoglycan (DS-PG) and an abnormal keratan sulfate-proteoglycan (KS-PG). The data indicate that typ 1 MCD corneas synthesize L-GP instead of KS-PG. This L-GP has a core protein of similar hydrophobicity (elution from octyl-Sepharose) and nearly similar mass (42 kDa) as the core protein of the KS-PG. It has identical glycoconjugates as those of the KS-PG except that they lack sulfate. Thus, type 1 MCD fails to synthesize keratan sulfate as a result of a defect in a sulfotransferase specific for sulfating lactosaminoglycans. Further, proteoglycans synthesized by a cornea from a patient with type 2 MCD were studied. This cornea synthesized a normal ratio of KS-PG to DS-PG although net synthesis of proteoglycans was approximately 30% below normal. The KS-PG appeared normal whereas the DS-PG had dermatan sulfate chains that were approximately 40% shorter than normal.

  8. Comparison of Corneal Biomechanical Characteristics After Surface Ablation Refractive Surgery and Novel Lamellar Refractive Surgery.

    Science.gov (United States)

    Dou, Rui; Wang, Yan; Xu, Lulu; Wu, Di; Wu, Wenjing; Li, Xiaojing

    2015-11-01

    To investigate and compare corneal biomechanical changes in the form of corneal hysteresis (CH) and corneal resistance factor (CRF) after small-incision lenticule extraction (SMILE) and laser-assisted subepithelial keratectomy (LASEK). In this retrospective observational study, patients who underwent either SMILE (36 eyes, 21 patients) or LASEK (35 eyes, 19 patients) were included. Data were collected preoperatively and at 1 and 3 months postoperatively, which included corneal topography and Ocular Response Analyzer values of CH, CRF, and intraocular pressure (IOP). Differences between both surgical groups and the relationships between variables were evaluated. CH, CRF, Goldmann IOP, and corneal compensated IOP after surgery were significantly lower than the preoperative values (P corneal biomechanical strength. However, the changes induced by SMILE are more predictable than those induced by LASEK. In terms of per unit tissue removed, SMILE seems to have less effect on corneal biomechanics than LASEK, which may be due to preservation of the stiffer anterior stroma.

  9. Corneal Cell Morphology in Keratoconus: A Confocal Microscopic Observation

    Science.gov (United States)

    Ghosh, Somnath; Mutalib, Haliza Abdul; Kaur, Sharanjeet; Ghoshal, Rituparna; Retnasabapathy, Shamala

    2017-01-01

    Purpose To evaluate corneal cell morphology in patients with keratoconus using an in vivo slit scanning confocal microscope. Methods A cross-sectional study was conducted to evaluate the corneal cell morphology of 47 keratoconus patients and 32 healthy eyes without any ocular disease. New keratoconus patients with different disease severities and without any other ocular co-morbidity were recruited from the ophthalmology department of a public hospital in Malaysia from June 2013 to May 2014. Corneal cell morphology was evaluated using an in vivo slit-scanning confocal microscope. Qualitative and quantitative data were analysed using a grading scale and the Nidek Advanced Visual Information System software, respectively. Results The corneal cell morphology of patients with keratoconus was significantly different from that of healthy eyes except in endothelial cell density (P = 0.072). In the keratoconus group, increased level of stromal haze, alterations such as the elongation of keratocyte nuclei and clustering of cells at the anterior stroma, and dark bands in the posterior stroma were observed with increased severity of the disease. The mean anterior and posterior stromal keratocyte densities and cell areas among the different stages of keratoconus were significantly different (P 0.05) among the three stages of keratoconus. Conclusion Confocal microscopy observation showed significant changes in corneal cell morphology in keratoconic cornea from normal healthy cornea. Analysis also showed significant changes in different severities of keratoconus. Understanding the corneal cell morphology changes in keratoconus may help in the long-term monitoring and management of keratoconus. PMID:28894403

  10. Increased proliferation and replicative lifespan of isolated human corneal endothelial cells with L-ascorbic acid 2-phosphate.

    Science.gov (United States)

    Shima, Nobuyuki; Kimoto, Miwa; Yamaguchi, Masahiro; Yamagami, Satoru

    2011-11-07

    To explore an alternative culture method for human corneal endothelial cells (HCECs) and to examine the effect of l-ascorbic acid 2-phosphate (Asc-2P) on the growth of these cells. The influence of various mitogens, extracellular matrices (ECMs), and Asc-2P on growth of cultured HCECs was examined. HCECs were obtained from donors ranging in age from 12 to 74 years, and primary cultures and subcultures were performed with or without Asc-2P. Expanded HCECs were characterized with immunostaining and reverse transcription polymerase chain reaction (RT-PCR) and evaluated for generation of 8-hydroxy-2-deoxyguanosine (8-OHdG) with immunostaining and an enzyme-linked immunosorbent assay (ELISA). Culture with Asc-2P and bFGF on atelocollagen promoted the proliferation of HCECs in both primary cultures and subcultures as efficiently as conventional culture using ECM derived from bovine corneal endothelial cells. Zonula occludens-1, N-cadherin, connexin 43, and Na+/K+-ATPase were localized at plasma membranes of cultured HCECs. mRNAs of the voltage-dependent anion channels (VDAC2 and VDAC3), sodium bicarbonate cotransporter member 4 (SLC4A4), and chloride channel proteins (CLCN2 and CLCN3) were detected by RT-PCR. During multiple passages, cultures without Asc-2P showed a decrease in growth and irregular cell morphology, whereas cultures with Asc-2P sustained cell growth and maintained the characteristic polygonal morphology. ELISA for 8-OHdG showed that the levels in mitochondrial DNA significantly decreased when HCECs were subcultured with Asc-2P. Combination of Asc-2P and bFGF on atelocollagen allows successful culture for HCECs. Asc-2P extends the lifespan of cultured HCECs, partly due to protection against oxidative DNA damage.

  11. Effect of polysaccharide of dendrobium candidum on proliferation and apoptosis of human corneal epithelial cells in high glucose

    Science.gov (United States)

    Li, Qiangxiang; Chen, Jing; Li, Yajia; Chen, Ting; Zou, Jing; Wang, Hua

    2017-01-01

    Abstract Background: The aim of the study was to observe the effect of polysaccharide of dendrobium candidum (PDC) and high glucose on proliferation, apoptosis of human corneal epithelial cells (HCEC). Methods: The MTT method was used to screen and take the optimal high-glucose concentration, treatment time, and PDC concentration using HCEC and divide it into 4 groups: control group (C), high glucose group (HG), PDC group, and HG + PDC group. We observed and compared the effect of the 4 groups on HCEC proliferation by MTT, apoptosis by Annexin V-FITC/PI double fluorescent staining and flow cytometry (FCM), and expression of bax mRNA and bcl-2 mRNA by RT-qPCR. Results: Compared with the control group, proliferative activity of HCEC cells was reduced; the cells apoptosis ratio was increased; the expression of bax mRNA was increased, and the expression of bcl-2 mRNA was reduced in the HG group. Proliferative activity of HCEC cells in the PDC group was increased, and the expression of bcl-2 mRNA was increased but that of bax mRNA was decreased. Proliferative activity of HCEC cells in the HG + PDC group was increased, but it could not restore to the normal level; the expression of bax mRNA was significantly decreased but the expression of bcl-2 mRNA was significantly increased. Conclusions: Our results demonstrate that high glucose can inhibit proliferative activity and induce apoptosis of HCEC. PDC can improve the proliferative activity of HCEC cells under the high glucose environment and reduce the apoptosis of cells by regulating the expression of bax and bcl-2. PDC play a very important role on protecting and repairing of corneal epithelial cells damage in high glucose. PMID:28796073

  12. Molecular Profiling Predicts the Existence of Two Functionally Distinct Classes of Ovarian Cancer Stroma

    OpenAIRE

    Lili, Loukia N.; Lilya V Matyunina; L DeEtte Walker; Benigno, Benedict B; John F. McDonald

    2013-01-01

    Although stromal cell signaling has been shown to play a significant role in the progression of many cancers, relatively little is known about its importance in modulating ovarian cancer development. The purpose of this study was to investigate the process of stroma activation in human ovarian cancer by molecular analysis of matched sets of cancer and surrounding stroma tissues. RNA microarray profiling of 45 tissue samples was carried out using the Affymetrix (U133 Plus 2.0) gene expression ...

  13. Structural and Functional Implications of Human Transforming Growth Factor β-Induced Protein, TGFBIp, in Corneal Dystrophies

    DEFF Research Database (Denmark)

    García-Castellanos, Raquel; Nielsen, Nadia Sukusu; Runager, Kasper

    2017-01-01

    A major cause of visual impairment, corneal dystrophies result from accumulation of protein deposits in the cornea. One of the proteins involved is transforming growth factor β-induced protein (TGFBIp), an extracellular matrix component that interacts with integrins but also produces corneal depo...

  14. Corneal Intelligence

    African Journals Online (AJOL)

    Murdoch3

    the damping effect of the tissue to an applied force) or corneal compliance being the major risk factor. Figure 1. The percentage of participants in the observation group who developed primary open-angle glaucoma (median follow-up, 72 months) ...

  15. Corneal ulcers

    African Journals Online (AJOL)

    visual acuity chart. • fluorescein strips. • topical anaesthetic eye drops. • direct ophthalmoscope. Examination. Assessing vision with a Snellen visual acuity chart gives a clue as to the extent of the problem (e.g. a corneal abrasion with good vision is unlikely to require specialist intervention). Each eye should be tested ...

  16. Corneal Intelligence

    African Journals Online (AJOL)

    Murdoch3

    Corneal Intelligence. Ian Murdoch. Institute of Ophthalmology, Bath Street, London. In 2002, the ocular hypertension treatment study (OHTS) published their results. This study had taken 1636 ocular hypertensives. 1, 2. (IOP 24-32mmHg) and randomized them to receive therapy or no therapy. The primary outcome of the ...

  17. Reactivation of Herpes Zoster Keratitis With Corneal Perforation After Zoster Vaccination.

    Science.gov (United States)

    Jastrzebski, Andre; Brownstein, Seymour; Ziai, Setareh; Saleh, Solin; Lam, Kay; Jackson, W Bruce

    2017-06-01

    We present a case of reactivated herpes zoster keratouveitis of 6 years duration with corneal perforation requiring penetrating keratoplasty shortly after inoculation with herpes zoster vaccine (Zostavax, Merck, Quebec, Canada). Retrospective case report. A 67-year-old woman with a 5-year history of recurrent unilateral herpes zoster keratouveitis in her right eye presented with another recurrence 2 weeks after Zostavax vaccination. Three months later, she developed descemetocele and 2 months afterward, corneal perforation, which was managed by penetrating keratoplasty. Immunohistopathological examination disclosed positive staining for varicella zoster virus in most of the keratocytes adjacent to the descemetocele and perforation, most vividly in the deeper two-thirds of the stroma where the keratocytes were most dense, but not in corneal epithelium or endothelium. Electron microscopic examination showed universally severely degenerated corneal keratocytes in the corneal stroma adjacent to the perforation with variable numbers of herpes virus capsids present in half of these cells. Only a rare normal-appearing keratocyte was identified in the more peripheral corneal stroma. We present a case of reactivation of herpes keratouveitis shortly after vaccination with Zostavax in a patient with previous herpes zoster ophthalmicus. We demonstrate, for the first time, ultrastructural evidence consistent with inactive virus capsids in diffusely degenerated keratocytes in the extracted corneal tissue.

  18. Evaluation of corneal cell growth on tissue engineering materials as artificial cornea scaffolds

    Directory of Open Access Journals (Sweden)

    Hai-Yan Wang

    2013-12-01

    Full Text Available The keratoprosthesis (KPro; artificial cornea is a special refractive device to replace human cornea by using heterogeneous forming materials for the implantation into the damaged eyes in order to obtain a certain vision. The main problems of artificial cornea are the biocompatibility and stability of the tissue particularly in penetrating keratoplasty. The current studies of tissue-engineered scaffold materials through comprising composites of natural and synthetic biopolymers together have developed a new way to artificial cornea. Although a wide agreement that the long-term stability of these devices would be greatly improved by the presence of cornea cells, modification of keratoprosthesis to support cornea cells remains elusive. Most of the studies on corneal substrate materials and surface modification of composites have tried to improve the growth and biocompatibility of cornea cells which can not only reduce the stimulus of heterogeneous materials, but also more importantly continuous and stable cornea cells can prevent the destruction of collagenase. The necrosis of stroma and spontaneous extrusion of the device, allow for maintenance of a precorneal tear layer, and play the role of ensuring a good optical surface and resisting bacterial infection. As a result, improvement in corneal cells has been the main aim of several recent investigations; some effort has focused on biomaterial for its well biological properties such as promoting the growth of cornea cells. The purpose of this review is to summary the growth status of the corneal cells after the implantation of several artificial corneas.

  19. Evaluation of corneal cell growth on tissue engineering materials as artificial cornea scaffolds.

    Science.gov (United States)

    Wang, Hai-Yan; Wei, Rui-Hua; Zhao, Shao-Zhen

    2013-12-18

    The keratoprosthesis (KPro; artificial cornea) is a special refractive device to replace human cornea by using heterogeneous forming materials for the implantation into the damaged eyes in order to obtain a certain vision. The main problems of artificial cornea are the biocompatibility and stability of the tissue particularly in penetrating keratoplasty. The current studies of tissue-engineered scaffold materials through comprising composites of natural and synthetic biopolymers together have developed a new way to artificial cornea. Although a wide agreement that the long-term stability of these devices would be greatly improved by the presence of cornea cells, modification of keratoprosthesis to support cornea cells remains elusive. Most of the studies on corneal substrate materials and surface modification of composites have tried to improve the growth and biocompatibility of cornea cells which can not only reduce the stimulus of heterogeneous materials, but also more importantly continuous and stable cornea cells can prevent the destruction of collagenase. The necrosis of stroma and spontaneous extrusion of the device, allow for maintenance of a precorneal tear layer, and play the role of ensuring a good optical surface and resisting bacterial infection. As a result, improvement in corneal cells has been the main aim of several recent investigations; some effort has focused on biomaterial for its well biological properties such as promoting the growth of cornea cells. The purpose of this review is to summary the growth status of the corneal cells after the implantation of several artificial corneas.

  20. Overexpression of human HMW FGF-2 but not LMW FGF-2 reduces the cytotoxic effect of lentiviral gene transfer in human corneal endothelial cells.

    Science.gov (United States)

    Valtink, Monika; Knels, Lilla; Stanke, Nicole; Engelmann, Katrin; Funk, Richard H W; Lindemann, Dirk

    2012-05-31

    Recently, insertion of immuno-modulatory or anti-apoptotic genes into corneal endothelial cells (HCECs) came into focus. Basic FGF-2 occurs in one secreted (low molecular weight, LMW, 18 kD) and four nuclear (high molecular weight, HMW, 22-34 kD) isoforms. HMW isoforms are known differentiation and survival factors, while LMW FGF-2 is a known mitogen. The effect of FGF-2 overexpression of each of the five known isoforms on HCEC cell survival after lentiviral gene transfer in different culture media was investigated. Cells were transduced with lentiviral vectors encoding for each of the five FGF-2 isoforms. Transduction efficiency and expression of individual FGF-2 isoforms was assessed by marker gene transfer and western blotting. Primary HCECs were cultured and transduced in four different media previously described for HCEC cultivation or corneal organ cultivation. Cytotoxic effect of virus infection and a possible rescue effect of FGF-2 overexpression were determined by resazurin conversion assay. Transduction with FGF-2 encoding lentiviral vectors resulted in overexpression of the respective isoform in all tested cell populations. Western blotting after total cell lysis proved nuclear localization of transgenic HMW isoforms. Overexpression of HMW FGF-2-especially 34 kD FGF-2-reduced lentiviral cytotoxicity, while overexpression of LMW FGF-2 aggravated viral cytotoxicity. Cytotoxicity of lentiviral gene transfer in corneal endothelial cells may be reduced by using bicistronic vectors that encode for the target gene and the 34-kD isoform of human FGF-2. Such cotransduction of a survival factor may increase cell survival after gene transfer, thereby improving gene therapeutic approaches.

  1. NEW BIOKERATOPROSTHETIC COMPLEX BASED ON MODIFIED ALLOGENIC DONOR CORNEAS AND CULTURED POSTNATAL HUMAN SKIN FIBROBLASTS

    Directory of Open Access Journals (Sweden)

    S. A. Borzenok

    2011-01-01

    Full Text Available The aim of the study was to develop biokeratoprosthetic complex based on cross-linking modified allogenic donor corneas and cultured postnatal human skin fibroblasts. Cross-linking enhances corneal strength and tole- rance to proteolytic enzymes. Fibroblasts’ proliferation and migration in the intrastromal pocket stimulates fiber syncytium formation and collagen microcarriers integration into the corneal stroma, as well as intercellular ma- trix formation around the prosthetic metallic plate as early as the cocultivation stage. A new biokeratoprosthetic complex has been successfully developed for further in vivo studies. 

  2. Therapeutic Effect of Human Adipose Tissue-Derived Mesenchymal Stem Cells in Experimental Corneal Failure Due to Limbal Stem Cell Niche Damage.

    Science.gov (United States)

    Galindo, Sara; Herreras, José M; López-Paniagua, Marina; Rey, Esther; de la Mata, Ana; Plata-Cordero, María; Calonge, Margarita; Nieto-Miguel, Teresa

    2017-10-01

    Limbal stem cells are responsible for the continuous renewal of the corneal epithelium. The destruction or dysfunction of these stem cells or their niche induces limbal stem cell deficiency (LSCD) leading to visual loss, chronic pain, and inflammation of the ocular surface. To restore the ocular surface in cases of bilateral LSCD, an extraocular source of stem cells is needed to avoid dependence on allogeneic limbal stem cells that are difficult to obtain, isolate, and culture. The aim of this work was to test the tolerance and the efficacy of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) to regenerate the ocular surface in two experimental models of LSCD that closely resemble different severity grades of the human pathology. hAT-MSCs transplanted to the ocular surface of the partial and total LSCD models developed in rabbits were well tolerated, migrated to inflamed tissues, reduced inflammation, and restrained the evolution of corneal neovascularization and corneal opacity. The expression profile of the corneal epithelial cell markers CK3 and E-cadherin, and the limbal epithelial cell markers CK15 and p63 was lost in the LSCD models, but was partially recovered after hAT-MSC transplantation. For the first time, we demonstrated that hAT-MSCs improve corneal and limbal epithelial phenotypes in animal LSCD models. These results support the potential use of hAT-MSCs as a novel treatment of ocular surface failure due to LSCD. hAT-MSCs represent an available, non-immunogenic source of stem cells that may provide therapeutic benefits in addition to reduce health care expenses. Stem Cells 2017;35:2160-2174. © 2017 AlphaMed Press.

  3. Effects of TGFβ1, PDGF-BB, and bFGF, on human corneal fibroblasts proliferation and differentiation during stromal repair.

    Science.gov (United States)

    Gallego-Muñoz, Patricia; Ibares-Frías, Lucía; Valsero-Blanco, María Cruz; Cantalapiedra-Rodriguez, Roberto; Merayo-Lloves, Jesús; Martínez-García, M Carmen

    2017-08-01

    In an effort to improve the regenerative nature of corneal repair, this study reports the use of an in vitro human corneal fibroblasts (HCFs) wound model after treatment with three of the main growth factors (GFs) involved in corneal healing: transforming growth factor beta 1 (TGFβ1), platelet-derived growth factor BB-isoform (PDGF-BB), and basic fibroblast growth factor (bFGF) in order to delve in cell proliferation and differentiation processes. HCFs were mechanically wounded. The individual effect of TGFβ1, PDGF-BB, and bFGF on cell proliferation and differentiation during the repair process was studied at different time points until wound closure. Wound dimensions and morphological changes were evaluated by microscopy. Cell proliferation and myofibroblast differentiation were analyzed by immunofluorescence cytochemistry. Changes in cell morphology were apparent at Day 4. PDGF-BB- and bFGF-treated cells had fibroblast-like morphology. TGFβ1 stimulated proliferation in the wound edge and surrounding area, induced myofibroblast differentiation and inhibited cellular migration. PDGF-BB induced rapid wound closure due to proliferation, high motility, and late myofibroblast differentiation. The time course of closure induced by bFGF was similar to that for PDGF-BB, but was mostly due to proliferation in the wound area, and inhibited myofibroblast differentiation. Each of the GFs induced increases in responses promoting stromal repair differently. This study provides insight regarding how to optimize the outcome of stromal repair following corneal injury. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Evaluation of hypoxic swelling of human cornea with high speed ultrahigh resolution optical coherence tomography

    Science.gov (United States)

    Bizheva, Kostadinka; Hyun, Chulho; Eichel, Justin; Hariri, Sepideh; Mishra, Akshaya; Clausi, David; Fieguth, Paul; Simpson, Trefford; Hutchings, Natalie

    2009-02-01

    Hypoxia induced corneal swelling was observed and evaluated in healthy human volunteers by use of high speed, ultrahigh resolution optical coherence tomography (UHROCT). Two dimensional corneal images were acquired at a speed of 47,000 A-scans/s with 3µm x 10µm (axial x lateral) resolution in corneal tissue. The UHROCT tomograms showed clear visualization of all corneal layers, including the Bowman's layer and the Descemet's membrane - Endothelium complex. A segmentation algorithm was developed and used for automatic detection of the boundaries of the different corneal layers and evaluation the individual layer thickness as a function of location. Corneal hypoxia was induced by wear of a soft contact lens (SCL) and an eye patch by 2 healthy volunteers for duration of 3 hours. The thickness of all corneal layers was measured as a function of time, prior to, with and after removal of the SCL. Results from the hypoxia study showed different rates of swelling and de-swelling of the individual corneal layers. About 10% increase in the total cornea thickness was observed, similar to the changes in the stroma, the Bowman's membrane swelled by 20%, while no significant change in the thickness was observed in the Descemet's - Endothelium complex.

  5. Tissue and cellular biomechanics during corneal wound injury and repair.

    Science.gov (United States)

    Raghunathan, Vijay Krishna; Thomasy, Sara M; Strøm, Peter; Yañez-Soto, Bernardo; Garland, Shaun P; Sermeno, Jasmyne; Reilly, Christopher M; Murphy, Christopher J

    2017-08-01

    Corneal wound healing is an enormously complex process that requires the simultaneous cellular integration of multiple soluble biochemical cues, as well as cellular responses to the intrinsic chemistry and biophysical attributes associated with the matrix of the wound space. Here, we document how the biomechanics of the corneal stroma are altered through the course of wound repair following keratoablative procedures in rabbits. Further we documented the influence that substrate stiffness has on stromal cell mechanics. Following corneal epithelial debridement, New Zealand white rabbits underwent phototherapeutic keratectomy (PTK) on the right eye (OD). Wound healing was monitored using advanced imaging modalities. Rabbits were euthanized and corneas were harvested at various time points following PTK. Tissues were characterized for biomechanics with atomic force microscopy and with histology to assess inflammation and fibrosis. Factor analysis was performed to determine any discernable patterns in wound healing parameters. The matrix associated with the wound space was stiffest at 7days post PTK. The greatest number of inflammatory cells were observed 3days after wounding. The highest number of myofibroblasts and the greatest degree of fibrosis occurred 21days after wounding. While all clinical parameters returned to normal values 400days after wounding, the elastic modulus remained greater than pre-surgical values. Factor analysis demonstrated dynamic remodeling of stroma occurs between days 10 and 42 during corneal stromal wound repair. Elastic modulus of the anterior corneal stroma is dramatically altered following PTK and its changes coincide initially with the development of edema and inflammation, and later with formation of stromal haze and population of the wound space with myofibroblasts. Factor analysis demonstrates strongest correlation between elastic modulus, myofibroblasts, fibrosis and stromal haze thickness, and between edema and central corneal

  6. Establishment of a tumour-stroma airway model (OncoCilAir) to accelerate the development of human therapies against lung cancer.

    Science.gov (United States)

    Mas, Christophe; Boda, Bernadett; Caul Futy, Mireille; Huang, Song; Wisniewski, Ludovic; Constant, Samuel

    2016-10-01

    This paper highlights the work for which OncoTheis, a Swiss biotechnology company, engaged in the development of innovative bioengineered tissues and organoids for cancer research, was co-awarded the 2015 Lush Science Prize. Noting that the use of animal models failed to lead to the design of effective treatments for cancer, OncoTheis has opted to develop in vitro models based exclusively on human cells. The company currently focuses on lung cancer, which is the leading cause of cancer-related deaths worldwide, with more than one million deaths per year. To address this public health concern, we developed OncoCilAir™, a new 3-D model that mimics in vitro the progression of the disease as it happens in patients. In this system, bronchial and lung tumour cells obtained from discarded surgical tissue are cocultured in a Petri dish to reconstitute a fragment of the human lung. After appropriate differentiation, the culture closely reproduces malignant pulmonary nodules invading a small piece of functional airway tissue. As OncoCilAir includes both healthy and cancerous tissues, it can be used to test tumour-killing activity and the adverse effects of chemotherapies and other anti-cancer drugs. Moreover, a single culture can be maintained for up to three months, which permits studies of longer-term effects, including the assessment of drug resistance and tumour recurrence. OncoCilAir heralds a new generation of integrated in vitro models, which is expected to increase the quality of preclinical research while replacing animal testing. 2016 FRAME.

  7. Effect of recombinant human epidermal growth factor eye drops and deproteinized calf blood extract eye drops on corneal edema after phacoemulsification

    OpenAIRE

    Jia Wang

    2017-01-01

    AIM:To compare the effect of recombinant human epidermal growth factor eye drops and deproteinized calf blood extract eye drops on corneal edema after phacoemulsification. METHODS:Totally 72 cases(72 eyes)of patients undergoing phacoemulsification were selected and divided into the observation group and the control group by random number table method. After surgery, the observation group were treated with deproteinized calf blood extract eye drops while the control group were treated with rec...

  8. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model.

    Science.gov (United States)

    Tanaka, Yohei; Nakayama, Jun

    2016-01-01

    Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000-1,800 nm wavelengths and excluded 1,400-1,500 nm wavelengths. A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm(2) irradiation (Psolar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both UV and NIR radiation may prevent changes in gene expression and in turn eye damage.

  9. Detection of galectin-3 in tear fluid at disease states and immunohistochemical and lectin histochemical analysis in human corneal and conjunctival epithelium

    OpenAIRE

    Hrdlickova-Cela, E.; Plzak, J; K Smetana; Melkova, Z.; Kaltner, H.; Filipec, M; Liu, F.; Gabius, H.

    2001-01-01

    BACKGROUND/AIM—Components of the tear fluid contribute to the biochemical defence system of the eye. To reveal whether the immune mediator and lipopolysaccharide binding galectin-3 is present in tears, tear samples were collected from eyes in healthy and pathological states. Investigation of expression of galectin-3 and galectin-3 reactive glycoligands in normal human conjunctival and corneal epithelia was also initiated as a step to understand the role of galectin-3 in ocular surface patholo...

  10. Optimized human platelet lysate as novel basis for a serum-, xeno-, and additive-free corneal endothelial cell and tissue culture.

    Science.gov (United States)

    Thieme, Daniel; Reuland, Lynn; Lindl, Toni; Kruse, Friedrich; Fuchsluger, Thomas

    2017-09-21

    The expansion of donor-derived corneal endothelial cells (ECs) is a promising approach for regenerative therapies in corneal diseases. To achieve the best Good Manufacturing Practice standard the entire cultivation process should be devoid of nonhuman components. However, so far, there is no suitable xeno-free protocol for clinical applications. We therefore introduce a processed variant of a platelet lysate for the use in corneal cell and tissue culture based on a Good Manufacturing Practice-grade thrombocyte concentrate. This processed human platelet lysate (phPL), free of any animal components and of anticoagulants such as heparin with a physiological ionic composition, was used to cultivate corneal ECs in vitro and ex vivo in comparison to standard cultivation with fetal calf serum (FCS). Human donor corneas were cut in quarters while 2 quarters of each cornea were incubated with the respective medium supplement. Three fields of view per quarter were taken into account for the analysis. Evaluation of phPL as a medium supplement in cell culture of immortalized EC showed a superior viability compared with FCS control with reduced cell proliferation. Furthermore, the viability during the expansion of primary cells is significantly (3-fold ±0.5) increased with phPL compared with FCS standard medium. Quartering donor corneas was traumatic for the endothelium and therefore resulted in increased EC loss. Interestingly, however, cultivation of the quartered pieces for 2 weeks in 0.1-mg/ml pHPL in Biochrome I showed a 21 (±10) % EC loss compared with 67 (±12) % EC loss when cultivated in 2% FCS in Biochrome I. The cell culture protocol with pHPL as FCS replacement seems to be superior to the standard FCS protocols with respect to EC survival. It offers a xeno-free and physiological environment for corneal endothelial cells. This alternative cultivation protocol could facilitate the use of EC for human corneal cell therapy. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Reconstruction of a human cornea by the self-assembly approach of tissue engineering using the three native cell types

    OpenAIRE

    Proulx, St?phanie; Uwamaliya, Jeanne d?Arc; Carrier, Patrick; Deschambeault, Alexandre; Audet, Caroline; Giasson, Claude J.; Gu?rin, Sylvain L.; Auger, Fran?ois A.; Germain, Lucie

    2010-01-01

    Purpose The purpose of this study was to produce and characterize human tissue-engineered corneas reconstructed using all three corneal cell types (epithelial, stromal, and endothelial cells) by the self-assembly approach. Methods Fibroblasts cultured in medium containing serum and ascorbic acid secreted their own extracellular matrix and formed sheets that were superposed to reconstruct a stromal tissue. Endothelial and epithelial cells were seeded on each side of the reconstructed stroma. A...

  12. Elastic microfibril distribution in the cornea: Differences between normal and keratoconic stroma.

    Science.gov (United States)

    White, Tomas L; Lewis, Philip N; Young, Robert D; Kitazawa, Koji; Inatomi, Tsutomu; Kinoshita, Shigeru; Meek, Keith M

    2017-06-01

    The optical and biomechanical properties of the cornea are largely governed by the collagen-rich stroma, a layer that represents approximately 90% of the total thickness. Within the stroma, the specific arrangement of superimposed lamellae provides the tissue with tensile strength, whilst the spatial arrangement of individual collagen fibrils within the lamellae confers transparency. In keratoconus, this precise stromal arrangement is lost, resulting in ectasia and visual impairment. In the normal cornea, we previously characterised the three-dimensional arrangement of an elastic fiber network spanning the posterior stroma from limbus-to-limbus. In the peripheral cornea/limbus there are elastin-containing sheets or broad fibers, most of which become microfibril bundles (MBs) with little or no elastin component when reaching the central cornea. The purpose of the current study was to compare this network with the elastic fiber distribution in post-surgical keratoconic corneal buttons, using serial block face scanning electron microscopy and transmission electron microscopy. We have demonstrated that the MB distribution is very different in keratoconus. MBs are absent from a region of stroma anterior to Descemet's membrane, an area that is densely populated in normal cornea, whilst being concentrated below the epithelium, an area in which they are absent in normal cornea. We contend that these latter microfibrils are produced as a biomechanical response to provide additional strength to the anterior stroma in order to prevent tissue rupture at the apex of the cone. A lack of MBs anterior to Descemet's membrane in keratoconus would alter the biomechanical properties of the tissue, potentially contributing to the pathogenesis of the disease. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Confocal microscopy evaluation of stromal fluorescence intensity after standard and accelerated iontophoresis-assisted corneal cross-linking.

    Science.gov (United States)

    Lanzini, Manuela; Curcio, Claudia; Spoerl, Eberhard; Calienno, Roberta; Mastropasqua, Alessandra; Colasante, Martina; Mastropasqua, Rodolfo; Nubile, Mario; Mastropasqua, Leonardo

    2017-02-01

    The aim of this study is to determine modifications in stromal fluorescence intensity after different corneal cross-linking (CXL) procedures and to correlate stromal fluorescence to corneal biomechanical resistance. For confocal microscopy study, 15 human cadaver corneas were examined. Three served as control (group 1), three were just soaked with iontophoresis procedure (group 2), three were treated with standard epi-off technique (group 3), and six underwent iontophoresis imbibition. Three of later six were irradiated for 30 min with 3 mW/cm(2) UVA (group 4) and three for 9 min at 10 mW/cm(2) UVA (group 5). Confocal microscopy was performed to quantify the fluorescence intensity in the cornea at different stromal depths. For biomechanical study, 30 human cadaver corneas were randomly divided into five groups and treated as previously described. Static stress-strain measurements of the corneas were performed. Iontophoresis imbibition followed by 10mW/cm(2) irradiation proved to increase stromal fluorescence into the corneal stroma and significant differences were revealed between group 3 and 5 both at 100 (p = 0.0171) and 250 µm (p = 0.0024), respectively. Biomechanical analysis showed an improvement of corneal resistance in group 5. Iontophoresis imbibition followed by accelerated irradiation increased the stromal fluorescence and is related to an improvement of biomechanical resistance. This approach may represent a new strategy to achieve greater concentrations of riboflavin without removing corneal epithelium and improve clinical results while reducing the side effects of CXL.

  14. Transduction efficiency of AAV 2/6, 2/8 and 2/9 vectors for delivering genes in human corneal fibroblasts.

    Science.gov (United States)

    Sharma, Ajay; Ghosh, Arkasubhra; Hansen, Eric T; Newman, Jason M; Mohan, Rajiv R

    2010-02-15

    In the present study, cellular tropism and relative transduction efficiency of AAV2/6, AAV2/8 and AAV2/9 vectors have been tested for the cornea using primary cultures of human corneal fibroblasts. The AAV6, AAV8 and AAV9 serotypes having AAV2 ITR plasmid encoding for alkaline phosphatase (AP) gene were generated by transfecting HEK293 cell line with pHelper, pARAP4 and pRep/Cap plasmids. Primary cultures of human corneal fibroblasts were exposed to AAV infectious particles at two different doses (1 x 10(5) and 2 x 10(5) MOI). Cytochemistry and enzyme assays were used to measure delivered transgene expression in samples collected at 4 and 30 h after AAV infection by counting AP-stained cells or quantifying AP enzyme activity. Cellular toxicity of AAVs was evaluated with TUNEL and trypan blue assays. All three AAV serotypes transduced human corneal fibroblasts. The order of transduction efficiency was AAV2/6>AAV2/9>AAV2/8. The transduction efficiency of AAV2/6 was 30-50-fold higher (p AAV2/8 or AAV2/9 at two tested doses. The level of transgene expression at 4h was considerably low compared to 30 h suggesting that the transgene delivery did not reach its peak at 4h. Cultures exposed to any of the three AAV serotypes showed more than 97% cellular viability and less than 5 TUNEL positive cells suggesting that tested AAV serotypes do not induce significant cell death and are safe for corneal gene therapy. Copyright 2009 Elsevier Inc. All rights reserved.

  15. Blue light-induced oxidative stress in human corneal epithelial cells: protective effects of ethanol extracts of various medicinal plant mixtures.

    Science.gov (United States)

    Lee, Jee-Bum; Kim, Soo-Hyun; Lee, Seung-Chul; Kim, Hee-Gu; Ahn, Ho-Geun; Li, Zhengri; Yoon, Kyung Chul

    2014-06-12

    To investigate the effects of visible light on human corneal epithelial cells and the impact of natural antioxidants on oxidative stress produced by overexposure to light. Light-emitting diodes with various wavelengths (410-830 nm) were used to irradiate human corneal epithelial cells, and cell viability was assessed. The production of reactive oxygen species (ROS) was analyzed using 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA). Ethyl alcohol (EtOH) extracts were prepared from mixtures of medicinal plants. After application of the EtOH extracts, the free radical scavenging activity was measured using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The induction of antioxidant enzymes including heme oxygenase-1 (HO-1), peroxiredoxin-1 (Prx-1), catalase (CAT), and superoxide dismutase-2 (SOD-2) by the extracts was evaluated by reverse transcription-polymerase chain reaction and Western blotting. The ability of the extracts to inhibit ROS was also analyzed using DCF-DA. The viability of corneal epithelial cells was diminished after irradiation of blue light (above 10 J at 410 nm and 50 J at 480 nm). Reactive oxygen species production was induced by irradiation at 410 and 480 nm at doses of 5 J/cm(2) and higher. Ethyl alcohol extracts had potent radical scavenging activity. Application of the extracts not only increased the expression of HO-1, Prx-1, CAT, and SOD-2, but it also attenuated the ROS production induced by blue light in a dose-dependent manner. Overexposure to blue light (410-480 nm) may have a harmful effect on human corneal epithelial cells compared with other visible light wavelengths. Medicinal plant extracts can have potent protective effects on blue light-induced oxidative stress. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  16. Tualang Honey Improves Human Corneal Epithelial Progenitor Cell Migration and Cellular Resistance to Oxidative Stress In Vitro

    Science.gov (United States)

    Tan, Jun Jie; Azmi, Siti Maisura; Yong, Yoke Keong; Cheah, Hong Leong; Lim, Vuanghao; Sandai, Doblin; Shaharuddin, Bakiah

    2014-01-01

    Stem cells with enhanced resistance to oxidative stress after in vitro expansion have been shown to have improved engraftment and regenerative capacities. Such cells can be generated by preconditioning them with exposure to an antioxidant. In this study we evaluated the effects of Tualang honey (TH), an antioxidant-containing honey, on human corneal epithelial progenitor (HCEP) cells in culture. Cytotoxicity, gene expression, migration, and cellular resistance to oxidative stress were evaluated. Immunofluorescence staining revealed that HCEP cells were holoclonal and expressed epithelial stem cell marker p63 without corneal cytokeratin 3. Cell viability remained unchanged after cells were cultured with 0.004, 0.04, and 0.4% TH in the medium, but it was significantly reduced when the concentration was increased to 3.33%. Cell migration, tested using scratch migration assay, was significantly enhanced when cells were cultured with TH at 0.04% and 0.4%. We also found that TH has hydrogen peroxide (H2O2) scavenging ability, although a trace level of H2O2 was detected in the honey in its native form. Preconditioning HCEP cells with 0.4% TH for 48 h showed better survival following H2O2-induced oxidative stress at 50 µM than untreated group, with a significantly lower number of dead cells (15.3±0.4%) were observed compared to the untreated population (20.5±0.9%, p<0.01). Both TH and ascorbic acid improved HCEP viability following induction of 100 µM H2O2, but the benefit was greater with TH treatment than with ascorbic acid. However, no significant advantage was demonstrated using 5-hydroxymethyl-2-furancarboxaldehyde, a compound that was found abundant in TH using GC/MS analysis. This suggests that the cellular anti-oxidative capacity in HCEP cells was augmented by native TH and was attributed to its antioxidant properties. In conclusion, TH possesses antioxidant properties and can improve cell migration and cellular resistance to oxidative stress in HCEP cells in

  17. High Permeability and Intercellular Space Widening With Brimonidine Tartrate Eye Drops in Cultured Stratified Human Corneal Epithelial Sheets.

    Science.gov (United States)

    Hashimoto, Yumi; Yokoo, Seiichi; Usui, Tomohiko; Tsubota, Yukiko; Yamagami, Satoru

    2018-02-01

    To investigate the toxicity of topical glaucoma medications using cultured stratified human corneal epithelial sheets (HCES). HCES were exposed for 30 minutes to the following glaucoma medications: 0.1% brimonidine with sodium chlorite as the preservative, 0.005% latanoprost with 0.02% benzalkonium chloride (BAC) as the preservative, and 0.5% timolol with 0.005% BAC as the preservative. Then, cell viability and barrier function were tested by the WST-1 assay and carboxyfluorescein permeability assay, respectively. After exposure to glaucoma medications, HCES were evaluated by hematoxylin and eosin staining, periodic acid-Schiff staining, scanning electron microscopy, and transmission electron microscopy. HCES exposed to brimonidine showed higher viability and better preservation of cell morphology and microvilli compared with cell sheets exposed to latanoprost or timolol. The carboxyfluorescein permeability assay demonstrated that the barrier function was preserved after HCES were exposed to timolol, but not after exposure to brimonidine or latanoprost. Transmission electron microscopy revealed widening of intercellular junctions with prominent deposits of glycogen or mucopolysaccharide (periodic acid-Schiff positive) after exposure of HCES to brimonidine. The toxicity of 0.1% brimonidine containing sodium chlorite for HCES was lower than that of ophthalmic preparations containing BAC. Reduction of the barrier function occurred after HCES were exposed to brimonidine because of widening of intercellular junctions.

  18. Are polymegethism, pleomorphism, and "poor swelling" valid discard parameters in immediate postmortem evaluation of human donor corneal endothelium?

    Science.gov (United States)

    Bruinsma, Marieke; Lie, Jessica T; Groeneveld-van Beek, Esther A; Liarakos, Vasilis S; van der Wees, Jacqueline; Melles, Gerrit R J

    2013-03-01

    To study the validity of endothelial polymegethism, pleomorphism, and "poor swelling" as tissue discard parameters in the immediate postmortem evaluation of human donor corneal endothelium. We retrospectively evaluated the quality of the endothelium at first and second evaluations for all processed corneas exhibiting moderate polymegethism, pleomorphism, or "poor swelling" in our eye bank over a 5-year period. Out of 2008 eyes qualifying for our study, 422 corneas (21%) showed polymegethism, pleomorphism, or poor swelling at the first tissue evaluation immediately after excision of the corneoscleral button. In 363 (86%) of these corneas, a normal endothelial mosaic was observed at the second tissue evaluation after 7 to 21 days of organ culture, whereas only 59 (14%) still showed persistent polymegethism, pleomorphism, or "poor swelling" at that time point. A recovery of normal endothelial cell mosaic and "normal swelling" at the second evaluation suggests that cellular contour parameters do not relate to tissue viability, but rather to a cellular stress reaction. If so, the validity of endothelial cellular contour morphology as an early parameter in assessing the suitability of a donor cornea for transplantation may be reconsidered.

  19. The influence of biomimetic topographic features and the extracellular matrix peptide RGD on human corneal epithelial contact guidance

    Science.gov (United States)

    Tocce, E.J.; Liliensiek, S.J.; Broderick, A.H.; Jiang, Y; Murphy, K.C.; Murphy, C.J.; Lynn, D.M.; Nealey, P.F

    2012-01-01

    A major focus in the field of tissue engineering is the regulation of essential cell behaviors through biophysical and biochemical cues from the local extracellular environment. The impact of nanotopographic cues on human corneal epithelial cell (HCEC) contact guidance, proliferation, migration and adhesion have previously been demonstrated. In the current report, we have expanded our study of HCEC response to include both biophysical and controlled biochemical extracellular cues. By exploiting methods for the layer-by-layer coating of substrates with reactive poly(ethylene imine) and poly(2-vinyl-4,4-dimethylazlactone) (PEI/PVDMA)-based multilayer thin films, we have incorporated a single adhesion peptide motif, Arg-Gly-Asp (RGD), onto topographically patterned substrates. This strategy eliminates protein adsorption onto the surface, thus decoupling the effects of the HCEC response to topographic cues from adsorbed proteins and the soluble media proteins. The direction of cell alignment was dependent on the scale of the topographic cues, and, to less of an extent, the culture medium. In EpiLife® medium, cell alignment to unmodified-NOA81 topographic features, which allowed for protein adsorption, differed significantly from cell alignment on RGD-modified features. These results demonstrate that the surface chemical composition affects significantly how HCECs respond to topographic cues. In summary, we demonstrate the modulation of the HCEC response to environmental cues through critical substrate and soluble parameters. PMID:23069317

  20. Fibrin glue-assisted for the treatment of corneal perforationsusing glycerin-cryopreserved corneal tissue

    Directory of Open Access Journals (Sweden)

    Nuo Dong

    2014-04-01

    Full Text Available AIM: To evaluate the outcomes and safety of lamellar keratoplasty (LK assisted by fibrin glue in corneal perforations.METHODS: Six eyes of 6 patients affected by different corneal pathologies (2 posttraumatic corneal scar and 3 bacterial keratitis underwent LK procedures by using fibrin glue. The mean corneal perforation diameter was 1.35±0.64mm (range, 0.7-2.5mm, and the greatest diameter of the ulcerative stromal defect was 2.47±0.77mm in average (range, 1.5-3.5mm. The donor corneal lamella diameters were 0.20-mm larger and thicker than the recipient to restore a physiologic corneal thickness and shape:mean donor diameter was 8.34±0.28mm (range, 8.2-8.7mm and mean thickness was 352±40.27mm (range, 220-400mm. Mean follow-up was 7.33±1.97 months (range, 6-11 months. Postoperatively, the graft status, graft clarity, anterior chamber response, the visual prognosis, intraocular pressures, and postoperative complications were recorded.RESULTS: All the corneal perforations were successfully healed after the procedure. The best-corrected visual acuity (BCVA ranged from 20/1 000 to 20/50 in their initial presentation, and from 20/100 to 20/20 in their last visit, showed increase in all the patients. No major complications such as graft dislocation and graft failure were noted. Neovascularization developed in the superficial stroma of donor graft in 1 case. High intraocular pressure developed on day 2 after surgery, while was remained in normal range after application of anti-glaucomatous eyedrops for 1 week in 1 case.CONCLUSION: Fibrin glue-assisted sutureless LK is valuable for maintaining the ocular integrity in the treatment of corneal perforations.

  1. Immunohistochemical characterization of epithelial cells implanted in the flap-stroma interface of the cornea.

    Science.gov (United States)

    Chen, Lizhong; Kato, Takuji; Toshida, Hiroshi; Nakamura, Shinji; Murakami, Akira

    2005-01-01

    To investigate the expression of extracellular matrix collagens and their relationship to corneal opacities after implantation of epithelial cells in the flap-stroma corneal interface. A corneal flap was made on rabbit eyes, and epithelial cells, mechanically scraped from tissue surrounding the flap, were implanted beneath the flap. The corneas were harvested 1, 3, 7, and 30 days following surgery. Histological and immunohistochemical examinations were performed. The expression and localization of types I, III, and IV collagens and gelatinase A were determined. Slit-lamp examination showed corneal opacity in the area where the epithelial cells were implanted. Histological study revealed clusters of epithelial cells between the flap and stromal interface. One week and 1 month after the implantation, intense immunoreactivity for collagen type IV was detected at the perimeters of the intrastromal epithelial islands, but not in the interface outside the implanted epithelial cells. Weak positive staining for gelatinase A was detected in the implanted epithelial cells and surrounding keratocytes. The heavy deposition of collagen type IV surrounding the implanted epithelial cells indicated that it might be an essential component of the interface haze observed in patients following laser in situ Keratomileusis. Gelatinase A may also play a role in the regulation of stromal remodeling after epithelial ingrowth.

  2. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model

    Directory of Open Access Journals (Sweden)

    Tanaka Y

    2016-08-01

    Full Text Available Yohei Tanaka,1,2 Jun Nakayama2 1Department of Plastic Surgery, Clinica Tanaka Plastic, Reconstructive Surgery and Anti-aging Center, 2Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan Background and objective: Humans are increasingly exposed to near-infrared (NIR radiation from both natural (eg, solar and artificial (eg, electrical appliances sources. Although the biological effects of sun and ultraviolet (UV exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues.Materials and methods: DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C. The water-filter allowed 1,000–1,800 nm wavelengths and excluded 1,400–1,500 nm wavelengths.Results: A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm2 irradiation (P<0.05.Conclusion: We found that NIR irradiation induced the

  3. Corneal biomechanical properties from two-dimensional corneal flap extensiometry: application to UV-riboflavin cross-linking.

    OpenAIRE

    Kling, Sabine; Ginis, H.; Marcos, Susana

    2012-01-01

    Corneal biomechanical properties are usually measured by strip extensiometry or inflation methods. We developed a two-dimensional (2D) flap extensiometry technique, combining the advantages of both methods, and applied it to measure the effect of UV-Riboflavin cross-linking (CXL). Corneal flaps (13 pig/8 rabbit) from the de-epithelialized anterior stroma (96 μm) were mounted on a custom chamber, consisting of a BK7 lens, a reflective retina, and two reservoirs (filled with Riboflavin and sili...

  4. Pseudotyping and culture conditions affect efficiency and cytotoxicity of retroviral gene transfer to human corneal endothelial cells.

    Science.gov (United States)

    Valtink, Monika; Stanke, Nicole; Knels, Lilla; Engelmann, Katrin; Funk, Richard H W; Lindemann, Dirk

    2011-08-29

    To evaluate retroviral vectors as a tool to transduce normal human corneal endothelial cells (HCECs) and to optimize transduction to increase gene transfer efficiency. Enhanced green fluorescent protein (EGFP) encoding retroviral vectors based on HIV-1 or murine leukemia virus (MLV), pseudotyped with either vesicular stomatitis virus glycoprotein (VSV-G) or a modified foamy virus envelope protein (FV Env), and prototype foamy virus (PFV) were produced. Transduction was performed in four HCEC culture media that were previously described for specific cultivation of HCECs or organ culture of donor corneas, namely enriched HCEC growth medium F99(HCEC), its unsupplemented basal medium F99, MEM + 2% fetal calf serum (FCS) (MEM), and Human Endothelial-SFM (SFM). Transduction efficiency was evaluated by marker gene transfer assay, and cytotoxic effects of virus infection were evaluated by means of resazurin conversion assay. PFV- and HIV-1-based vectors showed superior transduction efficiency compared with MLV-based vectors. Pseudotyping with a modified FV Env increased transduction efficiency compared with pseudotyping with VSV-G. In medium SFM, transduction efficiency of PFV, HIV-1-/FV Env, and MLV-based vectors was markedly reduced compared with the other culture media. When cells were cultured in F99-based media, cell viability was reduced by retroviral transduction compared with uninfected or mock infected controls, but remained unaffected when cells were cultured in SFM and was even increased when cells were cultured in MEM. HIV-1-based vectors pseudotyped with FV Env can efficiently be used to transduce primary HCECs in vitro. However, transduction efficiency is dependent on culture conditions and impairs metabolic activity and viability of HCECs in vitro.

  5. Molecular expression in transfected corneal endothelial cells

    Science.gov (United States)

    Wang, Fan; Miao, Zhuang; Lu, Chengwei; Hao, Jilong

    2017-10-01

    To investigate the capability of human corneal endothelial cells serving as immunological cells. Expression of HLA-DP, -DQ, -DR, CD40, CD80, and CD86 was determined by immunohistochemical methods. Meanwhile, purified peripheral blood mononuclear cells were cocultured with human corneal endothelial cells which were pre-treated with and without -IFN respectively, activation of lymphocytes was determined by FACS analysis. In coculture system, T lymphocyte was activated by corneal endothelial cells, HLA-DP, -DQ, -DR and CD40 expression were increased by - IFN induction. Costimulatory molecular CD80 was shown on the endothelial cells. Human corneal endothelial cells were assumed to be involved in the corneal transplantation rejection process as potential antigen presenting cells.

  6. Inhibition of Corneal Neovascularization by Hydrazinocurcumin ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of hydrazinocurcumin on a human vascular endothelial growth factor (VEGF)-induced corneal neovascularization in rabbit model. Methods: Murine corneal neovascularization (CorNV) was induced via two intrastromal implantations of VEGF polymer 2 mm from the limbus.

  7. Inhibition of Corneal Neovascularization by Hydrazinocurcumin

    African Journals Online (AJOL)

    Purpose: To investigate the effect of hydrazinocurcumin on a human vascular endothelial growth factor. (VEGF)-induced corneal neovascularization in rabbit model. Methods: Murine corneal neovascularization (CorNV) was induced via two intrastromal implantations of. VEGF polymer 2 mm from the limbus.

  8. Punctiform and Polychromatophilic Dominant Pre-Descemet Corneal Dystrophy.

    Science.gov (United States)

    Lagrou, Lisa; Midgley, Julian; Romanchuk, Kenneth Gerald

    2016-04-01

    To describe the slit-lamp appearance and corneal confocal microscopy of autosomal dominant punctiform and polychromatophilic pre-Descemet corneal dystrophy in 3 members of the same family. Slit-lamp examination of a 9-year-old boy showed bilateral polychromatophilic corneal opacities in a pre-Descemet membrane location evenly deposited limbus to limbus, both horizontally and vertically, with an intervening clear cornea. The corneal endothelium was normal on corneal confocal microscopy, with hyperreflective opacities of various sizes located pre-Descemet membrane. Slit-lamp examination of the patient's father and brother revealed identical crystalline deposition in the pre-Descemet corneal stroma. The remainders of the eye examinations were otherwise normal in all 3 individuals, and all were asymptomatic. The general physical examination and laboratory investigations of the patient were all normal, as were the laboratory investigations of the other 2 family members. There was no progression in the corneal findings over 6 months of follow-up. These patients likely illustrate a rare autosomal dominant pre-Descemet crystalline keratopathy that has been reported only once previously.

  9. Corneal Transplantation in Children

    OpenAIRE

    Gabrić, N.; Dekaris, I.; Vojniković, B.; Karaman, Ž.; Mravičić, I.; Katušić, J.

    2001-01-01

    The main purpose of the study was to describe the surgical success rate and visual results of penetrating keratoplasty in children. This retrospective study included children that underwent corneal transplantation at the Department of Ophthalmology, General Hospital »Sveti Duh«, in the period 1994–1999. Patients’ age ranged from 6 to 16 years. Twenty-five corneal transplants were performed in 24 eyes. Corneal pathologies were corneal leucoma, congenital dystrophy, corneal combu...

  10. A hyaluronan hydrogel scaffold-based xeno-free culture system for ex vivo expansion of human corneal epithelial stem cells.

    Science.gov (United States)

    Chen, D; Qu, Y; Hua, X; Zhang, L; Liu, Z; Pflugfelder, S C; Li, D-Q

    2017-06-01

    PurposeTo develop a hyaluronan hydrogel scaffold-based xeno-free culture system for ex vivo cultivation of human corneal epithelial stem cells (CESCs).Patients and MethodsCESCs were cultivated from donor limbal explants on the HyStem-C Hydrogel bio-scaffold in 12-well plates for 3 weeks. Group A used the traditional supplemented hormonal epidermal medium (SHEM) and group B used the defined SHEM (without fetal bovine serum and toxin A, adding 20% serum replacement). The growth and morphology of the cultured cells were assessed by phase contrast microscope. The expressions of specific cell markers were assessed by immunofluorescence staining and quantitative real-time PCR (qRT-PCR).ResultsSuccessful cultures of CESCs were obtained in both groups, resulting in multilayered stratified epithelia. Comparing to group A, the cells in group B was grown slightly slower and formed less cellular layers at the end of culture. The corneal specific cytokeratin (K) 12 and differentiation markers, involucrin, and connexin 43, were mainly expressed in the superficial cellular layers in both groups. Interestingly, certain basal cells were immune-positive to proposed stem cell markers such as K19, ABCG2, and integrin β1 in both groups. There was no significant difference between the two groups with regard to the gene expression levels of all these selected corneal markers (all P>0.05).ConclusionsThe hyaluronan hydrogel scaffold-based xeno-free culture system may support the expansion of regenerative CESCs without the risk of xeno component contamination. The regenerated epithelium maintains similar characteristics of native corneal epithelium.

  11. Immunohistochemical markers for corneal stem cells in the early developing human eye

    DEFF Research Database (Denmark)

    Lyngholm, Mikkel; Høyer, Poul E; Vorum, Henrik

    2008-01-01

    markers and potential markers for LSCs and early transient amplifying cells in human adults. In this study, we describe the development of the ectodermally derived LSCs and the mesodermally derived niche cells from the time at which the cornea is defined (week 6) until the formation of the early limbal...... niche (week 14) in human embryos and fetuses. The expression of SOD2 and CK15 was investigated together with other recently identified limbal proteins. Previously suggested LSC and differentiation markers (PAX6, aquaporin-1 and nestin) were also investigated. Both SOD2 and CK15 were present...

  12. Influence of corneal astigmatism, corneal curvature and meridional differences on corneal hysteresis and corneal resistance factor.

    Science.gov (United States)

    Wong, Yin-zhi; Lam, Andrew K C

    2011-09-01

    This study investigated the influence of corneal astigmatism, corneal curvature and meridional differences on corneal hysteresis (CH) and the corneal resistance factor (CRF) in a group of normal Chinese persons. Ninety-five participants were recruited and data from the eye with higher corneal astigmatism were analysed. The anterior corneal curvature was measured by corneal topography. The Goldmann-correlated intraocular pressure (IOPg), corneal-compensated intraocular pressure (IOPcc), CH and CRF at different meridians (default horizontal position, 10°, 20° and 30° along the superotemporal and inferonasal meridians) were obtained from an ocular response analyser. The corneal powers at these specific meridians also were calculated. At the default position, the IOPg and CRF had weak correlations with corneal astigmatism, while the IOPcc and CH were not significantly correlated with corneal astigmatism. Both the IOPg and IOPcc were measured significantly higher at the default position. The CH and CRF were lower at the default position but the difference in the CRF from obliquity could not reach statistical significance. The CH was not significantly correlated with the corneal power at all meridians. The CRF correlated with the corneal power only at 30° superotemporal. Corneal astigmatism and head tilt did not have much effect on the measurement of CH and the CRF, both of which were lowest along the horizontal meridian. Clinically, the difference was small. The influence of corneal power on CH and the CRF was minimal. © 2011 The Authors. Clinical and Experimental Optometry © 2011 Optometrists Association Australia.

  13. UV absorbance of the human cornea in the 240- to 400-nm range.

    Science.gov (United States)

    Kolozsvári, Lajos; Nógrádi, Antal; Hopp, Béla; Bor, Zsolt

    2002-07-01

    To determine the UV absorbance of the corneal layers (epithelium, Bowman layer, stroma) in the 240- to 400-nm range. Consecutive slices (100 microm) of human cadaveric corneas were cut, and the UV absorbance of each sample was determined in a scanning spectrophotometer. In some cases the epithelium was scraped off and its absorbance measured separately. The investigation of the UV-B absorption of consecutive corneal slices revealed evidence that UV-B absorption is 1.8 times higher in the anterior 100 microm of the human cornea than in the posterior layers. The UV absorbance of the posterior layers was uniform, showing no further structural dependence. The epithelium and Bowman layer are both effective absorbers of UV-B radiation. These results suggest that the anterior corneal layers are particularly important in preventing damage by UV-B radiation.

  14. Study of Topical Human Umbilical Cord Blood Serum in the Treatment of Alkaline Corneal Epithelial Wounds in Rabbit Model

    Directory of Open Access Journals (Sweden)

    B Sharifi

    2011-04-01

    Full Text Available Introduction & Objective: One of the important functions of the cornea is to maintain normal vision by refracting light onto the lens and retina. This property is dependent in part on the ability of the corneal epithelium to undergo continuous renewal. Ocular surface failure which follows a variety of endogenous and exogenous precipitating factors, the most common being: chemical trauma, infection, alkaline burn, inflammation and hereditary conditions, lid or lash abnormalities, tear deficiency or reduced sensation. The core principal underpinning management strategy for ocular surface failure is establishing or promoting new growth of healthy conjunctiva and corneal epithelium. This process is mediated by many proteins that are inducers of corneal cell migration, proliferation, and differentiation. The current study was performed to investigate the efficacy of umbilical cord serum on alkaline corneal epithelial wound healing in the rabbit model. Materials & Methods: In this study conducted at Yasuj University of Medical Sciences in 2010, thirty two rabbits were randomly assigned into two equal groups. Central corneal alkali wound was formed in one eye of the rabbits by applying a 6-mm round filter paper, soaked in 1 N NaOH, for 60 seconds. Group one of animals received umbilical cord blood serum and group two received Sno*Tear in the eyes. The treatment was dosed 4 times a day with the eye drops, and epithelial wound closure was recorded using slit lamp. The data were analyzed to determine the rate of wound closure. Results: The mean wound radius closure rate was 0.77 mm/day (SD=0.013 for umbilical cord blood serum-treated eyes, 0.73 mm/day (SD=0.018 for artificial tear-treated eyes. Conclusion: This study shows that alkali-injured corneal epithelial wound heal faster when treated with umbilical cord blood serum than with artificial tear in rabbit model.

  15. Alignment and cell-matrix interactions of human corneal endothelial cells on nanostructured collagen type I matrices.

    Science.gov (United States)

    Gruschwitz, Rita; Friedrichs, Jens; Valtink, Monika; Franz, Clemens M; Müller, Daniel J; Funk, Richard H W; Engelmann, Katrin

    2010-12-01

    To use nanoscopically defined, two-dimensional matrices assembled from aligned collagen type I fibrils as a sheet substratum for in vitro cultivation of human corneal endothelial cells (HCECs). To assess the effect of matrix architecture on HCEC morphology and to characterize integrin-mediated HCEC-matrix interaction. Cell alignment and cell-matrix interactions of primary HCECs and three different immortalized HCEC populations on native and UV-cross-linked collagen type I matrices were examined by time-lapse microscopy. Specific integrin α(2)β(1) binding to the collagen matrix was demonstrated using a function-blocking α(2) antibody. Integrin α(2) subunit expression levels of the four HCEC populations were analyzed by Western blot analysis. All HCEC populations aligned along the oriented collagen fibrils. Primary HCECs and, to a lesser extent, the other tested HCEC populations exerted high traction forces, leading to progressive matrix destruction. Cross-linking of the collagen matrices considerably increased matrix stability. Integrin subunit α(2) expression levels of the four cell types correlated with the degree of cell alignment and exertion of traction forces. In turn, blocking integrin subunit α(2) reduced cell alignment and prevented matrix destruction. HCECs align directionally along parallel arrays of collagen type I fibrils. The interactions of HCECs with collagen type I are primarily mediated by integrin α(2)β(1). Integrin subunit α(2) levels correlate with matrix contraction and subsequent destruction. Sustained cultivation of HCECs on ultrathin collagen matrices thus requires matrix cross-linking and moderate integrin α(2)β(1) expression levels.

  16. Surgical management and immunohistochemical study of corneal plaques in vernal keratoconjunctivitis

    Directory of Open Access Journals (Sweden)

    Hsiu-Yi Lin

    2013-09-01

    Full Text Available Two children with shield ulcer in vernal keratoconjunctivitis unresponsive to steroid therapy received plaque removal by superficial keratectomy, followed by amniotic membrane transplantation (AMT. Hematoxylin and eosin staining of the excised corneal specimen revealed a thick layer of eosinophilic material attached to the Bowman's layer. These deposits were positive for eosinophil granule major basic protein, as confirmed by an immunohistochemical study. The shield ulcer healed after the amniotic membrane was removed. No recurrent corneal plaque developed, although corneal opacity complicated in both cases. Lamellar keratectomy with AMT offers an effective management by removing the cytotoxic plaques and protecting the denuded stroma from deposition of inflammatory debris.

  17. 3-Iodothyronamine increases transient receptor potential melastatin channel 8 (TRPM8) activity in immortalized human corneal epithelial cells.

    Science.gov (United States)

    Lucius, Alexander; Khajavi, Noushafarin; Reinach, Peter S; Köhrle, Josef; Dhandapani, Priyavathi; Huimann, Philipp; Ljubojevic, Nina; Grötzinger, Carsten; Mergler, Stefan

    2016-03-01

    3-Iodothyronamine (3T1AM) is an endogenous thyroid hormone metabolite that interacts with the human trace amine-associated receptor 1 (hTAAR1), a G-protein-coupled receptor, to induce numerous physiological responses including dose-dependent body temperature lowering in rodents. 3T1AM also directly activates cold-sensitive transient receptor potential melastatin 8 (TRPM8) channels in human conjunctival epithelial cells (HCjEC) at constant temperature as well as reducing rises in IL-6 release induced by transient receptor potential vanilloid 1 (TRPV1) activation by capsaicin (CAP). Here, we describe that 3T1AM-induced TRPM8 activation suppresses through crosstalk TRPV1 activation in immortalized human corneal epithelial cells (HCEC). RT-PCR and immunofluorescent staining identified TRPM8 gene and protein expression. Increases in Ca(2+) influx induced by the TRPM8 agonists either 3T1AM (0.1-10 μM), menthol (500 μM), icilin (15-60 μM) or temperature lowering (either 17°C) were all blocked by 10-20 μM BCTC, a mixed TRPV1/TRPM8 antagonist. BCTC blocked 3T1AM-induced recombinant TRPM8 activation of Ca(2+) transients in an osteosarcoma heterologous expression system. The effects of BCTC in HCEC were attributable to selective TRPM8 inhibition since whole-cell patch-clamp currents underlying Ca(2+) rises induced by 20 μM CAP were BCTC insensitive. On the other hand, Ca(2+) transients induced by activating TRPV1 with either CAP or a hyperosmolar medium were suppressed during exposure to either 1 μM 3T1AM or 15 μM icilin. All of these modulatory effects on intracellular Ca(2+) regulation induced by the aforementioned agents were attributable to changes in underlying inward and outward current. Taken together, TRPM8 activation by 3T1AM markedly attenuates and even eliminates hyperosmolar and CAP induced TRPV1 activation through crosstalk. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Why the stroma matters in breast cancer

    OpenAIRE

    Conklin, Matthew W.; Keely, Patricia J.

    2012-01-01

    Survival and recurrence rates in breast cancer are variable for common diagnoses, and therefore the biological underpinnings of the disease that determine those outcomes are yet to be fully understood. As a result, translational medicine is one of the fastest growing arenas of study in tumor biology. With advancements in genetic and imaging techniques, archived biopsies can be examined for purposes other than diagnosis. There is a great deal of evidence that points to the stroma as the major ...

  19. Collagens and proteoglycans of the corneal extracellular matrix

    Directory of Open Access Journals (Sweden)

    Y.M. Michelacci

    2003-08-01

    Full Text Available The cornea is a curved and transparent structure that provides the initial focusing of a light image into the eye. It consists of a central stroma that constitutes 90% of the corneal depth, covered anteriorly with epithelium and posteriorly with endothelium. Its transparency is the result of the regular spacing of collagen fibers with remarkably uniform diameter and interfibrillar space. Corneal collagen is composed of heterotypic fibrils consisting of type I and type V collagen molecules. The cornea also contains unusually high amounts of type VI collagen, which form microfibrillar structures, FACIT collagens (XII and XIV, and other nonfibrillar collagens (XIII and XVIII. FACIT collagens and other molecules, such as leucine-rich repeat proteoglycans, play important roles in modifying the structure and function of collagen fibrils.Proteoglycans are macromolecules composed of a protein core with covalently linked glycosaminoglycan side chains. Four leucine-rich repeat proteoglycans are present in the extracellular matrix of corneal stroma: decorin, lumican, mimecan and keratocan. The first is a dermatan sulfate proteoglycan, and the other three are keratan sulfate proteoglycans. Experimental evidence indicates that the keratan sulfate proteoglycans are involved in the regulation of collagen fibril diameter, and dermatan sulfate proteoglycan participates in the control of interfibrillar spacing and in the lamellar adhesion properties of corneal collagens. Heparan sulfate proteoglycans are minor components of the cornea, and are synthesized mainly by epithelial cells. The effect of injuries on proteoglycan synthesis is discussed.

  20. Could stroma contribute to field cancerization?

    Science.gov (United States)

    Ge, Lin; Meng, Wenxia; Zhou, Hongmei; Bhowmick, Neil

    2010-07-01

    The common oral diseases as well as oral cancer have the characteristic of field cancerization or field effect. Field cancerization, characterized by phenotypic and genetic changes in the neighboring cells of the frank cancer cells, is a clinical phenomenon first found in head and neck cancers. Field cancerization of the epithelia is currently a widely-accepted model in cancer biology as a manifestation of cancer progression. The concomitant changes in the tumor microenvironment have drawn more attention recently. Could the changes in the tumor microenvironment and the epithelial field cancerization concepts be linked? In view of the importance of stroma in the development of epithelium and evidence in carcinoma-associated stroma, we propose the question if stroma not only reciprocates the neoplastic changes of the epithelia, but also contributes to field cancerization. Actually one perspective paper pointed out that healing wound can influence the recurrence of field cancerization. In another words, the microenvironment of healing wound determines the prognosis of field cancerization. Based on the literatures published and our own work, we hypothesize a new model of field cancerization focusing on the co-evolution of the tumor microenvironment. We suggest that the microenvironment cannot be neglected when treating diseases with characteristics of field cancerization. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Safety of Cultivated Limbal Epithelial Stem Cell Transplantation for Human Corneal Regeneration

    Directory of Open Access Journals (Sweden)

    J. Behaegel

    2017-01-01

    Full Text Available Ex vivo cultivated limbal stem cell transplantation is a promising technique for the treatment of limbal stem cell deficiency. While the results of the clinical trials have been extensively reported since the introduction of the technique in 1997, little has been reported regarding the potential health risks associated with production processes and transplantation techniques. Culture procedures require the use of animal and/or human-derived products, which carry the potential of introducing toxic or infectious agents through contamination with known or unknown additives. Protocols vary widely, and the risks depend on the local institutional methods. Good manufacturing practice and xeno-free culture protocols could reduce potential health risks but are not yet a common practice worldwide. In this review, we focus on the safety of both autologous- and allogeneic-cultivated limbal stem cell transplantation, with respect to culture processes, surgical approaches, and postoperative strategies.

  2. Molecular Profiling Predicts the Existence of Two Functionally Distinct Classes of Ovarian Cancer Stroma

    Directory of Open Access Journals (Sweden)

    Loukia N. Lili

    2013-01-01

    Full Text Available Although stromal cell signaling has been shown to play a significant role in the progression of many cancers, relatively little is known about its importance in modulating ovarian cancer development. The purpose of this study was to investigate the process of stroma activation in human ovarian cancer by molecular analysis of matched sets of cancer and surrounding stroma tissues. RNA microarray profiling of 45 tissue samples was carried out using the Affymetrix (U133 Plus 2.0 gene expression platform. Laser capture microdissection (LCM was employed to isolate cancer cells from the tumors of ovarian cancer patients (Cepi and matched sets of surrounding cancer stroma (CS. For controls, ovarian surface epithelial cells (OSE were isolated from the normal (noncancerous ovaries and normal stroma (NS. Hierarchical clustering of the microarray data resulted in clear separations between the OSE, Cepi, NS, and CS samples. Expression patterns of genes encoding signaling molecules and compatible receptors in the CS and Cepi samples indicate the existence of two subgroups of cancer stroma (CS with different propensities to support tumor growth. Our results indicate that functionally significant variability exists among ovarian cancer patients in the ability of the microenvironment to modulate cancer development.

  3. Molecular profiling predicts the existence of two functionally distinct classes of ovarian cancer stroma.

    Science.gov (United States)

    Lili, Loukia N; Matyunina, Lilya V; Walker, L DeEtte; Benigno, Benedict B; McDonald, John F

    2013-01-01

    Although stromal cell signaling has been shown to play a significant role in the progression of many cancers, relatively little is known about its importance in modulating ovarian cancer development. The purpose of this study was to investigate the process of stroma activation in human ovarian cancer by molecular analysis of matched sets of cancer and surrounding stroma tissues. RNA microarray profiling of 45 tissue samples was carried out using the Affymetrix (U133 Plus 2.0) gene expression platform. Laser capture microdissection (LCM) was employed to isolate cancer cells from the tumors of ovarian cancer patients (Cepi) and matched sets of surrounding cancer stroma (CS). For controls, ovarian surface epithelial cells (OSE) were isolated from the normal (noncancerous) ovaries and normal stroma (NS). Hierarchical clustering of the microarray data resulted in clear separations between the OSE, Cepi, NS, and CS samples. Expression patterns of genes encoding signaling molecules and compatible receptors in the CS and Cepi samples indicate the existence of two subgroups of cancer stroma (CS) with different propensities to support tumor growth. Our results indicate that functionally significant variability exists among ovarian cancer patients in the ability of the microenvironment to modulate cancer development.

  4. Restoration of the rabbit corneal surface after total epithelial debridement and complete limbal excision

    Directory of Open Access Journals (Sweden)

    S.J. Faria-e-Sousa

    2012-05-01

    Full Text Available How is the corneal epithelium restored when all of it plus the limbus have been eliminated? This investigation explored the possibility that this may be achieved through the conjunctival epithelium. The corneal epithelium of the right eye of 12 rabbits (Oryctolagus cuniculus was totally scraped followed by surgical excision of the limbus plus 1.0-1.5 mm of the adjacent conjunctiva. Antibiotics and corticosteroids were applied for 1 week after surgery. Histological and immunohistochemical techniques were used to monitor the events taking place on the eye surface 2 weeks and 1, 3 and 6 months thereafter. Initially, the corneal surface was covered by conjunctival-like epithelium. After 1 month and more prominently at 3 and 6 months an epithelium displaying the morphological features of the cornea and reacting with the AE5 antibody was covering the central region. It is likely that the corneal epithelium originated from undifferentiated cells of the conjunctiva interacting with the corneal stroma.

  5. The value of corneal transplantation in reducing blindness.

    Science.gov (United States)

    Garg, P; Krishna, P V; Stratis, A K; Gopinathan, U

    2005-10-01

    To analyse the role of keratoplasty in reducing world blindness due to corneal diseases. Review of published literature. We collected and analysed articles published in the English language literature related to the prevalence and causes of blindness in different parts of the world, causes of corneal blindness, and outcome of corneal transplantation for various corneal diseases. A total of 80% of the world's blind live in developing countries. Retinal diseases are the most important causes of blindness (40-54%) in established economy nations while cataract (44-60%) and corneal diseases (8-25%) are the most common causes of blindness in countries with less developed economies. Keratitis during childhood, trauma, and keratitis during adulthood resulting in a vascularized corneal scar and adherent leucoma are the most frequent causes of corneal blindness in developing countries. Corneal diseases are responsible for 20% of childhood blindness. Nearly 80% of all corneal blindness is avoidable. The outcome of keratoplasty for vascularized corneal scar and adherent leucoma is unsatisfactory, necessitating repeat surgery in a high proportion of these cases. Other barriers for keratoplasty in these nations are suboptimal eye banking, lack of trained human resources, and infrastructure. Since the developing world carries most of the load of corneal blindness and the major causes of corneal blindness are corneal scar and active keratitis, development of corneal transplantation services need a comprehensive approach encompassing medical standards in eye banking, training of cornea specialists and eye banking personnel and exposure of ophthalmologists to care of corneal transplants for better follow-up care. However, concerted efforts should be made to develop and implement prevention strategies since most corneal blindness is preventable.

  6. Efficacy of topical aflibercept versus topical bevacizumab for the prevention of corneal neovascularization in a rat model.

    Science.gov (United States)

    Sella, Ruti; Gal-Or, Orly; Livny, Eitan; Dachbash, Mor; Nisgav, Yael; Weinberger, Dov; Livnat, Tami; Bahar, Irit

    2016-05-01

    The aim of this experimental study was to compare the efficacy of topical aflibercept and topical bevacizumab in preventing corneal neovascularization. A chemical burn was created in the right central cornea of male Sprague-Dawley rats, followed immediately by instillation of one drop (25 mg/ml, 20 μl volume) of aflibercept (15 eyes), bevacizumab (14 eyes), or saline (15 eyes). Treatment was repeated twice daily for 7 days. Corneal neovascularization was determined using corneal photographs (ImageJ) on days 1, 4, 7, 10, and histological and immunofluorescence studies, on day 10. Stromal immunoreactivity was evaluated 2 days after injury in 6 rats treated singly with bevacizumab or aflibercept. Corneal neovascularization was observed clinically on day 4 in all groups. In the aflibercept group, the area of neovascularization increased from 7.38 ± 2.23% on day 4 to 21.73 ± 14.59% on day 7 and 31.0 ± 23.61% on day 10. Corresponding values in the bevacizumab group were 6.04% ± 1.81%, 51.27 ± 15.50%, and 54.4 ± 11.33%, and in the control group, 8.99 ± 1.93%, 42.6 ± 19.59%, and 55.15 ± 11.54%. The area of neovascularization was significantly smaller on days 7 and 10 in the aflibercept group than in the control and bevacizumab groups (P < 0.001, all analyses), with no significant differences between the latter two groups (day 7, P = 0.868; day 10, P = 0.213). Clinical findings were compatible with the histological data and supported by immunofluorescence and corneal flat-mount staining. Both drugs demonstrated variable penetration into the corneal stroma. Topical aflibercept effectively inhibits corneal neovascularization in a rat model of chemical burn. These findings may have important therapeutic implications for humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A histochemical comparison of human corneal stromal glycoconjugates with eight other species. Distinct species-dictated differences in binding sites of Griffonia simplicifolia I.

    Science.gov (United States)

    Panjwani, N; Baum, J

    1988-01-01

    Frozen sections of human, calf, rabbit, rat, cat, dog, goat, lamb, and hog corneas were stained with various lectins using an avidin-biotin-peroxidase complex to study glycoconjugates of stromal matrix. Staining of the stromal matrix and keratocytes with an alpha-galactose-specific lectin, Griffonia simplicifolia I (GSA-I) was species-dependent. The stromal matrices of cat, dog, and hog corneas invariably reacted intensely with this lectin, whereas those of the human, calf, rabbit, rat, and lamb did not react. A positive reaction with GSA-I could be abolished in each instance by preincubation of the sections with alpha-galactosidase. The stromal matrices and keratocytes of all nine species reacted positively with wheat germ agglutinin, concanavalin A, and Ricinus communis agglutinin but did not react with soybean agglutinin. Results of this study may help select an appropriate animal model for further investigate human corneal stromal glycoconjugates.

  8. Activation of focal adhesion kinase enhances the adhesion of Fusarium solani to human corneal epithelial cells via the tyrosine-specific protein kinase signaling pathway.

    Science.gov (United States)

    Pan, Xiaojing; Wang, Ye; Zhou, Qingjun; Chen, Peng; Xu, Yuanyuan; Chen, Hao; Xie, Lixin

    2011-03-05

    To determine the role of the integrin-FAK signaling pathway triggered by the adherence of F. solani to human corneal epithelial cells (HCECs). After pretreatment with/without genistein, HCECs were incubated with F. solani spores at different times (0-24 h). Cell adhesion assays were performed by optical microscopy. Changes of the ultrastructure were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The expression of F-actin and Paxillin (PAX) were detected by immunofluorescence and western blotting to detect the expression of these key proteins with/without genistein treatment. Cell adhesion assays showed that the number of adhered spores began to rise at 6 h after incubation and peaked at 8 h. SEM and TEM showed that the HCECs exhibited a marked morphological alteration induced by the attachment and entry of the spores. The expression of PAX increased, while the expression of F-actin decreased by stimulation with F. solani. The interaction of F. solani with HCECs causes actin rearrangement in HCECs. Genistein strongly inhibited FAK phosphorylation and the activation of the downstream protein (PAX). F. solani-induced enhancement of cell adhesion ability was inhibited along with the inhibition of FAK phosphorylation. Our results suggest that the integrin-FAK signaling pathway is involved in the control of F. solani adhesion to HCECs and that the activation of focal adhesion kinase enhances the adhesion of human corneal epithelial cells to F. solani via the tyrosine-specific protein kinase signaling pathway.

  9. Functionalization of reactive polymer multilayers with RGD and an anti-fouling motif: RGD density provides control over human corneal epithelial cell-substrate interactions

    Science.gov (United States)

    Tocce, Elizabeth J.; Broderick, Adam H.; Murphy, Kaitlin C.; Liliensiek, Sara J.; Murphy, Christopher J.; Lynn, David M.; Nealey, Paul F.

    2011-01-01

    Our study demonstrates that substrates fabricated using a ‘reactive’ layer-by-layer approach promote well-defined cell-substrate interactions of human corneal epithelial cells. Specifically, crosslinked and amine-reactive polymer multilayers were produced by alternating ‘reactive’ deposition of an azlactone-functionalized polymer [poly(2-vinyl-4,4-dimethylazlactone)] and a primary amine-containing polymer [branched poly(ethylene imine)]. Advantages of our system include a 5 to 30-fold decrease in deposition time compared to traditional polyelectrolyte films and direct modification of the films with peptides. Our films react with mixtures of an adhesion-promoting peptide containing Arg-Gly-Asp (RGD) and the small molecule d-glucamine, a chemical motif which is non-fouling. Resulting surfaces prevent protein adsorption and promote cell attachment through specific peptide interactions. The specificity of cell attachment via immobilized RGD sequences was verified using both a scrambled RDG peptide control as well as soluble-RGD competitive assays. Films were functionalized with monotonically increasing surface densities of RGD which resulted in both increased cell attachment and the promotion of a tri-phasic proliferative response of a human corneal epithelial cell line (hTCEpi). The ability to treat PEI/PVDMA films with peptides for controlled cell-substrate interactions enables the use of these films in a wide range of biological applications. PMID:21972074

  10. Impact of photodynamic inactivation (PDI) using the photosensitizer chlorin e6 on viability, apoptosis, and proliferation of human corneal endothelial cells.

    Science.gov (United States)

    Wang, Jiong; Stachon, Tanja; Eppig, Timo; Langenbucher, Achim; Seitz, Berthold; Szentmáry, Nóra

    2013-04-01

    Photodynamic inactivation (PDI) may be a potential alternative in case of therapy-resistant infectious keratitis. PDI using the photosensitizer chlorin e6 (Ce6) with high photosensitizing efficacy offers a valuable option, also for keratitis. The purpose of our study was to determine the impact of PDI with the photosensitizer Ce6 on viability, apoptosis, and proliferation of human corneal endothelial cells (HCECs), in vitro. Human corneal endothelial cell line was cultured in DMEM/Ham's F12 medium supplemented with 5 % fetal calf serum. HCECs cultures underwent illumination using red (670 nm) light for 13 min following exposure to 50-500 nM concentrations of Ce6 in the culture medium. Twenty-four hours after PDI, cell viability was evaluated by the Alamar blue assay, total DNA content of the cells and apoptosis using the APO-DIRECT Kit, and cell proliferation by the BrdU Cell Proliferation Assay Kit. Using Ce6 or illumination only, we did not detect significant changes of cell viability, apoptosis, and proliferation. Following PDI, viability and total DNA content of HCECs decreased significantly above 150 nM Ce6 concentration (P proliferation of endothelial cells decreased significantly (P proliferation, and also triggers apoptosis of HCECs in vitro. PDI using the photosensitizer Ce6 may be a potential treatment alternative in infectious keratitis. However, to avoid endothelial cell damage, the photosensitizer must not penetrate the endothelium.

  11. Targeted corneal transplantation.

    Science.gov (United States)

    Jhanji, Vishal; Mehta, Jod S; Sharma, Namrata; Sharma, Bhavana; Vajpayee, Rasik B

    2012-07-01

    Corneal transplantation surgery has moved from an era of conventional penetrating keratoplasty to selective replacement of the diseased corneal layer with complementary healthy donor corneal tissue. Anterior lamellar transplantation surgeries do not involve replacement of corneal endothelium, consequently eliminating the occurrence of endothelial rejection. Similarly, in diseases affecting the corneal endothelium, selective replacement with a lamellar lenticule bearing healthy endothelium provides better outcomes in terms of ocular surface, lesser astigmatism and quick visual recovery. In addition to the advantages of enhanced surgical outcomes, targeted corneal transplantation allows the use of one donor cornea for more than one recipient, thereby offering a viable solution to the problem of paucity of donor corneas. Evolving techniques of corneal transplantation have enabled better utilization of donor corneal tissue. Anterior lamellar as well as endothelial keratoplasty surgeries have become first-choice surgeries in appropriately selected cases. This review briefly discusses some of these novel surgical techniques. A better understanding of targeted corneal transplantation would lead to adaptation of the concept of component corneal surgery. This would further enable the corneal surgeons to circumvent the problem of donor corneal shortage especially in the developing world.

  12. Diffusion and Monod kinetics model to determine in vivo human corneal oxygen-consumption rate during soft contact lens wear.

    Science.gov (United States)

    Del Castillo, Luis F; da Silva, Ana R Ferreira; Hernández, Saul I; Aguilella, M; Andrio, Andreu; Mollá, Sergio; Compañ, Vicente

    2015-01-01

    We present an analysis of the corneal oxygen consumption Qc from non-linear models, using data of oxygen partial pressure or tension (P(O2) ) obtained from in vivo estimation previously reported by other authors. (1) METHODS: Assuming that the cornea is a single homogeneous layer, the oxygen permeability through the cornea will be the same regardless of the type of lens that is available on it. The obtention of the real value of the maximum oxygen consumption rate Qc,max is very important because this parameter is directly related with the gradient pressure profile into the cornea and moreover, the real corneal oxygen consumption is influenced by both anterior and posterior oxygen fluxes. Our calculations give different values for the maximum oxygen consumption rate Qc,max, when different oxygen pressure values (high and low P(O2)) are considered at the interface cornea-tears film. Present results are relevant for the calculation on the partial pressure of oxygen, available at different depths into the corneal tissue behind contact lenses of different oxygen transmissibility. Copyright © 2014. Published by Elsevier Espana.

  13. The Effect of a p38 Mitogen-Activated Protein Kinase Inhibitor on Cellular Senescence of Cultivated Human Corneal Endothelial Cells.

    Science.gov (United States)

    Hongo, Akane; Okumura, Naoki; Nakahara, Makiko; Kay, EunDuck P; Koizumi, Noriko

    2017-07-01

    We have begun a clinical trial of a cell-based therapy for corneal endothelial dysfunction in Japan. The purpose of this study was to investigate the usefulness of a p38 MAPK inhibitor for prevention cellular senescence in cultivated human corneal endothelial cells (HCECs). HCECs of 10 donor corneas were divided and cultured with or without SB203580 (a p38 MAPK inhibitor). Cell density and morphology were evaluated by phase-contrast microscopy. Expression of function-related proteins was examined by immunofluorescent staining. Cellular senescence was evaluated by SA-β-gal staining and Western blotting for p16 and p21. Senescence-associated factors were evaluated by membrane blotting array, quantitative PCR, and ELISA. Phase-contrast microscopy showed a significantly higher cell density for HCECs cultured with SB203580 than without SB203580 (2623 ± 657 cells/mm2 and 1752 ± 628 cells/mm2, respectively). The HCECs cultured with SB203580 maintained a hexagonal morphology and expressed ZO-1, N-cadherin, and Na+/K+-ATPase in the plasma membrane, whereas the control HCECs showed an altered staining pattern for these marker proteins. HCECs cultured without SB203580 showed high positive SA-β-gal staining, a low nuclear/cytoplasm ratio, and expression of p16 and p21. IL-6, IL-8, CCL2, and CXCL1 were observed at high levels in low cell density HCECs cultured without SB203580. Activation of p38 MAPK signaling due to culture stress might be a causative factor that induces cellular senescence; therefore, the use of p38 MAPK inhibitor to counteract senescence may achieve sufficient numbers of HCECs for tissue engineering therapy for corneal endothelial dysfunction.

  14. Subacute effects of rose Bengal/Green light cross linking on rabbit thin corneal stability and safety.

    Science.gov (United States)

    Wang, Ti; Zhu, Lu; Zhu, Jingyin; Peng, Yinbo; Shen, Nianci; Yu, Yan; Yao, Min

    2017-11-02

    The purpose of this study was to investigate the subacute effects of Rose Bengal (RB) and 532 nm green light-induced photochemical crosslinking (RB-PCL) on rabbit thin corneal stability and safety in vivo. Rabbit thin corneal models with 250 μm thickness were created by photorefractive keratectomy surgery. Photochemical crosslinking with green light (wavelength 532 nm) at an illumination intensity of 0.4 W/cm2 for 250 s (100 J/cm2 ) was performed, followed by antibiotic treatment and slit lamp monitoring for four weeks. At the end of week four, corneal biomechanical stiffness, biochemical resistance to collagenase digestion, and corneal cellular morphology were assessed. The penetration depth of RB into the corneal stromal was measured by confocal microscopy. At the end of week 4, RB-PCL had increased corneal tensile strength by an average 2.5-fold and had extended the corneal collagenase digestion time from 10.17 ± 2.93 to 15.83 ± 2.64 days. RB penetrated approximately 90 µm into the corneal stroma. RB-PCL did not alter the corneal endothelial and stromal morphology at the cellular or subcellular levels, according to electron microscopic examination. RB and 532 nm green light irradiation effectively induced crosslinking in rabbit thin cornea, by increasing both the biomechanical stiffness and the biochemical resistance without evidence of morphological damage to the corneal endothelium or stroma. This study demonstrated the efficacy of RB-PCL in strengthening thin cornea at four weeks after the treatment, providing a potential and possibly better option for treating corneal ectasia disorders in cases where corneal thickness is less than 400 µm. Lasers Surg. Med. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. A brief history of corneal transplantation: From ancient to modern

    Directory of Open Access Journals (Sweden)

    Alexandra X Crawford

    2013-01-01

    Full Text Available This review highlights many of the fundamental concepts and events in the development of corneal transplantation - from ancient times to modern. Tales of eye, limb, and even heart transplantation appear in ancient and medieval texts; however, in the scientific sense, the original concepts of corneal surgery date back to the Greek physician Galen (130-200 AD. Although proposals to provide improved corneal clarity by surgical interventions, including keratoprostheses, were better developed by the 17 th and 18 th centuries, true scientific and surgical experimentation in this field did not begin until the 19 th century. Indeed, the success of contemporary corneal transplantation is largely the result of a culmination of pivotal ideas, experimentation, and perseverance by inspired individuals over the last 200 years. Franz Reisinger initiated experimental animal corneal transplantation in 1818, coining the term "keratoplasty". Subsequently, Wilhelmus Thorne created the term corneal transplant and 3 years later Samuel Bigger, 1837, reported successful corneal transplantation in a gazelle. The first recorded therapeutic corneal xenograft on a human was reported shortly thereafter in 1838-unsurprisingly this was unsuccessful. Further progress in corneal transplantation was significantly hindered by limited understanding of antiseptic principles, anesthesiology, surgical technique, and immunology. There ensued an extremely prolonged period of debate and experimentation upon the utility of animal compared to human tissue, and lamellar versus penetrating keratoplasty. Indeed, the first successful human corneal transplant was not performed by Eduard Zirm until 1905. Since that first successful corneal transplant, innumerable ophthalmologists have contributed to the development and refinement of corneal transplantation aided by the development of surgical microscopes, refined suture materials, the development of eye banks, and the introduction of

  16. The cytotoxic and pro-apoptotic effects of phenylephrine on corneal stromal cells via a mitochondrion-dependent pathway both in vitro and in vivo.

    Science.gov (United States)

    Zhao, Jun; Qiu, Yue; Tian, Cheng-Lei; Fan, Ting-Jun

    2016-08-01

    Phenylephrine (PHE), a selective α1-adrenergic receptor agonist, is often used as a decongestant for mydriasis prior to cataract surgery, and its abuse might be cytotoxic to the cornea and result in blurred vision. However, the cytotoxicity of PHE to the cornea and its cellular and molecular mechanisms remain unknown. To provide references for secure medication and prospective therapeutic interventions of PHE, we investigated the cytotoxicity of PHE to corneal stroma and its possible mechanisms using an in vitro model of human corneal stromal (HCS) cells and an in vivo model of cat keratocytes. We found that PHE, above the concentration of 0.0781125% (1/128 of its clinical therapeutic dosage), had a dose- and time-dependent cytotoxicity to HCS cells by inducing morphological abnormality and viability decline, as well as S phase arrest. Moreover, PHE induced apoptosis of HCS cells by inducing plasma membrane permeability elevation, phosphatidylserine externalization, DNA fragmentation and apoptotic body formation. Furthermore, PHE could induce activations of caspase-3 and -9, disruption of mitochondrial transmembrane potential, downregulation of anti-apoptotic Bcl-xL, upregulation of pro-apoptotic Bax, along with upregulation of cytoplasmic cytochrome c and apoptosis-inducing factor. The cytotoxic and pro-apoptotic effects of PHE were also proven by the induced apoptotic-like ultrastructural alterations of keratocytes in vivo. Taken together, our results suggest that PHE has a significant cytotoxicity to corneal stroma cells both in vitro and in vivo by inducing cell apoptosis, and the pro-apoptotic effect of PHE is achieved via a Bcl-2 family proteins-mediated mitochondrion-dependent pathway. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Sclerocorneal graft and sequential removal of melted cornea after severe corneal burn with perforation.

    Science.gov (United States)

    Viestenz, Anja; Seitz, Berthold; Struck, Hans-Gert; Viestenz, Arne

    2018-01-01

    Corneal burn grade IV usually leads to blindness. Several different surgical techniques remain challenging owing to the extensive tissue damage. Here, we introduce a novel technique with a 15 mm corneoscleral and limbal homologous graft combined with sequential autologous corneal removal ab interno, with a vitrectomy probe to save the anterior chamber angle. In vivo anatomy with optical coherence tomography is the surgical key. A large 15 mm sclerocorneal graft is sutured on top of the remainder of the destroyed cornea and sclera after removal of the epithelium and conjunctiva, with anterior synechiolysis if necessary, peripheral iridectomy and conjunctivoplasty. The recipient central corneal stroma is not removed, primarily to protect the anterior chamber angle. After three weeks, the collagenolytic central recipient corneal stroma can be removed with a small 23 g vitrectomy probe, respecting the lens and scleral spur. The corneoscleral graft remains clear under systemic and local immunosuppression. Intraocular pressure is well controlled because the anterior chamber angle is respected. Recurrent corneal erosions need close follow-up. Therapeutic soft contact lenses can support topical therapy. In cases of sclercorneal graft decompensation or rejection after 3-5 years, a new sclerocorneal graft (with limbal donation) seems to be superior to perforating keratoplasty without limbal stem cell transplantation. Repeated sclerocorneal grafts after severe corneal burn with limbal transplantation and maintenance of the complete anterior angle structure are a successful option for preventing blindness and achieving good visual acuity. Clin. Anat. 31:39-42, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Volumetric and ionic regulation during the in vitro development of a corneal endothelial barrier.

    Science.gov (United States)

    Alaminos, M; González-Andrades, M; Muñoz-Avila, J I; Garzón, I; Sánchez-Quevedo, M C; Campos, A

    2008-05-01

    Corneal endothelium is responsible for generating an ion flux between the corneal stroma and the anterior chamber of the eye that is necessary for the cornea to remain transparent. However, the ion transport regulatory mechanisms that develop during the formation of the endothelial barrier are not known. In this study, we determined the influence of cell confluence on cell volume and intracellular ionic content on the corneal endothelial cells of rabbits. Our results demonstrate that non-confluent endothelial cells display a hypertrophic volume increase, with higher intracellular contents of potassium and chlorine than those of confluent cells. In contrast, when cells reach confluence and the endothelial barrier forms, cell volume decreases and the intracellular contents of potassium and chlorine decrease. Our genetic analysis showed a higher expression of CFTR and CA2 genes in non-confluent cells, and of the gene KCNC3 in confluent cells. These results suggest that the normal ionic current that keeps the corneal stroma dehydrated and transparent is regulated by cell-cell contacts and endothelial cell confluence, and could explain why the loss of corneal endothelial cells is often associated with corneal edema and even blindness.

  19. Corneal transplantation in children.

    Science.gov (United States)

    Gabrić, N; Dekaris, I; Vojniković, B; Karaman, Z; Mravicić, I; Katusić, J

    2001-01-01

    The main purpose of the study was to describe the surgical success rate and visual results of penetrating keratoplasty in children. This retrospective study included children that underwent corneal transplantation at the Department of Ophthalmology, General Hospital "Sveti Duh", in the period 1994-1999. Patients' age ranged from 6 to 16 years. Twenty-five corneal transplants were performed in 24 eyes. Corneal pathologies were corneal leucoma, congenital dystrophy, corneal combustion, corneal scar after perforating injury, keratoconus, corneal melting, hematocornea and rekeratoplasty. The follow-up period was at least 6 months. The rate of graft survival was 1 year in 75% of eyes with congenital dystrophy and keratoconus. Hematocornea and rekeratoplasty ended with graft failure. Postoperative visual acuity improvement was recorded in 14 out of 25 eyes. Penetrating keratoplasty in children showed very good surgical success. The final visual outcome was affected by irreversible amblyopia.

  20. Keratocyte apoptosis after corneal collagen cross-linking using riboflavin/UVA treatment.

    Science.gov (United States)

    Wollensak, Gregor; Spoerl, Eberhard; Wilsch, Michaela; Seiler, Theo

    2004-01-01

    Combined riboflavin/UVA treatment inducing collagen cross-links in the cornea has been shown to increase the biomechanical rigidity of the cornea and has been used successfully in the treatment of progressive keratoconus. The current study was undertaken to investigate the possible cytotoxic effect of combined riboflavin/UVA treatment on corneal keratocytes in vivo. Thirty-four New Zealand white rabbits were treated with 0.1% riboflavin solution and surface UVA irradiances ranging from 0.75 to 4 mW/cm2 (1.35- 7.2 J/cm2) for 30 minutes. The animals were euthanized either 4 (n = 6) or 24 (n = 28) hours postoperatively. Four additional control eyes underwent epithelial debridement alone. The corneas of the enucleated eyes were evaluated in routine histologic sections. In addition, the TUNEL technique and transmission electron microscopy were used for the detection of keratocyte apoptosis. In the control eyes with corneal epithelial debridement only, apoptotic keratocytes were found in the anterior 50 microm of the corneal stroma 4 hours postoperatively. However, riboflavin/UVA-induced apoptosis was only visible in the rabbit eyes enucleated 24 hours postoperatively. In these eyes, we found apoptosis of keratocytes down to a variable stromal depth depending on the applied UVA irradiance. A cytotoxic UVA irradiance for keratocytes in the range of 0.5-0.7 mW/cm2 could be deduced. Riboflavin/UVA treatment leads to a dose-dependent keratocyte damage that can be expected in human corneas down to a depth of 300 microm using a surface UVA dose of 5.4 J/cm2. Future studies should be done to examine the keratocyte repopulation and exclude possible adverse sequelae of keratocyte loss like stromal scarring or thinning.

  1. Ways to Improve (Visual) Outcome in Corneal Transplantation, Corneal Pathology

    NARCIS (Netherlands)

    M.C. Bartels (Marjolijn)

    2005-01-01

    textabstractThe normally transparent cornea can lose its ability to refract light regularly from various conditions. Among these conditions are corneal opacities and corneal diseases leading to a distortion of the corneal contour. Vision might be restored by a corneal transplantation. Corneal

  2. Laser-induced corneal cross-linking upon photorefractive ablation with riboflavin.

    Science.gov (United States)

    Kornilovskiy, Igor M; Kasimov, Elmar M; Sultanova, Ayten I; Burtsev, Alexander A

    2016-01-01

    To estimate the biomechanical effect of the laser-induced cross-linking resulting from photorefractive ablation of the cornea with riboflavin. Excimer laser ablation studies were performed ex vivo (32 eyes of 16 rabbits) by phototherapeutic keratectomy (PTK) and in vivo (24 eyes of 12 rabbits) by transepithelial photorefractive keratectomy (TransPRK), with and without riboflavin saturation of the stroma. Then, we performed corneal optical coherence tomography on 36 eyes of 18 patients with varying degrees of myopia at different times after the TransPRK was performed with riboflavin saturation of the stroma. Biomechanical testing of corneal samples saturated with riboflavin revealed cross-linking effect accompanied by the increase in tensile strength and maximum strength. PTK showed increase in tensile strength from 5.1±1.4 to 7.2±1.6 MPa (P=0.001), while Trans-PRK showed increase in tensile strength from 8.8±0.9 to 12.8±1.3 MPa (P=0.0004). Maximum strength increased from 8.7±2.5 to 12.0±2.8 N (P=0.005) in PTK and from 12.8±1.6 to 18.3±1.2 N (P=0.0004) in TransPRK. Clinical optical coherence tomography studies of the biomicroscopic transparent cornea at different times after TransPRK showed increased density in the surface layers of the stroma and membrane-like structure beneath the epithelium. Photorefractive ablation of the preliminary corneal stroma saturation with riboflavin causes the effect of laser-induced cross-linking, which is attended with an increase in corneal tensile strength, maximum strength, increased density in the surface layers of the stroma, and formation of a membrane-like structure beneath the epithelium after TransPRK.

  3. A study protocol for a multicentre randomised clinical trial evaluating the safety and feasibility of a bioengineered human allogeneic nanostructured anterior cornea in patients with advanced corneal trophic ulcers refractory to conventional treatment

    Science.gov (United States)

    González-Andrades, Miguel; Mata, Rosario; González-Gallardo, María del Carmen; Medialdea, Santiago; Arias-Santiago, Salvador; Martínez-Atienza, Juliana; Ruiz-García, Antonio; Pérez-Fajardo, Lorena; Lizana-Moreno, Antonio; Garzón, Ingrid; Campos, Antonio; Alaminos, Miguel; Carmona, Gloria; Cuende, Natividad

    2017-01-01

    Introduction There is a need to find alternatives to the use of human donor corneas in transplants because of the limited availability of donor organs, the incidence of graft complications, as well as the inability to successfully perform corneal transplant in patients presenting limbal deficiency, neo-vascularized or thin corneas, etc. We have designed a clinical trial to test a nanostructured fibrin-agarose corneal substitute combining allogeneic cells that mimics the anterior human native cornea in terms of optical, mechanical and biological behaviour. Methods and analysis This is a phase I-II, randomised, controlled, open-label clinical trial, currently ongoing in ten Spanish hospitals, to evaluate the safety and feasibility, as well as clinical efficacy evidence, of this bioengineered human corneal substitute in adults with severe trophic corneal ulcers refractory to conventional treatment, or with sequelae of previous ulcers. In the initial phase of the trial (n=5), patients were sequentially recruited, with a safety period of 45 days, receiving the bioengineered corneal graft. In the second phase of the trial (currently ongoing), subjects are block randomised (2:1) to receive either the corneal graft (n=10), or amniotic membrane (n=5), as the control treatment. Adverse events, implant status, infection signs and induced neovascularization are evaluated as determinants of safety and feasibility of the bioengineered graft (main outcomes). Study endpoints are measured along a follow-up period of 24 months, including 27 post-implant assessment visits according to a decreasing frequency. Intention to treat, and per protocol, and safety analysis will be performed. Ethics and dissemination The trial protocol received written approval by the corresponding Ethics Committee and the Spanish Regulatory Authority and is currently recruiting subjects. On completion of the trial, manuscripts with the results of phases I and II of the study will be published in a peer

  4. [Tissular and mechanical effects observed with an experimental femtosecond laser microkeratome for corneal refractive surgery].

    Science.gov (United States)

    Touboul, D; Salin, F; Mortemousque, B; Courjaud, A; Chabassier, P; Mottay, E; Léger, F; Colin, J

    2005-03-01

    Despite progress in mechanical microkeratomes used in refractive surgery, mechanical complications during cutting of the cornea still occur. Cutting by laser could reduce these complications and to date, the femtosecond laser is the only potential candidate for this purpose. Our study reports preliminary results with a femtosecond microkeratome for cutting porcine corneas ex vivo. We first examined the fundamental principles of the interaction between the femtosecond laser and the corneal stroma, including the volume of tissue lesions, the laser breakdown threshold of the stroma and the laser ablation selectivity. We then analyzed the quality of cutting corneal flaps with the laser, focusing on collateral tissue effects and the roughness of the interfaces observed both histologically and with scanning electron microscopy. The photoablative and photodisruptive effects were very similar with the femtosecond laser. This characteristic is specific to ultrashort impulsion photodisruptor lasers and allows for a very precise surgical procedure. The laser-induced breakdown threshold of porcine corneal stroma was found to be 0.55 J/cm2. Collateral tissue lesions were on the submicrometer level. The roughness of the stromal bed was optimal for postage stamp cutting, providing very many contiguous points of impact which were as spherical as possible. Corneal photodisruption with a femtosecond laser is reproducible and extremely accurate. The optomechanical parameters involved with this technique require great technological skill and should be placed in experienced hands.

  5. Histopathology Findings of Corneal Buttons in Congenital Aniridia Patients.

    Science.gov (United States)

    Bausili, Maria Montserrat; Alvarez de Toledo, Juan; Barraquer, Rafael I; Michael, Ralph; Tresserra, Francesc; de la Paz, Maria Fideliz

    2016-01-01

    To evaluate the corneal button of primary penetrating keratoplasty of patients diagnosed with congenital aniridia. The study took place at the Instituto Universitario Barraquer and the Centro de Oftalmología Barraquer. A retrospective analysis of cases diagnosed with congenital aniridia was carried out. We analyzed 13 corneal buttons of 11 eyes with congenital aniridia. We only included those patients who underwent penetrating keratoplasty for the first time. The corneal buttons were analyzed for histological characteristics of the presence of vascularization, the presence or not of Bowman's layer, the thickness of the stroma and Descemet's membrane, and endothelium layer alterations. We found alterations in the epithelium and stroma in all patients, although this loss of architecture was not seen in Descemet's membrane and the endothelial population. Patients with advanced congenital aniridic keratopathy may be good candidates for deep or superficial anterior lamellar keratoplasty for the preservation of normal endothelium and Descemet's membrane, along with limbal stem cell transplantation, to address epithelial and stromal pathology. © 2016 S. Karger AG, Basel.

  6. Neovascular growth in an experimental alkali corneal burn model.

    Science.gov (United States)

    Figueroa-Ortiz, L C; Martín Rodríguez, O; García-Ben, A; García-Campos, J

    2014-08-01

    To analyse the length and area of corneal surface occupied by vessels, and their location in an experimental model of alkali burn-induced corneal neovascularization. An injury to the central cornea of the right eye in 91 Sprague-Dawley rats was induced using a silver nitrate pencil. The rats were divided in 7 groups that were sacrificed 2, 4, 6, 8, 10, 12 and 14 days post-injury, and then perfused with a mixture of Chinese ink in PBS -phosphate buffer saline-. Corneas were flat-mounted processed and divided in 4 quadrants. Corneal neovascular growth parameters (length and area) and the location of these vessels were performed blind. The results were statistically analysed. Neovascular growth was observed from day 2, reaching its maximum peak in length and area on the 12th day post-injury. A slight reduction in corneal neovascularization was observed after this day. The vessels were initially located in the middle third of the stroma and tended to be observed in the anterior third during the course of the experiment. Neovascularisation was observed on day 2 post-injury in all sectors of corneal surface. Neovascular growth was uniform during the experiment. Neovessels were located in the middle and anterior third of the cornea. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  7. Corneal Densitometry as a Novel Technique for Monitoring Amiodarone Therapy.

    Science.gov (United States)

    Alnawaiseh, Maged; Zumhagen, Lars; Zumhagen, Sven; Schulte, Lea; Rosentreter, André; Schubert, Friederike; Eter, Nicole; Mönnig, Gerold

    2016-11-01

    The clinical efficacy and toxicity of amiodarone may be determined more effectively by tissue deposition than by levels of the agent in serum. Therefore, corneal densitometry might be useful for therapeutic monitoring. The aim of the study is to evaluate Scheimpflug corneal densitometry in patients with amiodarone keratopathy (AK). Comparative case series. Sixty-six patients receiving amiodarone therapy and 66 healthy controls were consecutively enrolled in this study. Patients were examined using the Oculus Pentacam (Wetzlar, Germany). Densitometry data from different corneal layers and different annuli were extracted, analyzed, and compared with densitometry values of healthy controls. Duration of treatment, cumulative dose, Orlando stage (slit-lamp biomicroscopy), and serum concentrations of amiodarone and N-desethylamiodarone also were determined, and the correlation to different densitometry data was evaluated. The total corneal light backscatter at total corneal thickness and at total diameter was significantly higher in the amiodarone group compared with the control group (AK group: 28.3±5.2; control group: 24.4±4.2; P amiodarone therapy. The serum concentration of the active metabolite N-desethylamiodarone correlates with the extent of keratopathy in the anterior layer, whereas chronic changes in the stroma correlate with the cumulative dose and duration of treatment. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  8. Granular corneal dystrophy in 830-nm spectral optical coherence tomography.

    Science.gov (United States)

    Kaluzny, Bartlomiej J; Szkulmowska, Anna; Szkulmowski, Maciej; Bajraszewski, Tomasz; Wawrocka, Anna; Krawczynski, Maciej R; Kowalczyk, Andrzej; Wojtkowski, Maciej

    2008-08-01

    Spectral optical coherence tomography (SOCT) is a new imaging technique that can provide high-resolution tomograms much faster and with higher sensitivity than conventional Time domain (TdOCT) systems. Its usefulness in producing cross-sectional imaging of different corneal pathologies in vivo has already been presented. The aim of this case report is to show 830-nm SOCT findings in granular corneal dystrophy. A 48-year-old woman with granular corneal dystrophy was examined with a slit-lamp, confocal microscope (Confoscan 4) and a prototype SOCT instrument constructed at the Institute of Physics, Nicolaus Copernicus University, Torun, Poland. A genetic examination showed a mutation of arginine 555-to-tryptophan (Arg555Trp) in the TGFBI gene that confirmed the clinical diagnosis. SOCT tomograms showed multiple hyperreflective changes throughout the corneal stroma that corresponded to hyaline deposits. Precise and objective assessment of the localization, size, shape, and light scattering properties of the pathologic changes was possible. Three-dimensional rendering of the acquired data allowed a comprehensive evaluation of the deposits in the central cornea. SOCT (830 nm) provides clinically valuable 2- and 3-dimensional assessments of pathomorphologic changes in granular corneal dystrophy in vivo.

  9. Intrastromal application of riboflavin for corneal crosslinking.

    Science.gov (United States)

    Seiler, Theo G; Fischinger, Isaak; Senfft, Tim; Schmidinger, Gerald; Seiler, Theo

    2014-06-10

    To experimentally evaluate the efficacy of corneal crosslinking (CXL) by injecting the photomediator riboflavin into the corneal stroma via intrastromal channels. Five groups of pig corneas, nine each, were compared regarding stress-strain relationship and UV-absorption. Group 1 had intrastromal channels floated with riboflavin 0.5%-solution followed by UVA-irradiation (3 mW/cm(2) for 30 minutes); group 2 was handled like group 1, but were irradiated with 9 mW/cm(2) for 10 minutes; group 3 was treated according to the Dresden protocol (epi-off, 9 mW/cm(2) for 10 minutes); group 4 had the identical channel system, no riboflavin but identical irradiation; group 5 with native corneas served as a control group. The intrastromal channels were created with a femtosecond laser. The stress-strain relations were measured in corneal strips using a uniaxial material tester at strains up to 12%. The UV-transmission of the corneas was measured in groups 1, 3, and 5. The stress needed for a 10% strain was significantly increased by 82% in the corneas treated with the Dresden protocol compared with native cornea (P = 0.0005). With intrastromal application of riboflavin the significant increase was 87% (P = 0.0005) in group 1 and 64% (P = 0.007) in group 2. The channel formation alone did not alter biomechanics (P = 0.923). The corneal UVA-transmission was 2.4% after intrastromal riboflavin application, 8.9% after the treatment according to the Dresden protocol, and 57.9% in native corneas. The experiments demonstrate the intrastromal application of riboflavin by means of intrastromal channels a feasible "epi-on" approach for CXL. More experimental data are needed before clinical testing. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  10. RECURRENT CORNEAL EROSION SYNDROME (a review

    Directory of Open Access Journals (Sweden)

    S. V. Trufanov

    2015-01-01

    Full Text Available Recurrent corneal erosion (RCE syndrome is characterized by episodes of recurrent spontaneous epithelial defects. Main clinical symptoms (pain, redness, photophobia, lacrimation occurred at night. Corneal lesions revealed by slit lamp exam vary depending on the presence of corneal epithelium raise, epithelial microcysts or epithelial erosions, stromal infiltrates and opacities. Microtraumas, anterior corneal dystrophies, and herpesvirus give rise to RCE. Other causes or factors which increase the risk of RCE syndrome include meibomian gland dysfunction, keratoconjunctivitis sicca, diabetes, and post-LASIK conditions. Basal membrane abnormalities and instability of epithelial adhesion to stroma play a key role in RCE pathogenesis. Ultrastructural changes in RCE include abnormalities of basal epithelial cells and epithelial basal membrane, absence or deficiency of semi-desmosomes, loss of anchor fibrils. Increase in matrix metalloproteinases and collagenases which contribute to basal membrane destruction results in recurrent erosions and further development of abnormal basal membrane. The goals of RCE therapy are to reduce pain (in acute stage, to stimulate re-epithelization, and to restore «adhesion complex» of basal membrane. In most cases, RCE responds to simple conservative treatment that includes lubricants, healing agents, and eye patches. RCEs that are resistant to simple treatment, require complex approach. Non-invasive methods include long-term contact lens use, instillations of autologous serum (eye drops, injections of botulinum toxin (induces ptosis, antiviral agent use or oral intake of metalloproteinase inhibitors. Cell membrane stabilizers, i.e., antioxidants, should be included into treatment approaches as well. Antioxidant effect of Emoxipine promotes tissue reparation due to the prevention of cell membrane lipid peroxidation as well as due to its anti-hypoxic, angioprotective, and antiplatelet effects. If conservative therapy

  11. 3D collagen orientation study of the human cornea using X-ray diffraction and femtosecond laser technology.

    Science.gov (United States)

    Abahussin, Mohammad; Hayes, Sally; Knox Cartwright, Nathaniel E; Kamma-Lorger, Christina S; Khan, Yasir; Marshall, John; Meek, Keith M

    2009-11-01

    To study the distribution and predominant orientations of fibrillar collagen at different depths throughout the entire thickness of the human cornea. This information will form the basis of a full three-dimensional reconstruction of the preferred orientations of corneal lamellae. Femtosecond laser technology was used to delaminate the central zones of five human corneas into three separate layers (anterior, mid, and posterior stroma), each with predetermined thicknesses. Wide-angle x-ray diffraction was used to study the gross collagen fibril orientation and distribution within each layer. The middle and posterior parts of the human cornea demonstrated a preferential orthogonal arrangement of collagen fibrils, directed along the superior-inferior and nasal-temporal meridians, with an increase in the number of lamellae toward the periphery. However, the anterior cornea (33% of total corneal thickness) showed no systematic preferred lamellar orientation. In the posterior two thirds of the human cornea, collagen lies predominantly in the vertical and horizontal meridians (directed toward the four major rectus muscles), whereas collagen in the anterior third of the cornea is more isotropic. The predominantly orthogonal arrangement of collagen in the mid and posterior stroma may help to distribute strain in the cornea by allowing it to withstand the pull of the extraocular muscles, whereas the more isotropic arrangement in the anterior cornea may play an important role in the biomechanics of the cornea by resisting intraocular pressure while at the same time maintaining corneal curvature.

  12. Analysis of the application of the generalized monod kinetics model to describe the human corneal oxygen-consumption rate during soft contact lens wear.

    Science.gov (United States)

    Compañ, V; Aguilella-Arzo, M; Del Castillo, L F; Hernández, S I; Gonzalez-Meijome, J M

    2017-11-01

    This work is an analysis of the application of the generalized Monod kinetics model describing human corneal oxygen consumption during soft contact lens wear to models previously used by Chhabra et al. (J Biomed Mater Res B Appl Biomater, 2009a;90:202-209, Optom Vis Sci 2009b;86:454-466) and Larrea and Büchler (Invest Ophthalmol Vis Sci 2009;50:1076-1080). We use oxygen tension from in vivo estimations provided by Bonanno [Bonanno et al., Invest Ophthalmol Vis Sci 2002;43:371-376, and Bonanno et al 2009]. We consider four hydrogel and six silicone hydrogel lenses. The cornea is considered a single homogeneous layer, with constant oxygen permeability regardless of the type of lens worn. Our calculations yield different values for the maximum oxygen consumption rate Qc,max , whith differents oxygen tensions (high and low pc ) at the cornea-tears interface. Surprisingly, for both models, we observe an increase in oxygen consumption near an oxygen tension of 105 mmHg until a maximum is reached, then decreasing for higher levels of oxygen pressure. That is, when lowering the pressure of oxygen, the parameter Qc,max initially increases depending on the intensity of the change in pressure. Which, it could be related with the variation of the pH. Furthermore, it is also noted that to greater reductions in pressure, this parameter decreases, possibly due to changes in the concentration of glucose related to the anaerobic respiration. The averaged in vivo human corneal oxygen consumption rate of 1.47 × 10-4 cm3 of O2 /cm3 tissue s, with Monod kinetics model, considering all the lenses studied, is smaller than the average oxygen consumption rate value obtained using the Larrea and Büchler model. The impact that these calculations have on the oxygen partial pressure available at different depths in the corneal tissue is presented and discussed, taking into consideration previous models used in this study. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl

  13. Experimental assessment of corneal anisotropy.

    Science.gov (United States)

    Elsheikh, Ahmed; Brown, Michael; Alhasso, Daad; Rama, Paolo; Campanelli, Marino; Garway-Heath, David

    2008-02-01

    To determine the variation of corneal biomechanical properties with anatomical orientation. Strip specimens extracted from fresh porcine corneas were tested under uniaxial tension with strain rates representing static and dynamic loading conditions. The specimens were extracted from the vertical, horizontal, and 45 degrees diagonal directions. The load elongation results were used to derive the stress-strain behavior of each specimen. The average behavior for specimens taken in each anatomical direction was determined along with the effect of strain rate. Specimens from a small number of human corneas were included in the study to verify the findings. Specimens extracted from the vertical direction of porcine and human corneas demonstrated the highest strength (fracture stress) followed by horizontal then diagonal specimens. Vertical specimens were 10% to 20% stronger than horizontal specimens in porcine and human corneas. At low strain rates (1%/min), vertical specimens displayed similar stiffness (resistance to deformation) to horizontal specimens but greater stiffness than diagonal specimens. On increasing the strain rate to 500%/min, the stiffness behavior matched that of strength with vertical specimens being 10% to 20% stiffer than horizontal specimens in porcine and human corneas. The corneal anisotropic behavior is compatible with the preferential orientation of stromal fibrils in the vertical and horizontal directions. Quantifying the effect of this nonuniform fibril organization on corneal anisotropic behavior will be useful in developing numerical models of the cornea for applications where its integrity is compromised such as in simulating refractive surgery procedures.

  14. Protease-activated receptor 2 (PAR2) is upregulated by Acanthamoeba plasminogen activator (aPA) and induces proinflammatory cytokine in human corneal epithelial cells.

    Science.gov (United States)

    Tripathi, Trivendra; Abdi, Mahshid; Alizadeh, Hassan

    2014-05-29

    Acanthamoeba plasminogen activator (aPA) is a serine protease elaborated by Acanthamoeba trophozoites that facilitates the invasion of trophozoites to the host and contributes to the pathogenesis of Acanthamoeba keratitis (AK). The aim of this study was to explore if aPA stimulates proinflammatory cytokine in human corneal epithelial (HCE) cells via the protease-activated receptors (PARs) pathway. Acanthamoeba castellanii trophozoites were grown in peptone-yeast extract glucose for 7 days, and the supernatants were collected and centrifuged. The aPA was purified using the fast protein liquid chromatography system, and aPA activity was determined by zymography assays. Human corneal epithelial cells were incubated with or without aPA (100 μg/mL), PAR1 agonists (thrombin, 10 μM; TRAP-6, 10 μM), and PAR2 agonists (SLIGRL-NH2, 100 μM; AC 55541, 10 μM) for 24 and 48 hours. Inhibition of PAR1 and PAR2 involved preincubating the HCE cells for 1 hour with the antagonist of PAR1 (SCH 79797, 60 μM) and PAR2 (FSLLRY-NH2, 100 μM) with or without aPA. Human corneal epithelial cells also were preincubated with PAR1 and PAR2 antagonists and then incubated with or without PAR1 agonists (thrombin and TRAP-6) and PAR2 agonists (SLIGRL-NH2 and AC 55541). Expression of PAR1 and PAR2 was examined by quantitative RT-PCR (qRT-PCR), flow cytometry, and immunocytochemistry. Interleukin-8 expression was quantified by qRT-PCR and ELISA. Human corneal epithelial cells constitutively expressed PAR1 and PAR2 mRNA. Acanthamoeba plasminogen activator and PAR2 agonists significantly upregulated PAR2 mRNA expression (1- and 2-fold, respectively) (P aPA, and PAR2 agonists induced PAR2 mRNA expression in HCE cells (P aPA, significantly upregulated PAR1 mRNA expression, which was significantly inhibited by PAR1 antagonist in HCE cells. Acanthamoeba plasminogen activator and PAR2 agonists stimulated IL-8 mRNA expression and protein production, which is significantly diminished by PAR2 antagonist

  15. Endothelial replacement without surface corneal incisions or sutures: topography of the deep lamellar endothelial keratoplasty procedure.

    Science.gov (United States)

    Terry, M A; Ousley, P J

    2001-01-01

    To evaluate the immediate postoperative corneal topography after the deep lamellar endothelial keratoplasty procedure. Eight eye bank eyes underwent deep lamellar endothelial keratoplasty through a 9.0-mm limbal incision replacing the central 7.0 mm of posterior stroma and endothelium through the lamellar pocket wound. Orbscan topography was performed before and after surgery, and simulated keratometry readings and central corneal diopter power were recorded. The change in astigmatism and corneal power from preoperative to postoperative readings was then determined. The net change in corneal astigmatism averaged 0.4+/-0.5 diopters (range, -0.1 to 1.1 diopters). The net change in corneal power averaged -0.2+/-0.4 diopters of flattening (range, -0.9 to +0.2 diopters). Neither the astigmatism nor the corneal power levels after this surgery were significantly different from the preoperative topography (p = 0.22 and 0.27, respectively). The deep lamellar endothelial keratoplasty procedure, with its absence of corneal surface incisions or sutures, has no significant effect on immediate postoperative corneal topography. The potential advantages of this procedure over penetrating keratoplasty in the treatment of endothelial dysfunction are considerable.

  16. Biocompatibility of helicoidal multilamellar arginine-glycine-aspartic acid-functionalized silk biomaterials in a rabbit corneal model.

    Science.gov (United States)

    Wang, Liqiang; Ma, Ruijue; Du, Gaiping; Guo, Huiling; Huang, Yifei

    2015-01-01

    Silk proteins represent a unique choice in the selection of biomaterials that can be used for corneal tissue engineering and regenerative medical applications. We implanted helicoidal multilamellar arginine-glycine-aspartic acid-functionalized silk biomaterials into the corneal stroma of rabbits, and evaluated its biocompatibility. The corneal tissue was examined after routine hematoxylin-eosin staining, immunofluorescence for collagen I and III, and fibronectin, and scanning electron microscopy. The silk films maintained their integrity and transparency over the 180-day experimental period without causing immunogenic and neovascular responses or degradation of the rabbit corneal stroma. Collagen I increased, whereas Collagen III and fibronectin initially increased and then gradually decreased. The extracellular matrix deposited on the surface of the silk films, tightly adhered to the biomaterial. We have shown this kind of silk film graft has suitable biocompatibility with the corneal stroma and is an initial step for clinical trials to evaluate this material as a transplant biomaterial for keratoplasty tissue constructs. © 2014 Wiley Periodicals, Inc.

  17. Effect of Lipoglycans from Mycobacterium Chelonae on the expression of inflammatory factors IL-8 and IL-6 in human corneal epithelial cells and its possible signal transduction pathway

    Directory of Open Access Journals (Sweden)

    Chun-Zhou Tang

    2015-06-01

    Full Text Available AIM: To study the influence of Lipoglycans from Mycobacterium Chelonae(Cheon the expression of IL-6 and IL-8 in human corneal epithelia cells and its possible signal transduction pathway.METHODS: Lipoglycans was extracted by the Triton X-114 phase partitioning. Lipoglycans from Che were purified, by successive detergent and phenol extractions. Lipoglycans were separated by gel filtration on a Sephacryl 200 column and Sephacryl 100 column in series, followed by extensive dialisis. Purified Lipoglycans(50μg/mLwere added into culture medium to stimulate primary human corneal epithelial(HCEcells. Cells and supernatant were collected at 0, 6, 12, 24h after the stimulation. The IL-6 and IL-8 expression at mRNA level was assayed by using real time RT-PCR and the secreted IL-6 and IL-8 in the supernatants was measured by ELISA. Immunochemistry was used to detect the expression and location of NF-κB in HCE cells.RESULTS: After the treatment of Lipoglycans, the expression of IL-8 and IL-6 at mRNA level obviouly increased within 12h, and reached peak level at 6h(IL-8 was 36.8 times that of the blank control, and IL-6 was 32.7 times. Compared with the blank control group, the expression of IL-8 at protein level in the supernatant increased 2.8 folds at 6h(P>0.05, 13.4 folds at 12h(PPPPPCONCLUSION: Lipoglycans from Che can induce HCE cells to produce inflammatory factors(IL-6 and IL-8, and its signal transduction pathway probably is mediated by NF-κB.

  18. Effects of epiplakin-knockdown in cultured corneal epithelial cells

    OpenAIRE

    Kokado, Masahide; Okada, Yuka; Miyamoto, Takeshi; Yamanaka, Osamu; Saika, Shizuya

    2016-01-01

    Background To investigate effects of knockdown of epiplakin gene expression on the homeostasis of cultured corneal epithelial cell line. We previously reported acceleration of corneal epithelial wound healing in an epiplakin-null mouse. Methods Gene expression of epiplakin was knockdowned by employing siRNA transfection in SV40-immortalized human corneal epithelial cell line. Protein expression of E-cadherin, keratin 6 and vimentin was examined by western blotting. Cell migration and prolifer...

  19. Corneal-Committed Cells Restore the Stem Cell Pool and Tissue Boundary following Injury

    Directory of Open Access Journals (Sweden)

    Waseem Nasser

    2018-01-01

    Full Text Available During morphogenesis, preserving tissue boundaries is essential for cell fate regulation. While embryonic tissues possess high plasticity and repair ability, the questions of whether and how adult tissues cope with acute stem cell (SC loss or boundary disruption have remained unanswered. Here, we report that K15-GFP transgene labels the murine corneal epithelial boundary and SC niche known as the limbus. K15-GFP+ basal cells expressed SC markers and were located at the corneal regeneration site, as evident by lineage tracing. Remarkably, following surgical deletion of the SC pool, corneal-committed cells dedifferentiated into bona fide limbal SCs that retained normal tissue dynamics and marker expression. Interestingly, however, damage to the limbal stromal niche abolished K15-GFP recovery and led to pathological wound healing. Altogether, this study indicates that committed corneal cells possess plasticity to dedifferentiate, repopulate the SC pool, and correctly re-form the tissue boundary in the presence of intact stroma.

  20. Corneal refractive index-hydration relationship by objective refractometry.

    Science.gov (United States)

    Patel, Sudi; Alió, Jorge L

    2012-11-01

    To compare an objective (VCH-1) with a manual subjective Abbé refractometer (MSAR) and evaluate the refractive index (RI)-hydration (H) relationship for the corneal stroma. Epithelial and endothelial layers were removed from a fresh postmortem ovine corneal buttons. RI was measured at both surfaces using (i) MSAR then (ii) VCH-1. The sample was weighed, slowly dehydrated under controlled conditions (2 h), and RI measures were repeated. Sample was oven dried (90°C) for 3 d to obtain dry weight and hydration at each episode of RI measurement. Average difference between individual pairs of measurements obtained using the two refractometers (ΔRI) was 0.00071 (standard deviation ± 0.0029, 95% confidence interval ± 0.0058). Root mean square difference between measurements obtained by the refractometers was 0.0024. There was no relationship between ΔRI and the mean of each measurement pair (r = 0.201, n = 40, p = 0.214). Linear regression revealed a significant relationship between RI and reciprocal of H at both surfaces as follows: anterior (i) RI = 1.355 + 0.111/H (r = -0.852, n = 20, p = <0.001), (ii) RI = 1.357 + 0.105/H (r = -0.849, n = 20, p = <0.001) and posterior (i) RI = 1.353 + 0.085/H (r = -0.882, n = 20, p = <0.001), (ii) RI = 1.350 + 0.088/H (r = -0.813, n = 20, p = <0.001). VCH-1 measurements are in good agreement with MSAR. RI at the anterior stroma was consistently higher suggesting hydration is lower by 1.10 units (6%) compared with the posterior stroma. Dehydration increased RI at both surfaces by similar rates. Current hypothetical models are useful for predicting RI from H for the posterior, but not the anterior, stroma.

  1. Vanishing corneal vessels

    Science.gov (United States)

    Nicholson, Luke; Chana, Rupinder

    2013-01-01

    We wish to highlight the importance of acknowledging the accompanying effects of topical phenylephrine drops on the eye other than its intended mydriasis. We reported a case of a 92-year-old woman with a corneal graft who was noted to have superficial corneal vascularisation which was not documented previously. After the instillation of topical tropicamide 1% and phenylephrine 2.5%, for funduscopy, the corneal vascularisation was not visible. When reassessed on another visit, tropicamide had no effect on the vessels and only phenylephrine did. We wish to highlight that when reviewing patients in cornea clinics, instilling phenylephrine prior to being seen may mask important corneal vascularisation. PMID:24121816

  2. Corneal stromal acupuncture combined with amniotic membrane transplantation for treating bullous keratopathy

    Directory of Open Access Journals (Sweden)

    Chao-Qing Wang

    2014-06-01

    Full Text Available AIM: To investigate the clinical effect for treating bullous keratopathy(BKby anterior corneal stromal acupuncture combined with amniotic membrane transplantation.METHODS: Totally 35 patients(35 eyeswith bullous keratopathy were treated by corneal stromal acupuncture combined with amniotic membrane transplantation. All patients preoperative and postoperative underwent anterior segment OCT, corneal topography, corneal sensitivity and confocal microscopy. To observe postoperative ocular symptoms in patients with BK, recurrence of bulla, changes in corneal thickness, corneal sensitivity and changes in the organizational structure of the layers of the cornea.RESULTS: Thirty-five were followed up for 6-18mo. The symptom of pain disappeared in 32 cases(91%in the first day after operation and did not recur during follow-up. The symptom of pain relieved in 3 cases(9%in the first day after operation and disappeared in 3 days. Corneal epithelium of 9 cases(26%were all healed within 1wk, 21 cases(60%were all healed within 2wk, and 5 cases(14%were all healed within 3wk. Following up for 6-18mo, there was no recurrence of symptoms or bulla. A small amount of tiny bubbles in the surrounding area appeared in 2 cases after 3 and 4wk. All patients had no neovascularization, and had smooth corneal surface. The amnions of 30 cases(86%were thinning after 2mo, partially dissolved and absorped, not seen with the naked eye after 3mo. Thirty-four cases(97%had no changes in vision, one case(3%was from the light to front of the manual. After 2mo, corneal sensation decreased in 30 cases(86%, corneal thickness increased from preoperative 788±35μm to 940±43μm. After 12mo, corneal thickness increased to 1060±27μm. Results of confocal microscopy: after 3mo, the number density of the trigeminal nerve fibers under corneal basement membrane reduced, shallow stromal cells became into fibrotic stroma, deep stroma was more loose, and cells swelled significantly. The number of

  3. Biosynthetic corneal implants for replacement of pathologic corneal tissue : performance in a controlled rabbit alkali burn model

    OpenAIRE

    Joanne M. Hackett; Lagali, Neil; Merrett, Kimberley; Edelhauser, Henry; Sun, Yifei; Gan, Lisha; Griffith, May; Fagerholm, Per

    2011-01-01

    Purpose: To evaluate the performance of structurally reinforced, stabilized recombinant human collagen-phosphorylcholine (RHCIII-MPC) hydrogels as corneal substitutes in a rabbit model of severe corneal damage. Methods: One eye each of 12 rabbits received a deep corneal alkali wound. Four corneas were implanted with RHCIII-MPC hydrogels. The other eight control corneas were implanted with either allografts or a simple crosslinked RHCIII hydrogel. In all cases, 6.25 mm diameter, 350 µm thick b...

  4. [Influence of glycosaminoglycan synthesis of cultured cornea stroma cells by variation of culture condition].

    Science.gov (United States)

    Bleckmann, H; Kresse, H

    1979-06-15

    Cultured cells derived from bovine corneal stroma synthesize all types of sulfated glycosaminoglycans and distribute these macromolecules into topographically different compartments in a reproducible manner. Each compartment is characterized by a typical glycosaminoglycan distribution pattern. Corneal fibroblasts synthesize in vitro only small amounts of keratan sulfate in contrast to the in vivo conditions. We have, therefore, investigated the synthesis and topographical distribution of sulfated glycosaminoglycans as influenced by different culture conditions. The following results were obtained: 1) Cocultivation of epithelial and stromal fibroblasts from bovine cornea led to an increased incorporation of radiosulfate into sulfated glycosaminoglycans by about 50% as compared to the theoretical value. Glycosaminoglycan distribution of mixed cultures into different compartments showed no similarity compared with pure epithelial or stromal fibroblasts. 2) Addition of native or heat inactivated anterior chamber fluid to the culture medium was followed by a twofold increase of [35S]-sulfate incorporation and by an augmented intracellular and pericellular accumulation of labeled macromolecules. 3) Reduction of the incubation temperature led to a reduced synthesis of glycosaminoglycans without influencing their topographical distribution. Growth of stromal cells on type I collagen was accompanied by a reduced glycosaminoglycan synthesis of about 25%. Extracellular macromolecules reached only half of the normal value, while intracellularly their concentration was slightly increased. 4) None of the variations of the culture condition led to a significant change of the distribution pattern of sulfated glycosaminoglycans. Especially, no significant increase of keratan sulfate biosynthesis could be detected.

  5. Activated wnt signaling in stroma contributes to development of pancreatic mucinous cystic neoplasms.

    Science.gov (United States)

    Sano, Makoto; Driscoll, David R; De Jesus-Monge, Wilfredo E; Klimstra, David S; Lewis, Brian C

    2014-01-01

    Pancreatic mucinous cystic neoplasm (MCN), a cystic tumor of the pancreas that develops most frequently in women, is a potential precursor to pancreatic ductal adenocarcinoma. MCNs develop primarily in the body and tail of the pancreas and are characterized by the presence of a mucinous epithelium and ovarian-like subepithelial stroma. We investigated the involvement of Wnt signaling in KRAS-mediated pancreatic tumorigenesis and development of MCN in mice, and Wnt activation in human MCN samples. LSL-Kras(G12D), Ptf1a-cre mice were crossed with elastase-tva mice to allow for introduction of genes encoded by the replication-competent avian sarcoma-leukosis virus long-terminal repeat with splice acceptor viruses to pancreatic acinar cells and acinar cell progenitors, postnatally and sporadically. Repeat with splice acceptor viruses that expressed Wnt1 were delivered to the pancreatic epithelium of these mice; pancreatic lesions were analyzed by histopathology and immunohistochemical analyses. We analyzed levels of factors in Wnt signaling pathways in 19 MCN samples from patients. Expression of Wnt1 in the pancreatic acinar cells and acinar cell progenitors of female mice led to development of unilocular or multilocular epithelial cysts in the pancreas body and tail, similar to MCN. The cystic lesions resembled the estrogen receptor- and progesterone receptor-positive ovarian-like stroma of MCN, but lacked the typical mucinous epithelium. Activated Wnt signaling, based on nuclear localization of β-catenin, was detected in the stroma but not cyst epithelium. Wnt signaling to β-catenin was found to be activated in MCN samples from patients, within the ovarian-like stroma, consistent with the findings in mice. Based on studies of mice and pancreatic MCN samples from patients, the canonical Wnt signaling pathway becomes activated and promotes development of the ovarian-like stroma to contribute to formation of MCNs. Copyright © 2014 AGA Institute. Published by Elsevier

  6. The origin of stroma surrounding epithelial ovarian cancer cells.

    Science.gov (United States)

    Akahane, Tomoko; Hirasawa, Akira; Tsuda, Hiroshi; Kataoka, Fumio; Nishimura, Sadako; Tanaka, Hideo; Tominaga, Eiichiro; Nomura, Hiroyuki; Chiyoda, Tatsuyuki; Iguchi, Yoko; Yamagami, Wataru; Susumu, Nobuyuki; Aoki, Daisuke

    2013-01-01

    Cancer stroma is thought to play an important role in tumor behavior, including invasion or metastasis and response to therapy. Cancer stroma is generally thought either to be non-neoplastic cells, including tissue-marrow or bone-marrow-derived fibroblasts, or to originate in epithelial mesenchymal transition of cancer cells. In this study, we evaluated the status of the p53 gene in both the cancer cells and the cancer stroma in epithelial ovarian cancer (EOC) to elucidate the origin of the stroma. Samples from 16 EOC patients were included in this study. Tumor cells and adjacent nontumor stromal cells were microdissected and DNA was extracted separately. We analyzed p53 sequences (exons 5-8) of both cancer and stromal tissues in all cases. Furthermore, we examined p53 protein expression in all cases. Mutations in p53 were detected in 9 of the 16 EOCs: in 8 of these cases, the mutations were detected only in cancer cells. In 1 case, the same mutation (R248Q) was detected in both cancer and stromal tissues, and p53 protein expression was detected in both the cancer cells and the cancer stroma. Most cancer stroma in EOC is thought to originate from non-neoplastic cells, but some parts of the cancer stroma might originate from cancer cells.

  7. Characterization of Corneal Indentation Hysteresis.

    Science.gov (United States)

    Ko, Match W L; Dongming Wei; Leung, Christopher K S

    2015-01-01

    Corneal indentation is adapted for the design and development of a characterization method for corneal hysteresis behavior - Corneal Indentation Hysteresis (CIH). Fourteen porcine eyes were tested using the corneal indentation method. The CIH measured in enucleated porcine eyes showed indentation rate and intraocular pressure (IOP) dependences. The CIH increased with indentation rate at lower IOP ( 25 mmHg). The CIH was linear proportional to the IOP within an individual eye. The CIH was positively correlated with the IOP, corneal in-plane tensile stress and corneal tangent modulus (E). A new method based on corneal indentation for the measurement of Corneal Indentation Hysteresis in vivo is developed. To our knowledge, this is the first study to introduce the corneal indentation hysteresis and correlate the corneal indentation hysteresis and corneal tangent modulus.

  8. corneal pyogenic granuloma

    African Journals Online (AJOL)

    GB

    2012-09-14

    Sep 14, 2012 ... Figure 3: A child with pyogenic cornea granuloma intra operatively. After excision of the mass, central corneal stromal defect developed. The patient was followed up for more than a month with topical antibiotic and cycloplegic. Subsequently, the defect healed and leucoma corneal opacity (figure.

  9. Inhibition of Corneal Neovascularization with the Combination of Bevacizumab and Plasmid Pigment Epithelium-Derived Factor-Synthetic Amphiphile INTeraction-18 (p-PEDF-SAINT-18 Vector in a Rat Corneal Experimental Angiogenesis Model

    Directory of Open Access Journals (Sweden)

    Ching-Hsein Chen

    2013-04-01

    Full Text Available Bevacizumab, a 149-kDa protein, is a recombinant humanized monoclonal antibody to VEGF. PEDF, a 50-kDa glycoprotein, has demonstrated anti-vasopermeability properties. In this study, we demonstrated that the combination of bevacizumab and plasmid pigment epithelium-derived factor-synthetic amphiphile INTeraction-18 (p-PEDF-SAINT-18 has a favorable antiangiogenic effect on corneal NV. Four groups (Group A: 0 μg + 0 μg, B: 0.1 μg + 0.1 μg, C: 1 μg + 1 μg, and D: 10 μg + 10 μg of bevacizumab + p-PEDF-SAINT-18 were prepared and implanted into the rat subconjunctival substantia propria 1.5 mm from the limbus on the temporal side. Then, 1 μg of p-bFGF-SAINT-18 was prepared and implanted into the rat corneal stroma 1.5 mm from the limbus on the same side. The inhibition of NV was observed and quantified from days 1 to 60. Biomicroscopic examination, western blot analysis and immunohistochemistry were used to analyze the 18-kDa bFGF, 50-kDa PEDF and VEGF protein expression. No inhibition activity for normal limbal vessels was noted. Subconjunctival injection with the combination of bevacizumab and p-PEDF-SAINT-18 successfully inhibited corneal NV. The bFGF and PEDF genes were successfully expressed as shown by western blot analysis, and a mild immune response to HLA-DR was shown by immunohistochemistry. We concluded that the combination of bevacizumab and p-PEDF-SAINT-18 may have more potent and prolonged antiangiogenic effects, making it possible to reduce the frequency of subconjunctival.Bevacizumab, a 149-kDa protein, is a recombinant humanized monoclonalantibody to VEGF. PEDF, a 50-kDa glycoprotein, has demonstrated anti-vasopermeabilityproperties. In this study, we demonstrated that the combination of bevacizumaband plasmid pigment epithelium-derived factor-synthetic amphiphile INTeraction-18(p-PEDF-SAINT-18 has a favorable antiangiogenic effect on corneal NV. Four groups(Group A: 0 μg + 0 μg, B: 0.1 μg + 0.1 μg, C: 1 μg + 1 μg, and

  10. Corneal biomechanics - a review.

    Science.gov (United States)

    Kling, Sabine; Hafezi, Farhad

    2017-05-01

    In recent years, the interest in corneal biomechanics has strongly increased. The material properties of the cornea determine its shape and therefore play an important role in corneal ectasia and related pathologies. This review addresses the molecular origin of biomechanical properties, models for their description, methods for their characterisation, techniques for their modification, and computational simulation approaches. Recent research has focused on developing non-contact techniques to measure the biomechanical properties in vivo, on determining structural and molecular abnormalities in pathological corneas, on developing and optimising techniques to reinforce the corneal tissue and on the computational simulation of surgical interventions. A better understanding of corneal biomechanics will help to improve current refractive surgeries, allow an earlier diagnosis of ectatic disorders and a better quantification of treatments aiming at reinforcing the corneal tissue. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  11. Pathogenesis of Acute and Delayed Corneal Lesions after Ocular Exposure to Sulfur Mustard Vapor

    Science.gov (United States)

    2012-01-01

    are refractory to steroidal treatment [13,14]. Here we used histopathology, transmission electron microscopy (TEM) and biochemistry to evaluate...to keratoactive substances. An improved understanding of the temporal changes in corneal structure and biochemistry associated with MGK is essential...keratocytes [20,21,22]. However, if epithelial loss includes an ulcerative injury, then release and penetration of TGF-b family members into the stroma

  12. The scale of substratum topographic features modulates proliferation of corneal epithelial cells and corneal fibroblasts

    OpenAIRE

    Liliensiek, S.J.; Campbell, S.; Nealey, P. F.; Murphy, C J

    2006-01-01

    The cornea is a complex tissue composed of different cell types, including corneal epithelial cells and keratocytes. Each of these cell types are directly exposed to rich nanoscale topography from the basement membrane or surrounding extracellular matrix. Nanoscale topography has been shown to influence cell behaviors, including orientation, alignment, differentiation, migration, and proliferation. We investigated whether proliferation of SV40-transformed human corneal epithelial cells (SV40-...

  13. XENOTRANSPLANTATION – THE FUTURE OF CORNEAL TRANSPLANTATION?

    Science.gov (United States)

    Hara, Hidetaka; Cooper, David K.C.

    2010-01-01

    Although corneal transplantation is readily available in the USA and certain other regions of the developed world, the need for human donor corneas worldwide far exceeds supply. There is currently renewed interest in the possibility of using corneas from other species, especially pigs, for transplantation into humans (xenotransplantation). The biomechanical properties of human and pig corneas are similar. Studies in animal models of corneal xenotransplantation have documented both humoral and cellular immune responses that play roles in xenograft rejection. The results obtained from the Tx of corneas from wild-type (i.e., genetically-unmodified) pigs into nonhuman primates have been surprisingly good and encouraging. Recent progress in the genetic manipulation of pigs has led to the prospect that the remaining immunological barriers will be overcome. There is every reason for optimism that corneal xenoTx will become a clinical reality within the next few years. PMID:21099407

  14. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma.

    Science.gov (United States)

    Serakinci, Nedime; Christensen, Rikke; Fahrioglu, Umut; Sorensen, Flemming Brandt; Dagnæs-Hansen, Frederik; Hajek, Miroslav; Jensen, Tinna Herløv; Kolvraa, Steen; Keith, Nicol W

    2011-12-01

    The field of stem cell biology continues to evolve by characterization of further types of stem cells and by exploring their therapeutic potential for experimental and clinical applications. Human mesenchymal stem cells (hMSCs) are one of the most promising candidates simply because of their easiness of both ex vivo expansion in culture dishes and genetic manipulation. Despite many extensive isolation and expansion studies, relatively little has been done with regard to hMSCs' therapeutic potential. Although clinical trials using hMSCs are underway, their use in cancer therapy still needs better understanding and in vivo supporting data. The homing ability of hMSCs was investigated by creating a human xenograft model by transplanting an ovarian cancer cell line into immunocompromised mice. Then, genetically engineered hMSC-telo1 cells were injected through the tail vein and the contribution and distribution of hMSCs to the tumor stroma were investigated by immunohistochemistry and PCR specific to the telomerase gene. Results show that exogenously administered hMSCs preferentially home, engraft, and proliferate at tumor sites and contribute to the population of stromal fibroblasts. In conclusion, this study provides support for the capacity of hMSCs to home to tumor site and serve as a delivery platform for chemotherapeutic agents.

  15. Stroma Breaking Theranostic Nanoparticles for Targeted Pancreatic Cancer Therapy

    Science.gov (United States)

    This project develops a dual-targeted and stroma breaking theranostic nanoparticle platform to address an unmet, clinical challenge of poor drug delivery efficiency in the application of nanomedicine to cancer therapy.

  16. Acoustic Radiation Force Elastic Microscopy for the Study of Corneal Elasticity

    OpenAIRE

    Mikula, Eric Robert

    2015-01-01

    The human cornea is a complex, inhomogeneous layered structure which acts as our window to the world. The mechanical properties of the cornea, along with the underlying corneal microstructure help determine the shape of the corneal surface, and thus also determine visual acuity. Since the cornea provides nearly two thirds of the refractive power of the eye, even small alteration of the corneal surface can have significant impact on the quality of vision. Furthermore, understanding corneal me...

  17. Immunogold fine structural localization of extracellular matrix components in aged human cornea. II. Collagen types V and VI.

    Science.gov (United States)

    Marshall, G E; Konstas, A G; Lee, W R

    1991-01-01

    Using immunogold immunocytochemical techniques we studied the distribution of collagen types V and VI in corneal tissue from seven enucleated human eyes (age range, 63-78 years). Results obtained by cryoultramicrotomy were marginally more intense than those obtained using London Resin white (LR white) embedding. Type V collagen was present in the striated collagen fibrils in Bowman's layer, in the stroma and in a thin, non-banded anterior zone of Descemet's membrane. Our results suggest that types I, III and V collagen co-distribute in striated collagen fibrils. By contrast, type VI collagen was located in fine filaments in the interfibrillar matrix of the stroma, in Bowman's layer and in the anchoring plaques of the sub-epithelial basement-membrane complex. This implies an importance in epithelial adhesion which was previously unsuspected. Keratocyte bodies were electron-dense, amorphous extracellular deposits of matrix-like material, and these were labelled with types III, V and VI collagen antibodies. Long-spacing collagen was observed in the corneal stroma, and this deposit did not contain any of the collagen types studied.

  18. Transverse depth-dependent changes in corneal collagen lamellar orientation and distribution

    Science.gov (United States)

    Abass, Ahmed; Hayes, Sally; White, Nick; Sorensen, Thomas; Meek, Keith M.

    2015-01-01

    It is thought that corneal surface topography may be stabilized by the angular orientation of out-of plane lamellae that insert into the anterior limiting membrane. In this study, micro-focus X-ray scattering data were used to obtain quantitative information about lamellar inclination (with respect to the corneal surface) and the X-ray scatter intensity throughout the depth of the cornea from the centre to the temporal limbus. The average collagen inclination remained predominantly parallel to the tissue surface at all depths. However, in the central cornea, the spread of inclination angles was greatest in the anterior-most stroma (reflecting the increased lamellar interweaving in this region), and decreased with tissue depth; in the peripheral cornea inclination angles showed less variation throughout the tissue thickness. Inclination angles in the deeper stroma were generally higher in the peripheral cornea, suggesting the presence of more interweaving in the posterior stroma away from the central cornea. An increase in collagen X-ray scatter was identified in a region extending from the sclera anteriorly until about 2 mm from the corneal centre. This could arise from the presence of larger diameter fibrils, probably of scleral origin, which are known to exist in this region. Incorporation of this quantitative information into finite-element models will further improve the accuracy with which they can predict the biomechanical response of the cornea to pathology and refractive procedures. PMID:25631562

  19. Transverse depth-dependent changes in corneal collagen lamellar orientation and distribution.

    Science.gov (United States)

    Abass, Ahmed; Hayes, Sally; White, Nick; Sorensen, Thomas; Meek, Keith M

    2015-03-06

    It is thought that corneal surface topography may be stabilized by the angular orientation of out-of plane lamellae that insert into the anterior limiting membrane. In this study, micro-focus X-ray scattering data were used to obtain quantitative information about lamellar inclination (with respect to the corneal surface) and the X-ray scatter intensity throughout the depth of the cornea from the centre to the temporal limbus. The average collagen inclination remained predominantly parallel to the tissue surface at all depths. However, in the central cornea, the spread of inclination angles was greatest in the anterior-most stroma (reflecting the increased lamellar interweaving in this region), and decreased with tissue depth; in the peripheral cornea inclination angles showed less variation throughout the tissue thickness. Inclination angles in the deeper stroma were generally higher in the peripheral cornea, suggesting the presence of more interweaving in the posterior stroma away from the central cornea. An increase in collagen X-ray scatter was identified in a region extending from the sclera anteriorly until about 2 mm from the corneal centre. This could arise from the presence of larger diameter fibrils, probably of scleral origin, which are known to exist in this region. Incorporation of this quantitative information into finite-element models will further improve the accuracy with which they can predict the biomechanical response of the cornea to pathology and refractive procedures.

  20. New insight into non-healing corneal ulcers: iatrogenic crystals

    Science.gov (United States)

    Livingstone, I; Stefanowicz, F; Moggach, S; Connolly, J; Ramamurthi, S; Mantry, S; Ramaesh, K

    2013-01-01

    Aims To characterise and correlate crystalline precipitations implicated in non-healing corneal ulceration in two patients with a previous history of acanthamoeba keratitis. Materials and methods Persistence of acanthamoeba and secondary bacterial infection was excluded with negative corneal scrapes. Confocal microscopy identified crystal-like deposits within the corneal stroma. To investigate possible precipitating combinations, all concurrent treatments at the time of presentation were mixed in wells, with observation of precipitate formation. Precipitates were observed with phase-contrast microscopy, and subsequently characterised via crystallography techniques and electrospray ionisation mass spectrometry. Results Combinations of dexamethasone 0.1% minims and chlorhexidine gluconate 0.2% formed an amorphous material characterised by electrospray ionisation mass spectrometry as an insoluble chlorhexidine salt. Combinations of chloramphenicol drops and timolol 0.5% formed a crystal identified via X-ray crystallography as santite (K(B5O6(OH)4).(H2O)2). This is a borate mineral identified in nature, arising from thermal springs, but never reported in biological tissues. Clinical improvement was observed following the cessation of the implicated precipitating combinations. Conclusion Our observations suggest iatrogenic precipitate formation, with a potential deleterious effect upon healing. The substrates for these precipitates include several frequently prescribed topical ophthalmic treatments. These findings shed new light on the aetiopathogenesis of non-healing corneal ulceration, and have broad implications on topical prescribing for this challenging condition. PMID:23558213

  1. OCT corneal elastography by pressure-induced optical feature flow

    Science.gov (United States)

    Ford, Matthew; Dupps, William J., Jr.; Huprikar, Nikhil; Lin, Roger; Rollins, Andrew M.

    2006-02-01

    The viscoelastic properties of the cornea are important determinants of the corneal response to surgery and disease. The purpose of this work is to develop an OCT-based technique for non-contact, high-resolution pan-corneal strain mapping using clinically-achievable pressure changes as a stressor. Porcine corneas were excised and mounted on an artificial anterior chamber that facilitated maintenance of a simulated intraocular pressure (IOP). Pressure was controlled and monitored continuously by saline infusion with an in-line transducer and digital monitor. Mounted specimens were positioned under a laboratory-based high-speed OCT system and imaged in three dimensions at various IOP levels. Matlab and C++ routines were written to perform 2-D bitmap cross-correlation analyses on corresponding images at different pressure levels. Resulting correlations produced a likelihood estimate of the 2-D vector displacement of corneal optical features. Strain maps from cross-correlation analyses revealed local areas of highly consistent displacements interspersed with inter-regional variability. Displacements occurred predominantly along axial vectors. Our analysis produces results consistent with expected and observed displacement of the cornea with varying IOP. Cross-correlation analysis of optical feature flow in the corneal stroma can provide high-resolution strain maps capable of distinguishing spatial heterogeneity in the corneal response to pressure change. A non-destructive, non-contact technique for corneal strain mapping offers numerous potential advantages over tensile testing of excised tissue strips for inferring viscoelastic behavior, and the membrane inflation model employed here could potentially be extended to clinical biomechanical characterizations.

  2. The emerging roles of exosomes in tumor-stroma interaction.

    Science.gov (United States)

    Fu, Hailong; Yang, Huan; Zhang, Xu; Xu, Wenrong

    2016-09-01

    The tumor-stroma interaction is critical for the development and progression of cancer. Cancer-associated fibroblasts (CAFs), one of the major components of the tumor stroma, can promote tumor growth and metastasis. Exosomes are secreted microvesicles that mediate cell-to-cell communication. Exosomal contents, including proteins, nucleic acids, and lipids, can be shuttled from donor cells to target cells. Recent studies suggest that exosomes play important roles in the tumor-stroma interaction. Herein, we review the multifaceted roles of exosomes in the tumor-stroma interaction and the underlying molecular mechanisms. Literature search for all relevant publications was performed on PubMed databases. The keywords of exosomes, tumor, stroma, CAFs, mesenchymal stem cells (MSCs) and other closely related terms were used for searching. Tumor cell-derived exosomes induce the differentiation of fibroblasts and MSCs into CAFs. In turn, exosomes secreted by CAFs promote tumor growth, metastasis, and drug resistance through distinct mechanisms. Moreover, exosomes from stromal cells can be used as therapeutic vehicles for the delivery of anticancer drugs. Tumor cells communicate with CAFs through exosomes, which establishes a bidirectional cross talk to promote tumor growth, metastasis, and drug resistance. Targeting exosomes in tumor-stroma interaction may have important implications for anticancer therapy.

  3. Imaging aspects of the tumor stroma with therapeutic implications.

    Science.gov (United States)

    Narunsky, Lian; Oren, Roni; Bochner, Filip; Neeman, Michal

    2014-02-01

    Cancer cells rely on extensive support from the stroma in order to survive, proliferate and invade. The tumor stroma is thus an important potential target for anti-cancer therapy. Typical changes in the stroma include a shift from the quiescence promoting-antiangiogenic extracellular matrix to a provisional matrix that promotes invasion and angiogenesis. These changes in the extracellular matrix are induced by changes in the secretion of extracellular matrix proteins and glucose amino glycans, extravasation of plasma proteins from hyperpermeable vessels and release of matrix modifying enzymes resulting in cleavage and cross-linking of matrix macromolecules. These in turn alter the rigidity of the matrix and the exposure and release of cytokines. Changes in matrix rigidity and vessel permeability affect drug delivery and mediate resistance to cytotoxic therapy. These stroma changes are brought about not only by the cancer cells, but also through the action of many cell types that are recruited by tumors including immune cells, fibroblasts and endothelial cells. Within the tumor, these normal host cells are activated resulting in loss of inhibitory and induction of cancer promoting activities. Key to the development of stroma-targeted therapies, selective biomarkers were developed for specific imaging of key aspects of the tumor stroma. © 2013 Elsevier Inc. All rights reserved.

  4. Optical properties of an anterior lamellar human cornea model based on fibrin-agarose

    Science.gov (United States)

    Ionescu, Ana M.; Cardona, Juan de la Cruz; Ghinea, Razvan; Garzón, Ingrid; González-Andrades, Miguel; Alaminos, Miguel; Pérez, Maria del Mar

    2017-08-01

    The optical evaluation carried out using the Inverse Adding-Doubling (IAD) method to determine the scattering and the absorption coefficients of the bioengineered human corneal stromas showed that this type of artificial biomaterials shared many similarities with native control cornea after four weeks of development in culture. Their absorption and reduced scattering coefficients values were higher than the ones of the control cornea, but their spectral behaviors of both coefficients were similar. Time of development in culture was an influencing factor on the results.

  5. Corneal biomechanical properties and their correlates with healing process after Descemetic versus 
pre-Descemetic lamellar keratoplasty.

    Science.gov (United States)

    Abdelkader, Almamoun

    2013-03-23

    Purpose: To evaluate the influence of the wound-healing process on corneal biomechanics in patients after 2 types of deep anterior lamellar keratoplasty: Descemetic with total stromal resection vs pre-Descemetic with deep stromal dissection.
Methods: This prospective comparative study consisted of 32 eyes of 32 patients. Patients were divided into 2 groups: Descemetic (17 eyes) and pre-Descemetic (15 eyes). Reichert ocular response analyzer was used to measure corneal hysteresis (CH) and corneal resistance factor (CRF) at 1 and 3 months postoperatively. Central corneal thickness (CCT) was measured using ultrasonic pachymetry. In vivo confocal microscopy was also used to study the corneal wound-healing process and to correlate these events with the corneal biomechanics postoperatively in both groups.
Results: Both mean CH and mean CRF were significantly lower in the Descemetic than the pre-Descemetic group at 1 and 3 months postoperatively (p<0.0001). The reflectivity of activated keratocytes at both the interface and wound edge was less in the Descemetic than the pre-Descemetic group at all times as revealed by the confocal microscopy. No statistically significant difference in mean CCT was found between both groups at 1 and 3 months. Subsequent and progressive decrease in interface reflectivity of activated keratocytes was presented in both groups.
Conclusions: Healing process at the interface is key to optimal corneal integrity. In the pre-Descemetic group, stroma-to-stroma healing stimulated more activated keratocytes and hence stronger healing response, providing superior corneal biomechanics. Significant positive correlation between the intensity of the keratocyte activation and corneal integrity was found.

  6. Immunomodulatory effects of bone marrow-derived mesenchymal stem cells on pro-inflammatory cytokine-stimulated human corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Li Wen

    Full Text Available PURPOSE: To investigate the modulatory effect of rat bone marrow mesenchymal stem cells (MSC on human corneal epithelial cells (HCE-T stimulated with pro-inflammatory cytokines interferon gamma (IFN-γ and tumor necrosis factor alpha (TNF-α in an in vitro co-cultured model. METHODS: HCE-T alone and co-cultured with MSC were stimulated with IFN-γ/TNF for 24 and 48 hours or left untreated. The expression of intracellular adhesion molecule (ICAM-1, human leukocyte antigen ABC, DR and G (HLA-ABC, HLA-DR, HLA-G were investigated by flow cytometry. Subcellular localization of nuclear factor-kappa B (NF-κB and expression of indoleamine 2,3-dioxygenase (IDO were assessed by immunofluorescence staining and western blot. The concentration of transforming growth factor beta 1 (TGF-β1 in the conditioned media from different cultures was evaluated by enzyme-linked immunosorbent assay. NF-κB and TGF-β1 signaling pathway blocking experiments were performed to analyze associations between the expression of cell surface molecules and the NF-κB transcription pathway, and the expression of IDO and TGF-β1 signaling pathway. RESULTS: IFN-γ/TNF treatment significantly up-regulated expression of ICAM-1, HLA-ABC, and induced de novo expression of HLA-DR and IDO on HCE-T cultured alone, while HLA-G expression remained unaffected. Up-regulation was significantly inhibited by co-culture with MSC. Increased TGF-β1 secretion was detected in 48 h IFN-γ/TNF-stimulated MSC monocultures and HCE-T/MSC co-cultures. MSC attenuated the activation of cytokine-induced NF-κB and IDO induction. Blockade of NF-κB transcription pathway by BMS-345541 significantly reduced the up-regulation of ICAM-1, HLA-ABC, HLA-DR and IDO expression, while blockade of TGF-β1 signaling pathways reversed the modulatory effect of MSC on IDO expression. CONCLUSIONS: MSC reduced the expression of adhesion and immunoregulatory molecules on pro-inflammatory cytokine-stimulated HCE-T via the NF

  7. Repeatability and interobserver reproducibility of Artemis-2 high-frequency ultrasound in determination of human corneal thickness

    Directory of Open Access Journals (Sweden)

    Ogbuehi KC

    2012-05-01

    Full Text Available Kelechi C Ogbuehi, Uchechukwu L OsuagwuOutpatient Clinic, Department of Optometry, King Saud University, Riyadh, Kingdom of Saudi ArabiaBackground: The purpose of this study was to assess the repeatability and limits of agreement of corneal thickness values measured by a high-frequency ultrasound (Artemis-2, hand-held ultrasound pachymeter (DGH-500 and a specular microscope (SP-3000P.Methods: Central corneal thickness (CCT was analyzed in this prospective randomized study that included 32 patients (18 men and 14 women aged 21–24 years. Measurements were obtained in two sessions, one week apart, by two examiners with three devices in a randomized order. Nine measurements were taken (three with each device on one randomly selected eye of each patient in each measurement session. The coefficient of repeatability and interobserver reproducibility for the values of each method were calculated. The limits of agreement between techniques were also evaluated.Results: There were no significant differences in CCT values between sessions for each of the three devices (P > 0.05. The repeatability coefficients for the Artemis-2 (±8 µm/±9 µm were superior to those of the SP-3000P (±9 µm/±11 µm and DGH 500 (±12 µm/±12 µm in session 1/session 2 respectively, while the interobserver reproducibility index (differences between session 1 and session 2 was superior for the SP-3000P (±17 µm with respect to DHG-500 (±29 µm and the Artemis-2 (±31 µm. In session 1 and session 2, the limits of agreement between the techniques were 35 µm to -31 µm and 34 to -20 µm, respectively, for DGH-500 versus Artemis-2, 73 µm to 3 µm and 60 µm to 9 µm for Artemis-2 versus SP-3000P, and 58 µm to 22 µm and 72 µm to 10 µm for DGH-500 versus SP-3000P comparisons. The DGH-500 and Artemis-2 gave similar values (P > 0.05 in both sessions, but both (Artemis-2 and DGH-500 values were significantly greater than that of the SP-3000P (P < 0.05 in both sessions

  8. Corneal biomechanical properties from two-dimensional corneal flap extensiometry: application to UV-riboflavin cross-linking.

    Science.gov (United States)

    Kling, Sabine; Ginis, Harilaos; Marcos, Susana

    2012-07-27

    Corneal biomechanical properties are usually measured by strip extensiometry or inflation methods. We developed a two-dimensional (2D) flap extensiometry technique, combining the advantages of both methods, and applied it to measure the effect of UV-Riboflavin cross-linking (CXL). Corneal flaps (13 pig/8 rabbit) from the de-epithelialized anterior stroma (96 μm) were mounted on a custom chamber, consisting of a BK7 lens, a reflective retina, and two reservoirs (filled with Riboflavin and silicone oil). Stretching the corneal flap during five pressure increase/decrease cycles (0-30 mm Hg) changed the refractive power of the system, whose Zernike aberrations were monitored with a ray-tracing aberrometer. Porcine flaps were used to test the system. Rabbits were treated with CXL unilaterally in vivo following standard clinical procedures. Flaps were measured 1 month postoperatively. An analytical model allowed estimating Young's modulus from the change in surface (strain) and pressure (stress). Confocal microscopy examination was performed before, and at different times after CXL. Flap curvature changed with increased function of IOP in pig flaps (23.4 × 10⁻³ D/mm Hg). In rabbit flaps curvature changed significantly less in 1 month post CXL (P = 0.026) than in untreated corneas [17.0 vs. 6.36 millidiopter (mD)/mm Hg]. Young's modulus was 2.29 megapascals (MPa) in porcine corneas, 1.98 MPa in untreated rabbit corneas, and 4.83 MPa in 1 month post CXL rabbit corneas. At the same time, highly reflective structures were observed in the rabbit midstroma after treatment. 2D flap extensiometry allows estimating corneal elasticity in vitro. The measurements are spatially resolved in depth, minimize the effects of corneal hydration, and preserve the integrity of the cornea. The method proved the efficacy of CXL in increasing corneal rigidity after 1 month in rabbits.

  9. In vivo confocal microscopy of pre-Descemet corneal dystrophy associated with X-linked ichthyosis: a case report.

    Science.gov (United States)

    Shi, Hui; Qi, Xiao-Feng; Liu, Tao-Tao; Hao, Qian; Li, Xiao-Hong; Liang, Ling-Ling; Wang, Yi-Miao; Cui, Zhi-Hua

    2017-03-16

    Pre-Descemet corneal dystrophy (PDCD) is characterized by the presence of numerous, tiny, polymorphic opacities immediately anterior to Descemet membrane, which is a rare form of corneal stromal dystrophy and hard to be diagnosed. In vivo confocal microscopy (IVCM) is a useful tool to examine the minimal lesions of the cornea at the cellular level. In this article, we report a rare case of PDCD associated with X-linked ichthyosis and evaluate IVCM findings. We present a 34-year-old male Chinese patient with PDCD associated with X-linked ichthyosis. Slit-lamp biomicroscopy showed the presence of tiny and pleomorphic opacities in the posterior stroma immediately anterior to Descemet membrane bilaterally. IVCM revealed regular distributed hyperreflective particles inside the enlarged and activated keratocytes in the posterior stroma. Hyperreflective particles were also observed dispersedly outside the keratocytes in the anterior stroma. Dermatological examination revealed that the skin over the patient's entire body was dry and coarse, with thickening and scaling of the skin in the extensor side of the extremities. PCR results demonstrated that all ten exons and part flanking sequences of STS gene failed to produce any amplicons in the patient. IVCM is useful for analyzing the living corneal structural changes in rare corneal dystrophies. We first reported the IVCM characteristics of PDCD associated with X-linked ichthyosis, which was caused by a deletion of the steroid sulfatase (STS) gene, confirmed by gene analysis.

  10. Strain imaging of corneal tissue with an ultrasound elasticity microscope.

    Science.gov (United States)

    Hollman, Kyle W; Emelianov, Stanislav Y; Neiss, Jason H; Jotyan, Gagik; Spooner, Gregory J R; Juhasz, Tibor; Kurtz, Ron M; O'Donnell, Matthew

    2002-01-01

    We hypothesize that high-resolution elasticity measurements can guide corrective refractive surgery of the cornea. Elasticity measurements would improve surgical outcomes by adding biomechanical information not used in existing clinical nomograms. As an initial investigation, we determined the usefulness and evaluated the ability of our ultrasound elasticity microscope by measuring strain ex vivo in an intact porcine eye globe. Strain was predicted with a finite element model guided by direct mechanical measurements of corneal elasticity. Next, a porcine cornea was deformed with a slitted plate while being imaged with ultrasound. For high spatial resolution, the ultrasound elasticity microscope uses a 50 MHz transducer with a 1.4 f/number. It produces high-quality conventional ultrasonic B-scans over large thicknesses by confocal processing. Strain was calculated from tracking speckle in these images after deformation. This technique is compatible with in vivo measurements. Compressional and expansional deformations were the same order of magnitude from -3.5% to as great as +3.5%. Strain imaging indicated the stroma expanded into the slit of the deformation plate while Bowman's layer compressed. This bipolar variation within a specimen is unusual. Within the stroma, a variation of strain with depth was measured suggesting a distribution of elasticity. Results compared favorably with the finite element model. An ultrasound elasticity microscope can produce high-resolution strain images throughout the corneal depth. Various layers with different elastic properties appeared as different strains in the images.

  11. Corneal manifestations of X-linked ichthyosis in two brothers.

    Science.gov (United States)

    Haritoglou, C; Ugele, B; Kenyon, K R; Kampik, A

    2000-11-01

    To report the unusual manifestation of X-linked ichthyosis in two brothers. Leukocyte separation and sterylsulfatase assay are performed to show the deficiency of sterylsulfatase. Two brothers presented in our clinic with cutaneous alterations consistent with X-linked ichthyosis. Ocular examination disclosed fine, flour-like, punctate, evenly, and diffusely distributed opacities of the posterior corneal stroma, close to Descemet membrane in both patients. In one patient, superficial, small, granular opacities were detected. They were gray in color and seemed to involve the epithelium and the subepithelial and anterior stromal layers. In both patients, the deficiency of sterylsulfatase could be shown and confirmed the diagnosis. Flour-like opacities in the posterior stroma have been shown to be a common manifestation of X-linked ichthyosis. Though the underlying biochemical defect in X-linked ichthyosis has been discovered, the question of how these opacities develop is still a subject of debate. Subepithelial stromal keratopathies or epithelial irregularities are uncommon and are rarely described in the literature. The superficial corneal changes seen in one of our patients are unusual and are not similar to those reported by other authors.

  12. Collagen cross-linking using riboflavin and ultraviolet-a for corneal thinning disorders: an evidence-based analysis.

    Science.gov (United States)

    Pron, G; Ieraci, L; Kaulback, K

    2011-01-01

    The main objectives for this evidence-based analysis were to determine the safety and effectiveness of photochemical corneal collagen cross-linking with riboflavin (vitamin B(2)) and ultraviolet-A radiation, referred to as CXL, for the management of corneal thinning disease conditions. The comparative safety and effectiveness of corneal cross-linking with other minimally invasive treatments such as intrastromal corneal rings was also reviewed. The Medical Advisory Secretariat (MAS) evidence-based analysis was performed to support public financing decisions. SUBJECT OF THE EVIDENCE-BASED ANALYSIS: The primary treatment objective for corneal cross-linking is to increase the strength of the corneal stroma, thereby stabilizing the underlying disease process. At the present time, it is the only procedure that treats the underlying disease condition. The proposed advantages for corneal cross-linking are that the procedure is minimally invasive, safe and effective, and it can potentially delay or defer the need for a corneal transplant. In addition, corneal cross-linking does not adversely affect subsequent surgical approaches, if they are necessary, or interfere with corneal transplants. The evidence for these claims for corneal cross-linking in the management of corneal thinning disorders such as keratoconus will be the focus of this review. The specific research questions for the evidence review were as follows: TECHNICAL: How technically demanding is corneal cross-linking and what are the operative risks? What is known about the broader safety profile of corneal cross-linking?Effectiveness - Corneal Surface Topographic Affects:What are the corneal surface remodeling effects of corneal cross-linking?Do these changes interfere with subsequent interventions, particularly corneal transplant known as penetrating keratoplasty (PKP)?Effectiveness -Visual Acuity:What impacts does the remodeling have on visual acuity?Are these impacts predictable, stable, adjustable and

  13. Rag defects and thymic stroma: lessons from animal models

    Directory of Open Access Journals (Sweden)

    Veronica eMarrella

    2014-06-01

    Full Text Available Thymocytes and thymic epithelial cells (TECs cross-talk is essential to support T-cell development and preserve thymic architecture and maturation of TECs and Foxp3+ natural regulatory T (nTreg cells. Accordingly, disruption of thymic lymphostromal cross-talk may have major implications on the thymic mechanisms that govern T cell tolerance. Several genetic defects have been described in humans that affect early stages of T cell development (leading to Severe Combined Immune Deficiency, SCID or late stages in thymocyte maturation (resulting in combined immunodeficiency. Hypomorphic mutations in SCID-causing genes may allow for generation of a limited pool of T lymphocytes with a restricted repertoire. These conditions are often associated with infiltration of peripheral tissues by activated T cells and immune dysregulation, as best exemplified by Omenn syndrome (OS. In this review, we will discuss our recent findings on abnormalities of thymic microenvironment in OS with a special focus of defective maturation of TECs, altered distribution of thymic dendritic cells (DCs and impairment of deletional and non-deletional mechanisms of central tolerance. Here, taking advantage of mouse models of OS and atypical SCID, we will discuss how modifications in stromal compartment impact and shape lymphocyte differentiation, and vice versa how inefficient T cell signalling results in defective stromal maturation. These findings are instrumental to understand the extent to which novel therapeutic strategies should act on thymic stroma to achieve full immune reconstitution.

  14. Dynamic stroma reorganization drives blood vessel dysmorphia during glioma growth.

    Science.gov (United States)

    Mathivet, Thomas; Bouleti, Claire; Van Woensel, Matthias; Stanchi, Fabio; Verschuere, Tina; Phng, Li-Kun; Dejaegher, Joost; Balcer, Marly; Matsumoto, Ken; Georgieva, Petya B; Belmans, Jochen; Sciot, Raf; Stockmann, Christian; Mazzone, Massimiliano; De Vleeschouwer, Steven; Gerhardt, Holger

    2017-10-16

    Glioma growth and progression are characterized by abundant development of blood vessels that are highly aberrant and poorly functional, with detrimental consequences for drug delivery efficacy. The mechanisms driving this vessel dysmorphia during tumor progression are poorly understood. Using longitudinal intravital imaging in a mouse glioma model, we identify that dynamic sprouting and functional morphogenesis of a highly branched vessel network characterize the initial tumor growth, dramatically changing to vessel expansion, leakage, and loss of branching complexity in the later stages. This vascular phenotype transition was accompanied by recruitment of predominantly pro-inflammatory M1-like macrophages in the early stages, followed by in situ repolarization to M2-like macrophages, which produced VEGF-A and relocate to perivascular areas. A similar enrichment and perivascular accumulation of M2 versus M1 macrophages correlated with vessel dilation and malignancy in human glioma samples of different WHO malignancy grade. Targeting macrophages using anti-CSF1 treatment restored normal blood vessel patterning and function. Combination treatment with chemotherapy showed survival benefit, suggesting that targeting macrophages as the key driver of blood vessel dysmorphia in glioma progression presents opportunities to improve efficacy of chemotherapeutic agents. We propose that vessel dysfunction is not simply a general feature of tumor vessel formation, but rather an emergent property resulting from a dynamic and functional reorganization of the tumor stroma and its angiogenic influences. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  15. Synergistic Induction of Eotaxin and VCAM-1 Expression in Human Corneal Fibroblasts by Staphylococcal Peptidoglycan and Either IL-4 or IL-13

    Directory of Open Access Journals (Sweden)

    Ken Fukuda

    2011-01-01

    Conclusions: Interaction of innate and adaptive immunity, as manifested by synergistic stimulation of eotaxin and VCAM-1 expression in corneal fibroblasts by peptidoglycan and Th2 cytokines, may play an important role in tissue eosinophilia associated with ocular allergy.

  16. Effects of long-term soft contact lens wear on the corneal thickness and corneal epithelial thickness of myopic subjects.

    Science.gov (United States)

    Lei, Yulin; Zheng, Xiuyun; Hou, Jie; Xu, Baozeng; Mu, Guoying

    2015-03-01

    To perform safe and successful corneal refractive surgery on myopic patients, corneal thickness (CT) and corneal epithelial thickness (CET) must be accurately measured. Numerous individuals with myopia wear soft contact lenses (SCLs) for the correction of visual acuity but may subsequently undergo corneal refractive surgery. The aim of the present study was therefore to investigate the effects of long-term SCL wear on the CT and the CET of myopic subjects in order to guarantee the safety and accuracy of subsequent corneal refractive surgeries. Fifty-six subjects prepared to receive refractive surgery at Jinan Mingshui Eye Hospital (Zhangqiu, China) from April to July 2013 were included in the study. CT and CET were measured in subjects immediately following discontinued SCL wear (group I, 56 eyes), and subsequently following >two weeks of discontinued SCL wear (group II, 56 eyes). Ninety-four subjects with no history of corneal contact lens wear were enrolled as a control group. The CT and CET were measured at positions with a radius of 0.0‑1.0, 1.0-2.5 (divided into eight quadrants) and 2.5-3.0 mm (divided into eight quadrants) away from the corneal center using the RTVue-100 Fourier-domain anterior segment optical coherence tomography system. A significant decrease in the CT of the subjects in group II was observed, compared with that of group I and the control group (P<0.05). A significant decrease was observed in the CET of groups I and II compared with that of the control group (P<0.05). Following discontinuation of SCL wear, CET increased. However, the increased CET was unable to reach the normal range exhibited by the control group. Edema and thinning of the corneal stroma, as well as thinning of the corneal epithelium were observed in groups I and II. In conclusion, it was proposed that in clinical practice, for myopic patients following long-term SCL wear, CT and CET should be determined ≥ two weeks following discontinuation of SCL wear, once a stable

  17. Chick corneal development in vitro: diverse effects of pH on collagen assembly.

    Science.gov (United States)

    Bard, J B; Hulmes, D J; Purdom, I F; Ross, A S

    1993-08-01

    In vivo, the embryonic chick corneal epithelium lays down a stroma of collagen and proteoglycans whose fibrils are unusual as their diameter distribution peaks sharply about a mean of 20 nm. Such epithelia cultured on Nuclepore filters will also lay down a stroma containing 20 nm diameter fibrils, although there is only limited orthogonal organisation. We report here that collagen fibril morphology is critically dependent on the pH of the medium in which the corneal epithelium is cultured and that normal 20 nm diameter fibrils only assemble in a narrow band around neutral pH (approx. 6.9-7.4). At higher pH (7.6-8.1), fibrils in the distal region of the stroma more closely resemble those seen in non-corneal stroma as their diameters can be up to 200 nm even though fibrils near the basal lamina are only about 10 nm in diameter. At low pH (approx. 6.5), there are again wide fibrils, but with the hieroglyphic cross-sections typical of those seen in heritable disorders of N-terminal procollagen processing. Biochemical analysis by SDS-PAGE and fluorography confirms that N-terminal procollagen processing is deficient at this pH. At very low pH (approx. 5.8-6.2), there is little processing of procollagen and the stroma comprises filamentous material with the occasional banded structures typical of those formed by unprocessed procollagen at high concentration. Gel electrophoresis and peptide mapping showed that the collagens produced by the corneal epithelium of the primary stroma included types I, II and V and that total collagen production, as assessed by incorporation of [3H]proline, increased with pH, although the relative amounts of the different collagens produced remained essentially unchanged. While the biochemical data can account for the altered morphologies in the pH range 5.8 to 7.0, the sensitivity of fibril diameter to small changes around neutral pH remains unexplained, but points to the subtle, charge-based interactions necessary for the formation of 20 nm

  18. Advanced glycation end products induce human corneal epithelial cells apoptosis through generation of reactive oxygen species and activation of JNK and p38 MAPK pathways.

    Directory of Open Access Journals (Sweden)

    Long Shi

    Full Text Available Advanced Glycation End Products (AGEs has been implicated in the progression of diabetic keratopathy. However, details regarding their function are not well understood. In the present study, we investigated the effects of intracellular reactive oxygen species (ROS and JNK, p38 MAPK on AGE-modified bovine serum albumin (BSA induced Human telomerase-immortalized corneal epithelial cells (HUCLs apoptosis. We found that AGE-BSA induced HUCLs apoptosis and increased Bax protein expression, decreased Bcl-2 protein expression. AGE-BSA also induced the expression of receptor for advanced glycation end product (RAGE. AGE-BSA-RAGE interaction induced intracellular ROS generation through activated NADPH oxidase and increased the phosphorylation of p47phox. AGE-BSA induced HUCLs apoptosis was inhibited by pretreatment with NADPH oxidase inhibitors, ROS quencher N-acetylcysteine (NAC or neutralizing anti-RAGE antibodies. We also found that AGE-BSA induced JNK and p38 MAPK phosphorylation. JNK and p38 MAPK inhibitor effectively blocked AGE-BSA-induced HUCLs apoptosis. In addition, NAC completely blocked phosphorylation of JNK and p38 MAPK induced by AGE-BSA. Our results indicate that AGE-BSA induced HUCLs apoptosis through generation of intracellular ROS and activation of JNK and p38 MAPK pathways.

  19. Incorporation of Exogenous RGD Peptide and Inter-Species Blending as Strategies for Enhancing Human Corneal Limbal Epithelial Cell Growth on Bombyx mori Silk Fibroin Membranes

    Directory of Open Access Journals (Sweden)

    Traian V. Chirila

    2013-05-01

    Full Text Available While fibroin isolated from the cocoons of domesticated silkworm Bombyx mori supports growth of human corneal limbal epithelial (HLE cells, the mechanism of cell attachment remains unclear. In the present study we sought to enhance the attachment of HLE cells to membranes of Bombyx mori silk fibroin (BMSF through surface functionalization with an arginine-glycine-aspartic acid (RGD-containing peptide. Moreover, we have examined th