WorldWideScience

Sample records for human commensal microbiota

  1. Beyond Hygiene: Commensal Microbiota and Allergic Diseases

    Science.gov (United States)

    Hong, Sung-Wook; Kim, Kwang Soon

    2017-01-01

    Complex communities of microorganisms, termed commensal microbiota, inhabit mucosal surfaces and profoundly influence host physiology as well as occurrence of allergic diseases. Perturbing factors such as the mode of delivery, dietary fibers and antibiotics can influence allergic diseases by altering commensal microbiota in affected tissues as well as in intestine. Here, we review current findings on the relationship between commensal microbiota and allergic diseases, and discuss the underlying mechanisms that contribute to the regulation of allergic responses by commensal microbiota. PMID:28261020

  2. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota

    DEFF Research Database (Denmark)

    Larsen, Jeppe Madura; Steen-Jensen, Daniel Bisgaard; Laursen, Janne Marie

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties...... differences in DC stimulating properties of bacteria associated with the airway microbiota....... of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella...

  3. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota.

    Science.gov (United States)

    Larsen, Jeppe Madura; Steen-Jensen, Daniel Bisgaard; Laursen, Janne Marie; Søndergaard, Jonas Nørskov; Musavian, Hanieh Sadat; Butt, Tariq Mahmood; Brix, Susanne

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella spp.), healthy lungs (commensal Prevotella spp.) or both (commensal Veillonella spp. and Actinomyces spp.). All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria provoked a 3-5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella spp. vs. Actinomyces spp.) reflecting their pro-inflammatory effects on DCs. Co-culture experiments found that Prevotella spp. were able to reduce Haemophillus influenzae-induced IL-12p70 in DCs, whereas no effect was observed on IL-23 and IL-10 production. This study demonstrates intrinsic differences in DC stimulating properties of bacteria associated with the airway microbiota.

  4. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota.

    Directory of Open Access Journals (Sweden)

    Jeppe Madura Larsen

    Full Text Available Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella spp., healthy lungs (commensal Prevotella spp. or both (commensal Veillonella spp. and Actinomyces spp.. All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria provoked a 3-5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella spp. vs. Actinomyces spp. reflecting their pro-inflammatory effects on DCs. Co-culture experiments found that Prevotella spp. were able to reduce Haemophillus influenzae-induced IL-12p70 in DCs, whereas no effect was observed on IL-23 and IL-10 production. This study demonstrates intrinsic differences in DC stimulating properties of bacteria associated with the airway microbiota.

  5. Programming a Human Commensal Bacterium, Bacteroides thetaiotaomicron, to Sense and Respond to Stimuli in the Murine Gut Microbiota

    OpenAIRE

    Mimee, Mark; Tucker, Alex C.; Voigt, Christopher A.; Lu, Timothy K.

    2015-01-01

    Engineering commensal organisms for challenging applications, such as modulating the gut ecosystem, is hampered by the lack of genetic parts. Here, we describe promoters, ribosome-binding sites, and inducible systems for use in the commensal bacterium Bacteroides thetaiotaomicron, a prevalent and stable resident of the human gut. We achieve up to 10,000-fold range in constitutive gene expression and 100-fold regulation of gene expression with inducible promoters and use these parts to record ...

  6. Programming a Human Commensal Bacterium, Bacteroides thetaiotaomicron, to Sense and Respond to Stimuli in the Murine Gut Microbiota.

    Science.gov (United States)

    Mimee, Mark; Tucker, Alex C; Voigt, Christopher A; Lu, Timothy K

    2015-07-29

    Engineering commensal organisms for challenging applications, such as modulating the gut ecosystem, is hampered by the lack of genetic parts. Here, we describe promoters, ribosome-binding sites, and inducible systems for use in the commensal bacterium Bacteroides thetaiotaomicron, a prevalent and stable resident of the human gut. We achieve up to 10,000-fold range in constitutive gene expression and 100-fold regulation of gene expression with inducible promoters and use these parts to record DNA-encoded memory in the genome. We use CRISPR interference (CRISPRi) for regulated knockdown of recombinant and endogenous gene expression to alter the metabolic capacity of B. thetaiotaomicron and its resistance to antimicrobial peptides. Finally, we show that inducible CRISPRi and recombinase systems can function in B. thetaiotaomicron colonizing the mouse gut. These results provide a blueprint for engineering new chassis and a resource to engineer Bacteroides for surveillance of or therapeutic delivery to the gut microbiome.

  7. Antibiotic use during pregnancy alters the commensal vaginal microbiota

    DEFF Research Database (Denmark)

    Stokholm, J.; Schjørring, S.; Eskildsen, Carl Emil Aae

    2014-01-01

    Antibiotics may induce alterations in the commensal microbiota of the birth canal in pregnant women. Therefore, we studied the effect of antibiotic administration during pregnancy on commensal vaginal bacterial colonization at gestational week 36. Six hundred and sixty-eight pregnant women from...

  8. The commensal microbiota drives immune homeostasis

    Directory of Open Access Journals (Sweden)

    Marie-Claire eArrieta

    2012-03-01

    Full Text Available For millions of years, microbes have coexisted with eukaryotic cells at the mucosal surfaces of vertebrates in a complex, yet usually harmonious symbiosis. An ever-expanding number of reports describe how eliminating or shifting the intestinal microbiota has profound effects on the development and functionality of the mucosal and systemic immune systems. Here, we examine some of the mechanisms by which bacterial signals affect immune homeostasis. Focusing on the strategies that microbes use to keep our immune system healthy, as opposed to trying to correct the immune imbalances caused by dysbiosis, may prove to be a more astute and efficient way of treating immune-mediated disease.

  9. Coordination of tolerogenic immune responses by the commensal microbiota

    Science.gov (United States)

    Round, June L.; O'Connell, Ryan M.; Mazmanian, Sarkis K.

    2011-01-01

    All mammals are born ignorant to the existence of microorganisms. Soon after birth, however, every mammal begins a lifelong association with a multitude of microbes that lay residence on the skin, mouth, vaginal mucosa and gastrointestinal (GI) tract. Approximately 500-1000 different species of microbes have highly evolved to occupy these bodily niches, with the highest density and diversity occurring within the intestine 1. These organisms play a vital role in mammalian nutrient breakdown and provide resistance to colonization by pathogenic microorganisms. More recently, however, studies have demonstrated that the microbiota can have a profound and long-lasting effect on the development of our immune system both inside and outside the intestine 2. While our immune system has evolved to recognize and eradicate foreign entities, it tolerates the symbiotic microorganisms of the intestine. How and why this tolerance occurs has remained unclear. Here we present evidence that the commensal microbes of the intestine actively induce tolerant responses from the host that coordinate healthy immune responses. Potentially, disruption of this dialogue between the host and microbe can lead to the development of autoimmune diseases such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), or Type I diabetes (TID). As a wealth of publications have focused on the impact of the microbiota on intestinal immune responses and IBD, this chapter will focus on the extra-intestinal impacts of the microbiota from development to disease and integrate the known mechanisms by which the microbiota is able to actively communicate with its host to promote health. PMID:19963349

  10. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota

    NARCIS (Netherlands)

    Larsen, J.M.; Steen-Jensen, D.B.; Laursen, J.M.; Sondergaard, J.N.; Musavian, H.S.; Butt, T.M.; Brix, S.

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties o

  11. Under Pressure: Interactions between Commensal Microbiota and the Teleost Immune System

    Directory of Open Access Journals (Sweden)

    Cecelia Kelly

    2017-05-01

    Full Text Available Commensal microorganisms inhabit every mucosal surface of teleost fish. At these surfaces, microorganisms directly and indirectly shape the teleost immune system. This review provides a comprehensive overview of how the microbiota and microbiota-derived products influence both the mucosal and systemic immune system of fish. The cross talk between the microbiota and the teleost immune system shifts significantly under stress or disease scenarios rendering commensals into opportunists or pathogens. Lessons learnt from germ-free fish models as well as from oral administration of live probiotics to fish highlight the vast impact that microbiota have on immune development, antibody production, mucosal homeostasis, and resistance to stress. Future studies should dissect the specific mechanisms by which different members of the fish microbiota and the metabolites they produce interact with pathogens, with other commensals, and with the teleost immune system.

  12. Commensal Gut Microbiota Immunomodulatory Actions in Bone Marrow and Liver have Catabolic Effects on Skeletal Homeostasis in Health

    OpenAIRE

    Novince, Chad M.; Whittow, Carolyn R.; Aartun, Johannes D.; Hathaway, Jessica D.; Poulides, Nicole; Chavez, Michael B.; Steinkamp, Heidi M.; Kirkwood, Kaeleigh A.; Huang, Emily; Westwater, Caroline; Kirkwood, Keith L.

    2017-01-01

    Despite knowledge the gut microbiota regulates bone mass, mechanisms governing the normal gut microbiota?s osteoimmunomodulatory effects on skeletal remodeling and homeostasis are unclear in the healthy adult skeleton. Young adult specific-pathogen-free and germ-free mice were used to delineate the commensal microbiota?s immunoregulatory effects on osteoblastogenesis, osteoclastogenesis, marrow T-cell hematopoiesis, and extra-skeletal endocrine organ function. We report the commensal microbio...

  13. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota

    Science.gov (United States)

    Round, June L.; Mazmanian, Sarkis K.

    2010-01-01

    To maintain intestinal health, the immune system must faithfully respond to antigens from pathogenic microbes while limiting reactions to self-molecules. The gastrointestinal tract represents a unique challenge to the immune system, as it is permanently colonized by a diverse amalgam of bacterial phylotypes producing multitudes of foreign microbial products. Evidence from human and animal studies indicates that inflammatory bowel disease results from uncontrolled inflammation to the intestinal microbiota. However, molecular mechanisms that actively promote mucosal tolerance to the microbiota remain unknown. We report herein that a prominent human commensal, Bacteroides fragilis, directs the development of Foxp3+ regulatory T cells (Tregs) with a unique “inducible” genetic signature. Monocolonization of germ-free animals with B. fragilis increases the suppressive capacity of Tregs and induces anti-inflammatory cytokine production exclusively from Foxp3+ T cells in the gut. We show that the immunomodulatory molecule, polysaccharide A (PSA), of B. fragilis mediates the conversion of CD4+ T cells into Foxp3+ Treg cells that produce IL-10 during commensal colonization. Functional Foxp3+ Treg cells are also produced by PSA during intestinal inflammation, and Toll-like receptor 2 signaling is required for both Treg induction and IL-10 expression. Most significantly, we show that PSA is not only able to prevent, but also cure experimental colitis in animals. Our results therefore demonstrate that B. fragilis co-opts the Treg lineage differentiation pathway in the gut to actively induce mucosal tolerance. PMID:20566854

  14. Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice.

    Directory of Open Access Journals (Sweden)

    Lea-Maxie Haag

    Full Text Available BACKGROUND: The zoonotic pathogen Campylobacter jejuni is a leading cause of bacterial foodborne enterocolitis in humans worldwide. The understanding of immunopathology underlying human campylobacteriosis is hampered by the fact that mice display strong colonization resistance against the pathogen due to their host specific gut microbiota composition. METHODOLOGY/PRINCIPAL FINDINGS: Since the microbiota composition changes significantly during intestinal inflammation we dissected factors contributing to colonization resistance against C. jejuni in murine ileitis, colitis and in infant mice. In contrast to healthy animals C. jejuni could stably colonize mice suffering from intestinal inflammation. Strikingly, in mice with Toxoplasma gondii-induced acute ileitis, C. jejuni disseminated to mesenteric lymphnodes, spleen, liver, kidney, and blood. In infant mice C. jejuni infection induced enterocolitis. Mice suffering from intestinal inflammation and C. jejuni susceptible infant mice displayed characteristical microbiota shifts dominated by increased numbers of commensal Escherichia coli. To further dissect the pivotal role of those distinct microbiota shifts in abrogating colonization resistance, we investigated C. jejuni infection in healthy adult mice in which the microbiota was artificially modified by feeding live commensal E. coli. Strikingly, in animals harboring supra-physiological intestinal E. coli loads, colonization resistance was significantly diminished and C. jejuni infection induced enterocolitis mimicking key features of human campylobacteriosis. CONCLUSION/SIGNIFICANCE: Murine colonization resistance against C. jejuni is abrogated by changes in the microbiota composition towards elevated E. coli loads during intestinal inflammation as well as in infant mice. Intestinal inflammation and microbiota shifts thus represent potential risk factors for C. jejuni infection. Corresponding interplays between C. jejuni and microbiota might

  15. Effects of carry-over of fluoroquinolones on the susceptibility of commensal Escherichia coli in the intestinal microbiota of poultry.

    Science.gov (United States)

    Scherz, Gesine; Stahl, Jessica; Glünder, Gerhard; Kietzmann, Manfred

    2014-01-01

    Due to the frequent use of antibacterials in veterinary medicine as well as in human medicine the occurrence of antibacterial resistance rises worldwide. But independent of the usage of antimicrobials the microbiota from animals as well as from humans already harbour a diversity of resistance genes. As a consequence of manufacturing animal production the treatment of livestock in case of illness is carried out via feed or drinking water. This automatically implies several risks. It has been demonstrated that an antibiotic treatment of livestock via feed or drinking water cause an accumulation of antibiotics and their metabolites in the direct environment of animals. This can lead to a carry-over or rather a resumption of the antimicrobials and their metabolites. Thus, the aim of this study was to determine the influence of carry-over of enrofloxacin as a representative of the fluoroquinolones on the development of bacterial resistance of commensal E. coli in the intestinal microbiota of poultry. Therefore four different treatment groups were provided and the minimal inhibitory concentrations (MICs) of commensal E. coli were measured: One group acted as untreated control, another one was therapeutically treated with the recommended dosage. The third and fourth group were exposed to different "carry-over dosages" for three weeks, 3% of the recommended dosage were applied to the third and 10% to the fourth group. To determine the influence of a therapeutic treatment on a prestressed microbiota, both groups were treated with the recommended dosage for five days. The present study demonstrates that every kind of exposure of the commensal microbiota of poultry with enrofloxacin leads to an amplification and selection of resistant E. coli, which persist in the commensal microbiota. A long-term exposure of gut microbiota, which already harbour non-wild type E. coli, with high levels of carry-over of fluoroquinolones may lead to a development of high-level clinically

  16. Skin wound healing is accelerated and scarless in the absence of commensal microbiota.

    Science.gov (United States)

    Canesso, Maria C C; Vieira, Angélica T; Castro, Tiago B R; Schirmer, Brígida G A; Cisalpino, Daniel; Martins, Flaviano S; Rachid, Milene A; Nicoli, Jacques R; Teixeira, Mauro M; Barcelos, Lucíola S

    2014-11-15

    The commensal microbiota has a high impact on health and disease by modulating the development and homeostasis of host immune system. Immune cells are involved in virtually every aspect of the wound repair process; however, the impact of commensal microbiota on skin wound healing is largely unknown. In this study, we evaluated the influence of commensal microbiota on tissue repair of excisional skin wounds by using germ-free (GF) Swiss mice. We observed that macroscopic wound closure rate is accelerated in the absence of commensal microbiota. Accordantly, histologically assessed wound epithelization was accelerated in GF in comparison with conventional (CV) Swiss mice. The wounds of GF mice presented a significant decrease in neutrophil accumulation and an increase in mast cell and macrophage infiltration into wounds. Interestingly, alternatively activated healing macrophage-related genes were highly expressed in the wound tissue of GF mice. Moreover, levels of the anti-inflammatory cytokine IL-10, the angiogenic growth factor VEGF and angiogenesis were higher in the wound tissue of those mice. Conversely, scarring and levels of the profibrogenic factor TGF-β1 were greatly reduced in GF mice wounded skin when compared with CV mice. Of note, conventionalization of GF mice with CV microbiota restored wound closure rate, neutrophil and macrophage accumulation, cytokine production, and scarring to the same extent as CV mice. Overall, our findings suggest that, in the absence of any contact with microbiota, skin wound healing is accelerated and scarless, partially because of reduced accumulation of neutrophils, increased accumulation of alternatively activated healing macrophages, and better angiogenesis at wound sites.

  17. Commensality

    DEFF Research Database (Denmark)

    Commensality is a fundamental social activity. Research in this book comes from anthropology, archaeology and history, and reaches from the 6th mill BC to modern days, dealing with topics such as feasting, the inaugural dinner of the American president and breast feeding.......Commensality is a fundamental social activity. Research in this book comes from anthropology, archaeology and history, and reaches from the 6th mill BC to modern days, dealing with topics such as feasting, the inaugural dinner of the American president and breast feeding....

  18. Human commensals producing a novel antibiotic impair pathogen colonization.

    Science.gov (United States)

    Zipperer, Alexander; Konnerth, Martin C; Laux, Claudia; Berscheid, Anne; Janek, Daniela; Weidenmaier, Christopher; Burian, Marc; Schilling, Nadine A; Slavetinsky, Christoph; Marschal, Matthias; Willmann, Matthias; Kalbacher, Hubert; Schittek, Birgit; Brötz-Oesterhelt, Heike; Grond, Stephanie; Peschel, Andreas; Krismer, Bernhard

    2016-07-28

    The vast majority of systemic bacterial infections are caused by facultative, often antibiotic-resistant, pathogens colonizing human body surfaces. Nasal carriage of Staphylococcus aureus predisposes to invasive infection, but the mechanisms that permit or interfere with pathogen colonization are largely unknown. Whereas soil microbes are known to compete by production of antibiotics, such processes have rarely been reported for human microbiota. We show that nasal Staphylococcus lugdunensis strains produce lugdunin, a novel thiazolidine-containing cyclic peptide antibiotic that prohibits colonization by S. aureus, and a rare example of a non-ribosomally synthesized bioactive compound from human-associated bacteria. Lugdunin is bactericidal against major pathogens, effective in animal models, and not prone to causing development of resistance in S. aureus. Notably, human nasal colonization by S. lugdunensis was associated with a significantly reduced S. aureus carriage rate, suggesting that lugdunin or lugdunin-producing commensal bacteria could be valuable for preventing staphylococcal infections. Moreover, human microbiota should be considered as a source for new antibiotics.

  19. Stress and the Commensal Microbiota: Importance in parturition and infant neurodevelopment

    Directory of Open Access Journals (Sweden)

    Tamar L Gur

    2015-02-01

    Full Text Available The body is colonized by an enormous array of microbes that are collectively called the microbiota. During quiescent periods, microbial communities within the gut are relatively resistant to change. However, several factors that disrupt homeostasis can also significantly change gut microbial community structure. One factor that has been shown to change the composition of the gut microbiota is exposure to psychological stressors. Studies demonstrate that the commensal microbiota are involved in stressor-induced immunomodulation, but other biological effects are not yet known. This review discusses emerging evidence that the microbiota can impact the brain and behavior and indicates that stressor-induced alterations in the composition of gut microbial communities contribute to stressor-induced behavioral changes. This review will also discuss the evidence that such effects are most evident early in life, where both stress and the microbiota have been linked to birth outcomes, such as prematurity, and neurodevelopment. When considered together, a paradigm emerges in which stressor-induced alterations in commensal microbial populations significantly impact parturition and infant neurodevelopment.

  20. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδT cells

    OpenAIRE

    Benakis, Corinne; Brea, David; Caballero, Silvia; Faraco, Giuseppe; Moore, Jamie; Murphy, Michelle; Sita, Giulia; Racchumi, Gianfranco; Ling, Lilan; Pamer, Eric G.; Iadecola, Costantino; Anrather, Josef

    2016-01-01

    Commensal gut bacteria impact the host immune system and can influence disease processes in several organs, including the brain. However, it remains unclear whether the microbiota has an impact on the outcome of acute brain injury. Here we show that antibiotic-induced alterations in the intestinal flora reduces ischemic brain injury in mice, an effect transmissible by fecal transplants. Intestinal dysbiosis alters immune homeostasis in the small intestine leading to an increase in regulatory ...

  1. Beak and skull shapes of human commensal and non-commensal house sparrows Passer domesticus

    Science.gov (United States)

    2013-01-01

    Background The granivorous house sparrow Passer domesticus is thought to have developed its commensal relationship with humans with the rise of agriculture in the Middle East some 10,000 years ago, and to have expanded with the spread of agriculture in Eurasia during the last few thousand years. One subspecies, P. d. bactrianus, residing in Central Asia, has apparently maintained the ancestral ecology, however. This subspecies is not associated with human settlements; it is migratory and lives in natural grass- and wetland habitats feeding on wild grass seeds. It is well documented that the agricultural revolution was associated with an increase in grain size and changes in seed structure in cultivated cereals, the preferred food source of commensal house sparrow. Accordingly, we hypothesize that correlated changes may have occurred in beak and skull morphology as adaptive responses to the change in diet. Here, we test this hypothesis by comparing the skull shapes of 101 house sparrows from Iran, belonging to five different subspecies, including the non-commensal P. d. bactrianus, using geometric morphometrics. Results The various commensal house sparrow subspecies share subtle but consistent skeletal features that differ significantly from those of the non-commensal P. d. bactrianus. Although there is a marked overall size allometry in the data set, the shape difference between the ecologically differentiated sparrows cannot be explained by differences in size alone. Relative to the size allometry commensal house sparrows exhibit a skull shape consistent with accelerated development (heterochrony), resulting in a more robust facial cranium and a larger, more pointed beak. Conclusion The difference in skull shape and robustness of the beak between commensal and non-commensal house sparrows is consistent with adaptations to process the larger and rachis encapsulated seeds of domesticated cereals among human associated populations. PMID:24044497

  2. The C-type lectin receptor SIGNR3 binds to fungi present in commensal microbiota and influences immune regulation in experimental colitis

    Directory of Open Access Journals (Sweden)

    Magdalena eEriksson

    2013-07-01

    Full Text Available Inflammatory bowel disease is a condition of acute and chronic inflammation of the gut. An important factor contributing to pathogenesis is a dysregulated mucosal immunity against commensal bacteria and fungi. Host pattern recognition receptors sense commensals in the gut and are involved in maintaining the balance between controlled responses to pathogens and overwhelming innate immune activation. C-type lectin receptors (CLRs are pattern recognition receptors recognizing glycan structures on pathogens and self-antigens. Here we examined the role of the murine CLR SIGNR3 in the recognition of commensals and its involvement in intestinal immunity. SIGNR3 is the closest murine homologue of the human DC-SIGN receptor recognizing similar carbohydrate ligands such as terminal fucose or high-mannose glycans. We discovered that SIGNR3 recognizes fungi present in the commensal microbiota. To analyze if this interaction impacts the intestinal immunity against microbiota, the dextran sulfate sodium (DSS-induced colitis model was employed. SIGNR3-/- mice exhibited an increased weight loss associated with more severe colitis symptoms compared to wild-type control mice. The increased inflammation in SIGNR3-/- mice was accompanied by a higher level of TNF-α in colon. Our findings demonstrate for the first time that SIGNR3 recognizes intestinal fungi and has an immune regulatory role in colitis.

  3. Commensal microbiota contributes to chronic endocarditis in TAX1BP1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Satoko Nakano

    Full Text Available Tax1-binding protein 1 (Tax1bp1 negatively regulates NF-κB by editing the ubiquitylation of target molecules by its catalytic partner A20. Genetically engineered TAX1BP1-deficient (KO mice develop age-dependent inflammatory constitutions in multiple organs manifested as valvulitis or dermatitis and succumb to premature death. Laser capture dissection and gene expression microarray analysis on the mitral valves of TAX1BP1-KO mice (8 and 16 week old revealed 588 gene transcription alterations from the wild type. SAA3 (serum amyloid A3, CHI3L1, HP, IL1B and SPP1/OPN were induced 1,180-, 361-, 187-, 122- and 101-fold respectively. WIF1 (Wnt inhibitory factor 1 exhibited 11-fold reduction. Intense Saa3 staining and significant I-κBα reduction were reconfirmed and massive infiltration of inflammatory lymphocytes and edema formation were seen in the area. Antibiotics-induced 'germ free' status or the additional MyD88 deficiency significantly ameliorated TAX1BP1-KO mice's inflammatory lesions. These pathological conditions, as we named 'pseudo-infective endocarditis' were boosted by the commensal microbiota who are usually harmless by their nature. This experimental outcome raises a novel mechanistic linkage between endothelial inflammation caused by the ubiquitin remodeling immune regulators and fatal cardiac dysfunction.

  4. Human gut microbiota: does diet matter?

    Science.gov (United States)

    Maukonen, Johanna; Saarela, Maria

    2015-02-01

    The human oro-gastrointestinal (GI) tract is a complex system, consisting of oral cavity, pharynx, oesophagus, stomach, small intestine, large intestine, rectum and anus, which all together with the accessory digestive organs constitute the digestive system. The function of the digestive system is to break down dietary constituents into small molecules and then absorb these for subsequent distribution throughout the body. Besides digestion and carbohydrate metabolism, the indigenous microbiota has an important influence on host physiological, nutritional and immunological processes, and commensal bacteria are able to modulate the expression of host genes that regulate diverse and fundamental physiological functions. The main external factors that can affect the composition of the microbial community in generally healthy adults include major dietary changes and antibiotic therapy. Changes in some selected bacterial groups have been observed due to controlled changes to the normal diet e.g. high-protein diet, high-fat diet, prebiotics, probiotics and polyphenols. More specifically, changes in the type and quantity of non-digestible carbohydrates in the human diet influence both the metabolic products formed in the lower regions of the GI tract and the bacterial populations detected in faeces. The interactions between dietary factors, gut microbiota and host metabolism are increasingly demonstrated to be important for maintaining homeostasis and health. Therefore the aim of this review is to summarise the effect of diet, and especially dietary interventions, on the human gut microbiota. Furthermore, the most important confounding factors (methodologies used and intrinsic human factors) in relation to gut microbiota analyses are elucidated.

  5. Toll-Like Receptor Mediated Modulation of T Cell Response by Commensal Intestinal Microbiota as a Trigger for Autoimmune Arthritis

    Directory of Open Access Journals (Sweden)

    Rebecca Rogier

    2015-01-01

    Full Text Available In autoimmune diseases, a disturbance of the balance between T helper 17 (Th17 and regulatory T cells (Tregs is often observed. This disturbed balance is also the case in rheumatoid arthritis (RA. Genetic predisposition to RA confers the presence of several polymorphisms mainly regulating activation of T lymphocytes. However, the presence of susceptibility factors is neither necessary nor sufficient to explain the disease development, emphasizing the importance of environmental factors. Multiple studies have shown that commensal gut microbiota is of great influence on immune homeostasis and can trigger the development of autoimmune diseases by favoring induction of Th17 cells over Tregs. However the mechanism by which intestinal microbiota influences the Th cell balance is not completely understood. Here we review the current evidence supporting the involvement of commensal intestinal microbiota in rheumatoid arthritis, along with a potential role of Toll-like receptors (TLRs in modulating the relevant Th cell responses to trigger autoimmunity. A better understanding of TLR triggering by intestinal microbiota and subsequent T cell activation might offer new perspectives for manipulating the T cell response in RA patients and may lead to the discovery of new therapeutic targets or even preventive measures.

  6. Ritual Commensality between Human and Non-Human Persons

    OpenAIRE

    Bray, Tamara L.

    2015-01-01

    In anthropology, it has become axiomatic that social relationships are constructed through food practices and embodied in food. This paper suggests that both ritual and quotidian commensality have as either a goal or a consequence the construction of specific relations of sociality, and in this regard are not so different. What may distinguish these spheres of commensality, however, are the types of persons engaged in the act of shared consumption. The paper considers ritual commensality...

  7. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    DEFF Research Database (Denmark)

    Moore, Aimee M.; Munck, Christian; Sommer, Morten Otto Alexander

    2011-01-01

    The human intestinal microbiota encode multiple critical functions impacting human health, including metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity...... microorganisms, but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community, independent of identity to known genes, by subjecting the metagenome to functional assays in a genetically tractable host....... Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex...

  8. Linking Microbiota to Human Diseases

    DEFF Research Database (Denmark)

    Wu, Hao; Tremaroli, Valentina; Bäckhed, F

    2015-01-01

    diabetes (T2D), and irritable bowel syndrome, and some animal experiments have suggested causality. However, few studies have validated causality in humans and the underlying mechanisms remain largely to be elucidated. We discuss how systems biology approaches combined with new experimental technologies......The human gut microbiota encompasses a densely populated ecosystem that provides essential functions for host development, immune maturation, and metabolism. Alterations to the gut microbiota have been observed in numerous diseases, including human metabolic diseases such as obesity, type 2...... may disentangle some of the mechanistic details in the complex interactions of diet, microbiota, and host metabolism and may provide testable hypotheses for advancing our current understanding of human-microbiota interaction....

  9. Gut microbiota. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation.

    Science.gov (United States)

    Cullen, T W; Schofield, W B; Barry, N A; Putnam, E E; Rundell, E A; Trent, M S; Degnan, P H; Booth, C J; Yu, H; Goodman, A L

    2015-01-09

    Resilience to host inflammation and other perturbations is a fundamental property of gut microbial communities, yet the underlying mechanisms are not well understood. We have found that human gut microbes from all dominant phyla are resistant to high levels of inflammation-associated antimicrobial peptides (AMPs) and have identified a mechanism for lipopolysaccharide (LPS) modification in the phylum Bacteroidetes that increases AMP resistance by four orders of magnitude. Bacteroides thetaiotaomicron mutants that fail to remove a single phosphate group from their LPS were displaced from the microbiota during inflammation triggered by pathogen infection. These findings establish a mechanism that determines the stability of prominent members of a healthy microbiota during perturbation. Copyright © 2015, American Association for the Advancement of Science.

  10. Comprehensive Survey of Intestinal Microbiota Changes in Offspring of Human Microbiota-Associated Mice

    Science.gov (United States)

    von Klitzing, Eliane; Öz, Fulya; Ekmekciu, Ira; Escher, Ulrike; Bereswill, Stefan; Heimesaat, Markus M.

    2017-01-01

    Secondary abiotic mice generated by broad-spectrum antibiotic treatment provide a valuable tool for association studies with microbiota derived from different vertebrate hosts. We here generated human microbiota-associated (hma) mice by human fecal microbiota transplantation of secondary abiotic mice and performed a comprehensive survey of the intestinal microbiota dynamics in offspring of hma mice over 18 weeks following weaning as compared to their mothers applying both cultural and molecular methods. Mice were maintained under standard hygienic conditions with open cages, handled under aseptic conditions, and fed autoclaved chow and water. Within 1 week post weaning, fecal loads of commensal enterobacteria and enterococci had decreased, whereas obligate anaerobic bacteria such as Bacteroides/Prevotella species and clostridia were stably colonizing the intestines of hma offspring at high loads. Lactobacilli numbers were successively increasing until 18 weeks post weaning in both hma offspring and mothers, whereas by then, bifidobacteria were virtually undetectable in the former only. Interestingly, fecal lactobacilli and bifidobacteria were higher in mothers as compared to their offspring at 5 and 18 weeks post weaning. We conclude that the intestinal microbiota composition changes in offspring of hma mice, but also their mothers over time particularly affecting aerobic and microaerobic species. PMID:28386472

  11. Commensal Streptococcus salivarius Modulates PPARγ Transcriptional Activity in Human Intestinal Epithelial Cells.

    Science.gov (United States)

    Couvigny, Benoît; de Wouters, Tomas; Kaci, Ghalia; Jacouton, Elsa; Delorme, Christine; Doré, Joël; Renault, Pierre; Blottière, Hervé M; Guédon, Eric; Lapaque, Nicolas

    2015-01-01

    The impact of commensal bacteria in eukaryotic transcriptional regulation has increasingly been demonstrated over the last decades. A multitude of studies have shown direct effects of commensal bacteria from local transcriptional activity to systemic impact. The commensal bacterium Streptococcus salivarius is one of the early bacteria colonizing the oral and gut mucosal surfaces. It has been shown to down-regulate nuclear transcription factor (NF-кB) in human intestinal cells, a central regulator of the host mucosal immune system response to the microbiota. In order to evaluate its impact on a further important transcription factor shown to link metabolism and inflammation in the intestine, namely PPARγ (peroxisome proliferator-activated receptor), we used human intestinal epithelial cell-lines engineered to monitor PPARγ transcriptional activity in response to a wide range of S. salivarius strains. We demonstrated that different strains from this bacterial group share the property to inhibit PPARγ activation independently of the ligand used. First attempts to identify the nature of the active compounds showed that it is a low-molecular-weight, DNase-, proteases- and heat-resistant metabolite secreted by S. salivarius strains. Among PPARγ-targeted metabolic genes, I-FABP and Angptl4 expression levels were dramatically reduced in intestinal epithelial cells exposed to S. salivarius supernatant. Both gene products modulate lipid accumulation in cells and down-regulating their expression might consequently affect host health. Our study shows that species belonging to the salivarius group of streptococci impact both host inflammatory and metabolic regulation suggesting a possible role in the host homeostasis and health.

  12. Commensal Streptococcus salivarius Modulates PPARγ Transcriptional Activity in Human Intestinal Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Benoît Couvigny

    Full Text Available The impact of commensal bacteria in eukaryotic transcriptional regulation has increasingly been demonstrated over the last decades. A multitude of studies have shown direct effects of commensal bacteria from local transcriptional activity to systemic impact. The commensal bacterium Streptococcus salivarius is one of the early bacteria colonizing the oral and gut mucosal surfaces. It has been shown to down-regulate nuclear transcription factor (NF-кB in human intestinal cells, a central regulator of the host mucosal immune system response to the microbiota. In order to evaluate its impact on a further important transcription factor shown to link metabolism and inflammation in the intestine, namely PPARγ (peroxisome proliferator-activated receptor, we used human intestinal epithelial cell-lines engineered to monitor PPARγ transcriptional activity in response to a wide range of S. salivarius strains. We demonstrated that different strains from this bacterial group share the property to inhibit PPARγ activation independently of the ligand used. First attempts to identify the nature of the active compounds showed that it is a low-molecular-weight, DNase-, proteases- and heat-resistant metabolite secreted by S. salivarius strains. Among PPARγ-targeted metabolic genes, I-FABP and Angptl4 expression levels were dramatically reduced in intestinal epithelial cells exposed to S. salivarius supernatant. Both gene products modulate lipid accumulation in cells and down-regulating their expression might consequently affect host health. Our study shows that species belonging to the salivarius group of streptococci impact both host inflammatory and metabolic regulation suggesting a possible role in the host homeostasis and health.

  13. The Human Gut Microbiota

    NARCIS (Netherlands)

    Harmsen, Hermie J. M.; de Goffau, Marcus. C.; Schwiertz, A

    2016-01-01

    The microbiota in our gut performs many different essential functions that help us to stay healthy. These functions include vitamin production, regulation of lipid metabolism and short chain fatty acid production as fuel for epithelial cells and regulation of gene expression. There is a very numerou

  14. The Human Gut Microbiota

    NARCIS (Netherlands)

    Harmsen, Hermie J. M.; de Goffau, Marcus. C.; Schwiertz, A

    2016-01-01

    The microbiota in our gut performs many different essential functions that help us to stay healthy. These functions include vitamin production, regulation of lipid metabolism and short chain fatty acid production as fuel for epithelial cells and regulation of gene expression. There is a very

  15. [The human gut microbiota: Interactions with the host and dysfunctions].

    Science.gov (United States)

    Lepage, P

    2017-05-12

    The human intestinal microbiota is composed of approximately 100,000 billion microorganisms with the average total number of different commensal bacterial species estimated at over 500 per individual. The human intestinal microbiota can be considered as an organ within another, which co-evolved with its host to achieve a symbiotic relationship leading to physiological homeostasis. The host provides an environment enriched in nutrients and the microbiota provides essential functions. Dysbiosis of the intestinal microbiota (changes in bacterial composition) has been associated with local dysfunctions of the gastrointestinal tract, such as inflammatory bowel disease or irritable bowel syndrome but also with obesity and metabolic diseases. However, a better understanding of the human intestinal ecosystem is still needed to understand the exact role of the microbiota in health and disease. Most intestinal bacteria are anaerobic and therefore, for the large majority, impossible to culture at present. Consequently, their function cannot be inferred from data on their composition. Today, with the help of a metagenomic approach, the bacterial genomic content of an ecosystem and the associated functions can be directly accessed from the environment without culture. Copyright © 2017 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  16. Microbiota-derived short-chain fatty acids modulate expression of Campylobacter jejuni determinants required for commensalism and virulence

    Science.gov (United States)

    Campylobacter jejuni effectively promotes commensalism in the intestinal tract of avian hosts and diarrheal disease in humans, yet components of intestinal environments sensed by the bacterium in either host to initiate interactions are mostly unknown. By analyzing a C. jejuni acetogenesis mutant th...

  17. Antibiotic Susceptibility of Commensal Bacteria from Human Milk.

    Science.gov (United States)

    Chen, Po-Wen; Tseng, Shu-Ying; Huang, Mao-Sheng

    2016-02-01

    Recent studies have focused on foodborne or commensal bacteria as vehicles of antibiotic resistance. However, the antibiotic resistance of milk bacteria from healthy donors is still vague in Taiwan. For this purpose, human milk samples were obtained from randomly recruited 19 healthy women between 3 and 360 days post-partum. Antibiotic susceptibility profile of bacteria from milk samples was determined. About 20 bacterial species were isolated from milk samples including Staphylococcus (6 species), Streptococcus (4 species), Enterococcus (2 species), Lactobacillus (1 species), and bacteria belonging to other genera (7 species). Some opportunistic or potentially pathogenic bacteria including Kluyvera ascorbata, Klebsiella oxytoca, Klebsiella pneumoniae, Acinetobacter baumannii, Actinomyces bovis, and Staphylococcus aureus were also isolated. Intriguingly, Staphylococcus isolates (22 strains) were resistant to 2–8 of 8 antibiotics, while Streptococcus isolates (3 strains) were resistant to 3–7 of 9 antibiotics, and members of the genus Enterococcus (5 strains) were resistant to 3–8 of 9 antibiotics. Notably, Staphylococcus lugdunensis, S. aureus, Streptococcus parasanguinis, Streptococcus pneumonia, and Enterococcus faecalis were resistant to vancomycin, which is considered as the last-resort antibiotic. Therefore, this study shows that most bacterial strains in human milk demonstrate mild to strong antibiotic resistance. Whether commensal bacteria in milk could serve as vehicles of antibiotic resistance should be further investigated.

  18. Role of gut commensal microbiota regulating colonic sensory-related systems

    OpenAIRE

    Aguilera Pujabet, Mònica

    2015-01-01

    La microbiota comensal del intestino se considera un factor clave en la homeostasis gastrointestinal. Las alteraciones funcionales gastrointestinales (síndrome del intestino irritable, SII) y las enfermedades inflamatorias intestinales (EII) se han relacionado con alteraciones de la microbiota comensal (disbiosis). Estos pacientes muestran una activación inmune local anormal, con respuestas motoras y sensoriales alteradas, que en el SII se traducen en estados de hipersensibilidad visceral. El...

  19. Candida albicans commensalism in the gastrointestinal tract.

    Science.gov (United States)

    Neville, B Anne; d'Enfert, Christophe; Bougnoux, Marie-Elisabeth

    2015-11-01

    Candida albicans is a polymorphic yeast species that often forms part of the commensal gastrointestinal mycobiota of healthy humans. It is also an important opportunistic pathogen. A tripartite interaction involving C. albicans, the resident microbiota and host immunity maintains C. albicans in its commensal form. The influence of each of these factors on C. albicans carriage is considered herein, with particular focus on the mycobiota and the approaches used to study it, models of gastrointestinal colonization by C. albicans, the C. albicans genes and phenotypes that are necessary for commensalism and the host factors that influence C. albicans carriage.

  20. The human microbiota associated with overall health.

    Science.gov (United States)

    Xu, Xiaofei; Wang, Zhujun; Zhang, Xuewu

    2015-03-01

    Human body harbors diverse microbes, the main components include bacteria, eukaryotes and viruses. Emerging evidences show that the human microbiota is intrinsically linked with overall health. The development of next-generation sequencing provides an unprecedented opportunity to investigate the complex microbial communities that are associated with the human body. Many factors like host genetics and environmental factors have a major impact on the composition and dynamic changes of human microbiota. The purpose of this paper is to present an overview of the relationship between human health and human microbiota (skin, nasal, throat, oral, vaginal and gut microbiota), then to focus on the factors modulating the composition of the microbiota and the future challenges to manipulate the microbiota for personalized health.

  1. [Oral microbiota: a promising predictor of human oral and systemic diseases].

    Science.gov (United States)

    Xin, Xu; Junzhi, He; Xuedong, Zhou

    2015-12-01

    A human oral microbiota is the ecological community of commensal, symbiotic, and pathogenic microorganisms found in human oral cavity. Oral microbiota exists mostly in the form of a biofilm and maintains a dynamic ecological equilibrium with the host body. However, the disturbance of this ecological balance inevitably causes oral infectious diseases, such as dental caries, apical periodontitis, periodontal diseases, pericoronitis, and craniofacial bone osteomyelitis. Oral microbiota is also correlated with many systemic diseases, including cancer, diabetes mellitus, rheumatoid arthritis, cardiovascular diseases, and preterm birth. Hence, oral microbiota has been considered as a potential biomarker of human diseases. The "Human Microbiome Project" and other metagenomic projects worldwide have advanced our knowledge of the human oral microbiota. The integration of these metadata has been the frontier of oral microbiology to improve clinical translation. By reviewing recent progress on studies involving oral microbiota-related oral and systemic diseases, we aimed to propose the essential role of oral microbiota in the prediction of the onset, progression, and prognosis of oral and systemic diseases. An oral microbiota-based prediction model helps develop a new paradigm of personalized medicine and benefits the human health in the post-metagenomics era.

  2. Human Microbiota and Ophthalmic Disease.

    Science.gov (United States)

    Lu, Louise J; Liu, Ji

    2016-09-01

    The human ocular surface, consisting of the cornea and conjunctiva, is colonized by an expansive, diverse microbial community. Molecular-based methods, such as 16S rRNA sequencing, has allowed for more comprehensive and precise identification of the species composition of the ocular surface microbiota compared to traditional culture-based methods. Evidence suggests that the normal microbiota plays a protective immunological role in preventing the proliferation of pathogenic species and thus, alterations in the homeostatic microbiome may be linked to ophthalmic pathologies. Further investigation of the ocular surface microbiome, as well as the microbiome of other areas of the body such as the oral mucosa and gut, and their role in the pathophysiology of diseases is a significant, emerging field of research, and may someday enable the development of novel probiotic approaches for the treatment and prevention of ophthalmic diseases.

  3. The Human Microbiota in Early Life

    DEFF Research Database (Denmark)

    Mortensen, Martin Steen

    The bacteria that colonize the human body, our microbiota, can influence our health, both positively and negatively. The importance and functions of the microbiota in our intestinal tract have been the focus of several research projects and are widely published. However, there are great gaps in our...... knowledge concerning microbiota composition, development and function in other areas of human body. Lack of knowledge about the microbiota development in the airways is an example of such a deficiency. The work presented in this PhD thesis is based on the vast sample collection of the COPSAC2010 cohort......, with 700 mother-infant pairs. The objectives were to perform a detailed examination of the mothers’ vaginal microbiota, describe the early composition and development of the microbiota in the airways of their infants, and determine whether the infants’ microbiota are affected by that of their mothers...

  4. The Human Microbiota in Early Life

    DEFF Research Database (Denmark)

    Mortensen, Martin Steen

    in the microbiota composition at the three time points, examining as well the time dependent changes of each infant separately. One week after birth, Staphylococcus, traditionally associated with skin microbiota, is dominating the microbiota, but as time passes, bacteria normally found in the airways (e......The bacteria that colonize the human body, our microbiota, can influence our health, both positively and negatively. The importance and functions of the microbiota in our intestinal tract have been the focus of several research projects and are widely published. However, there are great gaps in our...... knowledge concerning microbiota composition, development and function in other areas of human body. Lack of knowledge about the microbiota development in the airways is an example of such a deficiency. The work presented in this PhD thesis is based on the vast sample collection of the COPSAC2010 cohort...

  5. Human milk and infant intestinal mucosal glycans guide succession of the neonatal intestinal microbiota.

    Science.gov (United States)

    Newburg, David S; Morelli, Lorenzo

    2015-01-01

    Infants begin acquiring intestinal microbiota at parturition. Initial colonization by pioneer bacteria is followed by active succession toward a dynamic ecosystem. Keystone microbes engage in reciprocal transkingdom communication with the host, which is essential for human homeostasis and health; therefore, these bacteria should be considered mutualists rather than commensals. This review discusses the maternal role in providing infants with functional and stable microbiota. The initial fecal inoculum of microbiota results from the proximity of the birth canal and anus; the biological significance of this anatomic proximity could underlie observed differences in microbiota between vaginal and cesarean birth. Secondary sources of inocula include mouths and skin of kin, animals and objects, and the human milk microbiome, but guiding microbial succession may be a primary role of human milk. The unique glycans of human milk cannot be digested by the infant, but are utilized by mutualist bacteria. These prebiotic glycans support expansion of mutualist microbiota, which manifests as differences in microbiota among breastfed and artificially fed infants. Human milk glycans vary by maternal genotype. Milks of genetically distinct mothers and variations in infant mucosal glycan expression support discrete microbiota. Early colonization may permanently influence microbiota composition and function, with ramifications for health.

  6. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    Directory of Open Access Journals (Sweden)

    Aimee Marguerite Moore

    2011-10-01

    Full Text Available The human intestinal microbiota encode multiple critical functions impacting human health, including, metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity of this microbial community, its recalcitrance to standard cultivation and the immense diversity of its encoded genes has necessitated the development of novel molecular, microbiological, and genomic tools. Functional metagenomics is one such culture-independent technique used for decades to study environmental microorganisms but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community independent of identity to known genes by subjecting the metagenome to functional assays in a genetically tractable host. Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex community and its human host.

  7. The Microbiota of the Human Skin.

    Science.gov (United States)

    Egert, Markus; Simmering, Rainer

    2016-01-01

    The aim of this chapter is to sum up important progress in the field of human skin microbiota research that was achieved over the last years.The human skin is one of the largest and most versatile organs of the human body. Owing to its function as a protective interface between the largely sterile interior of the human body and the highly microbially contaminated outer environment, it is densely colonized with a diverse and active microbiota. This skin microbiota is of high importance for human health and well-being. It is implicated in several severe skin diseases and plays a major role in wound infections. Many less severe, but negatively perceived cosmetic skin phenomena are linked with skin microbes, too. In addition, skin microorganisms, in particular on the human hands, are crucial for the field of hygiene research. Notably, apart from being only a potential source of disease and contamination, the skin microbiota also contributes to the protective functions of the human skin in many ways. Finally, the analysis of structure and function of the human skin microbiota is interesting from a basic, evolutionary perspective on human microbe interactions.Key questions in the field of skin microbiota research deal with (a) a deeper understanding of the structure (species inventory) and function (physiology) of the healthy human skin microbiota in space and time, (b) the distinction of resident and transient skin microbiota members,

  8. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae.

    Directory of Open Access Journals (Sweden)

    Xiaoshu Tang

    Full Text Available BACKGROUND: The gut of most insects harbours nonpathogenic microorganisms. Recent work suggests that gut microbiota not only provide nutrients, but also involve in the development and maintenance of the host immune system. However, the complexity, dynamics and types of interactions between the insect hosts and their gut microbiota are far from being well understood. METHODS/PRINCIPAL FINDINGS: To determine the composition of the gut microbiota of two lepidopteran pests, Spodoptera littoralis and Helicoverpa armigera, we applied cultivation-independent techniques based on 16S rRNA gene sequencing and microarray. The two insect species were very similar regarding high abundant bacterial families. Different bacteria colonize different niches within the gut. A core community, consisting of Enterococci, Lactobacilli, Clostridia, etc. was revealed in the insect larvae. These bacteria are constantly present in the digestion tract at relatively high frequency despite that developmental stage and diet had a great impact on shaping the bacterial communities. Some low-abundant species might become dominant upon loading external disturbances; the core community, however, did not change significantly. Clearly the insect gut selects for particular bacterial phylotypes. CONCLUSIONS: Because of their importance as agricultural pests, phytophagous Lepidopterans are widely used as experimental models in ecological and physiological studies. Our results demonstrated that a core microbial community exists in the insect gut, which may contribute to the host physiology. Host physiology and food, nevertheless, significantly influence some fringe bacterial species in the gut. The gut microbiota might also serve as a reservoir of microorganisms for ever-changing environments. Understanding these interactions might pave the way for developing novel pest control strategies.

  9. Genomics of Streptococcus salivarius, a major human commensal.

    Science.gov (United States)

    Delorme, Christine; Abraham, Anne-Laure; Renault, Pierre; Guédon, Eric

    2015-07-01

    The salivarius group of streptococci is of particular importance for humans. This group consists of three genetically similar species, Streptococcus salivarius, Streptococcus vestibularis and Streptococcus thermophilus. S. salivarius and S. vestibularis are commensal organisms that may occasionally cause opportunistic infections in humans, whereas S. thermophilus is a food bacterium widely used in dairy production. We developed Multilocus sequence typing (MLST) and comparative genomic analysis to confirm the clear separation of these three species. These analyses also identified a subgroup of four strains, with a core genome diverging by about 10%, in terms of its nucleotide sequence, from that of S. salivarius sensu stricto. S. thermophilus species displays a low level of nucleotide variability, due to its recent emergence with the development of agriculture. By contrast, nucleotide variability is high in the other two species of the salivarius group, reflecting their long-standing association with humans. The species of the salivarius group have genome sizes ranging from the smallest (∼ 1.7 Mb for S. thermophilus) to the largest (∼ 2.3 Mb for S. salivarius) among streptococci, reflecting genome reduction linked to a narrow, nutritionally rich environment for S. thermophilus, and natural, more competitive niches for the other two species. Analyses of genomic content have indicated that the core genes of S. salivarius account for about two thirds of the genome, indicating considerable variability of gene content and differences in potential adaptive features. Furthermore, we showed that the genome of this species is exceptionally rich in genes encoding surface factors, glycosyltransferases and response regulators. Evidence of widespread genetic exchanges was obtained, probably involving a natural competence system and the presence of diverse mobile elements. However, although the S. salivarius strains studied were isolated from several human body-related sites

  10. The human gut microbiota and undernutrition.

    Science.gov (United States)

    Gordon, Jeffrey I; Dewey, Kathryn G; Mills, David A; Medzhitov, Ruslan M

    2012-06-06

    Childhood malnutrition is a global health problem that cannot be attributed to food insecurity alone. The gut microbiota may contribute to this devastating health disorder. In this Perspective, we call for the application of tools and concepts emerging from studies of the human gut microbiota to better understand the nutritional needs of infants and children and the role of the microbiota in the pathogenesis and treatment of undernutrition. This effort will require elucidation of the interrelationships between breast milk composition and the development of the microbiota and immune system in the context of the maternal-infant dyad.

  11. Lactobacillus acidophilus INMIA 9602 Er-2 strain 317/402 probiotic regulates growth of commensal Escherichia coli in gut microbiota of familial Mediterranean fever disease subjects.

    Science.gov (United States)

    Pepoyan, A Z; Balayan, M H; Manvelyan, A M; Mamikonyan, V; Isajanyan, M; Tsaturyan, V V; Kamiya, S; Netrebov, V; Chikindas, M L

    2017-04-01

    Previously, we reported a positive effect the probiotic formulation, Lactobacillus acidophilus INMIA 9602 Er-2 strain 317/402 (Narine strain), had on the blood characteristics of patients with familial Mediterranean fever disease (FMF). The aim of this investigation was to evaluate the effect of the Narine probiotic on growth characteristics in the predominant commensal Escherichia coli isolates from the gut microbiota in FMF-positive study participants. Bacterial growth of 192 prevalent commensal E. coli isolates found in the volunteer participants' guts was evaluated using Verhulst's logistic function. This study showed that the duration of the preparatory growth phase for the E. coli isolates collected from FMF-positive volunteers was significantly shorter, whereas the duration of the logarithmic growth phase was significantly longer (P FMF subjects a month after the Narine probiotic administration was terminated. The data suggest that the mathematical model characterizes the growth of commensal E. coli isolates from FMF-positive participants and it can be useful in a decision-making process on the practical use of probiotics during FMF. This is the first study to demonstrate the effects of Narine, containing the probiotic Lactobacillus acidophilus, on the growth of gut commensal Escherichia coli from study participants with familial Mediterranean fever disease (FMF). Verhulst's logistic function was demonstrated to act as a possible tool for the evaluation and quantification of effects produced by the probiotic formulation in FMF participants. © 2017 The Society for Applied Microbiology.

  12. Human seroreactivity to gut microbiota antigens.

    Science.gov (United States)

    Christmann, Benjamin S; Abrahamsson, Thomas R; Bernstein, Charles N; Duck, L Wayne; Mannon, Peter J; Berg, Göran; Björkstén, Bengt; Jenmalm, Maria C; Elson, Charles O

    2015-11-01

    Although immune responses directed against antigens from the intestinal microbiota are observed in certain diseases, the normal human adaptive immune response to intestinal microbiota is poorly defined. Our goal was to assess the adaptive immune response to the intestinal microbiota present in 143 healthy adults and compare this response with the response observed in 52 children and their mothers at risk of having allergic disease. Human serum was collected from adults and children followed from birth to 7 years of age, and the serum IgG response to a panel of intestinal microbiota antigens was assessed by using a novel protein microarray. Nearly every subject tested, regardless of health status, had serum IgG that recognized a common set of antigens. Seroreactivity to the panel of antigens was significantly lower in atopic adults. Healthy infants expressed the highest level of IgG seroreactivity to intestinal microbiota antigens. This adaptive response developed between 6 and 12 months of age and peaked around 2 years of age. Low IgG responses to certain clusters of microbiota antigens during infancy were associated with allergy development during childhood. There is an observed perturbation of the adaptive response to antigens from the microbiota in allergic subjects. These perturbations are observable even in childhood, suggesting that optimal stimulation of the adaptive immune system by the microbiota might be needed to prevent certain immune-mediated diseases. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. Deviations in human gut microbiota

    DEFF Research Database (Denmark)

    Casén, C; Vebø, H C; Sekelja, M

    2015-01-01

    BACKGROUND: Dysbiosis is associated with many diseases, including irritable bowel syndrome (IBS), inflammatory bowel diseases (IBD), obesity and diabetes. Potential clinical impact of imbalance in the intestinal microbiota suggests need for new standardised diagnostic methods to facilitate microb...... and improvement in new therapeutic approaches.......BACKGROUND: Dysbiosis is associated with many diseases, including irritable bowel syndrome (IBS), inflammatory bowel diseases (IBD), obesity and diabetes. Potential clinical impact of imbalance in the intestinal microbiota suggests need for new standardised diagnostic methods to facilitate...

  14. Human milk oligosaccharide consumption by intestinal microbiota

    OpenAIRE

    Marcobal, A.; Sonnenburg, J L

    2012-01-01

    Human milk oligosaccharides (HMO) constitute the third most abundant class of molecules in breast milk. Since infants lack the enzymes required for milk glycan digestion, this group of carbohydrates passes undigested to the lower part of the intestinal tract, where they can be consumed by specific members of the infant gut microbiota. We review proposed mechanisms for the depletion and metabolism of HMO by two major bacterial genera within the infant intestinal microbiota, Bifidobacterium and...

  15. Iron supplementation promotes gut microbiota metabolic activity but not colitis markers in human gut microbiota-associated rats.

    Science.gov (United States)

    Dostal, Alexandra; Lacroix, Christophe; Pham, Van T; Zimmermann, Michael B; Del'homme, Christophe; Bernalier-Donadille, Annick; Chassard, Christophe

    2014-06-28

    The global prevalence of Fe deficiency is high and a common corrective strategy is oral Fe supplementation, which may affect the commensal gut microbiota and gastrointestinal health. The aim of the present study was to investigate the impact of different dietary Fe concentrations on the gut microbiota and gut health of rats inoculated with human faecal microbiota. Rats (8 weeks old, n 40) were divided into five (n 8 each) groups and fed diets differing only in Fe concentration during an Fe-depletion period (12 weeks) and an Fe-repletion period (4 weeks) as follows: (1) Fe-sufficient diet throughout the study period; (2) Fe-sufficient diet followed by 70 mg Fe/kg diet; (3) Fe-depleted diet throughout the study period; (4) Fe-depleted diet followed by 35 mg Fe/kg diet; (5) Fe-depleted diet followed by 70 mg Fe/kg diet. Faecal and caecal samples were analysed for gut microbiota composition (quantitative PCR and pyrosequencing) and bacterial metabolites (HPLC), and intestinal tissue samples were investigated histologically. Fe depletion did not significantly alter dominant populations of the gut microbiota and did not induce Fe-deficiency anaemia in the studied rats. Provision of the 35 mg Fe/kg diet after feeding an Fe-deficient diet significantly increased the abundance of dominant bacterial groups such as Bacteroides spp. and Clostridium cluster IV members compared with that of an Fe-deficient diet. Fe supplementation increased gut microbial butyrate concentration 6-fold compared with Fe depletion and did not affect histological colitis scores. The present results suggest that Fe supplementation enhances the concentration of beneficial gut microbiota metabolites and thus may contribute to gut health.

  16. Resident aerobic microbiota of the adult human nasal cavity

    DEFF Research Database (Denmark)

    Rasmussen, TT; Kirkeby Nielsen, LP; Poulsen, Knud

    2000-01-01

    Recent evidence strongly suggests that the microbiota of the nasal cavity plays a crucial role in determining the reaction patterns of the mucosal and systemic immune system. However, little is known about the normal microbiota of the nasal cavity. The purpose of this study was to determine...... the microbiota in different parts of the nasal cavity and to develop and evaluate methods for this purpose. Samples were collected from 10 healthy adults by nasal washes and by swabbing of the mucosa through a sterile introduction device. Both methods gave results that were quantitatively and qualitatively...... reproducible, and revealed significant differences in the density of the nasal microbiota between individuals. The study revealed absence of gram-negative bacteria that are regular members of the commensal microbiota of the pharynx. Likewise, viridans type streptococci were sparsely represented. The nasal...

  17. Transepithelial activation of human leukocytes by probiotics and commensal bacteria: role of Enterobacteriaceae-type endotoxin

    DEFF Research Database (Denmark)

    Bäuerlein, A.; Ackermann, S.; Parlesak, Alexandr

    2009-01-01

    Escherichia coli K12, probiotic E. coli Nissle, EPEC) induced basolateral production of TNF-alpha, IFN-gamma, IL 6, 8, and 10. Gram-positive probiotics (Lactobacillus spp. and Bifidobacterium spp.) had virtually no effect. In addition, commensals (Enterococcus faecalis, Bacteroides vulgatus) and food...... strains, and some of their pathogen-associated molecular patterns, were incubated apically on a confluent layer of intestinal epithelial cells (Caco-2), which were basolaterally co-cultured with human mononuclear leukocytes. Only Gram-negative bacteria having Enterobacteriaceae-type endotoxin (commensal......' innate immune response seems to not be linked to the health-promoting effects ofprobiotics....

  18. The active human gut microbiota differs from the total microbiota.

    Directory of Open Access Journals (Sweden)

    Francesc Peris-Bondia

    Full Text Available The human gut microbiota is considered one of the most fascinating reservoirs of microbial diversity hosting between 400 to 1000 bacterial species distributed among nine phyla with Firmicutes, Bacteroidetes and Actinobacteria representing around 75% of the diversity. One of the most intriguing issues relates to understanding which microbial groups are active players in the maintenance of the microbiota homeostasis.Here, we describe the diversity of active microbial fractions compared with the whole community from raw human fecal samples. We studied four healthy volunteers by 16S rDNA gene pyrosequencing. The fractions were obtained by cell sorting based on bacterial RNA concentration. Bacterial families were observed to appear or disappear on applying a cell sorting method in which flow cytometry was used to evaluate the active cells by pyronin-Y staining of RNA. This method was able to detect active bacteria, indicating that the active players differed from that observed in raw fecal material. Generally, observations showed that in the active fractions, the number of reads related to Bacteroidetes decreased whereas several families from Clostridiales (Firmicutes were more highly represented. Moreover, a huge number of families appeared as part of the active fraction when cell sorting was applied, indicating reads that are simply statistically hidden by the total reads.

  19. Chemical ecology of interactions between human skin microbiota and mosquitoes

    NARCIS (Netherlands)

    Verhulst, N.O.; Takken, W.; Dicke, M.; Schraa, G.; Smallegange, R.C.

    2010-01-01

    Microbiota on the human skin plays a major role in body odour production. The human microbial and chemical signature displays a qualitative and quantitative correlation. Genes may influence the chemical signature by shaping the composition of the microbiota. Recent studies on human skin microbiota,

  20. The gut microbiota, obesity and insulin resistance

    Science.gov (United States)

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflam...

  1. Dynamic efficiency of the human intestinal microbiota.

    Science.gov (United States)

    Candela, Marco; Biagi, Elena; Turroni, Silvia; Maccaferri, Simone; Figini, Paolo; Brigidi, Patrizia

    2015-06-01

    The emerging dynamic dimensions of the human intestinal microbiota (IM) are challenging the traditional definition of healthy gut microbiota, principally based on the static concepts of phylogenetic and functional core. On the other hand, recent researches are revealing that the microbiota plasticity is strategic for several aspects of our biology, addressing the different immunological and metabolic needs at various ages, and adjusting the ecosystem services in response to different lifestyle, physiological states or diets. In light of these studies, we propose to revise the traditional concept of healthy human IM, including its degree of plasticity among the fundamental requisites for providing host health. In order to make a model taking into account the relative importance of IM core functions and plasticity for the maintenance of host health, we address to Economics, where the efficiency of a productive system is measured by computing static and dynamic parameters.

  2. Human gut microbiota: repertoire and variations

    Directory of Open Access Journals (Sweden)

    Jean-Christophe eLagier

    2012-11-01

    Full Text Available The composition of human gut microbiota and their relationship with the host and, consequently, with human health and disease, presents several challenges to microbiologists. Originally dominated by culture-dependent methods for exploring this ecosystem, the advent of molecular tools has revolutionized our ability to investigate these relationships. However, many biases that have led to contradictory results have been identified. Microbial culturomics, a recent concept based on a use of several culture conditions with identification by MALDI-TOF followed by the genome sequencing of the new species cultured had allowed a complementarity with metagenomics. Culturomics allowed to isolate 31 new bacterial species the largest human virus, the largest bacteria, and the largest Archaea from human. Moreover, some members of this ecosystem, such as Eukaryotes, giant viruses, Archaea and Planctomycetes, have been neglected by the majority of studies. In addition, numerous factors, such as age, geographic provenance, dietary habits, antibiotics or probiotics, can influence the composition of the microbiota. Finally, in addition to the countless biases associated with the study techniques, a considerable limitation to the interpretation of studies of human gut microbiota is associated with funding sources and transparency disclosures. In the future, studies independent of food industry funding and using complementary methods from a broad range of both culture-based and molecular tools will increase our knowledge of the repertoire of this complex ecosystem and host-microbiota mutualism.

  3. Introduction to the human gut microbiota

    Science.gov (United States)

    Thursby, Elizabeth

    2017-01-01

    The human gastrointestinal (GI) tract harbours a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host during homeostasis and disease. Multiple factors contribute to the establishment of the human gut microbiota during infancy. Diet is considered as one of the main drivers in shaping the gut microbiota across the life time. Intestinal bacteria play a crucial role in maintaining immune and metabolic homeostasis and protecting against pathogens. Altered gut bacterial composition (dysbiosis) has been associated with the pathogenesis of many inflammatory diseases and infections. The interpretation of these studies relies on a better understanding of inter-individual variations, heterogeneity of bacterial communities along and across the GI tract, functional redundancy and the need to distinguish cause from effect in states of dysbiosis. This review summarises our current understanding of the development and composition of the human GI microbiota, and its impact on gut integrity and host health, underlying the need for mechanistic studies focusing on host–microbe interactions. PMID:28512250

  4. Transepithelial activation of human leukocytes by probiotics and commensal bacteria: Role of Enterobacteriaceae-type endotoxin

    DEFF Research Database (Denmark)

    Baeuerlein, Annette; Ackermann, Stefanie; Parlesak, Alexandr

    2009-01-01

    The goal of the current study was to clarify whether commercially available probiotics induce greater trans-epithelial activation of human leukocytes than do commensal, food-derived and pathogenic bacteria and to identify the compounds responsible for this activation. Eleven different bacterial...... Escherichia coli K12, probiotic E. coli Nissle, EPEC) induced basolateral production of TNF-alpha, IFN-gamma, IL 6, 8, and 10. Gram-positive probiotics (Lactobacillus spp. and Bifidobacterium spp.) had virtually no effect. In addition, commensals (Enterococcus faecalis, Bacteroides vulgatus) and food...... (polymyxin, colistin) completely abrogated transepithelial activation of leukocytes. Enterobacteriaceae-type endotoxin is a crucial factor in transepithelial stimulation of leukocytes, regardless of whether it is produced by probiotics or other bacteria. Hence, transepithelial stimulation of leukocytes...

  5. Establishment of tolerance to commensal bacteria requires a complex microbiota and is accompanied by decreased intestinal chemokine expression

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Metzdorff, S. B.; Zeuthen, Louise

    2012-01-01

    . Gene expression in the intestine of mouse pups born to dams that were either colonized with a conventional microbiota or monocolonized (Lactobacillus acidophilus or Eschericia coli) or germ free was examined on day 1 and day 6 after birth. Intestinal epithelial cells from all groups of pups were...... stimulated ex vivo with L. acidophilus and E. coli to assess tolerance establishment. Intestine from pups exposed to a conventional microbiota displayed lower expression of Ccl2, Ccl3, Cxcl1, Cxcl2, and Tslp than germ-free mice, whereas genes encoding proteins in Toll-like receptor signaling pathways...

  6. Effect of the vitamin B12-binding protein haptocorrin present in human milk on a panel of commensal and pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Nexø Ebba

    2011-06-01

    Full Text Available Abstract Background Haptocorrin is a vitamin B12-binding protein present in high amounts in different body fluids including human milk. Haptocorrin has previously been shown to inhibit the growth of specific E. coli strains, and the aim of the present study was to elucidate whether the antibacterial properties of this protein may exert a general defense against pathogens and/or affect the composition of the developing microbiota in the gastrointestinal tracts of breastfed infants. Findings The present work was the first systematic study of the effect of haptocorrin on bacterial growth, and included 34 commensal and pathogenic bacteria to which infants are likely to be exposed. Well-diffusion assays addressing antibacterial effects were performed with human milk, haptocorrin-free human milk, porcine holo-haptocorrin (saturated with B-12 and human apo-haptocorrin (unsaturated. Human milk inhibited the growth of S. thermophilus and the pathogenic strains L. monocytogenes LO28, L. monocytogenes 4446 and L. monocytogenes 7291, but the inhibition could not be ascribed to haptocorrin. Human apo-haptocorrin inhibited the growth of only a single bacterial strain (Bifidobacterium breve, while porcine holo-haptocorrin did not show any inhibitory effect. Conclusions Our results suggest that haptocorrin does not have a general antibacterial activity, and thereby contradict the existing hypothesis implicating such an effect. The study contributes to the knowledge on the potential impact of breastfeeding on the establishment of a healthy microbiota in infants.

  7. Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota

    Science.gov (United States)

    Audebert, Christophe; Even, Gaël; Cian, Amandine; Safadi, Dima El; Certad, Gabriela; Delhaes, Laurence; Pereira, Bruno; Nourrisson, Céline; Poirier, Philippe; Wawrzyniak, Ivan; Delbac, Frédéric; Morelle, Christelle; Bastien, Patrick; Lachaud, Laurence; Bellanger, Anne-Pauline; Botterel, Françoise; Candolfi, Ermanno; Desoubeaux, Guillaume; Morio, Florent; Pomares, Christelle; Rabodonirina, Meja; Loywick, Alexandre; Merlin, Sophie; Viscogliosi, Eric; Chabé, Magali

    2016-01-01

    Alterations in the composition of commensal bacterial populations, a phenomenon known as dysbiosis, are linked to multiple gastrointestinal disorders, such as inflammatory bowel disease and irritable bowel syndrome, or to infections by diverse enteric pathogens. Blastocystis is one of the most common single-celled eukaryotes detected in human faecal samples. However, the clinical significance of this widespread colonization remains unclear, and its pathogenic potential is controversial. To address the issue of Blastocystis pathogenicity, we investigated the impact of colonization by this protist on the composition of the human gut microbiota. For that purpose, we conducted a cross-sectional study including 48 Blastocystis-colonized patients and 48 Blastocystis-free subjects and performed an Ion Torrent 16S rDNA gene sequencing to decipher the Blastocystis-associated gut microbiota. Here, we report a higher bacterial diversity in faecal microbiota of Blastocystis colonized patients, a higher abundance of Clostridia as well as a lower abundance of Enterobacteriaceae. Our results contribute to suggesting that Blastocystis colonization is usually associated with a healthy gut microbiota, rather than with gut dysbiosis generally observed in metabolic or infectious inflammatory diseases of the lower gastrointestinal tract. PMID:27147260

  8. Staphylococcus aureus Shifts toward Commensalism in Response to Corynebacterium Species.

    Science.gov (United States)

    Ramsey, Matthew M; Freire, Marcelo O; Gabrilska, Rebecca A; Rumbaugh, Kendra P; Lemon, Katherine P

    2016-01-01

    Staphylococcus aureus-human interactions result in a continuum of outcomes from commensalism to pathogenesis. S. aureus is a clinically important pathogen that asymptomatically colonizes ~25% of humans as a member of the nostril and skin microbiota, where it resides with other bacteria including commensal Corynebacterium species. Commensal Corynebacterium spp. are also positively correlated with S. aureus in chronic polymicrobial diabetic foot infections, distinct from acute monomicrobial S. aureus infections. Recent work by our lab and others indicates that microbe-microbe interactions between S. aureus and human skin/nasal commensals, including Corynebacterium species, affect S. aureus behavior and fitness. Thus, we hypothesized that S. aureus interactions with Corynebacterium spp. diminish S. aureus virulence. We tested this by assaying for changes in S. aureus gene expression during in vitro mono- versus coculture with Corynebacterium striatum, a common skin and nasal commensal. We observed a broad shift in S. aureus gene transcription during in vitro growth with C. striatum, including increased transcription of genes known to exhibit increased expression during human nasal colonization and decreased transcription of virulence genes. S. aureus uses several regulatory pathways to transition between commensal and pathogenic states. One of these, the quorum signal accessory gene regulator (agr) system, was strongly inhibited in response to Corynebacterium spp. Phenotypically, S. aureus exposed to C. striatum exhibited increased adhesion to epithelial cells, reflecting a commensal state, and decreased hemolysin activity, reflecting an attenuation of virulence. Consistent with this, S. aureus displayed diminished fitness in experimental in vivo coinfection with C. striatum when compared to monoinfection. These data support a model in which S. aureus shifts from virulence toward a commensal state when exposed to commensal Corynebacterium species.

  9. Staphylococcus aureus shifts towards commensalism in response to Corynebacterium species

    Directory of Open Access Journals (Sweden)

    Matthew M Ramsey

    2016-08-01

    Full Text Available Staphylococcus aureus–human interactions result in a continuum of outcomes from commensalism to pathogenesis. S. aureus is a clinically important pathogen that asymptomatically colonizes ~25% of humans as a member of the nostril and skin microbiota, where it resides with other bacteria including commensal Corynebacterium species. Commensal Corynebacterium spp. are also positively correlated with S. aureus in chronic polymicrobial diabetic foot infections, distinct from acute monomicrobial S. aureus infections. Recent work by our lab and others indicates that microbe-microbe interactions between S. aureus and human skin/nasal commensals, including Corynebacterium species, affect S. aureus behavior and fitness. Thus, we hypothesized that S. aureus interactions with Corynebacterium spp. diminish S. aureus virulence. We tested this by assaying for changes in S. aureus gene expression during in vitro mono- versus coculture with Corynebacterium striatum, a common skin and nasal commensal. We observed a broad shift in S. aureus gene transcription during in vitro growth with C. striatum, including increased transcription of genes known to exhibit increased expression during human nasal colonization and decreased transcription of virulence genes. S. aureus uses several regulatory pathways to transition between commensal and pathogenic states. One of these, the quorum signal accessory gene regulator (agr system, was strongly inhibited in response to Corynebacterium spp. Phenotypically, S. aureus exposed to C. striatum exhibited increased adhesion to epithelial cells, reflecting a commensal state, and decreased hemolysin activity, reflecting an attenuation of virulence. Consistent with this, S. aureus displayed diminished fitness in experimental in vivo coinfection with C. striatum when compared to monoinfection. These data support a model in which S. aureus shifts from virulence towards a commensal state when exposed to commensal Corynebacterium species.

  10. Inulin and fructo-oligosaccharides have divergent effects on colitis and commensal microbiota in HLA-B27 transgenic rats.

    Science.gov (United States)

    Koleva, Petya T; Valcheva, Rosica S; Sun, Xu; Gänzle, Michael G; Dieleman, Levinus A

    2012-11-14

    Modulation of intestinal microbiota by non-digestible carbohydrates may reduce inflammation in inflammatory bowel disease (IBD). The aim of the present study was to assess the effects of inulin and fructo-oligosaccharides (FOS) on intestinal microbiota and colitis in HLA-B27 transgenic rats, a well-validated rodent model for IBD. In this study, 4-week-old rats were fed 8 g/kg body weight inulin or FOS for 12 weeks, or not. Faeces were collected at 4 and 16 weeks of age; and caecal samples were collected at necropsy. The effects of inulin and FOS on chronic intestinal inflammation were assessed using a gross gut score, histology score and levels of mucosal IL-1β. Intestinal microbiota were characterised by quantitative PCR and denaturing gradient gel electrophoresis. Colitis was significantly reduced in all FOS-fed rats compared to the control diet, whereas inulin decreased chronic intestinal inflammation in only half the number of animals. Quantitative analysis of caecal microbiota demonstrated that inulin increased the numbers of total bacteria and the Bacteroides-Prevotella-Porphyromonas group, FOS increased bifidobacteria, and both fructans decreased Clostridium cluster XI. In the faecal samples, both inulin and FOS decreased total bacteria, Bacteroides-Prevotella-Porphyromonas group, and Clostridium clusters XI and XIVa. FOS increased Bifidobacterium spp., and mediated a decrease of gene copies of Enterobacteriaceae and Clostridium difficile toxin B in faeces. SCFA concentrations in the faecal and caecal samples were unaffected by the diets. In conclusion, FOS increased the abundance of Bifidobacterium spp., whereas both fructans reduced Clostridium cluster XI and C. difficile toxin gene expression, correlating with a reduction of chronic intestinal inflammation.

  11. The Microbiota, Chemical Symbiosis, and Human Disease

    Science.gov (United States)

    Redinbo, Matthew R.

    2014-01-01

    Our understanding of mammalian-microbial mutualism has expanded by combing microbial sequencing with evolving molecular and cellular methods, and unique model systems. Here, the recent literature linking the microbiota to diseases of three of the key mammalian mucosal epithelial compartments – nasal, lung and gastrointestinal (GI) tract – is reviewed with a focus on new knowledge about the taxa, species, proteins and chemistry that promote health and impact progression toward disease. The information presented is further organized by specific diseases now associated with the microbiota:, Staphylococcus aureus infection and rhinosinusitis in the nasal-sinus mucosa; cystic fibrosis (CF), chronic obstructive pulmonary disorder (COPD), and asthma in the pulmonary tissues. For the vast and microbially dynamic GI compartment, several disorders are considered, including obesity, atherosclerosis, Crohn’s disease, ulcerative colitis, drug toxicity, and even autism. Our appreciation of the chemical symbiosis ongoing between human systems and the microbiota continues to grow, and suggest new opportunities for modulating this symbiosis using designed interventions. PMID:25305474

  12. [Microbiota and representations of the human body].

    Science.gov (United States)

    Dodet, Betty

    2016-11-01

    Although the presence of an intestinal flora has been known for a long time, the discovery of the role of gut microbiota in human health and disease has been widely recognized as one of the most important advances in the recent years. Chronic diseases may result from dysbiosis, i.e. a disruption of the balance within the bacterial population hosted by the human body. These developments open new prospects in terms of prevention and treatment, including the design of adapted diets, the development of functional foods and fecal transplantation. These discoveries have profoundly altered our view of microbes, of health and disease, of self and non-self, as well as our representations of the body and its relationship with its ecosystem. Gut microbiota is now generally considered as an organ in its own right. A model of the "microbiotic person" thus arises, in which the human organism is defined as an ecosystem, a chimeric superorganism with a double genome, both human and microbial. Thought should be given to the way in which these new paradigms modify lay perceptions of the human body.

  13. Engineered Regulatory Systems Modulate Gene Expression of Human Commensals in the Gut.

    Science.gov (United States)

    Lim, Bentley; Zimmermann, Michael; Barry, Natasha A; Goodman, Andrew L

    2017-04-20

    The gut microbiota is implicated in numerous aspects of health and disease, but dissecting these connections is challenging because genetic tools for gut anaerobes are limited. Inducible promoters are particularly valuable tools because these platforms allow real-time analysis of the contribution of microbiome gene products to community assembly, host physiology, and disease. We developed a panel of tunable expression platforms for the prominent genus Bacteroides in which gene expression is controlled by a synthetic inducer. In the absence of inducer, promoter activity is fully repressed; addition of inducer rapidly increases gene expression by four to five orders of magnitude. Because the inducer is absent in mice and their diets, Bacteroides gene expression inside the gut can be modulated by providing the inducer in drinking water. We use this system to measure the dynamic relationship between commensal sialidase activity and liberation of mucosal sialic acid, a receptor and nutrient for pathogens. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health.

    Science.gov (United States)

    Jost, Ted; Lacroix, Christophe; Braegger, Christian; Chassard, Christophe

    2015-07-01

    Neonatal gut microbiota establishment represents a crucial stage for gut maturation, metabolic and immunologic programming, and consequently short- and long-term health status. Human milk beneficially influences this process due to its dynamic profile of age-adapted nutrients and bioactive components and by providing commensal maternal bacteria to the neonatal gut. These include Lactobacillus spp., as well as obligate anaerobes such as Bifidobacterium spp., which may originate from the maternal gut via an enteromammary pathway as a novel form of mother-neonate communication. Additionally, human milk harbors a broad range of oligosaccharides that promote the growth and activity of specific bacterial populations, in particular, Bifidobacterium and Bacteroides spp. This review focuses on the diversity and origin of human milk bacteria, as well as on milk oligosaccharides that influence neonatal gut microbiota establishment. This knowledge can be used to develop infant formulae that more closely mimic nature's model and sustain a healthy gut microbiota. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Microbiota: In Health and in Sickness, From Birth to Death.

    Science.gov (United States)

    Kuk, Salih; Uyar, Yunus; Karaca, Serkan; Yazar, Süleyman

    2016-06-01

    Microorganisms colonize tissues and organs such as the skin and gastrointestinal, respiratory, and genitourinary systems. These microorganisms are generally called as "human microbiota". Human microbiota mostly consists of commensal microorganisms. The commensal microorganisms located on and in the human body are bacteria, fungi, viruses, archaea, and parasites. The microbiota genome is 100 times bigger in size than the human genome. Although the human genome is stationary, microbial genome has a compatible flexible variability during human life. As well as 2-year-old child and newborn, adult and adolescent, the elderly and pregnant woman have a different microbiota. Microbiota and the microbiota genome can be changed by personal and household diet, antibiotic use, mode of delivery, and hygiene within days or even hours, depending on such as these factors. The human immune system and microbiota grow up, develop, and mature as childhood friends by playing with each other from birth to death. Association between microbiota and human is not just related to childhood-it continues with health and disease, until death separates them. This review focused on the roles of microbiota in parasitology, autoimmune diseases, metabolic diseases, and cancer treatment in detail. In addition, inflammatory and immunoregulatory roles of microbiota on the intestinal immune system and how innate and adaptive immune systems regulate microbiota and its content were explained.

  16. From lifetime to evolution: timescales of human gut microbiota adaptation

    OpenAIRE

    2014-01-01

    Human beings harbor gut microbial communities that are essential to preserve human health. Molded by the human genome, the gut microbiota is an adaptive component of the human superorganisms that allows host adaptation at different timescales, optimizing host physiology from daily life to lifespan scales and human evolutionary history. The gut microbiota continuously changes from birth up to the most extreme limits of human life, reconfiguring its metagenomic layout in response to daily varia...

  17. Human Gut Microbiota: Toward an Ecology of Disease

    Science.gov (United States)

    Selber-Hnatiw, Susannah; Rukundo, Belise; Ahmadi, Masoumeh; Akoubi, Hayfa; Al-Bizri, Hend; Aliu, Adelekan F.; Ambeaghen, Tanyi U.; Avetisyan, Lilit; Bahar, Irmak; Baird, Alexandra; Begum, Fatema; Ben Soussan, Hélène; Blondeau-Éthier, Virginie; Bordaries, Roxane; Bramwell, Helene; Briggs, Alicia; Bui, Richard; Carnevale, Matthew; Chancharoen, Marisa; Chevassus, Talia; Choi, Jin H.; Coulombe, Karyne; Couvrette, Florence; D'Abreau, Samantha; Davies, Meghan; Desbiens, Marie-Pier; Di Maulo, Tamara; Di Paolo, Sean-Anthony; Do Ponte, Sabrina; dos Santos Ribeiro, Priscyla; Dubuc-Kanary, Laure-Anne; Duncan, Paola K.; Dupuis, Frédérique; El-Nounou, Sara; Eyangos, Christina N.; Ferguson, Natasha K.; Flores-Chinchilla, Nancy R.; Fotakis, Tanya; Gado Oumarou H D, Mariam; Georgiev, Metodi; Ghiassy, Seyedehnazanin; Glibetic, Natalija; Grégoire Bouchard, Julien; Hassan, Tazkia; Huseen, Iman; Ibuna Quilatan, Marlon-Francis; Iozzo, Tania; Islam, Safina; Jaunky, Dilan B.; Jeyasegaram, Aniththa; Johnston, Marc-André; Kahler, Matthew R.; Kaler, Kiranpreet; Kamani, Cedric; Karimian Rad, Hessam; Konidis, Elisavet; Konieczny, Filip; Kurianowicz, Sandra; Lamothe, Philippe; Legros, Karina; Leroux, Sebastien; Li, Jun; Lozano Rodriguez, Monica E.; Luponio-Yoffe, Sean; Maalouf, Yara; Mantha, Jessica; McCormick, Melissa; Mondragon, Pamela; Narayana, Thivaedee; Neretin, Elizaveta; Nguyen, Thi T. T.; Niu, Ian; Nkemazem, Romeo B.; O'Donovan, Martin; Oueis, Matthew; Paquette, Stevens; Patel, Nehal; Pecsi, Emily; Peters, Jackie; Pettorelli, Annie; Poirier, Cassandra; Pompa, Victoria R.; Rajen, Harshvardhan; Ralph, Reginald-Olivier; Rosales-Vasquez, Josué; Rubinshtein, Daria; Sakr, Surya; Sebai, Mohammad S.; Serravalle, Lisa; Sidibe, Fily; Sinnathurai, Ahnjana; Soho, Dominique; Sundarakrishnan, Adithi; Svistkova, Veronika; Ugbeye, Tsolaye E.; Vasconcelos, Megan S.; Vincelli, Michael; Voitovich, Olga; Vrabel, Pamela; Wang, Lu; Wasfi, Maryse; Zha, Cong Y.; Gamberi, Chiara

    2017-01-01

    Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics. PMID:28769880

  18. Impact of diet on human intestinal microbiota and health.

    Science.gov (United States)

    Salonen, Anne; de Vos, Willem M

    2014-01-01

    Our intestinal microbiota is involved in the breakdown and bioconversion of dietary and host components that are not degraded and taken up by our own digestive system. The end products generated by our microbiota fuel our enterocytes and support growth but also have signaling functions that generate systemic immune and metabolic responses. Due to the immense metabolic capacity of the intestinal microbiota and its relatively high plasticity, there is great interest in identifying dietary approaches that allow intentional and predictable modulation of the microbiota. In this article, we review the current insights on dietary influence on the human intestinal microbiota based on recent high-throughput molecular studies and interconnections with health. We focus especially on the emerging data that identify the amount and type of dietary fat as significant modulators of the colonic microbiota and its metabolic output.

  19. Antibiotic Administration and Factors Influencing the Vaginal Microbiota during Pregnancy

    DEFF Research Database (Denmark)

    Stokholm, Jakob

    2012-01-01

    The commensal flora consists of non-pathogenic microbiota found on all body surfaces maintaining a well-balanced host-microbial symbiotic state. The vaginal microbiota represents a microbial ecosystem. A low pH level is maintained by acid producing bacteria, most often dominated by Lactobacillus....... The low pH level is together with the host immunity responsible for protection of the vagina. A vast number of other bacterial species are represented in the vaginal commensal microbiota and among these both Staphylococcus and E. coli are often found. Skewing of the vaginal commensal flora...... with a following increase in pH level can lead to an overgrowth of certain microbiota resulting in bacterial vaginosis or vaginal candidiasis. Humans are continuously exposed to a large amount of environmental factors providing a possible influence on their microbial ecology. Antibiotic administration is one...

  20. Nucleotide-oligomerization-domain-2 affects commensal gut microbiota composition and intracerebral immunopathology in acute Toxoplasma gondii induced murine ileitis.

    Directory of Open Access Journals (Sweden)

    Markus M Heimesaat

    Full Text Available Within one week following peroral high dose infection with Toxoplasma (T. gondii, susceptible mice develop non-selflimiting acute ileitis due to an underlying Th1-type immunopathology. The role of the innate immune receptor nucleotide-oligomerization-domain-2 (NOD2 in mediating potential extra-intestinal inflammatory sequelae including the brain, however, has not been investigated so far.Following peroral infection with 100 cysts of T. gondii strain ME49, NOD2-/- mice displayed more severe ileitis and higher small intestinal parasitic loads as compared to wildtype (WT mice. However, systemic (i.e. splenic levels of pro-inflammatory cytokines such as TNF-α and IFN-γ were lower in NOD2-/- mice versus WT controls at day 7 p.i. Given that the immunopathological outcome might be influenced by the intestinal microbiota composition, which is shaped by NOD2, we performed a quantitative survey of main intestinal bacterial groups by 16S rRNA analysis. Interestingly, Bifidobacteria were virtually absent in NOD2-/- but not WT mice, whereas differences in remaining bacterial species were rather subtle. Interestingly, more distinct intestinal inflammation was accompanied by higher bacterial translocation rates to extra-intestinal tissue sites such as liver, spleen, and kidneys in T. gondii infected NOD2-/- mice. Strikingly, intracerebral inflammatory foci could be observed as early as seven days following T. gondii infection irrespective of the genotype of animals, whereas NOD2-/- mice exhibited higher intracerebral parasitic loads, higher F4/80 positive macrophage and microglia numbers as well as higher IFN-γ mRNA expression levels as compared to WT control animals.NOD2 signaling is involved in protection of mice from T. gondii induced acute ileitis. The parasite-induced Th1-type immunopathology at intestinal as well as extra-intestinal sites including the brain is modulated in a NOD2-dependent manner.

  1. Effect of diet on the human gut microbiota

    DEFF Research Database (Denmark)

    Bahl, Martin Iain

    The gut microbiota plays an important role for humans in both health and disease. It is therefore important to understand how and to what extent choice of diet may influence the microbial community and the effects this has on the host. The variation in the normal human gut microbiota may however...... impede the discovery of correlations between dietary changes and compositional shifts in the microbiota by masking such effects. Although specific functional food ingredients, such as prebiotics, are known to have measurable effects on e.g. abundance of bifidobacteria, it is nevertheless clear...... that induced shifts in gut microbiota show large inter-individual variations. It thus seems plausible that knowing the microbiota composition could facilitate predictions as to how the community will react to dietary interventions thus moving towards some degree of personalised dietary recommendations. During...

  2. Extensive inter-domain lateral gene transfer in the evolution of the human commensal Methanosphaera stadtmanae

    Directory of Open Access Journals (Sweden)

    Mor Nadia Lurie-Weinberger

    2012-09-01

    Full Text Available Methanosphaera stadtmanae is a commensal methanogenic archaeon found in the human gut. As most of its niche-neighbors are bacteria, it is expected that lateral gene transfer (LGT from bacteria might have contributed to the evolutionary history of this organism. We performed a phylogenomic survey of putative lateral gene transfer events in M. stadtmanae, using a phylogenetic pipeline. Our analysis indicates that a substantial fraction of the proteins of M. stadtmanae are inferred to have been involved in inter-domain LGT. Laterally acquired genes have had a large contribution to surface functions, by providing novel glycosyltransferase functions. In addition, several ABC transporters seem to be of bacterial origin, including the molybdate transporter. Thus, bacterial genes contributed to the adaptation of M. stadtmanae to a host dependent lifestyle by allowing a larger variation in surface structures and increasing transport efficiency in the gut niche which is diverse and competitive

  3. Human intestinal microbiota and type 1 diabetes.

    Science.gov (United States)

    Vaarala, Outi

    2013-10-01

    The role of intestinal microbiota in immune-mediated diseases, such as type 1 diabetes, has deservedly received a lot of attention. Evidently, changes in the intestinal microbiota are associated with type 1 diabetes as demonstrated by recent studies. Children with beta-cell autoimmunity have shown low abundance of butyrate-producing bacteria and increase in the abundance of members of the Bacteroidetes phylum in fecal microbiota. These alterations could explain increased gut permeability, subclinical small intestinal inflammation, and dysregulation of oral tolerance in type 1 diabetes. However, these studies do not provide evidence of the causative role of the gut microbiota in the development of beta-cell autoimmunity, yet. In animal models, the composition of gut microbiota modulates the function of both innate and adaptive immunity, and intestinal bacteria are regulators of autoimmune diabetes. Thus, prevention of type 1 diabetes could, in the future, be based on the interventions targeted to the gut microbiota.

  4. Complete Genome Sequence of Streptococcus salivarius HSISS4, a Human Commensal Bacterium Highly Prevalent in the Digestive Tract.

    Science.gov (United States)

    Mignolet, Johann; Fontaine, Laetitia; Kleerebezem, Michiel; Hols, Pascal

    2016-02-04

    The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular chromosome comprises 1,903 coding sequences and 2,100,988 nucleotides. Copyright © 2016 Mignolet et al.

  5. Complete genome sequence of Streptococcus salivarius HSISS4, a human commensal bacterium highly prevalent in the digestive tract

    NARCIS (Netherlands)

    Mignolet, Johann; Fontaine, Laetitia; Kleerebezem, Michiel; Hols, Pascal

    2016-01-01

    The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular

  6. Complete genome sequence of Streptococcus salivarius HSISS4, a human commensal bacterium highly prevalent in the digestive tract

    OpenAIRE

    Mignolet, Johann; Fontaine, Laetitia; Kleerebezem, Michiel; Hols, Pascal

    2016-01-01

    The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular chromosome comprises 1,903 coding sequences and 2,100,988 nucleotides.

  7. Complete Genome Sequence ofStreptococcus salivariusHSISS4, a Human Commensal Bacterium Highly Prevalent in the Digestive Tract

    OpenAIRE

    Mignolet, Johann; Fontaine, Laetitia; Kleerebezem, Michiel; Hols, Pascal

    2016-01-01

    The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular chromosome comprises 1,903 coding sequences and 2,100,988 nucleotides.

  8. Systematic Review of the Human Milk Microbiota.

    Science.gov (United States)

    Fitzstevens, John L; Smith, Kelsey C; Hagadorn, James I; Caimano, Melissa J; Matson, Adam P; Brownell, Elizabeth A

    2017-06-01

    Human milk-associated microbes are among the first to colonize the infant gut and may help to shape both short- and long-term infant health outcomes. We performed a systematic review to characterize the microbiota of human milk. Relevant primary studies were identified through a comprehensive search of PubMed (January 1, 1964, to June 31, 2015). Included studies were conducted among healthy mothers, were written in English, identified bacteria in human milk, used culture-independent methods, and reported primary results at the genus level. Twelve studies satisfied inclusion criteria. All varied in geographic location and human milk collection/storage/analytic methods. Streptococcus was identified in human milk samples in 11 studies (91.6%) and Staphylococcus in 10 (83.3%); both were predominant genera in 6 (50%). Eight of the 12 studies used conventional ribosomal RNA (rRNA) polymerase chain reaction (PCR), of which 7 (87.5%) identified Streptococcus and 6 (80%) identified Staphylococcus as present. Of these 8 studies, 2 (25%) identified Streptococcus and Staphylococcus as predominant genera. Four of the 12 studies used next-generation sequencing (NGS), all of which identified Streptococcus and Staphylococcus as present and predominant genera. Relative to conventional rRNA PCR, NGS is a more sensitive method to identify/quantify bacterial genera in human milk, suggesting the predominance of Streptococcus and Staphylococcus may be underestimated in studies using older methods. These genera, Streptococcus and Staphylococcus, may be universally predominant in human milk, regardless of differences in geographic location or analytic methods. Primary studies designed to evaluate the effect of these 2 genera on short- and long-term infant outcomes are warranted.

  9. Linking Microbiota to Human Diseases: A Systems Biology Perspective.

    Science.gov (United States)

    Wu, Hao; Tremaroli, Valentina; Bäckhed, Fredrik

    2015-12-01

    The human gut microbiota encompasses a densely populated ecosystem that provides essential functions for host development, immune maturation, and metabolism. Alterations to the gut microbiota have been observed in numerous diseases, including human metabolic diseases such as obesity, type 2 diabetes (T2D), and irritable bowel syndrome, and some animal experiments have suggested causality. However, few studies have validated causality in humans and the underlying mechanisms remain largely to be elucidated. We discuss how systems biology approaches combined with new experimental technologies may disentangle some of the mechanistic details in the complex interactions of diet, microbiota, and host metabolism and may provide testable hypotheses for advancing our current understanding of human-microbiota interaction.

  10. Measuring the diversity of the human microbiota with targeted next-generation sequencing.

    Science.gov (United States)

    Finotello, Francesca; Mastrorilli, Eleonora; Di Camillo, Barbara

    2016-12-26

    The human microbiota is a complex ecological community of commensal, symbiotic and pathogenic microorganisms harboured by the human body. Next-generation sequencing (NGS) technologies, in particular targeted amplicon sequencing of the 16S ribosomal RNA gene (16S-seq), are enabling the identification and quantification of human-resident microorganisms at unprecedented resolution, providing novel insights into the role of the microbiota in health and disease. Once microbial abundances are quantified through NGS data analysis, diversity indices provide valuable mathematical tools to describe the ecological complexity of a single sample or to detect species differences between samples. However, diversity is not a determined physical quantity for which a consensus definition and unit of measure have been established, and several diversity indices are currently available. Furthermore, they were originally developed for macroecology and their robustness to the possible bias introduced by sequencing has not been characterized so far. To assist the reader with the selection and interpretation of diversity measures, we review a panel of broadly used indices, describing their mathematical formulations, purposes and properties, and characterize their behaviour and criticalities in dependence of the data features using simulated data as ground truth. In addition, we make available an R package, DiversitySeq, which implements in a unified framework the full panel of diversity indices and a simulator of 16S-seq data, and thus represents a valuable resource for the analysis of diversity from NGS count data and for the benchmarking of computational methods for 16S-seq.

  11. Development of the human infant intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Chana Palmer

    2007-07-01

    Full Text Available Almost immediately after a human being is born, so too is a new microbial ecosystem, one that resides in that person's gastrointestinal tract. Although it is a universal and integral part of human biology, the temporal progression of this process, the sources of the microbes that make up the ecosystem, how and why it varies from one infant to another, and how the composition of this ecosystem influences human physiology, development, and disease are still poorly understood. As a step toward systematically investigating these questions, we designed a microarray to detect and quantitate the small subunit ribosomal RNA (SSU rRNA gene sequences of most currently recognized species and taxonomic groups of bacteria. We used this microarray, along with sequencing of cloned libraries of PCR-amplified SSU rDNA, to profile the microbial communities in an average of 26 stool samples each from 14 healthy, full-term human infants, including a pair of dizygotic twins, beginning with the first stool after birth and continuing at defined intervals throughout the first year of life. To investigate possible origins of the infant microbiota, we also profiled vaginal and milk samples from most of the mothers, and stool samples from all of the mothers, most of the fathers, and two siblings. The composition and temporal patterns of the microbial communities varied widely from baby to baby. Despite considerable temporal variation, the distinct features of each baby's microbial community were recognizable for intervals of weeks to months. The strikingly parallel temporal patterns of the twins suggested that incidental environmental exposures play a major role in determining the distinctive characteristics of the microbial community in each baby. By the end of the first year of life, the idiosyncratic microbial ecosystems in each baby, although still distinct, had converged toward a profile characteristic of the adult gastrointestinal tract.

  12. Diet-microbiota interactions as moderators of human metabolism.

    Science.gov (United States)

    Sonnenburg, Justin L; Bäckhed, Fredrik

    2016-07-06

    It is widely accepted that obesity and associated metabolic diseases, including type 2 diabetes, are intimately linked to diet. However, the gut microbiota has also become a focus for research at the intersection of diet and metabolic health. Mechanisms that link the gut microbiota with obesity are coming to light through a powerful combination of translation-focused animal models and studies in humans. A body of knowledge is accumulating that points to the gut microbiota as a mediator of dietary impact on the host metabolic status. Efforts are focusing on the establishment of causal relationships in people and the prospect of therapeutic interventions such as personalized nutrition.

  13. Modulation of pathogen-induced CCL20 secretion from HT-29 human intestinal epithelial cells by commensal bacteria.

    LENUS (Irish Health Repository)

    Sibartie, Shomik

    2009-01-01

    BACKGROUND: Human intestinal epithelial cells (IECs) secrete the chemokine CCL20 in response to infection by various enteropathogenic bacteria or exposure to bacterial flagellin. CCL20 recruits immature dendritic cells and lymphocytes to target sites. Here we investigated IEC responses to various pathogenic and commensal bacteria as well as the modulatory effects of commensal bacteria on pathogen-induced CCL20 secretion. HT-29 human IECs were incubated with commensal bacteria (Bifidobacterium infantis or Lactobacillus salivarius), or with Salmonella typhimurium, its flagellin, Clostridium difficile, Mycobacterium paratuberculosis, or Mycobacterium smegmatis for varying times. In some studies, HT-29 cells were pre-treated with a commensal strain for 2 hr prior to infection or flagellin stimulation. CCL20 and interleukin (IL)-8 secretion and nuclear factor (NF)-kappaB activation were measured using enzyme-linked immunosorbent assays. RESULTS: Compared to untreated cells, S. typhimurium, C. difficile, M. paratuberculosis, and flagellin activated NF-kappaB and stimulated significant secretion of CCL20 and IL-8 by HT-29 cells. Conversely, B. infantis, L. salivarius or M. smegmatis did not activate NF-kappaB or augment CCL20 or IL-8 production. Treatment with B. infantis, but not L. salivarius, dose-dependently inhibited the baseline secretion of CCL20. In cells pre-treated with B. infantis, C. difficile-, S. typhimurium-, and flagellin-induced CCL20 were significantly attenuated. B. infantis did not limit M. Paratuberculosis-induced CCL20 secretion. CONCLUSION: This study is the first to demonstrate that a commensal strain can attenuate CCL20 secretion in HT-29 IECs. Collectively, the data indicate that M. paratuberculosis may mediate mucosal damage and that B. infantis can exert immunomodulatory effects on IECs that mediate host responses to flagellin and flagellated enteric pathogens.

  14. How informative is the mouse for human gut microbiota research?

    Science.gov (United States)

    Nguyen, Thi Loan Anh; Vieira-Silva, Sara; Liston, Adrian; Raes, Jeroen

    2015-01-01

    The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research.

  15. How informative is the mouse for human gut microbiota research?

    Directory of Open Access Journals (Sweden)

    Thi Loan Anh Nguyen

    2015-01-01

    Full Text Available The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes, cancer and even neurodevelopmental disorders (e.g. autism. Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research.

  16. Human microbiota-associated swine: current progress and future opportunities.

    Science.gov (United States)

    Wang, Mei; Donovan, Sharon M

    2015-01-01

    Gnotobiotic (GN) rodent models have provided insight into the contributions of the gut microbiota to host health and preventing disease. However, rodent models are limited by several important physiological and metabolic differences from humans, and many rodent models do not dependably replicate the clinical manifestations of human diseases. Due to the high degree of similarity in anatomy, physiology, immunology and brain growth, the domestic pig (Sus scrofa) is considered a clinically relevant model to study factors influencing human gastrointestinal, immune, and brain development. Gnotobiotic piglet models have been developed and shown to recapitulate key aspects of GN rodent models. Human microbiota-associated (HMA) piglets have been established using inocula from infants, children, and adults. The gut microbiota of recipient HMA piglets was more similar to that of the human donor than that of conventionally reared piglets harboring a pig microbiota. Moreover, Bifidobacterium and Bacteroides, two predominant bacterial groups of infant gut, were successfully established in the HMA piglets. Thus, the HMA pig model has the potential to be a valuable model for investigating how the gut microbiota composition changes in response to environmental factors, such as age, diet, vaccination, antibiotic use and infection. The HMA also represents a robust model for screening the efficacy of pre- and probiotic interventions. Lastly, HMA piglets can be an ideal model with which to elucidate microbe-host interactions in human health and disease due to the similarities to humans in anatomy, physiology, developmental maturity at birth, and the pathophysiology of many human diseases.

  17. From lifetime to evolution: timescales of human gut microbiota adaptation

    Directory of Open Access Journals (Sweden)

    Sara eQuercia

    2014-11-01

    Full Text Available Human beings harbor gut microbial communities that are essential to preserve human health. Molded by the human genome, the gut microbiota is an adaptive component of the human superorganisms that allows host adaptation at different timescales, optimizing host physiology from daily life to lifespan scales and human evolutionary history. The gut microbiota continuously changes from birth up to the most extreme limits of human life, reconfiguring its metagenomic layout in response to daily variations in diet or specific host physiological and immunological needs at different ages. On the other hand, the microbiota plasticity was strategic to face changes in lifestyle and dietary habits along the course of the recent evolutionary history, that has driven the passage from Paleolithic hunter-gathering societies to Neolithic agricultural farmers to modern Westernized societies.

  18. Regulation of the gut microbiota by the mucosal immune system in mice.

    Science.gov (United States)

    Hasegawa, Mizuho; Inohara, Naohiro

    2014-09-01

    The benefits of commensal bacteria to the health of the host have been well documented, such as providing stimulation to potentiate host immune responses, generation of useful metabolites, and direct competition with pathogens. However, the ability of the host immune system to control the microbiota remains less well understood. Recent microbiota analyses in mouse models have revealed detailed structures and diversities of microbiota at different sites of the digestive tract in mouse populations. The contradictory findings of previous studies on the role of host immune responses in overall microbiota composition are likely attributable to the high β-diversity in mouse populations as well as technical limitations of the methods to analyze microbiota. The host employs multiple systems to strictly regulate their interactions with the microbiota. A spatial segregation between the host and microbiota is achieved with the mucosal epithelium, which is further fortified with a mucus layer on the luminal side and Paneth cells that produce antimicrobial peptides. When commensal bacteria or pathogens breach the epithelial barrier and translocate to peripheral tissues, the host immune system is activated to eliminate them. Defective segregation and tissue elimination of commensals result in exaggerated inflammatory responses and possibly death of the host. In this review, we discuss the current understanding of mouse microbiota, its common features with human microbiota, the technologies utilized to analyze microbiota, and finally the challenges faced to delineate the role of host immune responses in the composition of the luminal microbiota.

  19. Intestinal microbiota modulates gluten-induced immunopathology in humanized mice.

    Science.gov (United States)

    Galipeau, Heather J; McCarville, Justin L; Huebener, Sina; Litwin, Owen; Meisel, Marlies; Jabri, Bana; Sanz, Yolanda; Murray, Joseph A; Jordana, Manel; Alaedini, Armin; Chirdo, Fernando G; Verdu, Elena F

    2015-11-01

    Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. The recent increase in CD incidence suggests that additional environmental factors, such as intestinal microbiota alterations, are involved in its pathogenesis. However, there is no direct evidence of modulation of gluten-induced immunopathology by the microbiota. We investigated whether specific microbiota compositions influence immune responses to gluten in mice expressing the human DQ8 gene, which confers moderate CD genetic susceptibility. Germ-free mice, clean specific-pathogen-free (SPF) mice colonized with a microbiota devoid of opportunistic pathogens and Proteobacteria, and conventional SPF mice that harbor a complex microbiota that includes opportunistic pathogens were used. Clean SPF mice had attenuated responses to gluten compared to germ-free and conventional SPF mice. Germ-free mice developed increased intraepithelial lymphocytes, markers of intraepithelial lymphocyte cytotoxicity, gliadin-specific antibodies, and a proinflammatory gliadin-specific T-cell response. Antibiotic treatment, leading to Proteobacteria expansion, further enhanced gluten-induced immunopathology in conventional SPF mice. Protection against gluten-induced immunopathology in clean SPF mice was reversed after supplementation with a member of the Proteobacteria phylum, an enteroadherent Escherichia coli isolated from a CD patient. The intestinal microbiota can both positively and negatively modulate gluten-induced immunopathology in mice. In subjects with moderate genetic susceptibility, intestinal microbiota changes may be a factor that increases CD risk.

  20. Microbiota-Mediated Inflammation and Antimicrobial Defense in the Intestine

    Science.gov (United States)

    Caballero, Silvia; Pamer, Eric G.

    2015-01-01

    The diverse microbial populations constituting the intestinal microbiota promote immune development and differentiation, but because of their complex metabolic requirements and the consequent difficulty culturing them, they remained, until recently, largely uncharacterized and mysterious. In the last decade, deep nucleic acid sequencing platforms, new computational and bioinformatics tools, and full-genome characterization of several hundred commensal bacterial species facilitated studies of the microbiota and revealed that differences in microbiota composition can be associated with inflammatory, metabolic, and infectious diseases, that each human is colonized by a distinct bacterial flora, and that the microbiota can be manipulated to reduce and even cure some diseases. Different bacterial species induce distinct immune cell populations that can play pro- and anti-inflammatory roles, and thus the composition of the microbiota determines, in part, the level of resistance to infection and susceptibility to inflammatory diseases. This review summarizes recent work characterizing commensal microbes that contribute to the antimicrobial defense/inflammation axis. PMID:25581310

  1. Probiotics and commensals reverse TNF-alpha- and IFN-gamma-induced dysfunction in human intestinal epithelial cells.

    Science.gov (United States)

    Resta-Lenert, Silvia; Barrett, Kim E

    2006-03-01

    Commensal bacteria are crucial for the development of the mucosal immune system. Probiotics are commensals with special characteristics and may protect mucosal surfaces against pathogens. Pathogens cause significant phenotypic alterations in infected epithelial cells, and probiotics reverse these deleterious responses. We hypothesized that probiotics and/or commensals may also reverse epithelial damage produced by cytokines. Human intestinal epithelial cells were exposed basolaterally to interferon (IFN)-gamma (10(3) U/mL) or tumor necrosis factor (TNF)-alpha (10 ng/mL) for up to 48 hours and assessed for ion transport, transepithelial resistance (TER), and epithelial permeability in the presence or absence of probiotics (Streptococcus thermophilus [ST] and Lactobacillus acidophilus [LA]), or the commensal, Bacteroides thetaiotaomicron (BT). Agonist-stimulated chloride secretion was inhibited by IFN-gamma, an effect prevented by ST/LA or BT. The ability of ST/LA or BT to restore Cl(-) secretion was blocked by inhibitors of p38 MAPK, ERK1, 2, and PI3K. The cystic fibrosis transmembrane conductance regulator (CFTR) and the NKCC1 cotransporter were down-regulated by IFN-gamma, and ST/LA pretreatment reversed this effect. Both TNF-alpha and IFN-gamma significantly reduced TER and increased epithelial permeability, effects prevented by ST/LA or BT. A Janus kinase (JAK) inhibitor synergistically potentiated effects of ST/LA or BT on TER and permeability, but p38, ERK1, 2, or PI3K inhibition did not. Finally, only probiotic-treated epithelial cells exposed to cytokines showed reduced activation of SOCS3 and STAT1,3. Deleterious effects of TNF-alpha and IFN-gamma on epithelial function are prevented by probiotic, and to a lesser extent, commensal pretreatment. These data extend the spectrum of effects of such bacteria on intestinal epithelial function and may justify their use in inflammatory disorders.

  2. Role of Intestinal Microbiota in Ulcerative Colitis – Effects of Novel Carbohydrate Preparations

    DEFF Research Database (Denmark)

    Vigsnæs, Louise Kristine

    2011-01-01

    The microbiota of the human intestinal tract is complex with variable populations of bacteria who are either permanent gut residents (commensal bacteria) or transient inhabitants introduced from the environment. The commensal bacteria are believed to be important for human health due to actions......, which could affect colonic health. In the experimental part of this thesis, the fecal microbiota derived from UC patients in either remission or with active disease and healthy subjects was quantified using quantitative Real‐Time PCR (qPCR) to examine the microbiota composition. The results demonstrated...... that the microbiota composition was different in UC patients in relapse compared to healthy subjects and the difference could be ascribed Gramnegative bacteria, hence indicating that an altered microbiota composition is associated with colonic inflammation. Additionally, results revealed that the microbiota...

  3. Phylogeny, culturing, and metagenomics of the human gut microbiota.

    Science.gov (United States)

    Walker, Alan W; Duncan, Sylvia H; Louis, Petra; Flint, Harry J

    2014-05-01

    The human intestinal tract is colonised by a complex community of microbes, which can have major impacts on host health. Recent research on the gut microbiota has largely been driven by the advent of modern sequence-based techniques, such as metagenomics. Although these are powerful and valuable tools, they have limitations. Traditional culturing and phylogeny can mitigate some of these limitations, either by expanding reference databases or by assigning functionality to specific microbial lineages. As such, culture and phylogeny will continue to have crucially important roles in human microbiota research, and will be required for the development of novel therapeutics.

  4. Commensal Microbiome Promotes Resistance to Local and Systemic Infections

    Institute of Scientific and Technical Information of China (English)

    Nan Zhang; Qiu-Shui He

    2015-01-01

    Objective:In this review,to illustrate the resistance mechanism for pathogen insult,we discussed the role of the intestinal microbiome in promoting resistance to local gastrointestinal tract infections and to respiratory tract infections.Data Sources:The review was based on data obtained from the published research articles.Study Selection:A total of 49 original articles were selected in accordance with our main objective to illustrate the resistance mechanism(s) by which commensal microbiota can contribute to host defense against local and systemic infections.Results:Diverse microorganisms colonize human environmentally exposed surfaces such as skin,respiratory tract,and gastrointestinal tract.Co-evolution has resulted in these microbes with extensive and diverse impacts on multiple aspects of host biological functions.During the last decade,high-throughput sequencing technology developed has been applied to study commensal microbiota and their impact on host biological functions.By using pathogen recognition receptors pathway and nucleotide binding oligomerization domain-like receptors pathway,the commensal microbiome promotes resistance to local and systemic infections,respectively.To protect against the local infections,the microbiome functions contain the following:the competing for sites of colonization,direct production of inhibition molecules or depletion of nutrients needed for pathogens,and priming immune defenses against pathogen insult.At the same time,with the purpose to maintain homeostasis,the commensal bacteria can program systemic signals toward not only local tissue but also distal tissue to modify their function for infections accordingly.Conclusions:Commensal bacteria play an essential role in protecting against infections,shaping and regulating immune responses,and maintaining host immune homeostasis.

  5. Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Muya Shu

    Full Text Available Bacterial interference creates an ecological competition between commensal and pathogenic bacteria. Through fermentation of milk with gut-friendly bacteria, yogurt is an excellent aid to balance the bacteriological ecosystem in the human intestine. Here, we demonstrate that fermentation of glycerol with Propionibacterium acnes (P. acnes, a skin commensal bacterium, can function as a skin probiotic for in vitro and in vivo growth suppression of USA300, the most prevalent community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA. We also promote the notion that inappropriate use of antibiotics may eliminate the skin commensals, making it more difficult to fight pathogen infection. This study warrants further investigation to better understand the role of fermentation of skin commensals in infectious disease and the importance of the human skin microbiome in skin health.

  6. The gut microbiota in human energy homeostasis and obesity.

    Science.gov (United States)

    Rosenbaum, Michael; Knight, Rob; Leibel, Rudolph L

    2015-09-01

    Numerous studies of rodents suggest that the gut microbiota populations are sensitive to genetic and environmental influences, and can produce or influence afferent signals that directly or indirectly impinge on energy homeostatic systems affecting both energy balance (weight gain or loss) and energy stores. Fecal transplants from obese and lean human, and from mouse donors to gnotobiotic mice, result in adoption of the donor somatotype by the formerly germ-free rodents. Thus, the microbiota is certainly implicated in the development of obesity, adiposity-related comorbidities, and the response to interventions designed to achieve sustained weight reduction in mice. More studies are needed to determine whether the microbiota plays a similarly potent role in human body-weight regulation and obesity.

  7. Microbiome/microbiota and allergies.

    Science.gov (United States)

    Inoue, Yuzaburo; Shimojo, Naoki

    2015-01-01

    Allergies are characterized by a hypersensitive immune reaction to originally harmless antigens. In recent decades, the incidence of allergic diseases has markedly increased, especially in developed countries. The increase in the frequency of allergic diseases is thought to be primarily due to environmental changes related to a westernized lifestyle, which affects the commensal microbes in the human body. The human gut is the largest organ colonized by bacteria and contains more than 1000 bacterial species, called the "gut microbiota." The recent development of sequencing technology has enabled researchers to genetically investigate and clarify the diversity of all species of commensal microbes. The collective genomes of commensal microbes are together called the "microbiome." Although the detailed mechanisms remain unclear, it has been proposed that the microbiota/microbiome, especially that in the gut, impacts the systemic immunity and metabolism, thus affecting the development of various immunological diseases, including allergies. In this review, we summarize the recent findings regarding the importance of the microbiome/microbiota in the development of allergic diseases and also the results of interventional studies using probiotics or prebiotics to prevent allergies.

  8. From lifetime to evolution: timescales of human gut microbiota adaptation

    Science.gov (United States)

    Quercia, Sara; Candela, Marco; Giuliani, Cristina; Turroni, Silvia; Luiselli, Donata; Rampelli, Simone; Brigidi, Patrizia; Franceschi, Claudio; Bacalini, Maria Giulia; Garagnani, Paolo; Pirazzini, Chiara

    2014-01-01

    Human beings harbor gut microbial communities that are essential to preserve human health. Molded by the human genome, the gut microbiota (GM) is an adaptive component of the human superorganisms that allows host adaptation at different timescales, optimizing host physiology from daily life to lifespan scales and human evolutionary history. The GM continuously changes from birth up to the most extreme limits of human life, reconfiguring its metagenomic layout in response to daily variations in diet or specific host physiological and immunological needs at different ages. On the other hand, the microbiota plasticity was strategic to face changes in lifestyle and dietary habits along the course of the recent evolutionary history, that has driven the passage from Paleolithic hunter-gathering societies to Neolithic agricultural farmers to modern Westernized societies. PMID:25408692

  9. From lifetime to evolution: timescales of human gut microbiota adaptation.

    Science.gov (United States)

    Quercia, Sara; Candela, Marco; Giuliani, Cristina; Turroni, Silvia; Luiselli, Donata; Rampelli, Simone; Brigidi, Patrizia; Franceschi, Claudio; Bacalini, Maria Giulia; Garagnani, Paolo; Pirazzini, Chiara

    2014-01-01

    Human beings harbor gut microbial communities that are essential to preserve human health. Molded by the human genome, the gut microbiota (GM) is an adaptive component of the human superorganisms that allows host adaptation at different timescales, optimizing host physiology from daily life to lifespan scales and human evolutionary history. The GM continuously changes from birth up to the most extreme limits of human life, reconfiguring its metagenomic layout in response to daily variations in diet or specific host physiological and immunological needs at different ages. On the other hand, the microbiota plasticity was strategic to face changes in lifestyle and dietary habits along the course of the recent evolutionary history, that has driven the passage from Paleolithic hunter-gathering societies to Neolithic agricultural farmers to modern Westernized societies.

  10. Diet-microbiota interactions as moderators of human metabolism

    DEFF Research Database (Denmark)

    Sonnenburg, Justin L; Bäckhed, Gert Fredrik

    2016-01-01

    are coming to light through a powerful combination of translation-focused animal models and studies in humans. A body of knowledge is accumulating that points to the gut microbiota as a mediator of dietary impact on the host metabolic status. Efforts are focusing on the establishment of causal relationships...

  11. Conceptualizing Human Microbiota: From Multicelled Organ to Ecological Community

    Directory of Open Access Journals (Sweden)

    Betsy Foxman

    2008-01-01

    Full Text Available The microbiota of a typical, healthy human contains 10 times as many cells as the human body and incorporates bacteria, viruses, archea, protozoans, and fungi. This diverse microbiome (the collective genomes of the microbial symbionts that inhabit a human host is essential for human functioning. We discuss the unstated assumptions and implications of current conceptualizations of human microbiota: (1 a single unit that interacts with the host and the external environment; a multicelled organ; (2 an assemblage of multiple taxa, but considered as a single unit in its interactions with the host; (3 an assemblage of multiple taxa, which each interacts with the host and the environment independently; and (4 a dynamic ecological community consisting of multiple taxa each potentially interacting with each other, the host, and the environment. Each conceptualization leads to different predictions, methodologies, and research strategies.

  12. [Recognition of commensal microflora by pattern recognition receptors in human physiology and pathology].

    Science.gov (United States)

    Bondarenko, V M; Likhoded, V G

    2012-01-01

    Contemporary data on the interaction of commensal microflora and Toll-like pattern recognition receptors are presented. These receptors recognize normal intestine microflora in physiological conditions, and this interaction is necessary for the maintenance of homeostasis and damage reparation of the intestine, for the induction of heat shock cytoprotective proteins. As a side effect in disruption of immunologic tolerance and misbalance of protective immunological mechanisms, multiorgan pathologic changes of organs and tissues may develop, including chronic inflammation processes of various localization.

  13. Haemophilus haemolyticus: A Human Respiratory Tract Commensal to Be Distinguished from Haemophilus influenzae

    DEFF Research Database (Denmark)

    Murphy, T.F.; Brauer, A.L.; Sethi, S.

    2007-01-01

    Background. Haemophilus influenzae is a common pathogen in adults with chronic obstructive pulmonary disease (COPD). In a prospective study, selected isolates of apparent H. influenzae had an altered phenotype. We tested the hypothesis that these variant strains were genetically different from ty...... distinguish H. haemolyticus from H. influenzae. H. haemolyticus is a respiratory tract commensal. The recognition that some strains of apparent H. influenzae are H. haemolyticus substantially strengthens the association of true H. influenzae with clinical infection....

  14. Challenges of metabolomics in human gut microbiota research.

    Science.gov (United States)

    Smirnov, Kirill S; Maier, Tanja V; Walker, Alesia; Heinzmann, Silke S; Forcisi, Sara; Martinez, Inés; Walter, Jens; Schmitt-Kopplin, Philippe

    2016-08-01

    The review highlights the role of metabolomics in studying human gut microbial metabolism. Microbial communities in our gut exert a multitude of functions with huge impact on human health and disease. Within the meta-omics discipline, gut microbiome is studied by (meta)genomics, (meta)transcriptomics, (meta)proteomics and metabolomics. The goal of metabolomics research applied to fecal samples is to perform their metabolic profiling, to quantify compounds and classes of interest, to characterize small molecules produced by gut microbes. Nuclear magnetic resonance spectroscopy and mass spectrometry are main technologies that are applied in fecal metabolomics. Metabolomics studies have been increasingly used in gut microbiota related research regarding health and disease with main focus on understanding inflammatory bowel diseases. The elucidated metabolites in this field are summarized in this review. We also addressed the main challenges of metabolomics in current and future gut microbiota research. The first challenge reflects the need of adequate analytical tools and pipelines, including sample handling, selection of appropriate equipment, and statistical evaluation to enable meaningful biological interpretation. The second challenge is related to the choice of the right animal model for studies on gut microbiota. We exemplified this using NMR spectroscopy for the investigation of cross-species comparison of fecal metabolite profiles. Finally, we present the problem of variability of human gut microbiota and metabolome that has important consequences on the concepts of personalized nutrition and medicine.

  15. Human Microbiota of the Argentine Population- A Pilot Study

    Science.gov (United States)

    Carbonetto, Belén; Fabbro, Mónica C.; Sciara, Mariela; Seravalle, Analía; Méjico, Guadalupe; Revale, Santiago; Romero, María S.; Brun, Bianca; Fay, Marcelo; Fay, Fabián; Vazquez, Martin P.

    2016-01-01

    The human microbiota is the collection of microorganisms living in or on the human body. An imbalance or dysbiosis in these microbial communities can be associated with a wide variety of human diseases (Petersen and Round, 2014; Pham and Lawley, 2014; Zaura et al., 2014). Moreover, when the microbiota of the same body sites is compared between different healthy individuals, specific microbial community features are apparent (Li et al., 2012; Yatsunenko et al., 2012; Oh et al., 2014; Relman, 2015). In addition, specific selective pressures are found at distinct body sites leading to different patterns in microbial community structure and composition (Costello et al., 2009; Consortium, 2012b; Zhou et al., 2013). Because of these natural variations, a comprehensive characterization of the healthy microbiota is critical for predicting alterations related to diseases. This characterization should be based on a broad healthy population over time, geography, and culture (Yatsunenko et al., 2012; Shetty et al., 2013; Leung et al., 2015; Ross et al., 2015). The study of healthy individuals representing different ages, cultural traditions, and ethnic origins will enable to understand how the associated microbiota varies between populations and respond to different lifestyles. It is important to address these natural variations in order to later detect variations related to disease. PMID:26870014

  16. Adaptation of Candida albicans to commensalism in the gut.

    Science.gov (United States)

    Prieto, Daniel; Correia, Inês; Pla, Jesús; Román, Elvira

    2016-01-01

    Candida albicans is a common resident of the oral cavity, GI tract and vagina in healthy humans where it establishes a commensal relationship with the host. Colonization of the gut, which is an important niche for the microbe, may lead to systemic dissemination and disease upon alteration of host defences. Understanding the mechanisms responsible for the adaptation of C. albicans to the gut is therefore important for the design of new ways of combating fungal diseases. In this review we discuss the available models to study commensalism of this yeast, the main mechanisms controlling the establishment of the fungus, such as microbiota, mucus layer and antimicrobial peptides, and the gene regulatory circuits that ensure its survival in this niche.

  17. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation

    Science.gov (United States)

    Tailford, Louise E.; Owen, C. David; Walshaw, John; Crost, Emmanuelle H.; Hardy-Goddard, Jemma; Le Gall, Gwenaelle; de Vos, Willem M.; Taylor, Garry L.; Juge, Nathalie

    2015-07-01

    The gastrointestinal mucus layer is colonized by a dense community of microbes catabolizing dietary and host carbohydrates during their expansion in the gut. Alterations in mucosal carbohydrate availability impact on the composition of microbial species. Ruminococcus gnavus is a commensal anaerobe present in the gastrointestinal tract of >90% of humans and overrepresented in inflammatory bowel diseases (IBD). Using a combination of genomics, enzymology and crystallography, we show that the mucin-degrader R. gnavus ATCC 29149 strain produces an intramolecular trans-sialidase (IT-sialidase) that cleaves off terminal α2-3-linked sialic acid from glycoproteins, releasing 2,7-anhydro-Neu5Ac instead of sialic acid. Evidence of IT-sialidases in human metagenomes indicates that this enzyme occurs in healthy subjects but is more prevalent in IBD metagenomes. Our results uncover a previously unrecognized enzymatic activity in the gut microbiota, which may contribute to the adaptation of intestinal bacteria to the mucosal environment in health and disease.

  18. Impact of the gut microbiota on rodent models of human disease.

    Science.gov (United States)

    Hansen, Axel Kornerup; Hansen, Camilla Hartmann Friis; Krych, Lukasz; Nielsen, Dennis Sandris

    2014-12-21

    Traditionally bacteria have been considered as either pathogens, commensals or symbionts. The mammal gut harbors 10(14) organisms dispersed on approximately 1000 different species. Today, diagnostics, in contrast to previous cultivation techniques, allow the identification of close to 100% of bacterial species. This has revealed that a range of animal models within different research areas, such as diabetes, obesity, cancer, allergy, behavior and colitis, are affected by their gut microbiota. Correlation studies may for some diseases show correlation between gut microbiota composition and disease parameters higher than 70%. Some disease phenotypes may be transferred when recolonizing germ free mice. The mechanistic aspects are not clear, but some examples on how gut bacteria stimulate receptors, metabolism, and immune responses are discussed. A more deeper understanding of the impact of microbiota has its origin in the overall composition of the microbiota and in some newly recognized species, such as Akkermansia muciniphila, Segmented filamentous bacteria and Faecalibacterium prausnitzii, which seem to have an impact on more or less severe disease in specific models. Thus, the impact of the microbiota on animal models is of a magnitude that cannot be ignored in future research. Therefore, either models with specific microbiota must be developed, or the microbiota must be characterized in individual studies and incorporated into data evaluation.

  19. Potential applications of gut microbiota to control human physiology.

    Science.gov (United States)

    Umu, Ozgün Candan Onarman; Oostindjer, Marije; Pope, Phillip B; Svihus, Birger; Egelandsdal, Bjørg; Nes, Ingolf F; Diep, Dzung B

    2013-11-01

    The microorganisms living in our gut have been a black box to us for a long time. However, with the recent advances in high throughput DNA sequencing technologies, it is now possible to assess virtually all microorganisms in our gut including non-culturable ones. With the use of powerful bioinformatics tools to deal with multivariate analyses of huge amounts of data from metagenomics, metatranscriptomics, metabolomics, we now start to gain some important insights into these tiny gut inhabitants. Our knowledge is increasing about who they are, to some extent, what they do and how they affect our health. Gut microbiota have a broad spectrum of possible effects on health, from preventing serious diseases, improving immune system and gut health to stimulating the brain centers responsible for appetite and food intake control. Further, we may be on the verge of being capable of manipulating the gut microbiota by diet control to possibly improve our health. Diets consisting of different components that are fermentable by microbiota are substrates for different kinds of microbes in the gut. Thus, diet control can be used to favor the growth of some selected gut inhabitants. Nowadays, the gut microbiota is taken into account as a separate organ in human body and their activities and metabolites in gut have many physiological and neurological effects. In this mini-review, we discuss the diversity of gut microbiota, the technologies used to assess them, factors that affect microbial composition and metabolites that affect human physiology, and their potential applications in satiety control via the gut-brain axis.

  20. Participation of microbiota in the development of gastric cancer.

    Science.gov (United States)

    Wang, Li-Li; Yu, Xin-Juan; Zhan, Shu-Hui; Jia, Sheng-Jiao; Tian, Zi-Bin; Dong, Quan-Jiang

    2014-05-07

    There are a large number of bacteria inhabiting the human body, which provide benefits for the health. Alterations of microbiota participate in the pathogenesis of diseases. The gastric microbiota consists of bacteria from seven to eleven phyla, predominantly Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria and Fusobacteria. Intrusion by Helicobacter pylori (H. pylori) does not remarkably interrupt the composition and structure of the gastric microbiota. Absence of bacterial commensal from the stomach delays the onset of H. pylori-induced gastric cancer, while presence of artificial microbiota accelerates the carcinogenesis. Altered gastric microbiota may increase the production of N-nitroso compounds, promoting the development of gastric cancer. Further investigation of the carcinogenic mechanisms of microbiota would benefit for the prevention and management of gastric cancer.

  1. Incorporating the gut microbiota into models of human and non-human primate ecology and evolution.

    Science.gov (United States)

    Amato, Katherine R

    2016-01-01

    The mammalian gut is home to a diverse community of microbes. Advances in technology over the past two decades have allowed us to examine this community, the gut microbiota, in more detail, revealing a wide range of influences on host nutrition, health, and behavior. These host-gut microbe interactions appear to shape host plasticity and fitness in a variety of contexts, and therefore represent a key factor missing from existing models of human and non-human primate ecology and evolution. However, current studies of the gut microbiota tend to include limited contextual data or are clinical, making it difficult to directly test broad anthropological hypotheses. Here, I review what is known about the animal gut microbiota and provide examples of how gut microbiota research can be integrated into the study of human and non-human primate ecology and evolution with targeted data collection. Specifically, I examine how the gut microbiota may impact primate diet, energetics, disease resistance, and cognition. While gut microbiota research is proliferating rapidly, especially in the context of humans, there remain important gaps in our understanding of host-gut microbe interactions that will require an anthropological perspective to fill. Likewise, gut microbiota research will be an important tool for filling remaining gaps in anthropological research.

  2. Exploring host-microbiota interactions in animal models and humans.

    Science.gov (United States)

    Kostic, Aleksandar D; Howitt, Michael R; Garrett, Wendy S

    2013-04-01

    The animal and bacterial kingdoms have coevolved and coadapted in response to environmental selective pressures over hundreds of millions of years. The meta'omics revolution in both sequencing and its analytic pipelines is fostering an explosion of interest in how the gut microbiome impacts physiology and propensity to disease. Gut microbiome studies are inherently interdisciplinary, drawing on approaches and technical skill sets from the biomedical sciences, ecology, and computational biology. Central to unraveling the complex biology of environment, genetics, and microbiome interaction in human health and disease is a deeper understanding of the symbiosis between animals and bacteria. Experimental model systems, including mice, fish, insects, and the Hawaiian bobtail squid, continue to provide critical insight into how host-microbiota homeostasis is constructed and maintained. Here we consider how model systems are influencing current understanding of host-microbiota interactions and explore recent human microbiome studies.

  3. Assessing the human gut microbiota in metabolic diseases.

    Science.gov (United States)

    Karlsson, Fredrik; Tremaroli, Valentina; Nielsen, Jens; Bäckhed, Fredrik

    2013-10-01

    Recent findings have demonstrated that the gut microbiome complements our human genome with at least 100-fold more genes. In contrast to our Homo sapiens-derived genes, the microbiome is much more plastic, and its composition changes with age and diet, among other factors. An altered gut microbiota has been associated with several diseases, including obesity and diabetes, but the mechanisms involved remain elusive. Here we discuss factors that affect the gut microbiome, how the gut microbiome may contribute to metabolic diseases, and how to study the gut microbiome. Next-generation sequencing and development of software packages have led to the development of large-scale sequencing efforts to catalog the human microbiome. Furthermore, the use of genetically engineered gnotobiotic mouse models may increase our understanding of mechanisms by which the gut microbiome modulates host metabolism. A combination of classical microbiology, sequencing, and animal experiments may provide further insights into how the gut microbiota affect host metabolism and physiology.

  4. The human milk microbiota: origin and potential roles in health and disease.

    Science.gov (United States)

    Fernández, Leónides; Langa, Susana; Martín, Virginia; Maldonado, Antonio; Jiménez, Esther; Martín, Rocío; Rodríguez, Juan M

    2013-03-01

    Human milk has been traditionally considered sterile; however, recent studies have shown that it represents a continuous supply of commensal, mutualistic and/or potentially probiotic bacteria to the infant gut. Culture-dependent and -independent techniques have revealed the dominance of staphylococci, streptococci, lactic acid bacteria and bifidobacteria in this biological fluid, and their role on the colonization of the infant gut. These bacteria could protect the infant against infections and contribute to the maturation of the immune system, among other functions. Different studies suggest that some bacteria present in the maternal gut could reach the mammary gland during late pregnancy and lactation through a mechanism involving gut monocytes. Thus, modulation of maternal gut microbiota during pregnancy and lactation could have a direct effect on infant health. On the other hand, mammary dysbiosis may lead to mastitis, a condition that represents the first medical cause for undesired weaning. Selected strains isolated from breast milk can be good candidates for use as probiotics. In this review, their potential uses for the treatment of mastitis and to inhibit mother-to-infant transfer of HIV are discussed.

  5. Commensal ocular bacteria degrade mucins.

    Science.gov (United States)

    Berry, M; Harris, A; Lumb, R; Powell, K

    2002-12-01

    Antimicrobial activity in tears prevents infection while maintaining a commensal bacterial population. The relation between mucin and commensal bacteria was assessed to determine whether commensals possess mucinolytic activity, how degradation depends on mucin integrity, and whether mucins affect bacterial replication. Bacteria were sampled from healthy eyes and contact lenses from asymptomatic wearers. Intracellular mucins were extracted and purified from cadaver conjunctivas, and surface mucins from extended wear contact lenses. After exposure to bacteria, changes in mucin hydrodynamic volume (proteolytic cleavage) and subunit charge (oligosaccharide degradation) were assayed by size exclusion and ion exchange chromatography. The effect of mucin on bacterial replication was followed for up to 24 hours from the end of incubation with purified ocular mucins. Ocular bacteria decreased the hydrodynamic volume of intracellular and contact lens adherent mucins, irrespective of glycosylation density. A decrease in mucin sialylation was observed after exposure to commensal bacteria. Subunit charge distributions were generally shifted to lesser negative charge, consistent with loss of charged epitopes. Subunits with high negative charge, observed after digesting lightly adhering contact lens mucins with bacteria, suggest preferential cleavage sites in the mucin molecule. The presence of purified ocular mucin in the medium inhibited bacterial growth. Bacteria in the healthy ocular surface possess mucinolytic activity on both intact and surface processed mucins, targeted to discrete sites in the mucin molecule. Inhibition of bacterial growth by ocular mucins can be seen as part of the mucosal control of microbiota.

  6. Capsular Polysaccharide Expression in Commensal Streptococcus Species

    DEFF Research Database (Denmark)

    Skov Sørensen, Uffe B; Yao, Kaihu; Yang, Yonghong

    2016-01-01

    biosynthesis (cps) loci in all strains tested. Truncated cps loci were detected in three strains of S. pseudopneumoniae, in 26% of S. mitis strains, and in a single S. oralis strain. The level of sequence identities of cps locus genes confirmed that the structural polymorphism of capsular polysaccharides in S....... pneumoniae evolved by import of cps fragments from commensal Streptococcus species, resulting in a mosaic of genes of different origins. The demonstrated antigenic identity of at least eight of the numerous capsular polysaccharide structures expressed by commensal streptococci with recognized serotypes of S...... of streptococci that form a significant part of our commensal microbiota. The demonstrated antigenic identity of many capsular polysaccharides expressed by commensal streptococci and S. pneumoniae raises important questions concerning the consequences for vaccination and host-parasite relationships both...

  7. THE HUMAN MICROBIOTA: THE ROLE OF MICROBIAL COMMUNITIES IN HEALTH AND DISEASE

    OpenAIRE

    Luz Elena Botero Palacio; Luisa Delgado Serrano; Martha Lucía Cepeda Hernández; Patricia Del Portillo Obando; María Mercedes Zambrano Eder

    2015-01-01

    ABSTRACTDuring the last decade, there has been increasing awareness of the massive number of microorganisms, collectively known as the human microbiota, that are associated with humans. This microbiota outnumbers the host cells by approximately a factor of ten and contains a large repertoire of microbial genome-encoded metabolic processes. The diverse human microbiota and its associated metabolic potential can provide the host with novel functions that can influence host health and disease st...

  8. Formation of propionate and butyrate by the human colonic microbiota.

    Science.gov (United States)

    Louis, Petra; Flint, Harry J

    2017-01-01

    The human gut microbiota ferments dietary non-digestible carbohydrates into short-chain fatty acids (SCFA). These microbial products are utilized by the host and propionate and butyrate in particular exert a range of health-promoting functions. Here an overview of the metabolic pathways utilized by gut microbes to produce these two SCFA from dietary carbohydrates and from amino acids resulting from protein breakdown is provided. This overview emphasizes the important role played by cross-feeding of intermediary metabolites (in particular lactate, succinate and 1,2-propanediol) between different gut bacteria. The ecophysiology, including growth requirements and responses to environmental factors, of major propionate and butyrate producing bacteria are discussed in relation to dietary modulation of these metabolites. A detailed understanding of SCFA metabolism by the gut microbiota is necessary to underpin effective strategies to optimize SCFA supply to the host.

  9. Helminth Infection and Commensal Microbiota Drive Early IL-10 Production in the Skin by CD4+ T Cells That Are Functionally Suppressive.

    Directory of Open Access Journals (Sweden)

    David E Sanin

    2015-05-01

    Full Text Available The skin provides an important first line of defence and immunological barrier to invasive pathogens, but immune responses must also be regulated to maintain barrier function and ensure tolerance of skin surface commensal organisms. In schistosomiasis-endemic regions, populations can experience repeated percutaneous exposure to schistosome larvae, however little is known about how repeated exposure to pathogens affects immune regulation in the skin. Here, using a murine model of repeated infection with Schistosoma mansoni larvae, we show that the skin infection site becomes rich in regulatory IL-10, whilst in its absence, inflammation, neutrophil recruitment, and local lymphocyte proliferation is increased. Whilst CD4+ T cells are the primary cellular source of regulatory IL-10, they expressed none of the markers conventionally associated with T regulatory (Treg cells (i.e. FoxP3, Helios, Nrp1, CD223, or CD49b. Nevertheless, these IL-10+ CD4+ T cells in the skin from repeatedly infected mice are functionally suppressive as they reduced proliferation of responsive CD4+ T cells from the skin draining lymph node. Moreover, the skin of infected Rag-/- mice had impaired IL-10 production and increased neutrophil recruitment. Finally, we show that the mechanism behind IL-10 production by CD4+ T cells in the skin is due to a combination of an initial (day 1 response specific to skin commensal bacteria, and then over the following days schistosome-specific CD4+ T cell responses, which together contribute towards limiting inflammation and tissue damage following schistosome infection. We propose CD4+ T cells in the skin that do not express markers of conventional T regulatory cell populations have a significant role in immune regulation after repeated pathogen exposure and speculate that these cells may also help to maintain skin barrier function in the context of repeated percutaneous insult by other skin pathogens.

  10. [Role of Neuromediators in the Functioning of the Human Microbiota: "Business Talks" among Microorganisms and the Microbiota-Host Dialogue].

    Science.gov (United States)

    Oleskin, A V; El'-registan, G I; Shenderov, B A

    2016-01-01

    Current concepts concerning social behavior of the microorganisms inhabiting human gastrointestinal tract, as well as their role in the formation of integrated supracellular structures and in intercellular communication in the host-microbiota system are reviewed. Analysis of the literature data and the results obtained by the authors indicate an important role of neuromediators (biogenic amines, amino acids, peptides, and nitric oxide) in the intra- and interspecies microbial communication, as well as in the microbiota-host dialogue. The role of this dialogue for human health, its effect on human psyche and social behavior, and the possibility of construction of probiotic preparations with a goal-directed neurochemical effect are discussed.

  11. Short-term effect of antibiotics on human gut microbiota.

    Directory of Open Access Journals (Sweden)

    Suchita Panda

    Full Text Available From birth onwards, the human gut microbiota rapidly increases in diversity and reaches an adult-like stage at three years of age. After this age, the composition may fluctuate in response to external factors such as antibiotics. Previous studies have shown that resilience is not complete months after cessation of the antibiotic intake. However, little is known about the short-term effects of antibiotic intake on the gut microbial community. Here we examined the load and composition of the fecal microbiota immediately after treatment in 21 patients, who received broad-spectrum antibiotics such as fluoroquinolones and β-lactams. A fecal sample was collected from all participants before treatment and one week after for microbial load and community composition analyses by quantitative PCR and pyrosequencing of the 16S rRNA gene, respectively. Fluoroquinolones and β-lactams significantly decreased microbial diversity by 25% and reduced the core phylogenetic microbiota from 29 to 12 taxa. However, at the phylum level, these antibiotics increased the Bacteroidetes/Firmicutes ratio (p = 0.0007, FDR = 0.002. At the species level, our findings unexpectedly revealed that both antibiotic types increased the proportion of several unknown taxa belonging to the Bacteroides genus, a Gram-negative group of bacteria (p = 0.0003, FDR<0.016. Furthermore, the average microbial load was affected by the treatment. Indeed, the β-lactams increased it significantly by two-fold (p = 0.04. The maintenance of or possible increase detected in microbial load and the selection of Gram-negative over Gram-positive bacteria breaks the idea generally held about the effect of broad-spectrum antibiotics on gut microbiota.

  12. Ecological impact of MCB3837 on the normal human microbiota.

    Science.gov (United States)

    Rashid, Mamun-Ur; Dalhoff, Axel; Bäckström, Tobias; Björkhem-Bergman, Linda; Panagiotidis, Georgios; Weintraub, Andrej; Nord, Carl Erik

    2014-08-01

    MCB3837 is a novel, water-soluble, injectable prodrug that is rapidly converted to the active substance MCB3681 in vivo following intravenous (i.v.) administration. Both MCB3837 and MCB3681 are oxazolidinone-quinolone hybrid molecules. The purpose of the present study was to investigate the effect of MCB3681 on the human skin, nose, oropharyngeal and intestinal microbiota following administration of MCB3837. Twelve healthy male subjects received i.v. MCB3837 (6 mg/kg body weight) once daily for 5 days. Skin, nose, saliva and faecal samples were collected on Day -1 (pre dose), during administration on Days 2 and 5, and post dose on Days 8, 12 and 19. Micro-organisms were identified to genus level. No measurable concentrations of MCB3681 were found in any saliva samples or in the faecal samples on Day -1. On Day 2, 10 volunteers had faecal MCB3681 concentrations between 16.5 mg/kg faeces and 275.1mg/kg faeces; no MCB3681 in faeces could be detected in two of the volunteers. On Day 5, all volunteers had faecal concentrations of MCB3681 ranging from 98.9 to 226.3 mg/kg. MCB3681 caused no ecological changes in the skin, nasal and oropharyngeal microbiota. The numbers of enterococci, bifidobacteria, lactobacilli and clostridia decreased in the intestinal microbiota during administration of the drug. Numbers of Escherichia coli, other enterobacteria and Candida were not affected during the study. There was no impact on the number of Bacteroides. The faecal microbiota was normalised on Day 19. No new colonising aerobic or anaerobic Gram-positive bacteria with MCB3681 minimum inhibitory concentrations of ≥4 mg/L were found. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  13. Sulfatases and radical SAM enzymes: emerging themes in glycosaminoglycan metabolism and the human microbiota.

    Science.gov (United States)

    Benjdia, Alhosna; Berteau, Olivier

    2016-02-01

    Humans live in a permanent association with bacterial populations collectively called the microbiota. In the last 10 years, major advances in our knowledge of the microbiota have shed light on its critical roles in human physiology. The microbiota has also been shown to be a major factor in numerous pathologies including obesity or inflammatory disorders. Despite tremendous progresses, our understanding of the key functions of the human microbiota and the molecular basis of its interactions with the host remain still poorly understood. Among the factors involved in host colonization, two enzymes families, sulfatases and radical S-adenosyl-L-methionine enzymes, have recently emerged as key enzymes.

  14. Human Epithelial Cells Discriminate between Commensal and Pathogenic Interactions with Candida albicans.

    Science.gov (United States)

    Rast, Timothy J; Kullas, Amy L; Southern, Peter J; Davis, Dana A

    2016-01-01

    The commensal fungus, Candida albicans, can cause life-threatening infections in at risk individuals. C. albicans colonizes mucosal surfaces of most people, adhering to and interacting with epithelial cells. At low concentrations, C. albicans is not pathogenic nor does it cause epithelial cell damage in vitro; at high concentrations, C. albicans causes mucosal infections and kills epithelial cells in vitro. Here we show that while there are quantitative dose-dependent differences in exposed epithelial cell populations, these reflect a fundamental qualitative difference in host cell response to C. albicans. Using transcriptional profiling experiments and real time PCR, we found that wild-type C. albicans induce dose-dependent responses from a FaDu epithelial cell line. However, real time PCR and Western blot analysis using a high dose of various C. albicans strains demonstrated that these dose-dependent responses are associated with ability to promote host cell damage. Our studies support the idea that epithelial cells play a key role in the immune system by monitoring the microbial community at mucosal surfaces and initiating defensive responses when this community is dysfunctional. This places epithelial cells at a pivotal position in the interaction with C. albicans as epithelial cells themselves promote C. albicans stimulated damage.

  15. Understanding the Extent and Sources of Variation in Gut Microbiota Studies; a Prerequisite for Establishing Associations with Disease

    Directory of Open Access Journals (Sweden)

    David J. Baer

    2010-08-01

    Full Text Available Humans harbor distinct commensal microbiota at various anatomic sites. There has been renewed interest in the contributions of microbiota activities to human health and disease. The microbiota of the gut is the most complex of all anatomic sites in terms of total numbers of bacteria that interact closely with the mucosal immune system and contribute various functions to host physiology. Especially in the proximal large intestine a diverse microbiota ferments complex substrates such as dietary fiber and host mucins, but also metabolizes bile acids and phytoestrogens that reach the large intestine. It is now well established that microbiota composition differs between but over time also within individuals. However, a thorough understanding of the sources of variations in microbiota composition, which is an important requirement for large population based microbiota studies is lacking. Microbiota composition varies depending on what kind of sample is collected, most commonly stool samples, stool swabs or superficial rectal or intestinal biopsies, and the time of collection. Microbiota dynamics are affected by life style factors including diet and exercise that determine what nutrients reach the proximal colon and how fast these nutrients pass through (transit time. Here we review sample collection issues in gut microbiota studies and recent findings about dynamics in microbiota composition. We recommend standardizing human microbiota analysis methods to facilitate comparison and pooling between studies. Finally, we outline a need for prospective microbiota studies in large human cohorts.

  16. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults

    DEFF Research Database (Denmark)

    Larsen, Nadja; Vogensen, Finn Kvist; van der Berg, Franciscus Winfried J;

    2010-01-01

    Background Recent evidence suggests that there is a link between metabolic diseases and bacterial populations in the gut. The aim of this study was to assess the differences between the composition of the intestinal microbiota in humans with type 2 diabetes and non-diabetic persons as control...... to control metabolic diseases by modifying the gut microbiota....... = 0.04). Conclusions The results of this study indicate that type 2 diabetes in humans is associated with compositional changes in intestinal microbiota. The level of glucose tolerance should be considered when linking microbiota with metabolic diseases such as obesity and developing strategies...

  17. Advanced approaches to characterize the human intestinal microbiota by computational meta-analysis

    NARCIS (Netherlands)

    Nikkilä, J.; Vos, de W.M.

    2010-01-01

    GOALS: We describe advanced approaches for the computational meta-analysis of a collection of independent studies, including over 1000 phylogenetic array datasets, as a means to characterize the variability of human intestinal microbiota. BACKGROUND: The human intestinal microbiota is a complex micr

  18. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age

    Directory of Open Access Journals (Sweden)

    Mariat D

    2009-06-01

    Full Text Available Abstract Background In humans, the intestinal microbiota plays an important role in the maintenance of host health by providing energy, nutrients, and immunological protection. Applying current molecular methods is necessary to surmount the limitations of classical culturing techniques in order to obtain an accurate description of the microbiota composition. Results Here we report on the comparative assessment of human fecal microbiota from three age-groups: infants, adults and the elderly. We demonstrate that the human intestinal microbiota undergoes maturation from birth to adulthood and is further altered with ageing. The counts of major bacterial groups Clostridium leptum, Clostridium coccoides, Bacteroidetes, Bifidobacterium, Lactobacillus and Escherichia coli were assessed by quantitative PCR (qPCR. By comparing species diversity profiles, we observed age-related changes in the human fecal microbiota. The microbiota of infants was generally characterized by low levels of total bacteria. C. leptum and C. coccoides species were highly represented in the microbiota of infants, while elderly subjects exhibited high levels of E. coli and Bacteroidetes. We observed that the ratio of Firmicutes to Bacteroidetes evolves during different life stages. For infants, adults and elderly individuals we measured ratios of 0.4, 10.9 and 0.6, respectively. Conclusion In this work we have confirmed that qPCR is a powerful technique in studying the diverse and complex fecal microbiota. Our work demonstrates that the fecal microbiota composition evolves throughout life, from early childhood to old age.

  19. Recent advances and remaining gaps in our knowledge of associations between gut microbiota and human health

    Institute of Scientific and Technical Information of China (English)

    Volker Mai; Peter V Draganov

    2009-01-01

    The complex gut microbial flora harbored by individuals (microbiota) has long been proposed to contribute to intestinal health as well as disease. Pre- and probiotic products aimed at improving health by modifying microbiota composition have already become widely available and acceptance of these products appears to be on the rise. However, although required for the development of effective microbiota based interventions, our basic understanding of microbiota variation on a population level and its dynamics within individuals is still rudimentary. Powerful new parallel sequence technologies combined with other efficient molecular microbiota analysis methods now allow for comprehensive analysis of microbiota composition in large human populations. Recent findings in the field strongly suggest that microbiota contributes to the development of obesity, atopic diseases, inflammatory bowel diseases and intestinal cancers. Through the ongoing National Institutes of Health Roadmap 'Human of the world, a large coordinated effort is currently underway to study how microbiota can impact human health. Translating findings from these studies into effective interventions that can improve health,possibly personalized based on an individuals existing microbiota, will be the task for the next decade(s).

  20. Application of the Human Intestinal Tract Chip to the non-human primate gut microbiota

    NARCIS (Netherlands)

    Bello Gonzalez, T.D.G.; Passel, van M.W.J.; Tims, S.; Fuentes, S.; Vos, de W.M.; Smidt, H.; Belzer, C.

    2015-01-01

    The human intestinal microbiota is responsible for various health-related functions, and its diversity can be readily mapped with the 16S ribosomal RNA targeting Human Intestinal Tract (HIT) Chip. Here we characterise distal gut samples from chimpanzees, gorillas and marmosets, and compare them with

  1. Application of the Human Intestinal Tract Chip to the non-human primate gut microbiota

    NARCIS (Netherlands)

    Bello Gonzalez, T.D.G.; Passel, van M.W.J.; Tims, S.; Fuentes, S.; Vos, de W.M.; Smidt, H.; Belzer, C.

    2015-01-01

    The human intestinal microbiota is responsible for various health-related functions, and its diversity can be readily mapped with the 16S ribosomal RNA targeting Human Intestinal Tract (HIT) Chip. Here we characterise distal gut samples from chimpanzees, gorillas and marmosets, and compare them with

  2. Compositional dynamics of the human intestinal microbiota with aging: implications for health.

    Science.gov (United States)

    Lakshminarayanan, B; Stanton, C; O'Toole, P W; Ross, R P

    2014-11-01

    The human gut contains trillions of microbes which form an essential part of the complex ecosystem of the host. This microbiota is relatively stable throughout adult life, but may fluctuate over time with aging and disease. The gut microbiota serves a number of functions including roles in energy provision, nutrition and also in the maintenance of host health such as protection against pathogens. This review summarizes the age-related changes in the microbiota of the gastrointestinal tract (GIT) and the link between the gut microbiota in health and disease. Understanding the composition and function of the gut microbiota along with the changes it undergoes overtime should aid the design of novel therapeutic strategies to counteract such alterations. These strategies include probiotic and prebiotic preparations as well as targeted nutrients, designed to enrich the gut microbiota of the aging population.

  3. Gut Protozoa: Friends or Foes of the Human Gut Microbiota?

    Science.gov (United States)

    Chabé, Magali; Lokmer, Ana; Ségurel, Laure

    2017-09-01

    The importance of the gut microbiota for human health has sparked a strong interest in the study of the factors that shape its composition and diversity. Despite the growing evidence suggesting that helminths and protozoa significantly interact with gut bacteria, gut microbiome studies remain mostly focused on prokaryotes and on populations living in industrialized countries that typically have a low parasite burden. We argue that protozoa, like helminths, represent an important factor to take into account when studying the gut microbiome, and that their presence - especially considering their long coevolutionary history with humans - may be beneficial. From this perspective, we examine the relationship between the protozoa and their hosts, as well as their relevance for public health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. In vitro anaerobic biofilms of human colonic microbiota.

    Science.gov (United States)

    Sproule-Willoughby, K M; Stanton, M Mark; Rioux, K P; McKay, D M; Buret, A G; Ceri, H

    2010-12-01

    The human gastrointestinal tract hosts a complex community of microorganisms that grow as biofilms on the intestinal mucosa. These bacterial communities are not well characterized, although they are known to play an important role in human health. This study aimed to develop a model for culturing biofilms (surface-adherent communities) of intestinal microbiota. The model utilizes adherent mucosal bacteria recovered from colonic biopsies to create multi-species biofilms. Culture on selective media and confocal microscopy indicated the biofilms were composed of a diverse community of bacteria. Molecular analyses confirmed that several phyla were represented in the model, and demonstrated stability of the community over 96 h when cultured in the device. This model is novel in its use of a multi-species community of mucosal bacteria grown in a biofilm mode of growth. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Effect of the vitamin B12-binding protein haptocorrin present in human milk on a panel of commensal and pathogenic bacteria

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Laursen, Martin Frederik; Lildballe, Dorte L.

    2011-01-01

    Background: Haptocorrin is a vitamin B12-binding protein present in high amounts in different body fluids including human milk. Haptocorrin has previously been shown to inhibit the growth of specific E. coli strains, and the aim of the present study was to elucidate whether the antibacterial...... commensal and pathogenic bacteria to which infants are likely to be exposed. Well-diffusion assays addressing antibacterial effects were performed with human milk, haptocorrin-free human milk, porcine holo-haptocorrin (saturated with B-12) and human apo-haptocorrin (unsaturated). Human milk inhibited...

  6. A humanized microbiota mouse model of ovalbumin-induced lung inflammation.

    Science.gov (United States)

    Arrieta, Marie-Claire; Sadarangani, Manish; Brown, Eric M; Russell, Shannon L; Nimmo, Michael; Dean, John; Turvey, Stuart E; Chan, Edmond S; Finlay, B Brett

    2016-07-03

    There is increasing evidence for a role of early life gut microbiota in later development of asthma in children. In our recent study, children with reduced abundance of the bacterial genera Lachnospira, Veillonella, Faecalibacterium, and Rothia had an increased risk of development of asthma and addition of these bacteria in a humanized mouse model reduced airway inflammation. In this Addendum, we provide additional data on the use of a humanized gut microbiota mouse model to study the development of asthma in children, highlighting the differences in immune development between germ-free mice colonized with human microbes compared to those colonized with mouse gut microbiota. We also demonstrate that there is no association between the composition of the gut microbiota in older children and the diagnosis of asthma, further suggesting the importance of the gut microbiota-immune system axis in the first 3 months of life.

  7. Relationship between Human Gut Microbiota and Interleukin 6 Levels in Overweight and Obese Adults

    Science.gov (United States)

    Background: Gut microbial diversity and abundance can profoundly impact human health. Research has shown that obese individuals are likely to have altered microbiota compared to lean individuals. Obesity is often considered a pro-inflammatory state, however the relationship between microbiota and i...

  8. High-throughput analysis of the impact of antibiotics on the human intestinal microbiota composition

    NARCIS (Netherlands)

    Ladirat, S.E.; Schols, H.A.; Nauta, A.; Schoterman, M.H.C.; Keijser, B.J.F.; Montijn, R.C.; Gruppen, H.; Schuren, F.H.J.

    2013-01-01

    Antibiotic treatments can lead to a disruption of the human microbiota. In this in-vitro study, the impact of antibiotics on adult intestinal microbiota was monitored in a new high-throughput approach: a fermentation screening-platform was coupled with a phylogenetic microarray analysis (Intestinal-

  9. High-throughput analysis of the impact of antibiotics on the human intestinal microbiota composition

    NARCIS (Netherlands)

    Ladirat, S.E.; Schols, H.A.; Nauta, A.; Schoterman, M.H.C.; Keijser, B.J.F.; Montijn, R.C.; Gruppen, H.; Schuren, F.H.J.

    2013-01-01

    Antibiotic treatments can lead to a disruption of the human microbiota. In this in-vitro study, the impact of antibiotics on adult intestinal microbiota was monitored in a new high-throughput approach: a fermentation screening-platform was coupled with a phylogenetic microarray analysis

  10. Evaluation of an oral subchronic exposure of deoxynivalenol on the composition of human gut microbiota in a model of human microbiota-associated rats.

    Directory of Open Access Journals (Sweden)

    Manuel J Saint-Cyr

    Full Text Available BACKGROUND: Deoxynivalenol (DON, a mycotoxin produced by Fusarium species, is one of the most prevalent mycotoxins present in cereal crops worldwide. Due to its toxic properties, high stability and prevalence, the presence of DON in the food chain represents a health risk for both humans and animals. The gastrointestinal microbiota represents potentially the first target for these food contaminants. Thus, the effects of mycotoxins on the human gut microbiota is clearly an issue that needs to be addressed in further detail. Using a human microbiota-associated rat model, the aim of the present study was to evaluate the impact of a chronic exposure of DON on the composition of human gut microbiota. METHODOLOGY/PRINCIPAL FINDINGS: Four groups of 5 germ free male rats each, housed in 4 sterile isolators, were inoculated with a different fresh human fecal flora. Rats were then fed daily by gavage with a solution of DON at 100 µg/kg bw for 4 weeks. Fecal samples were collected at day 0 before the beginning of the treatment; days 7, 16, 21, and 27 during the treatment; and 10 days after the end of the treatment at day 37. DON effect was assessed by real-time PCR quantification of dominant and subdominant bacterial groups in feces. Despite a different intestinal microbiota in each isolator, similar trends were generally observed. During oral DON exposure, a significant increase of 0.5 log10 was observed for the Bacteroides/Prevotella group during the first 3 weeks of administration. Concentration levels for Escherichia coli decreased at day 27. This significant decrease (0.9 log10 CFU/g remained stable until the end of the experiment. CONCLUSIONS/SIGNIFICANCE: We have demonstrated an impact of oral DON exposure on the human gut microbiota composition. These findings can serve as a template for risk assessment studies of food contaminants on the human gut microbiota.

  11. Short- and long-term effects of oral vancomycin on the human intestinal microbiota

    Science.gov (United States)

    Isaac, Sandrine; Scher, Jose U.; Djukovic, Ana; Jiménez, Nuria; Littman, Dan R.; Abramson, Steven B.; Pamer, Eric G.; Ubeda, Carles

    2017-01-01

    Background Oral vancomycin remains the mainstay of therapy for severe infections produced by Clostridium difficile, the most prevalent cause of healthcare-associated infectious diarrhoea in developed countries. However, its short- and long-term effects on the human intestinal microbiota remain largely unknown. Methods We utilized high-throughput sequencing to analyse the effects of vancomycin on the faecal human microbiota up to 22 weeks post-antibiotic cessation. The clinical relevance of the observed microbiota perturbations was studied in mice. Results During vancomycin therapy, most intestinal microbiota genera and operational taxonomic units (OTUs) were depleted in all analysed subjects, including all baseline OTUs from the phylum Bacteroidetes. This was accompanied by a vast expansion of genera associated with infections, including Klebsiella and Escherichia/Shigella. Following antibiotic cessation, marked differences in microbiota resilience were observed among subjects. While some individuals recovered a microbiota close to baseline composition, in others, up to 89% of abundant OTUs could no longer be detected. The clinical relevance of the observed microbiota changes was further demonstrated in mice, which developed analogous microbiota alterations. During vancomycin treatment, mice were highly susceptible to intestinal colonization by an antibiotic-resistant pathogen and, upon antibiotic cessation, a less-resilient microbiota allowed higher levels of pathogen colonization. Conclusions Oral vancomycin induces drastic and consistent changes in the human intestinal microbiota. Upon vancomycin cessation, the microbiota recovery rate varied considerably among subjects, which could influence, as validated in mice, the level of susceptibility to pathogen intestinal colonization. Our results demonstrate the negative long-term effects of vancomycin, which should be considered as a fundamental aspect of the cost–benefit equation for antibiotic prescription. PMID

  12. Short- and long-term effects of oral vancomycin on the human intestinal microbiota.

    Science.gov (United States)

    Isaac, Sandrine; Scher, Jose U; Djukovic, Ana; Jiménez, Nuria; Littman, Dan R; Abramson, Steven B; Pamer, Eric G; Ubeda, Carles

    2017-01-01

    Oral vancomycin remains the mainstay of therapy for severe infections produced by Clostridium difficile, the most prevalent cause of healthcare-associated infectious diarrhoea in developed countries. However, its short- and long-term effects on the human intestinal microbiota remain largely unknown. We utilized high-throughput sequencing to analyse the effects of vancomycin on the faecal human microbiota up to 22 weeks post-antibiotic cessation. The clinical relevance of the observed microbiota perturbations was studied in mice. During vancomycin therapy, most intestinal microbiota genera and operational taxonomic units (OTUs) were depleted in all analysed subjects, including all baseline OTUs from the phylum Bacteroidetes. This was accompanied by a vast expansion of genera associated with infections, including Klebsiella and Escherichia/Shigella. Following antibiotic cessation, marked differences in microbiota resilience were observed among subjects. While some individuals recovered a microbiota close to baseline composition, in others, up to 89% of abundant OTUs could no longer be detected. The clinical relevance of the observed microbiota changes was further demonstrated in mice, which developed analogous microbiota alterations. During vancomycin treatment, mice were highly susceptible to intestinal colonization by an antibiotic-resistant pathogen and, upon antibiotic cessation, a less-resilient microbiota allowed higher levels of pathogen colonization. Oral vancomycin induces drastic and consistent changes in the human intestinal microbiota. Upon vancomycin cessation, the microbiota recovery rate varied considerably among subjects, which could influence, as validated in mice, the level of susceptibility to pathogen intestinal colonization. Our results demonstrate the negative long-term effects of vancomycin, which should be considered as a fundamental aspect of the cost-benefit equation for antibiotic prescription. © The Author 2016. Published by Oxford

  13. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes

    KAUST Repository

    Zhang, Meiling

    2014-08-18

    Enzymes that degrade dietary and host-derived glycans represent the most abundant functional activities encoded by genes unique to the human gut microbiome. However, the biochemical activities of a vast majority of the glycan-degrading enzymes are poorly understood. Here, we use transcriptome sequencing to understand the diversity of genes expressed by the human gut bacteria Bacteroides intestinalis and Bacteroides ovatus grown in monoculture with the abundant dietary polysaccharide xylan. The most highly induced carbohydrate active genes encode a unique glycoside hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT-04215 and BACOVA-04390) that is highly conserved in the Bacteroidetes xylan utilization system. The BiXyn10A modular architecture consists of a GH10 catalytic module disrupted by a 250 amino acid sequence of unknown function. Biochemical analysis of BiXyn10A demonstrated that such insertion sequences encode a new family of carbohydrate-binding modules (CBMs) that binds to xy-lose- configured oligosaccharide/polysaccharide ligands, the substrate of the BiXyn10A enzymatic activity. The crystal structures of CBM1 from BiXyn10A (1.8 Å), a cocomplex of BiXyn10A CBM1 with xylohexaose (1.14 Å), and the CBM fromits homolog in the Prevotella bryantii B 14 Xyn10C (1.68 Å) reveal an unanticipated mode for ligand binding. Aminimal enzyme mix, composed of the gene products of four of the most highly up-regulated genes during growth on wheat arabinoxylan, depolymerizes the polysaccharide into its component sugars. The combined biochemical and biophysical studies presented here provide a framework for understanding fiber metabolism by an important group within the commensal bacterial population known to influence human health.

  14. Shotgun metaproteomics of the human distal gut microbiota

    Energy Technology Data Exchange (ETDEWEB)

    VerBerkmoes, N.C.; Russell, A.L.; Shah, M.; Godzik, A.; Rosenquist, M.; Halfvarsson, J.; Lefsrud, M.G.; Apajalahti, J.; Tysk, C.; Hettich, R.L.; Jansson, Janet K.

    2008-10-15

    The human gut contains a dense, complex and diverse microbial community, comprising the gut microbiome. Metagenomics has recently revealed the composition of genes in the gut microbiome, but provides no direct information about which genes are expressed or functioning. Therefore, our goal was to develop a novel approach to directly identify microbial proteins in fecal samples to gain information about the genes expressed and about key microbial functions in the human gut. We used a non-targeted, shotgun mass spectrometry-based whole community proteomics, or metaproteomics, approach for the first deep proteome measurements of thousands of proteins in human fecal samples, thus demonstrating this approach on the most complex sample type to date. The resulting metaproteomes had a skewed distribution relative to the metagenome, with more proteins for translation, energy production and carbohydrate metabolism when compared to what was earlier predicted from metagenomics. Human proteins, including antimicrobial peptides, were also identified, providing a non-targeted glimpse of the host response to the microbiota. Several unknown proteins represented previously undescribed microbial pathways or host immune responses, revealing a novel complex interplay between the human host and its associated microbes.

  15. Shotgun Metaproteomics of the Human Distal Gut Microbiota

    Energy Technology Data Exchange (ETDEWEB)

    Verberkmoes, Nathan C [ORNL; Erickson, Alison L [ORNL; Shah, Manesh B [ORNL; Godzik, A [Burnham Institute for Medical Research, La Jolla, CA; Rosenquist, M [Swedish University of Agricultural Sciences, Upsalla, Sweden; Halfvarsson, J [Orebro University Hospital, Orebro, Sweden; Lefsrud, Mark G [McGill University, Montreal, Quebec; Apajalahti, J. [Alimetrics Ltd,; Hettich, Robert {Bob} L [ORNL; Jansson, J [Swedish University of Agricultural Sciences, Upsalla, Sweden

    2009-01-01

    The human gut contains a dense, complex, and diverse microbial community, comprising the gut microbiome. Metagenomics has recently revealed the composition of genes in the gut microbiome, but provides no direct information about which genes are expressed or functioning. Therefore, our goal was to develop a novel approach to directly identify microbial proteins in fecal samples to gain information about what genes were expressed and about key microbial functions in the human gut. We used a non-targeted, shotgun mass spectrometry-based whole community proteomics, or metaproteomics, approach for the first deep proteome measurements of thousands of proteins in human fecal samples, thus demonstrating this approach on the most complex sample type to date. The resulting metaproteomes had a skewed distribution relative to the metagenome, with more proteins for translation, energy production, and carbohydrate metabolism compared to what was earlier predicted from metagenomics. Human proteins, including antimicrobial peptides, were also identified, providing a non-targeted glimpse of the host response to the microbiota. Several unknown proteins represented previously undescribed microbial pathways or host immune responses, revealing a novel complex interplay between the human host and its associated microbes.

  16. Individualized Responses of Gut Microbiota to Dietary Intervention Modeled in Humanized Mice.

    Science.gov (United States)

    Smits, Samuel A; Marcobal, Angela; Higginbottom, Steven; Sonnenburg, Justin L; Kashyap, Purna C

    2016-01-01

    Diet plays an important role in shaping the structure and function of the gut microbiota. The microbes and microbial products in turn can influence various aspects of host physiology. One promising route to affect host function and restore health is by altering the gut microbiome using dietary intervention. The individuality of the microbiome may pose a significant challenge, so we sought to determine how different microbiotas respond to the same dietary intervention in a controlled setting. We modeled gut microbiotas from three healthy donors in germfree mice and defined compositional and functional alteration following a change in dietary microbiota-accessible carbohydrates (MACs). The three gut communities exhibited responses that differed markedly in magnitude and in the composition of microbiota-derived metabolites. Adjustments in community membership did not correspond to the magnitude of changes in the microbial metabolites, highlighting potential challenges in predicting functional responses from compositional data and the need to assess multiple microbiota parameters following dietary interventions. IMPORTANCE Dietary modification has long been used empirically to modify symptoms in inflammatory bowel disease, irritable bowel syndrome, and a diverse group of diseases with gastrointestinal symptoms. There is both anecdotal and scientific evidence to suggest that individuals respond quite differently to similar dietary changes, and the highly individualized nature of the gut microbiota makes it a prime candidate for these differences. To overcome the typical confounding factors of human dietary interventions, here we employ ex-germfree mice colonized by microbiotas of three different humans to test how different microbiotas respond to a defined change in carbohydrate content of diet by measuring changes in microbiota composition and function using marker gene-based next-generation sequencing and metabolomics. Our findings suggest that the same diet has very

  17. High taxonomic level fingerprint of the human intestinal microbiota by Ligase Detection Reaction - Universal Array approach

    Directory of Open Access Journals (Sweden)

    Vitali Beatrice

    2010-04-01

    Full Text Available Abstract Background Affecting the core functional microbiome, peculiar high level taxonomic unbalances of the human intestinal microbiota have been recently associated with specific diseases, such as obesity, inflammatory bowel diseases, and intestinal inflammation. Results In order to specifically monitor microbiota unbalances that impact human physiology, here we develop and validate an original DNA-microarray (HTF-Microbi.Array for the high taxonomic level fingerprint of the human intestinal microbiota. Based on the Ligase Detection Reaction-Universal Array (LDR-UA approach, the HTF-Microbi.Array enables specific detection and approximate relative quantification of 16S rRNAs from 30 phylogenetically related groups of the human intestinal microbiota. The HTF-Microbi.Array was used in a pilot study of the faecal microbiota of eight young adults. Cluster analysis revealed the good reproducibility of the high level taxonomic microbiota fingerprint obtained for each of the subject. Conclusion The HTF-Microbi.Array is a fast and sensitive tool for the high taxonomic level fingerprint of the human intestinal microbiota in terms of presence/absence of the principal groups. Moreover, analysis of the relative fluorescence intensity for each probe pair of our LDR-UA platform can provide estimation of the relative abundance of the microbial target groups within each samples. Focusing the phylogenetic resolution at division, order and cluster levels, the HTF-Microbi.Array is blind with respect to the inter-individual variability at the species level.

  18. Role of the normal gut microbiota.

    Science.gov (United States)

    Jandhyala, Sai Manasa; Talukdar, Rupjyoti; Subramanyam, Chivkula; Vuyyuru, Harish; Sasikala, Mitnala; Nageshwar Reddy, D

    2015-08-07

    Relation between the gut microbiota and human health is being increasingly recognised. It is now well established that a healthy gut flora is largely responsible for overall health of the host. The normal human gut microbiota comprises of two major phyla, namely Bacteroidetes and Firmicutes. Though the gut microbiota in an infant appears haphazard, it starts resembling the adult flora by the age of 3 years. Nevertheless, there exist temporal and spatial variations in the microbial distribution from esophagus to the rectum all along the individual's life span. Developments in genome sequencing technologies and bioinformatics have now enabled scientists to study these microorganisms and their function and microbe-host interactions in an elaborate manner both in health and disease. The normal gut microbiota imparts specific function in host nutrient metabolism, xenobiotic and drug metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation, and protection against pathogens. Several factors play a role in shaping the normal gut microbiota. They include (1) the mode of delivery (vaginal or caesarean); (2) diet during infancy (breast milk or formula feeds) and adulthood (vegan based or meat based); and (3) use of antibiotics or antibiotic like molecules that are derived from the environment or the gut commensal community. A major concern of antibiotic use is the long-term alteration of the normal healthy gut microbiota and horizontal transfer of resistance genes that could result in reservoir of organisms with a multidrug resistant gene pool.

  19. Commensality, society and culture

    OpenAIRE

    Fischler, Claude

    2011-01-01

    International audience; The founding fathers of the social sciences recognized commensality as a major issue but considered it mostly in a religious, sacrificial, ritualistic context. The notion of commensality is examined in its various dimensions and operations. Empirical data are used to examine cultural variability in attitudes about food, commensality and its correlates among countries usually categorized as 'Western' and 'modern'. Clear-cut differences are identified, hinting at possibl...

  20. The response of human skin commensal bacteria as a reflection of UV radiation: UV-B decreases porphyrin production.

    Directory of Open Access Journals (Sweden)

    Yanhan Wang

    Full Text Available Recent global radiation fears reflect the urgent need for a new modality that can simply determine if people are in a radiation risk of developing cancer and other illnesses. Ultraviolet (UV radiation has been thought to be the major risk factor for most skin cancers. Although various biomarkers derived from the responses of human cells have been revealed, detection of these biomarkers is cumbersome, probably requires taking live human tissues, and varies significantly depending on human immune status. Here we hypothesize that the reaction of Propionibacterium acnes (P. acnes, a human resident skin commensal, to UV radiation can serve as early surrogate markers for radiation risk because the bacteria are immediately responsive to radiation. In addition, the bacteria can be readily accessible and exposed to the same field of radiation as human body. To test our hypothesis, P. acnes was exposed to UV-B radiation. The production of porphyrins in P. acnes was significantly reduced with increasing doses of UV-B. The porphyrin reduction can be detected in both P. acnes and human skin bacterial isolates. Exposure of UV-B to P. acnes- inoculated mice led to a significant decrease in porphyrin production in a single colony of P. acnes and simultaneously induced the formation of cyclobutane pyrimidine dimers (CPD in the epidermal layers of mouse skin. Mass spectrometric analysis via a linear trap quadrupole (LTQ-Orbitrap XL showed that five peptides including an internal peptide (THLPTGIVVSCQNER of a peptide chain release factor 2 (RF2 were oxidized by UV-B. Seven peptides including three internal peptides of 60 kDa chaperonin 1 were de-oxidized by UV-B. When compared to UV-B, gamma radiation also decreased the porphyrin production of P. acnes in a dose-dependent manner, but induced a different signature of protein oxidation/de-oxidation. We highlight that uncovering response of skin microbiome to radiation will facilitate the development of pre

  1. Human Catestatin Alters Gut Microbiota Composition in Mice

    Science.gov (United States)

    Rabbi, Mohammad F.; Munyaka, Peris M.; Eissa, Nour; Metz-Boutigue, Marie-Hélène; Khafipour, Ehsan; Ghia, Jean Eric

    2017-01-01

    The mammalian intestinal tract is heavily colonized with a dense, complex, and diversified microbial populations. In healthy individuals, an array of epithelial antimicrobial agents is secreted in the gut to aid intestinal homeostasis. Enterochromaffin cells (EC) in the intestinal epithelium are a major source of chromogranin A (CgA), which is a pro-hormone and can be cleaved into many bioactive peptides that include catestatin (CST). This study was carried out to evaluate the possible impact of CST on gut microbiota in vivo using a mouse model. The CST (Human CgA352−372) or normal saline was intrarectally administered in C57BL/6 male mice for 6 days and then sacrificed. Feces and colonic mucosa tissue samples were collected, DNA was extracted, the V4 region of bacterial 16S rRNA gene was amplified and subjected to MiSeq Illumina sequencing. The α-diversity was calculated using Chao 1 and β-diversity was determined using QIIME. Differences at the genus level were determined using partial least square discriminant analysis (PLS-DA). Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) was used to predict functional capacity of bacterial community. CST treatment did not modify bacterial richness in fecal and colonic mucosa-associated microbiota; however, treatment significantly modified bacterial community composition between the groups. Also, CST-treated mice had a significantly lower relative abundance of Firmicutes and higher abundance of Bacteroidetes, observed only in fecal samples. However, at lower phylogenetic levels, PLS-DA analysis revealed that some bacterial taxa were significantly associated with the CST-treated mice in both fecal and colonic mucosa samples. In addition, differences in predicted microbial functional pathways in both fecal and colonic mucosa samples were detected. The results support the hypothesis that CST treatment modulates gut microbiota composition under non-pathophysiological conditions

  2. Composition of human skin microbiota affects attractiveness to malaria mosquitoes.

    Directory of Open Access Journals (Sweden)

    Niels O Verhulst

    Full Text Available The African malaria mosquito Anopheles gambiae sensu stricto continues to play an important role in malaria transmission, which is aggravated by its high degree of anthropophily, making it among the foremost vectors of this disease. In the current study we set out to unravel the strong association between this mosquito species and human beings, as it is determined by odorant cues derived from the human skin. Microbial communities on the skin play key roles in the production of human body odour. We demonstrate that the composition of the skin microbiota affects the degree of attractiveness of human beings to this mosquito species. Bacterial plate counts and 16S rRNA sequencing revealed that individuals that are highly attractive to An. gambiae s.s. have a significantly higher abundance, but lower diversity of bacteria on their skin than individuals that are poorly attractive. Bacterial genera that are correlated with the relative degree of attractiveness to mosquitoes were identified. The discovery of the connection between skin microbial populations and attractiveness to mosquitoes may lead to the development of new mosquito attractants and personalized methods for protection against vectors of malaria and other infectious diseases.

  3. Commensal Bacteria-Induced Inflammasome Activation in Mouse and Human Macrophages Is Dependent on Potassium Efflux but Does Not Require Phagocytosis or Bacterial Viability

    Science.gov (United States)

    Chen, Kejie; Shanmugam, Nanda Kumar N.; Pazos, Michael A.; Hurley, Bryan P.; Cherayil, Bobby J.

    2016-01-01

    Gut commensal bacteria contribute to the pathogenesis of inflammatory bowel disease, in part by activating the inflammasome and inducing secretion of interleukin-1ß (IL-1ß). Although much has been learned about inflammasome activation by bacterial pathogens, little is known about how commensals carry out this process. Accordingly, we investigated the mechanism of inflammasome activation by representative commensal bacteria, the Gram-positive Bifidobacterium longum subspecies infantis and the Gram-negative Bacteroides fragilis. B. infantis and B. fragilis induced IL-1ß secretion by primary mouse bone marrow-derived macrophages after overnight incubation. IL-1ß secretion also occurred in response to heat-killed bacteria and was only partly reduced when phagocytosis was inhibited with cytochalasin D. Similar results were obtained with a wild-type immortalized mouse macrophage cell line but neither B. infantis nor B. fragilis induced IL-1ß secretion in a mouse macrophage line lacking the nucleotide-binding/leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome. IL-1ß secretion in response to B. infantis and B. fragilis was significantly reduced when the wild-type macrophage line was treated with inhibitors of potassium efflux, either increased extracellular potassium concentrations or the channel blocker ruthenium red. Both live and heat-killed B. infantis and B. fragilis also induced IL-1ß secretion by human macrophages (differentiated THP-1 cells or primary monocyte-derived macrophages) after 4 hours of infection, and the secretion was inhibited by raised extracellular potassium and ruthenium red but not by cytochalasin D. Taken together, our findings indicate that the commensal bacteria B. infantis and B. fragilis activate the NLRP3 inflammasome in both mouse and human macrophages by a mechanism that involves potassium efflux and that does not require bacterial viability or phagocytosis. PMID:27505062

  4. Prevalence and pathogenic potential of campylobacter isolates from free-living, human-commensal american crows.

    Science.gov (United States)

    Weis, Allison M; Miller, Woutrina A; Byrne, Barbara A; Chouicha, Nadira; Boyce, Walter M; Townsend, Andrea K

    2014-03-01

    Recent studies have suggested a potential role for wild birds in zoonotic transmission of Campylobacter jejuni, the leading cause of gastroenteritis in humans worldwide. In this study, we detected Campylobacter spp. in 66.9% (85/127) of free-ranging American crows (Corvus brachyrhyncos) sampled in the Sacramento Valley of California in 2012 and 2013. Biochemical testing and sequence analysis of 16S rRNA revealed that 93% of isolates (n = 70) were C. jejuni, with cytolethal distending toxin (CDT) and flagellin A genes detected by PCR in 20% and 46% of the C. jejuni isolates (n = 59), respectively. The high prevalence of C. jejuni, coupled with the occurrence of known virulence markers CDT and flagellin A, demonstrates that crows shed Campylobacter spp. in their feces that are potentially pathogenic to humans. Crows are abundant in urban, suburban, and agricultural settings, and thus further study to determine their role in zoonotic transmission of Campylobacter will inform public health.

  5. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features.

    Science.gov (United States)

    Yu, Guoqin; Gail, Mitchell H; Consonni, Dario; Carugno, Michele; Humphrys, Michael; Pesatori, Angela C; Caporaso, Neil E; Goedert, James J; Ravel, Jacques; Landi, Maria Teresa

    2016-07-28

    The human lung tissue microbiota remains largely uncharacterized, although a number of studies based on airway samples suggest the existence of a viable human lung microbiota. Here we characterized the taxonomic and derived functional profiles of lung microbiota in 165 non-malignant lung tissue samples from cancer patients. We show that the lung microbiota is distinct from the microbial communities in oral, nasal, stool, skin, and vagina, with Proteobacteria as the dominant phylum (60 %). Microbiota taxonomic alpha diversity increases with environmental exposures, such as air particulates, residence in low to high population density areas, and pack-years of tobacco smoking and decreases in subjects with history of chronic bronchitis. Genus Thermus is more abundant in tissue from advanced stage (IIIB, IV) patients, while Legionella is higher in patients who develop metastases. Moreover, the non-malignant lung tissues have higher microbiota alpha diversity than the paired tumors. Our results provide insights into the human lung microbiota composition and function and their link to human lifestyle and clinical outcomes. Studies among subjects without lung cancer are needed to confirm our findings.

  6. The gut microbiota, obesity and insulin resistance.

    Science.gov (United States)

    Shen, Jian; Obin, Martin S; Zhao, Liping

    2013-02-01

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflammation and insulin resistance. In this review we discuss molecular and cell biological mechanisms by which the microbiota participate in host functions that impact the development and maintenance of the obese state, including host ingestive behavior, energy harvest, energy expenditure and fat storage. We additionally explore the diverse signaling pathways that regulate gut permeability and bacterial translocation to the host and how these are altered in the obese state to promote the systemic inflammation ("metabolic endotoxemia") that is a hallmark of obesity and its complications. Fundamental to our discussions is the concept of "crosstalk", i.e., the biochemical exchange between host and microbiota that maintains the metabolic health of the superorganism and whose dysregulation is a hallmark of the obese state. Differences in community composition, functional genes and metabolic activities of the gut microbiota appear to distinguish lean vs obese individuals, suggesting that gut 'dysbiosis' contributes to the development of obesity and/or its complications. The current challenge is to determine the relative importance of obesity-associated compositional and functional changes in the microbiota and to identify the relevant taxa and functional gene modules that promote leanness and metabolic health. As diet appears to play a predominant role in shaping the microbiota and promoting obesity-associated dysbiosis, parallel initiatives are required to elucidate dietary patterns and diet components (e.g., prebiotics, probiotics) that promote healthy gut microbiota. How the microbiota promotes human health and disease is a rich area of investigation that is likely to generate

  7. Immunomodulatory Properties of Streptococcus and Veillonella Isolates from the Human Small Intestine Microbiota

    NARCIS (Netherlands)

    Bogert, van den B.; Meijerink, M.; Zoetendal, E.G.; Wells, J.M.; Kleerebezem, M.

    2014-01-01

    The human small intestine is a key site for interactions between the intestinal microbiota and the mucosal immune system. Here we investigated the immunomodulatory properties of representative species of commonly dominant small-intestinal microbial communities, including six streptococcal strains

  8. Antimicrobial Use, Human Gut Microbiota and Clostridium difficile Colonization and Infection

    Directory of Open Access Journals (Sweden)

    Caroline Vincent

    2015-07-01

    Full Text Available Clostridium difficile infection (CDI is the most important cause of nosocomial diarrhea. Broad-spectrum antimicrobials have profound detrimental effects on the structure and diversity of the indigenous intestinal microbiota. These alterations often impair colonization resistance, allowing the establishment and proliferation of C. difficile in the gut. Studies involving animal models have begun to decipher the precise mechanisms by which the intestinal microbiota mediates colonization resistance against C. difficile and numerous investigations have described gut microbiota alterations associated with C. difficile colonization or infection in human subjects. Fecal microbiota transplantation (FMT is a highly effective approach for the treatment of recurrent CDI that allows the restoration of a healthy intestinal ecosystem via infusion of fecal material from a healthy donor. The recovery of the intestinal microbiota after FMT has been examined in a few reports and work is being done to develop custom bacterial community preparations that could be used as a replacement for fecal material.

  9. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates

    DEFF Research Database (Denmark)

    Zoetendal, Erwin G; Raes, Jeroen; van den Bogert, Bartholomeus

    2012-01-01

    The human gastrointestinal tract (GI tract) harbors a complex community of microbes. The microbiota composition varies between different locations in the GI tract, but most studies focus on the fecal microbiota, and that inhabiting the colonic mucosa. Consequently, little is known about...... the microbiota at other parts of the GI tract, which is especially true for the small intestine because of its limited accessibility. Here we deduce an ecological model of the microbiota composition and function in the small intestine, using complementing culture-independent approaches. Phylogenetic microarray...... analyses demonstrated that microbiota compositions that are typically found in effluent samples from ileostomists (subjects without a colon) can also be encountered in the small intestine of healthy individuals. Phylogenetic mapping of small intestinal metagenome of three different ileostomy effluent...

  10. The effects of provisioning and crop-raiding on the diet and foraging activities of human-commensal white-faced capuchins (Cebus capucinus).

    Science.gov (United States)

    McKinney, Tracie

    2011-05-01

    Non-human primates are coming into increasingly frequent contact with humans and with human-modified environments. The potential for monkeys to survive in such modified landscapes is questionable, and is likely related to a species' behavioral plasticity, particularly as it relates to diet. In this study, I explore the ways in which white-faced capuchins (Cebus capucinus) adjust their diet and foraging behaviors in response to anthropogenic impact. I compare a troop of human-commensal monkeys and a similar troop of wild-feeding monkeys living within the Curú Wildlife Refuge in western Costa Rica for differences in overall diet composition and activity budgets to evaluate the impact of habitat change in this context. The commensal-living white-faced capuchins rely on raided coconut (Cocos nucifera) and oil palm (Elaeis guineensis) crops and provisioned or stolen human foods for over one-half of their total diet. Regardless of this highly anthropogenic diet, the two study troops do not significantly differ in their activity budgets, and the human-commensal troop maintains wild-foraging activities consistent with those of the wild-feeding troop. These data suggest that the white-faced capuchins at this site are responding to anthropogenic disturbance primarily through the exploitation of human food resources, but they do not yet appear to have lost the foraging skills required to survive in this modified landscape on their own. This study adds to our growing body of knowledge on primate survival in matrix habitats, and will hopefully inform primate management plans throughout the Neotropics.

  11. The role of gut microbiota in human metabolism

    NARCIS (Netherlands)

    Vrieze, A.

    2013-01-01

    This thesis supports the hypothesis that gut microbiota can be viewed as an ‘exteriorised organ’ that contributes to energy metabolism and the modulation of our immune system. Following Koch’s postulates, it has now been shown that gut microbiota are associated with metabolic disease and that these

  12. Impact of Diet on Human Intestinal Microbiota and Health

    NARCIS (Netherlands)

    Salonen, A.; Vos, de W.M.

    2014-01-01

    Our intestinal microbiota is involved in the breakdown and bioconversion of dietary and host components that are not degraded and taken up by our own digestive system. The end products generated by our microbiota fuel our enterocytes and support growth but also have signaling functions that generate

  13. Microbiota restoration : natural and supplemented recovery of human microbial communities

    NARCIS (Netherlands)

    Reid, Gregor; Younes, Jessica A.; Van der Mei, Henny C.; Gloor, Gregory B.; Knight, Rob; Busscher, Henk J.

    In a healthy host, a balance exists between members of the microbiota, such that potential pathogenic and non-pathogenic organisms can be found in apparent harmony. During infection, this balance can become disturbed, leading to often dramatic changes in the composition of the microbiota. For most

  14. The role of gut microbiota in human metabolism

    NARCIS (Netherlands)

    Vrieze, A.

    2013-01-01

    This thesis supports the hypothesis that gut microbiota can be viewed as an ‘exteriorised organ’ that contributes to energy metabolism and the modulation of our immune system. Following Koch’s postulates, it has now been shown that gut microbiota are associated with metabolic disease and that these

  15. Microbiota restoration : natural and supplemented recovery of human microbial communities

    NARCIS (Netherlands)

    Reid, Gregor; Younes, Jessica A.; Van der Mei, Henny C.; Gloor, Gregory B.; Knight, Rob; Busscher, Henk J.

    2011-01-01

    In a healthy host, a balance exists between members of the microbiota, such that potential pathogenic and non-pathogenic organisms can be found in apparent harmony. During infection, this balance can become disturbed, leading to often dramatic changes in the composition of the microbiota. For most b

  16. Resident aerobic microbiota of the adult human nasal cavity

    DEFF Research Database (Denmark)

    Rasmussen, TT; Kirkeby Nielsen, LP; Poulsen, Knud

    2000-01-01

    Recent evidence strongly suggests that the microbiota of the nasal cavity plays a crucial role in determining the reaction patterns of the mucosal and systemic immune system. However, little is known about the normal microbiota of the nasal cavity. The purpose of this study was to determine the m...

  17. Impact of Diet on Human Intestinal Microbiota and Health

    NARCIS (Netherlands)

    Salonen, A.; Vos, de W.M.

    2014-01-01

    Our intestinal microbiota is involved in the breakdown and bioconversion of dietary and host components that are not degraded and taken up by our own digestive system. The end products generated by our microbiota fuel our enterocytes and support growth but also have signaling functions that generate

  18. Community and genomic analysis of the human small intestine microbiota

    NARCIS (Netherlands)

    Bogert, van den B.

    2013-01-01

      Our intestinal tract is densely populated by different microbes, collectively called microbiota, of which the majority are bacteria. Research focusing on the intestinal microbiota often use fecal samples as a representative of the bacteria that inhabit the end of the large intestine. These s

  19. Mining microbiota signatures in human intestinal tract metagenomes

    NARCIS (Netherlands)

    Tims, S.

    2016-01-01

    The gut microbiota is shaped by host genotype, early life imprinting, lifestyle and diet. Moreover, specific dietary components, such as prebiotics and probiotics, can have pronounced effects on the microbiota composition and functioning. The work presented in this thesis focused on studying the hum

  20. On the post-glacial spread of human commensal Arabidopsis thaliana

    Science.gov (United States)

    Lee, Cheng-Ruei; Svardal, Hannes; Farlow, Ashley; Exposito-Alonso, Moises; Ding, Wei; Novikova, Polina; Alonso-Blanco, Carlos; Weigel, Detlef; Nordborg, Magnus

    2017-01-01

    Recent work has shown that Arabidopsis thaliana contains genetic groups originating from different ice age refugia, with one particular group comprising over 95% of the current worldwide population. In Europe, relicts of other groups can be found in local populations along the Mediterranean Sea. Here we provide evidence that these ‘relicts' occupied post-glacial Eurasia first and were later replaced by the invading ‘non-relicts', which expanded through the east–west axis of Eurasia, leaving traces of admixture in the north and south of the species range. The non-relict expansion was likely associated with human activity and led to a demographic replacement similar to what occurred in humans. Introgressed genomic regions from relicts are associated with flowering time and enriched for genes associated with environmental conditions, such as root cap development or metal ion trans-membrane transport, which suggest that admixture with locally adapted relicts helped the non-relicts colonize new habitats. PMID:28181519

  1. Antibiotic-Induced Changes in the Intestinal Microbiota and Disease

    Science.gov (United States)

    Becattini, Simone; Taur, Ying; Pamer, Eric G.

    2016-01-01

    The gut microbiota is a key player in many physiological and pathological processes occurring in humans. Recent investigations suggest that the efficacy of some clinical approaches depends on the action of commensal bacteria. Antibiotics are invaluable weapons to fight infectious diseases. However, by altering the composition and functions of the microbiota, they can also produce long-lasting deleterious effects for the host. The emergence of multidrug-resistant pathogens raises concerns about the common, and at times inappropriate, use of antimicrobial agents. Here we review the most recently discovered connections between host pathophysiology, microbiota, and antibiotics highlighting technological platforms, mechanistic insights, and clinical strategies to enhance resistance to diseases by preserving the beneficial functions of the microbiota. PMID:27178527

  2. Microvirga massiliensis sp. nov., the human commensal with the largest genome.

    Science.gov (United States)

    Caputo, Aurélia; Lagier, Jean-Christophe; Azza, Saïd; Robert, Catherine; Mouelhi, Donia; Fournier, Pierre-Edouard; Raoult, Didier

    2016-04-01

    Microvirga massiliensis sp. nov. strain JC119(T) is a bacteria isolated in Marseille from a stool sample collected in Senegal. The 16S rRNA (JF824802) of M. massiliensis JC119(T) revealed 95% sequence identity with Microvirga lotononidis WSM3557(T) (HM362432). This bacterium is aerobic, gram negative, catalase positive, and oxidase negative. The draft genome of M. massiliensis JC119(T) comprises a 9,207,211-bp-long genome that is the largest bacterial genome of an isolate in humans. The genome exhibits a G+C content of 63.28% and contains 8685 protein-coding genes and 77 RNA genes, including 21 rRNA genes. Here, we describe the features of M. massiliensis JC119(T), together with the genome sequence information and its annotation.

  3. Human milk glycobiome and its impact on the infant gastrointestinal microbiota

    OpenAIRE

    Zivkovic, Angela M.; German, J. Bruce; Lebrilla, Carlito B.; David A. Mills

    2010-01-01

    Human milk contains an unexpected abundance and diversity of complex oligosaccharides apparently indigestible by the developing infant and instead targeted to its cognate gastrointestinal microbiota. Recent advances in mass spectrometry-based tools have provided a view of the oligosaccharide structures produced in milk across stages of lactation and among human mothers. One postulated function for these oligosaccharides is to enrich a specific “healthy” microbiota containing bifidobacteria, a...

  4. Metabolic Interaction of Helicobacter pylori Infection and Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Yao-Jong Yang

    2016-02-01

    Full Text Available As a barrier, gut commensal microbiota can protect against potential pathogenic microbes in the gastrointestinal tract. Crosstalk between gut microbes and immune cells promotes human intestinal homeostasis. Dysbiosis of gut microbiota has been implicated in the development of many human metabolic disorders like obesity, hepatic steatohepatitis, and insulin resistance in type 2 diabetes (T2D. Certain microbes, such as butyrate-producing bacteria, are lower in T2D patients. The transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome, but the exact pathogenesis remains unclear. H. pylori in the human stomach cause chronic gastritis, peptic ulcers, and gastric cancers. H. pylori infection also induces insulin resistance and has been defined as a predisposing factor to T2D development. Gastric and fecal microbiota may have been changed in H. pylori-infected persons and mice to promote gastric inflammation and specific diseases. However, the interaction of H. pylori and gut microbiota in regulating host metabolism also remains unknown. Further studies aim to identify the H. pylori-microbiota-host metabolism axis and to test if H. pylori eradication or modification of gut microbiota can improve the control of human metabolic disorders.

  5. Pro-inflammatory flagellin proteins of prevalent motile commensal bacteria are variably abundant in the intestinal microbiome of elderly humans.

    Directory of Open Access Journals (Sweden)

    B Anne Neville

    Full Text Available Some Eubacterium and Roseburia species are among the most prevalent motile bacteria present in the intestinal microbiota of healthy adults. These flagellate species contribute "cell motility" category genes to the intestinal microbiome and flagellin proteins to the intestinal proteome. We reviewed and revised the annotation of motility genes in the genomes of six Eubacterium and Roseburia species that occur in the human intestinal microbiota and examined their respective locus organization by comparative genomics. Motility gene order was generally conserved across these loci. Five of these species harbored multiple genes for predicted flagellins. Flagellin proteins were isolated from R. inulinivorans strain A2-194 and from E. rectale strains A1-86 and M104/1. The amino-termini sequences of the R. inulinivorans and E. rectale A1-86 proteins were almost identical. These protein preparations stimulated secretion of interleukin-8 (IL-8 from human intestinal epithelial cell lines, suggesting that these flagellins were pro-inflammatory. Flagellins from the other four species were predicted to be pro-inflammatory on the basis of alignment to the consensus sequence of pro-inflammatory flagellins from the β- and γ- proteobacteria. Many fliC genes were deduced to be under the control of σ(28. The relative abundance of the target Eubacterium and Roseburia species varied across shotgun metagenomes from 27 elderly individuals. Genes involved in the flagellum biogenesis pathways of these species were variably abundant in these metagenomes, suggesting that the current depth of coverage used for metagenomic sequencing (3.13-4.79 Gb total sequence in our study insufficiently captures the functional diversity of genomes present at low (≤1% relative abundance. E. rectale and R. inulinivorans thus appear to synthesize complex flagella composed of flagellin proteins that stimulate IL-8 production. A greater depth of sequencing, improved evenness of sequencing

  6. Induction of farnesoid X receptor signaling in germ-free mice colonized with a human microbiota

    DEFF Research Database (Denmark)

    Wahlström, Annika; Kovatcheva-Datchary, Petia; Ståhlman, Marcus

    2017-01-01

    The gut microbiota influences the development and progression of metabolic diseases partly by metabolism of bile acids (BAs) and modified signaling through the farnesoid X receptor (FXR). In this study, we aimed to determine how the human gut microbiota metabolizes murine BAs and affects FXR...... signaling in colonized mice. We colonized germ-free mice with cecal content from a mouse donor or feces from a human donor and euthanized the mice after short-term (2 weeks) or long-term (15 weeks) colonization. We analyzed the gut microbiota and BA composition and expression of FXR target genes in ileum...... of tauro-β-muricholic acid and induce expression of FXR target genes Fgf15 and Shp in ileum after long-term colonization. We show that a human microbiota can change BA composition and induce FXR signaling in colonized mice, but the levels of secondary BAs produced are lower than in mice colonized...

  7. Insights into bacterial protein glycosylation in human microbiota.

    Science.gov (United States)

    Zhu, Fan; Wu, Hui

    2016-01-01

    The study of human microbiota is an emerging research topic. The past efforts have mainly centered on studying the composition and genomic landscape of bacterial species within the targeted communities. The interaction between bacteria and hosts is the pivotal event in the initiation and progression of infectious diseases. There is a great need to identify and characterize the molecules that mediate the bacteria-host interaction. Bacterial surface exposed proteins play an important role in the bacteria- host interaction. Numerous surface proteins are glycosylated, and the glycosylation is crucial for their function in mediating the bacterial interaction with hosts. Here we present an overview of surface glycoproteins from bacteria that inhabit three major mucosal environments across human body: oral, gut and skin. We describe the important enzymes involved in the process of protein glycosylation, and discuss how the process impacts the bacteria-host interaction. Emerging molecular details underlying glycosylation of bacterial surface proteins may lead to new opportunities for designing anti-infective small molecules, and developing novel vaccines in order to treat or prevent bacterial infection.

  8. Catabolism of coffee chlorogenic acids by human colonic microbiota.

    Science.gov (United States)

    Ludwig, Iziar A; Paz de Peña, Maria; Concepción, Cid; Alan, Crozier

    2013-01-01

    Several studies have indicated potential health benefits associated with coffee consumption. These benefits might be ascribed in part to the chlorogenic acids (CGAs), the main (poly)phenols in coffee. The impact of these dietary (poly)phenols on health depends on their bioavailability. As they pass along the gastrointestinal tract, CGAs are metabolized extensively and it is their metabolites rather than the parent compounds that predominate in the circulatory system. This article reports on a study in which after incubation of espresso coffee with human fecal samples, high-performance liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS) were used to monitor CGA breakdown and identify and quantify the catabolites produced by the colonic microflora. The CGAs were rapidly degraded by the colonic microflora and over the 6-h incubation period, 11 catabolites were identified and quantified. The appearance of the initial degradation products, caffeic and ferulic acids, was transient, with maximum quantities at 1 h. Dihydrocaffeic acid, dihydroferulic acid, and 3-(3'-hydroxyphenyl)propionic acid were the major end products, comprising 75-83% of the total catabolites, whereas the remaining 17-25% consisted of six minor catabolites. The rate and extent of the degradation showed a clear influence of the composition of the gut microbiota of individual volunteers. Pathways involved in colonic catabolism of CGAs are proposed and comparison with studies on the bioavailability of coffee CGAs ingested by humans helped distinguish between colonic catabolites and phase II metabolites of CGAs.

  9. Human intestinal microbiota: cross-talk with the host and its potential role in colorectal cancer.

    Science.gov (United States)

    Candela, Marco; Guidotti, Marco; Fabbri, Alessia; Brigidi, Patrizia; Franceschi, Claudio; Fiorentini, Carla

    2011-02-01

    In this review, we discuss the multifactorial role of intestinal microbiota in colorectal cancer. The peculiar metabolism of dietary compounds of the individual microbiota complement, its overall immunostimulation and immunomodulatory activity, and eventually the production of toxins that perturb the regulation of cell growth, define the balance of positive and negative risk factors for colorectal cancer development. Moreover, shaping the composition of the human intestinal microbiota, diet has an indirect impact in determining the balance between health and disease. The integration of diet, microbial, and host factors in a system approach is mandatory to determine the overall balance of risk and protective factors for colorectal cancer onset.

  10. Antibiotic Resistance in an Indian Rural Community: A 'One-Health' Observational Study on Commensal Coliform from Humans, Animals, and Water.

    Science.gov (United States)

    Purohit, Manju Raj; Chandran, Salesh; Shah, Harshada; Diwan, Vishal; Tamhankar, Ashok J; Stålsby Lundborg, Cecilia

    2017-04-06

    Antibiotic-resistant bacteria are an escalating grim menace to global public health. Our aim is to phenotype and genotype antibiotic-resistant commensal Escherichia coli (E. coli) from humans, animals, and water from the same community with a 'one-health' approach. The samples were collected from a village belonging to demographic surveillance site of Ruxmaniben Deepchand (R.D.) Gardi Medical College Ujjain, Central India. Commensal coliforms from stool samples from children aged 1-3 years and their environment (animals, drinking water from children's households, common source- and waste-water) were studied for antibiotic susceptibility and plasmid-encoded resistance genes. E. coli isolates from human (n = 127), animal (n = 21), waste- (n = 12), source- (n = 10), and household drinking water (n = 122) carried 70%, 29%, 41%, 30%, and 30% multi-drug resistance, respectively. Extended spectrum beta-lactamase (ESBL) producers were 57% in human and 23% in environmental isolates. Co-resistance was frequent in penicillin, cephalosporin, and quinolone. Antibiotic-resistance genes blaCTX-M-9 and qnrS were most frequent. Group D-type isolates with resistance genes were mainly from humans and wastewater. Colistin resistance, or the mcr-1 gene, was not detected. The frequency of resistance, co-resistance, and resistant genes are high and similar in coliforms from humans and their environment. This emphasizes the need to mitigate antibiotic resistance with a 'one-health' approach.

  11. Association between the ABO blood group and the human intestinal microbiota composition

    Directory of Open Access Journals (Sweden)

    Mäkivuokko Harri

    2012-06-01

    Full Text Available Abstract Background The mucus layer covering the human intestinal epithelium forms a dynamic surface for host-microbial interactions. In addition to the environmental factors affecting the intestinal equilibrium, such as diet, it is well established that the microbiota composition is individually driven, but the host factors determining the composition have remained unresolved. Results In this study, we show that ABO blood group is involved in differences in relative proportion and overall profiles of intestinal microbiota. Specifically, the microbiota from the individuals harbouring the B antigen (secretor B and AB differed from the non-B antigen groups and also showed higher diversity of the Eubacterium rectale-Clostridium coccoides (EREC and Clostridium leptum (CLEPT -groups in comparison with other blood groups. Conclusions Our novel finding indicates that the ABO blood group is one of the genetically determined host factors modulating the composition of the human intestinal microbiota, thus enabling new applications in the field of personalized nutrition and medicine.

  12. Impact of fluoroquinolones on human microbiota. Focus on the emergence of antibiotic resistance.

    Science.gov (United States)

    de Lastours, Victoire; Fantin, Bruno

    2015-01-01

    The aggregate of microorganisms residing on the surface of the skin, in the oropharynx and in the GI tract, known as the human microbiota, play a major role as natural reservoirs for bacterial resistance to antibiotics. Fluoroquinolones (FQ) are among the most prescribed antibiotics and a major increase in FQ resistance is occurring worldwide. High concentrations of FQ are found in microbial ecosystems explaining their profound effect on the clinically relevant bacteria that compose them. Yet, because of different local pharmacokinetics, distinct selective pressures occur in the different microbiota. Here we review the qualitative and quantitative impact of FQ on the three main human microbiota and their consequences, particularly in terms of emergence of antibiotic resistance. Finally, we review potential actions that could decrease the impact of FQs on microbiota.

  13. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease

    Science.gov (United States)

    Bloom, Seth M.; Bijanki, Vinieth N.; Nava, Gerardo M.; Sun, Lulu; Malvin, Nicole P.; Donermeyer, David L.; Dunne, W. Michael; Allen, Paul M.; Stappenbeck, Thaddeus S.

    2011-01-01

    SUMMARY The intestinal microbiota is important for induction of inflammatory bowel disease (IBD). IBD is associated with complex shifts in microbiota composition, but it is unclear whether specific bacterial subsets induce IBD and, if so, whether their proportions in the microbiota are altered during disease. Here we fulfilled Koch’s postulates in host-genotype-specific fashion using a mouse model of IBD with human-relevant disease-susceptibility mutations. From screening experiments we isolated common commensal Bacteroides species, introduced them into antibiotic-pretreated mice, and quantitatively re-isolated them in culture. The bacteria colonized IBD-susceptible and non-susceptible mice equivalently, but induced disease exclusively in susceptible animals. Conversely, commensal Enterobacteriaceae were >100-fold enriched during spontaneous disease but an Enterobacteriaceae isolate failed to induce disease in antibiotic-pretreated mice despite robust colonization. We thus demonstrate that IBD-associated microbiota alterations do not necessarily reflect underlying disease etiology. These findings establish important experimental criteria and a conceptual framework for understanding microbial contributions to IBD. PMID:21575910

  14. Common occurrence of antibacterial agents in human intestinal microbiota

    Directory of Open Access Journals (Sweden)

    Fatima eDrissi

    2015-05-01

    Full Text Available Laboratory experiments have revealed many active mechanisms by which bacteria can inhibit the growth of other organisms. Bacteriocins are a diverse group of natural ribosomally-synthesized antimicrobial peptides produced by a wide range of bacteria and which seem to play an important role in mediating competition within bacterial communities. In this study, we have identified and established the structural classification of putative bacteriocins encoded by 317 microbial genomes in the human intestine. On the basis of homologies to available bacteriocin sequences, mainly from lactic acid bacteria, we report the widespread occurrence of bacteriocins across the gut microbiota: 175 bacteriocins were found to be encoded in Firmicutes, 79 in Proteobacteria, 34 in Bacteroidetes and 25 in Actinobacteria. Bacteriocins from gut bacteria displayed wide differences among phyla with regard to class distribution, net positive charge, hydrophobicity and secondary structure, but the α-helix was the most abundant structure. The peptide structures and physiochemical properties of bacteriocins produced by the most abundant bacteria in the gut, the Firmicutes and the Bacteroidetes, seem to ensure low antibiotic activity and participate in permanent intestinal host defence against the proliferation of harmful bacteria. Meanwhile, the potentially harmful bacteria, including the Proteobacteria, displayed highly effective bacteriocins, probably supporting the virulent character of diseases. These findings highlight the eventual role played by bacteriocins in gut microbial competition and their potential place in antibiotic therapy.

  15. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility.

    Science.gov (United States)

    Desai, Mahesh S; Seekatz, Anna M; Koropatkin, Nicole M; Kamada, Nobuhiko; Hickey, Christina A; Wolter, Mathis; Pudlo, Nicholas A; Kitamoto, Sho; Terrapon, Nicolas; Muller, Arnaud; Young, Vincent B; Henrissat, Bernard; Wilmes, Paul; Stappenbeck, Thaddeus S; Núñez, Gabriel; Martens, Eric C

    2016-11-17

    Despite the accepted health benefits of consuming dietary fiber, little is known about the mechanisms by which fiber deprivation impacts the gut microbiota and alters disease risk. Using a gnotobiotic mouse model, in which animals were colonized with a synthetic human gut microbiota composed of fully sequenced commensal bacteria, we elucidated the functional interactions between dietary fiber, the gut microbiota, and the colonic mucus barrier, which serves as a primary defense against enteric pathogens. We show that during chronic or intermittent dietary fiber deficiency, the gut microbiota resorts to host-secreted mucus glycoproteins as a nutrient source, leading to erosion of the colonic mucus barrier. Dietary fiber deprivation, together with a fiber-deprived, mucus-eroding microbiota, promotes greater epithelial access and lethal colitis by the mucosal pathogen, Citrobacter rodentium. Our work reveals intricate pathways linking diet, the gut microbiome, and intestinal barrier dysfunction, which could be exploited to improve health using dietary therapeutics.

  16. The microbiota and microbiome in aging: potential implications in health and age-related diseases.

    Science.gov (United States)

    Zapata, Heidi J; Quagliarello, Vincent J

    2015-04-01

    Advances in bacterial deoxyribonucleic acid sequencing allow for characterization of the human commensal bacterial community (microbiota) and its corresponding genome (microbiome). Surveys of healthy adults reveal that a signature composite of bacteria characterizes each unique body habitat (e.g., gut, skin, oral cavity, vagina). A myriad of clinical changes, including a basal proinflammatory state (inflamm-aging), that directly interface with the microbiota of older adults and enhance susceptibility to disease accompany aging. Studies in older adults demonstrate that the gut microbiota correlates with diet, location of residence (e.g., community dwelling, long-term care settings), and basal level of inflammation. Links exist between the microbiota and a variety of clinical problems plaguing older adults, including physical frailty, Clostridium difficile colitis, vulvovaginal atrophy, colorectal carcinoma, and atherosclerotic disease. Manipulation of the microbiota and microbiome of older adults holds promise as an innovative strategy to influence the development of comorbidities associated with aging.

  17. The principal fucosylated oligosaccharides of human milk exhibit prebiotic properties on cultured infant microbiota

    OpenAIRE

    Yu, Zhuo-Teng; Chen, Ceng; Kling, David E.; Liu, Bo; McCoy, John M.; Merighi, Massimo; Heidtman, Matthew; Newburg, David S.

    2012-01-01

    Breast-fed infant microbiota is typically rich in bifidobacteria. Herein, major human milk oligosaccharides (HMOS) are assessed for their ability to promote the growth of bifidobacteria and to acidify their environment, key features of prebiotics. During in vitro anaerobic fermentation of infant microbiota, supplementation by HMOS significantly decreased the pH even greater than supplementation by fructooligosaccharide (FOS), a prebiotic positive control. HMOS elevated lactate concentrations,...

  18. Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions

    OpenAIRE

    Bijaya Upadhyaya; Lacey McCormack; Ali Reza Fardin-Kia; Robert Juenemann; Sailendra Nichenametla; Jeffrey Clapper; Bonny Specker; Moul Dey

    2016-01-01

    Dietary modulation of the gut microbiota impacts human health. Here we investigated the hitherto unknown effects of resistant starch type 4 (RS4) enriched diet on gut microbiota composition and short-chain fatty acid (SCFA) concentrations in parallel with host immunometabolic functions in twenty individuals with signs of metabolic syndrome (MetS). Cholesterols, fasting glucose, glycosylated haemoglobin, and proinflammatory markers in the blood as well as waist circumference and % body fat wer...

  19. Commensal-pathogen interactions in the intestinal tract

    Science.gov (United States)

    Reynolds, Lisa A; Smith, Katherine A; Filbey, Kara J; Harcus, Yvonne; Hewitson, James P; Redpath, Stephen A; Valdez, Yanet; Yebra, María J; Finlay, B Brett; Maizels, Rick M

    2016-01-01

    The intestinal microbiota are pivotal in determining the developmental, metabolic and immunological status of the mammalian host. However, the intestinal tract may also accommodate pathogenic organisms, including helminth parasites which are highly prevalent in most tropical countries. Both microbes and helminths must evade or manipulate the host immune system to reside in the intestinal environment, yet whether they influence each other’s persistence in the host remains unknown. We now show that abundance of Lactobacillus bacteria correlates positively with infection with the mouse intestinal nematode, Heligmosomoides polygyrus, as well as with heightened regulatory T cell (Treg) and Th17 responses. Moreover, H. polygyrus raises Lactobacillus species abundance in the duodenum of C57BL/6 mice, which are highly susceptible to H. polygyrus infection, but not in BALB/c mice, which are relatively resistant. Sequencing of samples at the bacterial gyrB locus identified the principal Lactobacillus species as L. taiwanensis, a previously characterized rodent commensal. Experimental administration of L. taiwanensis to BALB/c mice elevates regulatory T cell frequencies and results in greater helminth establishment, demonstrating a causal relationship in which commensal bacteria promote infection with an intestinal parasite and implicating a bacterially-induced expansion of Tregs as a mechanism of greater helminth susceptibility. The discovery of this tripartite interaction between host, bacteria and parasite has important implications for both antibiotic and anthelmintic use in endemic human populations. PMID:25144609

  20. Real-time PCR for quantitative analysis of human commensal Escherichia coli populations reveals a high frequency of subdominant phylogroups.

    Science.gov (United States)

    Smati, Mounira; Clermont, Olivier; Le Gal, Frédéric; Schichmanoff, Olivier; Jauréguy, Françoise; Eddi, Alain; Denamur, Erick; Picard, Bertrand

    2013-08-01

    Escherichia coli is divided into four main phylogenetic groups, which each exhibit ecological specialization. To understand the population structure of E. coli in its primary habitat, we directly assessed the relative proportions of these phylogroups from the stools of 100 healthy human subjects using a new real-time PCR method, which allows a large number of samples to be studied. The detection threshold for our technique was 0.1% of the E. coli population, i.e., 10(5) CFU/g of feces; in other methods based on individual colony analysis, the threshold is 10%. One, two, three, or four phylogenetic groups were simultaneously found in 21%, 48%, 21%, and 8% of the subjects, respectively. Phylogroups present at a threshold of less than 10% of the population were found in 40% of the subjects, revealing high within-individual diversity. Phylogroups A and B2 were detected in 74% and 70% of the subjects, respectively; phylogroups B1 and D were detected in 36% and 32%, respectively. When phylogroup B2 was dominant, it tended not to cooccur with other phylogroups. In contrast, other phylogroups were present when phylogroup A was dominant. These data indicate a complex pattern of interactions between the members of a single species within the human gut and identify a reservoir of clones that are present at a low frequency. The presence of these minor clones could explain the fluctuation in the composition of the E. coli microbiota within single individuals that may be seen over time. They could also constitute reservoirs of virulent and/or resistant strains.

  1. Susceptibility to Campylobacter infection is associated with the species composition of the human fecal microbiota.

    Science.gov (United States)

    Dicksved, Johan; Ellström, Patrik; Engstrand, Lars; Rautelin, Hilpi

    2014-09-16

    The gut microbiota is essential for human health, but very little is known about how the composition of this ecosystem can influence and respond to bacterial infections. Here we address this by prospectively studying the gut microbiota composition before, during, and after natural Campylobacter infection in exposed poultry abattoir workers. The gut microbiota composition was analyzed with 16S amplicon sequencing of fecal samples from poultry abattoir workers during the peak season of Campylobacter infection in Sweden. The gut microbiota compositions were compared between individuals who became culture positive for Campylobacter and those who remained negative. Individuals who became Campylobacter positive had a significantly higher abundance of Bacteroides (P = 0.007) and Escherichia (P = 0.002) species than those who remained culture negative. Furthermore, this group had a significantly higher abundance of Phascolarctobacterium (P = 0.017) and Streptococcus (P = 0.034) sequences than the Campylobacter-negative group, which had an overrepresentation of Clostridiales (P = 0.017), unclassified Lachnospiraceae (P = 0.008), and Anaerovorax (P = 0.015) sequences. Intraindividual comparisons of the fecal microbiota compositions yielded small differences over time in Campylobacter-negative participants, but significant long-term changes were found in the Campylobacter-positive group (P microbiota reduces resistance to Campylobacter colonization in humans and that Campylobacter infection can have long-term effects on the composition of the human fecal microbiota. Studies using mouse models have made important contributions to our understanding of the role of the gut microbiota in resistance to bacterial enteropathogen colonization. The relative abundances of Escherichia coli and Bacteroides species have been pointed out as important determinants of susceptibility to Gram-negative pathogens in general and Campylobacter infection in particular. In this study, we assessed the

  2. The potential link between gut microbiota and IgE-mediated food allergy in early life.

    Science.gov (United States)

    Molloy, John; Allen, Katrina; Collier, Fiona; Tang, Mimi L K; Ward, Alister C; Vuillermin, Peter

    2013-12-16

    There has been a dramatic rise in the prevalence of IgE-mediated food allergy over recent decades, particularly among infants and young children. The cause of this increase is unknown but one putative factor is a change in the composition, richness and balance of the microbiota that colonize the human gut during early infancy. The coevolution of the human gastrointestinal tract and commensal microbiota has resulted in a symbiotic relationship in which gut microbiota play a vital role in early life immune development and function, as well as maintenance of gut wall epithelial integrity. Since IgE mediated food allergy is associated with immune dysregulation and impaired gut epithelial integrity there is substantial interest in the potential link between gut microbiota and food allergy. Although the exact link between gut microbiota and food allergy is yet to be established in humans, recent experimental evidence suggests that specific patterns of gut microbiota colonization may influence the risk and manifestations of food allergy. An understanding of the relationship between gut microbiota and food allergy has the potential to inform both the prevention and treatment of food allergy. In this paper we review the theory and evidence linking gut microbiota and IgE-mediated food allergy in early life. We then consider the implications and challenges for future research, including the techniques of measuring and analyzing gut microbiota, and the types of studies required to advance knowledge in the field.

  3. The Potential Link between Gut Microbiota and IgE-Mediated Food Allergy in Early Life

    Directory of Open Access Journals (Sweden)

    John Molloy

    2013-12-01

    Full Text Available There has been a dramatic rise in the prevalence of IgE-mediated food allergy over recent decades, particularly among infants and young children. The cause of this increase is unknown but one putative factor is a change in the composition, richness and balance of the microbiota that colonize the human gut during early infancy. The coevolution of the human gastrointestinal tract and commensal microbiota has resulted in a symbiotic relationship in which gut microbiota play a vital role in early life immune development and function, as well as maintenance of gut wall epithelial integrity. Since IgE mediated food allergy is associated with immune dysregulation and impaired gut epithelial integrity there is substantial interest in the potential link between gut microbiota and food allergy. Although the exact link between gut microbiota and food allergy is yet to be established in humans, recent experimental evidence suggests that specific patterns of gut microbiota colonization may influence the risk and manifestations of food allergy. An understanding of the relationship between gut microbiota and food allergy has the potential to inform both the prevention and treatment of food allergy. In this paper we review the theory and evidence linking gut microbiota and IgE-mediated food allergy in early life. We then consider the implications and challenges for future research, including the techniques of measuring and analyzing gut microbiota, and the types of studies required to advance knowledge in the field.

  4. The fingerprint of the human gastrointestinal tract microbiota: a hypothesis of molecular mapping.

    Science.gov (United States)

    Tomasello, G; Mazzola, M; Jurjus, A; Cappello, F; Carini, F; Damiani, P; Gerges Geagea, A; Zeenny, M N; Leone, A

    2017-01-01

    The precise etiology of Inflammatory Bowel Disease (IDB) remains unclear and several factors are believed to play a role in its development and progression, including the composition of microbial communities resident in the gastrointestinal tract. Human intestinal microbiota are extensive with at least 15,000-36,000 bacterial species. However, thanks to the new development in sequencing and molecular taxonomic methodologies, our understanding of the microbiota population composition, dynamics, and ecology has greatly increased. Intestinal microbiota play a critical role in the maintenance of the host intestinal barrier homeostasis, while dysbiosis, which involves reduction in the microbiome diversity, can lead to progression of inflammatory disorders, such as IBD and colorectal cancer. It is hypothesized that fingerprinting characterization of the microbiota community composition is the first step in the study of this complex bacterial ecosystem and a crucial step in the targeted therapy. Molecular fingerprinting of human gastrointestinal tract microbiota could be performed by different techniques including the semi quantitation, 16SrRNA, the DNA- microarray as well as other relatively new methods which were developed to study many complex bacterial ecosystems. These techniques provide individual data and profiles, using fast and sensitive tools for the high taxonomic level fingerprint of the human intestinal microbiota and provide estimation of the relative presence of the microbial target groups within each individual. Such personalized information serves as a remarkable and unprecedented opportunity to improve targeted medical treatment and probably develop strategies to prevent disease.

  5. Differential interleukin-10 (IL-10) and IL-23 production by human blood monocytes and dendritic cells in response to commensal enteric bacteria.

    Science.gov (United States)

    Manuzak, Jennifer; Dillon, Stephanie; Wilson, Cara

    2012-08-01

    Human peripheral blood contains antigen-presenting cells (APC), including dendritic cells (DC) and monocytes, that may encounter microbes that have translocated from the intestine to the periphery in disease states like HIV-1 infection and inflammatory bowel disease. We investigated the response of DC and monocytes in peripheral blood mononuclear cells (PBMC) to a panel of representative commensal enteric bacteria, including Escherichia coli, Enterococcus sp., and Bacteroides fragilis. All three bacteria induced significant upregulation of the maturation and activation markers CD40 and CD83 on myeloid dendritic cells (mDC) and plasmacytoid dendritic cells (pDC). However, only mDC produced cytokines, including interleukin-10 (IL-10), IL-12p40/70, and tumor necrosis factor alpha (TNF-α), in response to bacterial stimulation. Cytokine profiles in whole PBMC differed depending on the stimulating bacterial species: B. fragilis induced production of IL-23, IL-12p70, and IL-10, whereas E. coli and Enterococcus induced an IL-10-predominant response. mDC and monocyte depletion experiments indicated that these cell types differentially produced IL-10 and IL-23 in response to E. coli and B. fragilis. Bacteroides thetaiotaomicron did not induce levels of IL-23 similar to those of B. fragilis, suggesting that B. fragilis may have unique proinflammatory properties among Bacteroides species. The addition of recombinant human IL-10 to PBMC cultures stimulated with commensal bacteria abrogated the IL-23 response, whereas blocking IL-10 significantly enhanced IL-23 production, suggesting that IL-10 controls the levels of IL-23 produced. These results indicate that blood mDC and monocytes respond differentially to innate stimulation with whole commensal bacteria and that IL-10 may play a role in controlling the proinflammatory response to translocated microbes.

  6. Engineering Human Microbiota: Influencing Cellular and Community Dynamics for Therapeutic Applications.

    Science.gov (United States)

    Woloszynek, S; Pastor, S; Mell, J C; Nandi, N; Sokhansanj, B; Rosen, G L

    2016-01-01

    The complex relationship between microbiota, human physiology, and environmental perturbations has become a major research focus, particularly with the arrival of culture-free and high-throughput approaches for studying the microbiome. Early enthusiasm has come from results that are largely correlative, but the correlative phase of microbiome research has assisted in defining the key questions of how these microbiota interact with their host. An emerging repertoire for engineering the microbiome places current research on a more experimentally grounded footing. We present a detailed look at the interplay between microbiota and host and how these interactions can be exploited. A particular emphasis is placed on unstable microbial communities, or dysbiosis, and strategies to reestablish stability in these microbial ecosystems. These include manipulation of intermicrobial communication, development of designer probiotics, fecal microbiota transplantation, and synthetic biology.

  7. Mining the human gut microbiota for effector strains that shape the immune system.

    Science.gov (United States)

    Ahern, Philip P; Faith, Jeremiah J; Gordon, Jeffrey I

    2014-06-19

    The gut microbiota codevelops with the immune system beginning at birth. Mining the microbiota for bacterial strains responsible for shaping the structure and dynamic operations of the innate and adaptive arms of the immune system represents a formidable combinatorial problem but one that needs to be overcome to advance mechanistic understanding of microbial community and immune system coregulation and to develop new diagnostic and therapeutic approaches that promote health. Here, we discuss a scalable, less biased approach for identifying effector strains in complex microbial communities that impact immune function. The approach begins by identifying uncultured human fecal microbiota samples that transmit immune phenotypes to germ-free mice. Clonally arrayed sequenced collections of bacterial strains are constructed from representative donor microbiota. If the collection transmits phenotypes, effector strains are identified by testing randomly generated subsets with overlapping membership in individually housed germ-free animals. Detailed mechanistic studies of effector strain-host interactions can then be performed.

  8. Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria

    DEFF Research Database (Denmark)

    Rettedal, Elizabeth; Gumpert, Heidi; Sommer, Morten

    2014-01-01

    The human gut microbiota is linked to a variety of human health issues and implicated in antibiotic resistance gene dissemination. Most of these associations rely on culture-independent methods, since it is commonly believed that gut microbiota cannot be easily or sufficiently cultured. Here, we...... show that carefully designed conditions enable cultivation of a representative proportion of human gut bacteria, enabling rapid multiplex phenotypic profiling. We use this approach to determine the phylogenetic distribution of antibiotic tolerance phenotypes for 16 antibiotics in the human gut...... microbiota. Based on the phenotypic mapping, we tailor antibiotic combinations to specifically select for previously uncultivated bacteria. Utilizing this method we cultivate and sequence the genomes of four isolates, one of which apparently belongs to the genus Oscillibacter; uncultivated Oscillibacter...

  9. Cephalosporinases associated with outer membrane vesicles released by Bacteroides spp. protect gut pathogens and commensals against β-lactam antibiotics.

    Science.gov (United States)

    Stentz, Régis; Horn, Nikki; Cross, Kathryn; Salt, Louise; Brearley, Charles; Livermore, David M; Carding, Simon R

    2015-03-01

    To identify β-lactamase genes in gut commensal Bacteroides species and to assess the impact of these enzymes, when carried by outer membrane vesicles (OMVs), in protecting enteric pathogens and commensals. A deletion mutant of the putative class A β-lactamase gene (locus tag BT_4507) found in the genome of the human commensal Bacteroides thetaiotaomicron was constructed and a phenotypic analysis performed. A phylogenetic tree was built from an alignment of nine Bacteroides cephalosporinase protein sequences, using the maximum likelihood method. The rate of cefotaxime degradation after incubation with OMVs produced by different Bacteroides species was quantified using a disc susceptibility test. The resistance of Salmonella Typhimurium and Bifidobacterium breve to cefotaxime in liquid culture in the presence of B. thetaiotaomicron OMVs was evaluated by measuring bacterial growth. The B. thetaiotaomicron BT_4507 gene encodes a β-lactamase related to the CepA cephalosporinase of Bacteroides fragilis. OMVs produced by B. thetaiotaomicron and several other Bacteroides species, except Bacteroides ovatus, carried surface-associated β-lactamases that could degrade cefotaxime. β-Lactamase-harbouring OMVs from B. thetaiotaomicron protected Salmonella Typhimurium and B. breve from an otherwise lethal dose of cefotaxime. The production of membrane vesicles carrying surface-associated β-lactamases by Bacteroides species, which constitute a major part of the human colonic microbiota, may protect commensal bacteria and enteric pathogens, such as Salmonella Typhimurium, against β-lactam antibiotics. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  10. Degradation of Marine Algae-Derived Carbohydrates by Bacteroidetes Isolated from Human Gut Microbiota.

    Science.gov (United States)

    Li, Miaomiao; Shang, Qingsen; Li, Guangsheng; Wang, Xin; Yu, Guangli

    2017-03-24

    Carrageenan, agarose, and alginate are algae-derived undigested polysaccharides that have been used as food additives for hundreds of years. Fermentation of dietary carbohydrates of our food in the lower gut of humans is a critical process for the function and integrity of both the bacterial community and host cells. However, little is known about the fermentation of these three kinds of seaweed carbohydrates by human gut microbiota. Here, the degradation characteristics of carrageenan, agarose, alginate, and their oligosaccharides, by Bacteroides xylanisolvens, Bacteroides ovatus, and Bacteroides uniforms, isolated from human gut microbiota, are studied.

  11. The role of the gut microbiota in the pathogenesis of antiphospholipid syndrome.

    Science.gov (United States)

    Ruff, William E; Vieira, Silvio M; Kriegel, Martin A

    2015-01-01

    Infectious triggers are associated with the induction of transient antiphospholipid antibodies. One therefore wonders if microbes that permanently colonize us play a role in the pathogenesis of antiphospholipid syndrome (APS). The microbiota represents the collection of all microorganisms colonizing humans and is necessary for normal host physiology. The microbiota, however, is a constant stress on the immune system, which is tasked with recognizing and eliminating pathogenic microbes while tolerating commensal populations. A growing body of literature supports a critical role for the commensal-immune axis in the development of autoimmunity against colonized barriers (e.g., gut or skin) and sterile organs (e.g., pancreas or joints). Whether these interactions affect the development and sustainment of autoreactive CD4(+) T cells and pathogenic autoantibodies in APS is unknown. This review provides an overview of the current understanding of the commensal-immune axis in autoimmunity with a focus on the potential relevance to APS. Additionally, we discuss emerging findings supporting the involvement of the gut microbiota in a spontaneous model of APS, the (NZW × BXSB)F1 hybrid, and formalize hypotheses to explain how interactions between the immune system and the microbiota may influence human APS etiopathogenesis.

  12. Commensal Bacteria Aid Mate-selection in the Fruit Fly, Bactrocera dorsalis.

    Science.gov (United States)

    Damodaram, Kamala Jayanthi Pagadala; Ayyasamy, Arthikirubha; Kempraj, Vivek

    2016-10-01

    Commensal bacteria influence many aspects of an organism's behaviour. However, studies on the influence of commensal bacteria in insect mate-selection are scarce. Here, we present empirical evidence that commensal bacteria mediate mate-selection in the Oriental fruit fly, Bactrocera dorsalis. Male flies were attracted to female flies, but this attraction was abolished when female flies were fed with antibiotics, suggesting the role of the fly's microbiota in mediating mate-selection. We show that male flies were attracted to and ejaculated more sperm into females harbouring the microbiota. Using culturing and 16S rDNA sequencing, we isolated and identified different commensal bacteria, with Klebsiella oxytoca being the most abundant bacterial species. This preliminary study will enhance our understanding of the influence of commensal bacteria on mate-selection behaviour of B. dorsalis and may find use in devising control operations against this devastating pest.

  13. In Vitro Culture Conditions for Maintaining a Complex Population of Human Gastrointestinal Tract Microbiota

    Directory of Open Access Journals (Sweden)

    Bong-Soo Kim

    2011-01-01

    Full Text Available A stable intestinal microbiota is important in maintaining human physiology and health. Although there have been a number of studies using in vitro and in vivo approaches to determine the impact of diet and xenobiotics on intestinal microbiota, there is no consensus for the best in vitro culture conditions for growth of the human gastrointestinal microbiota. To investigate the dynamics and activities of intestinal microbiota, it is important for the culture conditions to support the growth of a wide range of intestinal bacteria and maintain a complex microbial community representative of the human gastrointestinal tract. Here, we compared the bacterial community in three culture media: brain heart infusion broth and high- and low-carbohydrate medium with different growth supplements. The bacterial community was analyzed using denaturing gradient gel electrophoresis (DGGE, pyrosequencing and real-time PCR. Based on the molecular analysis, this study indicated that the 3% fecal inoculum in low-concentration carbohydrate medium with 1% autoclaved fecal supernatant provided enhanced growth conditions to conduct in vitro studies representative of the human intestinal microbiota.

  14. Role of interaction between Th17 cells and commensal microbiota in the pathogenesis of inflammatory bowel disease%Th17细胞及肠道内共生菌群在炎症性肠病中的作用

    Institute of Scientific and Technical Information of China (English)

    李睿东; 韩高雄; 陶凯雄

    2011-01-01

    Inflammatory bowel disease (IBD) is an autoimmune disease whose etiology and pathogenesis remain incompletely understood. Thl7 cells can secrete cytokines interleukin-17A and interleu-kin-17F, which play an important role in the pathogenesis of IBD. Some studies have proved that reduction of IL-17A and IL-17F can attenuate intestinal mucosal inflammation. Additionally, many studies reveal that the occurrence of IBD is correlated with commensal microbiota. Commensal microbiota can alter the number of Thl7 cells in intestinal mucosa and cause abnormal intestinal mucosal immune responses. Elucidation of relationship between Thl7 cells and commensal microbiota in intestinal mucosa is important for understanding the pathogenesis of IBD.%炎症性肠病(inflammatory bowel disease,IBD)是一种以慢性肠道炎症性疾病,病因未明,肠道黏膜异常的免疫反应在发病中有着重要作用.最近发现一类辅助T淋巴细胞Th17细胞,能在肠黏膜中大量分泌IL-17A和IL-17F.减少肠道Th17细胞数量和其相关的细胞因子的表达能够缓解肠道炎症反应,预示Th17细胞在IBD发病中起到一定作用.肠道共生菌与IBD的发病也有着密切关系,肠道共生菌群的变化可能导致Th17细胞的数量发生改变引起炎症,或者通过其他机制和途径诱发免疫紊乱,从而使得炎症得以发生.本文就Th17细胞的分化与其在IBD中的作用,以及共生菌群和Th17细胞之间的相互联系作一综述.

  15. The human gastrointestinal microbiota - An unexplored frontier for pharmaceutical discovery

    NARCIS (Netherlands)

    Roeselers, G.; Bouwman, J.; Venema, K.; Montijn, R.

    2012-01-01

    The mammalian gastrointestinal tract (GIT) harbors microorganisms (the microbiota) of vast phylogentic, genomic, and metabolic diversity, and recent years have seen a rapid development in the techniques for studying these complex microbial ecosystems. It is increasingly apparent that the GIT microbi

  16. Intestinal microbiota in human health and disease: the impact of probiotics

    NARCIS (Netherlands)

    Gerritsen, J.; Smidt, H.; Rijkers, G.T.; Vos, de W.M.

    2011-01-01

    The complex communities of microorganisms that colonise the human gastrointestinal tract play an important role in human health. The development of culture-independent molecular techniques has provided new insights in the composition and diversity of the intestinal microbiota. Here, we summarise the

  17. The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota

    NARCIS (Netherlands)

    Scanlan, P.D.; Stensvold, C.R.; Rajilic-Stojanovic, M.; Heilig, H.G.; Vos, de W.M.; O'Toole, P.W.; Cotter, P.D.

    2014-01-01

    To date, the majority of research into the human gut microbiota has focused on the bacterial fraction of the community. Inevitably, this has resulted in a poor understanding of the diversity and functionality of other intestinal microorganisms in the human gut. One such nonbacterial member is the mi

  18. Intestinal microbiota in human health and disease: the impact of probiotics

    NARCIS (Netherlands)

    Gerritsen, J.; Smidt, H.; Rijkers, G.T.; Vos, de W.M.

    2011-01-01

    The complex communities of microorganisms that colonise the human gastrointestinal tract play an important role in human health. The development of culture-independent molecular techniques has provided new insights in the composition and diversity of the intestinal microbiota. Here, we summarise the

  19. Xylan-regulated delivery of human keratinocyte growth factor-2 to the inflamed colon by the human anaerobic commensal bacterium Bacteroides ovatus.

    Science.gov (United States)

    Hamady, Zaed Z R; Scott, Nigel; Farrar, Mark D; Lodge, J Peter A; Holland, Keith T; Whitehead, Terence; Carding, Simon R

    2010-04-01

    Human growth factors are potential therapeutic agents for various inflammatory disorders affecting the gastrointestinal tract. However, they are unstable when administered orally and systemic administration requires high doses increasing the risk of unwanted side effects. Live microorganism-based delivery systems can overcome these problems although they suffer from the inability to control heterologous protein production and there are concerns regarding biosafety and environmental contamination. To overcome these limitations we have developed a new live bacteria drug-delivery system using the human commensal gut bacterium Bacteroides ovatus engineered to secrete human growth factors in response to dietary xylan. The anaerobic nature of B ovatus provides an inherent biosafety feature. B ovatus strains expressing human keratinocyte growth factor-2, which plays a central role in intestinal epithelial homeostasis and repair (BO-KGF), were generated by homologous recombination and evaluated using the dextran sodium sulfate (DSS)-induced model of intestinal epithelial injury and colitis. In response to xylan BO-KGF produced biologically active KGF both in vitro and in vivo. In DSS treated mice administration of xylan and BO-KGF had a significant therapeutic effect in reducing weight loss, improving stool consistency, reducing rectal bleeding, accelerating healing of damaged epithelium, reducing inflammation and neutrophil infiltration, reducing expression of pro-inflammatory cytokines, and accelerating production of goblet cells. BO-KGF and xylan treatment also had a marked prophylactic effect limiting the development of inflammation and disruption of the epithelial barrier. This novel, diet-regulated, live bacterial drug delivery system may be applicable to treating various bowel disorders.

  20. Human gut microbiota changes reveal the progression of glucose intolerance.

    Science.gov (United States)

    Zhang, Xiuying; Shen, Dongqian; Fang, Zhiwei; Jie, Zhuye; Qiu, Xinmin; Zhang, Chunfang; Chen, Yingli; Ji, Linong

    2013-01-01

    To explore the relationship of gut microbiota with the development of type 2 diabetes (T2DM), we analyzed 121 subjects who were divided into 3 groups based on their glucose intolerance status: normal glucose tolerance (NGT; n = 44), prediabetes (Pre-DM; n = 64), or newly diagnosed T2DM (n = 13). Gut microbiota characterizations were determined with 16S rDNA-based high-throughput sequencing. T2DM-related dysbiosis was observed, including the separation of microbial communities and a change of alpha diversity between the different glucose intolerance statuses. To assess the correlation between metabolic parameters and microbiota diversity, clinical characteristics were also measured and a significant association between metabolic parameters (FPG, CRP) and gut microbiota was found. In addition, a total of 28 operational taxonomic units (OTUs) were found to be related to T2DM status by the Kruskal-Wallis H test, most of which were enriched in the T2DM group. Butyrate-producing bacteria (e.g. Akkermansia muciniphila ATCCBAA-835, and Faecalibacterium prausnitzii L2-6) had a higher abundance in the NGT group than in the pre-DM group. At genus level, the abundance of Bacteroides in the T2DM group was only half that of the NGT and Pre-DM groups. Previously reported T2DM-related markers were also compared with the data in this study, and some inconsistencies were noted. We found that Verrucomicrobiae may be a potential marker of T2DM as it had a significantly lower abundance in both the pre-DM and T2DM groups. In conclusion, this research provides further evidence of the structural modulation of gut microbiota in the pathogenesis of diabetes.

  1. Absence of mucosal immunity in the human upper respiratory tract to the commensal bacteria Neisseria lactamica but not pathogenic Neisseria meningitidis during the peak age of nasopharyngeal carriage.

    Science.gov (United States)

    Vaughan, Andrew T; Gorringe, Andrew; Davenport, Victoria; Williams, Neil A; Heyderman, Robert S

    2009-02-15

    The normal flora that colonizes the mucosal epithelia has evolved diverse strategies to evade, modulate, or suppress the immune system and avoid clearance. Neisseria lactamica and Neisseria meningitidis are closely related obligate inhabitants of the human upper respiratory tract. N. lactamica is a commensal but N. meningitidis is an opportunistic pathogen that occasionally causes invasive disease such as meningitis and septicemia. We demonstrate that unlike N. meningitidis, N. lactamica does not prime the development of mucosal T or B cell memory during the peak period of colonization. This cannot be explained by the induction of peripheral tolerance or regulatory CD4(+)CD25(+) T cell activity. Instead, N. lactamica mediates a B cell-dependent mitogenic proliferative response that is absent to N. meningitidis. This mitogenic response is associated with the production of T cell-independent polyclonal IgM that we propose functions by shielding colonizing N. lactamica from the adaptive immune system, maintaining immunological ignorance in the host. We conclude that, in contrast to N. meningitidis, N. lactamica maintains a commensal relationship with the host in the absence of an adaptive immune response. This may prolong the period of susceptibility to colonization by both pathogenic and nonpathogenic Neisseria species.

  2. Structure of dihydrodipicolinate synthase from the commensal bacterium Bacteroides thetaiotaomicron at 2.1 Å resolution.

    Science.gov (United States)

    Mank, Nicholas; Arnette, Amy; Klapper, Vince; Offermann, Lesa; Chruszcz, Maksymilian

    2015-04-01

    Dihydrodipicolinate synthase (DapA) catalyzes the first committed step of the diaminopimelate biosynthetic pathway of lysine. It has been shown to be an essential enzyme in many bacteria and has been the subject of research to generate novel antibiotics. However, this pathway is present in both pathogenic and commensal bacteria, and antibiotics targeting DapA may interfere with normal gut colonization. Bacteroides thetaiotaomicron is a Gram-negative commensal bacterium that makes up a large proportion of the normal microbiota of the human gut. The structure of DapA from B. thetaiotaomicron (BtDapA) has been determined. This structure will help to guide the generation of selectively active antibiotic compounds targeting DapA.

  3. [The history of commensalism: a contemporary history of microbiology].

    Science.gov (United States)

    Poreau, Brice

    2014-01-01

    Commensalism is a biological association between two species, with one species, the commensal, getting an advantage, whereas the other one, the host, gets no advantage neither disadvantage. This concept is theorized in the 1860's by Pierre-Joseph Van Beneden. Van Beneden is a physician in the 1850's, nevertheless, he is well known as a zoologist. The concept of commensalism developed by Van Beneden is employed in many scientific fields, not only in zoology, but also, in microbiology. Although the use of a possible play of the commensal bacterial microflora is exposed at the end of the 19th century, it is only during the second part of the 20th century that this way is studied. Commensalism in animal microbiology is studied first and then it is studied in human. The aim of this article is to present the history of commensalism as a main part of the history of microbiology.

  4. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults

    DEFF Research Database (Denmark)

    Larsen, Nadja; Vogensen, Finn Kvist; van der Berg, Franciscus Winfried J

    2010-01-01

    Background Recent evidence suggests that there is a link between metabolic diseases and bacterial populations in the gut. The aim of this study was to assess the differences between the composition of the intestinal microbiota in humans with type 2 diabetes and non-diabetic persons as control....... Methods and Findings The study included 36 male adults with a broad range of age and body-mass indices (BMIs), among which 18 subjects were diagnosed with diabetes type 2. The fecal bacterial composition was investigated by real-time quantitative PCR (qPCR) and in a subgroup of subjects (N = 20) by tag...... = 0.04). Conclusions The results of this study indicate that type 2 diabetes in humans is associated with compositional changes in intestinal microbiota. The level of glucose tolerance should be considered when linking microbiota with metabolic diseases such as obesity and developing strategies...

  5. Intestinal Microbiota Distinguish Gout Patients from Healthy Humans.

    Science.gov (United States)

    Guo, Zhuang; Zhang, Jiachao; Wang, Zhanli; Ang, Kay Ying; Huang, Shi; Hou, Qiangchuan; Su, Xiaoquan; Qiao, Jianmin; Zheng, Yi; Wang, Lifeng; Koh, Eileen; Danliang, Ho; Xu, Jian; Lee, Yuan Kun; Zhang, Heping

    2016-02-08

    Current blood-based approach for gout diagnosis can be of low sensitivity and hysteretic. Here via a 68-member cohort of 33 healthy and 35 diseased individuals, we reported that the intestinal microbiota of gout patients are highly distinct from healthy individuals in both organismal and functional structures. In gout, Bacteroides caccae and Bacteroides xylanisolvens are enriched yet Faecalibacterium prausnitzii and Bifidobacterium pseudocatenulatum depleted. The established reference microbial gene catalogue for gout revealed disorder in purine degradation and butyric acid biosynthesis in gout patients. In an additional 15-member validation-group, a diagnosis model via 17 gout-associated bacteria reached 88.9% accuracy, higher than the blood-uric-acid based approach. Intestinal microbiota of gout are more similar to those of type-2 diabetes than to liver cirrhosis, whereas depletion of Faecalibacterium prausnitzii and reduced butyrate biosynthesis are shared in each of the metabolic syndromes. Thus the Microbial Index of Gout was proposed as a novel, sensitive and non-invasive strategy for diagnosing gout via fecal microbiota.

  6. The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis.

    Science.gov (United States)

    Cosseau, Celine; Devine, Deirdre A; Dullaghan, Edie; Gardy, Jennifer L; Chikatamarla, Avinash; Gellatly, Shaan; Yu, Lorraine L; Pistolic, Jelena; Falsafi, Reza; Tagg, John; Hancock, Robert E W

    2008-09-01

    Streptococcus salivarius is an early colonizer of human oral and nasopharyngeal epithelia, and strain K12 has reported probiotic effects. An emerging paradigm indicates that commensal bacteria downregulate immune responses through the action on NF-kappaB signaling pathways, but additional mechanisms underlying probiotic actions are not well understood. Our objective here was to identify host genes specifically targeted by K12 by comparing their responses with responses elicited by pathogens and to determine if S. salivarius modulates epithelial cell immune responses. RNA was extracted from human bronchial epithelial cells (16HBE14O- cells) cocultured with K12 or bacterial pathogens. cDNA was hybridized to a human 21K oligonucleotide-based array. Data were analyzed using ArrayPipe, InnateDB, PANTHER, and oPOSSUM. Interleukin 8 (IL-8) and growth-regulated oncogene alpha (Groalpha) secretion were determined by enzyme-linked immunosorbent assay. It was demonstrated that S. salivarius K12 specifically altered the expression of 565 host genes, particularly those involved in multiple innate defense pathways, general epithelial cell function and homeostasis, cytoskeletal remodeling, cell development and migration, and signaling pathways. It inhibited baseline IL-8 secretion and IL-8 responses to LL-37, Pseudomonas aeruginosa, and flagellin in epithelial cells and attenuated Groalpha secretion in response to flagellin. Immunosuppression was coincident with the inhibition of activation of the NF-kappaB pathway. Thus, the commensal and probiotic behaviors of S. salivarius K12 are proposed to be due to the organism (i) eliciting no proinflammatory response, (ii) stimulating an anti-inflammatory response, and (iii) modulating genes associated with adhesion to the epithelial layer and homeostasis. S. salivarius K12 might thereby ensure that it is tolerated by the host and maintained on the epithelial surface while actively protecting the host from inflammation and apoptosis

  7. Role of gut microbiota in the modulation of atherosclerosis-associated immune response

    Directory of Open Access Journals (Sweden)

    Dimitry A Chistiakov

    2015-06-01

    Full Text Available Inflammation and metabolic abnormalities are linked to each other. At present, pathogenic inflammatory response was recognized as a major player in metabolic diseases. In humans, intestinal microflora could significantly influence the development of metabolic diseases including atherosclerosis. Commensal bacteria were shown to activate inflammatory pathways through altering lipid metabolism in adipocytes, macrophages, and vascular cells, inducing insulin resistance, and producing trimethylamine-N-oxide. However, gut microbiota could also play the atheroprotective role associated with anthocyanin metabolism and administration of probiotics and their components. Here, we review the mechanisms by which the gut microbiota may influence atherogenesis.

  8. Host-specific functional significance of Caenorhabditis gut commensals

    Directory of Open Access Journals (Sweden)

    Maureen Berg

    2016-10-01

    Full Text Available The gut microbiota is an important contributor to host health and fitness. Given its importance, microbiota composition should not be left to chance. However, what determines this composition is far from clear, with results supporting contributions of both environmental factors and host genetics. To gauge the relative contributions of host genetics and environment, specifically the microbial diversity, we characterized the gut microbiotas of Caenorhabditis species spanning 200-300 million years of evolution, and raised on different composted soil environments. Comparisons were based on 16S rDNA deep sequencing data, as well as on functional evaluation of gut isolates. Worm microbiotas were distinct from those in their respective soil environment, and included bacteria previously identified as part of the C. elegans core microbiota. Microbiotas differed between experiments initiated with different soil communities, but within each experiment, worm microbiotas clustered according to host identity, demonstrating a dominant contribution of environmental diversity, but also a contribution of host genetics. The dominance of environmental contributions hindered identification of host-associated microbial taxa from 16S data. Characterization of gut isolates from C. elegans and C. briggsae, focusing on the core family Enterobacteriaceae, were also unable to expose phylogenetic distinctions between microbiotas of the two species. However, functional evaluation of the isolates revealed host-specific contributions, wherein gut commensals protected their own host from infection, but not a non-host. Identification of commensal host-specificity at the functional level, otherwise overlooked in standard sequence-based analyses, suggests that the contribution of host genetics to shaping of gut microbiotas may be greater than previously realized.

  9. Host-Specific Functional Significance of Caenorhabditis Gut Commensals

    Science.gov (United States)

    Berg, Maureen; Zhou, Xiao Ying; Shapira, Michael

    2016-01-01

    The gut microbiota is an important contributor to host health and fitness. Given its importance, microbiota composition should not be left to chance. However, what determines this composition is far from clear, with results supporting contributions of both environmental factors and host genetics. To gauge the relative contributions of host genetics and environment, specifically the microbial diversity, we characterized the gut microbiotas of Caenorhabditis species spanning 200–300 million years of evolution, and raised on different composted soil environments. Comparisons were based on 16S rDNA deep sequencing data, as well as on functional evaluation of gut isolates. Worm microbiotas were distinct from those in their respective soil environment, and included bacteria previously identified as part of the C. elegans core microbiota. Microbiotas differed between experiments initiated with different soil communities, but within each experiment, worm microbiotas clustered according to host identity, demonstrating a dominant contribution of environmental diversity, but also a significant contribution of host genetics. The dominance of environmental contributions hindered identification of host-associated microbial taxa from 16S data. Characterization of gut isolates from C. elegans and C. briggsae, focusing on the core family Enterobacteriaceae, were also unable to expose phylogenetic distinctions between microbiotas of the two species. However, functional evaluation of the isolates revealed host-specific contributions, wherein gut commensals protected their own host from infection, but not a non-host. Identification of commensal host-specificity at the functional level, otherwise overlooked in standard sequence-based analyses, suggests that the contribution of host genetics to shaping of gut microbiotas may be greater than previously realized.

  10. In vitro fermentation patterns of rice bran components by human gut microbiota

    Science.gov (United States)

    Rice bran is a rich source of bioactive components that can promote gastrointestinal health. However, bran is removed during polishing. Among those, feruloylated arabinoxylan oligosaccharides (FAXO) and rice bran polyphenolics (RBPP) are hypothesized to have positive impacts on human gut microbiota ...

  11. Analysis of diversity and function of the human small intestinal microbiota

    NARCIS (Netherlands)

    Booijink, C.C.G.M.

    2009-01-01

    The gastrointestinal (GI) tract is the main site where the conversion and absorption of food components takes place in humans. As the small intestine is the first site of interaction between the microbiota and ingested food, knowledge about the microbial composition as well as functionality is essen

  12. Analysis of diversity and function of the human small intestinal microbiota

    NARCIS (Netherlands)

    Booijink, C.C.G.M.

    2009-01-01

    The gastrointestinal (GI) tract is the main site where the conversion and absorption of food components takes place in humans. As the small intestine is the first site of interaction between the microbiota and ingested food, knowledge about the microbial composition as well as functionality is

  13. Dietary whole grain-microbiota interactions: Insights into mechanisms for human health

    Science.gov (United States)

    This article summarizes the presentations from the “Dietary whole grain-microbiota interactions: Insights into mechanisms for human health” symposium held at the ASN Annual Meeting in San Diego, CA on April 28, 2014. The symposium focused on the interactive effects of whole grains and non-digestible...

  14. Gut-Brain Axis: The Role of Gut Microbiota in Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Alper Evrensel

    2015-12-01

    Full Text Available Gut microbiota is essential to human health, playing a major and important role in the bidirectional communication between the gut and the brain. There is significant evidence linking gut microbiota and metabolic disorders such as obesity, diabetes and neuropsychiatric disorders such as schizophrenia, autism, anxiety, depression. New studies show microbiota can activate immune system, neural pathways and central nervous system signaling systems, including commensal, probiotic and pathogenic microorganisms in the gastrointestinal tract. This microorganisms are capable of producing and delivering neuroactive substances such as gamma-aminobutyric acid and serotonin, which act on the gut-brain axis. Preclinical evaluation in rodents suggests that certain probiotics possess antidepressant or anxiolytic activity. Effects may be mediated via the vagus nerve, spinal cord, immune system or neuroendocrine systems. Here we review recent literature that examines the impact of gut microbiota on the brain, behavior and psychiatric disorders.

  15. Sampling of intestinal microbiota and targeted amplification of bacterial 16S rRNA genes for microbial ecologic analysis.

    Science.gov (United States)

    Tong, Maomeng; Jacobs, Jonathan P; McHardy, Ian H; Braun, Jonathan

    2014-11-03

    Dysbiosis of host-associated commensal microbiota is emerging as an important factor in risk and phenotype of immunologic, metabolic, and behavioral diseases. Accurate analysis of microbial composition and functional state in humans or mice requires appropriate collection and pre-processing of biospecimens. Methods to sample luminal and mucosal microbiota from human or mouse intestines and to profile microbial phylogenetic composition using 16S rRNA sequencing are presented here. Data generated using the methods in this unit can be used for downstream quantitative analysis of microbial ecology.

  16. This Gut Ain't Big Enough for Both of Us. Or Is It? Helminth-Microbiota Interactions in Veterinary Species.

    Science.gov (United States)

    Peachey, Laura E; Jenkins, Timothy P; Cantacessi, Cinzia

    2017-08-01

    Gastrointestinal helminth parasites share their habitat with a myriad of other organisms, that is, the commensal microbiota. Increasing evidence, particularly in humans and rodent models of helminth infection, points towards a multitude of interactions occurring between parasites and the gut microbiota, with a profound impact on both host immunity and metabolic potential. Despite this information, the exploration of the effects that parasite infections exert on populations of commensal gut microbes of veterinary species is a field of research in its infancy. In this article, we summarise studies that have contributed to current knowledge of helminth-microbiota interactions in species of veterinary interest, and identify possible avenues for future research in this area, which could include the exploitation of such relationships to improve parasite control and delay or prevent the development of anthelmintic resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. THE HUMAN MICROBIOTA: THE ROLE OF MICROBIAL COMMUNITIES IN HEALTH AND DISEASE

    Directory of Open Access Journals (Sweden)

    Luz Elena Botero Palacio

    2015-11-01

    Full Text Available ABSTRACTDuring the last decade, there has been increasing awareness of the massive number of microorganisms, collectively known as the human microbiota, that are associated with humans. This microbiota outnumbers the host cells by approximately a factor of ten and contains a large repertoire of microbial genome-encoded metabolic processes. The diverse human microbiota and its associated metabolic potential can provide the host with novel functions that can influence host health and disease status in ways that still need to be analyzed. The microbiota varies with age, with features that depend on the body site, host lifestyle and health status. The challenge is therefore to identify and characterize these microbial communities and use this information to learn how they function and how they can influence the host in terms of health and well-being. Here we provide an overview of some of the recent studies involving the human microbiota and about how these communities might affect host health and disease. A special emphasis is given to studies related to tuberculosis, a disease that claims over one million lives each year worldwide and still represents a challenge for control in many countries, including Colombia. RESUMEN En las últimas décadas ha incrementado nuestro conocimiento sobre la gran cantidad de microorganismos que conviven con nosotros, comunidades que colectivamente se conocen como la microbiota humana. El número de microorganismos que conforman la microbiota supera el número de células del cuerpo humano por un factor de diez aproximadamente y aporta un gran repertorio de genes y procesos metabólicos. La diversidad de la microbiota humana y su potencial metabólico brindan al hospedero una serie de funciones que complementan sus procesos y a su vez pueden influir sobre la salud del ser humano en formas que apenas se empiezan a conocer. La microbiota varía desde el nacimiento hasta la vejez del individuo, con características que

  18. Human norovirus binding to select bacteria representative of the human gut microbiota

    Science.gov (United States)

    Almand, Erin A.; Outlaw, Janie; Jaykus, Lee-Ann

    2017-01-01

    Recent reports describe the ability of select bacterial strains to bind human norovirus, although the specificity of such interactions is unknown. The purpose of this work was to determine if a select group of bacterial species representative of human gut microbiota bind to human norovirus, and if so, to characterize the intensity and location of that binding. The bacteria screened included naturally occurring strains isolated from human stool (Klebsiella spp., Citrobacter spp., Bacillus spp., Enterococcus faecium and Hafnia alvei) and select reference strains (Staphylococcus aureus and Enterobacter cloacae). Binding in PBS was evaluated to three human norovirus strains (GII.4 New Orleans 2009 and Sydney 2012, GI.6) and two surrogate viruses (Tulane virus and Turnip Crinkle Virus (TCV)) using a suspension assay format linked to RT-qPCR for quantification. The impact of different overnight culture media prior to washing on binding efficiency in PBS was also evaluated, and binding was visualized using transmission electron microscopy. All bacteria tested bound the representative human norovirus strains with high efficiency (90% binding efficiency) (p>0.05); there was selective binding for Tulane virus and no binding observed for TCV. Binding efficiency was highest when bacteria were cultured in minimal media (90% bound), but notably decreased when cultured in enriched media (1–3 log10 unbound or 0.01 –structures, without apparent localization. The findings reported here further elucidate and inform the dynamics between human noroviruses and enteric bacteria with implications for norovirus pathogenesis. PMID:28257478

  19. Intestinal microbiota in inflammatory bowel disease: Friend of foe?

    Institute of Scientific and Technical Information of China (English)

    Francesca Fava; Silvio Danese

    2011-01-01

    Inflammatory bowel disease (IBD) arises from disruption of immune tolerance to the gut commensal microbiota,leading to chronic intestinal inflammation and mucosal damage in genetically predisposed hosts. In healthy individuals the intestinal microbiota have a symbiotic relationship with the host organism and possess important and unique functions, including a metabolic function (i.e.digestion of dietary compounds and xenobiotics, fermentation of undigestible carbohydrates with production of short chain fatty acids), a mucosal barrier function (i.e. by inhibiting pathogen invasion and strengthening epithelial barrier integrity), and an immune modulatory function (i.e. mucosal immune system priming and maintenance of intestinal epithelium homeostasis). A fine balance regulates the mechanism that allows coexistence of mammals with their commensal bacteria.In IBD this mechanism of immune tolerance is impaired because of several potential causative factors. The gut microbiota composition and activity of IBD patients are abnormal, with a decreased prevalence of dominant members of the human commensal microbiota (i.e.Clostridium Ⅸa and Ⅳ groups, Bacteroides , bifidobacteria)and a concomitant increase in detrimental bacteria (i.e. sulphate-reducing bacteria, Escherichia coli ).The observed dysbiosis is concomitant with defective innate immunity and bacterial killing (i.e. reduced mucosal defensins and IgA, malfunctioning phagocytosis)and overaggressive adaptive immune response (due to ineffective regulatory T cells and antigen presenting cells), which are considered the basis of IBD pathogenesis.However, we still do not know how the interplay between these parameters causes the disease. Studies looking at gut microbial composition, epithelial integrity and mucosal immune markers in genotyped IBD populations are therefore warranted to shed light on this obscure pathogenesis.

  20. High taxonomic level fingerprint of the human intestinal microbiota by ligase detection reaction--universal array approach.

    Science.gov (United States)

    Candela, Marco; Consolandi, Clarissa; Severgnini, Marco; Biagi, Elena; Castiglioni, Bianca; Vitali, Beatrice; De Bellis, Gianluca; Brigidi, Patrizia

    2010-04-19

    Affecting the core functional microbiome, peculiar high level taxonomic unbalances of the human intestinal microbiota have been recently associated with specific diseases, such as obesity, inflammatory bowel diseases, and intestinal inflammation. In order to specifically monitor microbiota unbalances that impact human physiology, here we develop and validate an original DNA-microarray (HTF-Microbi.Array) for the high taxonomic level fingerprint of the human intestinal microbiota. Based on the Ligase Detection Reaction-Universal Array (LDR-UA) approach, the HTF-Microbi.Array enables specific detection and approximate relative quantification of 16S rRNAs from 30 phylogenetically related groups of the human intestinal microbiota. The HTF-Microbi.Array was used in a pilot study of the faecal microbiota of eight young adults. Cluster analysis revealed the good reproducibility of the high level taxonomic microbiota fingerprint obtained for each of the subject. The HTF-Microbi.Array is a fast and sensitive tool for the high taxonomic level fingerprint of the human intestinal microbiota in terms of presence/absence of the principal groups. Moreover, analysis of the relative fluorescence intensity for each probe pair of our LDR-UA platform can provide estimation of the relative abundance of the microbial target groups within each samples. Focusing the phylogenetic resolution at division, order and cluster levels, the HTF-Microbi.Array is blind with respect to the inter-individual variability at the species level.

  1. Degradation of Marine Algae-Derived Carbohydrates by Bacteroidetes Isolated from Human Gut Microbiota

    OpenAIRE

    Li, Miaomiao; Shang, Qingsen; Li, Guangsheng; Wang, Xin; Yu, Guangli

    2017-01-01

    Carrageenan, agarose, and alginate are algae-derived undigested polysaccharides that have been used as food additives for hundreds of years. Fermentation of dietary carbohydrates of our food in the lower gut of humans is a critical process for the function and integrity of both the bacterial community and host cells. However, little is known about the fermentation of these three kinds of seaweed carbohydrates by human gut microbiota. Here, the degradation characteristics of carrageenan, agaro...

  2. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation.

    Science.gov (United States)

    Browne, Hilary P; Forster, Samuel C; Anonye, Blessing O; Kumar, Nitin; Neville, B Anne; Stares, Mark D; Goulding, David; Lawley, Trevor D

    2016-05-26

    Our intestinal microbiota harbours a diverse bacterial community required for our health, sustenance and wellbeing. Intestinal colonization begins at birth and climaxes with the acquisition of two dominant groups of strict anaerobic bacteria belonging to the Firmicutes and Bacteroidetes phyla. Culture-independent, genomic approaches have transformed our understanding of the role of the human microbiome in health and many diseases. However, owing to the prevailing perception that our indigenous bacteria are largely recalcitrant to culture, many of their functions and phenotypes remain unknown. Here we describe a novel workflow based on targeted phenotypic culturing linked to large-scale whole-genome sequencing, phylogenetic analysis and computational modelling that demonstrates that a substantial proportion of the intestinal bacteria are culturable. Applying this approach to healthy individuals, we isolated 137 bacterial species from characterized and candidate novel families, genera and species that were archived as pure cultures. Whole-genome and metagenomic sequencing, combined with computational and phenotypic analysis, suggests that at least 50-60% of the bacterial genera from the intestinal microbiota of a healthy individual produce resilient spores, specialized for host-to-host transmission. Our approach unlocks the human intestinal microbiota for phenotypic analysis and reveals how a marked proportion of oxygen-sensitive intestinal bacteria can be transmitted between individuals, affecting microbiota heritability.

  3. Coevolution between the Human Microbiota and the Epithelial Immune System.

    Science.gov (United States)

    Sigal, Michael; Meyer, Thomas F

    2016-01-01

    The composition and spatial distribution of our gut microbiota is tightly controlled by the host to prevent bacterial invasion and systemic infection. The gastrointestinal epithelium is predominantly made up of a cellular monolayer equipped with a number of sophisticated autonomous defense mechanisms, which are strikingly efficient in maintaining homeostasis between the luminal microbes and the host. This short review highlights aspects of this finetuned interplay. We also address how deficiencies in mucosal defense can promote disease. First, genetic defects of sensors or effectors of epithelial defense can result in the disruption of the mucosal barrier and lead to chronic inflammatory conditions. Second, chronic colonizers of the gastrointestinal tract can actively manipulate mucosal defense to escape immune surveillance. As shown for Helicobacter pylori in the stomach, sustained manipulation of the epithelium through specialized virulence determinants can increase the risk for genetic lesions and malignant transformation.

  4. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem?

    Directory of Open Access Journals (Sweden)

    Alexis eMosca

    2016-03-01

    Full Text Available Most of the Human diseases affecting westernized countries are associated with dysbiosis and loss of microbial diversity in the gut microbiota. The Western way of life, with a wide use of antibiotics and other environmental triggers, may reduce the number of bacterial predators leading to a decrease in microbial diversity of the Human gut. We argue that this phenomenon is similar to the process of ecosystem impoverishment in macro ecology where human activity decreases ecological niches, the size of predator populations and finally the biodiversity. Such pauperization is fundamental since it reverses the evolution processes, drives life backward into diminished complexity, stability and adaptability. A simple therapeutic approach could thus be to reintroduce bacterial predators and restore a bacterial diversity of the host microbiota.

  5. Gut microbiota and obesity.

    Science.gov (United States)

    Gérard, Philippe

    2016-01-01

    The human intestine harbors a complex bacterial community called the gut microbiota. This microbiota is specific to each individual despite the existence of several bacterial species shared by the majority of adults. The influence of the gut microbiota in human health and disease has been revealed in the recent years. Particularly, the use of germ-free animals and microbiota transplant showed that the gut microbiota may play a causal role in the development of obesity and associated metabolic disorders, and lead to identification of several mechanisms. In humans, differences in microbiota composition, functional genes and metabolic activities are observed between obese and lean individuals suggesting a contribution of the gut microbiota to these phenotypes. Finally, the evidence linking gut bacteria to host metabolism could allow the development of new therapeutic strategies based on gut microbiota modulation to treat or prevent obesity.

  6. The role of gut microbiota in health and disease : In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut

    NARCIS (Netherlands)

    von Martels, Julius Z H; Sadaghian Sadabad, Mehdi; Bourgonje, Arno R; Blokzijl, Tjasso; Dijkstra, Gerard; Faber, Klaas Nico; Harmsen, Hermie J M

    2017-01-01

    The microbiota of the gut has many crucial functions in human health. Dysbiosis of the microbiota has been correlated to a large and still increasing number of diseases. Recent studies have mostly focused on analyzing the associations between disease and an aberrant microbiota composition. Functiona

  7. Functional metagenomics: a high throughput screening method to decipher microbiota-driven NF-κB modulation in the human gut.

    Directory of Open Access Journals (Sweden)

    Omar Lakhdari

    Full Text Available BACKGROUND/AIM: The human intestinal microbiota plays an important role in modulation of mucosal immune responses. To study interactions between intestinal epithelial cells (IECs and commensal bacteria, a functional metagenomic approach was developed. One interest of metagenomics is to provide access to genomes of uncultured microbes. We aimed at identifying bacterial genes involved in regulation of NF-κB signaling in IECs. A high throughput cell-based screening assay allowing rapid detection of NF-κB modulation in IECs was established using the reporter-gene strategy to screen metagenomic libraries issued from the human intestinal microbiota. METHODS: A plasmid containing the secreted alkaline phosphatase (SEAP gene under the control of NF-κB binding elements was stably transfected in HT-29 cells. The reporter clone HT-29/kb-seap-25 was selected and characterized. Then, a first screening of a metagenomic library from Crohn's disease patients was performed to identify NF-κB modulating clones. Furthermore, genes potentially involved in the effect of one stimulatory metagenomic clone were determined by sequence analysis associated to mutagenesis by transposition. RESULTS: The two proinflammatory cytokines, TNF-α and IL-1β, were able to activate the reporter system, translating the activation of the NF-κB signaling pathway and NF-κB inhibitors, BAY 11-7082, caffeic acid phenethyl ester and MG132 were efficient. A screening of 2640 metagenomic clones led to the identification of 171 modulating clones. Among them, one stimulatory metagenomic clone, 52B7, was further characterized. Sequence analysis revealed that its metagenomic DNA insert might belong to a new Bacteroides strain and we identified 2 loci encoding an ABC transport system and a putative lipoprotein potentially involved in 52B7 effect on NF-κB. CONCLUSIONS: We have established a robust high throughput screening assay for metagenomic libraries derived from the human intestinal

  8. Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions.

    Science.gov (United States)

    Upadhyaya, Bijaya; McCormack, Lacey; Fardin-Kia, Ali Reza; Juenemann, Robert; Nichenametla, Sailendra; Clapper, Jeffrey; Specker, Bonny; Dey, Moul

    2016-06-30

    Dietary modulation of the gut microbiota impacts human health. Here we investigated the hitherto unknown effects of resistant starch type 4 (RS4) enriched diet on gut microbiota composition and short-chain fatty acid (SCFA) concentrations in parallel with host immunometabolic functions in twenty individuals with signs of metabolic syndrome (MetS). Cholesterols, fasting glucose, glycosylated haemoglobin, and proinflammatory markers in the blood as well as waist circumference and % body fat were lower post intervention in the RS4 group compared with the control group. 16S-rRNA gene sequencing revealed a differential abundance of 71 bacterial operational taxonomic units, including the enrichment of three Bacteroides species and one each of Parabacteroides, Oscillospira, Blautia, Ruminococcus, Eubacterium, and Christensenella species in the RS4 group. Gas chromatography-mass spectrometry revealed higher faecal SCFAs, including butyrate, propionate, valerate, isovalerate, and hexanoate after RS4-intake. Bivariate analyses showed RS4-specific associations of the gut microbiota with the host metabolic functions and SCFA levels. Here we show that dietary RS4 induced changes in the gut microbiota are linked to its biological activity in individuals with signs of MetS. These findings have potential implications for dietary guidelines in metabolic health management.

  9. Gut microbiota profiling: metabolomics based approach to unravel compounds affecting human health

    Directory of Open Access Journals (Sweden)

    Pamela Vernocchi

    2016-07-01

    Full Text Available Abstract The gut microbiota is composed of a huge number of different bacteria, which produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activity is affected by environmental stimuli leading to the generation of a wide number of compounds, which influence the host metabolome and human health. Indeed, metabolic profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies.

  10. Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions

    Science.gov (United States)

    Upadhyaya, Bijaya; McCormack, Lacey; Fardin-Kia, Ali Reza; Juenemann, Robert; Nichenametla, Sailendra; Clapper, Jeffrey; Specker, Bonny; Dey, Moul

    2016-01-01

    Dietary modulation of the gut microbiota impacts human health. Here we investigated the hitherto unknown effects of resistant starch type 4 (RS4) enriched diet on gut microbiota composition and short-chain fatty acid (SCFA) concentrations in parallel with host immunometabolic functions in twenty individuals with signs of metabolic syndrome (MetS). Cholesterols, fasting glucose, glycosylated haemoglobin, and proinflammatory markers in the blood as well as waist circumference and % body fat were lower post intervention in the RS4 group compared with the control group. 16S-rRNA gene sequencing revealed a differential abundance of 71 bacterial operational taxonomic units, including the enrichment of three Bacteroides species and one each of Parabacteroides, Oscillospira, Blautia, Ruminococcus, Eubacterium, and Christensenella species in the RS4 group. Gas chromatography–mass spectrometry revealed higher faecal SCFAs, including butyrate, propionate, valerate, isovalerate, and hexanoate after RS4-intake. Bivariate analyses showed RS4-specific associations of the gut microbiota with the host metabolic functions and SCFA levels. Here we show that dietary RS4 induced changes in the gut microbiota are linked to its biological activity in individuals with signs of MetS. These findings have potential implications for dietary guidelines in metabolic health management. PMID:27356770

  11. MALINA: a web service for visual analytics of human gut microbiota whole-genome metagenomic reads.

    Science.gov (United States)

    Tyakht, Alexander V; Popenko, Anna S; Belenikin, Maxim S; Altukhov, Ilya A; Pavlenko, Alexander V; Kostryukova, Elena S; Selezneva, Oksana V; Larin, Andrei K; Karpova, Irina Y; Alexeev, Dmitry G

    2012-12-07

    MALINA is a web service for bioinformatic analysis of whole-genome metagenomic data obtained from human gut microbiota sequencing. As input data, it accepts metagenomic reads of various sequencing technologies, including long reads (such as Sanger and 454 sequencing) and next-generation (including SOLiD and Illumina). It is the first metagenomic web service that is capable of processing SOLiD color-space reads, to authors' knowledge. The web service allows phylogenetic and functional profiling of metagenomic samples using coverage depth resulting from the alignment of the reads to the catalogue of reference sequences which are built into the pipeline and contain prevalent microbial genomes and genes of human gut microbiota. The obtained metagenomic composition vectors are processed by the statistical analysis and visualization module containing methods for clustering, dimension reduction and group comparison. Additionally, the MALINA database includes vectors of bacterial and functional composition for human gut microbiota samples from a large number of existing studies allowing their comparative analysis together with user samples, namely datasets from Russian Metagenome project, MetaHIT and Human Microbiome Project (downloaded from http://hmpdacc.org). MALINA is made freely available on the web at http://malina.metagenome.ru. The website is implemented in JavaScript (using Ext JS), Microsoft .NET Framework, MS SQL, Python, with all major browsers supported.

  12. Gut Health in the era of the human gut microbiota: from metaphor to biovalue.

    Science.gov (United States)

    Baty, Vincent; Mougin, Bruno; Dekeuwer, Catherine; Carret, Gérard

    2014-11-01

    The human intestinal ecosystem, previously called the gut microflora is now known as the Human Gut Microbiota (HGM). Microbiome research has emphasized the potential role of this ecosystem in human homeostasis, offering unexpected opportunities in therapeutics, far beyond digestive diseases. It has also highlighted ethical, social and commercial concerns related to the gut microbiota. As diet factors are accepted to be the major regulator of the gut microbiota, the modulation of its composition, either by antibiotics or by food intake, should be regarded as a fascinating tool for improving the human health. Scientists, the food industry, consumers and policymakers alike are involved in this new field of nutrition. Defining how knowledge about the HGM is being translated into public perception has never been addressed before. This raises the question of metaphors associated with the HGM, and how they could be used to improve public understanding, and to influence individual decision-making on healthcare policy. This article suggests that a meeting of stakeholders from the social sciences, basic research and the food industry, taking an epistemological approach to the HGM, is needed to foster close, innovative partnerships that will help shape public perception and enable novel behavioural interventions that would benefit public health.

  13. Elucidating the interactions between the human gut microbiota and its host through metabolic modeling

    Directory of Open Access Journals (Sweden)

    Saeed eShoaie

    2014-04-01

    Full Text Available Increased understanding of the interactions between the gut microbiota, diet and environmental effects may allow us to design efficient treatment strategies for addressing global health problems. Existence of symbiotic microorganisms in the human gut provides different functions for the host such as conversion of nutrients, training of the immune system and resistance to pathogens. The gut microbiome also plays an influential role in maintaining human health, and it is a potential target for prevention and treatment of common disorders including obesity, type 2 diabetes and atherosclerosis. Due to the extreme complexity of such disorders, it is necessary to develop mathematical models for deciphering the role of its individual elements as well as the entire system and such models may assist in better understanding of the interactions between the bacteria in the human gut and the host by use of genome-scale metabolic models (GEMs. Recently, GEMs have been employed to explore the interactions between predominant bacteria in the gut ecosystems. Additionally, these models enabled analysis of the contribution of each species to the overall metabolism of the microbiota through the integration of omics data. The outcome of these studies can be used for proposing optimal conditions for desired microbiome phenotypes. Here, we review the recent progress and challenges for elucidating the interactions between the human gut microbiota and host through metabolic modeling. We discuss how these models may provide scaffolds for analyzing high throughput data, developing probiotics and prebiotics, evaluating the effects of probiotics and prebiotics and eventually designing clinical interventions.

  14. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota.

    Science.gov (United States)

    Forslund, Kristoffer; Hildebrand, Falk; Nielsen, Trine; Falony, Gwen; Le Chatelier, Emmanuelle; Sunagawa, Shinichi; Prifti, Edi; Vieira-Silva, Sara; Gudmundsdottir, Valborg; Krogh Pedersen, Helle; Arumugam, Manimozhiyan; Kristiansen, Karsten; Voigt, Anita Yvonne; Vestergaard, Henrik; Hercog, Rajna; Igor Costea, Paul; Kultima, Jens Roat; Li, Junhua; Jørgensen, Torben; Levenez, Florence; Dore, Joël; Nielsen, H Bjørn; Brunak, Søren; Raes, Jeroen; Hansen, Torben; Wang, Jun; Ehrlich, S Dusko; Bork, Peer; Pedersen, Oluf

    2015-12-10

    In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported. In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified for treatment yielded divergent conclusions regarding its associated gut microbial dysbiosis. Here we show, using 784 available human gut metagenomes, how antidiabetic medication confounds these results, and analyse in detail the effects of the most widely used antidiabetic drug metformin. We provide support for microbial mediation of the therapeutic effects of metformin through short-chain fatty acid production, as well as for potential microbiota-mediated mechanisms behind known intestinal adverse effects in the form of a relative increase in abundance of Escherichia species. Controlling for metformin treatment, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa. These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures of specific human diseases from those of medication.

  15. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota

    DEFF Research Database (Denmark)

    Forslund, Kristoffer; Hildebrand, Falk ; Nielsen, Trine N.

    2015-01-01

    on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified......In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported1,2. In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs...... for microbial mediation of the therapeutic effects of metformin through short-chain fatty acid production, as well as for potential microbiota-mediated mechanisms behind known intestinal adverse effects in the form of a relative increase in abundance of Escherichia species. Controlling for metformin treatment...

  16. The yin and yang of bacterial resilience in the human gut microbiota.

    Science.gov (United States)

    Gibson, Molly K; Pesesky, Mitchell W; Dantas, Gautam

    2014-11-25

    The human gut is home to trillions of microbes that form a symbiotic relationship with the human host. During health, the intestinal microbiota provides many benefits to the host and is generally resistant to colonization by new species; however, disruption of this complex community can lead to pathogen invasion, inflammation, and disease. Restoration and maintenance of a healthy gut microbiota composition requires effective therapies to reduce and prevent colonization of harmful bacteria (pathogens) while simultaneously promoting growth of beneficial bacteria (probiotics). Here we review the mechanisms by which the host modulates the gut community composition during health and disease, and we discuss prospects for antibiotic and probiotic therapy for restoration of a healthy intestinal community following disruption.

  17. Novel Probiotics and Prebiotics: How Can They Help in Human Gut Microbiota Dysbiosis?

    Directory of Open Access Journals (Sweden)

    Carlos Gómez Gallego

    2016-03-01

    Full Text Available Background and Objectives: Novel probiotics and prebiotics designed to modulate the gut microbiota for improving health outcomes are in demand as the importance of the gut microbiota in human health is revealed. A review of the scientific literature regarding the current knowledge and novel species and novel oligosaccharides for the treatment of dysbiosis-associated diseases has been carried out due to their growing interest. Results and Conclusions: The regulations governing introduction of novel probiotics and prebiotics vary by geographical region. Novel foods and foods with health claims fall under specific regulations in several countries. In European Union (EU, safety is assessed by novel food approval process and by the European Food Safety Authority (EFSA established Quantitative Presumption of Safety (QPS system for bacteria and other biologicals. Any messages on health benefits are covered by the European Regulation on Health Claims (ERHC, also assessed by EFSA. Examples of recent novel probiotics in EU include Clostridium butyricum, and Bacteroides xylanisolvens and examples of novel prebiotics include human milk oligosaccharides such as Lacto-N-neotetraose. Yacon root is an example on a previously novel prebiotic food which is allowed due to the reported existing cultivation and use in EU prior to the novel food regulation. Potential future candidates include further human milk oligosaccharides and bacteria such Faecalibacterium prausnitzii and Akkermasia muciniphila. Increasing knowledge on human intestinal microbiota and microbiota development enables the design of new more specific and hitherto unknown probiotics and prebiotics. Also understanding the microbe and microbe host interactions facilitates the search for novel probiotics and prebiotics.

  18. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection

    Science.gov (United States)

    Hsiao, Ansel; Shamsir Ahmed, A.M.; Subramanian, Sathish; Griffin, Nicholas W.; Drewry, Lisa L.; Petri, William A.; Haque, Rashidul; Ahmed, Tahmeed; Gordon, Jeffrey I.

    2015-01-01

    Given the global burden of diarrheal diseases1, it is important to understand how members of the gut microbiota affect the risk for, course of, and recovery from disease in children and adults. The acute, voluminous diarrhea caused by Vibrio cholerae represents a dramatic example of enteropathogen invasion and gut microbial community disruption. We have conducted a detailed time-series metagenomic study of fecal microbiota collected during the acute diarrheal and recovery phases of cholera in a cohort of Bangladeshi adults living in an area with a high burden of disease2. We find that recovery is characterized by a pattern of accumulation of bacterial taxa that shows similarities to the pattern of assembly/maturation of the gut microbiota in healthy Bangladeshi children3. To define underlying mechanisms, we introduced into gnotobiotic mice an artificial community that was composed of human gut bacterial species that directly correlate with recovery from cholera in adults and are indicative of normal microbiota maturation in healthy Bangladeshi children3. One of the species, Ruminococcus obeum, exhibited consistent increases in its relative abundance upon V. cholerae infection of the mice. Follow-up analyses, including mono- and co-colonization studies, established that R. obeum restricts V. cholerae colonization, that R. obeum luxS [autoinducer-2 (AI-2) synthase] expression and AI-2 production increase significantly with V. cholerae invasion, and that R. obeum AI-2 causes quorum-sensing mediated repression of several V. cholerae colonization factors. Co-colonization with V. cholerae mutants disclosed that R. obeum AI-2 reduces Vibrio colonization/pathogenicity through a novel pathway that does not depend on the V. cholerae AI-2 sensor, LuxP. The approach described can be used to mine the gut microbiota of Bangladeshi or other populations for members that use autoinducers and/or other mechanisms to limit colonization with V. cholerae, or conceivably other

  19. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection.

    Science.gov (United States)

    Hsiao, Ansel; Ahmed, A M Shamsir; Subramanian, Sathish; Griffin, Nicholas W; Drewry, Lisa L; Petri, William A; Haque, Rashidul; Ahmed, Tahmeed; Gordon, Jeffrey I

    2014-11-20

    Given the global burden of diarrhoeal diseases, it is important to understand how members of the gut microbiota affect the risk for, course of, and recovery from disease in children and adults. The acute, voluminous diarrhoea caused by Vibrio cholerae represents a dramatic example of enteropathogen invasion and gut microbial community disruption. Here we conduct a detailed time-series metagenomic study of faecal microbiota collected during the acute diarrhoeal and recovery phases of cholera in a cohort of Bangladeshi adults living in an area with a high burden of disease. We find that recovery is characterized by a pattern of accumulation of bacterial taxa that shows similarities to the pattern of assembly/maturation of the gut microbiota in healthy Bangladeshi children. To define the underlying mechanisms, we introduce into gnotobiotic mice an artificial community composed of human gut bacterial species that directly correlate with recovery from cholera in adults and are indicative of normal microbiota maturation in healthy Bangladeshi children. One of the species, Ruminococcus obeum, exhibits consistent increases in its relative abundance upon V. cholerae infection of the mice. Follow-up analyses, including mono- and co-colonization studies, establish that R. obeum restricts V. cholerae colonization, that R. obeum luxS (autoinducer-2 (AI-2) synthase) expression and AI-2 production increase significantly with V. cholerae invasion, and that R. obeum AI-2 causes quorum-sensing-mediated repression of several V. cholerae colonization factors. Co-colonization with V. cholerae mutants discloses that R. obeum AI-2 reduces Vibrio colonization/pathogenicity through a novel pathway that does not depend on the V. cholerae AI-2 sensor, LuxP. The approach described can be used to mine the gut microbiota of Bangladeshi or other populations for members that use autoinducers and/or other mechanisms to limit colonization with V. cholerae, or conceivably other enteropathogens.

  20. Changes in composition of caecal microbiota associated with increased colon inflammation in interleukin-10 gene-deficient mice inoculated with Enterococcus species.

    Science.gov (United States)

    Bassett, Shalome A; Young, Wayne; Barnett, Matthew P G; Cookson, Adrian L; McNabb, Warren C; Roy, Nicole C

    2015-03-11

    Human inflammatory bowel disease (IBD) is a chronic intestinal disease where the resident microbiota contributes to disease development, yet the specific mechanisms remain unclear. Interleukin-10 gene-deficient (Il10-/-) mice develop inflammation similar to IBD, due in part to an inappropriate response to commensal bacteria. We have previously reported changes in intestinal morphology and colonic gene expression in Il10-/- mice in response to oral bacterial inoculation. In this study, we aimed to identify specific changes in the caecal microbiota associated with colonic inflammation in these mice. The microbiota was evaluated using pyrotag sequencing, denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR. Microbiota profiles were influenced by genotype of the mice and by bacterial inoculation, and a strong correlation was observed between the microbiota and colonic inflammation scores. Although un-inoculated Il10-/- and C57 mice had similar microbiota communities, bacterial inoculation resulted in different changes to the microbiota in Il10-/- and C57 mice. Inoculated Il10-/- mice had significantly less total bacteria than un-inoculated Il10-/- mice, with a strong negative correlation between total bacterial numbers, relative abundance of Escherichia/Shigella, microbiota diversity, and colonic inflammation score. Our results show a putative causative role for the microbiota in the development of IBD, with potentially key roles for Akkermansia, or for Bacteroides, Helicobacter, Parabacteroides, and Alistipes, depending on the composition of the bacterial inoculum. These data support the use of bacterially-inoculated Il10-/- mice as an appropriate model to investigate human IBD.

  1. Ecology and Evolution of the Human Microbiota: Fire, Farming and Antibiotics

    Directory of Open Access Journals (Sweden)

    Michael R. Gillings

    2015-09-01

    Full Text Available Human activities significantly affect all ecosystems on the planet, including the assemblages that comprise our own microbiota. Over the last five million years, various evolutionary and ecological drivers have altered the composition of the human microbiota, including the use of fire, the invention of agriculture, and the increasing availability of processed foods after the Industrial Revolution. However, no factor has had a faster or more direct effect than antimicrobial agents. Biocides, disinfectants and antibiotics select for individual cells that carry resistance genes, immediately reducing both overall microbial diversity and within-species genetic diversity. Treated individuals may never recover their original diversity, and repeated treatments lead to a series of genetic bottlenecks. The sequential introduction of diverse antimicrobial agents has selected for increasingly complex DNA elements that carry multiple resistance genes, and has fostered their spread through the human microbiota. Practices that interfere with microbial colonization, such as sanitation, Caesarian births and bottle-feeding, exacerbate the effects of antimicrobials, generating species-poor and less resilient microbial assemblages in the developed world. More and more evidence is accumulating that these perturbations to our internal ecosystems lie at the heart of many diseases whose frequency has shown a dramatic increase over the last half century.

  2. Human milk glycobiome and its impact on the infant gastrointestinal microbiota.

    Science.gov (United States)

    Zivkovic, Angela M; German, J Bruce; Lebrilla, Carlito B; Mills, David A

    2011-03-15

    Human milk contains an unexpected abundance and diversity of complex oligosaccharides apparently indigestible by the developing infant and instead targeted to its cognate gastrointestinal microbiota. Recent advances in mass spectrometry-based tools have provided a view of the oligosaccharide structures produced in milk across stages of lactation and among human mothers. One postulated function for these oligosaccharides is to enrich a specific "healthy" microbiota containing bifidobacteria, a genus commonly observed in the feces of breast-fed infants. Isolated culture studies indeed show selective growth of infant-borne bifidobacteria on milk oligosaccharides or core components therein. Parallel glycoprofiling documented that numerous Bifidobacterium longum subsp. infantis strains preferentially consume small mass oligosaccharides that are abundant early in the lactation cycle. Genome sequencing of numerous B. longum subsp. infantis strains shows a bias toward genes required to use mammalian-derived carbohydrates by comparison with adult-borne bifidobacteria. This intriguing strategy of mammalian lactation to selectively nourish genetically compatible bacteria in infants with a complex array of free oligosaccharides serves as a model of how to influence the human supraorganismal system, which includes the gastrointestinal microbiota.

  3. Susceptibility and tolerance of human gut culturable aerobic microbiota to wine polyphenols.

    Science.gov (United States)

    Cueva, Carolina; Bartolomé, Begoña; Moreno-Arribas, M Victoria; Bustos, Irene; Requena, Teresa; González-Manzano, Susana; Santos-Buelga, Celestino; Turrientes, María-Carmen; del Campo, Rosa

    2015-02-01

    Diet is one of the main factors that could affect quantitatively and qualitatively the stability of the gut microbiota. Polyphenols are abundantly present in the human diet and have an antimicrobial effect inducing selective changes in the microbiota composition, with potential beneficial effects for the human health. Our aim was to determine the human gut microbiota susceptibility toward wine polyphenols. Susceptibility to two commercial wine phenolic extracts (Vitaflavan(®) and Provinols™) was determined in isolates from fecal samples from 36 gastrointestinal healthy volunteers. To select the polyphenol-resistant isolates, feces were seeded in plates containing 1 mg/ml of phenolic extract. The minimal inhibitory concentration to polyphenols in the collected isolates was assessed by the agar dilution method. Overall results showed that Gram-negative isolates are most tolerant to the presence of both grape seed and red wine extracts. Furthermore, we purified to homogeneity the phenolic fractions by high-performance liquid chromatography (HPLC) to determine their antimicrobial effect and their influence on bacterial growth in four selected ATCC strains using the BioScreen apparatus. Results showed that the antimicrobial activity of the wine polyphenols is the result of the interaction of both the flavan-3-ol type and the bacteria. Bacterial Intraspecies differences in the phenolic susceptibility suggest the existence of polyphenol-resistant mechanisms that are uncharacterized as yet.

  4. In Vitro Effects of Dietary Inulin on Human Fecal Microbiota and Butyrate Production.

    Science.gov (United States)

    Jung, Tae-Hwan; Jeon, Woo-Min; Han, Kyoung-Sik

    2015-09-01

    Administration of dietary fibers has various health benefits, mainly by increasing numbers of beneficial bacteria and enhancing production of short-chain fatty acids in the colon. There has been growing interest in the addition of dietary fiber to human diet, due to its prebiotic effects. This study aimed to evaluate the prebiotic activity of inulin using an in vitro batch fermentation system with human fecal microbiota. Fermentation of inulin resulted in a significantly greater ratio of Lactobacillus or Bifidobacteria to Enterobacteria strains as an index of healthy human intestine and elevated butyrate concentration, which are related to improvement of gut health.

  5. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology

    DEFF Research Database (Denmark)

    Larsen, Jeppe Madura; Musavian, Hanieh Sadat; Butt, Tariq Mahmood

    2015-01-01

    Recent studies of healthy human airways have revealed colonization by a distinct commensal bacterial microbiota containing Gram-negative Prevotella spp. However, the immunological properties of these bacteria in the respiratory system remain unknown. Here we compare the innate respiratory immune......-like receptor 2 (TLR2)-independent COPD-like inflammation characterized by predominant airway neutrophilia, expression of a neutrophilic cytokine/chemokine profile in lung tissue, and lung immunopathology. In comparison, P.nanceiensis induced a diminished neutrophilic airway inflammation and no detectable lung...... pathology. Interestingly, the inflammatory airway response to the Gram-negative bacteria P.nanceiensis was completely TLR2-dependent. These findings demonstrate weak inflammatory properties of Gram-negative airway commensal Prevotella spp. that may make colonization by these bacteria tolerable...

  6. Diversity and genomic insights into the uncultured Chloroflexi from the human microbiota.

    Science.gov (United States)

    Campbell, Alisha G; Schwientek, Patrick; Vishnivetskaya, Tatiana; Woyke, Tanja; Levy, Shawn; Beall, Clifford J; Griffen, Ann; Leys, Eugene; Podar, Mircea

    2014-09-01

    Many microbial phyla that are widely distributed in open environments have few or no representatives within animal-associated microbiota. Among them, the Chloroflexi comprises taxonomically and physiologically diverse lineages adapted to a wide range of aquatic and terrestrial habitats. A distinct group of uncultured chloroflexi related to free-living anaerobic Anaerolineae inhabits the mammalian gastrointestinal tract and includes low-abundance human oral bacteria that appear to proliferate in periodontitis. Using a single-cell genomics approach, we obtained the first draft genomic reconstruction for these organisms and compared their inferred metabolic potential with free-living chloroflexi. Genomic data suggest that oral chloroflexi are anaerobic heterotrophs, encoding abundant carbohydrate transport and metabolism functionalities, similar to those seen in environmental Anaerolineae isolates. The presence of genes for a unique phosphotransferase system and N-acetylglucosamine metabolism suggests an important ecological niche for oral chloroflexi in scavenging material from lysed bacterial cells and the human tissue. The inferred ability to produce sialic acid for cell membrane decoration may enable them to evade the host defence system and colonize the subgingival space. As with other low abundance but persistent members of the microbiota, discerning community and host factors that influence the proliferation of oral chloroflexi may help understand the emergence of oral pathogens and the microbiota dynamics in health and disease states.

  7. The Modulatory Effect of Anthocyanins from Purple Sweet Potato on Human Intestinal Microbiota in Vitro.

    Science.gov (United States)

    Zhang, Xin; Yang, Yang; Wu, Zufang; Weng, Peifang

    2016-03-30

    In order to investigate the modulatory effect of purple sweet potato anthocyanins (PSPAs) on human intestinal microbiota, PSPAs were prepared by column chromatography and their influence on intestinal microbiota was analyzed by monitoring the bacterial populations and analyzing short-chain fatty acid (SCFA) concentrations at different time points. The numbers (log10 cell/mL) of Bifidobacterium and Lactobacillus/Enterococcus spp., Bacteroides-Prevotella, Clostridium histolyticum, and total bacteria after 24 h of culture in anaerobic fermentation broth containing PSPAs were 8.44 ± 0.02, 8.30 ± 0.01, 7.80 ± 0.03, 7.60 ± 0.03, and 9.00 ± 0.02, respectively, compared with 8.21 ± 0.03, 8.12 ± 0.02, 7.95 ± 0.02, 7.77 ± 0.02, and 9.01 ± 0.03, respectively, in the controls. The results showed that PSPAs induced the proliferation of Bifidobacterium and Lactobacillus/Enterococcus spp., inhibited the growth of Bacteroides-Prevotella and Clostridium histolyticum, and did not affect the total bacteria number. Total SCFA concentrations in the cultures with PSPAs were significantly higher than in the controls (P microbiota, contributing to improvements in human health.

  8. Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn's disease.

    Directory of Open Access Journals (Sweden)

    Alison R Erickson

    Full Text Available Crohn's disease (CD is an inflammatory bowel disease of complex etiology, although dysbiosis of the gut microbiota has been implicated in chronic immune-mediated inflammation associated with CD. Here we combined shotgun metagenomic and metaproteomic approaches to identify potential functional signatures of CD in stool samples from six twin pairs that were either healthy, or that had CD in the ileum (ICD or colon (CCD. Integration of these omics approaches revealed several genes, proteins, and pathways that primarily differentiated ICD from healthy subjects, including depletion of many proteins in ICD. In addition, the ICD phenotype was associated with alterations in bacterial carbohydrate metabolism, bacterial-host interactions, as well as human host-secreted enzymes. This eco-systems biology approach underscores the link between the gut microbiota and functional alterations in the pathophysiology of Crohn's disease and aids in identification of novel diagnostic targets and disease specific biomarkers.

  9. Integrated Metagenomics/Metaproteomics Reveals Human Host-Microbiota Signatures of Crohn's Disease

    Science.gov (United States)

    Darzi, Youssef; Mongodin, Emmanuel F.; Pan, Chongle; Shah, Manesh; Halfvarson, Jonas; Tysk, Curt; Henrissat, Bernard; Raes, Jeroen; Verberkmoes, Nathan C.; Jansson, Janet K.

    2012-01-01

    Crohn's disease (CD) is an inflammatory bowel disease of complex etiology, although dysbiosis of the gut microbiota has been implicated in chronic immune-mediated inflammation associated with CD. Here we combined shotgun metagenomic and metaproteomic approaches to identify potential functional signatures of CD in stool samples from six twin pairs that were either healthy, or that had CD in the ileum (ICD) or colon (CCD). Integration of these omics approaches revealed several genes, proteins, and pathways that primarily differentiated ICD from healthy subjects, including depletion of many proteins in ICD. In addition, the ICD phenotype was associated with alterations in bacterial carbohydrate metabolism, bacterial-host interactions, as well as human host-secreted enzymes. This eco-systems biology approach underscores the link between the gut microbiota and functional alterations in the pathophysiology of Crohn's disease and aids in identification of novel diagnostic targets and disease specific biomarkers. PMID:23209564

  10. Integrated Metagenomics/Metaproteomics Reveals Human Host-Microbiota Signatures of Crohn's Disease

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Alison L [ORNL; Cantarel, Brandi [University of Maryland School of Medicine, The, Baltimore, MD; Lamendella, Regina [Lawrence Berkeley National Laboratory (LBNL); Darzi, Youssef [Vrije Universiteit Brussel, Brussels, Belgium; Mongodin, Emmanuel [University of Maryland School of Medicine, The, Baltimore, MD; Pan, Chongle [ORNL; Shah, Manesh B [ORNL; Halfvarsson, J [Orebro University Hospital, Orebro, Sweden; Tysk, C [Orebro University Hospital, Orebro, Sweden; Henrissat, Bernard [Universite d' Aix-Marseille I & II; Raes, Jeroen [Vrije Universiteit Brussel, Brussels, Belgium; Verberkmoes, Nathan C [ORNL; Fraser-Liggett, C [University of Maryland; Hettich, Robert {Bob} L [ORNL; Jansson, Janet [Lawrence Berkeley National Laboratory (LBNL)

    2012-01-01

    Crohn's disease (CD) is an inflammatory bowel disease of complex etiology, although dysbiosis of the gut microbiota has been implicated in chronic immune-mediated inflammation associated with CD. Here we combined shotgun metagenomic and metaproteomic approaches to identify potential functional signatures of CD in stool samples from six twin pairs that were either healthy, or that had CD in the ileum (ICD) or colon (CCD). Integration of these omics approaches revealed several genes, proteins, and pathways that primarily differentiated ICD from healthy subjects, including depletion of many proteins in ICD. In addition, the ICD phenotype was associated with alterations in bacterial carbohydrate metabolism, bacterial-host interactions, as well as human host-secreted enzymes. This eco-systems biology approach underscores the link between the gut microbiota and functional alterations in the pathophysiology of Crohn's disease and aids in identification of novel diagnostic targets and disease specific biomarkers.

  11. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults.

    Directory of Open Access Journals (Sweden)

    Nadja Larsen

    Full Text Available BACKGROUND: Recent evidence suggests that there is a link between metabolic diseases and bacterial populations in the gut. The aim of this study was to assess the differences between the composition of the intestinal microbiota in humans with type 2 diabetes and non-diabetic persons as control. METHODS AND FINDINGS: The study included 36 male adults with a broad range of age and body-mass indices (BMIs, among which 18 subjects were diagnosed with diabetes type 2. The fecal bacterial composition was investigated by real-time quantitative PCR (qPCR and in a subgroup of subjects (N = 20 by tag-encoded amplicon pyrosequencing of the V4 region of the 16S rRNA gene. The proportions of phylum Firmicutes and class Clostridia were significantly reduced in the diabetic group compared to the control group (P = 0.03. Furthermore, the ratios of Bacteroidetes to Firmicutes as well as the ratios of Bacteroides-Prevotella group to C. coccoides-E. rectale group correlated positively and significantly with plasma glucose concentration (P = 0.04 but not with BMIs. Similarly, class Betaproteobacteria was highly enriched in diabetic compared to non-diabetic persons (P = 0.02 and positively correlated with plasma glucose (P = 0.04. CONCLUSIONS: The results of this study indicate that type 2 diabetes in humans is associated with compositional changes in intestinal microbiota. The level of glucose tolerance should be considered when linking microbiota with metabolic diseases such as obesity and developing strategies to control metabolic diseases by modifying the gut microbiota.

  12. Diversity and dynamics of bacteriocins from human microbiome.

    Science.gov (United States)

    Zheng, Jinshui; Gänzle, Michael G; Lin, Xiaoxi B; Ruan, Lifang; Sun, Ming

    2015-06-01

    Human commensal microbiota are an important determinant of health and disease of the host. Different human body sites harbour different bacterial microbiota, bacterial communities that maintain a stable balance. However, many of the factors influencing the stabilities of bacterial communities associated with humans remain unknown. In this study, we identified putative bacteriocins produced by human commensal microbiota. Bacteriocins are peptides or proteins with antimicrobial activity that contribute to the stability and dynamics of microbial communities. We employed bioinformatic analyses to identify putative bacteriocin sequences in metagenomic sequences obtained from different human body sites. Prevailing bacterial taxa of the putative bacteriocins producers matched the most abundant organisms in each human body site. Remarkably, we found that samples from different body sites contain different density of putative bacteriocin genes, with the highest in samples from the vagina, the airway, and the oral cavity and the lowest in those from gut. Inherent differences of different body sites thus influence the density and types of bacteriocins produced by commensal bacteria. Our results suggest that bacteriocins play important roles to allow different bacteria to occupy several human body sites, and to establish a long-term commensal relationship with human hosts.

  13. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime.

    Science.gov (United States)

    Greenhalgh, Kacy; Meyer, Kristen M; Aagaard, Kjersti M; Wilmes, Paul

    2016-07-01

    With technological advances in culture-independent molecular methods, we are uncovering a new facet of our natural history by accounting for the vast diversity of microbial life which colonizes the human body. The human microbiome contributes functional genes and metabolites which affect human physiology and are, therefore, considered an important factor for maintaining health. Much has been described in the past decade based primarily on 16S rRNA gene amplicon sequencing regarding the diversity, structure, stability and dynamics of human microbiota in their various body habitats, most notably within the gastrointestinal tract (GIT). Relatively high levels of variation have been described across different stages of life and geographical locations for the GIT microbiome. These observations may prove helpful for the future contextualization of patterns in other body habitats especially in relation to identifying generalizable trends over human lifetime. Given the large degree of complexity and variability, a key challenge will be how to define baseline healthy microbiomes and how to identify features which reflect deviations therefrom in the future. In this context, metagenomics and functional omics will likely play a central role as they will allow resolution of microbiome-conferred functionalities associated with health. Such information will be vital for formulating therapeutic interventions aimed at managing microbiota-mediated health particularly in the GIT over the course of a human lifetime.

  14. Prebiotic effects of almonds and almond skins on intestinal microbiota in healthy adult humans.

    Science.gov (United States)

    Liu, Zhibin; Lin, Xiuchun; Huang, Guangwei; Zhang, Wen; Rao, Pingfan; Ni, Li

    2014-04-01

    Almonds and almond skins are rich in fiber and other components that have potential prebiotic properties. In this study we investigated the prebiotic effects of almond and almond skin intake in healthy humans. A total of 48 healthy adult volunteers consumed a daily dose of roasted almonds (56 g), almond skins (10 g), or commercial fructooligosaccharides (8 g) (as positive control) for 6 weeks. Fecal samples were collected at defined time points and analyzed for microbiota composition and selected indicators of microbial activity. Different strains of intestinal bacteria had varying degrees of growth sensitivity to almonds or almond skins. Significant increases in the populations of Bifidobacterium spp. and Lactobacillus spp. were observed in fecal samples as a consequence of almond or almond skin supplementation. However, the populations of Escherichia coli did not change significantly, while the growth of the pathogen Clostridum perfringens was significantly repressed. Modification of the intestinal microbiota composition induced changes in bacterial enzyme activities, specifically a significant increase in fecal β-galactosidase activity and decreases in fecal β-glucuronidase, nitroreductase and azoreductase activities. Our observations suggest that almond and almond skin ingestion may lead to an improvement in the intestinal microbiota profile and a modification of the intestinal bacterial activities, which would induce the promotion of health beneficial factors and the inhibition of harmful factors. Thus we believe that almonds and almond skins possess potential prebiotic properties.

  15. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota.

    Science.gov (United States)

    Zimmer, J; Lange, B; Frick, J-S; Sauer, H; Zimmermann, K; Schwiertz, A; Rusch, K; Klosterhalfen, S; Enck, P

    2012-01-01

    Consisting of ≈10(14) microbial cells, the intestinal microbiota represents the largest and the most complex microbial community inhabiting the human body. However, the influence of regular diets on the microbiota is widely unknown. We examined faecal samples of vegetarians (n=144), vegans (n=105) and an equal number of control subjects consuming ordinary omnivorous diet who were matched for age and gender. We used classical bacteriological isolation, identification and enumeration of the main anaerobic and aerobic bacterial genera and computed absolute and relative numbers that were compared between groups. Total counts of Bacteroides spp., Bifidobacterium spp., Escherichia coli and Enterobacteriaceae spp. were significantly lower (P=0.001, P=0.002, P=0.006 and P=0.008, respectively) in vegan samples than in controls, whereas others (E. coli biovars, Klebsiella spp., Enterobacter spp., other Enterobacteriaceae, Enterococcus spp., Lactobacillus spp., Citrobacter spp. and Clostridium spp.) were not. Subjects on a vegetarian diet ranked between vegans and controls. The total microbial count did not differ between the groups. In addition, subjects on a vegan or vegetarian diet showed significantly (P=0.0001) lower stool pH than did controls, and stool pH and counts of E. coli and Enterobacteriaceae were significantly correlated across all subgroups. Maintaining a strict vegan or vegetarian diet results in a significant shift in the microbiota while total cell numbers remain unaltered.

  16. The Impact of Diet and Lifestyle on Gut Microbiota and Human Health

    Directory of Open Access Journals (Sweden)

    Michael A. Conlon

    2014-12-01

    Full Text Available There is growing recognition of the role of diet and other environmental factors in modulating the composition and metabolic activity of the human gut microbiota, which in turn can impact health. This narrative review explores the relevant contemporary scientific literature to provide a general perspective of this broad area. Molecular technologies have greatly advanced our understanding of the complexity and diversity of the gut microbial communities within and between individuals. Diet, particularly macronutrients, has a major role in shaping the composition and activity of these complex populations. Despite the body of knowledge that exists on the effects of carbohydrates there are still many unanswered questions. The impacts of dietary fats and protein on the gut microbiota are less well defined. Both short- and long-term dietary change can influence the microbial profiles, and infant nutrition may have life-long consequences through microbial modulation of the immune system. The impact of environmental factors, including aspects of lifestyle, on the microbiota is particularly poorly understood but some of these factors are described. We also discuss the use and potential benefits of prebiotics and probiotics to modify microbial populations. A description of some areas that should be addressed in future research is also presented.

  17. HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats.

    Directory of Open Access Journals (Sweden)

    Phoebe Lin

    Full Text Available The HLA-B27 gene is a major risk factor for clinical diseases including ankylosing spondylitis, acute anterior uveitis, reactive arthritis, and psoriatic arthritis, but its mechanism of risk enhancement is not completely understood. The gut microbiome has recently been shown to influence several HLA-linked diseases. However, the role of HLA-B27 in shaping the gut microbiome has not been previously investigated. In this study, we characterize the differences in the gut microbiota mediated by the presence of the HLA-B27 gene. We identified differences in the cecal microbiota of Lewis rats transgenic for HLA-B27 and human β2-microglobulin (hβ2m, compared with wild-type Lewis rats, using biome representational in situ karyotyping (BRISK and 16S rRNA gene sequencing. 16S sequencing revealed significant differences between transgenic animals and wild type animals by principal coordinates analysis. Further analysis of the data set revealed an increase in Prevotella spp. and a decrease in Rikenellaceae relative abundance in the transgenic animals compared to the wild type animals. By BRISK analysis, species-specific differences included an increase in Bacteroides vulgatus abundance in HLA-B27/hβ2m and hβ2m compared to wild type rats. The finding that HLA-B27 is associated with altered cecal microbiota has not been shown before and can potentially provide a better understanding of the clinical diseases associated with this gene.

  18. Human milk oligosaccharides shorten rotavirus-induced diarrhea and modulate piglet mucosal immunity and colonic microbiota.

    Science.gov (United States)

    Li, Min; Monaco, Marcia H; Wang, Mei; Comstock, Sarah S; Kuhlenschmidt, Theresa B; Fahey, George C; Miller, Michael J; Kuhlenschmidt, Mark S; Donovan, Sharon M

    2014-08-01

    The impact of human milk oligosaccharides (HMO) on mucosal immunity, gut microbiota and response to rotavirus (RV) infection was investigated in the piglet model. Newborn piglets were fed with formula alone (FF) or formula supplemented with 4 g l(-1) HMO (HMO) or a prebiotic mixture of 9:1 short-chain galactooligosaccharides (3.6 g l(-1)) and long-chain fructooligosaccharides (0.4 g l(-1)) (PRE) (n=19-21 per group) for 15 days. Piglets (n=7-8) in each dietary group were orally infected with porcine rotavirus (RV) OSU strain on d10, and stool consistency was assessed daily. Blood, small intestine and colonic contents were collected at day 15. Serum RV-specific antibody concentrations, intestinal histomorphology, RV non-structural protein-4 (NSP4) and cytokine mRNA expression were assessed. Colonic content pH, dry matter (DM) and short-chain fatty acid concentrations were measured. Ascending colonic microbiota was analyzed by 16S rRNA gene v1-3 region pyrosequencing. HMO- and PRE-fed groups had shorter duration of diarrhea than FF piglets. Infection changed intestinal histomorphology, increased serum RV-specific antibody response and intestinal RV NSP4 expression, and modulated ileal cytokine expression. HMO enhanced T helper type 1 (interferon-gamma) and anti-inflammatory (interleukin-10) cytokines in the ileum, while prebiotics promoted RV-specific immunoglobulin M response to the infection. RV infection and HMO supplementation altered intraluminal environment and gut microbiota. HMO increased pH and lowered DM of colonic contents and enhanced the abundance of unclassified Lachnospiraceae, which contains numerous butyrate-producing bacteria. In conclusion, HMO and prebiotics did not prevent the onset of RV infection but reduced the duration of RV-induced diarrhea in piglets, in part, by modulating colonic microbiota and immune response to RV infection.

  19. Gut brain axis: diet microbiota interactions and implications for modulation of anxiety and depression.

    Science.gov (United States)

    Luna, Ruth Ann; Foster, Jane A

    2015-04-01

    The human gut microbiome is composed of an enormous number of microorganisms, generally regarded as commensal bacteria. Without this inherent microbial community, we would be unable to digest plant polysaccharides and would have trouble extracting lipids from our diet. Resident gut bacteria are an important contributor to healthy metabolism and there is significant evidence linking gut microbiota and metabolic disorders such as obesity and diabetes. In the past few years, neuroscience research has demonstrated the importance of microbiota in the development of brain systems that are vital to both stress reactivity and stress-related behaviours. Here we review recent literature that examines the impact of diet-induced changes in the microbiota on stress-related behaviours including anxiety and depression.

  20. Role of Intestinal Microbiota in Ulcerative Colitis – Effects of Novel Carbohydrate Preparations

    DEFF Research Database (Denmark)

    Vigsnæs, Louise Kristine

    2011-01-01

    in a study of this thesis to elucidate, if the adhesion capacity is different depending on disease state. For this purpose, an in vitro dynamic gut model was used. Several bacterial taxa from both lumen and mucus were quantified using qPCR. The results revealed that the bacterial community of the mucus......, which could affect colonic health. In the experimental part of this thesis, the fecal microbiota derived from UC patients in either remission or with active disease and healthy subjects was quantified using quantitative Real‐Time PCR (qPCR) to examine the microbiota composition. The results demonstrated...... composition in remission either resembled the composition in healthy or in relapse, demonstrating that the microbiota in remission is unstable. The mucus layer lining the epithelium of the intestinal tract is important for the protection of the epithelium in humans. The commensal bacteria that colonize...

  1. Complete Genome Sequences of Two Human Oral Microbiome Commensals, Streptococcus salivarius ATCC 25975 and S. salivarius ATCC 27945.

    Science.gov (United States)

    Butler, Robert R; Soomer-James, Jahna T A; Frenette, Michel; Pombert, Jean-François

    2017-06-15

    Streptococcus salivarius strains are significant contributors to the human oral microbiome. Some possess unique fimbriae that give them the ability to coaggregate and colonize particular oral structures. We present here the complete genomes of Streptococcus salivarius Lancefield K(-)/K(+) strains ATCC 25975 and ATCC 27945, which can and cannot, respectively, produce fimbriae. Copyright © 2017 Butler et al.

  2. Complete Genome Sequences of Two Human Oral Microbiome Commensals: Streptococcus salivarius ATCC 25975 and S. salivarius ATCC 27945

    OpenAIRE

    Butler, Robert R.; Soomer-James, Jahna T. A.; Frenette, Michel; Pombert, Jean-François

    2017-01-01

    ABSTRACT Streptococcus salivarius strains are significant contributors to the human oral microbiome. Some possess unique fimbriae that give them the ability to coaggregate and colonize particular oral structures. We present here the complete genomes of Streptococcus salivarius Lancefield K?/K+ strains ATCC 25975 and ATCC 27945, which can and cannot, respectively, produce fimbriae.

  3. Effects of almond and pistachio consumption on gut microbiota composition in a randomised cross-over human feeding study.

    Science.gov (United States)

    Ukhanova, Maria; Wang, Xiaoyu; Baer, David J; Novotny, Janet A; Fredborg, Marlene; Mai, Volker

    2014-06-28

    The modification of microbiota composition to a 'beneficial' one is a promising approach for improving intestinal as well as overall health. Natural fibres and phytochemicals that reach the proximal colon, such as those present in various nuts, provide substrates for the maintenance of healthy and diverse microbiota. The effects of increased consumption of specific nuts, which are rich in fibre as well as various phytonutrients, on human gut microbiota composition have not been investigated to date. The objective of the present study was to determine the effects of almond and pistachio consumption on human gut microbiota composition. We characterised microbiota in faecal samples collected from volunteers in two separate randomised, controlled, cross-over feeding studies (n 18 for the almond feeding study and n 16 for the pistachio feeding study) with 0, 1·5 or 3 servings/d of the respective nuts for 18 d. Gut microbiota composition was analysed using a 16S rRNA-based approach for bacteria and an internal transcribed spacer region sequencing approach for fungi. The 16S rRNA sequence analysis of 528 028 sequence reads, retained after removing low-quality and short-length reads, revealed various operational taxonomic units that appeared to be affected by nut consumption. The effect of pistachio consumption on gut microbiota composition was much stronger than that of almond consumption and included an increase in the number of potentially beneficial butyrate-producing bacteria. Although the numbers of bifidobacteria were not affected by the consumption of either nut, pistachio consumption appeared to decrease the number of lactic acid bacteria (Ppistachios appears to be an effective means of modifying gut microbiota composition.

  4. Short-chain fructo-oligosaccharides modulate intestinal microbiota and metabolic parameters of humanized gnotobiotic diet induced obesity mice.

    Science.gov (United States)

    Respondek, Frederique; Gerard, Philippe; Bossis, Mathilde; Boschat, Laura; Bruneau, Aurélia; Rabot, Sylvie; Wagner, Anne; Martin, Jean-Charles

    2013-01-01

    Prebiotic fibres like short-chain fructo-oligosaccharides (scFOS) are known to selectively modulate the composition of the intestinal microbiota and especially to stimulate Bifidobacteria. In parallel, the involvement of intestinal microbiota in host metabolic regulation has been recently highlighted. The objective of the study was to evaluate the effect of scFOS on the composition of the faecal microbiota and on metabolic parameters in an animal model of diet-induced obesity harbouring a human-type microbiota. Forty eight axenic C57BL/6J mice were inoculated with a sample of faecal human microbiota and randomly assigned to one of 3 diets for 7 weeks: a control diet, a high fat diet (HF, 60% of energy derived from fat)) or an isocaloric HF diet containing 10% of scFOS (HF-scFOS). Mice fed with the two HF gained at least 21% more weight than mice from the control group. Addition of scFOS partially abolished the deposition of fat mass but significantly increased the weight of the caecum. The analysis of the taxonomic composition of the faecal microbiota by FISH technique revealed that the addition of scFOS induced a significant increase of faecal Bifidobacteria and the Clostridium coccoides group whereas it decreased the Clostridium leptum group. In addition to modifying the composition of the faecal microbiota, scFOS most prominently affected the faecal metabolome (e.g. bile acids derivatives, hydroxyl monoenoic fatty acids) as well as urine, plasma hydrophilic and plasma lipid metabolomes. The increase in C. coccoides and the decrease in C. leptum, were highly correlated to these metabolic changes, including insulinaemia, as well as to the weight of the caecum (empty and full) but not the increase in Bifidobacteria. In conclusion scFOS induce profound metabolic changes by modulating the composition and the activity of the intestinal microbiota, that may partly explain their effect on the reduction of insulinaemia.

  5. Short-chain fructo-oligosaccharides modulate intestinal microbiota and metabolic parameters of humanized gnotobiotic diet induced obesity mice.

    Directory of Open Access Journals (Sweden)

    Frederique Respondek

    Full Text Available Prebiotic fibres like short-chain fructo-oligosaccharides (scFOS are known to selectively modulate the composition of the intestinal microbiota and especially to stimulate Bifidobacteria. In parallel, the involvement of intestinal microbiota in host metabolic regulation has been recently highlighted. The objective of the study was to evaluate the effect of scFOS on the composition of the faecal microbiota and on metabolic parameters in an animal model of diet-induced obesity harbouring a human-type microbiota. Forty eight axenic C57BL/6J mice were inoculated with a sample of faecal human microbiota and randomly assigned to one of 3 diets for 7 weeks: a control diet, a high fat diet (HF, 60% of energy derived from fat or an isocaloric HF diet containing 10% of scFOS (HF-scFOS. Mice fed with the two HF gained at least 21% more weight than mice from the control group. Addition of scFOS partially abolished the deposition of fat mass but significantly increased the weight of the caecum. The analysis of the taxonomic composition of the faecal microbiota by FISH technique revealed that the addition of scFOS induced a significant increase of faecal Bifidobacteria and the Clostridium coccoides group whereas it decreased the Clostridium leptum group. In addition to modifying the composition of the faecal microbiota, scFOS most prominently affected the faecal metabolome (e.g. bile acids derivatives, hydroxyl monoenoic fatty acids as well as urine, plasma hydrophilic and plasma lipid metabolomes. The increase in C. coccoides and the decrease in C. leptum, were highly correlated to these metabolic changes, including insulinaemia, as well as to the weight of the caecum (empty and full but not the increase in Bifidobacteria. In conclusion scFOS induce profound metabolic changes by modulating the composition and the activity of the intestinal microbiota, that may partly explain their effect on the reduction of insulinaemia.

  6. The human gut microbiota with reference to autism spectrum disorder: considering the whole as more than a sum of its parts

    Directory of Open Access Journals (Sweden)

    Michael C. Toh

    2015-01-01

    Full Text Available The human gut microbiota is a complex microbial ecosystem that contributes an important component towards the health of its host. This highly complex ecosystem has been underestimated in its importance until recently, when a realization of the enormous scope of gut microbiota function has been (and continues to be revealed. One of the more striking of these discoveries is the finding that the gut microbiota and the brain are connected, and thus there is potential for the microbiota in the gut to influence behavior and mental health. In this short review, we outline the link between brain and gut microbiota and urge the reader to consider the gut microbiota as an ecosystem ‘organ’ rather than just as a collection of microbes filling a niche, using the hypothesized role of the gut microbiota in autism spectrum disorder to illustrate the concept.

  7. Resource conflict and cooperation between human host and gut microbiota: implications for nutrition and health.

    Science.gov (United States)

    Wasielewski, Helen; Alcock, Joe; Aktipis, Athena

    2016-05-01

    Diet has been known to play an important role in human health since at least the time period of the ancient Greek physician Hippocrates. In the last decade, research has revealed that microorganisms inhabiting the digestive tract, known as the gut microbiota, are critical factors in human health. This paper draws on concepts of cooperation and conflict from ecology and evolutionary biology to make predictions about host-microbiota interactions involving nutrients. To optimally extract energy from some resources (e.g., fiber), hosts require cooperation from microbes. Other nutrients can be utilized by both hosts and microbes (e.g., simple sugars, iron) in their ingested form, which may lead to greater conflict over these resources. This framework predicts that some negative health effects of foods are driven by the direct effects of these foods on human physiology and by indirect effects resulting from microbiome-host competition and conflict (e.g., increased invasiveness and inflammation). Similarly, beneficial effects of some foods on host health may be enhanced by resource sharing and other cooperative behaviors between host and microbes that may downregulate inflammation and virulence. Given that some foods cultivate cooperation between hosts and microbes while others agitate conflict, host-microbe interactions may be novel targets for interventions aimed at improving nutrition and human health.

  8. Reframing the Teenage Wasteland: Adolescent Microbiota-Gut-Brain Axis.

    Science.gov (United States)

    McVey Neufeld, Karen-Anne; Luczynski, Pauline; Dinan, Timothy G; Cryan, John F

    2016-04-01

    Human adolescence is arguably one of the most challenging periods of development. The young adult is exposed to a variety of stressors and environmental stimuli on a backdrop of significant physiological change and development, which is especially apparent in the brain. It is therefore unsurprising that many psychiatric disorders are first observable during this time. The human intestine is inhabited by trillions of microorganisms, and evidence from both preclinical and clinical research focusing on the established microbiota-gut-brain axis suggests that the etiology and pathophysiology of psychiatric disorders may be influenced by intestinal dysbiosis. Provocatively, many if not all of the challenges faced by the developing teen have a documented impact on these intestinal commensal microbiota. In this review, we briefly summarize what is known about the developing adolescent brain and intestinal microbiota, discuss recent research investigating the microbiota-gut-brain axis during puberty, and propose that pre- and probiotics may prove useful in both the prevention and treatment of psychiatric disorders specifically benefitting the young adult.

  9. Relationship between Milk Microbiota, Bacterial Load, Macronutrients, and Human Cells during Lactation.

    Science.gov (United States)

    Boix-Amorós, Alba; Collado, Maria C; Mira, Alex

    2016-01-01

    Human breast milk is considered the optimal nutrition for infants, providing essential nutrients and a broad range of bioactive compounds, as well as its own microbiota. However, the interaction among those components and the biological role of milk microorganisms is still uncovered. Thus, our aim was to identify the relationships between milk microbiota composition, bacterial load, macronutrients, and human cells during lactation. Bacterial load was estimated in milk samples from a total of 21 healthy mothers through lactation time by bacteria-specific qPCR targeted to the single-copy gene fusA. Milk microbiome composition and diversity was estimated by 16S-pyrosequencing and the structure of these bacteria in the fluid was studied by flow cytometry, qPCR, and microscopy. Fat, protein, lactose, and dry extract of milk as well as the number of somatic cells were also analyzed. We observed that milk bacterial communities were generally complex, and showed individual-specific profiles. Milk microbiota was dominated by Staphylococcus, Pseudomonas, Streptococcus, and Acinetobacter. Staphylococcus aureus was not detected in any of these samples from healthy mothers. There was high variability in composition and number of bacteria per milliliter among mothers and in some cases even within mothers at different time points. The median bacterial load was 10(6) bacterial cells/ml through time, higher than those numbers reported by 16S gene PCR and culture methods. Furthermore, milk bacteria were present in a free-living, "planktonic" state, but also in equal proportion associated to human immune cells. There was no correlation between bacterial load and the amount of immune cells in milk, strengthening the idea that milk bacteria are not sensed as an infection by the immune system.

  10. Relationship between milk microbiota, bacterial load, macronutrients and human cells during lactation

    Directory of Open Access Journals (Sweden)

    Alba eBOIX-AMORÓS

    2016-04-01

    Full Text Available Human breast milk is considered the optimal nutrition for infants, providing essential nutrients and a broad range of bioactive compounds, as well as its own microbiota. However, the interaction among those components and the biological role of milk microorganisms is still uncovered. Thus, our aim was to identify the relationships between milk microbiota composition, bacterial load, macronutrients and human cells during lactation. Bacterial load was estimated in milk samples from a total of 21 healthy mothers through lactation time by bacteria-specific qPCR targeted to the single-copy gene fusA . Milk microbiome composition and diversity was estimated by 16S-pyrosequencing and the structure of these bacteria in the fluid was studied by flow cytometry, qPCR and microscopy. Fat, protein, lactose and dry extract of milk as well as the number of somatic cells were also analyzed. We observed that milk bacterial communities were generally complex, and showed individual-specific profiles. Milk microbiota was dominated by Staphylococcus, Pseudomonas, Streptococcus and Acinetobacter. Staphylococcus aureus was not detected in any of these samples from healthy mothers. There was high variability in composition and number of bacteria per milliliter among mothers and in some cases even within mothers at different time points. The median bacterial load was 106 bacterial cells/ml through time, higher than those numbers reported by 16S gene PCR and culture methods.. Furthermore, milk bacteria were present in a free-living, planktonic state, but also in equal proportion associated to human immune cells. There was no correlation between bacterial load and the amount of immune cells in milk, strengthening the idea that milk bacteria are not sensed as an infection by the immune system.

  11. The modulatory effects of commensal neisseriae on upper respiratory tract infections

    OpenAIRE

    Page, K.

    2014-01-01

    The human nasopharynx is a reservoir of both commensal and pathogenic bacteria that can be easily transmitted from one individual to another. It has long been hypothesised that host commensal flora give protection from carriage of pathogens and invasive disease. The commensal Neisseria lactamica has previously been associated with protection against the closely related human pathogen Neisseria meningitidis, which is thought to be due to the acquisition of cross-reactive immunity to N. meningi...

  12. Human gut microbiota in obesity and after gastric bypass.

    Science.gov (United States)

    Zhang, Husen; DiBaise, John K; Zuccolo, Andrea; Kudrna, Dave; Braidotti, Michele; Yu, Yeisoo; Parameswaran, Prathap; Crowell, Michael D; Wing, Rod; Rittmann, Bruce E; Krajmalnik-Brown, Rosa

    2009-02-17

    Recent evidence suggests that the microbial community in the human intestine may play an important role in the pathogenesis of obesity. We examined 184,094 sequences of microbial 16S rRNA genes from PCR amplicons by using the 454 pyrosequencing technology to compare the microbial community structures of 9 individuals, 3 in each of the categories of normal weight, morbidly obese, and post-gastric-bypass surgery. Phylogenetic analysis demonstrated that although the Bacteria in the human intestinal community were highly diverse, they fell mainly into 6 bacterial divisions that had distinct differences in the 3 study groups. Specifically, Firmicutes were dominant in normal-weight and obese individuals but significantly decreased in post-gastric-bypass individuals, who had a proportional increase of Gammaproteobacteria. Numbers of the H(2)-producing Prevotellaceae were highly enriched in the obese individuals. Unlike the highly diverse Bacteria, the Archaea comprised mainly members of the order Methanobacteriales, which are H(2)-oxidizing methanogens. Using real-time PCR, we detected significantly higher numbers of H(2)-utilizing methanogenic Archaea in obese individuals than in normal-weight or post-gastric-bypass individuals. The coexistence of H(2)-producing bacteria with relatively high numbers of H(2)-utilizing methanogenic Archaea in the gastrointestinal tract of obese individuals leads to the hypothesis that interspecies H(2) transfer between bacterial and archaeal species is an important mechanism for increasing energy uptake by the human large intestine in obese persons. The large bacterial population shift seen in the post-gastric-bypass individuals may reflect the double impact of the gut alteration caused by the surgical procedure and the consequent changes in food ingestion and digestion.

  13. Treatment of colitis with a commensal gut bacterium engineered to secrete human TGF-beta1 under the control of dietary xylan

    Science.gov (United States)

    Background: Growth factors have shown promise in treating inflammatory bowel disease. They are unstable when administered orally and required in higher doses with systemic administration. In consideration of these problems, we have engineered the commensal bacterium Bacteroides ovatus for the con...

  14. Selection of bacteria originating from a human intestinal microbiota in the gut of previously germ-free rats

    DEFF Research Database (Denmark)

    Licht, Tine Rask; Madsen, Bodil; Wilcks, Andrea

    2007-01-01

    Denaturing gradient gel electrophoresis (DGGE) was applied to separate PCR-amplified 16S rRNA genes originating from human microbiota associated (HMA) rat faeces as well as from the human faecal sample used for inoculation of the animals. Subsequently, a total of 15 dominant bands were excised fr...

  15. The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota.

    Science.gov (United States)

    Scanlan, Pauline D; Stensvold, Christen R; Rajilić-Stojanović, Mirjana; Heilig, Hans G H J; De Vos, Willem M; O'Toole, Paul W; Cotter, Paul D

    2014-10-01

    To date, the majority of research into the human gut microbiota has focused on the bacterial fraction of the community. Inevitably, this has resulted in a poor understanding of the diversity and functionality of other intestinal microorganisms in the human gut. One such nonbacterial member is the microbial eukaryote Blastocystis, which has been implicated in the aetiology of a range of different intestinal and extra-intestinal diseases. However, prevalence data from different studies are conflicting, and crucially, there is limited information on its incidence and diversity in healthy individuals. Here, we survey the prevalence, genetic diversity and temporal stability of Blastocystis in a group of healthy adults (n = 105) using a sensitive PCR assay. Blastocystis was present in 56% of our sample set, which is much higher than previously reported from an industrialised county (Ireland). Moreover, a diversity of different subtypes (species) were detected, and Blastocystis was present in a subset of individuals sampled over a period of time between 6 and 10 years, indicating that it is capable of long-term host colonisation. These results show that Blastocystis is a common and diverse member of the healthy gut microbiota, thereby extending our knowledge of the microbial ecology of the healthy human intestine. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Complementary methodologies to investigate human gut microbiota in host health, working towards integrative systems biology.

    Science.gov (United States)

    Méndez-García, Celia; Barbas, Coral; Ferrer, Manuel; Rojo, David

    2017-09-05

    In 1680, Antonie van Leewenhoek noted compositional differences in his oral and fecal microbiota, pioneering the study of the diversity of the human microbiome. From Leewenhoek to modern successful attempts of changing the gut microbiota landscape to cure disease, there has been an exponential increase in the recognition of our resident microbes as part of ourselves. Thus, the human host and microbiome have evolved in parallel to configure a balanced system in which microbes survive in homeostasis with our innate and acquired immune system, unless disease occurs. A growing number of studies have demonstrated a correlation between the presence/absence of microbial taxa, and some of their functional molecules (i.e. genes, proteins, and metabolites), with health and disease states. Nevertheless, misleading experimental design on human subjects, and the cost and lack of standardized animal models pose challenges to answering the question of whether changes in the microbiome composition are cause or consequence of a certain biological state. In this review, we evaluate the state of the art of methodologies that enable the study of the gut microbiome, encouraging a change in broadly used analytic strategies by choosing effector molecules (proteins, metabolites) in combination with coding nucleic acids. We further explore microbial and effector microbial products imbalances that relate to disease and health. Copyright © 2017 American Society for Microbiology.

  17. A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic

    Science.gov (United States)

    Patrascu, Orlane; Béguet-Crespel, Fabienne; Marinelli, Ludovica; Le Chatelier, Emmanuelle; Abraham, Anne-Laure; Leclerc, Marion; Klopp, Christophe; Terrapon, Nicolas; Henrissat, Bernard; Blottière, Hervé M.; Doré, Joël; Béra-Maillet, Christel

    2017-01-01

    The digestion of dietary fibers is a major function of the human intestinal microbiota. So far this function has been attributed to the microorganisms inhabiting the colon, and many studies have focused on this distal part of the gastrointestinal tract using easily accessible fecal material. However, microbial fermentations, supported by the presence of short-chain fatty acids, are suspected to occur in the upper small intestine, particularly in the ileum. Using a fosmid library from the human ileal mucosa, we screened 20,000 clones for their activities against carboxymethylcellulose and xylans chosen as models of the major plant cell wall (PCW) polysaccharides from dietary fibres. Eleven positive clones revealed a broad range of CAZyme encoding genes from Bacteroides and Clostridiales species, as well as Polysaccharide Utilization Loci (PULs). The functional glycoside hydrolase genes were identified, and oligosaccharide break-down products examined from different polysaccharides including mixed-linkage β-glucans. CAZymes and PULs were also examined for their prevalence in human gut microbiome. Several clusters of genes of low prevalence in fecal microbiome suggested they belong to unidentified strains rather specifically established upstream the colon, in the ileum. Thus, the ileal mucosa-associated microbiota encompasses the enzymatic potential for PCW polysaccharide degradation in the small intestine. PMID:28091525

  18. Immunogenetic control of the intestinal microbiota.

    Science.gov (United States)

    Marietta, Eric; Rishi, Abdul; Taneja, Veena

    2015-07-01

    All vertebrates contain a diverse collection of commensal, symbiotic and pathogenic microorganisms, such as bacteria, viruses and fungi, on their various body surfaces, and the ecological community of these microorganisms is referred to as the microbiota. Mucosal sites, such as the intestine, harbour the majority of microorganisms, and the human intestine contains the largest community of commensal and symbiotic bacteria. This intestinal community of bacteria is diverse, and there is a significant variability among individuals with respect to the composition of the intestinal microbiome. Both genetic and environmental factors can influence the diversity and composition of the intestinal bacteria with the predominant environmental factor being diet. So far, studies have shown that diet-dependent differences in the composition of intestinal bacteria can be classified into three groups, called enterotypes. Other environmental factors that can influence the composition include antibiotics, probiotics, smoking and drugs. Studies of monozygotic and dizygotic twins have proven that genetics plays a role. Recently, MHC II genes have been associated with specific microbial compositions in human infants and transgenic mice that express different HLA alleles. There is a growing list of genes/molecules that are involved with the sensing and monitoring of the intestinal lumen by the intestinal immune system that, when genetically altered, will significantly alter the composition of the intestinal microflora. The focus of this review will be on the genetic factors that influence the composition of the intestinal microflora.

  19. Perceptions and practices of commensality and solo-eating among Korean and Japanese university students: A cross-cultural analysis

    OpenAIRE

    Cho, Wookyoun; Takeda, Wakako; Oh, Yujin; Aiba, Naomi; Lee, Youngmee

    2015-01-01

    BACKGROUND/OBJECTIVES Commensality, eating together with others, is a major representation of human sociality. In recent time, environments around commensality have changed significantly due to rapid social changes, and the decline of commensality is perceived as a serious concern in many modern societies. This study employs a cross-cultural analysis of university students in two East Asian countries, and examines cross-cultural variations of perceptions and actual practices of commensality a...

  20. Structural basis for nutrient acquisition by dominant members of the human gut microbiota.

    Science.gov (United States)

    Glenwright, Amy J; Pothula, Karunakar R; Bhamidimarri, Satya P; Chorev, Dror S; Baslé, Arnaud; Firbank, Susan J; Zheng, Hongjun; Robinson, Carol V; Winterhalter, Mathias; Kleinekathöfer, Ulrich; Bolam, David N; van den Berg, Bert

    2017-01-19

    The human large intestine is populated by a high density of microorganisms, collectively termed the colonic microbiota, which has an important role in human health and nutrition. The survival of microbiota members from the dominant Gram-negative phylum Bacteroidetes depends on their ability to degrade dietary glycans that cannot be metabolized by the host. The genes encoding proteins involved in the degradation of specific glycans are organized into co-regulated polysaccharide utilization loci, with the archetypal locus sus (for starch utilisation system) encoding seven proteins, SusA-SusG. Glycan degradation mainly occurs intracellularly and depends on the import of oligosaccharides by an outer membrane protein complex composed of an extracellular SusD-like lipoprotein and an integral membrane SusC-like TonB-dependent transporter. The presence of the partner SusD-like lipoprotein is the major feature that distinguishes SusC-like proteins from previously characterized TonB-dependent transporters. Many sequenced gut Bacteroides spp. encode over 100 SusCD pairs, of which the majority have unknown functions and substrate specificities. The mechanism by which extracellular substrate binding by SusD proteins is coupled to outer membrane passage through their cognate SusC transporter is unknown. Here we present X-ray crystal structures of two functionally distinct SusCD complexes purified from Bacteroides thetaiotaomicron and derive a general model for substrate translocation. The SusC transporters form homodimers, with each β-barrel protomer tightly capped by SusD. Ligands are bound at the SusC-SusD interface in a large solvent-excluded cavity. Molecular dynamics simulations and single-channel electrophysiology reveal a 'pedal bin' mechanism, in which SusD moves away from SusC in a hinge-like fashion in the absence of ligand to expose the substrate-binding site to the extracellular milieu. These data provide mechanistic insights into outer membrane nutrient import by

  1. Gene expression profiling gut microbiota in different races of humans

    Science.gov (United States)

    Chen, Lei; Zhang, Yu-Hang; Huang, Tao; Cai, Yu-Dong

    2016-03-01

    The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment, and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome.

  2. Genome-Wide Association Studies of the Human Gut Microbiota.

    Directory of Open Access Journals (Sweden)

    Emily R Davenport

    Full Text Available The bacterial composition of the human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, however, what role host genetics plays in dictating the composition of bacteria living in the gut. In this study, we examined the association of ~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder population, the Hutterites, during two seasons (n = 91 summer, n = 93 winter, n = 57 individuals collected in both. These individuals live and eat communally, minimizing variation due to environmental exposures, including diet, which could potentially mask small genetic effects. Using a GWAS approach that takes into account the relatedness between subjects, we identified at least 8 bacterial taxa whose abundances were associated with single nucleotide polymorphisms in the host genome in each season (at genome-wide FDR of 20%. For example, we identified an association between a taxon known to affect obesity (genus Akkermansia and a variant near PLD1, a gene previously associated with body mass index. Moreover, we replicate a previously reported association from a quantitative trait locus (QTL mapping study of fecal microbiome abundance in mice (genus Lactococcus, rs3747113, P = 3.13 x 10-7. Finally, based on the significance distribution of the associated microbiome QTLs in our study with respect to chromatin accessibility profiles, we identified tissues in which host genetic variation may be acting to influence bacterial abundance in the gut.

  3. Influence of stressor-induced nervous system activation on the intestinal microbiota and the importance for immunomodulation.

    Science.gov (United States)

    Bailey, Michael T

    2014-01-01

    The body is colonized by a vast population of genetically diverse microbes, the majority of which reside within the intestines to comprise the intestinal microbiota. During periods of homeostasis, these microbes reside within stable climax communities, but exposure to physical, physiological, as well as psychological stressors can significantly impact the structure of the intestinal microbiota. This has been demonstrated in humans and laboratory animals, with the most consistent finding being a reduction in the abundance of bacteria in the genus Lactobacillus. Whether stressor exposure also changes the function of the microbiota, has not been as highly studied. The studies presented in this review suggest that stressor-induced disruption of the intestinal microbiota leads to increased susceptibility to enteric infection and overproduction of inflammatory mediators that can induce behavioral abnormalities, such as anxiety-like behavior. Studies involving germfree mice also demonstrate that the microbiota are necessary for stressor-induced increases in innate immunity to occur. Exposing mice to a social stressor enhances splenic macrophage microbicidal activity, but this effect fails to occur in germfree mice. These studies suggest a paradigm in which stressor exposure alters homeostatic interactions between the intestinal microbiota and mucosal immune system and leads to the translocation of pathogenic, and/or commensal, microbes from the lumen of the intestines to the interior of the body where they trigger systemic inflammatory responses and anxiety-like behavior. Restoring homeostasis in the intestines, either by removing the microbiota or by administering probiotic microorganisms, can ameliorate the stressor effects.

  4. Microbiota diversity and gene expression dynamics in human oral biofilms.

    Science.gov (United States)

    Benítez-Páez, Alfonso; Belda-Ferre, Pedro; Simón-Soro, Aurea; Mira, Alex

    2014-04-27

    Micro-organisms inhabiting teeth surfaces grow on biofilms where a specific and complex succession of bacteria has been described by co-aggregation tests and DNA-based studies. Although the composition of oral biofilms is well established, the active portion of the bacterial community and the patterns of gene expression in vivo have not been studied. Using RNA-sequencing technologies, we present the first metatranscriptomic study of human dental plaque, performed by two different approaches: (1) A short-reads, high-coverage approach by Illumina sequencing to characterize the gene activity repertoire of the microbial community during biofilm development; (2) A long-reads, lower-coverage approach by pyrosequencing to determine the taxonomic identity of the active microbiome before and after a meal ingestion. The high-coverage approach allowed us to analyze over 398 million reads, revealing that microbial communities are individual-specific and no bacterial species was detected as key player at any time during biofilm formation. We could identify some gene expression patterns characteristic for early and mature oral biofilms. The transcriptomic profile of several adhesion genes was confirmed through qPCR by measuring expression of fimbriae-associated genes. In addition to the specific set of gene functions overexpressed in early and mature oral biofilms, as detected through the short-reads dataset, the long-reads approach detected specific changes when comparing the metatranscriptome of the same individual before and after a meal, which can narrow down the list of organisms responsible for acid production and therefore potentially involved in dental caries. The bacteria changing activity during biofilm formation and after meal ingestion were person-specific. Interestingly, some individuals showed extreme homeostasis with virtually no changes in the active bacterial population after food ingestion, suggesting the presence of a microbial community which could be

  5. Human intestinal microbiota composition is associated with local and systemic inflammation in obesity

    NARCIS (Netherlands)

    Verdam, F.J.; Fuentes Enriquez de Salamanca, S.; Jonge, de C.; Zoetendal, E.G.; Erbil, R.; Greve, J.W.; Buurman, W.A.; Vos, de W.M.; Rensen, S.S.

    2013-01-01

    OBJECTIVE: Intestinal microbiota have been suggested to contribute to the development of obesity, but the mechanism remains elusive. The relationship between microbiota composition, intestinal permeability, and inflammation in nonobese and obese subjects was investigated. DESIGN AND METHODS: Fecal m

  6. Molecular typing of fecal eukaryotic microbiota of human infants and their respective mothers.

    Science.gov (United States)

    Pandey, Prashant K; Siddharth, Jay; Verma, Pankaj; Bavdekar, Ashish; Patole, Milind S; Shouche, Yogesh S

    2012-06-01

    The micro-eukaryotic diversity from the human gut was investigated using universal primers directed towards 18S rRNA gene, fecal samples being the source of DNA. The subjects in this study included two breast-fed and two formula-milk-fed infants and their mothers. The study revealed that the infants did not seem to harbour any microeukaryotes in their gut. In contrast, there were distinct eukaryotic microbiota present in the mothers. The investigation is the first of its kind in the comparative study of the human feces to reveal the presence of micro-eukaryotic diversity variance in infants and adults from the Indian subcontinent. The micro-eukaryotes encountered during the investigation include known gut colonizers like Blastocystis and some fungi species. Some of these micro-eukaryotes have been speculated to be involved in clinical manifestations of various diseases. The study is an attempt to highlight the importance of micro-eukaryotes in the human gut.

  7. Depth-dependent differences in community structure of the human colonic microbiota in health.

    Directory of Open Access Journals (Sweden)

    Aonghus Lavelle

    Full Text Available OBJECTIVE: The aims of this study were to develop techniques for spatial microbial assessment in humans and to establish colonic luminal and mucosal spatial ecology, encompassing longitudinal and cross-sectional axes. DESIGN: A microbiological protected specimen brush was used in conjunction with a biopsy forceps to sample the colon in nine healthy volunteers undergoing colonoscopy. Terminal Restriction Fragment Length Polymorphism analysis was used to determine the major variables in the spatial organization of the colonic microbiota. RESULTS: Protected Specimen Brush sampling retrieved region-specific, uncontaminated samples that were enriched for bacterial DNA and depleted in human DNA when compared to biopsy samples. Terminal Restriction Fragment Length Polymorphism analysis revealed a segmentation of bacterial communities between the luminal brush and biopsy-associated ecological niches with little variability across the longitudinal axis of the colon and reduced diversity in brush samples. CONCLUSION: These results support the concept of a microbiota with little longitudinal variability but with some degree of segregation between luminal and mucosal communities.

  8. Dietary Fiber and the Human Gut Microbiota: Application of Evidence Mapping Methodology

    Directory of Open Access Journals (Sweden)

    Caleigh M. Sawicki

    2017-02-01

    Full Text Available Interest is rapidly growing around the role of the human gut microbiota in facilitating beneficial health effects associated with consumption of dietary fiber. An evidence map of current research activity in this area was created using a newly developed database of dietary fiber intervention studies in humans to identify studies with the following broad outcomes: (1 modulation of colonic microflora; and/or (2 colonic fermentation/short-chain fatty acid concentration. Study design characteristics, fiber exposures, and outcome categories were summarized. A sub-analysis described oligosaccharides and bacterial composition in greater detail. One hundred eighty-eight relevant studies were identified. The fiber categories represented by the most studies were oligosaccharides (20%, resistant starch (16%, and chemically synthesized fibers (15%. Short-chain fatty acid concentration (47% and bacterial composition (88% were the most frequently studied outcomes. Whole-diet interventions, measures of bacterial activity, and studies in metabolically at-risk subjects were identified as potential gaps in the evidence. This evidence map efficiently captured the variability in characteristics of expanding research on dietary fiber, gut microbiota, and physiological health benefits, and identified areas that may benefit from further research. We hope that this evidence map will provide a resource for researchers to direct new intervention studies and meta-analyses.

  9. Intestinal microbiota and human diseases%肠道微生物与人类疾病

    Institute of Scientific and Technical Information of China (English)

    王子恺; 杨云生

    2012-01-01

    肠道内数以亿计的微生物及其代谢产物在人体能量代谢、营养物质吸收、先天和获得性免疫、胃肠道功能等方面发挥着重要作用,一旦宿主与肠道微生物之间共栖共生的稳态被打破,就会诱发多种人类疾病.目前已经认识到肠道微生物与人类健康和疾病的密切关系,仅仅从人类自身角度出发来研究人类疾病远远不够,必须考虑到与人类共栖共生的肠道微生物的作用.本文就近年来有关肠道微生物与人类疾病关系研究的进展进行综述.%The majority of human intestinal microbiota are harmless or even beneficial by performing functions essential for our survival. Changes in the microbial species that reside in our intestines have been associated with a long list of illness. The review provided an overview of the association between the microbiota and the occurrence of human diseases, and to stimulate future researches regarding infectious diseases and their consequences.

  10. Dietary Fiber and the Human Gut Microbiota: Application of Evidence Mapping Methodology.

    Science.gov (United States)

    Sawicki, Caleigh M; Livingston, Kara A; Obin, Martin; Roberts, Susan B; Chung, Mei; McKeown, Nicola M

    2017-02-10

    Interest is rapidly growing around the role of the human gut microbiota in facilitating beneficial health effects associated with consumption of dietary fiber. An evidence map of current research activity in this area was created using a newly developed database of dietary fiber intervention studies in humans to identify studies with the following broad outcomes: (1) modulation of colonic microflora; and/or (2) colonic fermentation/short-chain fatty acid concentration. Study design characteristics, fiber exposures, and outcome categories were summarized. A sub-analysis described oligosaccharides and bacterial composition in greater detail. One hundred eighty-eight relevant studies were identified. The fiber categories represented by the most studies were oligosaccharides (20%), resistant starch (16%), and chemically synthesized fibers (15%). Short-chain fatty acid concentration (47%) and bacterial composition (88%) were the most frequently studied outcomes. Whole-diet interventions, measures of bacterial activity, and studies in metabolically at-risk subjects were identified as potential gaps in the evidence. This evidence map efficiently captured the variability in characteristics of expanding research on dietary fiber, gut microbiota, and physiological health benefits, and identified areas that may benefit from further research. We hope that this evidence map will provide a resource for researchers to direct new intervention studies and meta-analyses.

  11. Dietary Fiber and the Human Gut Microbiota: Application of Evidence Mapping Methodology

    Science.gov (United States)

    Sawicki, Caleigh M.; Livingston, Kara A.; Obin, Martin; Roberts, Susan B.; Chung, Mei; McKeown, Nicola M.

    2017-01-01

    Interest is rapidly growing around the role of the human gut microbiota in facilitating beneficial health effects associated with consumption of dietary fiber. An evidence map of current research activity in this area was created using a newly developed database of dietary fiber intervention studies in humans to identify studies with the following broad outcomes: (1) modulation of colonic microflora; and/or (2) colonic fermentation/short-chain fatty acid concentration. Study design characteristics, fiber exposures, and outcome categories were summarized. A sub-analysis described oligosaccharides and bacterial composition in greater detail. One hundred eighty-eight relevant studies were identified. The fiber categories represented by the most studies were oligosaccharides (20%), resistant starch (16%), and chemically synthesized fibers (15%). Short-chain fatty acid concentration (47%) and bacterial composition (88%) were the most frequently studied outcomes. Whole-diet interventions, measures of bacterial activity, and studies in metabolically at-risk subjects were identified as potential gaps in the evidence. This evidence map efficiently captured the variability in characteristics of expanding research on dietary fiber, gut microbiota, and physiological health benefits, and identified areas that may benefit from further research. We hope that this evidence map will provide a resource for researchers to direct new intervention studies and meta-analyses. PMID:28208609

  12. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota.

    Science.gov (United States)

    Campbell, James H; O'Donoghue, Patrick; Campbell, Alisha G; Schwientek, Patrick; Sczyrba, Alexander; Woyke, Tanja; Söll, Dieter; Podar, Mircea

    2013-04-02

    The composition of the human microbiota is recognized as an important factor in human health and disease. Many of our cohabitating microbes belong to phylum-level divisions for which there are no cultivated representatives and are only represented by small subunit rRNA sequences. For one such taxon (SR1), which includes bacteria with elevated abundance in periodontitis, we provide a single-cell genome sequence from a healthy oral sample. SR1 bacteria use a unique genetic code. In-frame TGA (opal) codons are found in most genes (85%), often at loci normally encoding conserved glycine residues. UGA appears not to function as a stop codon and is in equilibrium with the canonical GGN glycine codons, displaying strain-specific variation across the human population. SR1 encodes a divergent tRNA(Gly)UCA with an opal-decoding anticodon. SR1 glycyl-tRNA synthetase acylates tRNA(Gly)UCA with glycine in vitro with similar activity compared with normal tRNA(Gly)UCC. Coexpression of SR1 glycyl-tRNA synthetase and tRNA(Gly)UCA in Escherichia coli yields significant β-galactosidase activity in vivo from a lacZ gene containing an in-frame TGA codon. Comparative genomic analysis with Human Microbiome Project data revealed that the human body harbors a striking diversity of SR1 bacteria. This is a surprising finding because SR1 is most closely related to bacteria that live in anoxic and thermal environments. Some of these bacteria share common genetic and metabolic features with SR1, including UGA to glycine reassignment and an archaeal-type ribulose-1,5-bisphosphate carboxylase (RubisCO) involved in AMP recycling. UGA codon reassignment renders SR1 genes untranslatable by other bacteria, which impacts horizontal gene transfer within the human microbiota.

  13. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii.

    Science.gov (United States)

    Ramirez-Farias, Carlett; Slezak, Kathleen; Fuller, Zoë; Duncan, Alan; Holtrop, Grietje; Louis, Petra

    2009-02-01

    Prebiotics are food ingredients that improve health by modulating the colonic microbiota. The bifidogenic effect of the prebiotic inulin is well established; however, it remains unclear which species of Bifidobacterium are stimulated in vivo and whether bacterial groups other than lactic acid bacteria are affected by inulin consumption. Changes in the faecal microbiota composition were examined by real-time PCR in twelve human volunteers after ingestion of inulin (10 g/d) for a 16-d period in comparison with a control period without any supplement intake. The prevalence of most bacterial groups examined did not change after inulin intake, although the low G+C % Gram-positive species Faecalibacterium prausnitzii exhibited a significant increase (10.3% for control period v. 14.5% during inulin intake, P=0.019). The composition of the genus Bifidobacterium was studied in four of the volunteers by clone library analysis. Between three and five Bifidobacterium spp. were found in each volunteer. Bifidobacterium adolescentis and Bifidobacterium longum were present in all volunteers, and Bifidobacterium pseudocatenulatum, Bifidobacterium animalis, Bifidobacterium bifidum and Bifidobacterium dentium were also detected. Real-time PCR was employed to quantify the four most prevalent Bifidobacterium spp., B. adolescentis, B. longum, B. pseudocatenulatum and B. bifidum, in ten volunteers carrying detectable levels of bifidobacteria. B. adolescentis showed the strongest response to inulin consumption, increasing from 0.89 to 3.9% of the total microbiota (P=0.001). B. bifidum was increased from 0.22 to 0.63% (P<0.001) for the five volunteers for whom this species was present.

  14. Critical role of microbiota within cecal crypts on the regenerative capacity of the intestinal epithelium following surgical stress.

    Science.gov (United States)

    Zaborin, Alexander; Krezalek, Monika; Hyoju, Sanjiv; Defazio, Jennifer R; Setia, Namrata; Belogortseva, Natalia; Bindokas, Vytautas P; Guo, Qiti; Zaborina, Olga; Alverdy, John C

    2017-02-01

    Cecal crypts represent a unique niche that are normally occupied by the commensal microbiota. Due to their density and close proximity to stem cells, microbiota within cecal crypts may modulate epithelial regeneration. Here we demonstrate that surgical stress, a process that invariably involves a short period of starvation, antibiotic exposure, and tissue injury, results in cecal crypt evacuation of their microbiota. Crypts devoid of their microbiota display pathophysiological features characterized by abnormal stem cell activation as judged by leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) staining, expansion of the proliferative zone toward the tips of the crypts, and an increase in apoptosis. In addition, crypts devoid of their microbiota display loss of their regenerative capacity as assessed by their ability to form organoids ex vivo. When a four-member human pathogen community isolated from the stool of a critically ill patient is introduced into the cecum of mice with empty crypts, crypts become occupied by the pathogens and further disruption of crypt homeostasis is observed. Fecal microbiota transplantation restores the cecal crypts' microbiota, normalizes homeostasis within crypts, and reestablishes crypt regenerative capacity. Taken together, these findings define an emerging role for the microbiota within cecal crypts to maintain epithelial cell homeostasis in a manner that may enhance recovery in response to the physiological stress imposed by the process of surgery. This study provides novel insight into the process by which surgical injury places the intestinal epithelium at risk for colonization by pathogenic microbes and impairment of its regenerative capacity via loss of its microbiota. We show that fecal transplant restores crypt homeostasis in association with repopulation of the microbiota within cecal crypts. Copyright © 2017 the American Physiological Society.

  15. Activation of immune and defense responses in the intestinal mucosa by outer membrane vesicles of commensal and probiotic Escherichia coli strains

    Directory of Open Access Journals (Sweden)

    Maria José eFábrega

    2016-05-01

    Full Text Available The influence of microbiota in human health is well known. Imbalances in microbiome structure have been linked to several diseases. Modulation of microbiota composition through probiotic therapy is an attempt to harness the beneficial effects of commensal microbiota. Although there is wide knowledge of the responses induced by gut microbiota, the microbial factors that mediate these effects are not well known. Gram-negative bacteria release outer membrane vesicles (OMVs as a secretion mechanism of microbial factors, which have an important role in intercellular communication. Here, we investigated whether OMVs from the probiotic Escherichia coli strain Nissle 1917 or the commensal E. coli strain ECOR12 trigger immune responses in various cellular models: (i peripheral blood mononuclear cells (PBMCs as a model of intestinal barrier disruption, (ii apical stimulation of Caco-2/PMBCs co-culture as a model of intact intestinal mucosa, and (iii colonic mucosa explants as an ex vivo model. Stimulations with bacterial lysates were also performed. Whereas both OMVs and lysates activated expression and secretion of several cytokines and chemokines in PBMCs, only OMVs induced basolateral secretion and mRNA upregulation of these mediators in the co-culture model. We provide evidence that OMVs are internalized in polarized Caco-2 cells. The activated epithelial cells elicit a response in the underlying immunocompetent cells. The OMVs effects were corroborated in the ex vivo model. This experimental study shows that OMVs are an effective strategy used by beneficial gut bacteria to communicate with and modulate host responses, activating signaling events through the intestinal epithelial barrier.

  16. Modulation of the human gut microbiota by dietary fibres occurs at the species level.

    Science.gov (United States)

    Chung, Wing Sun Faith; Walker, Alan W; Louis, Petra; Parkhill, Julian; Vermeiren, Joan; Bosscher, Douwina; Duncan, Sylvia H; Flint, Harry J

    2016-01-11

    Dietary intake of specific non-digestible carbohydrates (including prebiotics) is increasingly seen as a highly effective approach for manipulating the composition and activities of the human gut microbiota to benefit health. Nevertheless, surprisingly little is known about the global response of the microbial community to particular carbohydrates. Recent in vivo dietary studies have demonstrated that the species composition of the human faecal microbiota is influenced by dietary intake. There is now potential to gain insights into the mechanisms involved by using in vitro systems that produce highly controlled conditions of pH and substrate supply. We supplied two alternative non-digestible polysaccharides as energy sources to three different human gut microbial communities in anaerobic, pH-controlled continuous-flow fermentors. Community analysis showed that supply of apple pectin or inulin resulted in the highly specific enrichment of particular bacterial operational taxonomic units (OTUs; based on 16S rRNA gene sequences). Of the eight most abundant Bacteroides OTUs detected, two were promoted specifically by inulin and six by pectin. Among the Firmicutes, Eubacterium eligens in particular was strongly promoted by pectin, while several species were stimulated by inulin. Responses were influenced by pH, which was stepped up, and down, between 5.5, 6.0, 6.4 and 6.9 in parallel vessels within each experiment. In particular, several experiments involving downshifts to pH 5.5 resulted in Faecalibacterium prausnitzii replacing Bacteroides spp. as the dominant sequences observed. Community diversity was greater in the pectin-fed than in the inulin-fed fermentors, presumably reflecting the differing complexity of the two substrates. We have shown that particular non-digestible dietary carbohydrates have enormous potential for modifying the gut microbiota, but these modifications occur at the level of individual strains and species and are not easily predicted a priori

  17. Metabolism of the benzidine-based azo dye Direct Black 38 by human intestinal microbiota

    Energy Technology Data Exchange (ETDEWEB)

    Manning, B.W.; Cerniglia, C.E.; Federle, T.W.

    1985-07-01

    Benzidine-based azo dyes are proven mutagens and have been linked to bladder cancer. Previous studies have indicated that their initial reduction is the result of the azo reductase activity of the intestinal microbiota. Metabolism of the benzidine-based dye Direct Black 38 was examined by using a semicontinuous culture system that simulates the lumen of the human large intestine. The system was inoculated with freshly voided feces, and an active flora was maintained as evidenced by volatile fatty acid and gas production. Within 7 days after exposure to the dye, the following metabolites were isolated and identified by gas chromatography - mass spectrometry: benzidine, 4-aminobiphenyl, monoacetylbenzidine, and acetylaminobiphenyl. Benzidine reached its peak level after 24 h, accounting for 39.1% of the added dye. Its level began to decline, and by day 7 the predominant metabolite was acetylaminobiphenyl, which accounted for 51.1% of the parent compound. Formation of the deaminated and N-acetylated analogs of benzidine, which have enhanced mutagenicity and lipophilicity, previously has not been attributed to the intestinal microbiota.

  18. In vitro extraction and fermentation of polyphenols from grape seeds (Vitis vinifera) by human intestinal microbiota.

    Science.gov (United States)

    Zhou, Li; Wang, Wei; Huang, Jun; Ding, Yu; Pan, Zhouqiang; Zhao, Ya; Zhang, Renkang; Hu, Bing; Zeng, Xiaoxiong

    2016-04-01

    The effects of several parameters on the extraction yield of total polyphenols from grape seeds by pressurized liquid extraction were investigated. The highest recovery of total polyphenols occurred at 80 °C within 5 min, and a single extraction allowed a recovery of more than 97% of total polyphenols. Following the purification with macroporous resin, the effects of grape polyphenols (>94.8%) on human intestinal microbiota were monitored over 36 h incubation by fluorescence in situ hybridization, and short-chain fatty acids (SCFAs) were measured by HPLC. The result showed that the grape polyphenols promoted the changes in the relevant microbial populations and shifted the profiles of SCFAs. Fermentation of grape polyphenols resulted in a significant increase in the numbers of Bifidobacterium spp. and Lactobacillus-Enterococcus group and inhibition in the growth of the Clostridium histolyticum group and the Bacteroides-Prevotella group, with no significant effect on the population of total bacteria. The findings suggest that grape polyphenols have potential prebiotic effects on modulating the gut microbiota composition and generating SCFAs that contribute to the improvements of host health.

  19. Gut microbiota: a source of novel tools to reduce the risk of human disease?

    Science.gov (United States)

    Collado, Maria Carmen; Rautava, Samuli; Isolauri, Erika; Salminen, Seppo

    2015-01-01

    Modern civilization is faced with a progressive increase in immune-mediated or inflammatory health problems such as allergic disease, autoimmune disorders, and obesity. An extended version of the hygiene hypothesis has been introduced to emphasize the intimate interrelationship among diet, the immune system, microbiome, and origins of human disease: the modern infant, particularly when delivered by cesarean section and without the recommended exclusive breastfeeding, may lack sufficient stimulation of the mucosal immune system to generate a tolerogenic immune milieu and instead be prone to develop chronic inflammatory conditions. These deviations may take the form of allergic or autoimmune disease, or predispose the child to higher weight gain and obesity. Moreover, evidence supports the role of first microbial contacts in promoting and maintaining a balanced immune response in early life and recent findings suggest that microbial contact begins prior to birth and is shaped by the maternal microbiota. Maternal microbiota may prove to be a safe and effective target for interventions decreasing the risk of allergic and noncommunicable diseases in future generations. These results support the hypothesis that targeting early interaction with microbes might offer an applicable strategy to prevent disease.

  20. Time course production of urolithins from ellagic acid by human gut microbiota.

    Science.gov (United States)

    García-Villalba, Rocío; Beltrán, David; Espín, Juan Carlos; Selma, María Victoria; Tomás-Barberán, Francisco A

    2013-09-18

    Ellagic acid (EA) is converted to urolithins by gut microbiota. Urolithins have beneficial biological effects in humans, but differences in urolithin production capacity among individuals have been shown. Therefore, the identification of the urolithin production pathways and the microorganisms implicated is of high interest. EA was incubated with gut microbiota from two volunteers able to produce urolithins but with different in vivo urolithin profiles (urolithin A and isourolithin A producers). The metabolic capabilities observed in vivo were retained in vitro. Both individuals showed a much higher abundance of Clostridium leptum group of Firmicutes phylum than Bacteroides / Prevotella . EA was either dissolved in DMSO or suspended in water. DMSO increased EA solubility but decreased urolithin production rate due to a delay in growth of some microbial groups, principally, Clostridium coccoides . This allowed the detection of catabolic intermediates [urolithins M-5, M-6, M-7, C, and 2,3,8,10-tetrahydroxy urolithin (urolithin E)]. Bacteria from C. coccoides group (or genera co-occurring in vivo with this group) seem to be involved in production of different urolithins.

  1. Determining the long-term effect of antibiotic administration on the human normal intestinal microbiota using culture and pyrosequencing methods

    NARCIS (Netherlands)

    Rashid, M.U.; Zaura, E.; Buijs, M.J.; Keijser, B.J.F.; Crielaard, W.; Nord, C.E.; Weintraub, A.

    2015-01-01

    The purpose of the study was to assess the effect of ciprofloxacin (500 mg twice daily for 10 days) or clindamycin (150 mg 4 times daily for 10 days) on the fecal microbiota of healthy humans for a period of 1 year as compared to placebo. Two different methods, culture and microbiome analysis, were

  2. The Effect of Various Inulins and Clostridium difficile on the Metabolic Activity of the Human Colonic Microbiota in vitro

    NARCIS (Netherlands)

    Nuenen, M.H.M.C. van; Meyer, P.D.; Venema, K.

    2003-01-01

    The influence of inulins with different average degree of polymerization (ranging from 3 to 25) on the metabolic activity of the human colonic microbiota with or without the addition of Clostridium difficile was investigated in vitro. The in vitro system used was a dynamic, computer-controlled model

  3. Correlation network analysis reveals relationships between diet-induced changes in human gut microbiota and metabolic health

    NARCIS (Netherlands)

    Kelder, T.; Stroeve, J.H.M.; Bijlsma, S.; Radonjic, M.; Roeselers, G.

    2014-01-01

    BACKGROUND: Recent evidence suggests that the gut microbiota plays an important role in human metabolism and energy homeostasis and is therefore a relevant factor in the assessment of metabolic health and flexibility. Understanding of these host–microbiome interactions aids the design of nutritional

  4. Determining the long-term effect of antibiotic administration on the human normal intestinal microbiota using culture and pyrosequencing methods

    NARCIS (Netherlands)

    Rashid, M.U.; Zaura, E.; Buijs, M.J.; Keijser, B.J.F.; Crielaard, W.; Nord, C.E.; Weintraub, A.

    2015-01-01

    The purpose of the study was to assess the effect of ciprofloxacin (500 mg twice daily for 10 days) or clindamycin (150 mg 4 times daily for 10 days) on the fecal microbiota of healthy humans for a period of 1 year as compared to placebo. Two different methods, culture and microbiome analysis, were

  5. The Effect of Various Inulins and Clostridium difficile on the Metabolic Activity of the Human Colonic Microbiota in vitro

    NARCIS (Netherlands)

    Nuenen, M.H.M.C. van; Meyer, P.D.; Venema, K.

    2003-01-01

    The influence of inulins with different average degree of polymerization (ranging from 3 to 25) on the metabolic activity of the human colonic microbiota with or without the addition of Clostridium difficile was investigated in vitro. The in vitro system used was a dynamic, computer-controlled model

  6. Effects of Gut Microbiota Manipulation by Antibiotics on Host Metabolism in Obese Humans : A Randomized Double-Blind Placebo-Controlled Trial

    NARCIS (Netherlands)

    Reijnders, Dorien; Goossens, Gijs H.; Hermes, Gerben D. A.; Neis, Evelien P. J. G.; van der Beek, Christina M.; Most, Jasper; Holst, Jens J.; Lenaerts, Kaatje; Kootte, Ruud S.; Nieuwdorp, Max; Groen, Albert K.; Damink, Steven W. M. Olde; Boekschoten, Mark V.; Smidt, Hauke; Zoetendal, Erwin G.; Dejong, Cornelis H. C.; Blaak, Ellen E.

    2016-01-01

    The gut microbiota has been implicated in obesity and cardiometabolic diseases, although evidence in humans is scarce. We investigated how gut microbiota manipulation by antibiotics (7-day administration of amoxicillin, vancomycin, or placebo) affects host metabolism in 57 obese, prediabetic men.

  7. Metatranscriptome analysis of the human fecal microbiota reveals subject-specific expression profiles, with genes encoding proteins involved in carbohydrate metabolism being dominantly expressed

    NARCIS (Netherlands)

    Booijink, C.C.G.M.; Boekhorst, te J.; Zoetendal, E.G.; Smidt, H.; Kleerebezem, M.; Vos, de W.M.

    2010-01-01

    The human gastrointestinal (GI) tract provides home to a complex microbial community, collectively termed microbiota. Although major efforts have been made to describe the diversity and stability of the microbiota, functional studies have been largely restricted to intestinal isolates and include fe

  8. Biotransformation of 1-nitropyrene to 1-aminopyrene and N-formyl-1-aminopyrene by the human intestinal microbiota

    Energy Technology Data Exchange (ETDEWEB)

    Manning, B.W.; Cerniglia, C.E.; Federle, T.W.

    1986-01-01

    The nitropolycyclic aromatic hydrocarbon 1-nitropyrene (1-NP) is an environmental pollutant, a potent bacterial and mammalian mutagen, and a carcinogen. The metabolism of 1-NP by the human intestinal microbiota was studied using a semicontinuous culture system that simulates the colonic lumen. (/sup 3/H)-1-Nitropyrene was metabolized by the intestinal microbiota to 1-aminopyrene (1-AP) and N-formyl-1-aminopyrene (FAP) as determined by high-performance liquid chromatography (HPLC) and mass spectrometry. Twenty-four hours after the addition of (/sup 3/H)-1-NP, the formylated compound and 1-AP accounted for 20 and 80% of the total metabolism respectively. This percentage increased to 66% for FAP after 24 h following 10 d of chronic exposure to unlabeled 1-NP, suggesting metabolic adaptation to 1-NP by the microbiota. Both 1-AP and FAP have been shown to be nonmutagenic towards Salmonella typhimurium TA98, which indicates that the intestinal microflora may potentially detoxify 1-NP.

  9. Nod2: A Critical Regulator of Ileal Microbiota and Crohn’s Disease

    Science.gov (United States)

    Sidiq, Tabasum; Yoshihama, Sayuri; Downs, Isaac; Kobayashi, Koichi S.

    2016-01-01

    The human intestinal tract harbors large bacterial community consisting of commensal, symbiotic, and pathogenic strains, which are constantly interacting with the intestinal immune system. This interaction elicits a non-pathological basal level of immune responses and contributes to shaping both the intestinal immune system and bacterial community. Recent studies on human microbiota are revealing the critical role of intestinal bacterial community in the pathogenesis of both systemic and intestinal diseases, including Crohn’s disease (CD). NOD2 plays a key role in the regulation of microbiota in the small intestine. NOD2 is highly expressed in ileal Paneth cells that provide critical mechanism for the regulation of ileal microbiota through the secretion of anti-bacterial compounds. Genome mapping of CD patients revealed that loss of function mutations in NOD2 are associated with ileal CD. Genome-wide association studies further demonstrated that NOD2 is one of the most critical genetic factor linked to ileal CD. The bacterial community in the ileum is indeed dysregulated in Nod2-deficient mice. Nod2-deficient ileal epithelia exhibit impaired ability of killing bacteria. Thus, altered interactions between ileal microbiota and mucosal immunity through NOD2 mutations play significant roles in the disease susceptibility and pathogenesis in CD patients, thereby depicting NOD2 as a critical regulator of ileal microbiota and CD. PMID:27703457

  10. Innate and Adaptive Immunity Cooperate Flexibly to Maintain Host-Microbiota Mutualism

    National Research Council Canada - National Science Library

    Emma Slack; Siegfried Hapfelmeier; Bärbel Stecher; Yuliya Velykoredko; Maaike Stoel; Melissa A. E. Lawson; Markus B. Geuking; Bruce Beutler; Thomas F. Tedder; Wolf-Dietrich Hardt; Premysl Bercik; Elena F. Verdu; Kathy D. McCoy; Andrew J. Macpherson

    2009-01-01

    .... Mice deficient in critical innate immune functions such as Toll-like receptor signaling or oxidative burst production spontaneously produce high-titer serum antibodies against their commensal microbiota...

  11. Human intestinal microbiota and diseases%人体肠道细菌群落与疾病

    Institute of Scientific and Technical Information of China (English)

    翁幸鐾; 糜祖煌

    2011-01-01

    肠道定植有100万亿细菌,这占到了人体细菌总量的绝大多数.一旦肠道菌群失调,就会产生一系列疾病.本文介绍了人体肠道细菌群落异常与5种肠道疾病和5种肠道外疾病的关系,并推荐用益生菌和益生素来治疗人体肠道细菌群落异常.为了解人体肠道细菌群落和人体健康的关系,美国国立卫生研究院已启动了人类微生物组计划,欧洲委员会也正在资助人类肠道宏基因组学项目,而中国在此项目中亦取得了可喜进步.基于肠道宏基因组的个体化医疗时代已不再遥远.%Gut homes 100 trillion microorganisms-the vast majority of our complement of microbes.Shifts in the microbial species that reside in our intestines have been associated with a long list of pathologies.The review introduces a strong correlation between disrupted microbial composition and 5 kinds of gastrointestinal problems as well as 5 kinds of extra-gastrointestinal problems, and recommends probiotics and prebiotics to treat microbiota-associated illness.In order to find out the relationship between human intestinal microbiota and diseases, the National Institutes of Health launched the Human Microbiome Project at the end of 2007, and the European Commission is funding a related effort, called Metagenomics of the Human Intestinal Tract, in which China makes delightful progress.In sum, individual therapy based on intestinal metagenomics is coming.

  12. Treating Clostridium difficile infections: Should fecal microbiota transplantation be reclassified from investigational drug to human tissue?

    Directory of Open Access Journals (Sweden)

    Mark Stuntz

    2015-10-01

    Full Text Available Fecal microbiota transplantation (FMT has emerged as a highly effective treatment for Clostridium difficile infection (CDI, the most frequent cause of hospital-acquired infectious diarrhea in developed countries and the cause of nearly 30,000 annual deaths in the US. FMT is proving to be more effective at treating CDI than traditional antibacterial therapy, and reduces the exposure of valuable antibiotics to potential resistance. A systematic review to assess the efficacy of FMT for CDI treatment showed that across all studies for recurrent CDI, symptom resolution was observed in 85% of patients. The United States Food and Drug Administration currently classifies FMT as an investigational drug, which imparts overly restrictive regulations that are impossible to apply to FMT in the same manner as conventional drugs. Reclassification of FMT to a human cell, tissue, and cellular and tissue-based product could potentially expand access to this important treatment while maintaining rigorous safety standards.

  13. The Influence of Different Apple Based Supplements on the Intestinal Microbiota of Humans

    DEFF Research Database (Denmark)

    Bergström, Anders; Wilcks, Andrea; Ravn-Haren, Gitte

    , pomace or apple pectin ([1], and we were interested in finding out if the same effect can be observed in humans. Method: The study was conducted as a randomized, controlled 5 x 28 days cross-over study with 24 healthy persons of both genders. The persons were following a pectin- and polyphenol free...... restriction diet during the control period, and in the four other periods it was supplied with four different apple based supplements. Between the diets there was a 2-week wash-out period still on the restriction diet. The four apple based supplements were: 1) whole apples, 2) clear apple juice (pectin...... for bifidobacteria and Clostridium cluster XIVa was performed. Bands differing between the periods were sequenced, and qPCR was performed to verify the changes observed by DGGE. Results: Changes in the microbiota was observed by DGGE in persons consuming whole apples and pomace. In contrast, the two juice...

  14. The Influence of Different Apple Based Supplements on the Intestinal Microbiota of Humans

    DEFF Research Database (Denmark)

    Bergström, Anders; Wilcks, Andrea; Ravn-Haren, Gitte

    2010-01-01

    , pomace or apple pectin ([1], and we were interested in finding out if the same effect can be observed in humans. Method: The study was conducted as a randomized, controlled 5 x 28 days cross-over study with 24 healthy persons of both genders. The persons were following a pectin- and polyphenol free...... restriction diet during the control period, and in the four other periods it was supplied with four different apple based supplements. Between the diets there was a 2-week wash-out period still on the restriction diet. The four apple based supplements were: 1) whole apples, 2) clear apple juice (pectin...... for bifidobacteria and Clostridium cluster XIVa was performed. Bands differing between the periods were sequenced, and qPCR was performed to verify the changes observed by DGGE. Results: Changes in the microbiota was observed by DGGE in persons consuming whole apples and pomace. In contrast, the two juice...

  15. How to manipulate the microbiota

    NARCIS (Netherlands)

    Fuentes Enriquez de Salamanca, Susana; Vos, de Willem M.

    2016-01-01

    Fecal microbiota transplantation (FMT) is a rather straightforward therapy that manipulates the human gastrointestinal (GI) microbiota, by which a healthy donor microbiota is transferred into an existing but disturbed microbial ecosystem. This is a natural process that occurs already at birth; in

  16. How to manipulate the microbiota

    NARCIS (Netherlands)

    Fuentes Enriquez de Salamanca, Susana; Vos, de Willem M.

    2016-01-01

    Fecal microbiota transplantation (FMT) is a rather straightforward therapy that manipulates the human gastrointestinal (GI) microbiota, by which a healthy donor microbiota is transferred into an existing but disturbed microbial ecosystem. This is a natural process that occurs already at birth; in

  17. Immunomodulatory properties of Streptococcus and Veillonella isolates from the human small intestine microbiota.

    Directory of Open Access Journals (Sweden)

    Bartholomeus van den Bogert

    Full Text Available The human small intestine is a key site for interactions between the intestinal microbiota and the mucosal immune system. Here we investigated the immunomodulatory properties of representative species of commonly dominant small-intestinal microbial communities, including six streptococcal strains (four Streptococcus salivarius, one S. equinus, one S. parasanguinis one Veillonella parvula strain, one Enterococcus gallinarum strain, and Lactobacillus plantarum WCFS1 as a bench mark strain on human monocyte-derived dendritic cells. The different streptococci induced varying levels of the cytokines IL-8, TNF-α, and IL-12p70, while the V. parvula strain showed a strong capacity to induce IL-6. E. gallinarum strain was a potent inducer of cytokines and TLR2/6 signalling. As Streptococcus and Veillonella can potentially interact metabolically and frequently co-occur in ecosystems, immunomodulation by pair-wise combinations of strains were also tested for their combined immunomodulatory properties. Strain combinations induced cytokine responses in dendritic cells that differed from what might be expected on the basis of the results obtained with the individual strains. A combination of (some streptococci with Veillonella appeared to negate IL-12p70 production, while augmenting IL-8, IL-6, IL-10, and TNF-α responses. This suggests that immunomodulation data obtained in vitro with individual strains are unlikely to adequately represent immune responses to mixtures of gut microbiota communities in vivo. Nevertheless, analysing the immune responses of strains representing the dominant species in the intestine may help to identify immunomodulatory mechanisms that influence immune homeostasis.

  18. Transfer of Viral Communities between Human Individuals during Fecal Microbiota Transplantation

    Directory of Open Access Journals (Sweden)

    Christel Chehoud

    2016-03-01

    Full Text Available Fecal microbiota transplantation (FMT is a highly effective treatment for refractory Clostridium difficile infections. However, concerns persist about unwanted cotransfer of pathogenic microbes such as viruses. Here we studed FMT from a single healthy human donor to three pediatric ulcerative colitis patients, each of whom received a course of 22 to 30 FMT treatments. Viral particles were purified from donor and recipient stool samples and sequenced; the reads were then assembled into contigs corresponding to viral genomes or partial genomes. Transfer of selected viruses was confirmed by quantitative PCR. Viral contigs present in the donor could be readily detected in recipients, with up to 32 different donor viral contigs appearing in a recipient sample. Reassuringly, none of these were viruses are known to replicate on human cells. Instead, viral contigs either scored as bacteriophage or could not be attributed taxonomically, suggestive of unstudied phage. The two most frequently transferred gene types were associated with temperate-phage replication. In addition, members of Siphoviridae, the group of typically temperate phages that includes phage lambda, were found to be transferred with significantly greater efficiency than other groups. On the basis of these findings, we propose that the temperate-phage replication style may promote efficient phage transfer between human individuals. In summary, we documented transfer of multiple viral lineages between human individuals through FMT, but in this case series, none were from viral groups known to infect human cells.

  19. Microbiota and immunity: from preclinical data to clinical practice

    Directory of Open Access Journals (Sweden)

    Eleonora Giannetti

    2015-10-01

    Full Text Available The intestinal microbiota is composed of 1013-1014 microorganisms, with at least 100 times as many genes as our genome, the microbiome. Its composition is specific for each individual, changes among individuals and also shows an intra-individual variability during life. Although the gastrointestinal microbial communities of adults are often believed to be stable, there is evidence that, even though at lower rates than in childhood, they change with time, and effects of this variability on health have not been determined yet. The interaction between microbiota and environment is close and widely demonstrated. Gut flora composition is deeply influenced by a number of factors, including diet, age, medications, illness, stress and lifestyle. Intestinal microflora has protective, metabolic and trophic functions. Commensal microbiota can deeply influence the development of the gut mucosal immune system, modulating the maturation of the gut-associated lymphoid tissue and preventing exogenous pathogen intrusion, by stimulation of the immune system and by direct interaction with pathogenic bacteria. The increasing amount of preclinical studies regarding the interaction between intestinal microbiota and immune system and the multiple observations of altered microbiota in human diseases have paved the way for a number of clinical trials aimed at verifying the potential benefits deriving from the manipulation of the microbial ensemble. Several probiotic bacteria have been assessed for their potential applicability in human diseases, albeit with different levels of success. In conclusion, the gut microbiota codevelops with the immune system beginning at birth. The development of the microbiota and its interactions with the cellular populations of the bowel provide a substantial contribution to shaping the structure and dynamic operations of the innate and adaptive immune systems. Manipulation of the microbiota, particularly through the administration of

  20. Data Mining of Lung Microbiota in Cystic Fibrosis Patients

    Science.gov (United States)

    Xiao, Yan; Wang, Jianwei; Qin, Xuemei

    2016-01-01

    The major therapeutic strategy used to treat exacerbated cystic fibrosis (CF) is antibiotic treatment. As this approach easily generates antibiotic-resistant strains of opportunistic bacteria, optimized antibiotic therapies are required to effectively control chronic and recurrent bacterial infections in CF patients. A promising future for the proper use of antibiotics is the management of lung microbiota. However, the impact of antibiotic treatments on CF microbiota and vice versa is not fully understood. This study analyzed 718 sputum samples from 18 previous studies to identify differences between CF and uninfected lung microbiota and to evaluate the effects of antibiotic treatments on exacerbated CF microbiota. A reference-based OTU (operational taxonomic unit) picking method was used to combine analyses of data generated using different protocols and platforms. Findings show that CF microbiota had greater richness and lower diversity in the community structure than uninfected control (NIC) microbiota. Specifically, CF microbiota showed higher levels of opportunistic bacteria and dramatically lower levels of commensal bacteria. Antibiotic treatment affected exacerbated CF microbiota notably but only transiently during the treatment period. Limited decrease of the dominant opportunistic bacteria and a dramatic decrease of commensal bacteria were observed during the antibiotic treatment for CF exacerbation. Simultaneously, low abundance opportunistic bacteria were thriving after the antibiotic treatment. The inefficiency of the current antibiotic treatment against major opportunistic bacteria and the detrimental effects on commensal bacteria indicate that the current empiric antibiotic treatment on CF exacerbation should be reevaluated and optimized. PMID:27741283

  1. Data Mining of Lung Microbiota in Cystic Fibrosis Patients.

    Science.gov (United States)

    Li, Jianguo; Hao, Chunyan; Ren, Lili; Xiao, Yan; Wang, Jianwei; Qin, Xuemei

    2016-01-01

    The major therapeutic strategy used to treat exacerbated cystic fibrosis (CF) is antibiotic treatment. As this approach easily generates antibiotic-resistant strains of opportunistic bacteria, optimized antibiotic therapies are required to effectively control chronic and recurrent bacterial infections in CF patients. A promising future for the proper use of antibiotics is the management of lung microbiota. However, the impact of antibiotic treatments on CF microbiota and vice versa is not fully understood. This study analyzed 718 sputum samples from 18 previous studies to identify differences between CF and uninfected lung microbiota and to evaluate the effects of antibiotic treatments on exacerbated CF microbiota. A reference-based OTU (operational taxonomic unit) picking method was used to combine analyses of data generated using different protocols and platforms. Findings show that CF microbiota had greater richness and lower diversity in the community structure than uninfected control (NIC) microbiota. Specifically, CF microbiota showed higher levels of opportunistic bacteria and dramatically lower levels of commensal bacteria. Antibiotic treatment affected exacerbated CF microbiota notably but only transiently during the treatment period. Limited decrease of the dominant opportunistic bacteria and a dramatic decrease of commensal bacteria were observed during the antibiotic treatment for CF exacerbation. Simultaneously, low abundance opportunistic bacteria were thriving after the antibiotic treatment. The inefficiency of the current antibiotic treatment against major opportunistic bacteria and the detrimental effects on commensal bacteria indicate that the current empiric antibiotic treatment on CF exacerbation should be reevaluated and optimized.

  2. The Toll-like receptor pathway establishes commensal gut colonization

    Science.gov (United States)

    Round, June L.; Lee, S. Melanie; Li, Jennifer; Tran, Gloria; Jabri, Bana; Chatila, Talal A.; Mazmanian, Sarkis K.

    2011-01-01

    Mucosal surfaces are in continuous contact with microbes. Toll-like receptors (TLRs) mediate recognition of microbial molecules to eliminate pathogens. In contrast, we demonstrate here that the prominent gut commensal, Bacteroides fragilis, activates the TLR pathway on T lymphocytes to establish host-microbial symbiosis. TLR2 deletion on CD4+ T cells results in anti-microbial immune responses that reduce B. fragilis colonization of a unique mucosal niche during homeostasis. A symbiosis factor (PSA) of B. fragilis activates TLR2 directly on Foxp3+ regulatory T cells through a novel process to engender mucosal tolerance. Remarkably, B. fragilis lacking PSA is unable to restrain host immune responses and is defective in niche-specific mucosal colonization. Therefore, unlike pathogens whose TLR ligands trigger inflammation, some commensal bacteria exploit the TLR pathway to actively suppress immune reactions. We propose that the immunologic distinction between pathogens and the microbiota is mediated not solely by host mechanisms, but also through specialized molecules evolved by symbiotic bacteria that enable commensal colonization. PMID:21512004

  3. Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota.

    Science.gov (United States)

    Bai, Shaofeng; Chen, Huahai; Zhu, Liying; Liu, Wei; Yu, Hongwei D; Wang, Xin; Yin, Yeshi

    2017-01-01

    Alginates pertain to organic polysaccharides that have been extensively used in food- and medicine-related industries. The present study obtained alginates from an alginate overproducing Pseudomonas aeruginosa PAO1 mutant by screening transposon mutagenesis libraries. The interaction between bacterial and seaweed alginates and gut microbiota were further studied by using an in vitro batch fermentation system. Thin-layer chromatography (TLC) analysis indicated that both bacterial and seaweed alginates can be completely degraded by fecal bacteria isolated from study volunteers, indicating that a minor structural difference between bacterial and seaweed alginates (O-acetylation and lack of G-G blocks) didn't affect the digestion of alginates by human microbiota. Although, the digestion of bacterial and seaweed alginates was attributed to different Bacteroides xylanisolvens strains, they harbored similar alginate lyase genes. Genus Bacteroides with alginate-degrading capability were enriched in growth medium containing bacterial or seaweed alginates after in vitro fermentation. Short-chain fatty acid (SCFA) production in both bacterial and seaweed alginates was also comparable, but was significantly higher than the same medium using starch. In summary, the present study has isolated an alginate-overproducing P. aeruginosa mutant strain. Both seaweed and bacterial alginates were degraded by human gut microbiota, and their regulatory function on gut microbiota was similar.

  4. Determining the Long-term Effect of Antibiotic Administration on the Human Normal Intestinal Microbiota Using Culture and Pyrosequencing Methods.

    Science.gov (United States)

    Rashid, Mamun-Ur; Zaura, Egijia; Buijs, Mark J; Keijser, Bart J F; Crielaard, Wim; Nord, Carl Erik; Weintraub, Andrej

    2015-05-15

    The purpose of the study was to assess the effect of ciprofloxacin (500 mg twice daily for 10 days) or clindamycin (150 mg 4 times daily for 10 days) on the fecal microbiota of healthy humans for a period of 1 year as compared to placebo. Two different methods, culture and microbiome analysis, were used. Fecal samples were collected for analyses at 6 time-points. The interval needed for the normal microbiota to be normalized after ciprofloxacin or clindamycin treatment differed for various bacterial species. It took 1-12 months to normalize the human microbiota after antibiotic administration, with the most pronounced effect on day 11. Exposure to ciprofloxacin or clindamycin had a strong effect on the diversity of the microbiome, and changes in microbial composition were observed until the 12th month, with the most pronounced microbial shift at month 1. No Clostridium difficile colonization or C. difficile infections were reported. Based on the pyrosequencing results, it appears that clindamycin has more impact than ciprofloxacin on the intestinal microbiota. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality.

    Science.gov (United States)

    Montiel-Castro, Augusto J; González-Cervantes, Rina M; Bravo-Ruiseco, Gabriela; Pacheco-López, Gustavo

    2013-10-07

    Recent data suggest that the human body is not such a neatly self-sufficient island after all. It is more like a super-complex ecosystem containing trillions of bacteria and other microorganisms that inhabit all our surfaces; skin, mouth, sexual organs, and specially intestines. It has recently become evident that such microbiota, specifically within the gut, can greatly influence many physiological parameters, including cognitive functions, such as learning, memory and decision making processes. Human microbiota is a diverse and dynamic ecosystem, which has evolved in a mutualistic relationship with its host. Ontogenetically, it is vertically inoculated from the mother during birth, established during the first year of life and during lifespan, horizontally transferred among relatives, mates or close community members. This micro-ecosystem serves the host by protecting it against pathogens, metabolizing complex lipids and polysaccharides that otherwise would be inaccessible nutrients, neutralizing drugs and carcinogens, modulating intestinal motility, and making visceral perception possible. It is now evident that the bidirectional signaling between the gastrointestinal tract and the brain, mainly through the vagus nerve, the so called "microbiota-gut-vagus-brain axis," is vital for maintaining homeostasis and it may be also involved in the etiology of several metabolic and mental dysfunctions/disorders. Here we review evidence on the ability of the gut microbiota to communicate with the brain and thus modulate behavior, and also elaborate on the ethological and cultural strategies of human and non-human primates to select, transfer and eliminate microorganisms for selecting the commensal profile.

  6. In vitro fermentation of alginate and its derivatives by human gut microbiota.

    Science.gov (United States)

    Li, Miaomiao; Li, Guangsheng; Shang, Qingsen; Chen, Xiuxia; Liu, Wei; Pi, Xiong'e; Zhu, Liying; Yin, Yeshi; Yu, Guangli; Wang, Xin

    2016-06-01

    Alginate (Alg) has a long history as a food ingredient in East Asia. However, the human gut microbes responsible for the degradation of alginate and its derivatives have not been fully understood yet. Here, we report that alginate and the low molecular polymer derivatives of mannuronic acid oligosaccharides (MO) and guluronic acid oligosaccharides (GO) can be completely degraded and utilized at various rates by fecal microbiota obtained from six Chinese individuals. However, the derivative of propylene glycol alginate sodium sulfate (PSS) was not hydrolyzed. The bacteria having a pronounced ability to degrade Alg, MO and GO were isolated from human fecal samples and were identified as Bacteroides ovatus, Bacteroides xylanisolvens, and Bacteroides thetaiotaomicron. Alg, MO and GO can increase the production level of short chain fatty acids (SCFA), but GO generates the highest level of SCFA. Our data suggest that alginate and its derivatives could be degraded by specific bacteria in the human gut, providing the basis for the impacts of alginate and its derivates as special food additives on human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease

    Directory of Open Access Journals (Sweden)

    Deanna L. Gibson

    2012-08-01

    Full Text Available The gastrointestinal (GI microbiota is the collection of microbes which reside in the GI tract and represents the largest source of non-self antigens in the human body. The GI tract functions as a major immunological organ as it must maintain tolerance to commensal and dietary antigens while remaining responsive to pathogenic stimuli. If this balance is disrupted, inappropriate inflammatory processes can result, leading to host cell damage and/or autoimmunity. Evidence suggests that the composition of the intestinal microbiota can influence susceptibility to chronic disease of the intestinal tract including ulcerative colitis, Crohn’s disease, celiac disease and irritable bowel syndrome, as well as more systemic diseases such as obesity, type 1 diabetes and type 2 diabetes. Interestingly, a considerable shift in diet has coincided with increased incidence of many of these inflammatory diseases. It was originally believed that the composition of the intestinal microbiota was relatively stable from early childhood; however, recent evidence suggests that diet can cause dysbiosis, an alteration in the composition of the microbiota, which could lead to aberrant immune responses. The role of the microbiota and the potential for diet-induced dysbiosis in inflammatory conditions of the GI tract and systemic diseases will be discussed.

  8. Gut Microbiota: A Contributing Factor to Obesity.

    Science.gov (United States)

    Harakeh, Steve M; Khan, Imran; Kumosani, Taha; Barbour, Elie; Almasaudi, Saad B; Bahijri, Suhad M; Alfadul, Sulaiman M; Ajabnoor, Ghada M A; Azhar, Esam I

    2016-01-01

    Obesity, a global epidemic of the modern era, is a risk factor for cardiovascular diseases (CVD) and diabetes. The pervasiveness of obesity and overweight in both developed as well as developing populations is on the rise and placing a huge burden on health and economic resources. Consequently, research to control this emerging epidemic is of utmost importance. Recently, host interactions with their resident gut microbiota (GM) have been reported to be involved in the pathogenesis of many metabolic diseases, including obesity, diabetes, and CVD. Around 10(14) microorganisms reside within the lower human intestine and many of these 10(14) microorganisms have developed mutualistic or commensal associations with the host and actively involved in many physiological processes of the host. However, dysbiosis (altered gut microbial composition) with other predisposing genetic and environmental factors, may contribute to host metabolic disorders resulting in many ailments. Therefore, delineating the role of GM as a contributing factor to obesity is the main objective of this review. Obesity research, as a field is expanding rapidly due to major advances in nutrigenomics, metabolomics, RNA silencing, epigenetics, and other disciplines that may result in the emergence of new technologies and methods to better interpret causal relationships between microbiota and obesity.

  9. Gut Microbiota: a contributing factor to obesity

    Directory of Open Access Journals (Sweden)

    Steve M Harakeh

    2016-08-01

    Full Text Available Obesity, a global epidemic of the modern era, is a risk factor for cardiovascular diseases (CVD and diabetes. The pervasiveness of obesity and overweight in both developed as well as developing populations is on the rise and placing a huge burden on health and economic resources. Consequently, research to control this emerging epidemic is of utmost importance. Recently, host interactions with their resident gut microbiota (GM have been reported to be involved in the pathogenesis of many metabolic diseases, including obesity, diabetes, and CVD. Around 1014 microorganisms reside within the lower human intestine and many of these 1014microorganisms have developed mutualistic or commensal associations with the host and actively involved in many physiological processes of the host. However, dysbiosis (altered gut microbial composition with other predisposing genetic and environmental factors, may contribute to host metabolic disorders resulting in many ailments. Therefore, delineating the role of GM as a contributing factor to obesity is the main objective of this review.Obesity research, as a field is expanding rapidly due to major advances in nutrigenomics, metabolomics, RNA silencing, epigenetics and other disciplines that may result in the emergence of new technologies and methods to better interpret causal relationships between microbiota and obesity.

  10. Gut Microbiota: A Contributing Factor to Obesity

    Science.gov (United States)

    Harakeh, Steve M.; Khan, Imran; Kumosani, Taha; Barbour, Elie; Almasaudi, Saad B.; Bahijri, Suhad M.; Alfadul, Sulaiman M.; Ajabnoor, Ghada M. A.; Azhar, Esam I.

    2016-01-01

    Obesity, a global epidemic of the modern era, is a risk factor for cardiovascular diseases (CVD) and diabetes. The pervasiveness of obesity and overweight in both developed as well as developing populations is on the rise and placing a huge burden on health and economic resources. Consequently, research to control this emerging epidemic is of utmost importance. Recently, host interactions with their resident gut microbiota (GM) have been reported to be involved in the pathogenesis of many metabolic diseases, including obesity, diabetes, and CVD. Around 1014 microorganisms reside within the lower human intestine and many of these 1014 microorganisms have developed mutualistic or commensal associations with the host and actively involved in many physiological processes of the host. However, dysbiosis (altered gut microbial composition) with other predisposing genetic and environmental factors, may contribute to host metabolic disorders resulting in many ailments. Therefore, delineating the role of GM as a contributing factor to obesity is the main objective of this review. Obesity research, as a field is expanding rapidly due to major advances in nutrigenomics, metabolomics, RNA silencing, epigenetics, and other disciplines that may result in the emergence of new technologies and methods to better interpret causal relationships between microbiota and obesity. PMID:27625997

  11. Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production.

    Science.gov (United States)

    Bhattarai, Yogesh; Schmidt, Bradley A; Linden, David R; Larson, Eric D; Grover, Madhusudan; Beyder, Arthur; Farrugia, Gianrico; Kashyap, Purna C

    2017-07-01

    Serotonin [5-hydroxytryptamine (5-HT)], an important neurotransmitter and a paracrine messenger in the gastrointestinal tract, regulates intestinal secretion by its action primarily on 5-HT3 and 5-HT4 receptors. Recent studies highlight the role of gut microbiota in 5-HT biosynthesis. In this study, we determine whether human-derived gut microbiota affects host secretory response to 5-HT and 5-HT receptor expression. We used proximal colonic mucosa-submucosa preparation from age-matched Swiss Webster germ-free (GF) and humanized (HM; ex-GF colonized with human gut microbiota) mice. 5-HT evoked a significantly greater increase in short-circuit current (ΔIsc) in GF compared with HM mice. Additionally, 5-HT3 receptor mRNA and protein expression was significantly higher in GF compared with HM mice. Ondansetron, a 5-HT3 receptor antagonist, inhibited 5-HT-evoked ΔIsc in GF mice but not in HM mice. Furthermore, a 5-HT3 receptor-selective agonist, 2-methyl-5-hydroxytryptamine hydrochloride, evoked a significantly higher ΔIsc in GF compared with HM mice. Immunohistochemistry in 5-HT3A-green fluorescent protein mice localized 5-HT3 receptor expression to enterochromaffin cells in addition to nerve fibers. The significant difference in 5-HT-evoked ΔIsc between GF and HM mice persisted in the presence of tetrodotoxin (TTX) but was lost after ondansetron application in the presence of TTX. Application of acetate (10 mM) significantly lowered 5-HT3 receptor mRNA in GF mouse colonoids. We conclude that host secretory response to 5-HT may be modulated by gut microbiota regulation of 5-HT3 receptor expression via acetate production. Epithelial 5-HT3 receptor may function as a mediator of gut microbiota-driven change in intestinal secretion.NEW & NOTEWORTHY We found that gut microbiota alters serotonin (5-HT)-evoked intestinal secretion in a 5-HT3 receptor-dependent mechanism and gut microbiota metabolite acetate alters 5-HT3 receptor expression in colonoids.View this article

  12. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota

    Energy Technology Data Exchange (ETDEWEB)

    Hibberd, Matthew C. [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology, Center for Gut Microbiome and Nutrition Research; Wu, Meng [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology; Rodionov, Dmitry A. [Russian Academy of Sciences (RAS), Moscow (Russian Federation). A.A. Kharkevich Inst. for Information Transmission Problems; Sanford Burnham Prebys Medical Discovery Inst., La Jolla, CA (United States); Li, Xiaoqing [Sanford Burnham Prebys Medical Discovery Inst., La Jolla, CA (United States); Cheng, Jiye [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology, Center for Gut Microbiome and Nutrition Researc; Griffin, Nicholas W. [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology, Center for Gut Microbiome and Nutrition Researc; Barratt, Michael J. [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology, Center for Gut Microbiome and Nutrition Researc; Giannone, Richard J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Hettich, Robert L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Osterman, Andrei L. [Sanford Burnham Prebys Medical Discovery Inst., La Jolla, CA (United States); Gordon, Jeffrey I. [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology, Center for Gut Microbiome and Nutrition Researc

    2017-05-17

    Micronutrient deficiencies afflict two billion people. And while the impact of these imbalances on host biology has been studied extensively, much less is known about their effects on the developing or adult gut microbiota. Thus, we established a community of 44 cultured, sequenced human gut-derived bacterial species in gnotobiotic mice and fed the animals a defined, micronutrient-sufficient diet, followed by a derivative diet devoid of vitamin A, folate, iron or zinc, followed by return to the sufficient diet. Acute vitamin A deficiency had the largest effect on community structure and meta-transcriptome, with Bacteroides vulgatus, a prominent responder, increasing its abundance in the absence of vitamin A, and manifesting transcriptional changes involving various metabolic pathways. Applying retinol selection to a library of 30,300 B. vulgatus transposon mutants revealed that disruption of acrR abrogated retinol sensitivity. Genetic complementation studies, microbial RNA-Seq, and transcription factor binding assays disclosed that AcrR functions as a repressor of an adjacent AcrAB-TolC efflux system plus other members of its regulon. Retinol efflux measurements in wild-type, acrR-mutant, and complemented acrR mutant strains, plus treatment with a pharmacologic inhibitor of the efflux system, revealed that AcrAB-TolC is a determinant of retinol and bile acid sensitivity. We associated acute vitamin A deficiency with altered bile acid metabolism in vivo, raising the possibility that retinol, bile acid metabolites, and AcrAB-TolC interact to influence the fitness of B. vulgatus and perhaps other microbiota members. This type of preclinical model can help develop mechanistic insights about and more effective treatment strategies for micronutrient deficiencies.

  13. Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice.

    Directory of Open Access Journals (Sweden)

    Markus M Heimesaat

    Full Text Available BACKGROUND: Postmortem microbiological examinations are performed in forensic and medical pathology for defining uncertain causes of deaths and for screening of deceased tissue donors. Interpretation of bacteriological data, however, is hampered by false-positive results due to agonal spread of microorganisms, postmortem bacterial translocation, and environmental contamination. METHODOLOGY/PRINCIPAL FINDINGS: We performed a kinetic survey of naturally occurring postmortem gut flora changes in the small and large intestines of conventional and gnotobiotic mice associated with a human microbiota (hfa applying cultural and molecular methods. Sacrificed mice were kept under ambient conditions for up to 72 hours postmortem. Intestinal microbiota changes were most pronounced in the ileal lumen where enterobacteria and enterococci increased by 3-5 orders of magnitude in conventional and hfa mice. Interestingly, comparable intestinal overgrowth was shown in acute and chronic intestinal inflammation in mice and men. In hfa mice, ileal overgrowth with enterococci and enterobacteria started 3 and 24 hours postmortem, respectively. Strikingly, intestinal bacteria translocated to extra-intestinal compartments such as mesenteric lymphnodes, spleen, liver, kidney, and cardiac blood as early as 5 min after death. Furthermore, intestinal tissue destruction was characterized by increased numbers of apoptotic cells and neutrophils within 3 hours postmortem, whereas counts of proliferative cells as well as T- and B-lymphocytes and regulatory T-cells decreased between 3 and 12 hours postmortem. CONCLUSIONS/SIGNIFICANCE: We conclude that kinetics of ileal overgrowth with enterobacteria and enterococci in hfa mice can be used as an indicator for compromized intestinal functionality and for more precisely defining the time point of death under defined ambient conditions. The rapid translocation of intestinal bacteria starting within a few minutes after death will help

  14. Evolution of Bacterial Pathogens within the Human Host

    OpenAIRE

    Bliven, Kimberly A.; Maurelli, Anthony T.

    2016-01-01

    Selective pressures within the human host, including interactions with innate and adaptive immune responses, exposure to medical interventions such as antibiotics, and competition with commensal microbiota all facilitate the evolution of bacterial pathogens. In this chapter, we present examples of pathogen strategies which emerged as a result of selective pressures within the human host niche, and discuss the resulting co-evolutionary ‘arms race’ between these organisms. In bacterial pathogen...

  15. The Composition of Human Milk and Infant Faecal Microbiota Over the First Three Months of Life: A Pilot Study

    Science.gov (United States)

    Murphy, Kiera; Curley, David; O’Callaghan, Tom F.; O’Shea, Carol-Anne; Dempsey, Eugene M.; O’Toole, Paul W.; Ross, R. Paul; Ryan, C. Anthony; Stanton, Catherine

    2017-01-01

    Human milk contains a diverse array of bioactives and is also a source of bacteria for the developing infant gut. The aim of this study was to characterize the bacterial communities in human milk and infant faeces over the first 3 months of life, in 10 mother-infant pairs. The presence of viable Bifidobacterium and Lactobacillus in human milk was also evaluated. MiSeq sequencing revealed a large diversity of the human milk microbiota, identifying over 207 bacterial genera in milk samples. The phyla Proteobacteria and Firmicutes and the genera Pseudomonas, Staphylococcus and Streptococcus were the predominant bacterial groups. A core of 12 genera represented 81% of the microbiota relative abundance in milk samples at week 1, 3 and 6, decreasing to 73% at week 12. Genera shared between infant faeces and human milk samples accounted for 70–88% of the total relative abundance in infant faecal samples, supporting the hypothesis of vertical transfer of bacteria from milk to the infant gut. In addition, identical strains of Bifidobacterium breve and Lactobacillus plantarum were isolated from the milk and faeces of one mother-infant pair. Vertical transfer of bacteria via breastfeeding may contribute to the initial establishment of the microbiota in the developing infant intestine. PMID:28094284

  16. A Western diet ecological module identified from the 'humanized' mouse microbiota predicts diet in adults and formula feeding in children.

    Directory of Open Access Journals (Sweden)

    Jay Siddharth

    Full Text Available The interplay between diet and the microbiota has been implicated in the growing frequency of chronic diseases associated with the Western lifestyle. However, the complexity and variability of microbial ecology in humans and preclinical models has hampered identification of the molecular mechanisms underlying the association of the microbiota in this context. We sought to address two key questions. Can the microbial ecology of preclinical models predict human populations? And can we identify underlying principles that surpass the plasticity of microbial ecology in humans? To do this, we focused our study on diet; perhaps the most influential factor determining the composition of the gut microbiota. Beginning with a study in 'humanized' mice we identified an interactive module of 9 genera allied with Western diet intake. This module was applied to a controlled dietary study in humans. The abundance of the Western ecological module correctly predicted the dietary intake of 19/21 top and 21/21 of the bottom quartile samples inclusive of all 5 Western and 'low-fat' diet subjects, respectively. In 98 volunteers the abundance of the Western module correlated appropriately with dietary intake of saturated fatty acids, fat-soluble vitamins and fiber. Furthermore, it correlated with the geographical location and dietary habits of healthy adults from the Western, developing and third world. The module was also coupled to dietary intake in children (and piglets correlating with formula (vs breast feeding and associated with a precipitous development of the ecological module in young children. Our study provides a conceptual platform to translate microbial ecology from preclinical models to humans and identifies an ecological network module underlying the association of the gut microbiota with Western dietary habits.

  17. A Western diet ecological module identified from the 'humanized' mouse microbiota predicts diet in adults and formula feeding in children.

    Science.gov (United States)

    Siddharth, Jay; Holway, Nicholas; Parkinson, Scott J

    2013-01-01

    The interplay between diet and the microbiota has been implicated in the growing frequency of chronic diseases associated with the Western lifestyle. However, the complexity and variability of microbial ecology in humans and preclinical models has hampered identification of the molecular mechanisms underlying the association of the microbiota in this context. We sought to address two key questions. Can the microbial ecology of preclinical models predict human populations? And can we identify underlying principles that surpass the plasticity of microbial ecology in humans? To do this, we focused our study on diet; perhaps the most influential factor determining the composition of the gut microbiota. Beginning with a study in 'humanized' mice we identified an interactive module of 9 genera allied with Western diet intake. This module was applied to a controlled dietary study in humans. The abundance of the Western ecological module correctly predicted the dietary intake of 19/21 top and 21/21 of the bottom quartile samples inclusive of all 5 Western and 'low-fat' diet subjects, respectively. In 98 volunteers the abundance of the Western module correlated appropriately with dietary intake of saturated fatty acids, fat-soluble vitamins and fiber. Furthermore, it correlated with the geographical location and dietary habits of healthy adults from the Western, developing and third world. The module was also coupled to dietary intake in children (and piglets) correlating with formula (vs breast) feeding and associated with a precipitous development of the ecological module in young children. Our study provides a conceptual platform to translate microbial ecology from preclinical models to humans and identifies an ecological network module underlying the association of the gut microbiota with Western dietary habits.

  18. Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome

    National Research Council Canada - National Science Library

    McNulty, Nathan P; Wu, Meng; Erickson, Alison R; Pan, Chongle; Erickson, Brian K; Martens, Eric C; Pudlo, Nicholas A; Muegge, Brian D; Henrissat, Bernard; Hettich, Robert L; Gordon, Jeffrey I

    2013-01-01

    The human gut microbiota is an important metabolic organ, yet little is known about how its individual species interact, establish dominant positions, and respond to changes in environmental factors such as diet...

  19. Effects of Diet on Resource Utilization by a Model Human Gut Microbiota Containing Bacteroides cellulosilyticus WH2, a Symbiont with an Extensive Glycobiome: e1001637

    National Research Council Canada - National Science Library

    Nathan P McNulty; Meng Wu; Alison R Erickson; Chongle Pan; Brian K Erickson; Eric C Martens; Nicholas A Pudlo; Brian D Muegge; Bernard Henrissat; Robert L Hettich; Jeffrey I Gordon

    2013-01-01

      The human gut microbiota is an important metabolic organ, yet little is known about how its individual species interact, establish dominant positions, and respond to changes in environmental factors such as diet...

  20. Mining the human intestinal microbiota for biomarkers associated with metabolic disorders

    NARCIS (Netherlands)

    Hermes, Gerben

    2016-01-01

    After birth, our gastrointestinal (GI) tract is colonized by a highly complex assemblage of microbes, collectively termed the GI microbiota, that develop intimate interactions with our body. Recent evidence indicates that the GI microbiota and its products may contribute to the development of obesit

  1. Mining the human intestinal microbiota for biomarkers associated with metabolic disorders

    NARCIS (Netherlands)

    Hermes, Gerben

    2016-01-01

    After birth, our gastrointestinal (GI) tract is colonized by a highly complex assemblage of microbes, collectively termed the GI microbiota, that develop intimate interactions with our body. Recent evidence indicates that the GI microbiota and its products may contribute to the development of obesit

  2. Mining the human intestinal microbiota for biomarkers associated with metabolic disorders

    NARCIS (Netherlands)

    Hermes, Gerben

    2016-01-01

    After birth, our gastrointestinal (GI) tract is colonized by a highly complex assemblage of microbes, collectively termed the GI microbiota, that develop intimate interactions with our body. Recent evidence indicates that the GI microbiota and its products may contribute to the development of

  3. Contribution of the Intestinal Microbiota to Human Health: From Birth to 100 Years of Age

    NARCIS (Netherlands)

    Cheng, J.; Palva, A.M.; Vos, de W.M.; Satokari, R.

    2013-01-01

    Our intestinal tract is colonized since birth by multiple microbial species that show a characteristic succession in time. Notably the establishment of the microbiota in early life is important as it appears to impact later health. While apparently stable in healthy adults, the intestinal microbiota

  4. Molecular typing of fecal eukaryotic microbiota of human infants and their respective mothers

    Indian Academy of Sciences (India)

    Prashant K Pandey; Jay Siddharth; Pankaj Verma; Ashish Bavdekar; Milind S Patole; Yogesh S Shouche

    2012-06-01

    The micro-eukaryotic diversity from the human gut was investigated using universal primers directed towards 18S rRNA gene, fecal samples being the source of DNA. The subjects in this study included two breast-fed and two formula-milk-fed infants and their mothers. The study revealed that the infants did not seem to harbour any micro-eukaryotes in their gut. In contrast, there were distinct eukaryotic microbiota present in the mothers. The investigation is the first of its kind in the comparative study of the human feces to reveal the presence of micro-eukaryotic diversity variance in infants and adults from the Indian subcontinent. The micro-eukaryotes encountered during the investigation include known gut colonizers like Blastocystis and some fungi species. Some of these micro-eukaryotes have been speculated to be involved in clinical manifestations of various diseases. The study is an attempt to highlight the importance of micro-eukaryotes in the human gut.

  5. Alteration of a human intestinal microbiota under extreme life environment in the Antarctica.

    Science.gov (United States)

    Jin, Jong-Sik; Touyama, Mutsumi; Yamada, Shin; Yamazaki, Takashi; Benno, Yoshimi

    2014-01-01

    The human intestinal microbiota (HIM) settles from birth and continues to change phenotype by some factors (e.g. host's diet) throughout life. However, the effect of extreme life environment on human HIM composition is not well known. To understand HIM fluctuation under extreme life environment in humans, fecal samples were collected from six Japanese men on a long Antarctic expedition. They explored Antarctica for 3 months and collected their fecal samples at once-monthly intervals. Using terminal restriction fragment length polymorphism (T-RFLP) and real time polymerase chain reaction (PCR) analysis, the composition of HIM in six subjects was investigated. Three subjects presented restoration of HIM after the expedition compared versus before and during the expedition. Two thirds samples collected during the expedition belonged to the same cluster in dendrogram. However, all through the expedition, T-RFLP patterns showed interindividual variability. Especially, Bifidobacterium spp. showed a tendency to decrease during and restore after the expedition. A reduction of Bifidobacterium spp. was observed in five subjects the first 1 month of the expedition. Bacteroides thetaiotaomicron, which is thought to proliferate during emotional stress, significantly decreased in one subject, indicating that other factors in addition to emotional stress may affect the composition of HIM in this study. These findings could be helpful to understand the effect of extreme life environment on HIM.

  6. The effect of quercetin on genetic expression of the commensal gut microbes bifidobacterium catenulatum, enterococcus caccae and ruminococcus gauvreauii

    Science.gov (United States)

    Quercetin is one of the most abundant polyphenols found in fruits and vegetables. The ability of the gut microbiota to metabolize quercetin has been previously documented; however, the effect that quercetin may have on commensal gut microbes remains unclear. In the present study, the effects of que...

  7. Helicobacter bilis infection alters the spatial distribution of commensal bacteria in colitic C3H/HeN mice

    Science.gov (United States)

    Background: Infection with Helicobacter bilis triggers the immune reactivity to the resident intestinal bacteria that is associated with the development of mucosal inflammation in defined flora C3H mice. Whether perturbations of the commensal microbiota occur and contribute to Helicobacter-induced c...

  8. The effects of inflammation, infection and antibiotics on the microbiota-gut-brain axis.

    Science.gov (United States)

    Bercik, Premysl; Collins, Stephen M

    2014-01-01

    Animal studies have demonstrated that the early phase of enteric infection is accompanied by anxiety-like behavior, which is mediated through vagal ascending pathways. Chronic infection alters gut function, including motility and visceral sensitivity, as well as feeding patterns, anxiety and depression-like behavior. These effects are likely immune-mediated, and involve changes in pro-inflammatory cytokines and altered metabolism of kynurenine/tryptophan pathways. Clinical studies have shown that chronic gastrointestinal infections lead to malnutrition and stunting, resulting in impaired cognitive function. Accumulating evidence suggests that in addition to pathogens, the commensal gastrointestinal microbiota also influences gut function and host's behavior. Both animal and clinical studies have demonstrated changes in behavior and brain chemistry after induction of intestinal dysbiosis by administration of antibiotics. This concept of microbiota-gut-brain interactions opens a new field of research aimed at developing microbial-directed therapies to treat a broad spectrum of human conditions, including chronic gastrointestinal and psychiatric disorders.

  9. Gut Microbiota: From Fundamental Research to Translational Medicine

    Directory of Open Access Journals (Sweden)

    Yujing Bi

    2015-12-01

    Full Text Available The human microbiota is a hot topic at present because increasing evidences demonstrate that it should be considered an organ based on its importance to human health. Dysbiosis of the gut microbiota is significantly related to many human disorders. In turn, correcting such imbalances and taking advantage of gut microbes are possible methods for alleviating or even curing host diseases. A recent study published in Cell indicated that inhibition of gut microbial production of trimethylamine(TMA specifically prevents atherosclerosis in vivo. Another study found that a diet supplemented with TMA N-oxide (TMAO increased the level of atherosclerosis in mice, which suggested TMAO might be a causative factor in cardiovascular disease (CVD. However, direct inhibition of flavin-containing monooxygenase (FMO3, a hepatic enzyme that catalyzes the conversion of TMA to TMAO, results in TMA accumulation and several unpleasant side effects. The small-molecule 3, 3-dimethyl-1-butanol (DMB, identified by Wang et al., reduces TMAO through non-lethal inhibition of microbial TMA formation in mice, even when fed a western diet, including high choline. DMB is a non-toxic compound found naturally in foods such as olive oil and red wine. Therefore, the risk of CVD could be reduced by some dietary habits (such as a Mediterranean diet, which might stem from changes in gut microbiota. Although the impact of DMB on microbial TMA has only been observed in mouse models, it provides a guideline for the treatment of CVD in humans by regulating gut microbes. There are many similar studies that target gut microbes to treat host disorders. For example, Sarkis’ group verified that a human commensal bacterium could improve autism spectrum disorder (ASD-related gastrointestinal deficits and behavioral abnormalities in mice, which indicated that microbiome-mediated therapies might be a safe and effective treatment for ASD. In addition, fecal microbiota transplantation, which has

  10. A human volunteer study to assess the impact of confectionery sweeteners on the gut microbiota composition.

    Science.gov (United States)

    Beards, Emma; Tuohy, Kieran; Gibson, Glenn

    2010-09-01

    Sweeteners are being sourced to lower the energetic value of confectionery including chocolates. Some, especially non-digestible carbohydrates, may possess other benefits for human health upon their fermentation by the colonic microbiota. The present study assessed non-digestible carbohydrate sweeteners, selected for use in low-energy chocolates, for their ability to beneficially modulate faecal bacterial profiles in human volunteers. Forty volunteers consumed a test chocolate (low-energy or experimental chocolate) containing 22.8 g of maltitol (MTL), MTL and polydextrose (PDX), or MTL and resistant starch for fourteen consecutive days. The dose of the test chocolates was doubled every 2 weeks over a 6-week period. Numbers of faecal bifidobacteria significantly increased with all the three test treatments. Chocolate containing the PDX blend also significantly increased faecal lactobacilli (P = 0.00 001) after the 6 weeks. The PDX blend also showed significant increases in faecal propionate and butyrate (P = 0.002 and 0.006, respectively). All the test chocolates were well tolerated with no significant change in bowel habit or intestinal symptoms even at a daily dose of 45.6 g of non-digestible carbohydrate sweetener. This is of importance not only for giving manufacturers a sugar replacement that can reduce energetic content, but also for providing a well-tolerated means of delivering high levels of non-digestible carbohydrates into the colon, bringing about improvements in the biomarkers of gut health.

  11. Impact of oral typhoid vaccination on the human gut microbiota and correlations with s. Typhi-specific immunological responses.

    Directory of Open Access Journals (Sweden)

    Emiley A Eloe-Fadrosh

    Full Text Available The resident microbial consortia of the human gastrointestinal tract play an integral role in modulating immune responses both locally and systemically. However, detailed information regarding the effector immune responses after vaccine administration in relation to the gastrointestinal microbiota is absent. In this study, the licensed oral live-attenuated typhoid vaccine Ty21a was administered in a clinical study to investigate whether oral immunization resulted in alterations of the microbiota and to identify whether a given microbiota composition, or subsets of the community, are associated with defined S. Typhi-specific immunological responses. The fecal microbiota composition and temporal dynamics were characterized using bacterial 16S rRNA pyrosequencing from individuals who were either immunized with the Ty21a typhoid vaccine (n = 13 or served as unvaccinated controls (n = 4. The analysis revealed considerable inter- and intra-individual variability, yet no discernible perturbations of the bacterial assemblage related to vaccine administration were observed. S. Typhi-specific cell mediated immune (CMI responses were evaluated by measurement of intracellular cytokine production using multiparametric flow cytometry, and humoral responses were evaluated by measurement of serum anti-LPS IgA and IgG titers. Volunteers were categorized according to the kinetics and magnitude of their responses. While differences in microbial composition, diversity, or temporal stability were not observed among individuals able to mount a positive humoral response, individuals displaying multiphasic CMI responses harbored more diverse, complex communities. In line with this preliminary observation, over two hundred operational taxonomic units (OTUs were found to differentiate multiphasic and late CMI responders, the vast majority of which classified within the order Clostridiales. These results provide an unprecedented view into the dramatic temporal

  12. Mice overexpressing BAFF develop a commensal flora–dependent, IgA-associated nephropathy

    Science.gov (United States)

    McCarthy, Douglas D.; Kujawa, Julie; Wilson, Cheryl; Papandile, Adrian; Poreci, Urjana; Porfilio, Elisa A.; Ward, Lesley; Lawson, Melissa A.E.; Macpherson, Andrew J.; McCoy, Kathy D.; Pei, York; Novak, Lea; Lee, Jeannette Y.; Julian, Bruce A.; Novak, Jan; Ranger, Ann; Gommerman, Jennifer L.; Browning, Jeffrey L.

    2011-01-01

    B cell activation factor of the TNF family (BAFF) is a potent B cell survival factor. BAFF overexpressing transgenic mice (BAFF-Tg mice) exhibit features of autoimmune disease, including B cell hyperplasia and hypergammaglobulinemia, and develop fatal nephritis with age. However, basal serum IgA levels are also elevated, suggesting that the pathology in these mice may be more complex than initially appreciated. Consistent with this, we demonstrate here that BAFF-Tg mice have mesangial deposits of IgA along with high circulating levels of polymeric IgA that is aberrantly glycosylated. Renal disease in BAFF-Tg mice was associated with IgA, because serum IgA was highly elevated in nephritic mice and BAFF-Tg mice with genetic deletion of IgA exhibited less renal pathology. The presence of commensal flora was essential for the elevated serum IgA phenotype, and, unexpectedly, commensal bacteria–reactive IgA antibodies were found in the blood. These data illustrate how excess B cell survival signaling perturbs the normal balance with the microbiota, leading to a breach in the normal mucosal-peripheral compartmentalization. Such breaches may predispose the nonmucosal system to certain immune diseases. Indeed, we found that a subset of patients with IgA nephropathy had elevated serum levels of a proliferation inducing ligand (APRIL), a cytokine related to BAFF. These parallels between BAFF-Tg mice and human IgA nephropathy may provide a new framework to explore connections between mucosal environments and renal pathology. PMID:21881212

  13. Could the gut microbiota reconcile the oral bioavailability conundrum of traditional herbs?

    Science.gov (United States)

    Chen, Feng; Wen, Qi; Jiang, Jun; Li, Hai-Long; Tan, Yin-Feng; Li, Yong-Hui; Zeng, Nian-Kai

    2016-02-17

    A wealth of information is emerging about the impact of gut microbiota on human health and diseases such as cardiovascular diseases, obesity and diabetes. As we learn more, we find out the gut microbiota has the potential as new territory for drug targeting. Some novel therapeutic approaches could be developed through reshaping the commensal microbial structure using combinations of different agents. The gut microbiota also affects drug metabolism, directly and indirectly, particularly towards the orally administered drugs. Herbal products have become the basis of traditional medicines such as traditional Chinese medicine and also been being considered valuable materials in modern drug discovery. Of note, low oral bioavailability but high bioactivity is a conundrum not yet solved for some herbs. Since most of herbal products are orally administered, the herbs' constituents are inevitably exposed to the intestinal microbiota and the interplays between herbal constituents and gut microbiota are expected. Emerging explorations of herb-microbiota interactions have an opportunity to revolutionize the way we view herbal therapeutics. The present review aims to provide information regarding the health promotion and/or disease prevention by the interplay between traditional herbs with low bioavailability and gut microbiota through gut microbiota via two different types of mechanisms: (1) influencing the composition of gut microbiota by herbs and (2) metabolic reactions of herbal constituents by gut microbiota. The major data bases (PubMed and Web of Science) were searched using "gut microbiota", "intestinal microbiota", "gut flora", "intestinal flora", "gut microflora", "intestinal microflora", "herb", "Chinese medicine", "traditional medicine", or "herbal medicine" as keywords to find out studies regarding herb-microbiota interactions. The Chinese Pharmacopoeia (2010 edition, Volume I) was also used to collect the data of commonly used medicinal herbs and their quality

  14. The Composition of Colonic Commensal Bacteria According to Anatomical Localization in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Liuyang Zhao

    2017-02-01

    Full Text Available Colorectal cancer (CRC is a multistage disease resulting from complex factors, including genetic mutations, epigenetic changes, chronic inflammation, diet, and lifestyle. Recent accumulating evidence suggests that the gut microbiota is a new and important player in the development of CRC. Imbalance of the gut microbiota, especially dysregulated gut bacteria, contributes to colon cancer through mechanisms of inflammation, host defense modulations, oxidative stress, and alterations in bacterial-derived metabolism. Gut commensal bacteria are anatomically defined as four populations: luminal commensal bacteria, mucus-resident bacteria, epithelium-resident bacteria, and lymphoid tissue-resident commensal bacteria. The bacterial flora that are harbored in the gastrointestinal (GI tract vary both longitudinally and cross-sectionally by different anatomical localization. It is notable that the translocation of colonic commensal bacteria is closely related to CRC progression. CRC-associated bacteria can serve as a non-invasive and accurate biomarker for CRC diagnosis. In this review, we summarize recent findings on the oncogenic roles of gut bacteria with different anatomical localization in CRC progression.

  15. Selective enrichment of commensal gut bacteria protects against Citrobacter rodentium-induced colitis.

    Science.gov (United States)

    Vong, Linda; Pinnell, Lee J; Määttänen, Pekka; Yeung, C William; Lurz, Eberhard; Sherman, Philip M

    2015-08-01

    The intestinal microbiota plays a key role in shaping the host immune system. Perturbation of gut microbial composition, termed dysbiosis, is associated with an increased susceptibility to intestinal pathogens and is a hallmark of a number of inflammatory, metabolic, and infectious diseases. The prospect of mining the commensal gut microbiota for bacterial strains that can impact immune function represents an attractive strategy to counteract dysbiosis and resulting disease. In this study, we show that selective enrichment of commensal gut lactobacilli protects against the murine pathogen Citrobacter rodentium, a well-characterized model of enteropathogenic and enterohemorrhagic Escherichia coli infection. The lactobacilli-enriched bacterial culture prevented the expansion of Gammaproteobacteria and Actinobacteria and was associated with improved indexes of epithelial barrier function (dextran flux), transmissible crypt hyperplasia, and tissue inflammatory cytokine levels. Moreover, cultivation of gut bacteria from Citrobacter rodentium-infected mice reveals the differential capacity of bacterial subsets to mobilize neutrophil oxidative burst and initiate the formation of weblike neutrophil extracellular traps. Our findings highlight the beneficial effects of a lactobacilli-enriched commensal gut microenvironment and, in the context of an intestinal barrier breach, the ability of neutrophils to immobilize both commensal and pathogenic bacteria.

  16. Predominant role of host genetics in controlling the composition of gut microbiota.

    Directory of Open Access Journals (Sweden)

    Zaruhi A Khachatryan

    Full Text Available BACKGROUND: The human gastrointestinal tract is inhabited by a very diverse symbiotic microbiota, the composition of which depends on host genetics and the environment. Several studies suggested that the host genetics may influence the composition of gut microbiota but no genes involved in host control were proposed. We investigated the effects of the wild type and mutated alleles of the gene, which encodes the protein called pyrin, one of the regulators of innate immunity, on the composition of gut commensal bacteria. Mutations in MEFV lead to the autoinflammatory disorder, familial Mediterranean fever (FMF, MIM249100, which is characterized by recurrent self-resolving attacks of fever and polyserositis, with no clinical signs of disease in remission. METHODOLOGY/PRINCIPAL FINDINGS: A total of 19 FMF patients and eight healthy individuals were genotyped for mutations in the MEFV gene and gut bacterial diversity was assessed by sequencing 16S rRNA gene libraries and FISH analysis. These analyses demonstrated significant changes in bacterial community structure in FMF characterized by depletion of total numbers of bacteria, loss of diversity, and major shifts in bacterial populations within the Bacteroidetes, Firmicutes and Proteobacteria phyla in attack. In remission with no clinical signs of disease, bacterial diversity values were comparable with control but still, the bacterial composition was substantially deviant from the norm. Discriminant function analyses of gut bacterial diversity revealed highly specific, well-separated and distinct grouping, which depended on the allele carrier status of the host. CONCLUSIONS/SIGNIFICANCE: This is the first report that clearly establishes the link between the host genotype and the corresponding shifts in the gut microbiota (the latter confirmed by two independent techniques. It suggests that the host genetics is a key factor in host-microbe interaction determining a specific profile of commensal

  17. THE HUMAN MICROBIOTA: THE ROLE OF MICROBIAL COMMUNITIES IN HEALTH AND DISEASE

    OpenAIRE

    Luz Elena BOTERO; Delgado-Serrano, Luisa; Martha Lucía CEPEDA HERNÁNDEZ; Patricia DEL PORTILLO OBANDO; María Mercedes ZAMBRANO EDER

    2016-01-01

    En las últimas décadas ha incrementado nuestro conocimiento sobre la gran cantidad de microorganismos que conviven con nosotros, comunidades que colectivamente se conocen como la microbiota humana. El número de microorganismos que conforman la microbiota supera el número de células del cuerpo humano por un factor de diez aproximadamente y aporta un gran repertorio de genes y procesos metabólicos. La diversidad de la microbiota humana y su potencial metabólico brindan al hospedero una serie de...

  18. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism

    OpenAIRE

    Douglas J. Morrison; Preston, Tom

    2016-01-01

    ABSTRACT The formation of SCFA is the result of a complex interplay between diet and the gut microbiota within the gut lumen environment. The discovery of receptors, across a range of cell and tissue types for which short chain fatty acids SCFA appear to be the natural ligands, has led to increased interest in SCFA as signaling molecules between the gut microbiota and the host. SCFA represent the major carbon flux from the diet through the gut microbiota to the host and evidence is emerging f...

  19. Impact of the gut microbiota, prebiotics, and probiotics on human health and disease.

    Science.gov (United States)

    Lin, Chuan-Sheng; Chang, Chih-Jung; Lu, Chia-Chen; Martel, Jan; Ojcius, David M; Ko, Yun-Fei; Young, John D; Lai, Hsin-Chih

    2014-01-01

    Recent studies have revealed that the gut microbiota regulates many physiological functions, ranging from energy regulation and cognitive processes to toxin neutralization and immunity against pathogens. Accordingly, alterations in the composition of the gut microbiota have been shown to contribute to the development of various chronic diseases. The main objectives of this review are to present recent breakthroughs in the study of the gut microbiota and show that intestinal bacteria play a critical role in the development of different disease conditions, including obesity, fatty liver disease, and lung infection. We also highlight the potential application of prebiotics and probiotics in maintaining optimal health and treating chronic inflammatory and immunity-related diseases.

  20. Changes in Composition of Caecal Microbiota Associated with Increased Colon Inflammation in Interleukin-10 Gene-Deficient Mice Inoculated with Enterococcus Species

    Directory of Open Access Journals (Sweden)

    Shalome A. Bassett

    2015-03-01

    Full Text Available Human inflammatory bowel disease (IBD is a chronic intestinal disease where the resident microbiota contributes to disease development, yet the specific mechanisms remain unclear. Interleukin-10 gene-deficient (Il10-/- mice develop inflammation similar to IBD, due in part to an inappropriate response to commensal bacteria. We have previously reported changes in intestinal morphology and colonic gene expression in Il10-/- mice in response to oral bacterial inoculation. In this study, we aimed to identify specific changes in the caecal microbiota associated with colonic inflammation in these mice. The microbiota was evaluated using pyrotag sequencing, denaturing gradient gel electrophoresis (DGGE and quantitative real-time PCR. Microbiota profiles were influenced by genotype of the mice and by bacterial inoculation, and a strong correlation was observed between the microbiota and colonic inflammation scores. Although un-inoculated Il10-/- and C57 mice had similar microbiota communities, bacterial inoculation resulted in different changes to the microbiota in Il10-/- and C57 mice. Inoculated Il10-/- mice had significantly less total bacteria than un-inoculated Il10-/- mice, with a strong negative correlation between total bacterial numbers, relative abundance of Escherichia/Shigella, microbiota diversity, and colonic inflammation score. Our results show a putative causative role for the microbiota in the development of IBD, with potentially key roles for Akkermansia, or for Bacteroides, Helicobacter, Parabacteroides, and Alistipes, depending on the composition of the bacterial inoculum. These data support the use of bacterially-inoculated Il10-/- mice as an appropriate model to investigate human IBD.

  1. Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats.

    Science.gov (United States)

    Van den Abbeele, Pieter; Gérard, Philippe; Rabot, Sylvie; Bruneau, Aurélia; El Aidy, Sahar; Derrien, Muriel; Kleerebezem, Michiel; Zoetendal, Erwin G; Smidt, Hauke; Verstraete, Willy; Van de Wiele, Tom; Possemiers, Sam

    2011-10-01

    The endogenous gut microbiota affects the host in many ways. Prebiotics should favour beneficial intestinal microbes and thus improve host health. In this study, we investigated how a novel class of potential prebiotic long-chain arabinoxylans (LC-AX) and the well-established prebiotic inulin (IN) modulate the gut microbiota of humanized rats. Six weeks after axenic rats were inoculated with a human faecal microbiota, their colonic microbiota was similar to this inoculum (∼ 70%), whereas their caecal microbiota was enriched with Verrucomicrobia and Firmicutes concomitant with lower abundance of Bacteroidetes. Moreover, different Bifidobacterium species colonized the lumen (B. adolescentis) and mucus (B. longum and B. bifidum). Both LC-AX and IN increased SCFA levels and induced a shift from acetate towards health-promoting propionate and butyrate respectively. By applying a high-resolution phylogenetic micro-array (HITChip) at the site of fermentation (caecum), IN and LC-AX were shown to stimulate bacterial groups with known butyrate-producers (Roseburia intestinalis, Eubacterium rectale, Anaerostipes caccae) and bifidobacteria (B. longum) respectively. Prebiotic administration also resulted in lower caecal abundances of the mucin-degrading Akkermansia muciniphila and potentially more mucin production by the host. Both factors might explain the increased caecal mucin levels for LC-AX (threefold) and IN (sixfold). These mucins were degraded along the colon, resulting in high faecal abundances of Akkermansia muciniphila for LC-AX and especially IN-treated rats. Finally, the microbial changes caused an adaptation period for the host with less weight gain, after which the host fine-tuned the interaction with this altered microbiota. Our results demonstrate that next to IN, LC-AX are promising prebiotic compounds by stimulating production of health-promoting metabolites by specific microbes in the proximal regions. Further, prebiotic supplementation shifted mucin

  2. “Lachnoclostridium touaregense,” a new bacterial species isolated from the human gut microbiota

    OpenAIRE

    M. Tidjani Alou; S. Khelaifia; B. La Scola; Cassir, N.

    2016-01-01

    We report the main characteristics of “Lachnoclostridium touaregense” strain Marseille-P2415T (= CSUR P2415 = DSM 102219), a new bacterial species isolated from the gut microbiota of a healthy young girl from Niger.

  3. ‘Lachnoclostridium massiliosenegalense’, a new bacterial species isolated from the human gut microbiota

    OpenAIRE

    M. Tidjani Alou; J.-C. Lagier; B. La Scola; Cassir, N.

    2016-01-01

    We report the main characteristics of ‘Lachnoclostridium massiliosenegalense’ strain mt23T (=CSUR P299 =DSM 102084), a new bacterial species isolated from the gut microbiota of a healthy young girl from Senegal.

  4. Analysis of the association between host genetics, smoking, and sputum microbiota in healthy humans

    National Research Council Canada - National Science Library

    Lim, Mi Young; Yoon, Hyo Shin; Rho, Mina; Sung, Joohon; Song, Yun-Mi; Lee, Kayoung; Ko, GwangPyo

    2016-01-01

    .... Here, we report the associations of host genetics and lifestyles such as smoking, alcohol consumption, and physical activity with the composition of the sputum microbiota using 16S rRNA gene sequence...

  5. The Gut Microbiota and Human Health with an Emphasis on the Use of Microencapsulated Bacterial Cells

    Directory of Open Access Journals (Sweden)

    Satya Prakash

    2011-01-01

    Full Text Available The gut microbiota plays a crucial role in maintaining health. Alterations of the gut bacterial population have been associated with a number of diseases. Past and recent studies suggest that one can positively modify the contents of the gut microbiota by introducing prebiotics, probiotics, synbiotics, and other therapeutics. This paper focuses on probiotic modulation of the gut microbiota by their delivery to the lower gastrointestinal tract (GIT. There are numerous obstacles to overcome before microorganisms can be utilized as therapeutics. One important limitation is the delivery of viable cells to the lower GIT without a significant loss of cell viability and metabolic features through the harsh conditions of the upper GIT. Microencapsulation has been shown to overcome this, with various types of microcapsules available for resolving this limitation. This paper discusses the gut microbiota and its role in disease, with a focus on microencapsulated probiotics and their potentials and limitations.

  6. Improvement in Human Immune Function with Changes in Intestinal Microbiota by Salacia reticulata Extract Ingestion: A Randomized Placebo-Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Yuriko Oda

    Full Text Available Plants belonging to the genus Salacia in the Hippocrateaceae family are known to inhibit sugar absorption. In a previous study, administration of Salacia reticulata extract in rats altered the intestinal microbiota and increased expression of immune-relevant genes in small intestinal epithelial cells. This study aimed to investigate the effect of S. reticulata extract in human subjects by examining the gene expression profiles of blood cells, immunological indices, and intestinal microbiota. The results revealed an improvement in T-cell proliferation activity and some other immunological indices. In addition, the intestinal microbiota changed, with an increase in Bifidobacterium and a decrease in Clostridium bacteria. The expression levels of many immune-relevant genes were altered in blood cells. We concluded that S. reticulata extract ingestion in humans improved immune functions and changed the intestinal microbiota.UMIN Clinical Trials Registry UMIN000011732.

  7. Prebiotic Effects of Xylooligosaccharides on the Improvement of Microbiota Balance in Human Subjects

    Directory of Open Access Journals (Sweden)

    Shyh-Hsiang Lin

    2016-01-01

    Full Text Available It has been indicated that probiotics can be nourished by consuming prebiotics in order to function more efficiently, allowing the bacteria to stay within a healthy balance. In this study, we investigated the effects of xylooligosaccharides- (XOS- enriched rice porridge consumption on the ecosystem in the intestinal tract of human subjects. Twenty healthy subjects participated in this 6-week trial, in which 10 subjects received XOS-enriched rice porridge while the others received placebo rice porridge. Fecal samples were collected at the end of weeks 0, 1, 3, 4, 6, and 7 for microorganism examination. The results showed that 6-week daily ingestion of the XOS-enriched rice porridge induced significant increases in fecal bacterial counts of Lactobacillus spp. and Bifidobacterium spp., as well as decreases in Clostridium perfringens without changing the total anaerobic bacterial counts, compared to that of placebo rice porridge. However, fluctuations in the counts of coliforms were observed in both groups during the 6-week intervention. In conclusion, the intestinal microbiota balance was improved after daily consumption of 150 g of rice porridge containing XOS for 6 weeks, demonstrating the prebiotic potential of XOS incorporated into foods. This also indicates the effectiveness of XOS as a functional ingredient in relation to its role as a prebiotic compound.

  8. Prebiotic Effects of Xylooligosaccharides on the Improvement of Microbiota Balance in Human Subjects.

    Science.gov (United States)

    Lin, Shyh-Hsiang; Chou, Liang-Mao; Chien, Yi-Wen; Chang, Jung-Su; Lin, Ching-I

    2016-01-01

    It has been indicated that probiotics can be nourished by consuming prebiotics in order to function more efficiently, allowing the bacteria to stay within a healthy balance. In this study, we investigated the effects of xylooligosaccharides- (XOS-) enriched rice porridge consumption on the ecosystem in the intestinal tract of human subjects. Twenty healthy subjects participated in this 6-week trial, in which 10 subjects received XOS-enriched rice porridge while the others received placebo rice porridge. Fecal samples were collected at the end of weeks 0, 1, 3, 4, 6, and 7 for microorganism examination. The results showed that 6-week daily ingestion of the XOS-enriched rice porridge induced significant increases in fecal bacterial counts of Lactobacillus spp. and Bifidobacterium spp., as well as decreases in Clostridium perfringens without changing the total anaerobic bacterial counts, compared to that of placebo rice porridge. However, fluctuations in the counts of coliforms were observed in both groups during the 6-week intervention. In conclusion, the intestinal microbiota balance was improved after daily consumption of 150 g of rice porridge containing XOS for 6 weeks, demonstrating the prebiotic potential of XOS incorporated into foods. This also indicates the effectiveness of XOS as a functional ingredient in relation to its role as a prebiotic compound.

  9. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla

    Energy Technology Data Exchange (ETDEWEB)

    Mahowald, Michael [Washington University, St. Louis; Rey, Frederico E. [Washington University, St. Louis; Seedorf, Henning [Washington University, St. Louis; Turnbaugh, Peter J. [Washington University, St. Louis; Fulton, Robert S. [Washington University, St. Louis; Wollam, Aye [Washington University, St. Louis; Shah, Neha [Washington University, St. Louis; Wang, Chunyan [Washington University, St. Louis; Magrini, Vincent [Washington University, St. Louis; Wilson, Richard K. [Washington University, St. Louis; Cantarel, Brandi L. [Centre National de la Recherche Scientifique, Unite Mixte de Recherche; Coutinho, Pedro M [Universite d' Aix-Marseille I & II; Henrissat, Bernard [Universite d' Aix-Marseille I & II; Crock, Lara W. [Washington University, St. Louis; Verberkmoes, Nathan C [ORNL; Hettich, Robert {Bob} L [ORNL; Erickson, Alison L [ORNL; Gordon, Jeffrey [Washington University, St. Louis

    2009-01-01

    The adult human distal gut microbial community is typically dominated by 2 bacterial phyla (divisions), the Firmicutes and the Bacteroidetes. Little is known about the factors that govern the interactions between their members. Here, we examine the niches of representatives of both phyla in vivo. Finished genome sequences were generated from Eubacterium rectale and E. eligens, which belong to Clostridium Cluster XIVa, one of the most common gut Firmicute clades. Comparison of these and 25 other gut Firmicutes and Bacteroidetes indicated that the Firmicutes possess smaller genomes and a disproportionately smaller number of glycan-degrading enzymes. Germ-free mice were then colonized with E. rectale and/or a prominent human gut Bacteroidetes, Bacteroides thetaiotaomicron, followed by whole-genome transcriptional profiling, high-resolution proteomic analysis, and biochemical assays of microbial microbial and microbial host interactions. B. thetaiotaomicron adapts to E. rectale by up-regulating expression of a variety of polysaccharide utilization loci encoding numerous glycoside hydrolases, and by signaling the host to produce mucosal glycans that it, but not E. rectale, can access. E. rectale adapts to B. thetaiotaomicron by decreasing production of its glycan-degrading enzymes, increasing expression of selected amino acid and sugar transporters, and facilitating glycolysis by reducing levels of NADH, in part via generation of butyrate from acetate, which in turn is used by the gut epithelium. This simplified model of the human gut microbiota illustrates niche specialization and functional redundancy within members of its major bacterial phyla, and the importance of host glycans as a nutrient foundation that ensures ecosystem stability.

  10. Changes in Composition and Function of Human Intestinal Microbiota Exposed to Chlorpyrifos in Oil as Assessed by the SHIME® Model

    Directory of Open Access Journals (Sweden)

    Julie Reygner

    2016-11-01

    Full Text Available The presence of pesticide residues in food is a public health problem. Exposure to these substances in daily life could have serious effects on the intestine—the first organ to come into contact with food contaminants. The present study investigated the impact of a low dose (1 mg/day in oil of the pesticide chlorpyrifos (CPF on the community structure, diversity and metabolic response of the human gut microbiota using the SHIME® model (six reactors, representing the different parts of the gastrointestinal tract. The last three reactors (representing the colon were inoculated with a mixture of feces from human adults. Three time points were studied: immediately before the first dose of CPF, and then after 15 and 30 days of CPF-oil administration. By using conventional bacterial culture and molecular biology methods, we showed that CPF in oil can affect the gut microbiota. It had the greatest effects on counts of culturable bacteria (with an increase in Enterobacteria, Bacteroides spp. and clostridia counts, and a decrease in bifidobacterial counts and fermentative activity, which were colon-segment-dependent. Our results suggest that: (i CPF in oil treatment affects the gut microbiota (although there was some discordance between the culture-dependent and culture-independent analyses; (ii the changes are “SHIME®-compartment” specific; and (iii the changes are associated with minor alterations in the production of short-chain fatty acids and lactate.

  11. Targeting the ecology within: The role of the gut-brain axis and human microbiota in drug addiction.

    Science.gov (United States)

    Skosnik, Patrick D; Cortes-Briones, Jose A

    2016-08-01

    Despite major advances in our understanding of the brain using traditional neuroscience, reliable and efficacious treatments for drug addiction have remained elusive. Hence, the time has come to utilize novel approaches, particularly those drawing upon contemporary advances in fields outside of established neuroscience and psychiatry. Put another way, the time has come for a paradigm shift in the addiction sciences. Apropos, a revolution in the area of human health is underway, which is occurring at the nexus between enteric microbiology and neuroscience. It has become increasingly clear that the human microbiota (the vast ecology of bacteria residing within the human organism), plays an important role in health and disease. This is not surprising, as it has been estimated that bacteria living in the human body (approximately 1kg of mass, roughly equivalent to that of the human brain) outnumber human cells 10 to 1. While advances in the understanding of the role of microbiota in other areas of human health have yielded intriguing results (e.g., Clostridium difficile, irritable bowel syndrome, autism, etc.), to date, no systematic programs of research have examined the role of microbiota in drug addiction. The current hypothesis, therefore, is that gut dysbiosis plays a key role in addictive disorders. In the context of this hypothesis, this paper provides a rationale for future research to target the "gut-brain axis" in addiction. A brief background of the gut-brain axis is provided, along with a series of hypothesis-driven ideas outlining potential treatments for addiction via manipulations of the "ecology within." Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The Gut Microbiota and Human Health%肠道微生物与人体健康研究进展

    Institute of Scientific and Technical Information of China (English)

    童雨心; 梁迎春

    2014-01-01

    人类肠道中定居着许多对宿主有益的微生物,包括细菌、病毒、真核生物等,它们在肠道内能与其他微生物及免疫系统相互作用,对人体健康具有重要影响,被称为“被遗忘的器官”,它们的基因组也被誉为人类的“第二基因组”,与人体的能量代谢及物质代谢有关。本文总结了人体肠道中病毒、真核生物、细菌和宿主免疫系统的相互作用,微生物群的失衡可能导致的疾病如肥胖和克罗恩病等,以及微生物环境在人体内的成熟过程,期望有助于诊断和治疗与肠道微生物失衡相关的疾病。%The human gut harbors diverse microbes that play a fundamental role in the well-being of their host. The constituents of the microbiota including bacteria, viruses, and eukaryotes have been shown to interact with one another and with the host immune system in ways that influence the development of disease. Gut microbi⁃ome is honoured as human's second genome. These interactions are reviewed and suggest that a holistic approach to studying the microbiota that goes beyond characterization of community composition and encompasses dynamic in⁃teractions between all components of the microbiota and host tissue over time will be crucial for building predic⁃tive models for diagnosis and treatment of diseases linked to imbalances in our microbiota.

  13. Prebiotic Potential of a Maize-Based Soluble Fibre and Impact of Dose on the Human Gut Microbiota.

    Directory of Open Access Journals (Sweden)

    Adele Costabile

    Full Text Available Dietary management of the human gut microbiota towards a more beneficial composition is one approach that may improve host health. To date, a large number of human intervention studies have demonstrated that dietary consumption of certain food products can result in significant changes in the composition of the gut microbiota i.e. the prebiotic concept. Thus the prebiotic effect is now established as a dietary approach to increase beneficial gut bacteria and it has been associated with modulation of health biomarkers and modulation of the immune system. Promitor™ Soluble Corn Fibre (SCF is a well-known maize-derived source of dietary fibre with potential selective fermentation properties. Our aim was to determine the optimum prebiotic dose of tolerance, desired changes to microbiota and fermentation of SCF in healthy adult subjects. A double-blind, randomised, parallel study was completed where volunteers (n = 8/treatment group consumed 8, 14 or 21 g from SCF (6, 12 and 18 g/fibre delivered respectively over 14-d. Over the range of doses studied, SCF was well tolerated Numbers of bifidobacteria were significantly higher for the 6 g/fibre/day compared to 12 g and 18 g/fibre delivered/day (mean 9.25 and 9.73 Log10 cells/g fresh faeces in the pre-treatment and treatment periods respectively. Such a numerical change of 0.5 Log10 bifidobacteria/g fresh faeces is consistent with those changes observed for inulin-type fructans, which are recognised prebiotics. A possible prebiotic effect of SCF was therefore demonstrated by its stimulation of bifidobacteria numbers in the overall gut microbiota during a short-term intervention.

  14. Prebiotic Potential of a Maize-Based Soluble Fibre and Impact of Dose on the Human Gut Microbiota.

    Science.gov (United States)

    Costabile, Adele; Deaville, Eddie R; Morales, Agustin Martin; Gibson, Glenn R

    2016-01-01

    Dietary management of the human gut microbiota towards a more beneficial composition is one approach that may improve host health. To date, a large number of human intervention studies have demonstrated that dietary consumption of certain food products can result in significant changes in the composition of the gut microbiota i.e. the prebiotic concept. Thus the prebiotic effect is now established as a dietary approach to increase beneficial gut bacteria and it has been associated with modulation of health biomarkers and modulation of the immune system. Promitor™ Soluble Corn Fibre (SCF) is a well-known maize-derived source of dietary fibre with potential selective fermentation properties. Our aim was to determine the optimum prebiotic dose of tolerance, desired changes to microbiota and fermentation of SCF in healthy adult subjects. A double-blind, randomised, parallel study was completed where volunteers (n = 8/treatment group) consumed 8, 14 or 21 g from SCF (6, 12 and 18 g/fibre delivered respectively) over 14-d. Over the range of doses studied, SCF was well tolerated Numbers of bifidobacteria were significantly higher for the 6 g/fibre/day compared to 12 g and 18 g/fibre delivered/day (mean 9.25 and 9.73 Log10 cells/g fresh faeces in the pre-treatment and treatment periods respectively). Such a numerical change of 0.5 Log10 bifidobacteria/g fresh faeces is consistent with those changes observed for inulin-type fructans, which are recognised prebiotics. A possible prebiotic effect of SCF was therefore demonstrated by its stimulation of bifidobacteria numbers in the overall gut microbiota during a short-term intervention.

  15. Cephalosporinases associated with outer membrane vesicles released by Bacteroides spp. protect gut pathogens and commensals against ?-lactam antibiotics

    OpenAIRE

    Stentz, Régis; Horn, Nikki; Cross, Kathryn; Salt, Louise; Brearley, Charles; Livermore, David M.; Carding, Simon R

    2014-01-01

    Objectives: To identify β-lactamase genes in gut commensal Bacteroides species and to assess the impact of these enzymes, when carried by outer membrane vesicles (OMVs), in protecting enteric pathogens and commensals. Methods: A deletion mutant of the putative class A β-lactamase gene (locus tag BT_4507) found in the genome of the human commensal Bacteroides thetaiotaomicron was constructed and a phenotypic analysis performed. A phylogenetic tree was built from an alignment of nine Bacteroide...

  16. The Central Role of the Gut Microbiota in Chronic Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Caroline Marcantonio Ferreira

    2014-01-01

    Full Text Available The commensal microbiota is in constant interaction with the immune system, teaching immune cells to respond to antigens. Studies in mice have demonstrated that manipulation of the intestinal microbiota alters host immune cell homeostasis. Additionally, metagenomic-sequencing analysis has revealed alterations in intestinal microbiota in patients suffering from inflammatory bowel disease, asthma, and obesity. Perturbations in the microbiota composition result in a deficient immune response and impaired tolerance to commensal microorganisms. Due to altered microbiota composition which is associated to some inflammatory diseases, several strategies, such as the administration of probiotics, diet, and antibiotic usage, have been utilized to prevent or ameliorate chronic inflammatory diseases. The purpose of this review is to present and discuss recent evidence showing that the gut microbiota controls immune system function and onset, development, and resolution of some common inflammatory diseases.

  17. Production of α-galactosylceramide by a prominent member of the human gut microbiota.

    Directory of Open Access Journals (Sweden)

    Laura C Wieland Brown

    2013-07-01

    Full Text Available While the human gut microbiota are suspected to produce diffusible small molecules that modulate host signaling pathways, few of these molecules have been identified. Species of Bacteroides and their relatives, which often comprise >50% of the gut community, are unusual among bacteria in that their membrane is rich in sphingolipids, a class of signaling molecules that play a key role in inducing apoptosis and modulating the host immune response. Although known for more than three decades, the full repertoire of Bacteroides sphingolipids has not been defined. Here, we use a combination of genetics and chemistry to identify the sphingolipids produced by Bacteroides fragilis NCTC 9343. We constructed a deletion mutant of BF2461, a putative serine palmitoyltransferase whose yeast homolog catalyzes the committed step in sphingolipid biosynthesis. We show that the Δ2461 mutant is sphingolipid deficient, enabling us to purify and solve the structures of three alkaline-stable lipids present in the wild-type strain but absent from the mutant. The first compound was the known sphingolipid ceramide phosphorylethanolamine, and the second was its corresponding dihydroceramide base. Unexpectedly, the third compound was the glycosphingolipid α-galactosylceramide (α-GalCer(Bf, which is structurally related to a sponge-derived sphingolipid (α-GalCer, KRN7000 that is the prototypical agonist of CD1d-restricted natural killer T (iNKT cells. We demonstrate that α-GalCer(Bf has similar immunological properties to KRN7000: it binds to CD1d and activates both mouse and human iNKT cells both in vitro and in vivo. Thus, our study reveals BF2461 as the first known member of the Bacteroides sphingolipid pathway, and it indicates that the committed steps of the Bacteroides and eukaryotic sphingolipid pathways are identical. Moreover, our data suggest that some Bacteroides sphingolipids might influence host immune homeostasis.

  18. Production of α-Galactosylceramide by a Prominent Member of the Human Gut Microbiota

    Science.gov (United States)

    Kashyap, Purna C.; Williams, Brianna B.; Clardy, Jon; Kronenberg, Mitchell; Sonnenburg, Justin L.; Comstock, Laurie E.; Bluestone, Jeffrey A.; Fischbach, Michael A.

    2013-01-01

    While the human gut microbiota are suspected to produce diffusible small molecules that modulate host signaling pathways, few of these molecules have been identified. Species of Bacteroides and their relatives, which often comprise >50% of the gut community, are unusual among bacteria in that their membrane is rich in sphingolipids, a class of signaling molecules that play a key role in inducing apoptosis and modulating the host immune response. Although known for more than three decades, the full repertoire of Bacteroides sphingolipids has not been defined. Here, we use a combination of genetics and chemistry to identify the sphingolipids produced by Bacteroides fragilis NCTC 9343. We constructed a deletion mutant of BF2461, a putative serine palmitoyltransferase whose yeast homolog catalyzes the committed step in sphingolipid biosynthesis. We show that the Δ2461 mutant is sphingolipid deficient, enabling us to purify and solve the structures of three alkaline-stable lipids present in the wild-type strain but absent from the mutant. The first compound was the known sphingolipid ceramide phosphorylethanolamine, and the second was its corresponding dihydroceramide base. Unexpectedly, the third compound was the glycosphingolipid α-galactosylceramide (α-GalCerBf), which is structurally related to a sponge-derived sphingolipid (α-GalCer, KRN7000) that is the prototypical agonist of CD1d-restricted natural killer T (iNKT) cells. We demonstrate that α-GalCerBf has similar immunological properties to KRN7000: it binds to CD1d and activates both mouse and human iNKT cells both in vitro and in vivo. Thus, our study reveals BF2461 as the first known member of the Bacteroides sphingolipid pathway, and it indicates that the committed steps of the Bacteroides and eukaryotic sphingolipid pathways are identical. Moreover, our data suggest that some Bacteroides sphingolipids might influence host immune homeostasis. PMID:23874157

  19. Microbiota Influences Vaccine and Mucosal Adjuvant Efficacy

    Science.gov (United States)

    2017-01-01

    A symbiotic relationship between humans and the microbiota is critical for the maintenance of our health, including development of the immune system, enhancement of the epithelial barrier, and acquisition of nutrients. Recent research has shown that the microbiota impacts immune cell development and differentiation. These findings suggest that the microbiota may also influence adjuvant and vaccine efficacy. Indeed, several factors such as malnutrition and poor sanitation, which affect gut microbiota composition, impair the efficacy of vaccines. Although there is little evidence that microbiota alters vaccine efficacy, further understanding of human immune system-microbiota interactions may lead to the effective development of adjuvants and vaccines for the treatment of diseases. PMID:28261017

  20. Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota.

    Science.gov (United States)

    Trinchese, Giovanna; Cavaliere, Gina; Canani, Roberto Berni; Matamoros, Sebastien; Bergamo, Paolo; De Filippo, Chiara; Aceto, Serena; Gaita, Marcello; Cerino, Pellegrino; Negri, Rossella; Greco, Luigi; Cani, Patrice D; Mollica, Maria Pina

    2015-11-01

    Different nutritional components are able, by modulating mitochondrial function and gut microbiota composition, to influence body composition, metabolic homeostasis and inflammatory state. In this study, we aimed to evaluate the effects produced by the supplementation of different milks on energy balance, inflammatory state, oxidative stress and antioxidant/detoxifying enzyme activities and to investigate the role of the mitochondrial efficiency and the gut microbiota in the regulation of metabolic functions in an animal model. We compared the intake of human milk, gold standard for infant nutrition, with equicaloric supplementation of donkey milk, the best substitute for newborns due to its nutritional properties, and cow milk, the primary marketed product. The results showed a hypolipidemic effect produced by donkey and human milk intake in parallel with enhanced mitochondrial activity/proton leakage. Reduced mitochondrial energy efficiency and proinflammatory signals (tumor necrosis factor α, interleukin-1 and lipopolysaccharide levels) were associated with a significant increase of antioxidants (total thiols) and detoxifying enzyme activities (glutathione-S-transferase, NADH quinone oxidoreductase) in donkey- and human milk-treated animals. The beneficial effects were attributable, at least in part, to the activation of the nuclear factor erythroid-2-related factor-2 pathway. Moreover, the metabolic benefits induced by human and donkey milk may be related to the modulation of gut microbiota. In fact, milk treatments uniquely affected the proportions of bacterial phyla and genera, and we hypothesized that the increased concentration of fecal butyrate in human and donkey milk-treated rats was related to the improved lipid and glucose metabolism and detoxifying activities.

  1. Gut microbiota, immunity and disease: a complex relationship

    Directory of Open Access Journals (Sweden)

    Michele M Kosiewicz

    2011-09-01

    Full Text Available Our immune system has evolved to recognize and eradicate pathogenic microbes. However, we have a symbiotic relationship with multiple species of bacteria that occupy the gut and comprise the natural commensal flora or microbiota. The microbiota is critically important for the breakdown of nutrients, and also assists in preventing colonization by potentially pathogenic bacteria. In addition, the gut commensal bacteria appears to be critical for the development of an optimally functioning immune system. Various studies have shown that individual species of the microbiota can induce very different types of immune cells (e.g., Th17 cells, Foxp3+ regulatory T cells and responses, suggesting that the composition of the microbiota can have an important influence on the immune response. Although the microbiota resides in the gut, it appears to have a significant impact on the systemic immune response. Indeed, specific gut commensal bacteria have been shown to affect disease development in organs other than the gut, and depending on the species, have been found to have a wide range of effects on diseases from induction and exacerbation to inhibition and protection. In this review, we will focus on the role that the gut microbiota plays in the development and progression of inflammatory/autoimmune disease, and we will also touch upon its role in allergy and cancer.

  2. The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: what do we know and where are we going next?

    Science.gov (United States)

    Mitra, Anita; MacIntyre, David A; Marchesi, Julian R; Lee, Yun S; Bennett, Phillip R; Kyrgiou, Maria

    2016-11-01

    The vaginal microbiota plays a significant role in health and disease of the female reproductive tract. Next-generation sequencing techniques based upon the analysis of bacterial 16S rRNA genes permit in-depth study of vaginal microbial community structure to a level of detail not possible with standard culture-based microbiological techniques. The human papillomavirus (HPV) causes both cervical intraepithelial neoplasia (CIN) and cervical cancer. Although the virus is highly prevalent, only a small number of women have a persistent HPV infection and subsequently develop clinically significant disease. There is emerging evidence which leads us to conclude that increased diversity of vaginal microbiota combined with reduced relative abundance of Lactobacillus spp. is involved in HPV acquisition and persistence and the development of cervical precancer and cancer. In this review, we summarise the current literature and discuss potential mechanisms for the involvement of vaginal microbiota in the evolution of CIN and cervical cancer. The concept of manipulation of vaginal bacterial communities using pre- and probiotics is also discussed as an exciting prospect for the field of cervical pathology.

  3. Impact of environmental microbiota on human microbiota of workers in academic mouse research facilities: An observational study.

    Science.gov (United States)

    Lai, Peggy S; Allen, Joseph G; Hutchinson, Diane S; Ajami, Nadim J; Petrosino, Joseph F; Winters, Thomas; Hug, Christopher; Wartenberg, Gary R; Vallarino, Jose; Christiani, David C

    2017-01-01

    To characterize the microbial environment of workers in academic mouse research facilities using endotoxin, 16S qPCR, and 16S amplicon sequencing. To determine whether the work microbiome contributes to the human microbiome of workers. We performed area air sampling from the animal rooms, dirty, middle, and setup cage wash locations in four academic mouse research facilities. 10 workers in the dirty cage wash area underwent personal air sampling as well as repeated collection of nasal, oral, and skin samples before and after the work shift. Environmental samples underwent measurement of endotoxin, mouse allergen, bacteria copy number via 16S qPCR, and microbial identification via 16S rDNA sequencing. 16S rDNA sequencing was also performed on human samples before and after the work shift. SourceTracker was used to identify the contribution of the work microbiome to the human microbiome. Median endotoxin levels ranged from undetectable to 1.0 EU/m3. Significant differences in mouse allergen levels, bacterial copy number, microbial richness, and microbial community structure were identified between animal, dirty, middle, and setup cage wash locations. Endotoxin levels had only a moderate correlation with microbial composition. Location within a facility was a stronger predictor of microbial community composition (R2 = 0.41, p = 0.002) than facility. The contribution of the work microbiome to the pre-shift human microbiome of workers was estimated to be 0.1 ± 0.1% for the oral microbiome; 3.1 ± 1.9% for the nasal microbiome; and 3.0 ± 1.5% for the skin microbiome. The microbial environment of academic animal care facilities varies significantly by location rather than facility. Endotoxin is not a proxy for assessment of environmental microbial exposures using 16S qPCR or 16S rDNA sequencing. The work microbiome contributes to the composition of the nasal and skin microbiome of workers; the clinical implications of this observation should be further studied.

  4. Phenylketonuria and Gut Microbiota: A Controlled Study Based on Next-Generation Sequencing.

    Directory of Open Access Journals (Sweden)

    Felipe Pinheiro de Oliveira

    Full Text Available Phenylketonuria (PKU is an inborn error of metabolism associated with high blood levels of phenylalanine (Phe. A Phe-restricted diet supplemented with L-amino acids is the main treatment strategy for this disease; if started early, most neurological abnormalities can be prevented. The healthy human gut contains trillions of commensal bacteria, often referred to as the gut microbiota. The composition of the gut microbiota is known to be modulated by environmental factors, including diet. In this study, we compared the gut microbiota of 8 PKU patients on Phe-restricted dietary treatment with that of 10 healthy individuals. The microbiota were characterized by 16S rRNA sequencing using the Ion Torrent™ platform. The most dominant phyla detected in both groups were Bacteroidetes and Firmicutes. PKU patients showed reduced abundance of the Clostridiaceae, Erysipelotrichaceae, and Lachnospiraceae families, Clostridiales class, Coprococcus, Dorea, Lachnospira, Odoribacter, Ruminococcus and Veillonella genera, and enrichment of Prevotella, Akkermansia, and Peptostreptococcaceae. Microbial function prediction suggested significant differences in starch/glucose and amino acid metabolism between PKU patients and controls. Together, our results suggest the presence of distinct taxonomic groups within the gut microbiome of PKU patients, which may be modulated by their plasma Phe concentration. Whether our findings represent an effect of the disease itself, or a consequence of the modified diet is unclear.

  5. Does the Gut Microbiota Influence Immunity and Inflammation in Multiple Sclerosis Pathophysiology?

    Science.gov (United States)

    Adamczyk-Sowa, Monika; Madej, Paulina; Michlicka, Wirginia; Dobrakowski, Pawel

    2017-01-01

    Aim. Evaluation of the impact of gut microflora on the pathophysiology of MS. Results. The etiopathogenesis of MS is not fully known. Gut microbiota may be of a great importance in the pathogenesis of MS, since recent findings suggest that substitutions of certain microbial population in the gut can lead to proinflammatory state, which can lead to MS in humans. In contrast, other commensal bacteria and their antigenic products may protect against inflammation within the central nervous system. The type of intestinal flora is affected by antibiotics, stress, or diet. The effects on MS through the intestinal microflora can also be achieved by antibiotic therapy and Lactobacillus. EAE, as an animal model of MS, indicates a strong influence of the gut microbiota on the immune system and shows that disturbances in gut physiology may contribute to the development of MS. Conclusions. The relationship between the central nervous system, the immune system, and the gut microbiota relates to the influence of microorganisms in the development of MS. A possible interaction between gut microbiota and the immune system can be perceived through regulation by the endocannabinoid system. It may offer an opportunity to understand the interaction comprised in the gut-immune-brain axis. PMID:28316999

  6. Manipulation of the Quorum Sensing Signal AI-2 Affects the Antibiotic-Treated Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Jessica Ann Thompson

    2015-03-01

    Full Text Available The mammalian gut microbiota harbors a diverse ecosystem where hundreds of bacterial species interact with each other and their host. Given that bacteria use signals to communicate and regulate group behaviors (quorum sensing, we asked whether such communication between different commensal species can influence the interactions occurring in this environment. We engineered the enteric bacterium, Escherichia coli, to manipulate the levels of the interspecies quorum sensing signal, autoinducer-2 (AI-2, in the mouse intestine and investigated the effect upon antibiotic-induced gut microbiota dysbiosis. E. coli that increased intestinal AI-2 levels altered the composition of the antibiotic-treated gut microbiota, favoring the expansion of the Firmicutes phylum. This significantly increased the Firmicutes/Bacteroidetes ratio, to oppose the strong effect of the antibiotic, which had almost cleared the Firmicutes. This demonstrates that AI-2 levels influence the abundance of the major phyla of the gut microbiota, the balance of which is known to influence human health.

  7. Quantitative analysis of commensal Escherichia coli populations reveals host-specific enterotypes at the intra-species level.

    Science.gov (United States)

    Smati, Mounira; Clermont, Olivier; Bleibtreu, Alexandre; Fourreau, Frédéric; David, Anthony; Daubié, Anne-Sophie; Hignard, Cécile; Loison, Odile; Picard, Bertrand; Denamur, Erick

    2015-08-01

    The primary habitat of the Escherichia coli species is the gut of warm-blooded vertebrates. The E. coli species is structured into four main phylogenetic groups A, B1, B2, and D. We estimated the relative proportions of these phylogroups in the feces of 137 wild and domesticated animals with various diets living in the Ile de France (Paris) region by real-time PCR. We distinguished three main clusters characterized by a particular abundance of two or more phylogroups within the E. coli animal commensal populations, which we called "enterocolitypes" by analogy with the enterotypes defined in the human gut microbiota at the genus level. These enterocolitypes were characterized by a dominant (>50%) B2, B1, or A phylogroup and were associated with different host species, diets, and habitats: wild and herbivorous species (wild rabbits and deer), domesticated herbivorous species (domesticated rabbits, horses, sheep, and cows), and omnivorous species (boar, pigs, and chickens), respectively. By analyzing retrospectively the data obtained using the same approach from 98 healthy humans living in Ile de France (Smati et al. 2013, Appl. Environ. Microbiol. 79, 5005-5012), we identified a specific human enterocolitype characterized by the dominant and/or exclusive (>90%) presence of phylogroup B2. We then compared B2 strains isolated from animals and humans, and revealed that human and animal strains differ regarding O-type and B2 subgroup. Moreover, two genes, sfa/foc and clbQ, were associated with the exclusive character of strains, observed only in humans. In conclusion, a complex network of interactions exists at several levels (genus and intra-species) within the intestinal microbiota. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  8. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects.

    Directory of Open Access Journals (Sweden)

    Inés Martínez

    Full Text Available BACKGROUND: To systematically develop dietary strategies based on resistant starch (RS that modulate the human gut microbiome, detailed in vivo studies that evaluate the effects of different forms of RS on the community structure and population dynamics of the gut microbiota are necessary. The aim of the present study was to gain a community wide perspective of the effects of RS types 2 (RS2 and 4 (RS4 on the fecal microbiota in human individuals. METHODS AND FINDINGS: Ten human subjects consumed crackers for three weeks each containing either RS2, RS4, or native starch in a double-blind, crossover design. Multiplex sequencing of 16S rRNA tags revealed that both types of RS induced several significant compositional alterations in the fecal microbial populations, with differential effects on community structure. RS4 but not RS2 induced phylum-level changes, significantly increasing Actinobacteria and Bacteroidetes while decreasing Firmicutes. At the species level, the changes evoked by RS4 were increases in Bifidobacterium adolescentis and Parabacteroides distasonis, while RS2 significantly raised the proportions of Ruminococcus bromii and Eubacterium rectale when compared to RS4. The population shifts caused by RS4 were numerically substantial for several taxa, leading for example, to a ten-fold increase in bifidobacteria in three of the subjects, enriching them to 18-30% of the fecal microbial community. The responses to RS and their magnitudes varied between individuals, and they were reversible and tightly associated with the consumption of RS. CONCLUSION: Our results demonstrate that RS2 and RS4 show functional differences in their effect on human fecal microbiota composition, indicating that the chemical structure of RS determines its accessibility by groups of colonic bacteria. The findings imply that specific bacterial populations could be selectively targeted by well designed functional carbohydrates, but the inter-subject variations in

  9. Ecological effect of ceftazidime/avibactam on the normal human intestinal microbiota.

    Science.gov (United States)

    Rashid, Mamun-Ur; Rosenborg, Staffan; Panagiotidis, Georgios; Löfdal, Karin Söderberg; Weintraub, Andrej; Nord, Carl Erik

    2015-07-01

    Ceftazidime/avibactam is a new combination of the antibiotic ceftazidime with the novel, non-β-lactam β-lactamase inhibitor avibactam. The purpose of the present study was to investigate the effect of ceftazidime/avibactam on the human intestinal microbiota following intravenous (i.v.) administration. Twelve healthy volunteers received ceftazidime/avibactam by i.v. infusion (2000mg ceftazidime and 500mg avibactam) given over 2h every 8h on Days 1-6 (inclusive) and a single dose on Day 7. Faecal samples were collected on Day-1 (pre-dose), during administration on Days 2, 5 and 7 and post-dose on Days 9, 14 and 21. Samples were cultured on non-selective and selective media. The number of Escherichia coli and other enterobacteria decreased significantly during administration of ceftazidime/avibactam, whereas the number of enterococci increased. Lactobacilli, bifidobacteria, clostridia and Bacteroides decreased significantly during ceftazidime/avibactam administration. The effects on lactobacilli, bifidobacteria and Bacteroides were similar in the 12 volunteers, whilst clostridia showed different ecological patterns among the volunteers. Toxigenic Clostridium difficile strains were detected in five volunteers during the study. In four of the volunteers, loose stools were reported as adverse events. Plasma samples were collected on Days -1, 2, 5 and 7. Ceftazidime and avibactam concentrations in plasma (ceftazidime 0-224.2mg/L of plasma and avibactam 0-70.5mg/L of plasma) and faeces (ceftazidime 0-468.2mg/kg of faeces and avibactam 0-146.0mg/kg of faeces) were found by bioassay. New colonising resistant clostridia were found in five volunteers and lactobacilli were found in three volunteers. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  10. Effect of prebiotics on the human gut microbiota of elderly persons.

    Science.gov (United States)

    Toward, Ruth; Montandon, Samantha; Walton, Gemma; Gibson, Glenn R

    2012-01-01

    The colonic microbiota undergoes certain age related changes that may affect health. For example, above the age of 55-65 y, populations of bifidobacteria are known to decrease markedly. Bifidobacteria are known inhibitors of pathogenic microbes and a decrease in their activities may increase susceptibility to infections. There is therefore interest in trying to reverse their decline in aged persons. As the gut microbiota responds to dietary intervention, both probiotics and prebiotics have been tested in this regard. Probiotics are live microbes in the diet, whereas prebiotics are fermentable ingredients that specifically target components of the indigenous microbiota seen to be beneficial. We have published a recent paper demonstrating that prebiotic galactooligosaccharides can exert power effects upon bifidobacteria in the gut flora of elderly persons (both in vivo and in vitro). This addendum summarizes research that led up to this study and discusses the possible impact of prebiotics in impacting upon the gut health of aged persons.

  11. THE HUMAN MICROBIOTA: THE ROLE OF MICROBIAL COMMUNITIES IN HEALTH AND DISEASE

    Directory of Open Access Journals (Sweden)

    Luz Elena BOTERO

    2016-01-01

    Full Text Available En las últimas décadas ha incrementado nuestro conocimiento sobre la gran cantidad de microorganismos que conviven con nosotros, comunidades que colectivamente se conocen como la microbiota humana. El número de microorganismos que conforman la microbiota supera el número de células del cuerpo humano por un factor de diez aproximadamente y aporta un gran repertorio de genes y procesos metabólicos. La diversidad de la microbiota humana y su potencial metabólico brindan al hospedero una serie de funciones que complementan sus procesos y a su vez pueden influir sobre la salud del ser humano en formas que apenas se empiezan a conocer. La microbiota varía desde el nacimiento hasta la vejez del individuo, con características que dependen del sitio corporal, del estilo de vida y del estado de salud del hospedero. El reto actual es aprovechar el conocimiento derivado de la identificación y caracterización de estas comunidades microbianas para entender cómo funcionan estos microorganismos y cómo pueden influir de forma positiva o negativa sobre la salud del humano. En este documento ofrecemos una revisión general de algunos estudios recientes sobre la microbiota humana y su posible efecto en el hospedero en términos de salud y bienestar. Igualmente, se mencionan estudios sobre microbiota y su posible asociación con la tuberculosis, una enfermedad que todavía cobra más de un millón de vidas anualmente a nivel mundial y cuyo control todavía representa un gran reto en varios países del mundo, incluido Colombia. Palabras clave: 16S ARNr, diversidad microbiana, microbioma, Mycobacterium tuberculosis.

  12. Effects of antibiotics and Clostridium difficile infection on the human gut microbiota

    OpenAIRE

    Pérez Cobas, Ana Elena

    2015-01-01

    El cuerpo humano está poblado por complejas comunidades microbianas (definidas como microbiota)que han colonizado una gran variedad de regiones como la piel, las vías respiratorias, o el tracto gastrointestinal,entre otras. La mayor cantidad de microorganismos y la diversidad más alta se encuentran en el tracto gastrointestinal. La microbiota intestinal participa en una gran variedad de funciones que benefician al hospedador como la digestión de los carbohidratos de la dieta y obtención de...

  13. Enrichment of Bifidobacterium longum subsp. infantis ATCC 15697 within the human gut microbiota using alginate-poly-L-lysine-alginate microencapsulation oral delivery system: an in vitro analysis using a computer-controlled dynamic human gastrointestinal model.

    Science.gov (United States)

    Rodes, Laetitia; Tomaro-Duchesneau, Catherine; Saha, Shyamali; Paul, Arghya; Malhotra, Meenakshi; Marinescu, Daniel; Shao, Wei; Kahouli, Imen; Prakash, Satya

    2014-01-01

    This study evaluates alginate-poly-L-lysine-alginate Bifidobacterium longum subsp. infantis ATCC 15697-loaded microcapsules to enrich the human gut microbiota. The cell survival of alginate-poly-L-lysine-alginate microencapsulated B. infantis ATCC 15697 in gastric acid, bile, and through human gastrointestinal transit was investigated, as well as the formulation's effect on the gut microbiota. Results show that microencapsulation increases B. infantis ATCC 15697 cell survival at pH1.0 (33.54 ± 2.80% versus  0.05) colonic microbiota.

  14. Gut microbiota modulation: probiotics, antibiotics or fecal microbiota transplantation?

    Science.gov (United States)

    Cammarota, Giovanni; Ianiro, Gianluca; Bibbò, Stefano; Gasbarrini, Antonio

    2014-06-01

    Gut microbiota is known to have a relevant role in our health, and is also related to both gastrointestinal and extradigestive diseases. Therefore, restoring the alteration of gut microbiota represents an outstanding clinical target for the treatment of gut microbiota-related diseases. The modulation of gut microbiota is perhaps an ancestral, innate concept for human beings. At this time, the restoration of gut microbiota impairment is a well-established concept in mainstream medicine, and several therapeutic approaches have been developed in this regard. Antibiotics, prebiotics and probiotics are the best known and commercially available options to overcome gastrointestinal dysbiosis. Fecal microbiota transplantation is an old procedure that has recently become popular again. It has shown a clear effectiveness in the treatment of C. difficile infection, and now represents a cutting-edge option for the restoration of gut microbiota. Nevertheless, such weapons should be used with caution. Antibiotics can indeed harm and alter gut microbiota composition. Probiotics, instead, are not at all the same thing, and thinking in terms of different strains is probably the only way to improve clinical outcomes. Moreover, fecal microbiota transplantation has shown promising results, but stronger proofs are needed. Considerable efforts are needed to increase our knowledge in the field of gut microbiota, especially with regard to the future use in its modulation for therapeutic purposes.

  15. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions.

    Science.gov (United States)

    Adler, Christina J; Dobney, Keith; Weyrich, Laura S; Kaidonis, John; Walker, Alan W; Haak, Wolfgang; Bradshaw, Corey J A; Townsend, Grant; Sołtysiak, Arkadiusz; Alt, Kurt W; Parkhill, Julian; Cooper, Alan

    2013-04-01

    The importance of commensal microbes for human health is increasingly recognized, yet the impacts of evolutionary changes in human diet and culture on commensal microbiota remain almost unknown. Two of the greatest dietary shifts in human evolution involved the adoption of carbohydrate-rich Neolithic (farming) diets (beginning ∼10,000 years before the present) and the more recent advent of industrially processed flour and sugar (in ∼1850). Here, we show that calcified dental plaque (dental calculus) on ancient teeth preserves a detailed genetic record throughout this period. Data from 34 early European skeletons indicate that the transition from hunter-gatherer to farming shifted the oral microbial community to a disease-associated configuration. The composition of oral microbiota remained unexpectedly constant between Neolithic and medieval times, after which (the now ubiquitous) cariogenic bacteria became dominant, apparently during the Industrial Revolution. Modern oral microbiotic ecosystems are markedly less diverse than historic populations, which might be contributing to chronic oral (and other) disease in postindustrial lifestyles.

  16. Indigenous microbiota and Leishmaniasis.

    Science.gov (United States)

    Lopes, M E M; Carneiro, M B H; Dos Santos, L M; Vieira, L Q

    2016-01-01

    Animals are colonized by their indigenous microbiota from the early days of life. The estimated number of associated bacterial cells in humans is around of 10(14) per individual, most of them in the gut. Several studies have investigated the microbiota-host relationship, and the use of germfree animals has been an important tool in these studies. These animals, when infected with a pathogen, have shown to be sometimes more resistant and other times more susceptible than conventional animals. Leishmaniasis is a worldwide public health problem and presents a spectrum of clinical manifestations. However, very few studies have addressed the role of the indigenous microbiota on the outcome of this disease. In this review, we will highlight and discuss the data available on the ways by which the microbiota can influence the outcome of the disease in murine experimental models of cutaneous infection with Leishmania.

  17. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease.

    Science.gov (United States)

    Jiang, Weiwei; Wu, Na; Wang, Xuemei; Chi, Yujing; Zhang, Yuanyuan; Qiu, Xinyun; Hu, Ying; Li, Jing; Liu, Yulan

    2015-02-03

    Non-alcoholic fatty liver disease (NAFLD) has recently been considered to be under the influence of the gut microbiota, which might exert toxic effects on the human host after intestinal absorption and delivery to the liver via the portal vein. In this study, the composition of the gut microbiota in NAFLD patients and healthy subjects was determined via 16S ribosomal RNA Illumina next-generation sequencing. Among those taxa displaying greater than 0.1% average abundance in all samples, five genera, including Alistipes and Prevotella, were significantly more abundant in the gut microbiota of healthy subjects compared to NAFLD patients. Alternatively, Escherichia, Anaerobacter, Lactobacillus and Streptococcus were increased in the gut microbiota of NAFLD patients compared to healthy subjects. In addition, decreased numbers of CD4+ and CD8+ T lymphocytes and increased levels of TNF-α, IL-6 and IFN-γ were detected in the NAFLD group compared to the healthy group. Furthermore, irregularly arranged microvilli and widened tight junctions were observed in the gut mucosa of the NAFLD patients via transmission electron microscopy. We postulate that aside from dysbiosis of the gut microbiota, gut microbiota-mediated inflammation of the intestinal mucosa and the related impairment in mucosal immune function play an important role in the pathogenesis of NAFLD.

  18. Probiotics modify human intestinal mucosa-associated microbiota in patients with colorectal cancer.

    Science.gov (United States)

    Gao, Zhiguang; Guo, Bomin; Gao, Renyuan; Zhu, Qingchao; Wu, Wen; Qin, Huanlong

    2015-10-01

    Studies using animal models have demonstrated that probiotics may have a beneficial role in the prevention of colorectal cancer (CRC); however, the underlying mechanism of the beneficial effects of interventional probiotic treatment on gut microbiota has remained elusive. In the present study, pyrosequencing of the V3 region of the 16S rRNA genes was conducted in order to determine the extent to which probiotics alter the microbiota. The observations of the present study indicated that the microbial structure of cancerous tissue differed significantly from that of healthy individuals and that the CRC microbiota exhibited lower diversity. It was indicated that interventional treatment with probiotics increased the density and diversity of mucosal microbes, and altered the mucosa‑associated microbiota. Pyrosequencing demonstrated that probiotics significantly reduced (5‑fold) the abundance of a bacterial taxon assigned to the genus Fusobacterium, which had been previously suggested to be a contributing factor to increase tumorigenesis. Accordingly, interventional probiotic therapy is suggested to be able to improve the composition of the mucosal microbial flora and significantly reduce the abundance of mucosa-associated pathogens in patients with CRC.

  19. Metabolomic analysis of human fecal microbiota: a comparison of feces-derived communities and defined mixed communities.

    Science.gov (United States)

    Yen, Sandi; McDonald, Julie A K; Schroeter, Kathleen; Oliphant, Kaitlyn; Sokolenko, Stanislav; Blondeel, Eric J M; Allen-Vercoe, Emma; Aucoin, Marc G

    2015-03-01

    The extensive impact of the human gut microbiota on its human host calls for a need to understand the types of communication that occur among the bacteria and their host. A metabolomics approach can provide a snapshot of the microbe-microbe interactions occurring as well as variations in the microbes from different hosts. In this study, metabolite profiles from an anaerobic continuous stirred-tank reactors (CSTR) system supporting the growth of several consortia of bacteria representative of the human gut were established and compared. Cell-free supernatant samples were analyzed by 1D (1)H nuclear magnetic resonance (NMR) spectroscopy, producing spectra representative of the metabolic activity of a particular community at a given time. Using targeted profiling, specific metabolites were identified and quantified on the basis of NMR analyses. Metabolite profiles discriminated each bacterial community examined, demonstrating that there are significant differences in the microbiota metabolome between each cultured community. We also found unique compounds that were identifying features of individual bacterial consortia. These findings are important because they demonstrate that metabolite profiles of gut microbial ecosystems can be constructed by targeted profiling of NMR spectra. Moreover, examination of these profiles sheds light on the type of microbes present in the gut and their metabolic interactions.

  20. Distinct patterns in human milk microbiota and fatty acid profiles across specific geographic locations

    Directory of Open Access Journals (Sweden)

    Himanshu Kumar

    2016-10-01

    Full Text Available Breast feeding results in long term health benefits in the prevention of communicable and non-communicable diseases at both individual and population levels. Geographical location directly impacts the composition of breast milk including microbiota and lipids. The aim of this study was to investigate the influence of geographical location, i.e., Europe (Spain and Finland, Africa (South Africa and Asia (China, on breast milk microbiota and lipid composition in samples obtained from healthy mothers after the first month of lactation. Altogether, 80 women (20 from each country participated in the study, with equal number of women who delivered by vaginal or caesarean section from each country. Lipid composition particularly that of polyunsaturated fatty acids differed between the countries, with the highest amount of n-6 PUFA (25.6% observed in the milk of Chinese women. Milk microbiota composition also differed significantly between the countries (p=0.002. Among vaginally delivered women, Spanish women had highest amount of Bacteroidetes whereas Chinese women had highest amount of Actinobacteria. Women who had had a caesarean section had higher amount of Proteobacteria as observed in the milk of the Spanish and South African women. Interestingly, the Spanish and South African women had significantly higher bacterial genes mapped to lipid, amino acid and carbohydrate metabolism (p<0.05. Association of the lipid profile with the microbiota revealed that monounsaturated fatty acids were negatively associated with Proteobacteria (r= -0.43, p<0.05, while Lactobacillus genus was associated with monounsaturated fatty acids (r= -0.23, p=0.04. These findings reveal that the milk microbiota and lipid composition exhibit differences based on geographical locations in addition to the differences observed due to the mode of delivery.

  1. Distinct Patterns in Human Milk Microbiota and Fatty Acid Profiles Across Specific Geographic Locations

    Science.gov (United States)

    Kumar, Himanshu; du Toit, Elloise; Kulkarni, Amruta; Aakko, Juhani; Linderborg, Kaisa M.; Zhang, Yumei; Nicol, Mark P.; Isolauri, Erika; Yang, Baoru; Collado, Maria C.; Salminen, Seppo

    2016-01-01

    Breast feeding results in long term health benefits in the prevention of communicable and non-communicable diseases at both individual and population levels. Geographical location directly impacts the composition of breast milk including microbiota and lipids. The aim of this study was to investigate the influence of geographical location, i.e., Europe (Spain and Finland), Africa (South Africa), and Asia (China), on breast milk microbiota and lipid composition in samples obtained from healthy mothers after the 1 month of lactation. Altogether, 80 women (20 from each country) participated in the study, with equal number of women who delivered by vaginal or cesarean section from each country. Lipid composition particularly that of polyunsaturated fatty acids differed between the countries, with the highest amount of n-6 PUFA (25.6%) observed in the milk of Chinese women. Milk microbiota composition also differed significantly between the countries (p = 0.002). Among vaginally delivered women, Spanish women had highest amount of Bacteroidetes (mean relative abundance of 3.75) whereas Chinese women had highest amount of Actinobacteria (mean relative abundance 5.7). Women who had had a cesarean section had higher amount of Proteobacteria as observed in the milk of the Spanish and South African women. Interestingly, the Spanish and South African women had significantly higher bacterial genes mapped to lipid, amino acid and carbohydrate metabolism (p < 0.05). Association of the lipid profile with the microbiota revealed that monounsaturated fatty acids (MUFA) were negatively associated with Proteobacteria (r = -0.43, p < 0.05), while Lactobacillus genus was associated with MUFA (r = -0.23, p = 0.04). These findings reveal that the milk microbiota and lipid composition exhibit differences based on geographical locations in addition to the differences observed due to the mode of delivery. PMID:27790209

  2. Preterm infant gut microbiota affects intestinal epithelial development in a humanized microbiome gnotobiotic mouse model.

    Science.gov (United States)

    Yu, Yueyue; Lu, Lei; Sun, Jun; Petrof, Elaine O; Claud, Erika C

    2016-09-01

    Development of the infant small intestine is influenced by bacterial colonization. To promote establishment of optimal microbial communities in preterm infants, knowledge of the beneficial functions of the early gut microbiota on intestinal development is needed. The purpose of this study was to investigate the impact of early preterm infant microbiota on host gut development using a gnotobiotic mouse model. Histological assessment of intestinal development was performed. The differentiation of four epithelial cell lineages (enterocytes, goblet cells, Paneth cells, enteroendocrine cells) and tight junction (TJ) formation was examined. Using weight gain as a surrogate marker for health, we found that early microbiota from a preterm infant with normal weight gain (MPI-H) induced increased villus height and crypt depth, increased cell proliferation, increased numbers of goblet cells and Paneth cells, and enhanced TJs compared with the changes induced by early microbiota from a poor weight gain preterm infant (MPI-L). Laser capture microdissection (LCM) plus qRT-PCR further revealed, in MPI-H mice, a higher expression of stem cell marker Lgr5 and Paneth cell markers Lyz1 and Cryptdin5 in crypt populations, along with higher expression of the goblet cell and mature enterocyte marker Muc3 in villus populations. In contrast, MPI-L microbiota failed to induce the aforementioned changes and presented intestinal characteristics comparable to a germ-free host. Our data demonstrate that microbial communities have differential effects on intestinal development. Future studies to identify pioneer settlers in neonatal microbial communities necessary to induce maturation may provide new insights for preterm infant microbial ecosystem therapeutics. Copyright © 2016 the American Physiological Society.

  3. 肠道微生物与人体健康综述%The Review of Gut Microbiota and Human Health

    Institute of Scientific and Technical Information of China (English)

    颜晓庆; 陈宏运; 吴彬彬; 刘春花; 梁岩

    2015-01-01

    人体肠道中含有大量的微生物。研究表明,肠道微生物的群落结构在人体的许多生理功能上发挥重要作用,如机体物质代谢、能量吸收、胃肠道功能的完善及免疫功能的调节等。人体的许多慢性疾病,比如肥胖症、与肥胖相关的炎症反应、炎症性肠病、抑郁症等都与胃肠道微生物的群落结构失衡有关。肠道微生物与人体相互作用关系的研究对许多慢性病的预防和治疗,以及保持人体健康具有一定的指导意义。%The human gut is densely populated by the gut microbiota. There are accumulating evidences indicating that the gut microbiota plays a signiifcant role in the function of the body, which including the metabolism and energy absorption, the development in the function of gastrointestinal, the modulation of immune system and so on. Many chronic diseases, such as obesity, obesity-associated inlfammation, inlfammatory bowel disease and depression, are related to gut microbiota dysbiosis. The research of the interaction between intestinal bacteria and human body is instructive to the prevention or treatment of many chronic diseases and maintaining health.

  4. A Human Volunteer Study to Determine the Prebiotic Effects of Lactulose Powder on Human Colonic Microbiota

    OpenAIRE

    2011-01-01

    The prebiotic effects of lactulose were monitored in a human feeding study. Prebiotics are dietary carbohydrates that have a selective microbial metabolism in the gut, directed towards bacteria seen as beneficial, examples being bifidobacteria and/or lactobacilli. The study was conducted in a double blind, placebo controlled manner. A dose of 10 g per day, half the pharmacological dose, was fed to 10 healthy adult volunteers. In parallel, 10 persons were fed a placebo (glucose/lactose). Both ...

  5. Commensal eating patterns: a community study.

    Science.gov (United States)

    Sobal, Jeffery; Nelson, Mary K

    2003-10-01

    Commensality is eating with other people, and commensal eating patterns reflect the social relationships of individuals. This study examined usual meal partners in commensal units and frequency of eating with others in commensal circles among 663 adults responding to a mailed questionnaire in one community. Meal partner data revealed that most respondents ate alone at breakfast, alone or with co-workers at lunch, and with family members at dinner. Commensal frequency data revealed some eating at the homes of other family members, little eating at friends' homes, and almost no eating at neighbors' homes. Few demographic variations existed in commensal eating, except that unmarried individuals more often ate breakfast and dinner alone and more often ate with friends. These finding suggest that contemporary work-oriented society may lead people to eat alone during the day but share evening meals with family, and that people maintain commensal relationships primarily with family members rather than friends or neighbors. Peoples' social worlds appear to be focused on the nuclear family, and family members are also the people they usually eat with.

  6. Differential expression profiling of proteomes of pathogenic and commensal strains of Staphylococcus aureus using SILAC

    OpenAIRE

    Manickam, Manisha

    2011-01-01

    Staphylococcus aureus (S. aureus) is the etiological agent of food-borne diseases, skin infections in humans and mastitis in bovines. S. aureus is also known to exist as a commensal on skin, nose and other mucosal surfaces of the host. This symbiotic association is a result of immune dampening or tolerance induced in the host by this pathogen. We proposed the variation in protein expression by commensal and pathogenic strain as an important factor behind the difference in pathogenicity. The i...

  7. Ecological Effect of Solithromycin on Normal Human Oropharyngeal and Intestinal Microbiota.

    Science.gov (United States)

    Rashid, Mamun-Ur; Rosenborg, Staffan; Panagiotidis, Georgios; Holm, Johan; Söderberg Löfdal, Karin; Weintraub, Andrej; Nord, Carl Erik

    2016-07-01

    Solithromycin is a new fluoroketolide. The purpose of the present study was to investigate the effect of orally administered solithromycin on the human oropharyngeal and intestinal microbiota. Thirteen healthy volunteers (median age, 27.3 years) received oral solithromycin at 800 mg on day 1 followed by 400 mg daily on days 2 to 7. Fecal and saliva samples were collected at baseline and on days 2, 5, 7, 9, 14, and 21 for pharmacokinetic and microbiological analyses. Plasma samples were collected predose on days 2, 5, and 7 as proof of exposure, and solithromycin concentration ranges were 21.9 to 258 ng/ml, 18.0 to 386 ng/ml, and 16.9 to 417 ng/ml, respectively. The solithromycin concentrations in feces were 15.8 to 65.4 mg/kg, 24.5 to 82.7 mg/kg, 21.4 to 82.7 mg/kg, 12.1 to 72.4 mg/kg, 0.2 to 25.6 mg/kg, and 0 to 0.5 mg/kg on days 2, 5, 7, 9, 14, and 21, respectively. The numbers of enterobacteria and enterococci decreased and were normalized on day 14. The numbers of lactobacilli and bifidobacteria decreased from day 2 to day 14 and were normalized on day 21. The clostridia decreased on days 2, 7, and 14 and were normalized on day 21. No Clostridium difficile strains or toxins were detected during the study period. The number of Bacteroides strains was not significantly changed. The solithromycin concentrations in saliva were 0 to 1.2 mg/liter, 0 to 0.5 mg/liter, 0 to 0.5 mg/liter, and 0 to 0.1 mg/liter on days 2, 5, 7, and 9, respectively. The numbers of streptococci decreased on day 2 and were normalized on day 5. The numbers of lactobacilli, prevotellae, fusobacteria, and leptotrichiae decreased from day 2 and were normalized on day 21. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth.

    Science.gov (United States)

    Mills, Charlotte E; Tzounis, Xenofon; Oruna-Concha, Maria-Jose; Mottram, Don S; Gibson, Glenn R; Spencer, Jeremy P E

    2015-04-28

    Coffee is a relatively rich source of chlorogenic acids (CGA), which, as other polyphenols, have been postulated to exert preventive effects against CVD and type 2 diabetes. As a considerable proportion of ingested CGA reaches the large intestine, CGA may be capable of exerting beneficial effects in the large gut. Here, we utilise a stirred, anaerobic, pH-controlled, batch culture fermentation model of the distal region of the colon in order to investigate the impact of coffee and CGA on the growth of the human faecal microbiota. Incubation of coffee samples with the human faecal microbiota led to the rapid metabolism of CGA (4 h) and the production of dihydrocaffeic acid and dihydroferulic acid, while caffeine remained unmetabolised. The coffee with the highest levels of CGA (Pcoffees) induced a significant increase in the growth of Bifidobacterium spp. relative to the control vessel at 10 h after exposure (Pcoffee) induced a significant increase in the growth of Bifidobacterium spp. (P<0·05). CGA alone also induced a significant increase in the growth of the Clostridium coccoides-Eubacterium rectale group (P<0·05). This selective metabolism and subsequent amplification of specific bacterial populations could be beneficial to host health.

  9. Prevalence and resistance of commensal Staphylococcus aureus, including meticillin-resistant S aureus, in nine European countries: a cross-sectional study.

    NARCIS (Netherlands)

    Heijer, C.D.J. den; Bijnen, E.M.E. van; Paget, W.J.; Pringle, M.; Goossen, H.; Bruggeman, C.A.; Schellevis, F.G.; Stobberingh, E.E.

    2013-01-01

    Background: Information about the prevalence of Staphylococcus aureus resistance to antimicrobial drugs has mainly been obtained from invasive strains, although the commensal microbiota is thought to be an important reservoir of resistance. We aimed to compare the prevalence of nasal S aureus carria

  10. Prevalence and resistance of commensal Staphylococcus aureus, including meticillin-resistant S aureus, in nine European countries: a cross-sectional study

    NARCIS (Netherlands)

    Heijer, C.D. den; Bijnen, E.M. van; Paget, W.J.; Pringle, M.; Goossens, H.; Bruggeman, C.A.; Schellevis, F.G.; Stobberingh, E.E.

    2013-01-01

    BACKGROUND: Information about the prevalence of Staphylococcus aureus resistance to antimicrobial drugs has mainly been obtained from invasive strains, although the commensal microbiota is thought to be an important reservoir of resistance. We aimed to compare the prevalence of nasal S aureus carria

  11. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens.

    Science.gov (United States)

    Pamer, Eric G

    2016-04-29

    The intestinal microbiota, which is composed of diverse populations of commensal bacterial species, provides resistance against colonization and invasion by pathogens. Antibiotic treatment can damage the intestinal microbiota and, paradoxically, increase susceptibility to infections. Reestablishing microbiota-mediated colonization resistance after antibiotic treatment could markedly reduce infections, particularly those caused by antibiotic-resistant bacteria. Ongoing studies are identifying commensal bacterial species that can be developed into next-generation probiotics to reestablish or enhance colonization resistance. These live medicines are at various stages of discovery, testing, and production and are being subjected to existing regulatory gauntlets for eventual introduction into clinical practice. The development of next-generation probiotics to reestablish colonization resistance and eliminate potential pathogens from the gut is warranted and will reduce health care-associated infections caused by highly antibiotic-resistant bacteria.

  12. Commensal Microbes and Hair Follicle Morphogenesis Coordinately Drive Treg Migration into Neonatal Skin.

    Science.gov (United States)

    Scharschmidt, Tiffany C; Vasquez, Kimberly S; Pauli, Mariela L; Leitner, Elizabeth G; Chu, Kevin; Truong, Hong-An; Lowe, Margaret M; Sanchez Rodriguez, Robert; Ali, Niwa; Laszik, Zoltan G; Sonnenburg, Justin L; Millar, Sarah E; Rosenblum, Michael D

    2017-04-12

    Regulatory T cells (Tregs) are required to establish immune tolerance to commensal microbes. Tregs accumulate abruptly in the skin during a defined window of postnatal tissue development. However, the mechanisms mediating Treg migration to neonatal skin are unknown. Here we show that hair follicle (HF) development facilitates the accumulation of Tregs in neonatal skin and that upon skin entry these cells localize to HFs, a primary reservoir for skin commensals. Further, germ-free neonates had reduced skin Tregs indicating that commensal microbes augment Treg accumulation. We identified Ccl20 as a HF-derived, microbiota-dependent chemokine and found its receptor, Ccr6, to be preferentially expressed by Tregs in neonatal skin. The Ccl20-Ccr6 pathway mediated Treg migration in vitro and in vivo. Thus, HF morphogenesis, commensal microbe colonization, and local chemokine production work in concert to recruit Tregs into neonatal skin, thereby establishing this tissue Treg niche early in life. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Gut microbiota-related complications in cirrhosis.

    Science.gov (United States)

    Gómez-Hurtado, Isabel; Such, José; Sanz, Yolanda; Francés, Rubén

    2014-11-14

    Gut microbiota plays an important role in cirrhosis. The liver is constantly challenged with commensal bacteria and their products arriving through the portal vein in the so-called gut-liver axis. Bacterial translocation from the intestinal lumen through the intestinal wall and to mesenteric lymph nodes is facilitated by intestinal bacterial overgrowth, impairment in the permeability of the intestinal mucosal barrier, and deficiencies in local host immune defences. Deranged clearance of endogenous bacteria from portal and systemic circulation turns the gut into the major source of bacterial-related complications. Liver function may therefore be affected by alterations in the composition of the intestinal microbiota and a role for commensal flora has been evidenced in the pathogenesis of several complications arising in end-stage liver disease such as hepatic encephalopathy, splanchnic arterial vasodilatation and spontaneous bacterial peritonitis. The use of antibiotics is the main therapeutic pipeline in the management of these bacteria-related complications. However, other strategies aimed at preserving intestinal homeostasis through the use of pre-, pro- or symbiotic formulations are being studied in the last years. In this review, the role of intestinal microbiota in the development of the most frequent complications arising in cirrhosis and the different clinical and experimental studies conducted to prevent or improve these complications by modifying the gut microbiota composition are summarized.

  14. Nitric Oxide Production by the Human Intestinal Microbiota by Dissimilatory Nitrate Reduction to Ammonium

    Directory of Open Access Journals (Sweden)

    Joan Vermeiren

    2009-01-01

    Full Text Available The free radical nitric oxide (NO is an important signaling molecule in the gastrointestinal tract. Besides eukaryotic cells, gut microorganisms are also capable of producing NO. However, the exact mechanism of NO production by the gut microorganisms is unknown. Microbial NO production was examined under in vitro conditions simulating the gastrointestinal ecosystem using L-arginine or nitrate as substrates. L-arginine did not influence the microbial NO production. However, NO concentrations in the order of 90 ng NO-N per L feed medium were produced by the fecal microbiota from nitrate. N15 tracer experiments showed that nitrate was mainly reduced to ammonium by the dissimilatory nitrate reduction to ammonium (DNRA pathway. To our knowledge, this is the first study showing that gastrointestinal microbiota can generate substantial amounts of NO by DNRA and not by the generally accepted denitrification or L-arginine pathway. Further work is needed to elucidate the exact role between NO produced by the gastrointestinal microbiota and host cells.

  15. Analysis of the association between host genetics, smoking, and sputum microbiota in healthy humans.

    Science.gov (United States)

    Lim, Mi Young; Yoon, Hyo Shin; Rho, Mina; Sung, Joohon; Song, Yun-Mi; Lee, Kayoung; Ko, GwangPyo

    2016-03-31

    Recent studies showing clear differences in the airway microbiota between healthy and diseased individuals shed light on the importance of the airway microbiota in health. Here, we report the associations of host genetics and lifestyles such as smoking, alcohol consumption, and physical activity with the composition of the sputum microbiota using 16S rRNA gene sequence data generated from 257 sputum samples of Korean twin-family cohort. By estimating the heritability of each microbial taxon, we found that several taxa, including Providencia and Bacteroides, were significantly influenced by host genetic factors. Smoking had the strongest effect on the overall microbial community structure among the tested lifestyle factors. The abundances of Veillonella and Megasphaera were higher in current-smokers, and increased with the pack-year value and the Fagerstrom Test of Nicotine Dependence (FTND) score. In contrast, Haemophilus decreased with the pack-year of smoking and the FTND score. Co-occurrence network analysis showed that the taxa were clustered according to the direction of associations with smoking, and that the taxa influenced by host genetics were found together. These results demonstrate that the relationships among sputum microbial taxa are closely associated with not only smoking but also host genetics.

  16. Induction of bacterial antigen-specific colitis by a simplified human microbiota consortium in gnotobiotic interleukin-10-/- mice.

    Science.gov (United States)

    Eun, Chang Soo; Mishima, Yoshiyuki; Wohlgemuth, Steffen; Liu, Bo; Bower, Maureen; Carroll, Ian M; Sartor, R Balfour

    2014-06-01

    We evaluated whether a simplified human microbiota consortium (SIHUMI) induces colitis in germfree (GF) 129S6/SvEv (129) and C57BL/6 (B6) interleukin-10-deficient (IL-10(-/-)) mice, determined mouse strain effects on colitis and the microbiota, examined the effects of inflammation on relative bacterial composition, and identified immunodominant bacterial species in "humanized" IL-10(-/-) mice. GF wild-type (WT) and IL-10(-/-) 129 and B6 mice were colonized with 7 human-derived inflammatory bowel disease (IBD)-related intestinal bacteria and maintained under gnotobiotic conditions. Quantification of bacteria in feces, ileal and colonic contents, and tissues was performed using 16S rRNA gene selective quantitative PCR. Colonic segments were scored histologically, and gamma interferon (IFN-γ), IL-12p40, and IL-17 levels were measured in supernatants of unstimulated colonic tissue explants and of mesenteric lymph node (MLN) cells stimulated by lysates of individual or aggregate bacterial strains. Relative bacterial species abundances changed over time and differed between 129 and B6 mice, WT and IL-10(-/-) mice, luminal and mucosal samples, and ileal and colonic or fecal samples. SIHUMI induced colitis in all IL-10(-/-) mice, with more aggressive colitis and MLN cell activation in 129 mice. Escherichia coli LF82 and Ruminococcus gnavus lysates induced dominant effector ex vivo MLN TH1 and TH17 responses, although the bacterial mucosal concentrations were low. In summary, this study shows that a simplified human bacterial consortium induces colitis in ex-GF 129 and B6 IL-10(-/-) mice. Relative concentrations of individual SIHUMI species are determined by host genotype, the presence of inflammation, and anatomical location. A subset of IBD-relevant human enteric bacterial species preferentially stimulates bacterial antigen-specific TH1 and TH17 immune responses in this model, independent of luminal and mucosal bacterial concentrations.

  17. Characterisation of commensal Escherichia coli isolated from apparently healthy cattle and their attendants in Tanzania

    DEFF Research Database (Denmark)

    Madoshi, Balichene; Kudirkiene, Egle; Mtambo, Madundo

    2016-01-01

    While pathogenic types of Escherichia coli are well characterized, relatively little is known about the commensal E. coli flora. In the current study, antimicrobial resistance in commensal E. coli and distribution of ERIC-PCR genotypes among isolates of such bacteria from cattle and cattle...... attendants on cattle farms in Tanzania were investigated. Seventeen E. coli genomes representing different ERIC-PCR types of commensal E. coli were sequenced in order to determine their possible importance as a reservoir for both antimicrobial resistance genes and virulence factors. Both human and cattle...... specific. The most frequent plasmids replicon genes found in strains from both hosts were of IncF type, which are commonly associated with carriage of antimicrobial and virulence genes. Commensal E. coli from cattle and attendants were found to share same genotypes and to carry antimicrobial resistance...

  18. The small intestine microbiota, nutritional modulation and relevance for health

    NARCIS (Netherlands)

    El Aidy, Sahar; van den Bogert, Bartholomeus; Kleerebezem, Michiel

    2015-01-01

    The intestinal microbiota plays a profound role in human health and extensive research has been dedicated to identify microbiota aberrations that are associated with disease. Most of this work has been targeting the large intestine and fecal microbiota, while the small intestine microbiota may also

  19. The small intestine microbiota, nutritional modulation and relevance for health

    NARCIS (Netherlands)

    El Aidy, Sahar; van den Bogert, Bartholomeus; Kleerebezem, Michiel

    2015-01-01

    The intestinal microbiota plays a profound role in human health and extensive research has been dedicated to identify microbiota aberrations that are associated with disease. Most of this work has been targeting the large intestine and fecal microbiota, while the small intestine microbiota may also

  20. Associations between the human intestinal microbiota, Lactobacillus rhamnosus GG and serum lipids indicated by integrated analysis of high-throughput profiling data

    Directory of Open Access Journals (Sweden)

    Leo Lahti

    2013-02-01

    Full Text Available Accumulating evidence indicates that the intestinal microbiota regulates our physiology and metabolism. Bacteria marketed as probiotics confer health benefits that may arise from their ability to affect the microbiota. Here high-throughput screening of the intestinal microbiota was carried out and integrated with serum lipidomic profiling data to study the impact of probiotic intervention on the intestinal ecosystem, and to explore the associations between the intestinal bacteria and serum lipids. We performed a comprehensive intestinal microbiota analysis using a phylogenetic microarray before and after Lactobacillus rhamnosus GG intervention. While a specific increase in the L. rhamnosus-related bacteria was observed during the intervention, no other changes in the composition or stability of the microbiota were detected. After the intervention, lactobacilli returned to their initial levels. As previously reported, also the serum lipid profiles remained unaltered during the intervention. Based on a high-resolution microbiota analysis, intake of L. rhamnosus GG did not modify the composition of the intestinal ecosystem in healthy adults, indicating that probiotics confer their health effects by other mechanisms. The most prevailing association between the gut microbiota and lipid profiles was a strong positive correlation between uncultured phylotypes of Ruminococcus gnavus-group and polyunsaturated serum triglycerides of dietary origin. Moreover, a positive correlation was detected between serum cholesterol and Collinsella (Coriobacteriaceae. These associations identified with the spectrometric lipidome profiling were corroborated by enzymatically determined cholesterol and triglyceride levels. Actinomycetaceae correlated negatively with triglycerides of highly unsaturated fatty acids while a set of Proteobacteria showed negative correlation with ether phosphatidylcholines. Our results suggest that several members of the Firmicutes

  1. Associations between the human intestinal microbiota, Lactobacillus rhamnosus GG and serum lipids indicated by integrated analysis of high-throughput profiling data.

    Science.gov (United States)

    Lahti, Leo; Salonen, Anne; Kekkonen, Riina A; Salojärvi, Jarkko; Jalanka-Tuovinen, Jonna; Palva, Airi; Orešič, Matej; de Vos, Willem M

    2013-01-01

    Accumulating evidence indicates that the intestinal microbiota regulates our physiology and metabolism. Bacteria marketed as probiotics confer health benefits that may arise from their ability to affect the microbiota. Here high-throughput screening of the intestinal microbiota was carried out and integrated with serum lipidomic profiling data to study the impact of probiotic intervention on the intestinal ecosystem, and to explore the associations between the intestinal bacteria and serum lipids. We performed a comprehensive intestinal microbiota analysis using a phylogenetic microarray before and after Lactobacillus rhamnosus GG intervention. While a specific increase in the L. rhamnosus-related bacteria was observed during the intervention, no other changes in the composition or stability of the microbiota were detected. After the intervention, lactobacilli returned to their initial levels. As previously reported, also the serum lipid profiles remained unaltered during the intervention. Based on a high-resolution microbiota analysis, intake of L. rhamnosus GG did not modify the composition of the intestinal ecosystem in healthy adults, indicating that probiotics confer their health effects by other mechanisms. The most prevailing association between the gut microbiota and lipid profiles was a strong positive correlation between uncultured phylotypes of Ruminococcus gnavus-group and polyunsaturated serum triglycerides of dietary origin. Moreover, a positive correlation was detected between serum cholesterol and Collinsella (Coriobacteriaceae). These associations identified with the spectrometric lipidome profiling were corroborated by enzymatically determined cholesterol and triglyceride levels. Actinomycetaceae correlated negatively with triglycerides of highly unsaturated fatty acids while a set of Proteobacteria showed negative correlation with ether phosphatidylcholines. Our results suggest that several members of the Firmicutes, Actinobacteria and

  2. Vaginal Microbiota and the Use of Probiotics

    Directory of Open Access Journals (Sweden)

    Sarah Cribby

    2008-01-01

    Full Text Available The human vagina is inhabited by a range of microbes from a pool of over 50 species. Lactobacilli are the most common, particularly in healthy women. The microbiota can change composition rapidly, for reasons that are not fully clear. This can lead to infection or to a state in which organisms with pathogenic potential coexist with other commensals. The most common urogenital infection in premenopausal women is bacterial vaginosis (BV, a condition characterized by a depletion of lactobacilli population and the presence of Gram-negative anaerobes, or in some cases Gram-positive cocci, and aerobic pathogens. Treatment of BV traditionally involves the antibiotics metronidazole or clindamycin, however, the recurrence rate remains high, and this treatment is not designed to restore the lactobacilli. In vitro studies have shown that Lactobacillus strains can disrupt BV and yeast biofilms and inhibit the growth of urogenital pathogens. The use of probiotics to populate the vagina and prevent or treat infection has been considered for some time, but only quite recently have data emerged to show efficacy, including supplementation of antimicrobial treatment to improve cure rates and prevent recurrences.

  3. D-Alanine-Controlled Transient Intestinal Mono-Colonization with Non-Laboratory-Adapted Commensal E. coli Strain HS.

    Science.gov (United States)

    Cuenca, Miguelangel; Pfister, Simona P; Buschor, Stefanie; Bayramova, Firuza; Hernandez, Sara B; Cava, Felipe; Kuru, Erkin; Van Nieuwenhze, Michael S; Brun, Yves V; Coelho, Fernanda M; Hapfelmeier, Siegfried

    2016-01-01

    Soon after birth the mammalian gut microbiota forms a permanent and collectively highly resilient consortium. There is currently no robust method for re-deriving an already microbially colonized individual again-germ-free. We previously developed the in vivo growth-incompetent E. coli K-12 strain HA107 that is auxotrophic for the peptidoglycan components D-alanine (D-Ala) and meso-diaminopimelic acid (Dap) and can be used to transiently associate germ-free animals with live bacteria, without permanent loss of germ-free status. Here we describe the translation of this experimental model from the laboratory-adapted E. coli K-12 prototype to the better gut-adapted commensal strain E. coli HS. In this genetic background it was necessary to complete the D-Ala auxotrophy phenotype by additional knockout of the hypothetical third alanine racemase metC. Cells of the resulting fully auxotrophic strain assembled a peptidoglycan cell wall of normal composition, as long as provided with D-Ala and Dap in the medium, but could not proliferate a single time after D-Ala/Dap removal. Yet, unsupplemented bacteria remained active and were able to complete their cell cycle with fully sustained motility until immediately before autolytic death. Also in vivo, the transiently colonizing bacteria retained their ability to stimulate a live-bacteria-specific intestinal Immunoglobulin (Ig)A response. Full D-Ala auxotrophy enabled rapid recovery to again-germ-free status. E. coli HS has emerged from human studies and genomic analyses as a paradigm of benign intestinal commensal E. coli strains. Its reversibly colonizing derivative may provide a versatile research tool for mucosal bacterial conditioning or compound delivery without permanent colonization.

  4. D-Alanine-Controlled Transient Intestinal Mono-Colonization with Non-Laboratory-Adapted Commensal E. coli Strain HS.

    Directory of Open Access Journals (Sweden)

    Miguelangel Cuenca

    Full Text Available Soon after birth the mammalian gut microbiota forms a permanent and collectively highly resilient consortium. There is currently no robust method for re-deriving an already microbially colonized individual again-germ-free. We previously developed the in vivo growth-incompetent E. coli K-12 strain HA107 that is auxotrophic for the peptidoglycan components D-alanine (D-Ala and meso-diaminopimelic acid (Dap and can be used to transiently associate germ-free animals with live bacteria, without permanent loss of germ-free status. Here we describe the translation of this experimental model from the laboratory-adapted E. coli K-12 prototype to the better gut-adapted commensal strain E. coli HS. In this genetic background it was necessary to complete the D-Ala auxotrophy phenotype by additional knockout of the hypothetical third alanine racemase metC. Cells of the resulting fully auxotrophic strain assembled a peptidoglycan cell wall of normal composition, as long as provided with D-Ala and Dap in the medium, but could not proliferate a single time after D-Ala/Dap removal. Yet, unsupplemented bacteria remained active and were able to complete their cell cycle with fully sustained motility until immediately before autolytic death. Also in vivo, the transiently colonizing bacteria retained their ability to stimulate a live-bacteria-specific intestinal Immunoglobulin (IgA response. Full D-Ala auxotrophy enabled rapid recovery to again-germ-free status. E. coli HS has emerged from human studies and genomic analyses as a paradigm of benign intestinal commensal E. coli strains. Its reversibly colonizing derivative may provide a versatile research tool for mucosal bacterial conditioning or compound delivery without permanent colonization.

  5. Genotyping Oral Commensal Bacteria to Predict Social Contact and Structure

    Science.gov (United States)

    Wallace, Amelia D.; Riley, Lee W.

    2016-01-01

    Social network structure is a fundamental determinant of human health, from infectious to chronic diseases. However, quantitative and unbiased approaches to measuring social network structure are lacking. We hypothesized that genetic relatedness of oral commensal bacteria could be used to infer social contact between humans, just as genetic relatedness of pathogens can be used to determine transmission chains of pathogens. We used a traditional, questionnaire survey-based method to characterize the contact network of the School of Public Health at a large research university. We then collected saliva from a subset of individuals to analyze their oral microflora using a modified deep sequencing multilocus sequence typing (MLST) procedure. We examined micro-evolutionary changes in the S. viridans group to uncover transmission patterns reflecting social network structure. We amplified seven housekeeping gene loci from the Streptococcus viridans group, a group of ubiquitous commensal bacteria, and sequenced the PCR products using next-generation sequencing. By comparing the generated S. viridans reads between pairs of individuals, we reconstructed the social network of the sampled individuals and compared it to the network derived from the questionnaire survey-based method. The genetic relatedness significantly (p-value < 0.001) correlated with social distance in the questionnaire-based network, and the reconstructed network closely matched the network derived from the questionnaire survey-based method. Oral commensal bacterial are thus likely transmitted through routine physical contact or shared environment. Their genetic relatedness can be used to represent a combination of social contact and shared physical space, therefore reconstructing networks of contact. This study provides the first step in developing a method to measure direct social contact based on commensal organism genotyping, potentially capable of unmasking hidden social networks that contribute to

  6. The role of secretory immunoglobulin A in the natural sensing of commensal bacteria by mouse Peyer's patch dendritic cells.

    Science.gov (United States)

    Rol, Nicolas; Favre, Laurent; Benyacoub, Jalil; Corthésy, Blaise

    2012-11-16

    The mammalian gastrointestinal (GI) tract harbors a diverse population of commensal species collectively known as the microbiota, which interact continuously with the host. From very early in life, secretory IgA (SIgA) is found in association with intestinal bacteria. It is considered that this helps to ensure self-limiting growth of the microbiota and hence participates in symbiosis. However, the importance of this association in contributing to the mechanisms ensuring natural host-microorganism communication is in need of further investigation. In the present work, we examined the possible role of SIgA in the transport of commensal bacteria across the GI epithelium. Using an intestinal loop mouse model and fluorescently labeled bacteria, we found that entry of commensal bacteria in Peyer's patches (PP) via the M cell pathway was mediated by their association with SIgA. Preassociation of bacteria with nonspecific SIgA increased their dynamics of entry and restored the reduced transport observed in germ-free mice known to have a marked reduction in intestinal SIgA production. Selective SIgA-mediated targeting of bacteria is restricted to the tolerogenic CD11c(+)CD11b(+)CD8(-) dendritic cell subset located in the subepithelial dome region of PPs, confirming that the host is not ignorant of its resident commensals. In conclusion, our work supports the concept that SIgA-mediated monitoring of commensal bacteria targeting dendritic cells in the subepithelial dome region of PPs represents a mechanism whereby the host mucosal immune system controls the continuous dialogue between the host and commensal bacteria.

  7. Mucosal prevalence and interactions with the epithelium indicate commensalism of Sutterella spp.

    Directory of Open Access Journals (Sweden)

    Kaisa Hiippala

    2016-10-01

    Full Text Available Sutterella species have been frequently associated with human diseases, such as autism, Down syndrome and inflammatory bowel disease (IBD, but the impact of these bacteria on health still remains unclear. Especially the interactions of Sutterella spp. with the host are largely unknown, despite of the species being highly prevalent. In this study, we addressed the interaction of three known species of Sutterella with the intestinal epithelium and examined their adhesion properties, the effect on intestinal barrier function and the pro-inflammatory capacity in vitro. We also studied the relative abundance and prevalence of the genus Sutterella and S. wadsworthensis in intestinal biopsies of healthy individuals and patients with celiac disease (CeD or IBD. Our results show that Sutterella spp. are abundant in the duodenum of healthy adults with a decreasing gradient towards the colon. No difference was detected in the prevalence of Sutterella between the pediatric IBD or CeD patients and the healthy controls. Sutterella parvirubra adhered better than the two other Sutterella spp. to differentiated Caco-2 cells and was capable of decreasing the adherence of S. wadsworthensis, which preferably bound to mucus and human extracellular matrix (ECM proteins. Furthermore, only S. wadsworthensis induced an interleukin-8 (IL-8 production in enterocytes, which could be due to different lipopolysaccharide (LPS structures between the species. However, its pro-inflammatory activity was modest as compared to non-pathogenic Escherichia coli. Sutterella spp. had no effect on the enterocyte monolayer integrity in vitro. Our findings indicate that the members of genus Sutterella are widely prevalent commensals with mild pro-inflammatory capacity in the human gastrointestinal tract and do not contribute significantly to the disrupted epithelial homeostasis associated with microbiota dysbiosis and increase of Proteobacteria. The ability of Sutterella spp. to adhere to

  8. Intestinal microbiota and ulcerative colitis.

    Science.gov (United States)

    Ohkusa, Toshifumi; Koido, Shigeo

    2015-11-01

    There is a close relationship between the human host and the intestinal microbiota, which is an assortment of microorganisms, protecting the intestine against colonization by exogenous pathogens. Moreover, the intestinal microbiota play a critical role in providing nutrition and the modulation of host immune homeostasis. Recent reports indicate that some strains of intestinal bacteria are responsible for intestinal ulceration and chronic inflammation in inflammatory bowel diseases (IBD) such as ulcerative colitis (UC) and Crohn's disease (CD). Understanding the interaction of the intestinal microbiota with pathogens and the human host might provide new strategies treating patients with IBD. This review focuses on the important role that the intestinal microbiota plays in maintaining innate immunity in the pathogenesis and etiology of UC and discusses new antibiotic therapies targeting the intestinal microbiota.

  9. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health.

    Science.gov (United States)

    Kubinak, Jason L; Petersen, Charisse; Stephens, W Zac; Soto, Ray; Bake, Erin; O'Connell, Ryan M; Round, June L

    2015-02-11

    Altered commensal communities are associated with human disease. IgA mediates intestinal homeostasis and regulates microbiota composition. Intestinal IgA is produced at high levels as a result of T follicular helper cell (TFH) and B cell interactions in germinal centers. However, the pathways directing host IgA responses toward the microbiota remain unknown. Here, we report that signaling through the innate adaptor MyD88 in gut T cells coordinates germinal center responses, including TFH and IgA+ B cell development. TFH development is deficient in germ-free mice and can be restored by feeding TLR2 agonists that activate T cell-intrinsic MyD88 signaling. Loss of this pathway diminishes high-affinity IgA targeting of the microbiota and fails to control the bacterial community, leading to worsened disease. Our findings identify that T cells converge innate and adaptive immune signals to coordinate IgA against the microbiota, constraining microbial community membership to promote symbiosis.

  10. Diet drives quick changes in the metabolic activity and composition of human gut microbiota in a validated in vitro gut model

    NARCIS (Netherlands)

    Aguirre, M.; Eck, A.; Koenen, M.E.; Savelkoul, P.H.M.; Budding, A.E.; Venema, K.

    2016-01-01

    The aim of this study was to screen how rapidly the human gut microbiota responds to diet in an in vitro model of the proximal colon (TIM-system). Two experimental diets were provided to the gut bacteria: a high carbohydrate and a high protein diet. The metabolic response and the composition of the

  11. Diet drives quick changes in the metabolic activity and composition of human gut microbiota in a validated in vitro gut model

    NARCIS (Netherlands)

    Aguirre, M.; Eck, A.; Koenen, M.E.; Savelkoul, P.H.M.; Budding, A.E.; Venema, K.

    2016-01-01

    The aim of this study was to screen how rapidly the human gut microbiota responds to diet in an in vitro model of the proximal colon (TIM-system). Two experimental diets were provided to the gut bacteria: a high carbohydrate and a high protein diet. The metabolic response and the composition of the

  12. Changes in human fecal microbiota due to chemotherapy analyzed by TaqMan-PCR, 454 sequencing and PCR-DGGE fingerprinting.

    Directory of Open Access Journals (Sweden)

    Jutta Zwielehner

    Full Text Available BACKGROUND: We investigated whether chemotherapy with the presence or absence of antibiotics against different kinds of cancer changed the gastrointestinal microbiota. METHODOLOGY/PRINCIPAL FINDINGS: Feces of 17 ambulant patients receiving chemotherapy with or without concomitant antibiotics were analyzed before and after the chemotherapy cycle at four time points in comparison to 17 gender-, age- and lifestyle-matched healthy controls. We targeted 16S rRNA genes of all bacteria, Bacteroides, bifidobacteria, Clostridium cluster IV and XIVa as well as C. difficile with TaqMan qPCR, denaturing gradient gel electrophoresis (DGGE fingerprinting and high-throughput sequencing. After a significant drop in the abundance of microbiota (p = 0.037 following a single treatment the microbiota recovered within a few days. The chemotherapeutical treatment marginally affected the Bacteroides while the Clostridium cluster IV and XIVa were significantly more sensitive to chemotherapy and antibiotic treatment. DGGE fingerprinting showed decreased diversity of Clostridium cluster IV and XIVa in response to chemotherapy with cluster IV diversity being particularly affected by antibiotics. The occurrence of C. difficile in three out of seventeen subjects was accompanied by a decrease in the genera Bifidobacterium, Lactobacillus, Veillonella and Faecalibacterium prausnitzii. Enterococcus faecium increased following chemotherapy. CONCLUSIONS/SIGNIFICANCE: Despite high individual variations, these results suggest that the observed changes in the human gut microbiota may favor colonization with C. difficile and Enterococcus faecium. Perturbed microbiota may be a target for specific mitigation with safe pre- and probiotics.

  13. Commensal Microbe-specific Activation of B2 Cell Subsets Contributes to Atherosclerosis Development Independently of Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2016-11-01

    Full Text Available The relation between B2 cells and commensal microbes during atherosclerosis remains largely unexplored. Here we show that under hyperlipidemic conditions intestinal microbiota resulted in recruitment and ectopic activation of B2 cells in perivascular adipose tissue, followed by an increase in circulating IgG, promoting disease development. In contrast, disruption of the intestinal microbiota by a broad-spectrum antibiotic cocktail (AVNM led to the attenuation of atherosclerosis by suppressing B2 cells, despite the persistence of serum lipid abnormalities. Furthermore, pharmacological depletion of B2 cells with an anti-B2-cell surface CD23 antibody also attenuated commensal microbe-induced atherosclerosis. Moreover, expression analysis of TLR-signaling-related genes in the activated B2 cell subsets, assessed using the Toll-Like Receptor Signaling Pathway RT2 Profiler PCR Array, confirmed activation of the B2-cell autoantibody-production axis, which was associated with an increased capacity of B2 cells to bind to intestinal microbiota. Together, our findings reveal the critical role of commensal microbe-specific activation of B2 cells in the development of atherogenesis through lipid metabolism-independent mechanisms.

  14. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality

    Directory of Open Access Journals (Sweden)

    Augusto Jacobo Montiel-Castro

    2013-10-01

    Full Text Available Recent data suggest that the human body is not such a neatly self-sufficient island after all. It is more like a super-complex ecosystem containing trillions of bacteria and other microorganisms that inhabit all our surfaces; skin, mouth, sexual organs, and specially intestines. It has recently become evident that such microbiota, specifically within the gut, can greatly influence many physiological parameters, including cognitive functions, such as learning, memory and decision making processes. Human microbiota is a diverse and dynamic ecosystem, which has evolved in a mutualistic relationship with its host. Ontogenetically, it is vertically inoculated from the mother during birth, established during the first year of life and during lifespan, horizontally transferred among relatives, mates or close community members. This micro-ecosystem serves the host by protecting against pathogens, metabolizing complex lipids and polysaccharides that otherwise would be inaccessible nutrients, neutralizing drugs and carcinogens, modulating intestinal motility, and making visceral perception possible. It is now evident that the bidirectional signaling between the gastrointestinal tract and the brain, mainly through the vagus nerve, the so called ´microbiota-gut-vagus-brain axis,´ is vital for maintaining homeostasis and it may be also involved in the etiology of several metabolic and mental dysfunctions/disorders. Here we review evidence on the ability of the gut microbiota to communicate with the brain and thus modulate behavior, and also elaborate on the ethological and cultural strategies of human and non-human primates to select, transfer and eliminate microorganisms for selecting the commensal profile.

  15. Immune Responses to Broad-Spectrum Antibiotic Treatment and Fecal Microbiota Transplantation in Mice

    Science.gov (United States)

    Ekmekciu, Ira; von Klitzing, Eliane; Fiebiger, Ulrike; Escher, Ulrike; Neumann, Christian; Bacher, Petra; Scheffold, Alexander; Kühl, Anja A.; Bereswill, Stefan; Heimesaat, Markus M.

    2017-01-01

    Compelling evidence demonstrates the pivotal role of the commensal intestinal microbiota in host physiology and the detrimental effects of its perturbations following antibiotic treatment. Aim of this study was to investigate the impact of antibiotics induced depletion and subsequent restoration of the intestinal microbiota composition on the murine mucosal and systemic immunity. To address this, conventional C57BL/6j mice were subjected to broad-spectrum antibiotic treatment for 8 weeks. Restoration of the intestinal microbiota by peroral fecal microbiota transplantation (FMT) led to reestablishment of small intestinal CD4+, CD8+, and B220+ as well as of colonic CD4+ cell numbers as early as 7 days post-FMT. However, at d28 following FMT, colonic CD4+ and B220+ cell numbers were comparable to those in secondary abiotic (ABx) mice. Remarkably, CD8+ cell numbers were reduced in the colon upon antibiotic treatment, and FMT was not sufficient to restore this immune cell subset. Furthermore, absence of gut microbial stimuli resulted in decreased percentages of memory/effector T cells, regulatory T cells, and activated dendritic cells in the small intestine, colon, mesenteric lymph nodes (MLN), and spleen. Concurrent antibiotic treatment caused decreased cytokine production (IFN-γ, IL-17, IL-22, and IL-10) of CD4+ cells in respective compartments. These effects were, however, completely restored upon FMT. In summary, broad-spectrum antibiotic treatment resulted in profound local (i.e., small and large intestinal), peripheral (i.e., MLN), and systemic (i.e., splenic) changes in the immune cell repertoire that could, at least in part, be restored upon FMT. Further studies need to unravel the distinct molecular mechanisms underlying microbiota-driven changes in immune homeostasis subsequently providing novel therapeutic or even preventive approaches in human immunopathologies. PMID:28469619

  16. Analysis of the human intestinal microbiota from 92 volunteers after ingestion of identical meals.

    Science.gov (United States)

    Jin, J S; Touyama, M; Kibe, R; Tanaka, Y; Benno, Y; Kobayashi, T; Shimakawa, M; Maruo, T; Toda, T; Matsuda, I; Tagami, H; Matsumoto, M; Seo, G; Chonan, O; Benno, Y

    2013-06-01

    The intestinal microbiota composition of 92 volunteers living in Japan was identified following the consumption of 'identical meals' (1,879 kcal/day) for 3 days. When faecal samples were analysed by terminal restriction fragment length polymorphism with several primer-restriction enzyme systems and then clustered, the patterns could be divided into 2 clusters. Contribution tests and partition modelling showed that OTU211 of the 35f-MspI system and OTU237 of the 35f-AluI system were key factors in the distribution of these groups. However, significant differences among these groups in terms of body mass index and age were not observed.

  17. Dynamic In Vitro Models of the Human Gastrointestinal Tract as Relevant Tools to Assess the Survival of Probiotic Strains and Their Interactions with Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Charlotte Cordonnier

    2015-10-01

    Full Text Available The beneficial effects of probiotics are conditioned by their survival during passage through the human gastrointestinal tract and their ability to favorably influence gut microbiota. The main objective of this study was to use dynamic in vitro models of the human digestive tract to investigate the effect of fasted or fed state on the survival kinetics of the new probiotic Saccharomyces cerevisiae strain CNCM I-3856 and to assess its influence on intestinal microbiota composition and activity. The probiotic yeast showed a high survival rate in the upper gastrointestinal tract whatever the route of admistration, i.e., within a glass of water or a Western-type meal. S. cerevisiae CNCM I-3856 was more sensitive to colonic conditions, as the strain was not able to colonize within the bioreactor despite a twice daily administration. The main bacterial populations of the gut microbiota, as well as the production of short chain fatty acids were not influenced by the probiotic treatment. However, the effect of the probiotic on the gut microbiota was found to be individual dependent. This study shows that dynamic in vitro models can be advantageously used to provide useful insight into the behavior of probiotic strains in the human digestive environment.

  18. Effects of the modulation of microbiota on the gastrointestinal immune system and bowel function.

    Science.gov (United States)

    Kanauchi, Osamu; Andoh, Akira; Mitsuyama, Keiichi

    2013-10-23

    The gastrointestinal tract harbors a tremendous number and variety of commensal microbiota. The intestinal mucosa simultaneously absorbs essential nutrients and protects against detrimental antigens or pathogenic microbiota as the first line of defense. Beneficial interactions between the host and microbiota are key requirements for host health. Although the gut microbiota has been previously studied in the context of inflammatory diseases, it has recently become clear that this microbial environment has a beneficial role during normal homeostasis, by modulating the immune system or bowel motor function. Recent studies revealed that microbiota, including their metabolites, modulate key signaling pathways involved in the inflammation of the mucosa or the neurotransmitter system in the gut-brain axis. The underlying molecular mechanisms of host-microbiota interactions are still unclear; however, manipulation of microbiota by probiotics or prebiotics is becoming increasingly recognized as an important therapeutic option, especially for the treatment of the dysfunction or inflammation of the intestinal tract.

  19. Commensal bacteria modulate innate immune responses of vaginal epithelial cell multilayer cultures.

    Science.gov (United States)

    Rose, William A; McGowin, Chris L; Spagnuolo, Rae Ann; Eaves-Pyles, Tonyia D; Popov, Vsevolod L; Pyles, Richard B

    2012-01-01

    The human vaginal microbiome plays a critical but poorly defined role in reproductive health. Vaginal microbiome alterations are associated with increased susceptibility to sexually-transmitted infections (STI) possibly due to related changes in innate defense responses from epithelial cells. Study of the impact of commensal bacteria on the vaginal mucosal surface has been hindered by current vaginal epithelial cell (VEC) culture systems that lack an appropriate interface between the apical surface of stratified squamous epithelium and the air-filled vaginal lumen. Therefore we developed a reproducible multilayer VEC culture system with an apical (luminal) air-interface that supported colonization with selected commensal bacteria. Multilayer VEC developed tight-junctions and other hallmarks of the vaginal mucosa including predictable proinflammatory cytokine secretion following TLR stimulation. Colonization of multilayers by common vaginal commensals including Lactobacillus crispatus, L. jensenii, and L. rhamnosus led to intimate associations with the VEC exclusively on the apical surface. Vaginal commensals did not trigger cytokine secretion but Staphylococcus epidermidis, a skin commensal, was inflammatory. Lactobacilli reduced cytokine secretion in an isolate-specific fashion following TLR stimulation. This tempering of inflammation offers a potential explanation for increased susceptibility to STI in the absence of common commensals and has implications for testing of potential STI preventatives.

  20. Commensal Bacteria Modulate Innate Immune Responses of Vaginal Epithelial Cell Multilayer Cultures

    Science.gov (United States)

    Rose, William A.; McGowin, Chris L.; Spagnuolo, Rae Ann; Eaves-Pyles, Tonyia D.; Popov, Vsevolod L.; Pyles, Richard B.

    2012-01-01

    The human vaginal microbiome plays a critical but poorly defined role in reproductive health. Vaginal microbiome alterations are associated with increased susceptibility to sexually-transmitted infections (STI) possibly due to related changes in innate defense responses from epithelial cells. Study of the impact of commensal bacteria on the vaginal mucosal surface has been hindered by current vaginal epithelial cell (VEC) culture systems that lack an appropriate interface between the apical surface of stratified squamous epithelium and the air-filled vaginal lumen. Therefore we developed a reproducible multilayer VEC culture system with an apical (luminal) air-interface that supported colonization with selected commensal bacteria. Multilayer VEC developed tight-junctions and other hallmarks of the vaginal mucosa including predictable proinflammatory cytokine secretion following TLR stimulation. Colonization of multilayers by common vaginal commensals including Lactobacillus crispatus, L. jensenii, and L. rhamnosus led to intimate associations with the VEC exclusively on the apical surface. Vaginal commensals did not trigger cytokine secretion but Staphylococcus epidermidis, a skin commensal, was inflammatory. Lactobacilli reduced cytokine secretion in an isolate-specific fashion following TLR stimulation. This tempering of inflammation offers a potential explanation for increased susceptibility to STI in the absence of common commensals and has implications for testing of potential STI preventatives. PMID:22412914

  1. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber.

    Science.gov (United States)

    Tuohy, Kieran M; Conterno, Lorenza; Gasperotti, Mattia; Viola, Roberto

    2012-09-12

    Whole plant foods, including fruit, vegetables, and whole grain cereals, protect against chronic human diseases such as heart disease and cancer, with fiber and polyphenols thought to contribute significantly. These bioactive food components interact with the gut microbiota, with gut bacteria modifying polyphenol bioavailability and activity, and with fiber, constituting the main energy source for colonic fermentation. This paper discusses the consequences of increasing the consumption of whole plant foods on the gut microbiota and subsequent implications for human health. In humans, whole grain cereals can modify fecal bacterial profiles, increasing relative numbers of bifidobacteria and lactobacilli. Polyphenol-rich chocolate and certain fruits have also been shown to increase fecal bifidobacteria. The recent FLAVURS study provides novel information on the impact of high fruit and vegetable diets on the gut microbiota. Increasing whole plant food consumption appears to up-regulate beneficial commensal bacteria and may contribute toward the health effects of these foods.

  2. Cultivable bacterial microbiota of northern bobwhite (Colinus virginianus): a new reservoir of antimicrobial resistance?

    Science.gov (United States)

    Su, Hongwen; McKelvey, Jessica; Rollins, Dale; Zhang, Michael; Brightsmith, Donald J; Derr, James; Zhang, Shuping

    2014-01-01

    The northern bobwhite (Colinus virginianus) is an ecologically and economically important avian species. At the present time, little is known about the microbial communities associated with these birds. As the first step to create a quail microbiology knowledge base, the current study conducted an inventory of cultivable quail tracheal, crop, cecal, and cloacal microbiota and associated antimicrobial resistance using a combined bacteriology and DNA sequencing approach. A total of 414 morphologically unique bacterial colonies were selected from nonselective aerobic and anaerobic cultures, as well as selective and enrichment cultures. Analysis of the first 500-bp 16S rRNA gene sequences in conjunction with biochemical identifications revealed 190 non-redundant species-level taxonomic units, representing 160 known bacterial species and 30 novel species. The bacterial species were classified into 4 phyla, 14 orders, 37 families, and 59 or more genera. Firmicutes was the most commonly encountered phylum (57%) followed by Actinobacteria (24%), Proteobacteria (17%) and Bacteroidetes (0.02%). Extensive diversity in the species composition of quail microbiota was observed among individual birds and anatomical locations. Quail microbiota harbored several opportunistic pathogens, such as E. coli and Ps. aeruginosa, as well as human commensal organisms, including Neisseria species. Phenotypic characterization of selected bacterial species demonstrated a high prevalence of resistance to the following classes of antimicrobials: phenicol, macrolide, lincosamide, quinolone, and sulphate. Data from the current investigation warrant further investigation on the source, transmission, pathology, and control of antimicrobial resistance in wild quail populations.

  3. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Richard R Stein

    Full Text Available The intestinal microbiota is a microbial ecosystem of crucial importance to human health. Understanding how the microbiota confers resistance against enteric pathogens and how antibiotics disrupt that resistance is key to the prevention and cure of intestinal infections. We present a novel method to infer microbial community ecology directly from time-resolved metagenomics. This method extends generalized Lotka-Volterra dynamics to account for external perturbations. Data from recent experiments on antibiotic-mediated Clostridium difficile infection is analyzed to quantify microbial interactions, commensal-pathogen interactions, and the effect of the antibiotic on the community. Stability analysis reveals that the microbiota is intrinsically stable, explaining how antibiotic perturbations and C. difficile inoculation can produce catastrophic shifts that persist even after removal of the perturbations. Importantly, the analysis suggests a subnetwork of bacterial groups implicated in protection against C. difficile. Due to its generality, our method can be applied to any high-resolution ecological time-series data to infer community structure and response to external stimuli.

  4. Cultivable Bacterial Microbiota of Northern Bobwhite (Colinus virginianus): A New Reservoir of Antimicrobial Resistance?

    Science.gov (United States)

    Su, Hongwen; McKelvey, Jessica; Rollins, Dale; Zhang, Michael; Brightsmith, Donald J.; Derr, James; Zhang, Shuping

    2014-01-01

    The northern bobwhite (Colinus virginianus) is an ecologically and economically important avian species. At the present time, little is known about the microbial communities associated with these birds. As the first step to create a quail microbiology knowledge base, the current study conducted an inventory of cultivable quail tracheal, crop, cecal, and cloacal microbiota and associated antimicrobial resistance using a combined bacteriology and DNA sequencing approach. A total of 414 morphologically unique bacterial colonies were selected from nonselective aerobic and anaerobic cultures, as well as selective and enrichment cultures. Analysis of the first 500-bp 16S rRNA gene sequences in conjunction with biochemical identifications revealed 190 non-redundant species-level taxonomic units, representing 160 known bacterial species and 30 novel species. The bacterial species were classified into 4 phyla, 14 orders, 37 families, and 59 or more genera. Firmicutes was the most commonly encountered phylum (57%) followed by Actinobacteria (24%), Proteobacteria (17%) and Bacteroidetes (0.02%). Extensive diversity in the species composition of quail microbiota was observed among individual birds and anatomical locations. Quail microbiota harbored several opportunistic pathogens, such as E. coli and Ps. aeruginosa, as well as human commensal organisms, including Neisseria species. Phenotypic characterization of selected bacterial species demonstrated a high prevalence of resistance to the following classes of antimicrobials: phenicol, macrolide, lincosamide, quinolone, and sulphate. Data from the current investigation warrant further investigation on the source, transmission, pathology, and control of antimicrobial resistance in wild quail populations. PMID:24937705

  5. Cultivable bacterial microbiota of northern bobwhite (Colinus virginianus: a new reservoir of antimicrobial resistance?

    Directory of Open Access Journals (Sweden)

    Hongwen Su

    Full Text Available The northern bobwhite (Colinus virginianus is an ecologically and economically important avian species. At the present time, little is known about the microbial communities associated with these birds. As the first step to create a quail microbiology knowledge base, the current study conducted an inventory of cultivable quail tracheal, crop, cecal, and cloacal microbiota and associated antimicrobial resistance using a combined bacteriology and DNA sequencing approach. A total of 414 morphologically unique bacterial colonies were selected from nonselective aerobic and anaerobic cultures, as well as selective and enrichment cultures. Analysis of the first 500-bp 16S rRNA gene sequences in conjunction with biochemical identifications revealed 190 non-redundant species-level taxonomic units, representing 160 known bacterial species and 30 novel species. The bacterial species were classified into 4 phyla, 14 orders, 37 families, and 59 or more genera. Firmicutes was the most commonly encountered phylum (57% followed by Actinobacteria (24%, Proteobacteria (17% and Bacteroidetes (0.02%. Extensive diversity in the species composition of quail microbiota was observed among individual birds and anatomical locations. Quail microbiota harbored several opportunistic pathogens, such as E. coli and Ps. aeruginosa, as well as human commensal organisms, including Neisseria species. Phenotypic characterization of selected bacterial species demonstrated a high prevalence of resistance to the following classes of antimicrobials: phenicol, macrolide, lincosamide, quinolone, and sulphate. Data from the current investigation warrant further investigation on the source, transmission, pathology, and control of antimicrobial resistance in wild quail populations.

  6. Enterotypes influence temporal changes in gut microbiota

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Licht, Tine Rask; Kellebjerg Poulsen, Sanne

    The human gut microbiota plays an important role for the health of the host. The question is whether we can modulate the gut microbiota by changing diet. During a 6-month, randomised, controlled dietary intervention, the effect of a moderate diet shift from Average Danish Diet to New Nordic Diet...... on the gut microbiota in humans (n=62) was investigated. Quantitative PCR analysis showed that the microbiota did not change significantly by the intervention. Nevertheless, by stratifying subjects into two enterotypes, distinguished by the Prevotella/Bacteroides ratio (P/B), we were able to detect...... significant changes in the gut microbiota composition resulting from the interventions. Subjects with a high-P/B experienced more pronounced changes in the gut microbiota composition than subjects with a low-P/B. The study is the first to indicate that enterotypes influence microbiota response to a dietary...

  7. Influence of H7N9 virus infection and associated treatment on human gut microbiota

    Science.gov (United States)

    Qin, Nan; Zheng, Beiwen; Yao, Jian; Guo, Lihua; Zuo, Jian; Wu, Lingjiao; Zhou, Jiawei; Liu, Lin; Guo, Jing; Ni, Shujun; Li, Ang; Zhu, Yixin; Liang, Weifeng; Xiao, Yonghong; Ehrlich, S. Dusko; Li, Lanjuan

    2015-01-01

    Between March and June, 2013, forty H7N9 patients were hospitalized in our hospital. Next-generation sequencing technologies have been used to sequence the fecal DNA samples of the patient, the within sample diversity analysis, enterotyping, functional gene and metagenomic species analysis have been carried on both the patients and healthy controls. The influence of associated treatment in H7N9 infected patients is dramatic and was firstly revealed in species level due to deep sequencing technology. We found that most of the MetaGenomic Species (MGS) enriched in the control samples were Roseburia inulinivorans DSM 16841, butyrate producing bacterium SS3/4 and most of MGS enriched in the H7N9 patients were Clostridium sp. 7 2 43FAA and Enterococcus faecium. It was concluded that H7N9 viral infection and antibiotic administration have a significant effect on the microbiota community with decreased diversity and overgrowth of the bacteria such as Escherichia coli and Enterococcus faecium. Enterotype analysis showed that the communities were unstable. Treatment including antivirals, probiotics and antibiotics helps to improve the microbiota diversity and the abundance of beneficial bacteria in the gut. PMID:26490635

  8. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota.

    Science.gov (United States)

    Oleskin, Alexander V; Shenderov, Boris A

    2016-01-01

    The symbiotic gut microbiota plays an important role in the development and homeostasis of the host organism. Its physiological, biochemical, behavioral, and communicative effects are mediated by multiple low molecular weight compounds. Recent data on small molecules produced by gut microbiota in mammalian organisms demonstrate the paramount importance of these biologically active molecules in terms of biology and medicine. Many of these molecules are pleiotropic mediators exerting effects on various tissues and organs. This review is focused on the functional roles of gaseous molecules that perform neuromediator and/or endocrine functions. The molecular mechanisms that underlie the effects of microbial fermentation-derived gaseous metabolites are not well understood. It is possible that these metabolites produce their effects via immunological, biochemical, and neuroendocrine mechanisms that involve endogenous and microbial modulators and transmitters; of considerable importance are also changes in epigenetic transcriptional factors, protein post-translational modification, lipid and mitochondrial metabolism, redox signaling, and ion channel/gap junction/transporter regulation. Recent findings have revealed that interactivity among such modulators/transmitters is a prerequisite for the ongoing dialog between microbial cells and host cells, including neurons. Using simple reliable methods for the detection and measurement of short-chain fatty acids (SCFAs) and small gaseous molecules in eukaryotic tissues and prokaryotic cells, selective inhibitors of enzymes that participate in their synthesis, as well as safe chemical and microbial donors of pleiotropic mediators and modulators of host intestinal microbial ecology, should enable us to apply these chemicals as novel therapeutics and medical research tools.

  9. Semi-automated solid-phase extraction method for studying the biodegradation of ochratoxin A by human intestinal microbiota.

    Science.gov (United States)

    Camel, Valérie; Ouethrani, Minale; Coudray, Cindy; Philippe, Catherine; Rabot, Sylvie

    2012-04-15

    A simple and rapid semi-automated solid-phase (SPE) extraction method has been developed for the analysis of ochratoxin A in aqueous matrices related to biodegradation experiments (namely digestive contents and faecal excreta), with a view of using this method to follow OTA biodegradation by human intestinal microbiota. Influence of extraction parameters that could affect semi-automated SPE efficiency was studied, using C18-silica as the sorbent and water as the simplest matrix, being further applied to the matrices of interest. Conditions finally retained were as follows: 5-mL aqueous samples (pH 3) containing an organic modifier (20% ACN) were applied on 100-mg cartridges. After drying (9 mL of air), the cartridge was rinsed with 5-mL H(2)O/ACN (80:20, v/v), before eluting the compounds with 3 × 1 mL of MeOH/THF (10:90, v/v). Acceptable recoveries and limits of quantification could be obtained considering the complexity of the investigated matrices and the low volumes sampled; this method was also suitable for the analysis of ochratoxin B in faecal extracts. Applicability of the method is illustrated by preliminary results of ochratoxin A biodegradation studies by human intestinal microbiota under simple in vitro conditions. Interestingly, partial degradation of ochratoxin A was observed, with efficiencies ranging from 14% to 47% after 72 h incubation. In addition, three phase I metabolites could be identified using high resolution mass spectrometry, namely ochratoxin α, open ochratoxin A and ochratoxin B.

  10. GUTSS: An Alignment-Free Sequence Comparison Method for Use in Human Intestinal Microbiome and Fecal Microbiota Transplantation Analysis.

    Directory of Open Access Journals (Sweden)

    Mitchell J Brittnacher

    Full Text Available Comparative analysis of gut microbiomes in clinical studies of human diseases typically rely on identification and quantification of species or genes. In addition to exploring specific functional characteristics of the microbiome and potential significance of species diversity or expansion, microbiome similarity is also calculated to study change in response to therapies directed at altering the microbiome. Established ecological measures of similarity can be constructed from species abundances, however methods for calculating these commonly used ecological measures of similarity directly from whole genome shotgun (WGS metagenomic sequence are lacking.We present an alignment-free method for calculating similarity of WGS metagenomic sequences that is analogous to the Bray-Curtis index for species, implemented by the General Utility for Testing Sequence Similarity (GUTSS software application. This method was applied to intestinal microbiomes of healthy young children to measure developmental changes toward an adult microbiome during the first 3 years of life. We also calculate similarity of donor and recipient microbiomes to measure establishment, or engraftment, of donor microbiota in fecal microbiota transplantation (FMT studies focused on mild to moderate Crohn's disease. We show how a relative index of similarity to donor can be calculated as a measure of change in a patient's microbiome toward that of the donor in response to FMT.Because clinical efficacy of the transplant procedure cannot be fully evaluated without analysis methods to quantify actual FMT engraftment, we developed a method for detecting change in the gut microbiome that is independent of species identification and database bias, sensitive to changes in relative abundance of the microbial constituents, and can be formulated as an index for correlating engraftment success with clinical measures of disease. More generally, this method may be applied to clinical evaluation of

  11. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences

    Directory of Open Access Journals (Sweden)

    Brett eWagner Mackenzie

    2015-02-01

    Full Text Available The human gut contains dense and diverse microbial communities which have profound influences on human health. Gaining meaningful insights into these communities requires provision of high quality microbial nucleic acids from human fecal samples, as well as an understanding of the sources of variation and their impacts on the experimental model. We present here a systematic analysis of commonly used microbial DNA extraction methods, and identify significant sources of variation. Five extraction methods (Human Microbiome Project protocol, MoBio PowerSoil DNA Isolation Kit, QIAamp DNA Stool Mini Kit, ZR Fecal DNA MiniPrep, phenol:chloroform-based DNA isolation were evaluated based on the following criteria: DNA yield, quality and integrity, and microbial community structure based on Illumina amplicon sequencing of the V4 region of bacterial and archaeal 16S rRNA genes. Our results indicate that the largest portion of variation within the model was attributed to differences between subjects (biological variation, with a smaller proportion of variation associated with DNA extraction method (technical variation and intra-subject variation. A comprehensive understanding of the potential impact of technical variation on the human gut microbiota will help limit preventable bias, enabling more accurate diversity estimates.

  12. Humoral Immunity to Commensal Oral Bacteria in Human Infants: Salivary Secretory Immunoglobulin A Antibodies Reactive with Streptococcus mitis biovar 1, Streptococcus oralis, Streptococcus mutans, and Enterococcus faecalis during the First Two Years of Life

    Science.gov (United States)

    Cole, Michael F.; Bryan, Stacey; Evans, Mishell K.; Pearce, Cheryl L.; Sheridan, Michael J.; Sura, Patricia A.; Wientzen, Raoul L.; Bowden, George H. W.

    1999-01-01

    Secretory immunoglobulin A (SIgA) antibodies reactive with the pioneer oral streptococci Streptococcus mitis biovar 1 and Streptococcus oralis, the late oral colonizer Streptococcus mutans, and the pioneer enteric bacterium Enterococcus faecalis in saliva samples from 10 human infants from birth to age 2 years were analyzed. Low levels of salivary SIgA1 and SIgA2 antibodies reactive with whole cells of all four species were detected within the first month after birth, even though S. mutans and E. faecalis were not recovered from the mouths of the infants during the study period. Although there was a fivefold increase in the concentration of SIgA between birth and age 2 years, there were no differences between the concentrations of SIgA1 and SIgA2 antibodies reactive with the four species over this time period. When the concentrations of SIgA1 and SIgA2 antibodies reactive with all four species were normalized to the concentrations of SIgA1 and SIgA2 in saliva, SIgA1 and SIgA2 antibodies reactive with these bacteria showed a significant decrease from birth to 2 years of age. Adsorption of each infant’s saliva with cells of one species produced a dramatic reduction of antibodies recognizing the other three species. Sequential adsorption of saliva samples removed all SIgA antibody to the bacteria, indicating that the SIgA antibodies were directed to antigens shared by all four species. The induction by the host of a limited immune response to common antigens that are likely not involved in adherence may be among the mechanisms that commensal streptococci employ to persist in the oral cavity. PMID:10085031

  13. [Fecal microbiota transplantation].

    Science.gov (United States)

    García-García-de-Paredes, Ana; Rodríguez-de-Santiago, Enrique; Aguilera-Castro, Lara; Ferre-Aracil, Carlos; López-Sanromán, Antonio

    2015-03-01

    Bacteria can no longer be seen as an enemy. Nowadays, there is enough evidence to place the microbiota as a key element in human homeostasis. Despite initial skepticism, fecal microbiota transplantation (FMT) is a real therapeutic alternative for patients with recurrent Clostridium difficile infection. Moreover, this procedure has shown promising results in ulcerative colitis and other non-gastrointestinal disorders. There is still a lack of knowledge and clinical trials with long- term follow-up. Therefore, the available data should be interpreted with caution. In this document we provide a detailed review of the literature on the intestinal microbiota and FMT. Copyright © 2014 Elsevier España, S.L.U. and AEEH y AEG. All rights reserved.

  14. Study of Humoral Immunity to Commensal Oral Bacteria in Human Infants Demonstrates the Presence of Secretory Immunoglobulin A Antibodies Reactive with Actinomyces naeslundii Genospecies 1 and 2 Ribotypes

    Science.gov (United States)

    Cole, Michael F.; Evans, Mishell K.; Kirchherr, Jennifer L.; Sheridan, Michael J.; Bowden, G. H. W.

    2004-01-01

    The mouths of three human infants were examined from birth to age 2 years to detect colonization of Actinomyces naeslundii genospecies 1 and 2. These bacteria did not colonize until after tooth eruption. The diversity of posteruption isolates was determined by ribotyping. Using immunoblotting and enzyme-linked immunosorbent assay, we determined the reactivity of secretory immunoglobulin A (SIgA) antibodies in saliva samples collected from each infant before and after colonization against cell wall proteins from their own A. naeslundii strains and carbohydrates from standard A. naeslundii genospecies 1 and 2 strains. A. naeslundii genospecies 1 and 2 carbohydrate-reactive SIgA antibodies were not detected in any saliva sample. However, SIgA antibodies reactive with cell wall proteins were present in saliva before these bacteria colonized the mouth. These antibodies could be almost completely removed by absorption with A. odontolyticus, a species known to colonize the human mouth shortly after birth. However, after colonization by A. naeslundii genospecies 1 and 2, specific antibodies were induced that could not be removed by absorption with A. odontolyticus. Cluster analysis of the patterns of reactivity of postcolonization salivary antibodies from each infant with antigens from their own strains showed that not only could these antibodies discriminate among strains but antibodies in saliva samples collected at different times showed different reactivity patterns. Overall, these data suggest that, although much of the salivary SIgA antibodies reactive with A. naeslundii genospecies 1 and 2 are directed against genus-specific or more broadly cross-reactive antigens, species, genospecies, and possibly strain-specific antibodies are induced in response to colonization. PMID:15138172

  15. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study.

    Science.gov (United States)

    Costabile, Adele; Klinder, Annett; Fava, Francesca; Napolitano, Aurora; Fogliano, Vincenzo; Leonard, Clare; Gibson, Glenn R; Tuohy, Kieran M

    2008-01-01

    Epidemiological studies have shown an inverse association between dietary intake of whole grains and the risk of chronic disease. This may be related to the ability to mediate a prebiotic modulation of gut microbiota. However, no studies have been conducted on the microbiota modulatory capability of whole-grain (WG) cereals. In the present study, the impact of WG wheat on the human intestinal microbiota compared to wheat bran (WB) was determined. A double-blind, randomised, crossover study was carried out in thirty-one volunteers who were randomised into two groups and consumed daily 48 g breakfast cereals, either WG or WB, in two 3-week study periods, separated by a 2-week washout period. Numbers of faecal bifidobacteria and lactobacilli (the target genera for prebiotic intake), were significantly higher upon WG ingestion compared with WB. Ingestion of both breakfast cereals resulted in a significant increase in ferulic acid concentrations in blood but no discernible difference in faeces or urine. No significant differences in faecal SCFA, fasting blood glucose, insulin, total cholesterol (TC), TAG or HDL-cholesterol were observed upon ingestion of WG compared with WB. However, a significant reduction in TC was observed in volunteers in the top quartile of TC concentrations upon ingestion of either cereal. No adverse intestinal symptoms were reported and WB ingestion increased stool frequency. Daily consumption of WG wheat exerted a pronounced prebiotic effect on the human gut microbiota composition. This prebiotic activity may contribute towards the beneficial physiological effects of WG wheat.

  16. Impact of Gluten-Friendly Bread on the Metabolism and Function of In Vitro Gut Microbiota in Healthy Human and Coeliac Subjects

    Science.gov (United States)

    Bevilacqua, Antonio; Costabile, Adele; Bergillos-Meca, Triana; Gonzalez, Isidro; Landriscina, Loretta; Ciuffreda, Emanuela; D’Agnello, Paola; Corbo, Maria Rosaria; Sinigaglia, Milena; Lamacchia, Carmela

    2016-01-01

    The main aim of this paper was to assess the in vitro response of healthy and coeliac human faecal microbiota to gluten-friendly bread (GFB). Thus, GFB and control bread (CB) were fermented with faecal microbiota in pH-controlled batch cultures. The effects on the major groups of microbiota were monitored over 48 h incubations by fluorescence in situ hybridisation. Short-chain fatty acids (SCFAs) were measured by high-performance liquid chromatography (HPLC). Furthermore, the death kinetics of Lactobacillus acidophilus, Bifidobacterium animalis subsp. lactis, Staphylococcus aureus, and Salmonella Typhimurium in a saline solution supplemented with GFB or CB were also assessed. The experiments in saline solution pinpointed that GFB prolonged the survival of L. acidophilus and exerted an antibacterial effect towards S. aureus and S. Typhimurium. Moreover, GFB modulated the intestinal microbiota in vitro, promoting changes in lactobacilli and bifidobacteria members in coeliac subjects. A final multivariate approach combining both viable counts and metabolites suggested that GFB could beneficially modulate the coeliac gut microbiome; however, human studies are needed to prove its efficacy. PMID:27632361

  17. Role of endogenous microbiota, probiotics and their biological products in human health.

    Science.gov (United States)

    Howarth, Gordon S; Wang, Hanru

    2013-01-10

    Although gut diseases such as inflammatory bowel disease, mucositis and the alimentary cancers share similar pathogenetic features, further investigation is required into new treatment modalities. An imbalance in the gut microbiota, breached gut integrity, bacterial invasion, increased cell apoptosis to proliferation ratio, inflammation and impaired immunity may all contribute to their pathogenesis. Probiotics are defined as live bacteria, which when administered in sufficient amounts, exert beneficial effects to the gastrointestinal tract. More recently, probiotic-derived factors including proteins and other molecules released from living probiotics, have also been shown to exert beneficial properties. In this review we address the potential for probiotics, with an emphasis on probiotic-derived factors, to reduce the severity of digestive diseases and further discuss the known mechanisms by which probiotics and probiotic-derived factors exert their physiological effects.

  18. Role of Endogenous Microbiota, Probiotics and Their Biological Products in Human Health

    Directory of Open Access Journals (Sweden)

    Gordon S. Howarth

    2013-01-01

    Full Text Available Although gut diseases such as inflammatory bowel disease, mucositis and the alimentary cancers share similar pathogenetic features, further investigation is required into new treatment modalities. An imbalance in the gut microbiota, breached gut integrity, bacterial invasion, increased cell apoptosis to proliferation ratio, inflammation and impaired immunity may all contribute to their pathogenesis. Probiotics are defined as live bacteria, which when administered in sufficient amounts, exert beneficial effects to the gastrointestinal tract. More recently, probiotic-derived factors including proteins and other molecules released from living probiotics, have also been shown to exert beneficial properties. In this review we address the potential for probiotics, with an emphasis on probiotic-derived factors, to reduce the severity of digestive diseases and further discuss the known mechanisms by which probiotics and probiotic-derived factors exert their physiological effects.

  19. Preventing Age-Related Decline of Gut Compartmentalization Limits Microbiota Dysbiosis and Extends Lifespan.

    Science.gov (United States)

    Li, Hongjie; Qi, Yanyan; Jasper, Heinrich

    2016-02-10

    Compartmentalization of the gastrointestinal (GI) tract of metazoans is critical for health. GI compartments contain specific microbiota, and microbiota dysbiosis is associated with intestinal dysfunction. Dysbiosis develops in aging intestines, yet how this relates to changes in GI compartmentalization remains unclear. The Drosophila GI tract is an accessible model to address this question. Here we show that the stomach-like copper cell region (CCR) in the middle midgut controls distribution and composition of the microbiota. We find that chronic activation of JAK/Stat signaling in the aging gut induces a metaplasia of the gastric epithelium, CCR decline, and subsequent commensal dysbiosis and epithelial dysplasia along the GI tract. Accordingly, inhibition of JAK/Stat signaling in the CCR specifically prevents age-related metaplasia, commensal dysbiosis and functional decline in old guts, and extends lifespan. Our results establish a mechanism by which age-related chronic inflammation causes the decline of intestinal compartmentalization and microbiota dysbiosis, limiting lifespan.

  20. IL-1β promotes the differentiation of polyfunctional human CCR6+CXCR3+ Th1/17 cells that are specific for pathogenic and commensal microbes.

    Science.gov (United States)

    Duhen, Thomas; Campbell, Daniel J

    2014-07-01

    In humans, Th1/17 cells, identified by coexpression of the chemokine receptors CCR6 and CXCR3, are proposed to be highly pathogenic in several autoimmune disorders due in part to their expression of the proinflammatory cytokines IL-17, IFN-γ, and GM-CSF. However, their developmental requirements, relationship with "classic" Th17 and Th1 cells and physiological role in normal immune responses are not well understood. In this study, we examined CCR6+ CXCR3+ Th1/17 cells from healthy individuals and found that ex vivo these cells produced the effector cytokines IL-17, IL-22, and IFN-γ in all possible combinations and were highly responsive to both IL-12 and IL-23. Moreover, although the Ag specificity of CCR6+ CXCR3+ Th1/17 cells showed substantial overlap with that of Th1 and Th17 cells, this population was enriched in cells recognizing certain extracellular bacteria and expressing the intestinal homing receptor integrin β7. Finally, we identified IL-1β as a key cytokine that renders Th17 cells sensitive to IL-12, and both cytokines together potently induced the differentiation of cells that produce IL-17, IFN-γ, and GM-CSF. Therefore, interfering with IL-1β and IL-12 signaling in Th17 cells during inflammation may be a promising therapeutic approach to reduce their differentiation into "pathogenic" CCR6+ CXCR3+ Th1/17 cells in patients with autoimmune diseases. Copyright © 2014 by The American Association of Immunologists, Inc.

  1. Humoral Immunity to Commensal Oral Bacteria in Human Infants: Salivary Antibodies Reactive with Actinomyces naeslundii Genospecies 1 and 2 during Colonization

    Science.gov (United States)

    Cole, Michael F.; Bryan, Stacey; Evans, Mishell K.; Pearce, Cheryl L.; Sheridan, Michael J.; Sura, Patricia A.; Wientzen, Raoul; Bowden, George H. W.

    1998-01-01

    The secretory immune response in saliva to colonization by Actinomyces naeslundii genospecies 1 and 2 was studied in 10 human infants from birth to 2 years of age. Actinomyces species were not recovered from the mouths of the infants until approximately 4 months after the eruption of teeth. However, low levels of secretory immunoglobulin A1 (SIgA1) and SIgA2 antibodies reactive with whole cells of A. naeslundii genospecies 1 and 2 were detected within the first month after birth. Although there was a fivefold increase in the concentration of SIgA between birth and age 2 years, there were no differences between the concentrations of SIgA1 and SIgA2 antibodies reactive with A. naeslundii genospecies 1 and 2 over this period. When the concentrations of SIgA1 and SIgA2 antibodies reactive with whole cells of A. naeslundii genospecies 1 and 2 were normalized to the concentrations of SIgA1 and SIgA2 in saliva, the A. naeslundii genospecies 1- and 2-reactive SIgA1 and SIgA2 antibodies showed a significant decrease from birth to 2 years of age. The fine specificities of A. naeslundii genospecies 1- and 2-reactive SIgA1 and SIgA2 antibodies were examined by Western blotting of envelope proteins. Similarities in the molecular masses of proteins recognized by SIgA1 and SIgA2 antibodies, both within and between subjects over time, were examined by cluster analysis and showed considerable variability. Taken overall, our data suggest that among the