WorldWideScience

Sample records for human comfort studies

  1. HUMAN COMFORT AND THE MICROCLIMATIC DRIVERS ...

    African Journals Online (AJOL)

    Osondu

    mean heat stress (poor human comfort), followed by high density residential areas. A major attribute ... Key words: Heat stress, human comfort, microclimate, land use, urban, vegetation. Introduction ... defined by the meteorological Glossary as the physical state of .... which is the focus of the study is characterized by. Human ...

  2. The human thermoneutral and thermal comfort zones: Thermal comfort in your own skin blood flow.

    Science.gov (United States)

    Schlader, Zachary J

    2015-01-01

    Human thermoregulation is achieved via autonomic and behavioral responses. Autonomic responses involve 2 synchronous 'components'. One counteracts large thermal perturbations, eliciting robust heat loss or gain (i.e., sweating or shivering). The other fends off smaller insults, relying solely on changes in sensible heat exchange (i.e., skin blood flow). This sensible component occurs within the thermoneutral zone [i.e., the ambient temperature range in which temperature regulation is achieved only by sensible heat transfer, without regulatory increases in metabolic heat production (e.g., shivering) or evaporative heat loss (e.g., sweating)].(1) The combination of behavior and sensible heat exchange permits a range of conditions that are deemed thermally comfortable, which is defined as the thermal comfort zone.(1) Notably, we spend the majority of our lives within the thermoneutral and thermal comfort zones. It is only when we are unable to stay within these zones that deleterious health and safety outcomes can occur (i.e., hypo- or hyperthermia). Oddly, although the thermoneutral zone and thermal preference (a concept similar to the thermal comfort zone) has been extensively studied in non-human animals, our understanding of human thermoregulation within the thermoneutral and thermal comfort zones remains rather crude.

  3. Numerical study on human model shape and grid dependency for indoor thermal comfort evaluation

    International Nuclear Information System (INIS)

    Seo, Jin Won; Choi, Yun Ho; Park, Jae Hong

    2013-01-01

    Various computer-simulated person (CSP) models have been used to represent occupants in indoor airflow simulations using computational fluid dynamics (CFD). Despite the capability of CFD to predict temperature and velocity fields in an automotive cabin or a room in a building, it is more difficult to evaluate the degree of thermal comfort considered by the CSP models. Up to now, the shapes of CSP models and their grid characteristics have not been studied for the evaluation of indoor thermal comfort. In this paper, the effects of the human model's shape and the physical characteristics of the grids are studied. The FLUENT code is used for analysis, and the predicted mean vote (PMV), predicted percentage dissatisfied (PPD), and equivalent homogeneous temperature (EHT) values are used for the evaluation and comparison of thermal comfort. The computational results show that the CSP shape and grid features do not affect the global flow fields or the evaluations of PMV and PPD. However, more precise results are obtained from the evaluation of thermal comfort by EHT when detailed human models with a prism grid are used.

  4. Numerical study on human model shape and grid dependency for indoor thermal comfort evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jin Won; Choi, Yun Ho [Ajou University, Suwon (Korea, Republic of); Park, Jae Hong [LIG Nexl Co. Ltd, Seongnam (Korea, Republic of)

    2013-02-15

    Various computer-simulated person (CSP) models have been used to represent occupants in indoor airflow simulations using computational fluid dynamics (CFD). Despite the capability of CFD to predict temperature and velocity fields in an automotive cabin or a room in a building, it is more difficult to evaluate the degree of thermal comfort considered by the CSP models. Up to now, the shapes of CSP models and their grid characteristics have not been studied for the evaluation of indoor thermal comfort. In this paper, the effects of the human model's shape and the physical characteristics of the grids are studied. The FLUENT code is used for analysis, and the predicted mean vote (PMV), predicted percentage dissatisfied (PPD), and equivalent homogeneous temperature (EHT) values are used for the evaluation and comparison of thermal comfort. The computational results show that the CSP shape and grid features do not affect the global flow fields or the evaluations of PMV and PPD. However, more precise results are obtained from the evaluation of thermal comfort by EHT when detailed human models with a prism grid are used.

  5. Human Thermal Comfort In Residential House Buildings Of Jimma Town Southwest Ethiopia.

    Directory of Open Access Journals (Sweden)

    Chali Yadeta

    2015-08-01

    Full Text Available Indoor human thermal comfort is an important factor in indoor air quality assessment. Thermal comfort affects human health work efficiency and overall wellbeing. Thermal discomfort in indoors lowers the emotional and physical health of the occupants. This paper targets to explore human thermal comfort in residential house buildings of Jimma town and state some possible mechanisms to improve the existing thermal discomfort in large number the houses. For the study 303 structured questionnaires were distributed to the residential houses in thirteen places of the town based on predetermined criteria. The study reveals that human thermal discomfort in residential houses Jimma town are mainly from poor architectural design and improper use of heat generating appliances in indoors. The uses architectural design that suites the present climatic conditions and use of materials that facilitates ventilations will enhance the realization of the required human thermal comfort in residential houses of the study area.

  6. Thermodynamical analysis of human thermal comfort

    International Nuclear Information System (INIS)

    Prek, Matjaz

    2006-01-01

    Traditional methods of human thermal comfort analysis are based on the first law of thermodynamics. These methods use an energy balance of the human body to determine heat transfer between the body and its environment. By contrast, the second law of thermodynamics introduces the useful concept of exergy. It enables the determination of the exergy consumption within the human body dependent on human and environmental factors. Human body exergy consumption varies with the combination of environmental (room) conditions. This process is related to human thermal comfort in connection with temperature, heat, and mass transfer. In this paper a thermodynamic analysis of human heat and mass transfer based on the 2nd law of thermodynamics in presented. It is shown that the human body's exergy consumption in relation to selected human parameters exhibits a minimal value at certain combinations of environmental parameters. The expected thermal sensation also shows that there is a correlation between exergy consumption and thermal sensation. Thus, our analysis represents an improvement in human thermal modelling and gives more information about the environmental impact on expected human thermal sensation

  7. Regional differences in temperature sensation and thermal comfort in humans.

    Science.gov (United States)

    Nakamura, Mayumi; Yoda, Tamae; Crawshaw, Larry I; Yasuhara, Saki; Saito, Yasuyo; Kasuga, Momoko; Nagashima, Kei; Kanosue, Kazuyuki

    2008-12-01

    Sensations evoked by thermal stimulation (temperature-related sensations) can be divided into two categories, "temperature sensation" and "thermal comfort." Although several studies have investigated regional differences in temperature sensation, less is known about the sensitivity differences in thermal comfort for the various body regions. In the present study, we examined regional differences in temperature-related sensations with special attention to thermal comfort. Healthy male subjects sitting in an environment of mild heat or cold were locally cooled or warmed with water-perfused stimulators. Areas stimulated were the face, chest, abdomen, and thigh. Temperature sensation and thermal comfort of the stimulated areas were reported by the subjects, as was whole body thermal comfort. During mild heat exposure, facial cooling was most comfortable and facial warming was most uncomfortable. On the other hand, during mild cold exposure, neither warming nor cooling of the face had a major effect. The chest and abdomen had characteristics opposite to those of the face. Local warming of the chest and abdomen did produce a strong comfort sensation during whole body cold exposure. The thermal comfort seen in this study suggests that if given the chance, humans would preferentially cool the head in the heat, and they would maintain the warmth of the trunk areas in the cold. The qualitative differences seen in thermal comfort for the various areas cannot be explained solely by the density or properties of the peripheral thermal receptors and thus must reflect processing mechanisms in the central nervous system.

  8. Air humidity requirements for human comfort

    DEFF Research Database (Denmark)

    Toftum, Jørn; Fanger, Povl Ole

    1999-01-01

    level near 100% rh. For respiratory comfort are the requirements much more stringent and results in lower permissible indoor air humidities. Compared with the upper humidity limit specified in existing thermal comfort standards, e.g. ASHRAE Addendum 55a, the humidity limit based on skin humidity......Upper humidity limits for the comfort zone determined from two recently presented models for predicting discomfort due to skin humidity and insufficient respiratory cooling are proposed. The proposed limits are compared with the maximum permissible humidity level prescribed in existing standards...... for the thermal indoor environment. The skin humidity model predicts discomfort as a function of the relative humidity of the skin, which is determined by existing models for human heat and moisture transfer based on environmental parameters, clothing characteristics and activity level. The respiratory model...

  9. Coupling of the Models of Human Physiology and Thermal Comfort

    Science.gov (United States)

    Pokorny, J.; Jicha, M.

    2013-04-01

    A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus-FE [1]. In the paper validation of the model for very light physical activities (1 met) indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.

  10. Coupling of the Models of Human Physiology and Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Jicha M.

    2013-04-01

    Full Text Available A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus–FE [1]. In the paper validation of the model for very light physical activities (1 met indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.

  11. Experimental investigation of radiation effect on human thermal comfort by Taguchi method

    International Nuclear Information System (INIS)

    Arslanoglu, Nurullah; Yigit, Abdulvahap

    2016-01-01

    Highlights: • Radiation heat flux from lighting lamps on human thermal comfort is studied. • The effect of posture position on thermal comfort is investigated. • The effect of clothing color on thermal comfort is examined. • Radiation heat flux from halogen reflector lamp increase skin temperature more. • Posture position effect on thermal comfort is less than the other parameters. - Abstract: In this study, the effect of radiation heat flux of lighting lamps on human thermal comfort was investigated by using Taguchi method. In addition, at indoor conditions, clothing color and posture position under the radiation effect on thermal comfort were also investigated. For this purpose, experiments were performed in an air conditioned laboratory room in summer and autumn seasons. The amount of temperature rise on the back was considered as performance parameter. An L8 orthogonal array was selected as an experimental plan for the third parameters mentioned above for summer and autumn seasons. The results were analyzed for the optimum conditions using signal-to-noise (S/N) ratio and ANOVA method. The optimum results were found to be clear halogen lamp as lighting lamp, white as t-shirt color, standing as posture position, in summer season. The optimum levels of the lighting lamp, t-shirt color and posture position were found to be clear halogen lamp, white, sitting in autumn season, respectively.

  12. CFD simulation of a cabin thermal environment with and without human body - thermal comfort evaluation

    Science.gov (United States)

    Danca, Paul; Bode, Florin; Nastase, Ilinca; Meslem, Amina

    2018-02-01

    Nowadays, thermal comfort became one of the criteria in choosing a vehicle. In last decades time spent by people in vehicles had risen substantially. During each trip, thermal comfort must to be ensured for a good psychological and physical state of the passengers. Also, a comfortable environment leads to a higher power concentration of the driver thereby to a safe trip for vehicle occupants and for all traffic participants. The present study numerically investigated the effect of human body sited in the driver's place, over the air velocity distribution and over the thermal comfort in a passenger compartment. CFD simulations were made with different angles of the left inlet grill, in both cases, with and without driver presence. In majority of the actual vehicles environment studies, are made without consideration of human body geometry, in this case, the results precision can be affected. The results show that the presence of human body, lead to global changing of the whole flow pattern inside the vehicular cabin. Also, the locations of the maximum velocities are changing with the angle of the guiding vanes. The thermal comfort PMV/PPD indexes were calculated for each case. The presence of human body leads to a more comfortable environment.

  13. The effect of human-mattress interface's temperature on perceived thermal comfort.

    Science.gov (United States)

    Califano, R; Naddeo, A; Vink, P

    2017-01-01

    In recent years, methods that allow for an objective evaluation of perceived comfort, in terms of postural, physiological, cognitive and environmental comfort, have received a great deal of attention from researchers. This paper focuses on one of the factors that influences physiological comfort perception: the temperature difference between users and the objects with which they interact. The first aim is to create a measuring system that does not affect the perceived comfort during the temperatures' acquisition. The main aim is to evaluate how the temperature at the human-mattress interface can affect the level of perceived comfort. A foam mattress has been used for testing in order to take into account the entire back part of the human body. The temperature at the interface was registered by fourteen 100 Ohm Platinum RTDs (Resistance Temperature Detectors) placed on the mattress under the trunk, the shoulders, the buttocks, the legs, the thighs, the arms and the forearms of the test subject. 29 subjects participated in a comfort test in a humidity controlled environment. The test protocol involved: dress-code, anthropometric-based positioning on mattress, environment temperature measuring and an acclimatization time before the test. At the end of each test, each of the test subject's thermal sensations and the level of comfort perception were evaluated using the ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) scale. The data analyses concerned, in the first instance, correlations between the temperature at the interface and comfort levels of the different parts of the body. Then the same analyses were performed independently of the body parts being considered. The results demonstrated that there was no strong correlation among the studied variables and that the total increase of temperature at interface is associated with a reduction in comfort. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Human thermal comfort in urban outdoor spaces

    Science.gov (United States)

    Lee P. Herrington; J. S. Vittum

    1977-01-01

    Measurements of the physical environment of urban open spaces in Syracuse, New York, were used to compute the physiological responses of human users of the spaces. These calculations were then used to determine what environmental variables were both important to human comfort and susceptible to control by site design. Although air temperature and humidity are important...

  15. Human Thermal Comfort and Heat Stress in an Outdoor Urban Arid Environment: A Case Study

    Directory of Open Access Journals (Sweden)

    A. M. Abdel-Ghany

    2013-01-01

    Full Text Available To protect humans from heat stress risks, thermal comfort and heat stress potential were evaluated under arid environment, which had never been made for such climate. The thermal indices THI, WBGT, PET, and UTCI were used to evaluate thermal comfort and heat stress. RayMan software model was used to estimate the PET, and the UTCI calculator was used for UTCI. Dry and wet bulb temperatures (Td, Tw, natural wet bulb temperature (Tnw, and globe temperature (Tg were measured in a summer day to be used in the calculation. The results showed the following. (i The thermal sensation and heat stress levels can be evaluated by either the PET or UTCI scales, and both are valid for extremely high temperature in the arid environment. (ii In the comfort zone, around 75% of individuals would be satisfied with the surrounding environment and feel comfortable during the whole day. (iii Persons are exposed to strong heat stress and would feel uncomfortable most of the daytime in summer. (iv Heat fatigue is expected with prolonged exposure to sun light and activity. (v During the daytime, humans should schedule their activities according to the highest permissible values of the WBGT to avoid thermal shock.

  16. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP

    Directory of Open Access Journals (Sweden)

    Li Deng

    2015-01-01

    Full Text Available In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming, using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model’s input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators’ operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.

  17. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.

    Science.gov (United States)

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.

  18. Understanding and Evaluating Human Thermal Comfort at Tertiary Level Using a Computer-Based Laboratory Teaching Tool

    Science.gov (United States)

    Pellegrini, Marco

    2014-01-01

    Phase changes in water are experienced in everyday life but students often struggle to understand mechanisms that regulate them. Human thermal comfort is closely related to humidity, evaporative heat loss and heat transfer. The purpose of the present study is to assist students in the evaluation of human thermal comfort. Such a goal is achievable…

  19. Digital evaluation of sitting posture comfort in human-vehicle system under Industry 4.0 framework

    Science.gov (United States)

    Tao, Qing; Kang, Jinsheng; Sun, Wenlei; Li, Zhaobo; Huo, Xiao

    2016-09-01

    Most of the previous studies on the vibration ride comfort of the human-vehicle system were focused only on one or two aspects of the investigation. A hybrid approach which integrates all kinds of investigation methods in real environment and virtual environment is described. The real experimental environment includes the WBV(whole body vibration) test, questionnaires for human subjective sensation and motion capture. The virtual experimental environment includes the theoretical calculation on simplified 5-DOF human body vibration model, the vibration simulation and analysis within ADAMS/VibrationTM module, and the digital human biomechanics and occupational health analysis in Jack software. While the real experimental environment provides realistic and accurate test results, it also serves as core and validation for the virtual experimental environment. The virtual experimental environment takes full advantages of current available vibration simulation and digital human modelling software, and makes it possible to evaluate the sitting posture comfort in a human-vehicle system with various human anthropometric parameters. How this digital evaluation system for car seat comfort design is fitted in the Industry 4.0 framework is also proposed.

  20. Human thermal sensation and comfort in a non-uniform environment with personalized heating.

    Science.gov (United States)

    Deng, Qihong; Wang, Runhuai; Li, Yuguo; Miao, Yufeng; Zhao, Jinping

    2017-02-01

    Thermal comfort in traditionally uniform environment is apparent and can be improved by increasing energy expenses. To save energy, non-uniform environment implemented by personalized conditioning system attracts considerable attention, but human response in such environment is unclear. To investigate regional- and whole-body thermal sensation and comfort in a cool environment with personalized heating. In total 36 subjects (17 males and 19 females) including children, adults and the elderly, were involved in our experiment. Each subject was first asked to sit on a seat in an 18°C chamber (uniform environment) for 40min and then sit on a heating seat in a 16°C chamber (non-uniform environment) for another 40min after 10min break. Subjects' regional- and whole-body thermal sensation and comfort were surveyed by questionnaire and their skin temperatures were measured by wireless sensors. We statistically analyzed subjects' thermal sensation and comfort and their skin temperatures in different age and gender groups and compared them between the uniform and non-uniform environments. Overall thermal sensation and comfort votes were respectively neutral and just comfortable in 16°C chamber with personalized heating, which were significantly higher than those in 18°C chamber without heating (pthermal sensation and comfort was consistent in subjects of different age and gender. However, adults and the females were more sensitive to the effect of personalized heating and felt cooler and less comfort than children/elderly and the males respectively. Variations of the regional thermal sensation/comfort across human body were consistent with those of skin temperature. Personalized heating significantly improved human thermal sensation and comfort in non-uniform cooler environment, probably due to the fact that it increased skin temperature. However, the link between thermal sensation/comfort and variations of skin temperature is rather complex and warrant further

  1. Relative importance of different surface regions for thermal comfort in humans.

    Science.gov (United States)

    Nakamura, Mayumi; Yoda, Tamae; Crawshaw, Larry I; Kasuga, Momoko; Uchida, Yuki; Tokizawa, Ken; Nagashima, Kei; Kanosue, Kazuyuki

    2013-01-01

    In a previous study, we investigated the contribution of the surface of the face, chest, abdomen, and thigh to thermal comfort by applying local temperature stimulation during whole-body exposure to mild heat or cold. In hot conditions, humans prefer a cool face, and in cold they prefer a warm abdomen. In this study, we extended investigation of regional differences in thermal comfort to the neck, hand, soles, abdomen (Experiment 1), the upper and lower back, upper arm, and abdomen (Experiment 2). The methodology was similar to that used in the previous study. To compare the results of each experiment, we utilized the abdomen as the reference area in these experiments. Thermal comfort feelings were not particularly strong for the limbs and extremities, in spite of the fact that changes in skin temperature induced by local temperature stimulation of the limbs and extremities were always larger than changes that were induced in the more proximal body parts. For the trunk areas, a significant difference in thermal comfort was not observed among the abdomen, and upper and lower back. An exception involved local cooling during whole-body mild cold exposure, wherein the most dominant preference was for a warmer temperature of the abdomen. As for the neck and abdomen, clear differences were observed during local cooling, while no significant difference was observed during local warming. We combined the results for the current and the previous study, and characterized regional differences in thermal comfort and thermal preference for the whole-body surface.

  2. Wearable Sweat Rate Sensors for Human Thermal Comfort Monitoring.

    Science.gov (United States)

    Sim, Jai Kyoung; Yoon, Sunghyun; Cho, Young-Ho

    2018-01-19

    We propose watch-type sweat rate sensors capable of automatic natural ventilation by integrating miniaturized thermo-pneumatic actuators, and experimentally verify their performances and applicability. Previous sensors using natural ventilation require manual ventilation process or high-power bulky thermo-pneumatic actuators to lift sweat rate detection chambers above skin for continuous measurement. The proposed watch-type sweat rate sensors reduce operation power by minimizing expansion fluid volume to 0.4 ml through heat circuit modeling. The proposed sensors reduce operation power to 12.8% and weight to 47.6% compared to previous portable sensors, operating for 4 hours at 6 V batteries. Human experiment for thermal comfort monitoring is performed by using the proposed sensors having sensitivity of 0.039 (pF/s)/(g/m 2 h) and linearity of 97.9% in human sweat rate range. Average sweat rate difference for each thermal status measured in three subjects shows (32.06 ± 27.19) g/m 2 h in thermal statuses including 'comfortable', 'slightly warm', 'warm', and 'hot'. The proposed sensors thereby can discriminate and compare four stages of thermal status. Sweat rate measurement error of the proposed sensors is less than 10% under air velocity of 1.5 m/s corresponding to human walking speed. The proposed sensors are applicable for wearable and portable use, having potentials for daily thermal comfort monitoring applications.

  3. Design of intelligent comfort control system with human learning and minimum power control strategies

    International Nuclear Information System (INIS)

    Liang, J.; Du, R.

    2008-01-01

    This paper presents the design of an intelligent comfort control system by combining the human learning and minimum power control strategies for the heating, ventilating and air conditioning (HVAC) system. In the system, the predicted mean vote (PMV) is adopted as the control objective to improve indoor comfort level by considering six comfort related variables, whilst a direct neural network controller is designed to overcome the nonlinear feature of the PMV calculation for better performance. To achieve the highest comfort level for the specific user, a human learning strategy is designed to tune the user's comfort zone, and then, a VAV and minimum power control strategy is proposed to minimize the energy consumption further. In order to validate the system design, a series of computer simulations are performed based on a derived HVAC and thermal space model. The simulation results confirm the design of the intelligent comfort control system. In comparison to the conventional temperature controller, this system can provide a higher comfort level and better system performance, so it has great potential for HVAC applications in the future

  4. Heart rate variation and electroencephalograph--the potential physiological factors for thermal comfort study.

    Science.gov (United States)

    Yao, Y; Lian, Z; Liu, W; Jiang, C; Liu, Y; Lu, H

    2009-04-01

    Human thermal comfort researches mainly focus on the relation between the environmental factors (e.g. ambient temperature, air humidity, and air velocity, etc.) and the thermal comfort sensation based on a large amount of subjective field investigations. Although some physiological factors, such as skin temperature and metabolism were used in many thermal comfort models,they are not enough to establish a perfect thermal comfort model. In this paper,another two physiological factors, i.e. heart rate variation (HRV) and electroencephalograph (EEG), are explored for the thermal comfort study. Experiments were performed to investigate how these physiological factors respond to the environmental temperatures, and what is the relationship between HRV and EEG and thermal comfort. The experimental results indicate that HRV and EEG may be related to thermal comfort, and they may be useful to understand the mechanism of thermal comfort.

  5. Numerical human model for impact and seating comfort

    NARCIS (Netherlands)

    Hoof, J.F.A.M. van; Lange, R. de; Verver, M.M.

    2003-01-01

    This paper presents a detailed numerical model of the human body that can be used to evaluate both safety and comfort aspects of vehicle interiors. The model is based on a combination of rigid body and finite element techniques to provide an optimal combination of computational efficiency and

  6. Potential effects of urbanization on urban thermal comfort, a case study of Nairobi city, Kenya: A review

    Directory of Open Access Journals (Sweden)

    Ongoma Victor

    2016-01-01

    Full Text Available This study reviews the effect of urbanization on human thermal comfort over Nairobi city in Kenya. Urbanization alters urban center's land use and land cover, modifying the climate of the urban setting. The modification in climate affects human comfort and the environment at large. This study focuses on the recent studies conducted in Nairobi city and many other cities globally to examine modification of wind, temperature and humidity over Nairobi. There was observed reduction in wind speed and relative humidity over the city, posing threat to human and animal comfort and the environment at large. The city of Nairobi, just like other cities globally is observed to experience urban heat island (UHI. The observed increase in minimum temperature as compared to maximum temperature signifies overall warming. A combination of all these changes reduces human comfort. Borrowing lessons from developed cities, increasing the urban forest cover is thus suggested as one of the practical and effective measures that can help prevent further modification of weather and urban climates. The study recommends further research involving multi-sectoral urban stake holders, on forcing driving urban thermal comfort. In the short term, design and construction of appropriate structures can help minimize energy consumption and emissions, thus enhancing comfort.

  7. A review of human thermal comfort experiments in controlled and semi-controlled environments

    NARCIS (Netherlands)

    Craenendonck, Van Stijn; Lauriks, Leen; Vuye, Cedric; Kampen, Jarl

    2018-01-01

    There are three main methods to improve thermal comfort in existing buildings: modeling, experiments and measurements. Regarding experiments, no standardized procedure exists. This article provides an answer to the question: “What is the most common practice for human thermal comfort experiments in

  8. Entropy generation method to quantify thermal comfort

    Science.gov (United States)

    Boregowda, S. C.; Tiwari, S. N.; Chaturvedi, S. K.

    2001-01-01

    The present paper presents a thermodynamic approach to assess the quality of human-thermal environment interaction and quantify thermal comfort. The approach involves development of entropy generation term by applying second law of thermodynamics to the combined human-environment system. The entropy generation term combines both human thermal physiological responses and thermal environmental variables to provide an objective measure of thermal comfort. The original concepts and definitions form the basis for establishing the mathematical relationship between thermal comfort and entropy generation term. As a result of logic and deterministic approach, an Objective Thermal Comfort Index (OTCI) is defined and established as a function of entropy generation. In order to verify the entropy-based thermal comfort model, human thermal physiological responses due to changes in ambient conditions are simulated using a well established and validated human thermal model developed at the Institute of Environmental Research of Kansas State University (KSU). The finite element based KSU human thermal computer model is being utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal responses to different environmental conditions. The output from the simulation, which include human thermal responses and input data consisting of environmental conditions are fed into the thermal comfort model. Continuous monitoring of thermal comfort in comfortable and extreme environmental conditions is demonstrated. The Objective Thermal Comfort values obtained from the entropy-based model are validated against regression based Predicted Mean Vote (PMV) values. Using the corresponding air temperatures and vapor pressures that were used in the computer simulation in the regression equation generates the PMV values. The preliminary results indicate that the OTCI and PMV values correlate well under ideal conditions. However, an experimental study

  9. Robotic Comfort Zones

    National Research Council Canada - National Science Library

    Likhachev, Maxim; Arkin, Ronald C

    2006-01-01

    .... A review of the existing study of human comfort, especially regarding its presence in infants, is conducted with the goal being to determine the relevant characteristics for mapping it onto the robotics domain...

  10. Upper limits for air humidity based on human comfort

    DEFF Research Database (Denmark)

    Toftum, Jørn; Fanger, Povl Ole; Jørgensen, Anette S.

    1998-01-01

    respiratory cooling. Human subjects perceived the condition of their skin to be less acceptable with increasing skin humidity. Inhaled air was rated warmer, more stuffy and less acceptable with increasing air humidity and temperature. Based on the subjects' comfort responses, new upper limits for air humidity......The purpose of this study was to verify the hypothesis that insufficient respiratory cooling and a high level of skin humidity are two reasons for thermal discomfort at high air humidities, and to prescribe upper limits for humidity based on discomfort due to elevated skin humidity and insufficient...

  11. In-situ Study of Seating Static Comfort in Passenger Vehicles

    Directory of Open Access Journals (Sweden)

    Seraj Umi Salmah

    2018-01-01

    Full Text Available In today’s automotive market, comfort is huge selling point of a vehicle. Priority is given by buyers to how comfortable a seat feels during purchase decisions. The measure of comfort is harmonious mix of many aspects such as human ergonomics and physiological factors. However, a gap still exists between objective and subjective measures due to lack of emphasis by past researchers. This is particularly obvious in the lumbar support feature that has still not been able to address the health problems related to driving. This project focuses on bridging the gap by giving users the ability to define true preferred posture in realistic settings. This is done by the creation of a apparatus that allows users to individually manipulate the seat contour for optimum support in more segments than just lumbar area. The experiment is performed in 3 parts, where in each part different segments of the apparatus are manipulatable (lumbar segment, sacral & thoracic segment, and all segments. Sixty human subjects’ statistics are recorded (gender, age, BMI and height and the subjects are palpated to locate internal joints. These joints are marked and postural angles between them are measured using a goniometer. In each seat configuration, the angles are measured and a comfort rating is taken to be compared. It was found that the posture angles are different among the 3 experiments, and there is a change in comfort felt. Some human factors have also been proven to contribute heavily to angles chosen by occupants.

  12. Effects of snow-reflected light levels on human visual comfort.

    Science.gov (United States)

    Yilmaz, Hasan; Demircioglu Yildiz, Nalan; Yilmaz, Sevgi

    2008-09-01

    The intensity of the sunlight reflected by the snow-covered surfaces is so high that it may disturb humans many times. This study aims to determine the reflected sunlight intensities from snow covered areas at points near (at a distance of 2 m) and under an individual tree and among trees (in the forest area) by accepting the open area as control; the reducing effects of the plant materials on reflected sunlight in percentage by comparing with the values of the open (control) area; and critical reflected sunlight threshold values for human visual comfort. The study was carried out over 22 clear and calm, i.e. sky was cloudless and wind was calm, days between the 1st and 31st days of January 2004, at 8:30 in the morning, at 12:30 at noon and at 14:30 in the afternoon in Erzurum. In order to determine the discomforting light intensity levels, 25 females and 26 male (totally 51) student subjects whose mean age was 20 and who had no visual disorders were selected. Considering the open area as control, mean reflected sunlight reducing effects were found to be 19.0, 66.0 and 82.7% for the 2 m near a tree, under a tree, and forest area, respectively. According to the responses of 51 subjects in the study, visually "very comfortable" range is between 5,000 and 8,000 lx; "comfortable" range is between 11,000 and 75,000 lx (mostly at 12,000 lx); "uncomfortable" condition is above the light intensity value of 43,000 lx and "very uncomfortable" condition is above the intensity of 80,000 lx. Great majority of the subjects (91%) found the value of 103,000 lx to be "very uncomfortable." As it is not an applicable way to use the great and dense tree masses in the cities, at least individual trees should be used along the main pedestrian axels in the cities having the same features with Erzurum to prevent the natural light pollution and discomforting effects of the snow-reflected sunlight.

  13. Thermal Comfort and Strategies for Energy Conservation.

    Science.gov (United States)

    Rohles, Frederick H., Jr.

    1981-01-01

    Discusses studies in thermal comfort which served as the basis for the comfort standard. Examines seven variables in the human response to the thermal environment in terms of the ways in which they can be modified to conserve energy. (Author/MK)

  14. WESBES: A Wireless Embedded Sensor for Improving Human Comfort Metrics using Temporospatially Correlated Data

    Energy Technology Data Exchange (ETDEWEB)

    Joel Hewlett; Milos Manic; Craig Rieger

    2012-08-01

    When utilized properly, energy management systems (EMS) can offer significant energy savings by optimizing the efficiency of heating, ventilation, and air-conditioning (HVAC) systems. However, difficulty often arises due to the constraints imposed by the need to maintain an acceptable level of comfort for a building’s occupants. This challenge is compounded by the fact that human comfort is difficult to define in a measurable way. One way to address this problem is to provide a building manager with direct feedback from the building’s users. Still, this data is relative in nature, making it difficult to determine the actions that need to be taken, and while some useful comfort correlations have been devised, such as ASHRAE’s Predicted Mean Vote index, they are rules of thumb that do not connect individual feedback with direct, diverse feedback sensing. As they are a correlation, quantifying effects of climate, age of buildings and associated defects such as draftiness, are outside the realm of this correlation. Therefore, the contribution of this paper is the Wireless Embedded Smart Block for Environment Sensing (WESBES); an affordable wireless sensor platform that allows subjective human comfort data to be directly paired with temporospatially correlated objective sensor measurements for use in EMS. The described device offers a flexible research platform for analyzing the relationship between objective and subjective occupant feedback in order to formulate more meaningful measures of human comfort. It could also offer an affordable and expandable option for real world deployment in existing EMS.

  15. Sensor design for outdoor racing bicycle field testing for human vibration comfort evaluation

    International Nuclear Information System (INIS)

    Vanwalleghem, Joachim; De Baere, Ives; Van Paepegem, Wim; Loccufier, Mia

    2013-01-01

    This paper is concerned with the vibrational comfort evaluation of the cyclist when cycling a rough surface. Outdoor comfort tests have so far only been done through instrumenting the bicycle with accelerometers. This work instruments a racing bicycle with custom-made contact force sensors and velocity sensors to acquire human comfort through the absorbed power method. Comfort evaluation is assessed at the hand–arm and seat interface of the cyclist with the bicycle. By means of careful finite-element analysis for designing the force gauges at the handlebar and the seat combined with precise calibration of both force and velocity sensors, all sensors have proven to work properly. Initial field tests are focused on the proper functioning of the designed sensors and their suitability for vibration comfort measurements. Tests on a cobblestone road reveal that the outcome of the absorbed power values is within the same range as those from laboratory tests found in the literature. This sensor design approach for outdoor testing with racing bicycles may give a new interpretation on evaluating the cyclist's comfort since the vibrational load is not only quantified in terms of acceleration but also in terms of force and velocity at the bicycle–cyclist contact points. (paper)

  16. Human Thermal Comfort and Heat Removal Efficiency for Ventilation Variants in Passenger Cars

    Directory of Open Access Journals (Sweden)

    Saboora Khatoon

    2017-10-01

    Full Text Available The realization of a comfortable thermal environment with low energy consumption and improved ventilation in a car has become the aim of manufacturers in recent decades. Novel ventilation concepts with more flexible cabin usage and layouts are appealing owing to their potential for improving passenger comfort and driving power. In this study, three variant ventilation concepts are investigated and their performance is compared with respect to energy efficiency and human comfort of the driver and passenger in front and a child in the rear compartment. FLUENT 16.0, a commercial three-dimensional (3D software, are used for the simulation. A surface-to-surface radiation model is applied under transient conditions for a car parked in summer conditions with its engine in the running condition. The results for the standard Fanger’s model and modified Fanger’s model are analyzed, discussed, and compared for the driver, passenger, and child. The modified Fanger’s model determines the thermal sensation on the basis of mean arterial pressure.

  17. Tabriz Bazaar: sustainability and human comfort

    Energy Technology Data Exchange (ETDEWEB)

    Nassehzadeh Tabriz, Shahram [Master of Department of Architecture, Islamic Azad University, Miyaneh Branch (Iran, Islamic Republic of)], email: sh_nassehzadeh@m-iau.ac.ir; Fard, Fariborz Mahdavi Tabatabaei [SABAT TARH CO. (Iran, Islamic Republic of)], email: sabat_arc@yahoo.com

    2011-07-01

    Sustainable developments in energy and the environment have become a main focus of many groups. The built environment has a great influence on environmental sustainability generally. Solutions that respond to the impact of human activities on the environment in urban areas are required. On one hand, averting resource depletion and environmental degradation caused by facilities and infrastructures over their life cycle is a principal goal. On the other hand, it is also a principal goal to create livable, comfortable, safe and productive built environments. Tabriz bazaar, in Iran, is an example of sustainable architecture. It is designed to be suited to the local climate and urban texture with spaces that are varied and have a strong connection to open space. The bazaar plays a significant role in creation of safe urban space as a cultural, social, commercial, educational and sanitarian area. It connects different activities and different people in a safe place. The purpose of this paper is to determine the sustainability of the Tabriz bazaar and the effect that the character of this commercial area has on the quality of human life.

  18. Effect of wind speed on human thermal sensation and thermal comfort

    Science.gov (United States)

    Hou, Yuhan

    2018-06-01

    In this experiment, a method of questionnaire survey was adopted. By changing the air flow rate under the indoor and outdoor natural conditions, the subjective Thermal Sensation Vote (TSV) and the Thermal Comfort Vote (TCV) were recorded. The draft sensation can reduce the thermal sensation, but the draft sensation can cause discomfort, and the thermal comfort in a windy environment is lower than in a windless environment. When the temperature rises or the level of human metabolism increases, the person feels heat, the demand for draft sensation increases, and the uncomfortable feeling caused by the draft sensation may be reduced. Increasing the air flow within a certain range can be used to compensate for the increase in temperature.

  19. Thermal comfort study of hospital workers in Malaysia.

    Science.gov (United States)

    Yau, Y H; Chew, B T

    2009-12-01

    This article presents findings of the thermal comfort study in hospitals. A field survey was conducted to investigate the temperature range for thermal comfort in hospitals in the tropics. Thermal acceptability assessment was conducted to examine whether the hospitals in the tropics met the ASHRAE Standard-55 80% acceptability criteria. A total of 114 occupants in four hospitals were involved in the study. The results of the field study revealed that only 44% of the examined locations met the comfort criteria specified in ASHRAE Standard 55. The survey also examined the predicted percentage of dissatisfied in the hospitals. The results showed that 49% of the occupants were satisfied with the thermal environments in the hospitals. The field survey analysis revealed that the neutral temperature for Malaysian hospitals was 26.4 degrees C. The comfort temperature range that satisfied 90% of the occupants in the space was in the range of 25.3-28.2 degrees C. The results from the field study suggested that a higher comfort temperature was required for Malaysians in hospital environments compared with the temperature criteria specified in ASHRAE Standard (2003). In addition, the significant deviation between actual mean vote and predicted mean vote (PMV) strongly implied that PMV could not be applied without errors in hospitals in the tropics. The new findings on thermal comfort temperature range in hospitals in the tropics could be used as an important guide for building services engineers and researchers who are intending to minimize energy usage in heating, ventilating and air conditioning systems in hospitals operating in the tropics with acceptable thermal comfort level and to improve the performance and well-being of its workers.

  20. THERMAL COMFORT IN VERNACULAR COURTYARD HOUSES: CASE STUDY -CHHATTISGARH

    OpenAIRE

    Swasti Sthapak*1, Dr. Abir Bandyopadhyay2

    2017-01-01

    The paper firstly introduces vernacular architecture and defines thermal comfort. The second section of this paper gives an account of the way vernacular houses respond to climate and achieve thermal comfort. Vernacular houses of Chhattisgarh, a central state of India are selected for this study to find the evidence that vernacular architecture is likely to be passively comfortable. Courtyards play a vital role in creating thermal comfort along with other social and cultural roles. Vernacular...

  1. Neural computing thermal comfort index for HVAC systems

    International Nuclear Information System (INIS)

    Atthajariyakul, S.; Leephakpreeda, T.

    2005-01-01

    The primary purpose of a heating, ventilating and air conditioning (HVAC) system within a building is to make occupants comfortable. Without real time determination of human thermal comfort, it is not feasible for the HVAC system to yield controlled conditions of the air for human comfort all the time. This paper presents a practical approach to determine human thermal comfort quantitatively via neural computing. The neural network model allows real time determination of the thermal comfort index, where it is not practical to compute the conventional predicted mean vote (PMV) index itself in real time. The feed forward neural network model is proposed as an explicit function of the relation of the PMV index to accessible variables, i.e. the air temperature, wet bulb temperature, globe temperature, air velocity, clothing insulation and human activity. An experiment in an air conditioned office room was done to demonstrate the effectiveness of the proposed methodology. The results show good agreement between the thermal comfort index calculated from the neural network model in real time and those calculated from the conventional PMV model

  2. Experimental study of the influence of anticipated control on human thermal sensation and thermal comfort.

    Science.gov (United States)

    Zhou, X; Ouyang, Q; Zhu, Y; Feng, C; Zhang, X

    2014-04-01

    To investigate whether occupants' anticipated control of their thermal environment can influence their thermal comfort and to explain why the acceptable temperature range in naturally ventilated environments is greater than that in air-conditioned environments, a series of experiments were conducted in a climate chamber in which the thermal environment remained the same but the psychological environment varied. The results of the experiments show that the ability to control the environment can improve occupants' thermal sensation and thermal comfort. Specifically, occupants' anticipated control decreased their thermal sensation vote (TSV) by 0.4-0.5 and improved their thermal comfort vote (TCV) by 0.3-0.4 in neutral-warm environment. This improvement was due exclusively to psychological factors. In addition, having to pay the cost of cooling had no significant influence on the occupants' thermal sensation and thermal comfort in this experiment. Thus, having the ability to control the thermal environment can improve occupants' comfort even if there is a monetary cost involved. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Improving the comfort of garments

    CSIR Research Space (South Africa)

    Hunter, L

    2014-11-01

    Full Text Available refers to the human body’s ability to maintain life. Psychological comfort refers to the mind’s ability to keep functioning satisfactorily without external help. Physical comfort refers to the effects of the external environment on the body’s...

  4. Effect of Kuwait oil field fires on human comfort and environment in Jubail, Saudi Arabia

    Science.gov (United States)

    Riley, James J.; Hicks, Neal G.; Thompson, T. Lewis

    1992-03-01

    The plumes from the Kuwait oil field fires reduced hemispheric (total) solar radiation by 26 36% during January June 1991 in Jubail (300 km SE of Kuwait City), Saudi Arabia. Residents feel noticeably cooler even though air temperatures have not been lowered significantly (up to June 1991). These observations support human comfort theories and demonstrate the importance of shade to comfort. The desirability of complete solar radiation measurements, including those of diffuse radiation, is indicated.

  5. Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering Thermal Comfort

    Energy Technology Data Exchange (ETDEWEB)

    Regnier, Cindy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-08-01

    Historically thermal comfort in buildings has been controlled by simple dry bulb temperature settings. As we move into more sophisticated low energy building systems that make use of alternate systems such as natural ventilation, mixed mode system and radiant thermal conditioning strategies, a more complete understanding of human comfort is needed for both design and control. This guide will support building designers, owners, operators and other stakeholders in defining quantifiable thermal comfort parameters?these can be used to support design, energy analysis and the evaluation of the thermal comfort benefits of design strategies. This guide also contains information that building owners and operators will find helpful for understanding the core concepts of thermal comfort. Whether for one building, or for a portfolio of buildings, this guide will also assist owners and designers in how to identify the mechanisms of thermal comfort and space conditioning strategies most important for their building and climate, and provide guidance towards low energy design options and operations that can successfully address thermal comfort. An example of low energy design options for thermal comfort is presented in some detail for cooling, while the fundamentals to follow a similar approach for heating are presented.

  6. THERMAL COMFORT STUDY OF TEACHERS' ROOM AT SEKOLAH BINA MULIA PONTIANAK

    Directory of Open Access Journals (Sweden)

    Albert Suryajaya

    2014-01-01

    tersebut dalam tiga hari pengamatan adalah 0,130 dan merupakan kondisi netral. Ini artinya ruangan tersebut nyaman bagi penggunanya, yang pada dasarnya dikarenakan sistem jendela, pelindung matahari, dan material bangunan dapat mendukung ventilasi udara alami pada bangunan   REFERENCES Alucci, Marcia Peinando; Leonardo Marques Monteiro. 2009. Thermal Comfort Index for The Assessment of Outdoor Urban Spaces in Subtropical Climates. University of Sao Paulo. Sao Paulo Brager, G.S. and R. de Dear. 2001. Climate, Comfort, & Natural Ventilation: A new adaptive comfort standard for ASHRAE Standard 55. University of California. Berkeley. Charles, Kate E. 2003. Fanger’s Thermal Comfort and Draught Models. Institute for Research in Construction. Ottawa Darby, Sarah and Rebecca White. 2005. Thermal Comfort. University of Oxford. London Hensen, J.L.M. 1990. Literature Review on Thermal Comfort in Tranisent Conditions. Eindhoven University of Technology. Eindhoven Mangunwijaya, Yusuf Bilyarta. 1929. Pengantar Fisika Bangunan. Djambatan. Jakarta Mors, Sanderter, Jan L. M. Hensen, Marcel Loomans, Atze Boerstra. 2011. Adaptive thermal comfort in primary school classrooms: Creating and validating PMV-based comfort charts. Eindhoven University of Technology. Eindhoven Orosa, Jose A. 2009. Research on the Origins of Thermal Comfort. University of A Coruña. A Coruña Parsons, Ken. 2003. Human Thermal Environments: The effect of Hot, Modern, and Cold Environments on Human Health, Comfort, and Performance. Tj International Ltd. Cornwall Pau, J.S., William K.S. Pao, Shaharin A. Sulaiman, and E. Halawa. 2013. Adaptive Thermal’s Model for Optimum Thermal Comfort Setting fo Lecture Halls in Malaysia. CREAM - Current Research in Malaysia Vol.2, No. 2 Satwiko, Prasasto. 2005. Fisika Bangunan 1 Edisi 2. Andi. Yogyakarta

  7. Development and validation of the scale of knowledge, comfort and attitudes of physiotherapy students towards human sexuality (SKCAPS

    Directory of Open Access Journals (Sweden)

    Priscilla Geraldine Wittkopf

    Full Text Available Introduction Recent studies with Physiotherapy students pointed out for attitudes and conflicting perceptions on their learning process during the phase that precedes the clinical practice. One of those aspects is the human sexuality that appears in the close physical contact that demands Physiotherapists professional practices. Objective To build up the first educational/research instrument that evaluates the knowledge, the comfort and the attitudes of Physiotherapy undergraduate students (SKCAPS. Materials and methods From the literature we extracted three dimensions: knowledge, comfort and attitudes. Initially 50 items were created distributed in the three dimensions that went under the content evaluation, 47 items survived from this process and integrate the first version of SKCAPS. In empiric terms the intern coherence and the reliability of the instrument were tested in 248 students. Results The exploratory factorial analysis carried 37 items in 4 factors that explain 68% of the total variance of the answers of the subjects and that confirmed the proposed dimensions. The dimension comfort became separated in comfort and discomfort. The SKCAPS presented good reliability in terms of intern consistence alpha 0.861. Finally, the instrument was administered to 30 Physiotherapy students for evaluation of clarity following the exclusion of two items that resulted in averages below 8.5. Conclusions With the aim of improve the teaching/learning process, we propose the SKCAPS as the first worth and reliable instrument to evaluate the knowledge, the comfort, the discomfort and the attitudes regard of human sexuality among Physiotherapy students.

  8. On the Climate Variability and Energy Demands for Indoor Human Comfort Levels in Tropical Urban Environment

    Science.gov (United States)

    Pokhrel, R.; Ortiz, L. E.; González, J. E.; Ramírez-Beltran, N. D.

    2017-12-01

    The main objective of this study is to identify how climate variability influences human comfort levels in tropical urban environments. San Juan Metropolitan Area (SJMA) of the island of Puerto Rico was chosen as a reference point. A new human discomfort index (HDI) based on environmental enthalpy is defined. This index is expanded to determine the energy required to maintain indoor human comfort levels and was compared to Total Electricity consumption for the Island of Puerto Rico. Regression analysis shows that both Temperature and HDI are good indictor to predict total electrical energy consumption. Results showed that over the past 35 years the average enthalpy have increased and have mostly been above thresholds for human comfort for SJMA. The weather stations data further shows a clear indication of urbanization biases ramping up the index considered. From the trend analysis local scale (weather station) data shows a decreasing rate of maximum cooling at -11.41 kW-h/years, and minimum is increasing at 10.64 kW-h/years. To compare human comfort levels under extreme heat wave events conditions, an event of 2014 in the San Juan area was identified. The analysis for this extreme heat event is complemented by data from the National Center for environmental Prediction (NCEP) at 250km spatial resolution, North American Re-Analysis (NARR) at 32 km spatial resolution, by simulations of the Weather Forecasting System (WRF) at a resolution of 2 km, and by weather station data for San Juan. WRF simulation's results showed an improvement for both temperature and relative humidity from the input NCEP data. It also shows that difference in Energy per Capita (EPC) in urban area during a heat wave event can increase to 16% over a non-urban area. Sensitivity analysis was done by modifying the urban land cover to the most common rural references of evergreen broadleaf forest and cropland to investigate the Urban Heat Island (UHI) effect on HDI. UHI is seen to be maximum during

  9. Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design

    Science.gov (United States)

    Vanos, Jennifer K.; Warland, Jon S.; Gillespie, Terry J.; Kenny, Natasha A.

    2010-07-01

    This review comprehensively examines scientific literature pertaining to human physiology during exercise, including mechanisms of heat formation and dissipation, heat stress on the body, the importance of skin temperature monitoring, the effects of clothing, and microclimatic measurements. This provides a critical foundation for microclimatologists and biometeorologists in the understanding of experiments involving human physiology. The importance of the psychological aspects of how an individual perceives an outdoor environment are also reviewed, emphasizing many factors that can indirectly affect thermal comfort (TC). Past and current efforts to develop accurate human comfort models are described, as well as how these models can be used to develop resilient and comfortable outdoor spaces for physical activity. Lack of suitable spaces plays a large role in the deterioration of human health due to physical inactivity, leading to higher rates of illness, heart disease, obesity and heat-related casualties. This trend will continue if urban designers do not make use of current knowledge of bioclimatic urban design, which must be synthesized with physiology, psychology and microclimatology. Increased research is required for furthering our knowledge on the outdoor human energy balance concept and bioclimatic design for health and well-being in urban areas.

  10. New indoor environment chambers and field experiment offices for research on human comfort, health and productivity

    DEFF Research Database (Denmark)

    Toftum, Jørn; Langkilde, Gunnar; Fanger, Povl Ole

    2004-01-01

    The article describes three new indoor environment chambers, a new laboratory for the study of air movement in spaces and five offices for controlled environment exposures of human subjects in field experiments at the International Centre for Indoor Environment and Energy, Technical University of...... of Denmark. Together with three older chambers, the Centre now has at its disposal 12 spaces for studying indoor environments and their impact on human comfort, health and productivity.......The article describes three new indoor environment chambers, a new laboratory for the study of air movement in spaces and five offices for controlled environment exposures of human subjects in field experiments at the International Centre for Indoor Environment and Energy, Technical University...

  11. The spatial comfort study of shophouse at Kampung Madras

    Science.gov (United States)

    Ginting, Y. U. U.; Ginting, N.; Zahrah, W.

    2018-03-01

    This Research comes from the increasing quantity of shophouse in downtown Medan and the suburban area. The condition of shophouse tend to have narrowly spaced rooms, the middle area of the house are poorly lighted, and lots of space left unused. This research is supported by many spatial issues from previous studies. This study is conducted to determine the level of comfort of shophouse as a function of living space and focused on the spatial aspect namely anthropometry, indoor space circulation, space requirement and function, spatial design and indoor visual. This study uses the descriptive method with the qualitative and quantitative approach. Data collection technique is done by field observation, questionnaire method is also used to get the respondent perception of the spatial comfort of a shophouse. The result indicates that the level of spatial comfort of the shophouse is an uncomfort. So the improvements in the circulation of access to the building, spatial design, lighting, and aeration are needed to improve the spatial comfort of a shophouse.

  12. Dynamic thermal environment and thermal comfort.

    Science.gov (United States)

    Zhu, Y; Ouyang, Q; Cao, B; Zhou, X; Yu, J

    2016-02-01

    Research has shown that a stable thermal environment with tight temperature control cannot bring occupants more thermal comfort. Instead, such an environment will incur higher energy costs and produce greater CO2 emissions. Furthermore, this may lead to the degeneration of occupants' inherent ability to combat thermal stress, thereby weakening thermal adaptability. Measured data from many field investigations have shown that the human body has a higher acceptance to the thermal environment in free-running buildings than to that in air-conditioned buildings with similar average parameters. In naturally ventilated environments, occupants have reported superior thermal comfort votes and much greater thermal comfort temperature ranges compared to air-conditioned environments. This phenomenon is an integral part of the adaptive thermal comfort model. In addition, climate chamber experiments have proven that people prefer natural wind to mechanical wind in warm conditions; in other words, dynamic airflow can provide a superior cooling effect. However, these findings also indicate that significant questions related to thermal comfort remain unanswered. For example, what is the cause of these phenomena? How we can build a comfortable and healthy indoor environment for human beings? This article summarizes a series of research achievements in recent decades, tries to address some of these unanswered questions, and attempts to summarize certain problems for future research. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. The influence of anxiety and personality factors on comfort and reachability space: a correlational study.

    Science.gov (United States)

    Iachini, Tina; Ruggiero, Gennaro; Ruotolo, Francesco; Schiano di Cola, Armando; Senese, Vincenzo Paolo

    2015-09-01

    Although the effects of several personality factors on interpersonal space (i.e. social space within personal comfort area) are well documented, it is not clear whether they also extend to peripersonal space (i.e. reaching space). Indeed, no study has directly compared these spaces in relation to personality and anxiety factors even though such a comparison would help to clarify to what extent they share similar mechanisms and characteristics. The aim of the present paper was to investigate whether personality dimensions and anxiety levels are associated with reaching and comfort distances. Seventy university students (35 females) were administered the Big Five Questionnaire and the State-Trait Anxiety Inventory; afterwards, they had to provide reachability- and comfort-distance judgments towards human confederates while standing still (passive) or walking towards them (active). The correlation analyses showed that both spaces were positively related to anxiety and negatively correlated with the Dynamism in the active condition. Moreover, in the passive condition higher Emotional Stability was related to shorter comfort distance, while higher cognitive Openness was associated with shorter reachability distance. The implications of these results are discussed.

  14. Assessing Thermal Comfort Due to a Ventilated Double Window

    Science.gov (United States)

    Carlos, Jorge S.; Corvacho, Helena

    2017-10-01

    Building design and its components are the result of a complex process, which should provide pleasant conditions to its inhabitants. Therefore, indoor acceptable comfort is influenced by the architectural design. ISO and ASHRAE standards define thermal comfort as the condition of mind that expresses satisfaction with the thermal environment. The energy demand for heating, beside the building’s physical properties, also depend on human behaviour, like opening or closing windows. Generally, windows are the weakest façade element concerning to thermal performance. A lower thermal resistance allows higher thermal conduction through it. When a window is very hot or cold, and the occupant is very close to it, it may result in thermal discomfort. The functionality of a ventilated double window introduces new physical considerations to a traditional window. In consequence, it is necessary to study the local effect on human comfort in function of the boundary conditions. Wind, solar availability, air temperature and therefore heating and indoor air quality conditions will affect the relationship between this passive system and the indoor environment. In the present paper, the influence of thermal performance and ventilation on human comfort resulting from the construction and geometry solutions is shown, helping to choose the best solution. The presented approach shows that in order to save energy it is possible to reduce the air changes of a room to the minimum, without compromising air quality, enhancing simultaneously local thermal performance and comfort. The results of the study on the effect of two parallel windows with a ventilated channel in the same fenestration on comfort conditions for several different room dimensions, are also presented. As the room dimensions’ rate changes so does the window to floor rate; therefore, under the same climatic conditions and same construction solution, different results are obtained.

  15. Field study of thermal comfort in non-air-conditioned buildings in a tropical island climate.

    Science.gov (United States)

    Lu, Shilei; Pang, Bo; Qi, Yunfang; Fang, Kun

    2018-01-01

    The unique geographical location of Hainan makes its climate characteristics different from inland areas in China. The thermal comfort of Hainan also owes its uniqueness to its tropical island climate. In the past decades, there have been very few studies on thermal comfort of the residents in tropical island areas in China. A thermal environment test for different types of buildings in Hainan and a thermal comfort field investigation of 1944 subjects were conducted over a period of about two months. The results of the survey data show that a high humidity environment did not have a significant impact on human comfort. The neutral temperature for the residents in tropical island areas was 26.1 °C, and the acceptable temperature range of thermal comfort was from 23.1 °C to 29.1 °C. Residents living in tropical island areas showed higher heat resistance capacity, but lower cold tolerance than predicted. The neutral temperature for females (26.3 °C) was higher than for males (25.8 °C). Additionally, females were more sensitive to air temperature than males. The research conclusions can play a guiding role in the thermal environment design of green buildings in Hainan Province. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Design of outdoor urban spaces for thermal comfort

    Science.gov (United States)

    Harriet J. Plumley

    1977-01-01

    Microclimates in outdoor urban spaces may be modified by controlling the wind and radiant environments in these spaces. Design guidelines were developed to specify how radiant environments may be selected or modified to provide conditions for thermal comfort. Fanger's human-thermal-comfort model was used to determine comfortable levels of radiant-heat exchange for...

  17. Thermal comfort in office buildings: Two case studies commented

    Energy Technology Data Exchange (ETDEWEB)

    Hens, Hugo S.L.C. [Laboratory of Building Physics, Department of Civil Engineering, K.U. Leuven, Kasteelpark Arenberg 40, B-3001 Leuven (Heverlee) (Belgium)

    2009-07-15

    Air conditioning in offices has become a current practice in North Western Europe. The main reasons for that are high internal loads, solar gains and increased comfort expectations. Hence, the move away from the naturally ventilated cellular office increased thermal comfort complaints. The paper presents two cases. In both the results of a comfort enquiry are compared with measurements. The enquiries gave numbers of dissatisfied at a PMV zero that were much higher than the standard PMV/PPD curve does. Measurements instead showed that in one of the two offices only comfort complaints could be expected in summer. But even then, the enquired severity of complaints could not be related to the measured data. Several hypotheses are forwarded to explain the results. Individuals interpret the -3 to +3 scale for thermal sensation differently, which has a direct impact on the number of dissatisfied. The standard curve further-on is a most significant mean of thousands of steady state comfort votes under well-controlled conditions while an on site enquiry involves much smaller numbers of people. These have a clear expectation: an improvement of comfort condition, thanks to the study. For that reason they may exaggerate their complaints when enquired. And finally, an alternative PMV versus PPD curve, published in literature, shows more people complaining at a given PMV than the standard curve forwards. (author)

  18. Thermal comfort assessment of buildings

    CERN Document Server

    Carlucci, Salvatore

    2013-01-01

    A number of metrics for assessing human thermal response to climatic conditions have been proposed in scientific literature over the last decades. They aim at describing human thermal perception of the thermal environment to which an individual or a group of people is exposed. More recently, a new type of “discomfort index” has been proposed for describing, in a synthetic way, long-term phenomena. Starting from a systematic review of a number of long-term global discomfort indices, they are then contrasted and compared on a reference case study in order to identify their similarities and differences and strengths and weaknesses. Based on this analysis, a new short-term local discomfort index is proposed for the American Adaptive comfort model. Finally, a new and reliable long-term general discomfort index is presented. It is delivered in three versions and each of them is suitable to be respectively coupled with the Fanger, the European Adaptive and the American Adaptive comfort models.

  19. An experimental study of thermal comfort at different combinations of air and mean radiant temperature

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.

    2009-01-01

    It is often discussed if a person prefers a low air temperature (ta) and a high mean radiant temperature (tr), vice-versa or it does not matter as long as the operative temperature is acceptable. One of the hypotheses is that it does not matter for thermal comfort but for perceived air quality......, a lower air temperature is preferred. This paper presents an experimental study with 30 human subjects exposed to three different combinations of air- and mean radiant temperature with an operative temperature around 23 °C. The subjects gave subjective evaluations of thermal comfort and perceived air...... quality during the experiments. The PMV-index gave a good estimation of thermal sensation vote (TSV) when the air and mean radiant temperature were the same. In the environment with different air- and mean radiant temperatures, a thermal comfort evaluation shows an error up to 1 scale unit on the 7-point...

  20. Can We Study Autonomous Driving Comfort in Moving-Base Driving Simulators? A Validation Study.

    Science.gov (United States)

    Bellem, Hanna; Klüver, Malte; Schrauf, Michael; Schöner, Hans-Peter; Hecht, Heiko; Krems, Josef F

    2017-05-01

    To lay the basis of studying autonomous driving comfort using driving simulators, we assessed the behavioral validity of two moving-base simulator configurations by contrasting them with a test-track setting. With increasing level of automation, driving comfort becomes increasingly important. Simulators provide a safe environment to study perceived comfort in autonomous driving. To date, however, no studies were conducted in relation to comfort in autonomous driving to determine the extent to which results from simulator studies can be transferred to on-road driving conditions. Participants ( N = 72) experienced six differently parameterized lane-change and deceleration maneuvers and subsequently rated the comfort of each scenario. One group of participants experienced the maneuvers on a test-track setting, whereas two other groups experienced them in one of two moving-base simulator configurations. We could demonstrate relative and absolute validity for one of the two simulator configurations. Subsequent analyses revealed that the validity of the simulator highly depends on the parameterization of the motion system. Moving-base simulation can be a useful research tool to study driving comfort in autonomous vehicles. However, our results point at a preference for subunity scaling factors for both lateral and longitudinal motion cues, which might be explained by an underestimation of speed in virtual environments. In line with previous studies, we recommend lateral- and longitudinal-motion scaling factors of approximately 50% to 60% in order to obtain valid results for both active and passive driving tasks.

  1. Thermal sensation and comfort models for non-uniform and transient environments: Part III: whole-body sensation and comfort

    OpenAIRE

    Zhang, Hui; Arens, Edward; Huizenga, Charlie; Han, Taeyoung

    2009-01-01

    A three-part series presents the development of models for predicting the local thermal sensation (Part I) and local thermal comfort (Part II) of different parts of the human body, and also the whole-body sensation and comfort (Part III) that result from combinations of local sensation and comfort. The models apply to sedentary activities in a range of environments: uniform and non-uniform, stable and transient. They are based on diverse findings from the literature and from body-part-specifi...

  2. Implications of climate change on human comfort in buildings: evidence from Nkontompo community of Sekondi-Takoradi, Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Amos-Abanyie, S. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (GH)

    2006-07-01

    Climate change has become the most talked about issue in recent times. The impact of climate change is likely to become more evident in the coming decades. Currently, atmospheric conditions, especially in the dry season, are getting hotter and drier with increased heat waves. Increased demand for air conditioning for space cooling as a result of internal discomfort in buildings is already manifesting. This could put an additional stress on the already over-burdened energy capactiy of the nation. The study on implications of climate change on human comfort in buidlings was conducted in Nkontompo community, a suburb of Sekondi-Takoradi Metropolitan area of the Shama-Ahanta District of the Western Region of Ghana. The objectives of this study are to assemble and disseminate information about some of the possible impacts of climate change on the built environment. This is to set the platform for building professionals to identify possible adaptive measures to serve as basis for development of standards to maintain and enhance the quality of life in buildings. The results showed that there were significant changes in temperature, precipitation, and relative humidity. A rise in temperature and humidity levels constitutes a potential hazard to health and human comfort and accelerates many degradation processes and material damage. Subsequently, the amount of energy needed to maintain the condition of air in spaces at comfort levels keeps increasing. It is therefore imperative that landlords and other property owners should be effectively guided by qualified professionals within the framework of policy guidelines based on sound research.

  3. A Novel Exercise Thermophysiology Comfort Prediction Model with Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Nan Jia

    2016-01-01

    Full Text Available Participation in a regular exercise program can improve health status and contribute to an increase in life expectancy. However, exercise accidents like dehydration, exertional heatstroke, syncope, and even sudden death exist. If these accidents can be analyzed or predicted before they happen, it will be beneficial to alleviate or avoid uncomfortable or unacceptable human disease. Therefore, an exercise thermophysiology comfort prediction model is needed. In this paper, coupling the thermal interactions among human body, clothing, and environment (HCE as well as the human body physiological properties, a human thermophysiology regulatory model is designed to enhance the human thermophysiology simulation in the HCE system. Some important thermal and physiological performances can be simulated. According to the simulation results, a human exercise thermophysiology comfort prediction method based on fuzzy inference system is proposed. The experiment results show that there is the same prediction trend between the experiment result and simulation result about thermophysiology comfort. At last, a mobile application platform for human exercise comfort prediction is designed and implemented.

  4. Environmental Comfort Indicators for School Buildings in Sustainability Assessment Tools

    Directory of Open Access Journals (Sweden)

    Tatiana Santos Saraiva

    2018-06-01

    Full Text Available Decades ago, the only requirement to construct a building was to give men the right conditions for the execution of their work or leisure activities. With the development of knowledge about the internal and external environments of buildings, other requirements have been added such as the issue of user comfort. New construction techniques have been incorporated and new products have been created to improve internal environment comfort. This research addressed the importance of using indicators related to environmental comfort in sustainability assessment tools applied to school buildings. It also considered the importance of environmental issues for the good performance of human beings, and the harmonious coexistence of the comfort indicators indoor air quality, thermal comfort, visual comfort, acoustic comfort and ergonomic comfort based on data gathered in research carried out with users of high schools (only students. This research was carried out in two different cities of different countries, Guimarães (Portugal and Juiz de Fora (Brazil, that have similar characteristics of teaching standards and climate conditions (temperature and air humidity. In this study, interviews were made through questionnaires and, later, the information collected was analyzed. This study demonstrates the need to include an ergonomic indicator for school buildings in sustainability assessment tools.

  5. From occupying to inhabiting - a change in conceptualising comfort

    International Nuclear Information System (INIS)

    Jaffari, Svenja D; Matthews, Ben

    2009-01-01

    The concept of 'comfort' has been influential in shaping aspects of our built environment. For the construction industry, comfort is predominantly understood in terms of the balance between an ideal human physiological state and a finite number of measurable environmental parameters that can be controlled (temperature, humidity, air quality, daylighting, noise). It is such a notion of comfort that has informed the establishment of universally applied comfort standards and guidelines for the built environment. When buildings rigidly conform to these standards, they consume vast quantities of energy and are responsible for higher levels of GHG emissions. Recent researchers have challenged such instrumental definitions of comfort on moral and environmental grounds. In this paper, we address this issue from two different standpoints: one empirical, one related to the design of technology. Empirically, we present an analysis of ethnographic field material that has examined how, in what circumstances, and at what times ordinary users employ energy-intensive indoor climate technologies in their daily lives. We argue that when comfort is viewed as an achievement, rather than as a reified and static ideal homeostasis between humans and their environmental conditions, it becomes easier to appreciate the extent to which comfort is, for ordinary people, personally idiosyncratic, culturally relative, socially influenced and highly dependent on temporality, sequence and activity. With respect to design, we introduce a set of provocative designed prototypes that embody alternative conceptions of 'comfort' than those to which the building industry typically subscribes. Our discussion has critical implications for the types of technologies that result from a 'comfort standards' conception. Firstly, we show that comfort is not simply a homeostatic equilibrium-such a view is overly narrow, inflexible and ultimately an inaccurate conception of what comfort is for ordinary people

  6. From occupying to inhabiting - a change in conceptualising comfort

    Science.gov (United States)

    Jaffari, Svenja D.; Matthews, Ben

    2009-11-01

    The concept of 'comfort' has been influential in shaping aspects of our built environment. For the construction industry, comfort is predominantly understood in terms of the balance between an ideal human physiological state and a finite number of measurable environmental parameters that can be controlled (temperature, humidity, air quality, daylighting, noise). It is such a notion of comfort that has informed the establishment of universally applied comfort standards and guidelines for the built environment. When buildings rigidly conform to these standards, they consume vast quantities of energy and are responsible for higher levels of GHG emissions. Recent researchers have challenged such instrumental definitions of comfort on moral and environmental grounds. In this paper, we address this issue from two different standpoints: one empirical, one related to the design of technology. Empirically, we present an analysis of ethnographic field material that has examined how, in what circumstances, and at what times ordinary users employ energy-intensive indoor climate technologies in their daily lives. We argue that when comfort is viewed as an achievement, rather than as a reified and static ideal homeostasis between humans and their environmental conditions, it becomes easier to appreciate the extent to which comfort is, for ordinary people, personally idiosyncratic, culturally relative, socially influenced and highly dependent on temporality, sequence and activity. With respect to design, we introduce a set of provocative designed prototypes that embody alternative conceptions of 'comfort' than those to which the building industry typically subscribes. Our discussion has critical implications for the types of technologies that result from a 'comfort standards' conception. Firstly, we show that comfort is not simply a homeostatic equilibrium-such a view is overly narrow, inflexible and ultimately an inaccurate conception of what comfort is for ordinary people

  7. Adaptive principles for thermal comfort in dwellings: From comfort temperatures to avoiding discomfort

    OpenAIRE

    Alders, E.E.; Kurvers, S.R.; Van den Ham, E.R.

    2011-01-01

    Many theories on thermal comfort exist and there are many ways to deliver this in an energy efficient way. Both aspects are often studied in a static way and most of these studies only regard one of the aspects, seldom investigating what influence the way of delivering thermal comfort has on the actual perceived thermal comfort. This paper analyses the knowledge of the different disciplines and integrates it to get a holistic image of comfort and its delivery systems as well as opportunities ...

  8. Indoor temperatures for optimum thermal comfort and human performance

    DEFF Research Database (Denmark)

    de Dear, R.; Arens, E. A.; Candido, C.

    2014-01-01

    A response by R. J. de Dear et al to a letter to the editor in response to their article "Progress in thermal comfort research over the last 20 years," published in a 2013 issue.......A response by R. J. de Dear et al to a letter to the editor in response to their article "Progress in thermal comfort research over the last 20 years," published in a 2013 issue....

  9. Thermal sensation and comfort models for non-uniform and transient environments, part III: Whole-body sensation and comfort

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hui; Arens, Edward; Huizenga, Charlie [Center for the Built Environment, UC Berkeley (United States); Han, Taeyoung [General Motors Company (United States)

    2010-02-15

    A three-part series presents the development of models for predicting the local thermal sensation (Part I) and local thermal comfort (Part II) of different parts of the human body, and also the whole-body sensation and comfort (Part III) that result from combinations of local sensation and comfort. The models apply to sedentary activities in a range of environments: uniform and non-uniform, stable and transient. They are based on diverse findings from the literature and from body-part-specific human subject tests in a climate chamber. They were validated against a test of automobile passengers. The series is intended to present the models' rationale, structure, and coefficients, so that others can test them and develop them further as additional empirical data becomes available. A) The whole-body (overall) sensation model has two forms, depending on whether all of the body's segments have sensations effectively in the same direction (e.g warm or cool), or whether some segments have sensations opposite to those of the rest of the body. For each, individual body parts have different weights for warm versus cool sensations, and strong local sensations dominate the overall sensation. If all sensations are near neutral, the overall sensation is close to the average of all body sensations. B) The overall comfort model also has two forms. Under stable conditions, people evaluate their overall comfort by a complaint-driven process, meaning that when two body parts are strongly uncomfortable, no matter how comfortable the other body parts might be, the overall comfort will be near the discomfort level of the two most uncomfortable parts. When the environmental conditions are transient, or people have control over their environments, overall comfort is better than that of the two most uncomfortable body parts. This can be accounted for by adding the most comfortable vote to the two most uncomfortable ones. (author)

  10. Fuzzy Logic Based Controller for Maintaining Human Comfort within Intelligent Building System

    Directory of Open Access Journals (Sweden)

    Nasrodin .T. Mustapha, Momoh J. E. Salami, Nazim and M. Nasiri

    2012-10-01

    Full Text Available This paper presents an intelligent control approach for air handling unit (AHU which is an integral part of heat, ventilation, and air conditioning (HVAC system. In the past years various control design for HVAC have been proposed as this system remarkably consumes very high energy. But most of the proposed designs were focused on the control flow of heat-transfer medium such as chilled or heated water while the importance of the efficient mixture of outdoor and indoor enthalpies is sometimes ignored. These enthalpies invariably determine the best strategy to overcome thermal load in a controlled environment to satisfy human comfort, hence a control design strategy must be able to efficiently regulate the flow and mixture of outdoor and indoor enthalpies by a proper control of AHU dampers and fans. This approach requires sensors to measure temperature and relative humidity of both outdoor and indoor environments. However, unpredictable level of disturbances coming from many sources including heat generated by occupants, electrical items and air leaking and the continuous changes of outdoor enthalpy makes it difficult to model the process. Consequently, conventional controllers are not suitable, hence the use of fuzzy logic controller (FLC is proposed in this paper. This proposed controller operates in a master and slave control loop so as to control the AHU dampers and fans with adjustable output membership function whilst at the same time a scaling-factor method is used to drive the master operation. To implement the proposed system, a small scale prototype has been designed and fabricated. This prototype is an AHU model which consists of ductwork, temperature and humidity sensors, dampers, air cooling and heating systems. A small box is used as a conditioning space in which a room temperature is measured. The control algorithm is programmed using National Instrument (NI LabVIEW and executed using NI FieldPoint. Experimental results reveal that

  11. Assessment of human thermal comfort and mitigation measures in different urban climatotopes

    Science.gov (United States)

    Müller, N.; Kuttler, W.

    2012-04-01

    This study analyses thermal comfort in the model city of Oberhausen as an example for the densely populated metropolitan region Ruhr, Germany. As thermal loads increase due to climate change negative impacts especially for city dwellers will arise. Therefore mitigation strategies should be developed and considered in urban planning today to prevent future thermal stress. The method consists of the combination of in-situ measurements and numerical model simulations. So in a first step the actual thermal situation is determined and then possible mitigation strategies are derived. A measuring network was installed in eight climatotopes for a one year period recording air temperature, relative humidity, wind speed and wind direction. Based on these parameters the human thermal comfort in terms of physiological equivalent temperature (PET) was calculated by RayMan Pro software. Thus the human comfort of different climatotopes was determined. Heat stress in different land uses varies, so excess thermal loads in urban areas could be detected. Based on the measuring results mitigation strategies were developed, such as increasing areas with high evaporation capacity (green areas and water bodies). These strategies were implemented as different plan scenarios in the microscale urban climate model ENVI-met. The best measure should be identified by comparing the range and effect of these scenarios. Simulations were run in three of the eight climatotopes (city center, suburban and open land site) to analyse the effectiveness of the mitigation strategies in several land use structures. These cover the range of values of all eight climatotopes and therefore provide representative results. In the model area of 21 ha total, the modified section in the different plan scenarios was 1 ha. Thus the effect of small-scale changes could be analysed. Such areas can arise due to population decline and structural changes and hold conversion potential. Emphasis was also laid on analysing the

  12. Evaluation of human thermal comfort ranges in urban climate of winter cities on the example of Erzurum city.

    Science.gov (United States)

    Toy, Süleyman; Kántor, Noémi

    2017-01-01

    Human thermal comfort conditions can be evaluated using various indices based on simple empirical approaches or more complex and reliable human-biometeorological approaches. The latter is based on the energy balance model of the human body, and their calculation is supplemented with computer software. Facilitating the interpretation of results, the generally applied indices express the effects of thermal environment in the well-known temperature unit, just like in the case of the widely used index, the physiologically equivalent temperature (PET). Several studies adopting PET index for characterizing thermal components of climate preferred to organize the resulted PET values into thermal sensation categories in order to demonstrate the spatial and/or temporal characteristics of human thermal comfort conditions. The most general applied PET ranges were derived by Central European researchers, and they are valid for assumed values of internal heat production of light activity and thermal resistance of clothing representing a light business suit. Based on the example of Erzurum city, the present work demonstrates that in a city with harsh winter, the original PET ranges show almost purely discomfort and they seem to be less applicable regarding cold climate conditions. Taking into account 34-year climate data of Erzurum, the annual distribution of PET is presented together with the impact of application of different PET categorization systems, including 8°- and 7°-wide PET intervals. The demonstrated prior analyses lack any questionnaire filed surveys in Erzurum. Thus, as a next step, detailed field investigations would be required with the aim of definition of new PET categorization systems which are relevant for local residents who are adapted to this climatic background, and for tourists who may perform various kinds of winter activities in Erzurum and therefore may perceive the thermal environment more comfortable.

  13. Thermal comfort in urban transitional spaces

    Energy Technology Data Exchange (ETDEWEB)

    Chungyoon Chun [Yonsei University, Seoul (Korea). College of Human Ecology, Department of Housing and Interior Design; Tamura, A. [Yokohama National University (Japan). Department of Architecture and Building Science

    2005-05-15

    This paper deals with thermal comfort in urban transitional spaces. This topic investigates thermal comfort during walking activities through transitional spaces-urban corridors, shopping streets, and open-ended passageways. The study involves a field study and a laboratory study with a sequenced walk through an environmental control chamber. Subjects in both studies wore the same clothing ensembles, walked the same speed, and evaluated their thermal comfort at 20 designated point in the field and in specific rooms in the control chamber. Air temperature, relative humidity, and air velocity were measured concurrently as the thermal comfort votes completed. Findings revealed that the previously experienced temperatures determined thermal comfort at the following point in the sequence. Because thermal comfort at a point can be influenced widely by relative placement of temperatures in sequence, thermal comfort in transitional spaces can be adapted very widely compared to comfort inside of buildings. Thermal comfort along the experimental courses was evaluated by averaging the temperature of a course. (author)

  14. The myth of comfort food.

    Science.gov (United States)

    Wagner, Heather Scherschel; Ahlstrom, Britt; Redden, Joseph P; Vickers, Zata; Mann, Traci

    2014-12-01

    People seek out their own idiosyncratic comfort foods when in negative moods, and they believe that these foods rapidly improve their mood. The purpose of these studies is to investigate whether comfort foods actually provide psychological benefits, and if so, whether they improve mood better than comparison foods or no food. Participants first completed an online questionnaire to indicate their comfort foods and a variety of comparison foods. During two lab sessions a week apart from each other (and at least a week after the online questionnaire, counterbalanced in order), participants watched films that induced negative affect. In one session, participants were then served their comfort food. In the other, participants were served an equally liked noncomfort food (Study 1), a neutral food (Study 2), or no food (Studies 3 and 4). Short-term mood changes were measured so that we could seek out psychological effects of these foods, rather than biochemical effects on mood from particular food components (e.g., sugars or vitamins). Comfort foods led to significant improvements in mood, but no more than other foods or no food. Although people believe that comfort foods provide them with mood benefits, comfort foods do not provide comfort beyond that of other foods (or no food). These results are likely not due to a floor effect because participants' moods did not return to baseline levels. Individuals may be giving comfort food "credit" for mood effects that would have occurred even in the absence of the comfort food.

  15. Association between human and animal thermal comfort indices and physiological heat stress indicators in dairy calves.

    Science.gov (United States)

    Kovács, L; Kézér, F L; Ruff, F; Szenci, O; Jurkovich, V

    2018-06-06

    Warm summer episodes have a significant effect on the overall health and well-being of young cattle; however, it is not known which temperature measure should be used for estimating heat stress in dairy calves. In this study, generalized linear mixed-effects models were used to estimate the relationships between thermal comfort indices and animal-based heat stress indicators in sixteen Holstein bull calves that were housed in individual calf hutches. Data were collected under continental weather characteristics over a 5-day period: day 1 (lower-temperature day), days 2 and 3 (heat stress days), and a 2-day post-stress period. Relative humidity, ambient temperature, the heat index, the humidex and five different temperature-humidity indices (THI) were used as thermal indices. Physiological variables monitored included respiratory rate, rectal temperature, ear skin temperature and heart rate. The heat index and the humidex measuring human thermal comfort were more closely associated with physiological measures than were the ambient temperature or the THIs (in case of heat index: R 2 = 0.87 for respiratory rate, R 2 = 0.63 for rectal temperature, R 2 = 0.70 for ear skin temperature, and R 2 = 0.78 for heart rate, respectively; in case of humidex: R 2 = 0.85 for respiratory rate, R 2 = 0.60 for rectal temperature, R 2 = 0.68 for ear skin temperature, and R 2 = 0.75 for heart rate, respectively). Based on our results, parameters of human outdoor comfort seem better to estimate heat stress in dairy calves in a continental region than those of THIs or ambient temperature. Copyright © 2018. Published by Elsevier Inc.

  16. From occupying to inhabiting - a change in conceptualising comfort

    Energy Technology Data Exchange (ETDEWEB)

    Jaffari, Svenja D; Matthews, Ben, E-mail: svenja@mci.sdu.d, E-mail: matthews@mci.sdu.d [SPIRE Center for Participatory Innovation Research, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Soenderborg, DK (Denmark)

    2009-11-01

    The concept of 'comfort' has been influential in shaping aspects of our built environment. For the construction industry, comfort is predominantly understood in terms of the balance between an ideal human physiological state and a finite number of measurable environmental parameters that can be controlled (temperature, humidity, air quality, daylighting, noise). It is such a notion of comfort that has informed the establishment of universally applied comfort standards and guidelines for the built environment. When buildings rigidly conform to these standards, they consume vast quantities of energy and are responsible for higher levels of GHG emissions. Recent researchers have challenged such instrumental definitions of comfort on moral and environmental grounds. In this paper, we address this issue from two different standpoints: one empirical, one related to the design of technology. Empirically, we present an analysis of ethnographic field material that has examined how, in what circumstances, and at what times ordinary users employ energy-intensive indoor climate technologies in their daily lives. We argue that when comfort is viewed as an achievement, rather than as a reified and static ideal homeostasis between humans and their environmental conditions, it becomes easier to appreciate the extent to which comfort is, for ordinary people, personally idiosyncratic, culturally relative, socially influenced and highly dependent on temporality, sequence and activity. With respect to design, we introduce a set of provocative designed prototypes that embody alternative conceptions of 'comfort' than those to which the building industry typically subscribes. Our discussion has critical implications for the types of technologies that result from a 'comfort standards' conception. Firstly, we show that comfort is not simply a homeostatic equilibrium-such a view is overly narrow, inflexible and ultimately an inaccurate conception of what

  17. Effects of climate change process on comfort climate of Shiraz station

    Energy Technology Data Exchange (ETDEWEB)

    Shakoor, A.; Roshan, G.R.; Khoshakhlagh, F.; Hejazizadeh, Z. [Islamic Azad Univ., Larestan (Iran)

    2008-09-30

    Dwelling in cities and city development together with quick increase of population and development of industrial activites with unplanned consumption of fossil fuels have intensively increased pollution with consequences whcih will cause different diseases in short periods, and will lead to some climatic oscillations and its environmental effects such as the change of desirable periods in view of comfort climate in long period. The objective point of view of this reasearch was to study the climate in Shiraz and its effect on comfort conditions for human physiology. In this research, using 55-year cliamtic data (1952-2006), the relative humidity and temperature through the application of Guni comfort climatic model, the desirable months for the comfort of human physiology have been determined in the five 11-year periods and the linear process of these changes have been estimated for the next 11 years. The results of this research show that the temperature trend in Shiraz station is increasing and most months have heating process in a way that it is expected in the future the cold months will have more favorable conditions for physiological comfort of residents and correspondingly in the warm months, heating tension will have remarkable increase.

  18. Human comfort and self-estimated performance in relation to indoor environmental parameters and building features

    OpenAIRE

    Frontczak, Monika Joanna; Wargocki, Pawel

    2011-01-01

    The main objective of the Ph.D. study was to examine occupants’ perception of comfort and self-estimated job performance in non-industrial buildings (homes and offices), in particular how building occupants understand comfort and which parameters, not necessarily related to indoor environments, influence the perception of comfort.To meet the objective, the following actions were taken: (1) a literature survey exploring which indoor environmental parameters (thermal, acoustic, visualenvironmen...

  19. Improving comfort and health with personalized ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2004-01-01

    The thermal environment and air quality in buildings affects occupants¿ health, comfort and performance. The heating, ventilating and air-conditioning (HVAC) of buildings today is designed to provide a uniform room environment. However, large individual differences exist between occupants in regard...... existing knowledge on performance of personalized ventilation (PV) and on human response to it. The airflow interaction in the vicinity of the human body is analysed and its impact on thermal comfort and inhaled air quality is discussed together with control strategies and the application of PV in practice...

  20. Literature survey on how different factors influence human comfort in indoor environments

    DEFF Research Database (Denmark)

    Frontczak, Monika Joanna; Wargocki, Pawel

    2011-01-01

    examined the extent to which other factors unrelated to the indoor environment, such as individual characteristics of building occupants, building-related factors and outdoor climate including seasonal changes, influence whether the indoor environment is evaluated as comfortable or not. The results suggest...... environmental conditions influencing comfort in the built environment were surveyed: thermal, visual and acoustic, as well as air quality. The literature was surveyed to determine which of these conditions were ranked by building users as being the most important determinants of comfort. The survey also...... quality. Thermal comfort is ranked by building occupants to be of greater importance compared with visual and acoustic comfort and good air quality. It also seems to influence to a higher degree the overall satisfaction with indoor environmental quality compared with the impact of other indoor...

  1. Experimental investigation into the interaction between the human body and room airflow and its effect on thermal comfort under stratum ventilation.

    Science.gov (United States)

    Cheng, Y; Lin, Z

    2016-04-01

    Room occupants' comfort and health are affected by the airflow. Nevertheless, they themselves also play an important role in indoor air distribution. This study investigated the interaction between the human body and room airflow under stratum ventilation. Simplified thermal manikin was employed to effectively resemble the human body as a flow obstacle and/or free convective heat source. Unheated and heated manikins were designed to fully evaluate the impact of the manikin at various airflow rates. Additionally, subjective human tests were conducted to evaluate thermal comfort for the occupants in two rows. The findings show that the manikin formed a local blockage effect, but the supply airflow could flow over it. With the body heat from the manikin, the air jet penetrated farther compared with that for the unheated manikin. The temperature downstream of the manikin was also higher because of the convective effect. Elevating the supply airflow rate from 7 to 15 air changes per hour varied the downstream airflow pattern dramatically, from an uprising flow induced by body heat to a jet-dominated flow. Subjective assessments indicated that stratum ventilation provided thermal comfort for the occupants in both rows. Therefore, stratum ventilation could be applied in rooms with occupants in multiple rows. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Thermal (dis)comfort experienced from physiological movements across indoor, transitional and outdoor spaces in Singapore: A pilot study

    Science.gov (United States)

    Li Heng, Su; Chow, Winston

    2017-04-01

    Human thermal comfort research is important as climate discomfort can adversely affect both health and work productivity in cities; however, such biometeorological work in low-latitude urban areas is still relatively unstudied hitherto. In the tropical metropolis of Singapore, a suite of policies have been implemented aimed at improving environmental sustainability via increasing car-free commutes and pedestrian movement during work/school journeys, with the consequence that individuals will likely have increased personal exposure through a variety of spaces (and climates) during typical daily activities. As such, research into exploring the thermal (dis)comfort experienced during pedestrian movements across these indoor, outdoor and transitional (semi-outdoor) spaces would yield interesting applied biometerological insights. This pilot study thus investigates how pedestrian thermal comfort varies spatially across a university campus, and how the physical intensity of pedestrian travel affects thermal comfort across these spaces. Over a 10-week period, we profiled six students for both their objective and subjective pedestrian thermal comfort during traverses across different spaces. Data were obtained through use of (a.) of a heat stress sensor, (b.) a fitness tracker, and (b.) a questionnaire survey to record traverse measurements of the microclimate, their physiological data, and their perceived microclimate comfort respectively. Measured climate and physiological data were used to derive commonly-used thermal comfort indices like wet-bulb globe temperature (WBGT) and physiological equivalent temperature (PET). Further, interviews were conducted with all six subjects at the end of the fieldwork period to ascertain details on individual acclimatization behavior and adaptation strategies. The results indicate that (a.) more than 50% of the microclimatic conditions within each indoor, semi-outdoor, and outdoor space exceeded heat stress thresholds of both PET and

  3. Importance of thermal comfort for library building in Kuching, Sarawak

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, S.H.; Baharun, A.; Abdul Mannan, M.D.; Abang Adenan, D.A. [Department of Civil Engineering, Faculty of Engineering, University Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak (Malaysia)

    2013-07-01

    Malaysian Government takes an initiative to provide library in housing areas to improve the quality of human capital. However, the government has to evaluate every aspect of their provision to ensure the services provided meet the demands of the users, including the aspect of thermal comfort in the building. For this study, a library constructed using Industrialised Building System (IBS) are selected for thermal comfort evaluation. The data were analyzed using Corrected Effective Temperature (CET) index. From the data analysis, it shows that thermal comfort in the library could not be achieved most of the time unless when the mechanical cooling is used. A series of technical design improvements are then recommended to improve the thermal comfort inside the library by incorporating construction details without increasing the cost.

  4. The impact of human-biometeorological factors on perceived thermal comfort in urban public places

    Directory of Open Access Journals (Sweden)

    Isabell Maras

    2016-09-01

    Full Text Available For the understanding of the impact of meteorological stressors on human perceptions of thermal comfort, it is essential to examine in detail the joint variability of atmospheric conditions and human perception. We designed an interdisciplinary experimental setup to generate data of both human-biometeorological and individual human perception at two different urban public places in the city of Aachen, Germany. Meteorological measurements at the human-biometeorological standard height of 1.1 m a.g.l. were taken during typical winter weather situations as well as extreme summer weather situations to analyze potentially seasonal effects. Pedestrians and tourists at the study site were selected as participants for face-to-face questionnaire-based interviews. We took measurements and held interviews between 10:00 h and 17:00 h (CEST/CET to record the daytime agreement/deviations at different inner urban measurement locations. Based on an overall physical approach of thermal load, UTCI (Universal Thermal Climate Index values are calculated. A maximum of +34.1 °C for summertime and a minimum of +2.6 °C for wintertime could be found. The meteorological parameters of air temperature (Ta$T_{a}$, mean radiant temperature (Tmrt$T_{\\text{mrt}}$ and vapor pressure (VP are compared with data perceived by the persons interviewed. In winter, Ta$T_{a }$ shows a significant relation to the overall weather perception (r=0.28$r = 0.28$; p<0.05$p<0.05$ while the overall comfort of the participants is significantly related to perceived solar heat (r=0.27$r = 0.27$; p<0.5$p<0.5$ as well as to perceived Ta$T_{a}$ (r=0.4$r = 0.4$; p<0.002$p<0.002$. Quite different resulting patterns occurred for the summer campaign. None of the physical variables significantly affected the weather perception. Only the perceived Ta$T_{a}$ revealed a significant relation to the overall weather perception (r=0.27$r=0.27$; p<0.002$p<0.002$.

  5. IMPLICATIONS OF CLIMATE CHANGE ON HUMAN COMFORT

    African Journals Online (AJOL)

    Prince Acheampong

    industrial activities, electricity generation and transportation release more CO2 ... The relation of the four factors that determine the comfort zone is illustrated on the Bioclimatic chart, ... Architectural Consulting firms, Technical Experts of the Architectural and Engineering Services Limited ... touch to the walls by painting them.

  6. THERMAL COMFORT STUDY OF AN AIR-CONDITIONED DESIGN STUDIO IN TROPICAL SURABAYA

    Directory of Open Access Journals (Sweden)

    Agus Dwi Hariyanto

    2005-01-01

    Full Text Available This paper evaluates the current thermal comfort condition in an air-conditioned design studio using objective measurement and subjective assessment. Objective measurement is mainly to quantify the air temperature, MRT, relative humidity, and air velocity. Subjective assessment is conducted using a questionnaire to determine the occupants thermal comfort sensations and investigate their perception of the thermal comfort level. A design studio in an academic institution in Surabaya was chosen for the study. Results show that more than 80% of the occupants accepted the indoor thermal conditions even though both the environmental and comfort indices exceeded the limit of the standard (ASHRAE Standard 55 and ISO 7730. In addition, non-uniformity of spatial temperature was present in this studio. Some practical recommendations were made to improve the thermal comfort in the design studio.

  7. Acoustic comfort in eating establishments

    DEFF Research Database (Denmark)

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating establishment...

  8. Human thermal comfort conditions and urban planning in hot-humid climates-The case of Cuba.

    Science.gov (United States)

    Rodríguez Algeciras, José Abel; Coch, Helena; De la Paz Pérez, Guillermo; Chaos Yeras, Mabel; Matzarakis, Andreas

    2016-08-01

    Climate regional characteristics, urban environmental conditions, and outdoors thermal comfort requirements of residents are important for urban planning. Basic studies of urban microclimate can provide information and useful resources to predict and improve thermal conditions in hot-humid climatic regions. The paper analyzes the thermal bioclimate and its influence as urban design factor in Cuba, using Physiologically Equivalent Temperature (PET). Simulations of wind speed variations and shade conditions were performed to quantify changes in thermal bioclimate due to possible modifications in urban morphology. Climate data from Havana, Camagüey, and Santiago of Cuba for the period 2001 to 2012 were used to calculate PET with the RayMan model. The results show that changes in meteorological parameters influence the urban microclimate, and consequently modify the thermal conditions in outdoors spaces. Shade is the predominant strategy to improve urban microclimate with more significant benefits in terms of PET higher than 30 °C. For climatic regions such as the analyzed ones, human thermal comfort can be improved by a wind speed modification for thresholds of PET above 30 °C, and by a wind speed decreases in conditions below 26 °C. The improvement of human thermal conditions is crucial for urban sustainability. On this regards, our study is a contribution for urban designers, due to the possibility of taking advantage of results for improving microclimatic conditions based on urban forms. The results may enable urban planners to create spaces that people prefer to visit, and also are usable in the reconfiguration of cities.

  9. Design for thermal sensation and comfort states in vehicles cabins

    International Nuclear Information System (INIS)

    Alahmer, Ali; Abdelhamid, Mahmoud; Omar, Mohammed

    2012-01-01

    This manuscript investigates the analysis and modeling of vehicular thermal comfort parameters using a set of designed experiments aided by thermography measurements. The experiments are conducted using a full size climatic chamber to host the test vehicle, to accurately assess the transient and steady state temperature distributions of the test vehicle cabin. Further investigate the thermal sensation (overall and local) and the human comfort states under artificially created relative humidity scenarios. The thermal images are calibrated through a thermocouples network, while the outside temperature and relative humidity are manipulated through the climatic environmental chamber with controlled soaking periods to guarantee the steady state conditions for each test scenario. The relative humidity inside the passenger cabin is controlled using a Total Humidity Controller (THC). The simulation uses the experimentally extracted boundary conditions via a 3-D Berkeley model that is set to be fully transient to account for the interactions in the velocity and temperature fields in the passenger compartment, which included interactions from turbulent flow, thermal buoyancy and the three modes of heat transfer conduction, convection and radiation. The model investigates the human comfort by analyzing the effect of the in-cabin relative humidity from two specific perspectives; firstly its effect on the body temporal variation of temperature within the cabin. Secondly, the Local Sensation (LS) and Comfort (LC) are analyzed for the different body segments in addition to the Overall Sensation (OS) and the Overall Comfort (OC). Furthermore, the human sensation is computed using the Fanger model in terms of the Predicted Mean Value (PMV) and the Predicted Percentage Dissatisfied (PPD) indices. The experimental and simulation results show that controlling the RH levels during the heating and the cooling processes (winter and summer conditions respectively) aid the A/C system to

  10. Thermal comfort study of plastics manufacturing industry in converting process

    Directory of Open Access Journals (Sweden)

    Sugiono Sugiono

    2017-09-01

    Full Text Available Thermal comfort is one of ergonomics factors that can create a significant impact to workers performance. For a better thermal comfort, several environment factors (air temperature, wind speed and relative humidity should be considered in this research. The object of the study is a building for converting process of plastics manufacturing industry located in Malang, Indonesia. The maximum air temperature inside the building can reach as high as 36°C. The result of this study shows that heat stress is dominantly caused by heat source from machine and wall building. The computational fluid dynamics (CFD simulation is used to show the air characteristic through inside the building. By using the CFD simulation, some scenarios of solution are successfully presented. Employees thermal comfort was investigated based on predicted mean vote model (PMV and predicted percentage of dissatisfied model (PPD. Existing condition gives PMV in range from 1.83 to 2.82 and PPD in range from 68.9 to 98%. Meanwhile, modification of ventilation and replacing ceiling material from clear glass into reflective clear glass gave significant impact to reduce PMV into range from 1.63 to 2.18 and PPD into range from 58.2 to 84.2%. In sort, new design converting building process has more comfortable for workers.

  11. Comparison of thermal comfort and sensation scales : a case study

    NARCIS (Netherlands)

    Vesely, Michal; Zeiler, Wim; Li, Rongling; Loomans, M.G.L.C.; te Kulve, M.

    2015-01-01

    Thermal sensation is a conscious feeling that grades the thermal environment, while thermal comfort expresses satisfaction with this feeling. Multiple scales to quantify thermal sensation and comfort have been developed throughout the history of research on thermal comfort. In this paper, the most

  12. Thermal comfort, physiological responses and performance during exposure to a moderate temperature drift

    DEFF Research Database (Denmark)

    Schellen, Lisje; van Marken Lichtenbelt, Wouter; de Wit, Martin

    2008-01-01

    The objective of this research was to study the effects of a moderate temperature drift on human thermal comfort, physiological responses, productivity and performance. A dynamic thermophysiological model was used to examine the possibility of simulating human thermal responses and thermal comfort...... temperature corresponding with a neutral thermal sensation (control situation). During the experiments both physiological responses and thermal sensation were measured. Productivity and performance were assessed with a ‘Remote Performance Measurement’ (RPM) method. Physiological and thermal sensation data...

  13. Epilepsy monitoring - The patients' views: A qualitative study based on Kolcaba's Comfort Theory.

    Science.gov (United States)

    Egger-Rainer, Andrea; Trinka, Eugen; Höfler, Julia; Dieplinger, Anna Maria

    2017-03-01

    The aim of this qualitative study was to determine which perception of personal comfort patients name in the context of their hospitalization in an Austrian Epilepsy Monitoring Unit (EMU). Problem-centred interviews with twelve inpatients were conducted. Data analyses were done according to Mayring's qualitative content analyses following the technique of structuring-deductive category assignment. Patients experienced different kinds of comfort along with their hospitalization in the EMU. Comfort-decreasing factors were bed rest, boredom, and waiting for possible seizures. As comfort-increasing factors, hope for enhanced seizure control, support by family and staff, and intelligible information about the necessity of restrictive conditions were identified. The study results should assist health care professionals, enabling them to design comfort enhancing interventions for patients undergoing video-electroencephalography (EEG) investigations in an EMU. Some of these seem to be simple and obtainable without high financial or technical effort. Others are more complex and have to be further assessed for their feasibility. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Application of thermal comfort theory in probabilistic safety assessment of a nuclear power plant

    International Nuclear Information System (INIS)

    Zhou Tao; Sun Canhui; Li Zhenyang; Wang Zenghui

    2011-01-01

    Human factor errors in probabilistic safety assessment (PSA) of a nuclear power plant (NPP) can be prevented using thermal comfort analysis. In this paper, the THERP + HCR model is modified by using PMV (Predicted Mean Vote) and PPD (Predicted Percentage Dissatisfied) index system, so as to obtain the operator cognitive reliability,and to reflect and analyze human perception, thermal comfort status,and cognitive ability in a specific NPP environment. The mechanism of human factors in the PSA is analyzed by operators of skill, rule and knowledge types. The THERP + HCR model modified by thermal comfort theory can reflect the conditions in actual environment, and optimize reliability analysis of human factors. Improving human thermal comfort for different types of operators reduces adverse factors due to human errors, and provides a safe and optimum decision-making for NPPs. (authors)

  15. Enthalpy estimation for thermal comfort and energy saving in air conditioning system

    International Nuclear Information System (INIS)

    Chu, C.-M.; Jong, T.-L.

    2008-01-01

    The thermal comfort control of a room must consider not only the thermal comfort level but also energy saving. This paper proposes an enthalpy estimation that is conducive for thermal comfort control and energy saving. The least enthalpy estimator (LEE) combines the concept of human thermal comfort with the theory of enthalpy to predict the load for a suitable setting pair in order to maintain more precisely the thermal comfort level and save energy in the air conditioning system

  16. Simulation of global warming effect on outdoor thermal comfort conditions

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, G.R.; Ranjbar, F. [Univ. of Tehran (IR). Dept. of Physical Geography; Orosa, J.A. [Univ. of A Coruna (Spain). Dept. of Energy

    2010-07-01

    In the coming decades, global warming and increase in temperature, in different regions of the world, may change indoor and outdoor thermal comfort conditions and human health. The aim of this research was to study the effects of global warming on thermal comfort conditions in indoor ambiences in Iran. To study the increase in temperature, model for assessment of greenhouse-gas induced climate change scenario generator compound model has been used together with four scenarios and to estimate thermal comfort conditions, adaptive model of the American Society of Heating, Refrigerating and Air-Conditioning Engineers has been used. In this study, Iran was divided into 30 zones, outdoor conditions were obtained using meteorological data of 80 climatological stations and changes in neutral comfort conditions in 2025, 2050, 2075 and 2100 were predicted. In accordance with each scenario, findings from this study showed that temperature in the 30 zones will increase by 2100 to between 3.4 C and 5.6 C. In the coming decades and in the 30 studied zones, neutral comfort temperature will increase and be higher and more intense in the central and desert zones of Iran. The low increase in this temperature will be connected to the coastal areas of the Caspian and Oman Sea in southeast Iran. This increase in temperature will be followed by a change in thermal comfort and indoor energy consumption from 8.6 % to 13.1 % in air conditioning systems. As a result, passive methods as thermal inertia are proposed as a possible solution.

  17. Analysis and Comparison of Shading Strategies to Increase Human Thermal Comfort in Urban Areas

    Directory of Open Access Journals (Sweden)

    Ivan Lee

    2018-03-01

    Full Text Available With the expected increase in warmer conditions caused by climate change, heat-related illnesses are becoming a more pressing issue. One way that humans can protect themselves from this is to seek shade. The design of urban spaces can provide individuals with a variety of ways to obtain this shade. The objective of this study was to perform a detailed evaluation and comparison of three shading strategies that could be used in an urban environment: shade from a building, from a tree, and from an umbrella. This was done through using field measurements to calculate the impact of each strategy on a thermal comfort index (Comfort Formula (COMFA in two urban settings during sunny days of the summer of 2013 and 2014 in London, Canada. Building shade was found to be the most effective cooling strategy, followed by the tree strategy and the umbrella strategy. As expected, the main determinant of this ranking was a strategy’s ability to block incoming shortwave radiation. Further analysis indicated that changes in the convective loss of energy and in longwave radiation absorption had a smaller impact that caused variations in the strategy effectiveness between settings. This suggests that under non-sunny days, these rankings could change.

  18. An evaluation method on seat comfort based on optical motion capture

    Directory of Open Access Journals (Sweden)

    Qing TAO

    2015-10-01

    Full Text Available To research the sitting posture comfort evaluation method, through the example of comfort evaluation of the ergonomic seat and standard office seat, a methodology is introduced to evaluate the sitting posture comfort combining ergonomics theory. The proposed method is based on optical motion capture system, pressure sensor and JACK software, and TRC file is acquired by using EVART real-time capture software for identifying the spatial motion trail of human body. Then MATLAB software is used to analyze the human body motion data, and the sitting posture angle difference data for human body in different seats is acquired. TRC file is loaded into JACK software, and with the TAT REPORTER of JACK software, muscle force, moment of force and fatigue data, etc. are output, which are compared with the actual measured data from experiments, and ergonomics method is used for the evaluation. The result shows that the method of considering joint angles combining JACK software for data output is effective for evaluating sitting comfort.

  19. Effect of relative humidity and temperature control on in-cabin thermal comfort state: Thermodynamic and psychometric analyses

    International Nuclear Information System (INIS)

    Alahmer, A.; Omar, M.A.; Mayyas, A.; Dongri, Shan

    2011-01-01

    This manuscript discusses the effect of manipulating the Relative Humidity RH of in-cabin environment on the thermal comfort and human occupants' thermal sensation. The study uses thermodynamic and psychometric analyses, to incorporate the effect of changing RH along with the dry bulb temperature on human comfort. Specifically, the study computes the effect of changing the relative humidity on the amount of heat rejected from the passenger compartment and the effect of relative humidity on occupants comfort zone. A practical system implementation is also discussed in terms of an evaporative cooler design. The results show that changing the RH along with dry bulb temperature inside vehicular cabins can improve the air conditioning efficiency by reducing the heat removed while improving the Human comfort sensations as measured by the Predicted Mean Value PMV and the Predicted Percentage Dissatisfied PPD indices. - Highlights: → Investigates the effect of controlling the RH and dry bulb temperature on in-cabin thermal comfort and sensation. → Conducts the thermodynamic and psychometric analyses for changing the RH and temperature for in-cabin air conditioning. → Discusses a possible system implementation through an evaporative cooler design.

  20. Comfort-box controls individual level of comfort. Domotica home network for indoor climate management; Comfort-box regelt individueel comfort-niveau. Domotica-huisnetwerk voor beheer binnenklimaat

    Energy Technology Data Exchange (ETDEWEB)

    Kamphuis, I.G; Warmer, C.J.; Bakker, E.J. [ECN Duurzame Energie in de Gebouwde Omgeving DEGO, Petten (Netherlands)

    2005-03-01

    The Comfort-Box (or C-Box) project is an automatic and continuous control system for energy efficient and cost-effective thermal comfort in houses. In this article detailed information is given of the design and performance of the C-Box. [Dutch] De huidige regelsystemen voor het binnenklimaat in woningen zijn voor verbetering vatbaar. Met het Comfort-boxconcept is een regeling ontwikkeld die automatisch en continu het individuele comfortniveau regelt in woningen, waarbij afwegingen worden gemaakt tussen kosten en comfort. De Comfort-box blijkt in staat te zijn het binnencomfort op energie- en kostenefficiente wijze te beheren.

  1. Adaptive principles for thermal comfort in dwellings : From comfort temperatures to avoiding discomfort

    NARCIS (Netherlands)

    Alders, E.E.; Kurvers, S.R.; Van den Ham, E.R.

    2011-01-01

    Many theories on thermal comfort exist and there are many ways to deliver this in an energy efficient way. Both aspects are often studied in a static way and most of these studies only regard one of the aspects, seldom investigating what influence the way of delivering thermal comfort has on the

  2. Thermal comfort. Individual and time-dependent?; Thermisch comfort. Individueel en tijdafhankelijk?

    Energy Technology Data Exchange (ETDEWEB)

    Noom, P.; Zeiler, W.; Boxem, G. [Unit Building Physics and Systems, Faculteit Bouwkunde, Technische Universiteit Eindhoven TUE, Eindhoven (Netherlands); Haan, J.F.B.C.; Van der Velden, J. [Kropman Installatietechniek, Rijswijk (Netherlands)

    2010-11-15

    With respect to the perceived thermal comfort there are large individual differences, which also change during daytime. Therefore is worthwhile to determine the individual thermal comfort profiles during the day. The perceived thermal comfort level follows an individual day profile. By using these profiles as a leading principal to control the indoor temperatures an improvement of the perceived comfort is possible while at the same time it can reduce energy consumption. [Dutch] Nieuwe optimalisatiemogelijkheden voor energiegebruik voor het comfort zijn mogelijk door vanuit de actuele en toekomstige individuele behoefte aan comfort van de gebruiker de installatie optimaal aan te sturen. Dit artikel geeft inzicht in de efficiente afstemming van vraag en aanbod van energie voor thermisch comfort. In een kantoorgebouw zijn metingen gedaan, conform NEN-EN-ISO 7726 (Ergonomics of the thermal environment. Instruments for measuring physical quantities), en er is een enquete gehouden om het thermisch comfort individueel te kunnen bepalen gedurende de werkdag. Het doel van de metingen was de verschillen tussen de individuele beleving en de werkelijke klimaat omstandigheden te kunnen bepalen.

  3. Comfort in times if climatic change; Comfort in tijden van klimaatverandering

    Energy Technology Data Exchange (ETDEWEB)

    Imsirovic, F.; Molenaar, R. [Techniplan Adviseurs, Rotterdam (Netherlands)

    2011-10-15

    A study with calculation software Vabi 114 shows that choosing a different climate year and comfort level requirements according to the Dutch standard NEN 5060 can lead to an increased cooling capacity of over 60%. When determining the climate year and comfort level in the program of requirements, it will have to be weighed if the increasing cost at the expense of the additional cooling capacity outweighs the increased level in comfort. [Dutch] Het is de laatste jaren een trend om andere klimaatjaren of andere comforteisen te hanteren. Het oude klimaatjaar1964-1965 wordt steeds vaker vervangen door jaren zoals 1995,1998 of nieuwe klimaatreferentiejaren conform de NEN 5060:2008. Ook de comforteisen veranderen. De eis van 150 gewogen overschrijdingsuren die de Rijksgebouwendienst jarenlang hanteerde, wordt steeds vaker vervangen door een eis met een maximale binnentemperatuur van 25C of adaptieve temperatuurgrenswaarden (ATG), zoals omschreven in ISSO-publicatie 74. Wat is de invloed van gewijzigde klimaatjaren en comforteisen op het comfort en het op te stellen koelvermogen?.

  4. Indoor Air Quality and Thermal Comfort in School Buildings

    Science.gov (United States)

    Juhásová Šenitková, Ingrid

    2017-12-01

    This paper presents results to thermal comfort and environment quality questions in 21 school building rooms. Results show that about 80% of the occupants expressed satisfaction with their thermal comfort in only 11% of the buildings surveyed. Air quality scores were somewhat higher, with 26% of buildings having 80% or occupant satisfaction. With respect to thermal comfort and air quality performance goals set out by standards, most buildings appear to be falling far short. Occupant surveys offer a means to systematically measure this performance, and also to provide diagnostic information for building designers and operators. The odours from building materials as well as human odours were studied by field measurement. The odour intensity and indoor air acceptability were assessed by a sensory panel. The concentrations of total volatile organic compounds and carbon dioxide were measured. The odours from occupancy and building materials were studied under different air change rate. The case study of indoor air acceptability concerning to indoor odours and its effect on perceived air quality are also presented in this paper.

  5. Research on optimization of test cycles for comfort to the special vehicles

    Science.gov (United States)

    Mitroi, Marian; Chiru, Anghel

    2017-10-01

    The comfort of vehicles, regardless of their type is represent a requirement to by fulfilled in the context of current technological developments special vehicles generally move under different soil, time, or season conditions, and the land in which the vehicles move is complex and varied in the physical structure. Due to the high level of involvement in the driveability, safety and comfort of automotive, suspension system is a key factor with major implications for vibration and noise, affecting the human body. The objective of the research is related to determining the test cycles of special vehicles that are approaching real situations, to determine the level of comfort. The evaluate of the degree of comfort will be realized on acceleration values recorded, especially the vertical ones that have the highest influence on the human body. Thus, in this way the tests can be established needed to determine the level of comfort required for each particular type of special vehicle. The utility of the test cycles to optimize comfort is given to the accurate identification of the specific test needs, depending on the each vehicle.

  6. A Human-Centered Approach to Enhance Urban Resilience, Implications and Application to Improve Outdoor Comfort in Dense Urban Spaces

    Directory of Open Access Journals (Sweden)

    Ata Chokhachian

    2017-12-01

    Full Text Available The concept of resilience in urban design and decision-making is principally focused on change instead of resistance over an adaptive process. For cities, this concept in a broader scale means how to withstand unforeseen events that will fundamentally amend the city’s wellbeing, rather than being stabilized and protected. The same concept is applicable for outdoor comfort as an adaptive approach to compensate extreme heat waves and health risk conditions. This chapter presents methods, tools, and applications to enhance urban resilience at a micro scale looking for correlations between environmental factors and human behavior in terms of outdoor comfort.

  7. How "Does" the Comforting Process Work? An Empirical Test of an Appraisal-Based Model of Comforting

    Science.gov (United States)

    Jones, Susanne M.; Wirtz, John G.

    2006-01-01

    Burleson and Goldsmith's (1998) comforting model suggests an appraisal-based mechanism through which comforting messages can bring about a positive change in emotional states. This study is a first empirical test of three causal linkages implied by the appraisal-based comforting model. Participants (N=258) talked about an upsetting event with a…

  8. The Comfortable Home and Energy Consumption

    DEFF Research Database (Denmark)

    Madsen, Line Valdorff

    2017-01-01

    This paper investigates relations between notions of comfort and notions of home, aiming at a better understanding of residential comfort and the related energy consumption. Residential comfort is examined through a practice-theoretical lens and as something that appears in between the social...... and material structures of a home. The approach considers different elements of comfort in homemaking practices, such as the body, materials and social meanings. The paper examines how conceptions of comfort and homeliness interrelate through homemaking practices and thereby redefine comfort within a framework...... of the home and social practices. This implies focus on “the comfortable home” as made up of homemaking practices that include knowhow, sensations and social norms. The empirical basis comprises interviews and visual data from a field study on detached housing on the outskirts of a Danish city. The paper...

  9. Reliability of an instrument to determine lower limb comfort in professional football

    Directory of Open Access Journals (Sweden)

    Michael Kinchington

    2010-06-01

    Full Text Available Michael Kinchington1, Kevin Ball1, Geraldine Naughton21School of Human Movement, Recreation and Performance, Victoria University, Melbourne, Australia; 2The Centre of Physical Activity Across the Lifespan (COPAAL, Australian Catholic University, Victoria, AustraliaAims and Objectives: This study extends previous work in the field of injury awareness using a novel lower limb comfort index (LLCI, which was developed to assess comfort in professional football. Participants rated comfort for designated anatomical segments of the lower limb utilizing a seven point Likert scale. The aims of the study were (i to assess the reliability of the LLCI in a competitive football environment (Australian Rules and Rugby League, and (ii to assess whether LLCI measurements were responsive to changes in lower limb comfort over time.Methods and Results: The reliability of the LLCI was observed in two professional football environments: Training Week (mean difference 0.1 point, intra-class correlation coefficient, ICC 0.99 for n = 41 participants; and Match Day (mean difference 0.2 points, ICC 0.97 for n = 22 players. Measurements of lower limb comfort were responsive to changes in comfort over time. Within-player differences were not significant for periods 0–8 hrs (P > 0.05 but, generally, significant for time periods 0–24 hrs (P < 0.05, and significant between 24–96 hrs (P < 0.01. The results indicate that the LLCI was reliable when tested for repeated measures and indicated how the index measures lower limb comfort changes over time.Conclusion: This study shows that the use of a lower limb comfort index, when used in a competitive football environment, is both reliable and responsive to change during both a training week and under match day conditions.Keywords: lower limb comfort, musculoskeletal, football, injury

  10. Dynamic modeling of human thermal comfort after the transition from an indoor to an outdoor hot environment.

    Science.gov (United States)

    Katavoutas, George; Flocas, Helena A; Matzarakis, Andreas

    2015-02-01

    Thermal comfort under non-steady-state conditions primarily deals with rapid environmental transients and significant alterations of the meteorological conditions, activity, or clothing pattern within the time scale of some minutes. In such cases, thermal history plays an important role in respect to time, and thus, a dynamic approach is appropriate. The present study aims to investigate the dynamic thermal adaptation process of a human individual, after his transition from a typical indoor climate to an outdoor hot environment. Three scenarios of thermal transients have been considered for a range of hot outdoor environmental conditions, employing the dynamic two-node IMEM model. The differences among them concern the radiation field, the activity level, and the body position. The temporal pattern of body temperatures as well as the range of skin wettedness and of water loss have been investigated and compared among the scenarios and the environmental conditions considered. The structure and the temporal course of human energy fluxes as well as the identification of the contribution of body temperatures to energy fluxes have also been studied and compared. In general, the simulation results indicate that the response of a person, coming from the same neutral indoor climate, varies depending on the scenario followed by the individual while being outdoors. The combination of radiation field (shade or not) with the kind of activity (sitting or walking) and the outdoor conditions differentiates significantly the thermal state of the human body. Therefore, 75% of the skin wettedness values do not exceed the thermal comfort limit at rest for a sitting individual under the shade. This percentage decreases dramatically, less than 25%, under direct solar radiation and exceeds 75% for a walking person under direct solar radiation.

  11. Effect of the position of the visible sky in determining the sky view factor on micrometeorological and human thermal comfort conditions in urban street canyons

    Science.gov (United States)

    Qaid, Adeb; Lamit, Hasanuddin Bin; Ossen, Dilshan Remaz; Rasidi, Mohd Hisyam

    2018-02-01

    Poor daytime and night-time micrometeorological conditions are issues that influence the quality of environmental conditions and can undermine a comfortable human lifestyle. The sky view factor (SVF) is one of the essential physical parameters used to assess the micrometeorological conditions and thermal comfort levels within city streets. The position of the visible sky relative to the path of the sun, in the cardinal and ordinal directions, has not been widely discerned as a parameter that could have an impact on the micrometeorological conditions of urban streets. To investigate this parameter, different urban streets that have a similar SVF value but diverse positions of visible sky were proposed in different street directions intersecting with the path of the sun, namely N-S, NE-SW and NW-SE. The effects of daytime and night-time micrometeorological variables and human thermal comfort variables on the street were investigated by applying ENVI-met V3.1 Beta software. The results show that the position of the visible sky has a greater influence on the street's meteorological and human thermal comfort conditions than the SVF value. It has the ability to maximise or minimise the mean radiation temperature (Tmrt, °C) and the physiological equivalent temperature (PET, °C) at street level. However, the visible sky positioned to the zenith in a NE-SW or N-S street direction and to the SW of a NW-SE street direction achieves the best daytime micrometeorological and thermal comfort conditions. Alternatively, the visible sky positioned to the NE for a NW-SE street direction, to the NW and the zenith for a NE-SW street direction and to the zenith for a N-S street direction reduces the night-time air temperature (Ta, °C). Therefore, SVF and the position of the visible sky relative to the sun's trajectory, in the cardinal and ordinal directions, must be considered during urban street planning to better understand the resultant micrometeorological and human thermal

  12. Integration of human physiology. Individual Thermal comfort in thermal comfort models; Integratie van de menselijke fysiologie. Individueel thermisch comfort in thermische comfortmodellen

    Energy Technology Data Exchange (ETDEWEB)

    Frijns, A. [Faculteit Werktuigbouwkunde, Technische Universiteit Eindhoven, Eindhoven (Netherlands); Van Marken Lichtenbelt, W.; Kingsma, B. [Department of Human Biology, Nutrim School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht (Netherlands)

    2011-09-15

    When designing climate installations, the PMV (Predicted Mean Vote) and PPD (Predicted Percentage Dissatisfied index) values are used as guidelines. Installations are designed in such a way that the 'average' user in a 'steady-state' condition experiences thermal comfort. Studies show that individual physiological processes might be suitable for integration in the design models. [Dutch] Bij het ontwerp van klimaatinstallaties worden de PMV/PPD-waarden van Fanger (PMV staat voor de Predicted Mean Vote index en PPD is de Predicted Percentage Dissatisfied index) als richtlijn gebruikt. Installaties worden zodanig ontworpen dat een 'gemiddelde' persoon in een 'steady-state' conditie deze als thermisch comfortabel ervaart. Studies wijzen uit dat individuele fysiologische processen mogelijk ook in ontwerpmodellen inpasbaar zijn.

  13. An analysis of influential factors on outdoor thermal comfort in summer

    Science.gov (United States)

    Yin, JiFu; Zheng, YouFei; Wu, RongJun; Tan, JianGuo; Ye, DianXiu; Wang, Wei

    2012-09-01

    A variety of research has linked high temperature to outdoor thermal comfort in summer, but it remains unclear how outdoor meteorological environments influence people's thermal sensation in subtropical monsoon climate areas, especially in China. In order to explain the process, and to better understand the related influential factors, we conducted an extensive survey of thermally comfortable conditions in open outdoor spaces. The goal of this study was to gain an insight into the subjects' perspectives on weather variables and comfort levels, and determine the factors responsible for the varying human thermal comfort response in summer. These perceptions were then compared to actual ambient conditions. The database consists of surveys rated by 205 students trained from 6:00 am to 8:00 pm outdoors from 21 to 25 August 2009, at Nanjing University of Information Science & Technology (NUIST), Nanjing, China. The multiple regression approach and simple factor analysis of variance were used to investigate the relationships between thermal comfort and meteorological environment, taking into consideration individual mood, gender, level of regular exercise, and previous environmental experiences. It was found that males and females have similar perceptions of maximum temperature; in the most comfortable environment, mood appears to have a significant influence on thermal comfort, but the influence of mood diminishes as the meteorological environment becomes increasingly uncomfortable. In addition, the study confirms the strong relationship between thermal comfort and microclimatic conditions, including solar radiation, atmospheric pressure, maximum temperature, wind speed and relative humidity, ranked by importance. There are also strong effects of illness, clothing and exercise, all of which influence thermal comfort. We also find that their former place of residence influences people's thermal comfort substantially by setting expectations. Finally, some relationships

  14. An analysis of influential factors on outdoor thermal comfort in summer.

    Science.gov (United States)

    Yin, JiFu; Zheng, YouFei; Wu, RongJun; Tan, JianGuo; Ye, DianXiu; Wang, Wei

    2012-09-01

    A variety of research has linked high temperature to outdoor thermal comfort in summer, but it remains unclear how outdoor meteorological environments influence people's thermal sensation in subtropical monsoon climate areas, especially in China. In order to explain the process, and to better understand the related influential factors, we conducted an extensive survey of thermally comfortable conditions in open outdoor spaces. The goal of this study was to gain an insight into the subjects' perspectives on weather variables and comfort levels, and determine the factors responsible for the varying human thermal comfort response in summer. These perceptions were then compared to actual ambient conditions. The database consists of surveys rated by 205 students trained from 6:00 am to 8:00 pm outdoors from 21 to 25 August 2009, at Nanjing University of Information Science & Technology (NUIST), Nanjing, China. The multiple regression approach and simple factor analysis of variance were used to investigate the relationships between thermal comfort and meteorological environment, taking into consideration individual mood, gender, level of regular exercise, and previous environmental experiences. It was found that males and females have similar perceptions of maximum temperature; in the most comfortable environment, mood appears to have a significant influence on thermal comfort, but the influence of mood diminishes as the meteorological environment becomes increasingly uncomfortable. In addition, the study confirms the strong relationship between thermal comfort and microclimatic conditions, including solar radiation, atmospheric pressure, maximum temperature, wind speed and relative humidity, ranked by importance. There are also strong effects of illness, clothing and exercise, all of which influence thermal comfort. We also find that their former place of residence influences people's thermal comfort substantially by setting expectations. Finally, some relationships

  15. Feasibility study of context-awareness device Comfort calculation methods and their application to comfort-based access control

    DEFF Research Database (Denmark)

    Guo, Jingjing; Jensen, Christian D.; Ma, Jianfeng

    2016-01-01

    Mobile devices have become more powerful and are increasingly integrated in the everyday life of people; from playing games, taking pictures and interacting with social media to replacing credit cards in payment solutions. Some actions may only be appropriate in some situations, so the security...... of a mobile device is therefore increasingly linked to its context, such as its location, surroundings (e.g. objects in the immediate environment) and so on. However, situational awareness and context are not captured by traditional security models. In this paper, we examine the notion of Device Comfort......, which captures a device's ability to secure and reason about its environment. Specifically, we study the feasibility of two device comfort calculation methods we proposed in previous work. We do trace driven simulations based on a large body of sensed data from mobile devices in the real world...

  16. The perception of primiparous mothers of comfortable resources in labor pain (a qualitative study

    Directory of Open Access Journals (Sweden)

    Tahereh Boryri

    2016-01-01

    Conclusions: The results showed that mothers received more comfort from human resources than from the environment and modern equipment. Despite the need for specialized midwife with modern technical facilities, this issue shows the importance of highlighting the role of midwife and humanistic midwife care. Therefore, considering midwives and the standardization of human resources in health centers are more important than physical standardization. This will result in midwife interventions being performed with real understanding of the patients' needs.

  17. Experimental and numerical study of back-cooling car-seat system using embedded heat pipes to improve passenger’s comfort

    International Nuclear Information System (INIS)

    Hatoum, Omar; Ghaddar, Nesreen; Ghali, Kamel; Ismail, Nagham

    2017-01-01

    Graphical abstract: Heat pipe assembly (a) with the insulation layer (b) without the insulation layer; and (c) thermal manikin test on the heat pipe chair. - Highlights: • A new back cooling system for a car seat using embedded heat pipes was modeled numerically. • The heat-pipe seat model was experimentally validated using heated thermal manikin. • An integrated heat pipe model and bio-heat model was used to predict local thermal comfort. • The heat pipe system reduced the back skin temperature by 1 °C compared to seat without heat pipes. • The heat pipe system increased the overall thermal comfort of the passenger by 30%. - Abstract: This work develops a back-cooling system for a car seat using seat embedded heat pipes to improve passenger comfort. The heat pipe system utilizes the temperature difference between the passenger back and the car cabin air to remove heat from the human body and enhance the comfort state. The developed seat heat-pipe model was validated experimentally using a thermal manikin with controlled constant skin temperature mode in a climatic chamber. Good agreement was found between the measured and the numerically predicted values of base panel temperature. By integrating the validated heat pipe with a bio-heat model, the back segmental skin temperature as well as the overall thermal comfort was predicted and compared with the conventional seat case without the heat pipe system. The heat pipes were able to reduce the skin temperature by 1 °C and to increase the overall thermal comfort of the body by 30%. In addition, a parametric study was performed to determine the optimal number of heat pipes that ensure the thermal comfort of the passenger.

  18. Perceived Indoor Environment and Occupants' Comfort in European "Modern" Office Buildings: The OFFICAIR Study.

    Science.gov (United States)

    Sakellaris, Ioannis A; Saraga, Dikaia E; Mandin, Corinne; Roda, Célina; Fossati, Serena; de Kluizenaar, Yvonne; Carrer, Paolo; Dimitroulopoulou, Sani; Mihucz, Victor G; Szigeti, Tamás; Hänninen, Otto; de Oliveira Fernandes, Eduardo; Bartzis, John G; Bluyssen, Philomena M

    2016-04-25

    Indoor environmental conditions (thermal, noise, light, and indoor air quality) may affect workers' comfort, and consequently their health and well-being, as well as their productivity. This study aimed to assess the relations between perceived indoor environment and occupants' comfort, and to examine the modifying effects of both personal and building characteristics. Within the framework of the European project OFFICAIR, a questionnaire survey was administered to 7441 workers in 167 "modern" office buildings in eight European countries (Finland, France, Greece, Hungary, Italy, The Netherlands, Portugal, and Spain). Occupants assessed indoor environmental quality (IEQ) using both crude IEQ items (satisfaction with thermal comfort, noise, light, and indoor air quality), and detailed items related to indoor environmental parameters (e.g., too hot/cold temperature, humid/dry air, noise inside/outside, natural/artificial light, odor) of their office environment. Ordinal logistic regression analyses were performed to assess the relations between perceived IEQ and occupants' comfort. The highest association with occupants' overall comfort was found for "noise", followed by "air quality", "light" and "thermal" satisfaction. Analysis of detailed parameters revealed that "noise inside the buildings" was highly associated with occupants' overall comfort. "Layout of the offices" was the next parameter highly associated with overall comfort. The relations between IEQ and comfort differed by personal characteristics (gender, age, and the Effort Reward Imbalance index), and building characteristics (office type and building's location). Workplace design should take into account both occupant and the building characteristics in order to provide healthier and more comfortable conditions to their occupants.

  19. Understanding comfort and senses in social practices: Insights from a Danish field study

    DEFF Research Database (Denmark)

    Madsen, Line Valdorff; Gram-Hanssen, Kirsten

    2017-01-01

    Thermal comfort is central to energy consumption in housing and one of the main drivers behind worldwide GHG emissions. Research on residential energy consumption has therefore addressed comfort in relation to indoor temperatures. This paper argues that by widening the focus of comfort to include...... other aspects such as air, light and materials, more sustainable ideas of residential comfort might be developed. The paper takes a practice theoretical perspective but argues that the senses should be better incorporated into the approach to understand different aspects of comfort. The paper...... investigates how comfort can be understood as sensorial within theories of practice. This implies understanding how the senses are incorporated in embodied and routinised social practices, through which comfort is sensed and interpreted. Comfort is related to a range of everyday practices in the home...

  20. Automatic control of human thermal comfort with a liquid-cooled garment

    Science.gov (United States)

    Kuznetz, L. H.

    1977-01-01

    Water cooling in a liquid-cooled garment is used to maintain the thermal comfort of crewmembers during extravehicular activity. The feasibility of a simple control that will operate automatically to maintain the thermal comfort is established. Data on three test subjects are included to support the conclusion that heat balance can be maintained well within allowable medical limits. The controller concept was also successfully demonstrated for ground-based applications and shows potential for any tasks involving the use of liquid-cooled garments.

  1. Towards predicting the (dis)comfort performance by modelling: methods and findings

    NARCIS (Netherlands)

    Naddeo, A.

    2017-01-01

    The research work underlying this thesis starts from a societal issue: A comfortable artefact helps people to improve their well-being and can be sold easier.
    In order to fulfil these two requirements (wellbeing and companies’ profit) a comfort-driven human-centred design method is

  2. Thermal comfort

    DEFF Research Database (Denmark)

    d’Ambrosio Alfano, Francesca Romana; Olesen, Bjarne W.; Palella, Boris Igor

    2014-01-01

    Thermal comfort is one of the most important aspects of the indoor environmental quality due to its effects on well-being, people's performance and building energy requirements. Its attainment is not an easy task requiring advanced design and operation of building and HVAC systems, taking...... into account all parameters involved. Even though thermal comfort fundamentals are consolidated topics for more than forty years, often designers seem to ignore or apply them in a wrong way. Design input values from standards are often considered as universal values rather than recommended values to be used...... under specific conditions. At operation level, only few variables are taken into account with unpredictable effects on the assessment of comfort indices. In this paper, the main criteria for the design and assessment of thermal comfort are discussed in order to help building and HVAC systems designers...

  3. Estimation of some comfort parameters for sleeping environments in dry-tropical sub-Saharan Africa region

    International Nuclear Information System (INIS)

    Djongyang, Noël; Tchinda, René; Njomo, Donatien

    2012-01-01

    Highlights: ► Thermal comfort in sleeping environments in the sub-Saharan Africa is presented. ► Comfort charts for the dry-tropical regions were established. ► Total insulation values for bedding systems range between 0.81 clo and 0.94 clo. ► Thermoneutral operative temperature ranges between 29.5 °C and 31.7 °C. ► Thermoneutral air temperature ranges between 27.1 °C and 29.6 °C. - Abstract: A human being spends approximately one-third of his/her life in sleep. For an efficient and peaceful rest, he/she therefore needs some level of comfort. This includes acceptable environmental parameters as well as suitable bedding systems. While the theories of thermal comfort in workplaces at daytime are currently well established, research on thermal comfort for sleeping environment at night is limited. Further studies in relation with sleep are needed. This paper presents an investigation on thermal comfort in sleeping environments in the sub-Saharan Africa region. The comfort equation used is based on the energy balance of the human body derived from Fanger’s comfort model. Comfort charts for the dry-tropical sub-Saharan Africa region were established using indoor climatic conditions collected over five years in Ouagadougou (12°22′N, 1°32′W). Results obtained show that the suitable monthly total insulation values for bedding systems in the dry-tropical regions range between 0.81 clo and 0.94 clo. The thermoneutral operative temperature range between 29 °C and 32 °C, while the thermoneutral air temperature range between 27 °C and 30 °C.

  4. Thermal comfort

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available Thermal comfort is influenced by environmental parameters as well as other influences including asymmetric heating and cooling conditions. Additionally, some aspects of thermal comfort may be exploited so as to enable a building to operate within a...

  5. Outdoor thermal comfort.

    Science.gov (United States)

    Nikolopoulou, Marialena

    2011-06-01

    A review of the various approaches in understanding outdoor thermal comfort is presented. The emphasis on field surveys from around the world, particularly across Europe, enables us to understand thermal perception and evaluate outdoor thermal comfort conditions. The consistent low correlations between objective microclimatic variables, subjective thermal sensation and comfort outdoors, internationally, suggest that thermophysiology alone does not adequate describe these relationships. Focusing on the concept of adaptation, it tries to explain how this influences outdoor comfort, enabling us to inhabit and get satisfaction from outdoor spaces throughout the year. Beyond acclimatization and behavioral adaptation, through adjustments in clothing and changes to the metabolic heat, psychological adaptation plays a critical role to ensure thermal comfort and satisfaction with the outdoor environment. Such parameters include recent experiences and expectations; personal choice and perceived control, more important than whether that control is actually exercised; and the need for positive environmental stimulation suggesting that thermal neutrality is not a pre-requisite for thermal comfort. Ultimately, enhancing environmental diversity can influence thermal perception and experience of open spaces.

  6. Progress in thermal comfort research over the last twenty years.

    Science.gov (United States)

    de Dear, R J; Akimoto, T; Arens, E A; Brager, G; Candido, C; Cheong, K W D; Li, B; Nishihara, N; Sekhar, S C; Tanabe, S; Toftum, J; Zhang, H; Zhu, Y

    2013-12-01

    Climate change and the urgency of decarbonizing the built environment are driving technological innovation in the way we deliver thermal comfort to occupants. These changes, in turn, seem to be setting the directions for contemporary thermal comfort research. This article presents a literature review of major changes, developments, and trends in the field of thermal comfort research over the last 20 years. One of the main paradigm shift was the fundamental conceptual reorientation that has taken place in thermal comfort thinking over the last 20 years; a shift away from the physically based determinism of Fanger's comfort model toward the mainstream and acceptance of the adaptive comfort model. Another noticeable shift has been from the undesirable toward the desirable qualities of air movement. Additionally, sophisticated models covering the physics and physiology of the human body were developed, driven by the continuous challenge to model thermal comfort at the same anatomical resolution and to combine these localized signals into a coherent, global thermal perception. Finally, the demand for ever increasing building energy efficiency is pushing technological innovation in the way we deliver comfortable indoor environments. These trends, in turn, continue setting the directions for contemporary thermal comfort research for the next decades. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. The experience of critically ill children: A phenomenological study of discomfort and comfort.

    Science.gov (United States)

    Carnevale, Franco A; Gaudreault, Josée

    2013-01-01

    Emerging evidence indicates that critically ill children are particularly at risk for incurring significant psychological harm. Little is known about these children's actual experiences. The aim of the study was to examine children's experience of critical illness. The research question was: What are a critically ill child's sources of discomfort and comfort? Interpretive phenomenology was selected as the study's method. Children's accounts were examined to identify what they considered meaningful, in terms of their experienced discomfort and comfort. Data sources included formal and informal interviews with child-participants, drawings provided by some participants, and field-notes documenting observed non-verbal data. Twelve children were enrolled in the study, ranging from 3 to 17years of age; including four girls and eight boys. Although all participants were able to discuss the discomfort and comfort they experienced, they reported difficulties in remembering part or most of their experience. Some participants characterized their Pediatric Intensive Care Unit stay quite favourably or as "not that bad", while some described their experience unfavourably. Diverse types of discomforts were reported, including fears and worries, hurt and pain, invasive interventions, missing significant people, noise, food or eating problems, boredom, physical symptoms, as well as four additional discomforts reported by individual participants. Several sources of comfort were described, including parents, visitors and friends, hospital staff (principally nurses), stuffed animal/favourite blanket, entertainment and play, food, selected medical interventions, thinking of going home, being able to walk or run, sleep, waking up, gifts, along with two other comforts reported by individual participants. Embodiment and a tension between aloneness and being with were identified as the principal phenomena underlying these children's experiences. The findings complement existing knowledge

  8. Comfort measures: a concept analysis.

    Science.gov (United States)

    Oliveira, Irene

    2013-01-01

    Reference to the concept of comfort measures is growing in the nursing and medical literature; however, the concept of comfort measures is rarely defined. For the comfort work of nurses to be recognized, nurses must be able to identify and delineate the key attributes of comfort measures. A concept analysis using Rodgers' evolutionary method (2000) was undertaken with the goal of identifying the core attributes of comfort measures and thereby clarifying this concept. Health care literature was accessed from the CINAHL and PubMed databases. No restrictions were placed on publication dates. Four main themes of attributes for comfort measures were identified during the analysis. Comfort measures involve an active, strategic process including elements of "stepping in" and "stepping back," are both simple and complex, move from a physical to a holistic perspective and are a part of supportive care. The antecedents to comfort measures are comfort needs and the most common consequence of comfort measures is enhanced comfort. Although the concept of comfort measures is often associated with end-of-life care, this analysis suggests that comfort measures are appropriate for nursing care in all settings and should be increasingly considered in the clinical management of patients who are living with multiple, chronic comorbidities.

  9. Turkish Version of Kolcaba's Immobilization Comfort Questionnaire: A Validity and Reliability Study.

    Science.gov (United States)

    Tosun, Betül; Aslan, Özlem; Tunay, Servet; Akyüz, Aygül; Özkan, Hüseyin; Bek, Doğan; Açıksöz, Semra

    2015-12-01

    The purpose of this study was to determine the validity and reliability of the Turkish version of the Immobilization Comfort Questionnaire (ICQ). The sample used in this methodological study consisted of 121 patients undergoing lower extremity arthroscopy in a training and research hospital. The validity study of the questionnaire assessed language validity, structural validity and criterion validity. Structural validity was evaluated via exploratory factor analysis. Criterion validity was evaluated by assessing the correlation between the visual analog scale (VAS) scores (i.e., the comfort and pain VAS scores) and the ICQ scores using Spearman's correlation test. The Kaiser-Meyer-Olkin coefficient and Bartlett's test of sphericity were used to determine the suitability of the data for factor analysis. Internal consistency was evaluated to determine reliability. The data were analyzed with SPSS version 15.00 for Windows. Descriptive statistics were presented as frequencies, percentages, means and standard deviations. A p value ≤ .05 was considered statistically significant. A moderate positive correlation was found between the ICQ scores and the VAS comfort scores; a moderate negative correlation was found between the ICQ and the VAS pain measures in the criterion validity analysis. Cronbach α values of .75 and .82 were found for the first and second measurements, respectively. The findings of this study reveal that the ICQ is a valid and reliable tool for assessing the comfort of patients in Turkey who are immobilized because of lower extremity orthopedic problems. Copyright © 2015. Published by Elsevier B.V.

  10. Outdoor thermal comfort in public space in warm-humid Guayaquil, Ecuador

    Science.gov (United States)

    Johansson, Erik; Yahia, Moohammed Wasim; Arroyo, Ivette; Bengs, Christer

    2018-03-01

    The thermal environment outdoors affects human comfort and health. Mental and physical performance is reduced at high levels of air temperature being a problem especially in tropical climates. This paper deals with human comfort in the warm-humid city of Guayaquil, Ecuador. The main aim was to examine the influence of urban micrometeorological conditions on people's subjective thermal perception and to compare it with two thermal comfort indices: the physiologically equivalent temperature (PET) and the standard effective temperature (SET*). The outdoor thermal comfort was assessed through micrometeorological measurements of air temperature, humidity, mean radiant temperature and wind speed together with a questionnaire survey consisting of 544 interviews conducted in five public places of the city during both the dry and rainy seasons. The neutral and preferred values as well as the upper comfort limits of PET and SET* were determined. For both indices, the neutral values and upper thermal comfort limits were lower during the rainy season, whereas the preferred values were higher during the rainy season. Regardless of season, the neutral values of PET and SET* are above the theoretical neutral value of each index. The results show that local people accept thermal conditions which are above acceptable comfort limits in temperate climates and that the subjective thermal perception varies within a wide range. It is clear, however, that the majority of the people in Guayaquil experience the outdoor thermal environment during daytime as too warm, and therefore, it is important to promote an urban design which creates shade and ventilation.

  11. EXAMINING COMFORT PROPERTIES OF LEATHER and ARTIFICIAL LEATHER COVER MATERIALS

    Directory of Open Access Journals (Sweden)

    ÇETİN Münire Sibel

    2016-05-01

    Full Text Available The analysis and regulation of workplace, working instruments, the comfort of office chair, business environment (sound, lighting, climate, vibration, temperature, and humidity, work and break times, analysis and editing of the organization, are some of the topics of interest of ergonomics. Environmental impact and conditions have important role on the employee’s working comfortably and efficiently. Therefore these conditions need to be aligned to the human body nature. Unsuitable working conditions (noise, etc. cause additional load, which the human body endures, and this additional load reveals the signs of tiredness in the body. Even an office environment, unsuitable physical environment impairs health of workers and reduces the performance. Therefore, office climate, environmental factors such as lighting and noise must be harmonized with the employee’s body nature in all working environments. Seating comfort is one of the important factors affecting the performance of employees in the office environment. There are so many studies about chair dimensions and the disorders on human body which were caused by the inappropriate chair dimensions and sitting positions. However, there are a spot of studies about the surface of the chair and the discomfort caused by the chair cover and its negative performance effects. In this study, some results of seat cover analysis for the design of an ergonomic chair. Recently, ease of cleaning, low cost advantages caused the increasing of the use of artificial leather especially on the surface of the seat used in offices. The physical properties of natural leather and artificial leather were compared as the candidate covers to be used on the design of an ergonomic office chair.

  12. Individual thermal comfort. Measurements versus perceived level; Thermisch individueel comfort. Metingen versus beleving

    Energy Technology Data Exchange (ETDEWEB)

    Noom, P.; Zeiler, W.; Boxem, G. [Unit Building Physics and Systems, Faculteit Bouwkunde, Technische Universiteit Eindhoven TUE, Eindhoven (Netherlands); Haan, J.F.B.C.; Van der Velden, J. [Kropman Installatietechniek, Rijswijk (Netherlands)

    2010-11-15

    In a normal office building measurements according to NEN-EN-ISO 7726 (Ergonomics of the thermal environment. Instruments for measuring physical quantities) have been carried out and a survey was held to determine the perceived thermal comfort of individuals. A comparison between the objective determined thermal comfort and the perceived thermal comfort shows quite a difference. This result was also reached in earlier research by others in laboratories. Therefore it is necessary to take care of the differences when designing a specific comfort level and try to determine the perceived comfort level of the individual occupants. [Dutch] Nieuwe optimalisatiemogelijkheden voor energiegebruik voor het comfort zijn mogelijk door vanuit de actuele en toekomstige individuele behoefte aan comfort van de gebruiker de installatie optimaal aan te sturen. Dit artikel geeft inzicht in de efficiente afstemming van vraag en aanbod van energie voor thermisch comfort. In een kantoorgebouw zijn metingen gedaan, conform NEN-EN-ISO 7726 (Ergonomics of the thermal environment. Instruments for measuring physical quantities), en er is een enquete gehouden om het thermisch comfort individueel te kunnen bepalen gedurende de werkdag. Het doel van de metingen was de verschillen tussen de individuele beleving en de werkelijke klimaat omstandigheden te kunnen bepalen.

  13. Impact of shade on outdoor thermal comfort-a seasonal field study in Tempe, Arizona.

    Science.gov (United States)

    Middel, Ariane; Selover, Nancy; Hagen, Björn; Chhetri, Nalini

    2016-12-01

    Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1 year, on selected clear calm days representative of each season, we conducted hourly meteorological transects from 7:00 a.m. to 6:00 p.m. and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on a semantic differential 9-point scale, increasing thermal comfort in all seasons except winter. Shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shades are equally efficient in hot dry climates. Globe temperature explained 51 % of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors included adaptation, thermal comfort vote, thermal preference, gender, season, and time of day. A regression of subjective thermal sensation on physiological equivalent temperature yielded a neutral temperature of 28.6 °C. The acceptable comfort range was 19.1 °C-38.1 °C with a preferred temperature of 20.8 °C. Respondents exposed to above neutral temperature felt more comfortable if they had been in air-conditioning 5 min prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas to reduce thermal stress.

  14. Evaluating local and overall thermal comfort in buildings using thermal manikins

    Energy Technology Data Exchange (ETDEWEB)

    Foda, E.

    2012-07-01

    Evaluation methods of human thermal comfort that are based on whole-body heat balance with its surroundings may not be adequate for evaluations in non-uniform thermal conditions. Under these conditions, the human body's segments may experience a wide range of room physical parameters and the evaluation of the local (segmental) thermal comfort becomes necessary. In this work, subjective measurements of skin temperature were carried out to investigate the human body's local responses due to a step change in the room temperature; and the variability in the body's local temperatures under different indoor conditions and exposures as well as the physiological steady state local temperatures. Then, a multi-segmental model of human thermoregulation was developed based on these findings to predict the local skin temperatures of individuals' body segments with a good accuracy. The model predictability of skin temperature was verified for steady state and dynamic conditions using measured data at uniform neutral, cold and warm as well as different asymmetric thermal conditions. The model showed very good predictability with average absolute deviation ranged from 0.3-0.8 K. The model was then implemented onto the control system of the thermal manikin 'THERMINATOR' to adjust the segmental skin temperature set-points based on the indoor conditions. This new control for the manikin was experimentally validated for the prediction of local and overall thermal comfort using the equivalent temperature measure. THERMINATOR with the new control mode was then employed in the evaluation of localized floor-heating system variants towards maximum energy efficiency. This aimed at illustrating a design strategy using the thermal manikin to find the optimum geometry and surface area of a floor-heater for a single seated person. Furthermore, a psychological comfort model that is based on local skin temperature was adapted for the use with the model of human

  15. Factors that affecting mothers’ postnatal comfort

    Directory of Open Access Journals (Sweden)

    Gül Pınar

    2009-01-01

    Full Text Available Aim: The comfort is defined as; “an expected result of a complex conformation of providing peace and help about individual’s needs in a physical, psycho-spiritual, social and environmental entity to overcome the problems”. The aim of this study was to determine the mother’s postnatal comfort and the affecting factors of it.Materials and Methods: This is a sectional and descriptive study. The study was performed on the mothers (n=150 who applied to the delivery service of the Başkent University Ankara Hospital between the date of 30.07.2008 to 31.12.2008. A questionnaire was developed by the investigators to collect data and determine patients’ postnatal comfort scores. Results: The mean age of women was 26.4±3.5 years, the majority of patients had an educational level of high school (68.7% and were multipara (66.0%. It was determined that the mothers had problems and needed help with the fatigue, pain, in standing up, the adverse effect of anesthesia, personal and perineal hygiene that affect their postnatal comfort. The comfort score of the mothers who had spontaneous vaginal birth was higher than those of underwent cesarean delivery (p<0.05.Conclusion: The mothers’ needs and expectations about themselves and their babies were generally supplied by midwifes and the nurses in the postnatal period. Opinion of the mothers about their comfort were influenced to a positive view and the comfort scores increased while the mothers’ satisfaction were augmented (p<0.05.

  16. In-situ real time measurements of thermal comfort and comparison with the adaptive comfort theory in Dutch residential dwellings

    NARCIS (Netherlands)

    Ioannou, A.; Itard, L.C.M.; Agarwal, Tushar

    2018-01-01

    Indoor thermal comfort is generally assessed using the PMV or the adaptive model. This research presents the results obtained by in-situ real time measurements of thermal comfort and thermal comfort perception in 17 residential dwellings in the Netherlands. The study demonstrates the new

  17. Automation of closed environments in space for human comfort and safety

    Science.gov (United States)

    1992-01-01

    This report culminates the work accomplished during a three year design project on the automation of an Environmental Control and Life Support System (ECLSS) suitable for space travel and colonization. The system would provide a comfortable living environment in space that is fully functional with limited human supervision. A completely automated ECLSS would increase astronaut productivity while contributing to their safety and comfort. The first section of this report, section 1.0, briefly explains the project, its goals, and the scheduling used by the team in meeting these goals. Section 2.0 presents an in-depth look at each of the component subsystems. Each subsection describes the mathematical modeling and computer simulation used to represent that portion of the system. The individual models have been integrated into a complete computer simulation of the CO2 removal process. In section 3.0, the two simulation control schemes are described. The classical control approach uses traditional methods to control the mechanical equipment. The expert control system uses fuzzy logic and artificial intelligence to control the system. By integrating the two control systems with the mathematical computer simulation, the effectiveness of the two schemes can be compared. The results are then used as proof of concept in considering new control schemes for the entire ECLSS. Section 4.0 covers the results and trends observed when the model was subjected to different test situations. These results provide insight into the operating procedures of the model and the different control schemes. The appendix, section 5.0, contains summaries of lectures presented during the past year, homework assignments, and the completed source code used for the computer simulation and control system.

  18. Improving thermal comfort in office practice: biomimetic comfort profiles

    NARCIS (Netherlands)

    Zeiler, W.; Houten, van M.A.; Boxem, G.; Noom, P.; Velden, van der J.A.J.

    2009-01-01

    In the office building of Kropman in Utrecht a number of measurements were done, by means of NEN-EN-ISO 7726, to determine thermal comfort in the office building. Also two enquiries were held to determine the thermal comfort perception of the employees. The evaluation of the measurements and

  19. Perceived Indoor Environment and Occupants’ Comfort in European “Modern” Office Buildings: The OFFICAIR Study

    Directory of Open Access Journals (Sweden)

    Ioannis A. Sakellaris

    2016-04-01

    Full Text Available Indoor environmental conditions (thermal, noise, light, and indoor air quality may affect workers’ comfort, and consequently their health and well-being, as well as their productivity. This study aimed to assess the relations between perceived indoor environment and occupants’ comfort, and to examine the modifying effects of both personal and building characteristics. Within the framework of the European project OFFICAIR, a questionnaire survey was administered to 7441 workers in 167 “modern” office buildings in eight European countries (Finland, France, Greece, Hungary, Italy, The Netherlands, Portugal, and Spain. Occupants assessed indoor environmental quality (IEQ using both crude IEQ items (satisfaction with thermal comfort, noise, light, and indoor air quality, and detailed items related to indoor environmental parameters (e.g., too hot/cold temperature, humid/dry air, noise inside/outside, natural/artificial light, odor of their office environment. Ordinal logistic regression analyses were performed to assess the relations between perceived IEQ and occupants’ comfort. The highest association with occupants’ overall comfort was found for “noise”, followed by “air quality”, “light” and “thermal” satisfaction. Analysis of detailed parameters revealed that “noise inside the buildings” was highly associated with occupants’ overall comfort. “Layout of the offices” was the next parameter highly associated with overall comfort. The relations between IEQ and comfort differed by personal characteristics (gender, age, and the Effort Reward Imbalance index, and building characteristics (office type and building’s location. Workplace design should take into account both occupant and the building characteristics in order to provide healthier and more comfortable conditions to their occupants.

  20. Perceived Indoor Environment and Occupants’ Comfort in European “Modern” Office Buildings: The OFFICAIR Study

    Science.gov (United States)

    Sakellaris, Ioannis A.; Saraga, Dikaia E.; Mandin, Corinne; Roda, Célina; Fossati, Serena; de Kluizenaar, Yvonne; Carrer, Paolo; Dimitroulopoulou, Sani; Mihucz, Victor G.; Szigeti, Tamás; Hänninen, Otto; de Oliveira Fernandes, Eduardo; Bartzis, John G.; Bluyssen, Philomena M.

    2016-01-01

    Indoor environmental conditions (thermal, noise, light, and indoor air quality) may affect workers’ comfort, and consequently their health and well-being, as well as their productivity. This study aimed to assess the relations between perceived indoor environment and occupants’ comfort, and to examine the modifying effects of both personal and building characteristics. Within the framework of the European project OFFICAIR, a questionnaire survey was administered to 7441 workers in 167 “modern” office buildings in eight European countries (Finland, France, Greece, Hungary, Italy, The Netherlands, Portugal, and Spain). Occupants assessed indoor environmental quality (IEQ) using both crude IEQ items (satisfaction with thermal comfort, noise, light, and indoor air quality), and detailed items related to indoor environmental parameters (e.g., too hot/cold temperature, humid/dry air, noise inside/outside, natural/artificial light, odor) of their office environment. Ordinal logistic regression analyses were performed to assess the relations between perceived IEQ and occupants’ comfort. The highest association with occupants’ overall comfort was found for “noise”, followed by “air quality”, “light” and “thermal” satisfaction. Analysis of detailed parameters revealed that “noise inside the buildings” was highly associated with occupants’ overall comfort. “Layout of the offices” was the next parameter highly associated with overall comfort. The relations between IEQ and comfort differed by personal characteristics (gender, age, and the Effort Reward Imbalance index), and building characteristics (office type and building’s location). Workplace design should take into account both occupant and the building characteristics in order to provide healthier and more comfortable conditions to their occupants. PMID:27120608

  1. End-state comfort trumps handedness in object manipulation.

    Science.gov (United States)

    Coelho, Chase J; Studenka, Breanna E; Rosenbaum, David A

    2014-04-01

    A goal of research on human perception and performance is to explore the relative importance of constraints shaping action selection. The present study concerned the relative importance of two constraints that have not been directly contrasted: (1) the tendency to grasp objects in ways that afford comfortable or easy-to-control final postures; and (2) the tendency to grasp objects with the dominant rather than the nondominant hand. We asked participants to reach out and grasp a horizontal rod whose left or right end was to be placed into a target after a 90° rotation. In one condition, we told participants which hand to use and let them choose an overhand or underhand initial grasp. In another condition, we told participants which grasp to use and let them choose either hand. Participants sacrificed hand preference to perform the task in a way that ensured a comfortable or easy to control thumb-up posture at the time of object placement, indicating that comfort trumped handedness. A second experiment confirmed that comfort was indeed higher for thumb-down postures than thumb-up postures. A third experiment confirmed that the choice data could be linked to objective performance differences. The results point to the importance of identifying constraint weightings for action selection and support an account of hand selection that ascribes hand preference to sensitivity to performance differences. The results do not support the hypothesis that hand preference simply reflects a bias to use the dominant hand.

  2. Forty years of Fanger's model of thermal comfort: comfort for all?

    Science.gov (United States)

    van Hoof, J

    2008-06-01

    The predicted mean vote (PMV) model of thermal comfort, created by Fanger in the late 1960s, is used worldwide to assess thermal comfort. Fanger based his model on college-aged students for use in invariant environmental conditions in air-conditioned buildings in moderate thermal climate zones. Environmental engineering practice calls for a predictive method that is applicable to all types of people in any kind of building in every climate zone. In this publication, existing support and criticism, as well as modifications to the PMV model are discussed in light of the requirements by environmental engineering practice in the 21st century in order to move from a predicted mean vote to comfort for all. Improved prediction of thermal comfort can be achieved through improving the validity of the PMV model, better specification of the model's input parameters, and accounting for outdoor thermal conditions and special groups. The application range of the PMV model can be enlarged, for instance, by using the model to assess the effects of the thermal environment on productivity and behavior, and interactions with other indoor environmental parameters, and the use of information and communication technologies. Even with such modifications to thermal comfort evaluation, thermal comfort for all can only be achieved when occupants have effective control over their own thermal environment. The paper treats the assessment of thermal comfort using the PMV model of Fanger, and deals with the strengths and limitations of this model. Readers are made familiar to some opportunities for use in the 21st-century information society.

  3. Thermal comfort in residential buildings: Comfort values and scales for building energy simulation

    NARCIS (Netherlands)

    Peeters, L.F.R.; Dear, de R.; Hensen, J.L.M.; D'Haeseleer, W.

    2009-01-01

    Building Energy Simulation (BES) programmes often use conventional thermal comfort theories to make decisions, whilst recent research in the field of thermal comfort clearly shows that important effects are not incorporated. The conventional theories of thermal comfort were set up based on steady

  4. Perceived indoor environment and occupants’ comfort in European “Modern” office buildings: The OFFICAIR Study

    NARCIS (Netherlands)

    Sakellaris, I.A.; Saraga, D.E.; Mandin, C.; Roda, C.; Fossati, S.; Kluizenaar, Y. de; Carrer, P.; Dimitroulopoulou, S.; Mihucz, V.G.; Szigeti, T.; Hänninen, O.; Oliveira Fernandes, E. de; Bartzis, J.G.; Bluyssen, P.M.

    2016-01-01

    Indoor environmental conditions (thermal, noise, light, and indoor air quality) may affect workers’ comfort, and consequently their health and well-being, as well as their productivity. This study aimed to assess the relations between perceived indoor environment and occupants’ comfort, and to

  5. Thermal Comfort At The Street Corridor Around Public Places, Case Study Alun-Alun Malang City

    Directory of Open Access Journals (Sweden)

    Erna Winansih

    2016-01-01

    Full Text Available Malang as the second largest city in East Java province become crowded recently. The congestion almost happens everyday. The scenery of the street corridor is full of iron stacks. It is said that Malang city is less comfortable and less walkable. The decrease of this environment encourages to conduct the study (Q.S. 16:90, Q.S. 96:1-5, Q.S. 30:41. The study aimed to analyze the thermal comfort at pedestrian ways around Malang city squares, the street corridor of Merdeka Alun-Alun (MAA and the Tugu Alun-Alun (TAA. The temperature and relative humidity were measured by multinorm instrument. The THI (Temperature Humidity Index method was used to analyze the thermal comfort. The results showed that the THI average at TAA (27 were more comfortable than at MAA (27,5. The south side of the MAA corridor became the most comfortable with the THI value of 26,4, which the side covered by trees canopy (Q.S. 7:58. It needs to conduct next research (Q.S. 13:11, because of the change of the activities at these street corridors.

  6. Thermal comfort in residential buildings: Comfort values and scales for building energy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, Leen; D' haeseleer, William [Division of Applied Mechanics and Energy Conversion, University of Leuven (K.U.Leuven), Celestijnenlaan 300 A, B-3001 Leuven (Belgium); Dear, Richard de [Division of Environmental and Life Sciences, Macquarie University, Sydney (Australia); Hensen, Jan [Faculty of Architecture, Building and Planning, Technische Universiteit Eindhoven, Vertigo 6.18, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2009-05-15

    Building Energy Simulation (BES) programmes often use conventional thermal comfort theories to make decisions, whilst recent research in the field of thermal comfort clearly shows that important effects are not incorporated. The conventional theories of thermal comfort were set up based on steady state laboratory experiments. This, however, is not representing the real situation in buildings, especially not when focusing on residential buildings. Therefore, in present analysis, recent reviews and adaptations are considered to extract acceptable temperature ranges and comfort scales. They will be defined in an algorithm, easily implementable in any BES code. The focus is on comfortable temperature levels in the room, more than on the detailed temperature distribution within that room. (author)

  7. Energetic optimization as a result of improvement for social comfort: international example

    Energy Technology Data Exchange (ETDEWEB)

    Melandri, D.

    2007-07-01

    Comfort of human beings is related to the availability of energetic sources. In these terms, connection between comfort and energy becomes synonymous of connection between comfort and productivity. Thus Energy Management can be considered as a tool to optimize different parameters, with clear results on global efficiency of all processes. A clear energetic analysis, besides standard evaluation, can bring to optimization of following parameters: Lay out, Human resources, Internal logistic processes, Business productivity. Through energetic cost, for example, it is possible to have reference indicators useful for the lay out and number of employees optimization in offices. An International study has been conducted in this sense, with important and surprising results. A design for a building in Australia shows that an excellent energetic efficiency brings to an annual saving of 10 ml dollars, as a result of the improved efficiency of the working area. Similar examples can be found in several parts of the world. For these reasons, in civil and tertiary sector, some important pollution causes must be considered during the design of energy efficiency systems: atmospheric pollution due to chemical agents and radiations, acoustic pollution, vibration pollution, microclimate states, lighting. All these elements are part of the study. (auth)

  8. Thermal comfort of people in the hot and humid area of China-impacts of season, climate, and thermal history.

    Science.gov (United States)

    Zhang, Y; Chen, H; Wang, J; Meng, Q

    2016-10-01

    We conducted a climate chamber study on the thermal comfort of people in the hot and humid area of China. Sixty subjects from naturally ventilated buildings and buildings with split air conditioners participated in the study, and identical experiments were conducted in a climate chamber in both summer and winter. Psychological and physiological responses were observed over a wide range of conditions, and the impacts of season, climate, and thermal history on human thermal comfort were analyzed. Seasonal and climatic heat acclimatization was confirmed, but they were found to have no significant impacts on human thermal sensation and comfort. The outdoor thermal history was much less important than the indoor thermal history in regard to human thermal sensation, and the indoor thermal history in all seasons of a year played a key role in shaping the subjects' sensations in a wide range of thermal conditions. A warmer indoor thermal history in warm seasons produced a higher neutral temperature, a lower thermal sensitivity, and lower thermal sensations in warm conditions. The comfort and acceptable conditions were identified for people in the hot and humid area of China. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Smart grid for comfort; Smart grid voor comfort

    Energy Technology Data Exchange (ETDEWEB)

    Zeiler, W.; Van der Velden, J.A.J. [Kropman, Rijswijk (Netherlands); Vissers, D.R.; Maaijen, H.N. [Faculteit Bouwkunde, Technische Universiteit Eindhoven TUE, Eindhoven (Netherlands); Kling, W.L. [Faculteit Electrical Engineering, Technische Universiteit Eindhoven TUE, Eindhoven (Netherlands); Larsen, J.P. [Sense Observation Systems, Rotterdam (Netherlands)

    2012-04-15

    A new control strategy was developed based on the application of wireless sensor network with the connection to a smart grid to investigate if it is possible to save energy on the level of the user under the condition of maintaining the same or even improved level of individual comfort. By using different scenarios, for individual comfort and energy consumption, agents provide the steering of the process control This forms the basis of a new approach to optimize the energy consumption, after which the effect of it can be used on the level of residential building to optimize the interaction with the electrical infrastructure, the smart grid. [Dutch] Er vindt onderzoek plaats naar een nieuwe regelstrategie gebaseerd op de toepassing van een draadloos sensor netwerk dat is gekoppeld aan het smart grid. Doel van deze regelstrategie is om op gebruikersniveau energie te kunnen besparen met behoud of zelfs verbetering van het individueel comfort. Er zijn verschillende scenario's voor individueel comfort en energiegebruik van apparatuur met behulp van agents die voor de aansturing kunnen zorgen. Zo wordt de kern van de energievraag geoptimaliseerd. De doorwerking hiervan tot op het niveau van woninggebouw en de koppeling met het externe elektriciteitsnet kan vervolgens worden geoptimaliseerd.

  10. Experimental study on physiological responses and thermal comfort under various ambient temperatures.

    Science.gov (United States)

    Yao, Ye; Lian, Zhiwei; Liu, Weiwei; Shen, Qi

    2008-01-28

    This study mainly explored the thermal comfort from the perspective of physiology. Three physiological parameters, including skin temperature (local and mean), electrocardiograph (ECG) and electroencephalogram (EEG), were investigated to see how they responded to the ambient temperature and how they were related to the thermal comfort sensation. A total of four ambient temperatures (21 degrees C, 24 degrees C, 26 degrees C and 29 degrees C) were created, while the other thermal conditions including the air velocity (about 0.05+/-0.01 m/s) and the air humidity (about 60+/-5 m/s) were kept as stable as possible throughout the experiments. Twenty healthy students were tested with questionnaire investigation under those thermal environments. The statistical analysis shows that the skin temperature (local and mean), the ratio of LF(norm) to HF(norm) of ECG and the global relative power of the different EEG frequency bands will be sensitive to the ambient temperatures and the thermal sensations of the subjects. It is suggested that the three physiological parameters should be considered all together in the future study of thermal comfort.

  11. GPs' communication skills - a study into women's comfort to disclose intimate partner violence.

    Science.gov (United States)

    Tan, Eleanor; O'Doherty, Lorna; Hegarty, Kelsey

    2012-07-01

    Quantitative research investigating the effects of general practitioner communication on a patient's comfort to disclose intimate partner violence is lacking. We explored the association between GPs' communication and patients' comfort to discuss fear of an intimate partner. A health/lifestyle survey mailed to 14 031 women (aged 16-50 years) who attended the participating GPs of 40 Victorian general practices during the previous year. There was a 32% response rate (n=4467). The results showed that female GPs were perceived as having better communication; an association between female GPs and comfort to disclose was not apparent in multivariate analyses. Time, caring, involving the patient in decisions and putting the patient at ease maintained associations with comfort to discuss, as did language, lower education, age >25 years and current fear. This study advocates increasing communication competence to allow for greater disclosure of sensitive issues such as intimate partner violence in the primary care context. However, it also signals a need in research and practice to focus on marginalised groups and intimate partner violence.

  12. Study of weather and thermal comfort influence on sport performance: prognostic analysis applied to Rio de Janeiro's city marathon

    Science.gov (United States)

    Pallotta, M.; Herdies, D. L.; Gonçalves, L. G.

    2013-05-01

    There is nowadays a growing interest in the influence and impacts of weather and climate in human life. The weather conditions analysis shows the utility of this type of tool when applied in sports. These conditions act as a differential in strategy and training, especially for outdoor sports. This study had as aim objective develop weather forecast and thermal comfort evaluation targeted to sports, and hoped that the results can be used to the development of products and weather service in the Olympic Games 2016 in Rio de Janeiro City. The use of weather forecast applied to the sport showed to be efficient for the case of Rio de Janeiro City Marathon, especially due to the high spatial resolution. The WRF simulations for the three marathons studied showed good results for temperature, atmospheric pressure, and relative humidity. On the other hand, the forecast of the wind showed a pattern of overestimation of the real situation in all cases. It was concluded that the WRF model provides, in general, more representative simulations from 36 hours in advance, and with 18 hours of integration they were even better, describing efficiently the synoptic situation that would be found. A review of weather conditions and thermal comfort at specific points of the marathon route showed that there are significant differences between the stages of the marathon, which makes possible to plan the competition strategy under the thermal comfort. It was concluded that a relationship between a situation more thermally comfortable (uncomfortable) and the best (worst) time in Rio de Janeiro City Marathon

  13. Human Behavior & Low Energy Architecture: Linking Environmental Adaptation, Personal Comfort, & Energy Use in the Built Environment

    Science.gov (United States)

    Langevin, Jared

    Truly sustainable buildings serve to enrich the daily sensory experience of their human inhabitants while consuming the least amount of energy possible; yet, building occupants and their environmentally adaptive behaviors remain a poorly characterized variable in even the most "green" building design and operation approaches. This deficiency has been linked to gaps between predicted and actual energy use, as well as to eventual problems with occupant discomfort, productivity losses, and health issues. Going forward, better tools are needed for considering the human-building interaction as a key part of energy efficiency strategies that promote good Indoor Environmental Quality (IEQ) in buildings. This dissertation presents the development and implementation of a Human and Building Interaction Toolkit (HABIT), a framework for the integrated simulation of office occupants' thermally adaptive behaviors, IEQ, and building energy use as part of sustainable building design and operation. Development of HABIT begins with an effort to devise more reliable methods for predicting individual occupants' thermal comfort, considered the driving force behind the behaviors of focus for this project. A long-term field study of thermal comfort and behavior is then presented, and the data it generates are used to develop and validate an agent-based behavior simulation model. Key aspects of the agent-based behavior model are described, and its predictive abilities are shown to compare favorably to those of multiple other behavior modeling options. Finally, the agent-based behavior model is linked with whole building energy simulation in EnergyPlus, forming the full HABIT program. The program is used to evaluate the energy and IEQ impacts of several occupant behavior scenarios in the simulation of a case study office building for the Philadelphia climate. Results indicate that more efficient local heating/cooling options may be paired with wider set point ranges to yield up to 24

  14. Possibilities to improve the aircraft interior comfort experience.

    Science.gov (United States)

    Vink, P; Bazley, C; Kamp, I; Blok, M

    2012-03-01

    Comfort plays an increasingly important role in the interior design of airplanes. Although ample research has been conducted on airplane design technology, only a small amount of public scientific information is available addressing the passenger's opinion. In this study, more than 10,000 internet trip reports and 153 passenger interviews were used to gather opinions about aspects which need to be improved in order to design a more comfortable aircraft interior. The results show clear relationships between comfort and legroom, hygiene, crew attention and seat/personal space. Passengers rate the newer planes significantly better than older ones, indicating that attention to design for comfort has proven effective. The study also shows that rude flight attendants and bad hygiene reduce the comfort experience drastically and that a high comfort rating is related to higher "fly again" values. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  15. A CFD study for evaluating the effects of natural ventilation on indoor comfort conditions

    Directory of Open Access Journals (Sweden)

    Miguel Mora-Pérez

    2017-03-01

    Full Text Available There is an increasing interest in improving energy efficiency in buildings due to the increased awareness about environmental impact and energy cost. Natural ventilation is an environmentally friendly technique which has become more attractive way for reducing energy use while it also provides acceptable comfort conditions. The research shows a case study building in which the natural ventilation effect due to wind-driven forces on indoor comfort conditions is evaluated. Moreover, the architectural solutions selected during the building design phase to improve the natural ventilation behaviour are successfully validated in a full-scale building. The indoor comfort conditions are evaluated through contrasted performance indicators: draught risk (DR, predicted percentage of dissatisfied people (PPD and predicted mean vote (PMV indexes. The results show that air movement due to natural ventilation allows increasing indoor air temperature maintaining the initial comfort conditions. Therefore, the mechanical air conditioning use can be postponed until the indoor air temperature is high and would, consequently, reduce the total building energy consumption. Thereby, a proper natural ventilation focus during the initial design stage could improve the building energy efficiency without compromising the indoor comfort conditions.

  16. Thermal comfort following immersion.

    Science.gov (United States)

    Guéritée, Julien; Redortier, Bernard; House, James R; Tipton, Michael J

    2015-02-01

    Unlike thermal comfort in air, little research has been undertaken exploring thermal comfort around water sports. We investigated the impact of swimming and cooling in air after swimming on thermal comfort. After 10 min of swimming-and-resting cycles in 28°C water, volunteers wearing two types of garments or in swim briefs, faced winds in 24°C air, at rest or when stepping. Thermal comfort was significantly higher during swimming than resting. Post-immersion, following maximum discomfort, in 45 of 65 tests thermal comfort improved although mean skin temperature was still cooling (0.26 [SD 0.19] °C·min(-1) - max was 0.89°C·min(-1)). When thermal comfort was re-established mean skin temperature was lower than at maximal discomfort in 39 of 54 tests (0.81 [SD 0.58] °C - max difference was 2.68°C). The reduction in thermal discomfort in this scenario could be due to the adaptation of thermoreceptors, or to reductions in cooling rates to levels where discomfort was less stimulated. The relief from the recent discomfort may explain why, later, thermal comfort returned to initial levels in spite of poorer thermal profiles. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Leptin concentrations in response to acute stress predict subsequent intake of comfort foods

    Science.gov (United States)

    Tomiyama, A. Janet; Schamarek, Imke; Lustig, Robert H.; Kirschbaum, Clemens; Puterman, Eli; Havel, Peter J.; Epel, Elissa S.

    2012-01-01

    Both animals and humans show a tendency toward eating more “comfort food” (high fat, sweet food) after acute stress. Such stress eating may be contributing to the obesity epidemic, and it is important to understand the underlying psychobiological mechanisms. Prior investigations have studied what makes individuals eat more after stress; this study investigates what might make individuals eat less. Leptin has been shown to increase following a laboratory stressor, and is known to affect eating behavior. This study examined whether leptin reactivity accounts for individual differences in stress eating. To test this, we exposed forty women to standardized acute psychological laboratory stress (Trier Social Stress Test) while blood was sampled repeatedly for measurements of plasma leptin. We then measured food intake after the stressor in 29 of these women. Increasing leptin during the stressor predicted lower intake of comfort food. These initial findings suggest that acute changes in leptin may be one of the factors modulating down the consumption of comfort food following stress. PMID:22579988

  18. Building envelope regulations on thermal comfort in glass facade buildings and energy-saving potential for PMV-based comfort control

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ruey-Lung; Shu, Shiu-Ya [Department of Architecture, National United University, 1, Lien-Da, Kung-Ching Li, Miaoli, 36003 (China)

    2011-04-15

    This paper presents an investigation of the effect of building envelope regulation on thermal comfort and on the energy-saving potential for PMV-based comfort control in glass facade buildings. Occurrences and severity of overheating, based on the PMV-PPD model contained in ISO 7730, were used for the thermal comfort assessment. Parametric study simulations for an actual building with a large glass facade were carried out to predict the changes in thermal comfort levels in a space due to different glazing types, depths of overhang and glazing areas, which are the key parameters of the building envelope regulation index, named ENVLOAD, in Taiwan. The result demonstrates that the ENVLOAD has significant effect on thermal comfort. Additionally, comparative simulations between PMV-based comfort control and conventional thermostatic control were performed to investigate the changes in the energy-saving potential of a thermal comfort-controlled space due to changes of its ENVLOAD. The results demonstrate that the energy-saving potential in a PMV-based controlled space increases with low ENVLOAD conditions. (author)

  19. THERMAL COMFORT STUDY OF AN AIR-CONDITIONED DESIGN STUDIO IN TROPICAL SURABAYA

    OpenAIRE

    Agus Dwi Hariyanto

    2005-01-01

    This paper evaluates the current thermal comfort condition in an air-conditioned design studio using objective measurement and subjective assessment. Objective measurement is mainly to quantify the air temperature, MRT, relative humidity, and air velocity. Subjective assessment is conducted using a questionnaire to determine the occupants thermal comfort sensations and investigate their perception of the thermal comfort level. A design studio in an academic institution in Surabaya was chosen ...

  20. Outdoor thermal comfort and behaviour in urban area

    Science.gov (United States)

    Inavonna, I.; Hardiman, G.; Purnomo, A. B.

    2018-01-01

    Outdoor comfort is important due to the public spaces functions. Open spaces provide thermal comfort and a pleasant experience to improve the city life quality effectively. The influence of thermal comfort in outdoor activities is a complex problem. This paper presents a literature review and discussion of aspects of physical, psychology, and social behaviour toward outdoor thermal comfort. The valuation is determined not only by the “physical state” but also by the “state of mind”. The assessment is static and objective (i.e., physical and physiological characteristics) that it should be measured. Furthermore, an effective model to provide the knowledge of climatic conditions, as well as the dynamic and subjective aspects (i.e., psychological and social characteristics and behaviour), requires a comprehensive interview and observation. The model will be examined to describe the behaviour that is a reflection of perception and behaviour toward the environment. The adaptation process will constantly evolve so that it becomes a continuous cause between human behaviour and the spatial setting of the formation, which is eventually known as places and not just spaces. This evolutionary process is a civic art form.

  1. Thermal Comfort in a Naturally-Ventilated Educational Building

    OpenAIRE

    David Mwale Ogoli

    2012-01-01

    A comprehensive study of thermal comfort in a naturally ventilated education building (88,000 ft2) in a Chicago suburb will be conducted with 120 student subjects in 2007. This paper discusses some recent trends in worldwide thermal comfort studies and presents a proposal of research for this building through a series of questionnaire tables. Two research methods used inthermal comfort studies are field studies and laboratory experiments in climate-chambers. The various elements that constitu...

  2. Confortamos? Lidamos com o humano sem conhecer o que de humano temos dentro de nós Do we comfort? We deal with human beings without being aware of our humanness

    Directory of Open Access Journals (Sweden)

    Fernanda Carneiro Mussi

    1999-06-01

    Full Text Available Faço um convite à reflexão propondo um confronto entre o que pensam, esperam e precisam alguns pacientes e familiares quanto ao conforto e comportamentos habituais adotados pelas pessoas do sistema de atendimento nas interações com seus clientes. Se o conforto, na perspectiva dos clientes, está associado a uma prática humanística que comportamentos profissionais podem se constituir em obstáculos para a sua promoção? A reflexão se estende a compreensão de fatores que influenciam os comportamentos profissionais e a identificação de possíveis caminhos para. a promoção de um prática humanística.Reflections are intended to propose a confrontation between patients and families' thoughts, expectation, and needs regarding comfort and the usual behaviors adopted by health care agents during their interactions the clients. If comfort as viewed by patients is seen as a humanistic practice, which professional attitudes can become an obstacle to comfort? Reflections are also associated to factors that determine professional behaviors and the identification of the paths for a more humanistic practice.

  3. Comfort Women in Human Rights Discourse: Fetishized Testimonies, Small Museums, and the Politics of Thin Description

    Science.gov (United States)

    Joo, Hee-Jung Serenity

    2015-01-01

    In the last two decades, the issue of comfort women--the women and girls who were forced into sex slavery for the Japanese army before and during WWII--has risen to global attention. Tens of thousands of comfort women (the average estimate is anywhere between 80,000 and 200,000) were confined at comfort stations managed by the Japanese Imperial…

  4. Exploratory study of comfort by the year 2010; Etude prospective sur le confort a l'horizon 2010

    Energy Technology Data Exchange (ETDEWEB)

    Halgand, R. [Gaz de France (GDF), 75 - Paris (France)

    2000-07-01

    Gaz de France has carried out an exploratory study on the changes to the idea of comfort in inhabited buildings by the year 2010. The main questions studied were the following: how do we define comfort? what changes can be foreseen to the notion of comfort in inhabited buildings? what will the impact of those changes be on the markets for gas? The exploratory study lasted a year and brought together experts from many fields. Three scenarios for changes to the notion of comfort were drawn up. We were able to discern several ways for progress: respect for the environment, decreases in the cost of appliances, increases in safety, control of a greater number of parameters, ease of use... This study showed that it is always possible to work at improving our products in order to increase the comfort provided by gas systems in building, to better satisfy our customers and to conquer new markets. (author)

  5. Outdoor thermal comfort characteristics in the hot and humid region from a gender perspective.

    Science.gov (United States)

    Tung, Chien-Hung; Chen, Chen-Peng; Tsai, Kang-Ting; Kántor, Noémi; Hwang, Ruey-Lung; Matzarakis, Andreas; Lin, Tzu-Ping

    2014-11-01

    Thermal comfort is a subjective psychological perception of people based also on physiological thermoregulation mechanisms when the human body is exposed to a combination of various environmental factors including air temperature, air humidity, wind speed, and radiation conditions. Due to the importance of gender in the issue of outdoor thermal comfort, this study compared and examined the thermal comfort-related differences between male and female subjects using previous data from Taiwanese questionnaire survey. Compared with males, the results indicated that females in Taiwan are less tolerant to hot conditions and intensely protect themselves from sun exposure. Our analytical results are inconsistent with the findings of previous physiological studies concerning thermal comfort indicating that females have superior thermal physiological tolerance than males. On the contrary, our findings can be interpreted on psychological level. Environmental behavioral learning theory was adopted in this study to elucidate this observed contradiction between the autonomic thermal physiological and psychological-behavioral aspects. Women might desire for a light skin tone through social learning processes, such as observation and education, which is subsequently reflected in their psychological perceptions (fears of heat and sun exposure) and behavioral adjustments (carrying umbrellas or searching for shade). Hence, these unique psychological and behavioral phenomena cannot be directly explained by autonomic physiological thermoregulation mechanisms. The findings of this study serve as a reference for designing spaces that accommodates gender-specific thermal comfort characteristics. Recommendations include providing additional suitable sheltered areas in open areas, such as city squares and parks, to satisfy the thermal comfort needs of females.

  6. Human comfort and self-estimated performance in relation to indoor environmental parameters and building features

    DEFF Research Database (Denmark)

    Frontczak, Monika Joanna

    The main objective of the Ph.D. study was to examine occupants’ perception of comfort and self-estimated job performance in non-industrial buildings (homes and offices), in particular how building occupants understand comfort and which parameters, not necessarily related to indoor environments...... and storage, noise level and visual privacy. However, if job performance is considered, then satisfaction with the main indoor environmental parameters should be addressed first as they affected self-estimated job performance to the highest extent. The present study showed that overall satisfaction...... with personal workspace affected significantly the self-estimated job performance. Increasing overall satisfaction with the personal workspace by about 15% would correspond to an increase of self-estimated job performance by 3.7%. Among indoor environmental parameters and building features, satisfaction...

  7. Visual comfort evaluated by opponent colors

    Science.gov (United States)

    Sagawa, Ken

    2002-06-01

    This study aimed to evaluate psychological impression of visual comfort when we see an image of ordinary colored scene presented in a color display. Effects of opponent colors, i.e. red, green, yellow and blue component, on the subjective judgement on visual comfort to the image were investigated. Three kinds of psychological experiment were designed to see the effects and the results indicated that the red/green opponent color component was more affecting than the yellow-blue one, and red color in particular was the most affecting factor on visual comfort.

  8. Simulating Physiological Response with a Passive Sensor Manikin and an Adaptive Thermal Manikin to Predict Thermal Sensation and Comfort

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, John P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chaney, Larry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hepokoski, Mark [ThermoAnalytics Inc.; Curran, Allen [ThermoAnalytics Inc.; Burke, Richard [Measurement Technology NW; Maranville, Clay [Ford Motor Company

    2015-04-14

    Reliable assessment of occupant thermal comfort can be difficult to obtain within automotive environments, especially under transient and asymmetric heating and cooling scenarios. Evaluation of HVAC system performance in terms of comfort commonly requires human subject testing, which may involve multiple repetitions, as well as multiple test subjects. Instrumentation (typically comprised of an array of temperature sensors) is usually only sparsely applied across the human body, significantly reducing the spatial resolution of available test data. Further, since comfort is highly subjective in nature, a single test protocol can yield a wide variation in results which can only be overcome by increasing the number of test replications and subjects. In light of these difficulties, various types of manikins are finding use in automotive testing scenarios. These manikins can act as human surrogates from which local skin and core temperatures can be obtained, which are necessary for accurately predicting local and whole body thermal sensation and comfort using a physiology-based comfort model (e.g., the Berkeley Comfort Model). This paper evaluates two different types of manikins, i) an adaptive sweating thermal manikin, which is coupled with a human thermoregulation model, running in real-time, to obtain realistic skin temperatures; and, ii) a passive sensor manikin, which is used to measure boundary conditions as they would act on a human, from which skin and core temperatures can be predicted using a thermophysiological model. The simulated physiological responses and comfort obtained from both of these manikin-model coupling schemes are compared to those of a human subject within a vehicle cabin compartment transient heat-up scenario.

  9. Thermal comfort in urban green spaces: a survey on a Dutch university campus.

    Science.gov (United States)

    Wang, Yafei; de Groot, Rudolf; Bakker, Frank; Wörtche, Heinrich; Leemans, Rik

    2017-01-01

    To better understand the influence of urban green infrastructure (UGI) on outdoor human thermal comfort, a survey and physical measurements were performed at the campus of the University of Groningen, The Netherlands, in spring and summer 2015. Three hundred eighty-nine respondents were interviewed in five different green spaces. We aimed to analyze people's thermal comfort perception and preference in outdoor urban green spaces, and to specify the combined effects between the thermal environmental and personal factors. The results imply that non-physical environmental and subjective factors (e.g., natural view, quiet environment, and emotional background) were more important in perceiving comfort than the actual thermal conditions. By applying a linear regression and probit analysis, the comfort temperature was found to be 22.2 °C and the preferred temperature was at a surprisingly high 35.7 °C. This can be explained by the observation that most respondents, who live in temperate regions, have a natural tendency to describe their preferred state as "warmer" even when feeling "warm" already. Using the Kruskal-Wallis H test, the four significant factors influencing thermal comfort were people's exposure time in green spaces, previous thermal environment and activity, and their thermal history. However, the effect of thermal history needs further investigation due to the unequal sample sizes of respondents from different climate regions. By providing evidence for the role of the objective and subjective factors on human thermal comfort, the relationship between UGI, microclimate, and thermal comfort can assist urban planning to make better use of green spaces for microclimate regulation.

  10. Nurses' comfort level with spiritual assessment: a study among nurses working in diverse healthcare settings.

    Science.gov (United States)

    Cone, Pamela H; Giske, Tove

    2017-10-01

    To gain knowledge about nurses' comfort level in assessing spiritual matters and to learn what questions nurses use in practice related to spiritual assessment. Spirituality is important in holistic nursing care; however, nurses report feeling uncomfortable and ill-prepared to address this domain with patients. Education is reported to impact nurses' ability to engage in spiritual care. This cross-sectional exploratory survey reports on a mixed-method study examining how comfortable nurses are with spiritual assessment. In 2014, a 21-item survey with 10 demographic variables and three open-ended questions were distributed to Norwegian nurses working in diverse care settings with 172 nurse responses (72 % response rate). SPSS was used to analyse quantitative data; thematic analysis examined the open-ended questions. Norwegian nurses reported a high level of comfort with most questions even though spirituality is seen as private. Nurses with some preparation or experience in spiritual care were most comfortable assessing spirituality. Statistically significant correlations were found between the nurses' comfort level with spiritual assessment and their preparedness and sense of the importance of spiritual assessment. How well-prepared nurses felt was related to years of experience, degree of spirituality and religiosity, and importance of spiritual assessment. Many nurses are poorly prepared for spiritual assessment and care among patients in diverse care settings; educational preparation increases their comfort level with facilitating such care. Nurses who feel well prepared with spirituality feel more comfortable with the spiritual domain. By fostering a culture where patients' spirituality is discussed and reflected upon in everyday practice and in continued education, nurses' sense of preparedness, and thus their level of comfort, can increase. Clinical supervision and interprofessional collaboration with hospital chaplains and/or other spiritual leaders can

  11. A Comparison Study on the Assessment of Ride Comfort for LRT Passengers

    Science.gov (United States)

    Tengku Munawir, Tengku Imran; Abqari Abu Samah, Ahmad; Afiq Akmal Rosle, Muhammad; Azlis-Sani, Jalil; Hasnan, Khalid; Sabri, S. M.; Ismail, S. M.; Yunos, Muhammad Nur Annuar Mohd; Yen Bin, Teo

    2017-08-01

    Ride comfort in railway transportation is very mind boggling and it relies on different dynamic performance criteria as well as subjective observation from the train passengers. Vibration discomfort from different elements such as vehicle condition, track area condition and working condition can prompt poor ride comfort. However, there are no universal applicable standards to analyse the ride comfort. There are several factors including local condition, vehicle condition and the track condition. In this current work, level of ride comfort by previous Adtranz-Walker light rapid transit (LRT) passengers at Ampang line were analysed. A comparison was done via two possible methods which are BS EN 12299 (2009) and Sperling’s Ride Index equation. BS EN 12299 standard is used to measure and evaluate the ride comfort of seating (Nvd) and standing (Nva) of train passenger in three different routes. Next, Sperling’s ride comfort equation is used to conduct validation and comparison between the obtained data. The result indicates a higher extent of vibration in the vertical axis which impacts the overall result. The standing position demonstrates a higher exposure of vibration in all the three tested routes. Comparison of the ride comfort assessment of passenger in sitting and standing position for both methods indicates that all the track sections exceeds “pronounced but not unpleasant (medium)” limit range. Nevertheless, the seating position at track section AU did not exceed the limit and stayed at the comfortable zone. The highest discomfort level achieved for both methods for seating position are 3.34 m/s2 for Nva and 2.63 m/s2 respectively, which is at route C uptrack that is from Chan Sow Lin station to Sri Petaling station. Meanwhile, the highest discomfort level achieved for both methods for standing are 3.80 m/s2 for Nvd and 2.88 m/s2 for Wz respectively, at uptrack section which is from Sri Petaling station to Chan Sow Lin station. Thus, the highest

  12. MONITORING OF LOWER LIMB COMFORT AND INJURY IN ELITE FOOTBALL

    Directory of Open Access Journals (Sweden)

    Michael Kinchington

    2010-12-01

    Full Text Available The aim of the study was to examine the relation between lower limb comfort scores and injury and to measure the responsiveness of a lower limb comfort index (LLCI to changes over time, in a cohort of professional footballers. Lower limb comfort was recorded for each individual using a comfort index which assessed the comfort status of five anatomical segments and footwear. Specifically we tested the extent to which comfort zones as measured by the LLCI were related to injury measured as time loss events. The hypothesis for the study was that poor lower limb comfort is related to time loss events (training or match day. A total of 3524 player weeks of data was collected from 182 professional athletes encompassing three codes of football (Australian Rules, Rugby league, Rugby Union. The study was conducted during football competition periods for the respective football leagues and included a period of pre- season training. The results of regression indicated that poor lower limb comfort was highly correlated to injury (R2 =0.77 and accounted for 43.5 time loss events/ 1000hrs football exposure. While poor comfort was predictive of injury 47% of all time loss events it was not statistically relevant (R2 =0.18. The results indicate lower limb comfort can be used to assess the well-being of the lower limb; poor comfort is associated with injury, and the LLCI has good face validity and high criterion-related validity for the relationship between comfort and injury

  13. Forty years of Fanger's model of thermal comfort: Comfort for all?

    NARCIS (Netherlands)

    Hoof, van J.

    2008-01-01

    The predicted mean vote (PMV) model of thermal comfort, created by Fanger in the late 1960s, is used worldwide to assess thermal comfort. Fanger based his model on college-aged students for use in invariant environmental conditions in air-conditioned buildings in moderate thermal climate zones.

  14. An investigation of thermal comfort inside a bus during heating period within a climatic chamber.

    Science.gov (United States)

    Pala, Uzeyir; Oz, H Ridvan

    2015-05-01

    By this study, it was aimed to define a testing and calculation model for thermal comfort assessment of a bus HVAC design and to compare effects of changing parameters on passenger's thermal comfort. For this purpose, a combined theoretical and experimental work during heating period inside a coach was carried out. The bus was left under 20 °C for more than 7 h within a climatic chamber and all heat sources were started at the beginning of a standard test. To investigate effects of fast transient conditions on passengers' physiology and thermal comfort, temperatures, air humidity and air velocities were measured. Human body was considered as one complete piece composed of core and skin compartments and the Transient Energy Balance Model developed by Gagge et al. in 1971 was used to calculate changes in thermal parameters between passenger bodies and bus interior environment. Depending on the given initial and environmental conditions, the graphs of passengers Thermal Sensation and Thermal Discomfort Level were found. At the end, a general mathematical model supported with a related experimental procedure was developed for the use of automotive HVAC engineers and scientists working on thermal comfort as a human dimension. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  15. Beyond the classic thermoneutral zone: Including thermal comfort.

    Science.gov (United States)

    Kingma, Boris Rm; Frijns, Arjan Jh; Schellen, Lisje; van Marken Lichtenbelt, Wouter D

    2014-01-01

    The thermoneutral zone is defined as the range of ambient temperatures where the body can maintain its core temperature solely through regulating dry heat loss, i.e., skin blood flow. A living body can only maintain its core temperature when heat production and heat loss are balanced. That means that heat transport from body core to skin must equal heat transport from skin to the environment. This study focuses on what combinations of core and skin temperature satisfy the biophysical requirements of being in the thermoneutral zone for humans. Moreover, consequences are considered of changes in insulation and adding restrictions such as thermal comfort (i.e. driver for thermal behavior). A biophysical model was developed that calculates heat transport within a body, taking into account metabolic heat production, tissue insulation, and heat distribution by blood flow and equates that to heat loss to the environment, considering skin temperature, ambient temperature and other physical parameters. The biophysical analysis shows that the steady-state ambient temperature range associated with the thermoneutral zone does not guarantee that the body is in thermal balance at basal metabolic rate per se. Instead, depending on the combination of core temperature, mean skin temperature and ambient temperature, the body may require significant increases in heat production or heat loss to maintain stable core temperature. Therefore, the definition of the thermoneutral zone might need to be reformulated. Furthermore, after adding restrictions on skin temperature for thermal comfort, the ambient temperature range associated with thermal comfort is smaller than the thermoneutral zone. This, assuming animals seek thermal comfort, suggests that thermal behavior may be initiated already before the boundaries of the thermoneutral zone are reached.

  16. A contribution towards establishing more comfortable space weather to cope with increased human space passengers for ISS shuttles

    Science.gov (United States)

    Kalu, A.

    Space Weather is a specialized scienctific descipline in Meteorology which has recently emerged from man's continued research efforts to create a familiar spacecraft environment which is physiologically stable and life sustaining for astronauts and human passengers in distant space travels. As the population of human passengers in space shuttles rapidly increases, corresponding research on sustained micro-climate of spacecrafts is considered necessary and timely. This is because existing information is not meant for a large population in spacecrafts. The paper therefore discusses the role of meteorology (specifically micrometeorology) in relation to internal communication, spacecraft instrumentation and physiologic comfort of astronauts and space passengers (the later may not necessarily be trained astronauts, but merely business men or tourist space travellers for business transactions in the International Space Station (ISS)). It is recognized that me eorology which is a fundamental science amongt multidiscplinary sciences has been found to be vital in space travels and communication. Space weather therefore appears in slightly different format where temperature and humidity changes and variability within the spacecraft exert very significant influences on the efficiency of astronauts and the effectiveness of the various delicate instrument gadgets aimed at reducing the frequency of computer failures and malfunction of other instruments on which safety of the spacecraft depends. Apart from the engineering and technological problems which space scientists must have to overcome when human population in space shuttles increases as we now expect, based on evidence from successful missions to ISS, the maint enace of physiologic comfort state of astronauts, which, as far as scientifically possible, should be as near as possible to their Earth-Atmosphere condition. This is one of the most important and also most difficult conditions to attain. It demands a mor e

  17. Thermal Comfort in a Naturally-Ventilated Educational Building

    Directory of Open Access Journals (Sweden)

    David Mwale Ogoli

    2012-11-01

    Full Text Available A comprehensive study of thermal comfort in a naturally ventilated education building (88,000 ft2 in a Chicago suburb will be conducted with 120 student subjects in 2007. This paper discusses some recent trends in worldwide thermal comfort studies and presents a proposal of research for this building through a series of questionnaire tables. Two research methods used inthermal comfort studies are field studies and laboratory experiments in climate-chambers. The various elements that constitute a “comfortable” thermal environment include physical factors (ambient air temperature, mean radiant temperature, air movement and humidity, personal factors(activity and clothing, classifications (gender, age, education, etc. and psychological expectations (knowledge, experience, psychological effect of visual warmth by, say, a fireplace. Comparisons are made using data gathered from Nairobi, Kenya.Keywords: Comfort, temperature, humidity and ventilation

  18. Turkish Version of Kolcaba's Immobilization Comfort Questionnaire: A Validity and Reliability Study

    Directory of Open Access Journals (Sweden)

    Betül Tosun, RN, PhD

    2015-12-01

    Conclusions: The findings of this study reveal that the ICQ is a valid and reliable tool for assessing the comfort of patients in Turkey who are immobilized because of lower extremity orthopedic problems.

  19. Thermal Analysis--Human Comfort--Indoor Environments. NBS Special Publication 491.

    Science.gov (United States)

    Mangum, Billy W., Ed.; Hill, James E., Ed.

    Included in these proceedings are 11 formal papers presented by leading researchers in the field of thermal comfort and heat stress at a symposium held for the purpose of exploring new aspects of indoor thermal environments, caused primarily by the impact of energy conservation in new and existing buildings. The contributed papers were from…

  20. Thermal Comfort Assessment in The Open Space in Bandung Case Study Dago Street and Riau Street

    Science.gov (United States)

    Sugangga, M.; Janesonia, K. I.; Illiyin, D. F.; Donny Koerniawan, M.

    2018-05-01

    Bandung’s temperature has been higher since last years. This phenomenon affects the level of thermal comfort in open space. One indicator that determines the thermal comfort level is the type of activity performed by the open space user. Riau Street and Dago Street are corridors that are often used by the people for strolling, jogging, shopping. Dago Street has special event every Sunday namely car free day. Both corridors have different orientation; Dago Street is North to South corridor while Riau Street’s is West to East. The goal of the study is to compare people’s perception of thermal comfort in both corridors. This research uses two methods, namely qualitative method and quantitative method. Based on the results of qualitative analysis found that the thermal conditions in Dago Street more comfortable than the Riau Street. The result of quantitative analysis found that the average PET (thermal comfort indices) value of Dago Street was at 27.5 °C PET and Riau Street 28.6 °C PET. Dago Street is considered more convenient because it has a lower PET value than Riau Street. The people perception of thermal comfort is very important to start the steps for designing the orientation of street in urban design.

  1. The impact of air pollution from used ventilation filters on human comfort and health

    DEFF Research Database (Denmark)

    Clausen, Geo; Alm, O.; Fanger, Povl Ole

    2002-01-01

    The comfort and health of 30 women was studied during 4 hours´ exposure in an experimental room with either a used or a new filter present in the ventilation system. All other environmental parameters were kept constant. The presence of the used filter in the ventilation system had a significant ...

  2. Thermal comfort: research and practice.

    Science.gov (United States)

    van Hoof, Joost; Mazej, Mitja; Hensen, Jan L M

    2010-01-01

    Thermal comfort--the state of mind, which expresses satisfaction with the thermal environment--is an important aspect of the building design process as modern man spends most of the day indoors. This paper reviews the developments in indoor thermal comfort research and practice since the second half of the 1990s, and groups these developments around two main themes; (i) thermal comfort models and standards, and (ii) advances in computerization. Within the first theme, the PMV-model (Predicted Mean Vote), created by Fanger in the late 1960s is discussed in the light of the emergence of models of adaptive thermal comfort. The adaptive models are based on adaptive opportunities of occupants and are related to options of personal control of the indoor climate and psychology and performance. Both models have been considered in the latest round of thermal comfort standard revisions. The second theme focuses on the ever increasing role played by computerization in thermal comfort research and practice, including sophisticated multi-segmental modeling and building performance simulation, transient thermal conditions and interactions, thermal manikins.

  3. Comfort and performance impact of personal control over thermal environment in summer

    DEFF Research Database (Denmark)

    Boerstra, Atze C.; te Kulve, Marije; Toftum, Jørn

    2015-01-01

    Field studies suggest that the availability of adjustable thermostats, operable windows and other controls has a positive impact on comfort, the incidence of building related symptoms and productivity. This laboratory study was designed to further investigate how having or not having control over...... the thermal environment affects human responses to the indoor environment.The study was conducted in summer in a field laboratory that was kept at 28°C. A total of 23 subjects were exposed twice for about 2.5h. During the first session (A) subjects were able to fine-tune their local thermal environment at any...... recorded during the first session. Thus, each subject was exposed to two customized conditions with identical exposure, only different from a psychological point of view.During the two sessions identical questionnaires and performance tests were used to evaluate subjects' comfort, SBS symptom incidence...

  4. Combining several thermal indices to generate a unique heat comfort assessment methodology

    Directory of Open Access Journals (Sweden)

    Wissam EL Hachem

    2015-11-01

    Full Text Available Purpose: The proposed methodology hopes to provide a systematic multi-disciplinary approach to assess the thermal environment while minimizing unneeded efforts. Design/methodology/approach: Different factors affect the perception of the human thermal experience: metabolic rate (biology, surrounding temperatures (heat balance and environmental factors and cognitive treatment (physiology.This paper proposes a combination of different multidisciplinary variables to generate a unique heat comfort assessment methodology. The variables at stake are physiological, biological, and environmental. Our own heat analysis is thoroughly presented and all relevant equations are described. Findings: Most companies are oblivious about potential dangers of heat stress accidents and thus about methods to monitor and prevent them. This methodology enables the company or the concerned individual to conduct a preliminary assessment with minimal wasted resources and time in unnecessary steps whilst providing a guideline for a detailed study with minimal error rates if needed. More so, thermal comfort is an integral part of sound ergonomics practices, which in turn are decisive for the success of any lean six sigma initiative. Research limitations/implications: This methodology requires several full implementations to finalize its design. Originality/value: Most used heat comfort models are inherently uncertain and tiresome to apply. An extensive literature review confirms the need for a uniform assessment methodology that combines the different thermal comfort models such as the Fanger comfort model (PMV, PPD and WGBT since high error rates coupled with tiresome calculations often hinder the thermal assessment process.

  5. Editorial: Comfort and discomfort studies demonstrate the need for a new model

    NARCIS (Netherlands)

    Vink, P.; Hallbeck, S.

    2012-01-01

    The term comfort is often seen relating to the marketing of products like chairs, cars, clothing, hand tools and even airplane tickets, while in the scientific literature, the term discomfort shows up often, since it is used in research. Few papers explain the concept of a localized comfort

  6. Real-Time Monitoring of Occupants’ Thermal Comfort through Infrared Imaging: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Boris Pavlin

    2017-02-01

    Full Text Available Thermally comfortable indoor environments are of great importance, as modern lifestyles often require people to spend more than 20 h per day indoors. Since most of the thermal comfort models use a variety of different environmental and personal factors that need to be measured or estimated, real-time and continuous assessment of thermal comfort is often not practically feasible. This work presents a cheap and non-invasive approach based on infrared imaging for monitoring the occupants’ thermal sensation and comfort in real time. Thanks to a mechatronic device developed by the authors, the imaging is performed on the forehead skin, selected because it is always exposed to the environment and, thus, facilitating the monitoring activity in a non-invasive manner. Tests have been performed in controlled conditions on ten subjects to assess the hypothesis that the forehead temperature is correlated with subjects’ thermal sensation. This allows the exploitation of this quantity as a base for a simple monitoring of thermal comfort, which could later be tuned with an extensive experimental campaign.

  7. Thermal sensation and comfort during exposure to local airflow to face or legs.

    Science.gov (United States)

    Yamashita, Kazuaki; Matsuo, Juntaro; Tochihara, Yutaka; Kondo, Youichiro; Takayama, Shizuka; Nagayama, Hiroki

    2005-01-01

    The present study examined the contribution of local airflow temperature to thermal sensation and comfort in humans. Eight healthy male students were exposed to local airflow to their faces (summer condition) or legs (winter condition) for 30 minutes. Local airflow temperature (Tf) was maintained at 18 degrees C to 36 degrees C, and ambient temperature (Ta) was maintained at 17.4 degrees C to 31.4 degrees C. Each subject was exposed to 16 conditions chosen from the combination of Tf and Ta. Based on the results of multiple regression analysis, the standardized partial regression coefficient of Tf and Ta were determined to be 0.93 and 0.13 in the summer condition, and 0.71 and 0.36 in the winter condition at the end of the exposure. Also, thermal comfort was observed to depend closely on the interrelation between Tf and Ta. The present data suggested that local airflow temperature is an important thermal factor regarding thermal sensation and comfort.

  8. The Study of Thermal Comfort in Transforming Residential Area in Bandung using ENVI-met Software. Case Study: Progo Street

    Science.gov (United States)

    Aziz Soelaiman, Tubagus M.; Soedarsono, Woerjantari K.; Donny Koerniawan, M.

    2018-05-01

    Bandung has a high potential in attracting tourists. This potential impact on building function near tourist attraction that can transform residential uses into commercial uses. Progo Street and its surrounding area used as the case study, which is close to Gedung Sate and Riau Street as tourist destinations in Bandung. Moreover, this transformation is also reinforced by the spatial planning policies in Bandung, known as RTRW and RDTR, said that this area will be fully non-residential area. This condition in some cases could affect thermal comfort. This paper provides the changes of thermal comfort phenomenon that occurs using EnviMet software. The study compares Predicted Mean Voted (PMV) as thermal comfort indicator between existing and Bandung detailed spatial plan (RDTR) condition. The result shows that the PMV value of current condition is higher than future planning, nonetheless the planned area will be changed into higher non-residential buildings and less greeneries. Some environmental factors that are used to calculate PMV such as air temperature, mean radiant temperature, humidity, and wind speed are also examined to find out what makes the plan more comfortable than the existing. Simulations using ENVI-met software could be considered in making more objective planning policy in the future.

  9. Thermal Comfort at the Street Corridor Around Public Places, Case Study Alun-Alun Malang City

    OpenAIRE

    Winansih, Erna; Antariksa, Antariksa; Surjono, Surjono; Leksono, Amin Setyo

    2015-01-01

    Malang as the second largest city in East Java province become crowded recently. The congestion almost happens everyday. The scenery of the street corridor is full of iron stacks. It is said that Malang city is less comfortable and less walkable. The decrease of this environment encourages to conduct the study (Q.S. 16:90, Q.S. 96:1-5, Q.S. 30:41). The study aimed to analyze the thermal comfort at pedestrian ways around Malang city squares, the street corridor of Merdeka Alun-Alun (MAA) and t...

  10. Affect asymmetry and comfort food consumption.

    Science.gov (United States)

    Dubé, Laurette; LeBel, Jordan L; Lu, Ji

    2005-11-15

    It is proposed that the emotional triggers of comfort food consumption can reliably be predicted by factors tied to affect asymmetry whereby negative affects dominate one's experience, decision making and behaviors in some instances while positive emotions prevail in others. Specifically, we relate three of these factors (age, gender, and culture) to differences in the emotional triggers of comfort food consumption and we further explore the possibility that the type of food eaten during comfort-seeking episodes can also be tied to affect asymmetry. Two hundred and seventy-seven participants completed a web-based survey conducted to assess the emotional antecedents and consequences of comfort food consumption. Consistent with expectations, results indicate that men's comfort food consumption was motivated by positive emotions whereas women's consumption was triggered by negative affects. Consumption of comfort foods alleviated women's negative emotions but also produced guilt. Positive affect was a particularly powerful trigger of comfort food consumption for older participants and for participants with French cultural background. Younger participants and participants with English background reported more intense negative emotions prior to consuming comfort foods. Foods high in sugar and fat content were more efficient in alleviating negative affects whereas low-calorie foods were more efficient in increasing positive emotions.

  11. Intelligent multi-objective optimization for building energy and comfort management

    Directory of Open Access Journals (Sweden)

    Pervez Hameed Shaikh

    2018-04-01

    Full Text Available The rapid economic and population growth in developing countries, effective and efficient energy usage has turned out to be crucial due to the rising concern of depleting fossil fuels, of which, one-third of primary energy is consumed in buildings and expected to rise by 53% up to 2030. This roaring sector posing a challenge, due to 90% of people spend most of their time in buildings, requires enhanced well-being of indoor environment and living standards. Therefore, building operations require more energy because most of the energy is consumed to make the indoor environment comfortable. Consequently, there is the need of improved energy efficiency to decrease energy consumption in buildings. In relation to this, the primary challenge of building control systems is the energy consumption and comfort level are generally conflicting to each other. Therefore, an important problem of sustainable smart buildings is to effectively manage the energy consumption and comfort and attain the trade-off between the two. Thus, smart buildings are becoming a trend of future construction that facilitates intelligent control in buildings for the fulfillment of occupant’s comfort level. In this study, an intelligent multi-objective system has been developed with evolutionary multi-objective genetic algorithm (MOGA optimization method. The corresponding case study simulation results for the effective management of users’ comfort and energy efficiency have been carried out. The case study results show the management of energy supply for each comfort parameter and maintain high comfort index achieving balance between the energy consumption and comfort level. Keywords: Energy, Buildings, Comfort, Management, Optimization, Trade-off

  12. Energy and comfort performance evaluation after renovation of an office building

    Energy Technology Data Exchange (ETDEWEB)

    Renzi, V.; Burgun, F. [Inst. National de l' Energie Solaire, Le Bourget du Lac (France)

    2009-07-01

    Buildings constitute 42.5 per cent of the energy consumption in Europe. As such, the building sector represents a high potential for innovation in terms of reducing global energy consumption. Since existing buildings represent a large part of the built environment, refurbishment is an important issue to consider. However, efficient processes of renovation must be well defined. France's National Institute of Solar Energy has developed a methodology to reduce consumption of primary energy use and decrease greenhouse gas emissions in the built environment, while increasing user comfort. The methodology places much emphasis on the health and comfort of occupants from the very beginning of the process. The methodology was developed to make the building renovation process more efficient by elaborating generic guidelines and tools. In this study, an office building from the 1970s was refurbished and monitored for both energy performance and comfort. The objective was to better understand the technological and psychosocial aspects involved in refurbishing an old building. Measurements were compared with the perception of the occupants. The impacts of human interaction on the building behaviour was also evaluated. 6 refs., 1 tab., 4 figs.

  13. Physical Environment Comfort Impacts on Office Employee’s Performance

    Directory of Open Access Journals (Sweden)

    Chua Shirley Jin Lin

    2016-01-01

    Full Text Available Office workplaces today is now no longer only consisting of passive and fixed activity but also towards a more flexible environment activity. The number of office workplaces is hiking from day to day which leads to the increase of the office workers. The productivity will be improved by providing optimum physical environment. The physical environment comfort in a workplace is claimed to be vital as it will encourages healthier, more productive and lower absenteeism rate among employees. The physical environment comfort encompassed optimum room temperature, relative humidity and illuminance level. This research intend to investigate the importance of physical environment comfort by evaluating the comfort based on the existing workplace and determine its effect on employee’s performance. Evaluation between the selected case studies are made in the aspects of employee’s comfort perceive health and absenteeism rate by wielding the elements of physical comfort consisting room temperature, relative humidity and illuminance level. Field study was carried out for 3 institutional building particularly management department. High correlations are found between room temperature, lighting and relative humidity with health related issue such as stuffy, easily tired and difficulty in concentration which affect employees’ productivity and work performances.

  14. Adaptive Thermal Comfort in Learning Spaces: A Study of the Cold Period in Ensenada, Baja California

    Directory of Open Access Journals (Sweden)

    Julio Rincón

    2017-12-01

    Full Text Available Environmental thermal conditions decisively influence people’s performance, comfort, well-being and mood. In closed spaces, where people spend 80% of their time, thermal perception is a phenomenon studied from a multidisciplinary methodological approach. In Mexico, thermal comfort has been studied in isolation in different cities in the country, specifically at sites with warm, temperate or semi-cold bioclimate. The thermal estimates presented in this paper are the result of a thermal comfort study carried out during the cold period in the city of Ensenada, Baja California, which has a dry temperate bioclimate. The study was carried out from January 30th to March 3rd 2017 and consisted of the application of a questionnaire and the simultaneous recording of temperature, relative humidity and wind speed. The questionnaire was designed based on the subjective assessment scale suggested in ISO 10551 and ANSI/ASHRAE 55, while the instruments for measuring and recording environmental variables were selected and used based on ISO 7726. A database with 983 observations was created, and the data were processed using the Averages Intervals Thermal Sensation method. The thermal comfort range estimated for indoor spaces was 16.8 °C to 23.8 °C, with an ideal neutral temperature of 20.3 °C. The percentage of satisfaction vote with these results was 91%.

  15. Development of Light Powered Sensor Networks for Thermal Comfort Measurement

    Directory of Open Access Journals (Sweden)

    Dasheng Lee

    2008-10-01

    Full Text Available Recent technological advances in wireless communications have enabled easy installation of sensor networks with air conditioning equipment control applications. However, the sensor node power supply, through either power lines or battery power, still presents obstacles to the distribution of the sensing systems. In this study, a novel sensor network, powered by the artificial light, was constructed to achieve wireless power transfer and wireless data communications for thermal comfort measurements. The sensing node integrates an IC-based temperature sensor, a radiation thermometer, a relative humidity sensor, a micro machined flow sensor and a microprocessor for predicting mean vote (PMV calculation. The 935 MHz band RF module was employed for the wireless data communication with a specific protocol based on a special energy beacon enabled mode capable of achieving zero power consumption during the inactive periods of the nodes. A 5W spotlight, with a dual axis tilt platform, can power the distributed nodes over a distance of up to 5 meters. A special algorithm, the maximum entropy method, was developed to estimate the sensing quantity of climate parameters if the communication module did not receive any response from the distributed nodes within a certain time limit. The light-powered sensor networks were able to gather indoor comfort-sensing index levels in good agreement with the comfort-sensing vote (CSV preferred by a human being and the experimental results within the environment suggested that the sensing system could be used in air conditioning systems to implement a comfort-optimal control strategy.

  16. Body Space in Social Interactions: A Comparison of Reaching and Comfort Distance in Immersive Virtual Reality

    Science.gov (United States)

    Iachini, Tina; Coello, Yann; Frassinetti, Francesca; Ruggiero, Gennaro

    2014-01-01

    Background Do peripersonal space for acting on objects and interpersonal space for interacting with con-specifics share common mechanisms and reflect the social valence of stimuli? To answer this question, we investigated whether these spaces refer to a similar or different physical distance. Methodology Participants provided reachability-distance (for potential action) and comfort-distance (for social processing) judgments towards human and non-human virtual stimuli while standing still (passive) or walking toward stimuli (active). Principal Findings Comfort-distance was larger than other conditions when participants were passive, but reachability and comfort distances were similar when participants were active. Both spaces were modulated by the social valence of stimuli (reduction with virtual females vs males, expansion with cylinder vs robot) and the gender of participants. Conclusions These findings reveal that peripersonal reaching and interpersonal comfort spaces share a common motor nature and are sensitive, at different degrees, to social modulation. Therefore, social processing seems embodied and grounded in the body acting in space. PMID:25405344

  17. Thermal comfort of various building layouts with a proposed discomfort index range for tropical climate.

    Science.gov (United States)

    Md Din, Mohd Fadhil; Lee, Yee Yong; Ponraj, Mohanadoss; Ossen, Dilshan Remaz; Iwao, Kenzo; Chelliapan, Shreeshivadasan

    2014-04-01

    Recent years have seen issues related to thermal comfort gaining more momentum in tropical countries. The thermal adaptation and thermal comfort index play a significant role in evaluating the outdoor thermal comfort. In this study, the aim is to capture the thermal sensation of respondents at outdoor environment through questionnaire survey and to determine the discomfort index (DI) to measure the thermal discomfort level. The results indicated that most respondents had thermally accepted the existing environment conditions although they felt slightly warm and hot. A strong correlation between thermal sensation and measured DI was also identified. As a result, a new discomfort index range had been proposed in association with local climate and thermal sensation of occupants to evaluate thermal comfort. The results had proved that the respondents can adapt to a wider range of thermal conditions.Validation of the questionnaire data at Putrajaya was done to prove that the thermal sensation in both Putrajaya and UTM was almost similar since they are located in the same tropical climate region. Hence, a quantitative field study on building layouts was done to facilitate the outdoor human discomfort level based on newly proposed discomfort index range. The results showed that slightly shaded building layouts of type- A and B exhibited higher temperature and discomfort index. The resultant adaptive thermal comfort theory was incorporated into the field studies as well. Finally, the study also showed that the DI values were highly dependent on ambient temperature and relative humidity but had fewer effects for solar radiation intensity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Creating high performance buildings: Lower energy, better comfort

    International Nuclear Information System (INIS)

    Brager, Gail; Arens, Edward

    2015-01-01

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. In contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64–84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building

  19. Implementation of human thermal comfort information in Köppen-Geiger climate classification—the example of China

    Science.gov (United States)

    Yang, Shi-Qi; Matzarakis, Andreas

    2016-11-01

    Köppen-Geiger climate classification (KGC) is accepted and applied worldwide. The climatic parameters utilised in KGC, however, cannot indicate human thermal comfort (HTC) conditions or air humidity (AH) conditions directly, because they are originally based on climatic effects on vegetation, instead of that on human body directly. In addition, HTC is driven by meteorological parameters together. Thus, the objective of this study is to preliminarily implement the HTC information and the AH information in KGC. Physiologically equivalent temperature (PET) has been chosen as the HTC index, and vapour pressure (VP) is for the quantification of AH conditions. In this preliminary study, 12 Chinese cities in total have been taken into account as the assumed representatives of 11 climate types. Basic meteorological data of each city with 3-h resolution in 2000-2012 has been analysed. RayMan model has been applied to calculate PET within the same time period. Each climate type has been described by frequencies of PET and frequencies of VP. For example, the Aw (Sanya) has the most frequent occurrence of thermally stressful conditions compared to other climate types: PET in 22 % points in time of the year was above 35 °C. The driest AH conditions existed in Dwc (Lhasa) and Dfb (Urumqi) with VP rarely above 18 hPa in the wettest month. Implementation of the HTC information and the additional AH information in each climate type of KGC can be helpful for the topics of human health, energy consumption, tourism, as well as urban planning.

  20. Implementation of human thermal comfort information in Köppen-Geiger climate classification-the example of China.

    Science.gov (United States)

    Yang, Shi-Qi; Matzarakis, Andreas

    2016-11-01

    Köppen-Geiger climate classification (KGC) is accepted and applied worldwide. The climatic parameters utilised in KGC, however, cannot indicate human thermal comfort (HTC) conditions or air humidity (AH) conditions directly, because they are originally based on climatic effects on vegetation, instead of that on human body directly. In addition, HTC is driven by meteorological parameters together. Thus, the objective of this study is to preliminarily implement the HTC information and the AH information in KGC. Physiologically equivalent temperature (PET) has been chosen as the HTC index, and vapour pressure (VP) is for the quantification of AH conditions. In this preliminary study, 12 Chinese cities in total have been taken into account as the assumed representatives of 11 climate types. Basic meteorological data of each city with 3-h resolution in 2000-2012 has been analysed. RayMan model has been applied to calculate PET within the same time period. Each climate type has been described by frequencies of PET and frequencies of VP. For example, the Aw (Sanya) has the most frequent occurrence of thermally stressful conditions compared to other climate types: PET in 22 % points in time of the year was above 35 °C. The driest AH conditions existed in Dwc (Lhasa) and Dfb (Urumqi) with VP rarely above 18 hPa in the wettest month. Implementation of the HTC information and the additional AH information in each climate type of KGC can be helpful for the topics of human health, energy consumption, tourism, as well as urban planning.

  1. Renewable building energy systems and passive human comfort solutions

    Energy Technology Data Exchange (ETDEWEB)

    Omer, Abdeen Mustafa [17 Juniper Court, Forest Road West, Nottingham NG7 4EU (United Kingdom)

    2008-08-15

    With environmental protection posing as the number one global problem, man has no choice but to reduce his energy consumption. One way to accomplish this is to resort to passive and low-energy systems to maintain thermal comfort in buildings. The conventional and modern designs of wind towers can successfully be used in hot arid regions to maintain thermal comfort (with or without the use of ceiling fans) during all hours of the cooling season, or a fraction of it. Climatic design is one of the best approaches to reduce the energy cost in buildings. Proper design is the first step of defence against the stress of the climate. Buildings should be designed according to the climate of the site, reducing the need for mechanical heating or cooling. Hence maximum natural energy can be used for creating a pleasant environment inside the built envelope. Technology and industry progress in the last decade diffused electronic and informatics' devices in many human activities, and also in building construction. The utilisation and operating opportunities components, increase the reduction of heat losses by varying the thermal insulation, optimise the lighting distribution with louver screens and operate mechanical ventilation for coolness in indoor spaces. In addition to these parameters the intelligent envelope can act for security control and became an important part of the building domotic revolution. Application of simple passive cooling measure is effective in reducing the cooling load of buildings in hot and humid climates. Fourty-three percent reductions can be achieved using a combination of well-established technologies such as glazing, shading, insulation, and natural ventilation. More advanced passive cooling techniques such as roof pond, dynamic insulation, and evaporative water jacket need to be considered more closely. The building sector is a major consumer of both energy and materials worldwide, and that consumption is increasing. Most industrialised

  2. Comfort and hope in the preanesthesia stage in patients undergoing surgery.

    Science.gov (United States)

    Seyedfatemi, Naima; Rafii, Forough; Rezaei, Mahboubeh; Kolcaba, Katharine

    2014-06-01

    Comfort and hope have been identified as important components in the care of perianesthesia patients. The purpose of this study was to explore the relationship between comfort and hope in the preanesthesia stage in patients undergoing surgery. A descriptive cross-sectional survey was conducted with 191 surgical patients. Data were collected using the Perianesthesia Comfort Questionnaire and Herth Hope Index. Direct and significant relationships were observed between comfort and hope (P≤.001, r=0.65). Also, significant relationships were observed between educational level and marital status with comfort (P≤.01). The relationship between educational level and hope was significant (P≤.001). Significant relationships were also observed between gender and marital status with hope (P≤.01). Overall, this study showed that a significant relationship exists between comfort and hope. Additionally, some demographic characteristics influenced comfort and hope in these patients. Health care providers should arrange the environment in a way that allows the surgical patients to experience comfort and hope and recognize the impact of personal characteristics when caring for surgical patients, particularly in the preanesthesia stage. Copyright © 2014 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  3. Exploring Holistic Comfort in Children Who Experience a Clinical Venipuncture Procedure.

    Science.gov (United States)

    Bice, April A; Hall, Joanne; Devereaux, Matthew J

    2018-06-01

    Children often experience the uncomfortable effects of invasive procedures as a part of primary care and during times of illness. Holistic comfort has been well documented in adult literature but little research exists on the understanding of holistic procedural comfort from the child's perspective. In this study, holistic comfort related to an invasive venipuncture procedure was explored in children age 5 to 7 years and their caregivers of all ages. A qualitative descriptive design described by Sandelowski was used. The philosophical underpinnings of naturalistic inquiry of Guba and Lincoln were used. Semistructured interviews were conducted with 13 child and 15 caregiver participants. Children also drew pictures to help describe their perceptions. Traditional thematic content analysis described by Hsieh and Shannon yielded four overarching themes of holistic comfort related to venipuncture procedures in children: Body Comfort, Cognitive and Emotional Comfort, Comfort in the Procedure Surroundings, and Comfort Play. Numerous recommendations for future research are included. Implications for nursing and related health sciences, organizational and administrative policy, invasive procedures, theory, and methods were found and are discussed. Findings from this study will assist nurses in providing procedure management for children from a holistic care perspective.

  4. Outcomes of newly practicing nurses who applied principles of holistic comfort theory during the transition from school to practice: a qualitative study.

    Science.gov (United States)

    Goodwin, Miki; Candela, Lori

    2013-06-01

    The aim of this qualitative study was to explore if newly practicing nurses benefited from learning holistic comfort theory during their baccalaureate education, and to provide a conceptual framework to support the transition from school to practice. The study was conducted among graduates of an accelerated baccalaureate nursing program where holistic comfort theory was embedded as a learner-centered philosophy across the curriculum. A phenomenological process using van Manen's qualitative methodology in education involving semi-structured interviews and thematic analysis was used. The nurses recalled what holistic comfort meant to them in school, and described the lived experience of assimilating holistic comfort into their attitudes and behaviors in practice. Themes were established and a conceptual framework was developed to better understand the nurses' lived experiences. Results showed that holistic comfort was experienced as a constructive approach to transcend unavoidable difficulties during the transition from school to practice. Participants described meaningful learning and acquisition of self-strengthening behaviors using holistic comfort theory. Holistic comfort principles were credited for easing nurses into the realities of work and advocating for best patient outcomes. Patient safety and pride in patient care were incidental positive outcomes. The study offers new insights about applying holistic comfort to prepare nurses for the realities of practice. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. [Comfort and noise level in infants with helmet interface].

    Science.gov (United States)

    Medina, A; Alvarez Fernández, P; Rey Galán, C; Álvarez Mendiola, P; Álvarez Blanco, S; Vivanco Allende, A

    2015-10-01

    To evaluate comfort and noise intensity using the COMFORT scale in infants who receive respiratory support with a helmet interface. An observational descriptive study was conducted on all infants (1 to 12 months of age) admitted to a PICU from November 1st 2013 to March 31st 2014 and who received non-invasive ventilation with a helmet interface. Tolerance to the interface was assessed by use of the COMFORT scale. The intensity of the noise to which the infants were exposed was measured with a TES1350A HIBOK 412 sound-level meter. Three measurements were made every day. Twenty seven patients with bronchiolitis (median age: 54 days; range: 10 to 256) were included. Median COMFORT score in the first day was 21 points (14 - 28). An increase in patient comfort was found with a gradual decrease in the scores, with a maximum reduction of 22% from the first hours (score of 22) to the fifth day (score of 18). The minimum sound intensity registered was 42dB, and the maximum was 78dB. Background noise intensity was associated with noise intensity in the helmet. No differences were observed in COMFORT score and noise intensity between ventilator devices. Helmet interface was well tolerated by infants. COMFORT score results are an indicator that infants were comfortable or very comfortable. The measured noise intensity was in the safe range permitted by World Health Organization. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  6. Are you sitting comfortably? Perspectives of the researchers and the researched on "being comfortable".

    Science.gov (United States)

    Morris, Norma; Balmer, Brian

    2006-01-01

    In a study of volunteers in medical research, we found contrasting readings of "being comfortable" by the volunteer research subjects and the researchers. Although the experimental process (testing a new kind of diagnostic technology) involved some physical discomfort--and the researchers focused on this--the volunteers' concerns centred on feeling socially comfortable and managing feelings of embarrassment or isolation, and they generally made light of the physical aspects. The bias of volunteer concerns, which is understandable in terms of the different situations of researchers and volunteers and the different tensions they create, has potential implications for the engagement of researchers with their research subjects and prevailing standards for the ethical and accountable conduct of research.

  7. Diseases of comfort: primary cause of death in the 22nd century.

    Science.gov (United States)

    Choi, Bernard C K; Hunter, David J; Tsou, Walter; Sainsbury, Peter

    2005-12-01

    The world has started to feel the impact of a global chronic disease epidemic, which is putting pressure on our health care systems. If uncurbed, a new generation of "diseases of comfort" (such as those chronic diseases caused by obesity and physical inactivity) will become a major public health problem in this and the next century. To describe the concept, causes, and prevention and control strategies of diseases of comfort. Brokered by a senior research scientist specialised in knowledge translation, a chair, a president, and a past president of national public health associations contributed their views on the subject. Diseases of comfort have emerged as a price of living in a modern society. It is inevitable that these diseases will become more common and more disabling if human "progress" and civilisation continue toward better (more comfortable) living, without necessarily considering their effects on health. Modern technology must be combined with education, legislation, intersectoral action, and community involvement to create built and social environments that encourage, and make easy, walking, physical activity, and nutritious food choices, to reduce the health damaging effects of modern society for all citizens and not only the few. Public health needs to be more passionate about the health issues caused by human progress and adopt a health promotion stance, challenging the assumptions behind the notion of social "progress" that is giving rise to the burden of chronic disease and developing the skills to create more health promoting societies in which individual health thrives.

  8. Comfort and patient-centred care without excessive sedation

    DEFF Research Database (Denmark)

    Vincent, Jean-Louis; Shehabi, Yahya; Walsh, Timothy S

    2016-01-01

    We propose an integrated and adaptable approach to improve patient care and clinical outcomes through analgesia and light sedation, initiated early during an episode of critical illness and as a priority of care. This strategy, which may be regarded as an evolution of the Pain, Agitation...... and Delirium guidelines, is conveyed in the mnemonic eCASH-early Comfort using Analgesia, minimal Sedatives and maximal Humane care. eCASH aims to establish optimal patient comfort with minimal sedation as the default presumption for intensive care unit (ICU) patients in the absence of recognised medical...... requirements for deeper sedation. Effective pain relief is the first priority for implementation of eCASH: we advocate flexible multimodal analgesia designed to minimise use of opioids. Sedation is secondary to pain relief and where possible should be based on agents that can be titrated to a prespecified...

  9. Thermal Comfort and Optimum Humidity Part 1

    Directory of Open Access Journals (Sweden)

    M. V. Jokl

    2002-01-01

    Full Text Available The hydrothermal microclimate is the main component in indoor comfort. The optimum hydrothermal level can be ensured by suitable changes in the sources of heat and water vapor within the building, changes in the environment (the interior of the building and in the people exposed to the conditions inside the building. A change in the heat source and the source of water vapor involves improving the heat - insulating properties and the air permeability of the peripheral walls and especially of the windows. The change in the environment will bring human bodies into balance with the environment. This can be expressed in terms of an optimum or at least an acceptable globe temperature, an adequate proportion of radiant heat within the total amount of heat from the environment (defined by the difference between air and wall temperature, uniform cooling of the human body by the environment, defined a by the acceptable temperature difference between head and ankles, b by acceptable temperature variations during a shift (location unchanged, or during movement from one location to another without a change of clothing. Finally, a moisture balance between man and the environment is necessary (defined by acceptable relative air humidity. A change for human beings means a change of clothes which, of course, is limited by social acceptance in summer and by inconvenient heaviness in winter. The principles of optimum heating and cooling, humidification and dehumidification are presented in this paper.Hydrothermal comfort in an environment depends on heat and humidity flows (heat and water vapors, occurring in a given space in a building interior and affecting the total state of the human organism.

  10. Thermal Comfort and Optimum Humidity Part 2

    Directory of Open Access Journals (Sweden)

    M. V. Jokl

    2002-01-01

    Full Text Available The hydrothermal microclimate is the main component in indoor comfort. The optimum hydrothermal level can be ensured by suitable changes in the sources of heat and water vapor within the building, changes in the environment (the interior of the building and in the people exposed to the conditions inside the building. A change in the heat source and the source of water vapor involves improving the heat - insulating properties and the air permeability of the peripheral walls and especially of the windows. The change in the environment will bring human bodies into balance with the environment. This can be expressed in terms of an optimum or at least an acceptable globe temperature, an adequate proportion of radiant heat within the total amount of heat from the environment (defined by the difference between air and wall temperature, uniform cooling of the human body by the environment, defined a by the acceptable temperature difference between head and ankles, b by acceptable temperature variations during a shift (location unchanged, or during movement from one location to another without a change of clothing. Finally, a moisture balance between man and the environment is necessary (defined by acceptable relative air humidity. A change for human beings means a change of clothes which, of course, is limited by social acceptance in summer and by inconvenient heaviness in winter. The principles of optimum heating and cooling, humidification and dehumidification are presented in this paper.Hydrothermal comfort in an environment depends on heat and humidity flows (heat and water vapors, occurring in a given space in a building interior and affecting the total state of the human organism.

  11. Thermal comfort, physiological responses and performance of elderly during exposure to a moderate temperature drift

    NARCIS (Netherlands)

    Schellen, L.; Marken Lichtenbelt, van W.D.; Loomans, M.G.L.C.; Frijns, A.J.H.; Toftum, J.; Wit, de M.H.

    2009-01-01

    The objective of this research was to study the effects of ageing and a moderate temperature drift on human thermal comfort, physiological responses and performance. A climate room set-up with experimental subjects in the age 67-73 was used to examine the effect of a moderate temperature ramp. Eight

  12. Braking Control for Improving Ride Comfort

    Directory of Open Access Journals (Sweden)

    Lee Jonghyup

    2018-01-01

    Full Text Available While many vehicle control systems focus on vehicle safety and vehicle performance at high speeds, most driving conditions are very low risk situations. In such a driving situation, the ride comfort of the vehicle is the most important performance index of the vehicle. Electro mechanical brake (EMB and other brake-by-wire (BBW systems have been actively researched. As a result, braking actuators in vehicles are more freely controllable, and research on improving ride comfort is also possible. In this study, we develop a control algorithm that dramatically improves ride comfort in low risk braking situations. A method for minimizing the inconvenience of a passenger due to a suddenly changing acceleration at the moment when the vehicle is stopped is presented. For this purpose, an acceleration trajectory is generated that minimizes the discomfort index defined by the change in acceleration, jerk. A controller is also designed to track this trajectory. The algorithm that updates the trajectory is designed considering the error due to the phase lag occurring in the controller and the plant. In order to verify the performance of this controller, simulation verification is completed using a car simulator, Carsim. As a result, it is confirmed that the ride comfort is dramatically improved.

  13. Regional thermal comfort zone in males and females.

    Science.gov (United States)

    Ciuha, Ursa; Mekjavic, Igor B

    2016-07-01

    Skin regions differ in their sensitivity to temperature stimuli. The present study examined whether such regional differences were also evident in the perception of thermal comfort. Regional thermal comfort was assessed in males (N=8) and females (N=8), by having them regulate the temperature of the water delivered to a water-perfused suit (WPS), within a temperature range considered thermally comfortable. In separate trials, subjects regulated the temperature of the WPS, or specific regions of the suit covering different skin areas (arms, legs, front torso and back torso). In the absence of subjective temperature regulation (TR), the temperature changed in a sinusoidal manner from 10°C to 50°C; by depressing a switch and reversing the direction of the temperature at the limits of the thermal comfort zone (TCZ), each subject defined TCZ for each body region investigated. The range of regulated temperatures did not differ between genders and skin regions. Local Tsk at the lower and upper limits of the TCZ was similar for both genders. Higher (pthermally comfortable conditions, the well-established regional differences in thermosensitivity are not reflected in the TCZ, with similar temperature preferences by both genders. Thermal comfort of different skin regions and overall body is not achieved at a single skin temperature, but at range of temperatures, defined as the TCZ. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Comfort of workers in office buildings: The European HOPE project

    NARCIS (Netherlands)

    Bluyssen, P.M.; Aries, M.; Dommelen, P. van

    2011-01-01

    Previous studies have shown that building, social and personal factors can influence one's perceived health and comfort. The aim of the underlying study was to get a better understanding of the relationships between these factors and perceived comfort. Self-administered questionnaires from 5732

  15. Comfort, Energy Efficiency and Adoption of Personal Cooling Systems in Warm Environments: A Field Experimental Study.

    Science.gov (United States)

    He, Yingdong; Li, Nianping; Wang, Xiang; He, Meiling; He, De

    2017-11-17

    It is well known that personal cooling improves thermal comfort and save energy. This study aims to: (1) compare different personal cooling systems and (2) understand what influences users' willingness to adopt them. A series of experiments on several types of personal cooling systems, which included physical measurements, questionnaires and feedback, was conducted in a real office environment. The obtained results showed that personal cooling improved comfort of participants in warm environments. Then an improved index was proposed and used to compare different types of personal cooling systems in terms of comfort and energy efficiency simultaneously. According to the improved index, desk fans were highly energy-efficient, while the hybrid personal cooling (the combination of radiant cooling desk and desk fan) consumed more energy but showed advantages of extending the comfortable temperature range. Moreover, if personal cooling was free, most participants were willing to adopt it and the effectiveness was the main factor influencing their willingness, whereas if participants had to pay, they probably refused to adopt it due to the cost and the availability of conventional air conditioners. Thus, providing effective and free personal cooling systems should be regarded as a better way for its wider application.

  16. Quality and satisfaction of thermal comfort in Dutch offices

    NARCIS (Netherlands)

    Brink, Henk Willem; Mobach, Mark P.; Balslev Nielsen, S.; Jensen, P.A.

    2016-01-01

    Purpose: This field study analyses the quality of the actual thermal comfort and indoor air quality in Dutch office buildings. A linear regression analysis was used to determine how much these variables and demographic variables influenced the perceived thermal comfort of office workers. Approach:

  17. Evaluation of comfort level in desks equipped with two personalized ventilation systems in slightly warm environments

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, Eusebio Z.E. [Faculdade de Ciencias e Tecnologia - Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Lucio, Manuela J.R. [Agrupamento Vertical Professor Paula Nogueira, R. Comunidade Lusiada, 8700-000 Olhao (Portugal); Rosa, Silvia P.; Custodio, Ana L.V.; Andrade, Renata L.; Meira, Maria J.P.A. [Faculdade de Ciencias do Mar e do Ambiente - Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2010-03-15

    In this work the comfort level, namely the thermal comfort, local thermal discomfort and air quality levels, in a classroom with desks equipped with two personalized ventilation systems, in slightly warm environments, is evaluated. A manikin, a ventilated classroom desk, two indoor climate analyzers, a multi-nodal human thermal comfort numerical model and a computational fluid dynamic numerical model, are used. The classroom desk, with double occupation capacity, is used by a student, located in the right side seat. Each personalized ventilation system is equipped with one air terminal device located above the desk writing area, in front to the trunk area, and an other located below the desk writing area, in front to the legs area. The thermal comfort level is evaluated by the developed multi-nodal human thermal comfort numerical model, using a PMV value, the local thermal discomfort level, namely the draught risk and the air velocity fluctuation equivalent frequencies, is evaluated by empirical models, while the air quality level and the detailed airflow around the manikin are evaluated by the computational fluid dynamic numerical model. In the experimental tests the mean air velocity and the turbulence intensity in the upper air terminal device are 3.5 m/s and 9.7%, while in the lower air terminal device are 2.6 m/s and 15.2%. The mean air temperature in the air terminal devices is around 28 C, while the mean radiant temperature in the occupation area, the mean air temperature far from the occupation area and the internal mean air relative humidity were, respectively, 28 C, 28 C and 50%. The air velocity and temperature around the occupant are measured around 15 human body sections. The actual personalized ventilation system, which promotes an ascendant airflow around the occupant with highest air renovation rate in the respiration area, promotes acceptable thermal comfort conditions and air quality in the respiration area in accord to the present standards. The

  18. Measuring comfort in caregivers and patients during late end-of-life care.

    Science.gov (United States)

    Novak, B; Kolcaba, K; Steiner, R; Dowd, T

    2001-01-01

    The purpose of this study was to test several formats of end-of-life comfort instruments for patients and closely involved caregivers. Kolcaba's Comfort Theory was the theoretical framework utilized. Different response formats for two end-of-life (EOL) comfort questionnaires (for patients and caregivers, respectively), and horizontal and vertical visual analog scales for total comfort (TC) lines were compared in two phases. Evaluable data were collected from both members of 38 patient-caregiver dyads in each phase. Suitable dyads were recruited from two hospice agencies in northeastern Ohio. Cronbach's alpha for the EOL comfort questionnaire (six response Likert-type format) tested during phase I for patients was .98 and for caregivers was .97. Test-retest reliability for the vertical TC line tested during phase I for patients was .64 and for caregivers was .79. The implications of this study for nursing practice and research are derived from the American Nursing Association (ANA) position statement about EOL care, which states that comfort is the goal of nursing for this population. These instruments will be useful for assessing comfort in actively dying patients and comfort of their caregivers as well as for developing evidence-based practice for this population.

  19. Thermal comfort: research and practice

    NARCIS (Netherlands)

    Hoof, van J.; Mazej, M.; Hensen, J.L.M.

    2010-01-01

    Thermal comfort -the state of mind, which expresses satisfaction with the thermal environment- is an important aspect of the building design process as modern man spends most of the day indoors. This paper reviews the developments in indoor thermal comfort research and practice since the second half

  20. Viewing Race in the Comfort Zone

    Directory of Open Access Journals (Sweden)

    Brenda L. Hughes

    2014-08-01

    Full Text Available Carter suggests the concept of a “comfort zone” to explain the inability of dramatic African American programs to be successful on television. He argues that a workable formula has been developed for successful African American series, “portray black people in a way that would be acceptable to the millions of potential purchasers (whites of advertised products. That is, non-threatening and willing to ‘stay in their place.’”. Using a data set constructed from television ratings and shares, this study examines “black-centeredness” within the context of program success and failure. The comfort zone concept argues Black-centered television series are only successful in a comedic genre because White audiences, who have the majority of the ratings power, will only watch Black-centered series with which they are comfortable. The findings suggest that, in general, race, that is Black-centeredness, did not negatively influence program ratings or shares.

  1. The aircraft interior comfort experience of 10,032 passengers

    NARCIS (Netherlands)

    Vink, P.; Mastrigt, S. van

    2011-01-01

    One airline strategy aimed at selling more tickets is to provide a superior comfort experience. However, only a small amount of public scientific information is available addressing the passenger’s opinion on comfort. In this study, 10,032 internet trip reports were used to gather opinions about

  2. Energy and indoor temperature consequences of adative thermal comfort standards

    NARCIS (Netherlands)

    Centnerova, L.; Hensen, J.L.M.

    2001-01-01

    The intent of the presented study was to quantify the implications for energy demand of indoor temperature requirements based on a proposed adaptive thermal comfort standard (7) relative to a more traditional thermal comfort approach. The study focuses on a typical office situation in a moderate

  3. Experimental and CFD modelling for thermal comfort and CO2 concentration in office building

    Science.gov (United States)

    Kabrein, H.; Hariri, A.; Leman, A. M.; Yusof, M. Z. M.; Afandi, A.

    2017-09-01

    Computational fluid dynamic CFD was used for simulating air flow, indoor air distribution and contamination concentration. Gases pollution and thermal discomfort affected occupational health and productivity of work place. The main objectives of this study are to investigate the impact of air change rate in CO2 concentration and to estimate the profile of CO2 concentration in the offices building. The thermal comfort and gases contamination are investigated by numerical analysis CFD which was validated by experiment. Thus the air temperature, air velocity and CO2 concentration were measured at several points in the chamber with four occupants. Comparing between experimental and numerical results showed good agreement. In addition, the CO2 concentration around human recorded high, compared to the other area. Moreover, the thermal comfort in this study is within the ASHRAE standard 55-2004.

  4. Thermal comfort and older adults

    NARCIS (Netherlands)

    Hoof, van J.; Hensen, J.L.M.

    2006-01-01

    The majority of the increasing number of older adults wishes to age-in-place. Appropriate and comfortable housing is of great importance to facilitate this desire. One of the aspects of concern is thermal comfort. This is normally assessed using the model of Fanger, however, one might ask if this

  5. Thermal comfort and building energy consumption implications – A review

    International Nuclear Information System (INIS)

    Yang, Liu; Yan, Haiyan; Lam, Joseph C.

    2014-01-01

    Highlights: • We review studies of thermal comfort and discuss building energy use implications. • Adaptive comfort models tend to have a wider comfort temperature range. • Higher indoor temperatures would lead to fewer cooling systems and less energy use. • Socio-economic study and post-occupancy evaluation of built environment is desirable. • Important to consider future climate scenarios in heating, cooling and power schemes. - Abstract: Buildings account for about 40% of the global energy consumption and contribute over 30% of the CO 2 emissions. A large proportion of this energy is used for thermal comfort in buildings. This paper reviews thermal comfort research work and discusses the implications for building energy efficiency. Predicted mean vote works well in air-conditioned spaces but not naturally ventilated buildings, whereas adaptive models tend to have a broader comfort temperature ranges. Higher indoor temperatures in summertime conditions would lead to less prevalence of cooling systems as well as less cooling requirements. Raising summer set point temperature has good energy saving potential, in that it can be applied to both new and existing buildings. Further research and development work conducive to a better understanding of thermal comfort and energy conservation in buildings have been identified and discussed. These include (i) social-economic and cultural studies in general and post-occupancy evaluation of the built environment and the corresponding energy use in particular, and (ii) consideration of future climate scenarios in the analysis of co- and tri-generation schemes for HVAC applications, fuel mix and the associated energy planning/distribution systems in response to the expected changes in heating and cooling requirements due to climate change

  6. A foreground object features-based stereoscopic image visual comfort assessment model

    Science.gov (United States)

    Jin, Xin; Jiang, G.; Ying, H.; Yu, M.; Ding, S.; Peng, Z.; Shao, F.

    2014-11-01

    Since stereoscopic images provide observers with both realistic and discomfort viewing experience, it is necessary to investigate the determinants of visual discomfort. By considering that foreground object draws most attention when human observing stereoscopic images. This paper proposes a new foreground object based visual comfort assessment (VCA) metric. In the first place, a suitable segmentation method is applied to disparity map and then the foreground object is ascertained as the one having the biggest average disparity. In the second place, three visual features being average disparity, average width and spatial complexity of foreground object are computed from the perspective of visual attention. Nevertheless, object's width and complexity do not consistently influence the perception of visual comfort in comparison with disparity. In accordance with this psychological phenomenon, we divide the whole images into four categories on the basis of different disparity and width, and exert four different models to more precisely predict its visual comfort in the third place. Experimental results show that the proposed VCA metric outperformance other existing metrics and can achieve a high consistency between objective and subjective visual comfort scores. The Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) are over 0.84 and 0.82, respectively.

  7. Field study on behaviors and adaptation of elderly people and their thermal comfort requirements in residential environments.

    Science.gov (United States)

    Hwang, R-L; Chen, C-P

    2010-06-01

    This study investigated the thermal sensation of elderly people in Taiwan, older than 60 years, in indoor microclimate at home, and their requirements for establishing thermal comfort. The study was conducted using both a thermal sensation questionnaire and measurement of indoor climatic parameters underlying the thermal environment. Survey results were compared with those reported by Cheng and Hwang (2008, J. Tongji Univ., 38, 817-822) for non-elders to study the variation between different age groups in requirements of indoor thermal comfort. The results show that the predominant strategy of thermal adaptation for elders was window-opening in the summer and clothing adjustment in the winter. The temperature of thermal neutrality was 25.2 degrees C and 23.2 degrees C for the summer and the winter, respectively. Logistically regressed probit modeling on percentage of predicted dissatisfied (PPD) against mean thermal sensation vote revealed that the sensation votes corresponding to a PPD of 20% were +/- 0.75 for elders, about +/- 0.10 less than the levels projected by ISO 7730 model. The range of operative temperature for 80% thermal acceptability for elders in the summer was 23.2-27.1 degrees C, narrower than the range of 23.0-28.6 degrees C reported for non-elders. This is likely a result of a difference in the selection of adaptive strategies. Taiwan in the last decade has seen a rapid growth in the elderly population in its societal structure, and as such the quality of indoor thermal comfort increasingly concerns the elderly people. This study presents the results from field-surveying elders residing in major geographical areas of Taiwan, and discusses the requirements of these elders for indoor thermal comfort in different seasons. Through a comparison with the requirements by non-elders, this study demonstrates the unique sensitivity of elders toward indoor thermal quality and the selection of adaptive strategies that need to be considered when a thermal

  8. Predicting Comfort Temperature in Indonesia, an Initial Step to Reduce Cooling Energy Consumption

    Directory of Open Access Journals (Sweden)

    Tri Harso Karyono

    2015-07-01

    Full Text Available Indonesia has no reliable thermal comfort standard that is based on research works. The current national standard (SNI 6390:2011 states only a single range of comfort temperature that is 25.5 °C Ta, with a range of +1.5 °C Ta. Previous thermal studies in a number of different buildings in Indonesia showed that the neutral (comfort temperatures of subjects were about 27 to 28 °C, which is higher than the values stated in the standard. As a big country with various ambient temperatures, Indonesian needs a better and more reliable thermal comfort predictor which can be applied properly across the country. This study is an attempt to propose an initial Indonesian thermal predictor, in the form of a simple equation, which could predict comfort temperatures properly across the country. Reanalysing the previous comfort studies in Indonesia, a simple regression equation is constructed as to be used as the initial Indonesian comfort predictor. Using this predictor, the comfort temperatures in a lowland or coastal cities like Jakarta is found to be higher than the current comfort standard. It is expected that this predictor would help to provide a better indoor thermal environment and at the same reduce the cooling energy in air conditioning (AC building, thus reducing a building’s carbon emissions.

  9. Comfort, Energy Efficiency and Adoption of Personal Cooling Systems in Warm Environments: A Field Experimental Study

    Directory of Open Access Journals (Sweden)

    Yingdong He

    2017-11-01

    Full Text Available It is well known that personal cooling improves thermal comfort and save energy. This study aims to: (1 compare different personal cooling systems and (2 understand what influences users’ willingness to adopt them. A series of experiments on several types of personal cooling systems, which included physical measurements, questionnaires and feedback, was conducted in a real office environment. The obtained results showed that personal cooling improved comfort of participants in warm environments. Then an improved index was proposed and used to compare different types of personal cooling systems in terms of comfort and energy efficiency simultaneously. According to the improved index, desk fans were highly energy-efficient, while the hybrid personal cooling (the combination of radiant cooling desk and desk fan consumed more energy but showed advantages of extending the comfortable temperature range. Moreover, if personal cooling was free, most participants were willing to adopt it and the effectiveness was the main factor influencing their willingness, whereas if participants had to pay, they probably refused to adopt it due to the cost and the availability of conventional air conditioners. Thus, providing effective and free personal cooling systems should be regarded as a better way for its wider application.

  10. Seeking Comfort: Women Mental Health Process in I. R. Iran: A Grounded Theory Study

    Science.gov (United States)

    Mohammadi, Farahnaz; Eftekhari, Monir Baradaran; Dejman, Masoumeh; Forouzan, Ameneh Setareh; Mirabzadeh, Arash

    2014-01-01

    Background: Psychosocial factor is considered as intermediate social determinant of health, because it has powerful effects on health especially in women. Hence deeper understanding of the mental-health process needed for its promotion. The aim of this study was to explore women's experience of the mental-health problem and related action-interactions activities to design the appropriate interventions. Methods: In-depth interviews with women 18-65 years were analyzed according to the grounded theory method. The selection of Participants was based on purposeful and theoretical sampling. Results: In this study, a substantive theory was generated; explaining how female with the mental-health problem handled their main concern, which was identified as their effort to achieve comfort (core variable). The other six categories are elements in this process. Daily stress as a trigger, satisfaction is the end point, marriage is the key point and action - interaction activities in this process are strengthening human essence, Developing life skills and help seeking. Conclusions: Better understanding the mental-health process might be useful to design the interventional program among women with mental-health problems. PMID:24627750

  11. Analysis of bus passenger comfort perception based on passenger load factor and in-vehicle time.

    Science.gov (United States)

    Shen, Xianghao; Feng, Shumin; Li, Zhenning; Hu, Baoyu

    2016-01-01

    Although bus comfort is a crucial indicator of service quality, existing studies tend to focus on passenger load and ignore in-vehicle time, which can also affect passengers' comfort perception. Therefore, by conducting surveys, this study examines passengers' comfort perception while accounting for both factors. Then, using the survey data, it performs a two-way analysis of variance and shows that both in-vehicle time and passenger load significantly affect passenger comfort. Then, a bus comfort model is proposed to evaluate comfort level, followed by a sensitivity analysis. The method introduced in this study has theoretical implications for bus operators attempting to improve bus service quality.

  12. Beyond K's Specter: Chang-rae Lee’s A Gesture Life, Comfort Women Testimonies, and Asian American Transnational Aesthetics

    Directory of Open Access Journals (Sweden)

    Belinda Kong

    2011-03-01

    Full Text Available This essay argues that Chang-rae Lee’s novel A Gesture Life exemplifies both the conceptual gains and the potential pitfalls of current Asian American literature’s transnationalism. The first section of the essay discusses the interlocking of psychoanalytic theory and political philosophy, specifically Freud’s uncanny and Arendt’s banality of evil, in Lee’s portrait of the psychology of criminal repression. The second section juxtaposes Lee’s novel against real-life comfort women’s survivor testimonies to probe broader questions of historical memory, politicized historiography, and the modes of circulation and authority in contemporary international comfort women discourse. The final section, which recontextualizes Lee’s novel within current debates in Asian and Asian American Studies, argues against a paradigm of alterity vis-à-vis the comfort women and proposes instead a transnational aesthetic premised on the human.

  13. Ride comfort analysis with physiological parameters for an e-health train.

    Science.gov (United States)

    Lee, Youngbum; Shin, Kwangsoo; Lee, Sangjoon; Song, Yongsoo; Han, Sungho; Lee, Myoungho

    2009-12-01

    Transportation by train has numerous advantages over road transportation, especially with regard to energy efficiency, ecological features, safety, and punctuality. However, the contrast in ride comfort between standard road transportation and train travel has become a competitive issue. The ride comfort enhancement technology of tilting trains (TTX) is a particularly important issue in the development of the Korean high-speed railroad business. Ride comfort is now defined in international standards such as UIC13 and ISO2631. The Korean standards such as KSR9216 mainly address physical parameters such as vibration and noise. In the area of ride comfort, living quality parameter techniques have recently been considered in Korea, Japan, and Europe. This study introduces biological parameters, particularly variations in heart rate, as a more direct measure of comfort. Biological parameters are based on physiological responses rather than on purely external mechanical parameters. Variability of heart rate and other physiological parameters of passengers are measured in a simulation involving changes in the tilting angle of the TTX. This research is a preliminary study for the implementation of an e-health train, which would provide passengers with optimized ride comfort. The e-health train would also provide feedback on altered ride comfort situations that can improve a passenger's experience and provide a healthcare service on the train. The aim of this research was to develop a ride comfort evaluation system for the railway industry, the automobile industry, and the air industry. The degree of tilt correlated with heart rate, fatigue, and unrelieved alertness.

  14. Testing thermal comfort of trekking boots: an objective and subjective evaluation.

    Science.gov (United States)

    Arezes, P M; Neves, M M; Teixeira, S F; Leão, C P; Cunha, J L

    2013-07-01

    The study of the thermal comfort of the feet when using a specific type of shoe is of paramount importance, in particular if the main goal of the study is to attend to the needs of users. The main aim of this study was to propose a test battery for thermal comfort analysis and to apply it to the analysis of trekking boots. Methodologically, the project involves both objective and subjective evaluations. An objective evaluation of the thermal properties of the fabrics used in the boots was developed and applied. In addition, the thermal comfort provided when using the boots was also assessed both subjective and objectively. The evaluation of the thermal comfort during use, which was simulated in a laboratory environment, included the measurement of the temperature and moisture of the feet. The subjective assessment was performed using a questionnaire. From the results obtained, it was possible to define an optimal combination of fabrics to apply to trekking boots by considering the provided thermal insulation, air permeability and wicking. The results also revealed that the subjective perception of thermal comfort appears to be more related to the increase in temperature of the feet than to the moisture retention inside the boot. Although the evaluation of knits used in the boots indicated that a particular combination of fibres was optimal for use in the inner layer, the subjective and objective evaluation of thermal comfort revealed that the evaluation provided by users did not necessarily match the technical assessment data. No correlation was observed between the general comfort and specific thermal comfort assessments. Finally, the identification of thermal discomfort by specific foot areas would be useful in the process of designing and developing boots. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  15. Thermal comfort in naturally ventilated buildings in Maceio, Brazil

    Science.gov (United States)

    Djamila, Harimi

    2017-11-01

    This article presents the results from thermal comfort survey carried out in classrooms over two different seasons in Maceio, Brazil. The secondary data were collected from thermal comfort field study conducted in naturally ventilated classrooms. Objective and subjective parameters were explored to evaluate thermal comfort conditions. The potential effect of air movement on subjects' vote under neutrality was evaluated. Overall, the indoor climate of the surveyed location was classified warm and humid. Conflicting results were depicted when analyzing the effect of air movements on subjects' vote. The mean air temperature for subjects feeling hot was found to be lower than those feeling warm. A reasonable approach to tackle these two unpredictable results was suggested. Correlation matrix between selected thermal comfort variables was developed. Globe temperature recorded the highest correlation with subjects' response on ASHRAE seven-point scale. The correlation was significant at the 0.01 level. On the other hand, the correlation between air movement and subjects' response on ASHRAE seven-point scale was weak but significant. Further field studies on the current topic were recommended.

  16. Advanced thermal comfort modeling for an optimal interior design; Erweiterte thermische Komfortmodellierung fuer eine optimale Innenraumgestaltung

    Energy Technology Data Exchange (ETDEWEB)

    Streblow, Rita; Mueller, Dirk [RWTH Aachen (Germany). Lehrstuhl fuer Gebaeude- und Raumklimatechnik/E.ON Energy Research Center; Wick, Andreas [Airbus Operations GmbH, Hamburg (Germany)

    2012-05-15

    Standard comfort models, which consider the human body as one compartment, fail in the case of non-uniform environments. Clear evaluations are only possible by considering local effects. The 33 node comfort model was developed with extensive experimental data with test persons in an airplane cabin, as an example for an inhomogeneous environment. It can be flexibly adapted to other complex interior spaces for their adequate evaluation. (orig.)

  17. Perceived health and comfort in relation to energy use and building characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Roulet, C.-A.; Johner, N. [Ecole Polytechnique Federale, Lausanne (Switzerland); Foradini, F. [E4Tech S., Lausanne (Switzerland); Bluyssen, P.; Cox, C. [TNO Built Environment and Geosciences, Delft (Netherlands); Oliveira Fernandes, E. De [IDMEC-FUEP, Porto (Portugal); Mueller, B. [Technical University of Berlin, Berlin (Germany); Aizlewood, C. [Building Research Establishment, Watford (United Kingdom)

    2006-09-15

    Within the European research project Health Optimisation Protocol for Energy-efficient Building (HOPE), 96 apartment buildings and 64 office buildings (of which approximately 75% have been designed to be energy-efficient) were investigated. The building characteristics were assessed according to a checklist during a walk-through survey. Occupant questionnaires were used to determine satisfaction about comfort (thermal visual, acoustical and indoor air quality (IAQ)) and their health (Sick Building Syndrome and allergies). Building-averaged collected data are compared, looking for correlations between building characteristics on one hand, and perceived comfort and health on the other hand. Strong correlations are found between perceived IAQ, thermal, acoustic and lighting comfort, confirming results from other studies. Significant correlations between the perceived comfort and building related symptoms were also found, comfortable and healthier buildings being well distinct from uncomfortable ones. Differences of perceived comfort or health between low- and high-energy buildings show that it is possible to design buildings that are healthy, comfortable and energy efficient. (author)

  18. Energy usage while maintaining thermal comfort: A case study of a UNT dormitory

    Science.gov (United States)

    Gambrell, Dusten

    Campus dormitories for the University of North Texas house over 5500 students per year; each one of them requires certain comfortable living conditions while they live there. There is an inherit amount of money required in order to achieve minimal comfort levels; the cost is mostly natural gas for water and room heating and electricity for cooling, lighting and peripherals. The US Department of Energy has developed several programs to aid in performing energy simulations to help those interested design more cost effective building designs. Energy-10 is such a program that allows users to conduct whole house evaluations by reviewing and altering a few parameters such as building materials, solar heating, energy efficient windows etc. The idea of this project was to recreate a campus dormitory and try to emulate existent energy consumption then try to find ways of lowering that usage while maintaining a high level of personal comfort.

  19. Evolution of perceived footwear comfort over a prolonged running session.

    Science.gov (United States)

    Hintzy, F; Cavagna, J; Horvais, N

    2015-12-01

    The purpose of this study was to investigate the subjective perception of overall footwear comfort over a prolonged running session. Ten runners performed two similar sessions consisting of a 13-km trail run (5 laps of 2.6 km) as fast as possible. The overall footwear comfort was evaluated before running and at the end of each lap with a 150-mm visual analogic scale, as well as speed, heart rate and rate of perceived exertion. The results showed that both overall footwear comfort and speed decreased consistently during the run session, and significantly after 44 min of running (i.e. the 3rd lap). It could be hypothesized that the deterioration of overall footwear comfort was explained by mechanical and energetical parameter changes with time and/or fatigue occurring at the whole body, foot and footwear levels. These results justify the use of a prolonged running test for running footwear comfort evaluation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Estimating a just-noticeable difference for ocular comfort in contact lens wearers.

    Science.gov (United States)

    Papas, Eric B; Keay, Lisa; Golebiowski, Blanka

    2011-06-21

    To estimate the just-noticeable difference (JND) in ocular comfort rating by human, contact lens-wearing subjects using 1 to 100 numerical scales. Ostensibly identical, new contact lenses were worn simultaneously in both eyes by 40 subjects who made individual comfort ratings for each eye using a 100-point numerical ratings scale (NRS). Concurrently, interocular preference was indicated on a five-point Likert scale (1 to 5: strongly prefer right, slightly prefer right, no preference, slightly prefer left, strongly prefer left, respectively). Differences in NRS comfort score (ΔC) between the right and left eyes were determined for each Likert scale preference criteria. The distribution of group ΔC scores was examined relative to alternative definitions of JND as a means of estimating its value. For Likert scores indicating the presence of a slight interocular preference, absolute ΔC ranged from 1 to 30 units with a mean of 7.4 ± 1.3 (95% confidence interval) across all lenses and trials. When there was no Likert scale preference expressed between the eyes, absolute ΔC did not exceed 5 units. For ratings of comfort using a 100-point numerical rating scale, the inter-ocular JND is unlikely to be less than 5 units. The estimate for the average value in the population was approximately 7 to 8 units. These numbers indicate the lowest level at which changes in comfort measured with such scales are likely to be clinically significant.

  1. The role of respondents’ comfort for variance in stated choice surveys

    DEFF Research Database (Denmark)

    Emang, Diana; Lundhede, Thomas; Thorsen, Bo Jellesmark

    2017-01-01

    they complete surveys correlates with the error variance in stated choice models of their responses. Comfort-related variables are included in the scale functions of the scaled multinomial logit models. The hypothesis was that higher comfort reduces error variance in answers, as revealed by a higher scale...... parameter and vice versa. Information on, e.g., sleep and time since eating (higher comfort) correlated with scale heterogeneity, and produced lower error variance when controlled for in the model. That respondents’ comfort may influence choice behavior suggests that knowledge of the respondents’ activity......Preference elicitation among outdoor recreational users is subject to measurement errors that depend, in part, on survey planning. This study uses data from a choice experiment survey on recreational SCUBA diving to investigate whether self-reported information on respondents’ comfort when...

  2. Applying Outdoor Environment to Develop Health, Comfort, and Energy Saving in the Office in Hot-Humid Climate

    Directory of Open Access Journals (Sweden)

    Rong Chen

    2013-01-01

    Full Text Available A human life demand set to emerge in the future is the achievement of sustainability by maintaining a comfortable indoor environment without excessive reliance on energy-consuming air conditioners. The major research processes in this study are: (1 measuring indoor air quality and thermal comfort to evaluate the comfort of an indoor environment; (2 implementing questionnaire survey analysis to explore people’s environmental self-perceptions and conducting a meta-analysis of the measurement results for air quality and physical aspects; and (3 constructing an indoor monitoring and management system. The experimental and analysis results of this research reveal that most of the office occupants preferred a cooler environment with a lower temperature. Additionally, because the summers in Taiwan are humid and hot, the occupants of an indoor space tend to feel uncomfortable because of the high humidity and poor indoor air quality. Therefore, Variable Air Volume (VAV, two air intakes, and exhaust plant are installed to improve indoor environment. After improvement, a lower temperature (approximately 21.2–23.9°C indirectly reduces humidity, thereby making the occupants comfortable. Increasing air velocity to 0.1~0.15 m/s, the carbon dioxide concentrations decrease below the requirement of the WHO. Ninety-five percent of the workers corresponded to the standard comfort zone after this improvement.

  3. Applying Outdoor Environment to Develop Health, Comfort, and Energy Saving in the Office in Hot-Humid Climate

    Science.gov (United States)

    Chen, Rong; Sung, Wen-Pei; Chang, Hung-Chang; Chi, Yi-Rou

    2013-01-01

    A human life demand set to emerge in the future is the achievement of sustainability by maintaining a comfortable indoor environment without excessive reliance on energy-consuming air conditioners. The major research processes in this study are: (1) measuring indoor air quality and thermal comfort to evaluate the comfort of an indoor environment; (2) implementing questionnaire survey analysis to explore people's environmental self-perceptions and conducting a meta-analysis of the measurement results for air quality and physical aspects; and (3) constructing an indoor monitoring and management system. The experimental and analysis results of this research reveal that most of the office occupants preferred a cooler environment with a lower temperature. Additionally, because the summers in Taiwan are humid and hot, the occupants of an indoor space tend to feel uncomfortable because of the high humidity and poor indoor air quality. Therefore, Variable Air Volume (VAV), two air intakes, and exhaust plant are installed to improve indoor environment. After improvement, a lower temperature (approximately 21.2–23.9°C) indirectly reduces humidity, thereby making the occupants comfortable. Increasing air velocity to 0.1 ~ 0.15 m/s, the carbon dioxide concentrations decrease below the requirement of the WHO. Ninety-five percent of the workers corresponded to the standard comfort zone after this improvement. PMID:24311976

  4. Thermal comfort and indoor air quality in rooms with integrated personalized ventilation and under-floor air distribution systems

    DEFF Research Database (Denmark)

    Li, Ruixin; Sekhar ., S. C.; Melikov, Arsen Krikor

    2011-01-01

    A comprehensive study comprising physical measurements and human subject experiments was conducted to explore the potential for improving occupants' thermal comfort and indoor air quality (IAQ) using a personalized ventilation (PV) system combined with an under-floor air distribution(UFAD) system....... The integrated PV-UFAD system, when operated at relatively high temperature of the air supplied from the UFAD system, provided comfortable cooling of the facial region, improved inhaled air quality, and decreased the risk of "cold feet," which is often reported in rooms with UFAD alone. This article explores...... and a secondary AHU for 100% recirculated air that is supplied through UFAD outlets. Velocity and temperature distribution in the chamber were measured. A breathing thermal manikin was used to measure the heat loss from 26 body segments and to determine the equivalent temperature. The responses of 30 human...

  5. A decision-tree-based model for evaluating the thermal comfort of horses

    Directory of Open Access Journals (Sweden)

    Ana Paula de Assis Maia

    2013-12-01

    Full Text Available Thermal comfort is of great importance in preserving body temperature homeostasis during thermal stress conditions. Although the thermal comfort of horses has been widely studied, there is no report of its relationship with surface temperature (T S. This study aimed to assess the potential of data mining techniques as a tool to associate surface temperature with thermal comfort of horses. T S was obtained using infrared thermography image processing. Physiological and environmental variables were used to define the predicted class, which classified thermal comfort as "comfort" and "discomfort". The variables of armpit, croup, breast and groin T S of horses and the predicted classes were then subjected to a machine learning process. All variables in the dataset were considered relevant for the classification problem and the decision-tree model yielded an accuracy rate of 74 %. The feature selection methods used to reduce computational cost and simplify predictive learning decreased model accuracy to 70 %; however, the model became simpler with easily interpretable rules. For both these selection methods and for the classification using all attributes, armpit and breast T S had a higher power rating for predicting thermal comfort. Data mining techniques show promise in the discovery of new variables associated with the thermal comfort of horses.

  6. Children undergoing cancer treatment describe their experiences of comfort in interviews and drawings.

    Science.gov (United States)

    Ångström-Brännström, Charlotte; Norberg, Astrid

    2014-01-01

    Children with cancer often undergo a long course of treatment, described as painful, and associated with feelings of discomfort and need of comfort. The aim of this descriptive interview study was to investigate how children, aged 3 to 9 years, undergoing cancer treatment describe their experience of comfort. The children were interviewed and asked to make drawings. Data were content analyzed and four themes were constructed--enduring discomfort, expressing discomfort, finding comfort, and comforting others. The findings show that the children endured discomfort during treatment, and were sometimes able to express it. They found comfort especially from their family and from hospital staff. The children also described that they comforted family members. The findings are in accordance with previous research about children's and adults' accounts of comfort. An incidental finding is that parents were surprised when they listened to the children's accounts of their experience of discomfort and comfort and achieved a better understanding of their children.

  7. Understanding the adaptive approach to thermal comfort

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, M.A. [Oxford Univ. (United Kingdom). Centre for the Study of Christianity and Culture; Nicol, J.F. [Oxford Brookes Univ. (United Kingdom). School of Architecture

    1998-10-01

    This paper explains the adaptive approach to thermal comfort, and an adaptive model for thermal comfort is presented. The model is an example of a complex adaptive system (Casti 1996) whose equilibria are determined by the restrictions acting upon it. People`s adaptive actions are generally effective in securing comfort, which occurs at a wide variety of indoor temperatures. These comfort temperatures depend upon the circumstances in which people live, such as the climate and the heating or cooling regime. The temperatures may be estimated from the mean outdoor temperature and the availability of a heating or cooling plant. The evaluation of the parameters of the adaptive model requires cross-sectional surveys to establish current norms and sequential surveys (with and without intervention) to evaluate the rapidity of people`s adaptive actions. Standards for thermal comfort will need revision in the light of the adaptive approach. Implications of the adaptive model for the HVAC industry are noted.

  8. A literature review of comfort in the paediatric critical care patient.

    Science.gov (United States)

    Bosch-Alcaraz, Alejandro; Falcó-Pegueroles, Anna; Jordan, Iolanda

    2018-03-08

    To investigate the meaning of comfort and to contextualise it within the framework of paediatric critical care. The concept of comfort is closely linked to care in all health contexts. However, in specific settings such as the paediatric critical care unit, it takes on particular importance. A literature review was conducted. A literature search was performed of articles in English and Spanish in international health science databases, from 1992-March 2017, applying the quality standards established by the PRISMA methodology and the Joanna Briggs Institute. A total of 1,203 publications were identified in the databases. Finally, 59 articles which met the inclusion criteria were entered in this literature review. Almost all were descriptive studies written in English and published in Europe. The concept of comfort was defined as the immediate condition of being strengthened through having the three types of needs (relief, ease and transcendence) addressed in the four contexts of experience (physical, psychospiritual, social and environmental). Only two valid and reliable tools for assessing comfort were found: the Comfort Scale and the Comfort Behavior Scale. Comfort is subjective and difficult to assess. It has four facets: physical, emotional, social and environmental. High levels of noise and light are the inputs that cause the most discomfort. Comfort is a holistic, universal concept and an important component of quality nursing care. © 2018 John Wiley & Sons Ltd.

  9. Ozone initiated reactions and human comfort in indoor environments

    DEFF Research Database (Denmark)

    Tamas, Gyöngyi

    2006-01-01

    Chemical reactions between ozone and pollutants commonly found indoors have been suggested to cause adverse health and comfort effects among building occupants. Of special interest are reactions with terpenes and other pollutants containing unsaturated carbon-carbon bonds that are fast enough...... to occur under normal conditions in various indoor settings. These reactions are known to occur both in the gas phase (homogeneous reactions) and on the surfaces of building materials (heterogeneous reactions), producing a number of compounds that can be orders of magnitude more odorous and irritating than...... their precursors. The present thesis investigates the effects of ozone-initiated reactions with limonene and with various interior surfaces, including those associated with people, on short-term sensory responses. The evaluations were conducted using a perceived air quality (PAQ) method introduced by Fanger (1988...

  10. Relationship between comfort and attenuation measurements for two types of earplugs

    Directory of Open Access Journals (Sweden)

    David C Byrne

    2011-01-01

    Full Text Available Noise-induced hearing loss is almost always preventable if properly fitted hearing protectors are worn to reduce exposure. Many individuals choose not to wear hearing protection because it may interfere with effective communication in the workplace or it may be uncomfortable. Hearing protector comfort has not received the same amount of attention as noise reduction capability. The present study was conducted to evaluate the comfort level of two different types of insert earplugs as well as the attenuation levels achieved by the earplugs. Attenuation levels were obtained with a commercially available earplug fit-test system, and the comfort ratings were obtained by questionnaire. The primary research objective was to determine whether hearing protector comfort was related to measured attenuation values. A linear mixed effects model provided evidence for an inverse relationship between comfort and attenuation.

  11. Effect of warm air supplied facially on occupants' comfort

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarczyk, J. [Department of Heating, Ventilation and Dust Removal Technology, Silesian University of Technology, Konarskiego 20, PL-44-101 Gliwice (Poland); Melikov, A.; Sliva, D. [Department of Civil Engineering, Technical University of Denmark, International Centre for Indoor Environment and Energy, Nils Koppels Alle, DTU, Building 402, 2800 Lyngby (Denmark)

    2010-04-15

    Human response to air movement supplied locally towards the face was studied in a room with an air temperature of 20 C and a relative humidity of 30%. Thirty-two human subjects were exposed to three conditions: calm environment and facially supplied airflow at 21 C and at 26 C. The air was supplied with a constant velocity of 0.4 m/s by means of personalized ventilation towards the face of the subjects. The airflow at 21 C decreased the subjects' thermal sensation and increased draught discomfort, but improved slightly the perceived air quality. Heating of the supplied air by 6 K (temperature increase by 4 K at the target area) above the room air temperature decreased the draught discomfort, improved subjects' thermal comfort and only slightly decreased the perceived air quality. Elevated velocity and temperature of the localized airflow caused an increase of nose dryness intensity and number of eye irritation reports. Results suggest that increasing the temperature of the air locally supplied to the breathing zone by only a few degrees above the room air temperature will improve occupants' thermal comfort and will diminish draught discomfort. This strategy will extend the applicability of personalized ventilation aiming to supply clean air for breathing at the lower end of the temperature range recommended in the standards. Providing individual control is essential in order to avoid discomfort for the most sensitive occupants. (author)

  12. Quantifying the relevance of adaptive thermal comfort models in moderate thermal climate zones

    Energy Technology Data Exchange (ETDEWEB)

    Hoof, Joost van; Hensen, Jan L.M. [Faculty of Architecture, Building and Planning, Technische Universiteit Eindhoven, Vertigo 6.18, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2007-01-15

    Standards governing thermal comfort evaluation are on a constant cycle of revision and public review. One of the main topics being discussed in the latest round was the introduction of an adaptive thermal comfort model, which now forms an optional part of ASHRAE Standard 55. Also on a national level, adaptive thermal comfort guidelines come into being, such as in the Netherlands. This paper discusses two implementations of the adaptive comfort model in terms of usability and energy use for moderate maritime climate zones by means of literature study, a case study comprising temperature measurements, and building performance simulation. It is concluded that for moderate climate zones the adaptive model is only applicable during summer months, and can reduce energy for naturally conditioned buildings. However, the adaptive thermal comfort model has very limited application potential for such climates. Additionally we suggest a temperature parameter with a gradual course to replace the mean monthly outdoor air temperature to avoid step changes in optimum comfort temperatures. (author)

  13. Black Versus Gray T-Shirts: Comparison of Spectrophotometric and Other Biophysical Properties of Physical Fitness Uniforms and Modeled Heat Strain and Thermal Comfort

    Science.gov (United States)

    2016-09-01

    PROPERTIES OF PHYSICAL FITNESS UNIFORMS AND MODELED HEAT STRAIN AND THERMAL COMFORT DISCLAIMER The opinions or assertions contained herein are the...SHIRTS: COMPARISON OF SPECTROPHOTOMETRIC AND OTHER BIOPHYSICAL PROPERTIES OF PHYSICAL FITNESS UNIFORMS AND MODELED HEAT STRAIN AND THERMAL COMFORT ...the impact of the environment on the wearer. To model these impacts on human thermal sensation (e.g., thermal comfort ) and thermoregulatory

  14. CFD simulation for pedestrian wind comfort and wind safety in urban areas : general decision framework and case study for the Eindhoven University campus

    NARCIS (Netherlands)

    Blocken, B.J.E.; Janssen, W.D.; Hooff, van T.A.J.

    2012-01-01

    Wind comfort and wind safety for pedestrians are important requirements in urban areas. Many city authorities request studies of pedestrian wind comfort and wind safety for new buildings and new urban areas. These studies involve combining statistical meteorological data, aerodynamic information and

  15. Eye cosmetic usage and associated ocular comfort.

    Science.gov (United States)

    Ng, Alison; Evans, Katharine; North, Rachel; Purslow, Christine

    2012-11-01

    Eye cosmetics usage is commonplace and whilst some products such as eyeliner are applied with close proximity to the ocular surface, there is little knowledge of the short- and long-term ocular effects of eye cosmetic formulations. This study aimed to investigate the use of eye cosmetics and identify any relationships between ocular comfort and cosmetic usage. Results were collated from an online survey comprising 23 questions that recorded demographics, Ocular Surface Disease Index (OSDI) score, extent and range of eye cosmetic use and perceived comfort differences with and without eye cosmetics. The 1360 female respondents (median age 25, interquartile range 20-34 years) completed the survey; 83% reported using eye cosmetics regularly (≥ 3 times per week) with mascara being most commonly used. Fifty three per cent used at least three different eye cosmetics products regularly. OSDI scores of cosmetics users were similar to non-users (p = 0.083), but perceived comfort was greater when cosmetics were not used (p cosmetics users (use of products cosmetics were used. Median OSDI scores suggested a trend towards reduced comfort amongst eyeliner users (p = 0.07) although frequency and type of cosmetic products used did not appear to influence OSDI scores. This study shows the use of multiple eye cosmetics is extensive and associated with the perception of ocular discomfort. With such widespread use of these products, more research is required to assess the effect on the ocular surface and tear film, which may be underestimated. Ophthalmic & Physiological Optics © 2012 The College of Optometrists.

  16. Ecosystem Biomimicry: A way to achieve thermal comfort in architecture

    Directory of Open Access Journals (Sweden)

    H. Abaeian

    2016-10-01

    Full Text Available The strategies to reduce the consumption of non-renewable energies in buildings are becoming increasingly important. In the meantime, nature-inspired approaches have emerged as a new strategy to achieve thermal comfort in the interiors. However, the use of these approaches in architecture and buildings requires a proper understanding regarding the features of ecosystems. Although acquiring this knowledge requires a high degree of familiarity with the fields such as biology and environmental science, review of achievements made by the use of these features could facilitate the understanding of ecomimicry processes and thereby contribute to environmental sustainability in buildings. In other words, this paper concerns the relationship between these features and the thermal comfort inside the building. Biomimicry is an approach to innovation that seeks sustainable solutions to human challenges by emulating nature’s time-tested patterns and strategies. The objective of this paper is to use such review to provide an approach to the use of natural features for achieving thermal comfort in the buildings of hot and dry climates. In this review, the successful examples are analyzed to identify and examine the principles that influence the thermal comfort in both building and urban levels. The results show that the three elements of water, wind, sun are the effective natural resources that must be utilized in the design in a way proportional and consistent with the natural features. In addition, functional features of ecosystem can be of value only in the presence of a processual  relationship between them.

  17. Building America Case Study: Occupant Comfort from a Mini-Split Heat Pump, San Antonio, Texas

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-03

    IBACOS worked with builder Imagine Homes to evaluate the performance of an occupied new construction test house following construction of the house in the hot, humid climate of San Antonio, Texas. The project measures the effectiveness of a space conditioning strategy using a multihead mini-split heat pump (MSHP) system in a reduced-load home to achieve acceptable comfort levels (temperature and humidity) and energy performance. IBACOS collected long-term data and analyzed the energy consumption and comfort conditions of the occupied house after one year of operation. Although measured results indicate that the test system provides comfort both inside and outside the ASHRAE Standard 55-2010 range, the occupants of the house claimed both adequate comfort and appreciation of the ease of use and flexibility of the installed MSHP system. IBACOS also assisted the builder to evaluate design and specification changes necessary to comply with Zero Energy Ready Home, but the builder chose to not move forward with it because of concerns about the 'solar ready' requirements of the program.

  18. Comfort Indicators for the Assessment of Indoor Environmental Building Performance

    DEFF Research Database (Denmark)

    Brohus, Henrik; Bendtsen, A.; Sørensen, M.

    2006-01-01

    Indoor environmental building performance assessment requires efficient indicators of the indoor comfort. In order to be effective and useful the comfort indicators must be able to include the temporal variation of indoor comfort as well as the degree of discomfort perceived by the occupants....... This paper discusses and presents a number of comfort indicators that includes both the temporal variation and the degree of discomfort in the calculations. A test case comprising a ventilated office building is used to show the application of the various comfort indices. It is found that the new comfort...

  19. Everyday Comfort Practice

    DEFF Research Database (Denmark)

    Jaffari, Svenja

    engineering praxis only, in order to address these issues. The empirical work is based on a user-driven innovation project (Indoor Climate & Quality of Life), where engineers, designers, sociologists and anthropologists met in order to exchange their different perspectives and collaboratively form new ideas...... the outdoor. This can be seen, for instance, in 'tight' low-energy buildings that host indoor climate products, which are often controlled by automated systems, to deliver optimal comfort conditions (i.e. temperature, humidity, air quality, noise, and light) to occupants. Buildings' indoor climate is designed......, engineering scientists and practitioners still seem to struggle with the kinds of alternative processes and products that are needed to achieve sustainable comfort. This dissertation applies everyday practice-oriented design ethnography to a field that has traditionally been investigated by scientific...

  20. Pedal force determination respect to ride comfort

    Science.gov (United States)

    Mačužić, Slavica; Lukić, Jovanka; Glišović, Jasna; Miloradović, Danijela

    2017-10-01

    Automotive ergonomics is a set of knowledge which has a task to design a vehicle to make the passengers feel comfortable. Interior packaging represents an important stage in the vehicle design process, in order to enable the driver to every important aspect of movement. During the process of driving, the driver performs various movements of arms and legs, leading to a certain fatigue. Each seating position in the vehicle, contain certain boundary conditions, and for that reason it was necessary to examine how the seating position affects the driver possibilities. In this paper, the pedal forces were determined by application of Ramsis human model. Different human populations were taken into account. Correlation between subjects’ anthropometrics measures and the foot pedal force pedal was observed. Obtained results were significant input data for vehicle packaging.

  1. A laboratory validation study of comfort and limit temperatures of four sleeping bags defined according to EN 13537 (2002).

    Science.gov (United States)

    Lin, Li-Yen; Wang, Faming; Kuklane, Kalev; Gao, Chuansi; Holmér, Ingvar; Zhao, Mengmeng

    2013-03-01

    In this study, we validated comfort and limit temperatures of four sleeping bags with different levels of insulation defined according to EN 13537. Six male subjects and four female subjects underwent totally 20 two-hour exposures in four sleeping bags at four intended testing temperatures: 11.2, 3.8, 2.1 and -9.0 °C. The subjective perceptions and physiological responses of these subjects were reported and analyzed. It was found that the EN 13537 defined comfort temperature and limit temperature were underestimated for sleeping bags MA3, HAG and MAM. The predictions are so conservative that further revision may be required to meet the requirements of both manufacturers and consumers. In contrast, for the sleeping bag MA0 with a low level of insulation, the limit temperature defined by EN 13537 was slightly overestimated. In addition, two individual case studies (-28.0 and -32.0 °C) demonstrated that low toe temperatures were widely observed among the male and female subjects, although the mean skin temperatures were almost within the thermoneutrality range (32.0-34.0 °C). It seems that the IREQ model (ISO 11079) overestimated both the comfort and limit temperatures of the sleeping bags. Finally, traditional sleeping bags may be required to be re-designed to provide consumers both whole body comfort as well as local thermal comfort at feet/toes or users need to be made aware of the higher need for their insulation. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  2. Effect of human behavior on economizer efficacy and thermal comfort in southern California

    Science.gov (United States)

    Lanning, TIghe Glennon

    California has set a zero net-energy conservation goal for the residential sector that is to be achieved by 2020 (California Energy Commission 2011). To reduce energy consumption in the building sector, modern buildings should fundamentally incorporate sustainable performance standards, involving renewable systems, climate-specific strategies, and consideration of a variety of users. Building occupants must operate in concert with the buildings they inhabit in order to maximize the potential of the building, its systems, and their own comfort. In climates with significant diurnal temperature swings, environmental controls designed to capitalize on this should be considered to reduce cooling-related loads. One specific strategy is the air-side economizer, which uses daily outdoor temperature swings to reduce indoor temperature swings. Traditionally a similar effect could be achieved by using thermal mass to buffer indoor temperature swings through thermal lag. Economizers reduce the amount of thermal mass typically required by naturally ventilated buildings. Fans are used to force cool nighttime air deep into the building, allowing lower mass buildings to take advantage of nighttime cooling. Economizers connect to a thermostat, and when the outdoor temperature dips below a programmed set-point the economizer draws cool air from outside, flushing out the warmed interior air. This type of system can be simulated with reasonable accuracy by energy modeling programs; however, because the system is occupant-driven (as opposed to a truly passive mass-driven system) any unpredictable occupant behavior can reduce its effectiveness and create misleading simulation results. This unpredictably has helped prevent the spread of economizers in the residential market. This study investigated to what extent human behavior affected the performance of economizer-based HVAC systems, based on physical observations, environmental data collections, and energy simulations of a residential

  3. Effects of Drains on Pain, Comfort and Anxiety in Patients Undergone Surgery

    Directory of Open Access Journals (Sweden)

    Ummu Yildiz Findik

    2013-01-01

    Full Text Available Backround: Surgical drains negatively affect patients’ comfort, cause anxiety along with pain, as they are used to promote healing after surgery.Purpose: This study aimed to determine pain, comfort and anxiety levels of patients with drains postoperatively.Methodology: Research was performed with 192 patients undergone abdominal, neck, breast and open heart surgery and had surgical and underwater chest drains at the postoperative period. Patient Information Form, Numerical Pain Scale, General Comfort Questionnaire and Trait Anxiety Scale was used for collection of data. In evaluating the data, we used the t-test, variance and correlation analysis, mean, percentage and frequency.Results: The patients’ mean score of pain was 4.67±2.93, comfort was 2.75±0.29 and anxiety was 39.31±9.21. It was found statistically significant that the comfort level decreases as the pain level increases and that the patients undergone open heart surgery and with underwater chest drains have higher pain levels. It was found statistically significant that, comfort level in patients undergone abdominal or cardiac surgery is lower than patients undergone breast or neck surgery, and that the comfort level decreases as the duration of drains increases. The increasing state anxiety while pain increases and comfort decreases was found statistically significant.Conclusions: Surgeries and drains applied after these procedures decrease the comfort level of the patients as increases the pain level. Also, pain and discomfort increase the patients’ anxiety. Nurses who providing care to these patients are suggested to improve measures about pain and anxiety reduction for maintaining of comfort.

  4. Thermal Perception in the Mediterranean Area: Comparing the Mediterranean Outdoor Comfort Index (MOCI to Other Outdoor Thermal Comfort Indices

    Directory of Open Access Journals (Sweden)

    Iacopo Golasi

    2016-07-01

    Full Text Available Outdoor thermal comfort is an essential factor of people’s everyday life and deeply affects the habitability of outdoor spaces. However the indices used for its evaluation were usually developed for indoor environments assuming still air conditions and absence of solar radiation and were only later adapted to outdoor spaces. For this reason, in a previous study the Mediterranean Outdoor Comfort Index (MOCI was developed, which is an empirical index able to estimate the thermal perception of people living in the Mediterranean area. In this study it was compared numerically (by using the data obtained through a field survey with other selected thermal indices. This comparison, performed in terms of Spearman’s rho correlation coefficient, association Gamma, percentage of correct predictions and cross-tabulation analysis, led to identify the MOCI as the most suitable index to examine outdoor thermal comfort in the interested area. As a matter of fact it showed a total percentage of correct predictions of 35.5%. Good performances were reported even in thermophysiological indices as the Physiological Equivalent Temperature (PET and Predicted Mean Vote (PMV. Moreover it was revealed that adaptation and acclimatization phenomena tend to have a certain influence as well.

  5. Preliminary research on virtual thermal comfort of automobile occupants

    Science.gov (United States)

    Horobet, Tiberiu; Danca, Paul; Nastase, Ilinca; Bode, Florin

    2018-02-01

    Numerical simulation of climate conditions in automotive industry for the study of thermal comfort had become more and more prominent in the last years compared with the classical approach which consists in wind tunnel measurements and field testing, the main advantages being the reduction of vehicle development time and costs. The study presented in this paper is a part of a project intended to evaluate different strategies of cabin ventilation for improving the thermal comfort inside vehicles. A virtual thermal manikin consisting of 24 parts was introduced on the driver seat in a vehicle. A heat load calculated for summer condition in the city of Cluj-Napoca, Romania was imposed as boundary condition. The purpose of this study was to elaborate a virtual thermal manikin suitable for our research, introduction of the manikin inside the vehicle and to examine his influence inside the automobile. The thermal comfort of the virtual manikin was evaluated in terms of temperature and air velocity.

  6. Thermal comfort assessment in civil aircraft cabins

    OpenAIRE

    Pang Liping; Qin Yue; Liu Dong; Liu Meng

    2014-01-01

    Aircraft passengers are more and demanding in terms of thermal comfort. But it is not yet easy for aircraft crew to control the environment control system (ECS) that satisfies the thermal comfort for most passengers due to a number of causes. This paper adopts a corrected predicted mean vote (PMV) model and an adaptive model to assess the thermal comfort conditions for 31 investigated flights and draws the conclusion that there does exist an uncomfortable thermal phenomenon in civil aircraft ...

  7. The Welfare Culture. Poetics of Comfort in Architecture of the 19th and 20th-centuries

    Directory of Open Access Journals (Sweden)

    Eduardo Prieto González

    2013-10-01

    Full Text Available AbstractArchitectural history of the last two centuries shows that welfare, far from being a purely technical issue – a balance between weather and the physiological human constants – is a culturally constructed idea concerning diverse factors, such as the relationship between space and human body or the ways of conceiving nature in architecture. However, the notion of comfort has not received the historiographical attention it deserves, hence the need for a new perspective, aesthetic and multidisciplinary in nature. Such a view is discussed in this article through a brief and partial history of comfort that addresses the different meanings assigned to the concept over the past two centuries, in accordance with a kind of 'poetics': the longstanding poetics of fire, linked the regenerative comfort; the poetics of hygiene and habitat, developed during modernity as a scientifistic dogma and as an aesthetic alibi, and, finally, the poetics of atmospheres, which accounts for contemporary concerns about perception, memory and sociability. From this historical review we can conclude that welfare is not an objectifiable concept, nor an idea synthesized in the technician or scientist test tubes, but a complex notion consisting of several intertwined layers: physiological, constructive, aesthetic, existential, social. The history of comfort is, thus, a sort of small version of the history of culture.Key wordscomfort, architecture, hygiene, habitat, atmosphere

  8. Adaptive thermal comfort opportunities for dwellings: Providing thermal comfort only when and where needed in dwellings in the Netherlands

    Directory of Open Access Journals (Sweden)

    Noortje Alders

    2016-08-01

    different approach to the comfort boundaries used in modern standards was introduced, creating insight in the spread in activity patterns and the comfort demand in the context of individual preferences and vulnerabilities. Information of sociology and thermal comfort studies were brought together creating occupancy and thermal comfort profiles for the Dutch situation. By recognizing the differences in occupancy patterns it becomes possible to design adaptive systems to be able to deliver the comfort demanded only when and where necessary in different occupancy scenarios. This is an opportunity to achieve a significantly better energy performance. Furthermore, a method for dynamic analysis of weather conditions related to the thermal comfort was proposed in order to map the opportunities and threats of weather change. This makes the system able to seize upon every reasonably to be expected situation to create an optimal dynamic filter for the outdoor to indoor thermal environment at any time and place. This preliminary study was performed by presuming a simple shelter that can create shielding from wind and solar radiation without any form of thermal storage or insulation. In this study it is emphasised that there is no need for active cooling in the residential sector of the Netherlands if the dwelling is well designed; blocking solar radiation when needed and to allow built up excess heat to be discarded. An inventory is provided of the possibilities for adaptivity for a thermal comfort system which are used in common practice and which improvements and new techniques can be implemented to increase these possibilities for adaptivity of the Adaptive Thermal Comfort System.  2. The effect of applying the detailed information and adaptive opportunities framed in step 1 on the energy saving and comfort delivery of the Thermal Comfort Systems was researched. Firstly, the most appropriate calculation methods for the research were determined comparing various levels of detail

  9. Children thermal comfort in primary schools in Ho Chi Minh City in Vietnam

    OpenAIRE

    Le, Thi Ho Vi; Gillott, Mark C.; Rodrigues, Lucélia Taranto

    2017-01-01

    Indoor environmental quality significantly impacts on students’ performance and productivity, particularly thermal comfort levels. Currently in Vietnam, very few studies have dealt with the issue and the current trend is to install energy-intensive air-conditioning in primary schools as this is perceived as more comfortable. In this study, the authors investigated the users’ perceptions of thermal comfort in three primary schools in Ho Chi Minh City during the mid-season (September 2015) and ...

  10. Thermal comfort in urban green spaces: a survey on a Dutch university campus

    NARCIS (Netherlands)

    Wang, Yafei; Groot, de Dolf; Bakker, Frank; Wörtche, Heinrich; Leemans, Rik

    2017-01-01

    To better understand the influence of urban green infrastructure (UGI) on outdoor human thermal comfort, a survey and physical measurements were performed at the campus of the University of Groningen, The Netherlands, in spring and summer 2015. Three hundred eighty-nine respondents were interviewed

  11. A new 'bio-comfort' perspective for Melbourne based on heat stress, air pollution and pollen.

    Science.gov (United States)

    Jacobs, Stephanie J; Pezza, Alexandre B; Barras, Vaughan; Bye, John

    2014-03-01

    Humans are at risk from exposure to extremes in their environment, yet there is no consistent way to fully quantify and understand the risk when considering more than just meteorological variables. An outdoor 'bio-comfort' threshold is defined for Melbourne, Australia using a combination of heat stress, air particulate concentration and grass pollen count, where comfortable conditions imply an ideal range of temperature, humidity and wind speed, acceptable levels of air particulates and a low pollen count. This is a new approach to defining the comfort of human populations. While other works have looked into the separate impacts of different variables, this is the first time that a unified bio-comfort threshold is suggested. Composite maps of surface pressure are used to illustrate the genesis and evolution of the atmospheric structures conducive to an uncomfortable day. When there is an uncomfortable day due to heat stress conditions in Melbourne, there is a high pressure anomaly to the east bringing warm air from the northern interior of Australia. This anomaly is part of a slow moving blocking high originating over the Indian Ocean. Uncomfortable days due to high particulate levels have an approaching cold front. However, for air particulate cases during the cold season there are stable atmospheric conditions enhanced by a blocking high emanating from Australia and linking with the Antarctic continent. Finally, when grass pollen levels are high, there are northerly winds carrying the pollen from rural grass lands to Melbourne, due to a stationary trough of low pressure inland. Analysis into days with multiple types of stress revealed that the atmospheric signals associated with each type of discomfort are present regardless of whether the day is uncomfortable due to one or multiple variables. Therefore, these bio-comfort results are significant because they offer a degree of predictability for future uncomfortable days in Melbourne.

  12. A new `bio-comfort' perspective for Melbourne based on heat stress, air pollution and pollen

    Science.gov (United States)

    Jacobs, Stephanie J.; Pezza, Alexandre B.; Barras, Vaughan; Bye, John

    2014-03-01

    Humans are at risk from exposure to extremes in their environment, yet there is no consistent way to fully quantify and understand the risk when considering more than just meteorological variables. An outdoor `bio-comfort' threshold is defined for Melbourne, Australia using a combination of heat stress, air particulate concentration and grass pollen count, where comfortable conditions imply an ideal range of temperature, humidity and wind speed, acceptable levels of air particulates and a low pollen count. This is a new approach to defining the comfort of human populations. While other works have looked into the separate impacts of different variables, this is the first time that a unified bio-comfort threshold is suggested. Composite maps of surface pressure are used to illustrate the genesis and evolution of the atmospheric structures conducive to an uncomfortable day. When there is an uncomfortable day due to heat stress conditions in Melbourne, there is a high pressure anomaly to the east bringing warm air from the northern interior of Australia. This anomaly is part of a slow moving blocking high originating over the Indian Ocean. Uncomfortable days due to high particulate levels have an approaching cold front. However, for air particulate cases during the cold season there are stable atmospheric conditions enhanced by a blocking high emanating from Australia and linking with the Antarctic continent. Finally, when grass pollen levels are high, there are northerly winds carrying the pollen from rural grass lands to Melbourne, due to a stationary trough of low pressure inland. Analysis into days with multiple types of stress revealed that the atmospheric signals associated with each type of discomfort are present regardless of whether the day is uncomfortable due to one or multiple variables. Therefore, these bio-comfort results are significant because they offer a degree of predictability for future uncomfortable days in Melbourne.

  13. Lesbian, Gay, Bisexual, and Transgender Patient Care: Medical Students' Preparedness and Comfort.

    Science.gov (United States)

    White, William; Brenman, Stephanie; Paradis, Elise; Goldsmith, Elizabeth S; Lunn, Mitchell R; Obedin-Maliver, Juno; Stewart, Leslie; Tran, Eric; Wells, Maggie; Chamberlain, Lisa J; Fetterman, David M; Garcia, Gabriel

    2015-01-01

    Phenomenon: Lesbian, gay, bisexual, and transgender (LGBT) individuals face significant barriers in accessing appropriate and comprehensive medical care. Medical students' level of preparedness and comfort caring for LGBT patients is unknown. An online questionnaire (2009-2010) was distributed to students (n = 9,522) at 176 allopathic and osteopathic medical schools in Canada and the United States, followed by focus groups (2010) with students (n = 35) at five medical schools. The objective of this study was to characterize LGBT-related medical curricula, to determine medical students' assessments of their institutions' LGBT-related curricular content, and to evaluate their comfort and preparedness in caring for LGBT patients. Of 9,522 survey respondents, 4,262 from 170 schools were included in the final analysis. Most medical students (2,866/4,262; 67.3%) evaluated their LGBT-related curriculum as "fair" or worse. Students most often felt prepared addressing human immunodeficiency virus (HIV; 3,254/4,147; 78.5%) and non-HIV sexually transmitted infections (2,851/4,136; 68.9%). They felt least prepared discussing sex reassignment surgery (1,061/4,070; 26.1%) and gender transitioning (1,141/4,068; 28.0%). Medical education helped 62.6% (2,669/4,262) of students feel "more prepared" and 46.3% (1,972/4,262) of students feel "more comfortable" to care for LGBT patients. Four focus group sessions with 29 students were transcribed and analyzed. Qualitative analysis suggested students have significant concerns in addressing certain aspects of LGBT health, specifically with transgender patients. Insights: Medical students thought LGBT-specific curricula could be improved, consistent with the findings from a survey of deans of medical education. They felt comfortable, but not fully prepared, to care for LGBT patients. Increasing curricular coverage of LGBT-related topics is indicated with emphasis on exposing students to LGBT patients in clinical settings.

  14. Comfort in palliative sedation (Compas): a transdisciplinary mixed method study protocol for linking objective assessments to subjective experiences.

    Science.gov (United States)

    Six, Stefaan; Laureys, Steven; Poelaert, Jan; Bilsen, Johan; Theuns, Peter; Deschepper, Reginald

    2018-04-18

    In case of untreatable suffering at the end of life, palliative sedation may be chosen to assure comfort by reducing the patient's level of consciousness. An important question here is whether such sedated patients are completely free of pain. Because these patients cannot communicate anymore, caregivers have to rely on observation to assess the patient's comfort. Recently however, more sophisticated techniques from the neurosciences have shown that sometimes consciousness and pain are undetectable with these traditional behavioral methods. The aim of this study is to better understand how unconscious palliative sedated patients experience the last days of their life and to find out if they are really free of pain. In this study we will observe 40 patients starting with initiation of palliative sedation until death. Assessment of comfort based on behavioral observations will be related with the results from a NeuroSense monitor, an EEG-based monitor used for evaluation of the adequacy of anesthesia and sedation in the operating room and an ECG-based Analgesia Nociception Index (ANI) monitor, which informs about comfort or discomfort condition, based on the parasympathetic tone. An innovative and challenging aspect of this study is its qualitative approach; "objective" and "subjective" data will be linked to achieve a holistic understanding of the study topic. The following data will be collected: assessment of pain/comfort by the patients themselves (if possible) by scoring a Visual Analogue Scale (VAS); brain function monitoring; monitoring of parasympathetic tone; caregivers' assessment (pain, awareness, communication); relatives' perception of the quality of the dying process; assessment by 2 trained investigators using observational scales; video and audio registration. Measuring pain and awareness in non-communicative dying patients is both technically and ethically challenging. ANI and EEG have shown to be promising technologies to detect pain that otherwise

  15. Elevator ride comfort monitoring and evaluation using smartphones

    Science.gov (United States)

    Zhang, Yang; Sun, Xiaowei; Zhao, Xuefeng; Su, Wensheng

    2018-05-01

    With rapid urbanization, the demand for elevators is increasing, and their level of safety and ride comfort under vibrating conditions has also aroused interest. It is therefore essential to monitor the ride comfort level of elevators. The traditional method for such monitoring depends significantly on regular professional inspections, and requires expensive equipment and professional skill. With this regard, a new method for elevator ride comfort monitoring using a smartphone is demonstrated herein in detail. A variety of high-precision sensors are installed in a smartphone with strong data processing and telecommunication capabilities. A series of validation tests were designed and completed, and the international organization for standardization ISO2631-1997 was applied to evaluate the level of elevator ride comfort. Experimental results indicate that the proposed method is stable and reliable, its precision meets the engineering requirements, and the elevator ride comfort level can be accurately monitored under various situations. The method is very economical and convenient, and provides the possibility for the public to participate in elevator ride comfort monitoring. In addition, the method can both provide a wide range of data support and eliminate data errors to a certain extent.

  16. The Dynamics of the Bioclimatic Indices of Environmental Comfort in the Udmurt Republic, Russia

    Directory of Open Access Journals (Sweden)

    Yu.P. Perevedentsev

    2016-12-01

    Full Text Available This paper provides a review of the biometeorological indices used to assess the degree of comfort of weather and climate conditions. Statistical calculations of the effective and equivalent effective temperature have been performed for eight weather stations in the Udmurt Republic (Russia during the period of 1961–2014. The effect of varying weather conditions on the functional state of the human body has been revealed based on the indices of weather hardness and pathogenicity. It has been found that the weather conditions in the region of study are comfortable only in the summer period. In the winter period, they are either irritating or acute. Positive values of the coefficients of linear trend inclination prevail for most biometeorological indices, thereby showing that the weather conditions improved over the last decades. Sample calculations of the biometeorological indices have been given for the extreme weather situations.

  17. A comparison of suit dresses and summer clothes in the terms of thermal comfort.

    Science.gov (United States)

    Ekici, Can; Atilgan, Ibrahim

    2013-12-19

    Fanger's PMV equation is the result of the combined quantitative effects of the air temperature, mean radiant temperature, relative air velocity, humidity, activity level and clothing insulation. This paper contains a comparison of suit dresses and summer clothes in terms of thermal comfort, Fanger's PMV equation. Studies were processed in the winter for an office, which locates in Ankara, Turkey. The office was partitioned to fifty square cells. Humidity, relative air velocity, air temperature and mean radiant temperature were measured on the centre points of these cells. Thermal comfort analyses were processed for suit dressing (Icl = 1 clo) and summer clothing (Icl = 0.5 clo). Discomfort/comfort in an environment for different clothing types can be seen in this study. The relationship between indoor thermal comfort distribution and clothing type was discussed. Graphics about thermal comfort were sketched according to cells. Conclusions about the thermal comfort of occupants were given by PMV graphics.

  18. The influence of anxiety and personality factors on comfort and reachability space a correlational study

    NARCIS (Netherlands)

    Iachini, Tina; Ruggiero, Gennaro; Ruotolo, Francesco; Schiano di Cola, Armando; Senese, Vincenzo Paolo

    Although the effects of several personality factors on interpersonal space (i.e. social space within personal comfort area) are well documented, it is not clear whether they also extend to peripersonal space (i.e. reaching space). Indeed, no study has directly compared these spaces in relation to

  19. Effect evaluation of a heated ambulance mattress-prototype on thermal comfort and patients' temperatures in prehospital emergency care - an intervention study.

    Science.gov (United States)

    Aléx, Jonas; Karlsson, Stig; Björnstig, Ulf; Saveman, Britt-Inger

    2015-01-01

    Background The ambulance milieu does not offer good thermal comfort to patients during the cold Swedish winters. Patients' exposure to cold temperatures combined with a cold ambulance mattress seems to be the major factor leading to an overall sensation of discomfort. There is little research on the effect of active heat delivered from underneath in ambulance care. Therefore, the aim of this study was to evaluate the effect of an electrically heated ambulance mattress-prototype on thermal comfort and patients' temperatures in the prehospital emergency care. Methods A quantitative intervention study on ambulance care was conducted in the north of Sweden. The ambulance used for the intervention group (n=30) was equipped with an electrically heated mattress on the regular ambulance stretcher whereas for the control group (n=30) no active heat was provided on the stretcher. Outcome variables were measured as thermal comfort on the Cold Discomfort Scale (CDS), subjective comments on cold experiences, and finger, ear and air temperatures. Results Thermal comfort, measured by CDS, improved during the ambulance transport to the emergency department in the intervention group (p=0.001) but decreased in the control group (p=0.014). A significant higher proportion (57%) of the control group rated the stretcher as cold to lie down compared to the intervention group (3%, pthermal comfort and may prevent the negative consequences of cold stress.

  20. Effect evaluation of a heated ambulance mattress-prototype on thermal comfort and patients' temperatures in prehospital emergency care--an intervention study.

    Science.gov (United States)

    Aléx, Jonas; Karlsson, Stig; Björnstig, Ulf; Saveman, Britt-Inger

    2015-01-01

    The ambulance milieu does not offer good thermal comfort to patients during the cold Swedish winters. Patients' exposure to cold temperatures combined with a cold ambulance mattress seems to be the major factor leading to an overall sensation of discomfort. There is little research on the effect of active heat delivered from underneath in ambulance care. Therefore, the aim of this study was to evaluate the effect of an electrically heated ambulance mattress-prototype on thermal comfort and patients' temperatures in the prehospital emergency care. A quantitative intervention study on ambulance care was conducted in the north of Sweden. The ambulance used for the intervention group (n=30) was equipped with an electrically heated mattress on the regular ambulance stretcher whereas for the control group (n=30) no active heat was provided on the stretcher. Outcome variables were measured as thermal comfort on the Cold Discomfort Scale (CDS), subjective comments on cold experiences, and finger, ear and air temperatures. Thermal comfort, measured by CDS, improved during the ambulance transport to the emergency department in the intervention group (p=0.001) but decreased in the control group (p=0.014). A significant higher proportion (57%) of the control group rated the stretcher as cold to lie down compared to the intervention group (3%, pthermal comfort and may prevent the negative consequences of cold stress.

  1. Is Comfort Food Really Good for the Soul? A Replication of Troisi and Gabriel’s (2011 Study 2

    Directory of Open Access Journals (Sweden)

    Lay See eOng

    2015-04-01

    Full Text Available We report the results of three high-powered replications of Troisi and Gabriel’s (2011 idea that writing about comfort food reduces feelings of loneliness amongst securely attached individuals after a belongingness threat. We conducted our studies amongst a large group of participants (Total N = 649 amongst American (MTurk, Dutch (Tilburg University; TiU, and Singaporean (Singapore Management University; SMU samples. Participants first completed an attachment style scale, followed by writing two essays for manipulating a sense of belongingness and salience of comfort food, and then reporting their loneliness levels. We did not confirm the overall effect over all three countries. However, exploratory results provide the preliminary suggestion that 1 the comfort food explanation likely holds amongst the American samples (including Troisi & Gabriel’s, but not amongst the TiU and SMU samples, and potentially that 2 the TiU and SMU participants self-regulate through warmer (vs. colder temperature foods. Both of these should be regarded with great caution as these analyses were exploratory, and because the Ns for the different temperature foods were small. We suspect we have uncovered first cross-cultural differences in self-regulation through food, but further confirmatory work is required to understand the cultural significance of comfort food for self-regulation.

  2. Negotiating comfort in low energy housing: The politics of intermediation

    International Nuclear Information System (INIS)

    Grandclément, Catherine; Karvonen, Andrew; Guy, Simon

    2015-01-01

    Optimising the energy performance of buildings is technically and economically challenging but it also has significant social implications. Maintaining comfortable indoor conditions while reducing energy consumption involves careful design, construction, and management of the built environment and its inhabitants. In this paper, we present findings from the study of a new low energy building for older people in Grenoble, France where conflicts emerged over the simultaneous pursuit of energy efficiency and comfort. The findings contribute to the contemporary literature on the sociotechnical study of buildings and energy use by focusing on intermediation, those activities that associate a technology to end users. Intermediation activities take many forms, and in some cases, can result in the harmonisation or alignment of energy efficiency goals and comfort goals. In other cases, intermediation is unsuccessful, leading to the conventional dichotomy between optimising technical performance and meeting occupant preferences. By highlighting the multiple ways that comfort and energy efficiency is negotiated, we conclude that buildings are provisional achievements that are constantly being intermediated. This suggests that building energy efficiency policies and programmes need to provide opportunities for intermediaries to negotiate the desires and preferences of the multiple stakeholders that are implicated in low energy buildings. -- Highlights: •Energy efficiency and comfort are two possibly contradictory aims of buildings. •We study the pursuit of these aims at the occupation stage of a new building. •Aligning these aims involve negotiating them with occupants. •Intermediation processes are key to such negotiations. •Intermediation processes involve both actors and technical devices

  3. Human thermal comfort antithesis in the context of the Mediterranean tourism potential

    Science.gov (United States)

    Nastos, Panagiotis T.; Zerefos, Christos S.; Kapsomenakis, Ioannis N.; Eleftheratos, Kostas; Polychroni, Iliana

    2016-04-01

    Weather and climate information are determinative factors in the decision of a touristic destination. The evaluation of the thermal, aesthetical and physical components of the climate is considered an issue of high importance in order to assess the climatic tourism potential. Mediterranean is an endowed region with respect to its temperate climate and impressive landscapes over the coastal environment and numerous islands. However, the harmony of the natural beauty is interrupted by extreme weather phenomena, such as heat and cold waves, heavy rains and stormy conditions. Thus, it is very important to know the seasonal behavior of the climate for touristic activities and recreation. Towards this objective we evaluated the antithesis in the human thermal perception as well as the sultriness, stormy, foggy, sunny and rainy days recorded in specific Greek touristic destinations against respective competitive Mediterranean resorts. Daily meteorological parameters, such as air temperature, relative humidity, wind speed, cloudiness and precipitation, were acquired from the most well-known touristic sites over the Mediterranean for the period 1970 to present. These variables were used on one hand to estimate the human thermal burden, by means of the thermal index of Physiologically Equivalent temperature (PET) and on the other hand to interpret the physical and aesthetic components of the tourism potential, by utilizing specific thresholds of the initial and derived variables in order to quantify in a simple and friendly way the environmental footprint on desired touristic destinations. The findings of this research shed light on the climate information for tourism in Greece against Mediterranean destinations. Greek resorts, especially in the Aegean Islands appear to be more ideal with respect to thermal comfort against resorts at the western and central Mediterranean, where the heat stress within the summer season seems to be an intolerable pressure on humans. This could

  4. Climate installations, comfort, health and productivity; Klimaatinstallaties, comfort, gezondheid en productiviteit

    Energy Technology Data Exchange (ETDEWEB)

    Boerstra, A.C.; Haans, L. [BBA Boerstra Binnenmilieu Advies, Rotterdam (Netherlands)

    2004-08-01

    Sometimes engineers lose sight of why both the private and business sectors are willing to spend so much money on heating and ventilation systems. The main drive for the average Dutch person's day-to-day investment in his or her indoor environment resides in the trinity of comfort, health and productivity. This article present an update on current ideas about the three unique selling points of HVAC systems. [Dutch] Soms wordt uit het oog verloren waarom zowel de particuliere als de zakelijke markt zoveel geld over heeft voor installaties. De grootste drijfveer die de gemiddelde Nederlander heeft voor zijn of haar dagelijkse binnenmilieu-investering, is te vinden in de drie-eenheid: comfort, gezondheid en productiviteit. In dit artikel wordt een overzicht gegeven van de laatste inzichten waar het deze drie aspecten van klimaatinstallaties betreft.

  5. Beyond K's Specter: Chang-rae Lee’s A Gesture Life, Comfort Women Testimonies, and Asian American Transnational Aesthetics

    Directory of Open Access Journals (Sweden)

    Belinda Kong

    2011-03-01

    Full Text Available

    This essay argues that Chang-rae Lee’s novel A Gesture Life exemplifies both the conceptual gains and the potential pitfalls of current Asian American literature’s transnationalism. The first section of the essay discusses the interlocking of psychoanalytic theory and political philosophy, specifically Freud’s uncanny and Arendt’s banality of evil, in Lee’s portrait of the psychology of criminal repression. The second section juxtaposes Lee’s novel against real-life comfort women’s survivor testimonies to probe broader questions of historical memory, politicized historiography, and the modes of circulation and authority in contemporary international comfort women discourse. The final section, which recontextualizes Lee’s novel within current debates in Asian and Asian American Studies, argues against a paradigm of alterity vis-à-vis the comfort women and proposes instead a transnational aesthetic premised on the human.

  6. Floor heating maximizes residents` comfort

    Energy Technology Data Exchange (ETDEWEB)

    Tirkkanen, P.; Wikstroem, T.

    1996-11-01

    Storing heat in floors by using economical night-time electricity does not increase the specific consumption of heating. According to studies done by IVO, the optimum housing comfort is achieved if the room is heated mainly by means of floor heating that is evened out by window or ceiling heating, or by a combination of all three forms of heating. (orig.)

  7. Potential energy savings and thermal comfort

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Rudbeck, Claus Christian; Schultz, Jørgen Munthe

    1996-01-01

    The simulation results on the energy saving potential and influence on indoor thermal comfort by replacement of common windows with aerogel windows as well as commercial low-energy windows are described and analysed.......The simulation results on the energy saving potential and influence on indoor thermal comfort by replacement of common windows with aerogel windows as well as commercial low-energy windows are described and analysed....

  8. Experimental investigation of thermal comfort and air quality in an automobile cabin during the cooling period

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, M.; Akyol, S.M. [Uludag University, Department of Mechanical Engineering, Faculty of Engineering and Architecture, Bursa (Turkey)

    2012-08-15

    The air quality and thermal comfort strongly influenced by the heat and mass transfer take place together in an automobile cabin. In this study, it is aimed to investigate and assess the effects of air intake settings (recirculation and fresh air) on the thermal comfort, air quality satisfaction and energy usage during the cooling period of an automobile cabin. For this purpose, measurements (temperature, air velocity, CO{sub 2}) were performed at various locations inside the cabin. Furthermore, whole body and local responses of the human subjects were noted while skin temperatures were measured. A mathematical model was arranged in order to estimate CO{sub 2} concentration and energy usage inside the vehicle cabin and verified with experimental data. It is shown that CO{sub 2} level inside of the cabin can be greater than the threshold value recommended for the driving safety if two and more occupants exist in the car. It is also shown that an advanced climate control system may satisfy the requirements for the air quality and thermal comfort as well as to reduce the energy usage for the cooling of a vehicle cabin. (orig.)

  9. Experimental investigation of thermal comfort and air quality in an automobile cabin during the cooling period

    Science.gov (United States)

    Kilic, M.; Akyol, S. M.

    2012-08-01

    The air quality and thermal comfort strongly influenced by the heat and mass transfer take place together in an automobile cabin. In this study, it is aimed to investigate and assess the effects of air intake settings (recirculation and fresh air) on the thermal comfort, air quality satisfaction and energy usage during the cooling period of an automobile cabin. For this purpose, measurements (temperature, air velocity, CO2) were performed at various locations inside the cabin. Furthermore, whole body and local responses of the human subjects were noted while skin temperatures were measured. A mathematical model was arranged in order to estimate CO2 concentration and energy usage inside the vehicle cabin and verified with experimental data. It is shown that CO2 level inside of the cabin can be greater than the threshold value recommended for the driving safety if two and more occupants exist in the car. It is also shown that an advanced climate control system may satisfy the requirements for the air quality and thermal comfort as well as to reduce the energy usage for the cooling of a vehicle cabin.

  10. Street greenery and its physical and psychological impact on outdoor thermal comfort

    NARCIS (Netherlands)

    Klemm, W.; Heusinkveld, B.G.; Lenzholzer, S.; Hove, van B.

    2015-01-01

    This study focuses on the benefits of street greenery for creating thermally comfortable streetscapes in moderate climates. It reports on investigations on the impact of street greenery on outdoor thermal comfort from a physical and psychological perspective. For this purpose, we examined nine

  11. Numerical Simulation of the Application of Solar Radiant Systems, Internal Airflow and Occupants’ Presence in the Improvement of Comfort in Winter Conditions

    Directory of Open Access Journals (Sweden)

    Eusébio Z. E. Conceição

    2016-09-01

    Full Text Available In this work, the use of numerical simulation in the application of solar radiant systems, internal airflow and occupants’ presence in the improvement of comfort in winter conditions is made. The thermal comfort, the local thermal discomfort and the air quality in an occupied chamber space are evaluated. In the experimental measurements, a wood chamber, a desk, two seats, two seated hygro-thermal manikins, a warm radiant floor, a solar radiation simulator and a water solar collector are used. The air velocity and the air temperature fluctuation are experimentally evaluated around 15 human body sections. The chamber surface temperature is experimentally measured. In the numerical simulation, a coupling human thermal comfort (HTC integral model, a computational fluids dynamics (CFD differential model and a building thermal response (BTR integral model are applied. The human thermal comfort level is evaluated by the HTC numerical model. The airflow inside the virtual chamber, using the k-epsilon and RNG turbulence models, is evaluated by the CFD numerical model. The chamber surface and the collector temperatures are evaluated by the BTR numerical model. In the human thermal comfort level, in non-uniform environments, the predicted mean vote (PMV and the predicted percentage of dissatisfied (PPD people are numerically evaluated; in the local thermal discomfort level the draught risk (DR is experimentally and numerically analyzed; and in the air quality, the carbon dioxide CO2 concentration is numerically calculated. In the validation tests, the experimental and numerical values of the chamber surface temperature, the air temperature, the air velocity, the air turbulence intensity and the DR are presented.

  12. Effect of the Evaporative Cooling on the Human Thermal Comfort and Heat Stress in a Greenhouse under Arid Conditions

    Directory of Open Access Journals (Sweden)

    A. M. Abdel-Ghany

    2013-01-01

    Full Text Available Thermal sensation and heat stress were evaluated in a plastic greenhouse, with and without evaporative cooling, under arid climatic conditions in Riyadh, Saudi Arabia. Suitable thermal comfort and heat stress scales were selected for the evaluation. Experiments were conducted in hot sunny days to measure the required parameters (i.e., the dry and wet bulb temperatures, globe temperature, natural wet bulb temperature, and solar radiation flux in the greenhouse. The results showed that in the uncooled greenhouse, workers are exposed to strong heat stress and would feel very hot most of the day time; they are safe from heat stress risk and would feel comfortable during night. An efficient evaporative cooling is necessary during the day to reduce heat stress and to improve the comfort conditions and is not necessary at night. In the cooled greenhouse, workers can do any activity: except at around noon they should follow a proposed working schedule, in which the different types of work were scheduled along the daytimes based on the heat stress value. To avoid heat stress and to provide comfort conditions in the greenhouses, the optimum ranges of relative humidity and air temperature are 48–55% and 24–28°C, respectively.

  13. Thermal comfort of seats as visualized by infrared thermography.

    Science.gov (United States)

    Sales, Rosemary Bom Conselho; Pereira, Romeu Rodrigues; Aguilar, Maria Teresa Paulino; Cardoso, Antônio Valadão

    2017-07-01

    Published studies that deal with the question of how the temperature of chair seats influences human activities are few, but the studies considering such a factor, a function of the type of material, could contribute to improvements in the design of chairs. This study evaluates seat temperatures of 8 types of chairs made of different materials. The parts of the furniture that people come into contact with, and the thermal response of the material to heating and cooling have been evaluated. Infrared thermography was used for this, as it is a non-contact technique that does not present any type of risk in the measurement of temperatures. Seats made of synthetic leather (leatherette), wood and polyester fabric were found to have the highest temperatures, and the plywood seat showed the lowest. The study has also revealed that thermography can contribute to studies of thermal comfort of chair seats in addition to determining the most suitable material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Monitoring and assessment of the outdoor thermal comfort in Bucharest (Romania)

    Science.gov (United States)

    Cheval, Sorin; Ciobotaru, Ana-Maria; Andronache, Ion; Dumitrescu, Alexandru

    2017-04-01

    Bucharest is one of the European cities most at risk of being affected by meteorological hazards. Heat or cold waves, extreme temperature events, heavy rains or prolonged precipitation deficits are all-season phenomena, triggering damages, discomfort or even casualties. Temperature hazards may occur annually and challenge equally the public, local business and administration to find adequate solutions for securing the thermal comfort in the outdoor environment of the city. The accurate and fine resolution monitoring of the air temperature pledges for the comprehensive assessment of the thermal comfort in order to capture as much as possible the urban influence. This study uses sub-hourly temperature data (10-min temporal resolution) retrieved over the period November 2014 - November 2016 collected from nine sensors placed either in plain urban conditions or within the three meteorological stations of the national network which are currently monitoring the climate of Bucharest (Băneasa, Filaret, Afumați). The relative humidity was estimated based on the data available at the three stations placed in WMO standard conditions, and the 10-min values of 8 Thermal Comfort Indices were computed, namely: Heat Index, Humidex, Relative Strain Index, Scharlau, Summer Simmer Index, Physiological Equivalent Index, Temperature-Humidity Index, Thom Discomfort Index. The indices were analysed statistically, both individually and combined. Despite the short range of the available data, this study emphasizes clear spatial differentiations of the thermal comfort, in a very good agreement with the land cover and built zones of the city, while important variations were found in the temporal regime, due to large variations of the temperature values (e.g. >4 centigrade between consecutive hours or >15 centigrade between consecutive days). Ultimately, this study has revealed that the continuous monitoring of the urban climate, at fine temporal and spatial resolution, may deliver

  15. Linear, Non-Linear and Alternative Algorithms in the Correlation of IEQ Factors with Global Comfort: A Case Study

    Directory of Open Access Journals (Sweden)

    Francesco Fassio

    2014-11-01

    Full Text Available Indoor environmental quality (IEQ factors usually considered in engineering studies, i.e., thermal, acoustical, visual comfort and indoor air quality are individually associated with the occupant satisfaction level on the basis of well-established relationships. On the other hand, the full understanding of how single IEQ factors contribute and interact to determine the overall occupant satisfaction (global comfort is currently an open field of research. The lack of a shared approach in treating the subject depends on many aspects: absence of established protocols for the collection of subjective and objective measurements, the amount of variables to consider and in general the complexity of the technical issues involved. This case study is aimed to perform a comparison between some of the models available, studying the results of a survey conducted with objective and subjective method on a classroom within University of Roma TRE premises. Different models are fitted on the same measured values, allowing comparison between different weighting schemes between IEQ categories obtained with different methods. The critical issues, like differences in the weighting scheme obtained with different IEQ models and the variability of the weighting scheme with respect to the time of exposure of the users in the building, identified during this small scale comfort assessment study, provide the basis for a survey activity on a larger scale, basis for the development of an improved IEQ assessment method.

  16. Understanding thermal comfort perception of nurses in a hospital ward work environment.

    NARCIS (Netherlands)

    Derks, M.T.H.; Mishra, A.K.; Loomans, M.G.L.C.; Kort, H.S.M.

    2018-01-01

    In indoor comfort research, thermal comfort of care-professionals in hospital environment is a little explored topic. To address this gap, a mixed methods study, with the nursing staff in hospital wards acting as participants, was undertaken. Responses were collected during three weeks in the summer

  17. Domotics. Comfortable and energy efficient?; Domotica. Comfortabel en energiezuinig?

    Energy Technology Data Exchange (ETDEWEB)

    Van Wolferen, H.; Hendriksen, L.; Traversari, R. [TNO Milieu, Energie en Procesinnovatie TNO-MEP, Apeldoorn (Netherlands)

    2003-02-01

    Insight is given into the added value of domotics (home automation) in the handling and control of comfort installations, focusing on comfort and energy consumption. Costs are indicated. [Dutch] Een overzicht wordt gegeven van de toegevoegde waarde van domotica bij de bediening en regeling van comfortinstallaties. Hierbij wordt de meeste aandacht gegeven aan comfort en energiegebruik. De kosten worden alleen indicatief besproken.

  18. Numerical Analysis of Thermal Comfort at Urban Environment

    Science.gov (United States)

    Papakonstantinou, K.; Belias, C.

    2009-08-01

    The present paper refers to the numerical simulation of air velocity at open air spaces and the conducting thermal comfort after the evaluation of the examined space using CFD methods, taking into account bioclimatic principles at the architectural design. More specially, the paper draws attention to the physical procedures governing air movement at an open environment area in Athens (athletic park), named "Serafeio Athletic and Cultural Centre," trying to form them in such way that will lead to the thermal comfort of the area's visitors. The study presents a mathematical model, implemented in a general computer code that can provide detailed information on velocity, prevailing in three-dimensional spaces of any geometrical complexity. Turbulent flow is simulated and buoyancy effects are taken into account. This modelling procedure is intended to contribute to the effort towards designing open areas, such as parks, squares or outdoor building environments, using thermal comfort criteria at the bioclimatic design. A computer model of this kind will provide the architects or the environmental engineers with powerful and economical means of evaluating alternative spaces' designs.

  19. Heartwarming memories: Nostalgia maintains physiological comfort.

    Science.gov (United States)

    Zhou, Xinyue; Wildschut, Tim; Sedikides, Constantine; Chen, Xiaoxi; Vingerhoets, Ad J J M

    2012-08-01

    Nostalgia, a sentimental longing or wistful affection for the past, is a predominantly positive and social emotion. Recent evidence suggests that nostalgia maintains psychological comfort. Here, we propose, and document in five methodologically diverse studies, a broader homeostatic function for nostalgia that also encompasses the maintenance of physiological comfort. We show that nostalgia--an emotion with a strong connotation of warmth--is triggered by coldness. Participants reported stronger nostalgia on colder (vs. warmer) days and in a cold (vs. neutral or warm) room. Nostalgia, in turn, modulates the interoceptive feeling of temperature. Higher levels of music-evoked nostalgia predicted increased physical warmth, and participants who recalled a nostalgic (vs. ordinary autobiographical) event perceived ambient temperature as higher. Finally, and consistent with the close central nervous system integration of temperature and pain sensations, participants who recalled a nostalgic (vs. ordinary autobiographical) event evinced greater tolerance to noxious cold.

  20. the comfort, measured by means of a sweating manikin (waltertm)

    African Journals Online (AJOL)

    user

    With the growing importance of clothing comfort in South African and overseas markets for locally produced clothing, the Council for. Scientific Industrial Research (CSIR) acquired an advanced sweating fabric manikin for measuring clothing comfort. This preliminary investigation covers the comfort related properties, as ...

  1. Development of a Distributed Modeling Framework to Estimate Thermal Comfort along 2020 Tokyo Olympic Marathon Course

    Directory of Open Access Journals (Sweden)

    Satoshi Hirabayashi

    2018-05-01

    Full Text Available Heat stress is an issue for marathon races in the summer, such as the one planned for the 2020 Tokyo Summer Olympic games. The Tokyo Metropolitan Government is planning to grow existing street trees’ canopies to enlarge their shade to reduce air temperature and solar radiation. To formulate a baseline to assess the effect of street trees and buildings on human thermal comfort, Distributed-COMfort FormulA (D-COMFA, a prototype of a distributed computer model using a geographic information system (GIS was developed. D-COMFA calculates the energy budget of a human body on a 1 m cell basis, using readily available datasets such as weather measurements and polygon data for street structures. D-COMFA was applied to a street segment along the marathon course in Tokyo on an hourly-basis on 9 August 2016, the hottest day in Tokyo in 2016. Our case study showed that the energy budget was positively related to the sky view factor, air temperature, and solar radiation. The energy budget was reduced on average by 26–62% in the shade throughout the day.

  2. Thermal Comfort Level Assessment in Urban Area of Petrolina-PE County, Brazil

    Directory of Open Access Journals (Sweden)

    Pedro Vieira de Azevedo

    Full Text Available Abstract This study evaluated the thermal conditions of urban areas in Petrolina-PE, from continuous data collected in urban and rural areas for the year of 2012. The results characterized urban heat islands (UHI with varying intensity in urban areas, especially UHI = 5.3 °C (high intensity occurred on April 28, 2012. It was evident that the constituent elements of urban areas contribute to the formation and expansion of UHI bringing thermal discomfort for its inhabitants. An adaptation to Thom’s equation for calculating the Thermal Discomfort Index (DIT, was used to obtain the maximum (DITx and minimum (DITm thermal discomfort. In the urban area, the DITm indicated thermal comfort in 23.0% of the days and partial comfort in 77.0% of days surveyed. Already, the DITx characterized 71.6% of days with partial comfort and 28.4% of days with thermal discomfort. In the rural area, The DITm indicated that 41.5% of days were thermally comfortable and 58.5% of days had partial comfort. However, the DITx pointed 87.7% of the days of this environment with partial thermal comfort and 12.3% of thermally uncomfortable days. Finally, the results showed that afforestation of urban area constitutes to an effective and efficient way to mitigate thermal discomfort.

  3. A simplified tool for building layout design based on thermal comfort simulations

    Directory of Open Access Journals (Sweden)

    Prashant Anand

    2017-06-01

    Full Text Available Thermal comfort aspects of indoor spaces are crucial during the design stages of building layout planning. This study presents a simplified tool based on thermal comfort using predicted mean vote (PMV index. Thermal comfort simulations were performed for 14 different possible room layouts based on window configurations. ECOTECT 12 was used to determine the PMV of these rooms for one full year, leading to 17,808 simulations. Simulations were performed for three different climatic zones in India and were validated using in-situ measurements from one of these climatic zones. For moderate climates, rooms with window openings on the south façade exhibited the best thermal comfort conditions for nights, with comfort conditions prevailing for approximately 79.25% of the time annually. For operation during the day, windows on the north façade are favored, with thermal comfort conditions prevailing for approximately 77.74% of the time annually. Similar results for day and night time operation for other two climatic zones are presented. Such an output is essential in deciding the layout of buildings on the basis of functionality of the different rooms (living room, bedroom, kitchen corresponding to different operation times of the day.

  4. Monitoring indices of cow comfort in free-stall-housed dairy herds.

    Science.gov (United States)

    Cook, N B; Bennett, T B; Nordlund, K V

    2005-11-01

    Indices of cow comfort are used widely by consultants in the dairy industry, with a general understanding that they are representative of lying behavior. This study examines the influence of stall base type (sand or a geotextile mattress filled with rubber crumbs) and time of measurement on 4 indices of comfort collected at hourly intervals in 12 herds, aligned by morning and afternoon milking. Stall base type significantly influenced all indices of comfort. For example, the least squares mean (SE) cow comfort index (proportion of cows touching a stall that are lying down) was 0.76 (0.015) in herds with mattresses compared with 0.86 (0.015) in herds with sand stalls. Significant hourly variation was also identified suggesting that timing of measurement is important. None of the indices of cow comfort derived from the high-yielding group pen was associated with the mean 24-h lying time of 10 sentinel cows whose time budgets were known in each herd. However, the cow comfort index was associated with the herd mean 24-h stall standing time, with the strongest relationships occurring 2 h before the morning and afternoon milking, when stall base type did not significantly influence the association. When measured at these times, we recommend use of the stall standing index (proportion of cows touching a stall that are standing), with values greater than 0.20 being associated with abnormally long herd mean stall standing times greater than 2 h/d.

  5. Exploring the design of a lightweight, sustainable and comfortable aircraft seat.

    Science.gov (United States)

    Kokorikou, A; Vink, P; de Pauw, I C; Braca, A

    2016-07-19

    Making a lightweight seat that is also comfortable can be contradictory because usually comfort improvement means adding a feature (e.g. headrest, adjustable lumbar support, movable armrests, integrated massage systems, etc.), which makes seats heavier. This paper explores the design of an economy class aircraft seat that aims to be lightweight, comfortable and sustainable. Theory about comfort in seats, ergonomics, lightweight design, Biomimicry and Cradle to cradle was studied and resulted in a list of requirements that the new seat should satisfy. The design process resulted in a new seat that is 36% lighter than the reference seat, which showed that a significant weight reduction can be achieved. This was completed by re-designing the backrest and seat pan and integrating their functions into a reduced number of parts. Apart from the weight reduction that helps in reducing the airplane's environmental impact, the seat also satisfies most of the other sustainability requirements such as the use of recyclable materials, design for disassembly, easy to repair. A user test compared the new seat with a premium economy class aircraft seat and the level of comfort was similar. Strong points of the new design were identified such as the lumbar support and the cushioning material, as well as shortcomings on which the seat needs to be improved, like the seat pan length and the first impression. Long term comfort tests are still needed as the seat is meant for long-haul flights.

  6. An investigation into thermal comfort and residential thermal environment in an intertropical sub-Saharan Africa region: Field study report during the Harmattan season in Cameroon

    International Nuclear Information System (INIS)

    Djongyang, Noel; Tchinda, Rene

    2010-01-01

    Investigations on thermal comfort have attracted authors for years throughout the world and the most important findings are now the basis of international thermal comfort standards. There is little information available concerning occupant comfort and residential thermal environment in the intertropical sub-Saharan Africa. Thus the purpose for this study is to conduct a field study on comfort and residential thermal environments in a typical intertropical climatic region. A field survey has been conducted during the Harmattan season in two cities from the two climatic regions of Cameroon concerned by that wind. Specific study objectives were to evaluate and characterize some thermal perceptions of occupants in their residence, compare observed and predicted percent of dissatisfied, and discern differences between the study area and other climate zones where similar studies have been performed. It was found that the thermoneutral temperatures in both climatic regions range from 24.69 deg. C to 27.32 deg. C and, in traditional living room, it differs from that of modern living room with approximately 1 deg. C.

  7. Assessment of the thermal environment effects on human comfort and health for the development of novel air conditioning system in tropical regions

    Energy Technology Data Exchange (ETDEWEB)

    Sookchaiya, Thammanoon; Monyakul, Veerapol; Thepa, Sirichai [Division of Energy Technology, School of Energy Environment and Materials, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand)

    2010-10-15

    This research shows the result of a brainstorming by medical experts in the first ranking university medical school and hospital of Thailand. It was based on Delphi technique. The objective of this research was to study both direct and indirect effects of humidity and temperature on human health in air-conditioned buildings in Thailand. Afterwards, the result was used to design and develop split type air conditioner (conventional air conditioner) which could control relative humidity and temperature with precision air conditioning system to comply with the climate and the suitability of the people living in Thailand building. The result of operation with precision inverter air conditioning system showed that the temperature inside the room changed from the default value around {+-}0.2 C (Case 1) and around {+-}0.35 C (Case 2) and it could control relative humidity as a desired condition between 50-60% (both cases) which was the appropriate range for Thai climate. Moreover, energy consumption of precision inverter air conditioning system was still less than conventional air conditioning system for about 7.5%. This research could provide people living in Thailand air conditioned building with human thermal comfort and health. (author)

  8. Impact of management attitudes on perceived thermal comfort

    NARCIS (Netherlands)

    Derksen, T.; Franchimon, F.; Bronswijk, van J.E.M.H.

    2008-01-01

    Objectives This study examined the influence of some organizational and management characteristics on the perception of indoor environment qualities such as thermal comfort and related stress. Methods One open office in each of three organizations in Eindhoven was studied. An office environment

  9. Numerical Analysis on Color Preference and Visual Comfort from Eye Tracking Technique

    Directory of Open Access Journals (Sweden)

    Ming-Chung Ho

    2015-01-01

    Full Text Available Color preferences in engineering are very important, and there exists relationship between color preference and visual comfort. In this study, there are thirty university students who participated in the experiment, supplemented by pre- and posttest questionnaires, which lasted about an hour. The main purpose of this study is to explore the visual effects of different color assignment with subjective color preferences via eye tracking technology. Eye-movement data through a nonlinear analysis detect slight differences in color preferences and visual comfort, suggesting effective physiological indicators as extensive future research discussed. Results found that the average pupil size of eye-movement indicators can effectively reflect the differences of color preferences and visual comfort. This study more confirmed that the subjective feeling will make people have misjudgment.

  10. Comfort and experience with online learning: trends over nine years and associations with knowledge.

    Science.gov (United States)

    Cook, David A; Thompson, Warren G

    2014-07-01

    Some evidence suggests that attitude toward computer-based instruction is an important determinant of success in online learning. We sought to determine how comfort using computers and perceptions of prior online learning experiences have changed over the past decade, and how these associate with learning outcomes. Each year from 2003-2011 we conducted a prospective trial of online learning. As part of each year's study, we asked medicine residents about their comfort using computers and if their previous experiences with online learning were favorable. We assessed knowledge using a multiple-choice test. We used regression to analyze associations and changes over time. 371 internal medicine and family medicine residents participated. Neither comfort with computers nor perceptions of prior online learning experiences showed a significant change across years (p > 0.61), with mean comfort rating 3.96 (maximum 5 = very comfortable) and mean experience rating 4.42 (maximum 6 = strongly agree [favorable]). Comfort showed no significant association with knowledge scores (p = 0.39) but perceptions of prior experiences did, with a 1.56% rise in knowledge score for a 1-point rise in experience score (p = 0.02). Correlations among comfort, perceptions of prior experiences, and number of prior experiences were all small and not statistically significant. Comfort with computers and perceptions of prior experience with online learning remained stable over nine years. Prior good experiences (but not comfort with computers) demonstrated a modest association with knowledge outcomes, suggesting that prior course satisfaction may influence subsequent learning.

  11. Understanding of Danish passive houses based on pilot project Comfort Houses

    Energy Technology Data Exchange (ETDEWEB)

    Brunsgaard, C.

    2010-12-15

    The aim of the research is to investigate the notion of passive houses in Denmark. When this PhD thesis was initiated, the Danish building industry has just started to become interested in the passive house concept, but the knowledge was very limited. To be able to speed up the process of constructing Danish passive houses or other low energy concepts Saint-Gobain Isover Scandinavia took the initiative to the pilot project of the Comfort Houses, ten single-family houses constructed as passive houses, and wanted to share the knowledge with the building industry and other interested. This PhD thesis was a part of the strategy. If the concept of passive houses should be successfully promoted and achieve a significant sale in Denmark, it is believed that it is necessary to do a holistic approach. Besides energy savings and new structural solutions more qualitative aspects like architecture, everyday life and the future ways of living needs to be integrated in the future understanding of passive houses. This Ph.D. thesis therefore studies the following research question: What can the experience from the Comfort Houses enlighten about the future production and use of Danish passive houses? This understanding is achieved through studies of different study fields to be able to create a more holistic understanding of the concept both covering qualitative and quantitative analysis. The main focus will be on the study fields Design Process, Architecture and Everyday Life and the Indoor environment, which will answer the following sub-research questions: 1) How has the consortiums behind the Comfort Houses approached the design process according to teamwork, method and tools? And what barriers and possibilities lie within the approaches? 2) How do the occupants of the Comfort Houses experience the passive house architecture and the technical service systems? And has their everyday life changed by moving into a passive house? If so, how? 3) To what extent do the Comfort Houses

  12. Using Upper Extremity Skin Temperatures to Assess Thermal Comfort in Office Buildings in Changsha, China.

    Science.gov (United States)

    Wu, Zhibin; Li, Nianping; Cui, Haijiao; Peng, Jinqing; Chen, Haowen; Liu, Penglong

    2017-09-21

    Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments' conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm) and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC) located in the hot summer and cold winter (HSCW) climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET*) was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*.

  13. Using Upper Extremity Skin Temperatures to Assess Thermal Comfort in Office Buildings in Changsha, China

    Directory of Open Access Journals (Sweden)

    Zhibin Wu

    2017-09-01

    Full Text Available Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments’ conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC located in the hot summer and cold winter (HSCW climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET* was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*.

  14. Acoustical comfort evaluation in enclosed public spaces with a central atrium : a case study in food court of CEPA Shopping Center, Ankara

    OpenAIRE

    Dökmeci, Papatya Nur

    2009-01-01

    Ankara : The Department of Interior Architecture and Environmental Design and the Institute of Economics and Social Sciences of Bilkent University, 2009. Thesis (Master's) -- Bilkent University, 2009. Includes bibliographical references leaves 79-83. Physical comfort requirements of users as thermal, visual, and acoustic comfort should be considered and studied in detail when designing and planning public spaces. The subjective auditory perception needs to be evaluated parallel...

  15. Impact of measurable physical phenomena on contact thermal comfort

    Science.gov (United States)

    Fojtlín, Miloš; Pokorný, Jan; Fišer, Jan; Toma, Róbert; Tuhovčák, Ján

    Cabin HVAC (Heating Ventilation and Air-conditioning) systems have become an essential part of personal vehicles as demands for comfortable transport are still rising. In fact, 85 % of the car trips in Europe are shorter than 18 km and last only up to 30 minutes. Under such conditions, the HVAC unit cannot often ensure desired cabin environment and passengers are prone to experience thermal stress. For this reason, additional comfort systems, such as heated or ventilated seats, are available on the market. However, there is no straightforward method to evaluate thermal comfort at the contact surfaces nowadays. The aim of this work is to summarise information about heated and ventilated seats. These technologies use electrical heating and fan driven air to contact area in order to achieve enhanced comfort. It is also expected, that such measures may contribute to lower energy consumption. Yet, in real conditions it is almost impossible to measure the airflow through the ventilated seat directly. Therefore, there is a need for an approach that would correlate measurable physical phenomena with thermal comfort. For this reason, a method that exploits a measurement of temperatures and humidity at the contact area is proposed. Preliminary results that correlate comfort with measurable physical phenomena are demonstrated.

  16. Impact of measurable physical phenomena on contact thermal comfort

    Directory of Open Access Journals (Sweden)

    Fojtlín Miloš

    2017-01-01

    Full Text Available Cabin HVAC (Heating Ventilation and Air-conditioning systems have become an essential part of personal vehicles as demands for comfortable transport are still rising. In fact, 85 % of the car trips in Europe are shorter than 18 km and last only up to 30 minutes. Under such conditions, the HVAC unit cannot often ensure desired cabin environment and passengers are prone to experience thermal stress. For this reason, additional comfort systems, such as heated or ventilated seats, are available on the market. However, there is no straightforward method to evaluate thermal comfort at the contact surfaces nowadays. The aim of this work is to summarise information about heated and ventilated seats. These technologies use electrical heating and fan driven air to contact area in order to achieve enhanced comfort. It is also expected, that such measures may contribute to lower energy consumption. Yet, in real conditions it is almost impossible to measure the airflow through the ventilated seat directly. Therefore, there is a need for an approach that would correlate measurable physical phenomena with thermal comfort. For this reason, a method that exploits a measurement of temperatures and humidity at the contact area is proposed. Preliminary results that correlate comfort with measurable physical phenomena are demonstrated.

  17. Comfort of the patient's family in an Intensive Care Unit related to welcoming

    Directory of Open Access Journals (Sweden)

    Mariana de Almeida Moraes Gibaut

    2013-10-01

    Full Text Available This study aimed to identify the level of comfort of families of patients in a critical health condition related to the welcoming practices performed by the hospital staff. Interviews were conducted with 250 relatives in hospitals of the state Bahia, using a Likert scale. Data were analyzed as percentages and quartiles. For nine of the 12 statements of the scale, most relatives scored their comfort level between very and totally comfortable, median of 4,revealing kindness, tranquility and friendly communication with family members. More than half of the sample scored its level as not at all to more or less comfortable, median of 3, for statements about demonstration of interest towards the relative by the staff and flexible visiting of the patient. The necessity of greater interest of the team in the condition and needs of the family was observed. Promoting comfort from the dimension of welcoming demands interdisciplinary actions grounded in humanistic philosophy, in which the nurse has an important role to play.

  18. Averting comfortable lifestyle crises.

    Science.gov (United States)

    Bilton, Rod

    2013-01-01

    How have climate change and diet shaped the evolution of human energy metabolism, and responses to vitamin C, fructose and uric acid? Through the last three millennia observant physicians have noted the association of inappropriate diets with increased incidence of obesity, heart disease, diabetes and cancer, and over the past 300 years doctors in the UK observed that overeating increased the incidence of these diseases. Anthropological studies of the Inuit culture in the mid-nineteenth century revealed that humans can survive and thrive in the virtual absence of dietary carbohydrate. In the 1960s, Cahill revealed the flexibility of human metabolism in response to partial and total starvation and demonstrated that type 2 diabetics were better adapted than healthy subjects to conserving protein during fasting. The potential role for brown adipose tissue thermogenesis in temperature maintenance and dietary calorie control was suggested by Rothwell and Stock from their experiments with 'cafeteria fed rats' in the 1980s. Recent advances in gene array studies and PET scanning support a role for this process in humans. The industrialisation of food processing in the twentieth century has led to increases in palatability and digestibility with a parallel loss of quality leading to overconsumption and the current obesity epidemic. The switch from animal to vegetable fats at the beginning of the twentieth century, followed by the rapid increase in sugar and fructose consumption from 1979 is mirrored by a steep increase in obesity in the 1980s, in the UK and USA. Containment of the obesity epidemic is compounded by the addictive properties of sugar which involve the same dopamine receptors in the pleasure centres of the brain as for cocaine, nicotine and alcohol. Of the many other toxic effects of excessive sugar consumption, immunocompromisation, kidney damage, atherosclerosis, oxidative stress and cancer are highlighted. The WHO and guidelines on sugar consumption include

  19. Veda-scope: More comfortable than the bivalve speculum and cytologically equivalent.

    Science.gov (United States)

    Longmore, Peter G

    2004-04-01

    The aim of the present study was to confirm that the Veda-scope is equivalent to the bivalve speculum in the collection of endocervical cells, as confirmation of adequate cervical sampling for Pap smear testing. The study also aimed to assess the comfort level of the Veda-scope compared to the traditional bivalve speculum and the patient preference of the Veda-scope compared to the bivalve speculum. Multicentre, randomised, controlled crossover, cytologist blinded study. The total number of subjects enrolled in the study were 250. The number of evaluable subjects were 210. In primary efficacy analysis, no significant difference was seen between the presence or absence of endocervical cells in the smears using either the Veda-scope or the bivalve speculum. There was a high concordance level between the diagnosis assigned to each specimen of a paired sample, the diagnosis agreeing in 97.6% cases. The primary reason given by many women for avoidance of regular Pap smear examinations is the discomfort or pain experienced with sample collection with the bivalve speculum. In the present study, 92% of subjects indicated a preference for the Veda-scope for Pap smear collection, while only 8.4% preferred the bivalve speculum. Subject preference was also assessed with respect to how the subject rated the comfort level of her previous Pap smear. In subjects who rated their previous Pap smear as very comfortable or comfortable, 86% expressed a preference for the Veda-scope. This rose to 93% in subjects who rated their previous Pap smear as only tolerable. The results of the present study show that Pap smear collections with the Veda-scope are of equal quality to those collected with the bivalve speculum, with an equivalent diagnostic outcome. A very strong preference for the Veda-scope was shown by the women enrolled in the present study based on the comfort levels experienced with the two devices.

  20. MIT-Skywalker: Evaluating comfort of bicycle/saddle seat.

    Science.gov (United States)

    Goncalves, Rogerio S; Hamilton, Taya; Daher, Ali R; Hirai, Hiroaki; Krebs, Hermano I

    2017-07-01

    The MIT-Skywalker is a robotic device developed for the rehabilitation of gait and balance after a neurological injury. This device has been designed based on the concept of a passive walker and provides three distinct training modes: discrete movement, rhythmic movement, and balance training. In this paper, we present our efforts to evaluate the comfort of a bicycle/saddle seat design for the system's novel actuated body weight support device. We employed different bicycle and saddle seats and evaluated comfort using objective and subjective measures. Here we will summarize the results obtained from a study of fifteen healthy subjects and one stroke patient that led to the selection of a saddle seat design for the MIT-Skywalker.

  1. Psychiatrists' Comfort Using Computers and Other Electronic Devices in Clinical Practice.

    Science.gov (United States)

    Duffy, Farifteh F; Fochtmann, Laura J; Clarke, Diana E; Barber, Keila; Hong, Seung-Hee; Yager, Joel; Mościcki, Eve K; Plovnick, Robert M

    2016-09-01

    This report highlights findings from the Study of Psychiatrists' Use of Informational Resources in Clinical Practice, a cross-sectional Web- and paper-based survey that examined psychiatrists' comfort using computers and other electronic devices in clinical practice. One-thousand psychiatrists were randomly selected from the American Medical Association Physician Masterfile and asked to complete the survey between May and August, 2012. A total of 152 eligible psychiatrists completed the questionnaire (response rate 22.2 %). The majority of psychiatrists reported comfort using computers for educational and personal purposes. However, 26 % of psychiatrists reported not using or not being comfortable using computers for clinical functions. Psychiatrists under age 50 were more likely to report comfort using computers for all purposes than their older counterparts. Clinical tasks for which computers were reportedly used comfortably, specifically by psychiatrists younger than 50, included documenting clinical encounters, prescribing, ordering laboratory tests, accessing read-only patient information (e.g., test results), conducting internet searches for general clinical information, accessing online patient educational materials, and communicating with patients or other clinicians. Psychiatrists generally reported comfort using computers for personal and educational purposes. However, use of computers in clinical care was less common, particularly among psychiatrists 50 and older. Information and educational resources need to be available in a variety of accessible, user-friendly, computer and non-computer-based formats, to support use across all ages. Moreover, ongoing training and technical assistance with use of electronic and mobile device technologies in clinical practice is needed. Research on barriers to clinical use of computers is warranted.

  2. Psychiatrists’ Comfort Using Computers and Other Electronic Devices in Clinical Practice

    Science.gov (United States)

    Fochtmann, Laura J.; Clarke, Diana E.; Barber, Keila; Hong, Seung-Hee; Yager, Joel; Mościcki, Eve K.; Plovnick, Robert M.

    2015-01-01

    This report highlights findings from the Study of Psychiatrists’ Use of Informational Resources in Clinical Practice, a cross-sectional Web- and paper-based survey that examined psychiatrists’ comfort using computers and other electronic devices in clinical practice. One-thousand psychiatrists were randomly selected from the American Medical Association Physician Masterfile and asked to complete the survey between May and August, 2012. A total of 152 eligible psychiatrists completed the questionnaire (response rate 22.2 %). The majority of psychiatrists reported comfort using computers for educational and personal purposes. However, 26 % of psychiatrists reported not using or not being comfortable using computers for clinical functions. Psychiatrists under age 50 were more likely to report comfort using computers for all purposes than their older counterparts. Clinical tasks for which computers were reportedly used comfortably, specifically by psychiatrists younger than 50, included documenting clinical encounters, prescribing, ordering laboratory tests, accessing read-only patient information (e.g., test results), conducting internet searches for general clinical information, accessing online patient educational materials, and communicating with patients or other clinicians. Psychiatrists generally reported comfort using computers for personal and educational purposes. However, use of computers in clinical care was less common, particularly among psychiatrists 50 and older. Information and educational resources need to be available in a variety of accessible, user-friendly, computer and non-computer-based formats, to support use across all ages. Moreover, ongoing training and technical assistance with use of electronic and mobile device technologies in clinical practice is needed. Research on barriers to clinical use of computers is warranted. PMID:26667248

  3. Environmental and comfort upgrading through lean technologies in informal settlements: Case study in Nairobi, Kenia and New Delhi, India

    Science.gov (United States)

    De Angelis, Enrico; Tagliabue, Lavinia Chiara; Zecchini, Paolo; Milanesi, Mattia

    2016-07-01

    affordable choices on the envelope of such simple housing. A simplified LCA (Life Cycle Assessment) evaluation on embodied energy in the proposed upgrading materials used for the housing allows assessing the environmental impact of the considered alternatives. The present study aims to find out and to propose lean technological solutions to improve users' comfort levels with simple DIY (do it yourself) modification of shelter's envelopes and basic education for the use of the housing. The paper presents the study of lean technological solutions to improve comfort conditions and durability of informal settlements located in two climate zones in the world where slums are a critical issue in the urban development. The opportunity to improve such conditions can promote an upgrading of health and wealth status in such a critical situation in which millions of people are living today. The lean, affordable and low impact technologies that have been proposed and tested by dynamic simulation could allow a widespread diffusion of the concept without burden on the strongly compromised environment. The weak and fragile areas affected by the slums have pollution problems and a main task is not to worsen them during the life of the shelters/houses.

  4. Multi-agent control system with information fusion based comfort model for smart buildings

    International Nuclear Information System (INIS)

    Wang, Zhu; Wang, Lingfeng; Dounis, Anastasios I.; Yang, Rui

    2012-01-01

    Highlights: ► Proposed a model to manage indoor energy and comfort for smart buildings. ► Developed a control system to maximize comfort with minimum energy consumption. ► Information fusion with ordered weighted averaging aggregation is used. ► Multi-agent technology and heuristic intelligent optimization are deployed in developing the control system. -- Abstract: From the perspective of system control, a smart and green building is a large-scale dynamic system with high complexity and a huge amount of information. Proper combination of the available information and effective control of the overall building system turns out to be a big challenge. In this study, we proposed a building indoor energy and comfort management model based on information fusion using ordered weighted averaging (OWA) aggregation. A multi-agent control system with heuristic intelligent optimization is developed to achieve a high level of comfort with the minimum power consumption. Case studies and simulation results are presented and discussed in this paper.

  5. The entry-level physical therapist: a case for COMFORT communication training.

    Science.gov (United States)

    Goldsmith, Joy; Wittenberg-Lyles, Elaine; Frisby, Brandi N; Platt, Christine Small

    2015-01-01

    Entry-level physical therapists provide clinical care for patients with functional mobility limitations. Their care spans the continuum of settings, disease processes, and diagnoses. Although effective communication skills are required to conduct physical therapy work, there is limited instruction provided in physical therapy education and students receive little exposure to seriously or chronically ill patients. The goal of this study was to assess the effects of communication training for the entry-level physical therapist facing palliative and end-of-life communication with patients/families. A pre-post survey design and narrative writing were used to assess the effect of the COMFORT communication training curriculum provided to doctorally trained, graduating physical therapists. The study demonstrated decreased student apprehension about communicating with dying patients and their families, and a comparison of mean scores reflecting the students' communication knowledge, confidence, and behaviors increased in a positive direction. As students became more willing to communicate, they were also more adept at integrating task and relational messages, as well as assimilating emotional support messages for patients and families. This study shows promise for the feasibility and utilization of the COMFORT curriculum for entry-level physical therapists. Further research should address the integration of COMFORT earlier into physical therapy education, as well as assess evidence of COMFORT communication skills in the clinical context.

  6. Progress in thermal comfort research over the last twenty years

    DEFF Research Database (Denmark)

    Dear, R. J. de; Akimoto, T.; Arens, E. A.

    2013-01-01

    Climate change and the urgency of decarbonizing the built environment are driving technological innovation in the way we deliver thermal comfort to occupants. These changes, in turn, seem to be setting the directions for contemporary thermal comfort research. This article presents a literature...... review of major changes, developments, and trends in the field of thermal comfort research over the last 20 years. One of the main paradigm shift was the fundamental conceptual reorientation that has taken place in thermal comfort thinking over the last 20 years; a shift away from the physically based...... developed, driven by the continuous challenge to model thermal comfort at the same anatomical resolution and to combine these localized signals into a coherent, global thermal perception. Finally, the demand for ever increasing building energy efficiency is pushing technological innovation in the way we...

  7. Geriatric care: ways and means of providing comfort.

    Science.gov (United States)

    Ribeiro, Patricia Cruz Pontifice Sousa Valente; Marques, Rita Margarida Dourado; Ribeiro, Marta Pontifice

    2017-01-01

    To know the ways and means of comfort perceived by the older adults hospitalized in a medical service. Ethnographic study with a qualitative approach. We conducted semi-structured interviews with 22 older adults and participant observation of care situations. The ways and means of providing comfort are centered on strategies for promoting care mobilized by nurses and recognized by patients(clarifying/informing, positive interaction/communication, music therapy, touch, smile, unconditional presence, empathy/proximity relationship, integrating the older adult or the family as partner in the care, relief of discomfort through massage/mobilization/therapy) and on particular moments of comfort (the first contact, the moment of personal hygiene, and the visit of the family), which constitute the foundation of care/comfort. Geriatric care is built on the relationship that is established and complete with meaning, and is based on the meeting/interaction between the actors under the influence of the context in which they are inserted. The different ways and means of providing comfort aim to facilitate/increase care, relieve discomfort and/or invest in potential comfort. Conhecer os modos e formas de confortar percecionadas pelos idosos hospitalizados num serviço de medicina. Estudo etnográfico com abordagem qualitativa. Realizamos entrevistas semiestruturadas com 22 doentes idosos e observação participante nas situações de cuidados. Os modos e formas de confortar centram-se em estratégias promotoras de conforto mobilizadas pelo enfermeiro e reconhecidas pelos doentes (informação/esclarecimento, interação/comunicação positiva, toque, sorriso, presença incondicional, integração do idoso/família nos cuidados e o alívio de desconfortos através da massagem/mobilização/terapêutica) e em momentos particulares de conforto (contato inaugural, visita da família., cuidados de higiene e arranjo pessoal), que se constituem como alicerces do cuidar

  8. Sky View Factors from Synthetic Fisheye Photos for Thermal Comfort Routing—A Case Study in Phoenix, Arizona

    Directory of Open Access Journals (Sweden)

    Ariane Middel

    2017-03-01

    Full Text Available The Sky View Factor (SVF is a dimension-reduced representation of urban form and one of the major variables in radiation models that estimate outdoor thermal comfort. Common ways of retrieving SVFs in urban environments include capturing fisheye photographs or creating a digital 3D city or elevation model of the environment. Such techniques have previously been limited due to a lack of imagery or lack of full scale detailed models of urban areas. We developed a web based tool that automatically generates synthetic hemispherical fisheye views from Google Earth at arbitrary spatial resolution and calculates the corresponding SVFs through equiangular projection. SVF results were validated using Google Maps Street View and compared to results from other SVF calculation tools. We generated 5-meter resolution SVF maps for two neighborhoods in Phoenix, Arizona to illustrate fine-scale variations of intra-urban horizon limitations due to urban form and vegetation. To demonstrate the utility of our synthetic fisheye approach for heat stress applications, we automated a radiation model to generate outdoor thermal comfort maps for Arizona State University’s Tempe campus for a hot summer day using synthetic fisheye photos and on-site meteorological data. Model output was tested against mobile transect measurements of the six-directional radiant flux density. Based on the thermal comfort maps, we implemented a pedestrian routing algorithm that is optimized for distance and thermal comfort preferences. Our synthetic fisheye approach can help planners assess urban design and tree planting strategies to maximize thermal comfort outcomes and can support heat hazard mitigation in urban areas.

  9. Lubricant effects on low Dk and silicone hydrogel lens comfort.

    Science.gov (United States)

    Ozkan, Jerome; Papas, Eric

    2008-08-01

    To investigate the influence of three lubricants of varying viscosity, on postinsertion and 6 h comfort with contact lens wear. Comfort and associated symptoms of dryness were assessed in 15 experienced contact lens wearers. Subjects wore a low Dk lens in one eye and a silicone hydrogel in the other and participated in four separate trials involving no lubricant (baseline), saline, and two commercially available lubricants of differing viscosity. The in-eye lubricants were used immediately following lens insertion and every 2 h postinsertion for a 6 h wear period. Postlens insertion comfort was significantly better for both lens types when lubricants or saline were used compared with no lubricant use. After 6 h lens wear, comfort was influenced by lens type and not by in-eye lubricant or saline use. Also after 6 h lens wear, less dryness sensation was reported for silicone hydrogel lenses when using lubricants but not saline. Although lubricant use does help reduce dryness symptoms with silicone hydrogel lens wear, there appears to be minimal longer-term benefit to comfort. Furthermore, increased lubricant viscosity did not lead to improved longer-term comfort.

  10. Thermal comfort assessment in a Dutch hospital setting – model applicability

    NARCIS (Netherlands)

    Ottenheijm, E.M.M.; Loomans, M.G.L.C.; Kort, H.S.M.; Trip, A.

    2016-01-01

    SUMMARY Limited information is available on thermal comfort performance of the indoor environment in health care facilities both for staff and patients. Thermal comfort models such as Predicted Mean Vote (PMV) and Adaptive Thermal Comfort (ATC), have not been applied extensively for this setting. In

  11. Where is the comfort in comfort foods? Mechanisms linking fat signaling, reward, and emotion.

    Science.gov (United States)

    Weltens, N; Zhao, D; Van Oudenhove, L

    2014-03-01

    Food in general, and fatty foods in particular, have obtained intrinsic reward value throughout evolution. This reward value results from an interaction between exteroceptive signals from different sensory modalities, interoceptive hunger/satiety signals from the gastrointestinal tract to the brain, as well as ongoing affective and cognitive processes. Further evidence linking food to emotions stems from folk psychology ('comfort foods') and epidemiological studies demonstrating high comorbidity rates between disorders of food intake, including obesity, and mood disorders such as depression. This review paper aims to give an overview of current knowledge on the neurophysiological mechanisms underlying the link between (fatty) foods, their reward value, and emotional responses to (anticipation of) their intake in humans. Firstly, the influence of exteroceptive sensory signals, including visual, olfactory ('anticipatory food reward'), and gustatory ('consummatory food reward'), on the encoding of reward value in the (ventral) striatum and of subjective pleasantness in the cingulate and orbitofrontal cortex will be discussed. Differences in these pathways and mechanisms between lean and obese subjects will be highlighted. Secondly, recent studies elucidating the mechanisms of purely interoceptive fatty acid-induced signaling from the gastrointestinal tract to the brain, including the role of gut peptides, will be presented. These studies have demonstrated that such subliminal interoceptive stimuli may impact on hedonic circuits in the brain, and thereby influence the subjective and neural responses to negative emotion induction. This suggests that the effect of foods on mood may even occur independently from their exteroceptive sensory properties. © 2014 John Wiley & Sons Ltd.

  12. In search of the comfortable indoor environment: A comparison of the utility of objective and subjective indicators of indoor comfort

    Energy Technology Data Exchange (ETDEWEB)

    Fransson, Niklas; Skoog, Jennie [Building Services Engineering, Department of Energy and Environment, Chalmers University of Technology, Gothenburg (Sweden); Vaestfjaell, Daniel [Department of Psychology, Goeteborg University (Sweden)

    2007-05-15

    Today, many procedures for assessing the indoor environment rely on both subjective and objective indicators (e.g. ANSI/ASHRAE 55-2004; ISO 10551). It is however unclear how these two types of measurements are related to perceived comfort. This article aims at assessing the relative utility of subjective (rating scale measures) and objective indicators of perceived comfort of indoor environments. In a hospital setting, physical environmental variables (e.g. temperature, relative humidity and noise level) were simultaneously measured as respondents (both patients and staff) rated their perception of the indoor environment. Regression analyses indicated that the subjective sensory ratings were significantly better than objective indicators at predicting overall rated indoor comfort. These results are discussed in relation to existing measurement procedures and standards. (author)

  13. Improving comfort while hiking in a sailing boat

    NARCIS (Netherlands)

    Jansen, A.J.; Van Abbema, A.; Howe, C.

    2012-01-01

    The paper presents the changes in perceived comfort while hiking in a sailing boat (in this case the Laser, a single-handed Olympic dinghy) due to a new design of hiking pads. The project used a ‘research by design method’. The aim was to improve sailing comfort which leads to lower fatigue and

  14. Personal cooling with phase change materials to improve thermal comfort from a heat wave perspective.

    Science.gov (United States)

    Gao, C; Kuklane, K; Wang, F; Holmér, I

    2012-12-01

    The impact of heat waves arising from climate change on human health is predicted to be profound. It is important to be prepared with various preventive measures for such impacts on society. The objective of this study was to investigate whether personal cooling with phase change materials (PCM) could improve thermal comfort in simulated office work at 34°C. Cooling vests with PCM were measured on a thermal manikin before studies on human subjects. Eight male subjects participated in the study in a climatic chamber (T(a) = 34°C, RH = 60%, and ν(a) = 0.4 m/s). Results showed that the cooling effect on the manikin torso was 29.1 W/m(2) in the isothermal condition. The results on the manikin using a constant heating power mode reflect directly the local cooling effect on subjects. The results on the subjects showed that the torso skin temperature decreased by about 2-3°C and remained at 33.3°C. Both whole body and torso thermal sensations were improved. The findings indicate that the personal cooling with PCM can be used as an option to improve thermal comfort for office workers without air conditioning and may be used for vulnerable groups, such as elderly people, when confronted with heat waves. Wearable personal cooling integrated with phase change materials has the advantage of cooling human body's micro-environment in contrast to stationary personalized cooling and entire room or building cooling, thus providing greater mobility and helping to save energy. In places where air conditioning is not usually used, this personal cooling method can be used as a preventive measure when confronted with heat waves for office workers, vulnerable populations such as the elderly and disabled people, people with chronic diseases, and for use at home. © 2012 John Wiley & Sons A/S.

  15. Evaluating of air flow movements and thermal comfort in a model room with Euler equation: Two dimensional study

    Energy Technology Data Exchange (ETDEWEB)

    Chafi, Fatima Zohra; Halle, Stephane [Mechanical engineering department, Ecole de technologie superieure, Quebec university, 1100 rue Notre-Dame Ouest, Montreal, Quebec H3C 1K3 (Canada)

    2011-02-15

    This paper presents the results of a study that consists of estimating the temperature distribution and air flow movement in a model room with a numerical model based on the Euler equations. Numerical results obtained for two scenarios of ventilation and heating are compared with the predictions of a Navier-Stokes model, as well as with experimental results. A comparison of the local thermal comfort indices PMV and PPD obtained experimentally and numerically is also presented. Results show that the Euler model is capable of properly estimating the temperature distribution, the air movement and the comfort indices in the room. Furthermore, the use of Euler equations allows a reduction of computational time in the order of 30% compared to the Navier-Stokes modeling. (author)

  16. Numerical Analysis of Thermal Comfort at Open Air Spaces

    Science.gov (United States)

    Papakonstantinou, K.; Belias, C.; Pantos-Kikkos, S.; Assana, A.

    2008-09-01

    The present paper refers to the numerical simulation of air velocity at open air spaces and the conducting thermal comfort after the evaluation of the examined space using CFD methods, taking into account bioclimatic principles at the architectural design. More specially, the paper draws attention to the physical procedures governing air movement at an open environment area in Athens (urban park), named "Attiko Alsos," trying to form them in such way that will lead to the thermal comfort of the area's visitors. The study presents a mathematical model, implemented in a general computer code that can provide detailed information on velocity, prevailing in three-dimensional spaces of any geometrical complexity. Turbulent flow is simulated and buoyancy effects are taken into account. This modelling procedure is intended to contribute to the effort towards designing open areas, such as parks, squares or outdoor building environments, using thermal comfort criteria at the bioclimatic design. A computer model of this kind will provide the architects or the environmental engineers with powerful and economical means of evaluating alternative spaces' designs.

  17. Evaluation technology of clothing comfortableness; Ifuku tekigosei hyoka gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Niwaya, H.

    1999-10-26

    Modern apparel industries are required to supply many kinds of products corresponding to various needs of consumers. Among consumers' needs, comfortableness to wear such as size-fitness is primarily important. To facilitate apparel industries, it is expected to develop a new technology of pattern designing of comfortable garment and measuring garment pressure distribution. Our research is aimed at developing technology that uses computer simulation to predict and evaluate wear comfort, including size suitability, without the need to actually sew up a garment. First, we developed a basic system to predict wearing silhouette, garment pressure, and ease looseness of the garment. Using this system, we carried on the following study. The 3-dimensional distributions of the garment pressure and ease looseness were reversely mapped on the paper pattern in order to indicate the preferable modification. The system was extended for several poses, e.g. twist, bend. From various parameters, we examined the factors of garment pressure and ease looseness. In addition, we selected the parameters for the size-fit indicators and investigated size-fit evaluation indicators. (author)

  18. Effect of comfort pads and incubator design on neonatal radiography

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xia; Baad, Michael; Reiser, Ingrid; Feinstein, Kate A.; Lu, Zhengfeng [University of Chicago Medicine, Department of Radiology, Chicago, IL (United States)

    2016-01-15

    There has been increasing interest in patient dose reduction in neonatal intensive care units. Removing comfort pads for radiography has been identified as a potential means to decrease patient dose. To assess the effect of comfort pads and support trays on detector entrance exposure (DEE) and image quality for neonatal radiography, and its implication for patient dose. Comfort pads and support trays from three incubator and warmer systems were examined. The attenuation of the primary beam by these structures was measured using a narrow beam geometry. Their effect on DEE and image quality was then assessed using typical neonatal chest radiography techniques with three configurations: (1) both the comfort pad and support included in the beam, (2) only the support tray included and (3) both the comfort pad and support tray removed. Comfort pads and support trays were found to attenuate the primary beam by 6-15%. Eliminating these structures from the X-ray beam's path was found to increase the detector entrance exposure by 28-36% and increase contrast-to-noise ratio by more than 21%, suggesting room for patient dose reduction when the same image quality is maintained. Comfort pads and tray support devices can have a considerable effect on DEE and image quality, with large variations among different incubator designs. Positioning the image detector directly underneath neonatal patients for radiography is a potential means for patient dose reduction. However, such benefit should be weighed against the risks of moving the patient. (orig.)

  19. Effect of comfort pads and incubator design on neonatal radiography

    International Nuclear Information System (INIS)

    Jiang, Xia; Baad, Michael; Reiser, Ingrid; Feinstein, Kate A.; Lu, Zhengfeng

    2016-01-01

    There has been increasing interest in patient dose reduction in neonatal intensive care units. Removing comfort pads for radiography has been identified as a potential means to decrease patient dose. To assess the effect of comfort pads and support trays on detector entrance exposure (DEE) and image quality for neonatal radiography, and its implication for patient dose. Comfort pads and support trays from three incubator and warmer systems were examined. The attenuation of the primary beam by these structures was measured using a narrow beam geometry. Their effect on DEE and image quality was then assessed using typical neonatal chest radiography techniques with three configurations: (1) both the comfort pad and support included in the beam, (2) only the support tray included and (3) both the comfort pad and support tray removed. Comfort pads and support trays were found to attenuate the primary beam by 6-15%. Eliminating these structures from the X-ray beam's path was found to increase the detector entrance exposure by 28-36% and increase contrast-to-noise ratio by more than 21%, suggesting room for patient dose reduction when the same image quality is maintained. Comfort pads and tray support devices can have a considerable effect on DEE and image quality, with large variations among different incubator designs. Positioning the image detector directly underneath neonatal patients for radiography is a potential means for patient dose reduction. However, such benefit should be weighed against the risks of moving the patient. (orig.)

  20. Smart grid voor comfort

    NARCIS (Netherlands)

    Zeiler, W.; Vissers, D.R.; Maaijen, H.N.; Kling, W.L.; Velden, van der J.A.J.; Larsen, J.P.

    2012-01-01

    Er vindt onderzoek plaats naar een nieuwe regelstrategie gebaseerd op de toepassing van een draadloos sensor netwerk dat is gekoppeld aan het smart grid. Doel van deze regelstrategie is om op gebruikersniveau energie te kunnen besparen met behoud of zelfs verbetering van het individueel comfort. Er

  1. Effect evaluation of a heated ambulance mattress-prototype on thermal comfort and patients’ temperatures in prehospital emergency care – an intervention study

    Directory of Open Access Journals (Sweden)

    Jonas Aléx

    2015-09-01

    Full Text Available Background: The ambulance milieu does not offer good thermal comfort to patients during the cold Swedish winters. Patients’ exposure to cold temperatures combined with a cold ambulance mattress seems to be the major factor leading to an overall sensation of discomfort. There is little research on the effect of active heat delivered from underneath in ambulance care. Therefore, the aim of this study was to evaluate the effect of an electrically heated ambulance mattress-prototype on thermal comfort and patients’ temperatures in the prehospital emergency care. Methods: A quantitative intervention study on ambulance care was conducted in the north of Sweden. The ambulance used for the intervention group (n=30 was equipped with an electrically heated mattress on the regular ambulance stretcher whereas for the control group (n=30 no active heat was provided on the stretcher. Outcome variables were measured as thermal comfort on the Cold Discomfort Scale (CDS, subjective comments on cold experiences, and finger, ear and air temperatures. Results: Thermal comfort, measured by CDS, improved during the ambulance transport to the emergency department in the intervention group (p=0.001 but decreased in the control group (p=0.014. A significant higher proportion (57% of the control group rated the stretcher as cold to lie down compared to the intervention group (3%, p<0.001. At arrival, finger, ear and compartment air temperature showed no statistical significant difference between groups. Mean transport time was approximately 15 minutes. Conclusions: The use of active heat from underneath increases the patients’ thermal comfort and may prevent the negative consequences of cold stress.

  2. Influences of Carbody Vertical Flexibility on Ride Comfort of Railway Vehicles

    Directory of Open Access Journals (Sweden)

    Dumitriu Mădălina

    2017-06-01

    Full Text Available The article investigates the influence of the carbody vertical flexibility on the ride comfort of the railway vehicles. The ride comfort is evaluated via the comfort index calculated in three reference points of the carbody. The results of the numerical simulations bring attention to the importance of the carbody symmetrical vertical bending upon the dynamic response of the vehicle, mainly at high velocities. Another conclusion is that the ride comfort can be significantly affected as a function of the symmetrical bending frequency of the carbody. Similarly, there are improvement possibilities for the ride comfort when the best selection of the stiffness in the longitudinal traction system between the carbody and bogie and the vertical suspension damping is made.

  3. Influence of Adaptive Comfort Models on Energy Improvement for Housing in Cold Areas

    Directory of Open Access Journals (Sweden)

    Alexis Pérez-Fargallo

    2018-03-01

    Full Text Available The evaluation of construction standards using adaptive thermal comfort models has a great impact on energy consumption. The analysis of a user’s climate adaptation must be one of the first steps in the search for nearly/net Zero Energy Buildings (nZEB. The goal of this work is to analyze the standards recommended by the Chile’s Construction with Sustainability Criteria for the building of housing, applying the ASHRAE 55-2017 and EN 15251:2007 adaptive comfort models in social housing. The study produces concrete recommendations associated with construction strategies, to increase the number of hours the user finds themselves with acceptable thermal comfort levels, without repercussions for energy consumption. Sixteen parametric series were evaluated with a dynamic simulation of the most common prototype of social housing in the Bio-Bio Region. The study shows that thermal comfort conditions can be increased through a combination of improvement measures compared to the ECCS standard (Construction Standards with Sustainability Criteria: 27.52% in the case of applying EN 15251:2007 and 24.04% in the case of ASHRAE 55-2017.

  4. Determination of thermal and acoustic comfort inside a vehicle's cabin

    Science.gov (United States)

    Ene, Alexandra; Catalina, Tiberiu; Vartires, Andreea

    2018-02-01

    Thermal and acoustic comfort, inside a vehicle's cabin, are highly interconnected and can greatly influence the health of the passengers. On one hand, the H.V.A.C. system brings the interior air parameters to a comfortable value while on the other hand, it is the main source of noise. It is an intriguing task to find a balance between the two. In this paper, several types of air diffusers were used in order to optimize the ratio between thermal and acoustic interior comfort. Using complex measurements of noise and thermal comfort parameters we have determined for each type of air diffuser the sound pressure level and its impact on air temperature and air velocity.

  5. COMFORT PROVIDING SYSTEMS IN SPACES WITH ACOUTIC INSULATION

    Directory of Open Access Journals (Sweden)

    Grzegorz KLEKOT

    2014-12-01

    Full Text Available High capacities of currently available devices for sound registering and processing have generated a need for sound insulated spaces dedicated to exchange of confidential information. In such spaces, preventing propagation of vibroacoustic signals both by the way of air and construction elements entails complete insulation of the room. In order to meet this requirement, proper chemical composition of air and stabilized temperature conditions have to be guaranteed. The paper discusses questions related to the process of solving the task of providing thermal comfort and satisfying air quality in a room for confidential discussions. It presents prototype solutions of installations dedicated to stabilize human-friendly conditions inside a modular chamber provided with acoustic insulation.

  6. Dataset on daytime outdoor thermal comfort for Belo Horizonte, Brazil.

    Science.gov (United States)

    Hirashima, Simone Queiroz da Silveira; Assis, Eleonora Sad de; Nikolopoulou, Marialena

    2016-12-01

    This dataset describe microclimatic parameters of two urban open public spaces in the city of Belo Horizonte, Brazil; physiological equivalent temperature (PET) index values and the related subjective responses of interviewees regarding thermal sensation perception and preference and thermal comfort evaluation. Individuals and behavioral characteristics of respondents were also presented. Data were collected at daytime, in summer and winter, 2013. Statistical treatment of this data was firstly presented in a PhD Thesis ("Percepção sonora e térmica e avaliação de conforto em espaços urbanos abertos do município de Belo Horizonte - MG, Brasil" (Hirashima, 2014) [1]), providing relevant information on thermal conditions in these locations and on thermal comfort assessment. Up to now, this data was also explored in the article "Daytime Thermal Comfort in Urban Spaces: A Field Study in Brazil" (Hirashima et al., in press) [2]. These references are recommended for further interpretation and discussion.

  7. Improving rational thermal comfort prediction by using subpopulation characteristics: A case study at Hermitage Amsterdam.

    Science.gov (United States)

    Kramer, Rick; Schellen, Lisje; Schellen, Henk; Kingma, Boris

    2017-01-01

    This study aims to improve the prediction accuracy of the rational standard thermal comfort model, known as the Predicted Mean Vote (PMV) model, by (1) calibrating one of its input variables "metabolic rate," and (2) extending it by explicitly incorporating the variable running mean outdoor temperature (RMOT) that relates to adaptive thermal comfort. The analysis was performed with survey data ( n = 1121) and climate measurements of the indoor and outdoor environment from a one year-long case study undertaken at Hermitage Amsterdam museum in the Netherlands. The PMVs were calculated for 35 survey days using (1) an a priori assumed metabolic rate, (2) a calibrated metabolic rate found by fitting the PMVs to the thermal sensation votes (TSVs) of each respondent using an optimization routine, and (3) extending the PMV model by including the RMOT. The results show that the calibrated metabolic rate is estimated to be 1.5 Met for this case study that was predominantly visited by elderly females. However, significant differences in metabolic rates have been revealed between adults and elderly showing the importance of differentiating between subpopulations. Hence, the standard tabular values, which only differentiate between various activities, may be oversimplified for many cases. Moreover, extending the PMV model with the RMOT substantially improves the thermal sensation prediction, but thermal sensation toward extreme cool and warm sensations remains partly underestimated.

  8. Investigating the adaptive model of thermal comfort for naturally ventilated school buildings in Taiwan

    Science.gov (United States)

    Hwang, Ruey-Lung; Lin, Tzu-Ping; Chen, Chen-Peng; Kuo, Nai-Jung

    2009-03-01

    Divergence in the acceptability to people in different regions of naturally ventilated thermal environments raises a concern over the extent to which the ASHRAE Standard 55 may be applied as a universal criterion of thermal comfort. In this study, the ASHRAE 55 adaptive model of thermal comfort was investigated for its applicability to a hot and humid climate through a long-term field survey performed in central Taiwan among local students attending 14 elementary and high schools during September to January. Adaptive behaviors, thermal neutrality, and thermal comfort zones are explored. A probit analysis of thermal acceptability responses from students was performed in place of the conventional linear regression of thermal sensation votes against operative temperature to investigate the limits of comfort zones for 90% and 80% acceptability; the corresponding comfort zones were found to occur at 20.1-28.4°C and 17.6-30.0°C, respectively. In comparison with the yearly comfort zones recommended by the adaptive model for naturally ventilated spaces in the ASHRAE Standard 55, those observed in this study differ in the lower limit for 80% acceptability, with the observed level being 1.7°C lower than the ASHRAE-recommended value. These findings can be generalized to the population of school children, thus providing information that can supplement ASHRAE Standard 55 in evaluating the thermal performance of naturally ventilated school buildings, particularly in hot-humid areas such as Taiwan.

  9. Passenger thermal perceptions, thermal comfort requirements, and adaptations in short- and long-haul vehicles.

    Science.gov (United States)

    Lin, Tzu-Ping; Hwang, Ruey-Lung; Huang, Kuo-Tsang; Sun, Chen-Yi; Huang, Ying-Che

    2010-05-01

    While thermal comfort in mass transportation vehicles is relevant to service quality and energy consumption, benchmarks for such comfort that reflect the thermal adaptations of passengers are currently lacking. This study reports a field experiment involving simultaneous physical measurements and a questionnaire survey, collecting data from 2,129 respondents, that evaluated thermal comfort in short- and long-haul buses and trains. Experimental results indicate that high air temperature, strong solar radiation, and low air movement explain why passengers feel thermally uncomfortable. The overall insulation of clothing worn by passengers and thermal adaptive behaviour in vehicles differ from those in their living and working spaces. Passengers in short-haul vehicles habitually adjust the air outlets to increase thermal comfort, while passengers in long-haul vehicles prefer to draw the drapes to reduce discomfort from extended exposure to solar radiation. The neutral temperatures for short- and long-haul vehicles are 26.2 degrees C and 27.4 degrees C, while the comfort zones are 22.4-28.9 degrees C and 22.4-30.1 degrees C, respectively. The results of this study provide a valuable reference for practitioners involved in determining the adequate control and management of in-vehicle thermal environments, as well as facilitating design of buses and trains, ultimately contributing to efforts to achieve a balance between the thermal comfort satisfaction of passengers and energy conserving measures for air-conditioning in mass transportation vehicles.

  10. Possibilities to improve the aircraft interior comfort experience

    NARCIS (Netherlands)

    Vink, P.; Bazley, C.; Kamp, I.; Blok, M.

    2012-01-01

    Comfort plays an increasingly important role in the interior design of airplanes. Although ample research has been conducted on airplane design technology, only a small amount of public scientific information is available addressing the passenger's opinion. In this study, more than 10,000 internet

  11. Are Asians comfortable with discussing death in health valuation studies? A study in multi-ethnic Singapore.

    Science.gov (United States)

    Wee, Hwee-Lin; Li, Shu-Chuen; Xie, Feng; Zhang, Xu-Hao; Luo, Nan; Cheung, Yin-Bun; Machin, David; Fong, Kok-Yong; Thumboo, Julian

    2006-12-05

    To characterize ease in discussing death (EID) and its influence on health valuation in a multi-ethnic Asian population and to determine the acceptability of various descriptors of death and "pits"/"all-worst" in health valuation. In-depth interviews (English or mother-tongue) among adult Chinese, Malay and Indian Singaporeans selected to represent both genders and a wide range of ages/educational levels. Subjects rated using 0-10 visual analogue scales (VAS): (1) EID, (2) acceptability of 8 descriptors for death, and (3) appropriateness of "pits" and "all-worst" as descriptors for the worst possible health state. Subjects also valued 3 health states using VAS followed by time trade-off (TTO). The influence of sociocultural variables on EID and these descriptors was studied using univariable analyses and multiple linear regression (MLR). The influence of EID on VAS/TTO utilities with adjustment for sociocultural variables was assessed using MLR. Subjects (n = 63, 35% Chinese, 32% Malay, median age 44 years) were generally comfortable with discussing death (median EID: 8.0). Only education significantly influenced EID (p = 0.045). EID correlated weakly with VAS/TTO scores (range: VAS: -0.23 to 0.07; TTO: -0.14 to 0.11). All subjects felt "passed away", "departed" and "deceased" were most acceptable (median acceptability: 8.0) while "sudden death" and "immediate death" were least acceptable (median acceptability: 5.0). Subjects clearly preferred "all-worst" to "pits" (63% vs. 19%, p < 0.001). Singaporeans were generally comfortable with discussing death and had clear preferences for several descriptors of death and for "all-worst". EID is unlikely to influence health preference measurement in health valuation studies.

  12. ComfortPower - System improvements and long-term evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik [Catator AB, Lund (Sweden)

    2011-11-15

    Catator has previously developed a novel heating system abbreviated ComfortPower in a RandD-programme supported by Catator, Swedish Gas Centre (SGC), Swedish Defence Materiel Administration (FMV), Skanska, Nibe and Alfa Laval. The ComfortPower unit comprises a multi fuel reformer system tied to a high-temperature polymer electrolyte fuel cell (HT-PEM) and a heat pump system. Since the residual heat from the fuel cell system can be utilized in a very effective way, it is possible to reach high thermal efficiencies. Indeed, the thermal efficiency in the unit has previously been shown to reach values as high as 175 - 200 % based on the lower heating value of the fuel. In addition to heat, ComfortPower can supply comfort cooling and surplus electricity. This project phase has focused on the following elements: 1. System improvements to further enhance the efficiency with existing fuel cell (HT-PEM). 2. System simplifications (e.g. DC-compressor system) to manage issues with start-up currents. 3. Tests with biogas qualities (various levels of CO{sub 2}) and biogas/air. 4. Long-term test with biogas quality (upgraded biogas). 5. Additional tests with liquid fuels (alcohols and diesel). 6. Map the need for cooling and heating in various applications. 7. Investigate how ComfortPower can reduce the primary energy consumption and reduce the environmental impact. 8. Study the possibility with a SOFC-based system with internal reforming. It was found that the Optiformer technology can be used to derive a suitable reformate gas for the HT-PEM unit from a wide range of fuels. Even if operation with fuel gases is the natural choice in most cases, it is possible also to use alcohols and other liquid fuels (e.g. in Campus applications). The heat pump system was equipped with a 24 V DC-compressor provided by Nibe. The compressor could be directly powered by the accumulator system and start-up currents, harmful to the inverter, could be avoided. Some improvements were made on the

  13. Progress in thermal comfort research over the last twenty years

    OpenAIRE

    de Dear, R; Akimoto, T; Arens, E; Brager, G; Candido, C; Cheong, K.W.; Li, B; Nishihara, N; Sekhar, S.C.; Tanabe, S; Toftum, J; Zhang, H; Zhu, Y

    2013-01-01

    Climate change and the urgency of decarbonizing the built environment are driving technological innovation in the way we deliver thermal comfort to occupants. These changes, in turn, seem to be setting the directions for contemporary thermal comfort research. This article presents a literature review of major changes, developments, and trends in the field of thermal comfort research over the last 20 years. One of the main paradigm shift was the fundamental conceptual reorientation that has ta...

  14. Climate and colored walls: in search of visual comfort

    Science.gov (United States)

    Arrarte-Grau, Malvina

    2002-06-01

    The quality of natural light, the landscape surrounds and the techniques of construction are important factors in the selection of architectural colors. Observation of exterior walls in differentiated climates allows the recognition of particularities in the use of color which satisfy the need for visual comfort. At a distance of 2000 kilometers along the coast of Peru, Lima and Mancora at 12° and 4° respectively, are well defined for their climatic characteristics: in Mancora sunlight causes high reflection, in Lima overcast sky and high humidity cause glare. The study of building color effects at these locations serves to illustrate that color values may be controlled in order to achieve visual comfort and contribute to color identity.

  15. The evaluation of (social-)psychological comfort in clothing, a possible approach

    Science.gov (United States)

    Matté, L. L.; Broega, A. C.

    2017-10-01

    This paper presents the first results of a PhD research on psychological comfort of clothing. In order to understand and conceptualize the psychological aspects of clothing comfort, a variation of the Delphi Method was used to seek opinions from experts. This method was chosen because of its consensus-building features. The results were obtained from a qualitative text analysis, conducted over the experts’ responses to the first round of questions. The analytic process shed some light on the formation of the psychological comfort concept as well as the potential attributes to be evaluated when assessing this comfort dimension.

  16. Application of Markov chain model to daily maximum temperature for thermal comfort in Malaysia

    International Nuclear Information System (INIS)

    Nordin, Muhamad Asyraf bin Che; Hassan, Husna

    2015-01-01

    The Markov chain’s first order principle has been widely used to model various meteorological fields, for prediction purposes. In this study, a 14-year (2000-2013) data of daily maximum temperatures in Bayan Lepas were used. Earlier studies showed that the outdoor thermal comfort range based on physiologically equivalent temperature (PET) index in Malaysia is less than 34°C, thus the data obtained were classified into two state: normal state (within thermal comfort range) and hot state (above thermal comfort range). The long-run results show the probability of daily temperature exceed TCR will be only 2.2%. On the other hand, the probability daily temperature within TCR will be 97.8%

  17. Thermal comfort indices of female Murrah buffaloes reared in the Eastern Amazon.

    Science.gov (United States)

    da Silva, Jamile Andréa Rodrigues; de Araújo, Airton Alencar; Lourenço Júnior, José de Brito; dos Santos, Núbia de Fátima Alves; Garcia, Alexandre Rossetto; de Oliveira, Raimundo Parente

    2015-09-01

    The study aimed to develop new and more specific thermal comfort indices for buffaloes reared in the Amazon region. Twenty female Murrah buffaloes were studied for a year. The animals were fed in pasture with drinking water and mineral supplementation ad libitum. The following parameters were measured twice a week in the morning (7 AM) and afternoon (1 PM): air temperature (AT), relative air humidity (RH), dew point temperature (DPT), wet bulb temperature (WBT), black globe temperature (BGT), rectal temperature (RT), respiratory rate (RR), and body surface temperature (BST). The temperature and humidity index (THI), globe temperature and humidity index (GTHI), Benezra's comfort index (BTCI), and Ibéria's heat tolerance index (IHTI) were calculated so they could be compared to the new indices. Multivariate regression analyses were carried out using the canonical correlation model, and all indices were correlated with the physiological and climatic variables. Three pairs of indices (general, effective, and practical) were determined comprising the buffalo comfort climatic condition index (BCCCI) and the buffalo environmental comfort index (BECI). The indices were validated and a great agreement was found among the BCCCIs (general, effective, and practical), with 98.3 % between general and effective a.nd 92.6 % between general and practical. A significant correlation (P thermal stress in buffaloes reared in the Amazon.

  18. Female upper body and breast skin temperature and thermal comfort following exercise.

    Science.gov (United States)

    Ayres, B; White, J; Hedger, W; Scurr, J

    2013-01-01

    Breast support reduces breast pain and movement during exercise, however, an extra layer of clothing may affect thermoregulation. This preliminary study investigated female upper body and breast skin temperature and thermal comfort following short-duration exercise. Eight female participants with C-cup breasts had thermal images (infra-red camera, FLIR systems) of the bare breasts, the breasts in two sports bras (composite and polyester) and the abdomen, taken before and after 20 min of exercise at 28(o)C. Following exercise, bare-breast, bra and abdomen temperatures reduced by 0.61(o)C, 0.92(o)C and 2.06(o)C, respectively. The polyester sports bra demonstrated greater thermal comfort and enabled a greater change in skin temperature than the composite sports bra. It is concluded that following short-duration exercise, sports bras reduced the cooling ability of the breast. Material properties of the bras affect thermal comfort and post-exercise skin temperature; this should be an important consideration for sports bra manufacturers. This study investigates the effect of sports bras on thermal regulation of the breast following exercise. Sports bras negatively affected the cooling ability of the skin on the breast, with the material properties of the bra affecting thermal comfort following exercise. These results present important considerations for sports bra manufacturers.

  19. Medical-grade footwear: the impact of fit and comfort.

    Science.gov (United States)

    Hurst, Bessie; Branthwaite, Helen; Greenhalgh, Andrew; Chockalingam, Nachiappan

    2017-01-01

    Pressure-related skin lesions on the digits are a significant cause of discomfort. Most foot pain related to ill-fitting shoes occurs in the forefoot and digital areas. Pain has been associated with poor shoe fit, reduced toe box volume, as well as contour and shape of the shoe Off-the-shelf medical-grade footwear is designed as an intervention for chronic lesions on the digits. These shoes are designed with a flexible neoprene fabric upper that is thought to reduce pressure on the forefoot and reduce discomfort associated with ill-fitting shoes. The aim of this study was to investigate the effect of an off-the-shelf, medical-grade shoe on dorsal digital pressure and perceived comfort when compared to participant's own preferred shoe. Thirty participants (18 females, 12 males) scored their perceived comfort whilst wearing each footwear style using a visual analog comfort scale. Dorsal digital and interdigital pressures were measured in using the WalkinSense® in-shoe pressure system. Sensors were placed on predetermined anatomical landmarks on the digits. Participants were randomly assigned the test shoe and their own shoe. Once wearing the shoe, the participants walked across a 6 m walkway and pressure data from each sensor was collected and processed to obtain peak pressure, time to peak pressure and contact time. Participants scored the test shoe with higher comfort points than their own footwear. Overall peak pressure, pressure time integral and contact time decreased, whilst the time taken to reach peak pressure increased across all anatomical landmarks whilst wearing the test shoe. Statistically significant changes were observed for all of the measured variables relating to pressure on the medial border of the first metatarsophalangeal joint. The test shoe provided greater comfort and reduced the amount of pressure on the forefoot. The medical-grade footwear therefore, is a viable alternative to custom made prescription footwear and is more suitable than a

  20. Comfortable synchronization of cyclic drawing movements with a metronome.

    Science.gov (United States)

    Repp, Bruno H

    2011-02-01

    Continuous circle drawing is considered a paragon of emergent timing, whereas the timing of finger tapping is said to be event-based. Synchronization with a metronome, however, must to some extent be event-based for both types of movement. Because the target events in the movement trajectory are more poorly defined in circle drawing than in tapping, circle drawing shows more variable asynchronies with a metronome than does tapping. One factor that may have contributed to high variability in past studies is that circle size, drawing direction, and target point were prescribed and perhaps outside the comfort range. In the present study, participants were free to choose most comfortable settings of these parameters for two continuously drawn shapes, circles and infinity signs, while synchronizing with a regular or intermittently perturbed metronome at four different tempi. Results showed that preferred circle sizes were generally smaller than in previous studies but tended to increase as tempo decreased. Synchronization results were similar for circles and infinity signs, and similar to earlier results for circles drawn within a fixed template (Repp & Steinman, 2010). Comparison with tapping data still showed drawing to exhibit much greater variability and persistence of asynchronies as well as slower phase correction in response to phase shifts in the metronome. With comfort level ruled out as a factor, these differences can now be attributed more confidently to differences in event definition and/or movement dynamics. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Contribution of Portuguese Vernacular Building Strategies to Indoor Thermal Comfort and Occupants’ Perception

    Directory of Open Access Journals (Sweden)

    Jorge Fernandes

    2015-11-01

    Full Text Available Solar passive strategies that have been developed in vernacular architecture from different regions are a response to specific climate effects. These strategies are usually simple, low-tech and have low potential environmental impact. For this reason, several studies highlight them as having potential to reduce the demands of non-renewable energy for buildings operation. In this paper, the climatic contrast between northern and southern parts of mainland Portugal is presented, namely the regions of Beira Alta and Alentejo. Additionally, it discusses the contribution of different climate-responsive strategies developed in vernacular architecture from both regions to assure thermal comfort conditions. In Beira Alta, the use of glazed balconies as a strategy to capture solar gains is usual, while in Alentejo the focus is on passive cooling strategies. To understand the effectiveness of these strategies, thermal performances and comfort conditions of two case studies were evaluated based on the adaptive comfort model. Field tests included measurement of hygrothermal parameters and surveys on occupants’ thermal sensation. From the results, it has been found that the case studies have shown a good thermal performance by passive means alone and that the occupants feel comfortable, except during winter where there is the need to use simple heating systems.

  2. A correct enthalpy relationship as thermal comfort index for livestock.

    Science.gov (United States)

    Rodrigues, Valéria Cristina; da Silva, Iran José Oliveira; Vieira, Frederico Márcio Corrêa; Nascimento, Sheila Tavares

    2011-05-01

    Researchers working with thermal comfort have been using enthalpy to measure thermal energy inside rural facilities, establishing indicator values for many situations of thermal comfort and heat stress. This variable turned out to be helpful in analyzing thermal exchange in livestock systems. The animals are exposed to an environment which is decisive for the thermoregulatory process, and, consequently, the reactions reflect states of thermal comfort or heat stress, the last being responsable for problems of sanity, behavior and productivity. There are researchers using enthalpy as a qualitative indicator of thermal environment of livestock such as poultry, cattle and hogs in tropical regions. This preliminary work intends to check different enthalpy equations using information from classical thermodynamics, and proposes a direct equation as thermal comfort index for livestock systems.

  3. A theoretical adaptive model of thermal comfort - Adaptive Predicted Mean Vote (aPMV)

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Runming [School of Construction Management and Engineering, The University of Reading (United Kingdom); Faculty of Urban Construction and Environmental Engineering, Chongqing University (China); Li, Baizhan [Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment (Ministry of Education), Chongqing University (China); Faculty of Urban Construction and Environmental Engineering, Chongqing University (China); Liu, Jing [School of Construction Management and Engineering, The University of Reading (United Kingdom)

    2009-10-15

    This paper presents in detail a theoretical adaptive model of thermal comfort based on the ''Black Box'' theory, taking into account factors such as culture, climate, social, psychological and behavioural adaptations, which have an impact on the senses used to detect thermal comfort. The model is called the Adaptive Predicted Mean Vote (aPMV) model. The aPMV model explains, by applying the cybernetics concept, the phenomena that the Predicted Mean Vote (PMV) is greater than the Actual Mean Vote (AMV) in free-running buildings, which has been revealed by many researchers in field studies. An Adaptive coefficient ({lambda}) representing the adaptive factors that affect the sense of thermal comfort has been proposed. The empirical coefficients in warm and cool conditions for the Chongqing area in China have been derived by applying the least square method to the monitored onsite environmental data and the thermal comfort survey results. (author)

  4. Energy and comfort in contemporary open plan and traditional personal offices

    International Nuclear Information System (INIS)

    Shahzad, Sally; Brennan, John; Theodossopoulos, Dimitris; Hughes, Ben; Calautit, John Kaiser

    2017-01-01

    Highlights: • User satisfaction is compared in offices with high and low thermal control. • Thermal control is secondary in British and main system in Norwegian approach. • Individual thermal control in Norway improved satisfaction (35%) and comfort (20%). • The energy use is much higher in the Norwegian than British case studies. • A balance is required between energy efficiency and providing thermal comfort. - Abstract: Two office layouts with high and low levels of thermal control were compared, respectively traditional cellular and contemporary open plan offices. The traditional Norwegian practice provided every user with control over a window, blinds, door, and the ability to adjust heating and cooling. Occupants were expected to control their thermal environment to find their own comfort, while air conditioning was operating in the background to ensure the indoor air quality. In contrast, in the British open plan office, limited thermal control was provided through openable windows and blinds only for occupants seated around the perimeter of the building. Centrally operated displacement ventilation was the main thermal control system. Users’ perception of thermal environment was recorded through survey questionnaires, empirical building performance through environmental measurements and thermal control through semi-structured interviews. The Norwegian office had 35% higher user satisfaction and 20% higher user comfort compared to the British open plan office. However, the energy consumption in the British practice was within the benchmark and much lower than the Norwegian office. Overall, a balance between thermal comfort and energy efficiency is required, as either extreme poses difficulties for the other.

  5. Improvement of thermal comfort by cooling clothing in warm climate

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Melikov, Arsen Krikor; Kolencíková, Sona

    2014-01-01

    on the inner surface. We conducted experiments with human subjects in climate chambers maintained at 30 °C and RH 50% to compare the effectiveness of the cooling clothing with that of other convective cooling devices. The use of cooling clothing with a convective cooling device improved the subjects’ thermal...... comfort compared to convective cooling alone. The supply of a small amount of water allowed the cooling clothing to provide a continuous cooling effect, whereas the effect of convective cooling alone decreased as sweat dried. However, the controllability of the cooling clothing needs to be improved....

  6. Effect of three different liposomal eye sprays on ocular comfort and tear film.

    Science.gov (United States)

    Pult, Heiko; Gill, Felicity; Riede-Pult, Britta H

    2012-10-01

    To evaluate the effect of three different liposomal eye sprays on ocular comfort and tear film stability. OptrexActiMist (AM, Optima-Pharma, Germany) was applied onto one, randomly selected eye of 80 subjects (female=49; mean age=49 years±18.6 SD) in a multi-centred, double-masked study. DryEyesMist (DEM, Boots) or TearMist (TM, Tesco) was applied onto the contralateral eye in randomized order. Over-all symptoms were investigated using the Ocular Surface Disease Index (OSDI). Ocular comfort (visual-analogue scale 0-100 [100=perfect]) and non-invasive tear film stability (NIBUT) of each eye was evaluated before application (randomized order) and were again measured 10 min after application. Effects of products on ocular comfort and NIBUT were calculated as "factor" (=after-treatment/before-treatment). Differences between measurements were analysed by ANOVA repeated measurements and differences between groups by the dependent t-test (or the non-parametric equivalent). OSDI-scores (mean=8.1±9.0 SD), comfort (65±24) and NIBUT (12 s±12.3) were statistically similar between centres (p>0.400). Comfort and NIBUT were not different (p>0.14) between product groups before application. Comfort and NIBUT improved significantly after application of AM (p<0.001) but worsened with the comparing products (p<0.058). Comfort improved by a mean factor of 1.5 (±0.82 SD) after application of AM but decreased after application of the comparing products (DEM: 0.9±0.33; TM: 0.9±0.34). Both factors were significantly better in AM (p<0.027). The original liposomal eye-spray 'OptrexActiMist' significantly improved ocular comfort and tear film stability while 'TearMist' or 'DryEyesMist' worsened both criteria. The latter two products may not be clinically effective in the treatment of dry eye. Copyright © 2012 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  7. Sexual and gender minority health in medical curricula in new England: a pilot study of medical student comfort, competence and perception of curricula.

    Science.gov (United States)

    Zelin, Nicole Sitkin; Hastings, Charlotte; Beaulieu-Jones, Brendin R; Scott, Caroline; Rodriguez-Villa, Ana; Duarte, Cassandra; Calahan, Christopher; Adami, Alexander J

    2018-12-01

    Sexual and gender minority (SGM) individuals experience high rates of harassment and discrimination when seeking healthcare, which contributes to substantial healthcare disparities. Improving physician training about gender identity, sexual orientation, and the healthcare needs of SGM patients has been identified as a critical strategy for mitigating these disparities. In 2014, the Association of American Medical Colleges (AAMC) published medical education competencies to guide undergraduate medical education on SGM topics. Conduct pilot study to investigate medical student comfort and competence about SGM health competencies outlined by the AAMC and evaluate curricular coverage of SGM topics. Six-hundred and fifty-eight students at New England allopathic medical schools (response rate 21.2%) completed an anonymous, online survey evaluating self-reported comfort and competence regarding SGM health competencies, and coverage of SGM health in the medical curriculum. 92.7% of students felt somewhat or very comfortable treating sexual minorities; 68.4% felt comfortable treating gender minorities. Most respondents felt not competent or somewhat not competent with medical treatment of gender minority patients (76.7%) and patients with a difference of sex development (81%). At seven schools, more than 50% of students indicated that the curriculum neither adequately covers SGM-specific topics nor adequately prepares students to serve SGM patients. The prevalence of self-reported comfort is greater than that of self-reported competence serving SGM patients in a convenience sample of New England allopathic medical students. The majority of participants reported insufficient curricular preparation to achieve the competencies necessary to care for SGM patients. This multi-institution pilot study provides preliminary evidence that further curriculum development may be needed to enable medical students to achieve core competencies in SGM health, as defined by AAMC. Further mixed

  8. A field study on thermal comfort in an Italian hospital considering differences in gender and age.

    Science.gov (United States)

    Del Ferraro, S; Iavicoli, S; Russo, S; Molinaro, V

    2015-09-01

    The hospital is a thermal environment where comfort must be calibrated by taking into account two different groups of people, that is, patients and medical staff. The study involves 30 patients and 19 medical staff with a view to verifying if Predicted Mean Vote (PMV) index can accurately predict thermal sensations of both groups also taking into account any potential effects of age and gender. The methodology adopted is based on the comparison between PMV values (calculated according to ISO 7730 after having collected environmental data and estimated personal parameters) and perceptual judgments (Actual Mean Vote, AMV), expressed by the subjects interviewed. Different statistical analyses show that PMV model finds his best correlation with AMV values in a sample of male medical staff under 65 years of age. It has been observed that gender and age are factors that must be taken into account in the assessment of thermal comfort in the hospital due to very weak correlation between AMV and PMV values. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  9. The influence of patient positioning in breast CT on breast tissue coverage and patient comfort

    Energy Technology Data Exchange (ETDEWEB)

    Roessler, A.C.; Althoff, F.; Kalender, W. [Erlangen Univ. (Germany). Inst. of Medical Physics; Wenkel, E. [University Hospital of Erlangen (Germany). Radiological Inst.

    2015-02-15

    The presented study aimed at optimizing a patient table design for breast CT (BCT) systems with respect to breast tissue coverage and patient comfort. Additionally, the benefits and acceptance of an immobilization device for BCT using underpressure were evaluated. Three different study parts were carried out. In a positioning study women were investigated on an MRI tabletop with exchangeable inserts (flat and cone-shaped with different opening diameters) to evaluate their influence on breast coverage and patient comfort in various positioning alternatives. Breast length and volume were calculated to compare positioning modalities including various opening diameters and forms. In the second study part, an underpressure system was tested for its functionality and comfort on a stereotactic biopsy table mimicking a future CT scanner table. In the last study part, this system was tested regarding breast tissue coverage. Best results for breast tissue coverage were shown for cone-shaped table inserts with an opening of 180 mm. Flat inserts did not provide complete coverage of breast tissue. The underpressure system showed robust function and tended to pull more breast tissue into the field of view. Patient comfort was rated good for all table inserts, with highest ratings for cone-shaped inserts. Cone-shaped tabletops appeared to be adequate for BCT systems and to allow imaging of almost the complete breast. An underpressure system proved promising for the fixation of the breast during imaging and increased coverage. Patient comfort appears to be adequate.

  10. Study of the thermal comfort, of the energy consumption and of the indoor environment control in surgery rooms

    NARCIS (Netherlands)

    Melhado, M.D.A.; Beyer, P.O.; Hensen, J.L.M.; Siqueira, L.F.G.

    2005-01-01

    In this research were investigated the influence of different layouts of operating rooms on thermal comfort, on the indoor environment control and on energy consumption. The layouts studied were: Case 1 (a surgery room and a hallway); Case 2 (a surgery room and two hallways); and Case 3 (a surgery

  11. The evaluation of the overall thermal comfort inside a vehicle

    Science.gov (United States)

    Neacsu, Catalin; Tabacu, Ion; Ivanescu, Mariana; Vieru, Ionel

    2017-10-01

    The thermal comfort is one of the most important aspects of the modern vehicles that can influence the safety, the fuel consumption and the pollutions regulation. The objective of this paper is to compare the global and absolute thermal comfort indexes for two vehicles with different distribution air systems inside the car cockpit, one using only front air vents, and the other using both front and rear air vents. The methodology of calculus consists in using the 3D model of the interior vehicle, generally in a CAD format. Then, using a meshing software to create the finite element model of the interior surfaces inside the cockpit and the volume of internal air. Using the obtained finite element geometry, there will be conducted a Theseus FE calculus using the given boundary conditions. The results of the numerical simulation are presented in terms of graphs and figures and also PMV, PPD and DTS thermal comfort indexes. With the obtained results, we will then create the graphs that allows us to evaluate the global and absolute thermal comfort indexes. The results of the evaluation show us that the use of the method allow us to evaluate with a greater accuracy the thermal comfort for the whole vehicle, not only for each passenger, like the standard methods. This shows us that in terms of general and absolute thermal comfort, the vehicle that use front and rear systems is better than the version that use only a front system. The thermal comfort is an important aspect to be taken into account from the beginning of the design stage of a vehicle, by choosing the right air conditioning system. In addition, by using the numerical simulation, we are able to reduce the time needed for preliminary tests and be able to provide the vehicle to the market earlier, at a lower development cost.

  12. El enfoque adaptativo del confort térmico en Sevilla = The adaptive approach to thermal comfort in Seville.

    Directory of Open Access Journals (Sweden)

    D. Sánchez

    2016-04-01

    Full Text Available Aunque los estándares de confort en los edificios de oficinas acondicionados con medios mecánicos se han estudiado ampliamente a través de la norma ISO 7730 basada en los estudios de Fanger, todavía no existe un enfoque consensuado para el confort térmico en las viviendas. Muchas de esas viviendas, que componen un bloque, se han construido antes de que se introdujeran normas de ahorro de energía, por lo que existe un alto consumo energético que tiene un efecto sobre el medio ambiente y la economía. A través de los años, el modelo de confort térmico más utilizado se basa en un modelo estático, en el que el ser humano es similar a un receptor pasivo de los estímulos térmicos, mientras que el modelo adaptativo deja en manos del ocupante hacer algunos ajustes y lograr confort a través de acciones y de la adaptación psicológica. La presente investigación tiene como objetivo estudiar los límites de confort adaptativo en una vivienda similar a la mencionada anteriormente, con el fin de regular el uso de aire acondicionado y calefacción, y además reducir el exceso de consumo de energía. Abstract Although comfort standards in mechanically conditioned office buildings have been widely studied through ISO 7730 developed by Fanger, there is not a consensual approach to thermal comfort in dwellings yet. Many of those dwellings, which compose the housing block, have been built before the energy saving regulations were introduced and are generally neglected, so there is a high energy consumption which has an effect on environment and economy. Through the years, the comfort model applied to thermal comfort is a static model, in which the human being is similar to a passive recipient of thermal stimuli, while the adaptive model let the occupant make some adjustments and achieve their comfort through behavioral and psychological adaption. The present research is aimed to study the adaptive comfort limits in a dwelling similar to the ones

  13. Evaluating Thermal Comfort in a Naturally Conditioned Office in a Temperate Climate Zone

    Directory of Open Access Journals (Sweden)

    Andrés Gallardo

    2016-07-01

    Full Text Available This study aims to determine the optimal approach for evaluating thermal comfort in an office that uses natural ventilation as the main conditioning strategy; the office is located in Quito-Ecuador. The performance of the adaptive model included in CEN Standard EN15251 and the traditional PMV model are compared with reports of thermal environment satisfaction surveys presented simultaneously to all occupants of the office to determine which of the two comfort models is most suitable to evaluate the thermal environment. The results indicate that office occupants have developed some degree of adaptation to the climatic conditions of the city where the office is located (which only demands heating operation, and tend to accept and even prefer lower operative temperatures than those considered optimum by applying the PMV model. This is an indication that occupants of naturally conditioned buildings are usually able to match their comfort temperature to their normal environment. Therefore, the application of the adaptive model included in CEN Standard EN15251 seems like the optimal approach for evaluating thermal comfort in naturally conditioned buildings, because it takes into consideration the adaptive principle that indicates that if a change occurs such as to produce discomfort, people tend to react in ways which restore their comfort.

  14. Materialities shape practices and notions of comfort in everyday life

    DEFF Research Database (Denmark)

    Madsen, Line Valdorff

    2018-01-01

    The development of residential energy technologies aims to ensure thermal comfort in an increasingly energy-efficient manner. This development influences everyday practices related to comfort in everyday life in dwellings. Therefore, an empirical analysis of interviews with residents in three types...... in heating systems between the housing types and shows how changes in technologies and material structures shape the practices of heating and airing. A shift in technology from radiators to underfloor heating was found to make a clear difference in both how houses are heated and thermal comfort is perceived...... of Danish detached houses, related to the building age, is used to understand how changes in technologies influence residents’ practices and notions of comfort. Detached houses are the most widespread type of housing in Denmark, constituting 44% of the housing stock. The analysis focuses on differences...

  15. Evaluation of Thermal Comfort in an Iranian Educational Hospital Using PMV- PPD Model

    Directory of Open Access Journals (Sweden)

    Javad Sajedifar

    2017-07-01

    Full Text Available Background Considering the advancement of technology and application of various appliances in the workplace, one of the most significant current discussions in the industrial and nonindustrialized workplaces is thermal comfort. Hospital staff have a special status because of the diversity of people employed in hospitals and their crucial roles. Objectives The present study aimed at investigating the staffs’ thermal comfort in a hospital in Esfahan. Methods In this cross-sectional study, Al Zahra hospital staff working in the underground floor were recruited. The sampling method was census, and 161 staff participated in the study. Data were collected by mental assessment using a questionnaire and physical measurement using wet bulb globe temperature (WBGT machine in the summer of 2015. The predicted mean vote (PMV and predicted percentage dissatisfied (PPD were determined based on mental assessment or individual feeling of the staff about thermal comfort. Data management and analyses were performed using SPSS 23. Results The results of the data analysis revealed that kitchen, laundry, and sterilization sectors had higher temperature than other units. Moreover, the results demonstrated that the offices of educational sectors and educational classes had a standard level of thermal comfort according to ASHRAE (American society of heating, refrigerating and air-conditioning engineers Standard 55. The investigations of physical and mental PMV in every unit showed that the total index of these 2 values was 1.2 and 1.39, respectively. Conclusions Based on the results, the units located at the underground floor needed proper design and access to natural ventilation and enough air flow to provide optimum thermal comfort based on international standards.

  16. PHYSIOTHERAPISTS ATTIRE: DOES IT AFFECT PATIENTS COMFORT, CONFIDENCE AND OVERALL PATIENT-THERAPIST RELATIONSHIP

    Directory of Open Access Journals (Sweden)

    Adamu Ahmad Rufa'i

    2015-10-01

    Full Text Available Background: Attire is one of the major determinants of appearance and a key element of non-verbal communication that plays a critical role in the establishment and sustainability of therapeutic relationships. This study aimed to determine the patients’ preferred physiotherapists’ attire and the effect of physiotherapists’ attire on patients’ confidence, comfort and patient-therapists relationship. Methods: A questionnaire was used to collect data in this cross sectional study design. Patients (N=281 attending outpatients physiotherapy clinics in six selected tertiary health institutions in North-eastern Nigeria completed a questionnaire consisting of two sections. Section one solicited sociodemographic information while in section two patients rated their level of confidence and comfort with physiotherapists based on a photo pictures of a male and a female physiotherapists models in four different attires. Descriptive statistics were performed to characterize participants and the differences in patients’ confidence and comfort level by different types of attire were assessed using chi-square. The correlation between physiotherapists’ attire and patient-physiotherapist relationship was determined using spearman rank correlation. Results: Overwhelming majority of the participants were more comfortable (91.1% and more confident (89.0% with the physiotherapists dressed in white coat, while they were less comfortable and less confident when their therapists are dressed in suit, native or casual wear. Positive patient-therapist relationship was observed with white coat dressed physiotherapists; while the relationship with business, native and casual wears were inverse. Conclusion: The study supports for continuing recommendation of lab coat as a professional dressing for physiotherapists in Nigeria and affirms the importance of professional dressing in patient-therapists relationship.

  17. Sustainable comfort services. The impact of a combination of comfort and environment; Duurzame gemaksdiensten. Combinatie van gemak en milieu biedt kansen

    Energy Technology Data Exchange (ETDEWEB)

    De Keizer, I.; Van Swigchem, J.

    2002-03-01

    The aim of the study on the title subject is to determine the environmental impact of so-called sustainable and environment-friendly comfort services which are offered to individual consumers from a central point. The comfort services discussed in this report are a laundry service, delivery or messenger service, and a meal service or domestic caterer. [Dutch] Mensen die werk en prive(of zorg) combineren, leiden een druk bestaan, waardoor de behoefte bestaat om bijvoorbeeld huishoudelijke taken efficient in te richten. Verhoging van gemak en comfort gaat echter vaak gepaard met een toename van de milieudruk: meer apparatuur, dus hogere energieverbruik, en meer behoefte aan mobiliteit. Voor het Ministerie van VROM ligt de uitdaging in het zoeken naar kansen die zowel gemak opleveren als winst voor het milieu. en mogelijk concept hiervoor wordt gezien in zogenaamde 'duurzame gemaksdiensten', zoals een was-, boodschappen- en een maaltijdservice, die aangeboden worden op een centraal punt: het dienstenknooppunt. Elk van deze services blijkt kansen te bieden, varierend van reducties in energiegebruik (max. 36% per huishouden per jaar) tot een (forse) reductie van het aantal gereden autokilometers. oordat deze kansen echter optimaal benut kunnen worden, is een aantal aspecten van belang om verder te onderzoeken: de werkelijke vraag naar duurzame gemaksdiensten vanuit de consument, de locatie van het dienstenknooppunt en het vervoer op en rondom het knooppunt.

  18. Hybrid heating systems optimization of residential environment to have thermal comfort conditions by numerical simulation.

    Science.gov (United States)

    Jahantigh, Nabi; Keshavarz, Ali; Mirzaei, Masoud

    2015-01-01

    The aim of this study is to determine optimum hybrid heating systems parameters, such as temperature, surface area of a radiant heater and vent area to have thermal comfort conditions. DOE, Factorial design method is used to determine the optimum values for input parameters. A 3D model of a virtual standing thermal manikin with real dimensions is considered in this study. Continuity, momentum, energy, species equations for turbulent flow and physiological equation for thermal comfort are numerically solved to study heat, moisture and flow field. K - ɛRNG Model is used for turbulence modeling and DO method is used for radiation effects. Numerical results have a good agreement with the experimental data reported in the literature. The effect of various combinations of inlet parameters on thermal comfort is considered. According to Pareto graph, some of these combinations that have significant effect on the thermal comfort require no more energy can be used as useful tools. A better symmetrical velocity distribution around the manikin is also presented in the hybrid system.

  19. Development and application of artificial neural network models to estimate values of a complex human thermal comfort index associated with urban heat and cool island patterns using air temperature data from a standard meteorological station

    Science.gov (United States)

    Moustris, Konstantinos; Tsiros, Ioannis X.; Tseliou, Areti; Nastos, Panagiotis

    2018-04-01

    The present study deals with the development and application of artificial neural network models (ANNs) to estimate the values of a complex human thermal comfort-discomfort index associated with urban heat and cool island conditions inside various urban clusters using as only inputs air temperature data from a standard meteorological station. The index used in the study is the Physiologically Equivalent Temperature (PET) index which requires as inputs, among others, air temperature, relative humidity, wind speed, and radiation (short- and long-wave components). For the estimation of PET hourly values, ANN models were developed, appropriately trained, and tested. Model results are compared to values calculated by the PET index based on field monitoring data for various urban clusters (street, square, park, courtyard, and gallery) in the city of Athens (Greece) during an extreme hot weather summer period. For the evaluation of the predictive ability of the developed ANN models, several statistical evaluation indices were applied: the mean bias error, the root mean square error, the index of agreement, the coefficient of determination, the true predictive rate, the false alarm rate, and the Success Index. According to the results, it seems that ANNs present a remarkable ability to estimate hourly PET values within various urban clusters using only hourly values of air temperature. This is very important in cases where the human thermal comfort-discomfort conditions have to be analyzed and the only available parameter is air temperature.

  20. Development and application of artificial neural network models to estimate values of a complex human thermal comfort index associated with urban heat and cool island patterns using air temperature data from a standard meteorological station.

    Science.gov (United States)

    Moustris, Konstantinos; Tsiros, Ioannis X; Tseliou, Areti; Nastos, Panagiotis

    2018-04-11

    The present study deals with the development and application of artificial neural network models (ANNs) to estimate the values of a complex human thermal comfort-discomfort index associated with urban heat and cool island conditions inside various urban clusters using as only inputs air temperature data from a standard meteorological station. The index used in the study is the Physiologically Equivalent Temperature (PET) index which requires as inputs, among others, air temperature, relative humidity, wind speed, and radiation (short- and long-wave components). For the estimation of PET hourly values, ANN models were developed, appropriately trained, and tested. Model results are compared to values calculated by the PET index based on field monitoring data for various urban clusters (street, square, park, courtyard, and gallery) in the city of Athens (Greece) during an extreme hot weather summer period. For the evaluation of the predictive ability of the developed ANN models, several statistical evaluation indices were applied: the mean bias error, the root mean square error, the index of agreement, the coefficient of determination, the true predictive rate, the false alarm rate, and the Success Index. According to the results, it seems that ANNs present a remarkable ability to estimate hourly PET values within various urban clusters using only hourly values of air temperature. This is very important in cases where the human thermal comfort-discomfort conditions have to be analyzed and the only available parameter is air temperature.

  1. Perceived Competence and Comfort in Respiratory Protection

    Science.gov (United States)

    Burgel, Barbara J.; Novak, Debra; Burns, Candace M.; Byrd, Annette; Carpenter, Holly; Gruden, MaryAnn; Lachat, Ann; Taormina, Deborah

    2015-01-01

    In response to the Institute of Medicine (2011) report Occupational Health Nurses and Respiratory Protection: Improving Education and Training, a nationwide survey was conducted in May 2012 to assess occupational health nurses’ educational preparation, roles, responsibilities, and training needs in respiratory protection. More than 2,000 occupational health nurses responded; 83% perceived themselves as competent, proficient, or expert in respiratory protection, reporting moderate comfort with 12 respiratory program elements. If occupational health nurses had primary responsibility for the respiratory protection program, they were more likely to perceive higher competence and more comfort in respiratory protection, after controlling for occupational health nursing experience, highest education, occupational health nursing certification, industry sector, Association of Occupational Health Professionals in Healthcare membership, taking a National Institute for Occupational Safety and Health spirometry course in the prior 5 years, and perceiving a positive safety culture at work. These survey results document high perceived competence and comfort in respiratory protection. These findings support the development of targeted educational programs and interprofessional competencies for respiratory protection. PMID:23429638

  2. Conventional Vs Digital Impressions: Acceptability, Treatment Comfort and Stress Among Young Orthodontic Patients.

    Science.gov (United States)

    Mangano, Alessandro; Beretta, Matteo; Luongo, Giuseppe; Mangano, Carlo; Mangano, Francesco

    2018-01-01

    The objective of the present study was to compare patients' acceptability, comfort and stress with conventional and digital impressions. Thirty young orthodontic patients (15 males and 15 females) who had no previous experience of impressions were enrolled in this study. Conventional impressions for orthodontic study models of the dental arches were taken using an alginate impression material (Hydrogum ® , Zhermack Spa, Badia Polesine, Rovigo, Italy). Fifteen days later, digital impressions of both arches were acquired using an intraoral scanner (CS3600 ® , Carestream Dental, Rochester, NY, USA). Immediately after impression taking, patients' acceptability, comfort and stress were measured using two questionnaires and the State anxiety scale. Data showed no difference in terms of anxiety and stress; however, patients preferred the use of digital impressions systems instead of conventional impression techniques. Alginate impressions resulted as fast as digital impressions. Digital impressions resulted the most accepted and comfortable impression technique in young orthodontic patients, when compared to conventional techniques.

  3. Conventional Vs Digital Impressions: Acceptability, Treatment Comfort and Stress Among Young Orthodontic Patients

    Science.gov (United States)

    Mangano, Alessandro; Beretta, Matteo; Luongo, Giuseppe; Mangano, Carlo; Mangano, Francesco

    2018-01-01

    Objective: The objective of the present study was to compare patients’ acceptability, comfort and stress with conventional and digital impressions. Materials and Methods: Thirty young orthodontic patients (15 males and 15 females) who had no previous experience of impressions were enrolled in this study. Conventional impressions for orthodontic study models of the dental arches were taken using an alginate impression material (Hydrogum®, Zhermack Spa, Badia Polesine, Rovigo, Italy). Fifteen days later, digital impressions of both arches were acquired using an intraoral scanner (CS3600®, Carestream Dental, Rochester, NY, USA). Immediately after impression taking, patients’ acceptability, comfort and stress were measured using two questionnaires and the State anxiety scale. Results: Data showed no difference in terms of anxiety and stress; however, patients preferred the use of digital impressions systems instead of conventional impression techniques. Alginate impressions resulted as fast as digital impressions. Conclusions: Digital impressions resulted the most accepted and comfortable impression technique in young orthodontic patients, when compared to conventional techniques. PMID:29492177

  4. A correlation linking the predicted mean vote and the mean thermal vote based on an investigation on the human thermal comfort in short-haul domestic flights.

    Science.gov (United States)

    Giaconia, Carlo; Orioli, Aldo; Di Gangi, Alessandra

    2015-05-01

    The results of an experimental investigation on the human thermal comfort inside the cabin of some Airbus A319 aircrafts during 14 short-haul domestic flights, linking various Italian cities, are presented and used to define a correlation among the predicted mean vote (PMV), a procedure which is commonly used to assess the thermal comfort in inhabited environments, and the equivalent temperature and mean thermal vote (MTV), which are the parameters suggested by the European Standard EN ISO 14505-2 for the evaluation of the thermal environment in vehicles. The measurements of the radiant temperature, air temperature and relative humidity during flights were performed. The air temperature varied between 22.2 °C and 26.0 °C; the relative humidity ranged from 8.7% to 59.2%. The calculated values of the PMV varied from -0.16 to 0.90 and were confirmed by the answers of the passengers. The equivalent temperature was evaluated using the equations of Fanger or on the basis of the values of the skin temperature measured on some volunteers. The correlation linking the thermal sensation scales and zones used by the PMV and the MTV resulted quite accurate because the minimum value of the absolute difference between such environmental indexes equalled 0.0073 and the maximum difference did not exceed the value of 0.0589. Even though the equivalent temperature and the MTV were specifically proposed to evaluate the thermal sensation in vehicles, their use may be effectively extended to the assessment of the thermal comfort in airplanes or other occupied places. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  5. Determination of thermal and acoustic comfort inside a vehicle’s cabin

    Directory of Open Access Journals (Sweden)

    2018-01-01

    Full Text Available Thermal and acoustic comfort, inside a vehicle’s cabin, are highly interconnected and can greatly influence the health of the passengers. On one hand, the H.V.A.C. system brings the interior air parameters to a comfortable value while on the other hand, it is the main source of noise. It is an intriguing task to find a balance between the two. In this paper, several types of air diffusers were used in order to optimize the ratio between thermal and acoustic interior comfort. Using complex measurements of noise and thermal comfort parameters we have determined for each type of air diffuser the sound pressure level and its impact on air temperature and air velocity.

  6. Resolving the influential parameters of thermal comfort perception amidst indoor-outdoor spatial transitions: Case study in a lecture room

    NARCIS (Netherlands)

    Derks, M.T.H.; Loomans, M.G.L.C.; Mishra, A.K.; Kort, H.S.M.

    2017-01-01

    Indoor to outdoor transitions have an undeniable impact on thermal perception of occupants and can impact their evaluation of a building. These aspects are often overlooked in thermal comfort standards. We address this gap using a mixed methods study, with students in undergraduate level classrooms

  7. Monitoring and assessment of thermical comfort in hygrothermically moderate offices and laboratories; Monitoraggio e valutazione del comfort termico negli ambienti di lavoro termoigrometricamente moderati

    Energy Technology Data Exchange (ETDEWEB)

    Speranza, A. [ENEA, Centro Ricerche `Ezio Clementel`, Bologna (Italy). Dip. Ambiente

    1998-12-31

    This study reports the results of the micro climatic measurements carried out in some ENEA work environments. The work conditions in the surveyed areas, have been evaluated following welfare indexes or thermical comfort: PMV= Predicted Mean Vote (ISO recommendation 7730); PPD= Predicted Percentage of Dissatisfied (ISO recommendation 7730). [Italiano] In questo studio sono riportati i risultati delle misure microclimatiche eseguite in alcuni ambienti di lavoro dei centri ENEA di Bologna. Le condizioni di lavoro (delle zone che sono state sottoposte ad indagine) sono state valutate mediante i seguenti indici di benessere o `comfort` termico: Voto Medio Previsto (PMV= Predicted Mean Vote) - raccomandazione ISO 7730; Percentuale Prevista di Insoddisfatti (PPD= Predicted Percentage of Dissatisfied) - raccomandazione ISO 7730.

  8. Monitoring and assessment of thermical comfort in hygrothermically moderate offices and laboratories; Monitoraggio e valutazione del comfort termico negli ambienti di lavoro termoigrometricamente moderati

    Energy Technology Data Exchange (ETDEWEB)

    Speranza, A [ENEA, Centro Ricerche ` Ezio Clementel` , Bologna (Italy). Dip. Ambiente

    1999-12-31

    This study reports the results of the micro climatic measurements carried out in some ENEA work environments. The work conditions in the surveyed areas, have been evaluated following welfare indexes or thermical comfort: PMV= Predicted Mean Vote (ISO recommendation 7730); PPD= Predicted Percentage of Dissatisfied (ISO recommendation 7730). [Italiano] In questo studio sono riportati i risultati delle misure microclimatiche eseguite in alcuni ambienti di lavoro dei centri ENEA di Bologna. Le condizioni di lavoro (delle zone che sono state sottoposte ad indagine) sono state valutate mediante i seguenti indici di benessere o `comfort` termico: Voto Medio Previsto (PMV= Predicted Mean Vote) - raccomandazione ISO 7730; Percentuale Prevista di Insoddisfatti (PPD= Predicted Percentage of Dissatisfied) - raccomandazione ISO 7730.

  9. Can Pillow Height Effect the Body Pressure Distribution and Sleep Comfort: a Study of Quinquagenarian Women

    Science.gov (United States)

    Li, Xinzhu; Hu, Huimin; Liao, Su

    2018-03-01

    A proper sleeping pillow can relax the neck muscles during sleep, yet does not impose stress on the spine or other tissues. By analyzing the different body pressure and subjective comfort evaluation of quinquagenarian women with different pillow heights (3cm, 7cm, 11cm and 15cm), this paper found that as the pillow height increased, the neck contact pressure, contact area and force increased at the same time, as well as the peak force and peak contact pressure gradually shifted from the head to the hip area. It was shown that the pillow with a height of 7cm was the most comfortable for supine positions.

  10. Influence of humidification on comfort during noninvasive ventilation with a helmet.

    Science.gov (United States)

    Ueta, Kazuyoshi; Tomita, Toshiji; Uchiyama, Akinori; Ohta, Noriyuki; Iguchi, Naoya; Goto, Yukiko; Fujino, Yuji

    2013-05-01

    To evaluate optimal humidifier water temperature when using a helmet for noninvasive ventilation. Twenty-eight healthy individuals underwent 8 cm H2O CPAP ventilation with FIO2 of 0.21 and 0.5. Each was sequentially tested in the following order: using the helmet without humidification at ambient temperature; with humidification with unheated chamber water; and with humidification with the chamber water at 31°C, 34°C, and 37°C. At each setting, after a 20 min stabilization period, measurements were taken. Comfort level at each setting was evaluated using a visual analog scale rated zero (least comfortable) to 10 (most comfortable). Temperature and relative and absolute humidity inside the helmet increased; however, the comfort scores significantly decreased as the humidification chamber water temperature increased. Regardless of the FIO2, statistically significantly highest comfort scores were obtained when humidification water, with and without active humidification, was at ambient temperature. Unacceptable absolute humidity was obtained only without humidification at room temperature when FIO2 was 0.5. With the clinical use of a helmet, for patient comfort and mucosal humidification during CPAP, the most desirable conditions are likely to be obtained by humidifying without heating, that is by leaving the water in the humidifier chamber at room temperature.

  11. Evaluation of ceiling lifts: transfer time, patient comfort and staff perceptions.

    Science.gov (United States)

    Alamgir, Hasanat; Li, Olivia Wei; Yu, Shicheng; Gorman, Erin; Fast, Catherine; Kidd, Catherine

    2009-09-01

    Mechanical lifting devices have been developed to reduce healthcare worker injuries related to patient handling. The purpose of this study was to evaluate ceiling lifts in comparison to floor lifts based on transfer time, patient comfort and staff perceptions in three long-term care facilities with varying ceiling lift coverage. The time required to transfer or reposition patients along with patient comfort levels were recorded for 119 transfers. Transfers performed with ceiling lifts required on average less time (bed to chair transfers: 156.9 seconds for ceiling lift, 273.6 seconds for floor lift) and were found to be more comfortable for patients. In the three facilities, 143 healthcare workers were surveyed on their perceptions of patient handling tasks and equipment. For both transferring and repositioning tasks, staff preferred to use ceiling lifts and also found them to be less physically demanding. Further investigation is needed on repositioning tasks to ensure safe practice.

  12. Investigation of Different Configurations of a Ventilated Window to Optimize Both Energy Efficiency and Thermal Comfort

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Heiselberg, Per; Larsen, Olena Kalyanova

    2017-01-01

    on thermal comfort. Hourly simulations of the heat balances of the windows are conducted on four days representing different typical weather conditions according to the method described in EN ISO 13790. Uand g values used in the calculation method are calculated in European software tool (WIS......) for the calculation of the thermal and solar properties of commercial and innovative window systems. Additionally, comfort performance is evaluated by inlet air temperature and internal surface temperature of the windows calculated by WIS software. The results of the study show the energy and comfort performance...... the energy consumption or optimizing the thermal comfort. The provided optimal window typologies can be used in residential and commercial buildings for both new constructions and renovations....

  13. Stress-induced endocrine response and anxiety: the effects of comfort food in rats.

    Science.gov (United States)

    Ortolani, Daniela; Garcia, Márcia Carvalho; Melo-Thomas, Liana; Spadari-Bratfisch, Regina Celia

    2014-05-01

    The long-term effects of comfort food in an anxiogenic model of stress have yet to be analyzed. Here, we evaluated behavioral, endocrine and metabolic parameters in rats submitted or not to chronic unpredictable mild stress (CUMS), with access to commercial chow alone or to commercial chow and comfort food. Stress did not alter the preference for comfort food but decreased food intake. In the elevated plus-maze (EPM) test, stressed rats were less likely to enter/remain in the open arms, as well as being more likely to enter/remain in the closed arms, than were control rats, both conditions being more pronounced in the rats given access to comfort food. In the open field test, stress decreased the time spent in the centre, independent of diet; neither stress nor diet affected the number of crossing, rearing or grooming episodes. The stress-induced increase in serum corticosterone was attenuated in rats given access to comfort food. Serum concentration of triglycerides were unaffected by stress or diet, although access to comfort food increased total cholesterol and glucose. It is concluded that CUMS has an anorexigenic effect. Chronic stress and comfort food ingestion induced an anxiogenic profile although comfort food attenuated the endocrine stress response. The present data indicate that the combination of stress and access to comfort food, common aspects of modern life, may constitute a link among stress, feeding behavior and anxiety.

  14. Improving PAQ and comfort conditions in Spanish office buildings with passive climate control

    Energy Technology Data Exchange (ETDEWEB)

    Orosa, Jose A.; Baalina, A. [Departamento de Energia y P.M. Escuela Tecnica Superior de N. y M, Universidade da Coruna, Paseo de Ronda 51, P.C.:15011 A Coruna (Spain)

    2009-03-15

    Some researchers have demonstrated that passive moisture transfer between indoor air and hygroscopic structures has the potential to moderate variations of indoor air relative humidity and, thus, to improve comfort and PAQ [Simonson CJ, Salonvaara M, Ojalen T. The effect of structures on indoor humidity-possibility to improve comfort and perceived air quality. Indoor Air 2002; 12: 243-51; Simonson CJ, Salonvaara M, Ojalen T. Improving indoor climate and comfort with wooden structures. Espoo 2001. Technical Research Centre of Finland, VTT Publications 431.200p+app 91p]. The main objective of this study is to show the internal wall coating effect on indoor air conditions and, as a consequence of this, in comfort conditions and PAQ. In a previous paper [Orosa JA, Baalina A. Passive climate control in Spanish office buildings for long periods of time. Building and Environment 2008], we analysed the influence of permeable and impermeable materials on indoor air conditions, during the unoccupied period, in 25 office buildings in different seasons. Results obtained lead us to conclude that real coverings such as permeable, semi-permeable and impermeable types, present different behavioural patterns in indoor air conditions. Furthermore, we concluded that an absorbent structure will moderate relative humidity indoors. In this paper, we study this indoor relative humidity effect on local thermal discomfort, due to decreased respiratory cooling, and indoor ambience acceptability for the early hours of morning applying PD and Acc models [Toftum J, Jorgensen AS, Fanger PO. Upper limits for indoor air humidity to avoid uncomfortably humid skin. Energy and buildings 1998; 28: 1-13; Toftum J, Jorgensen AS, Fanger PO. Upper limits of air humidity for preventing warm respiratory discomfort. Energy and Buildings 1998; 28: 15-23] such as that proposed by Simonson et al. [The effect of structures on indoor humidity-possibility to improve comfort and perceived air quality. Indoor Air

  15. Thermal comfort in commercial kitchens (RP-1469)

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.; Stoops, John L.

    2013-01-01

    The indoor climate in commercial kitchens is often unsatisfactory, and working conditions can have a significant effect on employees’ comfort and productivity. The type of establishment (fast food, casual, etc.) and climatic zone can influence thermal conditions in the kitchens. Moreover, the size...... and arrangement of the kitchen zones, appliances, etc., further complicate an evaluation of the indoor thermal environment in commercial kitchens. In general, comfort criteria are stipulated in international standards (e.g., ASHRAE 55 or ISO EN 7730), but are these standardized methods applicable...... dissatisfied (PMV/PPD) index is not directly appropriate for all thermal conditions in commercial kitchens....

  16. A reliable measure of footwear upper comfort enabled by an innovative sock equipped with textile pressure sensors.

    Science.gov (United States)

    Herbaut, Alexis; Simoneau-Buessinger, Emilie; Barbier, Franck; Cannard, Francis; Guéguen, Nils

    2016-10-01

    Footwear comfort is essential and pressure distribution on the foot was shown as a relevant objective measurement to assess it. However, asperities on the foot sides, especially the metatarsals and the instep, make its evaluation difficult with available equipment. Thus, a sock equipped with textile pressure sensors was designed. Results from the mechanical tests showed a high linearity of the sensor response under incremental loadings and allowed to determine the regression equation to convert voltage values into pressure measurements. The sensor response was also highly repeatable and the creep under constant loading was low. Pressure measurements on human feet associated with a perception questionnaire exhibited that significant relationships existed between pressure and comfort perceived on the first, the third and the fifth metatarsals and top of the instep. Practitioner Summary: A sock equipped with textile sensors was validated for measuring the pressure on the foot top, medial and lateral sides to evaluate footwear comfort. This device may be relevant to help individuals with low sensitivity, such as children, elderly or neuropathic, to choose the shoes that fit the best.

  17. The effects of vegetation on indoor thermal comfort

    DEFF Research Database (Denmark)

    Pastore, Luisa; Corrao, Rossella; Heiselberg, Per Kvols

    2017-01-01

    Highlights •A multi-scale simulation methodology to assess the effects of vegetation on thermal comfort is used. •It application is shown on a case of urban and building retrofit intervention. •The effect of plants on the microclimate and indoor environment is assessed. •A decrease of up to 4.8 °C...... in indoor temperature is registered. •The final impact on the indoor thermal comfort based on the adaptive model is determined....

  18. Modeling Thermal Comfort and Optimizing Local Renewal Strategies—A Case Study of Dazhimen Neighborhood in Wuhan City

    Directory of Open Access Journals (Sweden)

    Chong Peng

    2015-03-01

    Full Text Available Modeling thermal comfort provides quantitative evidence and parameters for effective and efficient urban planning, design, and building construction particularly in a dense and narrow inner city, which has become one of many concerns for sustainable urban development. This paper aims to develop geometric and mathematical models of wind and thermal comfort and use them to examine the impacts of six small-scale renewal strategies on the wind and thermal environment at pedestrian level in Dazhimen neighborhood, Wuhan, which is a typical case study of urban renewal project in a mega-city. The key parameters such as the solar radiation, natural convection, relative humidity, ambient crosswind have been incorporated into the mathematical models by using user-defined-function (UDF method. Detailed temperature and velocity distributions under different strategies have been compared for the optimization of local renewal strategies. It is concluded that five rules generated from the simulation results can provide guidance for building demolition and reconstruction in a neighborhood and there is no need of large-scale demolition. Particularly, combining the local demolition and city virescence can both improve the air ventilation and decrease the temperature level in the study area.

  19. Health and thermal comfort: From WHO guidance to housing strategies

    International Nuclear Information System (INIS)

    Ormandy, David; Ezratty, Véronique

    2012-01-01

    There are many references to the WHO guidance on thermal comfort in housing, but not to the original source material. Based on archive material, this paper gives the evidential basis for the WHO guidance. It then reports on evidence that some groups may be more susceptible to high or low indoor temperatures than others. It examines different methods for measuring thermal comfort, such as air temperature measurement, assessing residents' perception, and predicting satisfaction. Resident's perception was used effectively in the WHO LARES project, showing that self-reported poor health was significantly associated with poor thermal comfort. Tools to inform strategies directed at dealing with cold homes and fuel poverty are considered, including Energy Performance Certificates, Fuel Poverty Indicators, and the English Housing Health and Safety Rating System. Conclusions from a WHO Workshop on Housing, Energy and Thermal Comfort are also summarised. The WHO view of thermal comfort, which is driven by protecting health from both high and low indoor temperatures, should be recognised in energy efficiency, fuel poverty and climate change strategies. While this is a major challenge, it could provide both health gains for individuals, and economic benefits for society. - Highlights: ► WHO guidance on thermal comfort is directed to protecting health in the home environment. ► In particular, the WHO guidance aims to protect the health of the most susceptible and fragile. ► Housing energy efficiency strategies protect health, and attack inequities. ► Housing energy efficiency strategies also have economic benefits for society.

  20. Data-driven public transport ridership prediction approach including comfort aspects

    NARCIS (Netherlands)

    Van Oort, N.; Drost, M.; Brands, T.; Yap, M.

    2015-01-01

    The most important aspects on which passengers base their choice whether to travel by public transport are the perceived travel time, costs, reliability and comfort. Despite its importance, comfort is often not explicitly considered when predicting demand for public transport. In this paper, we

  1. Comfort in High-Performance Homes in a Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Poerschke, A. [IBACOS, Inc., Pittsburgh, PA (United States); Beach, R. [IBACOS, Inc., Pittsburgh, PA (United States)

    2016-01-22

    "9IBACOS monitored 37 homes during the late summer and early fall of 2014 in a hot and humid climate to better understand indoor comfort conditions. These homes were constructed in the last several years by four home builders that offered a comfort and performance guarantee for the homes. The homes were located in one of four cities: Tampa, Florida; Orlando, Florida; Houston, Texas; and San Antonio, Texas. Temperature and humidity data were collected from the thermostat and each room of the house using small, battery-powered data loggers. To understand system runtime and its impact on comfort, supply air temperature also was measured on a 1-minute interval. Overall, the group of homes only exceeded a room-to-room temperature difference of 6 degrees F for 5% of the time. For 80% of the time, the rooms in each house were within 4 degrees F of each other. Additionally, the impact of system runtime on comfort is discussed. Finally, measurements made at the thermostat were used to better understand the occupant operation of each cooling system's thermostat setpoint. Builders were questioned on their perceived impact of offering a comfort and performance guarantee. Their feedback, which generally indicates a positive perception, has been summarized in the report.

  2. Evaluation of Bus Vibration Comfort Based on Passenger Crowdsourcing Mode

    Directory of Open Access Journals (Sweden)

    Hong Zhao

    2016-01-01

    Full Text Available Vibration comfort is an important factor affecting the quality of service (QoS of bus. In order to make people involved in supervising bus’s vibration comfort and improve passengers’ riding experience, a novel mode of passenger crowdsourcing is introduced. In this paper, comfort degree of bus vibration is calculated from bus’s vibration signals collected by passengers’ smartphones and sent through WiFi to the Boa web server which shows the vibration comfort on the LCD deployed in bus and maybe trigger alarm lamp when the vibration is beyond the threshold. Three challenges here have been overcome: firstly, space coordinate transformation algorithm is used to solve the constant drift of signals collected; secondly, a low-pass filter is designed to isolate gravity from signals real-timely via limited computing resources; thirdly, an embedded evaluation system is developed according to the calculation procedure specified by criterion ISO 2631-1997. Meanwhile, the model proposed is tested in a practical running environment, the vibration data in whole travel are recorded and analyzed offline. The results show that comfort degree of vibration obtained from the experimental system is identical with the truth, and this mode is proved to be effective.

  3. Single-sector thermophysiological human simulator

    International Nuclear Information System (INIS)

    Psikuta, Agnieszka; Richards, Mark; Fiala, Dusan

    2008-01-01

    Thermal sweating manikins are used to analyse the heat and mass transfer phenomena in the skin–clothing–environment system. However, the limiting factor of present thermal manikins is their inability to simulate adequately the human thermal behaviour, which has a significant effect on the clothing microenvironment. A mathematical model of the human physiology was, therefore, incorporated into the system control to simulate human thermoregulatory responses and the perception of thermal comfort over a wide range of environmental and personal conditions. Thereby, the computer model provides the physiological intelligence, while the hardware is used to measure the required calorimetric states relevant to the human heat exchange with the environment. This paper describes the development of a single-sector thermophysiological human simulator, which consists of a sweating heated cylinder 'Torso' coupled with the iesd-Fiala multi-node model of human physiology and thermal comfort. Validation tests conducted for steady-state and, to some extent, transient conditions ranging from cold to hot revealed good agreement with the corresponding experimental results obtained for semi-nude subjects. The new coupled system enables overall physiological and comfort responses, health risk and survival conditions to be predicted for adult humans for various scenarios

  4. FACT : forgiving agent comfort technology

    NARCIS (Netherlands)

    Zeiler, W.; Wortel, W.; Kamphuis, I.G.; Akkermans, Hans; Jelsma, J.; Bakker, L.

    2005-01-01

    To further reduce energy consumption of office buildings, a new control technology is needed in which the end-user behaviour is integrated. Improvement of the energy consumption is offered by agent-based systems for energy management in buildings, as well as possibilities for enhancing the comfort

  5. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation

    Science.gov (United States)

    Zhou, Hui; Lu, Yi; Chen, Wanzhen; Wu, Zhen; Zou, Haiqing; Krundel, Ludovic; Li, Guanglin

    2015-01-01

    Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes. PMID:26193273

  6. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2015-07-01

    Full Text Available Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes.

  7. Urban Physics: Effect of the micro-climate on comfort, health and energy demand

    OpenAIRE

    Moonen, Peter; Defraeye, Thijs; Dorer, Viktor; Blocken, Bert; Carmeliet, Jan

    2012-01-01

    The global trend towards urbanisation explains the growing interest in the study of the modification of the urban climate due to the heat island effect and global warming, and its impact on energy use of buildings. Also urban comfort, health and durability, referring respectively to pedestrian wind/thermal comfort, pollutant dispersion and wind-driven rain are of interest. Urban Physics is a well-established discipline, incorporating relevant branches of physics, environmental chemistry, aero...

  8. Thermal comfort in hospital and healthcare facilities : a literature review

    NARCIS (Netherlands)

    Sadrizadeh, S.; Loomans, M.G.L.C.

    2016-01-01

    Hospital and healthcare facilities need to provide a variety of indoor environments due to the diverse comfort and health needs of their patients and staff. Thermal comfort is an essential part of indoor environmental quality in the hospital work environment that affects both the patient’s own

  9. Thermal sensation and thermal comfort in changing environments

    NARCIS (Netherlands)

    Velt, K.B.; Daanen, H.A.M.

    2017-01-01

    It is the purpose of this study to investigate thermal sensation (TS) and thermal comfort (TC) in changing environments. Therefore, 10 subjects stayed in a 30 °C, 50% relative humidity for 30 min in summer clothes and then moved to a 20 °C room where they remained seated for 30 min (Hot to Reference

  10. Future comfort cooling in domestic and commercial buildings in Sweden; Naesta generations klimatkyla i bostaeder och lokaler

    Energy Technology Data Exchange (ETDEWEB)

    Nordman, Roger; Haglund Stignor, Caroline; Rolfsman, Lennart; Lindahl, Markus; Alsbjer, Markus; Axell, Monica

    2010-09-15

    This report presents results from a national project on future potential for comfort cooling in the built sector. Results from an interview study are presented. Future changes in energy demand for comfort cooling in different building types based on scenarios are also presented and discussed. It is clear from the simulated results that the future need for comfort cooling will decrease due to a number of factors, including user behavior, regulations and new building codes

  11. A Series of Computational Neuroscience Labs Increases Comfort with MATLAB.

    Science.gov (United States)

    Nichols, David F

    2015-01-01

    Computational simulations allow for a low-cost, reliable means to demonstrate complex and often times inaccessible concepts to undergraduates. However, students without prior computer programming training may find working with code-based simulations to be intimidating and distracting. A series of computational neuroscience labs involving the Hodgkin-Huxley equations, an Integrate-and-Fire model, and a Hopfield Memory network were used in an undergraduate neuroscience laboratory component of an introductory level course. Using short focused surveys before and after each lab, student comfort levels were shown to increase drastically from a majority of students being uncomfortable or with neutral feelings about working in the MATLAB environment to a vast majority of students being comfortable working in the environment. Though change was reported within each lab, a series of labs was necessary in order to establish a lasting high level of comfort. Comfort working with code is important as a first step in acquiring computational skills that are required to address many questions within neuroscience.

  12. [Thermal comfort and indoor air quality in some of the italian state police workplaces.

    Science.gov (United States)

    Chirico, Francesco; Rulli, Giuseppina

    2017-12-01

    Little can be found in the literature about thermal comfort and indoor air quality (IAQ) in law enforcement workplaces. This study, based on environmental surveys carried out by the Centro Sanitario Polifunzionale of Milan (Italian State Police Health Service Department), aims to assess the thermal comfort and IAQ in some of the Italian State Police workplaces. Measurements were performed in some indoor workplaces such as offices, archives, laboratories and guard-houses in various regions (Lombardia, Emilia Romagna, Liguria, Veneto, Trentino Alto-Adige) of Northern Italy. The PMV/PPD model developed by Fangar for the evaluation of the thermal comfort was used. We measured both CO2 concentration and relative humidity indoor levels for the evaluation of IAQ. We used Chi square and t Student tests to study both prevalence of thermal discomfort and low IAQ, and their differences between summer and winter. For the purposes of the present study we carried out 488 measurements in 36 buildings (260 in winter and 228 in summer). Our results showed that thermal comfort was reached in 95% and 68% of environmental measurements (in winter and summer, respectively). In summer, we measured different types of thermal discomfort. As regard to IAQ, CO2 exceeded the threshold limit value (1000 ppm) in 39% (winter) and 9% (summer) of our measurements. Chi-square test showed a statistically significant difference between summer and winter for all outcomes considered. Indeed, thermal comfort was better in winter than summer (X2 = 61.0795), while IAQ was found to be better in the summer than winter considering both the CO2 1000 ppm and 1200 ppm threshold values (X2 = 56.9004 and X2 = 8.8845 respectively). Prevalence of low relative humidity in winter was higher than in summer (X2 = 124.7764). Even though this study did not report any situation of risk to Italian police officers health and safety, it has highlighted some potential issues in some of the examined workplaces, concerning

  13. Investigation of Different Configurations of a Ventilated Window to Optimize Both Energy Efficiency and Thermal Comfort

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Heiselberg, Per; Larsen, Olena Kalyanova

    2017-01-01

    on thermal comfort. Hourly simulations of the heat balances of the windows are conducted on four days representing different typical weather conditions according to the method described in EN ISO 13790. U and g values used in the calculation method are calculated in European software tool (WIS......) for the calculation of the thermal and solar properties of commercial and innovative window systems. Additionally, comfort performance is evaluated by inlet air temperature and internal surface temperature of the windows calculated by WIS software. The results of the study show the energy and comfort performance...... the energy consumption or optimizing the thermal comfort. The provided optimal window typologies can be used in residential and commercial buildings for both new constructions and renovations....

  14. Seeking empowerment to comfort patients in severe pain: a grounded theory study of the nurse's perspective.

    Science.gov (United States)

    Slatyer, Susan; Williams, Anne M; Michael, Rene

    2015-01-01

    Hospital patients experience significant pain, which can delay healing and increase the risk of developing chronic pain. Nurses are affected by patients' ongoing pain and may cope with consequent anxiety and helplessness by distancing themselves from such patients. Understanding nurses' responses to patients in severe pain will inform strategies to support their coping, their patients and, ultimately, their retention in the nursing workforce. The aim of the study was to develop a substantive theory explaining the hospital nurse's perspective of caring for patients in severe pain. The study used grounded theory method. Data were collected on four acute care wards in a 610 bed Australian hospital. The sample included 33 nurse participants and 11 patient participants. Selection criteria for nurse participants were those who worked in the four study wards, cared for patients who experienced severe pain, and consented to be included. Selection criteria for patient participants were those who self-reported pain at intensity of seven or more on a scale of 0-10, were aged 18 years or older, could speak and read English, and consented to be included. Theoretical sampling directed the collection of data using semi-structured interviews with nurses and participant observation, including structured observations of nurses who cared for patients in pain. Data were analysed using constant comparison method. Nurse participants encountered a basic psychosocial problem of feelings of disempowerment when their patients experienced persisting severe pain. In response, they used a basic psychosocial process of seeking empowerment to provide comfort in order to resolve distress and exhaustion associated with disempowerment. This coping process comprised three stages: building connections; finding alternative ways to comfort; and quelling emotional turmoil. The substantive theory proposed a link between the stress of nurses' disempowerment and a coping response that provides direction to

  15. Beyond Comfort in Built Environments

    NARCIS (Netherlands)

    Bazley, C.M.

    2015-01-01

    Every person on the planet lives a significant portion of his or her life in a built indoor environment. Ideally, the built environment serves as protection from the extremes of the outdoor environment and is preferably comfortable. The first ‘built environment’ was a painted cave. The cave served

  16. Nurses' comfort with touch and workplace well-being.

    Science.gov (United States)

    Pedrazza, Monica; Minuzzo, Stefania; Berlanda, Sabrina; Trifiletti, Elena

    2015-06-01

    Touch is an essential part of caregiving and has been proved to be useful to reduce pain. Nevertheless, little attention has been paid to nurses' perceptions of touch. The aim of this article was to examine the relationship between nurses' feelings of comfort with touch and their well-being at work. A sample of 241 nurses attending a pain management training course completed a questionnaire, including the following measures: Comfort with Touch (CT) scale (task-oriented contact, touch promoting physical comfort, touch providing emotional containment), Maslach Burnout Inventory (MBI; emotional exhaustion, cynicism), and Job Satisfaction. Results of structural equation models showed that touch providing emotional containment was the main predictor of emotional exhaustion. Emotional exhaustion, in turn, was positively related to cynicism and negatively related to job satisfaction. In addition, the direct path from touch providing emotional containment to cynicism was significant. Practical implications of the findings are discussed. © The Author(s) 2014.

  17. Thermal comfort assessment in civil aircraft cabins

    Directory of Open Access Journals (Sweden)

    Pang Liping

    2014-04-01

    Full Text Available Aircraft passengers are more and demanding in terms of thermal comfort. But it is not yet easy for aircraft crew to control the environment control system (ECS that satisfies the thermal comfort for most passengers due to a number of causes. This paper adopts a corrected predicted mean vote (PMV model and an adaptive model to assess the thermal comfort conditions for 31 investigated flights and draws the conclusion that there does exist an uncomfortable thermal phenomenon in civil aircraft cabins, especially in some short-haul continental flights. It is necessary to develop an easy way to predict the thermal sensation of passengers and to direct the crew to control ECS. Due to the assessment consistency of the corrected PMV model and the adaptive model, the adaptive model of thermal neutrality temperature can be used as a method to predict the cabin optimal operative temperature. Because only the mean outdoor effective temperature ET∗ of a departure city is an input variable for the adaptive model, this method can be easily understood and implemented by the crew and can satisfy 80–90% of the thermal acceptability levels of passengers.

  18. A comparison of optimal semi-active suspension systems regarding vehicle ride comfort

    Science.gov (United States)

    Koulocheris, Dimitrios; Papaioannou, Georgios; Chrysos, Emmanouil

    2017-10-01

    The aim of this work is to present a comparison of the main semi active suspension systems used in a passenger car, after having optimized the suspension systems of the vehicle model in respect with ride comfort and road holding. Thus, a half car model, equipped with controllable dampers, along with a seat and a driver was implemented. Semi-active suspensions have received a lot of attention since they seem to provide the best compromise between cost (energy consumption, actuators/sensors hardware) and performance in comparison with active and passive suspensions. In this work, the semi active suspension systems studied are comfort oriented and consist of (a) the two version of Skyhook control (two states skyhook and skyhook linear approximation damper), (b) the acceleration driven damper (ADD), (c) the power driven damper (PDD), (d) the combination of Skyhook and ADD (Mixed Skyhook-ADD) and (e) the combination of the two with the use of a sensor. The half car model equipped with the above suspension systems was excited by a road bump, and was optimized using genetic algorithms (GA) in respect with ride comfort and road holding. This study aims to highlight how the optimization of the vehicle model could lead to the best compromise between ride comfort and road holding, overcoming their well-known trade-off. The optimum results were compared with important performance metrics regarding the vehicle’s dynamic behaviour in general.

  19. Short-term airing by natural ventilation - implication on IAQ and thermal comfort.

    Science.gov (United States)

    Heiselberg, P; Perino, M

    2010-04-01

    The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. Among the available ventilation strategies that are currently available, buoyancy driven, single-sided natural ventilation has proved to be very effective and can provide high air change rates for temperature and Indoor Air Quality (IAQ) control. However, to promote a wider distribution of these systems an improvement in the knowledge of their working principles is necessary. The present study analyses and presents the results of an experimental evaluation of airing performance in terms of ventilation characteristics, IAQ and thermal comfort. It includes investigations of the consequences of opening time, opening frequency, opening area and expected airflow rate, ventilation efficiency, thermal comfort and dynamic temperature conditions. A suitable laboratory test rig was developed to perform extensive experimental analyses of the phenomenon under controlled and repeatable conditions. The results showed that short-term window airing is very effective and can provide both acceptable IAQ and thermal comfort conditions in buildings. Practical Implications This study gives the necessary background and in-depth knowledge of the performance of window airing by single-sided natural ventilation necessary for the development of control strategies for window airing (length of opening period and opening frequency) for optimum IAQ and thermal comfort in naturally ventilated buildings.

  20. Design and comfort in office space

    Directory of Open Access Journals (Sweden)

    Michele M. Lepore

    2017-12-01

    Full Text Available The theme of office space is of particular interest because it is a sector strongly involved by technological development. The high concentration of plant engineering systems makes it essential to the attention to environmental parameters and to research on the quality of the relationship which binds man to artificial dimension of built space. In the design of office spaces, the general objective must be to be able to achieve a new working environment relationship. A ratio in which optimal balance is always sought in terms of igrothermal, acoustic and luminous comfort conditions, without noting that the psychological and sociological component plays an important role among the environmental factors, and this significantly interferes with the conditions of physiological comfort. The following work is an essay on the subject.

  1. Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China.

    Science.gov (United States)

    Zhang, Yufeng; Du, Xiaohan; Shi, Yurong

    2017-08-01

    The design characteristics of street canyons were investigated in Guangzhou in the hot-humid area of China, and the effects of the design factors and their interactions on pedestrian thermal comfort were studied by numerical simulations. The ENVI-met V4.0 (BASIC) model was validated by field observations and used to simulate the micrometeorological conditions and the standard effective temperature (SET) at pedestrian level of the street canyons for a typical summer day of Guangzhou. The results show that the micrometeorological parameters of mean radiant temperature (MRT) and wind speed play key roles in pedestrian thermal comfort. Street orientation has the largest contribution on SET at pedestrian level, followed by aspect ratio and greenery, while surface albedo and interactions between factors have small contributions. The street canyons oriented southeast-northwest or with a higher aspect ratio provide more shade, higher wind speed, and better thermal comfort conditions for pedestrians. Compared with the east-west-oriented street canyons, the north-south-oriented street canyons have higher MRTs and worse pedestrian thermal comfort due to their wider building spacing along the street. The effects of greenery change with the road width and the time of the day. Street canyon design is recommended to improve pedestrian thermal comfort. This study provides a better understanding of the effects of street canyon design on pedestrian thermal comfort and is a useful guide on urban design for the hot-humid area of China.

  2. Does Targeted Education of Emergency Physicians Improve Their Comfort Level in Treating Psychiatric Patients?

    Directory of Open Access Journals (Sweden)

    Brenda J Walker

    2012-12-01

    Full Text Available Introduction: We determined if targeted education of emergency physicians (EPsregarding the treatment of mental illness will improve their comfort level in treatingpsychiatric patients boarding in the emergency department (ED awaiting admission.Methods: We performed a pilot study examining whether an educational interventionwould change an EP’s comfort level in treating psychiatric boarder patients (PBPs. Weidentified a set of psychiatric emergencies that typically require admission or treatmentbeyond the scope of practice of emergency medicine. Diagnoses included majordepression, schizophrenia, schizoaffective disorder, bipolar affective disorder, generalanxiety disorder, suicidal ideation, and criminal behavior. We designed equivalentsurveys to be used before and after an educational intervention. Each survey consistedof 10 scenarios of typical psychiatric patients. EPs were asked to rate their comfort levelsin treating the described patients on a visual analogue scale. We calculated summaryscores for the non intervention survey group (NINT and intervention survey group (INTand compared them using Student’s t-test.Results: Seventy-nine percent (33/42 of eligible participants completed the preinterventionsurvey (21 attendings, 12 residents and comprised the NINT group. Fiftyfivepercent (23/42 completed the post-intervention survey (16 attendings, 7 residentscomprising the INT group. A comparison of summary scores between ‘NINT’ and ‘INT’groups showed a highly significant improvement in comfort levels with treating thepatients described in the scenarios (P = 0.003. Improvements were noted on separateanalysis for faculty (P = 0.039 and for residents (P = 0.012. Results of a sensitivityanalysis excluding one highly significant scenario showed decreased, but still importantdifferences between the NINT and INT groups for all participants and for residents, butnot for faculty (all: P = 0.05; faculty: P = 0.25; residents: P = 0

  3. Evaluating comfort with varying temperatures: a graphic design tool

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.M. [Research Centre Habitat and Energy, Faculty of Architecture, Design and Urbanism, University of Buenos Aires, Ciudad Universitaria (Argentina)

    2002-07-01

    This paper considers the need to define comfort of indoor and outdoor spaces in relation to the daily variations of temperature. A graphical tool is presented, which indicates the daily swings of temperature, shown as a single point on a graph representing the average temperature and the maximum temperature swing. This point can be compared with the comfort zones for different activity levels, such as sedentary activity, sleeping, indoor and outdoor circulation according to the design proposals for different spaces. The graph allows the representation of climatic variables, the definition of comfort zones, the selection of bio climatic design resources and the evaluation of indoor temperatures, measured in actual buildings or obtained from computer simulations. The development of the graph is explained and examples given with special emphasis on the use of thermal mass. (author)

  4. On the determination of the thermal comfort conditions of a metropolitan city underground railway.

    Science.gov (United States)

    Katavoutas, George; Assimakopoulos, Margarita N; Asimakopoulos, Dimosthenis N

    2016-10-01

    Although the indoor thermal comfort concept has received increasing research attention, the vast majority of published work has been focused on the building environment, such as offices, residential and non-residential buildings. The present study aims to investigate the thermal comfort conditions in the unique and complex underground railway environment. Field measurements of air temperature, air humidity, air velocity, globe temperature and the number of passengers were conducted in the modern underground railway of Athens, Greece. Environmental monitoring was performed in the interior of two types of trains (air-conditioned and forced air ventilation cabins) and on selected platforms during the summer period. The thermal comfort was estimated using the PMV (predicted mean vote) and the PPD (predicted percentage dissatisfied) scales. The results reveal that the recommended thermal comfort requirements, although at relatively low percentages are met only in air-conditioned cabins. It is found that only 33% of the PPD values in air-conditioned cabins can be classified in the less restrictive comfort class C, as proposed by ISO-7730. The thermal environment is "slightly warm" in air-conditioned cabins and "warm" in forced air ventilation cabins. In addition, differences of the thermal comfort conditions on the platforms are shown to be associated with the depth and the design characteristics of the stations. The average PMV at the station with small depth is 0.9 scale points higher than that of the station with great depth. The number of passengers who are waiting at the platforms during daytime reveals a U-shaped pattern for a deep level station and an inverted course of PMV for a small depth station. Further, preliminary observations are made on the distribution of air velocity on the platforms and on the impact of air velocity on the thermal comfort conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Urban Soil: Assessing Ground Cover Impact on Surface Temperature and Thermal Comfort.

    Science.gov (United States)

    Brandani, Giada; Napoli, Marco; Massetti, Luciano; Petralli, Martina; Orlandini, Simone

    2016-01-01

    The urban population growth, together with the contemporary deindustrialization of metropolitan areas, has resulted in a large amount of available land with new possible uses. It is well known that urban green areas provide several benefits in the surrounding environment, such as the improvement of thermal comfort conditions for the population during summer heat waves. The purpose of this study is to provide useful information on thermal regimes of urban soils to urban planners to be used during an urban transformation to mitigate surface temperatures and improve human thermal comfort. Field measurements of solar radiation, surface temperature (), air temperature (), relative humidity, and wind speed were collected on four types of urban soils and pavements in the city of Florence during summer 2014. Analysis of days under calm, clear-sky condition is reported. During daytime, sun-to-shadow differences for , apparent temperature index (ATI), and were significantly positive for all surfaces. Conversely, during nighttime, differences among all surfaces were significantly negative, whereas ATI showed significantly positive differences. Moreover, was significantly negative for grass and gravel. Relative to the shaded surfaces, was higher on white gravel and grass than gray sandstone and asphalt during nighttime, whereas gray sandstone was always the warmest surface during daytime. Conversely, no differences were found during nighttime for ATI and measured over surfaces that were exposed to sun during the day, whereas showed higher values on gravel than grass and asphalt during nighttime. An exposed surface warms less if its albedo is high, leading to a significant reduction of during daytime. These results underline the importance of considering the effects of surface characteristics on surface temperature and thermal comfort. This would be fundamental for addressing urban environment issues toward the heat island mitigation considering also the impact of urban

  6. Agent-based modelling to improve comfort and save energy in the built environment

    NARCIS (Netherlands)

    Zeiler, W.; Boxem, G.; Houten, van M.A.; Velden, van der J.A.J.; Wortel, W.; Kamphuis, I.G.; Rangan, R; Proctor, F

    2008-01-01

    In Europe comfort in buildings needs 40% of the total energy. With effects of Global warming becoming more and more apparent there is a need to reduce this energy demand by comfort within the built environment. In comfort control strategy there is an exciting development based on inclusive design:

  7. A scenario of human thermal comfort in Mexico City for 2CO{sub 2} conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jauregui, Ernesto [Centro de Ciencias de la Atmosfera de la UNAM, Mexico, D.F. (Mexico); Tejeda, Adalberto [Universidad Veracruzana, Xalapa, Veracruz (Mexico)

    2001-07-01

    Applying the concept of effective temperature (ET), a scenario of human bioclimatic conditions for Mexico City is presented by using results from both GCM regional predictions for CO{sub 2} doubling and temperature trend projections from an urban station. Current and future bioclimatic maps for Mexico City and their conurbation are presented. Current environmental conditions will likely change toward a warmer atmosphere due to both the urbanization process and global greenhouse effect. The impact on the population will be more important during the warm season (March- May) when the bioclimate of the city will likely shift away from current neutrality to the next comfort scale category (ET 24-27 Celsius degrees) of warm conditions covering most of the capital city. [Spanish] A partir de la aplicacion del concepto de temperatura efectiva (ET) se presenta un escenario de las condiciones de bioclima humano para la Ciudad de Mexico y zona conurbada para la segunda mitad del proximo siglo. Se usaron resultados de predicciones regionales de modelos de circulacion general (GCM) para una duplicacion del CO{sub 2} y tambien las tendencias de temperatura de una estacion urbana. Se muestran mapas de las condiciones actuales y futuras de confort termico. La combinacion del efecto invernadero y la urbanizacion, muy probablemente impacten en la poblacion principalmente en la estacion calida (marzo a mayo), cuando se pase de la categoria de confort actual a la inmediata superior (ET 24-27 Celsius degrees) en la mayor parte de la capital del pais.

  8. Special Report - USNS Comfort Underway

    Science.gov (United States)

    region. The Navy hospital ship will provide medical, dental, veterinary and engineering assistance in medical clinic set up during Continuing Promise 2009. Story» Air Force Band Member Enjoys Audience Alexis arrived at a medical clinic set up by the crew of USNS Comfort wearing her Sunday best in

  9. Bioclimatic comfort and the thermal perceptions and preferences of beach tourists

    Science.gov (United States)

    Rutty, Michelle; Scott, Daniel

    2015-01-01

    The largest market segment of global tourism is coastal tourism, which is strongly dependent on the destination's thermal climate. To date, outdoor bioclimatic comfort assessments have focused exclusively on local residents in open urban areas, making it unclear whether outdoor comfort is perceived differently in non-urban environments or by non-residents (i.e. tourists) with different weather expectations and activity patterns. This study provides needed insight into the perception of outdoor microclimatic conditions in a coastal environment while simultaneously identifying important psychological factors that differentiate tourists from everyday users of urban spaces. Concurrent micrometeorological measurements were taken on several Caribbean beaches in the islands of Barbados, Saint Lucia and Tobago, while a questionnaire survey was used to examine the thermal comfort of subjects ( n = 472). Universal Thermal Climate Index (UTCI) conditions of 32 to 39 °C were recorded, which were perceived as being "slightly warm" or "warm" by respondents. Most beach users (48 to 77 %) would not change the thermal conditions, with some (4 to 15 %) preferring even warmer conditions. Even at UTCI of 39 °C, 62 % of respondents voted for no change to current thermal conditions, with an additional 10 % stating that they would like to feel even warmer. These results indicate that beach users' thermal preferences are up to 18 °C warmer than the preferred thermal conditions identified in existing outdoor bioclimatic studies from urban park settings. This indicates that beach users hold fundamentally different comfort perceptions and preferences compared to people using urban spaces. Statistically significant differences ( p ≤ .05) were also recorded for demographic groups (gender, age) and place of origin (climatic region).

  10. Improvement of Thermal Comfort in a Naturally Ventilated Office

    DEFF Research Database (Denmark)

    Bjørn, Erik; Jensen, J.; Larsen, J.

    The paper describes the results of laboratory investigations in a mock-up of an office space with the purpose of investigating the impact of different opening strategies on thermal comfort conditions in the occupied zone. The results show that different window opening strategies result in quite...... different airflow and thermal comfort conditions. The conditions are a result of a multivariable impact, and detailed descriptions of the flows involved are complex....

  11. PAIR INFLUENCE OF WIND SPEED AND MEAN RADIANT TEMPERATURE ON OUTDOOR THERMAL COMFORT OF HUMID TROPICAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Sangkertadi Sangkertadi

    2016-01-01

    Full Text Available The purposes of this article is to explore knowledge of outdoor thermal comfort in humid tropical environment for urban activities especially for people in walking activity, and those who stationary/seated with moderate action. It will be characterized the pair influence of wind speed and radiant temperature on the outdoor thermal comfort. Many of researchers stated that those two microclimate variables give significant role on outdoor thermal comfort in tropical humid area. Outdoor Tropical Comfort (OTC model was used for simulation in this study. The model output is comfort scale that refers on ASHRAE definition. The model consists of two regression equations with variables of air temperature, globe temperature, wind speed, humidity and body posture, for two types of activity: walking and seated. From the results it can be stated that there is significant role of wind speed to reduce mean radiant temperature and globe temperature, when the velocity is elevated from 0.5 m/s to 2 m/s. However, the wind has not play significant role when the speed is changed from 2 m/s to 3.5 m/s. The results of the study may inspire us to implement effectiveness of electrical-fan equipment for outdoor space in order to get optimum wind speed, coupled with optimum design of shading devices to minimize radiant temperature for thermal comfort.

  12. Dynamic indoor thermal comfort model identification based on neural computing PMV index

    International Nuclear Information System (INIS)

    Sahari, K S Mohamed; Jalal, M F Abdul; Homod, R Z; Eng, Y K

    2013-01-01

    This paper focuses on modelling and simulation of building dynamic thermal comfort control for non-linear HVAC system. Thermal comfort in general refers to temperature and also humidity. However in reality, temperature or humidity is just one of the factors affecting the thermal comfort but not the main measures. Besides, as HVAC control system has the characteristic of time delay, large inertia, and highly nonlinear behaviour, it is difficult to determine the thermal comfort sensation accurately if we use traditional Fanger's PMV index. Hence, Artificial Neural Network (ANN) has been introduced due to its ability to approximate any nonlinear mapping. Using ANN to train, we can get the input-output mapping of HVAC control system or in other word; we can propose a practical approach to identify thermal comfort of a building. Simulations were carried out to validate and verify the proposed method. Results show that the proposed ANN method can track down the desired thermal sensation for a specified condition space.

  13. Assessment of monitored energy use and thermal comfort conditions in mosques in hot-humid climates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Homoud, Mohammad S.; Abdou, Adel A.; Budaiwi, Ismail M. [Architectural Engineering Department, KFUPM, Dhahran 31261 (Saudi Arabia)

    2009-06-15

    In harsh climatic regions, buildings require air-conditioning in order to provide an acceptable level of thermal comfort. In many situations buildings are over cooled or the HVAC system is kept running for a much longer time than needed. In some other situations thermal comfort is not achieved due to improper operation practices coupled with poor maintenance and even lack it, and consequently inefficient air-conditioning systems. Mosques represent one type of building that is characterized by their unique intermittent operating schedule determined by prayer times, which vary continuously according to the local solar time. This paper presents the results of a study designed to monitor energy use and thermal comfort conditions of a number of mosques in a hot-humid climate so that both energy efficiency and the quality of thermal comfort conditions especially during occupancy periods in such intermittently operated buildings can be assessed accurately. (author)

  14. How to improve the comfort of Kesawan Heritage Corridor, Medan City

    Science.gov (United States)

    Tegar; Ginting, Nurlisa; Suwantoro, H.

    2018-03-01

    Comfort is indispensable to make a friendly neighborhood or city. Especially the comfort of the infrastructure in the corridor. People must be able to feel comfortable to act rationally in their physical environment. Existing infrastructure must able to support Kesawan as a historic district. Kesawan is an area that is filled with so many unique buildings. Without comfort, how good the existing buildings’ architecture cannot be enjoyed. It will also affect the identity of a region or city. The aim of this research is to re-design the public facilities from Kesawan corridor’s comfort aspect: orientation, traffic calming, vegetation, signage, public facilities (toilet, seating place, bus station, bins), information center, parking and pedestrian path. It will translate the design concept in the form of design criteria. This research uses qualitative methods. Some facilities in this corridor are unsuitable even some of them are not available. So, we need some improvements and additions to the existing facilities. It is expected that by upgrading the existing facilities, visitors who come to Kesawan will be able to enjoy more and able to make Medan city more friendly.

  15. The impact of glazing on energy consumption and comfort

    International Nuclear Information System (INIS)

    Stegou-Sagia, A.; Antonopoulos, K.; Angelopoulou, C.; Kotsiovelos, G.

    2007-01-01

    Given the importance of buildings on the energy balance in Greece, an attempt has been made to study their energy behaviour and thermal comfort. Our primary purpose is to provide an estimation of the building's energy consumption and examine how this affects the comfort conditions. This includes the definition of thermal conditions acceptable for various activities at different times of day during each month of the year. We cannot underestimate the value of real measurements and observations of the building's energy systems, but such data are not always available. The best opportunities for improving energy performance occur early in the design process. Our simulation results can give an indication on which end uses are the most energy consuming, the 'weaknesses' of a building and thus urge the owner or engineer to take effective conservation energy measures

  16. Children's exposure to indoor air in urban nurseries-part I: CO2 and comfort assessment

    International Nuclear Information System (INIS)

    Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V.

    2015-01-01

    Indoor air quality (IAQ) in nurseries is an emerging case-study. Thus, this study, as the Part I of the larger study “Children's exposure to indoor air in urban nurseries”, aimed to: i) evaluate nurseries’ indoor concentrations of carbon dioxide (CO 2 ), a global IAQ indicator, in class and lunch rooms; ii) assess indoor comfort parameters–temperature (T) and relative humidity (RH); and iii) analyse them according to guidelines and references for IAQ, comfort and children's health. Indoor continuous measurements were performed. Non-compliances with guidelines were found in comfort parameters, which could cause discomfort situations and also microbial proliferation. Exceedances in CO 2 concentrations were also found and they were caused by poor ventilation and high classroom occupation. More efficient ventilation and control of comfort parameters, as well as to reduce occupation by reviewing Portuguese legislation on that matter, would certainly improve IAQ and comfort in nurseries and consequently safeguard children's health. - Highlights: • High occupation and poor ventilation were main determinants of IAQ in nurseries. • T and RH indoor values found in nurseries are likely to cause thermal discomfort. • Building characteristics and an inadequate ventilation determined T and RH values. • High CO 2 concentrations found could indicate accumulation of other air pollutants

  17. THE EFFECT OF THE WINDOW-TO-WALL RATIO ON COOLING ENERGY USAGE AND COMFORT TEMPERATURE

    Directory of Open Access Journals (Sweden)

    Aris Budhiyanto

    2017-12-01

    Full Text Available This study presents an investigation of the effect of building envelope, especially glass facade buildings on cooling energy usage and thermal comfort. An office building was modeled with various window-to-wall ratio (WWR using panasap glass with SC=0.58 in order to analyze the effect of the WWR addition on cooling energy usage and comfort temperature. The result suggested that the average increase of the cooling energy usage is about 5.67% per 10% WWR addition, and of the operative temperature ranges from 0.350C to 0.560C per 10% WWR addition. Moreover, the building with above 20% WWR doesn’t provide comfort temperature.

  18. Annual Energy Savings and Thermal Comfort of Autonomously Heated and Cooled Office Chairs

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booten, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States); Robertson, Joseph [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chin, Justin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, Dane [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Jacquelyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Doug [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    Energy use in offices buildings is largely driven by air conditioning demands. But the optimal temperature is not the same for all building occupants, leading to the infamous thermostat war. And many occupants have independently overcome building comfort weaknesses with their own space heaters or fans. NREL tested is a customized office chair that automatically heats and cools the occupant along the seat and chair back according to the occupants' personal preferences. This product is shown to deliver markedly better comfort at room temperatures well above typical office cooling setpoints. Experimental subjects reported satisfaction in these elevated air temperatures, partly because the chair's cooling effect was tuned to their own individual needs. Simulation of the chair in office buildings around the U.S. shows that energy can be saved everywhere, with impacts varying due to the climate. Total building HVAC energy savings exceeded 10% in hot-dry climate zones. Due to high product cost, simple payback for the chair we studied is beyond the expected chair life. We then understood the need to establish cost-performance targets for comfort delivery packages. NREL derived several hypothetical energy/cost/comfort targets for personal comfort product systems. In some climate regions around the U.S., these show the potential for office building HVAC energy savings in excess of 20%. This report documents this research, providing an overview of the research team's methods and results while also identifying areas for future research building upon the findings.

  19. Development of a CFD Model Including Tree's Drag Parameterizations: Application to Pedestrian's Wind Comfort in an Urban Area

    Science.gov (United States)

    Kang, G.; Kim, J.

    2017-12-01

    This study investigated the tree's effect on wind comfort at pedestrian height in an urban area using a computational fluid dynamics (CFD) model. We implemented the tree's drag parameterization scheme to the CFD model and validated the simulated results against the wind-tunnel measurement data as well as LES data via several statistical methods. The CFD model underestimated (overestimated) the concentrations on the leeward (windward) walls inside the street canyon in the presence of trees, because the CFD model can't resolve the latticed cage and can't reflect the concentration increase and decrease caused by the latticed cage in the simulations. However, the scalar pollutants' dispersion simulated by the CFD model was quite similar to that in the wind-tunnel measurement in pattern and magnitude, on the whole. The CFD model overall satisfied the statistical validation indices (root normalized mean square error, geometric mean variance, correlation coefficient, and FAC2) but failed to satisfy the fractional bias and geometric mean bias due to the underestimation on the leeward wall and overestimation on the windward wall, showing that its performance was comparable to the LES's performance. We applied the CFD model to evaluation of the trees' effect on the pedestrian's wind-comfort in an urban area. To investigate sensory levels for human activities, the wind-comfort criteria based on Beaufort wind-force scales (BWSs) were used. In the tree-free scenario, BWS 4 and 5 (unpleasant condition for sitting long and sitting short, respectively) appeared in the narrow spaces between buildings, in the upwind side of buildings, and the unobstructed areas. In the tree scenario, BWSs decreased by 1 3 grade inside the campus of Pukyong National University located in the target area, which indicated that trees planted in the campus effectively improved pedestrian's wind comfort.

  20. Emotion Reactivity, Comfort Expressing Emotions, and Future Suicidal Ideation in Emerging Adults.

    Science.gov (United States)

    Polanco-Roman, Lillian; Moore, Alyssa; Tsypes, Aliona; Jacobson, Colleen; Miranda, Regina

    2018-01-01

    Emotion reactivity and difficulties in expressing emotions have been implicated in risk for suicidal behavior. This study examined comfort in expressing emotions (positive vs. negative) and depressive symptoms as mediators of the prospective relation between emotion reactivity and suicidal ideation. Emerging adults (N = 143; 72% female; 28% White) completed measures of emotion reactivity, comfort expressing emotions, and suicidal ideation at baseline and of depressive symptoms and suicidal ideation 12 months later. Emotion reactivity predicted suicidal ideation at follow-up through depressive symptoms. Difficulty expressing love-but not happiness, sadness, and anger-partially mediated the relationship between emotion reactivity and suicidal ideation at follow-up before but not after adjusting for baseline ideation. The relation between high emotion reactivity and suicidal ideation may be explained by discomfort in the expression of positive emotions and by depressive symptoms. Promotion of comfort in positive emotion expression may reduce vulnerability to suicidal ideation. © 2017 Wiley Periodicals, Inc.

  1. Evaluation and optimization of footwear comfort parameters using finite element analysis and a discrete optimization algorithm

    Science.gov (United States)

    Papagiannis, P.; Azariadis, P.; Papanikos, P.

    2017-10-01

    Footwear is subject to bending and torsion deformations that affect comfort perception. Following review of Finite Element Analysis studies of sole rigidity and comfort, a three-dimensional, linear multi-material finite element sole model for quasi-static bending and torsion simulation, overcoming boundary and optimisation limitations, is described. Common footwear materials properties and boundary conditions from gait biomechanics are used. The use of normalised strain energy for product benchmarking is demonstrated along with comfort level determination through strain energy density stratification. Sensitivity of strain energy against material thickness is greater for bending than for torsion, with results of both deformations showing positive correlation. Optimization for a targeted performance level and given layer thickness is demonstrated with bending simulations sufficing for overall comfort assessment. An algorithm for comfort optimization w.r.t. bending is presented, based on a discrete approach with thickness values set in line with practical manufacturing accuracy. This work illustrates the potential of the developed finite element analysis applications to offer viable and proven aids to modern footwear sole design assessment and optimization.

  2. The issue of thermal comfort of medical clothing in the operating room

    OpenAIRE

    Abreu, Isabel; Ribeiro, Patrícia; Abreu, Maria José

    2017-01-01

    Abstract Medical clothes have the primary function of protection. However this function must be correlated with a good comfort experience to the user. The comfort is a very important issue, since professionals are exposed to stress situations that can influence, negatively, their performance work. More specific, thermal comfort plays a crucial role for the best performance of OR medical clothing, involving heat regulation and mass transfer between a clothed body and the environment, once clot...

  3. Thermo-active building systems and sound absorbers: Thermal comfort under real operation conditions

    DEFF Research Database (Denmark)

    Köhler, Benjamin; Rage, Nils; Chigot, Pierre

    2018-01-01

    Radiant systems are established today and have a high ecological potential in buildings while ensuring thermal comfort. Free-hanging sound absorbers are commonly used for room acoustic control, but can reduce the heat exchange when suspended under an active slab. The aim of this study...... is to evaluate the impact on thermal comfort of horizontal and vertical free-hanging porous sound absorbers placed in rooms of a building cooled by Thermo-Active Building System (TABS), under real operation conditions. A design comparing five different ceiling coverage ratios and two room types has been...... implemented during three measurement periods. A clear correlation between increase of ceiling coverage ratio and reduction of thermal comfort could not be derived systematically for each measurement period and room type, contrarily to what was expected from literature. In the first two monitoring periods...

  4. Comfortably engaging: which approach to alcohol screening should we use?

    Science.gov (United States)

    Vinson, Daniel C; Galliher, James M; Reidinger, Carol; Kappus, Jennifer A

    2004-01-01

    We wanted to compare 2 screening instruments for problem drinking, the CAGE and a single question, assessing frequency of use, patient and clinician comfort, and patient engagement in change. The study was a crossover, cluster-randomized clinical trial with 31 clinicians in Missouri and 13 in the American Academy of Family Physicians (AAFP) National Network for Family Practice and Primary Care Research; 2,800 patients provided data. The clinician was the unit of randomization. Clinicians decided whether to screen each patient; if they chose to screen, they used the screening approach assigned for that block of patients. The clinician and patient separately completed questionnaires immediately after the office visit to assess each one's comfort with screening (and any ensuing discussion) and the patient's engagement in change. Missouri clinicians screened more patients when assigned the single question (81%) than the CAGE (69%, P = .001 in weighted analysis). There was no difference among AAFP network clinicians (96% of patients screened with the CAGE, 97% with the single question). Eighty percent to 90% of clinicians and 70% of patients reported being comfortable with screening and the ensuing discussion, with no difference between approaches in either network. About one third of patients who were identified as problem drinkers reported thinking about or planning to change their drinking behavior, with no difference in engagement between screening approaches. Clinicians and patients reported similar comfort with the CAGE questions and the single-question screening tools for problem drinking, and the 2 instruments were equal in their ability to engage the patient. In Missouri, the single question was more likely to be used.

  5. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification.

    Science.gov (United States)

    Potchter, Oded; Cohen, Pninit; Lin, Tzu-Ping; Matzarakis, Andreas

    2018-08-01

    Over the past century, many research studies have been conducted in an attempt to define thermal conditions for humans in the outdoor environment and to grade thermal sensation. Consequently, a large number of indices have been proposed. The examination of human thermal indices by thermal subjective perception has become recently a methodical issue to confirm the accuracy, applicability and validation of human thermal indices. The aims of this study are: (a) to review studies containing both calculated human thermal conditions and subjective thermal perception in the outdoor environment (b) to identify the most used human thermal indices for evaluating human thermal perception (c) to examine the relation between human thermal comfort range and outdoor thermal environment conditions and (d) to compare between categories of thermal sensation in different climatic zones based on subjective perception and levels of thermal strain. A comprehensive literature review identified 110 peer-reviewed articles which investigated in-situ thermal conditions versus subjective thermal perception during 2001-2017. It seems that out of 165 human thermal indices that have been developed, only 4 (PET, PMV, UTCI, SET*) are widely in use for outdoor thermal perception studies. Examination of the relation between human thermal comfort range and outdoor thermal environment conditions for selective indices in different climatic zones shows that the range of the thermal comfort or dis-comfort is affected by the outdoor thermal environment. For the PET index, the "neutral" range for hot climates of 24-26°C is agreed by 95% of the studies where for cold climate, the "neutral" range of 15-20°C is agreed by 89% of the studies. For the UTCI, the "no thermal stress" category is common to all climates. The "no stress category" of 16-23°C is agreed by 80% of the case studies, while 100% of the case studies agreed that the range is between 18 and 23°C. Copyright © 2018 Elsevier B.V. All rights

  6. Comfort as a determiner of treatment position in radiotherapy of the male pelvis

    International Nuclear Information System (INIS)

    Cox, J.; Davison, A.

    2005-01-01

    Purpose: A comfortable treatment position in radiotherapy may promote patient stability and contribute to the best possible patient experience. Patients receiving radical radiotherapy for prostate cancer lie supine or prone, but little evaluation has been made of the comfort of these positions. The purpose of this research was to evaluate the comfort of the prone and supine positions and to assess any influence of feelings of anxiety. Methods: Self-reported comfort and anxiety levels were measured using visual analogue scales in the first and last weeks of treatment for patients receiving radical prostatic radiotherapy. The subjects were from two hospitals, 23 routinely treated lying prone and 21 routinely treated lying supine. Six subjects from each group were interviewed in the first week of treatment. Results: Comfort levels were high and no significant difference was found between treatment positions or between the first and last weeks of treatment. Anxiety levels were low with no significant variation according to position or week of treatment. Little correlation was seen between reported anxiety and comfort levels. Interview data supported the quantitative findings. Supine subjects indicated the need for lateral elbow support to improve feelings of stability. Conclusions: For radiotherapy of male patients without pain or other complicating factors, selection between the prone and supine positions may be made without considering comfort. Supine patients should be provided with lateral elbow support. Further research is indicated into the comfort of these positions for females and the phenomenon of low reported anxiety in male cancer patients

  7. Biomechanical variables and perception of comfort in running shoes with different cushioning technologies.

    Science.gov (United States)

    Dinato, Roberto C; Ribeiro, Ana P; Butugan, Marco K; Pereira, Ivye L R; Onodera, Andrea N; Sacco, Isabel C N

    2015-01-01

    To investigate the relationships between the perception of comfort and biomechanical parameters (plantar pressure and ground reaction force) during running with four different types of cushioning technology in running shoes. Randomized repeated measures. Twenty-two men, recreational runners (18-45 years) ran 12km/h with running shoes with four different cushioning systems. Outcome measures included nine items related to perception of comfort and 12 biomechanical measures related to the ground reaction forces and plantar pressures. Repeated measure ANOVAs, Pearson correlation coefficients, and step-wise multiple regression analyses were employed (p≤0.05). No significant correlations were found between the perception of comfort and the biomechanical parameters for the four types of investigated shoes. Regression analysis revealed that 56% of the perceived general comfort can be explained by the variables push-off rate and pressure integral over the forefoot (p=0.015) and that 33% of the perception of comfort over the forefoot can be explained by second peak force and push-off rate (p=0.016). The results did not demonstrate significant relationships between the perception of comfort and the biomechanical parameters for the three types of shoes investigated (Gel, Air, and ethylene-vinyl acetate). Only the shoe with Adiprene+ technology had its general comfort and cushioning perception predicted by the loads over the forefoot. Thus, in general, one cannot predict the perception of comfort of a running shoe through impact and plantar pressure received. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  8. Comfort vs risk: a grounded theory about female adolescent behaviour in the sun.

    Science.gov (United States)

    Norton, Elizabeth; Holloway, Immy; Galvin, Kathleen

    2014-07-01

    To generate a grounded theory about female adolescent behaviour in the sun. Nurses have key roles in health promotion and skin cancer prevention. Adolescents' resistance to sun safety messages and their vulnerability to sunburn are of concern internationally. Understanding why young women do as they do in the sun may enhance skin cancer prevention, but their behaviour has not been explained before in the UK. The study incorporated a qualitative grounded theory design using the approach of Glaser. Qualitative data were gleaned from group and one-to-one, semi-structured interviews with 20 female participants aged 14-17, research memos and literature. Sampling was purposive and theoretical. Data collection, analysis and theory generation occurred concurrently. Data were analysed using the constant comparative method. Data collection ended when a substantive theory had been generated. Data analysis revealed five categories of findings: fitting in, being myself, being physically comfortable, slipping up and being comfortable (the core category). The theory generated around the core explains how young women direct their sun-related activities towards meeting their physical and psychosocial comfort needs. A contribution of this research is the grounded theory explaining the behaviour of young women in the sun. Further, the theory challenges assumptions that female adolescents necessarily take risks; it explains their sun-related activities in terms of comfort. The theory extends findings from other researchers' descriptive qualitative studies and also appears to apply to young people in countries other than the UK. Understanding the sun-related activity of young women in terms of physical and psychosocial comfort may help nurses to develop new approaches to skin cancer prevention. These could complement existing messages and humanise health promotion. © 2013 John Wiley & Sons Ltd.

  9. The Dynamics of the Bioclimatic Indices of Environmental Comfort in the Udmurt Republic, Russia

    OpenAIRE

    Yu.P. Perevedentsev; A.V. Shumikhina

    2016-01-01

    This paper provides a review of the biometeorological indices used to assess the degree of comfort of weather and climate conditions. Statistical calculations of the effective and equivalent effective temperature have been performed for eight weather stations in the Udmurt Republic (Russia) during the period of 1961–2014. The effect of varying weather conditions on the functional state of the human body has been revealed based on the indices of weather hardness and pathogenicity. It has been ...

  10. A comfort-based, energy-aware HVAC agent and its applications in the smart grid

    OpenAIRE

    Auffenberg, Frederik

    2017-01-01

    In this thesis, we introduce a novel heating, ventilation and air conditioning (HVAC) agent that maintains a comfortable thermal environmant for its users while minimising energy consumption of the HVAC system and incorporating demand side management (DSM) signals to shift HVAC loads towards achieving more desirable overall load profiles. To do so, the agent needs to be able to accurately predict user comfort, for example by using a thermal comfort model. Existing thermal comfort models are u...

  11. Bioclimatic comfort and the thermal perceptions and preferences of beach tourists.

    Science.gov (United States)

    Rutty, Michelle; Scott, Daniel

    2015-01-01

    The largest market segment of global tourism is coastal tourism, which is strongly dependent on the destination's thermal climate. To date, outdoor bioclimatic comfort assessments have focused exclusively on local residents in open urban areas, making it unclear whether outdoor comfort is perceived differently in non-urban environments or by non-residents (i.e. tourists) with different weather expectations and activity patterns. This study provides needed insight into the perception of outdoor microclimatic conditions in a coastal environment while simultaneously identifying important psychological factors that differentiate tourists from everyday users of urban spaces. Concurrent micrometeorological measurements were taken on several Caribbean beaches in the islands of Barbados, Saint Lucia and Tobago, while a questionnaire survey was used to examine the thermal comfort of subjects (n = 472). Universal Thermal Climate Index (UTCI) conditions of 32 to 39 °C were recorded, which were perceived as being "slightly warm" or "warm" by respondents. Most beach users (48 to 77 %) would not change the thermal conditions, with some (4 to 15 %) preferring even warmer conditions. Even at UTCI of 39 °C, 62 % of respondents voted for no change to current thermal conditions, with an additional 10 % stating that they would like to feel even warmer. These results indicate that beach users' thermal preferences are up to 18 °C warmer than the preferred thermal conditions identified in existing outdoor bioclimatic studies from urban park settings. This indicates that beach users hold fundamentally different comfort perceptions and preferences compared to people using urban spaces. Statistically significant differences (p ≤ .05) were also recorded for demographic groups (gender, age) and place of origin (climatic region).

  12. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    Science.gov (United States)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  13. Analytical and subjective interpretation of thermal comfort in hospitals: A case study in two sterilization services.

    Science.gov (United States)

    Carvalhais, Carlos; Santos, Joana; Vieira da Silva, Manuela

    2016-01-01

    Hospital facilities are normally very complex, which combined with patient requirements promote conditions for potential development of uncomfortable working conditions. Thermal discomfort is one such example. This study aimed to determine levels of thermal comfort, sensations, and preferences, from a field investigation conducted in two sterilization services (SS) of two hospitals from Porto and Aveiro, Portugal. The analytical determination and interpretation of thermal comfort was based upon assumptions of ISO 7726:1998 and ISO 7730:2005. The predicted mean vote (PMV) and predicted percentage of dissatisfaction (PPD) indices were obtained by measurement and estimation of environmental and personal variables, respectively, and calculated according to ISO 7730 equations. The subjective variables were obtained from thermal sensation (subjective PMV) and affective assessment (subjective PPD), reported by a questionnaire based upon ISO 10551:1995. Both approaches confirmed thermal discomfort in both SS (codified as SS1 and SS2). For all areas, PMV and PPD exceeded in all periods of the day the recommended range of -0.5 to +0.5 and thermal discomfort. There were no significant differences between PMV and thermal sensations, as well as between PPD and affective assessment. The PMV/PPD model was found suitable to predict thermal sensations of occupants in hospital SS located in areas with a mild climate in Portugal.

  14. Analysis of Thermal Comfort in an Intelligent Building

    Science.gov (United States)

    Majewski, Grzegorz; Telejko, Marek; Orman, Łukasz J.

    2017-06-01

    Analysis of thermal comfort in the ENERGIS Building, an intelligent building in the campus of the Kielce University of Technology, Poland is the focus of this paper. For this purpose, air temperature, air relative humidity, air flow rate and carbon dioxide concentration were measured and the mean radiant temperature was determined. Thermal sensations of the students occupying the rooms of the building were evaluated with the use of a questionnaire. The students used a seven-point scale of thermal comfort. The microclimate measurement results were used to determine the Predicted Mean Vote and the Predicted Percentage Dissatisfied indices.

  15. Spatial Techniques to Visualize Acoustic Comfort along Cultural and Heritage Routes for a World Heritage City

    Directory of Open Access Journals (Sweden)

    Ni Sheng

    2015-07-01

    Full Text Available This paper proposes to visualize acoustic comfort along tourist routes. Route-based tourism is crucial to the sustainability of tourism development in historic areas. Applying the concept of route-based tourism to guide tourists rambling along cultural and heritage routes can relieve overcrowded condition at hot scenic spots and increase the overall carrying capacity of the city. However, acoustic comfort along tourist routes is rarely addressed in academic studies and decision-making. Taking Macao as an example, this paper has studied pedestrian exposure to traffic noise along the cultural and heritage routes. The study is based on a GIS-based traffic noise model system with a high spatial resolution down to individual buildings along both sides of the street. Results show that tourists suffer from excessive traffic noise at certain sites, which may have negative impact on the promotion of route-based tourism in the long run. In addition, it is found that urban growth affects urban form and street layout, which in turn affect traffic flow and acoustic comfort in urban area. The present study demonstrates spatial techniques to visualize acoustic comfort along tourist routes, and the techniques are foreseen to be used more frequently to support effective tourism planning in the future.

  16. Improving indoor air quality and thermal comfort in office building by using combination filters

    Science.gov (United States)

    Kabrein, H.; Yusof, M. Z. M.; Hariri, A.; Leman, A. M.; Afandi, A.

    2017-09-01

    Poor indoor air quality and thermal comfort condition in the workspace affected the occupants’ health and work productivity, especially when adapting the recirculation of air in heating ventilation and air-conditioning (HVAC) system. The recirculation of air was implemented in this study by mixing the circulated returned indoor air with the outdoor fresh air. The aims of this study are to assess the indoor thermal comfort and indoor air quality (IAQ) in the office buildings, equipped with combination filters. The air filtration technique consisting minimum efficiency reporting value (MERV) filter and activated carbon fiber (ACF) filter, located before the fan coil units. The findings of the study show that the technique of mixing recirculation air with the fresh air through the combination filters met the recommended thermal comfort condition in the workspace. Furthermore, the result of the post-occupancy evaluation (POE) and the environmental measurements comply with the ASHRAE 55 standard. In addition, the level of CO2 concentration continued to decrease during the period of the measurement.

  17. Three experiments to support the design of lightweight comfortable vehicle seats

    NARCIS (Netherlands)

    Vink, P.; Franz, M.; Kampa, I.; Zenk, R.

    2012-01-01

    Seats need to be more lightweight for airplanes, cars, busses and even trains to contribute to a better environment and to reduce energy consumption. However, a reduction in comfort due to weight reduction is not preferable, which opens a new area of research: improving comfort with a minimum of

  18. Thermal comfort in sun spaces: To what extend can energy collectors and seasonal energy storages provide thermal comfort in sun space?

    Directory of Open Access Journals (Sweden)

    Christian Wiegel

    2017-10-01

    Full Text Available Preparation for fossil fuel substitution in the building sector persists as an essential subject in architectural engineering. Since the building sector still remains as one of the three major global end energy consumer – climate change is closely related to construction and design. We have developed the archetype sun space to what it is today : a simple but effective predominant naturally ventilated sun trap and as well as living space enlargement. With the invention of industrial glass orangery’s more and more changed from frost protecting envelopes to living spaces from which we meantime expect thermal comfort in high quality. But what level of thermal comfort provide sun spaces? And to what extend may sun spaces manage autarkic operation profiting from passive solar gains and, beyond that, surplus energy generation for energy neutral conditioning of aligned spaces? We deliver detailed information for this detected gap of knowledge. We know about limited thermal comfort in sun spaces winter times. This reasons the inspection of manifold collector technologies, which enable to be embedded in facades and specifically in sun space envelopes. Nonetheless, effective façade integrated collectors are ineffective in seasons with poor irradiation. Hence, the mismatch of offer and demand we have experienced with renewable energies ignites thinking about appropriate seasonal energy storages, which enlarges the research scope of this work. This PhD thesis project investigates on both, a yearly empirical test set up analysis and a virtual simulation of different oriented and located sun spaces abroad Germany. Both empirical and theoretical evaluation result in a holistic research focusing on a preferred occupation time in terms of cumulative frequencies of operational temperature and decided local discomfort, of potential autarkic sun space operation and prospective surplus exergy for alternative heating of aligned buildings. The results are mapped

  19. Comfort in using hand tools : theory, design and evaluation

    OpenAIRE

    Kuijt-Evers, L.F.M.

    2007-01-01

    Everyone uses hand tools in their daily life, like knife and fork. Moreover, many people use hand tools in their profession as well as during leisure time. It is important that they can work with hand tools that provide comfort. Until now, the avoidance of discomfort was emphasized during the design process of hand tools, like screwdrivers, hand saws and paint brushes. In the near future, the focus will shift towards providing comfort. However, some questions need to be answered to make this ...

  20. Effects of normobaric hypoxic bed rest on the thermal comfort zone.

    Science.gov (United States)

    Ciuha, Ursa; Eiken, Ola; Mekjavic, Igor B

    2015-01-01

    Future Lunar and Mars habitats will maintain a hypobaric hypoxic environment to minimise the risk of decompression sickness during the preparation for extra-vehicular activity. This study was part of a larger study investigating the separate and combined effects of inactivity associated with reduced gravity and hypoxia, on the cardiovascular, musculoskeletal, neurohumoural, and thermoregulatory systems. Eleven healthy normothermic young male subjects participated in three trials conducted on separate occasions: (1) Normobaric hypoxic ambulatory confinement, (2) Normobaric hypoxic bedrest and (3) Normobaric normoxic bedrest. Normobaric hypoxia was achieved by reduction of the oxygen fraction in the air (FiO2 = 0.141 ± 0.004) within the facility, while the effects of reduced gravity were simulated by confining the subjects to a horizontal position in bed, with all daily routines performed in this position for 21 days. The present study investigated the effect of the interventions on behavioural temperature regulation. The characteristics of the thermal comfort zone (TCZ) were assessed by a water-perfused suit, with the subjects instructed to regulate the sinusoidally varying temperature of the suit within a range considered as thermally comfortable. Measurements were performed 5 days prior to the intervention (D-5), and on days 10 (D10) and 20 (D20) of the intervention. no statistically significant differences were found in any of the characteristics of the TCZ between the interventions (HAMB, HBR and NBR), or between different measurement days (D-5, D10, D20) within each intervention. rectal temperature remained stable, whereas skin temperature (Tsk) increased during all interventions throughout the one hour trial. no difference in Tsk between D-5, D10 and D20, and between HAMB, HBR and NBR were revealed. subjects perceived the regulated temperature as thermally comfortable, and neutral or warm. we conclude that regulation of thermal comfort is not compromised by

  1. Analyzing the effects of human-aware motion planning on close-proximity human-robot collaboration.

    Science.gov (United States)

    Lasota, Przemyslaw A; Shah, Julie A

    2015-02-01

    The objective of this work was to examine human response to motion-level robot adaptation to determine its effect on team fluency, human satisfaction, and perceived safety and comfort. The evaluation of human response to adaptive robotic assistants has been limited, particularly in the realm of motion-level adaptation. The lack of true human-in-the-loop evaluation has made it impossible to determine whether such adaptation would lead to efficient and satisfying human-robot interaction. We conducted an experiment in which participants worked with a robot to perform a collaborative task. Participants worked with an adaptive robot incorporating human-aware motion planning and with a baseline robot using shortest-path motions. Team fluency was evaluated through a set of quantitative metrics, and human satisfaction and perceived safety and comfort were evaluated through questionnaires. When working with the adaptive robot, participants completed the task 5.57% faster, with 19.9% more concurrent motion, 2.96% less human idle time, 17.3% less robot idle time, and a 15.1% greater separation distance. Questionnaire responses indicated that participants felt safer and more comfortable when working with an adaptive robot and were more satisfied with it as a teammate than with the standard robot. People respond well to motion-level robot adaptation, and significant benefits can be achieved from its use in terms of both human-robot team fluency and human worker satisfaction. Our conclusion supports the development of technologies that could be used to implement human-aware motion planning in collaborative robots and the use of this technique for close-proximity human-robot collaboration.

  2. Thermal comfort analysis of a low temperature waste energy recovery system. SIECHP

    Energy Technology Data Exchange (ETDEWEB)

    Herrero Martin, R. [Departamento de Ingenieria Termica y de Fluidos, Universidad Politecnica de Cartagena, C/Dr. Fleming, s/n (Campus Muralla), 30202 Cartagena, Murcia (Spain); Rey Martinez, F.J.; Velasco Gomez, E. [Departamento de Ingenieria Energetica y Fluidomecanica, ETSII, Universidad de Valladolid, Paseo del Cauce s/n, 47011 Valladolid (Spain)

    2008-07-01

    The use of a recovery device is justified in terms of energy savings and environmental concerns. But it is clear that the use of a recovery system also has to lead to controlling indoor environmental quality, nowadays a priority concern. In this article, experimental research has been carried out whose aim is to study the thermal comfort provided by a combined recovery equipment (SIECHP), consisting of a ceramic semi-indirect evaporative cooler (SIEC) and a heat pipe device (HP) to recover energy at low temperature in air-conditioning systems. To characterize this device empirically in terms of thermal comfort (TC), Fanger's predicted mean vote (PMV), draught rate, and vertical air temperature difference were used in this study as the TC criteria. (author)

  3. Data on the interaction between thermal comfort and building control research.

    Science.gov (United States)

    Park, June Young; Nagy, Zoltan

    2018-04-01

    This dataset contains bibliography information regarding thermal comfort and building control research. In addition, the instruction of a data-driven literature survey method guides readers to reproduce their own literature survey on related bibliography datasets. Based on specific search terms, all relevant bibliographic datasets are downloaded. We explain the keyword co-occurrences of historical developments and recent trends, and the citation network which represents the interaction between thermal comfort and building control research. Results and discussions are described in the research article entitled "Comprehensive analysis of the relationship between thermal comfort and building control research - A data-driven literature review" (Park and Nagy, 2018).

  4. Symmetry or asymmetry -- Comfort is the question. (A study of the second floor of the west office wing of the Water Pollution Control Laboratory in Portland, Oregon.)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, A.F.; Gaba, P.; Kowitanupong, C.

    1999-07-01

    This article explores the effects of an asymmetric distribution of building components, and their relation to human comfort. The studied building was the Water Pollution Control Laboratory in Portland, Oregon. This project, designed by the Miller/Hull Partnership, provides the perfect conditions to do such a study since it has very different ceiling heights within the same space, and an asymmetric distribution of the fenestration as well. Findings show that: (a) Variable ceiling heights affect the quantity of daylight received, and also affect the quality and distribution of electric light; (b) An asymmetric distribution of the fenestration creates very different conditions in both the luminous and thermal environments; and (c) The design of lighting and HVAC systems must take into consideration variations in ceiling height and the position of the fenestration into the space.

  5. Comfort in High-Performance Homes in a Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Poerschke, A. [IBACOS, Inc., Pittsburgh, PA (United States); Beach, R. [IBACOS, Inc., Pittsburgh, PA (United States)

    2016-01-01

    IBACOS monitored 37 homes during the late summer and early fall of 2014 in a hot and humid climate to better understand indoor comfort conditions. These homes were constructed in the last several years by four home builders that offered a comfort and performance guarantee for the homes. The homes were located in one of four cities: Tampa, Florida; Orlando, Florida; Houston, Texas; and San Antonio, Texas. Temperature and humidity data were collected from the thermostat and each room of the house using small, battery-powered data loggers. To understand system runtime and its impact on comfort, supply air temperature also was measured on a 1-minute interval. Overall, the group of homes only exceeded a room-to-room temperature difference of 6 degrees Fahrenheit for 5% of the time.

  6. Impact of Manually Controlled Solar Shades on Indoor Visual Comfort

    Directory of Open Access Journals (Sweden)

    Jian Yao

    2016-07-01

    Full Text Available Daylight plays a significant role in sustainable building design. The purpose of this paper was to investigate the impact of manual solar shades on indoor visual comfort. A developed stochastic model for manual solar shades was modeled in Building Controls Virtual Test Bed, which was coupled with EnergyPlus for co-simulation. Movable solar shades were compared with two unshaded windows. Results show that movable solar shades have more than half of the working hours with a comfortable illuminance level, which is about twice higher than low-e windows, with a less significant daylight illuminance fluctuation. For glare protection, movable solar shades increase comfortable visual conditions by about 20% compared to low-e windows. Moreover, the intolerable glare perception could be reduced by more than 20% for movable solar shades.

  7. Effect of age, gender, economic group and tenure on thermal comfort: A field study in residential buildings in hot and dry climate with seasonal variations

    Energy Technology Data Exchange (ETDEWEB)

    Indraganti, Madhavi; Rao, Kavita Daryani [Architecture Department, Jawaharlal Nehru Architecture and Fine Arts University, Hyderabad (India)

    2010-03-15

    Energy consumption in Indian residential buildings is one of the highest and is increasing phenomenally. Indian standards specify comfort temperatures between 23 and 26 C for all types of buildings across the nation. However, thermal comfort research in India is very limited. A field study in naturally ventilated apartments was done in 2008, during the summer and monsoon seasons in Hyderabad in composite climate. This survey involved over 100 subjects, giving 3962 datasets. They were analysed under different groups: age, gender, economic group and tenure. Age, gender and tenure correlated weakly with thermal comfort. However, thermal acceptance of women, older subjects and owner-subjects was higher. Economic level of the subjects showed significant effect on the thermal sensation, preference, acceptance and neutrality. The comfort band for lowest economic group was found to be 27.3-33.1 C with the neutral temperature at 30.2 C. This is way above the standard. This finding has far reaching energy implications on building and HVAC systems design and practice. Occupants' responses for other environmental parameters often depended on their thermal sensation, often resulting in a near normal distribution. The subjects displayed acoustic and olfactory obliviousness due to habituation, resulting in higher satisfaction and acceptance. (author)

  8. The First "Comfort Houses" in Denmark

    DEFF Research Database (Denmark)

    Brunsgaard, Camilla; Knudstrup, Mary-Ann; Heiselberg, Per

    2009-01-01

    The "Comfort Houses" is the most ambitious building project in passive houses in Denmark until today. Eight single family houses are built and designed by seven different consortiums. Besides fulfilling the German passive house standard the goal was to build the houses according to Danish tradition...

  9. The relationship between psychological comfort space and self-esteem in people with mental disorders.

    Science.gov (United States)

    Kunikata, Hiroko; Shiraishi, Yuko; Nakajima, Kazuo; Tanioka, Tetsuya; Tomotake, Masahito

    2011-02-01

    The purpose of this study was to demonstrate a causal model of the sense of having psychological comfortable space that is call 'ibasho' in Japanese and self-esteem in people with mental disorders who had difficulty in social activities. The subjects were 248 schizophrenia patients who were living in the community and receiving day care treatment. Data were collected from December 2007 to April 2009 using the Scale for the Sense of ibasho for persons with mentally ill (SSI) and the Rosenberg Self-Esteem Scale (RSES), and analyzed for cross-validation of construct validity by conducting covariance structure analysis. A relationship between the sense of having comfortable space and self-esteem was investigated. Multiple indicator models of the sense of having psychological comfortable space and self-esteem were evaluated using structural equation modeling. Furthermore, the SSI scores were compared between the high- and low-self-esteem groups. The path coefficient from the sense of having comfortable space to self-esteem was significant (0.80). High-self-esteem group scored significantly higher in the SSI subscales, 'the sense of recognizing my true self' and 'the sense of recognizing deep person-to-person relationships' than the low-self-esteem group. It was suggested that in order to help people with mental disorders improve self-esteem, it might be useful to support them in a way they can enhance the sense of having comfortable space.

  10. Health care providers' comfort with and barriers to care of transgender youth.

    Science.gov (United States)

    Vance, Stanley R; Halpern-Felsher, Bonnie L; Rosenthal, Stephen M

    2015-02-01

    To explore providers' clinical experiences, comfort, and confidence with and barriers to providing care to transgender youth. An online survey was administered to members of the Society for Adolescent Health and Medicine and the Pediatric Endocrine Society with items querying about clinical exposure to transgender youth, familiarity with and adherence to existing clinical practice guidelines, perceived barriers to providing transgender-related care, and comfort and confidence with providing transgender-related care. The response rate was 21.9% (n = 475). Of the respondents, 66.5% had provided care to transgender youth, 62.4% felt comfortable with providing transgender medical therapy, and 47.1% felt confident in doing so. Principal barriers to provision of transgender-related care were lack of the following: training, exposure to transgender patients, available qualified mental health providers, and insurance reimbursement. This study suggests that more training in transgender-related care, available qualified mental health providers, and insurance reimbursement for transgender-related care are needed. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  11. Passenger thermal comfort and behavior: a field investigation in commercial aircraft cabins.

    Science.gov (United States)

    Cui, W; Wu, T; Ouyang, Q; Zhu, Y

    2017-01-01

    Passengers' behavioral adjustments warrant greater attention in thermal comfort research in aircraft cabins. Thus, a field investigation on 10 commercial aircrafts was conducted. Environment measurements were made and a questionnaire survey was performed. In the questionnaire, passengers were asked to evaluate their thermal comfort and record their adjustments regarding the usage of blankets and ventilation nozzles. The results indicate that behavioral adjustments in the cabin and the use of blankets or nozzle adjustments were employed by 2/3 of the passengers. However, the thermal comfort evaluations by these passengers were not as good as the evaluations by passengers who did not perform any adjustments. Possible causes such as differences in metabolic rate, clothing insulation and radiation asymmetry are discussed. The individual difference seems to be the most probable contributor, suggesting possibly that passengers who made adjustments had a narrower acceptance threshold or a higher expectancy regarding the cabin environment. Local thermal comfort was closely related to the adjustments and significantly influenced overall thermal comfort. Frequent flying was associated with lower ratings for the cabin environment. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. DETERMINATION OF AGRICULTURAL MACHINERY OPERATORS’ OPINIONS ABOUT THE CABIN COMFORT IN ESKİŞEHİR

    Directory of Open Access Journals (Sweden)

    Özge ACARBAŞ BALTACI

    2015-08-01

    Full Text Available Comfort has a great importance in the interior design of tractor and agricultural machinery cabins. Operators are exposed to muscoskeletal system disorders since they spend long time periods during the day in these vehicles. There is a few work in the literature reporting operators’ opinions about cabin comfort of these machineries. In this study, a questionnaire was conducted in order to get information about agricultural machinery operators’ opinions about the comfort of their vehicles. Tractor cabins and combine harvester machine cabins were selected as machineries. The study was conducted in Eskişehir in Turkey. Questionnaire was composed of four groups of questions and five ordered response levels were used in the Likert's scale. Demographic questions, general questions about the machine, personal evaluation questions and open ended questions were asked to the operators. After the questionnaire completed, collected data were classified according to the machine type. Frequency tables were used to present the results. Visibility and the accessibility were the most satisfied issues for the tractor operators with 55.9% and 55.4% percentages, respectively. Seat comfort has the highest satisfaction degree with 43.7% for the combine harvester operators. Cronbach Alpha reliability coefficient was used for the satisfaction questions in the applied questionnaire. The reliability of the study was high with coefficients of 0.878 and 0.940 for the tractor and combine harvester questionnaires, respectively. This study will support design and development process of new products by considering operator opinions.

  13. Lighting in the shackling area: conciliating broiler welfare with labor comfort

    Directory of Open Access Journals (Sweden)

    GO Adamczuk

    2014-06-01

    Full Text Available The objective of this study was to investigate if blue lighting could reduce broiler stress and comply with legal labor comfort requirements in a new shackling area of a middle-size processing plant. In this study, the old shackling area was compared with the new area, where a blue lighting system was designed and implemented according to the regulations. The old and new areas were video- and audio-recorded during the shackling of 33,850 broilers in each area. Data were statistically analyzed using the non-parametric test of Wilcoxon-Mann-Whitney (w test.The results indicated 56% reduction in wing-flapping and 3.2% noise reduction in the new area. These results were obtained by increasing 119% lighting at the work stations in the shackling area, allowing workers to handle the birds more carefully, which may improve processing plant productivity. The study demonstrated that it is possible to conciliate better animal welfare with visual comfort for workers in the shackling area.

  14. Economize while improving comfort. It's possible... with natural gas

    International Nuclear Information System (INIS)

    Prescott, G.

    1998-01-01

    Increasing the amount of exterior air coming into a building, combined with a natural gas heating source has proven to be profitable. A study in a residence for handicapped people showed that doubling the amount of exterior air coming into the building actually improved the comfort level for the occupants while reducing the total electric energy bill by 21 per cent

  15. The Impact of Tipuana tipu Species on Local Human Thermal Comfort Thresholds in Different Urban Canyon Cases in Mediterranean Climates: Lisbon, Portugal

    Directory of Open Access Journals (Sweden)

    Andre Santos Nouri

    2018-01-01

    Full Text Available Based upon the case of Lisbon, this article examined the in-situ effects of vegetation upon pedestrian thermal comfort levels. Focussing specifically upon the historic quarter that often witnesses the highest Tamb values and Urban Heat Island (UHI intensities during the summer, the most common urban canyon cases (UCCs were modelled, along with one of the most commonly used vegetative semi-deciduous species found in the city, Tipuana tipu. Based upon a reference point (RP system, the assessments were undertaken through the use of a new version of the SkyHelios model, local obtained Grad values, and the modified physiologically equivalent temperature (mPET index calculated through the human-biometeorological model RayMan. The study identified the in-situ thermo-physiological influences of Tipuana tipu during different periods of the year: (1 during the summer, which revealed considerable reductions of PET/mPET of up to 15.6 °C/11.6 °C during a very hot day (where daily maximum Tamb surpassed 35 °C; and (2 during the winter, which revealed the risks of oversharing as a result of the species keeping its foliage during the winter with reductions of PET/mPET of up to 2.7 °C/2.6 °C. Furthermore, the study utilised the climate tourism/transfer information scheme (CTIS to categorise and facilitate the interpretation of the results.

  16. Family medicine residents’ perceived level of comfort in treating common sports injuries across residency programs in the United States

    Directory of Open Access Journals (Sweden)

    Amoako AO

    2015-03-01

    Full Text Available Adae O Amoako,1 Agyenim B Amoako,2 George GA Pujalte3 1Department of Family and Community Medicine, Penn State Hershey Medical Center, Hershey, PA, USA; 2Department of Family Medicine, University of Arkansas for Medical Sciences Northwest, Fayetteville, AR, USA; 3Sports Medicine, Divisions of Primary Care, and Orthopedics, Mayo Clinic Health System, Waycross, GA, USA Background and objective: Family physicians are expected to be comfortable in treating common sports injuries. Evidence shows a limited level of comfort in treating these injuries in pediatric and internal medicine residents. Studies are lacking, however, in family medicine residents. The purpose of this study is to assess the comfort level of family medicine residents in treating common sports injuries in adults and children based on their perceived level of knowledge and attitudes. Methods: This is a cross-sectional study of family medicine residents in the United Sates. A written survey of 25 questions related to sports injury knowledge and factors affecting comfort level were collected. A chi-square test was implemented in calculating P-values. Results: Five hundred and fifty-seven residents responded to the survey. A higher percentage of doctors of osteopathy (86.6%, 82.5%, 69.6%, and 68.7% compared to doctors of medicine (78.5%, 71.6%, 53.4%, and 52.8% respectively identified ankle sprain, concussion, plantar fasciitis, and lateral epicondylitis as common injuries, and felt comfortable in treating them (P-values =0.015, 0.004, 0.0001, and 0.0002, respectively. Residents with high interest in sports medicine correctly identified the injuries as common and felt comfortable treating them as well (knowledge, P=0.027, 0.0029, <0.0001, and 0.0001, respectively; comfort level, P=0.0016, <0.0001, 0.0897, and 0.0010, respectively. Conclusion: Medical education background, factors that affect training, and an interest in sports medicine contribute to residents' knowledge and comfort

  17. [Evaluation of thermal comfort in a student population: predictive value of an integrated index (Fanger's predicted mean value].

    Science.gov (United States)

    Catenacci, G; Terzi, R; Marcaletti, G; Tringali, S

    1989-01-01

    Practical applications and predictive values of a thermal comfort index (Fanger's PRV) were verified on a sample school population (1236 subjects) by studying the relationships between thermal sensations (subjective analysis), determined by means of an individual questionnaire, and the values of thermal comfort index (objective analysis) obtained by calculating the PMV index individually in the subjects under study. In homogeneous conditions of metabolic expenditure rate and thermal impedence from clothing, significant differences were found between the two kinds of analyses. At 22 degrees C mean radiant and operative temperature, the PMV values averaged 0 and the percentage of subjects who experienced thermal comfort did not exceed 60%. The high level of subjects who were dissatisfied with their environmental thermal conditions confirms the doubts regarding the use of the PMV index as a predictive indicator of thermal comfort, especially considering that the negative answers were not homogeneous nor attributable to the small thermal fluctuations (less than 0.5 degree C) measured in the classrooms.

  18. The effect of a feedback signal in a computer mouse on hovering behaviour, productivity, comfort and usability in a field study

    NARCIS (Netherlands)

    Kraker, H. de; Korte, E. de; Mil, F. van; Rijs, B.; Bongers, P.

    2008-01-01

    The aim of this study was to determine the effect of a tactile feedback signal on hovering behaviour, productivity, usability and comfort after 1 week of using an experimental mouse. In a randomized controlled trial, a regular computer mouse was compared to a new developed mouse with a tactile,

  19. Anti-logic or common sense that can hinder machine’s energy performance: Energy and comfort control models based on artificial intelligence responding to abnormal indoor environments

    International Nuclear Information System (INIS)

    Ahn, Jonghoon; Cho, Soolyeon

    2017-01-01

    Highlights: •Integrated energy control model improves thermal comfort and mitigates an increase of energy consumption. •Communication between heating and cooling, thermal comfort, and decision making models optimizes energy supply. •PMV model effectively rectifies set-point temperature to reduce thermal dissatisfaction in various conditions. •Five-step decision making model properly responds to abnormal situations derived from human anti-logic or common sense. •Integrated model can be extended for managing risks caused by fire or disasters. -- Abstract: In spite of the remarkable development of technology, most studies for building energy controls to evaluate or estimate the energy performance have not accurately reflected actual building’s energy consumption patterns. For this issue, several techniques, such as simulation and calibration, comprehensive survey system, smart metering, and commissioning, have been attempted. However, in most studies, some factors in thermal systems derived from occupant behavior were perceived as fixed objects, and the factors were converted into simple numbers as parts of inputs into simulation templates. There was lack of studies on considerations that unpredictable responses derived from human anti-logic or common sense could deteriorate energy efficiency in theoretical analyses even though the systems were properly operated. This research proposes integrated energy supply models based on artificial intelligence responding to anti-logic or common sense that can reduce machine’s energy saving effects. By use of design scenarios assuming some unusual situations, a decision making model determines the extent to which the cause of the abnormal situations are associated with the occupant behavior. After the five-step phases in the decision making model, the actual outputs of the energy supply model for the buildings are determined, and the reciprocal communication between the thermal and decision making models mitigates

  20. Comfort drawing during investigative interviews: evidence of the safety of a popular practice.

    Science.gov (United States)

    Poole, Debra Ann; Dickinson, Jason J

    2014-02-01

    This study evaluated the impact of comfort drawing (allowing children to draw during interviews) on the quality of children's eyewitness reports. Children (N=219, 5 to 12 years) who had participated in an earlier memory study returned 1 or 2 years later, experienced a new event, and described these events during phased, investigative-style interviews. Interviewers delivered the same prompts to children in the no drawing and drawing conditions but provided paper and markers in the drawing condition, invited these children to draw, and periodically asked if they would like to make another picture. Most children in the drawing condition were interested in using the materials, and measures of eyewitness performance were sensitive to differences in cognitive ability (i.e., age) and task difficulty (i.e., delay between the remote event and interview). Comfort drawing had no overall impact as evidenced by nonsignificant main effects of condition across 20 performance measures, although more of the younger children reported experienced touching in the drawing than no drawing condition. The children successfully divided attention between voluntary drawing and conversations about past events. Importantly, comfort drawing did not impair the amount of information recalled, the accuracy of children's answers, or even the extent to which interviewers needed to prompt for answers. Due to the large number of analyses, the benefit of drawing for younger, touched children requires replication. Comfort drawing poses no documented risks for typically-developing school-aged children, but the practice remains untested for younger children and those with cognitive impairments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Optimizing visual comfort for stereoscopic 3D display based on color-plus-depth signals.

    Science.gov (United States)

    Shao, Feng; Jiang, Qiuping; Fu, Randi; Yu, Mei; Jiang, Gangyi

    2016-05-30

    Visual comfort is a long-facing problem in stereoscopic 3D (S3D) display. In this paper, targeting to produce S3D content based on color-plus-depth signals, a general framework for depth mapping to optimize visual comfort for S3D display is proposed. The main motivation of this work is to remap the depth range of color-plus-depth signals to a new depth range that is suitable to comfortable S3D display. Towards this end, we first remap the depth range globally based on the adjusted zero disparity plane, and then present a two-stage global and local depth optimization solution to solve the visual comfort problem. The remapped depth map is used to generate the S3D output. We demonstrate the power of our approach on perceptually uncomfortable and comfortable stereoscopic images.

  2. Children's exposure to indoor air in urban nurseries-part I: CO{sub 2} and comfort assessment

    Energy Technology Data Exchange (ETDEWEB)

    Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V., E-mail: sofia.sousa@fe.up.pt

    2015-07-15

    Indoor air quality (IAQ) in nurseries is an emerging case-study. Thus, this study, as the Part I of the larger study “Children's exposure to indoor air in urban nurseries”, aimed to: i) evaluate nurseries’ indoor concentrations of carbon dioxide (CO{sub 2}), a global IAQ indicator, in class and lunch rooms; ii) assess indoor comfort parameters–temperature (T) and relative humidity (RH); and iii) analyse them according to guidelines and references for IAQ, comfort and children's health. Indoor continuous measurements were performed. Non-compliances with guidelines were found in comfort parameters, which could cause discomfort situations and also microbial proliferation. Exceedances in CO{sub 2} concentrations were also found and they were caused by poor ventilation and high classroom occupation. More efficient ventilation and control of comfort parameters, as well as to reduce occupation by reviewing Portuguese legislation on that matter, would certainly improve IAQ and comfort in nurseries and consequently safeguard children's health. - Highlights: • High occupation and poor ventilation were main determinants of IAQ in nurseries. • T and RH indoor values found in nurseries are likely to cause thermal discomfort. • Building characteristics and an inadequate ventilation determined T and RH values. • High CO{sub 2} concentrations found could indicate accumulation of other air pollutants.

  3. Thermal comfort in twentieth-century architectural heritage: Two houses of Le Corbusier and André Wogenscky

    Directory of Open Access Journals (Sweden)

    Ignacio Requena-Ruiz

    2016-06-01

    This article aims to develop a balanced understanding of the approach of Modernist architecture to climate, indoor atmospheres and inhabitants׳ thermal comfort. To do so, we complement the quantitative approach of environmental assessment methods with the qualitative angle of the history of sensory and architecture. The goal is to understand the environmental performance of architecture for dealing nowadays with thermal comfort issues while respecting its cultural and historical values. Two modernist houses have been selected as case studies: the Villa Curutchet of the master Le Corbusier and the Villa Chupin of his disciple André Wogenscky. As a result, the article reveals potentialities and constraints in terms of thermal comfort when working with Modern Architecture.

  4. Psychiatric Sequelae of Former "Comfort Women," Survivors of the Japanese Military Sexual Slavery during World War II.

    Science.gov (United States)

    Lee, Jeewon; Kwak, Young-Sook; Kim, Yoon-Jung; Kim, Eun-Ji; Park, E Jin; Shin, Yunmi; Lee, Bun-Hee; Lee, So Hee; Jung, Hee Yeon; Lee, Inseon; Hwang, Jung Im; Kim, Dongsik; Lee, Soyoung Irene

    2018-04-01

    "Comfort women" refers to young women and girls who were forced into sexual slavery by the Imperial Japanese military during World War II. They were abducted from their homes in countries under Imperial Japanese rule, mostly from Korea, and the rest from China, Philippines, Malaysia, Taiwan, Indonesia, the Netherlands, etc. "Comfort women" endured extreme trauma involving rape, sexual torture, physical abuse, starvation, threats of death, and witnessed many others being tortured and killed. This article reviews all the studies that have investigated the psychiatric or psychosocial sequelae of the survivors of the Japanese military sexual slavery. Most importantly, a recent study which conducted a psychiatric evaluation on the former "comfort women" currently alive in South Korea is introduced. The participants' unmarried rate was relatively high and their total fertility rate was relatively low. Majority of the participants reported having no education and being the low economic status. They showed high current and lifetime prevalence of posttraumatic disorder, major depressive disorder, somatic symptom disorder, social anxiety disorder, panic disorder, and alcohol use disorder. Participants showed high suicidality and majority of the participants still reported being ashamed of being former "comfort women" after all these years. This article high-lights the fact that the trauma has affected the mental health and social functioning of former "comfort women" throughout their lives, and even to the present day.

  5. Influence of tooth position on wind instrumentalists' performance and embouchure comfort : A systematic review.

    Science.gov (United States)

    van der Weijden, F N; Kuitert, R B; Berkhout, F R U; van der Weijden, G A

    2018-05-01

    To systematically search the scientific literature concerning the influence of tooth position on wind instrumentalists' performance and embouchure comfort. The PubMed, Cochrane, and Embase databases were searched up to November 2017. The main orthodontic journals were searched for papers older than the inception date of PubMed. Grey literature was sought via Google Scholar. Eligible studies were critically appraised and analysed. The searches retrieved 54 papers. Only two met the inclusion criteria. Searching the orthodontic journals and Google Scholar resulted in two additional eligible studies. All four studies had a cross-sectional design. The sample sizes ranged from 20-100 participants, varying from children to professional musicians. Because of a large heterogeneity in outcome variables, no meta-analysis could be performed. Descriptive analysis shows that there are indications that tooth irregularities have a negative influence on embouchure comfort and performance of a wind instrument player. A large overjet may impede the embouchure of brass musicians and may have a negative influence on trumpet player performance. A wide jaw form seems more beneficial to trumpet player performance than a small jaw form. Furthermore, players of all types of wind instruments can experience embouchure difficulties from extreme spacing or an open bite. Tooth position can influence musical performance and embouchure comfort of wind instrumentalists. A Class I relationship without malocclusion seems appropriate for every type of wind instrument. The more extreme the malocclusion, the greater the interference with wind instrumentalists' performance and embouchure comfort. Evidence however is limited.

  6. Investigation of Different Configurations of a Ventilated Window to Optimize Both Energy Efficiency and Thermal Comfort

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Heiselberg, Per; Larsen, Olena Kalyanova

    2017-01-01

    The study in this article investigates 15 ventilated window typologies with different pane configurations and glazing types in climates of four European countries (United Kingdom, Denmark, France and Germany) in order to identify the optimum typology with regard to their energy balance and impact...... on thermal comfort. Hourly simulations of the heat balances of the windows are conducted on four days representing different typical weather conditions according to the method described in EN ISO 13790. U and g values used in the calculation method are calculated in European software tool (WIS......) for the calculation of the thermal and solar properties of commercial and innovative window systems. Additionally, comfort performance is evaluated by inlet air temperature and internal surface temperature of the windows calculated by WIS software. The results of the study show the energy and comfort performance...

  7. [Comfort and discomfort: the role of emotions in GPs' prescription practices].

    Science.gov (United States)

    Henriksen, Kristin; Hansen, Ebba Holme

    2005-12-05

    The role of emotions in GPs' prescribing has been ignored. The present article describes 20 GPs' reflections about what precedes comfort and discomfort in prescribing situations. In-depth interviews were done with 20 GPs who contributed with examples on an open comfort-discomfort scale. Analysis of the data was inspired by grounded theory. The GPs experienced a broad spectrum of emotions when prescribing. In every prescribing situation, conditions could pull towards both comfort and discomfort. Comfort appeared when the indication was correct and the patient's condition was serious, when the patient experienced the problem as serious, when the situation was acute and the medicine effective, and when the GP experienced himself as competent. Medicines were placed between comfort and discomfort when prescribing was perceived as indifferent, unproblematic and easy, when the GP was concerned about inflicting a sick role on the patients, and when patients were not convinced about the appropriateness of the medication. Discomfort appeared when there was a great risk of dependence, when GPs experienced and gave in to pressure, when they had to convince patients, and when they prescribed addictive medicine regularly. The totality of conditions in the situation determined the emotional state in the prescribing situation. The GPs' emotions reflected how they evaluated the appropriateness of their prescribing. This should be taken advantage of in rational pharmacotherapy. Future interventions should address both the rationality of GPs and their emotions.

  8. Lifetime intimate partner violence exposure, attitudes and comfort among Canadian health professions students

    Directory of Open Access Journals (Sweden)

    Gerber Megan R

    2009-09-01

    Full Text Available Abstract Background Intimate partner violence (IPV is a widespread public health problem and training of health professions students has become common. Understanding students' prior knowledge, attitudes and personal exposure to IPV will aid educators in designing more effective curriculum. As interprofessional educational efforts proliferate, understanding differences across disciplines will be critical. Findings Students in the schools of Medicine, Nursing and Rehabilitation at a university in Ontario attend an annual daylong interprofessional IPV training. To measure perceived role and comfort with IPV and prior personal exposure, we administered a brief Likert scale survey to a convenience sample of students over three years. 552 students completed the survey; the overall response rate was 73%. The majority (82% agreed that it was their role to intervene in cases of IPV; however Rehabilitation students expressed lower overall comfort levels than did their peers in other schools (p Conclusion While the majority of professional students believe it is their role to address IPV in clinical practice, comfort level varied significantly by field of study. More than one fifth of the students reported some personal exposure to IPV. However this did not impact their level of comfort in addressing this issue. Educators need to take students' preexisting attitudes and personal exposure into account when planning curriculum initiatives in this area.

  9. The correlation between thermal comfort in buildings and fashion products.

    Science.gov (United States)

    Giesel, Aline; de Mello Souza, Patrícia

    2012-01-01

    This article is about thermal comfort in the wearable product. The research correlates fashion and architecture, in so far as it elects the brise soleil - an architectural element capable of regulating temperature and ventilation inside buildings - as a study referential, in trying to transpose and adapt its mechanisms to the wearable apparel.

  10. Towards comfortable and efficient man-machine interaction in the cabins of vehicles

    NARCIS (Netherlands)

    Looze, M.P. de; Roetting, M.; Vink, P.; Luczak, H.

    2000-01-01

    The comfort of the operators in the cabins of vehicles is getting an increasingly important issue. At first glance, the cabins of professional machines (earth-moving equipment, busses, harvesting equipment) might look modern and highly comfortable. However, this does not imply that the cabins

  11. Olfactory comfort - a new approach to improving the perceived indoor air quality (iaq); Olfaktorische Behaglichkeit - ein neuer Ansatz fuer die empfundene Raumluftqualitaet

    Energy Technology Data Exchange (ETDEWEB)

    Kempski, D. von [DVK air vitalizing system, Duesseldorf (Germany)

    2003-02-01

    In addition to thermal comfort, the crucial factor in evaluating Indoor Air Quality is olfactory comfort. The benefits of a positive hedonic note in indoor air are substantiated by significant research and are based on the fact that the sense of smell directly influences humans' emotions and therefore the well-being of room occupants. (orig.) [German] Den entscheidenden Faktor bei der Bewertung der Raumluftqualitaet bildet neben der thermischen Behaglichkeit die olfaktorische. Die ueberragende Bedeutung einer positiven hedonischen Note in der Innenraumluft beruht auf der in vielen Versuchsreihen gewonnenen Erkenntnis, dass der Geruchssinn das unmittelbare Bindeglied zu dem Gefuehlsleben und damit zu dem Wohlbefinden der Raumnutzer darstellt. (orig.)

  12. Thermal comfort and IAQ assessment of under-floor air distribution system integrated with personalized ventilation in hot and humid climate

    DEFF Research Database (Denmark)

    Li, Ruixin; Sekhar, S.C.; Melikov, Arsen Krikor

    2010-01-01

    The potential for improving occupants' thermal comfort with personalized ventilation (PV) system combined with under-floor air distribution (UFAD) system was explored through human response study. The hypothesis was that cold draught at feet can be reduced when relatively warm air is supplied...... of the results obtained reveal improved acceptability of perceived air quality and improved thermal sensation with PV-UFAD in comparison with the reference case of UFAD alone or mixing ventilation with ceiling supply diffuser. The local thermal sensation at the feet was also improved when warmer UFAD supply air...

  13. The Relationship between Thermal Comfort and Light Intensity with Sleep Quality and Eye Tiredness in Shift Work Nurses

    Science.gov (United States)

    Azmoon, Hiva; Dehghan, Habibollah; Akbari, Jafar; Souri, Shiva

    2013-01-01

    Environmental conditions such as lighting and thermal comfort are influencing factors on sleep quality and visual tiredness. The purpose of this study was the determination of the relationship between thermal comfort and light intensity with the sleep quality and eye fatigue in shift nurses. Method. This cross-sectional research was conducted on 82 shift-work personnel of 18 nursing workstations in Isfahan Al-Zahra Hospital, Iran, in 2012. Heat stress monitoring (WBGT) and photometer (Hagner Model) were used for measuring the thermal conditions and illumination intensity, respectively. To measure the sleep quality, visual tiredness, and thermal comfort, Pittsburg sleep quality index, eye fatigue questionnaire, and thermal comfort questionnaire were used, respectively. The data were analyzed with descriptive statistics, Student's t-test, and Pearson correlation. Results. Correlation between thermal comfort which was perceived from the self-reporting of people with eye tiredness was −0.38 (P = 0.002). Pearson correlation between thermal comfort and sleep quality showed a positive and direct relationship (r = 0.241, P = 0.33) but the correlation between thermal comfort, which was perceived from the self-reporting of shift nurses, and WBGT index was a weak relationship (r = 0.019). Conclusion. Based on the obtained findings, it can be concluded that a defect in environmental conditions such as thermal conditions and light intensity and also lack of appropriate managerial plan for night shift-work nurses are destructive and negative factors for the physical and mental health of this group of practitioners. PMID:23476674

  14. The relationship between thermal comfort and light intensity with sleep quality and eye tiredness in shift work nurses.

    Science.gov (United States)

    Azmoon, Hiva; Dehghan, Habibollah; Akbari, Jafar; Souri, Shiva

    2013-01-01

    Environmental conditions such as lighting and thermal comfort are influencing factors on sleep quality and visual tiredness. The purpose of this study was the determination of the relationship between thermal comfort and light intensity with the sleep quality and eye fatigue in shift nurses. This cross-sectional research was conducted on 82 shift-work personnel of 18 nursing workstations in Isfahan Al-Zahra Hospital, Iran, in 2012. Heat stress monitoring (WBGT) and photometer (Hagner Model) were used for measuring the thermal conditions and illumination intensity, respectively. To measure the sleep quality, visual tiredness, and thermal comfort, Pittsburg sleep quality index, eye fatigue questionnaire, and thermal comfort questionnaire were used, respectively. The data were analyzed with descriptive statistics, Student's t-test, and Pearson correlation. Correlation between thermal comfort which was perceived from the self-reporting of people with eye tiredness was -0.38 (P = 0.002). Pearson correlation between thermal comfort and sleep quality showed a positive and direct relationship (r = 0.241, P = 0.33) but the correlation between thermal comfort, which was perceived from the self-reporting of shift nurses, and WBGT index was a weak relationship (r = 0.019). Based on the obtained findings, it can be concluded that a defect in environmental conditions such as thermal conditions and light intensity and also lack of appropriate managerial plan for night shift-work nurses are destructive and negative factors for the physical and mental health of this group of practitioners.

  15. A possible connection between thermal comfort and health

    Energy Technology Data Exchange (ETDEWEB)

    Stoops, John L.

    2004-05-20

    It is a well-established fact that cardiovascular health requires periodic exercise during which the human body often experiences significant physical discomfort. It is not obvious to the exerciser that the short-term pain and discomfort has a long-term positive health impact. Many cultures have well-established practices that involve exposing the body to periodic thermal discomfort. Scandinavian saunas and American Indian sweat lodges are two examples. Both are believed to promote health and well-being. Vacations often intentionally include significant thermal discomfort as part of the experience (e.g., sunbathing, and downhill skiing). So people often intentionally make themselves thermally uncomfortable yet the entire foundation of providing the thermal environment in our buildings is done to minimize the percentage of people thermally dissatisfied. We must provide an environment that does not negatively impact short-term health and we need to consider productivity but are our current thermal comfort standards too narrowly defined and do these standards actually contribute to longer-term negative health impacts? This paper examines the possibility that the human body thermoregulatory system has a corollary relationship to the cardiovascular system. It explores the possibility that we have an inherent need to exercise our thermoregulatory system. Potential, physiological, sociological and energy ramifications of these possibilities are discussed.

  16. Impact of building forms on thermal performance and thermal comfort conditions in religious buildings in hot climates: a case study in Sharjah city

    Science.gov (United States)

    Mushtaha, Emad; Helmy, Omar

    2017-11-01

    The common system used for thermal regulation in mosques of United Arab Emirates (UAE) is the heating, ventilating and air-conditioning (HVAC) system. This system increases demands on energy consumption and increases CO2 emission. A passive design approach is one of the measures to reduce these problems. This study involved an analytical examination of building forms, followed by testing the impact of these forms on its thermal performance and indoor thermal comfort. The tests were conducted using energy simulations software packages. Passive parameters such as shading devices, thermal insulation and natural ventilation were applied in six cases, including the baseline case within each form. The obtained results showed a significant effect of mosque forms as well as passive design techniques on the thermal comfort within the structures. The findings confirmed that the use of passive design alone would not help achieve thermal comfort, but reduce the annual energy consumption by10%. By integrating a hybrid air-conditioning system as another supporting approach, the annual energy consumption could be reduced by 67.5%, which allows for the designing of a much smaller HVAC system.

  17. Assessment of bioclimatic comfort conditions based on Physiologically Equivalent Temperature (PET) using the RayMan Model in Iran

    Science.gov (United States)

    Daneshvar, Mohammad Reza Mansouri; Bagherzadeh, Ali; Tavousi, Taghi

    2013-03-01

    In this study thermal comfort conditions are analyzed to determine possible thermal perceptions during different months in Iran through the Physiologically Equivalent Temperature (PET). The monthly PET values produced using the RayMan Model ranged from -7.6°C to 46.8°C. Over the winter months the thermal comfort condition (18-23°C) were concentrated in southern coastal areas along the Persian Gulf and Oman Sea. Most of the country experienced comfort conditions during the spring months, in particular in April, while during the summer months of July and August no thermal comfort conditions were observed. In November coastal areas of the Caspian Sea had the same physiological stress level of thermal comfort as April. The map produced showing mean annual PET conditions demonstrated the greatest spatial distribution of comfortable levels in the elevation range from 1000 to 2000 meter a.s.l., with annual temperatures of 12-20°C and annual precipitation of under 200 mm. The statistical relationship between PET conditions and each controlling parameter revealed a significant correlation in areas above 2000 meter, annual temperature over 20°C and annual precipitation of 200-400 mm with a correlation coefficient ( R 2) of 0.91, 0.97 and 0.96, respectively.

  18. Interior shadings for office indoor visual comfort in humid climate region

    Science.gov (United States)

    Dinapradipta, Asri; Sudarma, Erwin; Defiana, Ima; Erwindi, Collinthia

    2018-03-01

    As part of the fenestration system, the interior shadings have also a role to control the indoor environment to maintain indoor visual comfort. As the occupants have personal access to control these, their control behavior then, might enhance or even worsen indoor comfort performance. The controlling behavior might not only influence indoor comfort performance but can also indicate the success or failure of interior shading as a control device element. This paper is intended to report control behavior patterns, as represented by the variety of the slats’ openings of two types of interior shading i.e. Venetian and Vertical blinds and to analyze these on the concurrent impacts to indoor office building’s indoor illuminance and luminance distribution. The purpose of this research is to figure out the shading control patterns as well as to examine the effectiveness of these two types of interior shadings to control indoor visual environment. This study is a quantitative research using experimentation on the slats’ opening of two types of shadings at two identical office rooms. The research results suggested that both types of blinds seem unsuitable for gaining proper illumination values at work planes in humid tropics area. However, these shadings demonstrate good performance for luminance distribution except for that of the closed Venetian blinds.

  19. Integrated Method for Personal Thermal Comfort Assessment and Optimization through Users' Feedback, IoT and Machine Learning: A Case Study †.

    Science.gov (United States)

    Salamone, Francesco; Belussi, Lorenzo; Currò, Cristian; Danza, Ludovico; Ghellere, Matteo; Guazzi, Giulia; Lenzi, Bruno; Megale, Valentino; Meroni, Italo

    2018-05-17

    Thermal comfort has become a topic issue in building performance assessment as well as energy efficiency. Three methods are mainly recognized for its assessment. Two of them based on standardized methodologies, face the problem by considering the indoor environment in steady-state conditions (PMV and PPD) and users as active subjects whose thermal perception is influenced by outdoor climatic conditions (adaptive approach). The latter method is the starting point to investigate thermal comfort from an overall perspective by considering endogenous variables besides the traditional physical and environmental ones. Following this perspective, the paper describes the results of an in-field investigation of thermal conditions through the use of nearable and wearable solutions, parametric models and machine learning techniques. The aim of the research is the exploration of the reliability of IoT-based solutions combined with advanced algorithms, in order to create a replicable framework for the assessment and improvement of user thermal satisfaction. For this purpose, an experimental test in real offices was carried out involving eight workers. Parametric models are applied for the assessment of thermal comfort; IoT solutions are used to monitor the environmental variables and the users' parameters; the machine learning CART method allows to predict the users' profile and the thermal comfort perception respect to the indoor environment.

  20. The end-state comfort effect in bimanual grip selection.

    Science.gov (United States)

    Fischman, Mark G; Stodden, David F; Lehman, Davana M

    2003-03-01

    During a unimanual grip selection task in which people pick up a lightweight dowel and place one end against targets at variable heights, the choice of hand grip (overhand vs. underhand) typically depends on the perception of how comfortable the arm will be at the end of the movement: an end-state comfort effect. The two experiments reported here extend this work to bimanual tasks. In each experiment, 26 right-handed participants used their left and right hands to simultaneously pick up two wooden dowels and place either the right or left end against a series of 14 targets ranging from 14 to 210 cm above the floor. These tasks were performed in systematic ascending and descending orders in Experiment 1 and in random order in Expiment 2. Results were generally consistent with predictions of end-state comfort in that, for the extreme highest and lowest targets, participants tended to select opposite grips with each hand. Taken together, our findings are consistent with the concept of constraint hierarchies within a posture-based motion-planning model.