WorldWideScience

Sample records for human corneal endothelium

  1. Polysaccharide coating of human corneal endothelium

    DEFF Research Database (Denmark)

    Schroder, H D; Sperling, S

    1977-01-01

    Electron microscopy revealed the presence of a 600-1500 A thick layer of polysaccharide on the surface of human corneal endothelial cells. The surface layer was visualized by combined fixation and staining in a mixture of ruthenium red and osmium tetroxide. The coating material was stable...

  2. Cell pattern in adult human corneal endothelium.

    Directory of Open Access Journals (Sweden)

    Carlos H Wörner

    Full Text Available A review of the current data on the cell density of normal adult human endothelial cells was carried out in order to establish some common parameters appearing in the different considered populations. From the analysis of cell growth patterns, it is inferred that the cell aging rate is similar for each of the different considered populations. Also, the morphology, the cell distribution and the tendency to hexagonallity are studied. The results are consistent with the hypothesis that this phenomenon is analogous with cell behavior in other structures such as dry foams and grains in polycrystalline materials. Therefore, its driving force may be controlled by the surface tension and the mobility of the boundaries.

  3. The human corneal endothelium in keratoconus: A specular microscopic study.

    Science.gov (United States)

    Laing, R A; Sandstrom, M M; Berrospi, A R; Leibowitz, H M

    1979-10-01

    The corneal endothelium in 12 cases of keratoconus was examined with the clinical specular microscope. There appeared to be an increase in cellular pleomorphism with many cells considerably smaller than normal distributed throughout the endothelial cell population. There were also many large, elongated cells whose long axis showed a definite tendency to assume a similar directional orientation. The long axis of these cells seemed oriented toward the apex of the cone, and the cells appeared to have been stretched by the ectatic process. Many endothelial cells contained dark intracellular structures. Their significance is unknown. The single cornea in this series with a history of acute hydrops contained a localized area in which the endothelial cells were seven to ten times larger than normal. This suggests that rupture of the endothelium and Descemet's membrane, responsible for the acute edematous process, occurs at this site, and that the adjacent cells enlarged to fill the defect.

  4. Cultivation of Human Microvascular Endothelial Cells on Topographical Substrates to Mimic the Human Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Jie Shi Chua

    2013-03-01

    Full Text Available Human corneal endothelial cells have a limited ability to replicate in vivo and in vitro. Allograft transplantation becomes necessary when an accident or trauma results in excessive cell loss. The reconstruction of the cornea endothelium using autologous cell sources is a promising alternative option for therapeutic or in vitro drug testing applications. The native corneal endothelium rests on the Descemet’s membrane, which has nanotopographies of fibers and pores. The use of synthetic topographies mimics the native environment, and it is hypothesized that this can direct the behavior and growth of human microvascular endothelial cells (HMVECs to resemble the corneal endothelium. In this study, HMVECs are cultivated on substrates with micron and nano-scaled pillar and well topographies. Closely packed HMVEC monolayers with polygonal cells and well-developed tight junctions were formed on the topographical substrates. Sodium/potassium (Na+/K+ adenine triphosphatase (ATPase expression was enhanced on the microwells substrate, which also promotes microvilli formation, while more hexagonal-like cells are found on the micropillars samples. The data obtained suggests that the use of optimized surface patterning, in particular, the microtopographies, can induce HMVECs to adopt a more corneal endothelium-like morphology with similar barrier and pump functions. The mechanism involved in cell contact guidance by the specific topographical features will be of interest for future studies.

  5. Glutaminolysis is Essential for Energy Production and Ion Transport in Human Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Wenlin Zhang

    2017-02-01

    Full Text Available Corneal endothelium (CE is among the most metabolically active tissues in the body. This elevated metabolic rate helps the CE maintain corneal transparency by its ion and fluid transport properties, which when disrupted, leads to visual impairment. Here we demonstrate that glutamine catabolism (glutaminolysis through TCA cycle generates a large fraction of the ATP needed to maintain CE function, and this glutaminolysis is severely disrupted in cells deficient in NH3:H+ cotransporter Solute Carrier Family 4 Member 11 (SLC4A11. Considering SLC4A11 mutations leads to corneal endothelial dystrophy and sensorineural deafness, our results indicate that SLC4A11-associated developmental and degenerative disorders result from altered glutamine catabolism. Overall, our results describe an important metabolic mechanism that provides CE cells with the energy required to maintain high level transport activity, reveal a direct link between glutamine metabolism and developmental and degenerative neuronal diseases, and suggest an approach for protecting the CE during ophthalmic surgeries.

  6. Long‐term recovery of the human corneal endothelium after toxic injury by benzalkonium chloride

    Science.gov (United States)

    Hughes, E H; Pretorius, M; Eleftheriadis, H; Liu, C S C

    2007-01-01

    Introduction The inadvertent intra‐ocular administration of benzalkonium chloride‐preserved hydroxypropyl methylcellulose during cataract surgery at another hospital in 1999 resulted in toxic corneal endothelial injury and profound postoperative corneal oedema as a result of endothelial decompensation. The long‐term effect of this adverse event was assessed. Methods All 19 patients were invited to return for examination including corneal endothelial specular microscopy and pachymetry seven years after the incident. Results were compared with data from one year after the incident. Results Five patients attended for examination, one had received a penetrating keratoplasty and was, therefore, excluded. Ten patients had died and four had moved out of the region and were unable to attend. All four study patients were pain free and achieved 6/12 or better. Mean central corneal thickness reduced by 13% from 652.6 μm at one year to 563.4 μm. Mean central corneal endothelial cell density (n  =  3) increased 28% from 663.7 cells/mm2 at one year to 835.7 cells/mm2 (p<0.05). Conclusions After toxic injury, corneal endothelial function may have a remarkable capacity for recovery even after the first postoperative year. The rise in central endothelial cell density may represent cell migration from less affected areas or cellular proliferation. Should this unfortunate event recur, clinicians may expect continued recovery beyond one year. PMID:17504856

  7. Chronic exposure to the ultraviolet radiation levels from arc welding does not result in obvious damage to the human corneal endothelium.

    Science.gov (United States)

    Oblak, Emil; Doughty, Michael J

    2002-11-01

    Occupational exposure of the cornea to ultraviolet radiation (UVR, e.g. in welding) is a well-known cause of 'arc eye' (photo-keratoconjunctivitis), but has also been considered to be a risk for the development of alterations in the size (polymegethism) and shape (pleomorphism) of the deeper-lying human corneal endothelial cells. Human data are however limited and so a further study was undertaken, with a control group. Non-contact specular micrographs of the central region of the corneal endothelium were obtained from 40 white males aged between 32 and 63 years; 20 were arc welders with an average of 25 +/- 7 years job experience, while the others were office workers (n = 20). All the welders reported occupational exposure to UVR (i.e. welders 'flashes') and up to 3 times per year. None of the subjects had a history of contact lens wear, major eye disease or surgery. The endothelial image was scanned, projected onto an overlay and cell border marking carried out in a masked fashion. The overlay was independently analysed, by a customised semi-automated method, providing cell-border-adjusted data on cell areas and cell shape (sides) on 124 to 260 cells per image. The endothelial cell density (ECD) values were also calculated from individual cell area values. All corneas appeared to be healthy, and showed no fluorescein staining indicating damage to the surface epithelium. Central corneal thickness values were normal at 0.531 +/- 0.031 (mean +/- SD) and 0.527 +/- 0.036 mm in the welders and non-welders respectively. All endothelia appeared healthy, with no evidence of cell oedema. The group-mean endothelial cell area was 393 +/- 35 and 392 +/- 21 microm2, ECD values were 2855 +/- 224 cells mm(-2) and 2852 +/- 210 cells mm(-2), while the percentages of 6-sided cells were 60 +/- 5.2 and 59 +/- 4.1% respectively. Cell area distributions were statistically identical (p > or = 0.8), and cell area-side relationships were marginally, but not statistically different. This

  8. EXPERIMENTAL STUDY ON THE CORNEAL ENDOTHELIUM OF TRAUMATIC CATARACT

    Institute of Scientific and Technical Information of China (English)

    1991-01-01

    The cell morphology of corneal endothelium in 84 mice with experimental traumatic cataract was investigated with stained corneal buttons. In the experimental group, the boundaries between adjacent corneal endothelial cells were significantly distorted, some cell boundaries manifested degenerative changes that led to coalescence of the cells. The mean density and mean area of endothelial cells of the controls showed significant difference from those of the experimental group during the 12 weeks of observ...

  9. Toxicity of methods of implant material sterilization on corneal endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Singh, G.; Boehnke, Mv.; von Domarus, D.; Draeger, J.

    1985-11-01

    The toxicity of different procedures utilized for the sterilization of intraocular implant material was assessed on the endothelium of organ-cultured porcine corneas. Polymethylmethacrylate lenses sterilized by treatment with sodium hydroxide (NaOH), ethylene oxide, formaldehyde, and gamma radiation were added to a culture medium containing normal porcine corneas. Considering the viability of endothelial cells, appearance of intracellular degenerative vacuoles, and denudation of corneal Descemet's membrane as criterion for the evaluation of toxicity of different methods of sterilization, the NaOH-treated lenses were found to be the least toxic to porcine corneal endothelium. Phase-contrast microscopy and vital staining of the endothelium permitted direct viewing of the endothelium aiding in the assessment of toxicity.

  10. AUTOMATED VIDEO IMAGE MORPHOMETRY OF THE CORNEAL ENDOTHELIUM

    NARCIS (Netherlands)

    SIERTSEMA, JV; LANDESZ, M; VANDENBROM, H; VANRIJ, G

    1993-01-01

    The central corneal endothelium of 13 eyes in 13 subjects was visualized with a non-contact specular microscope. This report describes the computer-assisted morphometric analysis of enhanced digitized images, using a direct input by means of a frame grabber. The output consisted of mean cell area, c

  11. Benzalkonium chloride suppresses rabbit corneal endothelium intercellular gap junction communication.

    Directory of Open Access Journals (Sweden)

    Zhenhao Zhang

    Full Text Available Gap junction intercellular communication (GJIC plays a critical role in the maintenance of corneal endothelium homeostasis. We determined if benzalkonium chloride (BAK alters GJIC activity in the rabbit corneal endothelium since it is commonly used as a drug preservative in ocular eyedrop preparations even though it can have cytotoxic effects.Thirty-six adult New Zealand albino rabbits were randomly divided into three groups. BAK at 0.01%, 0.05%, and 0.1% was applied twice daily to one eye of each of the rabbits in one of the three groups for seven days. The contralateral untreated eyes were used as controls. Corneal endothelial morphological features were observed by in vivo confocal microscopy (IVCM. Immunofluorescent staining resolved changes in gap junction integrity and localization. Western blot analysis and RT-PCR evaluated changes in levels of connexin43 (Cx43 and tight junction zonula occludens-1 (ZO-1 gene and protein expression, respectively. Cx43 and ZO-1 physical interaction was detected by immunoprecipitation (IP. Primary rabbit corneal endothelial cells were cultured in Dulbecco's Modified Eagle Medium (DMEM containing BAK for 24 hours. The scrape-loading dye transfer technique (SLDT was used to assess GJIC activity.Topical administration of BAK (0.05%, 0.1% dose dependently disrupted corneal endothelial cell morphology, altered Cx43 and ZO-1 distribution and reduced Cx43 expression. BAK also markedly induced increases in Cx43 phosphorylation status concomitant with decreases in the Cx43-ZO-1 protein-protein interaction. These changes were associated with marked declines in GJIC activity.The dose dependent declines in rabbit corneal endothelial GJIC activity induced by BAK are associated with less Cx43-ZO-1 interaction possibly arising from increases in Cx43 phosphorylation and declines in its protein expression. These novel changes provide additional evidence that BAK containing eyedrop preparations should be used with caution to

  12. 人角膜内皮细胞增殖特性及能力的研究进展%Research progress on proliferative property and capacity of human corneal endothelium

    Institute of Scientific and Technical Information of China (English)

    潘飞; 姚玉峰

    2011-01-01

    Primary and secondary corneal endothelial decompensation leads to stromal edema,corneal opacity and loss of visual acuity. The pathogenesis of corneal endothelial decompensation is that adult corneal endothelium in vivo lacks of a robust proliferative response to injury, does not divide sufficiently to replace the lost cells. Previous studies indicate that cell-cell contact inhibition and transforming growth factor-beta2 (TGF-β2) in aqueous humor may be responsible for maintaining human endothelial cells in a non-replicative state in vivo. The results of the experimental investigation by using immunofluorescent staining of the cell cycle-associated proteins and cell proliferation marker Ki67 in corneal endothelium indicate that human corneal endothelial cells in vivo are arrested in the G1-phase and have not exited from the cell cycle. Successful outgrowth in culture of human corneal endothelial cells in vitro and the establishment of the immortalized human endothelial cell line, provide strong evidence that corneal endothelial cells retain proliferative capacity. Experiments with cell culture ex vivo demonstrate that corneal endothelial cells cultured from young donors grow more robustly than those from older donors, and cells cultured from peripheral area of corneas show greater cell density than central regions. Studies have demonstrated that in vitro human corneal endothelia undergo mitotic changes in response to stimulation of growth promoting agents,such as growth factors, EDTA and extracelluar matrix. Identification of corneal endothelial stem cells and isolation and culture of human endothelial precursor cells in vitro will be beneficial for further investigation regarding the mechanism of corneal endothelial regeneration as well as corneal endothelial cells in vitro culture.%原发性和继发性角膜内皮失代偿导致角膜基质水肿、角膜混浊和视力下降,其发生的病理生理基础在于成年人角膜内皮细胞失去增殖能力,损

  13. Phototoxic effects of 8-methoxypsoralen on rabbit corneal endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Menon, I.A.; Basu, P.K.; Hasany, S.M.; Persad, S.D. (Univ. of Toronto, Ontario (Canada))

    1989-01-01

    The phototoxic effects of 8-methoxypsoralen (8-MOP) were investigated using the rabbit corneal endothelium in organ culture. The corneas were divided into four groups: (a) irradiated with a mercury vapor lamp (emitting UVA and visible radiation) in the presence of 8-MOP (experimental), (b) irradiated without 8-MOP (control A), (c) incubated with 8-MOP (control B) and (d) incubated without 8-MOP (control C). Specular and light microscopic examination showed that the experimental corneas had greater cellular damage compared to the control corneas. The effects of 8-MOP were restricted to certain localized areas of the cornea. However there was no significant difference in the amounts of 51Cr released from the labelled experimental and control corneas. These results show phototoxic damage of the corneal endothelial cells.

  14. TSG-6 protects corneal endothelium from transcorneal cryoinjury in rabbits.

    Science.gov (United States)

    Kim, Jeong-Ah; Ko, Jung Hwa; Ko, Ah Young; Lee, Hyun Ju; Kim, Mee Kum; Wee, Won Ryang; Lee, Ryang Hwa; Fulcher, Samuel F; Oh, Joo Youn

    2014-07-17

    To investigate the effect of an anti-inflammatory protein, TNF-α stimulated gene/protein (TSG)-6 and an antiapoptotic protein, stanniocalcin (STC)-1 on corneal endothelium in rabbits with transcorneal cryoinjury. Transcorneal freezing (-80°C) was applied to rabbit corneas for 30 seconds. Immediately post injury, either TSG-6 (10 μg/100 μL), STC-1 (10 μg/100 μL), or the same volume of balanced salt solution (BSS) was injected into the anterior chamber. Each eye was examined for corneal opacity, corneal thickness, endothelial cell density, and endothelial hexagonality every 2 to 6 hours for 48 hours post injury. The concentrations of myeloperoxidase (MPO) and IL-1β were measured in the aqueous humor every 6 hours. At 48 hours post injury, each cornea was assayed for TNF-α, IL-1β, IL-6, and MPO, and histologically evaluated with alizarin red-trypan blue staining, hematoxylin-eosin staining, and immunostaining for neutrophils. Tumor necrosis factor-α stimulated gene/protein-6 significantly decreased the development of corneal opacity and edema after cryoinjury compared with STC-1 or BSS. The corneal endothelial cell density and hexagonality were markedly preserved by TSG-6. The mRNA levels of TNF-α, IL-1β, and IL-6 in the cornea and the protein levels of MPO and IL-1β in the aqueous humor and cornea were significantly lower in TSG-6-treated eyes than BSS-treated controls. Similarly, the expression of fibroblast growth factor-2 was reduced by TSG-6 treatment. Histologic evaluation demonstrated that neutrophil infiltration of the cornea was decreased in TSG-6-treated eyes. Tumor necrosis factor-α stimulated gene/protein-6 protected corneal endothelial cells from transcorneal cryoinjury through suppression of inflammation. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  15. Confocal microscopy and electrophysiological study of single patient corneal endothelium cell cultures

    Science.gov (United States)

    Tatini, Francesca; Rossi, Francesca; Coppi, Elisabetta; Magni, Giada; Fusco, Irene; Menabuoni, Luca; Pedata, Felicita; Pugliese, Anna Maria; Pini, Roberto

    2016-04-01

    The characterization of the ion channels in corneal endothelial cells and the elucidation of their involvement in corneal pathologies would lead to the identification of new molecular target for pharmacological treatments and to the clarification of corneal physiology. The corneal endothelium is an amitotic cell monolayer with a major role in preserving corneal transparency and in regulating the water and solute flux across the posterior surface of the cornea. Although endothelial cells are non-excitable, they express a range of ion channels, such as voltage-dependent Na+ channels and K+ channels, L-type Ca2 channels and many others. Interestingly, purinergic receptors have been linked to a variety of conditions within the eye but their presence in the endothelium and their role in its pathophysiology is still uncertain. In this study, we were able to extract endothelial cells from single human corneas, thus obtaining primary cultures that represent the peculiarity of each donor. Corneas were from tissues not suitable for transplant in patients. We characterized the endothelial cells by confocal microscopy, both within the intact cornea and in the primary endothelial cells cultures. We also studied the functional role of the purinergic system (adenosine, ATP and their receptors) by means of electrophysiological recordings. The experiments were performed by patch clamp recordings and confocal time-lapse microscopy and our results indicate that the application of purinergic compounds modulates the amplitude of outward currents in the isolated endothelial cells. These findings may lead to the proposal of new therapies for endothelium-related corneal diseases.

  16. [Protection of corneal endothelium from apoptosis by gene and cell therapy].

    Science.gov (United States)

    Fuchsluger, T A

    2016-06-01

    Protection of corneal endothelium from apoptosis using gene and cell therapy is in a translational phase. This approach offers advantages for eye banking and after transplantation. Safe vehicles for gene or cell therapeutic transduction of corneal endothelium with nucleic acids are available. This strategy will be further developed in consultation with the Paul Ehrlich Institute and European regulatory authorities.

  17. A comparison between keratoconus and normal population based corneal endothelium

    Directory of Open Access Journals (Sweden)

    Mohamad Aghazade Amiri

    2015-07-01

    Conclusion: Keratoconus does not have any considerable effect on cell density, polymegethism and pleomorphism, in mild and moderate stages and corneal opacity risk caused by intraocular surgeries (such as: Cataract or Glaucoma surgeries and some diseases (such as diabetes and uveitis is similar in keratoconic and normal eyes.

  18. Short term effects of small incision lenticule extraction surgery on corneal endothelium

    Directory of Open Access Journals (Sweden)

    Dan-Yang Wang

    2016-04-01

    Full Text Available AIM: To assess the effects of small incision lenticule extraction (SMILE surgery on the corneal endothelium at 1d to 1mo postoperatively. METHODS: A retrospective, observational study was conducted on 47 patients (47 eyes who received SMILE surgery. Patients were grouped according to contact lens wear condition. The corneal endothelium was examined preoperatively and at 1d, 1wk and 1mo postoperatively. The corneal endothelium was analyzed for endothelial cell density (ECD, percentage of hexagonal cells, and coefficient of variation (CV of cell size. RESULTS: There were no significant decrease in the ECD, percentage of hexagonal cells or increase in CV at 1d, 1wk and 1mo postoperatively (P>0.05. However, there was a small increase of ECD by 2.88% in contact lens wearers (78.26±113.62 cell/mm2, P<0.05. CONCLUSION: SMILE has no significant adverse effects on the corneal ECD and morphology during 1mo follow-up time.

  19. Feasibility and safety of porcine Descemet’s membrane as a carrier for generating tissue-engineered corneal endothelium

    National Research Council Canada - National Science Library

    2015-01-01

    The aim of this study was to evaluate the feasibility and safety of porcine Descemet’s membrane (DM) as a carrier for the generation of tissue-engineered corneal endothelium by analyzing porcine endogenous retroviruses...

  20. Feasibility and safety of porcine Descemet's membrane as a carrier for generating tissue-engineered corneal endothelium.

    Science.gov (United States)

    Diao, Yu-Mei; Hong, Jing

    2015-08-01

    The aim of this study was to evaluate the feasibility and safety of porcine Descemet's membrane (DM) as a carrier for the generation of tissue-engineered corneal endothelium by analyzing porcine endogenous retroviruses (PERVs) and the α-gal epitope. The morphology of porcine and human DM was observed by hematoxylin and eosin staining and scanning electron microscopy. Immunohistochemical staining was used to investigate the location of α-gal epitopes on porcine DM used for xenotransplantation. The porcine DM was treated with ethylene glycol diglycidyl ether (EDGE) for 2 weeks, and then the PERV gene sequences in porcine DM and DM-EDGE were detected by polymerase chain reaction (PCR) and real-time PCR, respectively. The porcine DM had tight basement membrane morphology, which was similar to human DM in terms of thickness. No positive immunohistochemical staining of the α-gal epitope was detected in porcine DM. PERV expression of pol, gag, env-A and env-B was noted in porcine DM, but in DM-EDGE it was completely degraded. Based on structural, immunological and etiological studies, porcine DM may be an ideal and viable carrier for the generation of tissue-engineered corneal endothelium.

  1. Differential expression of the Slc4 bicarbonate transporter family in murine corneal endothelium and cell culture.

    Science.gov (United States)

    Shei, William; Liu, Jun; Htoon, Hla M; Aung, Tin; Vithana, Eranga N

    2013-01-01

    To characterize the relative expression levels of all the solute carrier 4 (Slc4) transporter family members (Slc4a1-Slc4a11) in murine corneal endothelium using real-time quantitative (qPCR), to identify further important members besides Slc4a11 and Slc4a4, and to explore how close to the baseline levels the gene expressions remain after cells have been subjected to expansion and culture. Descemet's membrane-endothelial layers of 8-10-week-old C57BL6 mice were stripped from corneas and used for both primary cell culture and direct RNA extraction. Total RNA (from uncultured cells as well as cultured cells at passages 2 and 7) was reverse transcribed, and the cDNA was used for real time qPCR using specific primers for all the Slc4 family members. The geNorm method was applied to determine the most stable housekeeping genes and normalization factor, which was calculated from multiple housekeeping genes for more accurate and robust quantification. qPCR analyses revealed that all Slc4 bicarbonate transporter family members were expressed in mouse corneal endothelium. Slc4a11 showed the highest expression, which was approximately three times higher than that of Slc4a4 (3.4±0.3; p=0.004). All Slc4 genes were also expressed in cultured cells, and interestingly, the expression of Slc4a11 in cultured cells was significantly reduced by approximately 20-fold (0.05±0.001; p=0.000001) in early passage and by approximately sevenfold (0.14±0.002; p=0.000002) in late passage cells. Given the known involvement of SLC4A4 and SLC4A11 in corneal dystrophies, we speculate that the other two highly expressed genes in the uncultured corneal endothelium, SLC4A2 and SLC4A7, are worthy of being considered as potential candidate genes for corneal endothelial diseases. Moreover, as cell culture can affect expression levels of Slc4 genes, caution and careful design of experiments are necessary when undertaking studies of Slc4-mediated ion transport in cultured cells.

  2. Progenitors for the Corneal Endothelium and Trabecular Meshwork: A Potential Source for Personalized Stem Cell Therapy in Corneal Endothelial Diseases and Glaucoma

    Directory of Open Access Journals (Sweden)

    Wing Yan Yu

    2011-01-01

    Full Text Available Several adult stem cell types have been found in different parts of the eye, including the corneal epithelium, conjunctiva, and retina. In addition to these, there have been accumulating evidence that some stem-like cells reside in the transition area between the peripheral corneal endothelium (CE and the anterior nonfiltering portion of the trabecular meshwork (TM, which is known as the Schwalbe's Ring region. These stem/progenitor cells may supply new cells for the CE and TM. In fact, the CE and TM share certain similarities in terms of their embryonic origin and proliferative capacity in vivo. In this paper, we discuss the putative stem cell source which has the potential for replacement of lost and nonfunctional cells in CE diseases and glaucoma. The future development of personalized stem cell therapies for the CE and TM may reduce the requirement of corneal grafts and surgical treatments in glaucoma.

  3. Comparison of Noncontact Specular and Confocal Microscopy for Evaluation of Corneal Endothelium.

    Science.gov (United States)

    Huang, Jianyan; Maram, Jyotsna; Tepelus, Tudor C; Sadda, Srinivas R; Chopra, Vikas; Lee, Olivia L

    2017-03-24

    To compare endothelial cell analysis obtained by noncontact specular and confocal microscopy, using the Konan NSP-9900 and Nidek ConfoScan4 systems, respectively. Three groups including 70 healthy eyes, 49 eyes with Fuchs endothelial corneal dystrophy (FECD), and 78 eyes with glaucoma were examined with both the Konan NSP-9900 specular microscope and the Nidek ConfocScan4 confocal microscope. Certified graders at the Doheny Image Reading Center compared corneal endothelial images from both instruments side by side to assess image quality. Endothelial cell density (ECD) measurements were calculated and compared using three different modalities: (1) each instrument's fully automated analysis; (2) each instrument's semiautomatic analysis with grader input; and (3) manual grading methods by certified grader. All normal eyes yielded gradable endothelial images, and most but not all glaucomatous eyes yielded images with high enough image quality to allow grading. In addition, in corneas with severe FECD, poor image quality precluded ECD grading by specular microscopy in 20 eyes (40.8%) but in only 4 (8.2%) confocal images from the same eyes. For the gradable images, the ECD values obtained using the manual grading method from either device were comparable with no statistically significant difference (P>0.05) between specular and confocal devices. Machine-generated ECD values were significantly different from manual results, measuring greater in all cases with specular microscopy. Machine-generated ECD values from confocal microscopy also differed significantly from manual determinations, but not in a consistent direction. Semiautomatic methods for both instruments obtained clinically acceptable ECD values. Automatic machine-generated ECD measurements differed significantly from manual assessments of corneal endothelium by both specular and confocal microscopy, suggesting that automated results should be used with caution. But ECD values derived manually were comparable

  4. Could the coefficient of variation (COV) of the corneal endothelium be overestimated when a centre-dot method is used?

    Science.gov (United States)

    Doughty, Michael J

    2008-01-01

    Little has been published on the reliability of estimates of the coefficient of variation (COV) in cell area for human corneal endothelia. The present study compares two methods. A non-contact specular micrograph (Topcon SP-2000P) was obtained from the central region of the corneal endothelium of 20 healthy myopic white European subjects, aged from 32 to 53 years, half of whom were successful long-term soft contact lens wearers. The captured image file was either assessed using a machine-based algorithm, in which 25 cells in the middle of the image were marked and their areas reported (designated as 'centre-dot' method) or by a manual method, by which all the cells in the image were outlined on very high magnification prints of the endothelia and the cell areas measured by a manual digitiser in stream mode. The average cell area was used to calculate the endothelial cell density (ECD), while the COV was calculated from the standard deviation (SD) of the cell area measures. Identical mean cell area values were found (392 microm(2)) with the two methods, a marginally higher ECD estimate (2,594 versus 2,569) with the centre-dot method (p = NS) but a much higher COV with the centre-dot method (43.8 versus 29.0 per cent). This highly statistically significant difference in COV (p definition of a single large cell domain on any individual image. A centre-dot method can be reliably used to generate useful data on cell area and ECD but it should be used cautiously for estimates of polymegethism (COV).

  5. Genes Expressed in Human Tumor Endothelium

    Science.gov (United States)

    St. Croix, Brad; Rago, Carlo; Velculescu, Victor; Traverso, Giovanni; Romans, Katharine E.; Montgomery, Elizabeth; Lal, Anita; Riggins, Gregory J.; Lengauer, Christoph; Vogelstein, Bert; Kinzler, Kenneth W.

    2000-08-01

    To gain a molecular understanding of tumor angiogenesis, we compared gene expression patterns of endothelial cells derived from blood vessels of normal and malignant colorectal tissues. Of over 170 transcripts predominantly expressed in the endothelium, 79 were differentially expressed, including 46 that were specifically elevated in tumor-associated endothelium. Several of these genes encode extracellular matrix proteins, but most are of unknown function. Most of these tumor endothelial markers were expressed in a wide range of tumor types, as well as in normal vessels associated with wound healing and corpus luteum formation. These studies demonstrate that tumor and normal endothelium are distinct at the molecular level, a finding that may have significant implications for the development of anti-angiogenic therapies.

  6. A Rabbit Model Study to Determine the Efficacy of a Prototype Corneal Endothelium Protector during Cataract Surgery

    Directory of Open Access Journals (Sweden)

    Annabel C. Y. Chew

    2017-01-01

    Full Text Available Purpose. We evaluated the efficacy and safety of a mechanical device, the P-chute, in corneal endothelium preservation during phacoemulsification in a rabbit model. Methods. Twenty-four rabbits were randomly assigned into 2 groups. One eye of each rabbit underwent phacoemulsification that simulated the removal of a dense nucleus, with or without the P-chute. Serial slit-lamp examinations, anterior segment optical coherence tomography (ASOCT scans, and specular microscopy were performed. Three rabbits from each group were sacrificed on postoperative days (PODs 1, 5, 7, and 14. Histological analysis of the corneas was performed. Results. There was a trend towards lesser endothelial cell loss for the P-chute group at POD1 (4.9% versus 12.5%, p=0.53, POD5 (10.4% versus 12.2%, p=0.77, and POD7 (10.5% versus 17.2%, p=0.52. There was no significant difference in the corneal thickness (p=>0.05 between the 2 groups. The insertion of the device was challenging. The use of the P-chute only added an extra 15% to the surgical time. Conclusions. There was a trend towards better endothelium preservation with the P-chute even though the results were not statistically significant. We believe that the device could be useful in certain surgical situations. Further work is needed to improve the device insertion.

  7. Changes in corneal endothelium cell characteristics after cataract surgery with and without use of viscoelastic substances during intraocular lens implantation

    Directory of Open Access Journals (Sweden)

    Schulze SD

    2015-11-01

    Full Text Available Stephan D Schulze,1 Thomas Bertelmann,1 Irena Manojlovic,2 Stefan Bodanowitz,2 Sebastian Irle,3 Walter Sekundo11Department of Ophthalmology, Philipps University of Marburg, Marburg, 2Private Practice and Ambulatory Surgical Center, Bremen, 3Freelance Statistician, Friedberg, GermanyPurpose: To evaluate whether the use of balanced salt solution (BSS or an ophthalmic viscoelastic device (OVD during hydrophilic acrylic intraocular lens (IOL implantation variously impacts corneal endothelial cell characteristics in eyes undergoing uneventful phacoemulsifications.Methods: Prospective nonrandomized observational clinical trial. Patients were assigned either to the BSS plus® or to the OVD Z-Celcoat™ group depending on the substance used during IOL implantation. Corneal endothelium cell characteristics were obtained before, 1 week, and 6 weeks after surgery. Intraoperative parameters (eg, surgery time, phacoemulsification energy were recorded.Results: Ninety-seven eyes were assigned to the BSS plus and 86 eyes to the Z-Celcoat group. Preoperative corneal endothelium cell density (ECD and endothelium cell size were 2,506±310 cells/mm2/2,433±261 cells/mm2 and 406±47 µm2/416±50 µm2 (P=0.107/P=0.09. After 1 and 6 weeks, ECD decreased and endothelium cell size increased significantly in both groups (each P<0.001 without significant differences between both groups (each P>0.05. Irrigation–aspiration suction time (30.3±16.6 versus 36.3±14.5 seconds and overall surgical time (7.2±1.2 versus 8.0±1.4 minutes were significantly longer in the OVD Z-Celcoat group (each P<0.001. No complications or serious side effects occurred.Conclusion: Implantation of a hydrophilic acrylic IOL under BSS infusion seems to be a useful and faster alternative in experienced hands without generating higher ECD loss rates.Keywords: phacoemulsification, ophthalmic viscoelastic device, endothelial cell density, IOL

  8. Morphological evaluation of normal human corneal epithelium

    DEFF Research Database (Denmark)

    Ehlers, Niels; Heegaard, Steffen; Hjortdal, Jesper

    2010-01-01

    PURPOSE: The human corneal epithelium is usually described as a 50-µm-thick layer of regular stratified squamous non-keratinized cells with a thickness of 5-7 cells. The purpose of this study is systemically to revisit the histopathological appearance of 100 corneas. METHODS: 5-µm-thick sections...... in Bowman's membrane. No intraepithelial microcysts, as found in Meesmann corneal dystrophy, were observed. CONCLUSION: The total corneal thickness was higher than reported in in vivo studies and with a wider variation. This may be an effect of uncontrolled swelling and dehydration during preparation...

  9. Corneal endothelium after deep anterior lamellar keratoplasty and penetrating keratoplasty for keratoconus: A four-year comparative study

    Directory of Open Access Journals (Sweden)

    Anil Kubaloglu

    2012-01-01

    Full Text Available Purpose: To compare the status of corneal endothelium and central corneal thickness within the first four postoperative years after deep anterior lamellar keratoplasty (DALK and penetrating keratoplasty (PK in patients with keratoconus. Materials and Methods: Thirty-nine eyes (Group A which had PK and 44 eyes (Group B which had DALK for the treatment of keratoconus were included in this retrospective study. The endothelial cell density (ECD, the mean endothelial cell area and the coefficient of variation of cell area were assessed with a non-contact specular microscope, and the central corneal thickness (CCT was measured with an ultrasound pachymeter. Results: Mean ECD loss rate at two years was 36.24% in Group A and 18.12% in Group B (P<0.001. Mean ECD loss rate at four years was 47.82% in Group A and 21.62% in Group B (P<0.001. Mean annual ECD loss rate was calculated 14.12% per year in Group A and 5.78% per year in Group B. In the PK group, increase in mean CCT was 15.60% in two years and 15.03% in four years, while in the DALK group, mean CCT increased by 8.05% in two years and 9.31% in four years. Conclusions: As the majority of ectatic disorders such as keratoconus occur in young people, long-term endothelial cell survival following treatment with keratoplasty is essential for the long-term visual ability. Our finding that corneal endothelial cell loss in the DALK group occurs at a slower rate than in the PK group suggests DALK as a safer alternative to PK in these selected patients.

  10. VISUAL PERCEPTION BASED AUTOMATIC RECOGNITION OF CELL MOSAICS IN HUMAN CORNEAL ENDOTHELIUMMICROSCOPY IMAGES

    Directory of Open Access Journals (Sweden)

    Yann Gavet

    2011-05-01

    Full Text Available The human corneal endothelium can be observed with two types of microscopes: classical optical microscope for ex-vivo imaging, and specular optical microscope for in-vivo imaging. The quality of the cornea is correlated to the endothelial cell density and morphometry. Automatic methods to analyze the human corneal endothelium images are still not totally efficient. Image analysis methods that focus only on cell contours do not give good results in presence of noise and of bad conditions of acquisition. More elaborated methods introduce regional informations in order to performthe cell contours completion, thus implementing the duality contour-region. Their good performance can be explained by their connections with several basic principles of human visual perception (Gestalt Theory and Marr's computational theory.

  11. [Representation and mathematical analysis of human corneal surface].

    Science.gov (United States)

    Tălu, Stefan; Tălu, Mihai; Giovanzana, Stefano

    2011-01-01

    In the description and analysis of human corneal surface are used various mathematical models based on parametric representations, used in biomechanical studies and 3D solid modeling of the cornea. Mathematical models are important into the biomechanics of the cornea to model the corneal behavior. Corneal biomechanics also has the potential to improve outcomes in refractive surgery. The objective of this paper is to present the most representative mathematical models currently used for modeling of human corneal in optics and biomechanics fields.

  12. Discovery of molecular markers to discriminate corneal endothelial cells in the human body

    NARCIS (Netherlands)

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji; Clevers, J.C.; van de Wetering, M.L.

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant

  13. Discovery of molecular markers to discriminate corneal endothelial cells in the human body

    NARCIS (Netherlands)

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji; Clevers, J.C.; van de Wetering, M.L.

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant nu

  14. Strong Pasteur effect in rabbit corneal endothelium preserves fluid transport under anaerobic conditions.

    Science.gov (United States)

    Riley, M V; Winkler, B S

    1990-07-01

    1. The hydration and transparency of the mammalian cornea are maintained by a metabolically dependent fluid transport system located in the endothelial cell layer. The purpose of the study was to determine whether this pump activity is dependent upon aerobic or anaerobic metabolism. 2. The ability of the cornea, superfused in vitro with a bicarbonate-Ringer solution containing glucose and adenosine, to maintain normal hydration (thickness) when respiration is inhibited has been examined in intact and de-epithelialized preparations and correlated with glycolytic activity and cellular concentrations of ATP. 3. In respiring intact and de-epithelialized corneas thickness was maintained for periods up to 5 h during superfusion with the control Ringer solution. 4. KCN (10(-3) M) or antimycin A (10(-6) M) caused the intact cornea to swell at 15 +/- 3 microns h-1, whereas the de-epithelialized tissue maintained normal thickness under these conditions. This swelling of the intact tissue appears to be due to the osmotic effect of increased epithelial lactate production under anaerobic conditions. 5. Pre-swollen de-epithelialized corneas deturgesced fully to original thickness at a rate of 43 +/- 7 microns h-1 under aerobic conditions, but with KCN or antimycin they deturgesced at only 65% of that rate and generally failed to return to their original thickness. 6. Ouabain (10(-4) M) caused de-epithelialized corneas to swell in the presence of KCN or antimycin, as it did under aerobic conditions, showing that maintenance of hydration or deturgescence are pump-dependent processes under both conditions. 7. Lactate production was markedly stimulated by KCN or antimycin in intact and de-epithelialized preparations, but not in the stroma alone. The magnitude of the Pasteur effect was calculated to be 5-fold in the endothelium and 2.5-fold in the epithelium. Ouabain inhibited anaerobic lactate production in the endothelium by 50%. 8. ATP content of the epithelium following 5 h

  15. Cultivation of corneal endothelial cells on a pericellular matrix prepared from human decidua-derived mesenchymal cells.

    Directory of Open Access Journals (Sweden)

    Ryohei Numata

    Full Text Available The barrier and pump functions of the corneal endothelium are essential for the maintenance of corneal transparency. Although corneal transplantation is the only current therapy for treating corneal endothelial dysfunction, the potential of tissue-engineering techniques to provide highly efficient and less invasive therapy in comparison to corneal transplantation has been highly anticipated. However, culturing human corneal endothelial cells (HCECs is technically difficult, and there is no established culture protocol. The aim of this study was to investigate the feasibility of using a pericellular matrix prepared from human decidua-derived mesenchymal cells (PCM-DM as an animal-free substrate for HCEC culture for future clinical applications. PCM-DM enhanced the adhesion of monkey CECs (MCECs via integrin, promoted cell proliferation, and suppressed apoptosis. The HCECs cultured on the PCM-DM showed a hexagonal morphology and a staining profile characteristic of Na⁺/K⁺-ATPase and ZO-1 at the plasma membrane in vivo, whereas the control HCECs showed a fibroblastic phenotype. The cell density of the cultured HCECs on the PCM-DM was significantly higher than that of the control cells. These results indicate that PCM-DM provides a feasible xeno-free matrix substrate and that it offers a viable in vitro expansion protocol for HCECs while maintaining cellular functions for use as a subsequent clinical intervention for tissue-engineered based therapy of corneal endothelial dysfunction.

  16. Cultivation of corneal endothelial cells on a pericellular matrix prepared from human decidua-derived mesenchymal cells.

    Science.gov (United States)

    Numata, Ryohei; Okumura, Naoki; Nakahara, Makiko; Ueno, Morio; Kinoshita, Shigeru; Kanematsu, Daisuke; Kanemura, Yonehiro; Sasai, Yoshiki; Koizumi, Noriko

    2014-01-01

    The barrier and pump functions of the corneal endothelium are essential for the maintenance of corneal transparency. Although corneal transplantation is the only current therapy for treating corneal endothelial dysfunction, the potential of tissue-engineering techniques to provide highly efficient and less invasive therapy in comparison to corneal transplantation has been highly anticipated. However, culturing human corneal endothelial cells (HCECs) is technically difficult, and there is no established culture protocol. The aim of this study was to investigate the feasibility of using a pericellular matrix prepared from human decidua-derived mesenchymal cells (PCM-DM) as an animal-free substrate for HCEC culture for future clinical applications. PCM-DM enhanced the adhesion of monkey CECs (MCECs) via integrin, promoted cell proliferation, and suppressed apoptosis. The HCECs cultured on the PCM-DM showed a hexagonal morphology and a staining profile characteristic of Na⁺/K⁺-ATPase and ZO-1 at the plasma membrane in vivo, whereas the control HCECs showed a fibroblastic phenotype. The cell density of the cultured HCECs on the PCM-DM was significantly higher than that of the control cells. These results indicate that PCM-DM provides a feasible xeno-free matrix substrate and that it offers a viable in vitro expansion protocol for HCECs while maintaining cellular functions for use as a subsequent clinical intervention for tissue-engineered based therapy of corneal endothelial dysfunction.

  17. In vitro evaluation of the interactions between human corneal endothelial cells and extracellular matrix proteins.

    Science.gov (United States)

    Choi, Jin San; Kim, Eun Young; Kim, Min Jeong; Giegengack, Matthew; Khan, Faraaz A; Khang, Gilson; Soker, Shay

    2013-02-01

    The corneal endothelium is the innermost cell layer of the cornea and rests on Descemet's membrane consisting of various extracellular matrix (ECM) proteins which can directly affect the cellular behaviors such as cell adhesion, proliferation, polarity, morphogenesis and function. The objective of this study was to investigate the interactions between the ECM environment and human corneal endothelial cells (HCECs), with the ultimate goal to improve cell proliferation and function in vitro. To evaluate the interaction of HCECs with ECM proteins, cells were seeded on ECM-coated tissue culture dishes, including collagen type I (COL I), collagen type IV (COL IV), fibronectin (FN), FNC coating mix (FNC) and laminin (LM). Cell adhesion and proliferation of HCECs on each substratum and expression of CEC markers were studied. The results showed that HCECs plated on the COL I, COL IV, FN and FNC-coated plates had enhanced cell adhesion initially; the number for COL I, COL IV, FN and FNC was significantly higher than the control (P < 0.05). In addition, cells grown on ECM protein-coated dishes showed more compact cellular morphology and CEC marker expression compared to cells seeded on uncoated dishes. Collectively, our results suggest that an adequate ECM protein combination can provide a long-term culture environment for HCECs for corneal endothelium transplantation.

  18. [Corneal endothelium in glaucoma].

    Science.gov (United States)

    Stefan, C; Nicolae, Miruna; Pop, Adina

    2012-01-01

    It is a clinical, observational, retrospective, randomised study, performed on 34 eyes with hipertensive primary open angle glaucoma (POAG) drug equilibrated and 18 eyes with normotensive POAG. We have evaluated the endothelial cells number variation in the hypertensive POAG and normotensive POAG.

  19. Discovery of molecular markers to discriminate corneal endothelial cells in the human body.

    Directory of Open Access Journals (Sweden)

    Masahito Yoshihara

    Full Text Available The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant number of CECs results in corneal edema called bullous keratopathy which can lead to severe visual loss. Corneal transplantation is the most effective method to treat corneal endothelial dysfunction, where it suffers from donor shortage. Therefore, regeneration of CECs from other cell types attracts increasing interests, and specific markers of CECs are crucial to identify actual CECs. However, the currently used markers are far from satisfactory because of their non-specific expression in other cell types. Here, we explored molecular markers to discriminate CECs from other cell types in the human body by integrating the published RNA-seq data of CECs and the FANTOM5 atlas representing diverse range of cell types based on expression patterns. We identified five genes, CLRN1, MRGPRX3, HTR1D, GRIP1 and ZP4 as novel markers of CECs, and the specificities of these genes were successfully confirmed by independent experiments at both the RNA and protein levels. Notably none of them have been documented in the context of CEC function. These markers could be useful for the purification of actual CECs, and also available for the evaluation of the products derived from other cell types. Our results demonstrate an effective approach to identify molecular markers for CECs and open the door for the regeneration of CECs in vitro.

  20. Discovery of molecular markers to discriminate corneal endothelial cells in the human body.

    Science.gov (United States)

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant number of CECs results in corneal edema called bullous keratopathy which can lead to severe visual loss. Corneal transplantation is the most effective method to treat corneal endothelial dysfunction, where it suffers from donor shortage. Therefore, regeneration of CECs from other cell types attracts increasing interests, and specific markers of CECs are crucial to identify actual CECs. However, the currently used markers are far from satisfactory because of their non-specific expression in other cell types. Here, we explored molecular markers to discriminate CECs from other cell types in the human body by integrating the published RNA-seq data of CECs and the FANTOM5 atlas representing diverse range of cell types based on expression patterns. We identified five genes, CLRN1, MRGPRX3, HTR1D, GRIP1 and ZP4 as novel markers of CECs, and the specificities of these genes were successfully confirmed by independent experiments at both the RNA and protein levels. Notably none of them have been documented in the context of CEC function. These markers could be useful for the purification of actual CECs, and also available for the evaluation of the products derived from other cell types. Our results demonstrate an effective approach to identify molecular markers for CECs and open the door for the regeneration of CECs in vitro.

  1. Transport of Gold Nanoparticles by Vascular Endothelium from Different Human Tissues

    Science.gov (United States)

    Gromnicova, Radka; Kaya, Mehmet; Romero, Ignacio A.; Williams, Phil; Satchell, Simon; Sharrack, Basil; Male, David

    2016-01-01

    The selective entry of nanoparticles into target tissues is the key factor which determines their tissue distribution. Entry is primarily controlled by microvascular endothelial cells, which have tissue-specific properties. This study investigated the cellular properties involved in selective transport of gold nanoparticles (<5 nm) coated with PEG-amine/galactose in two different human vascular endothelia. Kidney endothelium (ciGENC) showed higher uptake of these nanoparticles than brain endothelium (hCMEC/D3), reflecting their biodistribution in vivo. Nanoparticle uptake and subcellular localisation was quantified by transmission electron microscopy. The rate of internalisation was approximately 4x higher in kidney endothelium than brain endothelium. Vesicular endocytosis was approximately 4x greater than cytosolic uptake in both cell types, and endocytosis was blocked by metabolic inhibition, whereas cytosolic uptake was energy-independent. The cellular basis for the different rates of internalisation was investigated. Morphologically, both endothelia had similar profiles of vesicles and cell volumes. However, the rate of endocytosis was higher in kidney endothelium. Moreover, the glycocalyces of the endothelia differed, as determined by lectin-binding, and partial removal of the glycocalyx reduced nanoparticle uptake by kidney endothelium, but not brain endothelium. This study identifies tissue-specific properties of vascular endothelium that affects their interaction with nanoparticles and rate of transport. PMID:27560685

  2. Relationship of corneal thickness and corneal endothelium morphology to duration of diabetes mellitus%糖尿病病程与角膜厚度和内皮细胞形态的相关性分析

    Institute of Scientific and Technical Information of China (English)

    郭艳; 孔凡勇; 于永斌

    2013-01-01

    Objective To assess the change of central corneal thickness (CCT) and corneal endothelium morphology in diabetes mellitus compared with age - matched, healthy control subjects and to test their correlation according to the duration of diabetes. Methods Ultrasound tachymetry and noncontact specular microscopy were performed on 120 patients with diabetes diagnosed by endo-crinologists and on 60 control subjects. We compared the values for diabetics and normal persons with ANACOVA to adjust for age. Moreover, we also evaluated the correlation between corneal factors in diabetes and the duration of diabetes using a partial correlation coefficient controlled for age. Results The diabetic subjects had thicker corneas, less cell density and percentage of hexagonal cells, and more irregular cell size of the corneal endothelium than did the controls (P 0. 05 ) . Conclusions The central corneal thickness is significantly correlated with the duration of diabetic mellitus after controlling for age.%目的 评估角膜厚度和角膜内皮细胞形态与糖尿病病程的关系.方法 对糖尿病患者120例和健康对照组60例进行中央角膜厚度测量和非接触性角膜内皮检查,用协方差分析法去掉年龄因素的影响后,比较两组中央角膜厚度、内皮细胞密度等.用偏相关系数控制年龄因素之后,检测中央角膜厚度与糖尿病病程的关系.结果 (1)与健康对照组相比,糖尿病组中央角膜厚度增加,内皮细胞密度和六边形细胞百分比降低,且内皮细胞大小不等(P0.05).结论 在控制年龄因素的影响后,中央角膜厚度与罹患糖尿病的病程长短呈明显相关性,而角膜内皮细胞形态学改变则与糖尿病病程长短无明显的相关性.

  3. High resolution scanning electron microscopy of rabbit corneal endothelium to show effects of UV-visible irradiation in the presence of chlorpromazine

    Energy Technology Data Exchange (ETDEWEB)

    Lea, P.J.; Hollenberg, M.J.; Menon, I.A.; Temkin, R.J.; Persad, S.D.; Basu, P.K. (Univ. of Toronto, Ontario (Canada))

    1989-01-01

    The ultrastructure of rabbit cornea endothelial cells was examined by scanning electron microscopy (SEM) in freeze-cleaved corneas using a Hitachi S-570 scanning electron microscope in the high resolution mode (HRSEM). In order to study phototoxic effects in vitro, rabbit corneas (experimental) were cultured as organ culture in the presence of 5 micrograms/ml chlorpromazine (CPZ) and irradiated. For comparison, control 1 corneas were not irradiated but incubated in the dark without CPZ in the medium; control 2 corneas were also kept in the dark but in the presence of CPZ; control 3 corneas were irradiated with no CPZ in the medium. Cellular damage was not seen in the three types of control corneas, but in the experimental corneas the endothelial cells showed extensive disruption of the cell membrane and some deterioration of the intracellular components. Our study confirmed that HRSEM is a satisfactory new technique for visualizing damage of the intracellular organelles of corneal endothelium.

  4. Ultrastructural morphology and morphometry of the normal corneal endothelium of adult crossbred pig Morfologia ultraestrutural e morfometria do endotélio corneal normal de suínos adultos mestiços

    Directory of Open Access Journals (Sweden)

    Lynda Jhailú Tamayo-Arango

    2009-02-01

    Full Text Available Corneal endothelium constitutes a monolayer of polygonal cells. The integrity and health of this layer are essential for the maintenance of normal corneal transparency. This study reported by the first time in a detailed way the ultrastructural morphology and morphometry of the corneal endothelium in normal adult crossbred pigs by using scanning electron microscopy (SEM. A regular pattern of polygonal cells, with predominantly hexagonal cells and clear cell borders, was observed. An oval nucleus that bulges in the centre of the cell, cilia (2-4 in a few peripheral cells, openings of the pinocytotic vesicles, microvilli, borders bars and interdigitated cell borders were observed. The mean endothelial cell area was significantly higher (PO endotélio corneal é uma monocamada de células poligonais. A integridade e saúde dessa camada são essenciais para a manutenção da transparência corneal normal. Este estudo reportou pela primeira vez, de forma detalhada, a morfologia ultra-estrutural e a morfometria do endotélio corneal de suínos adultos mestiços à microscopia eletrônica de varredura (MEV. A superfície endothelial corneal apresentou um padrão regular de células poligonais, com predomínio da forma hexagonal e de bordas celulares nítidas. O núcleo foi observado como protuberância arredondada no centro da célula. Também foram observados os cílios (2-4 em apenas algumas células da região periférica da córnea, as aberturas das vesículas pinocitóticas na proximidade dos cílios, as microvilosidades, as varas da borda e as bordas celulares em formato de zigzag. A área celular média foi significativamente maior (P<0,05 no centro da córnea do que na periferia, com um coeficiente de variação menor no centro da córnea. A densidade celular média foi significativamente maior na periferia (P<0,05 e 43,9% maior que os dados reportados por outros autores na microscopia especular, o que demonstra o efeito da retração celular

  5. Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells.

    Science.gov (United States)

    Zhang, Kai; Pang, Kunpeng; Wu, Xinyi

    2014-06-15

    The maintenance of corneal dehydration and transparency depends on barrier and pump functions of corneal endothelial cells (CECs). The human CECs have no proliferation capacity in vivo and the ability to divide in vitro under culture conditions is dramatically limited. Thus, the acquisition of massive cells analogous to normal human CECs is extremely necessary whether from the perspective of cellular basic research or from clinical applications. Here we report the derivation of CEC-like cells from human embryonic stem cells (hESCs) through the periocular mesenchymal precursor (POMP) phase. Using the transwell coculture system of hESCs with differentiated human corneal stromal cells, we induced hESCs to differentiate into POMPs. Then, CEC-like cells were derived from POMPs with lens epithelial cell-conditioned medium. Within 1 week, CEC-like cells that expressed the corneal endothelium (CE) differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2 were detectable. Fluorescence-activated cell sorting (FACS)-based isolation of the N-cadherin/vimentin dual-positive population enriches for CEC-like cells. The isolated CEC-like cells were labeled with carboxyfluorescein diacetate, succinimidyl ester (CFDA SE) and seeded onto posterior acellular porcine corneal matrix lamellae to construct the CEC-like cell sheets. Pump function parameters of the CEC-like cell sheets approximated those of human donor corneas. Importantly, when the CEC-like cell sheets were transplanted into the eyes of rabbit CE dysfunction models, the corneal transparency was restored gradually. In conclusion, CEC-like cells derived from hESCs displayed characteristics of native human CECs. This renewable source of human CECs offers massive cells for further studies of human CEC biological characteristics and potential applications of replacement therapies as substitution for donor CECs in the future.

  6. Effects of Cataract Surgery on Endothelium in Transplanted Corneal Grafts: Comparison of Extracapsular Cataract Extraction and Phacoemulsification for Complicated Cataract after Penetrating Keratoplasty.

    Science.gov (United States)

    Zhou, Hong-Wei; Xie, Li-Xin

    2016-09-05

    The endothelium should be carefully evaluated when choosing a surgical technique for cataract removal. Therefore, we aimed to study the effects of different cataract surgery techniques on endothelial cell loss in transplanted corneal grafts. A total of 54 patients who received complicated cataract surgery in post-penetrating keratoplasty (PKP) eyes at the Shandong Eye Institute between February 2001 and June 2014 were included, and clinical records were reviewed. Baseline demographic details, clinical characteristics, endothelial cell density (ECD), and best-corrected visual acuity (BCVA) were recorded. Wilcoxon rank-sum test and Wilcoxon signed-rank test were used to test the equality of medians. A regression model was constructed to compare the reduced rate of ECD. Of the 54 eyes included in this study, extracapsular cataract extraction (ECCE) was performed in 34 eyes of 33 patients (ECCE group) whereas phacoemulsification was performed in 20 eyes of 20 patients (phacoemulsification group). There was no significant difference in the median age (P = 0.081) or preoperative ECD (P = 0.585) between the two groups. At 6 months after cataract surgery, ECD in ECCE group was significantly higher than that in phacoemulsification group (P = 0.043). In addition, the endothelial cell loss rate in ECCE group was significantly lower than that in phacoemulsification group at 2 months (P = 0.018), 4 months (P ECCE group (P ECCE in transplanted corneal grafts (P ECCE is more suitable than phacoemulsification in cataract surgery in complicated cataract after PKP.

  7. MicroRNA-145 regulates human corneal epithelial differentiation.

    Directory of Open Access Journals (Sweden)

    Sharon Ka-Wai Lee

    Full Text Available BACKGROUND: Epigenetic factors, such as microRNAs, are important regulators in the self-renewal and differentiation of stem cells and progenies. Here we investigated the microRNAs expressed in human limbal-peripheral corneal (LPC epithelia containing corneal epithelial progenitor cells (CEPCs and early transit amplifying cells, and their role in corneal epithelium. METHODOLOGY/PRINCIPAL FINDINGS: Human LPC epithelia was extracted for small RNAs or dissociated for CEPC culture. By Agilent Human microRNA Microarray V2 platform and GeneSpring GX11.0 analysis, we found differential expression of 18 microRNAs against central corneal (CC epithelia, which were devoid of CEPCs. Among them, miR-184 was up-regulated in CC epithelia, similar to reported finding. Cluster miR-143/145 was expressed strongly in LPC but weakly in CC epithelia (P = 0.0004, Mann-Whitney U-test. This was validated by quantitative polymerase chain reaction (qPCR. Locked nucleic acid-based in situ hybridization on corneal rim cryosections showed miR-143/145 presence localized to the parabasal cells of limbal epithelium but negligible in basal and superficial epithelia. With holoclone forming ability, CEPCs transfected with lentiviral plasmid containing mature miR-145 sequence gave rise to defective epithelium in organotypic culture and had increased cytokeratin-3/12 and connexin-43 expressions and decreased ABCG2 and p63 compared with cells transfected with scrambled sequences. Global gene expression was analyzed using Agilent Whole Human Genome Oligo Microarray and GeneSpring GX11.0. With a 5-fold difference compared to cells with scrambled sequences, miR-145 up-regulated 324 genes (containing genes for immune response and down-regulated 277 genes (containing genes for epithelial development and stem cell maintenance. As validated by qPCR and luciferase reporter assay, our results showed miR-145 suppressed integrin β8 (ITGB8 expression in both human corneal epithelial cells

  8. Evaluation of preoperative corneal endothelium in different cataract%白内障患者术前角膜内皮功能分析

    Institute of Scientific and Technical Information of China (English)

    杨晓钊; 朱秀萍; 银勇; 王亚妮; 安娜

    2010-01-01

    目的 分析不同白内障患者术前角膜内皮结构,以指导制定合理的个性化手术方案.方法 前瞻性病例系列研究.白内障患者1910例(3423眼),按合并疾病的不同分组:A组为年龄相关性白内障组,1511例;B组为合并青光眼组,22例;C组为合并2型糖尿病组,179例.再将A组按年龄段分为40~59岁组,60~79岁组,≥80岁组(高龄组).所有患者术前检测角膜内皮细胞密度(CD)、细胞平均面积(AVE)、六棱细胞比例(HEXA)等.采用单因素方差分析进行整体比较,组内两两之间差异采用Tukev法.结果 与A组相比,B组CD较低、AVE较大,差异有统计学意义(P<0.05),HEX较少,但差异无统计学意义;C组CD较低、AVE较大、HEXA较少,但与A组相比,差异均无统计学意义.按年龄分组,≥80岁组白内障患者角膜内皮CD较低、AVE较大、HEXA较少,与40~59岁组、60~79岁组相比,差异有统计学意义(P<0.05).结论 青光眼可导致角膜内皮细胞密度下降,平均细胞面积增大;糖尿病对角膜内皮细胞形态没有明显影响.随年龄增长,年龄相关性白内障患者的角膜内皮细胞密度下降,平均细胞面积增大,六棱细胞比例减小.%Objective To evaluate structure of corneal endothelium of different kind of cataract,so to guide reasonable individual surgery scheme. Methods Prospective case series study.One thousand nine hundred and ten patients with cataract divided into 3 groups, group A (age-related cataract), group B(cataract accompany with glaucoma), group C (cataract accompany with non-insulin dependent diabetes). Group A were divided into 3 groups by age: group 1, 40-59 years old, group 2, 60-79 years old, and group 3 were 80 years old or oder. All patients were under endothelium cell density (CD), AVE, HEXA before surgery. The results were analyzed with One-Way ANOVA. Results Compared with group A, there were lower CD and higher AVE in group B (P<0.05), HEXA was lower but without any

  9. Research progress of cultivation and identification of human corneal endothelial cell in vitro%人角膜内皮细胞的体外培养及其鉴定的研究进展

    Institute of Scientific and Technical Information of China (English)

    贺美宁; 刘二华; 谭钢

    2014-01-01

    Corneal transparence and thickness mostly depend on corneal endothelial cells. The shortage of transplant -grade donor corneal tissues and limited in vitro expansion of human corneal endothelial cells prompted further impetus for the development of tissue-engineered human corneal endothelium reconstructed in vitro. The culture method of human corneal endothelial cell has been widely used. The standard used to evaluate and identify the human corneal endothelial cells cultivated in vitro has not been established. The objective of this article is to summarize the further study on identification and cultivation of human corneal endothelial cell in vitro.%角膜内皮细胞对维持角膜的透明性和厚度起着关键性的作用。人体内角膜内皮细胞有限的增殖能力及角膜供体的短缺,使组织工程人角膜内皮的体外重建受到了关注。目前,人角膜内皮细胞的培养方法已基本成熟。但是体外培养的人角膜内皮细胞的功能评价及鉴定标准却尚未建立。本文就人角膜内皮细胞的体外培养及其鉴定的研究进展进行综述。

  10. Characterization of cross-linked porous gelatin carriers and their interaction with corneal endothelium: biopolymer concentration effect.

    Directory of Open Access Journals (Sweden)

    Jui-Yang Lai

    Full Text Available Cell sheet-mediated tissue regeneration is a promising approach for corneal reconstruction. However, the fragility of bioengineered corneal endothelial cell (CEC monolayers allows us to take advantage of cross-linked porous gelatin hydrogels as cell sheet carriers for intraocular delivery. The aim of this study was to further investigate the effects of biopolymer concentrations (5-15 wt% on the characteristic and safety of hydrogel discs fabricated by a simple stirring process combined with freeze-drying method. Results of scanning electron microscopy, porosity measurements, and ninhydrin assays showed that, with increasing solid content, the pore size, porosity, and cross-linking index of carbodiimide treated samples significantly decreased from 508±30 to 292±42 µm, 59.8±1.1 to 33.2±1.9%, and 56.2±1.6 to 34.3±1.8%, respectively. The variation in biopolymer concentrations and degrees of cross-linking greatly affects the Young's modulus and swelling ratio of the gelatin carriers. Differential scanning calorimetry measurements and glucose permeation studies indicated that for the samples with a highest solid content, the highest pore wall thickness and the lowest fraction of mobile water may inhibit solute transport. When the biopolymer concentration is in the range of 5-10 wt%, the hydrogels have high freezable water content (0.89-0.93 and concentration of permeated glucose (591.3-615.5 µg/ml. These features are beneficial to the in vitro cultivation of CECs without limiting proliferation and changing expression of ion channel and pump genes such as ATP1A1, VDAC2, and AQP1. In vivo studies by analyzing the rabbit CEC morphology and count also demonstrate that the implanted gelatin discs with the highest solid content may cause unfavorable tissue-material interactions. It is concluded that the characteristics of cross-linked porous gelatin hydrogel carriers and their triggered biological responses are in relation to biopolymer

  11. Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro.

    Directory of Open Access Journals (Sweden)

    Radka Gromnicova

    Full Text Available The blood-brain barrier prevents the entry of many therapeutic agents into the brain. Various nanocarriers have been developed to help agents to cross this barrier, but they all have limitations, with regard to tissue-selectivity and their ability to cross the endothelium. This study investigated the potential for 4 nm coated gold nanoparticles to act as selective carriers across human brain endothelium and subsequently to enter astrocytes. The transfer rate of glucose-coated gold nanoparticles across primary human brain endothelium was at least three times faster than across non-brain endothelia. Movement of these nanoparticles occurred across the apical and basal plasma membranes via the cytosol with relatively little vesicular or paracellular migration; antibiotics that interfere with vesicular transport did not block migration. The transfer rate was also dependent on the surface coating of the nanoparticle and incubation temperature. Using a novel 3-dimensional co-culture system, which includes primary human astrocytes and a brain endothelial cell line hCMEC/D3, we demonstrated that the glucose-coated nanoparticles traverse the endothelium, move through the extracellular matrix and localize in astrocytes. The movement of the nanoparticles through the matrix was >10 µm/hour and they appeared in the nuclei of the astrocytes in considerable numbers. These nanoparticles have the correct properties for efficient and selective carriers of therapeutic agents across the blood-brain barrier.

  12. Nerve regeneration by human corneal stromal keratocytes and stromal fibroblasts

    Science.gov (United States)

    Yam, Gary Hin-Fai; Williams, Geraint P.; Setiawan, Melina; Yusoff, Nur Zahirah Binte M.; Lee, Xiao-wen; Htoon, Hla Myint; Zhou, Lei; Fuest, Matthias; Mehta, Jodhbir S.

    2017-01-01

    Laser refractive surgeries reshape corneal stroma to correct refractive errors, but unavoidably affect corneal nerves. Slow nerve regeneration and atypical neurite morphology cause desensitization and neuro-epitheliopathy. Following injury, surviving corneal stromal keratocytes (CSKs) are activated to stromal fibroblasts (SFs). How these two different cell types influence nerve regeneration is elusive. Our study evaluated the neuro-regulatory effects of human SFs versus CSKs derived from the same corneal stroma using an in vitro chick dorsal root ganglion model. The neurite growth was assessed by a validated concentric circle intersection count method. Serum-free conditioned media (CM) from SFs promoted neurite growth dose-dependently, compared to that from CSKs. We detected neurotrophic and pro-inflammatory factors (interleukin-8, interleukin-15, monocyte chemoattractant protein-1, eotaxin, RANTES) in SFCM by Bio-Plex Human Cytokine assay. More than 130 proteins in SFCM and 49 in CSKCM were identified by nanoLC-MS/MS. Proteins uniquely present in SFCM had reported neuro-regulatory activities and were predicted to regulate neurogenesis, focal adhesion and wound healing. Conclusively, this was the first study showing a physiological relationship between nerve growth and the metabolically active SFs versus quiescent CSKs from the same cornea source. The dose-dependent effect on neurite growth indicated that nerve regeneration could be influenced by SF density. PMID:28349952

  13. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium.

    Directory of Open Access Journals (Sweden)

    Ryuhei Hayashi

    Full Text Available Induced pluripotent stem (iPS cells can be established from somatic cells. However, there is currently no established strategy to generate corneal epithelial cells from iPS cells. In this study, we investigated whether corneal epithelial cells could be differentiated from iPS cells. We tested 2 distinct sources: human adult dermal fibroblast (HDF-derived iPS cells (253G1 and human adult corneal limbal epithelial cells (HLEC-derived iPS cells (L1B41. We first established iPS cells from HLEC by introducing the Yamanaka 4 factors. Corneal epithelial cells were successfully induced from the iPS cells by the stromal cell-derived inducing activity (SDIA differentiation method, as Pax6(+/K12(+ corneal epithelial colonies were observed after prolonged differentiation culture (12 weeks or later in both the L1B41 and 253G1 iPS cells following retinal pigment epithelial and lens cell induction. Interestingly, the corneal epithelial differentiation efficiency was higher in L1B41 than in 253G1. DNA methylation analysis revealed that a small proportion of differentially methylated regions still existed between L1B41 and 253G1 iPS cells even though no significant difference in methylation status was detected in the specific corneal epithelium-related genes such as K12, K3, and Pax6. The present study is the first to demonstrate a strategy for corneal epithelial cell differentiation from human iPS cells, and further suggests that the epigenomic status is associated with the propensity of iPS cells to differentiate into corneal epithelial cells.

  14. Caveolin-1 associated adenovirus entry into human corneal cells.

    Directory of Open Access Journals (Sweden)

    Mohammad A Yousuf

    Full Text Available The cellular entry of viruses represents a critical area of study, not only for viral tropism, but also because viral entry dictates the nature of the immune response elicited upon infection. Epidemic keratoconjunctivitis (EKC, caused by viruses within human adenovirus species D (HAdV-D, is a severe, ocular surface infection associated with corneal inflammation. Clathrin-mediated endocytosis has previously been shown to play a critical role in entry of other HAdV species into many host cell types. However, HAdV-D endocytosis into corneal cells has not been extensively studied. Herein, we show an essential role for cholesterol rich, lipid raft microdomains and caveolin-1, in the entry of HAdV-D37 into primary human corneal fibroblasts. Cholesterol depletion using methyl-β-cyclodextrin (MβCD profoundly reduced viral infection. When replenished with soluble cholesterol, the effect of MβCD was reversed, allowing productive viral infection. HAdV-D37 DNA was identified in caveolin-1 rich endosomal fractions after infection. Src kinase activity was also increased in caveolin-1 rich endosomal fractions after infection, and Src phosphorylation and CXCL1 induction were both decreased in caveolin-1-/- mice corneas compared to wild type mice. siRNA knock down of caveolin-1 in corneal cells reduced chemokine induction upon viral infection, and caveolin-1-/- mouse corneas showed reduced cellular entry of HAdV-D37. As a control, HAdV-C2, a non-corneal pathogen, appeared to utilize the caveolar pathway for entry into A549 cells, but failed to infect corneal cells entirely, indicating virus and cell specific tropism. Immuno-electron microscopy confirmed the presence of caveolin-1 in HAdV-D37-containing vesicles during the earliest stages of viral entry. Collectively, these experiments indicate for the first time that HAdV-D37 uses a lipid raft mediated caveolin-1 associated pathway for entry into corneal cells, and connects the processes of viral entry with

  15. Pycnogenol, French maritime pine bark extract, augments endothelium-dependent vasodilation in humans.

    Science.gov (United States)

    Nishioka, Kenji; Hidaka, Takayuki; Nakamura, Shuji; Umemura, Takashi; Jitsuiki, Daisuke; Soga, Junko; Goto, Chikara; Chayama, Kazuaki; Yoshizumi, Masao; Higashi, Yukihito

    2007-09-01

    Pycnogenol, an extract of bark from the French maritime pine, Pinus pinaster Ait., consists of a concentrate of water-soluble polyphenols. Pycnogenol contains the bioflavonoids catechin and taxifolin as well as phenolcarbonic acids. Antioxidants, such as bioflavonoids, enhance endothelial nitric oxide (NO) synthase expression and subsequent NO release from endothelial cells. The purpose of this study was to determine Pycnogenol's effects on endothelium-dependent vasodilation in humans. This was a double-blind, randomized, placebo and active drug study. We evaluated forearm blood flow (FBF) responses to acetylcholine (ACh), an endothelium-dependent vasodilator, and to sodium nitroprusside (SNP), an endothelium-independent vasodilator, in healthy young men before and after 2 weeks of daily oral administration of Pycnogenol (180 mg/day) (n=8) or placebo (n=8). FBF was measured by using strain-gauge plethysmography. Neither the placebo nor Pycnogenol altered forearm or systemic hemodynamics. Pycnogenol, but not placebo, augmented FBF response to ACh, from 13.1 +/- 7.0 to 18.5 +/- 4.0 mL/min per 100 mL tissue (pPycnogenol groups. The administration of N(G)-monomethyl-L-arginine, an NO synthase inhibitor, completely abolished Pycnogenol-induced augmentation of the FBF response to ACh. These findings suggest that Pycnogenol augments endothelium-dependent vasodilation by increasing in NO production. Pycnogenol would be useful for treating various diseases whose pathogeneses involve endothelial dysfunction.

  16. Identification of human fibroblast cell lines as a feeder layer for human corneal epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Rong Lu

    Full Text Available There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE and cell growth capacity were evaluated on days 5-14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1 × 10(4 in a 35-mm dish (9.6 cm(2 grew to confluence (about 1.87-2.41 × 10(6 cells in 12-14 days, representing 187-241 fold expansion with over 7-8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin β1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction.

  17. Genetics of corneal endothelial dystrophies

    Indian Academy of Sciences (India)

    Chitra Kannabiran

    2009-12-01

    The corneal endothelium maintains the level of hydration in the cornea. Dysfunction of the endothelium results in excess accumulation of water in the corneal stroma, leading to swelling of the stroma and loss of transparency. There are four different corneal endothelial dystrophies that are hereditary, progressive, non-inflammatory disorders involving dysfunction of the corneal endothelium. Each of the endothelial dystrophies is genetically heterogeneous with different modes of transmission and/or different genes involved in each subtype. Genes responsible for disease have been identified for only a subset of corneal endothelial dystrophies. Knowledge of genes involved and their function in the corneal endothelium can aid understanding the pathogenesis of the disorder as well as reveal pathways that are important for normal functioning of the endothelium.

  18. Endothelium specific matrilysin (MMP-7) expression in human cancers

    NARCIS (Netherlands)

    Sier, C.F.M.; Hawinkels, L.J.A.C.; Zijlmans, H.J.M.A.A.; Zuidwijk, K.; Jonge de; Muller, E.S.M.; Ferreira, V.; Hanemaaijer, R.; Mulder-Stapel, A.A.; Kenter, G.G.; Verspaget, H.W.; Gorter, A.

    2008-01-01

    Over-expression of matrilysin (MMP-7) is predominantly associated with epithelial (pre)malignant cells. In the present study MMP-7 expression is also found in endothelial cells in various human cancer types. Endothelial MMP-7 was associated with CD34 and/or CD105 expression. These immunohistochemica

  19. Effects of Cataract Surgery on Endothelium in Transplanted Corneal Grafts: Comparison of Extracapsular Cataract Extraction and Phacoemulsification for Complicated Cataract after Penetrating Keratoplasty

    Institute of Scientific and Technical Information of China (English)

    Hong-Wei Zhou; Li-Xin Xie

    2016-01-01

    Background:The endothelium should be carefully evaluated when choosing a surgical technique for cataract removal.Therefore,we aimed to study the effects of different cataract surgery techniques on endothelial cell loss in transplanted comeal grafts.Methods:A total of 54 patients who received complicated cataract surgery in post-penetrating keratoplasty (PKP) eyes at the Shandong Eye Institute between February 2001 and June 2014 were included,and clinical records were reviewed.Baseline demographic details,clinical characteristics,endothelial cell density (ECD),and best-corrected visual acuity (BCVA) were recorded.Wilcoxon rank-sum test and Wilcoxon signed-rank test were used to test the equality of medians.A regression model was constructed to compare the reduced rate of ECD.Results:Of the 54 eyes included in this study,extracapsular cataract extraction (ECCE) was performed in 34 eyes of 33 patients (ECCE group) whereas phacoemulsification was performed in 20 eyes of 20 patients (phacoemulsification group).There was no significant difference in the median age (P =0.081) or preoperative ECD (P =0.585) between the two groups.At 6 months after cataract surgery,ECD in ECCE group was significantly higher than that in phacoemulsification group (P =0.043).In addition,the endothelial cell loss rate in ECCE group was significantly lower than that in phacoemulsification group at 2 months (P =0.018),4 months (P < 0.001),and 6 months (P < 0.001) after cataract surgery.Endothelial cell loss rate after cataract surgery increased over the 6-month study duration in both ECCE group (P < 0.00 l) and phacoemulsification group (P < 0.001),but phacoemulsification resulted in a greater reduction in ECD than that of ECCE in transplanted corneal grafts (P < 0.001).There was no significant difference in postoperative BCVA between the two groups (P =0.065).Conclusion:ECCE is more suitable than phacoemulsification in cataract surgery in complicated cataract after PKP.

  20. Analysis of human transforming growth factor β-induced gene mutation in corneal dystrophy

    Institute of Scientific and Technical Information of China (English)

    李杨; 孙旭光; 任慧媛; 董冰; 王智群; 孙秀英

    2004-01-01

    Background Corneal dystrophy is a group of inherited blinding diseases of the cornea. This study was to identify the mutations of the keratoepithelin (KE) gene for proper diagnosis of corneal dystrophy. Methods Three families with corneal dystrophy were analysed. Thirteen individuals at risk for corneal dystrophy in family A, the proband and her son in family B, and the proband in family C were examined after their blood samples were obtained. Mutation screening of human transforming growth factor β-induced gene (BIGH3 gene) was performed. Results Five individuals in family A were found by clinical evaluation to be affected with granular corneal dystrophy and carried the BIGH3 mutation W555R. However, both probands in families B and C, also diagnosed with granular corneal dystrophy, harboured the BIGH3 mutation R124H. Conclusion Molecular genetic analysis can improve accurate diagnosis of corneal dystrophy.

  1. Proteomic analysis of the soluble fraction from human corneal fibroblasts with reference to ocular transparency.

    Science.gov (United States)

    Karring, Henrik; Thøgersen, Ida B; Klintworth, Gordon K; Enghild, Jan J; Møller-Pedersen, Torben

    2004-07-01

    The transparent corneal stroma contains a population of corneal fibroblasts termed keratocytes, which are interspersed between the collagen lamellae. Under normal conditions, the keratocytes are quiescent and transparent. However, after corneal injury the keratocytes become activated and transform into backscattering wound-healing fibroblasts resulting in corneal opacification. At present, the most popular hypothesis suggests that particular abundant water-soluble proteins called enzyme-crystallins are involved in maintaining corneal cellular transparency. Specifically, corneal haze development is thought to be related to low levels of cytoplasmic enzyme-crystallins in reflective corneal fibroblasts. To further investigate this hypothesis, we have used a proteomic approach to identify the most abundant water-soluble proteins in serum-cultured human corneal fibroblasts that represent an in vitro model of the reflective wound-healing keratocyte phenotype. Densitometry of one-dimensional gels revealed that no single protein isoform exceeded 5% of the total water-soluble protein fraction, which is the qualifying property of a corneal enzyme-crystallin according to the current definition. This result indicates that wound-healing corneal fibroblasts do not contain enzyme-crystallins. A total of 254 protein identifications from two-dimensional gels were performed representing 118 distinct proteins. Proteins protecting against oxidative stress and protein misfolding were prominent, suggesting that these processes may participate in the generation of cytoplasmic light-scattering from corneal fibroblasts.

  2. Optimized human platelet lysate as novel basis for a serum-, xeno- and additive-free corneal endothelial cell and tissue culture.

    Science.gov (United States)

    Thieme, Daniel; Reuland, Lynn; Lindl, Toni; Kruse, Friedrich; Fuchsluger, Thomas

    2017-09-21

    The expansion of donor derived corneal endothelial cells is a promising approach for regenerative therapies in corneal diseases. To achieve the best GMP standard the entire cultivation process should be devoid of non-human components. However, so far there is no suitable xeno-free protocol for clinical applications. We therefore introduce a processed variant of a platelet lysate for the use in corneal cell and tissue culture based on a GMP-grade thrombocyte concentrate. This processed human platelet lysate (phPL), free of any animal components and of anti-coagulants like heparin with a physiological ionic composition, was used to cultivate corneal endothelial cells (EC) in vitro and ex vivo in comparison to standard cultivation with FCS. Human donor corneas were cut in quarters while two quarters of each cornea were incubated with the respective medium supplement. Three fields of view per quarter were taken into account for the analysis. Evaluation of phPL as a medium supplement in cell culture of immortalized EC showed a superior viability compared to fetal calf serum (FCS) control with reduced cell proliferation. Furthermore, the viability during the expansion of primary cells is significantly (3fold+-0.5) increased with phPL compared to FCS standard medium. Quartering donor corneas was traumatic for the endothelium and therefore resulted in increased EC loss. Interestingly, however, cultivation of the quartered pieces for two weeks in 0.1mg/mL pHPL in Biochrome I showed a 21 (+-10) % EC loss compared to 67 (+-12) % EC loss when cultivated in 2% FCS in Biochrome I. The cell culture protocol with pHPL as FCS replacement seems to be superior to the standard FCS protocols with respect to EC survival. It offers a xeno-free and physiological environment for corneal endothelial cells. This alternative cultivation protocol could facilitate the use of EC for human corneal cell therapy. This article is protected by copyright. All rights reserved.

  3. Aloe vera extract activity on human corneal cells.

    Science.gov (United States)

    Woźniak, Anna; Paduch, Roman

    2012-02-01

    Ocular diseases are currently an important problem in modern societies. Patients suffer from various ophthalmologic ailments namely, conjunctivitis, dry eye, dacryocystitis or degenerative diseases. Therefore, there is a need to introduce new treatment methods, including medicinal plants usage. Aloe vera [Aloe barbadensis Miller (Liliaceae)] possesses wound-healing properties and shows immunomodulatory, anti-inflammatory or antioxidant activities. NR uptake, MTT, DPPH• reduction, Griess reaction, ELISA and rhodamine-phalloidin staining were used to test toxicity, antiproliferative activity, reactive oxygen species (ROS) reduction, nitric oxide (NO) and cytokine level, and distribution of F-actin in cells, respectively. The present study analyzes the effect of Aloe vera extracts obtained with different solvents on in vitro culture of human 10.014 pRSV-T corneal cells. We found no toxicity of ethanol, ethyl acetate and heptane extracts of Aloe vera on human corneal cells. No ROS reducing activity by heptane extract and trace action by ethanol (only at high concentration 125 µg/ml) extract of Aloe vera was observed. Only ethyl acetate extract expressed distinct free radical scavenging effect. Plant extracts decreased NO production by human corneal cells as compared to untreated controls. The cytokine (IL-1β, IL-6, TNF-α and IL-10) production decreased after the addition of Aloe vera extracts to the culture media. Aloe vera contains multiple pharmacologically active substances which are capable of modulating cellular phenotypes and functions. Aloe vera ethanol and ethyl acetate extracts may be used in eye drops to treat inflammations and other ailments of external parts of the eye such as the cornea.

  4. Viability of human corneal keratocytes during organ culture

    DEFF Research Database (Denmark)

    Møller-Pedersen, T; Møller, H J

    1996-01-01

    The viability of human corneal keratocytes was assessed during four weeks of 'closed system' organ culture at 31 degrees C. After 28 days of culturing, the entire keratocyte population was still alive and viable because all cells incorporated uridine; a parameter for RNA-synthesis. During the first...... of keratan sulphate proteoglycan suggested that approximately 1% of the total content was lost during the period. In conclusion, our current organ culture technique can maintain a viable keratocyte population for four weeks; a viable stroma can be grafted within this period....

  5. Expression of glutathione transferases in corneal cell lines, corneal tissues and a human cornea construct.

    Science.gov (United States)

    Kölln, Christian; Reichl, Stephan

    2016-06-15

    Glutathione transferase (GST) expression and activity were examined in a three-dimensional human cornea construct and were compared to those of excised animal corneas. The objective of this study was to characterize phase II enzyme expression in the cornea construct with respect to its utility as an alternative to animal cornea models. The expression of the GSTO1-1 and GSTP1-1 enzymes was investigated using immunofluorescence staining and western blotting. The level of total glutathione transferase activity was determined using 1-chloro-2,4- dinitrobenzene as the substrate. Furthermore, the levels of GSTO1-1 and GSTP1-1 activity were examined using S-(4-nitrophenacyl)glutathione and ethacrynic acid, respectively, as the specific substrates. The expression and activity levels of these enzymes were examined in the epithelium, stroma and endothelium, the three main cellular layers of the cornea. In summary, the investigated enzymes were detected at both the protein and functional levels in the cornea construct and the excised animal corneas. However, the enzymatic activity levels of the human cornea construct were lower than those of the animal corneas.

  6. Regulation of human corneal epithelial mucins by rebamipide.

    Science.gov (United States)

    Itoh, Shinsaku; Itoh, Kuni; Shinohara, Hisashi

    2014-02-01

    Membrane-associated mucins (MAMs) play important roles in barrier function and tear stability, and their expression on the ocular surface is altered in dry eye disease. Rebamipide is a mucin secretagogue that promotes the production of mucin-like glycoproteins in human corneal epithelial (HCE) cells. However, the expression of MAMs on the corneal epithelia (MUC1, MUC4, MUC16), which is induced by rebamipide, is poorly understood. In this study, we investigated the effect of rebamipide on the regulation of MAM expression in HCE cells. MUC16, Ki67 and PCNA expression levels in HCE cells isolated at confluence and at 24 hours after confluence were examined by Western blotting to assess cell proliferation. HCE cells isolated at 24 hours after confluence were cultured in medium supplemented with 1-10 µM rebamipide or 0.3-30 nM of epidermal growth factor (EGF). Real-time PCR (RT-PCR) and Western blot analysis of MAMs were performed to evaluate the effect of rebamipide. Western blot analysis of cells treated with an EGF receptor inhibitor (AG1478) or MEK1/2 inhibitor (U0126) was performed to reveal the relationship between EGF receptor activation and rebamipide-induced MAM expression. HCE cells isolated at 24 hours after confluence had lower cell proliferation activity and increased MUC16 expression compared with cells isolated at confluence. RT-PCR and Western blot analysis revealed that rebamipide increased MAM gene expression for 2 hours and protein expression for 24 hours in HCE cells. EGF inhibitor treatment led to reduced levels of all three MAMs that are normally induced by rebamipide, whereas EGF induced the expression of all three MAMs. We suggested that rebamipide increased MUC1, MUC4 and MUC16 expression levels through signals involved in EGF receptor activation in the human corneal epithelia. These data suggest that rebamipide may improve subjective symptoms of dry eye disease by upregulating MAM expression.

  7. Micro- and nano-topography to enhance proliferation and sustain functional markers of donor-derived primary human corneal endothelial cells.

    Science.gov (United States)

    Muhammad, Rizwan; Peh, Gary S L; Adnan, Khadijah; Law, Jaslyn B K; Mehta, Jodhbir S; Yim, Evelyn K F

    2015-06-01

    One of the most common indications for corneal transplantation is corneal endothelium dysfunction, which can lead to corneal blindness. Due to a worldwide donor cornea shortage, alternative treatments are needed, but the development of new treatment strategies relies on the successful in vitro culture of primary human corneal endothelial cells (HCECs) because transformed cell lines and animal-derived corneal endothelial cells are not desirable for therapeutic applications. Primary HCECs are non-proliferative in vivo and challenging to expand in vitro while maintaining their characteristic cell morphology and critical markers. Biochemical cues such as growth factors and small molecules have been investigated to enhance the expansion of HCECs with a limited increase in proliferation. In this study, patterned tissue culture polystyrene (TCPS) was shown to significantly enhance the expansion of HCECs. The proliferation of HCECs increased up to 2.9-fold, and the expression amount and localization of cell-cell tight junction protein Zona Occludens-1 (ZO-1) was significantly enhanced when grown on 1 μm TCPS pillars. 250 nm pillars induced an optimal hexagonal morphology of HCEC cells. Furthermore, we demonstrated that the topographical effect on tight-junction expression and cell morphology could be maintained throughout each passage, and was effectively 'remembered' by the cells. Higher amount of tight-junction protein expression was maintained at cell junctions when topographic cues were removed in the successive seeding. This topographic memory suggested topography-exposed/induced cells would maintain the enhanced functional markers, which would be useful in cell-therapy based approaches to enable the in situ endothelial cell monolayer formation upon delivery. The development of patterned TCPS culture platforms could significantly benefit those researching human corneal endothelial cell cultivation for cell therapy, and tissue engineering applications.

  8. Coincident expression and distribution of melanotransferrin and transferrin receptor in human brain capillary endothelium.

    Science.gov (United States)

    Rothenberger, S; Food, M R; Gabathuler, R; Kennard, M L; Yamada, T; Yasuhara, O; McGeer, P L; Jefferies, W A

    1996-03-11

    One method of iron transport across the blood brain barrier (BBB) involves the transferrin receptor (TR), which is localized to the specialized brain capillary endothelium. The melanotransferrin (MTf) molecule, also called p97, has been widely described as a melanoma specific molecule, however, its expression in brain tissues has not been addressed. MTf has a high level of sequence homology to transferrin (Tf) and lactoferrin, but is unusual because it predominantly occurs as a membrane bound, glycosylphosphatidylinositol (GPI) anchored molecule, but can also occur as a soluble form. We have recently demonstrated that GPI-anchored MTf provides a novel route for cellular iron uptake which is independent of Tf and its receptor. Here we consider whether MTf may have a role in the transport of iron across the BBB. The distributions of MTf, Tf and the TR were studied immunohistochemically in human brain tissues. The distributions of MTf and TR were remarkably similar, and quite different from that of Tf. In all brain tissues examined, MTf and the TR were highly localized to capillary endothelium, while Tf itself was mainly localized to glial cells. These data suggest that MTf may play a role in iron transport within the human brain.

  9. Derivation of Corneal Keratocyte-Like Cells from Human Induced Pluripotent Stem Cells

    Science.gov (United States)

    Naylor, Richard W.; McGhee, Charles N. J.; Cowan, Chad A.; Davidson, Alan J.; Holm, Teresa M.; Sherwin, Trevor

    2016-01-01

    Corneal diseases such as keratoconus represent a relatively common disorder in the human population. However, treatment is restricted to corneal transplantation, which only occurs in the most advanced cases. Cell based therapies may offer an alternative approach given that the eye is amenable to such treatments and corneal diseases like keratoconus have been associated specifically with the death of corneal keratocytes. The ability to generate corneal keratocytes in vitro may enable a cell-based therapy to treat patients with keratoconus. Human induced pluripotent stem cells (hiPSCs) offer an abundant supply of cells from which any cell in the body can be derived. In the present study, hiPSCs were successfully differentiated into neural crest cells (NCCs), the embryonic precursor to keratocytes, and then cultured on cadaveric corneal tissue to promote keratocyte differentiation. The hiPSC-derived NCCs were found to migrate into the corneal stroma where they acquired a keratocyte-like morphology and an expression profile similar to corneal keratocytes in vivo. These results indicate that hiPSCs can be used to generate corneal keratocytes in vitro and lay the foundation for using these cells in cornea cell-based therapies. PMID:27792791

  10. Generation of Corneal Keratocytes from Human Embryonic Stem Cells.

    Science.gov (United States)

    Hertsenberg, Andrew J; Funderburgh, James L

    2016-01-01

    Human Embryonic Stem Cells (hESC) offer an important resource as a limitless supply of any differentiated cell type of the human body. Keratocytes, cells from the corneal stroma, may have the potential for restoration of vision in cell therapy and biomedical engineering applications, but these specialized cells are not readily expanded in vitro. Here we describe a two-part method to produce keratocytes from the H1 hESC cell line. The hESC cells, maintained and expanded in feeder-free culture medium are first differentiated to neural crest cells using the stromal-derived inducing activity (SDIA) of the PA6 mouse embryonic fibroblast cell line. The resulting neural crest cells are selected by their expression of cell-surface CD271 and subsequently cultured as 3D pellets in a defined differentiation medium to induce a keratocyte phenotype.

  11. Construction of human liver cancer vascular endothelium cDNA expression library and screening of the endothelium-associated antigen genes

    Institute of Scientific and Technical Information of China (English)

    Xing Zhong; Yu-Liang Ran; Jin-Ning Lou; Dong Hu; Long Yu; Yu-Shan Zhang; Zhuan Zhou; Zhi-Hua Yang

    2004-01-01

    AIM: To gain tumor endothelium associated antigen genes from human liver cancer vascular endothelial cells (HLCVECs)cDNA expression library, so as to find some new possible targets for the diagnosis and therapy of liver tumor.METHODS: HLCVECs were isolated and purified from a fresh hepatocellular carcinoma tissue sample, and were cultured and proliferated in vitro. A cDNA expression library was constructed with the mRNA extracted from HLCVECs.Anti-sera were prepared from immunized BALB/c mice through subcutaneous injection with high dose of fixed HLCVECs, and were then tested for their specificity against HLCVECs and angiogenic effectsin vitro, such as inhibiting proliferation and inducing apoptosis of tumor endothelial cells, using immunocytochemistry, immunofiuorescence,cell cycle analysis and MTT assays, etc. The identified xenogeneic sera from immunized mice were employed to screen the library of HLCVECs by modified serological analyses of recombinant cDNA expression libraries (SEREX).The positive clones were sequenced and analyzed by bioinformatics.RESULTS: The primary cDNA library consisted of 2x106recombinants. Thirty-six positive clones were obtained from6×10s independent clones by immunoscreening. Bio-informatics analysis of cDNA sequences indicated that 36 positive clones represented 18 different genes. Among them, 3 were new genes previously unreported, 2 of which were hypothetical genes. The other L5 were already known ones. Series analysis of gene expression (SAGE) database showed that ERP70,GRP58, GAPDH, SSB, S100A6, BMP-6, DVS27, HSP70 and NAC alpha in these genes were associated with endothelium and angiogenesis, but their effects on HLCVECs were still unclear. GAPDH, S100A6, BMP-6 and hsp70 were identified by SEREX in other tumor cDNA expression libraries.CONCLUSION: By screening of HLCVECs cDNA expression library using sera from immunized mice with HLCVECs,the functional genes associated with tumor endothelium or angiogenesis were identified. The

  12. Successful transplantation of in vitro expanded human corneal endothelial precursors to corneal endothelial surface using a nanocomposite sheet

    Directory of Open Access Journals (Sweden)

    Parikumar P

    2011-01-01

    Full Text Available Background: Though the transplantation of in vitro expanded human corneal endothelial precursors in animal models of endothelial damage by injecting into the anterior chamber has been reported, the practical difficulties of accomplishing such procedure in human patients have been a hurdle to clinical translation. Here we report the successful transplantation of in vitro expanded human corneal precursor cells to an animal eye using a transparent Nano-composite sheet and their engraftment.Materials and Methods: Human Corneal endothelial cells (HCEC were isolated from human cadaver eyes with informed consent and expanded in the lab using a sphere forming assay in a novel Thermoreversible Gelation Polymer (TGP for 26 days. HCEC obtained by sphere forming assay were seeded in a novel Nano-composite sheet, which was made of PNIPA-NC gels by in-situ, free-radical polymerization of NIPA monomer in the presence of exfoliated clay (synthetic hectorite “Laponite XLG” uniformly dispersed in aqueous media. After a further seven days in vitro culture of HCEC in the Nano-composite sheet, cells were harvested and transplanted on cadaver-bovine eyes (n=3. The cells were injected between the corneal endothelial layer and the Nano-composite sheet that had been placed prior to the injection in close proximity to the endothelial layer. After three hours, the transplanted Nano-composite sheets were removed from the bovine eyes and subjected to microscopic examination. The corneas were subjected to Histo-pathological studies along with controls. Results: HCEC formed sphere like colonies in TGP which expressed relevant markers as confirmed by RT-PCR. Microscopic studies of the Nanosheets and histopathological studies of the cornea of the Bull’s eye revealed that the HCEC got engrafted to the corneal endothelial layer of the bovine eyes with no remnant cells in the Nanosheet. Conclusion: Transplantation of in vitro expanded donor human corneal endothelial cells

  13. Cannabidiol causes endothelium-dependent vasorelaxation of human mesenteric arteries via CB1 activation.

    Science.gov (United States)

    Stanley, Christopher P; Hind, William H; Tufarelli, Cristina; O'Sullivan, Saoirse E

    2015-09-01

    The protective effects of cannabidiol (CBD) have been widely shown in preclinical models and have translated into medicines for the treatment of multiple sclerosis and epilepsy. However, the direct vascular effects of CBD in humans are unknown. Using wire myography, the vascular effects of CBD were assessed in human mesenteric arteries, and the mechanisms of action probed pharmacologically. CBD-induced intracellular signalling was characterized using human aortic endothelial cells (HAECs). CBD caused acute, non-recoverable vasorelaxation of human mesenteric arteries with an Rmax of ∼ 40%. This was inhibited by cannabinoid receptor 1 (CB1) receptor antagonists, desensitization of transient receptor potential channels using capsaicin, removal of the endothelium, and inhibition of potassium efflux. There was no role for cannabinoid receptor-2 (CB2) receptor, peroxisome proliferator activated receptor (PPAR)γ, the novel endothelial cannabinoid receptor (CBe), or cyclooxygenase. CBD-induced vasorelaxation was blunted in males, and in patients with type 2 diabetes or hypercholesterolemia. In HAECs, CBD significantly reduced phosphorylated JNK, NFκB, p70s6 K and STAT5, and significantly increased phosphorylated CREB, ERK1/2, and Akt levels. CBD also increased phosphorylated eNOS (ser1177), which was correlated with increased levels of ERK1/2 and Akt levels. CB1 receptor antagonism prevented the increase in eNOS phosphorylation. This study shows, for the first time, that CBD causes vasorelaxation of human mesenteric arteries via activation of CB1 and TRP channels, and is endothelium- and nitric oxide-dependent. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.

  14. Oxygen-deficient metabolism and corneal edema.

    Science.gov (United States)

    Leung, B K; Bonanno, J A; Radke, C J

    2011-11-01

    Wear of low-oxygen-transmissible soft contact lenses swells the cornea significantly, even during open eye. Although oxygen-deficient corneal edema is well-documented, a self-consistent quantitative prediction based on the underlying metabolic reactions is not available. We present a biochemical description of the human cornea that quantifies hypoxic swelling through the coupled transport of water, salt, and respiratory metabolites. Aerobic and anaerobic consumption of glucose, as well as acidosis and pH buffering, are incorporated in a seven-layer corneal model (anterior chamber, endothelium, stroma, epithelium, postlens tear film, contact lens, and prelens tear film). Corneal swelling is predicted from coupled transport of water, dissolved salts, and especially metabolites, along with membrane-transport resistances at the endothelium and epithelium. At the endothelium, the Na+/K+ - ATPase electrogenic channel actively transports bicarbonate ion from the stroma into the anterior chamber. As captured by the Kedem-Katchalsky membrane-transport formalism, the active bicarbonate-ion flux provides the driving force for corneal fluid pump-out needed to match the leak-in tendency of the stroma. Increased lactate-ion production during hypoxia osmotically lowers the pump-out rate requiring the stroma to swell to higher water content. Concentration profiles are predicted for glucose, water, oxygen, carbon dioxide, and hydronium, lactate, bicarbonate, sodium, and chloride ions, along with electrostatic potential and pressure profiles. Although the active bicarbonate-ion pump at the endothelium drives bicarbonate into the aqueous humor, we find a net flux of bicarbonate ion into the cornea that safeguards against acidosis. For the first time, we predict corneal swelling upon soft-contact-lens wear from fundamental biophysico-chemical principles. We also successfully predict that hypertonic tear alleviates contact-lens-induced edema.

  15. Endothelium-derived hyperpolarizing factor contributes to hypoxia-induced skeletal muscle vasodilation in humans.

    Science.gov (United States)

    Spilk, Samson; Herr, Michael D; Sinoway, Lawrence I; Leuenberger, Urs A

    2013-12-01

    Systemic hypoxia causes skeletal muscle vasodilation, thereby preserving O2 delivery to active tissues. Nitric oxide (NO), adenosine, and prostaglandins contribute to this vasodilation, but other factors may also play a role. We tested the hypothesis that regional inhibition of endothelium-derived hyperpolarizing factor with the cytochrome P-450 2C9 antagonist fluconazole, alone or combined with the NO synthase antagonist N(G)-monomethyl-L-arginine (L-NMMA), attenuates hypoxia-induced vasodilation. We compared forearm blood flow (FBF) and skin blood flow before and during brachial artery infusion of fluconazole (0.3 mg/min; trial 1) or fluconazole + L-NMMA (50 mg over 10 min; trial 2) and during systemic hypoxia (10 min, arterial Po2 ~37 mmHg) in infused (experimental) and control forearms of 12 healthy humans. During normoxia, fluconazole and fluconazole + L-NMMA reduced (P vasodilation and could be particularly relevant when other vasodilator systems are impaired.

  16. Mitochondrial and Morphologic Alterations in Native Human Corneal Endothelial Cells Associated With Diabetes Mellitus.

    Science.gov (United States)

    Aldrich, Benjamin T; Schlötzer-Schrehardt, Ursula; Skeie, Jessica M; Burckart, Kimberlee A; Schmidt, Gregory A; Reed, Cynthia R; Zimmerman, M Bridget; Kruse, Friedrich E; Greiner, Mark A

    2017-04-01

    To characterize changes in the energy-producing metabolic activity and morphologic ultrastructure of corneal endothelial cells associated with diabetes mellitus. Transplant suitable corneoscleral tissue was obtained from donors aged 50 to 75 years. We assayed 3-mm punches of endothelium-Descemet membrane for mitochondrial respiration and glycolysis activity using extracellular flux analysis of oxygen and pH, respectively. Transmission electron microscopy was used to assess qualitative and quantitative ultrastructural changes in corneal endothelial cells and associated Descemet membrane. For purposes of analysis, samples were divided into four groups based on a medical history of diabetes regardless of type: (1) nondiabetic, (2) noninsulin-dependent diabetic, (3) insulin-dependent diabetic, and (4) insulin-dependent diabetic with specified complications due to diabetes (advanced diabetic). In total, 229 corneas from 159 donors were analyzed. Insulin-dependent diabetic samples with complications due to diabetes displayed the lowest spare respiratory values compared to all other groups (P ≤ 0.002). The remaining mitochondrial respiration and glycolysis metrics did not differ significantly among groups. Compared to nondiabetic controls, the endothelium from advanced diabetic samples had alterations in mitochondrial morphology, pronounced Golgi bodies associated with abundant vesicles, accumulation of lysosomal bodies/autophagosomes, and focal production of abnormal long-spacing collagen. Extracellular flux analysis suggests that corneal endothelial cells of donors with advanced diabetes have impaired mitochondrial function. Metabolic findings are supported by observed differences in mitochondrial morphology of advanced diabetic samples but not controls. Additional studies are needed to determine the precise mechanism(s) by which mitochondria become impaired in diabetic corneal endothelial cells.

  17. Effects of N-acetylcysteine on matrix metalloproteinase-9 secretion and cell migration of human corneal epithelial cells

    OpenAIRE

    Ramaesh, T; Ramaesh, K; Riley, S C; West, J.D.; Dhillon, B

    2012-01-01

    Matrix metalloproteinase-9 (MMP-9) secreted by corneal epithelial cells has a role in the remodelling of extracellular matrix and migration of epithelial cells. Elevated levels of MMP-9 activity in the ocular surface may be involved in the pathogenesis of corneal diseases. N-acetylcysteine (NAC) has been used to treat corneal diseases, including recurrent epithelial erosions. In this study, its effects on the MMP-9 secretion and human corneal epithelial (HCE) cell migration were evaluated in ...

  18. Adenoviral transduction of human acid sphingomyelinase into neo-angiogenic endothelium radiosensitizes tumor cure.

    Directory of Open Access Journals (Sweden)

    Branka Stancevic

    Full Text Available These studies define a new mechanism-based approach to radiosensitize tumor cure by single dose radiotherapy (SDRT. Published evidence indicates that SDRT induces acute microvascular endothelial apoptosis initiated via acid sphingomyelinase (ASMase translocation to the external plasma membrane. Ensuing microvascular damage regulates radiation lethality of tumor stem cell clonogens to effect tumor cure. Based on this biology, we engineered an ASMase-producing vector consisting of a modified pre-proendothelin-1 promoter, PPE1(3x, and a hypoxia-inducible dual-binding HIF-2α-Ets-1 enhancer element upstream of the asmase gene, inserted into a replication-deficient adenovirus yielding the vector Ad5H2E-PPE1(3x-ASMase. This vector confers ASMase over-expression in cycling angiogenic endothelium in vitro and within tumors in vivo, with no detectable enhancement in endothelium of normal tissues that exhibit a minute fraction of cycling cells or in non-endothelial tumor or normal tissue cells. Intravenous pretreatment with Ad5H2E-PPE1(3x-ASMase markedly increases SDRT cure of inherently radiosensitive MCA/129 fibrosarcomas, and converts radiation-incurable B16 melanomas into biopsy-proven tumor cures. In contrast, Ad5H2E-PPE1(3x-ASMase treatment did not impact radiation damage to small intestinal crypts as non-dividing small intestinal microvessels did not overexpress ASMase and were not radiosensitized. We posit that combination of genetic up-regulation of tumor microvascular ASMase and SDRT provides therapeutic options for currently radiation-incurable human tumors.

  19. Optimization of Human Corneal Endothelial Cells for Culture: The Removal of Corneal Stromal Fibroblast Contamination Using Magnetic Cell Separation

    Directory of Open Access Journals (Sweden)

    Gary S. L. Peh

    2012-01-01

    Full Text Available The culture of human corneal endothelial cells (CECs is critical for the development of suitable graft alternative on biodegradable material, specifically for endothelial keratoplasty, which can potentially alleviate the global shortage of transplant-grade donor corneas available. However, the propagation of slow proliferative CECs in vitro can be hindered by rapid growing stromal corneal fibroblasts (CSFs that may be coisolated in some cases. The purpose of this study was to evaluate a strategy using magnetic cell separation (MACS technique to deplete the contaminating CSFs from CEC cultures using antifibroblast magnetic microbeads. Separated “labeled” and “flow-through” cell fractions were collected separately, cultured, and morphologically assessed. Cells from the “flow-through” fraction displayed compact polygonal morphology and expressed Na+/K+ATPase indicative of corneal endothelial cells, whilst cells from the “labeled” fraction were mostly elongated and fibroblastic. A separation efficacy of 96.88% was observed. Hence, MACS technique can be useful in the depletion of contaminating CSFs from within a culture of CECs.

  20. IL-8 and MCP Gene Expression and Production by LPS-Stimulated Human Corneal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Roni M. Shtein

    2012-01-01

    Full Text Available Purpose. To determine time course of effect of lipopolysaccharide (LPS on production of interleukin-8 (IL-8 and monocyte chemotactic protein (MCP by cultured human corneal stromal cells. Methods. Human corneal stromal cells were harvested from donor corneal specimens, and fourth to sixth passaged cells were used. Cell cultures were stimulated with LPS for 2, 4, 8, and 24 hours. Northern blot analysis of IL-8 and MCP gene expression and ELISA for IL-8 and MCP secretion were performed. ELISA results were analyzed for statistical significance using two-tailed Student's t-test. Results. Northern blot analysis demonstrated significantly increased IL-8 and MCP gene expression after 4 and 8 hours of exposure to LPS. ELISA for secreted IL-8 and MCP demonstrated statistically significant increases (P<0.05 after corneal stromal cell stimulation with LPS. Conclusions. This paper suggests that human corneal stromal cells may participate in corneal inflammation by secreting potent leukocyte chemotactic and activating proteins in a time-dependent manner when exposed to LPS.

  1. Comparación del endotelio corneal antes y después de la extracción extracapsular del cristalino: Blumenthal vs facoemulsificación Comparison of the corneal endothelium before and after extracapsular extraction of the Blumenthal crystalline: vs phacoemulsification

    Directory of Open Access Journals (Sweden)

    Maurin A Francis Pérez

    2010-01-01

    Full Text Available OBJETIVO: Determinar el estado del endotelio corneal mediante la microscopia óptica convencional, antes y después de la extracción extracapsular del cristalino o facoemulsificación. MÉTODOS: Se realizó un estudio descriptivo, prospectivo y transversal a 100 pacientes diagnosticados de catarata a los que se les realizó técnica de Blumenthal y facomeulsificación, en el Instituto Cubano de Oftalmología "Ramón Pando Ferrer", entre septiembre- noviembre 2006. RESULTADOS: Predominaron pacientes masculinos, en los grupos de edades 40 a 59 y 60 a 79 años. La técnica de Blumenthal modificó la densidad celular y la hexagonalidad, pero no modificó el coeficiente de variabilidad. La técnica de facoemulsificación modificó todos los parámetros morfométricos. En la técnica de facoemulsificación, donde el tiempo de ultrasonido fue mayor, los pacientes tuvieron mayor pérdida endotelial. CONCLUSIONES: La microscopia especular debe ser incluida como un examen de rutina prequirúrgico y posquirúrgico en la cirugía de catarata para demostrar el efecto de la misma sobre el endotelio corneal.OBJECTIVE: To determine the state of the corneal endothelium by means of the conventional optic microscopy, before and after the extracapsular extraction of the crystalline lens or phacoemulsification. METHOD: Prospective, descriptive and cross-sectional study was performed in 100 patients diagnosed with cataract, who underwent surgery with the Blumenthal technique or Phacomeulsification procedure at "Ramón Pando Ferrer" Cuban Institute of Ophthalmology from September - November 2006. RESULTS: Males prevailed in the age groups of 40-59 and 60-79 years. The Blumenthal technique changed the cellular density and hexagonality, except for the variability coefficient. The phacooemulsificación method modified all the morphometric parameters and the longer application of ultrasound meant greater endothelial loss in patients subjected to this technique

  2. Ex vivo expansion of bovine corneal endothelial cells in xeno-free medium supplemented with platelet releasate.

    Science.gov (United States)

    Chou, Ming-Li; Burnouf, Thierry; Wang, Tsung-Jen

    2014-01-01

    Clinical-grade ex vivo expansion of corneal endothelial cells can increase the availability of corneal tissues for transplantation and treatment of corneal blindness. However, these cells have very limited proliferative capacity. Successful propagation has required so far to use very complex growth media supplemented with fetal bovine serum and other xenocomponents. We hypothesized that human platelet releasates rich in multiple growth factors, and in particular neurotrophins, could potentially be a useful supplement for ex vivo expansion of corneal endothelium cells due to their neural crest origin. Platelet releasates were prepared by calcium salt activation of apheresis platelet concentrates, subjected or not to complement inactivation by heat treatment at 56°C for 30 minutes. Platelet releasates were characterized for their content in proteins and were found to contain high amount of growth factors including platelet-derived growth factor-AB (30.56 to 39.08 ng/ml) and brain-derived neurotrophic factor (30.57 to 37.11 ng/ml) neurotrophins. We compared the growth and viability of corneal endothelium cells in DMEM-F12 medium supplemented with different combinations of components, including 2.5%∼10% of the platelet releasates. Corneal endothelium cells expanded in platelet releasates exhibited good adhesion and a typical hexagonal morphology. Their growth and viability were enhanced when using the complement-inactivated platelet releasate at a concentration of 10%. Immunostaining and Western blots showed that CECs maintained the expressions of four important membrane markers: Na-K ATPase α1, zona occludens-1, phospho-connexin 43 and N-cadherin. In conclusion, our study provides the first proof-of-concept that human platelet releasates can be used for ex vivo expansion of corneal endothelium cells. These findings open a new paradigm for ex vivo propagation protocols of corneal endothelium cells in compliance with good tissue culture practices and regulatory

  3. Ex vivo expansion of bovine corneal endothelial cells in xeno-free medium supplemented with platelet releasate.

    Directory of Open Access Journals (Sweden)

    Ming-Li Chou

    Full Text Available Clinical-grade ex vivo expansion of corneal endothelial cells can increase the availability of corneal tissues for transplantation and treatment of corneal blindness. However, these cells have very limited proliferative capacity. Successful propagation has required so far to use very complex growth media supplemented with fetal bovine serum and other xenocomponents. We hypothesized that human platelet releasates rich in multiple growth factors, and in particular neurotrophins, could potentially be a useful supplement for ex vivo expansion of corneal endothelium cells due to their neural crest origin. Platelet releasates were prepared by calcium salt activation of apheresis platelet concentrates, subjected or not to complement inactivation by heat treatment at 56°C for 30 minutes. Platelet releasates were characterized for their content in proteins and were found to contain high amount of growth factors including platelet-derived growth factor-AB (30.56 to 39.08 ng/ml and brain-derived neurotrophic factor (30.57 to 37.11 ng/ml neurotrophins. We compared the growth and viability of corneal endothelium cells in DMEM-F12 medium supplemented with different combinations of components, including 2.5%∼10% of the platelet releasates. Corneal endothelium cells expanded in platelet releasates exhibited good adhesion and a typical hexagonal morphology. Their growth and viability were enhanced when using the complement-inactivated platelet releasate at a concentration of 10%. Immunostaining and Western blots showed that CECs maintained the expressions of four important membrane markers: Na-K ATPase α1, zona occludens-1, phospho-connexin 43 and N-cadherin. In conclusion, our study provides the first proof-of-concept that human platelet releasates can be used for ex vivo expansion of corneal endothelium cells. These findings open a new paradigm for ex vivo propagation protocols of corneal endothelium cells in compliance with good tissue culture practices

  4. Differentiation and molecular profiling of human embryonic stem cell-derived corneal epithelial cells.

    Science.gov (United States)

    Brzeszczynska, J; Samuel, K; Greenhough, S; Ramaesh, K; Dhillon, B; Hay, D C; Ross, J A

    2014-06-01

    It has been suggested that the isolation of scalable populations of limbal stem cells may lead to radical changes in ocular therapy. In particular, the derivation and transplantation of corneal stem cells from these populations may result in therapies providing clinical normality of the diseased or damaged cornea. Although feasible in theory, the lack of donor material in sufficient quantity and quality currently limits such a strategy. A potential scalable source of corneal cells could be derived from pluripotent stem cells (PSCs). We developed an in vitro and serum-free corneal differentiation model which displays significant promise. Our stepwise differentiation model was designed with reference to development and gave rise to cells which displayed similarities to epithelial progenitor cells which can be specified to cells displaying a corneal epithelial phenotype. We believe our approach is novel, provides a robust model of human development and in the future, may facilitate the generation of corneal epithelial cells that are suitable for clinical use. Additionally, we demonstrate that following continued cell culture, stem cell-derived corneal epithelial cells undergo transdifferentiation and exhibit squamous metaplasia and therefore, also offer an in vitro model of disease.

  5. Rapid, automated mosaicking of the human corneal subbasal nerve plexus.

    Science.gov (United States)

    Vaishnav, Yash J; Rucker, Stuart A; Saharia, Keshav; McNamara, Nancy A

    2017-03-04

    Corneal confocal microscopy (CCM) is an in vivo technique used to study corneal nerve morphology. The largest proportion of nerves innervating the cornea lie within the subbasal nerve plexus, where their morphology is altered by refractive surgery, diabetes and dry eye. The main limitations to clinical use of CCM as a diagnostic tool are the small field of view of CCM images and the lengthy time needed to quantify nerves in collected images. Here, we present a novel, rapid, fully automated technique to mosaic individual CCM images into wide-field maps of corneal nerves. We implemented an OpenCV image stitcher that accounts for corneal deformation and uses feature detection to stitch CCM images into a montage. The method takes 3-5 min to process and stitch 40-100 frames on an Amazon EC2 Micro instance. The speed, automation and ease of use conferred by this technique is the first step toward point of care evaluation of wide-field subbasal plexus (SBP) maps in a clinical setting.

  6. LDL and HDL transfer rates across peripheral microvascular endothelium agree with those predicted for passive ultrafiltration in humans.

    Science.gov (United States)

    Michel, C Charles; Nanjee, M Nazeem; Olszewski, Waldemar L; Miller, Norman E

    2015-01-01

    The mechanisms by which LDLs and HDLs cross the vascular endothelium from plasma into interstitial fluid are not understood, and have never been studied in humans in vivo. We determined whether the plasma-to-lymph clearance rates of LDL and HDL conform with those predicted by passive ultrafiltration through intercellular pores, or if it is necessary to invoke an active process such as receptor-mediated transcytosis. Plasma and afferent peripheral lymph were collected under steady-state conditions from 30 healthy men, and assayed for seven globular proteins of molecular radii 2.89-8.95 nm, complement C3, and apo AI, apo AII, and apo B. Plasma-to-lymph clearance rates of the seven proteins fitted the relation expected for molecules of their size when transported through two populations of pores of radius 4.95 and 20.1 nm. The same model parameters were then found to accurately predict the clearance rates of both HDL and LDL. The apparent clearance of complement C3, previously shown to be secreted by cultured endothelium, exceeded that predicted by the model. We conclude that the transport of HDL and LDL from plasma into interstitial fluid across the peripheral vascular endothelium in healthy humans can be explained by ultrafiltration without invoking an additional active process such as transcytosis.

  7. Unique cell type-specific junctional complexes in vascular endothelium of human and rat liver sinusoids.

    Directory of Open Access Journals (Sweden)

    Cyrill Géraud

    Full Text Available Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ, i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.

  8. Assessment of whole blood thrombosis in a microfluidic device lined by fixed human endothelium

    NARCIS (Netherlands)

    Jain, Abhishek; Meer, van der Andries D.; Papa, Anne-Laure; Barrile, Riccardo; Lai, Angela; Schlechter, Benjamin L.; Otieno, Monicah A.; Louden, Calvert S.; Hamilton, Geraldine A.; Michelson, Alan D.; Frelinger, Andrew L.; Ingber, Donald E.

    2016-01-01

    The vascular endothelium and shear stress are critical determinants of physiological hemostasis and platelet function in vivo, yet current diagnostic and monitoring devices do not fully incorporate endothelial function under flow in their assessment and, therefore, they can be unreliable and inaccur

  9. 肾上腺素对糖尿病性白内障患者角膜内皮细胞的影响%Effects of adrenalin on corneal endothelium in patients with diabetic cataract

    Institute of Scientific and Technical Information of China (English)

    刘婕; 赵娴; 邵丽静; 左建霞; 王姝蕊; 马新玲

    2014-01-01

    目的:观察不同浓度肾上腺素对糖尿病并发白内障患者行超声乳化白内障吸除术后角膜内皮细胞的影响,探讨术中应用肾上腺素的合理浓度。方法选取2013年1至6月糖尿病性白内障患者90例(90眼),随机分为3组,每组30眼,分别于灌注液中加入0.1 ml、0.2 ml及0.5 ml肾上腺素,均行白内障超声乳化吸除联合人工晶体植入手术,于术前及术后1周采用非接触型角膜内皮显微镜行角膜内皮细胞密度及六角形细胞比例检查。结果3组术前角膜内皮细胞密度及六角形细胞比例比较,差异无统计学意义( P >0.05)。3组术后1周角膜内皮细胞密度分别为(2494±286)/mm 2,(2428±353)/mm 2,(2380±375)/mm 2,六角形细胞比例分别为(49±13)/mm 2,(45±13)/mm 2,(43±14)/mm 2。3组术后角膜内皮细胞密度及六角形细胞比例均较术前减少,其差异均有统计学意义( P<0.05)。术后3组间比较,随加入肾上腺素浓度增加,角膜内皮细胞密度及六角形细胞比例逐渐下降,但差异无统计学意义( P >0.05)。结论糖尿病性白内障患者角膜内皮细胞对手术损伤及肾上腺素毒性损害的耐受性降低,在有效维持术中瞳孔散大状态的同时,选用浓度较低的肾上腺素,以减少对角膜内皮细胞的损害。%Objective To investigate the effects of adrenalin on corneal endothelium after phacoemulsification in patients with diabetic cataract and to explore the clinical suitable concentration of adrenalin during the operation .Methods Ninety patients with diabetic cataract (90 eyes) who were enrolled in our hospital from January 2013 to June 2013 were randomly divided into three groups,with 30 eyes in each group.These patients received phacoemulsification after the irrigation solution was added with different concentrations of adrenalin (0.1ml,0.2ml,0.5ml).At 1 week before and after

  10. In vitro study of histamine and histamine receptor ligands influence on the adhesion of purified human eosinophils to endothelium.

    Science.gov (United States)

    Grosicki, Marek; Wójcik, Tomasz; Chlopicki, Stefan; Kieć-Kononowicz, Katarzyna

    2016-04-15

    It is a well-known fact that histamine is involved in eosinophil-dependent inflammatory responses including cellular chemotaxis and migration. Nevertheless, the relative role of histamine receptors in the mechanisms of eosinophils adhesion to endothelial cells is not known. Therefore the aim of presented study was to examine the effect of selective histamine receptors ligands on eosinophils adhesion to endothelium. For that purpose the highly purified human eosinophils have been isolated from the peripheral blood. The viability and functional integrity of isolated eosinophils have been validated in several tests. Histamine as well as 4-methylhistamine (selective H4 agonist) in concentration-dependent manner significantly increased number of eosinophils that adhere to endothelium. Among the selective histamine receptors antagonist or H1 inverse agonist only JNJ7777120 (histamine H4 antagonist) and thioperamide (dual histamine H3/H4 antagonist) had direct effect on eosinophils adhesion to endothelial cells. Antagonists of H1 (diphenhydramine, mepyramine) H2 (ranitidine and famotidine) and H3 (pitolisant) histamine receptors were ineffective. To the best of our knowledge, this is the first study to demonstrate that histamine receptor H4 plays a dominant role in histamine-induced eosinophils adhesion to endothelium.

  11. Isolated corneal papilloma-like lesion associated with human papilloma virus type 6.

    Science.gov (United States)

    Park, Choul Yong; Kim, Eo-Jin; Choi, Jong Sun; Chuck, Roy S

    2011-05-01

    To report a case of a corneal papilloma-like lesion associated with human papilloma virus type 6. A 48-year-old woman presented with a 2-year history of ocular discomfort and gradual visual deterioration in her right eye. Ophthalmic examination revealed an elevated, semitranslucent, well-defined vascularized mass approximately 4 × 2.5 mm in size localized to the right cornea. The surface of the mass appeared smooth and many small, shallow, and irregular elevations were noted. An excisional biopsy was performed. The underlying cornea was markedly thinned, and fine ramifying vasculature was also noted on the exposed corneal stroma. Typical koilocytic change was observed on the histopathologic examination. Polymerase chain reaction revealed the existence of human papilloma virus type 6 DNA. Here we describe a case of an isolated corneal papilloma-like lesion. Although the corneal extension of the limbal or the conjunctival papillomas has been commonly observed, an isolated corneal papilloma-like lesion with underlying stromal destruction has only rarely been reported.

  12. Adhesion and metabolic activity of human corneal cells on PCL based nanofiber matrices.

    Science.gov (United States)

    Stafiej, Piotr; Küng, Florian; Thieme, Daniel; Czugala, Marta; Kruse, Friedrich E; Schubert, Dirk W; Fuchsluger, Thomas A

    2017-02-01

    In this work, polycaprolactone (PCL) was used as a basic polymer for electrospinning of random and aligned nanofiber matrices. Our aim was to develop a biocompatible substrate for ophthalmological application to improve wound closure in defects of the cornea as replacement for human amniotic membrane. We investigated whether blending the hydrophobic PCL with poly (glycerol sebacate) (PGS) or chitosan (CHI) improves the biocompatibility of the matrices for cell expansion. Human corneal epithelial cells (HCEp) and human corneal keratocytes (HCK) were used for in vitro biocompatibility studies. After optimization of the electrospinning parameters for all blends, scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and water contact angle were used to characterize the different matrices. Fluorescence staining of the F-actin cytoskeleton of the cells was performed to analyze the adherence of the cells to the different matrices. Metabolic activity of the cells was measured by cell counting kit-8 (CCK-8) for 20days to compare the biocompatibility of the materials. Our results show the feasibility of producing uniform nanofiber matrices with and without orientation for the used blends. All materials support adherence and proliferation of human corneal cell lines with oriented growth on aligned matrices. Although hydrophobicity of the materials was lowered by blending PCL, no increase in biocompatibility or proliferation, as was expected, could be measured. All tested matrices supported the expansion of human corneal cells, confirming their potential as substrates for biomedical applications.

  13. Multidrug resistance-associated protein (MRP1, 2, 4 and 5) expression in human corneal cell culture models and animal corneal tissue.

    Science.gov (United States)

    Verstraelen, Jessica; Reichl, Stephan

    2014-07-07

    Preclinical studies addressing the transcorneal absorption of ophthalmic drugs are mainly performed using ex vivo animal corneas and in vitro corneal cell culture models, leaving open the question of transferability to humans in an in vivo situation. While passive drug absorption through corneal tissue is well understood, little is known about the expression of transporter proteins and active drug transport in human and animal corneas as well as corneal cell culture models. Therefore, the aim of this study was to conduct an expression analysis of four multidrug resistance-associated proteins (MRP1, 2, 4 and 5) in various in vitro and ex vivo corneal models, leading to a better understanding of the comparability of different corneal models regarding drug absorption and transferability to humans. Two well-established in vitro human corneal models, the HCE-T epithelial model and the more organotypic Hemicornea construct, both of which are based on the SV40 immortalized human corneal epithelial cell line HCE-T, were analyzed, as were excised rabbit and porcine cornea. Specimens of abraded epithelia from human donor corneas were also tested. MRP mRNA expression was determined via reverse transcriptase polymerase chain reaction. Protein expression was examined using Western blot experiments and immunohistochemistry. The functional activity of the MRP efflux transporter was detected in transport assays using specific marker and inhibitor substances. The functional expression of all of the tested MRP transporters was detected in the HCE-T epithelial model. Hemicornea constructs displayed a similar expression pattern for MRP1, 4 and 5, whereas no MRP2 protein expression or activity was detected. However, excised animal corneas exhibited different expression profiles. In porcine cornea, no functional expression of MRP1, 2, or 5 was observed, and we failed to detect MRP4 expression in rabbit cornea. The results suggest that MRP1, 2, 4, and 5 are expressed in the human corneal

  14. Use of Corneal Confocal Microscopy to Evaluate Small Nerve Fibers in Patients With Human Immunodeficiency Virus.

    Science.gov (United States)

    Kemp, Harriet I; Petropoulos, Ioannis N; Rice, Andrew S C; Vollert, Jan; Maier, Christoph; Sturm, Dietrich; Schargus, Marc; Peto, Tunde; Hau, Scott; Chopra, Reena; Malik, Rayaz A

    2017-07-01

    Objective quantification of small fiber neuropathy in patients with human immunodeficiency virus (HIV)-associated sensory neuropathy (HIV-SN) is difficult but needed for diagnosis and monitoring. In vivo corneal confocal microscopy (IVCCM) can quantify small fiber damage. To establish whether IVCCM can identify an abnormality in corneal nerve fibers and Langerhans cells in patients with and without HIV-SN. This prospective, cross-sectional cohort study was conducted between July 24, 2015, and September 17, 2015. Twenty patients who were HIV positive were recruited from adult outpatient clinics at Chelsea and Westminster Hospital NHS Foundation Trust in England. These patients underwent IVCCM at Moorfields Eye Hospital NHS Foundation Trust in London, England, and the IVCCM images were analyzed at Weill Cornell Medicine-Qatar in Ar-Rayyan, Qatar. Patients were given a structured clinical examination and completed validated symptom questionnaires and the Clinical HIV-Associated Neuropathy Tool. Results from patients with HIV were compared with the results of the age- and sex-matched healthy control participants (n = 20). All participants were classified into 3 groups: controls, patients with HIV but without SN, and patients with HIV-SN. Comparison of corneal nerve fiber density, corneal nerve branch density, corneal nerve fiber length, corneal nerve fiber tortuosity, and corneal Langerhans cell density between healthy controls and patients with HIV with and without SN. All 40 participants were male, and most (≥70%) self-identified as white. Of the 20 patients with HIV, 14 (70%) had HIV-SN. This group was older (mean [SD] age, 57.7 [7.75] years) than the group without HIV-SN (mean [SD] age, 42.3 [7.26] years) and the controls (mean [SD] age, 53.8 [10.5] years). Corneal nerve fiber density was reduced in patients with HIV compared with the controls (26.7/mm2 vs 38.6/mm2; median difference, -10.37; 95.09% CI, -14.27 to -6.25; P < .001) and in patients with HIV

  15. Anterior corneal and internal contributions to peripheral aberrations of human eyes

    Science.gov (United States)

    Atchison, David A.

    2004-03-01

    Anterior corneal and internal component contributions to overall peripheral aberrations of five human eyes were determined, based on corneal topography and overall aberration measurements. Anterior corneal position and orientation (tilt) were referenced to the line of sight. Ray tracing was performed through the anterior cornea for 6-mm-diameter pupils at angles out to 40° in both the temporal and the nasal visual fields. In general, both component and overall Zernike aberrations were greater for the nasal than for the temporal visual field. In general, the anterior corneal aberration components were considerably higher than the overall aberrations across the visual field and were balanced to a considerable degree by the internal ocular aberration components. The component and overall levels of Zernike third-order aberrations showed linear trends away from the fixation axis, and the component levels of Zernike fourth-order aberrations showed quadratic trends away from the fixation axis. The second-order, but not higher-order, aberration components were susceptible to the choice of image radius of curvature, while disregarding corneal position and orientation affected second- and higher-order aberration components.

  16. Serial explant culture provides novel insights into the potential location and phenotype of corneal endothelial progenitor cells.

    Science.gov (United States)

    Walshe, Jennifer; Harkin, Damien G

    2014-10-01

    The routine cultivation of human corneal endothelial cells, with the view to treating patients with endothelial dysfunction, remains a challenging task. While progress in this field has been buoyed by the proposed existence of progenitor cells for the corneal endothelium at the corneal limbus, strategies for exploiting this concept remain unclear. In the course of evaluating methods for growing corneal endothelial cells, we have noted a case where remarkable growth was achieved using a serial explant culture technique. Over the course of 7 months, a single explant of corneal endothelium, acquired from cadaveric human tissue, was sequentially seeded into 7 culture plates and on each occasion produced a confluent cell monolayer. Sample cultures were confirmed as endothelial in origin by positive staining for glypican-4. On each occasion, small cells, closest to the tissue explant, developed into a highly compact layer with an almost homogenous structure. This layer was resistant to removal with trypsin and produced continuous cell outgrowth during multiple culture periods. The small cells gave rise to larger cells with phase-bright cell boundaries and prominent immunostaining for both nestin and telomerase. Nestin and telomerase were also strongly expressed in small cells immediately adjacent to the wound site, following transfer of the explant to another culture plate. These findings are consistent with the theory that progenitor cells for the corneal endothelium reside within the limbus and provide new insights into expected expression patterns for nestin and telomerase within the differentiation pathway.

  17. Measurement of the topography of human cadaver lenses using the PAR corneal topography system

    Science.gov (United States)

    Fernandez, Viviana; Manns, Fabrice; Zipper, Stanley; Sandadi, Samith; Hamaoui, Marie; Tahi, Hassan; Ho, Arthur; Parel, Jean-Marie A.

    2001-06-01

    To measure the radius of curvature and asphericity of the anterior and posterior surfaces of crystalline lenses of human Eye-Bank eyes using the PAR Corneal Topography System. The measured values will be used in an optical model of the eye for lens refilling procedures.

  18. Effects of Phthalates on the Human Corneal Endothelial Cell Line B4G12

    DEFF Research Database (Denmark)

    Krüger, Tanja; Cao, Yi; Kjærgaard, Søren K.;

    2012-01-01

    Phthalates are industrial chemicals used in many cosmetics. We evaluated an in vitro model for eye irritancy testing using the human corneal endothelial cell line B4G12. Cell proliferation and toxicity were assessed after exposing to di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di-2...

  19. In Vitro Effects of Preserved and Unpreserved Anti-Allergic Drugs on Human Corneal Epithelial Cells

    OpenAIRE

    Guzman-Aranguez, Ana; Calvo, Patricia; Ropero, Inés; Pintor, Jesús

    2014-01-01

    Purpose: Treatment with topical eye drops for long-standing ocular diseases like allergy can induce detrimental side effects. The purpose of this study was to investigate in vitro cytotoxicity of commercially preserved and unpreserved anti-allergic eye drops on the viability and barrier function of monolayer and stratified human corneal-limbal epithelial cells.

  20. Rho GTPases and regulation of cell migration and polarization in human corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Aihua Hou

    Full Text Available PURPOSE: Epithelial cell migration is required for regeneration of tissues and can be defective in a number of ocular surface diseases. This study aimed to determine the expression pattern of Rho family small G-proteins in human corneal epithelial cells to test their requirement in directional cell migration. METHODS: Rho family small G-protein expression was assessed by reverse transcription-polymerase chain reaction. Dominant-inhibitory constructs encoding Rho proteins or Rho protein targeting small interfering RNA were transfected into human corneal epithelial large T antigen cells, and wound closure rate were evaluated by scratch wounding assay, and a complementary non-traumatic cell migration assay. Immunofluorescence staining was performed to study cell polarization and to assess Cdc42 downstream effector. RESULTS: Cdc42, Chp, Rac1, RhoA, TC10 and TCL were expressed in human corneal epithelial cells. Among them, Cdc42 and TCL were found to significantly affect cell migration in monolayer scratch assays. These results were confirmed through the use of validated siRNAs directed to Cdc42 and TCL. Scramble siRNA transfected cells had high percentage of polarized cells than Cdc42 or TCL siRNA transfected cells at the wound edge. We showed that the Cdc42-specific effector p21-activated kinase 4 localized predominantly to cell-cell junctions in cell monolayers, but failed to translocate to the leading edge in Cdc42 siRNA transfected cells after monolayer wounding. CONCLUSION: Rho proteins expressed in cultured human corneal epithelial cells, and Cdc42, TCL facilitate two-dimensional cell migration in-vitro. Although silencing of Cdc42 and TCL did not noticeably affect the appearance of cell adhesions at the leading edge, the slower migration of these cells indicates both GTP-binding proteins play important roles in promoting cell movement of human corneal epithelial cells.

  1. Biocompatibility of chitosan carrier with rabbit corneal endothelium%壳聚糖膜与兔角膜内皮细胞生物相容性的研究

    Institute of Scientific and Technical Information of China (English)

    李纳; 位晓娟; 韩宝芹; 刘万顺; 崔蕊

    2013-01-01

    Background There are a lot of studies about the carrier of corneal endothelial transplantation,but the best carrier has not been defined.Objective This study was to investigate the biocompatibility of chitosan carrier with rabbit corneal endothelium in vivo.Methods Fresh eye-balls were obtained from 10 New Zealand white rabbits.Rabbit corneal endothelial cells (CECs) were isolated and cultured on chitosan carrier in vitro.The morphology and density of rabbits CECs were observed every day,and the expressions of fibronectin (FN),collagen-1 (Coil-I) and Zonula occludens 1 (ZO-1) were detected by immunoinfluorescence.The morphology and ultrastructure of CECs were observed under the scanning and transmission electron microscope.Chitosan carrier with CECs was implanted into the anterior chamber of the left eyes in ten healthy New Zealand white rabbits,and only paracentesis of anterior chamber was performed in the right eyes as controls.The inflammation of ocular anterior segment was examined under the slit lamp microscope,and corneal thickness was measured 1 week,4 and 8 weeks after operation.Corneal endothelium cell density and morphology were examined under the corneal endothelial microscope at postoperative 2 weeks.Corneal samples were collected for the regular histopathological examination to observe the inflammatory reaction at postoperative 1 month and 3 months.Paired t test was used for statistical analyses between the control group (left eyes) and the experimental group (right eyes).The use and care of the animals followed the Statement of ARVO.Results CECs formed an intact monolayer of cells with the uniform shape and size on the chitosan membrane after incubated for 5 days.The cells reached confluence of 90% 7 days after cultured with the 40% hexagon cells.Under the scanning electron nicroscope,rabbit CECs showed the round or polygon in the shape with the microvillus on the cell surface.The cells connected closely by desmosome.The processes

  2. Envisaging an allogenic Corneal endothelial precursor/Stem Cell Bank (CESBANK

    Directory of Open Access Journals (Sweden)

    Parikumar P

    2008-01-01

    Full Text Available Bullous Keratopathy (BK affects thousands of people in India every year. Though in early stages it is manageable medically, advanced disease warrants either total corneal transplantation or partial thickness transplantation for which a donor-cadaver cornea is necessary. Amano et al have reported the successful treatment of BK in animal models using in-vitro expanded human corneal endothelial precursors; though the rabbits had to be kept facing eye down to allow gravity assisted settling of the cells to the summit of the cornea where the damage had been created. For successful treatment using the above method, a human being has to lie prone with eyes immobilized for 24-36 Hrs. This is extremely discomforting and hence not practical. Corneal endothelium removed from the button and transported at varying temperature conditions for 48Hrs was successfully cultured in NCRM and this was reported earlier. We are working on a suitable scaffold to retain the cells in situ until their attachment to the damaged portion of the corneal endothelium enabling it to heal without the patient having to lie prone. With such capability, we envisage to make a corneal endothelial precursor/stem cell (CES bank named as CESBANK to make in-vitro expanded CES available for patients with corneal diseases, most commonly Bullous Keratopathy (BK.

  3. Expression of Phospholipases A2 and C in Human Corneal Epithelial Cells

    Science.gov (United States)

    Landreville, Solange; Coulombe, Stéphanie; Carrier, Patrick; Gelb, Michael H.; Guérin, Sylvain L.; Salesse, Christian

    2008-01-01

    Purpose To achieve a better understanding of the involvement of phospholipases in the inflammation and wound-healing processes in human corneal epithelial cells (HCECs), expression of phospholipase A2s (PLA2s) and phospholipase Cs (PLCs) was examined in the human corneal epithelium. Methods Specific primers were designed for RT-PCR amplification of the known secreted (s)PLA2, cytosolic (c)PLA2, and PLC mRNAs. Corresponding PCR products were cloned and the DNA sequenced. Immunofluorescence of flatmounted corneal sections and Western blot analyses were used to detect the PLA2s and PLCs expressed by HCECs. Results The mRNAs for the following phospholipases were detected by RT-PCR in the HCECs: sPLA2GIII, -GX, and -GXIIA; cPLA2α and -γ; PLCβ1, -β2, -β3, -β4, -γ1, -γ2, -δ1, -δ3, -δ4, and -ε. Immunofluorescence analyses conducted on corneal epithelium cryosections and Western blot on freshly isolated HCECs demonstrated the presence of sPLA2GIII, -GX, and -GXIIA; cPLA2α and -γ; and PLCβ2, -β3, -γ1, -γ2, and -δ3. Conclusions Many phospholipase isoforms are expressed by HCECs and may play a major role in signal transduction (PLCs) as well as in the release of precursors of potent mediators of inflammation, such as leukotrienes and prostaglandins (PLA2s). Moreover, the sPLA2s expressed by the corneal epithelium could be involved in the normal antibacterial activity in the tears and in wound healing. PMID:15505048

  4. Studies on human corneal shape%人眼角膜形态研究进展

    Institute of Scientific and Technical Information of China (English)

    应靖璐; 施明光

    2015-01-01

    角膜是人眼最重要的屈光介质,其屈光力占眼球总屈光力的2/3.近10年来,随着计算机辅助角膜地形图仪器的发展,对角膜形态的认识越来越具体完善,尤其是角膜前表面.非球面Q值是描述角膜形态的一个重要参数,被广泛运用于各种角膜地形图仪器中.现就角膜非球面Q值计算方法的发展,尤其对用轴向曲率半径和用正切曲率半径计算Q值的差别,作一综述.%The cornea is the major refractive element of the human eye,being responsible for 2/3 of the eye's total refractive power.During the past ten years,the development of computerized corneal topography has provided a complete understanding of corneal shape,especially the anterior surface.Asphericity (Q) is an important parameter describing corneal shape,and is widely described in corneal topography.This overview focuses on the development of the calculation method used for Q,especially the difference in the calculation between the sagittal and tangential radii.

  5. [Numerical Simulation of Heat Transfer in the Human Anterior Chamber at Different Corneal Temperatures].

    Science.gov (United States)

    Guo, Jingmin; Zhang, Hong; Wang, Junming

    2015-12-01

    A three-dimensional (3D) model of human anterior chamber is reconstructed to explore the effect of different corneal temperatures on the heat transfer in the chamber. Based on the optical coherence tomography imaging of the volunteers with normal anterior chamber, a 3D anterior chamber model was reconstructed by the method of UG parametric design. Numerical simulation of heat transfer and aqueous humor flow in the whole anterior chamber were analyzed by the finite volume methods at different corneal temperatures. The results showed that different corneal temperatures had obvious influence on the temperature distribution and the aqueous flow in the anterior chamber. The temperature distribution is linear and axial symmetrical around the pupillary axis. As the temperature difference increases, the symmetry becomes poorer. Aqueous floated along the warm side and sank along the cool side which forms a vortexing flow. Its velocity increased with the addition of temperature difference. Heat fluxes of cornea, lens and iris were mainly affected by the aqueous velocity. The higher the velocity, the bigger more absolute value of the above-mentioned heat fluxes became. It is practicable to perform the numerical simulation of anterior chamber by the optical coherence tomography imaging. The results are useful for studying the important effect of corneal temperature on the heat transfer and aqueous humor dynamics in the anterior chamber.

  6. Development of human corneal epithelium on organized fibrillated transparent collagen matrices synthesized at high concentration.

    Science.gov (United States)

    Tidu, Aurélien; Ghoubay-Benallaoua, Djida; Lynch, Barbara; Haye, Bernard; Illoul, Corinne; Allain, Jean-Marc; Borderie, Vincent M; Mosser, Gervaise

    2015-08-01

    Several diseases can lead to opacification of cornea requiring transplantation of donor tissue to restore vision. In this context, transparent collagen I fibrillated matrices have been synthesized at 15, 30, 60 and 90 mg/mL. The matrices were evaluated for fibril organizations, transparency, mechanical properties and ability to support corneal epithelial cell culture. The best results were obtained with 90 mg/mL scaffolds. At this concentration, the fibril organization presented some similarities to that found in corneal stroma. Matrices had a mean Young's modulus of 570 kPa and acellular scaffolds had a transparency of 87% in the 380-780 nm wavelength range. Human corneal epithelial cells successfully colonized the surface of the scaffolds and generated an epithelium with characteristics of corneal epithelial cells (i.e. expression of cytokeratin 3 and presence of desmosomes) and maintenance of stemness during culture (i.e. expression of ΔNp63α and formation of holoclones in colony formation assay). Presence of cultured epithelium on the matrices was associated with increased transparency (89%). Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Cartographic system for spatial distribution analysis of corneal endothelial cells.

    Science.gov (United States)

    Corkidi, G; Márquez, J; García-Ruiz, M; Díaz-Cintra, S; Graue, E

    1994-07-01

    A combined cartographic and morphometric endothelium analyser has been developed by integrating the HISTO 2000 histological imaging and analysis system with a prototype human corneal endothelium analyser. The complete system allows the elaboration and analysis of cartographies of corneal endothelial tissue, and hence the in vitro study of the spatial distribution of corneal endothelial cells, according to their regional morphometric characteristics (cell size and polygonality). The global cartographic reconstruction is obtained by sequential integration of the data analysed for each microscopic field. Subsequently, the location of each microscopically analysed field is referred to its real position on the histologic preparation by means of X-Y co-ordinates; both are provided by micrometric optoelectronic sensors installed on the optical microscope stage. Some cartographies of an excised human corneal keratoconus button in vitro are also presented. These cartographic images allow a macroscopic view of endothelial cells analysed microscopically. Parametric colour images show the spatial distribution of endothelial cells, according to their specific morphometric parameters, and exhibit the variability in size and cellular shape which depend on the analysed area.

  8. The effect of Lamium album extract on cultivated human corneal epithelial cells (10.014 pRSV-T

    Directory of Open Access Journals (Sweden)

    Roman Paduch

    2015-01-01

    Conclusion: Selected Lamium album extracts influence human corneal epithelial cells. Generally, while not toxic, they modulate pro-inflammatory and anti-inflammatory cytokines levels, and decrease NO release by cells; moreover, ethanol and ethyl acetate extracts reduce ROS levels.

  9. Current status of corneal xenotransplantation.

    Science.gov (United States)

    Kim, Mee Kum; Hara, Hidetaka

    2015-11-01

    Corneal allo-transplantation is a well-established technique to treat corneal blindness. However, the limited availability of human donors demands the exploration of alternative treatments such as corneal xenotransplantation (e.g., pigs as donors) and bioengineered corneas. Since the first attempt of corneal xenotransplantation using a donor pig cornea in 1844, great advances have been made in the development of genetically-engineered pigs, effective immunosuppressive protocols and the establishment of guidelines for the conduction of clinical trials. We highlight immunological and physio-anatomical barriers of corneal xenotransplantation, recent progress of corneal xenotransplantation in non-human-primates studies, and regulatory guidelines to conduct clinical trials for corneal xenotransplantation.

  10. Comparison of corneal epitheliotrophic capacities among human platelet lysates and other blood derivatives

    Science.gov (United States)

    Huang, Chien-Jung; Sun, Yi-Chen; Christopher, Karen; Pai, Amy Shih-I; Lu, Chia-Ju; Hu, Fung-Rong; Lin, Szu-Yuan; Chen, Wei-Li

    2017-01-01

    Purpose To evaluate the corneal epitheliotropic abilities of two commercialized human platelet lysates (HPLs) and to compare the results with other blood derivatives, including human peripheral serum (HPS) and bovine fetal serum (FBS). Methods In vitro, human corneal epithelial cells were incubated in various concentrations (0%, 3%, 5% and 10%) of blood derivatives. Two commercialized HPLs, including UltraGRO TM (Helios, Atlanta, GA) and PLTMax (Mill Creek, Rochester, MI), were tested and compared with HPS and FBS. Scratch-induced directional wounding assay was performed to evaluate cellular migration. MTS assay was used to evaluate cellular proliferation. Cellular differentiation was examined by scanning electron microscopy, inverted microscopy and transepithelial electrical resistance. Sprague-Dawley rats were used to evaluate the effects of the blood derivatives on corneal epithelial wound healing in vivo. Different blood derivatives were applied topically every 2 hours for 2 days after corneal epithelial debridement. The concentrations of epidermal growth factor (EGF), transforming growth factor -β1 (TGF-β1), fibronectin, platelet-derived growth factor-AB (PDGF-AB), PDGF-BB, and hyaluronic acid in different blood derivatives were evaluated by enzyme-linked immunosorbent assay (ELISA). Results In vitro experiments demonstrated statistically comparable epitheliotropic characteristics in cellular proliferation, migration, and differentiation for the two commercialized HPLs compared to FBS and HPS. Cells cultured without any serum were used as control group. The epitheliotropic capacities were statistically higher in the two commercialized HPLs compared to the control group (p<0.05). Among the different concentrations of blood derivatives, the preparations with 3% yielded better outcomes compared to 5% and 10%. In rats, HPLs also caused improved but not statistically significant wound healing compared to HPS. All the blood derivatives had better wound healing

  11. Human pluripotent stem cell-derived limbal epithelial stem cells on bioengineered matrices for corneal reconstruction.

    Science.gov (United States)

    Mikhailova, Alexandra; Ilmarinen, Tanja; Ratnayake, Anjula; Petrovski, Goran; Uusitalo, Hannu; Skottman, Heli; Rafat, Mehrdad

    2016-05-01

    Corneal epithelium is renewed by limbal epithelial stem cells (LESCs), a type of tissue-specific stem cells located in the limbal palisades of Vogt at the corneo-scleral junction. Acute trauma or inflammatory disorders of the ocular surface can destroy these stem cells, leading to limbal stem cell deficiency (LSCD) - a painful and vision-threatening condition. Treating these disorders is often challenging and complex, especially in bilateral cases with extensive damage. Human pluripotent stem cells (hPSCs) provide new opportunities for corneal reconstruction using cell-based therapy. Here, we investigated the use of hPSC-derived LESC-like cells on bioengineered collagen matrices in serum-free conditions, aiming for clinical applications to reconstruct the corneal epithelium and partially replace the damaged stroma. Differentiation of hPSCs towards LESC-like cells was directed using small-molecule induction followed by maturation in corneal epithelium culture medium. After four to five weeks of culture, differentiated cells were seeded onto bioengineered matrices fabricated as transparent membranes of uniform thickness, using medical-grade porcine collagen type I and a hybrid cross-linking technology. The bioengineered matrices were fully transparent, with high water content and swelling capacity, and parallel lamellar microstructure. Cell proliferation of hPSC-LESCs was significantly higher on bioengineered matrices than on collagen-coated control wells after two weeks of culture, and LESC markers p63 and cytokeratin 15, along with proliferation marker Ki67 were expressed even after 30 days in culture. Overall, hPSC-LESCs retained their capacity to self-renew and proliferate, but were also able to terminally differentiate upon stimulation, as suggested by protein expression of cytokeratins 3 and 12. We propose the use of bioengineered collagen matrices as carriers for the clinically-relevant hPSC-derived LESC-like cells, as a novel tissue engineering approach for

  12. Expression profiles and function of Toll-like receptors in human corneal epithelia

    Institute of Scientific and Technical Information of China (English)

    WU Xin-yi; GAO Jian-lu; REN Mei-yu

    2007-01-01

    Background Toll-like receptors play an important role in the human immune system. This study was conducted to investigate the expression profiles and function of Toll-like receptor (TLR)1-9 in human corneal epithelium.Methods The expression of TLR1-9 mRNA in 20 human donor corneal epithelia samples abraded during photorefractive keratotomy (PRK) and cultivated telomerase-immortalized human corneal epithelial cells (THCEs) was examined by semi-quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) analysis. Human peripheral blood mononuclear cells (PBMCs) were used as positive controls. The expression of the TLR2 and TLR4 proteins was detected by Western analysis. ELISA was used to detect IL-8 secretion from THCEs challenged with ligands for TLR3 and TLR4 with and without antibody blockade.Results The expression of TLR1-9 at the mRNA level was detected in the epithelia of 20 patients and in THCE.Significant differences among individuals were observed. One patient was found to lack of the expression of TLR3, 4, 6 and 8, whereas another did not express TLR5. The expression of TLR2 and TLR4 protein was detected in human corneal epithelial cells. As THCE cells express TLR1-9, cells were challenged with lipopolysaccharides (LPS) and poly I:C to determine whether TLR4 and TLR3 were functional. The results showed that secretion of IL-8 by cells stimulated with LPS and Poly I:C was 7 to 10 fold greater than secretion by unchallenged cells. Blocking TLR4 with an anti-TLR4 antibody significantly inhibited the LPS-induced IL-8 production by THCE (P<0.05).Conclusion Human corneal epithelial cells express multiple TLRs and are able to recognize LPS and poly I:C. Different expression profiles among individuals suggest that differences in the susceptibilities and sensitivities to bacterial and viral infection in human populations relate to different patterns of TLR expression.

  13. In vitro ultraviolet–induced damage in human corneal, lens, and retinal pigment epithelial cells

    OpenAIRE

    Youn, Hyun-Yi; McCanna, David J.; Sivak, Jacob G.; Jones, Lyndon W.

    2011-01-01

    Purpose The purpose was to develop suitable in vitro methods to detect ocular epithelial cell damage when exposed to UV radiation, in an effort to evaluate UV-absorbing ophthalmic biomaterials. Methods Human corneal epithelial cells (HCEC), lens epithelial cells (HLEC), and retinal pigment epithelial cells (ARPE-19) were cultured and Ultraviolet A/Ultraviolet B (UVA/UVB) blocking filters and UVB-only blocking filters were placed between the cells and a UV light source. Cells were irradiated w...

  14. In Vitro and In Vivo Models to Study Corneal Endothelial-mesenchymal Transition.

    Science.gov (United States)

    Ho, Wei-Ting; Su, Chien-Chia; Chang, Jung-Shen; Chang, Shu-Wen; Hu, Fung-Rong; Jou, Tzuu-Shuh; Wang, I-Jong

    2016-08-20

    Corneal endothelial cells (CECs) play a crucial role in maintaining corneal clarity through active pumping. A reduced CEC count may lead to corneal edema and diminished visual acuity. However, human CECs are prone to compromised proliferative potential. Furthermore, stimulation of cell growth is often complicated by gradual endothelial-mesenchymal transition (EnMT). Therefore, understanding the mechanism of EnMT is necessary for facilitating the regeneration of CECs with competent function. In this study, we prepared a primary culture of bovine CECs by peeling the CECs with Descemet's membrane from the corneal button and demonstrated that bovine CECs exhibited the EnMT process, including phenotypic change, nuclear translocation of β-catenin, and EMT regulators snail and slug, in the in vitro culture. Furthermore, we used a rat corneal endothelium cryoinjury model to demonstrate the EnMT process in vivo. Collectively, the in vitro primary culture of bovine CECs and in vivo rat corneal endothelium cryoinjury models offers useful platforms for investigating the mechanism of EnMT.

  15. Inhibition of TGF-β signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine.

    Directory of Open Access Journals (Sweden)

    Naoki Okumura

    Full Text Available Corneal endothelial dysfunctions occurring in patients with Fuchs' endothelial corneal dystrophy, pseudoexfoliation syndrome, corneal endotheliitis, and surgically induced corneal endothelial damage cause blindness due to the loss of endothelial function that maintains corneal transparency. Transplantation of cultivated corneal endothelial cells (CECs has been researched to repair endothelial dysfunction in animal models, though the in vitro expansion of human CECs (HCECs is a pivotal practical issue. In this study we established an optimum condition for the cultivation of HCECs. When exposed to culture conditions, both primate and human CECs showed two distinct phenotypes: contact-inhibited polygonal monolayer and fibroblastic phenotypes. The use of SB431542, a selective inhibitor of the transforming growth factor-beta (TGF-β receptor, counteracted the fibroblastic phenotypes to the normal contact-inhibited monolayer, and these polygonal cells maintained endothelial physiological functions. Expression of ZO-1 and Na(+/K(+-ATPase maintained their subcellular localization at the plasma membrane. Furthermore, expression of type I collagen and fibronectin was greatly reduced. This present study may prove to be the substantial protocol to provide the efficient in vitro expansion of HCECs with an inhibitor to the TGF-β receptor, and may ultimately provide clinicians with a new therapeutic modality in regenerative medicine for the treatment of corneal endothelial dysfunctions.

  16. Curvature sensor for the measurement of the static corneal topography and the dynamic tear film topography in the human eye

    Science.gov (United States)

    Gruppetta, Steve; Koechlin, Laurent; Lacombe, François; Puget, Pascal

    2005-10-01

    A system to measure the topography of the first optical surface of the human eye noninvasively by using a curvature sensor is described. The static corneal topography and the dynamic topography of the tear film can both be measured, and the topographies obtained are presented. The system makes possible the study of the dynamic aberrations introduced by the tear film to determine their contribution to the overall ocular aberrations in healthy eyes, eyes with corneal pathologies, and eyes wearing contact lenses.

  17. Multiscale Investigation of the Depth-Dependent Mechanical Anisotropy of the Human Corneal Stroma

    Science.gov (United States)

    Labate, Cristina; Lombardo, Marco; De Santo, Maria P.; Dias, Janice; Ziebarth, Noel M.; Lombardo, Giuseppe

    2015-01-01

    Purpose. To investigate the depth-dependent mechanical anisotropy of the human corneal stroma at the tissue (stroma) and molecular (collagen) level by using atomic force microscopy (AFM). Methods. Eleven human donor corneas were dissected at different stromal depths by using a microkeratome. Mechanical measurements were performed in 15% dextran on the surface of the exposed stroma of each sample by using a custom-built AFM in force spectroscopy mode using both microspherical (38-μm diameter) and nanoconical (10-nm radius of curvature) indenters at 2-μm/s and 15-μm/s indentation rates. Young's modulus was determined by fitting force curve data using the Hertz and Hertz-Sneddon models for a spherical and a conical indenter, respectively. The depth-dependent anisotropy of stromal elasticity was correlated with images of the corneal stroma acquired by two-photon microscopy. Results. The force curves were obtained at stromal depths ranging from 59 to 218 μm. At the tissue level, Young's modulus (ES) showed a steep decrease at approximately 140-μm stromal depth (from 0.8 MPa to 0.3 MPa; P = 0.03) and then was stable in the posterior stroma. At the molecular level, Young's modulus (EC) was significantly greater than at the tissue level; EC decreased nonlinearly with increasing stromal depth from 3.9 to 2.6 MPa (P = 0.04). The variation of microstructure through the thickness correlated highly with a nonconstant profile of the mechanical properties in the stroma. Conclusions. The corneal stroma exhibits unique anisotropic elastic behavior at the tissue and molecular levels. This knowledge may benefit modeling of corneal behavior and help in the development of biomimetic materials. PMID:26098472

  18. Assessment of the reliability of calculations of the coefficient of variation for normal and polymegethous human corneal endothelium.

    Science.gov (United States)

    Doughty, M J; Fonn, D; Trang Nguyen, K

    1993-09-01

    In endothelial morphometry, uncertainty exists concerning how many cells should be measured. A study was undertaken to calculate mean cell area and coefficient of variation (COV) of cell areas using different numbers of cells from photo-slitlamp pictures and published micrographs. Groups of 65, 95, or 165 tesselated cells were measured and area and COV values calculated in progressive sets of 5 cells; each pair of values was compared to that obtained using all cells in each group. The results show that, for both normal (homomegethous) and irregular (polymegethous) endothelia, even cell counts as low as 50 cells can usually provide average cell area values that are within 1 to 2% of the values estimated from larger groups of cells. A similar reliability was observed for estimates of COV for normal endothelia. However, for polymegethous endothelia, even with 100 cells analyzed, the estimates of COV generally only approached a +/- 4% reliability. This uncertainty in COV estimates should be considered in both comparative studies and in regression analyses of COV changes over time or other variables.

  19. Coculture of dorsal root ganglion neurons and differentiated human corneal stromal stem cells on silk-based scaffolds.

    Science.gov (United States)

    Wang, Siran; Ghezzi, Chiara E; White, James D; Kaplan, David L

    2015-10-01

    Corneal tissue displays the highest peripheral nerve density in the human body. Engineering of biomaterials to promote interactions between neurons and corneal tissue could provide tissue models for nerve/cornea development, platforms for drug screening, as well as innovative opportunities to regenerate cornea tissue. The focus of this study was to develop a coculture system for differentiated human corneal stromal stem cells (dhCSSCs) and dorsal root ganglion neurons (DRG) to mimic the human cornea tissue interactions. Axon extension, connectivity, and neuron cell viability were studied. DRG neurons developed longer axons when cocultured with dhCSSCs in comparison to neuron cultures alone. To assess the mechanism involved in the coculture response, nerve growth factors (NGF) secreted by dhCSSCs including NGF, brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), and neurotrophin-3 were characterized with greater focus on BDNF secretion. DhCSSCs also secreted collagen type I, an extracellular matrix molecule favorable for neuronal outgrowth. This coculture system provides a slowly degrading silk matrix to study neuronal responses in concert with hCSSCs related to innervation of corneal tissue with utility toward human corneal nerve regeneration and associated diseases. © 2015 Wiley Periodicals, Inc.

  20. Corneal Laceration

    Medline Plus

    Full Text Available ... Laceration? Corneal Laceration Diagnosis Corneal Laceration Treatment What Is Corneal Laceration? Written By: Daniel Porter Reviewed By: ... A Harrison MD Sep. 01, 2016 The cornea is the clear front window of the eye . A ...

  1. Molecular imaging of the human pulmonary vascular endothelium in pulmonary hypertension: a phase II safety and proof of principle trial

    Energy Technology Data Exchange (ETDEWEB)

    Harel, Francois [Montreal Heart Institute, Research Center, Montreal, QC (Canada); Universite de Montreal, Department of Nuclear Medicine, Montreal, Quebec (Canada); Langleben, David; Abikhzer, Gad [McGill University, Lady Davis Institute and Jewish General Hospital, Montreal, Quebec (Canada); Provencher, Steve; Guimond, Jean [Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Quebec (Canada); Fournier, Alain; Letourneau, Myriam [INRS-Institut Armand-Frappier, Laval, Quebec (Canada); Finnerty, Vincent; Nguyen, Quang T.; Levac, Xavier [Montreal Heart Institute, Research Center, Montreal, QC (Canada); Mansour, Asmaa; Guertin, Marie-Claude [Montreal Health Innovation Coordination Center, Montreal, QC (Canada); Dupuis, Jocelyn [Montreal Heart Institute, Research Center, Montreal, QC (Canada); Universite de Montreal, Department of Medicine, Montreal, Quebec (Canada)

    2017-07-15

    The adrenomedullin receptor is densely expressed in the pulmonary vascular endothelium. PulmoBind, an adrenomedullin receptor ligand, was developed for molecular diagnosis of pulmonary vascular disease. We evaluated the safety of PulmoBind SPECT imaging and its capacity to detect pulmonary vascular disease associated with pulmonary hypertension (PH) in a human phase II study. Thirty patients with pulmonary arterial hypertension (PAH, n = 23) or chronic thromboembolic PH (CTEPH, n = 7) in WHO functional class II (n = 26) or III (n = 4) were compared to 15 healthy controls. Lung SPECT was performed after injection of 15 mCi {sup 99m}Tc-PulmoBind in supine position. Qualitative and semi-quantitative analyses of lung uptake were performed. Reproducibility of repeated testing was evaluated in controls after 1 month. PulmoBind injection was well tolerated without any serious adverse event. Imaging was markedly abnormal in PH with ∝50% of subjects showing moderate to severe heterogeneity of moderate to severe extent. The abnormalities were unevenly distributed between the right and left lungs as well as within each lung. Segmental defects compatible with pulmonary embolism were present in 7/7 subjects with CTEPH and in 2/23 subjects with PAH. There were no segmental defects in controls. The PulmoBind activity distribution index, a parameter indicative of heterogeneity, was elevated in PH (65% ± 28%) vs. controls (41% ± 13%, p = 0.0003). In the only subject with vasodilator-responsive idiopathic PAH, PulmoBind lung SPECT was completely normal. Repeated testing 1 month later in healthy controls was well tolerated and showed no significant variability of PulmoBind distribution. In this phase II study, molecular SPECT imaging of the pulmonary vascular endothelium using {sup 99m}Tc-PulmoBind was safe. PulmoBind showed potential to detect both pulmonary embolism and abnormalities indicative of pulmonary vascular disease in PAH. Phase III studies with this novel tracer and

  2. Modulating Endogenous Electric Currents in Human Corneal Wounds—A Novel Approach of Bioelectric Stimulation Without Electrodes

    Science.gov (United States)

    Reid, Brian; Graue-Hernandez, Enrique O.; Mannis, Mark J.; Zhao, Min

    2011-01-01

    Purpose To measure electric current in human corneal wounds and test the feasibility of pharmacologically enhancing the current to promote corneal wound healing. Methods Using a noninvasive vibrating probe, corneal electric current was measured before and after wounding of the epithelium of donated postmortem human corneas. The effects of drug aminophylline and chloride-free solution on wound current were also tested. Results Unwounded cornea had small outward currents (0.07 μA/cm2). Wounding increased the current more than 5 fold (0.41 μA/cm2). Monitoring the wound current over time showed that it seemed to be actively regulated and maintained above normal unwounded levels for at least 6 hours. The time course was similar to that previously measured in rat cornea. Drug treatment or chloride-free solution more than doubled the size of wound currents. Conclusions Electric current at human corneal wounds can be significantly increased with aminophylline or chloride-free solution. Because corneal wound current directly correlates with wound healing rate, our results suggest a role for chloride-free and/or aminophylline eyedrops to enhance healing of damaged cornea in patients with reduced wound healing such as the elderly or diabetic patient. This novel approach offers bioelectric stimulation without electrodes and can be readily tested in patients. PMID:21099404

  3. MiR-126 and miR-126* regulate shear-resistant firm leukocyte adhesion to human brain endothelium

    Science.gov (United States)

    Cerutti, Camilla; Edwards, Laura J.; de Vries, Helga E.; Sharrack, Basil; Male, David K.; Romero, Ignacio A.

    2017-01-01

    Leukocyte adhesion to brain endothelial cells, the blood-brain barrier main component, is a critical step in the pathogenesis of neuroinflammatory diseases such as multiple sclerosis (MS). Leukocyte adhesion is mediated mainly by selectins, cell adhesion molecules and chemokines induced by pro-inflammatory cytokines such as TNFα and IFNγ, but the regulation of this process is not fully clear. This study investigated the regulation of firm leukocyte adhesion to human brain endothelium by two different brain endothelial microRNAs (miRs), miR-126 and miR-126*, that are downregulated by TNFα and IFNγ in a human brain endothelial cell line, hCMEC/D3. Using a leukocyte adhesion in vitro assay under shear forces mimicking blood flow, we observed that reduction of endothelial miR-126 and miR-126* enhanced firm monocyte and T cell adhesion to hCMEC/D3 cells, whereas their increased expression partially prevented THP1, Jurkat and primary MS patient-derived PBMC firm adhesion. Furthermore, we observed that miR-126* and miR-126 downregulation increased E-selectin and VCAM1, respectively, while miR-126 overexpression reduced VCAM1 and CCL2 expression by hCMEC/D3 cells, suggesting that these miRs regulate leukocyte adhesion by modulating the expression of adhesion-associated endothelial mRNA targets. Hence, human brain endothelial miR-126 and miR-126* could be used as a therapeutic tool to reduce leukocyte adhesion and thus reduce neuroinflammation. PMID:28358058

  4. Corneal haze induced by excimer laser photoablation in rabbits is reduced by preserved human amniotic membrane graft

    Science.gov (United States)

    Wang, Ming X.; Gray, Trevor; Prabhasawat, Pinnita; Ma, Xiong; Culbertson, William; Forster, Richard; Hanna, Khalil; Tseng, Scheffer C. G.

    1998-06-01

    We conducted a study to determine if preserved human amniotic membrane can reduce corneal haze induced by excimer laser photoablation. Excimer photoablation was performed bilaterally on 40 New Zealand white rabbits with a 6 mm ablation zone and 120 micrometer depth (PTK) using the VISX Star. One eye was randomly covered with a preserved human amniotic membrane and secured using four interrupted 10 - 0 nylon sutures; the other eye served as control. The amniotic membranes were removed at one week, and the corneal haze was graded with a slit-lamp biomicroscopy by three masked corneal specialists (WC, KH and RF) biweekly for the ensuing 12 weeks. Histology and in situ TUNEL staining (for fragmented DNA as an index for apoptosis) was performed at days 1, 3 and 7 and at 12 weeks. One week after excimer photoablation, the amniotic membrane-covered corneas showed more anterior stromal edema, which resolved at the second week. A consistent grading of organized reticular corneal haze was noted among the three masked observers. Such corneal haze peaked at the seventh week in both groups. The amniotic membrane-covered group showed statistically significant less corneal haze (0.50 plus or minus 0.15) than the control groups (1.25 plus or minus 0.35) (p less than 0.001). The amniotic membrane-covered corneas had less inflammatory response at days 1 and 3, showing nearly nil DNA fragmentation on keratocytes on the ablated anterior stromal and less stromal fibroblast activation. There is less altered epithelial cell morphology and less epithelial hyperplasia at 1 week in these amniotic membrane-treated eyes. We concluded from this study that amniotic membrane matrix is effective in reducing corneal haze induced by excimer photoablation in rabbits and may have clinical applications.

  5. A Human Corneal Epithelial Cell Line Model for Limbal Stem Cell Biology and Limbal Immunobiology.

    Science.gov (United States)

    Shaharuddin, Bakiah; Ahmad, Sajjad; Md Latar, Nani; Ali, Simi; Meeson, Annette

    2016-10-14

    : Limbal stem cell (LSC) deficiency is a visually debilitating condition caused by abnormal maintenance of LSCs. It is treated by transplantation of donor-derived limbal epithelial cells (LECs), the success of which depends on the presence and quality of LSCs within the transplant. Understanding the immunobiological responses of these cells within the transplants could improve cell engraftment and survival. However, human corneal rings used as a source of LSCs are not always readily available for research purposes. As an alternative, we hypothesized that a human telomerase-immortalized corneal epithelial cell (HTCEC) line could be used as a model for studying LSC immunobiology. HTCEC constitutively expressed human leukocyte antigen (HLA) class I but not class II molecules. However, when stimulated by interferon-γ, HTCECs then expressed HLA class II antigens. Some HTCECs were also migratory in response to CXCL12 and expressed stem cell markers, Nanog, Oct4, and Sox2. In addition because both HTCECs and LECs contain side population (SP) cells, which are an enriched LSC population, we used these SP cells to show that some HTCEC SP cells coexpressed ABCG2 and ABCB5. HTCEC SP and non-side population (NSP) cells also expressed CXCR4, but the SP cells expressed higher levels. Both were capable of colony formation, but the NSP colonies were smaller and contained fewer cells. In addition, HTCECs expressed ΔNp63α. These results suggest the HTCEC line is a useful model for further understanding LSC biology by using an in vitro approach without reliance on a supply of human tissue. Limbal stem cell deficiency is a painful eye condition caused by abnormal maintenance of limbal stem cells. It is treated by transplantation of limbal epithelial cells derived from human tissue. The success of this treatment depends of the quality of the cells transplanted; however, some transplants fail. Understanding more about the immunobiology of these cells within the transplants could

  6. Expression and localization of claudins-3 and -12 in transformed human brain endothelium

    Directory of Open Access Journals (Sweden)

    Schrade Anja

    2012-02-01

    Full Text Available Abstract Background The aim of this study was to characterize the hCMEC/D3 cell line, an in vitro model of the human Blood Brain Barrier (BBB for the expression of brain endothelial specific claudins-3 and -12. Findings hCMEC/D3 cells express claudins-3 and -12. Claudin-3 is distinctly localized to the TJ whereas claudin -12 is observed in the perinuclear region and completely absent from TJs. We show that the expression of both proteins is lost in cell passage numbers where the BBB properties are no longer fully conserved. Expression and localization of claudin-3 is not modulated by simvastatin shown to improve barrier function in vitro and also recommended for routine hCMEC/D3 culture. Conclusions These results support conservation of claudin-3 and -12 expression in the hCMEC/D3 cell line and make claudin-3 a potential marker for BBB characteristics in vitro.

  7. ROS, MAPK/ERK and PKC play distinct roles in EGF-stimulated human corneal cell proliferation and migration.

    Science.gov (United States)

    Huo, Y-N; Chen, W; Zheng, X-X

    2015-11-08

    Cornea is at the outermost surface of eye globe, and it easily receives damage from ultraviolet light exposure, physiology wounding, and infections. It is essential to understand the mechanisms controlling human corneal epithelial (HCE) cell proliferation and wound healing. Epidermal growth factor (EGF) could stimulate cell proliferation and migration in various cell types. Therefore, we investigated the roles and mechanisms of EGF on HCE cell proliferation and migration. CCK-8 kit and wound healing experiment were used to investigate HCE cell proliferation and cell migration, respectively. ROS activity was quantified by DCFDA and flow cytometry. Western blot and Q-PCR were performed to examine protein and RNA levels. EGF could promote HCE cell proliferation and migration in both physiology status and UV irradiation conditions, which is used to mimic the disease condition in human corneal epithelial cells. Interestingly, the promotion effect of EGF on HCE cell proliferation is mainly mediated by activated ROS signaling under disease condition. However, the EGF function is mediated by ROS and MAPK/ERK pathway in EGF-treated corneal epithelial cells in physiology status, in which ROS and MAPK/ERK pathway have no mutual influence on the other signaling pathway in EGF-stimulated corneal epithelial cells. We also revealed that MAPK/ERK pathway instead of ROS mediates EGF-stimulated HCE cell migration. Interestingly, we found that PKC proteins were downregulated by EGF in HCE cells that is partially mediated by ROS signaling, while PKC pathway was not involved in EGF-stimulated corneal cell proliferation and migration. EGF promotes human corneal cell proliferation and migration both in physiology and disease conditions, and ROS, MAPK/ERK and PKC pathways play different roles in these processes.

  8. Expression of vitamin D receptor and cathelicidin in human corneal epithelium cells during fusarium solani infection.

    Science.gov (United States)

    Cong, Lin; Xia, Yi-Ping; Zhao, Gui-Qiu; Lin, Jing; Xu, Qiang; Hu, Li-Ting; Qu, Jian-Qiu; Peng, Xu-Dong

    2015-01-01

    To observe the expression of vitamin D receptor (VDR) in human specimen and immortalized human corneal epithelium cells (HCEC) when challenged with fusarium solani. Moreover, we decided to discover the pathway of VDR expression. Also, we would like to detect the expression of cathelicidin antimicrobial peptide (CAMP) in the downstream pathway of VDR. Immunohistochemistry was used to examine the VDR expression in HCEC from healthy and fungal keratitis patients. Real time quantitative polymerase chain reaction (qPCR) was performed to observe the messenger ribonucleic acid (mRNA) change of VDR when immortalized HCEC were challenged with fusarium solani for different hours. CAMP was detected at both mRNA and protein levels. We found out that the VDR expression in fusarium solani keratitis patients' specimen was much more than that in healthy people. The mRNA and protein expression of VDR increased when we stimulated HCEC with fusarium solani antigen (Pfusarium solani antigen stimulation (Pfusarium solani antigen.

  9. Proteomic identification of dysferlin-interacting protein complexes in human vascular endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Cleo; Utokaparch, Soraya; Sharma, Arpeeta; Yu, Carol; Abraham, Thomas; Borchers, Christoph [UBC James Hogg Research Centre, Institute for Heart and Lung Health, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia (Canada); University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia (Canada); Bernatchez, Pascal, E-mail: pbernatc@mail.ubc.ca [UBC James Hogg Research Centre, Institute for Heart and Lung Health, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia (Canada); University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia (Canada)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Bi-directional (inward and outward) movement of GFP-dysferlin in COS-7 cells. Black-Right-Pointing-Pointer Dysferlin interacts with key signaling proteins for transcytosis in EC. Black-Right-Pointing-Pointer Dysferlin mediates trafficking of vesicles carrying protein cargos in EC. -- Abstract: Dysferlin is a membrane-anchored protein known to facilitate membrane repair in skeletal muscles following mechanical injury. Mutations of dysferlin gene impair sarcolemma integrity, a hallmark of certain forms of muscular dystrophy in patients. Dysferlin contains seven calcium-dependent C2 binding domains, which are required to promote fusion of intracellular membrane vesicles. Emerging evidence reveal the unexpected expression of dysferlin in non-muscle, non-mechanically active tissues, such as endothelial cells, which cast doubts over the belief that ferlin proteins act exclusively as membrane repair proteins. We and others have shown that deficient trafficking of membrane bound proteins in dysferlin-deficient cells, suggesting that dysferlin might mediate trafficking of client proteins. Herein, we describe the intracellular trafficking and movement of GFP-dysferlin positive vesicles in unfixed reconstituted cells using live microscopy. By performing GST pull-down assays followed by mass spectrometry, we identified dysferlin binding protein complexes in human vascular endothelial cells. Together, our data further support the claims that dysferlin not only mediates membrane repair but also trafficking of client proteins, ultimately, help bridging dysferlinopathies to aberrant membrane signaling.

  10. The modelling of the influence of a corneal geometry on the pupil image of the human eye

    Science.gov (United States)

    Szczesna, D. H.; Kasprzak, H. T.

    2006-07-01

    In normal conditions, a pupil of the eye is observed through the optical system of the cornea. The cornea is the anterior surface of the eye and is the major refractive element of the human eye. The influence of the corneal shape should not be neglected in measurements of the pupil size. The purpose of this study was to estimate the influence of the corneal geometry, the diameter of the pupil and its position in the anterior chamber on the magnification and position of the image of the pupil. The numerical calculations presented in the paper assume infinitely thin cornea, and the corneal topography was approximated by the elongated ellipsoid. The ray tracing procedure was used in our numerical modelling. The magnification of the pupil image amounted to about 10% and increases with decrease of radius of curvature and eccentricity of the corneal profile and decreases for the largest pupil. The results show also that the pupil image is placed nearer the corneal apex than the real pupil. The image of the pupil is always blurred, which limits the sharp observation of the pupil.

  11. Human corneal epithelial subpopulations: oxygen dependent ex vivo expansion and transcriptional profiling.

    Science.gov (United States)

    Bath, Chris

    2013-06-01

    Corneal epithelium is being regenerated throughout life by limbal epithelial stem cells (LESCs) believed to be located in histologically defined stem cell niches in corneal limbus. Defective or dysfunctional LESCs result in limbal stem cell deficiency (LSCD) causing pain and decreased visual acuity. Since the first successful treatment of LSCD by transplantation of ex vivo expanded LESCs in 1997, many attempts have been carried out to optimize culture conditions to improve the outcome of surgery. To date, progress in this field of bioengineering is substantially hindered by both the lack of specific biomarkers of LESCs and the lack of a precise molecular characterization of in situ epithelial subpopulations. The aim of this dissertation was to optimize culture systems with regard to the environmental oxygen concentration for selective ex vivo expansion of LESCs and to analyse in situ subpopulations in human corneal epithelium using a combination of laser capture microdissection and RNA sequencing for global transcriptomic profiling. We compared dissociation cultures, using either expansion on γ-irradiated NIH/3T3 feeder cells in serum-rich medium or expansion directly on plastic in serum-free EpiLife medium, using a range of physiologically relevant oxygen concentrations (2%, 5%, 10%, 15% and 20%). Using immunocytochemistry and advanced fluorescence microscopy, cells were characterized regarding growth, cell cycle distribution, colony-forming efficiency (CFE), phenotypes and cytomorphometry. Limbal epithelial cells expanded in 2% O2 exhibited slow growth, low fraction of cells in S/G2 , high CFE, high expression of stem cell markers ABCG2 and p63α, and low fraction of differentiation marker CK3 resembling a LESC phenotype. The effect of hypoxia to maintain LESCs in culture was not dependent on the system used for propagation (Bath et al. 2013a). Laser capture microdissection was used to isolate cellular subpopulations in situ from the spatially defined

  12. Geometrical custom modeling of human cornea in vivo and its use for the diagnosis of corneal ectasia.

    Directory of Open Access Journals (Sweden)

    Francisco Cavas-Martínez

    Full Text Available AIM: To establish a new procedure for 3D geometric reconstruction of the human cornea to obtain a solid model that represents a personalized and in vivo morphology of both the anterior and posterior corneal surfaces. This model is later analyzed to obtain geometric variables enabling the characterization of the corneal geometry and establishing a new clinical diagnostic criterion in order to distinguish between healthy corneas and corneas with keratoconus. METHOD: The method for the geometric reconstruction of the cornea consists of the following steps: capture and preprocessing of the spatial point clouds provided by the Sirius topographer that represent both anterior and posterior corneal surfaces, reconstruction of the corneal geometric surfaces and generation of the solid model. Later, geometric variables are extracted from the model obtained and statistically analyzed to detect deformations of the cornea. RESULTS: The variables that achieved the best results in the diagnosis of keratoconus were anterior corneal surface area (ROC area: 0.847, p<0.000, std. error: 0.038, 95% CI: 0.777 to 0.925, posterior corneal surface area (ROC area: 0.807, p<0.000, std. error: 0.042, 95% CI: 0,726 to 0,889, anterior apex deviation (ROC area: 0.735, p<0.000, std. error: 0.053, 95% CI: 0.630 to 0.840 and posterior apex deviation (ROC area: 0.891, p<0.000, std. error: 0.039, 95% CI: 0.8146 to 0.9672. CONCLUSION: Geometric modeling enables accurate characterization of the human cornea. Also, from a clinical point of view, the procedure described has established a new approach for the study of eye-related diseases.

  13. Mechanism of induction of fibroblast to corneal endothelial cell.

    Science.gov (United States)

    Jiang, Yan; Fu, Wei-Cai; Zhang, Lin

    2014-08-01

    To explore mechanism of nduction of fibroblast to corneal endothelial cell. Rabbit conjunctiva fibroblasts were used as feeder cells, rabbit oral mucosa epithelial cells were used as seed cells, and human denuded amniotic membrane was used as carrier to establish tissue engineering corneal endothelium. The transformation effect was observed. As concentration of mitomycin C increased, cell survival rate gradually decreased, cell proliferation was obviously inhibited when concentration≥25 μg/mL; 5 days after being treated by 5 μg/mL mitomycin C, cell body was enlarged and extended without cell fusion, however after being treated by 0.5 μg/mL mitomycin C, cell body was significantly proliferated and gradually fused; after 3 weeks of culture, stratified epithelium appeared on rabbit oral mucosa epithelial cells, differentiation layers were 4-5 and were well differentiated, the morphology was similar to corneal endothelial cells; Under electron microscope, surface layer of cells were polygonal, tightly connected to another with microvilli on the border, there was hemidesmosome between basal cells and human denuded amniotic membrane. Fibroblast cells have the potential of multi-directional differentiation, effective induction can promote emergence of intercellular desmosomes between seed cells and emergence of epithelial surface microvilli, and differentiate to the corneal endothelial cell. However, clinical application still needs more research and safety evaluation. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  14. Corneal Neovascularization Suppressed by TIMP2 Released from Human Amniotic Membranes

    Institute of Scientific and Technical Information of China (English)

    Xiang Ma; Jun Li

    2005-01-01

    Purpose: To investigate the effects of culture medium of human amniotic membrane (AM) on corneal neovascularization (CNV) induced by basic fibroblast growth factor (bFGF) in mice.Methods: Culture medium of amniotic membrane was prepared by cultivating AM (with epithelium side up) in EGM basic medium for 3 days, and was collected separately to three groups, e.g. Control (EGM only), AM with epithelium (AM) and AM without epithelium (De-AM). Corneal neovascularization was induced in mice by using micropocket assay with Hydron polymer pellets containing 100 ng bFGF. Migration and proliferation of human umbilical cord vein endothelial cells (HUVEC) were performed in Boyden chambers and by using the CyQUANT fluorescence binding assay respectively.The levels of tissue inhibitors of metalloproteinase 1 and 2 (TIMP1, TIMP2) in culture medium were determined by ELISA assay.Results: CNV induced by bFGF was significantly suppressed by culture medium of amniotic membrane. When the medium was applied as an eyedrop 4 times a day for 7 days,the area of CNV was (2.48±0.76) mm2,(0.64±0.52) mm2 and (1.96±0.65) mm2 incontrol, AM and De-AM group respectively. The migration and proliferation of HUVEC were strongly inhibited by culture medium of AM with epithelium, while the De-AM had no effect on the migration of HUVEC cells. The high level of TIMP2 was found in AM group, but not in De-AM group, while there was no difference in the amount of TIMP1 in medium among three groups.Conclusion: Culture medium of amniotic membrane significantly suppresses the corneal nevovascularization induced by bFGF. The mechanism of which at least in part is that high level of TIMP2 protein secreted or released into the culture medium of AM and inhibition of migration and growth of vascular endothelial cells.

  15. [Regeneration and fibrosis of corneal tissues].

    Science.gov (United States)

    Simirskiĭ, V N

    2014-01-01

    In this review, the features of the regeneration of corneal tissue and its disorders leading to the development of fibrosis are considered. The data on the presence of stem (clonogenic) cell pool in the corneal tissues (epithelium, endothelium, stroma) are given; these cells can serve as a source for regeneration of the tissues at injury or various diseases. The main steps of regeneration of corneal tissues and their disorders that lead to outstripping proliferation of myofibroblasts and secretion of extracellular matrix in the wound area and eventually cause the formation of connective tissue scar and corneal opacity are considered. Particular attention is given to the successes of translational medicine in the treatment of corneal tissue fibrosis. The methods of cell therapy aimed at the restoration of stem cell pool of corneal tissues are the most promising. Gene therapy provides more opportunities; one of its main objectives is the suppression of the myofibroblast proliferation responsible for the development of fibrosis.

  16. Particulate matter contamination in the corneal stroma of severe eye burns in humans

    Energy Technology Data Exchange (ETDEWEB)

    Schrage, N.F.; Reim, M.; Burchard, W.G. (Department of Ophthalmology, RWTH-Aachen (Germany))

    1990-01-01

    Corneal buttons obtained from keratoplasty were examined by energy dispersive x-ray analysis (EDXA) combined with scanning electron microscopy (SEM). This method enables to assay the mineral composition of minute parts of tissue samples identified in SEM images. Samples were cut from paraffin embedded corneae, deparaffinized in xylol, dried in aceton, critical-point desiccated, covered by evaporating with a thin layer of carbon and examined by SEM. In healthy human donor eyes, only some iron particles had been found. In the 22 patients samples high amounts of different particles were identified, materials from rubber stoppers, chromesteel, titanium pigments, talcum, barium and glass. Furthermore a lot of different metal particles containing varying amounts of Na, Mg, Al, Si, P, S, Cl, K, Ca, Fe, Cu, Cr, Zn, La and Ce were detected. Some particles may be caused by the initial trauma, others by therapy. Such contaminations might have supported leucocyte and fibrocyte invasion increasing the inflammatory reaction in the burnt cornea.

  17. Technique of cultivating limbal derived corneal epithelium on human amniotic membrane for clinical transplantation

    Directory of Open Access Journals (Sweden)

    Fatima A

    2006-01-01

    Full Text Available Background : The technique of transplantation of cultivated limbal epithelium rather than direct limbal tissue isa novel method of "cell therapy" involved in reconstructing the ocular surface in severe limbal stem celldeficiency [LSCD], caused by chemical burns. Aim : To describe a simple feeder-cell free technique of cultivating limbal epithelium on human amniotic membrane[HAM]. Materials and Methods : The limbal tissues (2 mm were harvested from patients with LSCD. These tissueswere proliferated in vitro on HAM supplemented by human corneal epithelial cell medium and autologousserum. Cultures covering more ?50% area of 2.5x5 cm HAM were considered adequate for clinical use. Thecultured epithelium was characterized by histopathology and immunophenotyping.Results: A total of 542 cultures out of 250 limbal tissues were cultivated in the laboratory from January 2001through July 2005. The culture explants showed that clusters of cells emerging from the edge of the explantsin one-three days formed a complete monolayer within 10-14 days. In 86% of cultures (464 of 542, thegrowth was observed within one-two days. Successful explant cultures were observed in 98.5% (534 of 542cultures with 91% explant cultures showing an area of ?6.25 cm2 (6.25 - 12.5 cm2 range. The cultivatedepithelium was terminated between 10-14 days for clinical transplantation. The problems encountered wereinadequate growth (2 of 542 and contamination (2 of 542. Conclusions : We demonstrate a simple technique of generating a sheet of corneal epithelium from a limbalbiopsy. This new technique could pave the way for a novel form of cell therapy.

  18. Derivation of corneal endothelial cell-like cells from rat neural crest cells in vitro.

    Directory of Open Access Journals (Sweden)

    Chengqun Ju

    Full Text Available The aim of this study was to investigate the feasibility of inducing rat neural crest cells (NCC to differentiate to functional corneal endothelial cell (CEC-like cells in vitro. Rat NCC were induced with adult CEC-derived conditioned medium. Immunofluorescence, flow cytometry and real time RT-PCR assay were used to detect expression of the corneal endothelium differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2. CFDA SE-labeled CEC-like cells were transplanted to the corneal endothelium of a rat corneal endothelium deficiency model, and an eye-down position was maintained for 24 hours to allow cell attachment. The animals were observed for as long as 2 months after surgery and underwent clinical and histological examination. Spindle-like NCC turned to polygonal CEC-like after induction and expressed N-cadherin, FoxC1, Pitx2, zonula occludens-1 and sodium-potassium pump Na(+/K(+ ATPase. The corneas of the experimental group were much clearer than those of the control group and the mean corneal thickness in the experimental group was significantly less than in the control group7, 14, 21 and 28 days after surgery. Confocal microscopy through focusing and histological analysis confirmed that green fluorescence-positive CEC-like cells formed a monolayer covering the Descemet's membrane in the experimental group. In conclusion, CEC-like cells derived from NCCs displayed characters of native CEC, and the induction protocol provides guidance for future human CEC induction from NCC.

  19. Protection of human corneal epithelial cells from TNF-α-induced disruption of barrier function by rebamipide.

    Science.gov (United States)

    Kimura, Kazuhiro; Morita, Yukiko; Orita, Tomoko; Haruta, Junpei; Takeji, Yasuhiro; Sonoda, Koh-Hei

    2013-04-17

    TNF-α disrupts the barrier function of cultured human corneal epithelial (HCE) cells. We investigated the effects of the cytoprotective drug rebamipide on this barrier disruption by TNF-α as well as on corneal epithelial damage in a rat model of dry eye. The barrier function of HCE cells was evaluated by measurement of transepithelial electrical resistance. The distribution of tight-junction (ZO-1, occludin) and adherens-junction (E-cadherin, β-catenin) proteins, and the p65 subunit of nuclear factor-κB (NF-κB) was determined by immunofluorescence microscopy. Expression of junctional proteins as well as phosphorylation of the NF-κB inhibitor IκB-α and myosin light chain (MLC) were examined by immunoblot analysis. A rat model of dry eye was developed by surgical removal of exorbital lacrimal glands. Rebamipide inhibited the disruption of barrier function as well as the downregulation of ZO-1 expression, and the disappearance of ZO-1 from the interfaces of neighboring HCE cells induced by TNF-α. It also inhibited the phosphorylation and downregulation of IκB-α, the translocation of p65 to the nucleus, the formation of actin stress fibers, and the phosphorylation of MLC induced by TNF-α in HCE cells. Treatment with rebamipide eyedrops promoted the healing of corneal epithelial defects as well as attenuated the loss of ZO-1 from the surface of corneal epithelial cells in rats. Rebamipide protects corneal epithelial cells from the TNF-α-induced disruption of barrier function by maintaining the distribution and expression of ZO-1 as well as the organization of the actin cytoskeleton. Rebamipide is, thus, a potential drug for preventing or ameliorating the loss of corneal epithelial barrier function associated with ocular inflammation.

  20. Inhibition by rebamipide of cytokine-induced or lipopolysaccharide-induced chemokine synthesis in human corneal fibroblasts.

    Science.gov (United States)

    Fukuda, Ken; Ishida, Waka; Tanaka, Hiroshi; Harada, Yosuke; Fukushima, Atsuki

    2014-12-01

    The dry-eye drug rebamipide has mucin secretagogue activity in and anti-inflammatory effects on corneal epithelial cells. Corneal stromal fibroblasts (transdifferentiated keratocytes) function as immune modulators in the pathogenesis of chronic ocular allergic inflammation and in innate immune responses at the ocular surface. The possible anti-inflammatory effects of rebamipide on human corneal stromal fibroblasts were examined. Serum-deprived cells were incubated for 1 h with rebamipide and then for various times in the additional absence or presence of cytokines or bacterial lipopolysaccharide (LPS). The release of chemokines into culture supernatants was determined with ELISAs. The intracellular abundance of chemokine mRNAs was quantitated by reverse transcription and real-time PCR analysis. Degradation of the nuclear factor κB (NFκB) inhibitor IκBα was detected by immunoblot analysis. Rebamipide suppressed the release of interleukin (IL)-8 and the upregulation of IL-8 mRNA induced by tumour necrosis factor α (TNF-α) or LPS in corneal fibroblasts. It also inhibited eotaxin-1 (CCL-11) expression at the protein and mRNA levels induced by the combination of TNF-α and IL-4. In addition, rebamipide attenuated the degradation of IκBα induced by TNF-α or LPS. Rebamipide inhibited the synthesis of chemokines by corneal fibroblasts in association with suppression of NFκB signalling. Rebamipide may therefore prove effective for the treatment of corneal stromal inflammation associated with allergy or bacterial infection. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Comparison of cytotoxicity and wound healing effect of carboxymethylcellulose and hyaluronic acid on human corneal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Jong; Soo; Lee; Seung; Uk; Lee; Cheng-Ye; Che; Ji-Eun; Lee

    2015-01-01

    AIM: To investigate the cytotoxic effect on human corneal epithelial cells(HCECs) and the ability to faciliate corneal epithelial wound healing of carboxymethylcellulose(CMC) and hyaluronic acid(HA).METHODS: HCECs were exposed to 0.5% CMC(Refresh plus, Allergan, Irvine, California, USA) and 0.1% and 0.3%HA(Kynex , Alcon, Seoul, Korea, and Hyalein mini,Santen, Osaka, Japan) for the period of 30 min, and 4, 12,and 24 h. Methyl thiazolyl tetrazoiun(MTT)-based calorimetric assay was performed to assess the metabolic activity of cellular proliferation and lactate dehydrogenase(LDH) leakage assay to assess the cytotoxicity. apoptotic response was evaluated with flow cytometric analysis and fluorescence staining with Annexin V and propiodium iodide. Cellular morphology was evaluated by inverted phase-contrast light microscopy and electron microscopy. The wound widths were measured 24 h after confluent HCECs were scratch wounded.RESULTS: The inhibitory effect of human corneal epithelial proliferation and cytotoxicity showed the time-dependent response but no significant effect. Apoptosis developed in flow cytometry and apoptotic cells weredemonstrated in fluorescent micrograph. The damaged HCECs were detached from the bottom of the dish and showed the well-developed vacuole formations. Both CMC and HA stimulated reepithehlialization of HCECs scratched, which were more observed in CMC.CONCLUSION: CMC and HA, used in artificial tear formulation, could be utilized without any significant toxic effect on HCECs. Both significantly stimulated HCEC reepithelialization of corneal wounds.

  2. Fully automated corneal endothelial morphometry of images captured by clinical specular microscopy

    Science.gov (United States)

    Bucht, Curry; Söderberg, Per; Manneberg, Göran

    2010-02-01

    The corneal endothelium serves as the posterior barrier of the cornea. Factors such as clarity and refractive properties of the cornea are in direct relationship to the quality of the endothelium. The endothelial cell density is considered the most important morphological factor of the corneal endothelium. Pathological conditions and physical trauma may threaten the endothelial cell density to such an extent that the optical property of the cornea and thus clear eyesight is threatened. Diagnosis of the corneal endothelium through morphometry is an important part of several clinical applications. Morphometry of the corneal endothelium is presently carried out by semi automated analysis of pictures captured by a Clinical Specular Microscope (CSM). Because of the occasional need of operator involvement, this process can be tedious, having a negative impact on sampling size. This study was dedicated to the development and use of fully automated analysis of a very large range of images of the corneal endothelium, captured by CSM, using Fourier analysis. Software was developed in the mathematical programming language Matlab. Pictures of the corneal endothelium, captured by CSM, were read into the analysis software. The software automatically performed digital enhancement of the images, normalizing lights and contrasts. The digitally enhanced images of the corneal endothelium were Fourier transformed, using the fast Fourier transform (FFT) and stored as new images. Tools were developed and applied for identification and analysis of relevant characteristics of the Fourier transformed images. The data obtained from each Fourier transformed image was used to calculate the mean cell density of its corresponding corneal endothelium. The calculation was based on well known diffraction theory. Results in form of estimated cell density of the corneal endothelium were obtained, using fully automated analysis software on 292 images captured by CSM. The cell density obtained by the

  3. 共聚焦显微镜观察视网膜病变玻璃体切割术角膜内皮细胞变化%The characteristics of the corneal endothelium in the proliferative diabetic retinopathy (PDR) patients after vitrectomy observed with confocal microscope

    Institute of Scientific and Technical Information of China (English)

    苏龙; 张红; 王铁成; 漆晨

    2010-01-01

    Objective To investigate and evaluate the densities and morphological changes and to find out the characteristics change of the corneal endothelium in the different stages in the PDR(proliferative diabetic retinopathy)patients after vitreous and retinal surgeries with confocal microscope.Methods In our study,56 eyes of 49 patients with vitreoretinal diseases who underwent different vitreous and retinal surgeries were analyzed,including 35 eyes of 29 patients who suffer from PDR.All the patients were examined by confocal microscope before and 1 week,1 month and 3 months after the surgery.Corneal endothelial cell densities,the changes of corneal endothelium morphology were recorded.Results Confocal microscope images revealed that the shape of the endothelial cells were quite different after vitreous and retinal surgeries,kemtic precipitation,endothelial edema,endothelial absent area,the movement and repair of the adjacent cells were observed.The average area of the endothelial cells of the PDR group was more than the control group,on the contrary,pleomorphism was less than the control group before surgeries.After surgeries,the loss of the densities and pleomorphism of the PDR group was more than the control group in the first and third month.Conclusions Confoscan 3.0 is a new tool for the study of the change of corneal endothelium after vitreous and retinal surgery in vitre-retinal disease,and can become the best method to evaluate corneal endothelium morphology and the change of the cornea after surgery.The function in reserve of the corneal endothelial cells is decreasing due to the diabetics,it also reduces the capability of receiving the surgery.%目的 探讨增殖期檐尿病视网膜病变患者玻璃体视网膜手术前后角膜内皮细胞改变及这一特殊人群经历玻璃体视网膜手术后情况.方法 应用共聚焦显微镜对角膜内皮细胞的密度以及形态学改变进行观察记录.对玻璃体视网膜疾病患者49例(56只眼),其

  4. Effects of biophysical and biochemical cues on human corneal epithelial cell behavior

    Science.gov (United States)

    Tocce, Elizabeth J.

    2011-12-01

    Recent advances in the design of biomaterials aim at mimicking the natural biophysical and biochemical components found in a tissue's extracellular environment (ECM). Of particular interest in this work is mimicking the specialized ECM of the human corneal epithelium called the basement membrane (BM) and understanding how corneal epithelial cells (HCECs) respond to biophysical and biochemical cues. To this end, well defined topographic features with dimension of the BM (20 to 200 nm) were fabricated to support controlled cell interactions with biochemical motifs (e.g., adhesive peptide ligands) found in the BM. Here, features of 30 to 70 nm that represent the smallest features found in the BM were used to demonstrate that the smallest features that HCECs can recognize are 30 and 45 nm, depending on the soluble environment. In addition, HCECs demonstrate contact guidance on the smallest BM features (30 to 70 nm) and on the largest BM features (200 nm), but differs from contact guidance on micron-scale features, suggesting that BM scale topography scale is an influential factor in regulating HCEC behavior. To study the simultaneous presentation of biophysical and biochemical cues, topographic features are coated with thin films using a layer-by-layer deposition of covalently reacting polymers, poly(ethylene imine) and poly(2-vinyl-4,4-dimethylazlactone (PEI/PVDMA). The films are functionalized with the bioactive peptide argenine-glycine-aspartic acid (RGD) to control cell-substrate interactions. We demonstrate that PEI/PVDMA films can be functionalized with monotonically increasing densities of ROD to control HCEC attachment and proliferation. In addition PEI/PVDMA films functionalized with RGD were used to demonstrate that HCEC response to topographic cues is dependent on the scale of the topography, the surface chemical composition and the soluble environment. Results from these studies will advance the understanding of how BM-relevant biophysical and biochemical

  5. Corneal Laceration

    Medline Plus

    Full Text Available ... your vision. Privacy Policy Related People with Advanced Keratoconus May Have A Future Alternative to Full Corneal ... 2016 Corneal Collagen Cross-linking Approved to Treat Keratoconus in U.S. Aug 01, 2016 Firework Blinds Teenager, ...

  6. Corneal Laceration

    Medline Plus

    Full Text Available ... lost sight from a corneal scar as a child. Now that I’m older, will a corneal transplant help me? May 15, 2015 Why Do My Eyes Burn After Inserting My Contacts? Feb 27, 2015 Dark ...

  7. Corneal Abrasions

    Science.gov (United States)

    ... and lead to a serious condition called a corneal ulcer . That's why it's important to see a doctor to get a corneal abrasion checked out. What Causes a Corneal ... and land on your cornea, tears help to wash the particles away. Sometimes, ...

  8. The structural and optical properties of type III human collagen biosynthetic corneal substitutes

    Science.gov (United States)

    Hayes, Sally; Lewis, Phillip; Islam, M. Mirazul; Doutch, James; Sorensen, Thomas; White, Tomas; Griffith, May; Meek, Keith M.

    2015-01-01

    The structural and optical properties of clinically biocompatible, cell-free hydrogels comprised of synthetically cross-linked and moulded recombinant human collagen type III (RHCIII) with and without the incorporation of 2-methacryloyloxyethyl phosphorylcholine (MPC) were assessed using transmission electron microscopy (TEM), X-ray scattering, spectroscopy and refractometry. These findings were examined alongside similarly obtained data from 21 human donor corneas. TEM demonstrated the presence of loosely bundled aggregates of fine collagen filaments within both RHCIII and RHCIII-MPC implants, which X-ray scattering showed to lack D-banding and be preferentially aligned in a uniaxial orientation throughout. This arrangement differs from the predominantly biaxial alignment of collagen fibrils that exists in the human cornea. By virtue of their high water content (90%), very fine collagen filaments (2–9 nm) and lack of cells, the collagen hydrogels were found to transmit almost all incident light in the visible spectrum. They also transmitted a large proportion of UV light compared to the cornea which acts as an effective UV filter. Patients implanted with these hydrogels should be cautious about UV exposure prior to regrowth of the epithelium and in-growth of corneal cells into the implants. PMID:26159106

  9. Changes on the corneal thickness and curvature after orthokeratology

    Science.gov (United States)

    Mitsui, Iwane; Yamada, Yoshiya

    2004-07-01

    To evaluate the corneal thickness and curvature changes after Orthokeratology contact lens wear, using the ORBSCAN II corneal topography system, corneal thickness and corneal curvature were measured on one hundred and twenty eyes of sixty patients before and after wearing the custom rigid gas permeable contact lenses for Orthokeratology. The contact lenses were specially designed for each eye. The subjects wore the orthokeratology lenses for approximately Four hours with their eyes closed. The corneal thickness of the subjects was increased on fifty-five eyes at not only the peripheral zone but also the center of the cornea. The average increase of central and peripheral corneal thickness was 18 micrometer and 22micrometer, respectively. The mean anterior curvature of corneal surface changed 1.25D. The mean posterior curvature of corneal endothelium side changed 0.75D.

  10. Clinical applications of corneal confocal microscopy

    Directory of Open Access Journals (Sweden)

    Mitra Tavakoli

    2008-06-01

    Full Text Available Mitra Tavakoli1, Parwez Hossain2, Rayaz A Malik11Division of Cardiovascular Medicine, University of Manchester and Manchester Royal Infirmary, Manchester, UK; 2University of Southampton, Southampton Eye Unit, Southampton General Hospital, Southampton, UKAbstract: Corneal confocal microscopy is a novel clinical technique for the study of corneal cellular structure. It provides images which are comparable to in-vitro histochemical techniques delineating corneal epithelium, Bowman’s layer, stroma, Descemet’s membrane and the corneal endothelium. Because, corneal confocal microscopy is a non invasive technique for in vivo imaging of the living cornea it has huge clinical potential to investigate numerous corneal diseases. Thus far it has been used in the detection and management of pathologic and infectious conditions, corneal dystrophies and ecstasies, monitoring contact lens induced corneal changes and for pre and post surgical evaluation (PRK, LASIK and LASEK, flap evaluations and Radial Keratotomy, and penetrating keratoplasty. Most recently it has been used as a surrogate for peripheral nerve damage in a variety of peripheral neuropathies and may have potential in acting as a surrogate marker for endothelial abnormalities.Keywords: corneal confocal microscopy, cornea, infective keratitis, corneal dystrophy, neuropathy

  11. The preservative polyquaternium-1 increases cytoxicity and NF-kappaB linked inflammation in human corneal epithelial cells

    OpenAIRE

    Paimela, Tuomas; Ryhänen, Tuomas; Kauppinen, Anu; Marttila, Liisa; Salminen, Antero; Kaarniranta, Kai

    2012-01-01

    Purpose In numerous clinical and experimental studies, preservatives present in eye drops have had detrimental effects on ocular epithelial cells. The aim of this study was to compare the cytotoxic and inflammatory effects of the preservative polyquaternium-1 (PQ-1) containing Travatan (travoprost 0.004%) and Systane Ultra eye drops with benzalkonium chloride (BAK) alone or BAK-preserved Xalatan (0.005% latanoprost) eye drops in HCE-2 human corneal epithelial cell culture. Methods HCE-2 cells...

  12. Corneal collagen cross-linking

    Directory of Open Access Journals (Sweden)

    Jankov II Mirko

    2010-01-01

    Full Text Available Corneal collagen cross-linking (CXL with riboflavin and ultraviolet-A (UVA is a new technique of corneal tissue strengthening by using riboflavin as a photosensitizer and UVA to increase the formation of intra- and interfibrillar covalent bonds by photosensitized oxidation. Keratocyte apoptosis in the anterior segment of the corneal stroma all the way down to a depth of about 300 microns has been described and a demarcation line between the treated and untreated cornea has been clearly shown. It is important to ensure that the cytotoxic threshold for the endothelium has not been exceeded by strictly respecting the minimal corneal thickness. Confocal microscopy studies show that repopulation of keratocytes is already visible 1 month after the treatment, reaching its pre-operative quantity and quality in terms of functional morphology within 6 months after the treatment. The major indication for the use of CXL is to inhibit the progression of corneal ectasias, such as keratoconus and pellucid marginal degeneration. CXL may also be effective in the treatment and prophylaxis of iatrogenic keratectasia, resulting from excessively aggressive photoablation. This treatment has also been used to treat infectious corneal ulcers with apparent favorable results. Combination with other treatments, such as intracorneal ring segment implantation, limited topography-guided photoablation and conductive keratoplasty have been used with different levels of success.

  13. Impact of Mycotoxins Secreted by Aspergillus Molds on the Inflammatory Response of Human Corneal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Yélian Marc Bossou

    2017-06-01

    Full Text Available Exposure to molds and mycotoxins not only contributes to the onset of respiratory disease, it also affects the ocular surface. Very few published studies concern the evaluation of the effect of mycotoxin exposure on ocular cells. The present study investigates the effects of aflatoxin B1 (AFB1 and gliotoxin, two mycotoxins secreted by Aspergillus molds, on the biological activity of the human corneal epithelial (HCE cells. After 24, 48, and 72 h of exposure, cellular viability and inflammatory response were assessed. Both endpoint cell viability colorimetric assays and continuous cell impedance measurements, providing noninvasive real-time assessment of the effect on cells, were performed. Cytokine gene expression and interleukin-8 release were quantified. Gliotoxin appeared more cytotoxic than AFB1 but, at the same time, led to a lower increase of the inflammatory response reflecting its immunosuppressive properties. Real-time cell impedance measurement showed a distinct profile of cytotoxicity for both mycotoxins. HCE cells appeared to be a well-suited in vitro model to study ocular surface reactivity following biological contaminant exposure. Low, but persistent inflammation, caused by environmental factors, such as fungal toxins, leads to irritation and sensitization, and could be responsible for allergic manifestations which, in turn, could lead to mucosal hyper-reactivity.

  14. Sensing inhomogeneous mechanical properties of human corneal Descemet's membrane with AFM nano-indentation.

    Science.gov (United States)

    Di Mundo, Rosa; Recchia, Giuseppina; Parekh, Mohit; Ruzza, Alessandro; Ferrari, Stefano; Carbone, Giuseppe

    2017-10-01

    The paper describes a highly space-resolved characterization of the surface mechanical properties of the posterior human corneal layer (Descemet's membrane). This has been accomplished with Atomic Force Microscopy (AFM) nano-indentation by using a probe with a sharp tip geometry. Results indicate that the contact with this biological tissue in liquid occurs with no (or very low) adhesion. More importantly, under the same operating conditions, a broad distribution of penetration depth can be measured on different x-y positions of the tissue surface, indicating a high inhomogeneity of surface stiffness, not yet clearly reported in the literature. An important contribution to such inhomogeneity should be ascribed to the discontinuous nature of the collagen/proteoglycans fibers matrix tissue, as can be imaged by AFM when the tissue is semi-dry. Using classical contact mechanics calculations adapted to the specific geometry of the tetrahedral tip it has been found that the elastic modulus E of the material in the very proximity of the surface ranges from 0.23 to 2.6 kPa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Transforming growth factor-β2 induces morphological alteration of human corneal endothelial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Jing; Wang; Ting-Jun; Fan; Xiu-Xia; Yang; Shi-Min; Chang

    2014-01-01

    AIM:To investigate the morphological altering effect of transforming growth factor-β2(TGF-β2) on untransfected human corneal endothelial cells(HCECs)in vitro.METHODS:After untransfected HCECs were treated with TGF-β2 at different concentrations, the morphology,cytoskeleton distribution, and type IV collagen expression of the cells were examined with inverted contrast light microscopy, fluorescence microscopy,immunofluorescence or Western Blot.RESULTS:TGF-β2 at the concentration of 3-15 μg/L had obviously alterative effects on HCECs morphology in dose and time-dependent manner, and 9 μg/L was the peak concentration. TGF-β2(9 μg/L) altered HCE cell morphology after treatment for 36 h, increased the mean optical density(P <0.01) and the length of F-actin,reduced the mean optical density(P <0.01) of the collagen type IV in extracellular matrix(ECM) and induced the rearrangement of F-actin, microtubule in cytoplasm and collagen type IV in ECM after treatment for 72 h.·CONCLUTION: TGF-β2 has obviously alterative effect on the morphology of HCECs from polygonal phenotype to enlarged spindle-shaped phenotype, in dose and time-dependence manner by inducing more, elongation and alignment of F-actin, rearrangement of microtubule and larger spread area of collagen type IV.

  16. Corneal blindness and xenotransplantation.

    Science.gov (United States)

    Lamm, Vladimir; Hara, Hidetaka; Mammen, Alex; Dhaliwal, Deepinder; Cooper, David K C

    2014-01-01

    Approximately 39 million people are blind worldwide, with an estimated 285 million visually impaired. The developing world shoulders 90% of the world's blindness, with 80% of causative diseases being preventable or treatable. Blindness has a major detrimental impact on the patient, community, and healthcare spending. Corneal diseases are significant causes of blindness, affecting at least 4 million people worldwide. The prevalence of corneal disease varies between parts of the world. Trachoma, for instance, is the second leading cause of blindness in Africa, after cataracts, but is rarely found today in developed nations. When preventive strategies have failed, corneal transplantation is the most effective treatment for advanced corneal disease. The major surgical techniques for corneal transplantation include penetrating keratoplasty (PK), anterior lamellar keratoplasty, and endothelial keratoplasty (EK). Indications for corneal transplantation vary between countries, with Fuchs' dystrophy being the leading indication in the USA and keratoconus in Australia. With the exception of the USA, where EK will soon overtake PK as the most common surgical procedure, PK is the overwhelming procedure of choice. Success using corneal grafts in developing nations, such as Nepal, demonstrates the feasibility of corneal transplantation on a global scale. The number of suitable corneas from deceased human donors that becomes available will never be sufficient, and so research into various alternatives, for example stem cells, amniotic membrane transplantation, synthetic and biosynthetic corneas, and xenotransplantation, is progressing. While each of these has potential, we suggest that xenotransplantation holds the greatest potential for a corneal replacement. With the increasing availability of genetically engineered pigs, pig corneas may alleviate the global shortage of corneas in the near future.

  17. Involvement of P38MAPK in human corneal endothelial cell migration induced by TGF-β(2).

    Science.gov (United States)

    Joko, Takeshi; Shiraishi, Atsushi; Akune, Yoko; Tokumaru, Sho; Kobayashi, Takeshi; Miyata, Kazunori; Ohashi, Yuichi

    2013-03-01

    Because human corneal endothelial cells do not proliferate once the endothelial monolayer is formed, corneal wound healing is thought to be mediated by cell enlargement or migration rather than proliferation. However, the cellular mechanisms involved in corneal wound healing have not been fully determined. Because transforming growth factor-β(2) (TGF-β(2)) isoform is present in high concentrations in normal human aqueous humor, it may play a role in human corneal endothelial cell wound healing. The purpose of this study was to determine the effect of TGF-β(2) on the proliferation and migration of cultured human corneal endothelial cells (HCECs). To achieve this, we first examined the effect of TGF-β(2) on the wound closure rate in an in vitro HCEC wound healing model. However, unexpectedly TGF-β(2) had no effect on the wound closure rate in this model. Therefore, a real-time cell electronic sensing (RT-CES) system and the BrdU incorporation assay were used to determine the effect of TGF-β(2) (0.1-10 ng/ml) on cultured HCEC proliferation during in vitro wound healing. The specificity of this effect was confirmed by adding the TGF-β receptor I kinase inhibitor. TGF-β(2) inhibited the proliferation of HCECs in a dose dependent way and was blocked by TGF-β receptor I kinase inhibitor. Next, the Boyden chamber assay was used to determine how TGF-β(2) (10 ng/ml) affect HCEC migration. Exposure to TGF-β(2) increased cell migration, and a synergistic effect was observed when FGF-2 was added. To determine whether the mitogen-activated protein kinase (MAPK) signaling pathway is involved in the migration of HCECs, western blot analysis and Bio-Plex™ suspension array were used to detect phosphorylation of Erk1/2, p38, and JNK in HCECs stimulated by TGF-β(2) and/or FGF-2. The effect of the p38 MAPK inhibitor, SB239063 (10 μM), on TGF-β(2) and/or FGF-2-induced cellular migration was determined by the Boyden chamber assay. Both TGF-β(2) and FGF-2-induced p38

  18. First Identification of a Triple Corneal Dystrophy Association: Keratoconus, Epithelial Basement Membrane Corneal Dystrophy and Fuchs' Endothelial Corneal Dystrophy

    Directory of Open Access Journals (Sweden)

    Cosimo Mazzotta

    2014-09-01

    Full Text Available Purpose: To report the observation of a triple corneal dystrophy association consisting of keratoconus (KC, epithelial basement membrane corneal dystrophy (EBMCD and Fuchs' endothelial corneal dystrophy (FECD. Methods: A 55-year-old male patient was referred to our cornea service for blurred vision and recurrent foreign body sensation. He reported bilateral recurrent corneal erosions with diurnal visual fluctuations. He underwent corneal biomicroscopy, Scheimpflug tomography, in vivo HRT confocal laser scanning microscopy and genetic testing for TGFBI and ZEB1 mutations using direct DNA sequencing. Results: Biomicroscopic examination revealed the presence of subepithelial central and paracentral corneal opacities. The endothelium showed a bilateral flecked appearance, and the posterior corneal curvature suggested a possible concomitant ectatic disorder. Corneal tomography confirmed the presence of a stage II KC in both eyes. In vivo confocal laser scanning microscopy revealed a concomitant bilateral EBMCD with hyperreflective deposits in basal epithelial cells, subbasal Bowman's layer microfolds and ridges with truncated subbasal nerves as pseudodendritic elements. Stromal analysis revealed honeycomb edematous areas, and the endothelium showed a strawberry surface configuration typical of FECD. The genetic analysis resulted negative for TGFBI mutations and positive for a heterozygous mutation in exon 7 of the gene ZEB1. Conclusion: This is the first case reported in the literature in which KC, EBMCD and FECD are present in the same patient and associated with ZEB1 gene mutation. The triple association was previously established by means of morphological analysis of the cornea using corneal Scheimpflug tomography and in vivo HRT II confocal laser scanning microscopy.

  19. The Toxicity of Nonsteroidal Anti-inflammatory Eye Drops against Human Corneal Epithelial Cells in Vitro.

    Science.gov (United States)

    Lee, Jong Soo; Kim, Young Hi; Park, Young Min

    2015-12-01

    This study investigated the toxicity of commercial non-steroid anti-inflammatory drug (NSAID) eye solutions against corneal epithelial cells in vitro. The biologic effects of 1/100-, 1/50-, and 1/10-diluted bromfenac sodium, pranoprofen, diclofenac sodium, and the fluorometholone on corneal epithelial cells were evaluated after 1-, 4-, 12-, and 24-hr of exposure compared to corneal epithelial cell treated with balanced salt solution as control. Cellular metabolic activity, cellular damage, and morphology were assessed. Corneal epithelial cell migration was quantified by the scratch-wound assay. Compared to bromfenac and pranoprofen, the cellular metabolic activity of diclofenac and fluorometholone significantly decreased after 12-hr exposure, which was maintained for 24-hr compared to control. Especially, at 1/10-diluted eye solution for 24-hr exposure, the LDH titers of fluorometholone and diclofenac sodium markedly increased more than those of bromfenac and pranoprofen. In diclofenac sodium, the Na(+) concentration was lower and amount of preservatives was higher than other NSAIDs eye solutions tested. However, the K(+) and Cl(-) concentration, pH, and osmolarity were similar for all NSAIDs eye solutions. Bromfenac and pranoprofen significantly promoted cell migration, and restored wound gap after 48-hr exposure, compared with that of diclofenac or fluorometholone. At 1/50-diluted eye solution for 48-hr exposure, the corneal epithelial cellular morphology of diclofenac and fluorometholone induced more damage than that of bromfenac or pranoprofen. Overall, the corneal epithelial cells in bromfenac and pranoprofen NSAID eye solutions are less damaged compared to those in diclofenac, included fluorometholone as steroid eye solution.

  20. Dectin-1 agonist curdlan modulates innate immunity to Aspergillus fumigatus in human corneal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Cheng-Cheng; Zhu; Gui-Qiu; Zhao; Jing; Lin; Li-Ting; Hu; Qiang; Xu; Xu-Dong; Peng; Xue; Wang; Sheng; Qiu

    2015-01-01

    · AIM: To explore the immunomodulatory effects of curdlan on innate immune responses against Aspergillus fumigatus(A. fumigatus) in cultured human corneal epithelial cells(HCECs), and whether C-type lectin receptor Dectin-1 mediates the immunomodulatory effects of curdlan.·METHODS: The HCECs were stimulated by curdlan in different concentrations(50, 100, 200, 400 μg/m L) for various time. Then HCECs pretreated with or without laminarin(Dectin-1 blocker, 0.3 mg/m L) and curdlan were stimulated by A. fumigatus hyphae. The m RNA and protein production of tumor necrosis factor-α(TNF-α)and interleukin-6(IL-6) were determined by real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The protein level of Dectin-1 was measured by Western blot.· RESULTS: Curdlan stimulated m RNA expression of TNF-α and IL-6 in a dose and time dependent manner in HCECs. Curdlan pretreatment before A. fumigatus hyphae stimulation significantly enhanced the expression of TNF-α and IL-6 at m RNA and protein levels compared with A. fumigatus hyphae stimulation group(P <0.05).Both curdlan and A. fumigatus hyphae up-regulated Dectin-1 protein expression in HCECs, and Dectin-1expression was elevated to 1.5- to 2-fold by curdlan pretreatment followed hyphae stimulation. The Dectin-1blocker laminarin suppressed the m RNA expression and protein production of TNF-α and IL-6 induced by curdlan and hyphae(P <0.05).· CONCLUSION: These findings demonstrated that curdlan pretreatment enhanced the inflammatory response induced by A. fumigatus hyphae in HCECs.Dectin-1 is essential for the immunomodulatory effectsof curdlan. Curdlan may have high clinical application values in fungal keratitis treatment.

  1. The anti-inflammatory effects of asiatic acid in lipopolysaccharide-stimulated human corneal epithelial cells

    Science.gov (United States)

    Chen, Hao; Hua, Xiao-Min; Ze, Bai-Chen; Wang, Bin; Wei, Li

    2017-01-01

    AIM To investigate the anti-inflammatory effects of asiatic acid (AA) on lipopolysaccharide (LPS)-induced inflammatory response in human corneal epithelial cells (HCECs). METHODS Cell viability was measured using a cell counting kit-8 (CCK-8) assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the mRNA expression of interleukin-8 (IL-8), interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-β (TGF-β) in HCECs. Intracellular reactive oxygen species (ROS) was measured using the ROS assay kit. Glutathione (GSH) concentration was measured using the total GSH assay kit. Akt1 and Akt phosphorylation (p-Akt1) levels were measured by Western blotting and immunofluorescence. RESULTS AA induced toxicity at high concentrations and significantly stimulated the proliferation of HCECs at concentrations of 20 µmol/L for 1h. LPS at concentrations of 300 ng/mL for 1h significantly stimulated the mRNA expression of IL-8, IL-6, IL-1β, TNF-α, and TGF-β in HCECs, while the stimulation effects were significantly inhibited by AA (20 µmol/L). In addition, AA was found to decrease the content of ROS, increase GSH generation, and also inhibit LPS-induced p-Akt in HCECs. CONCLUSION AA decreases the generation of inflammatory factors IL-8, IL-6, IL-1β, TNF-α, and TGF-β in LPS-stimulated HCECs. AA significantly inhibites the intracellular concentrations of ROS and increases GSH generation. AA also inhibites LPS-induced p-Akt in HCECs. These findings reveal that AA has anti-inflammation effects in LPS-stimulated HCECs.

  2. Dectin-1 agonist curdlan modulates innate immunity to Aspergillus fumigatus in human corneal epithelial cells

    Directory of Open Access Journals (Sweden)

    Cheng-Cheng Zhu

    2015-08-01

    Full Text Available AIM: To explore the immunomodulatory effects of curdlan on innate immune responses against Aspergillus fumigatus (A. fumigatus in cultured human corneal epithelial cells (HCECs, and whether C-type lectin receptor Dectin-1 mediates the immunomodulatory effects of curdlan.METHODS:The HCECs were stimulated by curdlan in different concentrations (50, 100, 200, 400 μg/mL for various time. Then HCECs pretreated with or without laminarin (Dectin-1 blocker, 0.3 mg/mL and curdlan were stimulated by A. fumigatus hyphae. The mRNA and protein production of tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6 were determined by real-timequantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The protein level of Dectin-1 was measured by Western blot.RESULTS: Curdlan stimulated mRNA expression of TNF-α and IL-6 in a dose and time dependent manner in HCECs. Curdlan pretreatment before A. fumigatus hyphae stimulation significantly enhanced the expression of TNF-α and IL-6 at mRNA and protein levels compared with A. fumigatus hyphae stimulation group (P<0.05. Both curdlan and A. fumigatus hyphae up-regulated Dectin-1 protein expression in HCECs, and Dectin-1 expression was elevated to 1.5- to 2-fold by curdlan pretreatment followed hyphaestimulation. The Dectin-1 blocker laminarin suppressed the mRNA expression and protein production of TNF-α and IL-6 induced by curdlan and hyphae (P<0.05.CONCLUSION:These findings demonstrated that curdlan pretreatment enhanced the inflammatory response induced by A. fumigatus hyphae in HCECs. Dectin-1 is essential for the immunomodulatory effects of curdlan. Curdlan may have high clinical application values in fungal keratitis treatment.

  3. Corneal Laceration

    Science.gov (United States)

    ... drugs. These drugs thin the blood and may increase bleeding. After you have finished protecting the eye, see a physician immediately. Next Corneal Laceration Symptoms Related Ask an Ophthalmologist Answers I lost sight from a corneal scar as a child. Now that I’m older, ...

  4. Corneal Laceration

    Medline Plus

    Full Text Available ... Tips & Prevention News Ask an Ophthalmologist Patient Stories Español Eye Health / Eye Health A-Z Corneal Laceration ... Laceration Treatment What Is Corneal Laceration? Leer en Español: ¿Qué Es una Laceración de la Córnea? Written ...

  5. Corneal Laceration

    Medline Plus

    Full Text Available ... Health Find an Ophthalmologist Academy Store Eye Health A-Z Symptoms Glasses & Contacts Tips & Prevention News Ask ... Ophthalmologist Patient Stories Español Eye Health / Eye Health A-Z Corneal Laceration Sections What Is Corneal Laceration? ...

  6. Corneal Laceration

    Medline Plus

    Full Text Available ... Health Find an Ophthalmologist Academy Store Eye Health A-Z Symptoms Glasses & Contacts Tips & Prevention News Ask ... Ophthalmologist Patient Stories Español Eye Health / Eye Health A-Z Corneal Laceration Sections What Is Corneal Laceration? ...

  7. Pseudophakodonesis and corneal endothelial contact: direct observations by high-speed cinematography.

    Science.gov (United States)

    Jacobs, P M; Cheng, H; Price, N C

    1983-10-01

    High-speed cinematography was used to observe the movement of Federov type I lens implants within the anterior chamber. Our measurements suggest that in most patients contact between the lens implant and corneal endothelium does not occur.

  8. EFFECT OF HUMAN AMNIOTIC MEMBRANE ON CORNEAL EPITHELIUM AND YAC-1 CELL

    Institute of Scientific and Technical Information of China (English)

    叶纹; 沈玺; 钟一声

    2003-01-01

    Objective To study the effect of the amniotic membrane on enhancing the proliferation of corneal epithelia and YAC 1 cell.MethodsAfter the primary culture of the rabbits corneal epithelia and YAC 1 cells, they were seeded on the upper surface or stromal matrix side of amniotic membrane respectively. The proliferation results were observed by MTT test.ResultsThe amniotic membrane was found significantly enhancing the proliferation of corneal epithelia on the d1,d3,and d5 after culture. The proliferation rate was 28.93%,23.32%,23.41%(P<0.05)respectively, but the d7 proliferation rate was 20.72%(P>0.05).On the d1,d3,d7 after culture,the YAC 1 cells proliferation rate was 34.87%,36.28%,33.86%(P<0.01)respectively.ConclusionOur results demonstrated that the amniotic membrane could enhance the prolifera tion of both corneal epithelia and YAC 1 cells significantly. Although amniotic membrane has been suggested as an ideal material for reconstruction of ocular surface, special attention should be paid during amniotic membrane transplantation for treating ocular surface lesion resulted from epibulbar tumors.

  9. Comparative study of the effects of recombinant human epidermal growth factor and basic fibroblast growth factor on corneal epithelial wound healing and neovascularization in vivo and in vitro.

    Science.gov (United States)

    Yan, Limeng; Wu, Wei; Wang, Zhichong; Li, Chaoyang; Lu, Xiaohe; Duan, Hucheng; Zhou, Jin; Wang, Xiaoran; Wan, Pengxia; Song, Yiyue; Tang, Jing; Han, Yu

    2013-01-01

    This study was undertaken to investigate the effects of recombinant human epidermal growth factor (rhEGF) and basic fibroblast growth factor (bFGF) on corneal wound healing and neovascularization (CNV). The positive effects of 10 ng/ml rhEGF and bFGF on the proliferation of corneal epithelial cells (SD-HCEC1s), rabbit keratocyte cells (RKCs) and human umbilical vein endothelial cells (HUVECs) as well as the effects on the migration capacity on HUVECs were observed. An animal central corneal wound and CNV model was established in rabbits. One eye of each group was chosen randomly for topical administration of rhEGF, bFGF or normal saline, and variability in the area of corneal epithelial wound healing and CNV was observed. The optimal concentration of rhEGF and bFGF for the proliferation of corneal epithelial cells was 10 ng/ml. The promotive effect of 10 ng/ml rhEGF on the proliferation of RKCs and HUVECs was less than that of 10 ng/ml bFGF. In the animal experiment, the healing rate of the corneal epithelium in the rhEGF group was better than in the other groups on day 1. On day 3, the healing rates of the 3 groups were nearly equal. The CNV area in the rhEGF group was less than that of the bFGF group. rhEGF and bFGF both had promotive effects on corneal epithelial wound healing, but rhEGF had a weaker promotive effect on CNV than bFGF. With long-term application of growth factor drugs, rhEGF is suggested for lessening the growth of CNV. Copyright © 2012 S. Karger AG, Basel.

  10. Toxicity of antiglaucoma drugs with and without benzalkonium chloride to cultured human corneal endothelial cells

    Directory of Open Access Journals (Sweden)

    Masahiko Ayaki

    2010-10-01

    Full Text Available Masahiko Ayaki1, Atsuo Iwasawa2, Yoichi Inoue31Department of Ophthalmology, Saitama National Hospital, Wako, Japan; 2Life Particle Interaction Engineering Creation, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan; 3Department of Ophthalmology, Olympia Eye Hospital, Tokyo, JapanPurpose: The toxicity of antiglaucoma medications to ocular surface cells has been evaluated extensively; however, the toxicity to corneal endothelial cells (CECs remains elusive. Our aim is to evaluate the toxicity of antiglaucoma medications to CECs using an in vitro toxicity assay.Methods: Primary cultures of human (H CECs derived from eye bank specimens were established. Following exposure of HCECs to test solutions for 10, 30, or 60 minutes, or 48 hours, we measured cell viability using a WST-1 assay. Test solutions were diluted in culture media and included 0.5% Timoptol®, preservative-free 0.5% timolol maleate, 1% Trusopt®, preservative-free 1% dorzolamide, Travatan®, Travatan Z®, Xalatan®, and benzalkonium chloride (BAK. To assess cell viability, the value of the test culture well after treatment was expressed as a percentage of that of the control well. Toxicity of each solution was compared using the cell viability score (CVS.Results: After exposure to 10-fold dilutions of test solutions for 48 hours, HCEC viabilities were 48.5% for 0.5% Timoptol, 80.9% for preservative-free 0.5% timolol maleate, 47.0% for 1% Trusopt, 71.7% for preservative-free 1% dorzolamide, 55.5% for Travatan, 88.5% for Travatan Z, and 52.5% for Xalatan. Exposure to test solutions diluted 100-fold or more resulted in HCEC viabilities > 80%, with the exception of preservative-free 1% dorzolamide, which resulted in a viability of 72.0% at a dilution of 100-fold. Based on CVS, the order of cell viability was Travatan Z ≥ preservative-free timolol maleate = preservative-free dorzolamide > 0.5% Timoptol = 1% Trusopt > Travatan ≥ Xalatan. Assessment of the

  11. Toxicity of antiglaucoma drugs with and without benzalkonium chloride to cultured human corneal endothelial cells

    Science.gov (United States)

    Ayaki, Masahiko; Iwasawa, Atsuo; Inoue, Yoichi

    2010-01-01

    Purpose The toxicity of antiglaucoma medications to ocular surface cells has been evaluated extensively; however, the toxicity to corneal endothelial cells (CECs) remains elusive. Our aim is to evaluate the toxicity of antiglaucoma medications to CECs using an in vitro toxicity assay. Methods Primary cultures of human (H) CECs derived from eye bank specimens were established. Following exposure of HCECs to test solutions for 10, 30, or 60 minutes, or 48 hours, we measured cell viability using a WST-1 assay. Test solutions were diluted in culture media and included 0.5% Timoptol®, preservative-free 0.5% timolol maleate, 1% Trusopt®, preservative-free 1% dorzolamide, Travatan®, Travatan Z®, Xalatan®, and benzalkonium chloride (BAK). To assess cell viability, the value of the test culture well after treatment was expressed as a percentage of that of the control well. Toxicity of each solution was compared using the cell viability score (CVS). Results After exposure to 10-fold dilutions of test solutions for 48 hours, HCEC viabilities were 48.5% for 0.5% Timoptol, 80.9% for preservative-free 0.5% timolol maleate, 47.0% for 1% Trusopt, 71.7% for preservative-free 1% dorzolamide, 55.5% for Travatan, 88.5% for Travatan Z, and 52.5% for Xalatan. Exposure to test solutions diluted 100-fold or more resulted in HCEC viabilities >80%, with the exception of preservative-free 1% dorzolamide, which resulted in a viability of 72.0% at a dilution of 100-fold. Based on CVS, the order of cell viability was Travatan Z ≥ preservative-free timolol maleate = preservative-free dorzolamide > 0.5% Timoptol = 1% Trusopt > Travatan ≥ Xalatan. Assessment of the combined effect of drug and BAK revealed that latanoprost reduced the toxicity of BAK. Conclusion Antiglaucoma eye drops produced HCEC toxicity that appeared to depend on the presence of BAK. Because dilution of the antiglaucoma solutions resulted in markedly lower HCEC toxicity, HCEC damage due to antiglaucoma medication may

  12. Changes in the corneal Na-K ATPase levels in eyes stored in moist chamber at 4°C

    Directory of Open Access Journals (Sweden)

    Devi B

    1996-01-01

    Full Text Available This report deals with a chronological measurement of Na-K ATPase enzyme activity in human and bovine corneas stored in a moist chamber at 4°C. Paired human and bovine eyes were sterilized by the standard eye bank procedure and stored up to 6 days. At the desired time, the corneal endothelium was assayed for Na-K ATPase activity. The protein content of each tissue sample was also determined. In a parallel set of experiments, the viability of identical stored corneas was determined by trypan blue and alizarin red staining technique, and morphometric analysis was done to quantify the extent of the corneal endothelial damage. The human corneas showed that there was a significant progressive decrease in the Na-K ATPase activity as the storage time increased. The decrease was related to morphological endothelial damage.

  13. Evaluation of a human corneal epithelial cell line as an in vitro model for assessing ocular irritation.

    Science.gov (United States)

    Kruszewski, F H; Walker, T L; DiPasquale, L C

    1997-04-01

    A human corneal epithelial cell line, 10.014 pRSV-T (HCR-T cells), has been used to develop a three-dimensional in vitro model of the human corneal epithelium (HCE-T model). HCE-T cells form a stratified culture when grown at the air-liquid interface on a collagen membrane in serum-free medium. This model served as the basis for assays which supported the ocular irritancy assessment of water-soluble test substances. Cellular alterations in the HCE-T model were measured following 5-min topical exposures to 20 chemicals [listed in the European Center for Ecotoxicology and Toxicology of Chemicals (ECETOC) Reference Chemicals Data Bank] and 25 surfactant-based product formulations [utilized in the Cosmetic, Toiletry, and Fragrance Association (CTFA) Alternatives Program Phase III]. In vitro assays used were transepithelial permeability to sodium fluorescein (TEP) and transepithelial electrical resistance (TER). These measured alterations in the barrier function of this corneal epithelial equivalent. Barrier function is a well-developed property in the HCE-T model that supports the mechanistic relevance of these assays. In vitro data, averaged from replicate assays, were compared to respective Draize rabbit eye irritation data from the publicly available ECETOC and CTFA databases using linear regression with Pearson's correlation analysis. For chemicals, Pearson's correlation coefficients, r, from comparisons of Draize maximum average scores (MAS) to TEP and TER data were 0.71 and 0.55, respectively. For product formulations, Pearson's correlation coefficients from comparisons of Draize MAS to TEP and TER data were 0.86 and 0.80, respectively. Data indicated that barrier function alterations in the HCE-T model correlated with ocular irritancy and corneal toxicity. While the irritancy of the chemicals tested was effectively assessed only by the TEP assay, that for the surfactant-based product formulations was effectively assessed by both the TEP and TER assays. Results

  14. Corneal Laceration

    Medline Plus

    Full Text Available ... from Laundry Packets On the Rise Jun 30, 2017 People with Advanced Keratoconus May Have A Future Alternative to Full Corneal Transplantation Nov 29, 2016 Combating Eye Injuries from Air Guns Aug 30, ...

  15. Corneal transplant

    Science.gov (United States)

    ... lenses to achieve the best vision. Laser vision correction may be an option if you have nearsightedness, ... Editorial team. Related MedlinePlus Health Topics Corneal Disorders Refractive Errors Browse the Encyclopedia A.D.A.M., Inc. ...

  16. Corneal Laceration

    Medline Plus

    Full Text Available ... Pediatric Ophthalmology Education Center Oculofacial Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide ... What Is Corneal Laceration? Leer en Español: ¿Qué ...

  17. Corneal Laceration

    Medline Plus

    Full Text Available ... itself. A corneal laceration is a very serious injury and requires immediate medical attention to avoid severe ... Dangerous for Your Eyes Sep 20, 2017 Eye Injuries from Laundry Packets On the Rise Jun 30, ...

  18. Corneal Laceration

    Medline Plus

    Full Text Available ... itself. A corneal laceration is a very serious injury and requires immediate medical attention to avoid severe ... 27, 2015 Dark Spot in Vision After Blunt Trauma Dec 21, 2014 Pain a Year After Eyelid ...

  19. Corneal Laceration

    Medline Plus

    Full Text Available ... itself. A corneal laceration is a very serious injury and requires immediate medical attention to avoid severe ... and preserving your vision. Privacy Policy Related Eye Injuries from Laundry Packets On the Rise Jun 30, ...

  20. Corneal Laceration

    Medline Plus

    Full Text Available ... 2017 People with Advanced Keratoconus May Have A Future Alternative to Full Corneal Transplantation Nov 29, 2016 Combating Eye Injuries from Air Guns Aug 30, ... Public & Patients: Contact Us About ...

  1. Corneal Laceration

    Medline Plus

    Full Text Available ... by something sharp flying into the eye. It can also be caused by something striking the eye ... If the corneal laceration is deep enough it can cause a full thickness laceration. This is when ...

  2. Corneal Laceration

    Medline Plus

    Full Text Available ... Pediatric Ophthalmology Education Center Oculofacial Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide ... What Is Corneal Laceration? Written By: Daniel Porter ...

  3. Corneal Laceration

    Medline Plus

    Full Text Available ... By: Devin A Harrison MD Sep. 01, 2017 The cornea is the clear front window of the eye . A corneal laceration is a cut on the cornea. It is usually caused by something sharp ...

  4. Corneal Laceration

    Medline Plus

    Full Text Available ... itself. A corneal laceration is a very serious injury and requires immediate medical attention to avoid severe ... 27, 2015 Dark Spot in Vision After Blunt Trauma Dec 21, 2014 Pain a Year After Eyelid ...

  5. Trehalose-Based Eye Drops Preserve Viability and Functionality of Cultured Human Corneal Epithelial Cells during Desiccation

    Directory of Open Access Journals (Sweden)

    Aneta Hill-Bator

    2014-01-01

    Full Text Available This paper presents the evaluation of cytoprotective ability of trehalose-based eye drops in comparison with commercially available preparations during the experimental desiccation of cultured human corneal epithelial cells. Cultured human corneal epithelial cells (hCEC underwent incubation with 7 different, commercially available medicaments used commonly in dry eye syndrome treatment, followed by desiccation trial performed on air under the flow hood for 5, 15, 30, and 45 minutes. Cell viability was quantified by live/dead fluorescent assay, while the presence of apoptotic cells was estimated by immunofluorescent staining for active caspase 3 protein. The preservation of membrane functions was evaluated using neutral red staining, while the preservation of proper morphology and phenotype was determined by fluorescent staining for actin filaments, nuclei, and p63 protein. The trehalose-based eye drops showed the highest efficiency in prevention of cell death from desiccation; moreover, this preparation preserved the normal cellular morphology, functions of cell membrane, and proliferative activity more effectively than other tested medicaments.

  6. Infection of human endothelium in vitro by cytomegalovirus causes enhanced expression of purinergic receptors : A potential virus escape mechanism?

    NARCIS (Netherlands)

    Zandberg, Mariet; van Son, Willem J.; Harmsen, Martin C.; Bakker, Winston W.

    2007-01-01

    Background. Human cytomegalovirus (CMV) uses different strategies to escape from human host defense reactions. Previously we have observed that infection of endothelial cells with CMV in vitro leads to enhanced activity of endothelial ectonucleotidases. These ectoenzymes are responsible for hydrolys

  7. Infection of human endothelium in vitro by cytomegalovirus causes enhanced expression of purinergic receptors : A potential virus escape mechanism?

    NARCIS (Netherlands)

    Zandberg, Mariet; van Son, Willem J.; Harmsen, Martin C.; Bakker, Winston W.

    2007-01-01

    Background. Human cytomegalovirus (CMV) uses different strategies to escape from human host defense reactions. Previously we have observed that infection of endothelial cells with CMV in vitro leads to enhanced activity of endothelial ectonucleotidases. These ectoenzymes are responsible for

  8. Riboflavin concentration in corneal stroma after intracameral injection

    Institute of Scientific and Technical Information of China (English)

    Na; Li; Xiu-Jun; Peng; Zheng-Jun; Fan; Xu; Pang; Yu; Xia; Teng-Fei; Wu

    2015-01-01

    AIM: To evaluate the enrichment of riboflavin in the corneal stroma after intracameral injection to research the barrier ability of the corneal endothelium to riboflavin in vivo.METHODS: The right eyes of 30 New Zealand white rabbits were divided into three groups. Different concentrations riboflavin-balanced salt solutions(BSS)were injected into the anterior chamber(10 with 0.5%, 10 with 1%, and 10 with 2%). Eight corneal buttons of 8.5mm in diameter from each group were dissected at 30 min after injection and the riboflavin concentrations in the corneal stroma were determined using high-performance liquid chromatography(HPLC) after removing the epithelium and endothelium. The other two rabbits in every group were observed for 24 h and sacrificed. As a comparison, the riboflavin concentrations from 16 corneal stromal samples were determined using HPLC after instillation of 0.1% riboflavin-BSS solution for30 min on the corneal surface(8 without epithelium and 8with intact epithelium).RESULTS: The mean riboflavin concentrations were11.19, 18.97, 25.08, 20.18, and 1.13 μg/g for 0.5%, 1%, 2%,de-epithelialzed samples, and the transepithelial groups,respectively. The color change of the corneal stroma and the HPLC results showed that enrichment with riboflavin similar to classical de-epithelialized corneal collagen crosslinking(CXL) could be achieved by intracameral 1%riboflavin-BSS solution after 30min; the effect appeared to be continuous for at least 30 min.CONCLUSION: Riboflavin can effectively penetrate the corneal stroma through the endothelium after an intracameral injection in vivo, so it could be an enhancing method that could improve the corneal riboflavin concentration in transepithelial CXL.

  9. Arecoline increases basic fibroblast growth factor but reduces expression of IL-1, IL-6, G-CSF and GM-CSF in human umbilical vein endothelium.

    Science.gov (United States)

    Ullah, Mafaz; Cox, Stephen; Kelly, Elizabeth; Moore, Malcolm A S; Zoellner, Hans

    2015-09-01

    Areca nut chewing is associated with oral submucous fibrosis (OSF). Raised vascular basic fibroblast growth factor may induce fibrosis. Arecoline is a muscarinic alkaloid in areca nut, which we earlier reported causes injury and necrosis of human endothelium. Human umbilical vein endothelial cells were exposed to arecoline with or without tumor necrosis factor-α, and separately to acetylcholine, muscarine, or nicotine. Protein levels of basic fibroblast growth factor, as well as the inflammatory cytokines: granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor, and Interleukins-6, 1-α and 1-β, were determined by enzyme-linked immunosorbent assay. mRNA levels were established by real-time reverse transcription polymerase chain reaction. Basic fibroblast growth factor was released into the culture medium at arecoline levels causing necrosis (P arecoline on levels of the inflammatory cytokines (P arecoline reduced this stimulated expression (P Arecoline had no effect on mRNA for basic fibroblast growth factor, although there was reduced mRNA for the separate inflammatory cytokines studied. The effect of acetylcholine, muscarine, and nicotine was minimal and dissimilar to that of arecoline. Data raise the possibility that arecoline-induced, vascular basic fibroblast growth factor contributes to OSF, by combining increased growth factor expression with endothelial necrosis, and thus driving fibroblast proliferation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Hong [Department of Ophthalmology, Qilu Hospital, Shandong University, 107, Wenhua Xi Road, Jinan 250012 (China); The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, 107, Wenhua Xi Road, Jinan 250012 (China); Wu, Xinyi, E-mail: xywu8868@163.com [Department of Ophthalmology, Qilu Hospital, Shandong University, 107, Wenhua Xi Road, Jinan 250012 (China)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Hypoxia attenuates Acanthamoeba-induced the production of IL-8 and IFN-{beta}. Black-Right-Pointing-Pointer Hypoxia inhibits TLR4 expression in a time-dependent manner in HCECs. Black-Right-Pointing-Pointer Hypoxia inhibits Acanthamoeba-induced the activation of NF-{kappa}B and ERK1/2 in HCECs. Black-Right-Pointing-Pointer Hypoxia decreases Acanthamoeba-induced inflammatory response via TLR4 signaling. Black-Right-Pointing-Pointer LPS-induced the secretion of IL-6 and IL-8 is abated by hypoxia via TLR4 signaling. -- Abstract: Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-{beta} (IFN-{beta}) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-{kappa}B) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-{beta}. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-{kappa}B and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88

  11. Persistent corneal edema secondary to presumed dead adult filarial worm in the anterior chamber

    Directory of Open Access Journals (Sweden)

    Basak Samar

    2007-01-01

    Full Text Available We present three cases of persistent corneal edema secondary to presumed dead adult filarial worms lying in the anterior chamber with their attachment to the endothelium. Two of them were initially diagnosed as descemet′s fold with corneal edema. Two patients underwent penetrating keratoplasty and in one case, surgical removal was partly possible with clearing of cornea.

  12. Ambient fine particulate matters induce cell death and inflammatory response by influencing mitochondria function in human corneal epithelial cells.

    Science.gov (United States)

    Park, Eun-Jung; Chae, Jae-Byoung; Lyu, Jungmook; Yoon, Cheolho; Kim, Sanghwa; Yeom, Changjoo; Kim, Younghun; Chang, Jaerak

    2017-11-01

    Ambient fine particulate matter (AFP) is a main risk factor for the cornea as ultraviolet light. However, the mechanism of corneal damage following exposure to AFP has been poorly understood. In this study, we first confirmed that AFP can penetrate the cornea of mice, considering that two-dimensional cell culture systems are limited in reflecting the situation in vivo. Then, we investigated the toxic mechanism using human corneal epithelial (HCET) cells. At 24h after exposure, AFP located within the autophagosome-like vacuoles, and cell proliferation was clearly inhibited in all the tested concentration. Production of ROS and NO and secretion of pro-inflammatory cytokines were elevated in a dose-dependent manner. Additionally, conversion of LC3B from I-type to II-type and activation of caspase cascade which show autophagic- and apoptotic cell death, respectively, were observed in cells exposed to AFP. Furthermore, AFP decreased mitochondrial volume, inhibited ATP production, and altered the expression of metabolism-related genes. Taken together, we suggest that AFP induces cell death and inflammatory response by influencing mitochondrial function in HCET cells. In addition, we recommend that stringent air quality regulations are needed for eye health. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Dependence of Regulatory Volume Decrease on Transient Receptor Potential Vanilloid 4 (TRPV4) Expression in Human Corneal Epithelial Cells

    Science.gov (United States)

    Pan, Zan; Yang, Hua; Mergler, Stefan; Liu, Hongshan; Tachado, Souvenir D.; Zhang, Fan; Kao, Winston W. Y.; Koziel, Henry; Pleyer, Uwe; Reinach, Peter S.

    2008-01-01

    TRPV4 is a non-selective cation channel with moderate calcium permeability, which is activated by exposure to hypotonicity. Such a stress induces regulatory volume decrease (RVD) behavior in human corneal epithelial cells (HCEC). We hypothesize that TRPV4 channel mediates RVD in HCEC. Immunohistochemistry revealed centrally and superficially concentrated TRPV4 localization in the corneal tissue. Immunocytochemical and Fluorescence Activated Cell Sorter (FACS) analyses identified TRPV4 membrane surface and cytosolic expression. RT-PCR and Western blot analyses identified TRPV4 gene and protein expression in HCEC, respectively. In addition, 4α-PDD or a 50% hypotonic medium induced up to three-fold transient intracellular Ca2+ ([Ca2+]i) increases. Following TRPV4 siRNA HCEC transfection, its protein expression level declined by 64%, which abrogated these [Ca2+]i transients. Similarly, exposure to either ruthenium red or Ca2+-free Ringer's solution also eliminated this response. In these transfected cells, RVD declined by 51% whereas in the non-transfected counterpart, ruthenium red and Ca2+-free solution inhibited RVD by 54% and 64%, respectively. In contrast, capsazepine, a TRPV1 antagonist, failed to suppress [Ca2+]i transients and RVD. TRPV4 activation contributes to RVD since declines in TRPV4 expression and activity are associated with suppression of this response. In conclusion, there is TRPV4 functional expression in HCEC. PMID:18355916

  14. Treatment of progressive keratoconus by riboflavin-UVA-induced cross-linking of corneal collagen: ultrastructural analysis by Heidelberg Retinal Tomograph II in vivo confocal microscopy in humans.

    Science.gov (United States)

    Mazzotta, Cosimo; Balestrazzi, Angelo; Traversi, Claudio; Baiocchi, Stefano; Caporossi, Tomaso; Tommasi, Cristina; Caporossi, Aldo

    2007-05-01

    To assess ultrastructural stromal modifications after riboflavin-UVA-induced cross-linking of corneal collagen in patients with progressive keratoconus. This was a second-phase prospective nonrandomized open study in 10 patients with progressive keratoconus treated by riboflavin-UVA-induced cross-linking of corneal collagen and assessed by means of Heidelberg Retinal Tomograph II Rostock Corneal Module (HRT II-RCM) in vivo confocal microscopy. The eye in the worst clinical condition was treated for each patient. Treatment under topical anesthesia included corneal deepithelization (9-mm diameter) and instillation of 0.1% riboflavin phosphate-20% dextran T 500 solution at 5 minutes before UVA irradiation and every 5 minutes for a total of 30 minutes. UVA irradiation was 7 mm in diameter. Patients were assessed by HRT II-RCM confocal microscopy in vivo at 1, 3, and 6 months after treatment. Rarefaction of keratocytes in the anterior and intermediate stroma, associated with stromal edema, was observed immediately after treatment. The observation at 3 months after the operation detected keratocyte repopulation in the central treated area, whereas the edema had disappeared. Cell density increased progressively over the postoperative period. At approximately 6 months, keratocyte repopulation was complete, accompanied by increased density of stromal fibers. No endothelial damage was observed at any time. Reduction in anterior and intermediate stromal keratocytes followed by gradual repopulation has been confirmed directly in vivo in humans by HRT II-RCM confocal microscopy after riboflavin-UVA-induced corneal collagen cross-linking.

  15. Application of Rho Kinase Inhibitors for the Treatment of Corneal Endothelial Diseases

    Directory of Open Access Journals (Sweden)

    Naoki Okumura

    2017-01-01

    Full Text Available ROCK (Rho kinase signaling regulates a wide spectrum of fundamental cellular events and is involved in a variety of pathological conditions. It has therefore attracted research interest as a potential therapeutic target for combating various diseases. We showed that inhibition of ROCK enhances cell proliferation, promotes cell adhesion onto a substrate, and suppresses apoptosis of corneal endothelial cells (CECs. In addition, we reported that a ROCK inhibitor enhances wound healing in the corneal endothelium in animal models and in pilot clinical research. We also demonstrated the usefulness of a ROCK inhibitor as an adjunct drug in tissue engineering therapy as it enhances the engraftment of CECs onto recipient corneas. In 2013, we initiated a clinical trial to test the effectiveness of injection of cultured human CECs into the anterior chamber of patients with corneal endothelial decompensation. This paper reviews the accumulating evidence supporting the potency of ROCK inhibitors in clinical use, both as eye drops and as adjunct drugs in cell-based therapies, for the treatment of corneal endothelial decompensation.

  16. Correlations between corneal and total wavefront aberrations

    Science.gov (United States)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  17. Gene expression profiles of human dendritic cells interacting with Aspergillus fumigatus in a bilayer model of the alveolar epithelium/endothelium interface.

    Directory of Open Access Journals (Sweden)

    Charles Oliver Morton

    Full Text Available The initial stages of the interaction between the host and Aspergillus fumigatus at the alveolar surface of the human lung are critical in the establishment of aspergillosis. Using an in vitro bilayer model of the alveolus, including both the epithelium (human lung adenocarcinoma epithelial cell line, A549 and endothelium (human pulmonary artery epithelial cells, HPAEC on transwell membranes, it was possible to closely replicate the in vivo conditions. Two distinct sub-groups of dendritic cells (DC, monocyte-derived DC (moDC and myeloid DC (mDC, were included in the model to examine immune responses to fungal infection at the alveolar surface. RNA in high quantity and quality was extracted from the cell layers on the transwell membrane to allow gene expression analysis using tailored custom-made microarrays, containing probes for 117 immune-relevant genes. This microarray data indicated minimal induction of immune gene expression in A549 alveolar epithelial cells in response to germ tubes of A. fumigatus. In contrast, the addition of DC to the system greatly increased the number of differentially expressed immune genes. moDC exhibited increased expression of genes including CLEC7A, CD209 and CCL18 in the absence of A. fumigatus compared to mDC. In the presence of A. fumigatus, both DC subgroups exhibited up-regulation of genes identified in previous studies as being associated with the exposure of DC to A. fumigatus and exhibiting chemotactic properties for neutrophils, including CXCL2, CXCL5, CCL20, and IL1B. This model closely approximated the human alveolus allowing for an analysis of the host pathogen interface that complements existing animal models of IA.

  18. Gene expression profiles of human dendritic cells interacting with Aspergillus fumigatus in a bilayer model of the alveolar epithelium/endothelium interface.

    Science.gov (United States)

    Morton, Charles Oliver; Fliesser, Mirjam; Dittrich, Marcus; Mueller, Tobias; Bauer, Ruth; Kneitz, Susanne; Hope, William; Rogers, Thomas Richard; Einsele, Hermann; Loeffler, Juergen

    2014-01-01

    The initial stages of the interaction between the host and Aspergillus fumigatus at the alveolar surface of the human lung are critical in the establishment of aspergillosis. Using an in vitro bilayer model of the alveolus, including both the epithelium (human lung adenocarcinoma epithelial cell line, A549) and endothelium (human pulmonary artery epithelial cells, HPAEC) on transwell membranes, it was possible to closely replicate the in vivo conditions. Two distinct sub-groups of dendritic cells (DC), monocyte-derived DC (moDC) and myeloid DC (mDC), were included in the model to examine immune responses to fungal infection at the alveolar surface. RNA in high quantity and quality was extracted from the cell layers on the transwell membrane to allow gene expression analysis using tailored custom-made microarrays, containing probes for 117 immune-relevant genes. This microarray data indicated minimal induction of immune gene expression in A549 alveolar epithelial cells in response to germ tubes of A. fumigatus. In contrast, the addition of DC to the system greatly increased the number of differentially expressed immune genes. moDC exhibited increased expression of genes including CLEC7A, CD209 and CCL18 in the absence of A. fumigatus compared to mDC. In the presence of A. fumigatus, both DC subgroups exhibited up-regulation of genes identified in previous studies as being associated with the exposure of DC to A. fumigatus and exhibiting chemotactic properties for neutrophils, including CXCL2, CXCL5, CCL20, and IL1B. This model closely approximated the human alveolus allowing for an analysis of the host pathogen interface that complements existing animal models of IA.

  19. Generation and evaluation of a human corneal model cell system for ophthalmologic issues using the HPV16 E6/E7 oncogenes as uniform immortalization platform.

    Science.gov (United States)

    Schulz, Simon; Steinberg, Thorsten; Beck, David; Tomakidi, Pascal; Accardi, Rosita; Tommasino, Massimo; Reinhard, Thomas; Eberwein, Philipp

    2013-01-01

    The present study aimed at employing the human papillomavirus type 16 (HPV16) E6/E7 gene platform, to create a uniform authentic in vitro model cell system of the human cornea for ophthalmologic issues and here especially for prospective biomaterial evaluations for therapeutic regenerative approaches. Therefore, HPV16 E6/E7 genes were employed as uniform platform to immortalize primary human corneal keratinocytes (IHCK), fibroblasts (IHCF), and endothelial (IHCE) cells. qPCR revealed that E6/E7 mRNA transcription persisted at rising passages and FISH detection of the chromosome portfolio 1, 8, 10 and 18 showed fairly the disomic cytogenetic status. Hot spot passages proved oscillation of aneuploidies in the entire passage spectrum under study, while hot spot aneuploidies annotated prevalence for distinct chromosomes. Though IIF revealed general endurance, tissue-innate corneal biomarkers were modulated, i.e. expressed in a temporal-confluence, temporal-spatial or passage-dependent manner. In summary, by the fairly normal chromosomal status, and expression of tissue-innate biomarkers, we created for the first time a uniform authentic in vitro model cell system of the human cornea, by application of the HPV16 E6/E7 immortalization platform only. This system renders a precious tool for prospective iterative in vitro studies on issues such as corneal tissue homeostasis, pharmaceutical generics, and/or evaluation of new biomaterials for clinical corneal applications. Copyright © 2013 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  20. Reconstituted human corneal epithelium: a new alternative to the Draize eye test for the assessment of the eye irritation potential of chemicals and cosmetic products.

    Science.gov (United States)

    Doucet, O; Lanvin, M; Thillou, C; Linossier, C; Pupat, C; Merlin, B; Zastrow, L

    2006-06-01

    The aim of this study was to evaluate the interest of a new three-dimensional epithelial model cultivated from human corneal cells to replace animal testing in the assessment of eye tolerance. To this end, 65 formulated cosmetic products and 36 chemicals were tested by means of this in vitro model using a simplified toxicokinetic approach. The chemicals were selected from the ECETOC data bank and the EC/HO International validation study list. Very satisfactory results were obtained in terms of concordance with the Draize test data for the formulated cosmetic products. Moreover, the response of the corneal model appeared predictive of human ocular response clinically observed by ophthalmologists. The in vitro scores for the chemicals tested strongly correlated with their respective scores in vivo. For all the compounds tested, the response of the corneal model to irritants was similar regardless of their chemical structure, suggesting a good robustness of the prediction model proposed. We concluded that this new three-dimensional epithelial model, developed from human corneal cells, could be promising for the prediction of eye irritation induced by chemicals and complex formulated products, and that these two types of materials should be tested using a similar protocol. A simple shortening of the exposure period was required for the chemicals assumed to be more aggressively irritant to the epithelial tissues than the cosmetic formulae.

  1. Methylene blue-related corneal edema and iris discoloration.

    Science.gov (United States)

    Timucin, Ozgur Bulent; Karadag, Mehmet Fatih; Aslanci, Mehmet Emin; Baykara, Mehmet

    2016-04-01

    We report the case of a 70-year-old female patient who developed corneal edema and iris discoloration following the inadvertent use of 1% methylene blue instead of 0.025% trypan blue to stain the anterior capsule during cataract phacoemulsification surgery. Copious irrigation was performed upon realization of incorrect dye use. Corneal edema and iris discoloration developed during the early postoperative period and persisted at 24-months follow-up. However, keratoplasty was not required. The intracameral use of 1% methylene blue has a cytotoxic effect on the corneal endothelium and iris epithelium. Copious irrigation for at least 30 min using an anterior chamber maintainer may improve outcomes.

  2. A native-like corneal construct using donor corneal stroma for tissue engineering.

    Directory of Open Access Journals (Sweden)

    Jing Lin

    Full Text Available Tissue engineering holds great promise for corneal transplantation to treat blinding diseases. This study was to explore the use of natural corneal stroma as an optimal substrate to construct a native like corneal equivalent. Human corneal epithelium was cultivated from donor limbal explants on corneal stromal discs prepared by FDA approved Horizon Epikeratome system. The morphology, phenotype, regenerative capacity and transplantation potential were evaluated by hematoxylin eosin and immunofluorescent staining, a wound healing model, and the xeno-transplantation of the corneal constructs to nude mice. An optically transparent and stratified epithelium was rapidly generated on donor corneal stromal substrate and displayed native-like morphology and structure. The cells were polygonal in the basal layer and became flattened in superficial layers. The epithelium displayed a phenotype similar to human corneal epithelium in vivo. The differentiation markers, keratin 3, involucrin and connexin 43, were expressed in full or superficial layers. Interestingly, certain basal cells were immunopositive to antibodies against limbal stem/progenitor cell markers ABCG2 and p63, which are usually negative in corneal epithelium in vivo. It suggests that this bioengineered corneal epithelium shared some characteristics of human limbal epithelium in vivo. This engineered epithelium was able to regenerate in 4 days following from a 4mm-diameter wound created by a filter paper soaked with 1 N NaOH. This corneal construct survived well after xeno-transplantation to the back of a nude mouse. The transplanted epithelium remained multilayer and became thicker with a phenotype similar to human corneal epithelium. Our findings demonstrate that natural corneal stroma is an optimal substrate for tissue bioengineering, and a native-like corneal construct has been created with epithelium containing limbal stem cells. This construct may have great potential for clinical use in

  3. Progress in corneal wound healing.

    Science.gov (United States)

    Ljubimov, Alexander V; Saghizadeh, Mehrnoosh

    2015-11-01

    Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β (TGF-β) system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal

  4. Progress in corneal wound healing

    Science.gov (United States)

    Ljubimov, Alexander V.; Saghizadeh, Mehrnoosh

    2015-01-01

    Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal epithelium, and

  5. Interaction of human malignant melanoma (ST-ML-12) tumor spheroids with endothelial cell monolayers. Damage to endothelium by oxygen-derived free radicals.

    Science.gov (United States)

    Offner, F. A.; Wirtz, H. C.; Schiefer, J.; Bigalke, I.; Klosterhalfen, B.; Bittinger, F.; Mittermayer, C.; Kirkpatrick, C. J.

    1992-01-01

    Clinical and experimental observations suggest that tumor-induced endothelial cell injury may be one of several initial events in the establishment of tumor metastases. To test this hypothesis, the authors have analyzed the interaction of malignant melanoma (ST-ML-12) multicenter tumor spheroids with endothelial cell monolayers in a three-dimensional coculture system. After 1.5 hours of interaction, the authors observed a toxic effect on endothelial cells in the perispheroid region. The latter was demonstrated by testing membrane integrity with the fluorescent probes acridine orange/ethidium bromide and resulted in sensitivity to shear stress of the damaged cells. The endothelium then underwent a regenerative cycle to replace the denuded halo. Addition of the oxygen radical-scavenging enzyme superoxide dismutase to the culture medium prevented this endothelial cell damage in a dose-dependent manner for up to 12 hours. By contrast, catalase, deferoxamine mesylate, allopurinol, and the proteinase inhibitors soybean trypsin inhibitor and aprotinin were not protective under the same conditions. The endothelial damage was dependent on the attachment of the spheroids. Medium conditioned by ST-ML-12-spheroids proved to be ineffective. A similar, but less prominent, deleterious effect was seen when human peritoneal mesothelial cells were used in place of the human umbilical vein endothelial cells. Spheroids of the uroepithelial cell line HU-609 were used as control. No toxicity was observed in these cocultures. Melanin biosynthesis is associated with the production of oxygen-derived free radicals. The results suggest a possible implication of these free radicals in metastasis formation of malignant melanoma. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:1519667

  6. The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography.

    Science.gov (United States)

    Teixeira, Ana I; McKie, George A; Foley, John D; Bertics, Paul J; Nealey, Paul F; Murphy, Christopher J

    2006-07-01

    We have previously shown that human corneal epithelial cells sense and react to nanoscale substrate topographic stimuli [Teixeira AI, Abrams GA, Bertics PJ, Murphy CJ, Nealey PF. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J Cell Sci 2003;116(10):1881-92; Karuri NW, Liliensiek S, Teixeira AI, Abrams G, Campbell S, Nealey PF, et al. Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells. J Cell Sci 2004;117(15):3153-64]. Here we demonstrate that cellular responses to nanoscale substrate topographies are modulated by the context in which these stimuli are presented to cells. In Epilife medium, cells aligned preferentially in the direction perpendicular to nanoscale grooves and ridges. This is in contrast to a previous study where cells cultured in DMEM/F12 medium aligned in the direction parallel to nanoscale topographic features [Teixeira AI, Abrams GA, Bertics PJ, Murphy CJ, Nealey PF. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J Cell Sci 2003;116(10):1881-92]. Additionally, cell alignment in Epilife medium was dependent on pattern pitch. Cells switched from perpendicular to parallel alignment when the pitch was increased from 400 to 4,000 nm. There was a transition region (between 800 and 1,600 nm pitch) where both parallel and perpendicular alignments were favored compared to all other cellular orientations. Cells formed focal adhesions parallel to the substrate topographies in this transition region. On the nano- and microscale patterns, 400 and 4,000 nm pitch, focal adhesions were almost exclusively oriented obliquely to the topographic patterns.

  7. Morphologic observation of induced pluripotent stem cells induced by corneal endothelium cells with atomic force microscopy%原子力显微镜观察角膜内皮细胞诱导后诱导多能干细胞的形态学变化

    Institute of Scientific and Technical Information of China (English)

    招志毅; 陈建苏; 钟敬祥; 谭美华; 李善义; 戴应

    2012-01-01

    Background Induced pluripotent stem cells (iPSCs)can differentiate into various types of somatic cells without causing ethical controversy and immune rejection in clinical activity,which is similar to differentiation ability of embryonic stem cells.So,iPSCs may be used as seed cells for tissue engineering corneal endothelial reconstruction.Objective The present study was to survey the morphologic change of iPSCs after coculture with corneal endothelium cells(CECs) under the atomic force microscopy(AFM).Methods Rabbit CECs and human MMC-iPSCs were isolated and cultured respectively.The iPSCs were identified with the marker by immunochemistry.iPSCs passaged for 7 days were then cultured with 60% confluent CECs to establish the co-culture model.The surface morphology and cellular membrane ultrastructure of differentiated iPSCs after induced by CECs were examined by AFM combination with inverted microscope,and compared with CECs and undifferentiated iPSCs.Results Thelengthand width were(66.93±10.48)μm and (44.85 ± 8.14) μm in CECs,(12.51±1.40)μm and (10.93 ±1.69) μm in uninduced iPSCs,and(36.12±10.29) μm and(31.53±9.65)μm in CECs-induced iPSCs.Both the length and width values of CECs-induced iPSCs were statistically bigger than those uninduced iPSCs,with significant differences between them (P<0.05),but no significant difference was seen in the width valne of CECs-induced iPSCs in comparison with CECs(P>0.05).The convex structure of CECs cytomembrane surface showed the digitation in shape with the size and height(2.11 ± 1.03) μm and (115.68±92.08) nm respectively,and the concave structure of cytomembrane surface of CECs was fenestrae-like depression and the size was (1.49 ± 0.65) μm.The numerical valuc of mean square root roughness (Rq)and average roughness (Ra)of cytomembrane surface of CECs were(39.20±7.82)nm and (30.37±5.32)nm respectively.The convex surface of cytomembrane of iPSCs was granular-like in shape with size and height(0.39±0

  8. Corneal Transplantation

    DEFF Research Database (Denmark)

    Hjortdal, Jesper Østergaard

    Corneal transplantation has been performed for more than 100 years. Until 15 years ago the state-of-the art type of transplantation was penetrating keratoplasty, but since the start of this millennium, newly designed surgical techniques have developed considerably. Today, the vast majority of ker...

  9. Corneal Laceration

    Medline Plus

    Full Text Available ... Tips & Prevention News Ask an Ophthalmologist Patient Stories Español Eye Health / Eye Health A-Z Corneal Laceration ... After Eyelid Scratch Jul 28, 2014 Leer en Español: ¿Qué Es una Laceración de la Córnea? Find ...

  10. Corneal topography

    DEFF Research Database (Denmark)

    Andersen, J.; Koch-Jensen, P.; Østerby, Ole

    1993-01-01

    The central corneal zone is depicted on keratoscope photographs using a small target aperture and a large object distance. Information on the peripheral area is included by employing a hemispherical target with a dense circular and radial pattern. On a 16 mm (R = 8 mm) reference steel sphere...

  11. Corneal chromoblastomycosis.

    Science.gov (United States)

    Barton, K; Miller, D; Pflugfelder, S C

    1997-03-01

    We sought to illustrate the difficulty in managing uncommon, pigmented mold-related corneal ulceration and to highlight the role of itraconazole in treating these patients. We describe the management and clinical course of a patient with a recurring corneal infection caused by Fonsecaea pedrosoi and discuss this experience in the light of existing literature on management of cutaneous chromoblastomycosis. A corneal ulcer caused by this organism healed initially on treatment with topical and systemic antifungal medication, but infection recurred in the deep stroma 4 months after cessation of therapy. After failure to respond to a further period of medical therapy, a small therapeutic penetrating keratoplasty was performed. Culture of a fibrinous membrane from the anterior iris surface demonstrated intraocular fungal infection, and postoperatively, an episode of marked fibrinous uveitis developed, suggesting the presence of viable intraocular fungal elements. A large penetrating keratoplasty was therefore performed with excision of involved iris in combination with extracapsular cataract extraction. F. pedrosoi was again cultured from the fibrinous membrane adherent to the iris and from the anterior lens capsule. Postoperatively the patient received a 5-month course of systemic itraconazole, and no further recurrences have been encountered after a further 2 months. F. pedrosoi is the organism most commonly isolated from the chronic cutaneous mycosis, chromoblastomycosis, and is relatively resistant to medical therapy. As has been reported for cutaneous disease, surgery in combination with systemic itraconazole may provide the best chance of cure in corneal chromoblastomycosis.

  12. Characterization of vitamin C-induced cell sheets formed from primary and immortalized human corneal stromal cells for tissue engineering applications.

    Science.gov (United States)

    Grobe, Gesa Maria; Reichl, Stephan

    2013-01-01

    The purpose of this study was to compare the ability of primary human corneal stromal cells (HuFib cells) and SV40-immortalized human corneal keratocytes (HCK cells) to synthesize their own extracellular matrix induced by vitamin C supplementation. Therefore, the amount of collagen secreted and resulting biomechanical properties based on the culture duration were assessed. Cells were cultivated for several weeks with or without vitamin C. The amount of collagen secreted by the cells was quantified based on the culture duration. Cell viability was simultaneously determined via the MTT assay. Collagen secretion was increased as a result of vitamin C supplementation. The effect was stronger in primary cells. In addition, vitamin C supplementation had a positive effect on HuFib cell viability. Vitamin C supplementation induced the formation of detachable cell sheets in both primary and immortalized cells. The biomechanical properties of the sheets were evaluated using a static material testing machine, and the ultrastructure of the cell sheets was examined using scanning electron microscopy. The cell sheets formed from HuFib cells had a higher percentage of light transmission between 400 and 800 nm and were superior in terms of E-modulus and ultimate strength testing. Indirect immunofluorescence and Western blot confirmed the presence of collagen type I in the HuFib and HCK cell cultures. Stimulating secretion of the extracellular matrix in corneal stromal cells is a promising approach for corneal stroma reconstruction for tissue engineering applications. Copyright © 2013 S. Karger AG, Basel.

  13. Mechanism of Corneal Endothelial Cells Lesion during Phacoemulsification and Aspiration

    Institute of Scientific and Technical Information of China (English)

    Songtao Yuan; Lina Xie; Qinghuai Liu; Nanrong Yuan

    2003-01-01

    Purpose: To evaluate the proportions of corneal endothelial lesion caused by differentfactors during phacoemulsification and aspiration.Methods: Fourteen cats (twenty eight eyes) were divided into four groups. The processedfactors were ultrasonic power, lens extraction by phacoemulsification or not, and lensextraction using different levels of ultrasonic power. The density of central cornealendothelial cells was measured before and after operation.Results: There is no statistic difference between pre-operation density and post-operationdensity for releasing ultrasonic power only without lens extraction group. But for the lensextraction group, there is difference in density of central corneal endothelial cells andthe higher level of ultrasonic power, the more the central corneal endothelial cells densitydecreased through operation.Conclusion: The primary factor that causes corneal endothelial lesion duringphacoemulsification and aspiration procedure is debris of lens nucleus, and the otherfactors cause the lesion of corneal endothelium in normal operations just in very smalldegree.

  14. Expression of endogenic lectins and their glycoligands in the tear fluid, human corneal and conjunctival epithelium under physiological and disease conditions

    OpenAIRE

    Hrdličková, Enkela

    2016-01-01

    Purpose: Lectins play an important role in many biological processes. The aim of this work was to analyse mainly the expression of endogenic lectins, such as galectins and plant lectin, e.g. Dolichos biflorus agglutinin (DBA), and their glycoligands in the tear fluid, human corneal and conjunctival epithelium in physiological and disease conditions. Further, we studied the human natural antibody against Galα1,3Gal-R, which is mainly responsible for hyperacute rejection of xenografts transplan...

  15. Live-cell imaging of the early stages of colony development in Fusarium oxysporum in vitro and ex vivo during infection of a human corneal model

    OpenAIRE

    Kurian, Smija Mariam

    2016-01-01

    ABSTRACTThe University of ManchesterName: Smija Mariam KurianDegree title: Doctor of PhilosophyResearch title: Live-cell imaging of the early stages of colony development in Fusarium oxysporum in vitro and ex vivo during infection of a human corneal modelDate: May 2016Abstract: Fusarium oxysporum is a major fungal plant pathogen and emerging human pathogen. It has been hypothesised that conidial anastomosis tube (CAT) fusion may facilitate horizontal gene/chromosome transfer that could result...

  16. Defensin Production by Human Limbo-Corneal Fibroblasts Infected with Mycobacteria

    Directory of Open Access Journals (Sweden)

    Julieta Luna-Herrera

    2013-02-01

    Full Text Available Epithelial cells of the cornea and the conjunctiva constitutively produce antimicrobial peptides; however, the production of defensins by other cell types located around the eye has not been investigated. We analyzed the production of beta-defensins (hBD and cathelicidin LL-37 during the infection of primary limbo-corneal fibroblasts with M. tuberculosis (MTB, M. abscessus (MAB, and M. smegmatis (MSM. The intracellular survival of each mycobacterium, the production of cytokines and the changes on the distribution of the actin filaments during the infection were also analyzed. Fibroblasts produce basal levels of hBD1 and LL-37 and under PMA stimulation they produce hBD2, hBD3 and overexpress hBD1 and LL-37. MAB induced the highest levels of hBD1 and LL-37 and intermediate levels of IL-6; however, MAB was not eliminated. In addition, MAB induced the greatest change to the distribution of the actin filaments. MTB also produced changes in the structure of the cytoskeleton and induced low levels of hBD1 and IL-6, and intermediate levels of LL-37. The balance of these molecules induced by MTB appeared to contribute to the non-replicative state observed in the limbo-corneal cells. MSM induced the lowest levels of hBD1 and LL-37 but the highest levels of IL-6; MSM was eliminated. The results suggest that mycobacterial infections regulate the production of antimicrobial peptides and cytokines, which in conjunction can contribute to the control of the bacilli.

  17. Proteoglycan biosynthesis by human corneas from patients with types 1 and 2 macular corneal dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Midura, R.J.; Hascall, V.C.; MacCallum, D.K.; Meyer, R.F.; Thonar, E.J.; Hassell, J.R.; Smith, C.F.; Klintworth, G.K. (National Institute of Dental Research, Bethesda, MD (USA))

    1990-09-15

    Corneal buttons were obtained from patients with types 1 and 2 macular corneal dystrophy (MCD) and from control patients with Fuchs' dystrophy or keratoconus. Buttons were incubated for 20 h in the presence of (3H)glucosamine or (2-3H)mannose. Radiolabeled proteoglycans and lactosaminoglycan-glycoproteins (L-GPs) were purified using chromatography on Q-Sepharose, Superose 6, and octyl-Sepharose. They were identified using chondroitinase ABC, keratanase or endo-beta-galactosidase digestion, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis or Superose 6 chromatography. This study confirms previous reports that type 1 MCD corneas synthesize a normal dermatan sulfate-proteoglycan (DS-PG) and an abnormal keratan sulfate-proteoglycan (KS-PG). The data indicate that typ 1 MCD corneas synthesize L-GP instead of KS-PG. This L-GP has a core protein of similar hydrophobicity (elution from octyl-Sepharose) and nearly similar mass (42 kDa) as the core protein of the KS-PG. It has identical glycoconjugates as those of the KS-PG except that they lack sulfate. Thus, type 1 MCD fails to synthesize keratan sulfate as a result of a defect in a sulfotransferase specific for sulfating lactosaminoglycans. Further, proteoglycans synthesized by a cornea from a patient with type 2 MCD were studied. This cornea synthesized a normal ratio of KS-PG to DS-PG although net synthesis of proteoglycans was approximately 30% below normal. The KS-PG appeared normal whereas the DS-PG had dermatan sulfate chains that were approximately 40% shorter than normal.

  18. Role of tumor endothelium in CD4+ CD25+ regulatory T cell infiltration of human pancreatic carcinoma.

    Science.gov (United States)

    Nummer, Daniel; Suri-Payer, Elisabeth; Schmitz-Winnenthal, Hubertus; Bonertz, Andreas; Galindo, Luis; Antolovich, Dalibor; Koch, Moritz; Büchler, Markus; Weitz, Jürgen; Schirrmacher, Volker; Beckhove, Philipp

    2007-08-01

    Regulatory T (Treg) cells have been detected in human carcinomas and may play a role in preventing the rejection of malignant cells. We quantified Treg cells and the expression of the addressins and the respective ligands that attract them in blood and in human pancreatic tumors and adjacent nonmalignant tissues from 47 patients. The capacity of Treg cells to adhere to and transmigrate through autologous endothelial cells was tested in vitro using spheroid adhesion assays and in vivo using a xenotransplant NOD/SCID model and in the presence and absence of antibodies to addressins. All statistical tests were two-sided. More Treg cells infiltrated pancreatic carcinomas than adjacent nonmalignant pancreatic tissues (120 cells per mm2 versus 80 cells per mm2, difference = 40 cells per mm2, 95% confidence interval [CI] = 21.2 cells per mm2 to 52.1 cells per mm2; P<.001). In contrast to conventional CD4+ T cells, more blood-derived Treg cells adhered to (1.0% versus 5.2%, difference = 4.2%, 95% CI = 2.7% to 5.6%; P<.001) and transmigrated through (3332 cells versus 4976 cells, difference = 1644 cells, 95% CI = 708 cells to 2580 cells; P = .008) autologous tumor-derived endothelial cells in vitro and in vivo (458 cells versus 605 cells, difference = 147 cells, 95% CI = 50.8 to 237.2 cells; P = .04). Tumor-derived endothelial cells expressed higher levels of addressins--including mucosal adressin cell adhesion molecule-1 (MAdCAM-1), vascular cell adhesion molecule-1 (VCAM-1), CD62-E, and CD166--than endothelial cells from normal tissue. Experiments using antibodies to addressins showed that transmigration was mediated by interactions of addressins, including MAdCAM-1, VCAM-1, CD62-E, and CD166 with their respective ligands, beta7 integrin, CD62L, and CD166, which were expressed specifically on Treg cells. Tumor-induced expression of addressins on the surface of endothelial cells allows a selective transmigration of Treg cells from peripheral blood to tumor tissues.

  19. Insulin-increased L-arginine transport requires A(2A adenosine receptors activation in human umbilical vein endothelium.

    Directory of Open Access Journals (Sweden)

    Enrique Guzmán-Gutiérrez

    Full Text Available Adenosine causes vasodilation of human placenta vasculature by increasing the transport of arginine via cationic amino acid transporters 1 (hCAT-1. This process involves the activation of A(2A adenosine receptors (A(2AAR in human umbilical vein endothelial cells (HUVECs. Insulin increases hCAT-1 activity and expression in HUVECs, and A(2AAR stimulation increases insulin sensitivity in subjects with insulin resistance. However, whether A(2AAR plays a role in insulin-mediated increase in L-arginine transport in HUVECs is unknown. To determine this, we first assayed the kinetics of saturable L-arginine transport (1 minute, 37°C in the absence or presence of nitrobenzylthioinosine (NBTI, 10 µmol/L, adenosine transport inhibitor and/or adenosine receptors agonist/antagonists. We also determined hCAT-1 protein and mRNA expression levels (Western blots and quantitative PCR, and SLC7A1 (for hCAT-1 reporter promoter activity. Insulin and NBTI increased the extracellular adenosine concentration, the maximal velocity for L-arginine transport without altering the apparent K(m for L-arginine transport, hCAT-1 protein and mRNA expression levels, and SLC7A1 transcriptional activity. An A2AAR antagonist ZM-241385 blocked these effects. ZM241385 inhibited SLC7A1 reporter transcriptional activity to the same extent in cells transfected with pGL3-hCAT-1(-1606 or pGL3-hCAT-1(-650 constructs in the presence of NBTI + insulin. However, SLC7A1 reporter activity was increased by NBTI only in cells transfected with pGL3-hCAT-1(-1606, and the ZM-241385 sensitive fraction of the NBTI response was similar in the absence or in the presence of insulin. Thus, insulin modulation of hCAT-1 expression and activity requires functional A(2AAR in HUVECs, a mechanism that may be applicable to diseases associated with fetal insulin resistance, such as gestational diabetes.

  20. The measurement of corneal thickness from center to limbus in vivo in C57BL/6 and BALB/c mice using two-photon imaging.

    Science.gov (United States)

    Zhang, Hongmin; Wang, Liya; Xie, Yanting; Liu, Susu; Deng, Xianming; He, Siyu; Chen, Guoming; Liu, Hui; Yang, Biao; Zhang, Junjie; Sun, Shengtao; Li, Xiaohua; Li, Zhijie

    2013-10-01

    measurement points was significantly lower in BALB/c than in C57BL/6 mice (P thickness of the entire cornea, the corneal epithelium, the corneal stroma and the endothelium was inhomogeneous in different areas of the cornea. Moreover, all of the layers exhibited a minimum thickness at the limbus in both C57BL/6 and BALB/c mice. Furthermore, the corneal thickness in different areas varied between C57BL/6 and BALB/c mice, and the variation in thickness with respect to corneal location for these strains was dissimilar. When using the mouse as an animal model to examine the cornea, it is important to note the differences between humans and mice.

  1. 低氧对人肺腺癌A549细胞迁移和黏附的影响%Effect of hypoxia on migration, invasion and adhesion to endothelium of human pulmonary adenocarcinoma A549 cells

    Institute of Scientific and Technical Information of China (English)

    Weigan Shen; Jun Zhu; Zhiyong Yu; Qingyu Xue

    2008-01-01

    Objective:To evaluate the effect of hypoxia on migration,invasion and adhesion to endothelium of human pulmonary adenocarcinoma A549 cells.Methods:Wound-healing and Transwell invasion assays were performed to study the effect of hypoxia on migration and invasion of A549 cells,and A549 cells were added to a monolayer of human umbilical vein endothelial cells (HUVECs) to test the ability to adhere to endothelium.Immunofluorescence assay and luciferase reporter gene assay were also used to evaluate the effect of hypoxia on distribution of E-cadherin,β-catenin,and actin,and hypoxia-inducible factor-1 (HIF-1)-dependent transcription,respectively.Results:Hypoxia facilitated A549 cell migration,invasion,and A549 cell-endothelial cells adhesion,and modulated the distribution of E-cadherin and β-catenin,and actin cytoskeleton rearrangement,and up-regulated HIF-1-dependent reporter gene expression in A549 cells.Conclusion:Promotion of A549 cell migration,invasion,and adhesion on endothelium by hypoxia might be modulated through its up-regulating HIF-l-dependent gene expression,which then induced the redistribution of E-cadherin and β-catenin,and the actin cytoskeletal reorganization.

  2. Mass transport of low density lipoprotein in reconstructed hemodynamic environments of human carotid arteries: the role of volume and solute flux through the endothelium.

    Science.gov (United States)

    Kim, Sungho; Giddens, Don P

    2015-04-01

    The accumulation of low density lipoprotein (LDL) in the arterial intima is a critical step in the initiation and progression of atheromatous lesions. In this study we examine subject-specific LDL transport into the intima of carotid bifurcations in three human subjects using a three-pore model for LDL mass transfer. Subject-specific carotid artery computational models were derived using magnetic resonance imaging (MRI) to obtain the geometry and phase-contract MRI (PC-MRI) to acquire pulsatile inflow and outflow boundary conditions for each subject. The subjects were selected to represent a wide range of anatomical configurations and different stages of atherosclerotic development from mild to moderate intimal thickening. A fluid-solid interaction (FSI) model was implemented in the computational fluid dynamics (CFD) approach in order to consider the effects of a compliant vessel on wall shear stress (WSS). The WSS-dependent response of the endothelium to LDL mass transfer was modeled by multiple pathways to include the contributions of leaky junctions, normal junctions, and transcytosis to LDL solute and plasma volume flux from the lumen into the intima. Time averaged WSS (TAWSS) over the cardiac cycle was computed to represent the spatial WSS distribution, and wall thickness (WTH) was determined from black blood MRI (BBMRI) so as to visualize intimal thickening patterns in the bifurcations. The regions which are exposed to low TAWSS correspond to elevated WTH and higher mass and volume flux via the leaky junctions. In all subjects, the maximum LDL solute flux was observed to be immediately downstream of the stenosis, supporting observations that existing atherosclerotic lesions tend to progress in the downstream direction of the stenosis.

  3. Effect of polysaccharide of dendrobium candidum on proliferation and apoptosis of human corneal epithelial cells in high glucose.

    Science.gov (United States)

    Li, Qiangxiang; Chen, Jing; Li, Yajia; Chen, Ting; Zou, Jing; Wang, Hua

    2017-08-01

    The aim of the study was to observe the effect of polysaccharide of dendrobium candidum (PDC) and high glucose on proliferation, apoptosis of human corneal epithelial cells (HCEC). The MTT method was used to screen and take the optimal high-glucose concentration, treatment time, and PDC concentration using HCEC and divide it into 4 groups: control group (C), high glucose group (HG), PDC group, and HG + PDC group. We observed and compared the effect of the 4 groups on HCEC proliferation by MTT, apoptosis by Annexin V-FITC/PI double fluorescent staining and flow cytometry (FCM), and expression of bax mRNA and bcl-2 mRNA by RT-qPCR. Compared with the control group, proliferative activity of HCEC cells was reduced; the cells apoptosis ratio was increased; the expression of bax mRNA was increased, and the expression of bcl-2 mRNA was reduced in the HG group. Proliferative activity of HCEC cells in the PDC group was increased, and the expression of bcl-2 mRNA was increased but that of bax mRNA was decreased. Proliferative activity of HCEC cells in the HG + PDC group was increased, but it could not restore to the normal level; the expression of bax mRNA was significantly decreased but the expression of bcl-2 mRNA was significantly increased. Our results demonstrate that high glucose can inhibit proliferative activity and induce apoptosis of HCEC. PDC can improve the proliferative activity of HCEC cells under the high glucose environment and reduce the apoptosis of cells by regulating the expression of bax and bcl-2. PDC play a very important role on protecting and repairing of corneal epithelial cells damage in high glucose.

  4. Human adenovirus type 19 infection of corneal cells induces p38 MAPK-dependent interleukin-8 expression

    Directory of Open Access Journals (Sweden)

    Chodosh James

    2008-01-01

    Full Text Available Abstract Background Human adenovirus type 19 (HAdV-19 is a major cause of epidemic keratoconjunctivitis, the only ocular adenoviral infection associated with prolonged corneal inflammation. In this study, we investigated the role of p38 mitogen-activated protein kinase (MAPK in HAdV-19 infection, with particular attention to the role of p38 MAPK in the transcriptional control of interleukin-8 (IL-8, a chemokine previously shown to be central to the initiation of adenovirus keratitis. Results We found that infection of corneal cells with HAdV-19 led to activation of p38 MAPK and its downstream targets, HSP-27 and ATF-2, within 15 to 30 minutes post-infection. Infection also induced phosphorylation of IκB and NFκB in a p38 MAPK-dependent fashion. Furthermore, HAdV-19 induced an interaction between p38 MAPK and NFκB-p65, followed by nuclear translocation of activated NFκB-p65 and its binding to the IL-8 promoter. The interaction between p38 MAPK and NFκB-p65 was inhibited in concentration-dependent fashion by SB203580, a chemical inhibitor of p38 MAPK, but not by SP600125, an inhibitor of JNK – another MAPK implicated in chemokine expression by HAdV-19 infected cells. IL-8 gene expression in HAdV-19 infection was significantly reduced in the presence of sequence-specific p38 MAPK siRNA but not control siRNA. Conclusion These results provide the first direct evidence for transcriptional regulation of IL-8 in HAdV-19 infected cells through the activation of the p38 MAPK signaling pathway. The p38 MAPK pathway may play a biologically important role in regulation of IL-8 gene expression in the adenovirus-infected cornea.

  5. Inflammatory response and the endothelium.

    Science.gov (United States)

    Meroni, P L; Borghi, M O; Raschi, E; Ventura, D; Sarzi Puttini, P C; Atzeni, F; Lonati, L; Parati, G; Tincani, A; Mari, D; Tedesco, F

    2004-01-01

    Antiphospholipid-mediated endothelium perturbation plays a role in antiphospholipid syndrome (APS)-associated vasculopathy. Antiphospholipid antibodies activate endothelium both in vitro and in vivo experimental models by inducing a pro-inflammatory/-coagulant phenotype; the antibodies recognize beta2 glycoprotein I (beta2GPI) on human endothelial cells (EC) from different parts of the vasculature. In spite of such large in vitro evidence, few studies have addressed the issue whether or not a comparable endothelial perturbation might be detectable in vivo. We investigated several indirect ex vivo parameters of endothelial dysfunction: plasma levels of soluble adhesion molecules (sADM), soluble thrombomodulin (sTM), von Willebrand factor (vWF) and tissue plasminogen activator (t-PA) by solid-phase assays. The study included: patients with primary antiphospholipid syndrome (n=32), with the syndrome secondary to non-active systemic lupus erythematosus (SLE, n=10), six patients with persistent antiphospholipid positivity at medium/high titre without any clinical manifestation of the syndrome. Fifty-two age and sex matched healthy subjects have been enrolled as controls. In addition, circulating endothelial cells identified by flow cytometry and the brachial artery flow-mediated vasodilation (FMV) were evaluated in 26 patients (20 primary and 6 lupus syndromes) and 30 healthy controls. Plasma levels of soluble adhesion molecules did not differ from controls, while a significant increase in von Willebrand factor titres (P<0.05) was found. No significant difference was found regarding the number of circulating endothelial cells and flow-mediated vasodilation. As a whole, these findings do suggest that antiphospholipid antibodies per se are not able to support a full-blown endothelial perturbation in vivo. As shown in antiphospholipid syndrome experimental animal models, a two-hit hypothesis is suggested.

  6. 小鼠胚胎干细胞条件培养液培养的人角膜内皮细胞在脱细胞猪角膜基质上单层细胞片的构建%Formation of cell sheet on acellular porcine corneal stroma with human corneal endothelial cells cocultured by mouse embryonic stem cell conditioned medium

    Institute of Scientific and Technical Information of China (English)

    鹿晓燕; 王智崇

    2016-01-01

    Background Corneal transplantation faces a great challenge because of the shortage of corneal donors and difficulty of human corneal endothelial cells (HCECs) regeneration in vitro.So the study on tissue engineering cornea is still a main topic.Previous research showed that mouse embryonic stem cell conditioned medium (ESC-CM) improved the proliferative capacity of HCECs in vitro,and acellular porcine corneal stroma (APCS) was a good saffold material.However,whether HECEs cultured by mouse ESC-CM can form cell sheet in vitro were rarely studied.Objective This study was to investigate the potential that HCECs cultured by mouse ESC-CM form a monolayer cell sheet.Methods The supernatant of ESC-CM was collected after mouse ES-E14 cells were cultured,and the cultured medium was centrifuged and mixed with 75% human corneal endothelium medium (CEM)at a proportion of 1 ∶ 3 to prepare the 25% ESC-CM system.Primary cultures of HCECs were established from explants of corneal limbal with Descemet's membrane,and the cells were identified by using reverse-transcription PCR to determine the expressions of collagen Ⅷ (Col Ⅷ) mRNA and neuron-specific enolase (NSE) mRNA in the cells.APCS was prepared by decellularization with phospholipase A2 and bicarbonate solution,and the second generation of HCECs were inoculated on the sterilized APCS at a 800/mm2 density.The morphology of the cells was observed by hematoxylin-eosin staining under the phase-contrast microscope.The expressions of zona occludens protein-1 (ZO-1)and Na+-K+-ATPase in the cell sheet were detected by immunofluorescence staining.Results The second generation of HCECs cultured with 25% ESC-CM in vitro showed the hexagon in shape with positive expressions for Col Ⅷ mRNA and NSE mRNA.Decellularization APCS was transparent,and no corneal cells were seen,the structures of corneal collagenous fibres were regular.HCECs attached closely to APCS and formed monolayer sheet 7 days after culture on the APCS with the

  7. Mice with humanized liver endothelium

    NARCIS (Netherlands)

    el Filali, E.

    2014-01-01

    The only curative treatment option for a large proportion of patients suffering from a liver disorder is liver transplantation. The use of ex vivo genetically modified autologous liver cells instead of whole liver transplantation could overcome the problem of donor scarcity. Even though clinical

  8. Mice with humanized liver endothelium

    NARCIS (Netherlands)

    el Filali, E.

    2014-01-01

    The only curative treatment option for a large proportion of patients suffering from a liver disorder is liver transplantation. The use of ex vivo genetically modified autologous liver cells instead of whole liver transplantation could overcome the problem of donor scarcity. Even though clinical tri

  9. Image-guided modified deep anterior lamellar keratoplasty (DALK) corneal transplant using intraoperative optical coherence tomography

    Science.gov (United States)

    Tao, Yuankai K.; LaBarbera, Michael; Ehlers, Justis P.; Srivastava, Sunil K.; Dupps, William J.

    2015-03-01

    Deep anterior lamellar keratoplasty (DALK) is an alternative to full-thickness corneal transplant and has advantages including the absence of allograft rejection; shortened duration of topical corticosteroid treatment and reduced associated risk of glaucoma, cataract, or infection; and enables use of grafts with poor endothelial quality. DALK begins by performing a trephination of approximately 80% stromal thickness, as measured by pachymetry. After removal of the anterior stoma, a needle is inserted into the residual stroma to inject air or viscoelastic to dissect Descemet's membrane. These procedures are inherently difficult and intraoperative rates of Descemet's membrane perforation between 4-39% have been reported. Optical coherence tomography (OCT) provides high-resolution images of tissue microstructures in the cornea, including Descemet's membrane, and allows quantitation of corneal layer thicknesses. Here, we use crosssectional intraoperative OCT (iOCT) measurements of corneal thickness during surgery and a novel micrometeradjustable biopsy punch to precision-cut the stroma down to Descemet's membrane. Our prototype cutting tool allows us to establish a dissection plane at the corneal endothelium interface, mitigates variability in cut-depths as a result of tremor, reduces procedure complexity, and reduces complication rates. iOCT-guided modified DALK procedures were performed on 47 cadaveric porcine eyes by non-experts and achieved a perforation rate of ~5% with a mean corneal dissection time <18 minutes. The procedure was also successful performed on a human donor eye without perforation. Our data shows the potential for iOCT-guided precision anterior segment surgery without variability as a result of tremor and improvements to standard clinical care.

  10. Feline corneal disease.

    Science.gov (United States)

    Moore, Phillip Anthony

    2005-05-01

    The cornea is naturally transparent. Anything that interferes with the cornea's stromal architecture, contributes to blood vessel migration, increases corneal pigmentation, or predisposes to corneal edema, disrupts the corneas transparency and indicates corneal disease. The color, location, and shape and pattern of a corneal lesion can help in determining the underlying cause for the disease. Corneal disease is typically divided into congenital or acquired disorders. Congenital disorders, such as corneal dermoids are rare in cats, whereas acquired corneal disease associated with nonulcerative or ulcerative keratitis is common. Primary ocular disease, such as tear film instability, adenexal disease (medial canthal entropion, lagophthalmus, eyelid agenesis), and herpes keratitis are associated with the majority of acquired corneal disease in cats. Proliferative/eosinophilic keratitis, acute bullous keratopathy, and Florida keratopathy are common feline nonulcerative disorders. Nonprogressive ulcerative disease in cats, such as chronic corneal epithelial defects and corneal sequestration are more common than progressive corneal ulcerations.

  11. Isolation and Culture of Human Microvascular endothelium for comparison of the morphological and molecular characteristics of Microvascular endothelial cells under normal gravity against simulated micro gravity

    Directory of Open Access Journals (Sweden)

    Tholcopiyan L

    2010-01-01

    Full Text Available BACKGROUND: Vascular endothelial cells play a major role in wound healing and also in growth of the tumors. Angiogenesis can be a target for treating diseases that are due to either poor vascularisation or decreased blood supply as in stroke, ulcers, heart disease, etc or abnormal and increased vasculature like in tumours. Application of specific compounds that may inhibit or induce the creation of new blood vessels in the body may help in the treatment of such diseases (1. Ex vivo generation of blood vessels may offer an excellent alternative to the synthetic valves that are being currently used in cardiology. Micro gravity also referred to, as weightlessness is not essentially zero gravity but rather minimal gravity. According to cell type, micro gravity causes variety of changes in proliferation and differentiation of cells while also affecting the migration of cells and cellular functions (2, 3. Siamwala et al from AUKBC have already studied the effects of microgravity on the microvascular endothelial cells from bovine lung and macrovascular endothelial cells from the bovine pulmonary artery. It was observed that the proliferation and migration of macrovascular endothelial cells were increased in microgravity (4, 5. Nitric oxide production was also studied and observed that microgravity treatment did not change nitric oxide production by microvascular endothelial cells (4OBJECTIVE: Isolation and Comparison of culture characteristics of Human microvascular endothelium cultured conventionally and in novel nanomaterial scaffold and further study the morphological and molecular characteristics of microvascular endothelial cells under normal gravity against simulated micro gravityMATERIALS AND METHODS: The human Omentum samples were obtained using surgical procedures after informed consent. The microvascular endothelial cells were isolated following the protocol described by Scott et al (6.The isolated cells were seeded in two groups; Group I

  12. Effect of Different Antibiotic Chemotherapies on Pseudomonas aeruginosa Infection In Vitro of Primary Human Corneal Fibroblast Cells

    Directory of Open Access Journals (Sweden)

    Maria del Mar Cendra

    2017-08-01

    Full Text Available Pseudomonas aeruginosa is a major cause of bacterial keratitis (BK worldwide. Inappropriate or non-optimal antibiotic chemotherapy can lead to corneal perforation and rapid sight loss. In this study, we tested the hypothesis that P. aeruginosa strain PAO1 invades primary human corneal fibroblasts (hCFs in vitro and persists intracellularly, despite chemotherapy with antibiotics used commonly to treat BK. In rank order, ciprofloxacin, levofloxacin and polymyxin B showed the highest activity against planktonic PAO1 growth (100% inhibitory concentration ≤10 μg/mL; 50% inhibitory concentration ≤1 μg/mL, followed by gentamicin and ofloxacin (100% inhibitory concentration ≤50 μg/mL; 50% inhibitory concentration ≤10 μg/mL. These bactericidal antibiotics (50–200 μg/mL concentrations all killed PAO1 in the extracellular environment of infected hCF monolayers. By contrast, the bactericidal antibiotic cefuroxime and the bacteriostatic antibiotic chloramphenicol failed to sterilize both PAO1 broth cultures, even at a concentration of ≥200 μg/mL and infected hCF monolayers. Statistically, all antibiotics were able to prevent LDH release from PAO1-infected hCF monolayers at both concentrations tested. Intracellular Pseudomonas were significantly reduced (>99%, P < 0.05 following treatment with ciprofloxacin, levofloxacin and ofloxacin, whereas gentamicin, polymyxin B and cefuroxime failed to clear intracellular bacteria over 24 h. Intracellular Pseudomonas infection was resistant to chloramphenicol, with hCF death observed by 9 h. Eventual growth of remaining intracellular Pseudomonas was observed in hCF after removal of all antibiotics, resulting in re-infection cycles and cell death by 48 h. All of the antibiotics reduced significantly (P < 0.05 IL-1β secretion by hCF infected with a Multiplicity Of Infection (MOI = 1 of PAO1. With higher MOI, no pro-inflammatory effects were observed with antibiotic treatment, expect with polymyxin B and

  13. Genomics of corneal wound healing: a review of the literature.

    Science.gov (United States)

    Maycock, Nick J R; Marshall, John

    2014-05-01

    Corneal wound healing is a complex process: its mechanisms and the underlying genetic control are not fully understood. It involves the integrated actions of multiple growth factors, cytokines and proteases produced by epithelial cells, stromal keratocytes, inflammatory cells and lacrimal gland cells. Following an epithelial insult, multiple cytokines are released triggering a cascade of events that leads to repair the epithelial defect and remodelling of the stroma to minimize the loss of transparency and function. In this review, we examine the literature surrounding the genomics of corneal wound healing with respect to the following topics: epithelial and stromal wound healing (including inhibition); corneal neovascularisation; the role of corneal nerves in wound healing; the endothelium; the role of aquaporins and aptamers. We also examine the effect of ectasia on corneal wound healing with regard to keratoconus and following corneal surgery. A better understanding of the cellular and molecular changes that occur during repair of corneal wounds will provide the opportunity to design treatments that selectively modulate key phases of the healing process resulting in scars that more closely resemble normal corneal architecture.

  14. Equine corneal stromal abscesses

    DEFF Research Database (Denmark)

    Henriksen, M. D. L.; Andersen, P. H.; Plummer, C. E.

    2013-01-01

    The last 30 years have seen many changes in the understanding of the pathogenesis and treatment of equine corneal stromal abscesses (SAs). Stromal abscesses were previously considered an eye problem related to corneal bacterial infection, equine recurrent uveitis, corneal microtrauma and corneal...

  15. Comparison of cytotoxicities and wound healing effects of diquafosol tetrasodium and hyaluronic acid on human corneal epithelial cells

    Science.gov (United States)

    Lee, Jong Heon; Lee, Jong Soo; Kim, Sujin

    2017-01-01

    This study aimed to compare the cellular toxicities of three clinically used dry eye treatments; 3% diquafosol tetrasodium and hyaluronic acid at 0.3 and 0.18%. A methyl thiazolyltetrazoiun (MTT)-based calorimetric assay was used to assess cellular proliferation and a lactate dehydrogenase (LDH) leakage assay to assess cytotoxicity, using Human corneal epithelial cells (HCECs) exposed to 3% diquafosol tetrasodium, 0.3% hyaluronic acid (HA), or 0.18% HA or 1, 6 or 24 h. Cellular morphology was evaluated by inverted phase-contrast light microscopy and electron microscopy, and wound widths were measured 24 h after confluent HCECs were scratched. Diquafosol had a significant, time-dependent, inhibitory effect on HCEC proliferation and cytotoxicity. HCECs treated with diquafosol detached more from the bottoms of dishes and damaged cells showed degenerative changes, such as, reduced numbers of microvilli, vacuole formation, and chromatin of the nuclear remnant condensed along the nuclear periphery. All significantly stimulated reepithelialization of HCECs scratched, which were less observed in diquafosol. Therefore, epithelial toxicity should be considered after long-term usage of diquafosol and in overdose cases, especially in dry eye patients with pre-existing punctated epithelial erosion. PMID:28280412

  16. Genoprotective effect of hyaluronic acid against benzalkonium chloride-induced DNA damage in human corneal epithelial cells

    Science.gov (United States)

    Wu, Han; Zhang, Huina; Wang, Changjun; Wu, Yihua; Xie, Jiajun; Jin, Xiuming; Yang, Jun

    2011-01-01

    Purpose The aim of this study was to investigate hyaluronic acid (HA) protection on cultured human corneal epithelial cells (HCEs) against benzalkonium chloride (BAC)-induced DNA damage and intracellular reactive oxygen species (ROS) increase. Methods Cells were incubated with different concentrations of BAC with or without the presence of 0.2% HA for 30 min. DNA damage to HCEs was examined by alkaline comet assay and by immunofluorescence microscopic detection of the phosphorylated form of histone variant H2AX (γH2AX) foci. ROS production was assessed by the fluorescent probe, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Cell apoptosis was determined with annexin V staining by flow cytometry. Results HA significantly reduced BAC-induced DNA damage as indicated by the tail length (TL) and tail moment (TM) of alkaline comet assay and by γH2AX foci formation, respectively. Moreover, HA significantly decreased BAC-induced ROS increase and cell apoptosis. However, exposure to HA alone did not produce any significant change in DNA damage, ROS generation, or cell apoptosis. Conclusions BAC could induce DNA damage and cell apoptosis in HCEs, probably through increasing oxidative stress. Furthermore, HA was an effective protective agent that had antioxidant properties and could decrease DNA damage and cell apoptosis induced by BAC. PMID:22219631

  17. Early expression of mannose-binding lectin 2 during Aspergillus fumigatus infection in human corneal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Cheng-Ye; Che; Jing-Fen; Zhang; Ji-Eun; Lee; Jing; Lin; Li-Ting; Hu; Nan; Jiang; Qian; Wang; Qiang; Xu; Gui-Qiu; Zhao

    2015-01-01

    AIM: To evaluate the early expression of mannose-binding lectin 2(MBL2) in human corneal epithelial cells(HCECs) infected by Aspergillus fumigatus(AF).METHODS: HCECs cultured in vitro with AF antigens and sampled at 0, 0.5, 1, 2, 4, 6 and 8h. The expression of MBL2 m RNA was evaluated by semiquantitative reverse transcription-polymerase chain reaction(RT-PCR). The expression of MBL2 protein in supernatant fluid was shown by enzyme linked immunosorbent assay(ELISA). MBL2 protein in HCECs was detected by immunocytochemistry at 0 and 24 h.RESULTS: MBL2 m RNA and protein are expressed in normal HCECs. The expression of MBL2 m RNA and protein in supernatant fluid begin to increase after being stimulated with AF antigens. The most significantly peak of MBL2 m RNA is in 2h. The protein of MBL2 in supernatant fluid decrease gradually after 0.5h. The protein in HCECs expression increase after stimulation of24 h.· CONCLUSION: MBL2 receptor expressed in normal HCECs in vitro. The stimulation by AF antigens can increase the early expression of it.

  18. Hyperosmotic Stress-induced ATF-2 Activation through Polo-like Kinase 3 in Human Corneal Epithelial Cells*

    Science.gov (United States)

    Wang, Ling; Payton, Reid; Dai, Wei; Lu, Luo

    2011-01-01

    Elevated extracellular solute concentration (hyperosmotic stress) perturbs cell function and stimulates cell responses by evoking MAPK cascades and activating AP-1 transcription complex resulting in alterations of gene expression, cell cycle arrest, and apoptosis. The results presented here demonstrate that hyperosmotic stress elicited increases in ATF-2 phosphorylation through a novel Polo-like kinase 3 (Plk3) pathway in human corneal epithelial (HCE) cells. We found in hyperosmotic stress-induced HCE cells that Plk3 transferred to the nuclear compartment and was colocalized with ATF-2 in nuclei. Kinase activity of Plk3 was significantly activated by hyperosmotic stimulation. Further downstream, active Plk3 phosphorylated ATF-2 at the Thr-71 site in vivo and in vitro. Overexpression of Plk3 and its mutants enhanced hyperosmotic stress-induced ATF-2 phosphorylation. In contrast, suppression of Plk3 by knocking down Plk3 mRNA effectively diminished the effect of hyperosmotic stress-induced ATF-2 phosphorylation. The effect of hyperosmotic stress-induced activation of Plk3 on ATF-2 transcription factor function was also examined in CRE reporter-overexpressed HCE cells. Our results for the first time reveal that hyperosmotic stress can activate the Plk3 signaling pathway that subsequently regulates the AP-1 complex by directly phosphorylating ATF-2 independent from the effects of JNK and p38 activation. PMID:21098032

  19. Hyperosmotic stress-induced ATF-2 activation through Polo-like kinase 3 in human corneal epithelial cells.

    Science.gov (United States)

    Wang, Ling; Payton, Reid; Dai, Wei; Lu, Luo

    2011-01-21

    Elevated extracellular solute concentration (hyperosmotic stress) perturbs cell function and stimulates cell responses by evoking MAPK cascades and activating AP-1 transcription complex resulting in alterations of gene expression, cell cycle arrest, and apoptosis. The results presented here demonstrate that hyperosmotic stress elicited increases in ATF-2 phosphorylation through a novel Polo-like kinase 3 (Plk3) pathway in human corneal epithelial (HCE) cells. We found in hyperosmotic stress-induced HCE cells that Plk3 transferred to the nuclear compartment and was colocalized with ATF-2 in nuclei. Kinase activity of Plk3 was significantly activated by hyperosmotic stimulation. Further downstream, active Plk3 phosphorylated ATF-2 at the Thr-71 site in vivo and in vitro. Overexpression of Plk3 and its mutants enhanced hyperosmotic stress-induced ATF-2 phosphorylation. In contrast, suppression of Plk3 by knocking down Plk3 mRNA effectively diminished the effect of hyperosmotic stress-induced ATF-2 phosphorylation. The effect of hyperosmotic stress-induced activation of Plk3 on ATF-2 transcription factor function was also examined in CRE reporter-overexpressed HCE cells. Our results for the first time reveal that hyperosmotic stress can activate the Plk3 signaling pathway that subsequently regulates the AP-1 complex by directly phosphorylating ATF-2 independent from the effects of JNK and p38 activation.

  20. Optimization of Cultured Human Corneal Endothelial Cell Sheet Transplantation and Post-Operative Sheet Evaluation in a Rabbit Model.

    Science.gov (United States)

    Yamaguchi, Masahiro; Shima, Nobuyuki; Kimoto, Miwa; Ebihara, Nobuyuki; Murakami, Akira; Yamagami, Satoru

    2016-09-01

    To optimize cultured human corneal endothelial cell (cHCEC) sheet transplantation technique for maintenance of cHCEC viability. cHCEC sheets cultured on a collagen scaffold were covered with or without Viscoat® and exposed to humidified air in the incubator. cHCEC sheets with or without Viscoat® were transplanted into cadaveric porcine eyes by the DSAEK technique with full air tamponade and incubated for various time periods. Then cell viability was determined by using the live/dead assay kit. cHCEC sheets with Viscoat® were transplanted into rabbit eyes and the sheets were histologically evaluated before and 14 days after transplantation. A collagen scaffold and Viscoat® were effective for protecting cHCEC from damage due to air exposure in vitro. All cells died after 18 hours of air exposure in porcine eyes in Viscoat® untreated control. In contrast, Viscoat® treatment sustained full cell viability following 2 hours and could maintain approximately 80% viability after 18 hours. In a rabbit model, transplanted cHCEC sheet with Viscoat® maintained cell density at 2803 ± 229 mm(2) (18% cell loss) and expression of N-cadherin, zonula occludens-1, and actin-filament localized to cell boundary as similar as donor HCEC. Viscoat® can contribute to cHCEC protection from damage caused by exposure to air.

  1. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model

    Directory of Open Access Journals (Sweden)

    Tanaka Y

    2016-08-01

    Full Text Available Yohei Tanaka,1,2 Jun Nakayama2 1Department of Plastic Surgery, Clinica Tanaka Plastic, Reconstructive Surgery and Anti-aging Center, 2Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan Background and objective: Humans are increasingly exposed to near-infrared (NIR radiation from both natural (eg, solar and artificial (eg, electrical appliances sources. Although the biological effects of sun and ultraviolet (UV exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues.Materials and methods: DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C. The water-filter allowed 1,000–1,800 nm wavelengths and excluded 1,400–1,500 nm wavelengths.Results: A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm2 irradiation (P<0.05.Conclusion: We found that NIR irradiation induced the

  2. Human corneal fibroblast migration and ECM synthesis during stromal repair: Role played by PDGF-BB, bFGF, and TGFβ1.

    Science.gov (United States)

    Gallego-Muñoz, Patricia; Ibares-Frías, Lucía; Garrote, José A; Valsero-Blanco, María Cruz; Cantalapiedra-Rodríguez, Roberto; Merayo-Lloves, Jesús; Martínez-García, M Carmen

    2016-11-15

    The development of treatments that modulate corneal wound healing to avoid fibrosis during tissue repair is important for the restoration of corneal transparency after an injury. To date, few studies have studied the influence of growth factors (GFs) on human corneal fibroblast (HCF) expression of extracellular matrix (ECM) proteins such as collagen types I and III, proteoglycans such as perlecan, or proteins implicated in cellular migration such as α5β1-integrin and syndecan-4. Using in vitro HCFs, we developed a mechanical wound model to study the influence of the GFs basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF-BB), and transforming growth factor beta 1 (TGFβ1) on ECM protein production and cellular migration. Our results show that mechanical wounding provokes the autocrine release of bFGF and TGFβ1 at different time points during the wound closure. The HCF response to PDGF-BB was a rapid closure due to fast cellular migration associated with a high focal adhesion replacement and a high expression of collagen and proteoglycans, producing a non-fibrotic healing. bFGF stimulated non-fibrotic ECM production and limited the migration process. Finally, TGFβ1 induced expression of the fibrotic markers collagen type III and α5β1 integrin, and it inhibited cellular migration due to the formation of focal adhesions with a low turnover rate. The novel in vitro HCF mechanical wound model can be used to understand the role played by GFs in human corneal repair. The model can also be used to test the effects of different treatments aimed at improving the healing process.

  3. Crystalline Subtype of Pre-Descemetic Corneal Dystrophy

    Directory of Open Access Journals (Sweden)

    Rosa Dolz-Marco

    2014-01-01

    Full Text Available Purpose: To report corneal findings in a familial case of the crystalline subtype of pre- Descemetic corneal dystrophy. Case Report: A 19-year-old girl and her 44-year-old mother were found to have asymptomatic, bilateral, punctiform and multi-colored crystalline opacities across the whole posterior layer of the corneas. Endothelial specular microscopy revealed the presence of white round flecks located at different levels anterior to the endothelium. No systemic abnormalities or medications could be related to account for these findings. Conclusion: To the best of our knowledge, this is the third familial report of this rare corneal disorder. Differential diagnosis may include Schnyder corneal dystrophy, cystinosis, Bietti΄s dystrophy and monoclonal gammopathy.

  4. Fungus induces the release of IL- 8 in human corneal epithelial cells, via Dectin-1-mediated protein kinase C pathways

    Institute of Scientific and Technical Information of China (English)

    Xu-Dong; Peng; Gui-Qiu; Zhao; Jing; Lin; Nan; Jiang; Qiang; Xu; Cheng-Cheng; Zhu; Jian-Qiu; Qu; Lin; Cong; Hui; Li

    2015-01-01

    AIM: To identify whether Aspergillus fumigatus(A.fumigatus) hyphae antigens induced the release of interleukin-8(IL-8) in anti-fungal innate immunity of cultured human corneal epithelial cells(HCECs) and determine the involvement of intracellular signalling pathways. METHODS: HCECs were treated with A. fumigatus hyphae antigens with different concentrations and time.The cytoplasmic calcium of HCECs were assessed by fluorescence imaging. Western blot was used to detect the expression of Ca2 +-dependent protein kinase C(PKC). The IL-8 levels were determined by specific human IL-8 enzyme-linked immunosorbent assay(ELISA) and reverse transcriptase polymerase chain reaction(RT-PCR). Using a series of pharmacological inhibitors, we examined the upstream signalling pathway responsible for IL-8 expression in response to A.fumigatus hyphae antigens. RESULTS: Cells exposed to A. fumigatus hyphae antigens showed higher level of IL-8 m RNA expression and protein production. We demonstrated here that stimulation of HCECs with A. fumigatus hyphae triggers an intracellular Ca2 +flux and results in the activation of Ca2 +-dependent PKC(α, βⅠ and βⅡ) which can be attenuated by pre-treatment of cells with laminarin,suggesting that Dectin-1 signals pathway induced cytoplasmic calcium and influence the activation of PKC in HCECs. Inhibitors of Ca2 +-dependent PKC(Ro-31-8220 and Go6976) significantly abolished hyphae-induced expression of IL-8.CONCLUSION: Our findings suggest that A. fumigatushyphae-induced IL-8 expression was regulated by the activation of Dectin-1-mediated Ca2 +-dependent PKC in HCECs.

  5. Lysis of pig endothelium by IL-2 activated human natural killer cells is inhibited by swine and human major histocompatibility complex (MHC) class I gene products.

    Science.gov (United States)

    Itescu, S; Artrip, J H; Kwiatkowski, P A; Wang, S F; Minanov, O P; Morgenthau, A S; Michler, R E

    1997-01-01

    We have previously described a form of xenograft rejection, mediated by natural killer (NK) cells, occurring in pig-to-primate organ transplants beyond the period of antibody-mediated hyperacute rejection. In this study, two distinct NK activation pathways were identified as mechanisms of pig aortic endotheliual cell (PAEC) lysis by human NK cells. Using an antibody-dependent cellular cytotoxicity (ADCC) assay, a progressive increase in human NK lysis of PAEC was observed following incubation with human IgG at increasing serum titer. In the absence of IgG, a second mechanism of PAEC lysis by human NK cells was observed following activation with IL-2. IL-2 activation of human NK cells increased lysis of PAEC by over 3-fold compared with ADCC. These results indicate that IL-2 activation of human NK cells induces significantly higher levels of lytic activity than does conventional ADCC involving IgG and FcRIII. We next investigated the role of MHC class I molecules in the regulation of NK lysis following IL-2 activation. PAEC expression of SLA class I molecules was increased by up to 75% by treatment with human TNFa. Following treatment with TNFa at 1 u/ml, IL-2 activated human NK lysis of PAEC was inhibited at every effector:target (E:T) ratio tested. Maximal effect occurred at an E:T ratio of 10:1, with TNFa inhibiting specific lysis by 59% (p < 0.01). Incubation with an anti-SLA class I Mab, but not IgG isotype control, abrogated the protective effects of TNFa on NK lysis of PAEC, suggesting direct inhibitory effects of SLA class I molecules on human NK function. To investigate whether human MHC class I molecules might have similar effects on human NK lysis of PAEC, further experiments were performed using a soluble peptide derived from the alpha-helical region of HLA-B7. Incubation with the HLA-B7 derived peptide significantly reduced the IL-2 activated NK lytic activity against PAEC in a dose-dependent fashion. Maximal effect occurred at a concentration of 10 mg

  6. Study of Topical Human Umbilical Cord Blood Serum in the Treatment of Alkaline Corneal Epithelial Wounds in Rabbit Model

    Directory of Open Access Journals (Sweden)

    B Sharifi

    2011-04-01

    Full Text Available Introduction & Objective: One of the important functions of the cornea is to maintain normal vision by refracting light onto the lens and retina. This property is dependent in part on the ability of the corneal epithelium to undergo continuous renewal. Ocular surface failure which follows a variety of endogenous and exogenous precipitating factors, the most common being: chemical trauma, infection, alkaline burn, inflammation and hereditary conditions, lid or lash abnormalities, tear deficiency or reduced sensation. The core principal underpinning management strategy for ocular surface failure is establishing or promoting new growth of healthy conjunctiva and corneal epithelium. This process is mediated by many proteins that are inducers of corneal cell migration, proliferation, and differentiation. The current study was performed to investigate the efficacy of umbilical cord serum on alkaline corneal epithelial wound healing in the rabbit model. Materials & Methods: In this study conducted at Yasuj University of Medical Sciences in 2010, thirty two rabbits were randomly assigned into two equal groups. Central corneal alkali wound was formed in one eye of the rabbits by applying a 6-mm round filter paper, soaked in 1 N NaOH, for 60 seconds. Group one of animals received umbilical cord blood serum and group two received Sno*Tear in the eyes. The treatment was dosed 4 times a day with the eye drops, and epithelial wound closure was recorded using slit lamp. The data were analyzed to determine the rate of wound closure. Results: The mean wound radius closure rate was 0.77 mm/day (SD=0.013 for umbilical cord blood serum-treated eyes, 0.73 mm/day (SD=0.018 for artificial tear-treated eyes. Conclusion: This study shows that alkali-injured corneal epithelial wound heal faster when treated with umbilical cord blood serum than with artificial tear in rabbit model.

  7. Immunohistochemical markers for corneal stem cells in the early developing human eye

    DEFF Research Database (Denmark)

    Lyngholm, Mikkel; Høyer, Poul E; Vorum, Henrik;

    2008-01-01

    markers and potential markers for LSCs and early transient amplifying cells in human adults. In this study, we describe the development of the ectodermally derived LSCs and the mesodermally derived niche cells from the time at which the cornea is defined (week 6) until the formation of the early limbal...... niche (week 14) in human embryos and fetuses. The expression of SOD2 and CK15 was investigated together with other recently identified limbal proteins. Previously suggested LSC and differentiation markers (PAX6, aquaporin-1 and nestin) were also investigated. Both SOD2 and CK15 were present...

  8. Corneal ulcers in horses.

    Science.gov (United States)

    Williams, Lynn B; Pinard, Chantale L

    2013-01-01

    Corneal ulceration is commonly diagnosed by equine veterinarians. A complete ophthalmic examination as well as fluorescein staining, corneal cytology, and corneal bacterial (aerobic) and fungal culture and sensitivity testing are necessary for all infected corneal ulcers. Appropriate topical antibiotics, topical atropine, and systemic NSAIDs are indicated for all corneal ulcers. If keratomalacia (melting) is observed, anticollagenase/antiprotease therapy, such as autologous serum, is indicated. If fungal infection is suspected, antifungal therapy is a necessity. Subpalpebral lavage systems allow convenient, frequent, and potentially long-term therapy. Referral corneal surgeries provide additional therapeutic options when the globe's integrity is threatened or when improvement has not been detected after appropriate therapy.

  9. Retained intracorneal human hair fragment: An unusual case of occupational trauma

    Directory of Open Access Journals (Sweden)

    Varshini Shanker

    2015-01-01

    Full Text Available A 32-year old male hairdresser presented with redness and irritation of the left eye for past 15 days. A fragment of hair was found embedded in deep corneal stroma with minimal scarring. No evidence was found of previous or current inflammation incited by this foreign body. The position and depth of the hair fragment was documented by anterior segment optical coherence tomography (AS-OCT and its effect on the corneal endothelium was assessed by specular microscopy. Hairdressers should take adequate precautions to prevent ocular injury although human hair appears to be well tolerated by the cornea.

  10. The molecular genetics of the corneal dystrophies--current status.

    Science.gov (United States)

    Klintworth, Gordon K

    2003-05-01

    The pertinent literature on inherited corneal diseases is reviewed in terms of the chromosomal localization and identification of the responsible genes. Disorders affecting the cornea have been mapped to human chromosome 1 (central crystalline corneal dystrophy, familial subepithelial corneal amyloidosis, early onset Fuchs dystrophy, posterior polymorphous corneal dystrophy), chromosome 4 (Bietti marginal crystalline dystrophy), chromosome 5 (lattice dystrophy types 1 and IIIA, granular corneal dystrophy types 1, 2 and 3, Thiel-Behnke corneal dystrophy), chromosome 9 (lattice dystrophy type II), chromosome 10 (Thiel-Behnke corneal dystrophy), chromosome 12 (Meesmann dystrophy), chromosome 16 (macular corneal dystrophy, fish eye disease, LCAT disease, tyrosinemia type II), chromosome 17 (Meesmann dystrophy, Stocker-Holt dystrophy), chromosome 20 (congenital hereditary endothelial corneal dystrophy types I and II, posterior polymorphous corneal dystrophy), chromosome 21 (autosomal dominant keratoconus) and the X chromosome (cornea verticillata, cornea farinata, deep filiform corneal dystrophy, keratosis follicularis spinulosa decalvans, Lisch corneal dystrophy). Mutations in nine genes (ARSC1, CHST6, COL8A2, GLA, GSN, KRT3, KRT12, M1S1and TGFBI [BIGH3]) account for some of the corneal diseases and three of them are associated with amyloid deposition in the cornea (GSN, M1S1, TGFBI) including most of the lattice corneal dystrophies (LCDs) [LCD types I, IA, II, IIIA, IIIB, IV, V, VI and VII] recognized by their lattice pattern of linear opacities. Genetic studies on inherited diseases affecting the cornea have provided insight into some of these disorders at a basic molecular level and it has become recognized that distinct clinicopathologic phenotypes can result from specific mutations in a particular gene, as well as some different mutations in the same gene. A molecular genetic understanding of inherited corneal diseases is leading to a better appreciation of the

  11. 连接粘附分子-1在人角膜上皮中的表达%Expression of junctional adhesion molecule-1 in human Corneal epithelium

    Institute of Scientific and Technical Information of China (English)

    陈立忠; 洪晶; 海老原 伸行; 村上晶

    2007-01-01

    AIM:To investigate the expression and distribution of junction adhesion molecule-1(JAM-1)in human corneal epithelium and compare with that of occludin.METHODS:The expression in RNAs of JAM-1 and occludin was revealed by RT-PCR and the presence of protein was analyzed by the FACS method.Double immunofluorescent staining was used to determine the tissue distribution of JSM-1 and occludin in human corneal epithelium.RESULTS:The expression of JAM-1 and occludin was found in cultured human corneal epithelial cells.The double immunofluorescent study showed positive staining for JAM-1 at cell borders in the entire epithelial layer,while relatively extensive staining was seen in the superficial layer,where it COexisted with the expression of ocdudin.CONCLUSION:JAM-1 was expressed in entire layer of human corneal epithelium encircling the cells.%目的:检测连接粘附分子-1(junction adhesion molecule,JAM-1)在正常人角膜上皮各层中的表达及分布特点并与咬合蛋白(occludin)进行比较.方法:培养人角膜上皮细胞提取细胞总RNA.以逆转录后获得的cDNA为模板PCR扩增目的基因JAM-1及occludin.流式细胞仪检测JAM-1蛋白表达.双重免疫荧光观察JAM-1与occludin在正常人角膜上皮组织的原位表达.结果:通过RT-PCR在培养人角膜上皮细胞中检测到JAM-1与occludin扩增片段;流式细胞仪检测到JAM-1蛋白表达;双重免疫荧光结果显示occludin染色主要位于表层上皮层细胞之间;而JAM-1荧光染色不仅见于上皮表层,在整个上皮层细胞之间均可见其荧光反应.结论:Occludin主要位于正常人角膜上皮表层细胞之间,JAM-1在正常人角膜上皮的全层中均有表达.

  12. Corneal transplant - discharge

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000243.htm Corneal transplant - discharge To use the sharing features on this page, please enable JavaScript. You had a corneal transplant. Most of the tissue of your cornea (the ...

  13. Vascular Endothelium and Hypovolemic Shock.

    Science.gov (United States)

    Gulati, Anil

    2016-01-01

    Endothelium is a site of metabolic activity and has a major reservoir of multipotent stem cells. It plays a vital role in the vascular physiological, pathophysiological and reparative processes. Endothelial functions are significantly altered following hypovolemic shock due to ischemia of the endothelial cells and by reperfusion due to resuscitation with fluids. Activation of endothelial cells leads to release of vasoactive substances (nitric oxide, endothelin, platelet activating factor, prostacyclin, mitochondrial N-formyl peptide), mediators of inflammation (tumor necrosis factor α, interleukins, interferons) and thrombosis. Endothelial cell apoptosis is induced following hypovolemic shock due to deprivation of oxygen required by endothelial cell mitochondria; this lack of oxygen initiates an increase in mitochondrial reactive oxygen species (ROS) and release of apoptogenic proteins. The glycocalyx structure of endothelium is compromised which causes an impairment of the protective endothelial barrier resulting in increased permeability and leakage of fluids in to the tissue causing edema. Growth factors such as angiopoetins and vascular endothelial growth factors also contribute towards pathophysiology of hypovolemic shock. Endothelium is extremely active with numerous functions, understanding these functions will provide novel targets to design therapeutic agents for the acute management of hypovolemic shock. Hypovolemic shock also occurs in conditions such as dengue shock syndrome and Ebola hemorrhagic fever, defining the role of endothelium in the pathophysiology of these conditions will provide greater insight regarding the functions of endothelial cells in vascular regulation.

  14. Safety of Cultivated Limbal Epithelial Stem Cell Transplantation for Human Corneal Regeneration

    Directory of Open Access Journals (Sweden)

    J. Behaegel

    2017-01-01

    Full Text Available Ex vivo cultivated limbal stem cell transplantation is a promising technique for the treatment of limbal stem cell deficiency. While the results of the clinical trials have been extensively reported since the introduction of the technique in 1997, little has been reported regarding the potential health risks associated with production processes and transplantation techniques. Culture procedures require the use of animal and/or human-derived products, which carry the potential of introducing toxic or infectious agents through contamination with known or unknown additives. Protocols vary widely, and the risks depend on the local institutional methods. Good manufacturing practice and xeno-free culture protocols could reduce potential health risks but are not yet a common practice worldwide. In this review, we focus on the safety of both autologous- and allogeneic-cultivated limbal stem cell transplantation, with respect to culture processes, surgical approaches, and postoperative strategies.

  15. PDGFRα Is a Key Regulator of T1 and T3's Differential Effect on SMA Expression in Human Corneal Fibroblasts.

    Science.gov (United States)

    Sriram, Sriniwas; Tran, Jennifer A; Guo, Xiaoqing; Hutcheon, Audrey E K; Lei, Hetian; Kazlauskas, Andrius; Zieske, James D

    2017-02-01

    The goal of this study was to examine the mechanism behind the unique differential action of transforming growth factor β3 (TGF-β3) and TGF-β1 on SMA expression. It was our hypothesis that platelet-derived growth factor receptor α (PDGFRα) played a key role in determining TGF-β3's response to wounding. A stable cell line, human corneal fibroblast (HCF)-P, was created from HCFs by knocking down PDGFRα expression using a lentivirus-delivered shRNA sequence. A three-dimensional (3D) in vitro model was constructed by culturing HCF or HCF-P on poly-transwell membranes for 4 weeks in the presence and absence of 0.1 ng/mL TGF-β1 or -β3. At the end of 4 weeks, the constructs were processed for immunofluorescence and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In addition, HCF and HCF-P cell migration was evaluated. In HCF, TGF-β3 treatment resulted in significantly lower α-smooth muscle actin (SMA) mRNA expression and immunolocalization when compared to TGF-β1, while in HCF-P, both TGF-β1 and -β3 treatment increased the SMA mRNA expression and immunolocalization compared to both the untreated HCF-P control and TGF-β3-treated HCF. Human corneal fibroblast-P also had a lower migration rate and construct thickness when compared to HCF. These results show that TGF-β3 decreases SMA in HCF, while remarkably increasing SMA in HCF-P, thus indicating that the presence or absence of PDGFRα elicits contrasting responses to the same TGF-β3 treatment. Understanding the role of PDGFRα in TGF-β3's ability to stimulate SMA may potentially help in understanding the differential functions of TGF-β1 and TGF-β3 in corneal wound healing.

  16. A brief history of corneal transplantation: From ancient to modern

    Directory of Open Access Journals (Sweden)

    Alexandra X Crawford

    2013-01-01

    Full Text Available This review highlights many of the fundamental concepts and events in the development of corneal transplantation - from ancient times to modern. Tales of eye, limb, and even heart transplantation appear in ancient and medieval texts; however, in the scientific sense, the original concepts of corneal surgery date back to the Greek physician Galen (130-200 AD. Although proposals to provide improved corneal clarity by surgical interventions, including keratoprostheses, were better developed by the 17 th and 18 th centuries, true scientific and surgical experimentation in this field did not begin until the 19 th century. Indeed, the success of contemporary corneal transplantation is largely the result of a culmination of pivotal ideas, experimentation, and perseverance by inspired individuals over the last 200 years. Franz Reisinger initiated experimental animal corneal transplantation in 1818, coining the term "keratoplasty". Subsequently, Wilhelmus Thorne created the term corneal transplant and 3 years later Samuel Bigger, 1837, reported successful corneal transplantation in a gazelle. The first recorded therapeutic corneal xenograft on a human was reported shortly thereafter in 1838-unsurprisingly this was unsuccessful. Further progress in corneal transplantation was significantly hindered by limited understanding of antiseptic principles, anesthesiology, surgical technique, and immunology. There ensued an extremely prolonged period of debate and experimentation upon the utility of animal compared to human tissue, and lamellar versus penetrating keratoplasty. Indeed, the first successful human corneal transplant was not performed by Eduard Zirm until 1905. Since that first successful corneal transplant, innumerable ophthalmologists have contributed to the development and refinement of corneal transplantation aided by the development of surgical microscopes, refined suture materials, the development of eye banks, and the introduction of

  17. A brief history of corneal transplantation: From ancient to modern.

    Science.gov (United States)

    Crawford, Alexandra Z; Patel, Dipika V; McGhee, Charles Nj

    2013-09-01

    This review highlights many of the fundamental concepts and events in the development of corneal transplantation - from ancient times to modern. Tales of eye, limb, and even heart transplantation appear in ancient and medieval texts; however, in the scientific sense, the original concepts of corneal surgery date back to the Greek physician Galen (130-200 AD). Although proposals to provide improved corneal clarity by surgical interventions, including keratoprostheses, were better developed by the 17(th) and 18(th) centuries, true scientific and surgical experimentation in this field did not begin until the 19(th) century. Indeed, the success of contemporary corneal transplantation is largely the result of a culmination of pivotal ideas, experimentation, and perseverance by inspired individuals over the last 200 years. Franz Reisinger initiated experimental animal corneal transplantation in 1818, coining the term "keratoplasty". Subsequently, Wilhelmus Thorne created the term corneal transplant and 3 years later Samuel Bigger, 1837, reported successful corneal transplantation in a gazelle. The first recorded therapeutic corneal xenograft on a human was reported shortly thereafter in 1838-unsurprisingly this was unsuccessful. Further progress in corneal transplantation was significantly hindered by limited understanding of antiseptic principles, anesthesiology, surgical technique, and immunology. There ensued an extremely prolonged period of debate and experimentation upon the utility of animal compared to human tissue, and lamellar versus penetrating keratoplasty. Indeed, the first successful human corneal transplant was not performed by Eduard Zirm until 1905. Since that first successful corneal transplant, innumerable ophthalmologists have contributed to the development and refinement of corneal transplantation aided by the development of surgical microscopes, refined suture materials, the development of eye banks, and the introduction of corticosteroids. Recent

  18. Activation of focal adhesion kinase enhances the adhesion of Fusarium solani to human corneal epithelial cells via the tyrosine-specific protein kinase signaling pathway.

    Science.gov (United States)

    Pan, Xiaojing; Wang, Ye; Zhou, Qingjun; Chen, Peng; Xu, Yuanyuan; Chen, Hao; Xie, Lixin

    2011-03-05

    To determine the role of the integrin-FAK signaling pathway triggered by the adherence of F. solani to human corneal epithelial cells (HCECs). After pretreatment with/without genistein, HCECs were incubated with F. solani spores at different times (0-24 h). Cell adhesion assays were performed by optical microscopy. Changes of the ultrastructure were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The expression of F-actin and Paxillin (PAX) were detected by immunofluorescence and western blotting to detect the expression of these key proteins with/without genistein treatment. Cell adhesion assays showed that the number of adhered spores began to rise at 6 h after incubation and peaked at 8 h. SEM and TEM showed that the HCECs exhibited a marked morphological alteration induced by the attachment and entry of the spores. The expression of PAX increased, while the expression of F-actin decreased by stimulation with F. solani. The interaction of F. solani with HCECs causes actin rearrangement in HCECs. Genistein strongly inhibited FAK phosphorylation and the activation of the downstream protein (PAX). F. solani-induced enhancement of cell adhesion ability was inhibited along with the inhibition of FAK phosphorylation. Our results suggest that the integrin-FAK signaling pathway is involved in the control of F. solani adhesion to HCECs and that the activation of focal adhesion kinase enhances the adhesion of human corneal epithelial cells to F. solani via the tyrosine-specific protein kinase signaling pathway.

  19. Diffusion and Monod kinetics model to determine in vivo human corneal oxygen-consumption rate during soft contact lens wear.

    Science.gov (United States)

    Del Castillo, Luis F; da Silva, Ana R Ferreira; Hernández, Saul I; Aguilella, M; Andrio, Andreu; Mollá, Sergio; Compañ, Vicente

    2015-01-01

    We present an analysis of the corneal oxygen consumption Qc from non-linear models, using data of oxygen partial pressure or tension (P(O2) ) obtained from in vivo estimation previously reported by other authors. (1) METHODS: Assuming that the cornea is a single homogeneous layer, the oxygen permeability through the cornea will be the same regardless of the type of lens that is available on it. The obtention of the real value of the maximum oxygen consumption rate Qc,max is very important because this parameter is directly related with the gradient pressure profile into the cornea and moreover, the real corneal oxygen consumption is influenced by both anterior and posterior oxygen fluxes. Our calculations give different values for the maximum oxygen consumption rate Qc,max, when different oxygen pressure values (high and low P(O2)) are considered at the interface cornea-tears film. Present results are relevant for the calculation on the partial pressure of oxygen, available at different depths into the corneal tissue behind contact lenses of different oxygen transmissibility. Copyright © 2014. Published by Elsevier Espana.

  20. Human corneal epithelial subpopulations

    DEFF Research Database (Denmark)

    Søndergaard, Chris Bath

    2013-01-01

    -free EpiLife medium, using a range of physiologically relevant oxygen concentrations (2%, 5%, 10%, 15% and 20%). Using immunocytochemistry and advanced fluorescence microscopy, cells were characterized regarding growth, cell cycle distribution, colony-forming efficiency (CFE), phenotypes...... and cytomorphometry. Limbal epithelial cells expanded in 2% O2 exhibited slow growth, low fraction of cells in S/G2 , high CFE, high expression of stem cell markers ABCG2 and p63α, and low fraction of differentiation marker CK3 resembling a LESC phenotype. The effect of hypoxia to maintain LESCs in culture...

  1. Establishment of a new in vitro test method for evaluation of eye irritancy using a reconstructed human corneal epithelial model, LabCyte CORNEA-MODEL.

    Science.gov (United States)

    Katoh, Masakazu; Hamajima, Fumiyasu; Ogasawara, Takahiro; Hata, Ken-ichiro

    2013-12-01

    Finding in vitro eye irritation testing alternatives to animal testing such as the Draize eye test, which uses rabbits, is essential from the standpoint of animal welfare. It has been developed a reconstructed human corneal epithelial model, the LabCyte CORNEA-MODEL, which has a representative corneal epithelium-like structure. Protocol optimization (pre-validation study) was examined in order to establish a new alternative method for eye irritancy evaluation with this model. From the results of the optimization experiments, the application periods for chemicals were set at 1min for liquid chemicals or 24h for solid chemicals, and the post-exposure incubation periods were set at 24h for liquids or zero for solids. If the viability was less than 50%, the chemical was judged to be an eye irritant. Sixty-one chemicals were applied in the optimized protocol using the LabCyte CORNEA-MODEL and these results were evaluated in correlation with in vivo results. The predictions of the optimized LabCyte CORNEA-MODEL eye irritation test methods were highly correlated with in vivo eye irritation (sensitivity 100%, specificity 80.0%, and accuracy 91.8%). These results suggest that the LabCyte CORNEA-MODEL eye irritation test could be useful as an alternative method to the Draize eye test.

  2. Evaluation of Intrastromal Riboflavin Concentration in Human Corneas after Three Corneal Cross-Linking Imbibition Procedures: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Antonella Franch

    2015-01-01

    Full Text Available Purpose. To compare stromal riboflavin concentration after three corneal cross-linking (CXL imbibition procedures: standard (EpiOff, transepithelial corneal (EpiOn, and iontophoresis-assisted technique (Ionto using 0.1% hypotonic riboflavin phosphate. Methods. Randomized open-label pilot clinical study. Twelve corneas/12 patients with advanced keratoconus were randomly divided into 4 groups for CXL (n=3. The corneas underwent imbibition with standard riboflavin EpiOff and with enhanced riboflavin solution (RICROLIN+ EpiOff, EpiOn, and iontophoresis techniques. Thereafter, deep anterior lamellar keratectomy procedure was performed and the obtained debrided corneal tissues were frozen. The maximal intrastromal riboflavin concentration was measured by high-performance liquid chromatography/mass spectrometry (mcg/dg. Results. The mean stromal concentration of riboflavin was 2.02±0.72 mcg/dg in EpiOff group, 4.33±0.12 mcg/g in EpiOff-RICROLIN+ group, 0.63±0.21 mcg/dg in EpiOn-RICROLIN+ group, and 1.15±0.27 mcg/dg in iontophoresis RICROLIN+ group. A 7-fold decrease in intrastromal riboflavin concentration was observed comparing EpiOn-RICROLIN+ and EpiOff-RICROLIN+ groups. Conclusion. The present pilot study indicates that both transepithelial CXL techniques in combination with hypotonic enhanced riboflavin formulation (RICROLIN+ were still inferior to the standard CXL technique; however, larger clinical studies to further validate the results are needed and in progress.

  3. Corneal mucus plaques.

    Science.gov (United States)

    Fraunfelder, F T; Wright, P; Tripathi, R C

    1977-02-01

    Corneal mucus plaques adhered to the anterior corneal surface in 17 of 67 advanced cases of keratoconjunctivitis sicca. The plaques were translucent to opaque and varied in size and shape, from multiple isolated islands to bizarre patterns involving more than half the corneal surface. Ultrastructurally, they consisted of mucus mixed with desquamated degenerating epithelial cells and proteinaceous and lipoidal material. The condition may be symptomatic but can be controlled and prevented in most cases by topical ocular application of 10% acetylcysteine.

  4. Protease-activated receptor 2 (PAR2) is upregulated by Acanthamoeba plasminogen activator (aPA) and induces proinflammatory cytokine in human corneal epithelial cells.

    Science.gov (United States)

    Tripathi, Trivendra; Abdi, Mahshid; Alizadeh, Hassan

    2014-05-29

    Acanthamoeba plasminogen activator (aPA) is a serine protease elaborated by Acanthamoeba trophozoites that facilitates the invasion of trophozoites to the host and contributes to the pathogenesis of Acanthamoeba keratitis (AK). The aim of this study was to explore if aPA stimulates proinflammatory cytokine in human corneal epithelial (HCE) cells via the protease-activated receptors (PARs) pathway. Acanthamoeba castellanii trophozoites were grown in peptone-yeast extract glucose for 7 days, and the supernatants were collected and centrifuged. The aPA was purified using the fast protein liquid chromatography system, and aPA activity was determined by zymography assays. Human corneal epithelial cells were incubated with or without aPA (100 μg/mL), PAR1 agonists (thrombin, 10 μM; TRAP-6, 10 μM), and PAR2 agonists (SLIGRL-NH2, 100 μM; AC 55541, 10 μM) for 24 and 48 hours. Inhibition of PAR1 and PAR2 involved preincubating the HCE cells for 1 hour with the antagonist of PAR1 (SCH 79797, 60 μM) and PAR2 (FSLLRY-NH2, 100 μM) with or without aPA. Human corneal epithelial cells also were preincubated with PAR1 and PAR2 antagonists and then incubated with or without PAR1 agonists (thrombin and TRAP-6) and PAR2 agonists (SLIGRL-NH2 and AC 55541). Expression of PAR1 and PAR2 was examined by quantitative RT-PCR (qRT-PCR), flow cytometry, and immunocytochemistry. Interleukin-8 expression was quantified by qRT-PCR and ELISA. Human corneal epithelial cells constitutively expressed PAR1 and PAR2 mRNA. Acanthamoeba plasminogen activator and PAR2 agonists significantly upregulated PAR2 mRNA expression (1- and 2-fold, respectively) (P aPA, and PAR2 agonists induced PAR2 mRNA expression in HCE cells (P aPA, significantly upregulated PAR1 mRNA expression, which was significantly inhibited by PAR1 antagonist in HCE cells. Acanthamoeba plasminogen activator and PAR2 agonists stimulated IL-8 mRNA expression and protein production, which is significantly diminished by PAR2 antagonist

  5. Trinucleotide Repeat Expansion in the Transcription Factor 4 (TCF4) Gene Leads to Widespread mRNA Splicing Changes in Fuchs' Endothelial Corneal Dystrophy

    Science.gov (United States)

    Wieben, Eric D.; Aleff, Ross A.; Tang, Xiaojia; Butz, Malinda L.; Kalari, Krishna R.; Highsmith, Edward W.; Jen, Jin; Vasmatzis, George; Patel, Sanjay V.; Maguire, Leo J.; Baratz, Keith H.; Fautsch, Michael P.

    2017-01-01

    Purpose To identify RNA missplicing events in human corneal endothelial tissue isolated from Fuchs' endothelial corneal dystrophy (FECD). Methods Total RNA was isolated and sequenced from corneal endothelial tissue obtained during keratoplasty from 12 patients with FECD and 4 patients undergoing keratoplasty or enucleation for other indications. The length of the trinucleotide repeat (TNR) CTG in the transcription factor 4 (TCF4) gene was determined using leukocyte-derived DNA analyzed by a combination of Southern blotting and Genescan analysis. Commercial statistical software was used to quantify expression of alternatively spliced genes. Validation of selected alternative splicing events was performed by using RT-PCR. Gene sets identified were analyzed for overrepresentation using Web-based analysis system. Results Corneal endothelial tissue from FECD patients containing a CTG TNR expansion sequence in the TCF4 gene revealed widespread changes in mRNA splicing, including a novel splicing event involving FGFR2. Differential splicing of NUMA1, PPFIBP1, MBNL1, and MBNL2 transcripts were identified in all FECD samples containing a TNR expansion. The differentially spliced genes were enriched for products that localize to the cell cortex and bind cytoskeletal and cell adhesion proteins. Conclusions Corneal endothelium from FECD patients harbors a unique signature of mis-splicing events due to CTG TNR expansion in the TCF4 gene, consistent with the hypothesis that RNA toxicity contributes to the pathogenesis of FECD. Changes to the endothelial barrier function, a known event in the development of FECD, was identified as a key biological process influenced by the missplicing events. PMID:28118661

  6. Molecular mechanisms of dust-induced toxicity in human corneal epithelial cells: Water and organic extract of office and house dust.

    Science.gov (United States)

    Xiang, Ping; Liu, Rong-Yan; Sun, Hong-Jie; Han, Yong-He; He, Rui-Wen; Cui, Xin-Yi; Ma, Lena Q

    2016-01-01

    Human corneal epithelial (HCE) cells are continually exposed to dust in the air, which may cause corneal epithelium damage. Both water and organic soluble contaminants in dust may contribute to cytotoxicity in HCE cells, however, the associated toxicity mechanisms are not fully elucidated. In this study, indoor dust from residential houses and commercial offices in Nanjing, China was collected and the effects of organic and water soluble fraction of dust on primary HCE cells were examined. The concentrations of heavy metals in the dust and dust extracts were determined by ICP-MS and PAHs by GC-MS, with office dust having greater concentrations of heavy metals and PAHs than house dust. Based on LC50, organic extract was more toxic than water extract, and office dust was more toxic than house dust. Accordingly, the organic extracts induced more ROS, malondialdehyde, and 8-Hydroxydeoxyguanosine and higher expression of inflammatory mediators (IL-1β, IL-6, and IL-8), and AhR inducible genes (CYP1A1, and CYP1B1) than water extracts (pdust presented greater suppression of superoxide dismutase and catalase activity than those of house dust. In addition, exposure to dust extracts activated NF-κB signal pathway except water extract of house dust. The results suggested that both water and organic soluble fractions of dust caused cytotoxicity, oxidative damage, inflammatory response, and activation of AhR inducible genes, with organic extracts having higher potential to induce adverse effects on primary HCE cells. The results based on primary HCE cells demonstrated the importance of reducing contaminants in indoor dust to reduce their adverse impacts on human eyes.

  7. Successful transportation of human corneal endothelial tissues without cool preservation in varying Indian tropical climatic conditions and in vitro cell expansion using a novel polymer

    Directory of Open Access Journals (Sweden)

    Srinivas K Rao

    2014-01-01

    Full Text Available Background: Though the transplantation of human corneal endothelial tissue (CET separated from cadaver cornea is in practice, its transportation has not been reported. We report the successful transportation of CET in varying Indian climatic conditions without cool preservation and the in vitro expansion of Human Corneal Endothelial Precursor Cells (HCEPCs using a novel Thermo-reversible gelation polymer (TGP. Materials and Methods: CET from cadaver corneas (n = 67, unsuitable for transplantation, were used. In phase I, CET was transported in Basal Culture Medium (Group I and TGP (Group II and in Phase II, in TGP cocktail alone, from three hospitals 250-2500 km away, to a central laboratory. The transportation time ranged from 6 h to 72 h and the outdoor temperature between 20°C and 41°C. On arrival, CET were processed, cells were expanded upto 30 days in basal culture medium (Group A and TGP scaffold (Group B. Cell viability and morphology were documented and Reverse transcription polymerase chain reaction (RT-PCR characterization undertaken. Results: In Phase I, TGP yielded more viable cells (0.11 × 10 6 cells than Group I (0.04 × 10 6 cells. In Phase II, the average cell count was 5.44 × 10 4 cells. During expansion, viability of HCEPCs spheres in TGP was maintained for a longer duration. The cells from both the groups tested positive for B-3 tubulin and negative for cytokeratins K3 and K12, thereby proving them to be HCEPCs. Conclusion: TGP preserves the CET during transportation without cool preservation and supports in vitro expansion, with a higher yield of HCEPCs, similar to that reported in clinical studies.

  8. Corneal layer plate removal with Fluconazole injected corneal stroma and autologous conjunctival transplantation for keratomycosis

    Directory of Open Access Journals (Sweden)

    Li-Dong Yang

    2013-08-01

    Full Text Available AIM: To investigate the clinical effect of corneal layer plate removal with Fluconazole injected corneal stroma and autologous conjunctival transplantation for keratomycosis.METHODS: There were 168 cases suffered keratomycosis that the focus located shallow of the cornea and was not obvious to drug, who registered in our hospital from March 2005 to June 2010. In surgery we removed plate layer to cormea clear, the region was greater than focus for 0.5mm,then we injected fluconazole which is 2g/L density in corneal stroma to make the edema area greater than Removal of area for 0.5mm. At last we took pedicle conjunctival flap to cover the plant bed by continuous suture. Postoperative day use drug to drop eye and to observe that whether recurrent of the keratomycosis and how was the edema degrade, the blood supply of conjunctival graft pieces, how about the stimulating signs of the surgery eye, the vision.RESULTS: The improvement rate was 96.2% after surgery for seven days and the cure rate was 95.5% after surgery for one months. We found in 157 eyes accepted trigeminy surgery there were 6 eyes recurrence and the recurrence rate was 3.8%. The mean time of corneal stromal edema faded away was 13.4 hours. After surgery for one month there were 39 eyes(24.8%whose vision removed than preoperative, there were 91 eyes(58.0%whose vision were same as preoperative and there were 27 eyes(17.2%whose vision lower than preoperative. In these operations the loss ratio of corneal endothelium was from 0%-8%, the mean was 2.9%. The irritative symptoms postoperative were mild for 87%, moderate for 10% and severe for 3%. By this surgery the mean length of stay was 7.3 days so the mean hospitalization expenses only were 2160 RMB. Three months after surgery, 4 cases were slight corneal ectasia.CONCLUSION: This operation combined corneal layer plate removal, Fluconazole injected corneal stroma and autologous conjunctival transplantation for keratomycosis which was in

  9. Characterization of Corneal Indentation Hysteresis.

    Science.gov (United States)

    Ko, Match W L; Dongming Wei; Leung, Christopher K S

    2015-01-01

    Corneal indentation is adapted for the design and development of a characterization method for corneal hysteresis behavior - Corneal Indentation Hysteresis (CIH). Fourteen porcine eyes were tested using the corneal indentation method. The CIH measured in enucleated porcine eyes showed indentation rate and intraocular pressure (IOP) dependences. The CIH increased with indentation rate at lower IOP ( 25 mmHg). The CIH was linear proportional to the IOP within an individual eye. The CIH was positively correlated with the IOP, corneal in-plane tensile stress and corneal tangent modulus (E). A new method based on corneal indentation for the measurement of Corneal Indentation Hysteresis in vivo is developed. To our knowledge, this is the first study to introduce the corneal indentation hysteresis and correlate the corneal indentation hysteresis and corneal tangent modulus.

  10. Endothelial keratoplasty for corneal decompensation leaded by a dexamethasone implant dislocation in anterior chamber

    Directory of Open Access Journals (Sweden)

    Fernanda Pacella

    2016-06-01

    Full Text Available Background: Dexamethasone intravitreal implant (DEX largely showed his safety and efficacy for the treatment of cases of macular edema. Even if uncommon, delivery dislocation in anterior chamber has been described in Literaure as complication of the injection procedure, leading to irreversible endothelial cell loss in the majority of cases. We report a case of a 66-year-old man with pain and vision loss in his left eye. The anamnesis revealed a recent intravitreal injection of DEX implant for a persistent cystoid macular edema related to central retinal vein occlusion. Anterior segment examination showed corneal edema and the rod implant adherent to corneal endothelium. A large peripheral iridectomy was evident with retroillumination and IOL appeared good centered in the bag. The implant was removed but corneal decompensation was irreversible. One month later, an endothelial keratoplasty was successfully performed restoring corneal transparency. DEX intravitreal implant can migrate from vitreous cavity to anterior chamber and lead to irreversible corneal decompensation by mechanical and chemical toxicity on corneal endothelium. Removeal of the implant is necessary to avoid total endothelial decompensation. Despite this, in some cases endothelial keratoplasty had to be performed.

  11. "Double bubble" deep anterior lamellar keratoplasty for management of corneal stromal pathologies.

    Science.gov (United States)

    Jhanji, Vishal; Beltz, Jacqueline; Sharma, Namrata; Graue, Enrique; Vajpayee, Rasik B

    2011-08-01

    'Big Bubble' deep anterior lamellar keratoplasty (DALK) is becoming an accepted corneal transplantation technique for keratoconus and other anterior stromal corneal pathologies that spare the Descemet's membrane (DM) and endothelium. However, it is not always possible to conclusively recognise formation and identification of the 'Big Bubble'. We describe the surgical technique of DALK called 'Double Bubble' technique that allows the surgeon to definitely and immediately identify the formation of an adequate big bubble. DALK was performed using the 'Double Bubble' technique in twelve eyes of twelve patients with corneal stromal pathologies (keratoconus, 9 eyes; macular corneal dystrophy, 2 eyes; postinfectious keratitis corneal stromal scar, 1 eye) at the Royal Victorian Eye and Ear Hospital, Melbourne. Big bubble was successfully formed in 10 eyes. Maximum-depth deep lamellar keratoplasty was performed in two eyes. There were no instances of intraoperative perforation of the DM. All grafts were clear at last follow-up. Best-corrected visual acuity of ≥20/40 was achieved in all the cases at last follow-up (6-12 months). 'Double Bubble' DALK helps in identification of the big bubble and has the potential to increase the success of standard 'Big Bubble' DALK in patients with corneal stromal pathologies sparing the DM and endothelium.

  12. Stromal cell-derived factor-1/CXCR4 signaling modifies the capillary-like organization of human embryonic stem cell-derived endothelium in vitro.

    Science.gov (United States)

    Chen, Tong; Bai, Hao; Shao, Ying; Arzigian, Melanie; Janzen, Viktor; Attar, Eyal; Xie, Yi; Scadden, David T; Wang, Zack Z

    2007-02-01

    The molecular mechanisms that regulate human blood vessel formation during early development are largely unknown. Here we used human ESCs (hESCs) as an in vitro model to explore early human vasculogenesis. We demonstrated that stromal cell-derived factor-1 (SDF-1) and CXCR4 were expressed concurrently with hESC-derived embryonic endothelial differentiation. Human ESC-derived embryonic endothelial cells underwent dose-dependent chemotaxis to SDF-1, which enhanced vascular network formation in Matrigel. Blocking of CXCR4 signaling abolished capillary-like structures induced by SDF-1. Inhibition of the SDF-1/CXCR4 signaling pathway by AMD3100, a CXCR4 antagonist, disrupted the endothelial sprouting outgrowth from human embryoid bodies, suggesting that the SDF-1/CXCR4 axis plays a critical role in regulating initial vessel formation, and may function as a morphogen during human embryonic vascular development.

  13. Mitochondrial dysfunction and oxidative stress in corneal disease.

    Science.gov (United States)

    Vallabh, Neeru A; Romano, Vito; Willoughby, Colin E

    2017-05-23

    The cornea is the anterior transparent surface and the main refracting structure of the eye. Mitochondrial dysfunction and oxidative stress are implicated in the pathogenesis of inherited (e.g. Kearns Sayre Syndrome) and acquired corneal diseases (e.g. keratoconus and Fuchs endothelial corneal dystrophy). Both antioxidants and reactive oxygen species are found in the healthy cornea. There is increasing evidence of imbalance in the oxidative balance and mitochondrial function in the cornea in disease states. The cornea is vulnerable to mitochondrial dysfunction and oxidative stress due to its highly exposed position to ultraviolet radiation and high oxygen tension. The corneal endothelium is vulnerable to accumulating mitochondrial DNA (mtDNA) damage due to the post- mitotic nature of endothelial cells, yet their mitochondrial genome is continually replicating and mtDNA mutations can develop and accumulate with age. The unique physiology of the cornea predisposes this structure to oxidative damage, and there is interplay between inherited and acquired mitochondrial dysfunction, oxidative damage and a number of corneal diseases. By targeting mitochondrial dysfunction in corneal disease, emerging treatments may prevent or reduce visual loss. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  14. Development of new therapeutic modalities for corneal endothelial disease focused on the proliferation of corneal endothelial cells using animal models.

    Science.gov (United States)

    Koizumi, Noriko; Okumura, Naoki; Kinoshita, Shigeru

    2012-02-01

    This review describes our recent attempts to develop new therapeutic modalities for corneal endothelial disease using animal models including non-human primate model in which the proliferative ability of corneal endothelial cells is severely limited, as is the case in humans. First, we describe our attempt to develop new surgical treatments using cultivated corneal endothelial cells for advanced corneal endothelial dysfunction. It includes two different approaches; a "corneal endothelial cell sheet transplantation" with cells grown on a type-I collagen carrier, and a "cell-injection therapy" combined with the application of Rho-kinase (ROCK) inhibitor. Recently, it was reported that the selective ROCK inhibitor, Y-27632, promotes cell adhesion and proliferation and inhibits the apoptosis of primate corneal endothelial cells in culture. When cultivated corneal endothelial cells were injected into the anterior chamber of animal eyes in the presence of ROCK inhibitor, endothelial cell adhesion was promoted and the cells achieved a high cell density and a morphology similar to corneal endothelial cells in vivo. We are also trying to develop a novel medical treatment for the early phase of corneal endothelial disease by the use of ROCK inhibitor eye drops. In rabbit and monkey experiments using partial endothelial dysfunction models, corneal endothelial wound healing was accelerated by the topical application of ROCK inhibitor to the ocular surface, and resulted in the regeneration of a corneal endothelial monolayer with a high endothelial cell density. We are now trying to advance the clinical application of these new therapies for patients with corneal endothelial dysfunction.

  15. Refractive improvements and safety with topography-guided corneal crosslinking for keratoconus: 1-year results.

    Science.gov (United States)

    Nordström, Maria; Schiller, Maria; Fredriksson, Anneli; Behndig, Anders

    2017-07-01

    To assess the refractive improvements and the corneal endothelial safety of an individualised topography-guided regimen for corneal crosslinking in progressive keratoconus. An open-label prospective randomised clinical trial was performed at the Department of Clinical Sciences, Ophthalmology, Umeå University Hospital, Umeå, Sweden. Thirty-seven patients (50 eyes) with progressive keratoconus planned for corneal crosslinking were included. The patients were randomised to topography-guided crosslinking (photorefractive intrastromal crosslinking (PiXL); n=25) or uniform 9 mm crosslinking (corneal collagen crosslinking (CXL); n=25). Visual acuity, refraction, keratometry (K1, K2 and Kmax) and corneal endothelial morphometry were assessed preoperatively and at 1, 3, 6 and 12 months postoperatively. The PiXL treatment involved an asymmetrical treatment zone centred on the area of maximum corneal steepness with treatment energies ranging from 7.2 to 15.0 J/cm(2); the CXL treatment was a uniform 9 mm 5.4 J/cm(2) pulsed crosslinking. The main outcome measures were changes in refractive errors and corneal endothelial cell density. The spherical refractive errors decreased (pkeratoconus with decreased spherical refractive errors and improved visual acuity, without damage to the corneal endothelium. NCT02514200, Results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. Less Invasive Corneal Transepithelial Electrical Resistance Measurement Method.

    Science.gov (United States)

    Uematsu, Masafumi; Mohamed, Yasser Helmy; Onizuka, Naoko; Ueki, Ryotaro; Inoue, Daisuke; Fujikawa, Azusa; Sasaki, Hitoshi; Kitaoka, Takashi

    2016-01-01

    To evaluate acute corneal permeability changes after instillation of benzalkonium chloride (BAC) using a newly developed in vivo less invasive corneal transepithelial electrical resistance (TER) measurement method in animals and humans. We previously developed an in vivo method for measuring corneal TER using intraocular electrodes in animals. This method can be used to precisely measure the decline of the corneal barrier function after instillation of BAC. To lessen the invasiveness of that procedure, we further refined the method for measuring the corneal TER by developing electrodes that could be placed on the surface of the cornea and in the conjunctival sac instead of inserting them into the anterior chamber. Corneal TER changes before and after exposure to 0.02% BAC were determined in this study using the new device in both rabbits and humans. There was a significant decrease in the corneal TER after exposure of the cornea to 0.02% BAC solution in both rabbits and humans (Pmeasurement method enables us for the first time to measure TER of the human cornea, allowing safe and reliable investigation of the direct effect of different eye drop treatments on the corneal epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Endothelium-dependent relaxation of blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Hynes, M.R.

    1987-01-01

    Dilation of blood vessels in response to a large number of agents has been shown to be dependent on an intact vascular endothelium. The present studies examine some aspects of endothelium-dependent vasodilation in blood vessels of the rabbit and rat. Using the rabbit ear artery and the subtype-selective muscarinic antagonist pirenzepine, muscarinic receptors of the endothelium and smooth muscle cells were shown to be of the low affinity M/sub 2/ subtype. Inhibition of (/sup 3/H)(-)quinuclidinyl benzilate was used to determine affinity for the smooth muscle receptors while antagonism of methacholine induced vasodilation yielded the endothelial cell receptor affinity. The effect of increasing age (1-27 months) on endothelium-dependent relaxation was studied in aortic rings, perfused tail artery and perfused mesenteric bed of the Fisher 344 rat. The influence of endothelium on contractile responses was examined using the perfused caudal artery.

  18. Comparison of in vitro eye irritation potential by bovine corneal opacity and permeability (BCOP) assay to erythema scores in human eye sting test of surfactant-based formulations.

    Science.gov (United States)

    Cater, Kathleen C; Harbell, John W

    2008-01-01

    The bovine corneal opacity and permeability (BCOP) assay can be used to predict relative eye irritation potential of surfactant-based personal care formulations relative to a corporate benchmark. The human eye sting test is typically used to evaluate product claims of no tears/no stinging for children's bath products. A preliminary investigation was conducted to test a hypothesis that the BCOP assay could be used as a prediction model for relative ranking of human eye irritation responses under conditions of a standard human eye sting test to surfactant-based formulations. BCOP assays and human eye sting tests were conducted on 4 commercial and 1 prototype body wash (BW) developed specifically for children or as mild bath products. In the human eye sting test, 10 mul of a 10% dosing solution is instilled into one eye of each panelist (n = 20), and the contralateral eye is dosed with sterile water as a control. Bulbar conjunctival erythema responses of each eye are graded at 30 seconds by an ophthalmologist. The BCOP assay permeability values (optical density at 490 nm [OD(490)]) for the 5 BWs ranged from 0.438 to 1.252 (i.e., least to most irritating). By comparison, the number of panelists exhibiting erythema responses (mild to moderately pink) ranged from 3 of 20 panelists for the least irritating BW to 10 of 20 panelists for the most irritating BW tested. The relative ranking of eye irritation potential of the 5 BWs in the BCOP assay compares favorably with the relative ranking of the BWs in the human eye sting test. Based on these findings, the permeability endpoint of the BCOP assay, as described for surfactant-based formulations, showed promise as a prediction model for relative ranking of conjunctival erythema responses in the human eye. Consequently, screening of prototype formulations in the BCOP assay would allow for formula optimization of mild bath products prior to investment in a human eye sting test.

  19. Corneal trephination with the femtosecond laser.

    Science.gov (United States)

    Meltendorf, Christian; Schroeter, Jan; Bug, Reinhold; Kohnen, Thomas; Deller, Thomas

    2006-10-01

    To evaluate the feasibility and cut quality of corneal trephination in human donor corneal tissue with the femtosecond laser. Twelve human corneoscleral discs were inserted in an artificial anterior chamber. After corneal thickness measurement and tonometry, the cornea was mounted on a femtosecond laser (FEMTEC; 20/10 Perfect Vision, Heidelberg, Germany) through a contact lens (patient interface). Trephination was performed with diameters of 7.0, 7.5, 8.0, and 8.5 mm in 3 corneas each. The corneal button was removed from the corneoscleral disc in 2 of the 3 corneas in each case. The cut was not manipulated in the remaining corneas to enable histologic detection of possible tissue bridges. The cut edges were macroscopically and light-microscopically examined for quality. Corneal buttons and corneoscleral discs could be separated by blunt dissection in all cases. Tissue bridges were more common in thicker edematous corneas than in thinner ones. Both the macro- and microscopic examination disclosed smooth rectilinear cut margins with a perpendicular cut edge. This feasibility study shows that the femtosecond laser enables sufficient trephination of human donor corneas.

  20. [Use of the most recent reagent (CuFL) for stimulation of NO synthesis by the medicinal leech salivary cell secretion in the cultures of human endothelium cells (HUVEC) and in rat cardiomiocytes].

    Science.gov (United States)

    Baskova, I P; Alekseeva, A Iu; Kostiuk, S V; Neverova, M E; Smirnova, T D; Veĭko, N N

    2012-01-01

    The medicinal leech salivary cell secretion (SCS) may stimulate NO-production in cultures of human endothelium cells (HUVEC) and rat cardiomiocytes (RCM). This effect was detected using a NO specific reagent, - the complex Cu2+ with a fluorescein derivative (Cu-Fl). NO had also been detected in the cells by fluorescent electronic microscopy and determined quantitatively in the cells and in culture fluid by the fluorescence method. SCS stimulated NO synthesis in HUVEC cells (but not in RCM) is accompanied by NO release into intercellular space. Localization of NO synthesis centers is presented and it is shown that the increase in NO levels during the SCS action on HUVEC and RCM is associated with the increase in the activity of eNOS/nNOS, but not iNOS. In endothelial cells SCS activates nitrosylation processes, assessed by the increase of nitrite-ions in the culture medium. It is therefore important to use Cu-Fl, other than Griss-reagent, during the first hour of analysis of NO synthesis. The NO-depended mechanism of SCS action on endothelial cells might be a factor in providing of its positive action in hirudotheraphy.

  1. Expression of basic fibroblast growth factor in rabbit corneal alkali wounds in the presence and absence of granulocytes.

    Science.gov (United States)

    Gan, Lisha; Fagerholm, Per; Palmblad, Jan

    2005-06-01

    To study the expression of basic fibroblast growth factor (bFGF) in the early phases of corneal wound healing in the presence or absence of granulocytes. A central penetrating corneal alkali wound was inflicted to one eye in each of 14 rabbits under general anaesthesia. Subsequently, seven of the rabbits were given fucoidin i.v. for 36 hours in order to block the selectins on the vascular endothelium, thus preventing blood granulocytes from entering the tissues. Then, corneas were prepared, stained for bFGF and evaluated by light microscopy. Whereas normal corneal epithelium expressed bFGF weakly, conjunctival epithelium did so strongly, particularly the goblet cells. The corneal endothelium showed medium staining, while keratocytes and vascular endothelial cells did not consistently express bFGF. After 36 hours of wound healing, a marked up-regulation of bFGF expression was observed in the corneal epithelial and endothelial cells, as well as in the keratocytes, that were migrating into the wound. No other changes were noted. None of these features were modulated when granulocyte emigration was prevented by fucoidin administration. The difference in bFGF expression between the corneal and conjunctival epithelium suggests a role for this growth factor in the barrier function at the limbus. Moreover, the specific presence of bFGF in cells migrating into the wound indicates the participation of bFGF in corneal wound healing. Expression of bFGF was independent of granulocytes.

  2. Corneal decompensation following filtering surgery with the Ex-PRESS® mini glaucoma shunt device

    Directory of Open Access Journals (Sweden)

    Tojo N

    2015-03-01

    Full Text Available Naoki Tojo, Atsushi Hayashi, Akio Miyakoshi Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan Purpose: To report a case of corneal decompensation due to the Ex-PRESS® mini glaucoma shunt device (Ex-PRESS.Patient and methods: A 75-year-old man had pseudoexfoliation glaucoma in his right eye. He underwent filtration surgery with Ex-PRESS. His intraocular pressure was 7 mmHg after 9 months.Results: We observed partial decompensation of the corneal endothelium adjacent to the filtering bleb. Specular microscopy revealed a marked decrease in the endothelial cell density at the center of the cornea.Conclusion: Anterior segment optical coherence tomography is very useful for evaluating corneal edema and the position of Ex-PRESS. It is important to follow up with an examination of the corneal endothelial cells. Keywords: Ex-PRESS, bullous keratopathy, trabeculectomy, complication, cornea 

  3. VEGF Deficit is Involved in Endothelium Dysfunction in Preeclampsia

    Institute of Scientific and Technical Information of China (English)

    周琼; 刘海意; 乔福元; 吴媛媛; 徐京晶

    2010-01-01

    This study examined the association of expression of vascular endothelial growth factor(VEGF),a promoter of angiogenesis,with endothelium dysfunction in preeclampsia.The level of VEGF protein and mRNA in the placenta and peripheral blood samples of 30 preeclampsia patients and 30 normotensive pregnant women was measured by immunohistochemistry,real-time reverse transcriptase-polymerase chain reaction(RT-PCR) and enzyme-linked immunosorbent assay(ELISA),respectively.VEGF expression in the human umbilical vei...

  4. Transport of L-carnitine in human corneal epithelial cells%左旋肉碱在人角膜缘上皮细胞的转运特性

    Institute of Scientific and Technical Information of China (English)

    李宝全; 毕建成; 安翠平; 李延峰; 许顺江

    2015-01-01

    Objective To investigate the characteristics of L-carnitine (LC)import into human corneal limbal epithelia (HCLE)cells,and to provide an experimental basis for further study of transport mechanism of LC in human ocular epithelium.Methods The transport of [3 H ]-L-carnitine was determined using the radio uptake assay and the apparent kinetic parameters of carnitine uptake by HCLE were estimated by nonlinear regression curve fitting according to the Michaelis-Menten equation.Results The uptake of LC into HCLE cells was saturable and time-dependent,and it also required the presence of Na+ in the external medium.An Eadie-Hofstee plot showed two distinct components:a high-and a low-affinity carnitine transport system in HCLE cells.The unlabelled LC and acetyl-L-carnitine competitively inhibited the uptake of [3 H]-L-carnitine by HCLE cells.Conclusion L-carnitine is transported into HCLE cells from tears by an active carrier mediated transport system and exerts its biological function.%目的:检测左旋肉碱(L-carnitine,LC)在人角膜缘上皮(human corneal limbal epithelia,HCLE)细胞的转运特性,为进一步阐明 HCLE细胞对 LC的转运机制提供实验依据。方法采用放射摄入实验检测 HCLE细胞对[3 H]-L-carnitine的转运功能,并利用米氏方程(Michaelis-Menten equation)分析计算其动力学参数。结果HCLE细胞对 LC的转运过程具有饱和性和时间依赖性,并且反应体系中需要 Na+的存在。Eadie-Hofstee作图提示 HCLE细胞存在高亲和力和低亲合力2个肉碱转运系统。非标记 LC和乙酰化左旋肉碱可竞争性抑制[3 H]-L-carnitine的转运过程。结论 HCLE细胞可通过主动转运过程将泪液中的左旋肉碱摄入细胞内,发挥其生物学功能。

  5. Corneal reconstruction by stem cells and bioengineering

    Directory of Open Access Journals (Sweden)

    Arjamaa O

    2012-09-01

    Full Text Available Olli ArjamaaDepartment of Biology, University of Turku, Turku, FinlandAbstract: Almost 300 million people are visually impaired worldwide due to various eye diseases such as cataracts, glaucoma, age-related macular degeneration, diabetic retinopathy, and corneal diseases. Notably, ten million people are blind because of severe ocular surface diseases and the majority of cases occur in developing countries. Blinding ocular surface diseases have, however, become treatable by grafting of surface layers, or by full-thickness transplantation of the cornea. As the demand for human corneal tissue for surface reconstruction and transplantation far exceeds the supply, methods are being developed to supplement tissue donation. Xenotransplantation of the cornea or cells from genetically modified pigs may become one of the solutions. Transplantation of limbal stem cells within tissue biopsies, to restore the transparency of the cornea is another remarkable method, which has shown its potential in several clinical studies. The combination of stem cell technology and engineering of biocompatible tissue equivalent, still at preclinical stage, has shown us how synthetic corneal tissue is able to guide cultured corneal stromal stem cells of human origin, to become native-like stroma, the most important layer of the cornea. These findings give hope for a large-quantity production of biomaterial for corneal reconstruction. As such, clinical ophthalmologists should become more familiar with the methods of laboratory science.Keywords: eye, grafting, keratoplasty, xenotransplantation, cell reservoir, biocompatible tissue equivalent

  6. Refractive corneal surgery - discharge

    Science.gov (United States)

    Nearsightedness surgery - discharge; Refractive surgery - discharge; LASIK - discharge; PRK - discharge ... You had refractive corneal surgery to help improve your vision. This surgery uses a laser to reshape your cornea. It corrects mild-to-moderate nearsightedness, ...

  7. Equine corneal surgery and transplantation.

    Science.gov (United States)

    Denis, Heidi M

    2004-08-01

    Corneal disease is common in equine ophthalmology and requires vigilant monitoring and appropriate therapy to optimize the outcome. Many equine corneal diseases, particularly those that progress rapidly, may benefit from surgical intervention. These include descemetoceles, deep corneal lacerations and ulcers, corneal perforation/iris prolapse, ulcerative keratitis, corneal stromal abscesses, and corneoscleral neoplasia. Indications for corneal transplantation include optical, tectonic, therapeutic, and cosmetic purposes. Corneal transplantation is most often implemented in equine patients for tectonic and therapeutic reasons when a cornea is compromised by corneal stromal abscess, iris prolapse, or neoplasia. This article provides an outline of when to consider surgical intervention for corneal disease, the procedures available and expected outcomes, and how appropriate early surgical intervention can dramatically improve the end result.

  8. Central corneal abscess.

    Science.gov (United States)

    van Bijsterveld, O P

    1976-05-01

    Central corneal abscess developed in the experimental animal after inoculation of biologically active staphylococcal strains in a paracentral epithelial lesion of the cornea. These abscesses did not ulcerate, developed only with high inocula, occurred more frequently in immunized rabbits. A serpiginous type of ulceration did not develop at the site of the initial epithelial lesion nor at any other place in the cornea. Histologically, the lesions consisted of densely packed polymorphonuclear leukocytes between the corneal lamellae.

  9. Effects of diabetic keratopathy on corneal optical density, central corneal thickness, and corneal endothelial cell counts.

    Science.gov (United States)

    Gao, Feng; Lin, Tao; Pan, Yingzhe

    2016-09-01

    Diabetic keratopathy is an ocular complication that occurs with diabetes. In the present study, the effect of diabetic keratopathy on corneal optical density, central corneal thickness, and corneal endothelial cell count was investigated. One hundred and eighty diabetic patients (360 eyes) were enrolled in the study during the period from March, 2012 to March, 2013. The patients were divided into three age groups: 10 years, with 60 patients per group (120 eyes). During the same period, 60 healthy cases (120 eyes) were selected and labeled as the normal control group. The Pentacam was used to measure the corneal optical density, and central corneal thickness. Specular microscopy was used to examine the corneal endothelial cell density. The coefficient of partial correlation was used to control age and correlate the analysis between the corneal optical density, corneal endothelial cell density, and central corneal thickness. The stage of the disease, the medial and intimal corneal optical density and central corneal thickness was analyzed in the diabetes group. The corneal optical density in the diabetes group increased compared with that of the normal control group. The medial and intimal corneal optical density and central corneal thickness were positively correlated with the course of the disease. However, the corneal endothelial cell density was not associated with the course of diabetes. There was a positive association between the medial and intimal corneal optical density and central corneal thickness of the diabetic patients. In conclusion, the results of the present study show that medial and intimal corneal optical density and central corneal thickness were sensitive indicators for early diabetic keratopathy.

  10. Chronic Kidney Disease and Endothelium

    Directory of Open Access Journals (Sweden)

    Damir Rebić

    2015-07-01

    Full Text Available The endothelial cell layer is responsible for molecular traffic between the blood and surrounding tissue, and endothelial integrity plays a pivotal role in many aspects of vascular function. Cardiovascular disease (CVD is the main cause of death in patients with chronic kidney disease (CKD and its incidence and severity increase in direct proportion with kidney function decline. Non-traditional risk factors for CVDs, including endothelial dysfunction (ED, are highly prevalent in this population and play an important role in cardiovascular (CV events. ED is the first step in the development of atherosclerosis and its severity has prognostic value for CV events. Several risk markers have been associated with ED. Reduced bioavailability of nitric oxide plays a central role, linking kidney disease to ED, atherosclerosis, and CV events. Inflammation, loss of residual renal function, and insulin resistance are closely related to ED in CKD. ED may be followed by structural damage and remodelling that can precipitate both bleeding and thrombotic events. The endothelium plays a main role in vascular tone and metabolic pathways. ED is the first, yet potentially reversible step in the development of atherosclerosis and its severity has prognostic value for CV events.

  11. Repeatability and interobserver reproducibility of Artemis-2 high-frequency ultrasound in determination of human corneal thickness

    Directory of Open Access Journals (Sweden)

    Ogbuehi KC

    2012-05-01

    Full Text Available Kelechi C Ogbuehi, Uchechukwu L OsuagwuOutpatient Clinic, Department of Optometry, King Saud University, Riyadh, Kingdom of Saudi ArabiaBackground: The purpose of this study was to assess the repeatability and limits of agreement of corneal thickness values measured by a high-frequency ultrasound (Artemis-2, hand-held ultrasound pachymeter (DGH-500 and a specular microscope (SP-3000P.Methods: Central corneal thickness (CCT was analyzed in this prospective randomized study that included 32 patients (18 men and 14 women aged 21–24 years. Measurements were obtained in two sessions, one week apart, by two examiners with three devices in a randomized order. Nine measurements were taken (three with each device on one randomly selected eye of each patient in each measurement session. The coefficient of repeatability and interobserver reproducibility for the values of each method were calculated. The limits of agreement between techniques were also evaluated.Results: There were no significant differences in CCT values between sessions for each of the three devices (P > 0.05. The repeatability coefficients for the Artemis-2 (±8 µm/±9 µm were superior to those of the SP-3000P (±9 µm/±11 µm and DGH 500 (±12 µm/±12 µm in session 1/session 2 respectively, while the interobserver reproducibility index (differences between session 1 and session 2 was superior for the SP-3000P (±17 µm with respect to DHG-500 (±29 µm and the Artemis-2 (±31 µm. In session 1 and session 2, the limits of agreement between the techniques were 35 µm to -31 µm and 34 to -20 µm, respectively, for DGH-500 versus Artemis-2, 73 µm to 3 µm and 60 µm to 9 µm for Artemis-2 versus SP-3000P, and 58 µm to 22 µm and 72 µm to 10 µm for DGH-500 versus SP-3000P comparisons. The DGH-500 and Artemis-2 gave similar values (P > 0.05 in both sessions, but both (Artemis-2 and DGH-500 values were significantly greater than that of the SP-3000P (P < 0.05 in both sessions

  12. Human secretory phospholipase A(2), group IB in normal eyes and in eye diseases

    DEFF Research Database (Denmark)

    Prause, Jan U; Bazan, Nicolas G; Heegaard, Steffen

    2007-01-01

    study was to identify human GIB (hGIB) in the normal human eye and investigate the pattern of expression in patients with eye diseases involving hGIB-rich cells. METHODS: Human GIB mRNA was identified in the human retina by means of in situ hybridization and polymerase chain reaction. Antibodies against...... hGIB were obtained and immunohistochemical staining was performed on paraffin-embedded sections of normal and pathological eyes. Donor eyes from patients with descemetization of the cornea, Fuchs' corneal endothelial dystrophy, age-related macular degeneration, malignant choroidal melanoma......, retinitis pigmentosa and glaucoma were evaluated. RESULTS: Expression of hGIB was found in various cells of the eye. The most abundant expression was found in retinal pigment epithelium (RPE) cells, the inner photoreceptor segments, ganglion cells and the corneal endothelium. We explored diseases involving...

  13. Value of recombinant human epidermal growth factor in corneal wound repair after corneal foreign body elimination%重组人表皮生长因子修复角膜异物剔除后角膜创面的分析

    Institute of Scientific and Technical Information of China (English)

    韩宏杰

    2013-01-01

    目的:探讨重组人表皮生长因子( recombinant human epidermal growth factor ,rhEGF)对角膜异物剔除后角膜创面的修复效果。方法:选取2012-01/2013-01来我院就诊的角膜异物患者102例188眼为研究对象,根据随机数字表法分为治疗组和对照组。两组患者均于裂隙灯下剔除角膜异物,术后治疗组患眼应用重组人表皮生长因子衍生物滴眼液联合妥布霉素进行治疗,对照组患眼仅应用妥布霉素治疗。比较两组治疗3d后的疗效。结果:治疗后3d,治疗组的治愈率(93.7%)明显高于对照组治愈率(76.6%),差异具有统计学意义(P<0.05)。治疗组荧光素染色阴性率为90.4%,高于对照组的46.8%,差异具有统计学意义(P<0.01)。结论:rhEGF能够特异性和角膜上皮细胞受体结合,缩短损伤的角膜上皮的创伤愈合时间,加速愈合,是一种治疗外伤性角膜上皮缺损的有效方法。%AIM: To investigate the repair efficacy of recombinant human epidermal growth factor on corneal epithelium after corneal foreign body eliminating operation. METHODS:There were 102 patients with corneal foreign body ( 188 affected eyes ) chosen for the study. All patients were divided into treatment group and control group according to the random number table. Both groups received corneal foreign body elimination by slit lamp.Postoperatively, the treatment group was given eye drops containing epidermal growth factor ( JinYinShu) combined with tobramycin while the control group was only administrated with tobramycin. Treatment effects were compared 3d after treatment. RESULTS: Three days after treatment, the cure rate in the treatment group ( 93.7%), was significantly higher than that in the control group (76.6%) (P<0.05).In the treatment group, fluorescein staining was negative in 90.4%of the cases, significantly higher than that in the control group (46.8%) (P<0

  14. Synergistic Induction of Eotaxin and VCAM-1 Expression in Human Corneal Fibroblasts by Staphylococcal Peptidoglycan and Either IL-4 or IL-13

    Directory of Open Access Journals (Sweden)

    Ken Fukuda

    2011-01-01

    Conclusions: Interaction of innate and adaptive immunity, as manifested by synergistic stimulation of eotaxin and VCAM-1 expression in corneal fibroblasts by peptidoglycan and Th2 cytokines, may play an important role in tissue eosinophilia associated with ocular allergy.

  15. Biochemical consequences of the NOS3 Glu298Asp variation in human endothelium: altered caveolar localization and impaired response to shear.

    Science.gov (United States)

    Joshi, Mandar S; Mineo, Chieko; Shaul, Philip W; Bauer, John Anthony

    2007-09-01

    Human endothelial nitric oxide synthase (NOS3) gene polymorphism at Exon 7 (Glu298Asp) has been linked to vascular endothelial dysfunction, but the mechanisms are not defined. Shear is a key modulator of NOS3 function in vivo and association with caveolae is important for the control of NOS3 protein activity. Here we tested the hypothesis that altered enrichment of NOS3 in the caveolar membrane defines Glu298Asp genotype-specific responses and NOS3 activity. Basal caveolar membrane enrichment was carried out to quantitate the NOS3 enrichment in caveolae. Cells were subjected to shear and NOS3 protein levels, phosphorylation, enzyme function were investigated. Variant genotypes had lower NOx production pre- and post-shear, but no genotype-dependent alterations in pNOS3 were observed. Asp variants had significantly lower NOS3 enrichment in the caveolar membrane fraction. Further, immunoprecipitation studies demonstrated that Asp variants had substantially less NOS3/Cav-1 association (approximately 40%) during static conditions. Furthermore, acute shear causes impaired NOS3/Cav-1 dissociation in Asp variants. The results from immunoprecipitation studies were in complete agreement with caveolar membrane preparation findings. Collectively, these data demonstrate functional consequences of the Glu298Asp NOS3 variation and further define disruption of NOS3 caveolar localization and shear-induced mobilization as the primary mechanism responsible for these differences.

  16. Immunohistochemical localization of urokinase-type plasminogen activator, urokinase-type plasminogen activator receptor and α2-antiplasmin in human corneal perforation: a case report

    Directory of Open Access Journals (Sweden)

    Sugioka Koji

    2012-11-01

    Full Text Available Abstract Background Corneal ulceration leading to perforation is associated with infectious and non-infectious destructive conditions in the cornea. The fibrinolytic (plasminogen/plasmin system is considered to contribute to tissue remodeling in the wound healing process and it is believed to play an important role in proteolysis and fibrosis. To determine the localization of urokinase-type plasminogen activator (u-PA, u-PA receptor (u-PAR and α2-antiplasmin (α2AP in the tissue of a corneal perforation, we investigated immunohistochemical expressions of u-PA, u-PAR, α2AP, CD68, and α-smooth muscle actin (α-SMA in a patient with corneal perforation that developed from an ulcer of no clear cause. Case presentation The patient was a 77-year-old woman who presented with a perforated corneal ulcer in her right eye. The cause of her corneal ulcer was unknown. Double immunohistochemistry was performed for the combinations of u-PA with u-PAR, CD68 or α-SMA and α2AP with CD68 or α-SMA to detect the localization of u-PA and α2AP. u-PA and u-PAR co-localization was seen in the corneal ulceration area. u-PA was mainly observed in CD68-positive cells and in some α-SMA positive cells. On the other hand, α2AP was not expressed in CD68-positive cells, but was expressed in α-SMA positive cells. Conclusion We identified expression of the u-PA/u-PAR complex and α2AP in a patient with a corneal ulcer. These two molecules are believed to play a crucial role in inflammatory cell recruitment, ECM synthesis and degradation during corneal wound healing.

  17. Known players, new interplay in atherogenesis: Chronic shear stress and carbamylated-LDL induce and modulate expression of atherogenic LR11 in human coronary artery endothelium.

    Science.gov (United States)

    Bajari, Tarek M; Winnicki, Wolfgang; Gensberger, Eva-Theres; Scharrer, Susanna I; Regele, Heinz; Aumayr, Klaus; Kopecky, Chantal; Gmeiner, Bernhard M; Hermann, Marcela; Zeillinger, Robert; Sengölge, Gürkan

    2014-02-01

    In this study we examined whether low-density lipoprotein (LDL) receptor family members represent a link between blood flow characteristics and modified low-density lipoproteins involved in endothelial injury, a pivotal factor in atherogenesis. We demonstrated the expression of pro-atherogenic LDL receptor relative (LR11) for the first time in human coronary artery endothelial cells (HCAEC) in vitro and in vivo. Next, LR11 expression and regulation were explored in HCAEC cultured conventionally or on the inner surface of hollow fiber capillaries under exposure to shear stress for 10 days in the presence or absence of LDL. There was no LR11 expression under static conditions. When exposed to chronic low shear stress (2.5 dynes/cm²) transmembrane and soluble endothelial-LR11 were detected in high levels irrespective of the type of LDL added (carbamylated or native). In contrast, chronic high shear stress (25 dynes/cm²) inhibited the LR11-inducing effect of LDL such that transmembrane and soluble LR11 expression became non-detectable with native LDL. Carbamylated LDL significantly counteracted this atheroprotective effect of high shear stress as shown by lower, yet sustained expression of soluble and transmembrane LR11. Oxidised LDL showed similar effects compared to carbamylated LDL but caused significantly lower LR11 expression under chronic high shear stress. Medium from HCAEC under LR11-inducing conditions enhanced vascular smooth muscle cell migration, which was abrogated by the anti-LR11 antibody. Expression of LR11 depended entirely on p38MAPK phosphorylation. We conclude that coronary endothelial LR11 expression modulated by LDL and chronic shear stress contributes to atherogenesis. LR11 and p38MAPK are potential targets for prevention of atherosclerosis.

  18. A corneal mold to restore normal corneal dimensions.

    Science.gov (United States)

    Swinger, C A; Kornmehl, E W; York, S; Forman, J S

    1986-01-01

    A corneal mold is described that provides an MK corneal button of normal thickness and curvature from an edematous, post-mortem button. The uniform, processed tissue can then be used for experimental refractive surgery.

  19. Indications for Corneal Transplantation at a Tertiary Referral Center in Tehran

    Directory of Open Access Journals (Sweden)

    Mohammad Zare

    2010-01-01

    Full Text Available Purpose: To report the indications and techniques of corneal transplantation at a tertiary referral center in Tehran over a 3-year period. Methods: Records of patients who had undergone any kind of corneal transplantation at Labbafinejad Medical Center, Tehran, Iran from March 2004 to March 2007 were reviewed to determine the indications and types of corneal transplantation. Results: During this period, 776 eyes of 756 patients (including 504 male subjects with mean age of 41.3±21.3 years underwent corneal transplantation. The most common indication was keratoconus (n=317, 40.8% followed by bullous keratopathy (n=90, 11.6%, non-herpetic corneal scars (n=62, 8.0%, infectious corneal ulcers (n=61, 7.9%, previously failed grafts (n=61, 7.9%, endothelial and stromal corneal dystrophies (n=28, 3.6%, and trachoma keratopathy (n=26, 3.3%. Other indications including Terrien′s marginal degeneration, post-LASIK keratectasia, trauma, chemical burns, and peripheral ulcerative keratitis constituted the rest of cases. Techniques of corneal transplantation included penetrating keratoplasty (n=607, 78.2%, deep anterior lamellar keratoplasty (n=108, 13.9%, conventional lamellar keratoplasty (n=44, 5.7%, automated lamellar therapeutic keratoplasty (n=8, 1.0%, and Descemet stripping endothelial keratoplasty (n=6, 0.8% in descending order. The remaining cases were endothelial keratoplasty and sclerokeratoplasty. Conclusion: In this study, keratoconus was the most common indication for penetrating keratoplasty which was the most prevalent technique of corneal transplantation. However, deep anterior lamellar keratoplasty is emerging as a growing alternative for corneal pathologies not involving the endothelium.

  20. Indications for Corneal Transplantation at a Tertiary Referral Center in Tehran

    Science.gov (United States)

    Zare, Mohammad; Javadi, Mohammad-Ali; Einollahi, Bahram; Baradaran-Rafii, Alireza; Ghanavati, Siamak Zarei; Farsani, Mohammad-Reza Jamshidi; Mohammadi, Parviz; Feizi, Sepehr

    2010-01-01

    Purpose To report the indications and techniques of corneal transplantation at a tertiary referral center in Tehran over a 3-year period. Methods Records of patients who had undergone any kind of corneal transplantation at Labbafinejad Medical Center, Tehran, Iran from March 2004 to March 2007 were reviewed to determine the indications and types of corneal transplantation. Results During this period, 776 eyes of 756 patients (including 504 male subjects) with mean age of 41.3±21.3 years underwent corneal transplantation. The most common indication was keratoconus (n=317, 40.8%) followed by bullous keratopathy (n=90, 11.6%), non-herpetic corneal scars (n=62, 8.0%), infectious corneal ulcers (n=61, 7.9%), previously failed grafts (n=61, 7.9%), endothelial and stromal corneal dystrophies (n=28, 3.6%), and trachoma keratopathy (n=26, 3.3%). Other indications including Terrien’s marginal degeneration, post-LASIK keratectasia, trauma, chemical burns, and peripheral ulcerative keratitis constituted the rest of cases. Techniques of corneal transplantation included penetrating keratoplasty (n=607, 78.2%), deep anterior lamellar keratoplasty (n=108, 13.9%), conventional lamellar keratoplasty (n=44, 5.7%), automated lamellar therapeutic keratoplasty (n=8, 1.0%), and Descemet stripping endothelial keratoplasty (n=6, 0.8%) in descending order. The remaining cases were endothelial keratoplasty and sclerokeratoplasty. Conclusion In this study, keratoconus was the most common indication for penetrating keratoplasty which was the most prevalent technique of corneal transplantation. However, deep anterior lamellar keratoplasty is emerging as a growing alternative for corneal pathologies not involving the endothelium. PMID:22737335

  1. Collagens and proteoglycans of the corneal extracellular matrix

    Directory of Open Access Journals (Sweden)

    Y.M. Michelacci

    2003-08-01

    Full Text Available The cornea is a curved and transparent structure that provides the initial focusing of a light image into the eye. It consists of a central stroma that constitutes 90% of the corneal depth, covered anteriorly with epithelium and posteriorly with endothelium. Its transparency is the result of the regular spacing of collagen fibers with remarkably uniform diameter and interfibrillar space. Corneal collagen is composed of heterotypic fibrils consisting of type I and type V collagen molecules. The cornea also contains unusually high amounts of type VI collagen, which form microfibrillar structures, FACIT collagens (XII and XIV, and other nonfibrillar collagens (XIII and XVIII. FACIT collagens and other molecules, such as leucine-rich repeat proteoglycans, play important roles in modifying the structure and function of collagen fibrils.Proteoglycans are macromolecules composed of a protein core with covalently linked glycosaminoglycan side chains. Four leucine-rich repeat proteoglycans are present in the extracellular matrix of corneal stroma: decorin, lumican, mimecan and keratocan. The first is a dermatan sulfate proteoglycan, and the other three are keratan sulfate proteoglycans. Experimental evidence indicates that the keratan sulfate proteoglycans are involved in the regulation of collagen fibril diameter, and dermatan sulfate proteoglycan participates in the control of interfibrillar spacing and in the lamellar adhesion properties of corneal collagens. Heparan sulfate proteoglycans are minor components of the cornea, and are synthesized mainly by epithelial cells. The effect of injuries on proteoglycan synthesis is discussed.

  2. Advanced glycation end products induce human corneal epithelial cells apoptosis through generation of reactive oxygen species and activation of JNK and p38 MAPK pathways.

    Directory of Open Access Journals (Sweden)

    Long Shi

    Full Text Available Advanced Glycation End Products (AGEs has been implicated in the progression of diabetic keratopathy. However, details regarding their function are not well understood. In the present study, we investigated the effects of intracellular reactive oxygen species (ROS and JNK, p38 MAPK on AGE-modified bovine serum albumin (BSA induced Human telomerase-immortalized corneal epithelial cells (HUCLs apoptosis. We found that AGE-BSA induced HUCLs apoptosis and increased Bax protein expression, decreased Bcl-2 protein expression. AGE-BSA also induced the expression of receptor for advanced glycation end product (RAGE. AGE-BSA-RAGE interaction induced intracellular ROS generation through activated NADPH oxidase and increased the phosphorylation of p47phox. AGE-BSA induced HUCLs apoptosis was inhibited by pretreatment with NADPH oxidase inhibitors, ROS quencher N-acetylcysteine (NAC or neutralizing anti-RAGE antibodies. We also found that AGE-BSA induced JNK and p38 MAPK phosphorylation. JNK and p38 MAPK inhibitor effectively blocked AGE-BSA-induced HUCLs apoptosis. In addition, NAC completely blocked phosphorylation of JNK and p38 MAPK induced by AGE-BSA. Our results indicate that AGE-BSA induced HUCLs apoptosis through generation of intracellular ROS and activation of JNK and p38 MAPK pathways.

  3. Corneal Topography Analysis of Stromal Corneal Dystrophies

    OpenAIRE

    Kocluk, Yusuf; Yalniz-Akkaya, Zuleyha; Burcu, Ayse; Ornek, Firdevs

    2015-01-01

    Objective: The aim was to compare the corneal topography and tomography parameters of macular corneal dystrophy (MCD), granular corneal dystrophy (GCD) and lattice corneal dystrophy (LCD) patients obtained by Scheimpflug imaging system. Methods: The charts, photographs and topography images of patients were reviewed retrospectively. This study included 73 eyes of 73 patients (28 MCD, 20 GCG and 25 LCD patients). Topography images were obtained by Pentacam (Oculus Optikgerate, Wetzlar, Germany...

  4. Corneal stem cells and tissue engineering: Current advancesand future perspectives

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Major advances are currently being made in regenerativemedicine for cornea. Stem cell-based therapiesrepresent a novel strategy that may substituteconventional corneal transplantation, albeit there aremany challenges ahead given the singularities of eachcellular layer of the cornea. This review recapitulatesthe current data on corneal epithelial stem cells,corneal stromal stem cells and corneal endothelialcell progenitors. Corneal limbal autografts containingepithelial stem cells have been transplanted in humansfor more than 20 years with great successful rates,and researchers now focus on ex vivo cultures andother cell lineages to transplant to the ocular surface.A small population of cells in the corneal endotheliumwas recently reported to have self-renewal capacity,although they do not proliferate in vivo . Two mainobstacles have hindered endothelial cell transplantationto date culture protocols and cell delivery methods tothe posterior cornea in vivo . Human corneal stromalstem cells have been identified shortly after therecognition of precursors of endothelial cells. Stromalstem cells may have the potential to provide a directcell-based therapeutic approach when injected tocorneal scars. Furthermore, they exhibit the ability todeposit organized connective tissue in vitro and maybe useful in corneal stroma engineering in the future.Recent advances and future perspectives in the field arediscussed.

  5. [Corneal sensibility following epikeratophakia].

    Science.gov (United States)

    Biermann, H; Grabner, G; Baumgartner, I; Reim, M

    1992-07-01

    The postoperative rate of reinnervation following corneal surgery is widely considered to be a useful indicator of the healing process. This study reports the corneal sensitivity of 14 patients following epikeratophakia for different indications (myopia, aphakia and keratoconus) after time periods ranging from 7 to 104 weeks. All transplants were clear at the time of measurement. A newly developed aesthesiometer (using a low electric current for stimulation) was employed. Nine positions on the operated eye were chosen for the measurements, five locations of the non-operated fellow eye served as controls. On the operated eye the corneal sensitivity peripheral to the trephination were significantly reduced at the 9 and 12 o'clock positions as compared to the other eye. The 3 and 6 o'clock locations showed no significant difference. On the epikeratophakia lenticule the sensitivity was significantly reduced at all points, the center showing the largest difference (p less than 0.001). No correlation with age, sex or the indication for the procedure was observed. Although there was a trend of a positive correlation between the postoperative time period and the central corneal sensitivity, the follow-up was too short to reach significant levels. The nearly complete lack of corneal sensitivity, particularly in the center of the transplant is therefore well compatible with its long-time survival, even when the lenticule has been prepared with the cryolathe and lyophilized for transportation.

  6. Scutellarin Reduces Endothelium Dysfunction through the PKG-I Pathway

    Directory of Open Access Journals (Sweden)

    Xiaohua Du

    2015-01-01

    Full Text Available Purpose. In this report, we investigated the protective mechanism of scutellarin (SCU in vitro and in vivo which could be involved in endothelial cGMP-dependent protein kinase (PKG, vasodilator stimulated phosphoprotein (VASP pathway, and vascular endothelium dysfunction (EtD. Method. Human brain microvascular endothelial cells (HBMECs with hypoxia reoxygenation (HR treatment and rats with cerebral ischemia reperfusion (CIR treatment were applied. Protein and mRNA expression of PKG, VASP, and p-VASP were evaluated by Western blot and RT-PCR methods. Vascular EtD was assessed by using wire myography to determine endothelium-dependent vasorelaxation in isolated rat basilar artery (BA. Result. In cultured HBMECs, SCU (0.1, 1, and 10 μM increased cell viability, mRNA, protein level, and phosphorylative activity of PKG and VASP against HR injury. In HR model of BA, SCU increased protein level of P-VASP. In rat CIR model, wire myography demonstrated that SCU (45 and 90 mg/kg, i.v. significantly reduced ischemic size by partially restoring the endothelium dependent vasodilation of BA; PKG inhibitor Rp-8-Br-cGMPS (50 μg/kg, i.v. reversed this protection of SCU in CIR rats. Conclusion. SCU protects against cerebral vascular EtD through endothelial PKG pathway activation.

  7. Methods Development for the Isolation and Culture of Primary Corneal Endothelial Cells

    Science.gov (United States)

    2017-02-01

    stromal fibroblasts (keratocytes). Additional challenges are encountered in attempts to expand isolated cells in culture while maintaining CEC morphology...maintain normal cobblestone morphology and favorable growth. However, no results were reported in this study for cells that had been expanded in...and development. Prog Mol Biol Transl Sci 2015; 134: 7-23. 2. Joyce NC. Proliferative capacity of the corneal endothelium. Progress in Retinal and

  8. Structure of the Proboscis Endothelium in Nemertea.

    Science.gov (United States)

    Magarlamov, Timur Yu; Chernyshev, Alexei V

    2015-12-01

    We studied the ultrastructure of the proboscis endothelium of 14 nemertean species. In all nemerteans examined, the endothelium is organized as a pseudostratified myoepithelium consisting of two types of cells resting on the basal extracellular matrix: apically situated supportive cells and subapical myocytes covered by cytoplasmic sheets of the supportive cells. Myocytes form the inner circular musculature of the proboscis; the endothelium in the bulb of monostiliferous nemerteans lacks myocytes. The endothelium of the studied species differs in the number of rows of muscle fibres (one vs. several rows), the number of myofibrils in myocytes (one vs. two to five), the number of processes of myocytes covered by one supportive cell (one vs. two to 23), and in the number of processes in supportive cells (one vs. two to five). In some of the species, rudimentary cilia of supportive cells were revealed by using cLSM and an antibody against tubulin. The data obtained indicate that the proboscis endothelium in nemerteans is in fact a coelothelium, but recognition of the ancestral state of the coelomic lining in Nemertea is problematic, as the rhynchocoel peritoneum lacks myocytes.

  9. The endothelium - the cardiovascular health barometer.

    Science.gov (United States)

    Herrmann, Joerg; Lerman, Amir

    2008-07-01

    Once considered to fulfill no other purpose than that of a physical barrier between blood and tissue, the multifunctional nature of the endothelium was discovered in the later half of the 20th century. In cardiology, the dysfunctional nature of the endothelium has received even more attention, initially mainly within the research community but later also in the clinical community, serving as a prime example for the translation of bench research to patient care. In this review, the entity of endothelial dysfunction, its modes of diagnosis in clinical practice, its prognostic implications, and its treatment options will be defined. From past conceptual ideas to current practical applications to the road ahead, the endothelium is to be viewed as the cardiovascular health barometer.

  10. Evaluation of inhibitory potential of some selective methanolic plants extracts on biological characteristics of Acanthamoeba castellanii using human corneal epithelial cells in vitro.

    Science.gov (United States)

    Shoaib, Hafiz Muhammad; Muazzam, Ambreen Gul; Mir, Asif; Jung, Suk-Yul; Matin, Abdul

    2013-03-01

    Acanthamoeba is an opportunistic protozoan pathogen and known to be one of the most ubiquitous organisms, play a vital role in ecosystem, and recognized to cause blinding keratitis and rare but fatal granulomatous encephalitis involving the central nervous system with a very poor prognosis. This is due to limited availability of effective anti-Acanthamoeba drugs. The objective of the present study was to determine the efficacy of methanolic plants crude extracts on the viability and biological properties of Acanthamoeba castellanii (T4 genotype) and its cytotoxic effects on human corneal epithelial cells (HCEC). Using HCEC, it was observed that Acanthamoeba exhibited binding (>90 %) and cytotoxicity (>80 %) to host cells. However, plant crude extracts remarkably inhibited more than 70 and 60 % of Acanthamoeba binding and cytotoxicity to HCEC, respectively. It was further established that crude extracts (ranging from 0.1 to 1.5 mg/ml) exhibited amoebicidal effects, i.e., >50 % of trophozoites were killed/reduced at maximum dose (1.5 mg/ml) within 1 h incubation. However, the residual subpopulation remained static over longer incubations. Furthermore, growth assay demonstrated crude extracts inhibited >50 % Acanthamoeba numbers up to 7 days. Our results confirmed that plant crude extracts has inhibitory effects on Acanthamoeba growth and viability. Overall, these findings revealed that tested plant extracts is inhibitory to Acanthamoeba properties associated with pathogenesis. To the best of our knowledge, our findings demonstrated for the first time that selected methanol plant crude extracts exhibits inhibitory effects on biological properties of Acanthamoeba without any toxic effects on HCEC cells in vitro.

  11. F 2 excimer laser (157 nm) radiation modification and surface ablation of PHEMA hydrogels and the effects on bioactivity: Surface attachment and proliferation of human corneal epithelial cells

    Science.gov (United States)

    Zainuddin; Chirila, Traian V.; Barnard, Zeke; Watson, Gregory S.; Toh, Chiong; Blakey, Idriss; Whittaker, Andrew K.; Hill, David J. T.

    2011-02-01

    Physical and chemical changes at the surface of poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels modified by ablation with an F 2 excimer laser were investigated experimentally. An important observation was that only the outer exposed surface layers of the hydrogel were affected by the exposure to 157 nm radiation. The effect of the surface changes on the tendency of cells to adhere to the PHEMA was also investigated. A 0.5 cm 2 area of the hydrogel surfaces was exposed to laser irradiation at 157 nm to fluences of 0.8 and 4 J cm -2. The changes in surface topography were analysed by light microscopy and atomic force microscopy, while the surface chemistry was characterized by attenuated total reflection infrared and X-ray photoelectron spectroscopies. Cell-interfacial interactions were examined based on the proliferation of human corneal limbal epithelial (HLE) cells cultured on the laser-modified hydrogels, and on the unexposed hydrogels and tissue culture plastic for comparison. It was observed that the surface topography of laser-exposed hydrogels showed rippled patterns with a surface roughness increasing at the higher exposure dose. The changes in surface chemistry were affected not only by an indirect effect of hydrogen and hydroxyl radicals, formed by water photolysis, on the PHEMA, but also by the direct action of laser radiation on PHEMA if the surface layers of the gel become depleted of water. The laser treatment led to a change in the surface characteristics, with a lower concentration of ester side-chains and the formation of new oxygenated species at the surface. The surface also became more hydrophobic. Most importantly, the surface chemistry and the newly created surface topographical features were able to improve the attachment, spreading and growth of HLE cells.

  12. Understanding of the Viscoelastic Response of the Human Corneal Stroma Induced by Riboflavin/UV-A Cross-Linking at the Nano Level

    Science.gov (United States)

    Labate, Cristina; De Santo, Maria Penelope; Lombardo, Giuseppe; Lombardo, Marco

    2015-01-01

    Purpose To investigate the viscoelastic changes of the human cornea induced by riboflavin/UV-A cross-linking using Atomic Force Microscopy (AFM) at the nano level. Methods Seven eye bank donor corneas were investigated, after gently removing the epithelium, using a commercial AFM in the force spectroscopy mode. Silicon cantilevers with tip radius of 10 nm and spring elastic constants between 26- and 86-N/m were used to probe the viscoelastic properties of the anterior stroma up to 3 µm indentation depth. Five specimens were tested before and after riboflavin/UV-A cross-linking; the other two specimens were chemically cross-linked using glutaraldehyde 2.5% solution and used as controls. The Young’s modulus (E) and the hysteresis (H) of the corneal stroma were quantified as a function of the application load and scan rate. Results The Young’s modulus increased by a mean of 1.1-1.5 times after riboflavin/UV-A cross-linking (P<0.05). A higher increase of E, by a mean of 1.5-2.6 times, was found in chemically cross-linked specimens using glutaraldehyde 2.5% (P<0.05). The hysteresis decreased, by a mean of 0.9-1.5 times, in all specimens after riboflavin/UV-A cross-linking (P<0.05). A substantial decrease of H, ranging between 2.6 and 3.5 times with respect to baseline values, was observed in glutaraldehyde-treated corneas (P<0.05). Conclusions The present study provides the first evidence that riboflavin/UV-A cross-linking induces changes of the viscoelastic properties of the cornea at the scale of stromal molecular interactions. PMID:25830534

  13. Hypercalcemia Leads to Delayed Corneal Wound Healing in Ovariectomized Rats.

    Science.gov (United States)

    Nagai, Noriaki; Ogata, Fumihiko; Kawasaki, Naohito; Ito, Yoshimasa; Funakami, Yoshinori; Okamoto, Norio; Shimomura, Yoshikazu

    2015-01-01

    Hypercalcemia is often observed in postmenopausal women as well as in patients with primary hyperparathyroidism or malignant tumors. In this study, we investigated the relationship between calcium ion (Ca(2+)) levels in lacrimal fluid and the rate of corneal wound healing in hypercalcemia using ovariectomized (OVX) rat debrided corneal epithelium. We also determined the effects of Ca(2+) levels on cell adhesion, proliferation and viability in a human cornea epithelial cell line (HCE-T). The calcium content in bones of OVX rats decreased after ovariectomy. Moreover, the Ca(2+) content in the blood of OVX rats was increased 1 month after ovariectomy, and decreased. The Ca(2+) content in the lacrimal fluid of OVX rats was also increased after ovariectomy, and then decreased similarly as in blood. Corneal wound healing in OVX rats was delayed in comparison with Sham rats (control rats), and a close relationship was observed between the Ca(2+) levels in lacrimal fluid and the rate of corneal wound healing in Sham and OVX rats (y=-0.7863x+8.785, R=0.78, n=25). In addition, an enhancement in Ca(2+) levels caused a decrease in the viability in HCE-T cells. It is possible that enhanced Ca(2+) levels in lacrimal fluid may cause a decrease in the viability of corneal epithelial cells, resulting in a delay in corneal wound healing. These findings provide significant information that can be used to design further studies aimed at reducing corneal damage of patients with hypercalcemia.

  14. The Active Metabolite of Leflunomide A771726 Inhibits Corneal Neovascularization

    Institute of Scientific and Technical Information of China (English)

    Mingchang ZHANG; Nian HAO; Fang BIAN

    2008-01-01

    The effects of A771726, the active metabolite of leflunomide, on experimental rat corneal neovascularization (NV) in vivo and on cultured human umbilical vein endothelial cells in vitro were studied. The corneal NV was induced by alkali burn in 40 SD rats. The rats were randomly divided into 4 groups with 10 rats in each group. Group A was treated with 0.9% sodium chloride (control group), and group B, group C and group D were given different concentrations of A771726 eye drops (0.5%,l.0%,2.0% respectively) 4 times daily during days 0-28. The occurrence and development of corneal NV were observed at 4,7,14,21 and 28 day after alkali burn by a slit lamp microscope. The cultured human umbilical vein endothelial cells (ECV-304) were incubated with A771726 solution at different concentrations (20,40,80,160,320μmol/L) for 36h. The proliferation of cells was assessed by methyl thiazolyl tetrazolium (MTT), and the expression of proliferating cell nuclear antigen (PCNA) in cells was detected by using immunofluorescence under the laser confocal microscope. The rat model showed that the onset of corneal NV was delayed and progression of corneal NV was inhibited in the groups C and D. The corneal NV areas in groups C and D were significantly smaller than in groups A and B (P0.05). A771726 solution (≥40μmol/L) could inhibit proliferation of human umbilical vein endothelial cells and decrease the expression of PCNA in cells significantly. A771726, as the active metabolite of leflunomide, strongly prevented corneal NV induced by alkali burn in the in vivo model, and inhibited proliferation of human umbilical vein endothelial cells in the in vitro model. Therefore, A771726 may serve as an angiogenic inhibitor in the treatment of corneal NV.

  15. Transplantation of human limbal cells cultivated on amniotic membrane for reconstruction of rat corneal epithelium after alkaline burn

    Institute of Scientific and Technical Information of China (English)

    SONG E; YANG Wei; CUI Zhi-hua; DONG Yu; SUI Dong-ming; GUAN Xiao-kang; MA Yang-ling

    2005-01-01

    Background The transplantation of limbal epithelial cells cultivated on amniotic membrane is a newly developed treatment for limbal stem cell deficiency. The purpose of our study was to investigate the biological characteristics of limbal epithelial cells and evaluate the effect of transplantation of cultivated human limbal epithelial cells on ocular surface reconstruction in limbal stem cell deficiency rat model. Methods Human limbal cells were isolated and cultivated in vitro. Cytokertins 3, 12, and 19 (K3, K12 and K19) and p63 were detected by immunofluorescent staining or RT-PCR. BrdU labelling test was used to identify the slow cycling cells in the cultures. Limbal stem cell deficiency was established in rat cornea by alkali burn. Two weeks after injury, the rats received transplants of human limbal stem cells cultivated on amniotic membrane carrier. The therapeutic effect was evaluated by slit lamp observation, Hemotoxin and Eosin (HE) staining and immunofluorescent staining.Results On day 7 in primary culture, p63 and K19 were strongly expressed by most cells but only a few cells expressed K3. On days 14 and 21, p63 and K19 were still expressed by a majority of cells, but the expressive intensity of p63 decreased in a number of cells, while the proportion of K3 positive cells increased slightly and some cells coexpressed p63 and K3. RT-PCR showed that gene expression of both p63 and K12 were positive in cultivated limbal cells, but in mature superficial epithelial cells, only K12 was detected. BrdU labelling test showed that most cells were labelled with BrdU after 7 days' labelling and BrdU label retaining cells were observed after chasing for 21 days with BrdU free medium. For in vivo test, slit lamp observation, HE staining and immunofluorescent staining showed that the rats receiving transplant of human limbal stem cells cultivated on amniotic membrane grew reconstructed corneas with intact epithelium, improved transparency and slight or no

  16. Serological profile of candidates for corneal donation

    Directory of Open Access Journals (Sweden)

    Adroaldo Lunardelli

    2014-10-01

    Full Text Available Objetive: The purpose of this study is to map the serological profile of candidates to corneal donation at Irmandade Santa Casa de Misericórdia de Porto Alegre, identifying the percentage of disposal by serology and the marker involved. Methods: There have been analised – retrospectively – the results of serology of all corneal donors, made between the period of 1st january 2006 and 31st december 2012. Data analised were related to age, gender and the results of serology pertinent to viral markers (HBsAg, anti-HBc, anti-HCV and anti-HIV, these, determined by immunosorbent tests (ELISA. Results: In the period of the study, there were 2476 corneal donors at the institution, with a major incidence on the male gender, on an average of 58.7 years old. 23% of retention because of serological unfitness was also identified, that is, 570 samples were non-negative to any of the used tests. The marker anti- HBc was the most prevalent on the studied population, followed by the Hepatitis C virus (HCV and by the Human Immunodeficiency Virus (HIV. Conclusion: From the data found through this study, it is essential to have the participation of an efficient service on the serological evaluation of the candidates to corneal donation, once the security of the receptor must be taken into consideration in a population of donors with 23% of unfitness prevalence, in which the most prevalent marker is the one of Hepatits B.

  17. Corneal topography measurements for biometric applications

    Science.gov (United States)

    Lewis, Nathan D.

    The term biometrics is used to describe the process of analyzing biological and behavioral traits that are unique to an individual in order to confirm or determine his or her identity. Many biometric modalities are currently being researched and implemented including, fingerprints, hand and facial geometry, iris recognition, vein structure recognition, gait, voice recognition, etc... This project explores the possibility of using corneal topography measurements as a trait for biometric identification. Two new corneal topographers were developed for this study. The first was designed to function as an operator-free device that will allow a user to approach the device and have his or her corneal topography measured. Human subject topography data were collected with this device and compared to measurements made with the commercially available Keratron Piccolo topographer (Optikon, Rome, Italy). A third topographer that departs from the standard Placido disk technology allows for arbitrary pattern illumination through the use of LCD monitors. This topographer was built and tested to be used in future research studies. Topography data was collected from 59 subjects and modeled using Zernike polynomials, which provide for a simple method of compressing topography data and comparing one topographical measurement with a database for biometric identification. The data were analyzed to determine the biometric error rates associated with corneal topography measurements. Reasonably accurate results, between three to eight percent simultaneous false match and false non-match rates, were achieved.

  18. 应用羊膜上皮干细胞微环境培养人角膜内皮细胞的研究%Microenvironment of amniotic epithelium cells enhances the proliferation of human corneal endothelial cells

    Institute of Scientific and Technical Information of China (English)

    王忠浩; 陈玮; 宋莉; 沙翔垠; 梁轩伟

    2013-01-01

    Objective To establish an effective method to enhance the proliferation of human corneal endothelial cells (HCECs). Methods The culture conditions of HCEC were optimized by utilizing the totipotent characteristics of human amniotic membrane epithelial stem cells (HAEC) to establish the optimal culture microenvironment of HAEC to promote the proliferation of HCEC. The morphology of HCEC was observed by using phase-contrast microscope and transmission electron microscope. MTT assay and Giemsa staining were performed to detect the proliferation of HCEC. The rate of apoptotic cells was investigated by using Hoechst33342 staining assay. Results Compared to the corneal endothelial cells medium (CEM), the microenvironment containing 20% HAEC-conditioned medium and HAEC-HCEC co-culture microenvironment could promote the proliferation of HCEC and could reduce the apoptosis of HCEC. The cells in HAEC-HCEC microenvironment group could be passaged 4 times without lossing their polygonal appearance. Conclusion The HAEC microenvironment could effectively enhance the proliferation of HCEC, maintain the morphology of HCEC, and inhibit the process of apoptosis of HCEC.%目的:建立一种利用羊膜上皮干细胞(human amniotic membrane epithelial cell,HAEC)微环境培养人角膜内皮细胞(human corneal endothelial cells,HCEC)的方法.方法:制备羊膜上皮干细胞微环境培养HCEC,并探讨诱导HCEC增殖的最佳培养微环境,倒置相差显微镜和透射电镜观察培养过程中细胞的形态学变化,MTT和Giemsa染色观察细胞增殖情况,Hoechst33342检测凋亡细胞比例.结果:在HCEC基本培养液(corneal endothelial cell medium,CEM)的基础上添加20% HAEC上清、HAEC-HCEC的微环境可促进HCEC的增殖,减少凋亡,细胞传代能力显著增强,HAEC-HCEC组传至4代仍保持多角形的内皮细胞形态.结论:羊膜上皮干细胞微环境培养可有效提高HCEE的增殖能力,更好地维持HCEC的形态,并能抑制其凋亡进程.

  19. Interferometer for measuring dynamic corneal topography

    Science.gov (United States)

    Micali, Jason Daniel

    The cornea is the anterior most surface of the eye and plays a critical role in vision. A thin fluid layer, the tear film, coats the outer surface of the cornea and serves to protect, nourish, and lubricate the cornea. At the same time, the tear film is responsible for creating a smooth continuous surface where the majority of refraction takes place in the eye. A significant component of vision quality is determined by the shape of the cornea and stability of the tear film. It is desirable to possess an instrument that can measure the corneal shape and tear film surface with the same accuracy and resolution that is currently performed on common optical elements. A dual interferometer system for measuring the dynamic corneal topography is designed, built, and verified. The completed system is validated by testing on human subjects. The system consists of two co-aligned polarization splitting Twyman-Green interferometers designed to measure phase instantaneously. The primary interferometer measures the surface of the tear film while the secondary interferometer simultaneously tracks the absolute position of the cornea. Eye motion, ocular variation, and a dynamic tear film surface will result in a non-null configuration of the surface with respect to the interferometer system. A non-null test results in significant interferometer induced errors that add to the measured phase. New algorithms are developed to recover the absolute surface topography of the tear film and corneal surface from the simultaneous interferometer measurements. The results are high-resolution and high-accuracy surface topography measurements of the in vivo cornea that are captured at standard camera frame rates. This dissertation will cover the development and construction of an interferometer system for measuring the dynamic corneal topography of the human eye. The discussion starts with the completion of an interferometer for measuring the tear film. The tear film interferometer is part of an

  20. Corneal Neurotoxicity Due to Topical Benzalkonium Chloride

    OpenAIRE

    Sarkar, Joy; Chaudhary, Shweta; Namavari, Abed; Ozturk, Okan; Chang, Jin-Hong; Yco, Lisette; Sonawane, Snehal; Khanolkar, Vishakha; Hallak, Joelle; Jain, Sandeep

    2012-01-01

    Topical application of benzalkonium chloride (BAK) to the eye causes dose-related corneal neurotoxicity. Corneal inflammation and reduction in aqueous tear production accompany neurotoxicity. Cessation of BAK treatment leads to recovery of corneal nerve density.

  1. Corneal Endothelial Cell Density and Morphology in Healthy Turkish Eyes

    Directory of Open Access Journals (Sweden)

    Ceyhun Arıcı

    2014-01-01

    Full Text Available Purpose. To describe the normative values of corneal endothelial cell density, morphology, and central corneal thickness in healthy Turkish eyes. Methods. Specular microscopy was performed in 252 eyes of 126 healthy volunteers (M : F, 42 : 84. Parameters studied included mean endothelial cell density (MCD, mean cell area (MCA, coefficient of variation (CV in cell size, percentage of hexagonal cells, and central corneal thickness (CCT. Results. The mean age of volunteers was 44.3±13.5 (range, 20 to 70 years. There was a statistically significant decrease in MCD (P<0.001; correlation, −0.388 and percentage of hexagonal cells, (P<0.001; correlation, −0.199 with age. There was also a statistically significant increase in MCA (P<0.001; correlation, 0.363 with increasing age. There was no statistically significant difference in MCD, MCA, CV in cell size, percentage of hexagonal cells, and CCT between genders and there was also no significant difference in these parameters between fellow eyes of subjects. Conclusions. Normotive data for the endothelium in the Turkish population are reported. Endothelial cell density in the Turkish eyes is less than that described in the Japanese, American, Chinese, and Filipino eyes and higher than that described in Indian, Thai, and Iranian eyes.

  2. Experiment Study of Effect of Perfiuorohexyloctane on Corneal Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Ding; Chunfang Li; Lin Lu; Guanguang Feng; Huling Zheng

    2001-01-01

    Purpose: To investigate the effect of Perfluorohexyloctane (F6H8)on corneal endothelial celIs(CEC) of rabbit eyes. Methods: Fifteen New Zealand white rabbits were devided into two groups:experimental group(F6H8) and control group(BSS) . All rabbits underwent anterior chamber injection of 0. 15ml F6H8 or BSS. Slit-lamp biomicroscopy and corneal endothelium photography were performed pre-operatively and postoperatively. Histopathological examination and Transmission electron microscopy(TEM) were done after the rabbits were sacrificed. Results: All the corneas were clear. Since 4 weeks after operation, the endothelial cells were markedly irregular in size and shape and the number of endothelial cells was markedly decreased. Multilayered retrocorneal membranes (RCM)grew gradually 2 weeks after surgery. Vacuolar degeneration was seen in some endothelial cells. Nuclear degeneration and edema of plasma were seen in TEM. Conclusion: Corneal endothelial cell degenerated after contacting with F6H8 for 2 ~4weeks. As a silicone solvent, it should be removed completely after injection. We don't recommend it to be used as a new intraocular temponade. Eye Science 2001: 17:21 ~ 26.

  3. Bilateral acute corneal calcification.

    Science.gov (United States)

    Freddo, T F; Leibowitz, H M

    1985-04-01

    A 38-year-old man with brittle, juvenile onset diabetes mellitus and bilateral severe dry eyes with recurrent corneal ulcers developed atypical band-shaped calcifications of both corneas during a 24-hour period. Serum calcium, phosphate, and carbon dioxide levels all were within normal limits. The patient was mildly uremic but was not in renal failure. When EDTA chelation failed to clear the deposits, partial keratectomies were performed in both eyes and the specimens were examined by light and electron microscopy, including energy dispersive x-ray analysis. Microscopic studies revealed an atypical calcific keratopathy which involved neither Bowman's layer nor the most superficial stromal lamellae. The deposits were confined to deeper lamellae in the anterior stroma and by electron microscopy were composed of extracellular crystalline aggregates. Energy dispersive x-ray analysis of these aggregates confirmed the presence of calcium and phosphate. Corneal dessication appeared to be a major contributing factor in the rapid formation of these deposits.

  4. Corneal blindness: prevention, treatment and rehabilitation

    Directory of Open Access Journals (Sweden)

    Matthew J Burton

    2009-12-01

    Full Text Available Blindness from corneal disease is a major ophthalmic public health problem. There are three important elements to addressing corneal blindness: prevention, treatment, and rehabilitation.

  5. Triggering of toll-like receptors 2 and 4 by Aspergillus fumigatus conidia in immortalized human corneal epithelial cells to induce inflammatory cytokines

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jie; WU Xin-yi

    2008-01-01

    Background Cornea epithelial cells play early and crucial roles in the initiation of ocular surface responses to pathogens.Participation of toll-like receptor(TLR)2 and TLR4,which are major forms of fungi receptors,may be involved in Aspergillus fumigatus induced immune responses.The obiective of the present study was to examine whether inactive Aspergillus fumigatus conidia induce NF-κB activation and production of proinflammaory cytokines,and whether the expression of TLR2 and TLR4 were amplified by conidia in cultured immortalized human corneal epithelial cells (THCEs).This may contribute to our knowledge of the mechanism by which the host cornea can successfully defend against invasive fungi.Methods Aspergillus fumigatus conidia were used to challenge THCE cells.THCE cells were harvested after 0.5,1,2or 4 hours incubation.Real-time quantitative PCR was performed to determine the expression of TLR2,TLR4,TNF-α and IL-8.Western blotting was performed to determine the expression of NF-κB.Enzyme-linked immunosorbent assay (EUSA)was performed to determine the expression of TNF-α and IL-8.And the release of TNF-α and IL-8 in the cell supematant were also assessed by ELISA with or without pretreatment with TLR2 and TLR4 neutralizing antibodies.Results Aspergillus fumigatus conidia elicited the expression of TLR2,TLR4,TNF-α and IL-8 mRNA in THCEs.Exposure of THCE cells to Aspergillus fumigatus conidia resulted in NF-κB activation,which increased at 30 minutes (increased from 11.35±2.74 in the controls to 19.12±3.48,P<0.05)and thereafter increased steadily up to 4 hours after challenge(P<0.01).Concomitant with NF-κB acfivation,secretion of TNF-α and IL-8 in conidia-challenged cells was increased in a time-dependent manner.Incubation of THCE cells with TLR2 antibody or TLR4 antibody before conidia challenge resulted in jnhibifion of conidia-induced TNF-α and IL-8 secretion(P<0.05),TLR2 antibody and TLR4 antibody together significantly increased

  6. Interaction of variable bacterial outer membrane lipoproteins with brain endothelium.

    Directory of Open Access Journals (Sweden)

    Gaurav Gandhi

    Full Text Available BACKGROUND: Previously we reported that the variable outer membrane lipoprotein Vsp1 from the relapsing fever spirochete Borrelia turicatae disseminates from blood to brain better than the closely related Vsp2 [1]. Here we studied the interaction between Vsp1 and Vsp2 with brain endothelium in more detail. METHODOLOGY/PRINCIPAL FINDINGS: We compared Vsp1 to Vsp2 using human brain microvascular endothelial cell (HBMEC association assays with aminoacid radiolabeled Vsp-expressing clones of recombinant Borrelia burgdorferi and lanthanide-labeled purified lipidated Vsp1 (LVsp1 and Vsp2 (LVsp2 and inoculations of the lanthanide-labeled proteins into mice. The results showed that heterologous expression of LVsp1 or LVsp2 in B. burgdorferi increased its association with HBMEC to a similar degree. Purified lanthanide-labeled lipidated Vsp1 (LVsp1 and LVsp2 by themselves were capable of associating with HBMEC. The association of LVsp1 with brain endothelium was time-dependent, saturable, and required the lipidation. The association of Vsp1 with HBMEC was inhibited by incubation at lower temperature or with excess unlabeled LVsp1 or LVsp2 but not with excess rVsp1 or mouse albumin or an anti Vsp1 monoclonal antibody. The association of LVsp2 with HBMEC and its movement from blood to brain parenchyma significantly increased in the presence of LVsp1. CONCLUSIONS/SIGNIFICANCE: Variable bacterial outer membrane lipoproteins interact with brain endothelium differently; the lipidation and variable features at the protein dome region are key modulators of this interaction.

  7. Putative epidermal stem cell convert into corneal epithelium-like cell under corneal tissue in vitro

    Institute of Scientific and Technical Information of China (English)

    GAO Nan; CUI GuangHui; WANG ZhiChong; HUANG Bing; GE Jian; LU Rong; ZHANG KeFei; FAN ZhiGang; LU Li; PENG Zhan

    2007-01-01

    Rhesus putative epidermal stem cells are being investigated for their potential use in regenerative corneal epithelium-like cells, which may provide a practical source of autologous seed cells for the construction of bioengineered corneas. The goal of this study was to investigate the potential of epidermal stem cells for trans-differentiation into corneal epithelium-like cells. Rhesus putative epidermal stem cells were isolated by type IV collagen attachment method. Flow cytometry analysis, immunohistology and RT-PCR were conducted to identify the expression of specific markers (β1, α6 integrin, K15, K1/K10, K3/K12 and CD71) on the isolated rapid attaching cells. The isolated cells were cocultured with human corneal limbal stroma and corneal epithelial cells. After coculture, the expression of the same specific markers was evaluated in order to identify expression difference caused by the coculture conditions. K3/K12 expression was analyzed in coculture cells on day 2, 4, 6, 8 and 10. Putative epidermal stem cells in conditioned culture media were used as control. Putative epidermal stem cells were predominant in rapid attaching cells by type IV collagen attachment isolation. Before being cocultured, the rhesus putative epidermal stem cells expressed K15, α6 and β1 integrin, but no CD71, K1/K10 and K3/K12. After coculture, these cells expressed K3/K12 (a marker of corneal epithelial cells), K15 and β 1 integrin, but no K1/K10. Cells being not coculture converted into terminally differentiated cells expressing K1/K10. These results indicate that rhesus putative epidermal stem cells can trans-differentiate into corneal epithelium-like cells and, therefore, may have potential therapeutic application as autologous seed cells for the construction of bioengineered corneas.

  8. Putative epidermal stem cell convert into corneal epithelium-like cell under corneal tissue in vitro

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Rhesus putative epidermal stem cells are being investigated for their potential use in regenerative corneal epithelium-like cells, which may provide a practical source of autologous seed cells for the construction of bioengineered corneas. The goal of this study was to investigate the potential of epi-dermal stem cells for trans-differentiation into corneal epithelium-like cells. Rhesus putative epidermal stem cells were isolated by type IV collagen attachment method. Flow cytometry analysis, immuno-histology and RT-PCR were conducted to identify the expression of specific markers (β1, α6 integrin, K15, K1/K10, K3/K12 and CD71) on the isolated rapid attaching cells. The isolated cells were cocultured with human corneal limbal stroma and corneal epithelial cells. After coculture, the expression of the same specific markers was evaluated in order to identify expression difference caused by the coculture conditions. K3/K12 expression was analyzed in coculture cells on day 2, 4, 6, 8 and 10. Putative epi-dermal stem cells in conditioned culture media were used as control. Putative epidermal stem cells were predominant in rapid attaching cells by type IV collagen attachment isolation. Before being co-cultured, the rhesus putative epidermal stem cells expressed K15, α6 and β1 integrin, but no CD71, K1/K10 and K3/K12. After coculture, these cells expressed K3/K12 (a marker of corneal epithelial cells), K15 and β 1 integrin, but no K1/K10. Cells being not coculture converted into terminally differentiated cells expressing K1/K10. These results indicate that rhesus putative epidermal stem cells can trans-differentiate into corneal epithelium-like cells and, therefore, may have potential therapeutic application as autologous seed cells for the construction of bioengineered corneas.

  9. Activation of endothelium by immunotherapy with interleukin-2 in patients with malignant disorders.

    Science.gov (United States)

    Locker, G J; Kapiotis, S; Veitl, M; Mader, R M; Stoiser, B; Kofler, J; Sieder, A E; Rainer, H; Steger, G G; Mannhalter, C; Wagner, O F

    1999-06-01

    Treatment with intravenous recombinant human interleukin-2 (rh IL-2) is frequently accompanied by the capillary leak syndrome and disturbances of the coagulation system. Although the exact mechanisms are still not fully understood, the involvement of the endothelium is proven. This investigation aimed to elucidate more precisely the role of the endothelium in the generation of IL-2-based side-effects. In nine tumour patients receiving intravenous rh IL-2, parameters characterizing endothelial cell activation as well as activation of the coagulation system were evaluated. A significant increase of the circulating endothelial leucocyte adhesion molecule-1 (cELAM-1) and the vasoconstrictor peptide endothelin-1 (ET-1) was observed (P<0.05), indicating activation of endothelial cells. The simultaneous increase of tissue-plasminogen activator and plasminogen activator inhibitor type-1 during therapy (P<0.05) corroborated this observation. A decrease in platelet count parallelled by an increase of fibrin degradation products, the prolongation of partial thromboplastin time, and the decrease of fibrinogen (P<0.05) suggested the development of disseminated intravascular coagulation (DIC), induced by activated endothelium and intensified by transient hepatic failure. We concluded that activation of the endothelium mediated by IL-2 was accompanied by a loss of endothelial integrity and capillary leak. The activated endothelium can trigger DIC via activation of the coagulation cascade. The increased ET-1 might act as an endogenous counter-regulator of the disadvantageous haemodynamic side-effects induced by IL-2.

  10. Cloning, expression and functional analyses of human platelet-derived growth factor-B chain peptide for wound repair of cat corneal endothelial cells

    Institute of Scientific and Technical Information of China (English)

    LUO Wen-juan; ZHAO Gui-qiu; WANG Chuan-fu; WANG Li-mei; WANG Xiao-ji

    2009-01-01

    Objective: To investigate the biological function of platelet-derived growth factor B (PDGF-B) on the survival and proliferation of cat corneal endothelial cells so as to provide bases for further studies of its role in wound repair and its clinical application.Methods: Total RNA was extracted from the placenta tissues of healthy pregnant women undergoing hysterotokotomy and PDGF eDNA was obtained with re-verse transcription-polymerase chain reaction (RT-PCR). The prokaryotic expression vector pET-PDGF-B was constructed and expressed the recombinant PDGF-B in Escherichia coli (E.coli) BL21 (DE3). After purification and refolding on Ni2+-chelation affinity chromatography (NTA) column, it was used to culture cat corneal endothelial cells. Cell proliferation was tested by modified tertrazolium salt (MTT) and flow cytometer. And the morphologic change and the ultrastructure were ob-served under an inverted phase contrast microscope, a scan-ning electron microscope and a transmission electon microscope, respectively.Results: PDGF-B chain peptide (PDGF-BB) gene was successfully inserted into the prokaryotic expression vector, pET-28a(+). The purified recombined protein pET-PDGF-B showed a single band on sodium dodecyl sulfate polyacry-lamide gel electropheresis (SDS-PAGE) with the molecular weight of about 27 u, which was in agreement with the de-duced value. MTT and flow cytometry showed that PDGF-BB promoted the survival and proliferation of cat corneal en-dothelial cells.Conclusions: The construction of recombinant prokary-otic expression vector pET-PDGF-B and the preparation of PDGF-BB protein provide a foundation for further study of the function of PDGF-BB and producing biological PDGF-BB protein. The expressed PDGF-BB promotes the prolif-eration of cultured cat corneal endothelial cells.

  11. 小鼠胚胎干细胞条件培养基体外促进人角膜内皮细胞增殖的研究%Proliferation in vitro of human corneal endothelial cells promoted by mouse embryonic stem cell conditioned medium

    Institute of Scientific and Technical Information of China (English)

    鹿晓燕

    2016-01-01

    目的 观察小鼠胚胎干细胞条件培养基(mouse embryonic stem cells conditioned medium,ESC-CM)是否可以在体外促进人角膜内皮细胞(human corneal endothelial cells,HCECs)的增殖.方法 利用角膜内皮后弹力层组织块方法进行原代培养P0 HCECs.实验组使用含有25% ESC-CM的培养液进行培养,对照组使用普通角膜内皮细胞培养液(corneal endothelium medium,CEM)进行培养.倒置相差显微镜、反转录聚合酶链反应(reverse-transcription polymerase chain reaction,RT-PCR)鉴定HCECs;倒置相差显微镜观察细胞的形态及萌出时间;Western Blot、免疫组织化学法观察HCECs的泵相关功能蛋白(zona occludens protein-1,ZO-1)及Na+-K+-ATP酶的表达.Giemsa染色细胞克隆实验、免疫组织化学及流式细胞学检测Ki67阳性率的方法比较HCECs的增殖能力;流式细胞学方法检查细胞周期及细胞凋亡情况.Western Blot和免疫组织化学方法检测细胞周期负性调节蛋白P21的水平,初步探讨其可能的作用机制.结果 原代培养时,25% ESC-CM组培养的HCECs P2细胞爬出,细胞形态呈典型多角形结构.CEM在P2时细胞形态变大,失去了多角形结构.25% ESC-CM组和CEM组均表达ZO-1、Na+-K+-ATP酶.25% ESC-CM组的Ki67阳性率、克隆形成数量、进入到细胞周期S期和G2期的比例均高于CEM组(均为P<0.05).25% ESC-CM组的细胞凋亡数量和P21阳性率均低于CEM组(均为P<0.05).结论 25% ESC-CM组可显著促进HCECs增殖;其作用可能是通过抑制P21蛋白的表达和抑制细胞凋亡实现的,为HCECs体外大量扩增提供了一种新方法.

  12. Avaliação da presença de células caliciformes na córnea humana Evaluation of the presence of goblet cells on the human corneal surface

    Directory of Open Access Journals (Sweden)

    Jeison de Nadai Barros

    2004-02-01

    to previous history of ocular surface reconstructive surgery associated with limbal transplantation and human amniotic membrane. In group I, 49 patients without previous ocular surgery were evaluated and in group II 16 patients were included after ocular surface reconstructive surgery with conjunctivalization recurrence. Samples were obtained in the affected eye between February 2000 and February 2002 at the UNIFESP's External Eye Disease Laboratory. Limbal deficiency was detected when one or more goblets cells were found on the corneal surface. RESULTS: In group I one or more goblet cells were found on the corneal surface of 21 eyes (42.85%. In group II goblet cells were found on the corneal surface of 9 patients (56.25%. CONCLUSION: Presence of goblet cells on the corneal surface detected by impression cytology in patients with conjunctivalization can confirm limbal stem cell deficiency, however, its absence does not exclude the diagnosis.

  13. N-Isopropylacrylamide-co-glycidylmethacrylate as a Thermoresponsive Substrate for Corneal Endothelial Cell Sheet Engineering

    Directory of Open Access Journals (Sweden)

    Bernadette K. Madathil

    2014-01-01

    Full Text Available Endothelial keratoplasty is a recent shift in the surgical treatment of corneal endothelial dystrophies, where the dysfunctional endothelium is replaced whilst retaining the unaffected corneal layers. To overcome the limitation of donor corneal shortage, alternative use of tissue engineered constructs is being researched. Tissue constructs with intact extracellular matrix are generated using stimuli responsive polymers. In this study we evaluated the feasibility of using the thermoresponsive poly(N-isopropylacrylamide-co-glycidylmethacrylate polymer as a culture surface to harvest viable corneal endothelial cell sheets. Incubation below the lower critical solution temperature of the polymer allowed the detachment of the intact endothelial cell sheet. Phase contrast and scanning electron microscopy revealed the intact architecture, cobble stone morphology, and cell-to-cell contact in the retrieved cell sheet. Strong extracellular matrix deposition was also observed. The RT-PCR analysis confirmed functionally active endothelial cells in the cell sheet as evidenced by the positive expression of aquaporin 1, collagen IV, Na+-K+ ATPase, and FLK-1. Na+-K+ ATPase protein expression was also visualized by immunofluorescence staining. These results suggest that the in-house developed thermoresponsive culture dish is a suitable substrate for the generation of intact corneal endothelial cell sheet towards transplantation for endothelial keratoplasty.

  14. Corneal organ cultures in tyrosinemia release chemotactic factors.

    Science.gov (United States)

    Lohr, K M; Hyndiuk, R A; Hatchell, D L; Kurth, C E

    1985-05-01

    Corneal inflammation with subsequent scarring and blindness occurs in the inherited human metabolic disease tyrosinemia type II, yet putative inflammatory mediators in this disorder and in the avascular cornea in general are poorly defined. In a Tyr-fed rat model of tyrosinemia type II, intracellular crystals, presumably Tyr, are hypothesized to be responsible for the increased lysosomal activity observed in corneal epithelial lesions. Because polymorphonuclear leukocytes (PMNs) are seen only at the site of these lesions, we used this model to study humoral mediators released from Tyr-fed rat corneal organ cultures. Only Tyr-fed rats developed stromal edema and linear granular opacities in gray edematous corneal epithelium, compatible with a noninfectious keratitis. Electron micrographs confirmed epithelial edema and showed focal epithelial necrosis with PMN invasion of the stroma. Only Tyr-fed rat corneal culture supernatants contained chemotactic activity that was heat labile and moderately trypsin sensitive. Four peaks with varying amounts of chemotactic activity were found on Sephadex G-75 chromatography. Although the identity of these peaks of activity has not yet been established, we suggest that they may be responsible for the PMN infiltration observed in this model of corneal inflammation.

  15. REACTION OF THE RABBIT CORNEAL ENDOTHELIUM TO NYLON SUTURES - A SEM STUDY

    NARCIS (Netherlands)

    JONGEBLOED, WL; VANDERVEEN, G; KALICHARAN, D; RIJNEVELD, WJ; HOUTMAN, WA; WORST, JGF

    1990-01-01

    Nylon and stainless steel sutures separately placed deeply into rabbit corneas by splitting the stroma for a few millimeters, without closing sutures, remained in the cornea for two, four and six weeks respectively. In contrast to the stainless steel sutures an extensive tissue reaction could be obs

  16. REACTION OF THE RABBIT CORNEAL ENDOTHELIUM TO NYLON SUTURES - A SEM STUDY

    NARCIS (Netherlands)

    JONGEBLOED, WL; VANDERVEEN, G; KALICHARAN, D; RIJNEVELD, WJ; HOUTMAN, WA; WORST, JGF

    1990-01-01

    Nylon and stainless steel sutures separately placed deeply into rabbit corneas by splitting the stroma for a few millimeters, without closing sutures, remained in the cornea for two, four and six weeks respectively. In contrast to the stainless steel sutures an extensive tissue reaction could be

  17. A comparative evaluation of corneal epithelial cell cultures for assessing ocular permeability.

    Science.gov (United States)

    Becker, Ulrich; Ehrhardt, Carsten; Schneider, Marc; Muys, Leon; Gross, Dorothea; Eschmann, Klaus; Schaefer, Ulrich F; Lehr, Claus-Michael

    2008-02-01

    The purpose of this study was to evaluate the potential value of different epithelial cell culture systems as in vitro models for studying corneal permeability. Transformed human corneal epithelial (HCE-T) cells and Statens Serum Institut rabbit corneal (SIRC) cells were cultured on permeable filters. SkinEthic human corneal epithelium (S-HCE) and Clonetics human corneal epithelium (C-HCE) were received as ready-to-use systems. Excised rabbit corneas (ERCs) and human corneas (EHCs) were mounted in Ussing chambers, and used as references. Barrier properties were assessed by measuring transepithelial electrical resistance, and by determining the apparent permeability of markers with different physico-chemical properties, namely, fluorescein, sodium salt; propranolol hydrochloride; moxaverine hydrochloride; timolol hydrogenmaleate; and rhodamine 123. SIRC cells and the S-HCE failed to develop epithelial barrier properties, and hence were unable to distinguish between the permeation markers. Barrier function and the power to differentiate compound permeabilities were evident with HCE-T cells, and were even more pronounced in the case of C-HCE, corresponding very well with data from ERCs and EHCs. A net secretion of rhodamine 123 was not observed with any of the models, suggesting that P-glycoprotein or similar efflux systems have no significant effects on corneal permeability. Currently available corneal epithelial cell culture systems show differences in epithelial barrier function. Systems lacking functional cell-cell contacts are of limited value for assessing corneal permeability, and should be critically evaluated for other purposes.

  18. Corneal Densitometry for Quantification of Corneal Deposits in Monoclonal Gammopathies.

    Science.gov (United States)

    Enders, Philip; Holtick, Udo; Schaub, Friederike; Tuchscherer, Armin; Hermann, Manuel M; Scheid, Christoph; Cursiefen, Claus; Bachmann, Björn O

    2017-04-01

    To assess the capability of Scheimpflug-based densitometry of the cornea to quantify light chain deposits in patients with active monoclonal gammopathies. This is a case-control study in which data from a leading tertiary university center in myeloma care were analyzed. Ten eyes of 5 patients with monoclonal gammopathy and 26 eyes of 13 healthy controls undergoing clinical evaluation and Scheimpflug-based measurements were included in the study. The main outcome measures were densitometry data of the 4 corneal layers-anterior layer (AL), central layer (CL), posterior layer, and total layer (TL)-in 4 different annuli (central annular zone 0-2 mm, intermediate annular zone 2-6 mm, peripheral annular zone 6-10 mm, and total annular zone 0-12 mm). In 8 eyes of 4 patients with IgG-based gammopathy, corneal light backscatter was highest in the AL and decreased with increasing corneal depth. The peripheral annular zone showed a higher densitometry value compared with the corneal center. Compared with healthy controls, the AL (P < 0.001), the CL (P < 0.001), and the TL (P < 0.001) had significantly higher corneal light backscatter in patients with gammopathy in the total and the peripheral annular zones. In one patient with predominantly IgA-based disease, corneal light backscatter was not elevated. Scheimpflug-based densitometry of the cornea is able to quantify opacification by immunoglobulin G light chain deposits in monoclonal gammopathies. This noninvasive technique can complement presently used in vivo confocal microscopy and corneal photography to objectivize corneal changes. Densitometry might allow monitoring of corneal immunoglobulin deposits in follow-up examinations.

  19. In Vivo-Like Culture Conditions in a Bioreactor Facilitate Improved Tissue Quality in Corneal Storage.

    Science.gov (United States)

    Schmid, Richard; Tarau, Ioana-Sandra; Rossi, Angela; Leonhardt, Stefan; Schwarz, Thomas; Schuerlein, Sebastian; Lotz, Christian; Hansmann, Jan

    2017-09-05

    The cornea is the most-transplanted tissue worldwide. However, the availability and quality of grafts are limited due to the current methods of corneal storage. In this study, a dynamic bioreactor system is employed to enable the control of intraocular pressure and the culture at the air-liquid interface. Thereby, in vivo-like storage conditions are achieved. Different media combinations for endothelium and epithelium are tested in standard and dynamic conditions to enhance the viability of the tissue. In contrast to culture conditions used in eye banks, the combination of the bioreactor and biochrom medium 1 allows to preserve the corneal endothelium and the epithelium. Assessment of transparency, swelling, and the trans-epithelial-electrical-resistance (TEER) strengthens the impact of the in vivo-like tissue culture. For example, compared to corneas stored under static conditions, significantly lower optical densities and significantly higher TEER values were measured (p-value quality of corneal grafts and the storage time in the eye banks to increase availability and reduce re-grafting. © 2017 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Observation on ultrastructure and histopathology of cornea following femtosecond laser-assisted deep lamellar keratoplasty for acute corneal alkaline burns.

    Science.gov (United States)

    Li, Wen-Jing; Hu, Yu-Kun; Song, Hui; Gao, Xiao-Wei; Zhao, Xu-Dong; Dong, Jing; Guo, Yun-Lin; Cai, Yan

    2016-01-01

    To demonstrate the changes in ultrastructure and histopathology of the cornea in acute corneal alkaline burns after femtosecond laser-assisted deep lamellar keratoplasty. The New Zealand white rabbits treated with alkaline corneal burn were randomized into two groups, Group A (16 eyes) with femtosecond laser-assisted deep lamellar keratoplasty 24h after burn and Group B (16 eyes) without keratoplasty as controls. All eyes were evaluated with transmission electron microscopy (TEM) at 1, 2, 3, and 4wk follow-up, then all corneas were tested by hematoxylin and eosin staining histology. The corneal grafts in Group A were transparent, while those in Group B showed corneal stromal edema and loosely arranged collagen fibers. One week after treatment, TEM revealed the intercellular desmosomes in the epithelial layers and intact non-dissolving nuclei in Group A. At week 4, the center of the corneas in Group A was transparent with regularly arranged collagen fibers and fibroblasts in the stroma. In Group B, squamous cells were observed on the corneal surface and some epithelial cells were detached. Femtosecond laser-assisted deep lamellar keratoplasty can suppress inflammatory responses, prevent toxic substance-induced injury to the corneal endothelium and inner tissues with quicker recovery and better visual outcomes.

  1. Toxicological effects of beryllium on platelets and vascular endothelium.

    Science.gov (United States)

    Togna, G; Togna, A R; Russo, P; Caprino, L

    1997-06-01

    Although ample research has described the toxic effects of the metal beryllium on the respiratory apparatus, less is known about its effects on the vascular apparatus, including pulmonary blood vessels. We investigated the in vitro effects of beryllium on endothelial vascular adenosine diphosphatase activity and prostacyclin production in bovine aortic endothelium, and on nitric oxide release in isolated rabbit arteries. Rabbit and human platelet responsiveness was also evaluated. Beryllium inhibited vascular endothelial adenosine diphosphatase activity, prostacyclin production, and nitric oxide release, thus inducing functional alterations in vascular endothelial cells. It also induced platelet hyperreactivity to arachidonic acid, as shown by a lowering of the threshold of aggregating concentration and by concurrently increasing thromboxane production. In contrast, beryllium left the response to aggregating and nonaggregating concentrations of ADP and collagen unchanged. These findings show that beryllium may impair some vascular endothelial functions and alter the interaction between platelet and endothelial mediators.

  2. Endothelium attenuates ethanol induced vasoconstriction of arteries

    Energy Technology Data Exchange (ETDEWEB)

    Morley, D.; Bove, A.A.; Walter, J. (Temple School of Medicine, Philadelphia, PA (United States))

    1990-02-26

    The authors have previously demonstrated that clinically relevant doses of ethanol (ETH) caused significant vasoconstriction of rabbit thoracic aorta. This study examined the role of endothelium in ethanol vasoconstriction. Thoracic aorta was harvested from 3 New Zealand White rabbits after anesthetization with sodium pentobarbital. Twelve aortic 3 mm rings were mounted in organ baths attached to force transducers and recording apparatus. Six of the twelve rings were denuded. Denudation was confirmed by challenge with acetylcholine (10-4 M). Resting tension was set at 10 grams and the rings equilibrated in 37 C Krebs-Heinsleit solution for 2 hours. Then, the response to norepinephrine (NE) was established (10-8 to 10-5 M). After reattaining resting tension, the response to ETH (500-2,500 ug/ml) was recorded. ETH produced significant vasoconstriction in both non-denuded (48{plus minus}7% of NE max) and denuded (58{plus minus}2% of NE max) arteries. Vasoconstriction was significantly higher in the denuded condition. The authors conclude that the predominant ETH action on arteries is based in vascular smooth muscle although endothelium acts to attenuate the ETH induced vasoconstrictor response.

  3. Electrical resistance of a capillary endothelium

    Science.gov (United States)

    1981-01-01

    The electrical resistance of consecutive segments of capillaries has been determined by a method in which the microvessels were treated as a leaky, infinite cable. A two-dimensional analytical model to describe the potential field in response to intracapillary current injection was formulated. The model allowed determination of the electrical resistance from four sets of data: the capillary radius, the capillary length constant, the length constant in the mesentery perpendicular to the capillary, and the relative potential drop across the capillary wall. Of particular importance were the mesothelial membranes covering the mesenteric capillaries with resistances several times higher than that of the capillary endothelium. 27 frog mesenteric capillaries were characterized. The average resistance of the endothelium was 1.85 omega cm2, which compares well with earlier determinations of the ionic permeability of such capillaries. However, heterogeneity with respect to resistance was observed, that of 10 arterial capillaries being 3.0 omega cm2 as compared with 0.95 omega cm2 for 17 mid- and venous capillaries. The average in situ length constant was 99 micrometers for the arterial capillaries and 57 micrometers for the mid- and venous capillaries. It is likely that the ions that carry the current must move paracellularly, through junctions that are leaky to small solutes. PMID:7241087

  4. The Expression of the Plasmid DNA Encoding TGF-β1 in Endothelium after Injection into the Anterior Chamber

    Institute of Scientific and Technical Information of China (English)

    胡燕华; 黄琼; 姜发纲; 陈宏

    2002-01-01

    Summary: The method of gene transfer into corneal endothelium was investigated to provide afoundation for the study of TGF-β1 gene transfer to inhibit corneal graft rejection. Two days afterdirect injection of pMAM TGF-β1 mediated by liposome into the anterior chamber of rabbits, onehalf of corneas were made into paraffin slides and the endothelial layer was carefully torn from theother half to make a single layer slide of endothelia. By means of immunohistochemical technique,the plasmid pMAM TGF-β1 expression product TGF-β1 in the endothelia was detected. SpecificTGF-β1 expression was positive in the endothelia on both the paraffin slide and the single layerslide. The results showed that by direct injection into the anterior chamber, foreign plasmid DNAcould be transferred into the endothelia and its expression was obtained. This may provide a foun-dation for further study on TGF-β1 participating in local induction of corneal immune tolerance.

  5. 1,25(OH)2D3 and VDR Signaling Pathways Regulate the Inhibition of Dectin-1 Caused by Cyclosporine A in Response to Aspergillus Fumigatus in Human Corneal Epithelial Cells

    Science.gov (United States)

    Xia, Yiping; Zhao, Guiqiu; Lin, Jing; Li, Cui; Cong, Lin; Jiang, Nan; Xu, Qiang; Wang, Qian

    2016-01-01

    Background The objective of this study is to observe whether cyclosporine A (CsA) inhibits the expression of dectin-1 in human corneal epithelial cells infected with Aspergillus fumigatus (A. fumigatus) and to investigate the molecular mechanisms of the inhibition. Methods Immortalized human corneal epithelial cells (HCECs) were pretreated with 1,25(OH)2D3 and VDR inhibitor for 1 h, and then they were pretreated with CsA for 12h. After these pretreatments, the HCECs were stimulated with A. fumigatus and curdlan respectively, and the expression of dectin-1 and proinflammatory cytokines (IL-1β and TNF-α) were detected by RT-PCR, western blot and ELISA. Results Dectin-1 mRNA and dectin-1 protein expression increased when HCECs were stimulated with A. fumigatus or curdlan, and CsA inhibited the dectin-1 expression both in mRNA and protein levels specifically. Dectin-1 and proinflammatory cytokine expression levels were higher when HCECs were pretreated with VDR inhibitor and CsA compared to pretreatment with CsA alone, while dectin-1 and proinflammatory cytokine levels were lower when HCECs were pretreated with 1,25(OH)2D3 and CsA compared to pretreatment with CsA alone. Conclusions These data provide evidence that CsA can inhibit the expression of dectin-1 and proinflammatory cytokines through dectin-1 when HCECs are stimulated by A. fumigatus or curdlan. The active form of vitamin D, 1,25(OH)2D3, and VDR signaling pathway regulate the inhibition of CsA. The inhibition is enhanced by 1,25(OH)2D3, and the VDR inhibitor suppresses the inhibition. PMID:27755569

  6. [Methods for sealing of corneal perforations].

    Science.gov (United States)

    Samoilă, O; Totu, Lăcrămioara; Călugăru, M

    2012-01-01

    A variety of corneal pathology can lead to corneal ulcers and perforations. A deep corneal ulcer may need surgical treatment to allow good volume restoration and reepithelisation. Corneal perforation must be sealed and when the perforation is large, the task of repairing the defect can be underwhelming. The elegant solution is the corneal transplant, but this is not always readily available, especially in undeveloped countries. We present here two cases with different solutions to seal the perforated cornea: the first one has a large peripheral defect and it is successfully sealed with scleral patch and the second one is central with small perforation and is successfully sealed with multilayered amniotic membrane. Both cases are followed for over 12 months and demonstrate good corneal restoration (both on clinical examination and corneal topography). Sclera and amniotic membrane can be used to seal corneal defects when corneal transplant is not readily available.

  7. Corneal collagen crosslinking: a systematic review.

    Science.gov (United States)

    Sorkin, Nir; Varssano, David

    2014-01-01

    Keratoconus (KCN) is an ectatic disorder with progressive corneal thinning and a clinical picture of corneal protrusion, progressive irregular astigmatism, corneal fibrosis and visual deterioration. Other ectatic corneal disorders include: post-LASIK ectasia (PLE) and pellucid marginal degeneration (PMD). Corneal crosslinking (CXL) is a procedure whereby riboflavin sensitization with ultraviolet A radiation induces stromal crosslinks. This alters corneal biomechanics, causing an increase in corneal stiffness. In recent years, CXL has been an established treatment for the arrest of KCN, PLE and PMD progression. CXL has also been shown to be effective in the treatment of corneal infections, chemical burns, bullous keratopathy and other forms of corneal edema. This is a current review of CXL - its biomechanical principles, the evolution of CXL protocols in the past, present and future, indications for treatment, treatment efficacy and safety.

  8. [THE NEW APPROACH TO EVALUATION OF ENDOTHELIUM DYSFUNCTION: DETECTION OF NUMBER OF CIRCULATING ENDOTHELIUM CELLS USING FLOW CYTOMETRY TECHNIQUE].

    Science.gov (United States)

    Feoktistova, V S; Vavilkova, T V; Sirotkina, O V; Boldueva, S A; Gaikovaia, L B; Leonova, I A; Laskovets, A B; Ermakov, A I

    2015-04-01

    The endothelium dysfunction takes leading place in pathogenesis of development of cardiovascular diseases. The circulating endothelium cells of peripheral blood can act as a direct cell marker of damage and remodeling of endothelium. The study was carried out to develop a new approach to diagnose of endothelium dysfunction by force of determination of number of circulating endothelium cells using flow cytometry technique and to apply determination of circulating endothelium cells for evaluation of risk of development of ischemic heart disease in women of young and middle age. The study embraced 62 female patients with angiography confirmed ischemic heart disease, exertional angina pectoris at the level of functional class I-II (mean age 51 ± 6 years) and 49 women without anamnesis of ischemic heart disease (mean age 52 ± 9 years). The occurrence of more than three circulating endothelium cells by 3 x 105 leukocytes in peripheral blood increases relative risk of development of ischemic heart disease up to 4 times in women of young and middle age and risk of development of acute myocardial infarction up to 8 times in women with ischemic heart disease. The study demonstrated possibility to apply flow cytometry technique to quantitatively specify circulating endothelium cells in peripheral blood and forecast risk of development of ischemic heart disease in women of young and middle age depending on level of circulating endothelium cells.

  9. Corneal Topographic Changes After Eyelid Ptosis Surgery.

    Science.gov (United States)

    Savino, Gustavo; Battendieri, Remo; Riso, Monica; Traina, Salvatore; Poscia, Andrea; DʼAmico, Giovanni; Caporossi, Aldo

    2016-04-01

    To evaluate the corneal topography and the topographic changes after ptosis surgery on patients affected by congenital and acquired blepharoptosis. Twenty eyes of 17 patients affected by acquired and congenital ptosis underwent surgical correction through anterior levator complex tightening. Computerized tomography (Syrius Sistem; CSO) was used to analyze any change in corneal astigmatism (CYL), simulated keratometry, anterior corneal symmetry index front, apical keratometry front, and central corneal thickness. Visual acuity, margin reflex distance, and levator function were also measured. After surgical ptosis repair, corneal topography demonstrated a reduction in average keratometry of 0.15 ± 0.47 diopters (D) and in corneal astigmatism of 0.26 ± 1.12 D. Significant differences were found in apical keratometry front (-1.84 ± 1.76 D) and in best-corrected visual acuity (-0.18 ± 0.06 logMAR) in the postoperative examinations. Central corneal thickness did not show significant differences between preoperative and postoperative examinations. Postoperative topographic maps showed a reduction of symmetry index front (0.10 ± 0.64 D). Eyelid ptosis modifies anterior corneal surface inducing refractive errors and modifying corneal astigmatism in patients, thus affecting the quality of vision. The surgical correction of blepharoptosis induces anterior corneal surface modification, restoring corneal symmetry and regular corneal astigmatism. Postoperative corneal topography showed normal corneal contours.

  10. Patching for corneal abrasion.

    Science.gov (United States)

    Lim, Chris H L; Turner, Angus; Lim, Blanche X

    2016-07-26

    Published audits have demonstrated that corneal abrasions are a common presenting eye complaint. Eye patches are often recommended for treating corneal abrasions despite the lack of evidence for their use. This systematic review was conducted to determine the effects of the eye patch when used to treat corneal abrasions. The objective of this review was to assess the effects of patching for corneal abrasion on healing and pain relief. We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 4), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to May 2016), EMBASE (January 1980 to May 2016), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to May 2016), System for Information on Grey Literature in Europe (OpenGrey) (January 1995 to May 2016), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 9 May 2016. We also searched the reference lists of included studies, unpublished 'grey' literature and conference proceedings and contacted pharmaceutical companies for details of unpublished trials. We included randomised and quasi-randomised controlled trials that compared patching the eye with no patching to treat simple corneal abrasions. Two authors independently assessed the risk of bias and extracted data. Investigators were contacted for further information regarding the quality of trials. The primary outcome was healing at 24, 48 and 72 hours while secondary outcomes included measures of pain, quality of life and adverse effects. We graded the certainty of the evidence using GRADE. We included 12 trials which

  11. Fetal insulin and IGF-II contribute to gestational diabetes mellitus (GDM)-associated up-regulation of membrane-type matrix metalloproteinase 1 (MT1-MMP) in the human feto-placental endothelium.

    Science.gov (United States)

    Hiden, U; Lassance, L; Tabrizi, N Ghaffari; Miedl, H; Tam-Amersdorfer, C; Cetin, I; Lang, U; Desoye, G

    2012-10-01

    Gestational diabetes mellitus (GDM)-associated hormonal and metabolic derangements in mother and fetus affect placental development and function. Indeed, in GDM, placentas are characterized by hypervascularization and vascular dysfunction. The membrane-type matrix metalloproteinase 1 (MT1-MMP) is a key player in angiogenesis and vascular expansion. Here, we hypothesized elevated placental MT1-MMP levels in GDM induced by components of the diabetic environment. Therefore, we measured placental MT1-MMP in normal vs. GDM pregnancies, identified potential functional consequences, and investigated the contribution of hyperglycemia and the insulin/IGF axis. Immunohistochemistry identified placental cell types expressing MT1-MMP. MT1-MMP was compared between normal and GDM placentas by immunoblotting. Quantitative PCR of MT1-MMP in primary feto-placental endothelial cells (fpEC) and trophoblasts isolated from both normal and GDM placentas identified the cells contributing to the GDM-associated changes. A putative MT1-MMP role in angiogenesis was determined using blocking antibodies for in vitro angiogenesis assays. Potential GDM-associated factors and signaling pathways inducing MT1-MMP up-regulation in fpEC were identified using kinase inhibitors. Total and active MT1-MMP was increased in GDM placentas (+51 and 54%, respectively, Pfeto-placental endothelium, and insulin and IGF-II contribute. This may account for GDM-associated changes in the feto-placental vasculature.

  12. Characterization of Corneal Involvement in Eyes With Mucous Membrane Pemphigoid by In Vivo Confocal Microscopy.

    Science.gov (United States)

    Tepelus, Tudor C; Huang, Jianyan; Sadda, SriniVas R; Lee, Olivia L

    2017-08-01

    To describe the morphological features of the corneal epithelial layers, subbasal nerve plexus, stroma, and endothelium in patients with mucous membrane pemphigoid (MMP) as shown by in vivo confocal microscopy (IVCM). Central corneal images were captured from 10 healthy age-matched control eyes and 30 eyes with clinically diagnosed MMP by in vivo laser scanning confocal microscopy (HRT III RCM). Morphological changes of the corneal epithelial layers, stroma, and endothelium, characteristics of corneal nerves, and presence of inflammatory dendritic cells (DCs) were evaluated. Images obtained by IVCM from 40 eyes were analyzed. The eyes with MMP were divided into 2 groups based on clinical staging: 16 eyes with end-stage MMP and 14 eyes with non-end-stage MMP. Compared with controls, IVCM in eyes with end-stage MMP displayed severe conjunctivalization and neovascularization of the cornea, with otherwise limited identifiable cellular or structural elements. Those with non-end-stage MMP showed metaplasia of the corneal epithelial layers, presence of hyperreflective cells similar to conjunctival cells, intraepithelial defects, fibrosis of anterior stroma, and hyperreflective endothelial deposits. Images of the subbasal nerve plexus demonstrate significant reduction in density (1251.3 ± 806.9 μm/frame vs. 2688.8 ± 607.33 μm/frame, P < 0.001), increased tortuosity (2.76 ± 0.6 vs. 2.3 ± 0.42, not significant), decreased reflectivity (2.73 ± 0.4 vs. 3.46 ± 0.52, P < 0.01), and increased density of DCs (115 ± 88 cells/mm vs. 43.9 ± 28.14 cells/mm, P < 0.05) in MMP-affected eyes compared with controls. IVCM reveals profound and variable microstructural changes in the corneas of patients with MMP compared with normal controls. Our study demonstrated decreased corneal nerve density and elevated DC density in eyes with non-end-stage MMP compared with normal controls. Frequent scarring, conjunctivalization, and neovascularization observed in eyes with end-stage MMP

  13. Corneal modeling using conic section fits of PAR corneal topography system measurements

    Science.gov (United States)

    Zipper, Stanley; Manns, Fabrice; Fernandez, Viviana; Sandadi, Samith; Ho, Arthur; Parel, Jean-Marie A.

    2001-06-01

    The purpose of this study was to measure the average shape and variability of human corneas and to develop a tool for analyzing, height, curvature, and aberrations based on a conic section model. Fresh Eye Bank Eyes were placed in Dextran until the corneal thickness reached a physiological value. The eyes were placed in a custom made holder and measured using an intraoperative PAR Corneal Topography System (CTS) mounted on an operation microscope. Topography was measured before and after removal of the epithelium. A series of MATLAB functions were written to analyze the raw-z (height) data in polar coordinates. The functions fit conic sections to the PAR CTS data along hemi-meridians at 5 degree(s) intervals. The conic shape factor and apical radius were used to calculate and display the curvature. The dependence of these parameters with meridional position was examined.

  14. Corneal endothelial cell density and morphology in Phramongkutklao Hospital

    Directory of Open Access Journals (Sweden)

    Narumon Sopapornamorn

    2008-03-01

    Full Text Available Narumon Sopapornamorn1, Manapon Lekskul1, Suthee Panichkul21Department of Ophthalmology, Phramongkutklao Hospital, Bangkok, Thailand; 2Department of Obstetrics and Gynecology, Phramongkutklao College of Medicine, Bangkok, ThailandObjective: To describe the corneal endothelial density and morphology in patients of Phramongkutklao Hospital and the relationship between endothelial cell parameters and other factors.Methods: Four hundred and four eyes of 202 volunteers were included. Noncontact specular microscopy was performed after taking a history and testing the visual acuity, intraocular pressure measurement, Schirmer’s test and routine eye examination by slit lamp microscope. The studied parameters included mean endothelial cell density (MCD, coefficient of variation (CV, and percentage of hexagonality.Results: The mean age of volunteers was 45.73 years; the range being 20 to 80 years old. Their MCD (SD, mean percentage of CV (SD and mean (SD percentage of hexagonality were 2623.49(325 cell/mm2, 39.43(8.23% and 51.50(10.99%, respectively. Statistically, MCD decreased significantly with age (p < 0.01. There was a significant difference in the percentage of CV between genders. There was no statistical significance between parameters and other factors.Conclusion: The normative data of the corneal endothelium of Thai eyes indicated that, statistically, MCD decreased significantly with age. Previous studies have reported no difference in MCD, percentage of CV, and percentage of hexagonality between gender. Nevertheless, significantly different percentages of CV between genders were presented in this study.Keywords: Corneal endothelial cell, parameters, age, gender, smoking, Thailand

  15. Corneal endothelial changes after accelerated corneal collagen cross-linking in keratoconus and postLASIK ectasia

    Science.gov (United States)

    Badawi, Amani E

    2016-01-01

    Purpose The purpose of this study was to evaluate the effects of accelerated cross-linking (CXL) on corneal endothelium in keratoconus and postlaser-assisted in situ keratomileusis (LASIK) ectasia. Design This study is a prospective nonrandomized controlled study. Setting This study was conducted in Mansoura Ophthalmic Center (Mansoura University) and Al-Mostakbal Ophthalmic Center, Mansoura, Egypt. Methods In total, 40 eyes with progressive keratoconus and 10 eyes with postLASIK ectasia were subjected to an accelerated CXL (10 mW/cm2 for 9 minutes). Qualitative and quantitative analyses of the corneal endothelial cells were conducted before CXL and 3, 6, and 12 months after CXL by using a specular microscope (Tomy EM-3000). Results There was a significant reduction in endothelial cell count particularly at 3 and 6 months postCXL. In addition, the coefficient of variance was also statistically significantly higher at 3 and 6 months postoperatively than the preCXL value. There was a slight change in the percentage of hexagonal cells. Conclusion The use of accelerated CXL (10 mW/cm2 for 9 minutes) has a transient negative impact on endothelial cell density and/or endothelial morphology. PMID:27757009

  16. Noninvasive spectroscopic diagnosis of superficial ocular lesions and corneal infections

    Energy Technology Data Exchange (ETDEWEB)

    Mourant, J.R.; Bigio, I.J.; Johnson, T.; Shimada, T. [Los Alamos National Lab., NM (United States); Gritz, D.C.; Storey-Held, K. [Texas Univ. Health Science Center, San Antonio, TX (United States). Dept. of Ophthalmology

    1994-02-01

    The potential of a rapid noninvasive diagnostic system to detect tissue abnormalities on the surface of the eye has been investigated. The optical scatter signal from lesions and normal areas on the conjunctival sclera of the human eye were measured in vivo. It is possible to distinguish nonpigmented pingueculas from other lesions. The ability of the system to detect malignancies could not be tested because none of the measured and biopsied lesions were malignant. Optical scatter and fluorescence spectra of bacterial and fungal suspensions, and corneal irritations were also collected. Both scattering and fluorescence show potential for diagnosing corneal infections.

  17. Posterior polymorphous corneal dystrophy 3 is associated with agenesis and hypoplasia of the corpus callosum.

    Science.gov (United States)

    Jang, Michelle S; Roldan, Ashley N; Frausto, Ricardo F; Aldave, Anthony J

    2014-07-01

    Posterior polymorphous corneal dystrophy (PPCD) is a dominantly inherited disorder of the corneal endothelium that has been associated with mutations in the zinc-finger E-box binding homeobox 1 gene (ZEB1) gene in approximately one-third of affected families. While the corneal dystrophies have traditionally been considered isolated disorders of the corneal endothelium, we have recently identified two cases of maldevelopment of the corpus callosum in unrelated individuals with PPCD. The proband of the first family was diagnosed shortly after birth with agenesis of the corpus callosum and several other developmental abnormalities. Karyotype, FISH and whole genome copy number variant analyses were normal. She was subsequently diagnosed with PPCD, prompting screening of the ZEB1 gene, which identified a novel deletion (c.449delG; p.(Gly150Alafs*36)) present in the heterozygous state that was not identified in either unaffected parent. The proband of the second family was diagnosed several months after birth with thinning of the corpus callosum and PPCD. Whole genome copy number variant analysis revealed a 1.79 Mb duplication of 17q12 in the proband and her father and brother, neither of whom had PPCD. ZEB1 sequencing identified a novel deletion (c.1913-1914delCA; p.(Ser638Cysfs*5)) present in the heterozygous state, which was also identified in the proband's affected mother. Thus, we report the first two cases of the association of PPCD with a developmental abnormality of the brain, in this case maldevelopment of the corpus callosum.

  18. Transepithelial corneal collagen crosslinking for keratoconus: qualitative investigation by in vivo HRT II confocal analysis.

    Science.gov (United States)

    Caporossi, Aldo; Mazzotta, Cosimo; Baiocchi, Stefano; Caporossi, Tomaso; Paradiso, Anna Lucia

    2012-01-01

    This was a qualitative investigation of corneal microstructural modifications in keratoconic patients undergoing experimental transepithelial crosslinking (TE CXL). Ten patients with keratoconus intolerant to gas-permeable rigid contact lenses were enrolled. Corneal thickness was in the range 350-390 µm at the thinnest point measured by Visante AC optical coherence tomography system (Zeiss, Jena, Germany). All patients underwent TE CXL with 0.1% riboflavin-15% dextran solution supplemented with TRIS plus sodium EDTA (Ricrolin TE, Sooft Italia) according to Siena protocol. In vivo Heidelberg retinal tomograph II laser scanning confocal analysis (Rostock Cornea Module, Heidelberg, Germany) was performed with the following follow-up: preoperative and postoperative assessments at 1, 3, and 6 months. The following morphologic parameters were evaluated: epithelium, subepithelial, and anterior stroma nerve plexi, keratocytes apoptosis, stromal changes, and the endothelium. After TE CXL, epithelial cells showed apoptosis, with mosaic alterations gradually disappearing. Keratocytes apoptosis was variable, superficial, and uneven, with a maximum depth of penetration at about 140 µm, measured from the surface of epithelium. Treatment respected subepithelial and stromal nerves that did not disappear. No variation in cell count or endothelial mosaic was observed. In vivo confocal analysis of corneal modifications induced by TE CXL showed a limited apoptotic affect of this treatment, about one-third of classic epi-off crosslinking procedure. The TE CXL respected sub-basal and anterior stroma nerve fibers, resulting safe for corneal endothelium. According to limited penetration, its mid- to long-term efficacy needs to be determined in different clinical settings related to patient age and keratoconus progression.

  19. Optical coherence tomography-based topography determination of corneal grafts in eye bank cultivation

    Science.gov (United States)

    Damian, Angela; Seitz, Berthold; Langenbucher, Achim; Eppig, Timo

    2017-01-01

    Vision loss due to corneal injuries or diseases can be treated by transplantation of human corneal grafts (keratoplasty). However, quality assurance in retrieving and cultivating the tissue transplants is confined to visual and microbiological testing. To identify previous refractive surgery or morphological alterations, an automatic, noncontact, sterile screening procedure is required. Twenty-three corneal grafts have been measured in organ culture with a clinical spectral-domain optical coherence tomographer. Employing a biconic surface fit with 10 degrees of freedom, the radii of curvature and conic constants could be estimated for the anterior and posterior corneal surfaces. Thereupon, central corneal thickness, refractive values, and astigmatism have been calculated. Clinical investigations are required to elaborate specific donor-host matching in the future.

  20. The treatment of acute corneal hydrops by subtotal penetrating keratoplasty. Clinical case

    Directory of Open Access Journals (Sweden)

    I. A. Loskutov

    2014-07-01

    Full Text Available Clinical case of acute hydrops treatment using subtotal penetrating keratoplasty (PK is presented. The diagnosis of acute hydrops was based on clinical and functional evaluations including optical coherent tomography (OCT. A part of diseased cornea was removed and examined under a light microscope. These studies revealed morphological changes in almost all corneal layers. OCT and histology demonstrated that PK was indicated to this patient. Recent literature data on the epidemiology and pathogenesis of acute hydrops are presented. This rare disease results from tears in the Descemet’s membrane that allow aqueous humor to enter the stroma. Current treatment is aimed to suppress corneal inflammation, restore endothelium and Descemet’s membrane integrity and drain stromal cysts to optimize cornea healing. In this case, subtotal PK was performed due to the significant corneal thinning and a high risk of its melting. «Material for corneal graft» (iLab, Moscow, Russia was used as a donor material.

  1. Corneal stromal dystrophies: a clinical pathologic study

    Directory of Open Access Journals (Sweden)

    Elvira Barbosa Abreu

    2012-12-01

    Full Text Available INTRODUCTION: Corneal dystrophy is defined as bilateral and symmetric primary corneal disease, without previous associated ocular inflammation. Corneal dystrophies are classified according to the involved corneal layer in superficial, stromal, and posterior dystrophy. Incidence of each dystrophy varies according to the geographic region studied. PURPOSE: To evaluate the prevalence of stromal corneal dystrophies among corneal buttons specimens obtained by penetrating keratoplasty (PK in an ocular pathology laboratory and to correlate the diagnosis with patient age and gender. METHODS: Corneal button cases of penetrating keratoplasty from January-1996 to May-2009 were retrieved from the archives of The Henry C. Witelson Ophthalmic Pathology Laboratory and Registry, Montreal, Canada. The cases with histopathological diagnosis of stromal corneal dystrophies were stained with special stains (Peroxid acid Schiff, Masson trichrome, Congo red analyzed under polarized light, and alcian blue for classification and correlated with epidemiological information (age at time of PK and gender from patients' file. RESULTS: 1,300 corneal buttons cases with clinical diagnose of corneal dystrophy were retrieved. Stromal corneal dystrophy was found in 40 (3.1% cases. Lattice corneal dystrophy was the most prevalent with 26 cases (65%. Nineteen were female (73.07% and the PK was performed at average age of 59.3 years old. Combined corneal dystrophy was found in 8 (20% cases, 5 (62.5% of them were female and the average age of the penetrating keratoplasty was 54.8 years old. Granular corneal dystrophy was represented by 5 (12.5% cases, and 2 (40% of them were female. Penetrating keratoplasty was performed at average age of 39.5 years old in granular corneal dystrophy cases. Macular corneal dystrophy was present in only 1 (2.5% case, in a 36 years old female. CONCLUSION: Systematic histopathological approach and evaluation, including special stains in all stromal

  2. Evaluation of Factors Limiting Corneal Donation.

    Science.gov (United States)

    Röck, Daniel; Wude, Johanna; Yoeruek, Efdal; Bartz-Schmidt, Karl Ulrich; Röck, Tobias

    2016-11-15

    BACKGROUND This study aimed to investigate factors limiting corneal donation at the University Hospital Tübingen. MATERIAL AND METHODS We retrospectively studied all hospital deaths from January 2012 to December 2015, considering each deceased patient as a potential corneal donor. During this period an ophthalmic resident managed corneal donor procurement on a full-time basis. Various factors limiting corneal donation were examined. RESULTS Among the 3412 deaths, 2937 (86.1%) displayed nonfulfillment of corneal donation. Consent for corneal donation was obtained in 475 cases (13.9%). The mean annual corneal donation rate was 13.9 donors per 100 deaths (range: 11.2-17.8). The leading causes of nonfulfillment of corneal donations were refusal to donate (49.8%, 1698 cases) and medical contraindications (23.6%, 805 cases). After next-of-kin interview of 2173 potential donors (109 potential donors were excluded because of logistical problems), willingness to participate in corneal donation was present in 475 cases (21.9%), whereas in 1698 cases (78.1%) corneal donation was refused. CONCLUSIONS Our study showed refusal to donate is the most important factor limiting corneal donation. It seems that increasing the knowledge of people about corneal donation through public education and media are necessary to address the corneal shortage.

  3. Vascular endothelium receptors and transduction mechanisms

    CERN Document Server

    Gillis, C; Ryan, Una; Proceedings of the Advanced Studies Institute on "Vascular Endothelium: Receptors and Transduction Mechanisms"

    1989-01-01

    Beyond their obvious role of a barrier between blood and tissue, vascular endothelial cells are now firmly established as active and essential participants in a host of crucial physiological and pathophysiological functions. Probably the two most important factors responsible for promoting the current knowledge of endothelial functions are 1) observations in the late sixties-early seventies that many non-ventilatory properties of the lung could be attributed to the pulmonary endothelium and 2) the establishment, in the early and mid-seventies of procedures for routine culture of vascular endothelial cells. Many of these endothelial functions require the presence of receptors on the surface of the plasma membrane. There is now evidence for the existence among others of muscarinic, a-and /3-adrenergic, purine, insulin, histamine, bradykinin, lipoprotein, thrombin, paf, fibronectin, vitronectin, interleukin and albumin receptors. For some of these ligands, there is evidence only for the existence of endothelial ...

  4. Experimental circular keratotomy for correction of corneal astigmatism

    NARCIS (Netherlands)

    Wijdh, RH; van Rij, G

    1998-01-01

    PURPOSE: To investigate the effect of circular keratotomy depth and diameter on corneal astigmatism. METHODS: High astigmatism was induced in 25 human donor eyes by an anterior radial 7-0 silk suture across the corneoscleral limbus. With a 6.0, 6.5, 7.0, or 7.5 mm trephine, a 0.3 mm deep circular

  5. In Vivo Confocal Microscopy expanding horizons in corneal imaging

    NARCIS (Netherlands)

    T. Hillenaar (Toine)

    2012-01-01

    textabstractConfocal microscopy is an emerging optical technique that allows the living human cornea to be imaged on a cellular level. As such, confocal microscopy enables morphologic and quantitative analysis of corneal resident cells in health and disease and provides an exciting bridge between in

  6. In Vivo Confocal Microscopy expanding horizons in corneal imaging

    NARCIS (Netherlands)

    T. Hillenaar (Toine)

    2012-01-01

    textabstractConfocal microscopy is an emerging optical technique that allows the living human cornea to be imaged on a cellular level. As such, confocal microscopy enables morphologic and quantitative analysis of corneal resident cells in health and disease and provides an exciting bridge between in

  7. Corneal Biomechanical Findings in Contact Lens Induced Corneal Warpage

    Science.gov (United States)

    Letafatnejad, Mojgan; Beheshtnejad, Amir Hooshang; Ghaffary, Seyed Reza; Hassanpoor, Narges; Yaseri, Mehdi

    2016-01-01

    Purpose. To evaluate the difference in biomechanical properties between contact lens induced corneal warpage and normal and keratoconic eyes. Method. Prospective observational case control study, where 94 eyes of 47 warpage suspicious and 46 eyes of 23 keratoconic patients were included. Warpage suspected cases were followed until a definite diagnosis was made (warpage, normal, or keratoconus). Results. 44 eyes of 22 patients had contact lens related corneal warpage. 46 eyes of 23 people were diagnosed as nonwarpage normal eyes. 46 eyes of 23 known keratoconus patients were included for comparison. The mean age of the participants was 23.8 ± 3.8 years, and 66.2% of the subjects were female. The demographic and refractive data were not different between warpage and normal groups but were different in the keratoconus group. The biomechanical properties (corneal hysteresis or CH and corneal resistance factor or CRF) were different with the highest value in the warpage group followed by normal and keratoconus groups. CRF was 10.08 ± 1.75, 9.23 ± 1.22, and 7.38 ± 2.14 and CH was 10.21 ± 1.57, 9.59 ± 1.21, and 8.69 ± 2.34 in the warpage, normal, and keratoconus groups, respectively. Conclusion. Corneal biomechanics may be different in people who develop contact lens induced warpage. PMID:27688908

  8. Reconstruction of Rabbit Corneal Layer Composed of Corneal Fibroblasts and Corneal Epithelium on the Lyophilized Amniotic Membrane

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Many researchers have employed the cryopreserved amniotic membrane(CAM) and corneal epithelial cells in the treatment of a severely damaged burned cornea, with corneal epithelial cells cultured on an amniotic membrane (AM). The lyophilized amniotic membrane (LAM) has a higher graft take and a longer shelf life; it is easier to store and safer because of gamma irradiation. Two Teflon rings(Ahn's supporter) were made for culturing the cells on the LAM, and were then used to support the LAM. To reconstruct a corneal layer composed of corneal fibroblasts and epithelium, the corneal fibroblasts were first cultivated on the stromal side of LAM for five days, followed by epithelial cells culture on the epithelial side, by using the air-liquid interface culture. The reconstructed corneal layer composed of corneal fibroblasts and corneal epithelial cells has a much healthier basal layer of corneal epithelium than the reconstructed corneal epithelium, which was got by using only corneal epithelial cells, and resembles the epithelium of normal corneas, without the horny layer. Thus, the reconstruction of the corneal layer by using a LAM is considered to be a good in vitro model, not only for its application in toxicological test kits, but also for transplantation in patients with a severely damaged cornea.

  9. Vorinostat: a potent agent to prevent and treat laser-induced corneal haze.

    Science.gov (United States)

    Tandon, Ashish; Tovey, Jonathan C K; Waggoner, Michael R; Sharma, Ajay; Cowden, John W; Gibson, Daniel J; Liu, Yuanjing; Schultz, Gregory S; Mohan, Rajiv R

    2012-04-01

    This study investigated the efficacy and safety of vorinostat, a deacetylase (HDAC) inhibitor, in the treatment of laser-induced corneal haze following photorefractive keratectomy (PRK) in rabbits in vivo and transforming growth factor beta 1 (TGFβ1) -induced corneal fibrosis in vitro. Corneal haze in rabbits was produced with -9.00 diopters (D) PRK. Fibrosis in cultured human and rabbit corneal fibroblasts was activated with TGFβ1. Vorinostat (25 μm) was topically applied once for 5 minutes on rabbit cornea immediately after PRK for in vivo studies. Vorinostat (0 to 25 μm) was given to human/rabbit corneal fibroblasts for 5 minutes or 48 hours for in vitro studies. Slit-lamp microscopy, TUNEL assay, and trypan blue were used to determined vorinostat toxicity, whereas real-time polymerase chain reaction, immunocytochemistry, and immunoblotting were used to measure its efficacy. Single 5-minute vorinostat (25 μm) topical application on the cornea following PRK significantly reduced corneal haze (Prabbit eyes in vivo screened 4 weeks after PRK. Vorinostat reduced TGFβ1-induced fibrosis in human and rabbit corneas in vitro in a dose-dependent manner without altering cellular viability, phenotype, or proliferation. Vorinostat is non-cytotoxic and safe for the eye and has potential to prevent laser-induced corneal haze in patients undergoing PRK for high myopia. Copyright 2012, SLACK Incorporated.

  10. Increased TRPC3 expression in vascular endothelium of patients with malignant hypertension

    DEFF Research Database (Denmark)

    Thilo, Florian; Loddenkemper, Christoph; Berg, Erika

    2009-01-01

    An increased expression of transient receptor potential canonical type 3 (TRPC3) cation channels has been proposed as one of the factors contributing to the pathogenesis of hypertension. To test that hypothesis we compared the expression of TRPC3 and TRPC6 as an endogenous control in human vascular...... endothelium of preglomerular arterioles in kidney biopsies from six patients with malignant hypertension and from four patients with diarrhea-associated hemolytic-uremic syndrome. Patients with malignant hypertension showed significantly higher systolic blood pressure and more prominent expression of TRPC3...... in vascular endothelium of preglomerular arterioles compared to patients with hemolytic-uremic syndrome. The expression of TRPC6 was not different between the two groups. The study supports the hypothesis that the increased expression of TRPC3 is associated with malignant hypertension in humans....

  11. Corneal biomechanics: a review.

    Science.gov (United States)

    Piñero, David P; Alcón, Natividad

    2015-03-01

    Biomechanics is often defined as 'mechanics applied to biology'. Due to the variety and complexity of the behaviour of biological structures and materials, biomechanics is better defined as the development, extension and application of mechanics for a better understanding of physiology and physiopathology and consequently for a better diagnosis and treatment of disease and injury. Different methods for the characterisation of corneal biomechanics are reviewed in detail, including those that are currently commercially available (Ocular Response Analyzer and CorVis ST). The clinical applicability of the parameters provided by these devices are discussed, especially in the fields of glaucoma, detection of ectatic disorders and orthokeratology. Likewise, other methods are also reviewed, such as Brillouin microscopy or dynamic optical coherence tomography and others with potential application to clinical practice but not validated for in vivo measurements, such as ultrasonic elastography. Advantages and disadvantages of all these techniques are described. Finally, the concept of biomechanical modelling is revised as well as the requirements for developing biomechanical models, with special emphasis on finite element modelling.

  12. Corneal Decompensation after Selective Laser Trabeculoplasty

    Directory of Open Access Journals (Sweden)

    Ahmet Ozkok

    2014-01-01

    Full Text Available A 64-year-old Caucasian man referred for decreased vision after selective laser trabeculoplasty (SLT. Slit lamp examination revealed diffuse corneal edema. Despite intensive topical treatment including steroids, corneal edema did not resolve; on the contrary, it advanced to bullous keratopathy. Corneal edema after SLT is an exceptionally rare complication and in all of the previous reports edema resolved with medical treatment. To the best of our knowledge, this is the first report presenting persistent corneal edema after SLT.

  13. Progress of research on corneal collagen cross-linking for corneal melting

    Directory of Open Access Journals (Sweden)

    Ke-Ren Xiao

    2016-06-01

    Full Text Available Corneal collagen cross-linking(CXLcould increase the mechanical strength, biological stability and halt ectasia progression due to covalent bond formed by photochemical reaction between ultraviolet-A and emulsion of riboflavin between collagen fibers in corneal stroma. Corneal melting is an autoimmune related noninfectious corneal ulcer. The mechanism of corneal melting, major treatment, the basic fundamental of ultraviolet-A riboflavin induced CXL and the clinical researches status and experiment in CXL were summarized in the study.

  14. Corneal surface reconstruction - a short review

    Directory of Open Access Journals (Sweden)

    Madhavan H N

    2009-01-01

    Full Text Available Cornea is the clear, dome-shaped surface that covers the front of the eye and when damage due to burns or injury and several other diseases, stem cells residing in its rim called "limbus" are stimulated to multiply to support growth of new epithelial cells over its surface. If this ready source of stem cells is damaged or destroyed the natural repair is not possible and such a condition is known as corneal limbal stem cell deficiency (CLSCD disease. Stem cell transplant helps such persons to regenerate the corneal surface. Human corneal limbal stem cell transplantation is at present an established procedure with reasonable good clinical outcome particularly when autologous limbal epithelial tissue from a fellow unaffected eye is used. 1, 2 A major concern related to the autograft is the possibility of CLSCD at the donor site, 3 techniques that allowed the expansion of a small limbal biopsy in the laboratory using cell cultures that could be then transplanted to the affected eye have been developed ,4, 5 Human amniotic membrane (HAM is used as a scaffold for both culturing the human limbal epithelial cells and for ocular surface reconstruction with the cultured limbal epithelial cells. 4-7 However, researchers have used alternative scaffolds like collagen 8, fibrin gel 9 and cross-linked gel of fibronectin and fibrin. 10 All these are biological materials and also need for animal 3T3 feeder layer for stem cell cultures. The properties of HAM are unique including antiadhesive effects, bacteriostatic effects, wound protection, pain reduction, and improvement of epithelialization and characteristically lacking imunogenicity. The use of amniotic membrane transplantation (AMT to treat ocular surface abnormalities was first reported by Graziella Pellegrini, chief of stem cell laboratory at Giovanni Paolo Hospital in Venice, Italy, who was the first to demonstrate the limbal stem cell transplant in 1997. Amniotic membrane has been successfully used in

  15. Ocular dimensions, corneal thickness, and corneal curvature in quarter horses with hereditary equine regional dermal asthenia.

    Science.gov (United States)

    Badial, Peres R; Cisneros-Àlvarez, Luis Emiliano; Brandão, Cláudia Valéria S; Ranzani, José Joaquim T; Tomaz, Mayana A R V; Machado, Vania M; Borges, Alexandre S

    2015-09-01

    The aim of this study was to compare ocular dimensions, corneal curvature, and corneal thickness between horses affected with hereditary equine regional dermal asthenia (HERDA) and unaffected horses. Five HERDA-affected quarter horses and five healthy control quarter horses were used. Schirmer's tear test, tonometry, and corneal diameter measurements were performed in both eyes of all horses prior to ophthalmologic examinations. Ultrasonic pachymetry was performed to measure the central, temporal, nasal, dorsal, and ventral corneal thicknesses in all horses. B-mode ultrasound scanning was performed on both eyes of each horse to determine the dimensions of the ocular structures and to calculate the corneal curvature. Each corneal region examined in this study was thinner in the affected group compared with the healthy control group. However, significant differences in corneal thickness were only observed for the central and dorsal regions. HERDA-affected horses exhibited significant increases in corneal curvature and corneal diameter compared with unaffected animals. The ophthalmologic examinations revealed mild corneal opacity in one eye of one affected horse and in both eyes of three affected horses. No significant between-group differences were observed for Schirmer's tear test, intraocular pressure, or ocular dimensions. Hereditary equine regional dermal asthenia-affected horses exhibit decreased corneal thickness in several regions of the cornea, increased corneal curvature, increased corneal diameter, and mild corneal opacity. Additional research is required to determine whether the increased corneal curvature significantly impacts the visual accuracy of horses with HERDA. © 2014 American College of Veterinary Ophthalmologists.

  16. Acute corneal hydrops in keratoconus

    Directory of Open Access Journals (Sweden)

    Prafulla K Maharana

    2013-01-01

    Full Text Available Acute corneal hydrops is a condition characterized by stromal edema due to leakage of aqueous through a tear in descemet membrane. The patient presents with sudden onset decrease in vision, photophobia, and pain. Corneal thinning and ectasias combined with trivial trauma to the eye mostly by eye rubbing is considered as the underlying cause. With conservative approach self-resolution takes around 2 to 3 months. Surgical intervention is required in cases of non-resolution of corneal edema to avoid complications and for early visual rehabilitation. Intracameral injection of air or gas such as perflouropropane is the most common surgical procedure done. Recent investigative modality such as anterior segment optical coherence tomography is an extremely useful tool for diagnosis, surgical planning, and postoperative follow up. Resolution of hydrops may improve the contact lens tolerance and visual acuity but most cases require keratoplasty for visual rehabilitation.

  17. Posterior Corneal Surface Stability after Femtosecond Laser-Assisted Keratomileusis

    Directory of Open Access Journals (Sweden)

    Carlo Cagini

    2015-01-01

    Full Text Available The purpose of this study was to evaluate posterior corneal surface variation after femtosecond laser-assisted keratomileusis in patients with myopia and myopic astigmatism. Patients were evaluated by corneal tomography preoperatively and at 1, 6, and 12 months. We analyzed changes in the posterior corneal curvature, posterior corneal elevation, and anterior chamber depth. Moreover, we explored correlation between corneal ablation depth, residual corneal thickness, percentage of ablated corneal tissue, and preoperative corneal thickness. During follow-up, the posterior corneal surface did not have a significant forward corneal shift: no significant linear relationships emerged between the anterior displacement of the posterior corneal surface and corneal ablation depth, residual corneal thickness, or percentage of ablated corneal tissue.

  18. The theory and art of corneal cross-linking

    Directory of Open Access Journals (Sweden)

    Rebecca McQuaid

    2013-01-01

    Full Text Available Before the discovery of corneal cross-linking (CXL, patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma.

  19. Evaluating the effectiveness of treatment of corneal ulcers via computer-based automatic image analysis

    Science.gov (United States)

    Otoum, Nesreen A.; Edirisinghe, Eran A.; Dua, Harminder; Faraj, Lana

    2012-06-01

    Corneal Ulcers are a common eye disease that requires prompt treatment. Recently a number of treatment approaches have been introduced that have been proven to be very effective. Unfortunately, the monitoring process of the treatment procedure remains manual and hence time consuming and prone to human errors. In this research we propose an automatic image analysis based approach to measure the size of an ulcer and its subsequent further investigation to determine the effectiveness of any treatment process followed. In Ophthalmology an ulcer area is detected for further inspection via luminous excitation of a dye. Usually in the imaging systems utilised for this purpose (i.e. a slit lamp with an appropriate dye) the ulcer area is excited to be luminous green in colour as compared to rest of the cornea which appears blue/brown. In the proposed approach we analyse the image in the HVS colour space. Initially a pre-processing stage that carries out a local histogram equalisation is used to bring back detail in any over or under exposed areas. Secondly we deal with the removal of potential reflections from the affected areas by making use of image registration of two candidate corneal images based on the detected corneal areas. Thirdly the exact corneal boundary is detected by initially registering an ellipse to the candidate corneal boundary detected via edge detection and subsequently allowing the user to modify the boundary to overlap with the boundary of the ulcer being observed. Although this step makes the approach semi automatic, it removes the impact of breakages of the corneal boundary due to occlusion, noise, image quality degradations. The ratio between the ulcer area confined within the corneal area to the corneal area is used as a measure of comparison. We demonstrate the use of the proposed tool in the analysis of the effectiveness of a treatment procedure adopted for corneal ulcers in patients by comparing the variation of corneal size over time.

  20. Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice.

    Directory of Open Access Journals (Sweden)

    Hongshan Liu

    Full Text Available BACKGROUND: Keratoplasty is the most effective treatment for corneal blindness, but suboptimal medical conditions and lack of qualified medical personnel and donated cornea often prevent the performance of corneal transplantation in developing countries. Our study aims to develop alternative treatment regimens for congenital corneal diseases of genetic mutation. METHODOLOGY/PRINCIPAL FINDINGS: Human mesenchymal stem cells isolated from neonatal umbilical cords were transplanted to treat thin and cloudy corneas of lumican null mice. Transplantation of umbilical mesenchymal stem cells significantly improved corneal transparency and increased stromal thickness of lumican null mice, but human umbilical hematopoietic stem cells failed to do the same. Further studies revealed that collagen lamellae were re-organized in corneal stroma of lumican null mice after mesenchymal stem cell transplantation. Transplanted umbilical mesenchymal stem cells survived in the mouse corneal stroma for more than 3 months with little or no graft rejection. In addition, these cells assumed a keratocyte phenotype, e.g., dendritic morphology, quiescence, expression of keratocyte unique keratan sulfated keratocan and lumican, and CD34. Moreover, umbilical mesenchymal stem cell transplantation improved host keratocyte functions, which was verified by enhanced expression of keratocan and aldehyde dehydrogenase class 3A1 in lumican null mice. CONCLUSIONS/SIGNIFICANCE: Umbilical mesenchymal stem cell transplantation is a promising treatment for congenital corneal diseases involving keratocyte dysfunction. Unlike donated corneas, umbilical mesenchymal stem cells are easily isolated, expanded, stored, and can be quickly recovered from liquid nitrogen when a patient is in urgent need.

  1. [Corneal manifestations in systemic diseases].

    Science.gov (United States)

    Zarranz Ventura, J; De Nova, E; Moreno-Montañés, J

    2008-01-01

    Systemic diseases affecting the cornea have a wide range of manifestations. The detailed study of all pathologies that cause corneal alteration is unapproachable, so we have centered our interest in the most prevalent or characteristic of them. In this paper we have divided these pathologies in sections to facilitate their study. Pulmonar and conective tissue (like colagen, rheumatologic and idiopathic inflamatory diseases), dermatologic, cardiovascular, hematologic, digestive and hepatopancreatic diseases with corneal alteration are described. Endocrine and metabolic diseases, malnutrition and carential states are also studied, as well as some otorhinolaryngologic and genetic diseases that affect the cornea. Finally, a brief report of ocular toxicity induced by drugs is referred.

  2. Identification of a potent endothelium-derived angiogenic factor.

    Directory of Open Access Journals (Sweden)

    Vera Jankowski

    Full Text Available The secretion of angiogenic factors by vascular endothelial cells is one of the key mechanisms of angiogenesis. Here we report on the isolation of a new potent angiogenic factor, diuridine tetraphosphate (Up4U from the secretome of human endothelial cells. The angiogenic effect of the endothelial secretome was partially reduced after incubation with alkaline phosphatase and abolished in the presence of suramin. In one fraction, purified to homogeneity by reversed phase and affinity chromatography, Up4U was identified by MALDI-LIFT-fragment-mass-spectrometry, enzymatic cleavage analysis and retention-time comparison. Beside a strong angiogenic effect on the yolk sac membrane and the developing rat embryo itself, Up4U increased the proliferation rate of endothelial cells and, in the presence of PDGF, of vascular smooth muscle cells. Up4U stimulated the migration rate of endothelial cells via P2Y2-receptors, increased the ability of endothelial cells to form capillary-like tubes and acts as a potent inducer of sprouting angiogenesis originating from gel-embedded EC spheroids. Endothelial cells released Up4U after stimulation with shear stress. Mean total plasma Up4U concentrations of healthy subjects (N=6 were sufficient to induce angiogenic and proliferative effects (1.34 ± 0.26 nmol L(-1. In conclusion, Up4U is a novel strong human endothelium-derived angiogenic factor.

  3. Effect of chemical composition on corneal tissue response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jui-Yang, E-mail: jylai@mail.cgu.edu.tw

    2014-01-01

    The purpose of this work was to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and hydrogel material compatibility towards ocular anterior segment tissues, particularly the corneal endothelium. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Then, the 7-mm-diameter membrane implants made from photopolymerized materials were placed into the ocular anterior chamber for 4 days and assessed by biomicroscopic examinations, corneal thickness measurements, and quantitative real-time reverse transcription polymerase chain reaction analyses. The poly(HEMA-co-AAc) implants prepared from the solution mixture containing 0–10 vol.% AAc displayed good biocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the enhanced inflammatory response, decreased endothelial cell density, and increased ocular score and corneal thickness were observed, probably due to the influence of surface charge of copolymer membranes. On the other hand, the ionic pump function of corneal endothelium exposed to photopolymerized membranes was examined by analyzing the Na{sup +},K{sup +}-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of the implants having higher amount of AAc incorporated in the copolymers (i.e., 15.1 to 24.7 μmol) and zeta potential (i.e., -38.6 to − 56.5 mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal tissue responses to polymeric biomaterials. - Highlights: • We examine the corneal tissue responses to photopolymerized biomaterials. • Carboxyl groups in copolymers increased with increasing volume ratio of AAc/HEMA. • 15–20 vol.% AAc raised ocular score and caused corneal endothelial loss and edema. • High anionic charge density stimulated inflammation

  4. [Anti(lymph)angiogenic Strategies to Improve Corneal Graft Survival].

    Science.gov (United States)

    Bock, Felix; Cursiefen, Claus

    2017-05-01

    Corneal transplantation (keratoplasty) is the most frequently performed form of transplantation worldwide. A rejection reaction against the transplant is the main complication occurring after transplantation in an already vascularized, so-called "high-risk" recipient eye. Our group has shown that clinically invisible lymphatic vessels play a crucial role in the induction of a rejection reaction against the corneal graft, and that anti-(lymph)angiogenic therapies in the mouse model of keratoplasty can significantly improve transplant survival. The underlying mechanisms, which improve transplant survival through anti-lymphangiogenic therapies have not been well understood. We assume that the blockade of lymph vessel sprouting leads to a tolerance (and not to a simple ignorance) of the transplant, in which the antigen-presenting cells are held longer in the cornea and, thus, an immunomodulation of these cells occurs. Therefore, an important goal of our project is to find out whether and when transplant tolerance comes from a corneal anti-lymphangiogenic therapy. We assume that the antigen-presenting cells will have a different maturity level and that more tolerogenic effector cells (regulatory T cells, Tregs) develop in the absence of lymphatic vessels. Current anti(lymph)angiogenic therapies have the disadvantage that they are primarily effective on actively growing vessels. Most patients who receive high-risk keratoplasty often present in the clinic with already established, mature corneal blood and lymphatic vessels. At present, there are no lymph vessel regressing strategies, and the mechanisms regulating the maturation of the lymphatics are largely unknown. Therefore, our second goal is to develop new strategies for the regression of existing, pathological lymphatic vessels in the cornea. We are testing both destructive strategies, such as photodynamic therapy and diathermy as well as strategies for the molecular destabilization of the lymph vessel endothelium

  5. Lipid-soluble smoke particles damage endothelial cells and reduce endothelium-dependent dilatation in rat and man

    DEFF Research Database (Denmark)

    Zhang, Jin-Yan; Cao, Yong-Xiao; Xu, Cang-Bao;

    2006-01-01

    BACKGROUND: Cigarette smoking is a strong risk factor for vascular disease and known to cause dysfunction of the endothelium. However, the molecular mechanisms involved are still not fully understood. METHODS: In order to reveal the direct effects of lipid-soluble smoke particles on the endothelium......, ring segments isolated from rat mesenteric arteries and human middle cerebral arteries (MCA) obtained at autopsy were incubated for 6 to 48 hrs in the presence of dimethylsulphoxide (DMSO)-soluble particles from cigarette smoke (DSP), i.e. lipid-soluble smoke particles. The endothelial microstructure...

  6. Inhibition of Endothelium-dependent Vasodilatation by Asymmetric Dimethyl Arginine in Human Resistance Vessels%非对称性二甲基精氨酸对人阻力血管EDVD的抑制作用

    Institute of Scientific and Technical Information of China (English)

    张东亮; 廖华; 张莉; 刘文虎

    2009-01-01

    目的 探讨非对称性二甲基精氨酸(ADMA)对人离体阻力血管环内皮依赖性舒张(endothelium-dependent vasodilatation,EDVD)的抑制作用.方法在血液透析患者行动-静脉内瘘成形术时留取桡动脉,制备血管环,用机械法去内皮并设立内皮存在组和内皮缺失组.应用离体血管张力记录仪观察2组血管环在不同质量浓度ADMA(10-7 mol/L、10-6 mol/L、10-5 mol/L、10-4 mol/L和10-3 mol/L)作用下张力的变化.内皮存在组用10-5 mol/L苯肾上腺素(phenylephrine,PE)引发血管环收缩,再用质量浓度为10-5 mol/L的乙酰胆碱(ACh)引发EDVD,然后用不同质量浓度ADMA处理,观察ADMA在内皮存在情况下对ACh所引起EDVD的抑制作用.内皮缺失组用质量浓度为10-5 mol/L的PE引发血管环收缩后,再用质量浓度为10-7 mol/L的硝普钠(SNP)引发非内皮依赖性血管舒张(EIVD),然后用不同质量浓度ADMA处理,观察ADMA在内皮缺失情况下对SNP引起EIVD的抑制作用.结果内皮存在组用10-5 mol/L的ACh处理可使67.10%±18.63%因PE(10-5 mol/L)引起收缩的血管舒张, ADMA对ACh引起的EDVD呈浓度依赖性抑制作用,相对收缩幅度依次为EDVD幅度的7.32%±8.60%(10-7 mol/L)、20.03%±13.49%(10-6 mol/L)、29.93%±11.78%(10-5 mol/L)、43.30%±11.29%(10-4 mol/L)和80.21%±18.16%(10-3 mol/L).在内皮缺失组,ADMA对SNP引起的EIVD呈微弱的抑制作用,且不表现为浓度依赖性.相对收缩幅度为EIVD的2.76%±1.98%(10-7 mol/L)、2.27%±1.82%(10-6 mol/L)、3.38%±2.99%(10-5 mol/L)、3.59%±3.66%(10-4 mol/L)和4.16%±3.67%(10-3 mol/L).结论 ADMA可以有效地抑制ACh引发的EDVD反应,该抑制作用呈浓度依赖性和内皮依赖性.

  7. Corneal Regeneration After Photorefractive Keratectomy: A Review.

    Science.gov (United States)

    Tomás-Juan, Javier; Murueta-Goyena Larrañaga, Ane; Hanneken, Ludger

    2015-01-01

    Photorefractive keratectomy (PRK) remodels corneal stroma to compensate refractive errors. The removal of epithelium and the ablation of stroma provoke the disruption of corneal nerves and a release of several peptides from tears, epithelium, stroma and nerves. A myriad of cytokines, growth factors, and matrix metalloproteases participate in the process of corneal wound healing. Their balance will determine if reepithelization and stromal remodeling are appropriate. The final aim is to achieve corneal transparency for restoring corneal function, and a proper visual quality. Therefore, wound-healing response is critical for a successful refractive surgery. Our goal is to provide an overview into how corneal wounding develops following PRK. We will also review the influence of intraoperative application of mitomycin C, bandage contact lenses, anti-inflammatory and other drugs in preventing corneal haze and post-PRK pain. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  8. Role of the endothelium in inflammatory bowel diseases

    Institute of Scientific and Technical Information of China (English)

    Walter E Cromer; J Michael Mathis; Daniel N Granger; Ganta V Chaitanya; J Steven Alexander

    2011-01-01

    Inflammatory bowel diseases (IBD) are a complex group of diseases involving alterations in mucosal immunity and gastrointestinal physiology during both initiation and progressive phases of the disease. At the core of these alterations are endothelial cells, whose continual adjustments in structure and function coordinate vascular supply, immune cell emigration, and regulation of the tissue environment. Expansion of the endothelium in IBD (angiogenesis), mediated by inflammatory growth factors, cytokines and chemokines, is a hallmark of active gut disease and is closely related to disease severity. The endothelium in newly formed or inflamed vessels differs from that in normal vessels in the production of and response to inflammatory cytokines,growth factors, and adhesion molecules, altering coagulant capacity, barrier function and blood cell recruitment in injury. This review examines the roles of the endothelium in the initiation and propagation of IBD pathology and distinctive features of the intestinal endothelium contributing to these conditions.

  9. microRNAs in the Lymphatic Endothelium: Master Regulators of Lineage Plasticity and Inflammation

    Science.gov (United States)

    Yee, Daniel; Coles, Mark C.; Lagos, Dimitris

    2017-01-01

    microRNAs (miRNAs) are highly conserved, small non-coding RNAs that regulate gene expression at the posttranscriptional level. They have crucial roles in organismal development, homeostasis, and cellular responses to pathological stress. The lymphatic system is a large vascular network that actively regulates the immune response through antigen trafficking, cytokine secretion, and inducing peripheral tolerance. Here, we review the role of miRNAs in the lymphatic endothelium with a particular focus on their role in lymphatic endothelial cell (LEC) plasticity, inflammation, and regulatory function. We highlight the lineage plasticity of LECs during inflammation and the importance of understanding the regulatory role of miRNAs in these processes. We propose that targeting miRNA expression in lymphatic endothelium can be a novel strategy in treating human pathologies associated with lymphatic dysfunction.

  10. Antibodies directed against antigens on the endothelium of peritubular capillaries in patients with rejecting renal allografts.

    Science.gov (United States)

    Paul, L C; van Es, L A; van Rood, J J; van Leeuwen, A; de la Rivière, G B; de Graeff, J

    1979-03-01

    This study was undertaken to examine the humoral immune response against endothelial antigens of the donor kidney in human renal allograft recipients. Sera from 61 transplant recipients who received 62 grafts were studied for the presence of circulating endothelial antibodies (CEAb) using an indirect immunofluorescence technique with a pretransplant biopsy of the graft as a substrate. IgG antibodies directed against the endothelium of peritubular capillaries were found in the sera of 6 of the 10 patients with graft rejection within 7 weeks after transplantation, whereas these antibodies were not found in the absence of rejection (P less than 0.001). Immunofluorescence studies of post-transplant biopsies showed IgG along the endothelium of peritubular capillaries only in the grafts of patients with CEAb. Eluates from these grafts contained IgG antibodies that bound to the endothelium of the donor as shown by the indirect immunofluorescence technique. Absorption of endothelial antibody (EAb)-positive sera with human platelets or Wistar strain rat erythrocytes showed that the EAb were not directed against serologically defined HLA antigens or against heterophile antigens on rat erythrocytes. We conclude from this study that the presence of antibodies directed against endothelial antigens is associated with poor graft prognosis and that these antibodies may be responsible for the rejection process.

  11. Corneal stroma microfibrils

    KAUST Repository

    Hanlon, Samuel D.

    2015-03-01

    Elastic tissue was first described well over a hundred years ago and has since been identified in nearly every part of the body. In this review, we examine elastic tissue in the corneal stroma with some mention of other ocular structures which have been more thoroughly described in the past. True elastic fibers consist of an elastin core surrounded by fibrillin microfibrils. However, the presence of elastin fibers is not a requirement and some elastic tissue is comprised of non-elastin-containing bundles of microfibrils. Fibers containing a higher relative amount of elastin are associated with greater elasticity and those without elastin, with structural support. Recently it has been shown that the microfibrils, not only serve mechanical roles, but are also involved in cell signaling through force transduction and the release of TGF-β. A well characterized example of elastin-free microfibril bundles (EFMBs) is found in the ciliary zonules which suspend the crystalline lens in the eye. Through contraction of the ciliary muscle they exert enough force to reshape the lens and thereby change its focal point. It is believed that the molecules comprising these fibers do not turn-over and yet retain their tensile strength for the life of the animal. The mechanical properties of the cornea (strength, elasticity, resiliency) would suggest that EFMBs are present there as well. However, many authors have reported that, although present during embryonic and early postnatal development, EFMBs are generally not present in adults. Serial-block-face imaging with a scanning electron microscope enabled 3D reconstruction of elements in murine corneas. Among these elements were found fibers that formed an extensive network throughout the cornea. In single sections these fibers appeared as electron dense patches. Transmission electron microscopy provided additional detail of these patches and showed them to be composed of fibrils (~10nm diameter). Immunogold evidence clearly

  12. Corneale crosslinking voor progressieve keratoconus

    NARCIS (Netherlands)

    Wisse, Robert P L; Soeters, Nienke; Godefrooij, Daniel A.; De Koning-Tahzib, Nayyirih G.

    2016-01-01

    Keratoconus is a corneal disease with onset typically occurring during puberty or early adulthood. The cornea progressively thins and acquires a cone-like shape which negatively affects visual acuity. In the early stages, visual acuity can be corrected with glasses or contact lenses. In more

  13. Corneale crosslinking voor progressieve keratoconus

    NARCIS (Netherlands)

    Wisse, Robert P L; Soeters, Nienke; Godefrooij, Daniel A.; De Koning-Tahzib, Nayyirih G.

    2016-01-01

    Keratoconus is a corneal disease with onset typically occurring during puberty or early adulthood. The cornea progressively thins and acquires a cone-like shape which negatively affects visual acuity. In the early stages, visual acuity can be corrected with glasses or contact lenses. In more advance

  14. Terahertz sensing of corneal hydration.

    Science.gov (United States)

    Singh, Rahul S; Tewari, Priyamvada; Bourges, Jean Louis; Hubschman, Jean Pierre; Bennett, David B; Taylor, Zachary D; Lee, H; Brown, Elliott R; Grundfest, Warren S; Culjat, Martin O

    2010-01-01

    An indicator of ocular health is the hydrodyanmics of the cornea. Many corneal disorders deteriorate sight as they upset the normal hydrodynamics of the cornea. The mechanisms include the loss of endothelial pump function of corneal dystophies, swelling and immune response of corneal graft rejection, and inflammation and edema, which accompany trauma, burn, and irritation events. Due to high sensitivity to changes of water content in materials, a reflective terahertz (300 GHz and 3 THz) imaging system could be an ideal tool to measure the hydration level of the cornea. This paper presents the application of THz technology to visualize the hydration content across ex vivo porcine corneas. The corneas, with a thickness variation from 470 - 940 µm, were successfully imaged using a reflective pulsed THz imaging system, with a maximum SNR of 50 dB. To our knowledge, no prior studies have reported on the use of THz in measuring hydration in corneal tissues or other ocular tissues. These preliminary findings indicate that THz can be used to accurately sense hydration levels in the cornea using a pulsed, reflective THz imaging system.

  15. Establishment of a novel corneal endothelial cell line from domestic rabbit, Oryctolagus curiculus.

    Science.gov (United States)

    Fan, TingJun; Zhao, Jun; Fu, YongFeng; Cong, RiShan; Guo, RuiChao; Liu, WanShun; Han, BaoQin; Yu, QiuTao; Wang, Jing

    2007-04-01

    To develop a rabbit corneal endothelial (RCE) cell line, in vitro culture of RCE cells was initiated from Oryctolagus curiculus corneas and a novel RCE cell line was established in this study. To initiate the primary culture of RCE cells, corneas from rabbit eyes were sliced and attached into glutin-coated wells with endothelial cell surface down. After being cultured at a time-gradient interval from 48 to 6 h, the corneal slices were detached and reattached into new wells, respectively. Cells in the wells containing only a pure population of RCE cells were collected and cultured in 20% FBS-DMEM/F12 medium containing chondroitin sulfate, ocular extract, epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), carboxymethyl-chitosan, N-acetylglucosamine hydrochloride, glucosamine hydrochloride, culture medium of rabbit corneal stromal cells and oxidation-degradation products of chondroitin sulfate at 37 degrees C, 5% CO(2). The cultured RCE cells, in quadrangle and polygonal shapes, proliferated to confluence 3 weeks later. During the subsequent subculture, the shape of RCE cells changed gradually from polygonal to more fibroblastic. A novel RCE cell line, growing at a steady rate, with a population doubling time of 53.8 h, has been established and subcultured to passage 67. Chromosome analysis showed that the RCE cells exhibited chromosomal aneuploidy with the modal chromosome number of 44. The results of immuno-cytochemical staining with neuron specific enolase (NSE) confirmed that the RCE cells were in neuroectodermal origin. Combined with the results of vascular endothelial growth factor (VEGF) treatment and endothelial cell morphology recovery, it can be concluded that the cell line established here is an RCE cell line. This RCE cell line may serve as a useful tool in theoretical researches of mammalian corneal endothelial cells, and may also have potential application in artificial corneal endothelium development.

  16. Corneal alternations induced by topical application of benzalkonium chloride in rabbit.

    Directory of Open Access Journals (Sweden)

    Wensheng Chen

    Full Text Available Benzalkonium chloride (BAC is the most common preservative in ophthalmic preparations. Here, we investigated the corneal alternations in rabbits following exposure to BAC. Twenty-four adult male New Zealand albino rabbits were randomly divided into three groups. BAC at 0.01%, 0.05%, or 0.1% was applied twice daily to one eye each of rabbits for 4 days. The contralateral untreated eyes were used as control. Aqueous tear production and fluorescein staining scores of BAC-treated eyes were compared with those of controls. The structure of the central cornea was examined by in vivo confocal microscopy. Expression of mucin-5 subtype AC (MUC5AC in conjunctiva was detected by immunostainig on cryosections. Corneal barrier function was assessed in terms of permeability to carboxy fluorescein (CF. The distribution and expression of ZO-1, a known marker of tight junction, and reorganization of the perijunctional actomyosin ring (PAMR were examined by immunofluorescence analysis. Although there were no significant differences between control and BAC-treated eyes in Schirmer scores, corneal fluorescein scores and the number of conjunctival MUC5AC staining cells, in vivo confocal microscopy revealed significant epithelial and stromal defects in all BAC-treated corneas. Moreover, BAC at 0.1% resulted in significant increases in central corneal thickness and endothelial CF permeability, compared with those in control eyes, and endothelial cell damage with dislocation of ZO-1 and disruption of PAMR. Topical application of BAC can quickly impair the whole cornea without occurrence of dry eye. A high concentration of BAC breaks down the barrier integrity of corneal endothelium, concomitant with the disruption of PAMR and remodeling of apical junctional complex in vivo.

  17. Corneal Alternations Induced by Topical Application of Benzalkonium Chloride in Rabbit

    Science.gov (United States)

    Chen, Wensheng; Li, Zhiyuan; Hu, Jiaoyue; Zhang, Zhenhao; Chen, Lelei; Chen, Yongxiong; Liu, Zuguo

    2011-01-01

    Benzalkonium chloride (BAC) is the most common preservative in ophthalmic preparations. Here, we investigated the corneal alternations in rabbits following exposure to BAC. Twenty-four adult male New Zealand albino rabbits were randomly divided into three groups. BAC at 0.01%, 0.05%, or 0.1% was applied twice daily to one eye each of rabbits for 4 days. The contralateral untreated eyes were used as control. Aqueous tear production and fluorescein staining scores of BAC-treated eyes were compared with those of controls. The structure of the central cornea was examined by in vivo confocal microscopy. Expression of mucin-5 subtype AC (MUC5AC) in conjunctiva was detected by immunostainig on cryosections. Corneal barrier function was assessed in terms of permeability to carboxy fluorescein (CF). The distribution and expression of ZO-1, a known marker of tight junction, and reorganization of the perijunctional actomyosin ring (PAMR) were examined by immunofluorescence analysis. Although there were no significant differences between control and BAC-treated eyes in Schirmer scores, corneal fluorescein scores and the number of conjunctival MUC5AC staining cells, in vivo confocal microscopy revealed significant epithelial and stromal defects in all BAC-treated corneas. Moreover, BAC at 0.1% resulted in significant increases in central corneal thickness and endothelial CF permeability, compared with those in control eyes, and endothelial cell damage with dislocation of ZO-1 and disruption of PAMR. Topical application of BAC can quickly impair the whole cornea without occurrence of dry eye. A high concentration of BAC breaks down the barrier integrity of corneal endothelium, concomitant with the disruption of PAMR and remodeling of apical junctional complex in vivo. PMID:22022526

  18. Establishment of a novel corneal endothelial cell line from domestic rabbit, Oryctolagus curiculus

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To develop a rabbit corneal endothelial (RCE) cell line, in vitro culture of RCE cells was initiated from Oryctolagus curiculus corneas and a novel RCE cell line was established in this study. To initiate the primary culture of RCE cells, corneas from rabbit eyes were sliced and attached into glutin-coated wells with endothelial cell surface down. After being cultured at a time-gradient interval from 48 to 6 h, the corneal slices were detached and reattached into new wells, respectively. Cells in the wells containing only a pure population of RCE cells were collected and cultured in 20% FBS-DMEM/F12 medium con- taining chondroitin sulfate, ocular extract, epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), carboxymethyl-chitosan, N-acetylglucosamine hydrochloride, glucosamine hydrochloride, culture medium of rabbit corneal stromal cells and oxidation-degradation products of chondroitin sul- fate at 37℃, 5% CO2. The cultured RCE cells, in quadrangle and polygonal shapes, proliferated to con- fluence 3 weeks later. During the subsequent subculture, the shape of RCE cells changed gradually from polygonal to more fibroblastic. A novel RCE cell line, growing at a steady rate, with a population doubling time of 53.8 h, has been established and subcultured to passage 67. Chromosome analysis showed that the RCE cells exhibited chromosomal aneuploidy with the modal chromosome number of 44. The results of immuno-cytochemical staining with neuron specific enolase (NSE) confirmed that the RCE cells were in neuroectodermal origin. Combined with the results of vascular endothelial growth factor (VEGF) treatment and endothelial cell morphology recovery, it can be concluded that the cell line established here is an RCE cell line. This RCE cell line may serve as a useful tool in theoretical re- searches of mammalian corneal endothelial cells, and may also have potential application in artificial corneal endothelium development.

  19. Establishment of a novel corneal endothelial cell line from domestic rabbit, Oryctolagus curiculus

    Institute of Scientific and Technical Information of China (English)

    FAN TingJun; ZHAO Jun; FU YongFeng; CONG RiShan; GUO RuiChao; LIU WanShun; HAN BaoQin; YU QiuTao; WANG Jing

    2007-01-01

    To develop a rabbit corneal endothelial (RCE) cell line, in vitro culture of RCE cells was initiated from Oryctolagus curiculus corneas and a novel RCE cell line was established in this study. To initiate the primary culture of RCE cells, corneas from rabbit eyes were sliced and attached into glutin-coated wells with endothelial cell surface down. After being cultured at a time-gradient interval from 48 to 6 h, the corneal slices were detached and reattached into new wells, respectively. Cells in the wells containing only a pure population of RCE cells were collected and cultured in 20% FBS-DMEM/F12 medium containing chondroitin sulfate, ocular extract, epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), carboxymethyl-chitosan, N-acetylglucosamine hydrochloride, glucosamine hydrochloride,culture medium of rabbit corneal stromal cells and oxidation-degradation products of chondroitin sulfate at 37℃, 5% CO2. The cultured RCE cells, in quadrangle and polygonal shapes, proliferated to confluence 3 weeks later. During the subsequent subculture, the shape of RCE cells changed gradually from polygonal to more fibroblastic. A novel RCE cell line, growing at a steady rate, with a population doubling time of 53.8 h, has been established and subcultured to passage 67. Chromosome analysis showed that the RCE cells exhibited chromosomal aneuploidy with the modal chromosome number of 44. The results of immuno-cytochemical staining with neuron specific enolase (NSE) confirmed that the RCE cells were in neuroectodermal origin. Combined with the results of vascular endothelial growth factor (VEGF) treatment and endothelial cell morphology recovery, it can be concluded that the cell line established here is an RCE cell line. This RCE cell line may serve as a useful tool in theoretical researches of mammalian corneal endothelial cells, and may also have potential application in artificial corneal endothelium development.

  20. Management of corneal bee sting

    Directory of Open Access Journals (Sweden)

    Razmjoo H

    2011-12-01

    Full Text Available Hassan Razmjoo1,2, Mohammad-Ali Abtahi1,2,4, Peyman Roomizadeh1,3, Zahra Mohammadi1,2, Seyed-Hossein Abtahi1,3,41Medical School, Isfahan University of Medical Sciences (IUMS; 2Ophthalmology Ward, Feiz Hospital, IUMS; 3Isfahan Medical Students Research Center (IMSRC, IUMS; 4Isfahan Ophthalmology Research Center (IORC, Feiz Hospital, IUMS, Isfahan, IranAbstract: Corneal bee sting is an uncommon environmental eye injury that can result in various ocular complications with an etiology of penetrating, immunologic, and toxic effects of the stinger and its injected venom. In this study we present our experience in the management of a middle-aged male with a right-sided deep corneal bee sting. On arrival, the patient was complaining of severe pain, blurry vision with acuity of 160/200, and tearing, which he had experienced soon after the injury. Firstly, we administered conventional drugs for eye injuries, including topical antibiotic, corticosteroid, and cycloplegic agents. After 2 days, corneal stromal infiltration and edema developed around the site of the sting, and visual acuity decreased to 100/200. These conditions led us to remove the stinger surgically. Within 25 days of follow-up, the corneal infiltration decreased gradually, and visual acuity improved to 180/200. We suggest a two-stage management approach for cases of corneal sting. For the first stage, if the stinger is readily accessible or primary dramatic reactions, including infiltration, especially on the visual axis, exist, manual or surgical removal would be indicated. Otherwise, we recommend conventional treatments for eye injuries. Given this situation, patients should be closely monitored for detection of any worsening. If the condition does not resolve or even deteriorates, for the second stage, surgical removal of the stinger under local or generalized anesthesia is indicated.Keywords: bee sting, stinger, cornea, removal, management, surgery

  1. Correlation between corneal and ambient temperature with particular focus on polar conditions.

    Science.gov (United States)

    Slettedal, Jon Klokk; Ringvold, Amund

    2015-08-01

    To examine the relationship between human corneal and environmental temperature. An infrared camera was used to measure the corneal surface temperature in a group of healthy volunteers as well as in an experimental setting with donor corneas and an artificial anterior chamber, employing circulating saline at +37°C. Liquid nitrogen was used to obtain a very low temperature in the experimental setting. High ambient temperature measurements were performed in a sauna. In healthy volunteers, the cornea required at least 20-30 min to adapt to change in ambient temperature. The relationship between corneal and external temperature was relatively linear. At the two extremes, +83°C and -40°C, the corneal temperature was +42°C and +25.1°C, respectively. In the experimental setting, corneal temperature was +24.3°C at air temperature -40°C. A rather stable aqueous humour temperature of +37°C and high thermal conductivity of the corneal tissue prevent corneal frostbite even at extremely low ambient temperatures. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  2. Traction force dynamics predict gap formation in activated endothelium.

    Science.gov (United States)

    Valent, Erik T; van Nieuw Amerongen, Geerten P; van Hinsbergh, Victor W M; Hordijk, Peter L

    2016-09-10

    In many pathological conditions the endothelium becomes activated and dysfunctional, resulting in hyperpermeability and plasma leakage. No specific therapies are available yet to control endothelial barrier function, which is regulated by inter-endothelial junctions and the generation of acto-myosin-based contractile forces in the context of cell-cell and cell-matrix interactions. However, the spatiotemporal distribution and stimulus-induced reorganization of these integral forces remain largely unknown. Traction force microscopy of human endothelial monolayers was used to visualize contractile forces in resting cells and during thrombin-induced hyperpermeability. Simultaneously, information about endothelial monolayer integrity, adherens junctions and cytoskeletal proteins (F-actin) were captured. This revealed a heterogeneous distribution of traction forces, with nuclear areas showing lower and cell-cell junctions higher traction forces than the whole-monolayer average. Moreover, junctional forces were asymmetrically distributed among neighboring cells. Force vector orientation analysis showed a good correlation with the alignment of F-actin and revealed contractile forces in newly formed filopodia and lamellipodia-like protrusions within the monolayer. Finally, unstable areas, showing high force fluctuations within the monolayer were prone to form inter-endothelial gaps upon stimulation with thrombin. To conclude, contractile traction forces are heterogeneously distributed within endothelial monolayers and force instability, rather than force magnitude, predicts the stimulus-induced formation of intercellular gaps. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A tale of two ligands: angiopoietins, the endothelium, and outcomes.

    Science.gov (United States)

    Siner, Jonathan M

    2013-10-16

    Angiopoietins signal via the Tie-2 receptor and are essential molecules for vasculogenesis during development and in the adult state play roles in vascular stability as well as inflammation and appear to be involved in the dysregulation of the endothelium in illness. Angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) are, respectively, agonists and competitive partial agonists, which have been found to undergo alterations in individuals with sepsis. In sepsis, Ang-2 levels are elevated and Ang-1 is decreased. In the previous issue of Critical Care, Fiusa and colleagues measure circulating Ang-1 and Ang-2 along with other growth factors in humans with febrile neutropenia. The authors found that an increased Ang-2/Ang-1 ratio, or an elevated Ang-2 level, at the time of an initial fever, is associated with subsequent development of septic shock and death. These findings validate that the Ang-2/Ang-1 balance, which is thought to reflect overall signaling via the Tie-2 receptor, is relevant to outcomes in patients with sepsis. Importantly, the specimens were obtained far in advance of the development of septic shock, suggesting that detectable alterations in this pathway may provide early clues regarding outcomes. This study adds to the evidence that angiopoietins are early markers of endothelial dysfunction in sepsis and provide prognostic information regarding outcomes.

  4. Gene Therapy and Gene Editing for the Corneal Dystrophies.

    Science.gov (United States)

    Williams, Keryn A; Irani, Yazad D

    2016-01-01

    Despite ever-increasing understanding of the genetic underpinnings of many corneal dystrophies, gene therapy designed to ameliorate disease has not yet been reported in any human patient. In this review, we explore the likely reasons for this apparent failure of translation. We identify the requirements for success: the genetic defect involved must have been identified and mapped, vision in the affected patient must be significantly impaired or likely to be impaired, no better or equivalently effective treatment must be available, the treatment must be capable of modulating corneal pathology, and delivery of the construct to the appropriate cell must be practicable. We consider which of the corneal dystrophies might be amenable to treatment by genetic manipulations, summarize existing therapeutic options for treatment, and explore gene editing using clustered regularly interspaced short palindromic repeat/Cas and other similar transformative technologies as the way of the future. We then summarize recent laboratory-based advances in gene delivery and the development of in vitro and in vivo models of the corneal dystrophies. Finally, we review recent experimental work that has increased our knowledge of the pathobiology of these conditions.

  5. Molecular mechanism of fluoroquinolones modulation on corneal fibroblast motility.

    Science.gov (United States)

    Chen, Tsan-Chi; Tsai, Tzu-Yun; Chang, Shu-Wen

    2016-04-01

    Topical fluoroquinolones are widely used to prevent ocular infections after ophthalmic surgery. However, they have been shown to affect the corneal cell motility, whose mechanism remains indefinite. The purpose of this study was to investigate how fluoroquinolones affect corneal stromal cell motility. Human corneal fibroblasts (HCFs) were incubated in ciprofloxacin (CIP), levofloxacin (LEV), or moxifloxacin (MOX) at 0, 10, 50, and 100 μg/ml for up to 3 days. Effect of CIP, LEV, or MOX on HCF migration was monitored using migration assay. HCF viability was determined by WST-1 assay. Expression of focal adhesion kinase (FAK), paxillin (PXN), and their phosphorylated forms were analyzed by immunoblotting. Binding affinity between FAK and PXN was determined by co-immunoprecipitation. Our results revealed that CIP and MOX, but not LEV, noticeably retarded HCF migration. HCF proliferation was significantly reduced by CIP (38.2%), LEV (29.5%), and MOX (21.3%), respectively (p = 0.002). CIP and MOX suppressed the phosphorylation of PXN at tyrosines (10.2 ± 4.3%, p MOX diminished the binding affinity between FAK and PXN (8.2 ± 1.8%, p MOX, but not LEV, might delay corneal fibroblast migration via interfering with recruitment of PXN to focal adhesions and dephosphorylation of PXN at the tyrosines.

  6. Proteins of the corneal stroma: importance in visual function.

    Science.gov (United States)

    Xuan, Meng; Wang, Shurong; Liu, Xin; He, Yuxi; Li, Ying; Zhang, Yan

    2016-04-01

    The human cornea, consisting of five layers, is the transparent tissue that refracts and transmits light to the lens and retina, providing about two thirds of the refractive power of the eye. The stroma layer comprises nearly 90 % of the thickness of the cornea and thus plays a pivotal role in normal visual function. The bulk of this layer is constituted by proteins in the extracellular martrix secreted by the corneal epithelial, stroma, and endothelial cells. Clinical research has shown that corneal stroma diseases are common and involve conditions such as infections, injuries, and genetic defects, which cause severe visual disturbances or even blindness. To improve our understanding of the basic molecular mechanisms involved in the physiological and pathological activities of the corneal stroma, its proteins have been brought into the limelight to determine their crucial and irreplaceable roles. The data presented in a previous study have demonstrated the presence of 1679 proteins in the stroma, and this data set has subsequently been perfected by utilizing a highly sensitive isobaric peptide-labeling approach. According to their manifestations, these proteins can be classified as a gel-like organic material composed of proteoglycans, enzymes, and hemocyanin-binding proteins and a network of filaments composed of collagen, elastin, keratin, vimentin, and interconnected filaments comprising fibronectin and laminin. The aim of this review is to describe some corneal stroma proteins by highlighting their major functions and valuable applications in ophthalmologic research toward the better characterization and treatment of eye diseases.

  7. Turning the tide of corneal blindness.

    Science.gov (United States)

    Oliva, Matthew S; Schottman, Tim; Gulati, Manoj

    2012-01-01

    Corneal diseases represent the second leading cause of blindness in most developing world countries. Worldwide, major investments in public health infrastructure and primary eye care services have built a strong foundation for preventing future corneal blindness. However, there are an estimated 4.9 million bilaterally corneal blind persons worldwide who could potentially have their sight restored through corneal transplantation. Traditionally, barriers to increased corneal transplantation have been daunting, with limited tissue availability and lack of trained corneal surgeons making widespread keratoplasty services cost prohibitive and logistically unfeasible. The ascendancy of cataract surgical rates and more robust eye care infrastructure of several Asian and African countries now provide a solid base from which to dramatically expand corneal transplantation rates. India emerges as a clear global priority as it has the world's largest corneal blind population and strong infrastructural readiness to rapidly scale its keratoplasty numbers. Technological modernization of the eye bank infrastructure must follow suit. Two key factors are the development of professional eye bank managers and the establishment of Hospital Cornea Recovery Programs. Recent adaptation of these modern eye banking models in India have led to corresponding high growth rates in the procurement of transplantable tissues, improved utilization rates, operating efficiency realization, and increased financial sustainability. The widespread adaptation of lamellar keratoplasty techniques also holds promise to improve corneal transplant success rates. The global ophthalmic community is now poised to scale up widespread access to corneal transplantation to meet the needs of the millions who are currently blind.

  8. Turning the tide of corneal blindness

    Directory of Open Access Journals (Sweden)

    Matthew S Oliva

    2012-01-01

    Full Text Available Corneal diseases represent the second leading cause of blindness in most developing world countries. Worldwide, major investments in public health infrastructure and primary eye care services have built a strong foundation for preventing future corneal blindness. However, there are an estimated 4.9 million bilaterally corneal blind persons worldwide who could potentially have their sight restored through corneal transplantation. Traditionally, barriers to increased corneal transplantation have been daunting, with limited tissue availability and lack of trained corneal surgeons making widespread keratoplasty services cost prohibitive and logistically unfeasible. The ascendancy of cataract surgical rates and more robust eye care infrastructure of several Asian and African countries now provide a solid base from which to dramatically expand corneal transplantation rates. India emerges as a clear global priority as it has the world′s largest corneal blind population and strong infrastructural readiness to rapidly scale its keratoplasty numbers. Technological modernization of the eye bank infrastructure must follow suit. Two key factors are the development of professional eye bank managers and the establishment of Hospital Cornea Recovery Programs. Recent adaptation of these modern eye banking models in India have led to corresponding high growth rates in the procurement of transplantable tissues, improved utilization rates, operating efficiency realization, and increased financial sustainability. The widespread adaptation of lamellar keratoplasty techniques also holds promise to improve corneal transplant success rates. The global ophthalmic community is now poised to scale up widespread access to corneal transplantation to meet the needs of the millions who are currently blind.

  9. [Comparison of corneal endothelial cells after ECCE and phacoemulsification of the lens].

    Science.gov (United States)

    Trnavec, B; Cuvala, J; Cernák, A; Vodrázková, E

    1997-08-01

    The authors evaluate the finding on the corneal endothelium before and after operation of cataract. For examination of the endothelium they used a specular microscope SP 1.000 of Topcon Co. The group comprised 64 eyes of 64 patients. The patients were divided at random into two groups. The first group comprised 26 patients, where ECCE was performed. The second group comprised 38 patients and the opaque lens was removed by phacoemulsification. The mean age in the first group was 69.3 years and in the second group 70.7 years. The same viscoelastic material (methylcellulose) was used and the same synthetic lens from PMMA material was implanted into the capsule. The endothelium was examined one day after operation and on the 7th to 10th day after operation. The following parameters were evaluated: density of the endothelial cells in the centre, mean cell size, polymegethism, coefficient of variation, pleomorphism. In the group of patients who had ECCE the loss of endothelial cells was 18.53%, in the group with phacoemulsification of the nucleus the loss was 16.43%. This difference is not statistically significant. After operation in both groups enlargement of the minimal, maximal as well as mean cell size was observed, the coefficient of variation increased while the grade of cell hexagonality decreased. However these differences in endothelial cells were not statistically significant. After operation of cataract not only endothelial cells are lost but also significant changes in cell morphology occur.

  10. Combining femtosecond laser ablation and diode laser welding in lamellar and endothelial corneal transplants

    Science.gov (United States)

    Pini, Roberto; Rossi, Francesca; Matteini, Paolo; Ratto, Fulvio; Menabuoni, Luca; Lenzetti, Ivo; Yoo, Sonia H.; Parel, Jean-Marie

    2008-02-01

    Based on our previous clinical experiences in minimally invasive diode laser-induced welding of corneal tissue in penetrating keratoplasty (PK), i.e. full-thickness transplant of the cornea, we combined this technique with the use of a femtosecond laser for applications in lamellar (LK) and endothelial (EK) keratoplasty. In LK, the femtosecond laser was used to prepare donor button and recipient corneal bed; the wound edges were stained with a water solution of Indocyanine Green (ICG) and then irradiated with a diode laser emitting in CW mode to induce stromal welding. Intraoperatory observations and follow-up results up to 6 months indicated the formation of a smooth stromal interface, total absence of edema as well as inflammation, and reduction of post-operative astigmatism, as compared with conventional suturing procedures. In EK the femtosecond laser was used for the preparation of a 100 μm thick, 8.5mm diameter donor corneal endothelium flap. The flap stromal side was stained with ICG. After stripping the recipient Descemet's membrane and endothelium, the donor flap was positioned in the anterior chamber on the inner face of the cornea by an air bubble and secured to the recipient cornea by diode laser pulses delivered by means of a fiberoptic contact probe introduced in the anterior chamber, which produced welding spots of 200 μm diameter. Femtosecond laser sculpturing of the donor cornea provided lamellar and endothelial flaps of preset and constant thickness. Diode laserinduced welding showed a unique potential to permanently secure the donor flap in place, avoiding postoperative displacement and inflammation reaction.

  11. Corneal Cross-Linking: An Example of Photoinduced Polymerization as a Treatment Modality in Keratoconus.

    Science.gov (United States)

    Kubrak-Kisza, Magdalena; Kisza, Krystian Jerzy; Misiuk-Hojło, Marta

    2016-01-01

    The cornea is one of the principal refractive elements in the human eye and plays a crucial role in the process of vision. Keratoconus is the most common corneal dystrophy, found mostly among young adults. It is characterized by a reduced number of collagen cross-links in the corneal stroma, resulting in reduced biomechanical stability and an abnormal shape of the cornea. These changes lead to progressive myopia, corneal thinning, central scarring and irregular astigmatism, causing severely impaired vision. Hard contact lenses, photorefractive keratectomy or intracorneal rings are the most common treatment options for refractive error caused by keratoconus. However, these techniques do not treat the underlying cause of the corneal ectasia and therefore are not able to stop the progression of the disease. Riboflavin photoinduced polymerization of corneal collagen, also known as corneal cross-linking (CXL), has been introduced as the first therapy which, by stabilizing the structure of the cornea, prevents the progression of keratoconus. It stiffens the cornea using the photo-sensitizer riboflavin in combination with ultraviolet irradiation. This is a current review of the CXL procedure as a therapy for keratoconus, which relies on photoinduced polymerization of human tissue. We have focused on its biomechanical and physiological influences on the human cornea and have reviewed the previous and current biochemical theories behind cross-linking reactions in the cornea.

  12. Testosterone-derived estradiol production by male endothelium is robust and dependent on p450 aromatase via estrogen receptor alpha.

    Science.gov (United States)

    Villablanca, Amparo C; Tetali, Sarada; Altman, Robin; Ng, Kenneth F; Rutledge, John C

    2013-12-01

    Vascular endothelium expresses both the estrogen receptors (ERs) α and β, and ERα mediates development of early atherosclerosis in male mice. This process is thought to be testosterone-dependent. We hypothesized that male murine aortic endothelium produces robust levels of estradiol by aromatase conversion of testosterone, and that regulation of this process is mediated by the presence of ERs, primarily ERα. Aortic endothelium was isolated from ERα knockout (ERα -/-) and wild-type (ERα +/+) male mice and treated with testosterone or the 5α reduction product dihydrotestosterone (DHT), with or without the P450 aromatase inhibitor anastrazole, or a non-specific estrogen receptor antagonist. Aromatase gene expression and estradiol production were assayed. Treatment with testosterone, but not DHT, caused increased aromatase expression and estradiol production in ERα +/+ endothelium that was attenuated by disruption of ERα in the ERα -/- group. Anastrazole inhibition of aromatase reduced testosterone-induced aromatase expression and estradiol levels in both ERα -/- and ERα +/+ endothelium. Antagonism of both ERs decreased testosterone-induced aromatase expression in both wild-type and knockout groups. The effects of the receptor antagonist on estradiol production differed between the two groups, however, with a reduction in estradiol release from the ERα +/+ cells and complete abolition of estradiol release from the ERα -/- cells. Thus, estradiol production in vascular endothelium from male mice is robust, depends on the aromatic conversion of testosterone and requires functional ERα to achieve maximal levels of estradiol generation. Local vascular production of aromatase-mediated estradiol in response to circulating testosterone may affect ERα-dependent mechanisms to increase susceptibility to early atheroma formation in male mice. This pathway may have important therapeutic relevance for reducing the risk of atherosclerotic cardiovascular disease in

  13. Bone marrow X kinase-mediated signal transduction in irradiated vascular endothelium.

    Science.gov (United States)

    Tu, Tianxiang; Thotala, Dinesh; Geng, Ling; Hallahan, Dennis E; Willey, Christopher D

    2008-04-15

    Radiation-induced activation of the phosphatidyl inositol-3 kinase/Akt signal transduction pathway requires Akt binding to phosphatidyl-inositol phosphates (PIP) on the cell membrane. The tyrosine kinase bone marrow X kinase (Bmx) binds to membrane-associated PIPs in a manner similar to Akt. Because Bmx is involved in cell growth and survival pathways, it could contribute to the radiation response within the vascular endothelium. We therefore studied Bmx signaling within the vascular endothelium. Bmx was activated rapidly in response to clinically relevant doses of ionizing radiation. Bmx inhibition enhanced the efficacy of radiotherapy in endothelial cells as well as tumor vascular endothelium in lung cancer tumors in mice. Retroviral shRNA knockdown of Bmx protein enhanced human umbilical vascular endothelial cell (HUVEC) radiosensitization. Furthermore, pretreatment of HUVEC with a pharmacologic inhibitor of Bmx, LFM-A13, produced significant radiosensitization of endothelial cells as measured by clonogenic survival analysis and apoptosis as well as functional assays including cell migration and tubule formation. In vivo, LFM-A13, when combined with radiation, resulted in significant tumor microvascular destruction as well as enhanced tumor growth delay. Bmx therefore represents a molecular target for the development of novel radiosensitizing agents.

  14. Adipose-derived mesenchymal stem cell administration does not improve corneal graft survival outcome.

    Directory of Open Access Journals (Sweden)

    Sherezade Fuentes-Julián

    Full Text Available The effect of local and systemic injections of mesenchymal stem cells derived from adipose tissue (AD-MSC into rabbit models of corneal allograft rejection with either normal-risk or high-risk vascularized corneal beds was investigated. The models we present in this study are more similar to human corneal transplants than previously reported murine models. Our aim was to prevent transplant rejection and increase the length of graft survival. In the normal-risk transplant model, in contrast to our expectations, the injection of AD-MSC into the graft junction during surgery resulted in the induction of increased signs of inflammation such as corneal edema with increased thickness, and a higher level of infiltration of leukocytes. This process led to a lower survival of the graft compared with the sham-treated corneal transplants. In the high-risk transplant model, in which immune ocular privilege was undermined by the induction of neovascularization prior to graft surgery, we found the use of systemic rabbit AD-MSCs prior to surgery, during surgery, and at various time points after surgery resulted in a shorter survival of the graft compared with the non-treated corneal grafts. Based on our results, local or systemic treatment with AD-MSCs to prevent corneal rejection in rabbit corneal models at normal or high risk of rejection does not increase survival but rather can increase inflammation and neovascularization and break the innate ocular immune privilege. This result can be partially explained by the immunomarkers, lack of immunosuppressive ability and immunophenotypical secretion molecules characterization of AD-MSC used in this study. Parameters including the risk of rejection, the inflammatory/vascularization environment, the cell source, the time of injection, the immunosuppression, the number of cells, and the mode of delivery must be established before translating the possible benefits of the use of MSCs in corneal transplants to clinical

  15. A novel in vivo corneal trans-epithelial electrical resistance measurement device.

    Science.gov (United States)

    Uematsu, Masafumi; Mohamed, Yasser Helmy; Onizuka, Naoko; Ueki, Ryotaro; Inoue, Daisuke; Fujikawa, Azusa; Kitaoka, Takashi

    2015-01-01

    To develop a device that is capable of easily measuring corneal transepithelial electrical resistance (TER) and changes in the corneal barrier function. We had previously developed an in vivo method for measuring corneal TER using intraocular electrode. This method can be used to precisely measure the decline of the corneal barrier function after instillation of benzalkonium chloride (BAC). In order to lessen the invasiveness of that procedure, we further refined the method for measuring the corneal TER by developing electrodes that could be placed on the cornea and in the conjunctival sac instead of inserting them into the anterior chamber. TER was then calculated by subtracting the electrical resistance, which lacked the corneal epithelial input, from the whole electrical resistance that was measured between the electrodes. Slit lamp examination and scanning electron microscopy (SEM) were used to determine safety of the new device. Corneal TER changes after exposure to 0.02% BAC were determined using the new device as well as SEM and transmission electron microscopy (TEM). Slit lamp examination before and after exposure of rabbits' corneas to the sensor confirmed safety of the device. SEM examination revealed no difference of the corneal epithelium which exposed to the new device with normal corneas. SEM and TEM pictures revealed damaged microvilli and tight junctions after instillation of 0.02% BAC. TER change after treatment with 0.02%BAC was similar to those determined by the established anterior chamber method. We succeeded to develop a less invasive device for corneal TER measurement in vivo in animals. This new device may be applicable in the future for clinical use in humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Hyaluronate Acid-Dependent Protection and Enhanced Corneal Wound Healing against Oxidative Damage in Corneal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jing Zhong

    2016-01-01

    Full Text Available Purpose. To evaluate the effects and mechanism of exogenous hyaluronate (HA in promoting corneal wound healing. Methods. Human corneal epithelial cells (HCECs were incubated with different concentrations of HA to evaluate their efficiency in promoting cell migration and their modulation of repair factors. After inducing hyperosmolar conditions, the cell morphologies, cell apoptosis, and expression levels of TNF-α and MMP-9 were detected to assess the protective role of HA. Corneal epithelium-injured rat models were established to test the therapeutic effects of 0.3% HA. Then, the wound healing rates, the RNA expression levels of inflammatory cytokines, and repair factors were examined. Results. HCECs in the 0.03% and 0.3% HA groups showed fewer morphological alterations and lower rates of cell apoptosis following preincubation with HA under hyperosmolar conditions, as well as the expression levels of MMP-9 and TNF-α. In the rat model, the areas of fluorescein staining in the corneas of 0.3% HA group were significantly smaller than the control group. The expression levels of IL-1β and MMP-9 were decreased, while CD44 and FN were increased in the 0.3% HA group. Conclusion. HA enhanced corneal epithelial cell wound healing by promoting cell migration, upregulating repair responses, and suppressing inflammatory responses.

  17. Hyaluronate Acid-Dependent Protection and Enhanced Corneal Wound Healing against Oxidative Damage in Corneal Epithelial Cells.

    Science.gov (United States)

    Zhong, Jing; Deng, Yuqing; Tian, Bishan; Wang, Bowen; Sun, Yifang; Huang, Haixiang; Chen, Ling; Ling, Shiqi; Yuan, Jin

    2016-01-01

    Purpose. To evaluate the effects and mechanism of exogenous hyaluronate (HA) in promoting corneal wound healing. Methods. Human corneal epithelial cells (HCECs) were incubated with different concentrations of HA to evaluate their efficiency in promoting cell migration and their modulation of repair factors. After inducing hyperosmolar conditions, the cell morphologies, cell apoptosis, and expression levels of TNF-α and MMP-9 were detected to assess the protective role of HA. Corneal epithelium-injured rat models were established to test the therapeutic effects of 0.3% HA. Then, the wound healing rates, the RNA expression levels of inflammatory cytokines, and repair factors were examined. Results. HCECs in the 0.03% and 0.3% HA groups showed fewer morphological alterations and lower rates of cell apoptosis following preincubation with HA under hyperosmolar conditions, as well as the expression levels of MMP-9 and TNF-α. In the rat model, the areas of fluorescein staining in the corneas of 0.3% HA group were significantly smaller than the control group. The expression levels of IL-1β and MMP-9 were decreased, while CD44 and FN were increased in the 0.3% HA group. Conclusion. HA enhanced corneal epithelial cell wound healing by promoting cell migration, upregulating repair responses, and suppressing inflammatory responses.

  18. Visual outcome after corneal transplantation for corneal perforation and iris prolapse in 37 horses

    DEFF Research Database (Denmark)

    Henriksen, Michala de Linde; Plummer, C. E.; Mangan, B.;

    2012-01-01

    We wanted to investigate the visual outcome of horses presented with iris prolapse and treated with corneal transplantation.......We wanted to investigate the visual outcome of horses presented with iris prolapse and treated with corneal transplantation....

  19. Evaluation of endoscopic vein extraction on structural and functional viability of saphenous vein endothelium

    Directory of Open Access Journals (Sweden)

    Lu Xiu-Gui

    2011-06-01

    Full Text Available Abstract Objectives Endothelial injury during harvest influences graft patency post CABG. We have previously shown that endoscopic harvest causes structural and functional damage to the saphenous vein (SV endothelium. However, causes of such injury may depend on the extraction technique. In order to assess this supposition, we evaluated the effect of VirtuoSaph endoscopic SV harvesting technique (VsEVH on structural and functional viability of SV endothelium using multiphoton imaging, biochemical and immunofluorescence assays. Methods Nineteen patients scheduled for CABG were prospectively identified. Each underwent VsEVH for one portion and "No-touch" open SV harvesting (OSVH for another portion of the SV. A two cm segment from each portion was immersed in GALA conduit preservation solution and transported overnight to our lab for processing. The segments were labeled with fluorescent markers to quantify cell viability, calcium mobilization and generation of nitric oxide. Morphology, expression, localization and stability of endothelial caveolin, eNOS, von Willebrand factor and cadherin were evaluated using immunofluorescence, Western blot and multiphoton microscopy (MPM. Results Morphological, biochemical and immunofluorescence parameters of viability, structure and function were well preserved in VsEVH group as in OSVH group. However, tonic eNOS activity, agonist-dependent calcium mobilization and nitric oxide production were partially attenuated in the VsEVH group. Conclusions This study indicates that VirtuoSaph endoscopic SV harvesting technique preserves the structural and functional viability of SV endothelium, but may differentially attenuate the vasomotor function of the saphenous vein graft. Ultramini-Abstract Endoscopic extraction preserved the structure and function, but attenuated the calcium mobilization and nitric oxide generation in human SV endothelium.

  20. Determination of corneal image-forming properties from corneal topography.

    Science.gov (United States)

    Maloney, R K; Bogan, S J; Waring, G O

    1993-01-01

    Keratometry provides useful information about the cornea's image-forming properties, such as corneal astigmatism, but is inaccurate on irregular corneas. Quantitative corneal topographic information is now obtainable on irregular corneas, but is difficult for the clinician to interpret. We developed a method to determine the spherical power, astigmatism, and topographic irregularity of a cornea by finding the best-fit spherocylinder that was closest to its measured topography. Keratometric measurements and two videokeratographs were gathered prospectively on 262 normal and abnormal corneas. The best-fit measurements of spherical power, astigmatism, and topographic irregularity were reproducible with one standard deviation of 0.75 diopter or better; agreement with keratometric measurements in normal eyes was good (0.60 diopter or better). Topographic irregularity averaged 0.1 diopter on precision spheres, 0.4 diopter on 146 normal eyes, 0.8 diopter on 29 eyes after radial keratotomy, 2.0 diopters on 58 eyes after penetrating keratoplasty, and 3.0 diopters on 29 eyes with advanced keratoconus. We conclude the following: basic corneal image-forming properties can be measured from videokeratographs; the properties can be determined, by our methods, on irregular corneas in which keratometry is unreliable; and topographic irregularity provides a measure of irregular astigmatism.

  1. Genetics Home Reference: lattice corneal dystrophy type I

    Science.gov (United States)

    ... corneal dystrophy type I lattice corneal dystrophy type I Enable Javascript to view the expand/collapse boxes. ... All Close All Description Lattice corneal dystrophy type I is an eye disorder that affects the clear, ...

  2. Immunoglobulins in granular corneal dystrophy Groenouw type I

    DEFF Research Database (Denmark)

    Møller, H U; Bojsen-Møller, M; Schrøder, H D

    1993-01-01

    Three patients with granular corneal dystrophy Groenouw type I underwent corneal grafting, and cryostat sections of the corneal buttons were examined immunohistochemically for immunoglobulins. Positive results were obtained for IgG, Kappa-, and Lambda chains with immunofluorescence technique...

  3. SLC4A11 Three-Dimensional Homology Model Rationalizes Corneal Dystrophy-Causing Mutations.

    Science.gov (United States)

    Badior, Katherine E; Alka, Kumari; Casey, Joseph R

    2017-03-01

    We studied the structural effects of point mutations of a membrane protein that cause genetic disease. SLC4A11 is a membrane transport protein (OH(-) /H(+) /NH3 /H2 O) of basolateral corneal endothelium, whose mutations cause some cases of congenital hereditary endothelial dystrophy and Fuchs endothelial corneal dystrophy. We created a three-dimensional homology model of SLC4A11 membrane domain, using Band 3 (SLC4A1) crystal structure as template. The homology model was assessed in silico and by analysis of mutants designed on the basis of the model. Catalytic pathway mutants p.Glu675Gln, p.His724Arg, and p.His724Ala impaired SLC4A11 transport. p.Ala720Leu, in a region of extended structure of the proposed translocation pore, failed to mature to the cell surface. p.Gly509Lys, located in an open region at the core domain/gate domain interface, had wild-type level of transport function. The molecular phenotype of 37 corneal dystrophy-causing point mutants was rationalized, based on their location in the homology model. Four map to the substrate translocation pathway, 25 to regions of close transmembrane helix packing, three to the dimeric interface, and five lie in extramembraneous loops. The model provides a view of the spectrum of effects of disease mutations on membrane protein structure and provides a tool to analyze pathogenicity of additional newly discovered SLC4A11 mutants. © 2016 WILEY PERIODICALS, INC.

  4. Polar Value Analysis of Corneal Astigmatism in Intrastromal Corneal Ring Segment Implantation

    OpenAIRE

    Chang Rae Rho; Min-Ji Kim; Choun-Ki Joo

    2016-01-01

    Purpose. To evaluate surgically induced astigmatism (SIA) and the average corneal power change in symmetric intrastromal corneal ring segment (ICRS) implantation. Methods. The study included 34 eyes of 34 keratoconus patients who underwent symmetric Intacs SK ICRS implantation. The corneal pocket incision meridian was the preoperative steep meridian. Corneal power data were obtained before and 3 months after Intacs SK ICRS implantation using scanning-slit topography. Polar value analysis was ...

  5. Endoscopy-guided vitreoretinal surgery following penetrating corneal injury: a case report

    Directory of Open Access Journals (Sweden)

    Motoko Kawashima

    2010-08-01

    keratoplasty, the graft remained clear and visual acuity was 20/40.Conclusion: Primary endoscopic surgery for vitreoretinal complications in eyes with perforating injury performed prior to penetrating keratoplasty appears to be advantageous in terms of avoiding damage to the corneal endothelium.Keywords: vitreoretinal surgery, emergency, foreign body

  6. Characterization of enhancers and the role of the transcription factor KLF7 in regulating corneal epithelial differentiation.

    Science.gov (United States)

    Klein, Rachel Herndon; Hu, William; Kashgari, Ghaidaa; Lin, Ziguang; Nguyen, Tuyen; Doan, Michael; Andersen, Bogi

    2017-09-15

    During tissue development, transcription factors bind regulatory DNA regions called enhancers, often located at great distances from the genes they regulate, to control gene expression. The enhancer landscape during embryonic stem cell differentiation has been well characterized. By contrast, little is known about the shared and unique enhancer regulatory mechanisms in different ectodermally derived epithelial cells. Here, we use ChIP-seq to identify domains enriched for histone marks H3K4me3, H3K4me1, and H3K27ac, and define for the first time the super enhancers and typical enhancers active in primary human corneal epithelial cells. We show that regulatory regions are often shared between cell types of the ectodermal lineage and that corneal epithelial super enhancers are already marked as potential regulatory domains in embryonic stem cells. Kruppel-like factor (KLF) motifs were enriched in corneal epithelial enhancers, consistent with the important roles of KLF4 and KLF5 in promoting corneal epithelial differentiation. We now show that the Kruppel family member KLF7 promotes the corneal progenitor cell state: on many genes, KLF7 antagonized the corneal differentiation-promoting KLF4. Furthermore, we found that two SNPs previously linked to corneal diseases, astigmatism and Stevens-Johnson syndrome, fall within corneal epithelial enhancers and alter their activity by disrupting transcription factor motifs that overlap these SNPs. Taken together, our work defines regulatory enhancers in corneal epithelial cells, highlights global gene-regulatory relationships shared among different epithelial cells, identifies a role for KLF7 as a KLF4 antagonist in corneal epithelial cell differentiation, and explains how two SNPs may contribute to corneal diseases. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  7. Obtaining corneal tissue for keratoplasty.

    Science.gov (United States)

    Navarro Martínez-Cantullera, A; Calatayud Pinuaga, M

    2016-10-01

    Cornea transplant is the most common tissue transplant in the world. In Spain, tissue donation activities depend upon transplant coordinator activities and the well-known Spanish model for organ and tissue donation. Tissue donor detection system and tissue donor evaluation is performed mainly by transplant coordinators using the Spanish model on donation. The evaluation of a potential tissue donor from detection until recovery is based on an exhaustive review of the medical and social history, physical examination, family interview to determine will of the deceased, and a laboratory screening test. Corneal acceptance criteria for transplantation have a wider spectrum than other tissues, as donors with active malignancies and infections are accepted for kearatoplasty in most tissue banks. Corneal evaluation during the whole process is performed to ensure the safety of the donor and the recipient, as well as an effective transplant. Last step before processing, corneal recovery, must be performed under standard operating procedures and in a correct environment. Copyright © 2016 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  8. [The irido-corneo-endothelial syndrome. The loss of the control of corneal endothelial cell cycle. A review].

    Science.gov (United States)

    Robert, A M; Renard, G; Robert, L; Bourges, J-L

    2013-04-01

    The three major symptoms of the irido-corneo-endothelial syndrome are the alterations of the corneal endothelium and of the iris with a loss of the regulation of the cell cycle, and the progressive obstruction of the irido-corneal angle. This rare pathology attacks mainly young adult women. Most of the symptoms and complications originate from the excessive proliferation of the corneal endothelial cells accompanied by the evolution of their phenotype towards that of the epithelial cells. In normal conditions the corneal endothelial cells do not divide, they are blocked in the G1 stage of the cell cycle, mainly because of the action of the inhibitors of cyclin-dependent kinases. Still these cells retain a good capacity for proliferation, which can be induced by the down-regulation of the expression of the inhibitors of the cyclin-dependent kinases. This proliferative capacity declines with age and is also different according to the localization of the cells: it is more intense with those originating from the central area then in those from the peripheral area of the cornea. The age-related decline of the proliferative capacity is not due to the shortening of the telomers, but to the stress-induced accelerated senescence of the cells.

  9. Galectin-3 Inhibition by a Small-Molecule Inhibitor Reduces Both Pathological Corneal Neovascularization and Fibrosis

    Science.gov (United States)

    Chen*, Wei-Sheng; Cao, Zhiyi; Leffler, Hakon; Nilsson, Ulf J.; Panjwani, Noorjahan

    2017-01-01

    Purpose Corneal neovascularization and scarring commonly lead to significant vision loss. This study was designed to determine whether a small-molecule inhibitor of galectin-3 can inhibit both corneal angiogenesis and fibrosis in experimental mouse models. Methods Animal models of silver nitrate cautery and alkaline burn were used to induce mouse corneal angiogenesis and fibrosis, respectively. Corneas were treated with the galectin-3 inhibitor, 33DFTG, or vehicle alone and were processed for whole-mount immunofluorescence staining and Western blot analysis to quantify the density of blood vessels and markers of fibrosis. In addition, human umbilical vein endothelial cells (HUVECs) and primary human corneal fibroblasts were used to analyze the role of galectin-3 in the process of angiogenesis and fibrosis in vitro. Results Robust angiogenesis was observed in silver nitrate–cauterized corneas on day 5 post injury, and markedly increased corneal opacification was demonstrated in alkaline burn–injured corneas on days 7 and 14 post injury. Treatment with the inhibitor substantially reduced corneal angiogenesis and opacification with a concomitant decrease in α-smooth muscle actin (α-SMA) expression and distribution. In vitro studies revealed that 33DFTG inhibited VEGF-A–induced HUVEC migration and sprouting without cytotoxic effects. The addition of exogenous galectin-3 to corneal fibroblasts in culture induced the expression of fibrosis-related proteins, including α-SMA and connective tissue growth factor. Conclusions Our data provide proof of concept that targeting galectin-3 by the novel, small-molecule inhibitor, 33DFTG, ameliorates pathological corneal angiogenesis as well as fibrosis. These findings suggest a potential new therapeutic strategy for treating ocular disorders related to pathological angiogenesis and fibrosis. PMID:28055102

  10. Intraocular caspofungin: in vitro safety profile for human ocular cells.

    Science.gov (United States)

    Kernt, M; Kampik, A

    2011-07-01

    Endogenous Candida endophthalmitis is sight-threatening, difficult to treat and sometimes leads to loss of the eye. Only a few therapeutic agents are available for its treatment. Caspofungin is the first of a new class of antifungal drugs (echinocandins) with a high activity against Candida species, the most common pathogens found in endogenous endophthalmitis. This study investigates the safety profile of caspofungin for intraocular application in a cell-culture model. Endothelial toxicity of caspofungin was evaluated in cultured human corneas. Possible toxic effects of caspofungin (5-300 μg ml(-1)) in corneal endothelial cells (CEC), primary human trabecular meshwork cells (TMC) and primary human retinal pigment epithelium (RPE) cells were evaluated after 24 h and under conditions of inflammatory stress by treatment with tumour necrosis factor-alpha (TNF-α), lipopolysaccharides (LPS) or interleukin-6 (IL-6) and hydrogen peroxide (H(2)O(2)). Toxicity was evaluated by tetrazolium dye-reduction assay; cell viability was quantified by a microscopic live-dead assay. No corneal endothelial toxicity could be detected after 30 days of treatment with 75 μg ml(-1) of caspofungin. Concentrations up to 75 μg ml(-1) had no influence on CEC, TMC or RPE cell proliferation, or on cell viability when administered for 24 h. Exposure to H(2)O(2) did not increase cellular toxicity of caspofungin at concentrations of 5-50 μg ml(-1). After preincubation with TNF-α, LPS or IL-6 for 24 h followed by treatment with caspofungin for 24 h, no significant decrease in cell proliferation or viability was observed. This study showed no significant toxicity for caspofungin on CEC, TMC or RPE cells, or human corneal endothelium when administered in therapeutic concentrations up to 50 μg ml(-1).

  11. Prophylactic effect of topical silica nanoparticles as a novel antineovascularization agent for inhibiting corneal neovascularization following chemical burn

    Directory of Open Access Journals (Sweden)

    Mehrdad Mohammadpour

    2015-01-01

    Conclusions: SiNPs is an effective modality for inhibiting corneal neovascularization following chemical burn in an experimental model. Further investigations are suggested for evaluation of its safety and efficacy in human eyes.

  12. Corneal tomography and biomechanics in primary pterygium.

    Science.gov (United States)

    Vanathi, M; Goel, Sahil; Ganger, Anita; Agarwal, Tushar; Dada, T; Khokhar, Sudarshan

    2017-05-13

    To study the Scheimpflug's imaging and corneal biomechanics in primary pterygium. A prospective observational study of 55 patients with unilateral primary nasal pterygium was done. The normal fellow eyes of patients with pterygium were taken as controls. Clinical parameters noted included visual acuity, values of corneal curvature by doing Scheimpflug imaging, wavefront aberrations in terms of higher and lower-order aberrations and corneal hysteresis (CH) as well as corneal resistance factor (CRF) values by using ocular response analyzer. Of the total 55 patients, mean age was 43.0 + 11.4 years (range: 20-72 years). Mean LogMar uncorrected visual acuity in pterygium eyes and control eyes was 0.21 + 0.20 and 0.12 + 0.15, respectively (p = 0.016). On Scheimpflug imaging the mean anterior corneal curvature values (Ka1/Ka2 D) were 41.09 + 3.38/44.33 + 2.29 in pterygium eyes, 43.13 + 1.79/43.98 + 2.17 in control eyes (p  0.05). Analysis of corneal aberrations showed significantly higher corneal wavefront aberrations in pterygium eyes. Highest correlation of corneal astigmatism was noted with corneal area encroached by pterygium (ρ = 0.540 for LOA and 0.553 for HOA) and distance from pupillary center (ρ = 0.531 for LOA and 0.564 for HOA). Corneal biomechanical parameters including CH and CRF were found to be lower in the pterygium eyes, though not statistically significant (p value 0.60 and 0.59, respectively). Pterygium leads to deterioration of visual performance not only by causing refractive and topographic changes but also by causing a significant increase in corneal wavefront aberrations.

  13. Localization and expression of CHST6 and keratan sulfate proteoglycans in the human cornea.

    Science.gov (United States)

    Di Iorio, Enzo; Barbaro, Vanessa; Volpi, Nicola; Bertolin, Marina; Ferrari, Barbara; Fasolo, Adriano; Arnaldi, Renato; Brusini, Paolo; Prosdocimo, Giovanni; Ponzin, Diego; Ferrari, Stefano

    2010-08-01

    Macular corneal dystrophy (MCD; OMIM 217800) is a rare autosomal recessive inherited disorder caused by mutations in the carbohydrate sulfotransferase 6 (CHST6) and characterised by the presence of unsulfated keratan sulfate proteoglycans (KSPGs) forming abnormal deposits that eventually lead to visual impairment. The aim of this study is to understand in which corneal cells CHST6 and KSPGs are expressed and exert their activity. Expression and localization of CHST6, keratan sulfate (KS) and proteins of the KSPGs, such as mimecan and lumican, were assessed both in human cornea sections and in cultured primary keratinocytes (n = 3) and keratocytes (n = 4). Immunohistochemistry, semiquantitative RT-PCR, in situ RNA hybridization and HPLC analysis of glycosaminoglycans were used as read-outs. In human corneas KS was predominantly found in the stroma, but absent, or barely detectable, in the corneal epithelium. A similar pattern of distribution was found in the epidermis, with KS mainly localised in the derma. As expected, in the cornea CHST6 (the gene encoding the enzyme which transfers sulfate residues onto KSPGs) was found expressed in the suprabasal, but not basal, layers of the epithelium, in the stroma and in the endothelium. Analyses of KS by means of HPLC showed that in vitro cultured stromal keratocytes express and secrete more KS than keratinocytes, thus mirroring results observed in vivo. Similarly expression of the CHST6 gene and of KS proteoglycans such as mimecan, lumican is limited to stromal keratocytes. Unlike keratocytes, corneal keratinocytes do not synthesize mimecan or lumican, and express very little, if none, CHST6. Any drug/gene therapy or surgical intervention aimed at curing this rare genetic disorder must therefore involve and target stromal keratocytes. If coupled to the accuracy of HPLC-based assay that we developed to determine the amount of KS in serum, our findings could lead to more targeted therapeutic treatments of the ocular features

  14. Involvement of endothelium-dependent and -independent mechanisms in midazolam-induced vasodilation.

    Science.gov (United States)

    Colussi, Gian Luca; Di Fabio, Alessandro; Catena, Cristiana; Chiuch, Alessandra; Sechi, Leonardo A

    2011-08-01

    Benzodiazepine (BDZ) infusion has been shown to reduce blood pressure in both humans and animals. Although the inhibitory effects of BDZ on the central nervous system have been well documented, less is known about the direct effects of BDZ on the vascular bed. The aims of this study were to assess the effects of the BDZ midazolam on the vascular system in C57/BL6 mouse aortic rings and to investigate the mechanisms of its direct vascular action. We found that midazolam induced reversible, dose-dependent vasodilation in potassium- and phenylephrine-precontracted rings. In rings that were precontracted with potassium or phenylephrine, treatment with 10 μmol l(-1) midazolam increased vasodilation by 15 and 60%, respectively, compared with baseline. Vasodilation increased by 80 and 87%, respectively, after treatment with 50 μmol l(-1) midazolam. Only the low concentration of midazolam (10 μmol l(-1)) induced endothelium-dependent vasodilation in phenylephrine-precontracted rings. Vasodilation increased by 60% in rings with endothelium and by 20% in rings without endothelium. Conversely, only the high concentration of midazolam (50 μmol l(-1)) reduced the CaCl(2)-induced vasoconstriction of aortic rings with EC(50) (the concentration giving 50% of the maximal effect) values of 1 and 6 mmol l(-1) for vehicle- and midazolam-treated rings, respectively. Furthermore, the incubation of phenylephrine-precontracted rings with an inhibitor of the nitric oxide synthase (NOS) NG-nitro-L-arginine methyl ester or the inhibitors of central or peripheral type BDZ receptors (flumazenil or PK 11195, respectively) produced no change in midazolam-induced vasodilation. Thus, low concentrations of midazolam induce vasodilation via an endothelium-dependent mechanism that does not involve NO production. In contrast, high concentrations of midazolam induce vasodilation via an endothelium-independent mechanism that implies reduced sensitivity of aortic rings to calcium ions. Additionally

  15. F{sub 2} excimer laser (157 nm) radiation modification and surface ablation of PHEMA hydrogels and the effects on bioactivity: Surface attachment and proliferation of human corneal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Zainuddin, E-mail: z.zainuddin@uq.edu.a [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); University of Queensland, School of Medicine, Herston, Queensland 4006 (Australia); University of Queensland, Centre for Advanced Imaging, St. Lucia, Queensland 4072 (Australia); Chirila, Traian V. [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); University of Queensland, School of Medicine, Herston, Queensland 4006 (Australia); Queensland University of Technology, School of Physical and Chemical Sciences, Brisbane, Queensland 4001 (Australia); University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, Queensland 4072 (Australia); Barnard, Zeke [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); Watson, Gregory S. [James Cook University, School of Pharmacy and Molecular Sciences, Townsville, Queensland 4811 (Australia); Toh, Chiong; Blakey, Idriss [University of Queensland, Centre for Advanced Imaging, St. Lucia, Queensland 4072 (Australia); University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, Queensland 4072 (Australia); Whittaker, Andrew K. [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); University of Queensland, Centre for Advanced Imaging, St. Lucia, Queensland 4072 (Australia); University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, Queensland 4072 (Australia); Hill, David J.T. [The University of Queensland, School of Chemistry and Molecular Biosciences, St. Lucia, Queensland 4072 (Australia)

    2011-02-15

    Physical and chemical changes at the surface of poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels modified by ablation with an F{sub 2} excimer laser were investigated experimentally. An important observation was that only the outer exposed surface layers of the hydrogel were affected by the exposure to 157 nm radiation. The effect of the surface changes on the tendency of cells to adhere to the PHEMA was also investigated. A 0.5 cm{sup 2} area of the hydrogel surfaces was exposed to laser irradiation at 157 nm to fluences of 0.8 and 4 J cm{sup -2}. The changes in surface topography were analysed by light microscopy and atomic force microscopy, while the surface chemistry was characterized by attenuated total reflection infrared and X-ray photoelectron spectroscopies. Cell-interfacial interactions were examined based on the proliferation of human corneal limbal epithelial (HLE) cells cultured on the laser-modified hydrogels, and on the unexposed hydrogels and tissue culture plastic for comparison. It was observed that the surface topography of laser-exposed hydrogels showed rippled patterns with a surface roughness increasing at the higher exposure dose. The changes in surface chemistry were affected not only by an indirect effect of hydrogen and hydroxyl radicals, formed by water photolysis, on the PHEMA, but also by the direct action of laser radiation on PHEMA if the surface layers of the gel become depleted of water. The laser treatment led to a change in the surface characteristics, with a lower concentration of ester side-chains and the formation of new oxygenated species at the surface. The surface also became more hydrophobic. Most importantly, the surface chemistry and the newly created surface topographical features were able to improve the attachment, spreading and growth of HLE cells.

  16. Clinical CVVH model removes endothelium-derived microparticles from circulation

    Directory of Open Access Journals (Sweden)

    Abdelhafeez H. Abdelhafeez

    2014-02-01

    Full Text Available Background: Endothelium-derived microparticles (EMPs are submicron vesicles released from the plasma membrane of endothelial cells in response to injury, apoptosis or activation. We have previously demonstrated EMP-induced acute lung injury (ALI in animal models and endothelial barrier dysfunction in vitro. Current treatment options for ALI are limited and consist of supportive therapies. We hypothesize that standard clinical continuous venovenous hemofiltration (CVVH reduces serum EMP levels and may be adapted as a potential therapeutic intervention. Materials and methods: EMPs were generated from plasminogen activation inhibitor-1 (PAI-1-stimulated human umbilical vein endothelial cells (HUVECs. Flow cytometric analysis was used to characterize EMPs as CD31- and annexin V-positive events in a submicron size gate. Enumeration was completed against a known concentration of latex beads. Ultimately, a concentration of ~650,000 EMP/mL perfusate fluid (total 470 mL was circulated through a standard CVVH filter (pore size 200 μm, flow rate 250 mL/hr for a period of 70 minutes. 0.5 mL aliquots were removed at 5- to 10-minute intervals for flow cytometric analysis. EMP concentration in the dialysate was measured at the end of 4 hours to better understand the fate of EMPs. Results: A progressive decrease in circulating EMP concentration was noted using standard CVVH at 250 mL/hr (a clinical standard rate from a 470 mL volume modelling a patient's circulation. A 50% reduction was noted within the first 30 minutes. EMPs entering the dialysate after 4 hours were 5.7% of the EMP original concentration. Conclusion: These data demonstrate that standard CVVH can remove EMPs from circulation in a circuit modelling a patient. An animal model of hemofiltration with induction of EMP release is required to test the therapeutic potential of this finding and potential of application in early treatment of ALI.

  17. Corneal laceration caused by river crab

    Directory of Open Access Journals (Sweden)

    Vinuthinee N

    2015-01-01

    Full Text Available Naidu Vinuthinee,1,2 Anuar Azreen-Redzal,1 Jaafar Juanarita,1 Embong Zunaina2 1Department of Ophthalmology, Hospital Sultanah Bahiyah, Alor Setar, 2Department of Ophthalmology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia Abstract: A 5-year-old boy presented with right eye pain associated with tearing and photophobia of 1-day duration. He gave a history of playing with a river crab when suddenly the crab clamped his fingers. He attempted to fling the crab off, but the crab flew and hit his right eye. Ocular examination revealed a right eye corneal ulcer with clumps of fibrin located beneath the corneal ulcer and 1.6 mm level of hypopyon. At presentation, the Seidel test was negative, with a deep anterior chamber. Culture from the corneal scrapping specimen grew Citrobacter diversus and Proteus vulgaris, and the boy was treated with topical gentamicin and ceftazidime eyedrops. Fibrin clumps beneath the corneal ulcer subsequently dislodged, and revealed a full-thickness corneal laceration wound with a positive Seidel test and shallow anterior chamber. The patient underwent emergency corneal toileting and suturing. Postoperatively, he was treated with oral ciprofloxacin 250 mg 12-hourly for 1 week, topical gentamicin, ceftazidime, and dexamethasone eyedrops for 4 weeks. Right eye vision improved to 6/9 and 6/6 with pinhole at the 2-week follow-up following corneal suture removal. Keywords: corneal ulcer, pediatric trauma, ocular injury

  18. Corneal staining after treatment with topical tetracycline

    NARCIS (Netherlands)

    R. Lapid-Gortzak; C.P. Nieuwendaal; A.R. Slomovic; L. Spanjaard

    2006-01-01

    Purpose: The purpose of this paper is to report a case of corneal staining after treatment with topical tetracycline. Methods: A patient with crystalline keratopathy caused by Streptococcus viridans after corneal transplantation was treated topically with tetracycline eye drops, based on results of

  19. Corneal cellular proliferation and wound healing

    OpenAIRE

    Gan, Lisha

    2000-01-01

    Background. Cellular proliferation plays an important role in both physiological and pathological processes. Epithelial hyperplasia in the epithelium, excessive scar formation in retrocorneal membrane formation and neovascularization are examples of excessive proliferation of cornea cells. Lack of proliferative ability causes corneal degeneration. The degree of proliferative and metabolic activity will directly influence corneal transparency and very evidently refractive res...

  20. Corynebacterium macginleyi isolated from a corneal ulcer

    Directory of Open Access Journals (Sweden)

    Kathryn Ruoff

    2010-02-01

    Full Text Available We report the isolation of Corynebacterium macginleyi from the corneal ulcer culture of a patient, later enrolled in the Steroids for Corneal Ulcer Trial (SCUT. To our knowledge this is the first published report from North America of the recovery of C. macginleyi from a serious ocular infection.

  1. Electric Impedance Spectroscopy for On-Chip Analysis of Human Trabecular Meshwork Endothelium%阻抗谱芯片用于人眼小梁网细胞分析

    Institute of Scientific and Technical Information of China (English)

    顾雯雯; 赵毅

    2013-01-01

    The in vitro cultured human trabecular meshwork (TM) was investigated using electric impedance spectroscopy (EIS) in real time.TM is a critical determinant of intraocular pressure (IOP),the increase of which is the main cause of glaucoma.An array of interdigitated microelectrodes (IMEs) was fabricated for electric impedance sensing.An equivalent electric circuit model was proposed to study the cellular activities on the IMEs,showing that the impedance of extracellular matrix (ECM) and the cell coverage ratio have distinct signatures on the spectrum.The utility of the EIS was demonstrated by treating TM cells during their proliferation with dexamethasone (DEX).The impedance measurement at 40 kHz showed that a higher DEX concentration can induce more severe inhibition of cell proliferation.The measurement was validated by AlamarBlue assay.The measurement provided a reasonable explanation on glucocorticoid induced glaucoma,where the glucocorticoid alters the metabolic and physiological functions of TM cells by inhibiting normal cell growth and proliferation.%采用阻抗谱分析法对体外培养人眼小梁网细胞进行实时在线检测.人眼眼压过高将导致青光眼病变,而小梁网对于眼压高低至关重要.制备了叉指式阵列微电极作为阻抗传感器敏感单元.提出了分析小梁网细胞生物行为特征的等效电路模型,通过仿真分析表明该电路模型可在不同频段区分人眼小梁网细胞外基质和细胞繁殖率等阻抗参数值.采用叉指式阻抗谱芯片对经地塞米松药物处理的小梁网细胞进行了实时在线监测,结果表明40 kHz时高浓度地塞米松对小梁网细胞增殖具有较大的抑制作用,该结论与AlamarBlue试剂法得到的结论一致.阻抗测试结果为糖皮质激素诱导的青光眼提供了一种合理的解释,认为该病变与正常细胞增殖率异常有关.

  2. Dorsally located corneal dermoid in a cat

    Directory of Open Access Journals (Sweden)

    Alexander J LoPinto

    2016-04-01

    Full Text Available Case summary A 2-month-old, male kitten was presented for evaluation of unilateral blepharospasm and epiphora involving the right eye. Ocular examination revealed conjunctivitis, a superficial corneal ulcer, reflex anterior uveitis and a haired mass within the dorsal cornea of the right eye. The mass was subsequently removed surgically via a lamellar keratectomy. Histologic evaluation of the mass via light microscopy revealed it to be comprised of normal-haired skin with mild inflammation. One week after surgical removal and medical management of the corneal ulcer, all ocular clinical signs had resolved with minimal corneal scarring. On re-examination 6 months following surgical excision of the mass, the kitten was noted to be comfortable with no significant corneal scarring. Relevance and novel information To our knowledge, this is the first case report of a dorsally located corneal dermoid in a cat.

  3. Corneal Topographical Changes Flollowing Strabismus Surgery

    Institute of Scientific and Technical Information of China (English)

    MaiGH; WangZ

    1999-01-01

    Purpose:To study corneal topographical changes after strabismus surgery.Methods:Computer-aided corneal topography was used in 43 strabismus patients(45 eyes)one or two days prior to and six or seven ays after strabismus surgery.The spherical and cylindrical equivalents were calculated based on the simulated keratometry.Results:After the surgery,only the changes at 3mm in the inferior quadrant were statistically significant.The changes at 3mm in the rest quadrants and the changes at 7mm were no significant.Significant changes in spherical equivalent were found post-operatively.neither the horizontal nor the verical meridional equivalent showed significant changes after surgery.Conclusions:The results of corneal topographical changes following strabismus surgery in our preliminary study indicated the little effect of strabismus surgery on corneal curvature and corneal astigmatism.

  4. Corneal neovascularization and contemporary antiangiogenic therapeutics.

    Science.gov (United States)

    Hsu, Chih-Chien; Chang, Hua-Ming; Lin, Tai-Chi; Hung, Kuo-Hsuan; Chien, Ke-Hung; Chen, Szu-Yu; Chen, San-Ni; Chen, Yan-Ting

    2015-06-01

    Corneal neovascularization (NV), the excessive ingrowth of blood vessels from conjunctiva into the cornea, is a common sequela of disease insult that can lead to visual impairment. Clinically, topical steroid, argon laser photocoagulation, and subconjunctival injection of bevacizumab have been used to treat corneal NV. Sometimes, the therapies are ineffective, especially when the vessels are large. Large vessels are difficult to occlude and easily recanalized. Scientists and physicians are now dedicated to overcoming this problem. In this article, we briefly introduce the pathogenesis of corneal NV, and then highlight the existing animal models used in corneal NV research-the alkali-induced model and the suture-induced model. Most of all, we review the potential therapeutic targets (i.e., vascular endothelial growth factor and platelet-derived growth factor) and their corresponding inhibitors, as well as the immunosuppressants that have been discovered in recent years by corneal NV studies.

  5. Substratum compliance modulates corneal fibroblast to myofibroblast transformation.

    Science.gov (United States)

    Dreier, Britta; Thomasy, Sara M; Mendonsa, Rima; Raghunathan, Vijay Krishna; Russell, Paul; Murphy, Christopher J

    2013-08-28

    The transformation of fibroblasts to myofibroblasts is critical to corneal wound healing, stromal haze formation, and scarring. It has recently been demonstrated that the provision of biomimetic substratum topographic cues inhibits the progression toward the myofibroblast phenotype under the influence of transforming growth factor β1 (TGF-β1). The objective of this study was to determine the effect of another fundamental biophysical cue, substrate compliance, on TGF-β1-induced myofibroblast transformation of primary corneal cells isolated from human and rabbit corneas. Human and rabbit corneal fibroblasts were cultured on surfaces of varying substrate compliance (4-71 kPa) and tissue culture plastic (TCP) (> 1 gigapascal [GPa]). Cells were cultured in media containing TGF-β1 at concentrations of 0, 1, or 10 ng/mL for 72 hours. RNA and protein were collected from cells cultured on polyacrylamide gels and TCP and were analyzed for the expression of α-smooth muscle actin (α-SMA), a key marker of myofibroblast transformation, using quantitative PCR, immunocytochemistry, and Western blot. Cells grown on more compliant substrates demonstrated significantly reduced amounts of α-SMA mRNA compared with TCP. Immunocytochemistry and Western blot analysis determining the presence of α-SMA corroborated this finding, thus confirming a reduced transformation to the myofibroblast phenotype on more compliant substrates compared with cells on TCP in the presence of TGF-β1. These data indicate that substrate compliance modulates TGF-β1-induced expression of α-SMA and thus influences myofibroblast transformation in the corneal stroma. This provides further evidence that biomimetic biophysical cues inhibit myofibroblast transformation and participate in stabilizing the native cellular phenotype.

  6. 人热敏瞬时受体通道1基因转染对兔角膜内皮细胞的影响%Effects of human thermal transient receptor channel 1 gene transfection on cultured rabbit corneal endothelial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    王莉; 杜兆江; 李鹏

    2015-01-01

    ?AIM:To explore the effects of human thermal transient receptor channel 1 gene transfection on corneal endothelial cell of rabbits. ?METHODS:Research group were dealt for thermal transient receptor channel 1 gene mediated by liposome transfection to rabbit corneal endothelial cells. MTT method was used to observe its influence on cell proliferation. Immunohistochemical staining and computer image analysis system were used to test the effects for proliferation cell nucleus antigen ( PCNA ) expression. ?RESULTS:Proliferation of corneal endothelial cell of rabbit was promoted after thermal transient receptor channel 1 gene transfected and the difference between experiment group and control group (t=3.01,P=0.013). The expression of PCNA promoted after thermal transient receptor channel 1 gene transfected (t=3.21,P=0.007) compared with control group. ? CONCLUSION: The expression of PCNA in rabbit corneal endothelial cells can promote the proliferation of corneal endothelial cells of rabbits.%目的:探讨人热敏瞬时受体通道1基因转染对培养的兔角膜内皮细胞增殖能力的影响。  方法:研究组为人热敏瞬时受体通道1基因通过脂质体介导的方法转染到体外培养的兔角膜内皮细胞中,采用MTT方法观察对细胞增殖的影响,免疫组织化学染色法和计算机图像分析系统检测对细胞增殖细胞核抗原( proliferation cell nucleus antigen,PCNA)表达的影响。  结果:热敏瞬时受体通道1基因转染后内皮细胞增殖增加,实验组与对照组比较差异有统计学意义(t=3.01,P=0.013);实验组细胞PCNA表达明显增加,与对照组比较差异有统计学意义( t=3.21,P=0.007)。  结论:人热敏瞬时受体通道1基因转染可以促进兔角膜内皮细胞增殖。

  7. Endothelium-Derived Hyperpolarizing Factor and Vascular Function

    Directory of Open Access Journals (Sweden)

    Muhiddin A. Ozkor

    2011-01-01

    Full Text Available Endothelial function refers to a multitude of physiological processes that maintain healthy homeostasis of the vascular wall. Exposure of the endothelium to cardiac risk factors results in endothelial dysfunction and is associated with an alteration in the balance of vasoactive substances produced by endothelial cells. These include a reduction in nitric oxide (NO, an increase in generation of potential vasoconstrictor substances and a potential compensatory increase in other mediators of vasodilation. The latter has been surmised from data demonstrating persistent endothelium-dependent vasodilatation despite complete inhibition of NO and prostaglandins. This remaining non-NO, non-prostaglandin mediated endothelium-dependent vasodilator response has been attributed to endothelium-derived hyperpolarizing factor/s (EDHF. Endothelial hyperpolarization is likely due to several factors that appear to be site and species specific. Experimental studies suggest that the contribution of the EDHFs increase as the vessel size decreases, with a predominance of EDHF activity in the resistance vessels, and a compensatory up-regulation of hyperpolarization in states characterized by reduced NO availability. Since endothelial dysfunction is a precursor for atherosclerosis development and its magnitude is a reflection of future risk, then the mechanisms underlying endothelial dysfunction need to be fully understood, so that adequate therapeutic interventions can be designed.

  8. Effect of hepatoma H22 on lymphatic endothelium in vitro

    Institute of Scientific and Technical Information of China (English)

    Hua Yu; Hong-Zhi Zhou; Chun-Mei Wang; Xiao-Ming Gu; Bo-Rong Pan

    2004-01-01

    AIM: To determine the effect of metastatic hepatoma cells on lymphangioma-derived endothelium, and to establish in vitro model systems for assessing metastasis-related response of lymphatic endothelium.METHODS: Benign lymphangioma, induced by intraperitonea linjection of the incomplete Freund's adjuvant in BALB/c mice, was embedded in fibrin gel or digested and then cultured in the conditioned medium derived from hepatoma H22. Light and electron microscopy, and the transwell migration assay were used to determine the effect of H22 on tissue or cell culture. Expressions of Flt-4, c-Fos, proliferating cell nuclear antigen (PCNA), and inducible nitric oxide synthase (iNOS) in cultured cells, and content of nitric oxide in culture medium were also examined.RESULTS: The embedded lymphangioma pieces gave rise to array of capillaries, while separated cells from lymphangioma grew to a cobblestone-like monolayer. H22 activated growth and migration of the capillaries and cells, induced expressions of Flt-4, c-Fos, PCNA and iNOS in cultured cells, and significantly increased the content of NO in the culture medium.CONCLUSION: Lymphangioma-derived cells keep the differentiated phenotypes of lymphatic endothelium, and the models established in this study are feasible for in vitro study of metastasis-related response of lymphatic endothelium.

  9. The fine structure of endothelium of large arteries.

    Science.gov (United States)

    BUCK, R C

    1958-03-25

    Endothelium of large arteries from several species was studied in thin sections with the electron microscope. Before sacrifice, some animals received an intravenous injection of colloidal thorium dioxide which was visualized in the sections. Surface replicas were prepared by carbon evaporation on either frozen-dried endothelium or on endothelium dried by sublimation of naphthalene with which the tissue had been impregnated. Cell boundaries, stained with silver, were observed in sections and also from the surface by stripping off the inner part of the endothelium. In addition to the usual cytoplasmic organelles, the endothelial cells showed certain characteristic features, namely, large invaginated pockets communicating with the arterial lumen, numerous much smaller vesicular structures immediately under the plasma membrane and apparently also communicating with the lumen, and inclusions, into which injected thorium particles were incorporated. Intercellular boundaries appeared as regular double membranes in thin sections, and they were outlined by a double row of silver granules after silver staining. No evidence was obtained of permeation of intracellular spaces by colloidal thorium.

  10. Renal and cardiac microvascular endothelium: injury and repair

    NARCIS (Netherlands)

    Oosterhuis, NR

    2016-01-01

    Injury to the capillary endothelium can be devastating for renal and cardiac function. To halt the progression of chronic kidney disease (CKD) and heart failure (HF) preservation of the microvascular endothelial cell (EC) function and structure is of great importance.1 Increasing knowledge about

  11. Renal and cardiac microvascular endothelium: injury and repair

    NARCIS (Netherlands)

    Oosterhuis, N.R.

    2016-01-01

    Injury to the capillary endothelium can be devastating for renal and cardiac function. To halt the progression of chronic kidney disease (CKD) and heart failure (HF) preservation of the microvascular endothelial cell (EC) function and structure is of great importance.1 Increasing knowledge about mic

  12. Physical (in)activity and endothelium-derived constricting factors: overlooked adaptations

    National Research Council Canada - National Science Library

    D. H. J. Thijssen; G. A. Rongen; P. Smits; M. T. E. Hopman

    2008-01-01

    .... In response to physical stimuli, the endothelium varies its release of circulating vasoactive substances and serves as a source of local and systemic endothelium-derived dilator and vasoconstrictor factors...

  13. Lipoxin A4 inhibits immune cell binding to salivary epithelium and vascular endothelium.

    Science.gov (United States)

    Chinthamani, Sreedevi; Odusanwo, Olutayo; Mondal, Nandini; Nelson, Joel; Neelamegham, Sriram; Baker, Olga J

    2012-04-01

    Lipoxins are formed by leukocytes during cell-cell interactions with epithelial or endothelial cells. Native lipoxin A(4) (LXA(4)) binds to the G protein-coupled lipoxin receptors formyl peptide receptor 2 (FPR2)/ALX and CysLT1. Furthermore, LXA(4) inhibits recruitment of neutrophils, by attenuating chemotaxis, adhesion, and transmigration across vascular endothelial cells. LXA(4) thus appears to serve as an endogenous "stop signal" for immune cell-mediated tissue injury (Serhan CN; Annu Rev Immunol 25: 101-137, 2007). The role of LXA(4) has not been addressed in salivary epithelium, and little is known about its effects on vascular endothelium. Here, we determined that interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) receptor activation in vascular endothelium and salivary epithelium upregulated the expression of adhesion molecules that facilitates the binding of immune cells. We hypothesize that the activation of the ALX/FPR2 and/or CysLT1 receptors by LXA(4) decreases this cytokine-mediated upregulation of cell adhesion molecules that enhance lymphocyte binding to both the vascular endothelium and salivary epithelium. In agreement with this hypothesis, we observed that nanomolar concentrations of LXA(4) blocked IL-1β- and TNF-α-mediated upregulation of E-selectin and intercellular cell adhesion molecule-1 (ICAM-1) on human umbilical vein endothelial cells (HUVECs). Binding of Jurkat cells to stimulated HUVECs was abrogated by LXA(4). Furthermore, LXA(4) preincubation with human submandibular gland cell line (HSG) also blocked TNF-α-mediated upregulation of vascular cell adhesion molecule-1 (VCAM-1) in these cells, and it reduced lymphocyte adhesion. These findings suggest that ALX/FPR2 and/or CysLT1 receptor activation in endothelial and epithelial cells blocks cytokine-induced adhesion molecule expression and consequent binding of lymphocytes, a critical event in the pathogenesis of Sjögren's syndrome (SS).

  14. Corneal toxicity secondary to inadvertent use of benzalkonium chloride preserved viscoelastic material in cataract surgery

    Science.gov (United States)

    Eleftheriadis, H; Cheong, M; Sandeman, S; Syam, P P; Brittain, P; Klintworth, G K; Lloyd, A; Liu, C

    2002-01-01

    Aims: To study the long term toxic effects of intraocular benzalkonium chloride (BAC). Methods: 19 patients exposed to intraocular BAC preserved viscoelastic during cataract surgery in February 1999 developed severe striate keratopathy immediately postoperatively. 16 patients, including two who underwent penetrating keratoplasty, were studied in the period April to June 2000. Ocular symptoms, visual acuity, biomicroscopy, intraocular pressure, dilated funduscopy, specular endothelial microscopy, and corneal pachymetry findings were recorded. The corneal and iris specimens of the two patients who underwent keratoplasty were studied by light, transmission, and scanning electron microscopy. Results: Six males and 10 females, aged 64–98 years, were studied 14–16 months postoperatively. All patients were symptomatic. 12 patients had best corrected visual acuity of 6/12 or better and four patients of between 6/18 and 6/60. Five patients had corneal epithelial oedema and 11 had Descemet's membrane folds. The central corneal thickness, 620 (SD 71) μm, in affected eyes was significantly higher (p<0.005, two tailed paired t test) than that of the contralateral eyes, 563 (SD 48) μm. The endothelial cell density was significantly lower (p<0.0001, two tailed paired t test) in affected eyes: 830 (SD 280) cells/mm2v 2017 (SD 446) cells/mm2. The mean average cell area was significantly higher in the BAC treated eyes: 1317 (SD 385) μm2v 521 (SD 132) μm2. There was no significant difference in the coefficient of variation of cell size between the two eyes (p=0.3, two tailed paired t test). Two corneal specimens displayed morphological features of bullous keratopathy and other non-specific abnormalities. Extracellular melanosomes were present in a portion of the iris of one case. Conclusion: BAC is toxic to the corneal endothelium when used intraocularly, leading to severe striate keratopathy. This cleared in most cases but left varying degrees of residual stromal thickening

  15. Hevin plays a pivotal role in corneal wound healing.

    Directory of Open Access Journals (Sweden)

    Shyam S Chaurasia

    Full Text Available BACKGROUND: Hevin is a matricellular protein involved in tissue repair and remodeling via interaction with the surrounding extracellular matrix (ECM proteins. In this study, we examined the functional role of hevin using a corneal stromal wound healing model achieved by an excimer laser-induced irregular phototherapeutic keratectomy (IrrPTK in hevin-null (hevin(-/- mice. We also investigated the effects of exogenous supplementation of recombinant human hevin (rhHevin to rescue the stromal cellular components damaged by the excimer laser. METHODOLOGY/PRINCIPAL FINDINGS: Wild type (WT and hevin (-/- mice were divided into three groups at 4 time points- 1, 2, 3 and 4 weeks. Group I served as naïve without any treatment. Group II received epithelial debridement and underwent IrrPTK using excimer laser. Group III received topical application of rhHevin after IrrPTK surgery for 3 days. Eyes were analyzed for corneal haze and matrix remodeling components using slit lamp biomicroscopy, in vivo confocal microscopy, light microscopy (LM, transmission electron microscopy (TEM, immunohistochemistry (IHC and western blotting (WB. IHC showed upregulation of hevin in IrrPTK-injured WT mice. Hevin (-/- mice developed corneal haze as early as 1-2 weeks post IrrPTK-treatment compared to the WT group, which peaked at 3-4 weeks. They also exhibited accumulation of inflammatory cells, fibrotic components of ECM proteins and vascularized corneas as seen by IHC and WB. LM and TEM showed activated keratocytes (myofibroblasts, inflammatory debris and vascular tissues in the stroma. Exogenous application of rhHevin for 3 days reinstated inflammatory index of the corneal stroma similar to WT mice. CONCLUSIONS/SIGNIFICANCE: Hevin is transiently expressed in the IrrPTK-injured corneas and loss of hevin predisposes them to aberrant wound healing. Hevin (-/- mice develop early corneal haze characterized by severe chronic inflammation and stromal fibrosis that can be rescued

  16. Impact of temporary hyperthermia on corneal endothelial cell survival during organ culture preservation.

    Science.gov (United States)

    Schroeter, Jan; Ruggeri, Alfredo; Thieme, Hagen; Meltendorf, Christian

    2015-05-01

    To evaluate temporary exposure to hyperthermia for its impact on endothelial cell density of porcine corneas in organ culture medium containing dextran with regards to possible negative influences of high temperatures during the storage and transport of corneal grafts. Four groups of central discs (diameter 8 mm) from the corneas of both eyes in 40 pigs were first organ-cultured (MEM with 6% dextran 500) for 24 h at 32°C. Ten corneas were then exposed to 40°C in group 1, to 42°C in group 2, to 44°C in group 3, and to 50°C in group 4 for 12 h each. The paired corneal discs for all groups were not treated, stored at 32°C and served as controls. After further organ culture of all corneas for 48 h at 32°C to allow regenerative processes, corneal endothelium was stained with Alizarin Red S and examined by light microscopy. The endothelial cell densities were determined on three central images using a system for the automatic estimation of morphometric parameters of corneal endothelium. Exposure for 12 h to 40°C as well as to 42°C induced no endothelial cell loss. Statistical analysis showed no significant difference of the endothelial cell density between corneas exposed to 40°C and 42°C and the control corneas (40°C treatment: 4736 ± 426 cells/mm(2) and control: 4762 ± 344 cells/mm(2), p = 0.74; 42°C treatment: 4240 ± 363 cells/mm(2) and control: 4176 ± 448 cells/mm(2), p = 0.40). Exposure to 44°C and 50°C lead to total necrosis of the endothelial cell layer. Exposure of organ cultured porcine corneas in dextran containing medium up to 42°C for 12 h does not compromise the endothelial cell density in a clinically relevant manner. Temperatures above 42°C, as it might be the case during transports from the cornea bank to the ophthalmic surgeon, must be strictly avoided as they damage the endothelial cell layer.

  17. Corneal Regeneration by Deep Anterior Lamellar Keratoplasty (DALK Using Decellularized Corneal Matrix.

    Directory of Open Access Journals (Sweden)

    Yoshihide Hashimoto

    Full Text Available The purpose of this study is to demonstrate the feasibility of DALK using a decellularized corneal matrix obtained by HHP methodology. Porcine corneas were hydrostatically pressurized at 980 MPa at 10°C for 10 minutes to destroy the cells, followed by washing with EGM-2 medium to remove the cell debris. The HHP-treated corneas were stained with H-E to assess the efficacy of decellularization. The decellularized corneal matrix of 300 μm thickness and 6.0 mm diameter was transplanted onto a 6.0 mm diameter keratectomy wound. The time course of regeneration on the decellularized corneal matrix was evaluated by haze grading score, fluorescein staining, and immunohistochemistry. H-E staining revealed that no cell nuclei were observed in the decellularized corneal matrix. The decellularized corneal matrices were opaque immediately after transplantation, but became completely transparent after 4 months. Fluorescein staining revealed that initial migration of epithelial cells over the grafts was slow, taking 3 months to completely cover the implant. Histological sections revealed that the implanted decellularized corneal matrix was completely integrated with the receptive rabbit cornea, and keratocytes infiltrated into the decellularized corneal matrix 6 months after transplantation. No inflammatory cells such as macrophages, or neovascularization, were observed during the implantation period. The decellularized corneal matrix improved corneal transparency, and remodelled the graft after being transplanted, demonstrating that the matrix obtained by HHP was a useful graft for corneal tissue regeneration.

  18. Role of endothelium-derived hyperpolarization in the vasodilatation of rat intrarenal arteries

    DEFF Research Database (Denmark)

    Pinilla, Estéfano; Sánchez-Pina, Ana; Muñoz Picos, Mercedes

    2016-01-01

    Background and purpose: Endothelium-dependent vasodilation plays an important role in the regulation of vascular tone in different vascular beds. Besides the release of prostacyclin (PGI2) and nitric oxide (NO), the endothelium mediates vasodilation through endothelium-derived hyperpolarization (...

  19. Gene transfer of integration defective anti-HSV-1 meganuclease to human corneas ex vivo.

    Science.gov (United States)

    Elbadawy, H M; Gailledrat, M; Desseaux, C; Salvalaio, G; Di Iorio, E; Ferrari, B; Bertolin, M; Barbaro, V; Parekh, M; Gayon, R; Munegato, D; Franchin, E; Calistri, A; Palù, G; Parolin, C; Ponzin, D; Ferrari, S

    2014-03-01

    Corneal graft rejection is a major problem in chronic herpetic keratitis (HK) patients with latent infection. A new class of antiviral agents targeting latent and active forms of herpes simplex virus type 1 (HSV-1) is importantly required. Meganucleases are sequence-specific homing endonucleases capable of inducing DNA double-strand breaks. A proof-of-concept experiment has shown that tailor-made meganucleases are efficient against HSV-1 in vitro. To take this work a step forward, we hypothesized that the pre-treatment of human corneas in eye banks using meganuclease-encoding vectors will allow HK patients to receive a medicated cornea to resist the recurrence of the infection and the common graft rejection problem. However, this strategy requires efficient gene delivery to human corneal endothelium. Using recombinant adeno-associated virus, serotype 2/1 (rAAV2/1), efficient gene delivery of a reporter gene was demonstrated in human corneas ex vivo. The optimum viral dose was 3.7 × 10(11) VG with an exposure time of 1 day, followed by 6 days incubation in de-swelling medium. In addition, 12 days incubation can result in transgene expression in excess of 70%. Using similar transduction conditions, meganuclease transgene expression was detected in 39.4% of the endothelial cells after 2 weeks in culture. Reduction of the total viral load in the media and the endothelial cells of corneas infected with HSV-1 was shown. Collectively, this work provides information about the optimum conditions to deliver genetic material to the cornea, and demonstrates for the first time the expression of meganuclease in human corneas ex vivo and its antiviral activity. In conclusion, we demonstrate that the treatment of human corneas in eye banks before transplantation is a new approach to address the unmet clinical needs in corneal diseases.

  20. A Fast and Efficient Technique for the Automatic Tracing of Corneal Nerves in Confocal Microscopy

    Science.gov (United Stat