WorldWideScience

Sample records for human cns-stem cell

  1. Endovascular transplantation of stem cells to the injured rat CNS

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Johan; Soederman, Mikael; Andersson, Tommy; Holmin, Staffan [Karolinska University Hospital, Department of Clinical Neuroscience, Karolinska Institutet, Department of Neuroradiology, Stockholm (Sweden); Le Blanc, Katarina [Karolinska University Hospital, Department of Stem Cell Research, Karolinska Institutet, Department of Clinical Immunology, Stockholm (Sweden)

    2009-10-15

    Transplantation procedures using intraparenchymal injection of stem cells result in tissue injury in addition to associated surgical risks. Intravenous injection of mesenchymal stem cells gives engraftment to lesions, but the method has low efficiency and specificity. In traumatic brain injuries (TBI), there is a transient breakdown of the blood-brain barrier and an inflammatory response, which increase migration of cells from blood to parenchyma. The aim of this investigation was to analyze the effect of intra-arterial administration on cellular engraftment. Experimental TBI was produced in a rat model. Endovascular technique was used to administer human mesenchymal stem cells in the ipsilateral internal carotid artery. Evaluation of engraftment and side effects were performed by immunohistochemical analysis of the brain and several other organs. The results were compared to intravenous administration of stem cells. Intra-arterial transplantion of mesenchymal stem cells resulted in central nervous system (CNS) engraftment without thromboembolic ischemia. We observed a significantly higher number of transplanted cells in the injured hemisphere after intra-arterial compared to intravenous administration both 1 day (p<0.01) and 5 days (p<0.05) after the transplantation. Some cells were also detected in the spleen but not in the other organs analyzed. Selective intra-arterial administration of mesenchymal stem cells to the injured CNS is a minimally invasive method for transplantation. The method is significantly more efficient than the intravenous route and causes no side effects in the current model. The technique can potentially be used for repeated transplantation to the CNS after TBI and in other diseases. (orig.)

  2. Endovascular transplantation of stem cells to the injured rat CNS

    International Nuclear Information System (INIS)

    Lundberg, Johan; Soederman, Mikael; Andersson, Tommy; Holmin, Staffan; Le Blanc, Katarina

    2009-01-01

    Transplantation procedures using intraparenchymal injection of stem cells result in tissue injury in addition to associated surgical risks. Intravenous injection of mesenchymal stem cells gives engraftment to lesions, but the method has low efficiency and specificity. In traumatic brain injuries (TBI), there is a transient breakdown of the blood-brain barrier and an inflammatory response, which increase migration of cells from blood to parenchyma. The aim of this investigation was to analyze the effect of intra-arterial administration on cellular engraftment. Experimental TBI was produced in a rat model. Endovascular technique was used to administer human mesenchymal stem cells in the ipsilateral internal carotid artery. Evaluation of engraftment and side effects were performed by immunohistochemical analysis of the brain and several other organs. The results were compared to intravenous administration of stem cells. Intra-arterial transplantion of mesenchymal stem cells resulted in central nervous system (CNS) engraftment without thromboembolic ischemia. We observed a significantly higher number of transplanted cells in the injured hemisphere after intra-arterial compared to intravenous administration both 1 day (p<0.01) and 5 days (p<0.05) after the transplantation. Some cells were also detected in the spleen but not in the other organs analyzed. Selective intra-arterial administration of mesenchymal stem cells to the injured CNS is a minimally invasive method for transplantation. The method is significantly more efficient than the intravenous route and causes no side effects in the current model. The technique can potentially be used for repeated transplantation to the CNS after TBI and in other diseases. (orig.)

  3. Pathological classification of human iPSC-derived neural stem/progenitor cells towards safety assessment of transplantation therapy for CNS diseases.

    Science.gov (United States)

    Sugai, Keiko; Fukuzawa, Ryuji; Shofuda, Tomoko; Fukusumi, Hayato; Kawabata, Soya; Nishiyama, Yuichiro; Higuchi, Yuichiro; Kawai, Kenji; Isoda, Miho; Kanematsu, Daisuke; Hashimoto-Tamaoki, Tomoko; Kohyama, Jun; Iwanami, Akio; Suemizu, Hiroshi; Ikeda, Eiji; Matsumoto, Morio; Kanemura, Yonehiro; Nakamura, Masaya; Okano, Hideyuki

    2016-09-19

    The risk of tumorigenicity is a hurdle for regenerative medicine using induced pluripotent stem cells (iPSCs). Although teratoma formation is readily distinguishable, the malignant transformation of iPSC derivatives has not been clearly defined due to insufficient analysis of histology and phenotype. In the present study, we evaluated the histology of neural stem/progenitor cells (NSPCs) generated from integration-free human peripheral blood mononuclear cell (PBMC)-derived iPSCs (iPSC-NSPCs) following transplantation into central nervous system (CNS) of immunodeficient mice. We found that transplanted iPSC-NSPCs produced differentiation patterns resembling those in embryonic CNS development, and that the microenvironment of the final site of migration affected their maturational stage. Genomic instability of iPSCs correlated with increased proliferation of transplants, although no carcinogenesis was evident. The histological classifications presented here may provide cues for addressing potential safety issues confronting regenerative medicine involving iPSCs.

  4. A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Romeo Cecchelli

    Full Text Available The human blood brain barrier (BBB is a selective barrier formed by human brain endothelial cells (hBECs, which is important to ensure adequate neuronal function and protect the central nervous system (CNS from disease. The development of human in vitro BBB models is thus of utmost importance for drug discovery programs related to CNS diseases. Here, we describe a method to generate a human BBB model using cord blood-derived hematopoietic stem cells. The cells were initially differentiated into ECs followed by the induction of BBB properties by co-culture with pericytes. The brain-like endothelial cells (BLECs express tight junctions and transporters typically observed in brain endothelium and maintain expression of most in vivo BBB properties for at least 20 days. The model is very reproducible since it can be generated from stem cells isolated from different donors and in different laboratories, and could be used to predict CNS distribution of compounds in human. Finally, we provide evidence that Wnt/β-catenin signaling pathway mediates in part the BBB inductive properties of pericytes.

  5. Directed Differentiation of Human Pluripotent Stem Cells to Microglia

    Directory of Open Access Journals (Sweden)

    Panagiotis Douvaras

    2017-06-01

    Full Text Available Microglia, the immune cells of the brain, are crucial to proper development and maintenance of the CNS, and their involvement in numerous neurological disorders is increasingly being recognized. To improve our understanding of human microglial biology, we devised a chemically defined protocol to generate human microglia from pluripotent stem cells. Myeloid progenitors expressing CD14/CX3CR1 were generated within 30 days of differentiation from both embryonic and induced pluripotent stem cells (iPSCs. Further differentiation of the progenitors resulted in ramified microglia with highly motile processes, expressing typical microglial markers. Analyses of gene expression and cytokine release showed close similarities between iPSC-derived (iPSC-MG and human primary microglia as well as clear distinctions from macrophages. iPSC-MG were able to phagocytose and responded to ADP by producing intracellular Ca2+ transients, whereas macrophages lacked such response. The differentiation protocol was highly reproducible across several pluripotent stem cell lines.

  6. A review on stem cell therapy for multiple sclerosis: special focus on human embryonic stem cells.

    Science.gov (United States)

    Shroff, Geeta

    2018-01-01

    Multiple sclerosis (MS), a complex disorder of the central nervous system (CNS), is characterized with axonal loss underlying long-term progressive disability. Currently available therapies for its management are able to slow down the progression but fail to treat it completely. Moreover, these therapies are associated with major CNS and cardiovascular adverse events, and prolonged use of these treatments may cause life-threatening diseases. Recent research has shown that cellular therapies hold a potential for CNS repair and may be able to provide protection from inflammatory damage caused after injury. Human embryonic stem cell (hESC) transplantation is one of the promising cell therapies; hESCs play an important role in remyelination and help in preventing demylenation of the axons. In this study, an overview of the current knowledge about the unique properties of hESC and their comparison with other cell therapies has been presented for the treatment of patients with MS.

  7. Histological characterization and quantification of cellular events following neural and fibroblast(-like) stem cell grafting in healty and demyelinated CNS tissue

    OpenAIRE

    Praet, J.; SANTERMANS, Eva; Reekmans, K.; de Vocht, N.; Le Blon, D.; Hoornaert, C.; Daans, J.; Goossens, H.; Berneman, Z.; HENS, Niel; Van der Linden, A.; Ponsaerts, P.

    2014-01-01

    Preclinical animal studies involving intracerebral (stem) cell grafting are gaining popularity in many laboratories due to the reported beneficial effects of cell grafting on various diseases or traumata of the central nervous system (CNS). In this chapter, we describe a histological workflow to characterize and quantify cellular events following neural and fibroblast(-like) stem cell grafting in healthy and demyelinated CNS tissue. First, we provide standardized protocols to isolate and cult...

  8. Functional Properties of Human Stem Cell-Derived Neurons in Health and Disease

    Directory of Open Access Journals (Sweden)

    Jason P. Weick

    2016-01-01

    Full Text Available Stem cell-derived neurons from various source materials present unique model systems to examine the fundamental properties of central nervous system (CNS development as well as the molecular underpinnings of disease phenotypes. In order to more accurately assess potential therapies for neurological disorders, multiple strategies have been employed in recent years to produce neuronal populations that accurately represent in vivo regional and transmitter phenotypes. These include new technologies such as direct conversion of somatic cell types into neurons and glia which may accelerate maturation and retain genetic hallmarks of aging. In addition, novel forms of genetic manipulations have brought human stem cells nearly on par with those of rodent with respect to gene targeting. For neurons of the CNS, the ultimate phenotypic characterization lies with their ability to recapitulate functional properties such as passive and active membrane characteristics, synaptic activity, and plasticity. These features critically depend on the coordinated expression and localization of hundreds of ion channels and receptors, as well as scaffolding and signaling molecules. In this review I will highlight the current state of knowledge regarding functional properties of human stem cell-derived neurons, with a primary focus on pluripotent stem cells. While significant advances have been made, critical hurdles must be overcome in order for this technology to support progression toward clinical applications.

  9. Stem cells engineering for cell-based therapy.

    Science.gov (United States)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  10. TOPICAL REVIEW: Stem cells engineering for cell-based therapy

    Science.gov (United States)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  11. Transplantation dose alters the dynamics of human neural stem cell engraftment, proliferation and migration after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Katja M. Piltti

    2015-09-01

    Full Text Available The effect of transplantation dose on the spatiotemporal dynamics of human neural stem cell (hNSC engraftment has not been quantitatively evaluated in the central nervous system. We investigated changes over time in engraftment/survival, proliferation, and migration of multipotent human central nervous system-derived neural stem cells (hCNS-SCns transplanted at doses ranging from 10,000 to 500,000 cells in spinal cord injured immunodeficient mice. Transplant dose was inversely correlated with measures of donor cell proliferation at 2 weeks post-transplant (WPT and dose-normalized engraftment at 16 WPT. Critically, mice receiving the highest cell dose exhibited an engraftment plateau, in which the total number of engrafted human cells never exceeded the initial dose. These data suggest that donor cell expansion was inversely regulated by target niche parameters and/or transplantation density. Investigation of the response of donor cells to the host microenvironment should be a key variable in defining target cell dose in pre-clinical models of CNS disease and injury.

  12. Haematopoietic stem and progenitor cells from human pluripotent stem cells

    Science.gov (United States)

    Sugimura, Ryohichi; Jha, Deepak Kumar; Han, Areum; Soria-Valles, Clara; da Rocha, Edroaldo Lummertz; Lu, Yi-Fen; Goettel, Jeremy A.; Serrao, Erik; Rowe, R. Grant; Malleshaiah, Mohan; Wong, Irene; Sousa, Patricia; Zhu, Ted N.; Ditadi, Andrea; Keller, Gordon; Engelman, Alan N.; Snapper, Scott B.; Doulatov, Sergei; Daley, George Q.

    2018-01-01

    A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens, or by conversion of one differentiated cell type into another by enforced expression of master transcription factors. Here, to yield functional human haematopoietic stem cells, we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts. We recover seven transcription factors (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid, B and T cells in primary and secondary mouse recipients. Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders. PMID:28514439

  13. Electrical Stimulation Elicit Neural Stem Cells Activation:New Perspectives in CNS Repair

    Directory of Open Access Journals (Sweden)

    Ratrel eHuang

    2015-10-01

    Full Text Available Researchers are enthusiastically concerned about neural stem cell (NSC therapy in a wide array of diseases, including stroke, neurodegenerative disease, spinal cord injury (SCI and depression. Although enormous evidences have demonstrated that neurobehavioral improvement may benefit from NSC-supporting regeneration in animal models, approaches to endogenous and transplanted NSCs are blocked by hurdles of migration, proliferation, maturation and integration of NSCs. Electrical stimulation (ES may be a selective nondrug approach for mobilizing NSCs in the central nervous system (CNS. This technique is suitable for clinic application, because it is well established and its potential complications are manageable. Here, we provide a comprehensive review of the emerging positive role of different electrical cues in regulating NSC biology in vitro and in vivo, as well as biomaterial-based and chemical stimulation of NSCs. In the future, ES combined with stem cell therapy or other cues probably becomes an approach for promoting brain repair.

  14. Effects of murine and human bone marrow-derived mesenchymal stem cells on cuprizone induced demyelination.

    Directory of Open Access Journals (Sweden)

    Jasmin Nessler

    Full Text Available For the treatment of patients with multiple sclerosis there are no regenerative approaches to enhance remyelination. Mesenchymal stem cells (MSC have been proposed to exert such regenerative functions. Intravenous administration of human MSC reduced the clinical severity of experimental autoimmune encephalomyelitis (EAE, an animal model mimicking some aspects of multiple sclerosis. However, it is not clear if this effect was achieved by systemic immunomodulation or if there is an active neuroregeneration in the central nervous system (CNS. In order to investigate remyelination and regeneration in the CNS we analysed the effects of intravenously and intranasally applied murine and human bone marrow-derived MSC on cuprizone induced demyelination, a toxic animal model which allows analysis of remyelination without the influence of the peripheral immune system. In contrast to EAE no effects of MSC on de- and remyelination and glial cell reactions were found. In addition, neither murine nor human MSC entered the lesions in the CNS in this toxic model. In conclusion, MSC are not directed into CNS lesions in the cuprizone model where the blood-brain-barrier is intact and thus cannot provide support for regenerative processes.

  15. Development of hematopoietic stem and progenitor cells from human pluripotent stem cells.

    Science.gov (United States)

    Chen, Tong; Wang, Fen; Wu, Mengyao; Wang, Zack Z

    2015-07-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), provide a new cell source for regenerative medicine, disease modeling, drug discovery, and preclinical toxicity screening. Understanding of the onset and the sequential process of hematopoietic cells from differentiated hPSCs will enable the achievement of personalized medicine and provide an in vitro platform for studying of human hematopoietic development and disease. During embryogenesis, hemogenic endothelial cells, a specified subset of endothelial cells in embryonic endothelium, are the primary source of multipotent hematopoietic stem cells. In this review, we discuss current status in the generation of multipotent hematopoietic stem and progenitor cells from hPSCs via hemogenic endothelial cells. We also review the achievements in direct reprogramming from non-hematopoietic cells to hematopoietic stem and progenitor cells. Further characterization of hematopoietic differentiation in hPSCs will improve our understanding of blood development and expedite the development of hPSC-derived blood products for therapeutic purpose. © 2015 Wiley Periodicals, Inc.

  16. Potential Therapies by Stem Cell-Derived Exosomes in CNS Diseases: Focusing on the Neurogenic Niche

    Directory of Open Access Journals (Sweden)

    Alejandro Luarte

    2016-01-01

    Full Text Available Neurodegenerative disorders are one of the leading causes of death and disability and one of the biggest burdens on health care systems. Novel approaches using various types of stem cells have been proposed to treat common neurodegenerative disorders such as Alzheimer’s Disease, Parkinson’s Disease, or stroke. Moreover, as the secretome of these cells appears to be of greater benefit compared to the cells themselves, the extracellular components responsible for its therapeutic benefit have been explored. Stem cells, as well as most cells, release extracellular vesicles such as exosomes, which are nanovesicles able to target specific cell types and thus to modify their function by delivering proteins, lipids, and nucleic acids. Exosomes have recently been tested in vivo and in vitro as therapeutic conveyors for the treatment of diseases. As such, they could be engineered to target specific populations of cells within the CNS. Considering the fact that many degenerative brain diseases have an impact on adult neurogenesis, we discuss how the modulation of the adult neurogenic niches may be a therapeutic target of stem cell-derived exosomes. These novel approaches should be examined in cellular and animal models to provide better, more effective, and specific therapeutic tools in the future.

  17. Neurogenic differentiation of human umbilical cord mesenchymal stem cells on aligned electrospun polypyrrole/polylactide composite nanofibers with electrical stimulation

    Science.gov (United States)

    Zhou, Junfeng; Cheng, Liang; Sun, Xiaodan; Wang, Xiumei; Jin, Shouhong; Li, Junxiang; Wu, Qiong

    2016-09-01

    Adult central nervous system (CNS) tissue has a limited capacity to recover after trauma or disease. Recent medical cell therapy using polymeric biomaterialloaded stem cells with the capability of differentiation to specific neural population has directed focuses toward the recovery of CNS. Fibers that can provide topographical, biochemical and electrical cues would be attractive for directing the differentiation of stem cells into electro-responsive cells such as neuronal cells. Here we report on the fabrication of an electrospun polypyrrole/polylactide composite nanofiber film that direct or determine the fate of mesenchymal stem cells (MSCs), via combination of aligned surface topography, and electrical stimulation (ES). The surface morphology, mechanical properties and electric properties of the film were characterized. Comparing with that on random surface film, expression of neurofilament-lowest and nestin of human umbilical cord mesenchymal stemcells (huMSCs) cultured on film with aligned surface topography and ES were obviously enhanced. These results suggest that aligned topography combining with ES facilitates the neurogenic differentiation of huMSCs and the aligned conductive film can act as a potential nerve scaffold.

  18. Stem cell biology and cell transplantation therapy in the retina.

    Science.gov (United States)

    Osakada, Fumitaka; Hirami, Yasuhiko; Takahashi, Masayo

    2010-01-01

    Embryonic stem (ES) cells, which are derived from the inner cell mass of mammalian blastocyst stage embryos, have the ability to differentiate into any cell type in the body and to grow indefinitely while maintaining pluripotency. During development, cells undergo progressive and irreversible differentiation into specialized adult cell types. Remarkably, in spite of this restriction in potential, adult somatic cells can be reprogrammed and returned to the naive state of pluripotency found in the early embryo simply by forcing expression of a defined set of transcription factors. These induced pluripotent stem (iPS) cells are molecularly and functionally equivalent to ES cells and provide powerful in vitro models for development, disease, and drug screening, as well as material for cell replacement therapy. Since functional impairment results from cell loss in most central nervous system (CNS) diseases, recovery of lost cells is an important treatment strategy. Although adult neurogenesis occurs in restricted regions, the CNS has poor potential for regeneration to compensate for cell loss. Thus, cell transplantation into damaged or diseased CNS tissues is a promising approach to treating various neurodegenerative disorders. Transplantation of photoreceptors or retinal pigment epithelium cells derived from human ES cells can restore some visual function. Patient-specific iPS cells may lead to customized cell therapy. However, regeneration of retinal function will require a detailed understanding of eye development, visual system circuitry, and retinal degeneration pathology. Here, we review the current progress in retinal regeneration, focusing on the therapeutic potential of pluripotent stem cells.

  19. Differentiation of Inflammation-Responsive Astrocytes from Glial Progenitors Generated from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Renata Santos

    2017-06-01

    Full Text Available Astrocyte dysfunction and neuroinflammation are detrimental features in multiple pathologies of the CNS. Therefore, the development of methods that produce functional human astrocytes represents an advance in the study of neurological diseases. Here we report an efficient method for inflammation-responsive astrocyte generation from induced pluripotent stem cells (iPSCs and embryonic stem cells. This protocol uses an intermediate glial progenitor stage and generates functional astrocytes that show levels of glutamate uptake and calcium activation comparable with those observed in human primary astrocytes. Stimulation of stem cell-derived astrocytes with interleukin-1β or tumor necrosis factor α elicits a strong and rapid pro-inflammatory response. RNA-sequencing transcriptome profiling confirmed that similar gene expression changes occurred in iPSC-derived and primary astrocytes upon stimulation with interleukin-1β. This protocol represents an important tool for modeling in-a-dish neurological diseases with an inflammatory component, allowing for the investigation of the role of diseased astrocytes in neuronal degeneration.

  20. Integration and long distance axonal regeneration in the central nervous system from transplanted primitive neural stem cells.

    Science.gov (United States)

    Zhao, Jiagang; Sun, Woong; Cho, Hyo Min; Ouyang, Hong; Li, Wenlin; Lin, Ying; Do, Jiun; Zhang, Liangfang; Ding, Sheng; Liu, Yizhi; Lu, Paul; Zhang, Kang

    2013-01-04

    Spinal cord injury (SCI) results in devastating motor and sensory deficits secondary to disrupted neuronal circuits and poor regenerative potential. Efforts to promote regeneration through cell extrinsic and intrinsic manipulations have met with limited success. Stem cells represent an as yet unrealized therapy in SCI. Recently, we identified novel culture methods to induce and maintain primitive neural stem cells (pNSCs) from human embryonic stem cells. We tested whether transplanted human pNSCs can integrate into the CNS of the developing chick neural tube and injured adult rat spinal cord. Following injection of pNSCs into the developing chick CNS, pNSCs integrated into the dorsal aspects of the neural tube, forming cell clusters that spontaneously differentiated into neurons. Furthermore, following transplantation of pNSCs into the lesioned rat spinal cord, grafted pNSCs survived, differentiated into neurons, and extended long distance axons through the scar tissue at the graft-host interface and into the host spinal cord to form terminal-like structures near host spinal neurons. Together, these findings suggest that pNSCs derived from human embryonic stem cells differentiate into neuronal cell types with the potential to extend axons that associate with circuits of the CNS and, more importantly, provide new insights into CNS integration and axonal regeneration, offering hope for repair in SCI.

  1. Comparison of Gene Expression in Human Embryonic Stem Cells, hESC-Derived Mesenchymal Stem Cells and Human Mesenchymal Stem Cells

    OpenAIRE

    Romain Barbet; Isabelle Peiffer; Antoinette Hatzfeld; Pierre Charbord; Jacques A. Hatzfeld

    2011-01-01

    We present a strategy to identify developmental/differentiation and plasma membrane marker genes of the most primitive human Mesenchymal Stem Cells (hMSCs). Using sensitive and quantitative TaqMan Low Density Arrays (TLDA) methodology, we compared the expression of 381 genes in human Embryonic Stem Cells (hESCs), hESC-derived MSCs ...

  2. 3 CFR - Guidelines for Human Stem Cell Research

    Science.gov (United States)

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Guidelines for Human Stem Cell Research Presidential Documents Other Presidential Documents Memorandum of July 30, 2009 Guidelines for Human Stem Cell Research..., scientifically worthy human stem cell research, including human embryonic stem cell research, to the extent...

  3. Some Ethical Concerns About Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Zheng, Yue Liang

    2016-10-01

    Human induced pluripotent stem cells can be obtained from somatic cells, and their derivation does not require destruction of embryos, thus avoiding ethical problems arising from the destruction of human embryos. This type of stem cell may provide an important tool for stem cell therapy, but it also results in some ethical concerns. It is likely that abnormal reprogramming occurs in the induction of human induced pluripotent stem cells, and that the stem cells generate tumors in the process of stem cell therapy. Human induced pluripotent stem cells should not be used to clone human beings, to produce human germ cells, nor to make human embryos. Informed consent should be obtained from patients in stem cell therapy.

  4. Stem cells in the human breast

    DEFF Research Database (Denmark)

    Petersen, Ole William; Polyak, Kornelia

    2010-01-01

    The origins of the epithelial cells participating in the development, tissue homeostasis, and cancer of the human breast are poorly understood. However, emerging evidence suggests a role for adult tissue-specific stem cells in these processes. In a hierarchical manner, these generate the two main...... mammary cell lineages, producing an increasing number of cells with distinct properties. Understanding the biological characteristics of human breast stem cells and their progeny is crucial in attempts to compare the features of normal stem cells and cancer precursor cells and distinguish these from...... nonprecursor cells and cells from the bulk of a tumor. A historical overview of research on human breast stem cells in primary tissue and in culture reveals the progress that has been made in this area, whereas a focus on the cell-of-origin and reprogramming that occurs during neoplastic conversion provides...

  5. Gut-derived factors promote neurogenesis of CNS-neural stem cells and nudge their differentiation to an enteric-like neuronal phenotype.

    Science.gov (United States)

    Kulkarni, Subhash; Zou, Bende; Hanson, Jesse; Micci, Maria-Adelaide; Tiwari, Gunjan; Becker, Laren; Kaiser, Martin; Xie, Xinmin Simon; Pasricha, Pankaj Jay

    2011-10-01

    Recent studies have explored the potential of central nervous system-derived neural stem cells (CNS-NSC) to repopulate the enteric nervous system. However, the exact phenotypic fate of gut-transplanted CNS-NSC has not been characterized. The aim of this study was to investigate the effect of the gut microenvironment on phenotypic fate of CNS-NSC in vitro. With the use of Transwell culture, differentiation of mouse embryonic CNS-NSC was studied when cocultured without direct contact with mouse intestinal longitudinal muscle-myenteric plexus preparations (LM-MP) compared with control noncocultured cells, in a differentiating medium. Differentiated cells were analyzed by immunocytochemistry and quantitative RT-PCR to assess the expression of specific markers and by whole cell patch-clamp studies for functional characterization of their phenotype. We found that LM-MP cocultured cells had a significant increase in the numbers of cells that were immune reactive against the panneuronal marker β-tubulin, neurotransmitters neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), and neuropeptide vasoactive intestinal peptide (VIP) and showed an increase in expression of these genes, compared with control cells. Whole cell patch-clamp analysis showed that coculture with LM-MP decreases cell excitability and reduces voltage-gated Na(+) currents but significantly enhances A-current and late afterhyperpolarization (AHP) and increases the expression of the four AHP-generating Ca(2+)-dependent K(+) channel genes (KCNN), compared with control cells. In a separate experiment, differentiation of LM-MP cocultured CNS-NSC produced a significant increase in the numbers of cells that were immune reactive against the neurotransmitters nNOS, ChAT, and the neuropeptide VIP compared with CNS-NSC differentiated similarly in the presence of neonatal brain tissue. Our results show that the gut microenvironment induces CNS-NSC to produce neurons that share some of the

  6. Adult neural stem cells: The promise of the future

    Directory of Open Access Journals (Sweden)

    Philippe Taupin

    2007-01-01

    Full Text Available Philippe TaupinNational Neuroscience Institute, National University of SingaporeAbstract: Stem cells are self-renewing undifferentiated cells that give rise to multiple types of specialized cells of the body. In the adult, stem cells are multipotents and contribute to homeostasis of the tissues and regeneration after injury. Until recently, it was believed that the adult brain was devoid of stem cells, hence unable to make new neurons and regenerate. With the recent evidences that neurogenesis occurs in the adult brain and neural stem cells (NSCs reside in the adult central nervous system (CNS, the adult brain has the potential to regenerate and may be amenable to repair. The function(s of NSCs in the adult CNS remains the source of intense research and debates. The promise of the future of adult NSCs is to redefine the functioning and physiopathology of the CNS, as well as to treat a broad range of CNS diseases and injuries.Keywords: neurogenesis, transdifferentiation, plasticity, cellular therapy

  7. Sensing radiosensitivity of human epidermal stem cells

    International Nuclear Information System (INIS)

    Rachidi, Walid; Harfourche, Ghida; Lemaitre, Gilles; Amiot, Franck; Vaigot, Pierre; Martin, Michele T.

    2007-01-01

    Purpose: Radiosensitivity of stem cells is a matter of debate. For mouse somatic stem cells, both radiosensitive and radioresistant stem cells have been described. By contrast, the response of human stem cells to radiation has been poorly studied. As epidermis is a radiosensitive tissue, we evaluated in the present work the radiosensitivity of cell populations enriched for epithelial stem cells of human epidermis. Methods and materials: The total keratinocyte population was enzymatically isolated from normal human skin. We used flow cytometry and antibodies against cell surface markers to isolate basal cell populations from human foreskin. Cell survival was measured after a dose of 2 Gy with the XTT assay at 72 h after exposure and with a clonogenic assay at 2 weeks. Transcriptome analysis using oligonucleotide microarrays was performed to assess the genomic cell responses to radiation. Results: Cell sorting based on two membrane proteins, α6 integrin and the transferrin receptor CD71, allowed isolation of keratinocyte populations enriched for the two types of cells found in the basal layer of epidermis: stem cells and progenitors. Both the XTT assay and the clonogenic assay showed that the stem cells were radioresistant whereas the progenitors were radiosensitive. We made the hypothesis that upstream DNA damage signalling might be different in the stem cells and used microarray technology to test this hypothesis. The stem cells exhibited a much more reduced gene response to a dose of 2 Gy than the progenitors, as we found that 6% of the spotted genes were regulated in the stem cells and 20% in the progenitors. Using Ingenuity Pathway Analysis software, we found that radiation exposure induced very specific pathways in the stem cells. The most striking responses were the repression of a network of genes involved in apoptosis and the induction of a network of cytokines and growth factors. Conclusion: These results show for the first time that keratinocyte

  8. Differentiation of Inflammation-Responsive Astrocytes from Glial Progenitors Generated from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Santos, Renata; Vadodaria, Krishna C; Jaeger, Baptiste N; Mei, Arianna; Lefcochilos-Fogelquist, Sabrina; Mendes, Ana P D; Erikson, Galina; Shokhirev, Maxim; Randolph-Moore, Lynne; Fredlender, Callie; Dave, Sonia; Oefner, Ruth; Fitzpatrick, Conor; Pena, Monique; Barron, Jerika J; Ku, Manching; Denli, Ahmet M; Kerman, Bilal E; Charnay, Patrick; Kelsoe, John R; Marchetto, Maria C; Gage, Fred H

    2017-06-06

    Astrocyte dysfunction and neuroinflammation are detrimental features in multiple pathologies of the CNS. Therefore, the development of methods that produce functional human astrocytes represents an advance in the study of neurological diseases. Here we report an efficient method for inflammation-responsive astrocyte generation from induced pluripotent stem cells (iPSCs) and embryonic stem cells. This protocol uses an intermediate glial progenitor stage and generates functional astrocytes that show levels of glutamate uptake and calcium activation comparable with those observed in human primary astrocytes. Stimulation of stem cell-derived astrocytes with interleukin-1β or tumor necrosis factor α elicits a strong and rapid pro-inflammatory response. RNA-sequencing transcriptome profiling confirmed that similar gene expression changes occurred in iPSC-derived and primary astrocytes upon stimulation with interleukin-1β. This protocol represents an important tool for modeling in-a-dish neurological diseases with an inflammatory component, allowing for the investigation of the role of diseased astrocytes in neuronal degeneration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Alloimmune Responses of Humanized Mice to Human Pluripotent Stem Cell Therapeutics

    Directory of Open Access Journals (Sweden)

    Nigel G. Kooreman

    2017-08-01

    Full Text Available There is growing interest in using embryonic stem cell (ESC and induced pluripotent stem cell (iPSC derivatives for tissue regeneration. However, an increased understanding of human immune responses to stem cell-derived allografts is necessary for maintaining long-term graft persistence. To model this alloimmunity, humanized mice engrafted with human hematopoietic and immune cells could prove to be useful. In this study, an in-depth analysis of graft-infiltrating human lymphocytes and splenocytes revealed that humanized mice incompletely model human immune responses toward allogeneic stem cells and their derivatives. Furthermore, using an “allogenized” mouse model, we show the feasibility of reconstituting immunodeficient mice with a functional mouse immune system and describe a key role of innate immune cells in the rejection of mouse stem cell allografts.

  10. Comparing the different response of PNS and CNS injured neurons to mesenchymal stem cell treatment.

    Science.gov (United States)

    Monfrini, Marianna; Ravasi, Maddalena; Maggioni, Daniele; Donzelli, Elisabetta; Tredici, Giovanni; Cavaletti, Guido; Scuteri, Arianna

    2018-01-01

    Mesenchymal stem cells (MSCs) are adult bone marrow-derived stem cells actually proposed indifferently for the therapy of neurological diseases of both the Central (CNS) and the Peripheral Nervous System (PNS), as a panacea able to treat so many different diseases by their immunomodulatory ability and supportive action on neuronal survival. However, the identification of the exact mechanism of MSC action in the different diseases, although mandatory to define their real and concrete utility, is still lacking. Moreover, CNS and PNS neurons present many different biological properties, and it is still unclear if they respond in the same manner not only to MSC treatment, but also to injuries. For these reasons, in this study we compared the susceptibility of cortical and sensory neurons both to toxic drug exposure and to MSC action, in order to verify if these two neuronal populations can respond differently. Our results demonstrated that Cisplatin (CDDP), Glutamate, and Paclitaxel-treated sensory neurons were protected by the co-culture with MSCs, in different manners: through direct contact able to block apoptosis for CDDP- and Glutamate-treated neurons, and by the release of trophic factors for Paclitaxel-treated ones. A possible key soluble factor for MSC protection was Glutathione, spontaneously released by these cells. On the contrary, cortical neurons resulted more sensitive than sensory ones to the toxic action of the drugs, and overall MSCs failed to protect them. All these data identified for the first time a different susceptibility of cortical and sensory neurons, and demonstrated a protective action of MSCs only against drugs in peripheral neurotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Zaher, Walid; Al-Nbaheen, May

    2012-01-01

    Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self......-renewal and multi-lineage differentiation into mesoderm-type of cells, e.g., to osteoblasts, adipocytes, chondrocytes and possibly other cell types including hepatocytes and astrocytes. Due to their ease of culture and multipotentiality, hMSC are increasingly employed as a source for cells suitable for a number...

  12. Human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem; Kassem, Moustapha

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of clonogenic cells present among the bone marrow stroma and capable of multilineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. Due to their ease of isolation and their differentiation potential, MSC are being...... introduced into clinical medicine in variety of applications and through different ways of administration. Here, we discuss approaches for isolation, characterization and directing differentiation of human mesenchymal stem cells (hMSC). An update of the current clinical use of the cells is also provided....

  13. Induced pluripotent stem (iPS) cells from human fetal stem cells.

    Science.gov (United States)

    Guillot, Pascale V

    2016-02-01

    Pluripotency defines the ability of stem cells to differentiate into all the lineages of the three germ layers and self-renew indefinitely. Somatic cells can regain the developmental potential of embryonic stem cells following ectopic expression of a set of transcription factors or, in certain circumstances, via modulation of culture conditions and supplementation with small molecule, that is, induced pluripotent stem (iPS) cells. Here, we discuss the use of fetal tissues for reprogramming, focusing in particular on stem cells derived from human amniotic fluid, and the development of chemical reprogramming. We next address the advantages and disadvantages of deriving pluripotent cells from fetal tissues and the potential clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Efficient and Fast Differentiation of Human Neural Stem Cells from Human Embryonic Stem Cells for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Xinxin Han

    2017-01-01

    Full Text Available Stem cell-based therapies have been used for repairing damaged brain tissue and helping functional recovery after brain injury. Aberrance neurogenesis is related with brain injury, and multipotential neural stem cells from human embryonic stem (hES cells provide a great promise for cell replacement therapies. Optimized protocols for neural differentiation are necessary to produce functional human neural stem cells (hNSCs for cell therapy. However, the qualified procedure is scarce and detailed features of hNSCs originated from hES cells are still unclear. In this study, we developed a method to obtain hNSCs from hES cells, by which we could harvest abundant hNSCs in a relatively short time. Then, we examined the expression of pluripotent and multipotent marker genes through immunostaining and confirmed differentiation potential of the differentiated hNSCs. Furthermore, we analyzed the mitotic activity of these hNSCs. In this report, we provided comprehensive features of hNSCs and delivered the knowledge about how to obtain more high-quality hNSCs from hES cells which may help to accelerate the NSC-based therapies in brain injury treatment.

  15. Human stem cells for craniomaxillofacial reconstruction.

    Science.gov (United States)

    Jalali, Morteza; Kirkpatrick, William Niall Alexander; Cameron, Malcolm Gregor; Pauklin, Siim; Vallier, Ludovic

    2014-07-01

    Human stem cell research represents an exceptional opportunity for regenerative medicine and the surgical reconstruction of the craniomaxillofacial complex. The correct architecture and function of the vastly diverse tissues of this important anatomical region are critical for life supportive processes, the delivery of senses, social interaction, and aesthetics. Craniomaxillofacial tissue loss is commonly associated with inflammatory responses of the surrounding tissue, significant scarring, disfigurement, and psychological sequelae as an inevitable consequence. The in vitro production of fully functional cells for skin, muscle, cartilage, bone, and neurovascular tissue formation from human stem cells, may one day provide novel materials for the reconstructive surgeon operating on patients with both hard and soft tissue deficit due to cancer, congenital disease, or trauma. However, the clinical translation of human stem cell technology, including the application of human pluripotent stem cells (hPSCs) in novel regenerative therapies, faces several hurdles that must be solved to permit safe and effective use in patients. The basic biology of hPSCs remains to be fully elucidated and concerns of tumorigenicity need to be addressed, prior to the development of cell transplantation treatments. Furthermore, functional comparison of in vitro generated tissue to their in vivo counterparts will be necessary for confirmation of maturity and suitability for application in reconstructive surgery. Here, we provide an overview of human stem cells in disease modeling, drug screening, and therapeutics, while also discussing the application of regenerative medicine for craniomaxillofacial tissue deficit and surgical reconstruction.

  16. A Chemical Probe that Labels Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Nao Hirata

    2014-03-01

    Full Text Available A small-molecule fluorescent probe specific for human pluripotent stem cells would serve as a useful tool for basic cell biology research and stem cell therapy. Screening of fluorescent chemical libraries with human induced pluripotent stem cells (iPSCs and subsequent evaluation of hit molecules identified a fluorescent compound (Kyoto probe 1 [KP-1] that selectively labels human pluripotent stem cells. Our analyses indicated that the selectivity results primarily from a distinct expression pattern of ABC transporters in human pluripotent stem cells and from the transporter selectivity of KP-1. Expression of ABCB1 (MDR1 and ABCG2 (BCRP, both of which cause the efflux of KP-1, is repressed in human pluripotent stem cells. Although KP-1, like other pluripotent markers, is not absolutely specific for pluripotent stem cells, the identified chemical probe may be used in conjunction with other reagents.

  17. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    International Nuclear Information System (INIS)

    Varga, Nóra; Veréb, Zoltán; Rajnavölgyi, Éva; Német, Katalin; Uher, Ferenc; Sarkadi, Balázs; Apáti, Ágota

    2011-01-01

    Highlights: ► MSC like cells were derived from hESC by a simple and reproducible method. ► Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. ► MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  18. Regional differentiation of retinoic acid-induced human pluripotent embryonic carcinoma stem cell neurons.

    Directory of Open Access Journals (Sweden)

    Dennis E Coyle

    Full Text Available The NTERA2 cl D1 (NT2 cell line, derived from human teratocarcinoma, exhibits similar properties as embryonic stem (ES cells or very early neuroepithelial progenitors. NT2 cells can be induced to become postmitotic central nervous system neurons (NT2N with retinoic acid. Although neurons derived from pluripotent cells, such as NT2N, have been characterized for their neurotransmitter phenotypes, their potential suitability as a donor source for neural transplantation also depends on their ability to respond to localized environmental cues from a specific region of the CNS. Therefore, our study aimed to characterize the regional transcription factors that define the rostocaudal and dorsoventral identity of NT2N derived from a monolayer differentiation paradigm using quantitative PCR (qPCR. Purified NT2N mainly expressed both GABAergic and glutamatergic phenotypes and were electrically active but did not form functional synapses. The presence of immature astrocytes and possible radial glial cells was noted. The NT2N expressed a regional transcription factor code consistent with forebrain, hindbrain and spinal cord neural progenitors but showed minimal expression of midbrain phenotypes. In the dorsoventral plane NT2N expressed both dorsal and ventral neural progenitors. Of major interest was that even under the influence of retinoic acid, a known caudalization factor, the NT2N population maintained a rostral phenotype subpopulation which expressed cortical regional transcription factors. It is proposed that understanding the regional differentiation bias of neurons derived from pluripotent stem cells will facilitate their successful integration into existing neuronal networks within the CNS.

  19. Propagation of human spermatogonial stem cells in vitro.

    Science.gov (United States)

    Sadri-Ardekani, Hooman; Mizrak, Sefika C; van Daalen, Saskia K M; Korver, Cindy M; Roepers-Gajadien, Hermien L; Koruji, Morteza; Hovingh, Suzanne; de Reijke, Theo M; de la Rosette, Jean J M C H; van der Veen, Fulco; de Rooij, Dirk G; Repping, Sjoerd; van Pelt, Ans M M

    2009-11-18

    Young boys treated with high-dose chemotherapy are often confronted with infertility once they reach adulthood. Cryopreserving testicular tissue before chemotherapy and autotransplantation of spermatogonial stem cells at a later stage could theoretically allow for restoration of fertility. To establish in vitro propagation of human spermatogonial stem cells from small testicular biopsies to obtain an adequate number of cells for successful transplantation. Study performed from April 2007 to July 2009 using testis material donated by 6 adult men who underwent orchidectomy as part of prostate cancer treatment. Testicular cells were isolated and cultured in supplemented StemPro medium; germline stem cell clusters that arose were subcultured on human placental laminin-coated dishes in the same medium. Presence of spermatogonia was determined by reverse transcriptase polymerase chain reaction and immunofluorescence for spermatogonial markers. To test for the presence of functional spermatogonial stem cells in culture, xenotransplantation to testes of immunodeficient mice was performed, and migrated human spermatogonial stem cells after transplantation were detected by COT-1 fluorescence in situ hybridization. The number of colonized spermatogonial stem cells transplanted at early and later points during culture were counted to determine propagation. Propagation of spermatogonial stem cells over time. Testicular cells could be cultured and propagated up to 15 weeks. Germline stem cell clusters arose in the testicular cell cultures from all 6 men and could be subcultured and propagated up to 28 weeks. Expression of spermatogonial markers on both the RNA and protein level was maintained throughout the entire culture period. In 4 of 6 men, xenotransplantation to mice demonstrated the presence of functional spermatogonial stem cells, even after prolonged in vitro culture. Spermatogonial stem cell numbers increased 53-fold within 19 days in the testicular cell culture and

  20. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  1. Molecular regulation of human hematopoietic stem cells

    NARCIS (Netherlands)

    van Galen, P.L.J.

    2014-01-01

    Peter van Galen focuses on understanding the determinants that maintain the stem cell state. Using human hematopoietic stem cells (HSCs) as a model, processes that govern self-renewal and tissue regeneration were investigated. Specifically, a role for microRNAs in balancing the human HSC

  2. Nanotechnology & human stem cells: Applications in cardiogenesis and neurogenesis

    Science.gov (United States)

    Tomov, Martin L.

    Human stem cell research holds an unprecedented promise to revolutionize the way we approach medicine and healthcare in general, moving us from a position of mostly addressing the symptoms to a state where treatments can focus on removing the underlying causes of a condition. Stem cell research can shed light into normal developmental pathways, as we are beginning to replicate them in a petri dish and can also be used to model diseases and abnormal conditions. Direct applications can range from finding cures for single or multigene diseases to demonstrating that we can replace these genes with a normal copy. We can even begin to model lifelong conditions such as aging by iPSC technology by relying on fetal, young, adult, and centenarian populations to provide insights into the process. We have also begun to understand the microenvironment in which specific cell populations reside. Being able to replicate the chemical, physical mechanical, and spatial needs of those cells, research groups are successfully generating full organs using cadaver scaffolds of heart and kidney, and there is promising research to reach the same success with other organs, such as the liver, and pancreas. Advances in those areas open an enormous potential to study organs, organoids, organ valves, tubes or other functional elements such as beating cardiomyocytes in vitro. There is also the need to evaluate the whole genome of induced and differentiated cells, with its myriad of interacting pathways. Bioinformatics can help our understanding of embryogenesis, organ differentiation and function. It can also help optimize our stem cell and bio-scaffold tools to advance closer to functional organs and tissues. Such a combination approach will also include pluripotency evaluation and multi-lineage differentiation, as well as platforms that may assist in cell therapies: 3D structures, micro-ribbons, directed patterning to name a few. There is now a clearer path forward with stem cell research than

  3. Human embryonic stem cells handbook

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2013-03-01

    Full Text Available After the Nobel prize in physiology or medicine was awarded jointly to Sir John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent it became imperative to write down the review for a book entirely devoted to human embryonic stem cells (hES, those cells that are a urgent need for researchers, those cells that rekindle the ethical debates and finally, last but not least, those cells whose study paved the way to obtain induced pluripotent stem cells by the OSKC’s Yamanaka method (the OSKC acronim refers, for those not familiar with the topic, to the four stemness genes used to transfect somatic fibroblasts: Oct4, Sox2, Klf4 and c-Myc....

  4. Genome editing: a robust technology for human stem cells.

    Science.gov (United States)

    Chandrasekaran, Arun Pandian; Song, Minjung; Ramakrishna, Suresh

    2017-09-01

    Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.

  5. Contribution of Schwann Cells to Remyelination in a Naturally Occurring Canine Model of CNS Neuroinflammation.

    Directory of Open Access Journals (Sweden)

    Kristel Kegler

    Full Text Available Gliogenesis under pathophysiological conditions is of particular clinical relevance since it may provide evidence for regeneration promoting cells recruitable for therapeutic purposes. There is evidence that neurotrophin receptor p75 (p75NTR-expressing cells emerge in the lesioned CNS. However, the phenotype and identity of these cells, and signals triggering their in situ generation under normal conditions and certain pathological situations has remained enigmatic. In the present study, we used a spontaneous, idiopathic and inflammatory CNS condition in dogs with prominent lympho-histiocytic infiltration as a model to study the phenotype of Schwann cells and their relation to Schwann cell remyelination within the CNS. Furthermore, the phenotype of p75NTR-expressing cells within the injured CNS was compared to their counter-part in control sciatic nerve and after peripheral nerve injury. In addition, organotypic slice cultures were used to further elucidate the origin of p75NTR-positive cells. In cerebral and cerebellar white and grey matter lesions as well as in the brain stem, p75NTR-positive cells co-expressed the transcription factor Sox2, but not GAP-43, GFAP, Egr2/Krox20, periaxin and PDGFR-α. Interestingly, and contrary to the findings in control sciatic nerves, p75NTR-expressing cells only co-localized with Sox2 in degenerative neuropathy, thus suggesting that such cells might represent dedifferentiated Schwann cells both in the injured CNS and PNS. Moreover, effective Schwann cell remyelination represented by periaxin- and P0-positive mature myelinating Schwann cells, was strikingly associated with the presence of p75NTR/Sox2-expressing Schwann cells. Intriguingly, the emergence of dedifferentiated Schwann cells was not affected by astrocytes, and a macrophage-dominated inflammatory response provided an adequate environment for Schwann cells plasticity within the injured CNS. Furthermore, axonal damage was reduced in brain stem areas

  6. Human skeletal muscle-derived stem cells retain stem cell properties after expansion in myosphere culture

    International Nuclear Information System (INIS)

    Wei, Yan; Li, Yuan; Chen, Chao; Stoelzel, Katharina; Kaufmann, Andreas M.; Albers, Andreas E.

    2011-01-01

    Human skeletal muscle contains an accessible adult stem-cell compartment in which differentiated myofibers are maintained and replaced by a self-renewing stem cell pool. Previously, studies using mouse models have established a critical role for resident stem cells in skeletal muscle, but little is known about this paradigm in human muscle. Here, we report the reproducible isolation of a population of cells from human skeletal muscle that is able to proliferate for extended periods of time as floating clusters of rounded cells, termed 'myospheres' or myosphere-derived progenitor cells (MDPCs). The phenotypic characteristics and functional properties of these cells were determined using reverse transcription-polymerase chain reaction (RT-PCR), flow cytometry and immunocytochemistry. Our results showed that these cells are clonogenic, express skeletal progenitor cell markers Pax7, ALDH1, Myod, and Desmin and the stem cell markers Nanog, Sox2, and Oct3/4 significantly elevated over controls. They could be maintained proliferatively active in vitro for more than 20 weeks and passaged at least 18 times, despite an average donor-age of 63 years. Individual clones (4.2%) derived from single cells were successfully expanded showing clonogenic potential and sustained proliferation of a subpopulation in the myospheres. Myosphere-derived cells were capable of spontaneous differentiation into myotubes in differentiation media and into other mesodermal cell lineages in induction media. We demonstrate here that direct culture and expansion of stem cells from human skeletal muscle is straightforward and reproducible with the appropriate technique. These cells may provide a viable resource of adult stem cells for future therapies of disease affecting skeletal muscle or mesenchymal lineage derived cell types.

  7. Current applications of human pluripotent stem cells: possibilities and challenges.

    Science.gov (United States)

    Ho, Pai-Jiun; Yen, Men-Luh; Yet, Shaw-Fang; Yen, B Linju

    2012-01-01

    Stem cells are self-renewable cells with the differentiation capacity to develop into somatic cells with biological functions. This ability to sustain a renewable source of multi- and/or pluripotential differentiation has brought new hope to the field of regenerative medicine in terms of cell therapy and tissue engineering. Moreover, stem cells are invaluable tools as in vitro models for studying diverse fields, from basic scientific questions such as developmental processes and lineage commitment, to practical application including drug screening and testing. The stem cells with widest differentiation potential are pluripotent stem cells (PSCs), which are rare cells with the ability to generate somatic cells from all three germ layers. PSCs are considered the most optimal choice for therapeutic potential of stem cells, bringing new impetus to the field of regenerative medicine. In this article, we discuss the therapeutic potential of human PSCs (hPSCs) including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), reviewing the current preclinical and clinical data using these stem cells. We describe the classification of different sources of hPSCs, ongoing research, and currently encountered clinical obstacles of these novel and versatile human stem cells.

  8. Stem cell markers in the heart of the human newborn

    Directory of Open Access Journals (Sweden)

    Armando Faa

    2016-07-01

    Full Text Available The identification of cardiac progenitor cells in mammals raises the possibility that the human heart contains a population of stem cells capable of generating cardiomyocytes and coronary vessels. Several recent studies now show that the different cell types that characterize the adult human heart arise from a common ancestor. Human cardiac stem cells differentiate into cardiomyocytes, and, in lesser extent, into smooth muscle and endothelial cells. The characterization of human cardiac stem cells (CSCs has important clinical implications. In recent years, CD117 (c-kit has been reported to mark a subtype of stem/progenitor cells in the human heart, with stem cell-like properties, including the ability to self-renewal and clonogenicity multipotentiality. Proceedings of the 2nd International Course on Perinatal Pathology (part of the 11th International Workshop on Neonatology · October 26th-31st, 2015 · Cagliari (Italy · October 31st, 2015 · Stem cells: present and future Guest Editors: Gavino Faa, Vassilios Fanos, Antonio Giordano

  9. Nanotopography Promotes Pancreatic Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Kim, Jong Hyun; Kim, Hyung Woo; Cha, Kyoung Je; Han, Jiyou; Jang, Yu Jin; Kim, Dong Sung; Kim, Jong-Hoon

    2016-03-22

    Although previous studies suggest that nanotopographical features influence properties and behaviors of stem cells, only a few studies have attempted to derive clinically useful somatic cells from human pluripotent stem cells using nanopatterned surfaces. In the present study, we report that polystyrene nanopore-patterned surfaces significantly promote the pancreatic differentiation of human embryonic and induced pluripotent stem cells. We compared different diameters of nanopores and showed that 200 nm nanopore-patterned surfaces highly upregulated the expression of PDX1, a critical transcription factor for pancreatic development, leading to an approximately 3-fold increase in the percentage of differentiating PDX1(+) pancreatic progenitors compared with control flat surfaces. Furthermore, in the presence of biochemical factors, 200 nm nanopore-patterned surfaces profoundly enhanced the derivation of pancreatic endocrine cells producing insulin, glucagon, or somatostatin. We also demonstrate that nanopore-patterned surface-induced upregulation of PDX1 is associated with downregulation of TAZ, suggesting the potential role of TAZ in nanopore-patterned surface-mediated mechanotransduction. Our study suggests that appropriate cytokine treatments combined with nanotopographical stimulation could be a powerful tool for deriving a high purity of desired cells from human pluripotent stem cells.

  10. Chimeric animal models in human stem cell biology.

    Science.gov (United States)

    Glover, Joel C; Boulland, Jean-Luc; Halasi, Gabor; Kasumacic, Nedim

    2009-01-01

    The clinical use of stem cells for regenerative medicine is critically dependent on preclinical studies in animal models. In this review we examine some of the key issues and challenges in the use of animal models to study human stem cell biology-experimental standardization, body size, immunological barriers, cell survival factors, fusion of host and donor cells, and in vivo imaging and tracking. We focus particular attention on the various imaging modalities that can be used to track cells in living animals, comparing their strengths and weaknesses and describing technical developments that are likely to lead to new opportunities for the dynamic assessment of stem cell behavior in vivo. We then provide an overview of some of the most commonly used animal models, their advantages and disadvantages, and examples of their use for xenotypic transplantation of human stem cells, with separate reviews of models involving rodents, ungulates, nonhuman primates, and the chicken embryo. As the use of human somatic, embryonic, and induced pluripotent stem cells increases, so too will the range of applications for these animal models. It is likely that increasingly sophisticated uses of human/animal chimeric models will be developed through advances in genetic manipulation, cell delivery, and in vivo imaging.

  11. Combined small-molecule inhibition accelerates the derivation of functional, early-born, cortical neurons from human pluripotent stem cells

    Science.gov (United States)

    Qi, Yuchen; Zhang, Xin-Jun; Renier, Nicolas; Wu, Zhuhao; Atkin, Talia; Sun, Ziyi; Ozair, M. Zeeshan; Tchieu, Jason; Zimmer, Bastian; Fattahi, Faranak; Ganat, Yosif; Azevedo, Ricardo; Zeltner, Nadja; Brivanlou, Ali H.; Karayiorgou, Maria; Gogos, Joseph; Tomishima, Mark; Tessier-Lavigne, Marc; Shi, Song-Hai; Studer, Lorenz

    2017-01-01

    Considerable progress has been made in converting human pluripotent stem cells (hPSCs) into functional neurons. However, the protracted timing of human neuron specification and functional maturation remains a key challenge that hampers the routine application of hPSC-derived lineages in disease modeling and regenerative medicine. Using a combinatorial small-molecule screen, we previously identified conditions for the rapid differentiation of hPSCs into peripheral sensory neurons. Here we generalize the approach to central nervous system (CNS) fates by developing a small-molecule approach for accelerated induction of early-born cortical neurons. Combinatorial application of 6 pathway inhibitors induces post-mitotic cortical neurons with functional electrophysiological properties by day 16 of differentiation, in the absence of glial cell co-culture. The resulting neurons, transplanted at 8 days of differentiation into the postnatal mouse cortex, are functional and establish long-distance projections, as shown using iDISCO whole brain imaging. Accelerated differentiation into cortical neuron fates should facilitate hPSC-based strategies for disease modeling and cell therapy in CNS disorders. PMID:28112759

  12. Molecular aging and rejuvenation of human muscle stem cells

    DEFF Research Database (Denmark)

    Carlson, Morgan E; Suetta, Charlotte; Conboy, Michael J

    2009-01-01

    . Our findings establish key evolutionarily conserved mechanisms of human stem cell aging. We find that satellite cells are maintained in aged human skeletal muscle, but fail to activate in response to muscle attrition, due to diminished activation of Notch compounded by elevated transforming growth...... factor beta (TGF-beta)/phospho Smad3 (pSmad3). Furthermore, this work reveals that mitogen-activated protein kinase (MAPK)/phosphate extracellular signal-regulated kinase (pERK) signalling declines in human muscle with age, and is important for activating Notch in human muscle stem cells. This molecular......Very little remains known about the regulation of human organ stem cells (in general, and during the aging process), and most previous data were collected in short-lived rodents. We examined whether stem cell aging in rodents could be extrapolated to genetically and environmentally variable humans...

  13. Comparison of the glycosphingolipids of human-induced pluripotent stem cells and human embryonic stem cells.

    Science.gov (United States)

    Säljö, Karin; Barone, Angela; Vizlin-Hodzic, Dzeneta; Johansson, Bengt R; Breimer, Michael E; Funa, Keiko; Teneberg, Susann

    2017-04-01

    High expectations are held for human-induced pluripotent stem cells (hiPSC) since they are established from autologous tissues thus overcoming the risk of allogeneic immune rejection when used in regenerative medicine. However, little is known regarding the cell-surface carbohydrate antigen profile of hiPSC compared with human embryonic stem cells (hESC). Here, glycosphingolipids were isolated from an adipocyte-derived hiPSC line, and hiPSC and hESC glycosphingolipids were compared by concurrent characterization by binding assays with carbohydrate-recognizing ligands and mass spectrometry. A high similarity between the nonacid glycosphingolipids of hiPSC and hESC was found. The nonacid glycosphingolipids P1 pentaosylceramide, x2 pentaosylceramide and H type 1 heptaosylceramide, not previously described in human pluripotent stem cells (hPSC), were characterized in both hiPSC and hESC. The composition of acid glycosphingolipids differed, with increased levels of GM3 ganglioside, and reduced levels of GD1a/GD1b in hiPSC when compared with hESC. In addition, the hESC glycosphingolipids sulf-globopentaosylceramide and sialyl-globotetraosylceramide were lacking in hiPSC. Neural stem cells differentiating from hiPSC had a reduced expression of sialyl-lactotetra, whereas expression of the GD1a ganglioside was significantly increased. Thus, while sialyl-lactotetra is a marker of undifferentiated hPSC, GD1a is a novel marker of neural differentiation. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Transcriptional profiling of putative human epithelial stem cells

    Directory of Open Access Journals (Sweden)

    Koçer Salih S

    2008-07-01

    Full Text Available Abstract Background Human interfollicular epidermis is sustained by the proliferation of stem cells and their progeny, transient amplifying cells. Molecular characterization of these two cell populations is essential for better understanding of self renewal, differentiation and mechanisms of skin pathogenesis. The purpose of this study was to obtain gene expression profiles of alpha 6+/MHCI+, transient amplifying cells and alpha 6+/MHCI-, putative stem cells, and to compare them with existing data bases of gene expression profiles of hair follicle stem cells. The expression of Major Histocompatibility Complex (MHC class I, previously shown to be absent in stem cells in several tissues, and alpha 6 integrin were used to isolate MHCI positive basal cells, and MHCI low/negative basal cells. Results Transcriptional profiles of the two cell populations were determined and comparisons made with published data for hair follicle stem cell gene expression profiles. We demonstrate that presumptive interfollicular stem cells, alpha 6+/MHCI- cells, are enriched in messenger RNAs encoding surface receptors, cell adhesion molecules, extracellular matrix proteins, transcripts encoding members of IFN-alpha family proteins and components of IFN signaling, but contain lower levels of transcripts encoding proteins which take part in energy metabolism, cell cycle, ribosome biosynthesis, splicing, protein translation, degradation, DNA replication, repair, and chromosome remodeling. Furthermore, our data indicate that the cell signaling pathways Notch1 and NF-κB are downregulated/inhibited in MHC negative basal cells. Conclusion This study demonstrates that alpha 6+/MHCI- cells have additional characteristics attributed to stem cells. Moreover, the transcription profile of alpha 6+/MHCI- cells shows similarities to transcription profiles of mouse hair follicle bulge cells known to be enriched for stem cells. Collectively, our data suggests that alpha 6+/MHCI- cells

  15. Pluripotent Stem Cells for Schwann Cell Engineering

    NARCIS (Netherlands)

    Ma, Ming-San; Boddeke, Erik; Copray, Sjef

    Tissue engineering of Schwann cells (SCs) can serve a number of purposes, such as in vitro SC-related disease modeling, treatment of peripheral nerve diseases or peripheral nerve injury, and, potentially, treatment of CNS diseases. SCs can be generated from autologous stem cells in vitro by

  16. Transcriptional profiling of adult neural stem-like cells from the human brain.

    Directory of Open Access Journals (Sweden)

    Cecilie Jonsgar Sandberg

    Full Text Available There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33-60. Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate. We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6, foetal human neural stem cells (n = 1 and human brain tissues (n = 12. The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular

  17. Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model.

    Directory of Open Access Journals (Sweden)

    Desirée L Salazar

    2010-08-01

    Full Text Available Traumatic spinal cord injury (SCI results in partial or complete paralysis and is characterized by a loss of neurons and oligodendrocytes, axonal injury, and demyelination/dysmyelination of spared axons. Approximately 1,250,000 individuals have chronic SCI in the U.S.; therefore treatment in the chronic stages is highly clinically relevant. Human neural stem cells (hCNS-SCns were prospectively isolated based on fluorescence-activated cell sorting for a CD133(+ and CD24(-/lo population from fetal brain, grown as neurospheres, and lineage restricted to generate neurons, oligodendrocytes and astrocytes. hCNS-SCns have recently been transplanted sub-acutely following spinal cord injury and found to promote improved locomotor recovery. We tested the ability of hCNS-SCns transplanted 30 days post SCI to survive, differentiate, migrate, and promote improved locomotor recovery.hCNS-SCns were transplanted into immunodeficient NOD-scid mice 30 days post spinal cord contusion injury. hCNS-SCns transplanted mice demonstrated significantly improved locomotor recovery compared to vehicle controls using open field locomotor testing and CatWalk gait analysis. Transplanted hCNS-SCns exhibited long-term engraftment, migration, limited proliferation, and differentiation predominantly to oligodendrocytes and neurons. Astrocytic differentiation was rare and mice did not exhibit mechanical allodynia. Furthermore, differentiated hCNS-SCns integrated with the host as demonstrated by co-localization of human cytoplasm with discrete staining for the paranodal marker contactin-associated protein.The results suggest that hCNS-SCns are capable of surviving, differentiating, and promoting improved locomotor recovery when transplanted into an early chronic injury microenvironment. These data suggest that hCNS-SCns transplantation has efficacy in an early chronic SCI setting and thus expands the "window of opportunity" for intervention.

  18. Modeling human infertility with pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Di Chen

    2017-05-01

    Full Text Available Human fertility is dependent upon the correct establishment and differentiation of the germline. This is because no other cell type in the body is capable of passing a genome and epigenome from parent to child. Terminally differentiated germline cells in the adult testis and ovary are called gametes. However, the initial specification of germline cells occurs in the embryo around the time of gastrulation. Most of our knowledge regarding the cell and molecular events that govern human germline specification involves extrapolating scientific principles from model organisms, most notably the mouse. However, recent work using next generation sequencing, gene editing and differentiation of germline cells from pluripotent stem cells has revealed that the core molecular mechanisms that regulate human germline development are different from rodents. Here, we will discuss the major molecular pathways required for human germline differentiation and how pluripotent stem cells have revolutionized our ability to study the earliest steps in human embryonic lineage specification in order to understand human fertility.

  19. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells

    Science.gov (United States)

    Yang, Ruifeng; Zheng, Ying; Burrows, Michelle; Liu, Shujing; Wei, Zhi; Nace, Arben; Guo, Wei; Kumar, Suresh; Cotsarelis, George; Xu, Xiaowei

    2014-01-01

    Epithelial stem cells (EpSCs) in the hair follicle bulge are required for hair follicle growth and cycling. The isolation and propagation of human EpSCs for tissue engineering purposes remains a challenge. Here we develop a strategy to differentiate human iPSCs (hiPSCs) into CD200+/ITGA6+ EpSCs that can reconstitute the epithelial components of the hair follicle and interfollicular epidermis. The hiPSC-derived CD200+/ITGA6+ cells show a similar gene expression signature as EpSCs directly isolated from human hair follicles. Human iPSC-derived CD200+/ITGA6+ cells are capable of generating all hair follicle lineages including the hair shaft, and the inner and outer root sheaths in skin reconstitution assays. The regenerated hair follicles possess a KRT15+ stem cell population and produce hair shafts expressing hair-specific keratins. These results suggest an approach for generating large numbers of human EpSCs for tissue engineering and new treatments for hair loss, wound healing and other degenerative skin disorders.

  20. HLA engineering of human pluripotent stem cells.

    Science.gov (United States)

    Riolobos, Laura; Hirata, Roli K; Turtle, Cameron J; Wang, Pei-Rong; Gornalusse, German G; Zavajlevski, Maja; Riddell, Stanley R; Russell, David W

    2013-06-01

    The clinical use of human pluripotent stem cells and their derivatives is limited by the rejection of transplanted cells due to differences in their human leukocyte antigen (HLA) genes. This has led to the proposed use of histocompatible, patient-specific stem cells; however, the preparation of many different stem cell lines for clinical use is a daunting task. Here, we develop two distinct genetic engineering approaches that address this problem. First, we use a combination of gene targeting and mitotic recombination to derive HLA-homozygous embryonic stem cell (ESC) subclones from an HLA-heterozygous parental line. A small bank of HLA-homozygous stem cells with common haplotypes would match a significant proportion of the population. Second, we derive HLA class I-negative cells by targeted disruption of both alleles of the Beta-2 Microglobulin (B2M) gene in ESCs. Mixed leukocyte reactions and peptide-specific HLA-restricted CD8(+) T cell responses were reduced in class I-negative cells that had undergone differentiation in embryoid bodies. These B2M(-/-) ESCs could act as universal donor cells in applications where the transplanted cells do not express HLA class II genes. Both approaches used adeno-associated virus (AAV) vectors for efficient gene targeting in the absence of potentially genotoxic nucleases, and produced pluripotent, transgene-free cell lines.

  1. HLA Engineering of Human Pluripotent Stem Cells

    Science.gov (United States)

    Riolobos, Laura; Hirata, Roli K; Turtle, Cameron J; Wang, Pei-Rong; Gornalusse, German G; Zavajlevski, Maja; Riddell, Stanley R; Russell, David W

    2013-01-01

    The clinical use of human pluripotent stem cells and their derivatives is limited by the rejection of transplanted cells due to differences in their human leukocyte antigen (HLA) genes. This has led to the proposed use of histocompatible, patient-specific stem cells; however, the preparation of many different stem cell lines for clinical use is a daunting task. Here, we develop two distinct genetic engineering approaches that address this problem. First, we use a combination of gene targeting and mitotic recombination to derive HLA-homozygous embryonic stem cell (ESC) subclones from an HLA-heterozygous parental line. A small bank of HLA-homozygous stem cells with common haplotypes would match a significant proportion of the population. Second, we derive HLA class I–negative cells by targeted disruption of both alleles of the Beta-2 Microglobulin (B2M) gene in ESCs. Mixed leukocyte reactions and peptide-specific HLA-restricted CD8+ T cell responses were reduced in class I–negative cells that had undergone differentiation in embryoid bodies. These B2M−/− ESCs could act as universal donor cells in applications where the transplanted cells do not express HLA class II genes. Both approaches used adeno-associated virus (AAV) vectors for efficient gene targeting in the absence of potentially genotoxic nucleases, and produced pluripotent, transgene-free cell lines. PMID:23629003

  2. Comparison of Gene Expression in Human Embryonic Stem Cells, hESC-Derived Mesenchymal Stem Cells and Human Mesenchymal Stem Cells.

    Science.gov (United States)

    Barbet, Romain; Peiffer, Isabelle; Hatzfeld, Antoinette; Charbord, Pierre; Hatzfeld, Jacques A

    2011-01-01

    We present a strategy to identify developmental/differentiation and plasma membrane marker genes of the most primitive human Mesenchymal Stem Cells (hMSCs). Using sensitive and quantitative TaqMan Low Density Arrays (TLDA) methodology, we compared the expression of 381 genes in human Embryonic Stem Cells (hESCs), hESC-derived MSCs (hES-MSCs), and hMSCs. Analysis of differentiation genes indicated that hES-MSCs express the sarcomeric muscle lineage in addition to the classical mesenchymal lineages, suggesting they are more primitive than hMSCs. Transcript analysis of membrane antigens suggests that IL1R1(low), BMPR1B(low), FLT4(low), LRRC32(low), and CD34 may be good candidates for the detection and isolation of the most primitive hMSCs. The expression in hMSCs of cytokine genes, such as IL6, IL8, or FLT3LG, without expression of the corresponding receptor, suggests a role for these cytokines in the paracrine control of stem cell niches. Our database may be shared with other laboratories in order to explore the considerable clinical potential of hES-MSCs, which appear to represent an intermediate developmental stage between hESCs and hMSCs.

  3. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells

    Science.gov (United States)

    Lafaille, Fabien G; Pessach, Itai M.; Zhang, Shen-Ying; Ciancanelli, Michael J.; Herman, Melina; Abhyankar, Avinash; Ying, Shui-Wang; Keros, Sotirios; Goldstein, Peter A.; Mostoslavsky, Gustavo; Ordovas-Montanes, Jose; Jouanguy, Emmanuelle; Plancoulaine, Sabine; Tu, Edmund; Elkabetz, Yechiel; Al-Muhsen, Saleh; Tardieu, Marc; Schlaeger, Thorsten M.; Daley, George Q.; Abel, Laurent; Casanova, Jean-Laurent; Studer, Lorenz; Notarangelo, Luigi D.

    2012-01-01

    In the course of primary infection with herpes simplex virus 1 (HSV-1), children with inborn errors of TLR3 immunity are prone to HSV-1 encephalitis (HSE) 1–3. We tested the hypothesis that the pathogenesis of HSE involves non hematopoietic central nervous system (CNS)-resident cells. We derived induced pluripotent stem cells (iPSCs) from the dermal fibroblasts of TLR3- and UNC-93B-deficient patients and from controls. These iPSCs were differentiated into highly purified populations of neural stem cells (NSCs), neurons, astrocytes and oligodendrocytes. The induction of IFN-β and/or IFN-γ1 in response to poly(I:C) stimulation was dependent on TLR3 and UNC-93B in all cells tested. However, the induction of IFN-β and IFN-γ1 in response to HSV-1 infection was impaired selectively in UNC-93B-deficient neurons and oligodendrocytes. These cells were also much more susceptible to HSV-1 infection than control cells, whereas UNC-93B-deficient NSCs and astrocytes were not. TLR3-deficient neurons were also found to be susceptible to HSV-1 infection. The rescue of UNC-93B- and TLR3-deficient cells with the corresponding wild-type allele demonstrated that the genetic defect was the cause of the poly(I:C) and HSV-1 phenotypes. The viral infection phenotype was further rescued by treatment with exogenous IFN-α/β, but not IFN-γ1.Thus, impaired TLR3- and UNC-93B-dependent IFN-α/β intrinsic immunity to HSV-1 in the CNS, in neurons and oligodendrocytes in particular, may underlie the pathogenesis of HSE in children with TLR3 pathway deficiencies. PMID:23103873

  4. Genome Editing in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Carlson-Stevermer, Jared; Saha, Krishanu

    2017-01-01

    Genome editing in human pluripotent stem cells (hPSCs) enables the generation of reporter lines and knockout cell lines. Zinc finger nucleases, transcription activator-like effector nucleases (TALENs), and CRISPR/Cas9 technology have recently increased the efficiency of proper gene editing by creating double strand breaks (DSB) at defined sequences in the human genome. These systems typically use plasmids to transiently transcribe nucleases within the cell. Here, we describe the process for preparing hPSCs for transient expression of nucleases via electroporation and subsequent analysis to create genetically modified stem cell lines.

  5. Cardiotoxicity evaluation using human embryonic stem cells and induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Zhao, Qi; Wang, Xijie; Wang, Shuyan; Song, Zheng; Wang, Jiaxian; Ma, Jing

    2017-03-09

    Cardiotoxicity remains an important concern in drug discovery. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have become an attractive platform to evaluate cardiotoxicity. However, the consistency between human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in prediction of cardiotoxicity has yet to be elucidated. Here we screened the toxicities of four representative drugs (E-4031, isoprenaline, quinidine, and haloperidol) using both hESC-CMs and hiPSC-CMs, combined with an impedance-based bioanalytical method. It showed that both hESC-CMs and hiPSC-CMs can recapitulate cardiotoxicity and identify the effects of well-characterized compounds. The combined platform of hPSC-CMs and an impedance-based bioanalytical method could improve preclinical cardiotoxicity screening, holding great potential for increasing drug development accuracy.

  6. Imaging of Human Hepatic Stem Cells In Vivo

    International Nuclear Information System (INIS)

    Hsu, E.W.

    2006-01-01

    Report on progress in MRI and PET of stem cell tracking. Human hepatic stem cell imaging for both MRI and PET have been accomplished within SCID/nod mice, and succeeded in cell specificity labeling with in vitro, ex vivo, and in vivo image tracking. For MRI, stem cell labeling was accomplished by two methods: (1) in vitro labeling the stem cells just prior to in vivo transplantation, and/or (2) transplanting the stem cells into SCID/nod mice and in vivo specificity labeling the cells just prior to MRI. For labeling techniques 1 and 2, multiple image controls were utilized and include: (A) stem cells(-) and contrast label(-), (B) stem cells(+) and contrast label(-), and (C) stem cells(-) and contrast label(+) help to confirm signal noise background interference, which is a result of slight nonspecific cell labeling. Contrast labeled stem cells are directly transplanted into liver tissues, the tissues excised, and immediately MR imaged to determine cell dispersion dynamics. In this method, the contrast labeled cells appear as void foci throughout the organs. The images are imported into Metamorph imaging software and analyzed for foci radii, diameter, and to discern spheroid volumes. Then, cell numbers are extrapolated to understand ''imaged'' cell aggregate requirements using this technique. For this ex vivo method, a cell aggregate of ∼100 stem cells is required to MRI monitor signal activities. For in vivo imaging, contrast labeled human stem cells within SCID/nod mice are also confirmed as small foci voids and are evident within liver tissues. Initially, these short-term studies where accomplished by in vitro labeling stem cells, transplanting the cells, then in vivo imaging the tissues between days 3-15. Next and to avoid imaged time limitations of detaching contrast agents, the proliferative stem cells were labeled after transplantation, and before MR imaging. This was accomplished to confirm the ability to specifically label unique cell subsets after the

  7. Sequential cancer mutations in cultured human intestinal stem cells

    NARCIS (Netherlands)

    Drost, Jarno; van Jaarsveld, Richard H.; Ponsioen, Bas; Zimberlin, Cheryl; van Boxtel, Ruben; Buijs, Arjan; Sachs, Norman; Overmeer, René M.; Offerhaus, G. Johan; Begthel, Harry; Korving, Jeroen; van de Wetering, Marc; Schwank, Gerald; Logtenberg, Meike; Cuppen, Edwin; Snippert, Hugo J.; Medema, Jan Paul; Kops, Geert J. P. L.; Clevers, Hans

    2015-01-01

    Crypt stem cells represent the cells of origin for intestinal neoplasia. Both mouse and human intestinal stem cells can be cultured in medium containing the stem-cell-niche factors WNT, R-spondin, epidermal growth factor (EGF) and noggin over long time periods as epithelial organoids that remain

  8. Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells

    Science.gov (United States)

    Chen, Song; Zhang, Wei; Wang, Ji-Ming; Duan, Hong-Tao; Kong, Jia-Hui; Wang, Yue-Xin; Dong, Meng; Bi, Xue; Song, Jian

    2016-01-01

    AIM To investigate whether umbilical cord human mesenchymal stem cell (UC-MSC) was able to differentiate into neural stem cell and neuron in vitro. METHODS The umbilical cords were obtained from pregnant women with their written consent and the approval of the Clinic Ethnics Committee. UC-MSC were isolated by adherent culture in the medium contains 20% fetal bovine serum (FBS), then they were maintained in the medium contain 10% FBS and induced to neural cells in neural differentiation medium. We investigated whether UC-MSC was able to differentiate into neural stem cell and neuron in vitro by using flow cytometry, reverse transcriptase-polymerase chain reaction (RT-PCR) and immunofluorescence (IF) analyzes. RESULTS A substantial number of UC-MSC was harvested using the tissue explants adherent method at about 2wk. Flow cytometric study revealed that these cells expressed common markers of MSCs, such as CD105 (SH2), CD73 (SH3) and CD90. After induction of differentiation of neural stem cells, the cells began to form clusters; RT-PCR and IF showed that the neuron specific enolase (NSE) and neurogenic differentiation 1-positive cells reached 87.3%±14.7% and 72.6%±11.8%, respectively. Cells showed neuronal cell differentiation after induced, including neuron-like protrusions, plump cell body, obviously and stronger refraction. RT-PCR and IF analysis showed that microtubule-associated protein 2 (MAP2) and nuclear factor-M-positive cells reached 43.1%±10.3% and 69.4%±19.5%, respectively. CONCLUSION Human umbilical cord derived MSCs can be cultured and proliferated in vitro and differentiate into neural stem cells, which may be a valuable source for cell therapy of neurodegenerative eye diseases. PMID:26949608

  9. Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells

    Directory of Open Access Journals (Sweden)

    Song Chen

    2016-01-01

    Full Text Available AIM: To investigate whether umbilical cord human mesenchymal stem cell (UC-MSC was able to differentiate into neural stem cell and neuron in vitro. METHODS: The umbilical cords were obtained from pregnant women with their written consent and the approval of the Clinic Ethnics Committee. UC-MSC were isolated by adherent culture in the medium contains 20% fetal bovine serum (FBS, then they were maintained in the medium contain 10% FBS and induced to neural cells in neural differentiation medium. We investigated whether UC-MSC was able to differentiate into neural stem cell and neuron in vitro by using flow cytometry, reverse transcriptase-polymerase chain reaction (RT-PCR and immunofluorescence (IF analyzes. RESULTS: A substantial number of UC-MSC was harvested using the tissue explants adherent method at about 2wk. Flow cytometric study revealed that these cells expressed common markers of MSCs, such as CD105 (SH2, CD73 (SH3 and CD90. After induction of differentiation of neural stem cells, the cells began to form clusters; RT-PCR and IF showed that the neuron specific enolase (NSE and neurogenic differentiation 1-positive cells reached 87.3%±14.7% and 72.6%±11.8%, respectively. Cells showed neuronal cell differentiation after induced, including neuron-like protrusions, plump cell body, obviously and stronger refraction. RT-PCR and IF analysis showed that microtubule-associated protein 2 (MAP2 and nuclear factor-M-positive cells reached 43.1%±10.3% and 69.4%±19.5%, respectively. CONCLUSION: Human umbilical cord derived MSCs can be cultured and proliferated in vitro and differentiate into neural stem cells, which may be a valuable source for cell therapy of neurodegenerative eye diseases.

  10. Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells

    International Nuclear Information System (INIS)

    Carlberg, Bjoern; Liu, Johan; Axell, Mathilda Zetterstroem; Kuhn, H Georg; Nannmark, Ulf

    2009-01-01

    Adult central nervous system (CNS) tissue has a limited capacity to recover after trauma or disease. Hence, tissue engineering scaffolds intended for CNS repair and rehabilitation have been subject to intense research effort. Electrospun porous scaffolds, mimicking the natural three-dimensional environment of the in vivo extracellular matrix (ECM) and providing physical support, have been identified as promising candidates for CNS tissue engineering. The present study demonstrates in vitro culturing and neuronal differentiation of human embryonic stem cells (hESCs) on electrospun fibrous polyurethane scaffolds. Electrospun scaffolds composed of biocompatible polyurethane resin (Desmopan 9370A, Bayer MaterialScience AG) were prepared with a vertical electrospinning setup. Resulting scaffolds, with a thickness of approximately 150 μm, exhibited high porosity (84%) and a bimodal pore size distribution with peaks at 5-6 and 1 μm. The mean fiber diameter was measured to approximately 360 nm with a standard deviation of 80 nm. The undifferentiated hESC line SA002 (Cellartis AB, Goeteborg, Sweden) was seeded and cultured on the produced scaffolds and allowed propagation and then differentiation for up to 47 days. Cultivation of hESC on electrospun fibrous scaffolds proved successful and neuronal differentiation was observed via standard immunocytochemistry. The results indicate that predominantly dopaminergic tyrosine hydroxylase (TH) positive neurons are derived in co-culture with fibrous scaffolds, in comparison to reference cultures under the same differentiation conditions displaying large proportions of GFAP positive cell types. Scanning electron micrographs confirm neurite outgrowth and connection to adjacent cells, as well as cell attachment to individual fibers of the fibrous scaffold. Consequently, electrospun polyurethane scaffolds have been proven feasible as a substrate for hESC propagation and neuronal differentiation. The physical interaction between cells

  11. Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Carlberg, Bjoern; Liu, Johan [BioNano Systems Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Goeteborg, SE-412 96 (Sweden); Axell, Mathilda Zetterstroem; Kuhn, H Georg [Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Goeteborg, SE-413 45 (Sweden); Nannmark, Ulf, E-mail: bjorn.carlberg@chalmers.s, E-mail: mathilda.zetterstrom@neuro.gu.s, E-mail: georg.kuhn@neuro.gu.s, E-mail: ulf.nannmark@anatcell.gu.s, E-mail: jliu@chalmers.s [Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Goeteborg, SE-405 30 (Sweden)

    2009-08-15

    Adult central nervous system (CNS) tissue has a limited capacity to recover after trauma or disease. Hence, tissue engineering scaffolds intended for CNS repair and rehabilitation have been subject to intense research effort. Electrospun porous scaffolds, mimicking the natural three-dimensional environment of the in vivo extracellular matrix (ECM) and providing physical support, have been identified as promising candidates for CNS tissue engineering. The present study demonstrates in vitro culturing and neuronal differentiation of human embryonic stem cells (hESCs) on electrospun fibrous polyurethane scaffolds. Electrospun scaffolds composed of biocompatible polyurethane resin (Desmopan 9370A, Bayer MaterialScience AG) were prepared with a vertical electrospinning setup. Resulting scaffolds, with a thickness of approximately 150{mu}m, exhibited high porosity (84%) and a bimodal pore size distribution with peaks at 5-6 and 1{mu}m. The mean fiber diameter was measured to approximately 360 nm with a standard deviation of 80 nm. The undifferentiated hESC line SA002 (Cellartis AB, Goeteborg, Sweden) was seeded and cultured on the produced scaffolds and allowed propagation and then differentiation for up to 47 days. Cultivation of hESC on electrospun fibrous scaffolds proved successful and neuronal differentiation was observed via standard immunocytochemistry. The results indicate that predominantly dopaminergic tyrosine hydroxylase (TH) positive neurons are derived in co-culture with fibrous scaffolds, in comparison to reference cultures under the same differentiation conditions displaying large proportions of GFAP positive cell types. Scanning electron micrographs confirm neurite outgrowth and connection to adjacent cells, as well as cell attachment to individual fibers of the fibrous scaffold. Consequently, electrospun polyurethane scaffolds have been proven feasible as a substrate for hESC propagation and neuronal differentiation. The physical interaction between

  12. Characterizing the radioresponse of pluripotent and multipotent human stem cells.

    Directory of Open Access Journals (Sweden)

    Mary L Lan

    Full Text Available The potential capability of stem cells to restore functionality to diseased or aged tissues has prompted a surge of research, but much work remains to elucidate the response of these cells to genotoxic agents. To more fully understand the impact of irradiation on different stem cell types, the present study has analyzed the radioresponse of human pluripotent and multipotent stem cells. Human embryonic stem (ES cells, human induced pluripotent (iPS cells, and iPS-derived human neural stem cells (iPS-hNSCs cells were irradiated and analyzed for cell survival parameters, differentiation, DNA damage and repair and oxidative stress at various times after exposure. While irradiation led to dose-dependent reductions in survival, the fraction of surviving cells exhibited dose-dependent increases in metabolic activity. Irradiation did not preclude germ layer commitment of ES cells, but did promote neuronal differentiation. ES cells subjected to irradiation exhibited early apoptosis and inhibition of cell cycle progression, but otherwise showed normal repair of DNA double-strand breaks. Cells surviving irradiation also showed acute and persistent increases in reactive oxygen and nitrogen species that were significant at nearly all post-irradiation times analyzed. We suggest that stem cells alter their redox homeostasis to adapt to adverse conditions and that radiation-induced oxidative stress plays a role in regulating the function and fate of stem cells within tissues compromised by radiation injury.

  13. The ethics of patenting human embryonic stem cells.

    Science.gov (United States)

    Chapman, Audrey R

    2009-09-01

    Just as human embryonic stem cell research has generated controversy about the uses of human embryos for research and therapeutic applications, human embryonic stem cell patents raise fundamental ethical issues. The United States Patent and Trademark Office has granted foundational patents, including a composition of matter (or product) patent to the Wisconsin Alumni Research Foundation (WARF), the University of Wisconsin-Madison's intellectual property office. In contrast, the European Patent Office rejected the same WARF patent application for ethical reasons. This article assesses the appropriateness of these patents placing the discussion in the context of the deontological and consequentialist ethical issues related to human embryonic stem cell patenting. It advocates for a patent system that explicitly takes ethical factors into account and explores options for new types of intellectual property arrangements consistent with ethical concerns.

  14. Diploid, but not haploid, human embryonic stem cells can be derived from microsurgically repaired tripronuclear human zygotes

    Science.gov (United States)

    Fan, Yong; Li, Rong; Huang, Jin; Yu, Yang; Qiao, Jie

    2013-01-01

    Human embryonic stem cells have shown tremendous potential in regenerative medicine, and the recent progress in haploid embryonic stem cells provides new insights for future applications of embryonic stem cells. Disruption of normal fertilized embryos remains controversial; thus, the development of a new source for human embryonic stem cells is important for their usefulness. Here, we investigated the feasibility of haploid and diploid embryo reconstruction and embryonic stem cell derivation using microsurgically repaired tripronuclear human zygotes. Diploid and haploid zygotes were successfully reconstructed, but a large proportion of them still had a tripolar spindle assembly. The reconstructed embryos developed to the blastocyst stage, although the loss of chromosomes was observed in these zygotes. Finally, triploid and diploid human embryonic stem cells were derived from tripronuclear and reconstructed zygotes (from which only one pronucleus was removed), but haploid human embryonic stem cells were not successfully derived from the reconstructed zygotes when two pronuclei were removed. Both triploid and diploid human embryonic stem cells showed the general characteristics of human embryonic stem cells. These results indicate that the lower embryo quality resulting from abnormal spindle assembly contributed to the failure of the haploid embryonic stem cell derivation. However, the successful derivation of diploid embryonic stem cells demonstrated that microsurgical tripronuclear zygotes are an alternative source of human embryonic stem cells. In the future, improving spindle assembly will facilitate the application of triploid zygotes to the field of haploid embryonic stem cells. PMID:23255130

  15. A chemically defined substrate for the expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells.

    Science.gov (United States)

    Tsai, Yihuan; Cutts, Josh; Kimura, Azuma; Varun, Divya; Brafman, David A

    2015-07-01

    Due to the limitation of current pharmacological therapeutic strategies, stem cell therapies have emerged as a viable option for treating many incurable neurological disorders. Specifically, human pluripotent stem cell (hPSC)-derived neural progenitor cells (hNPCs), a multipotent cell population that is capable of near indefinite expansion and subsequent differentiation into the various cell types that comprise the central nervous system (CNS), could provide an unlimited source of cells for such cell-based therapies. However the clinical application of these cells will require (i) defined, xeno-free conditions for their expansion and neuronal differentiation and (ii) scalable culture systems that enable their expansion and neuronal differentiation in numbers sufficient for regenerative medicine and drug screening purposes. Current extracellular matrix protein (ECMP)-based substrates for the culture of hNPCs are expensive, difficult to isolate, subject to batch-to-batch variations, and, therefore, unsuitable for clinical application of hNPCs. Using a high-throughput array-based screening approach, we identified a synthetic polymer, poly(4-vinyl phenol) (P4VP), that supported the long-term proliferation and self-renewal of hNPCs. The hNPCs cultured on P4VP maintained their characteristic morphology, expressed high levels of markers of multipotency, and retained their ability to differentiate into neurons. Such chemically defined substrates will eliminate critical roadblocks for the utilization of hNPCs for human neural regenerative repair, disease modeling, and drug discovery. Copyright © 2015. Published by Elsevier B.V.

  16. A chemically defined substrate for the expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Yihuan Tsai

    2015-07-01

    Full Text Available Due to the limitation of current pharmacological therapeutic strategies, stem cell therapies have emerged as a viable option for treating many incurable neurological disorders. Specifically, human pluripotent stem cell (hPSC-derived neural progenitor cells (hNPCs, a multipotent cell population that is capable of near indefinite expansion and subsequent differentiation into the various cell types that comprise the central nervous system (CNS, could provide an unlimited source of cells for such cell-based therapies. However the clinical application of these cells will require (i defined, xeno-free conditions for their expansion and neuronal differentiation and (ii scalable culture systems that enable their expansion and neuronal differentiation in numbers sufficient for regenerative medicine and drug screening purposes. Current extracellular matrix protein (ECMP-based substrates for the culture of hNPCs are expensive, difficult to isolate, subject to batch-to-batch variations, and, therefore, unsuitable for clinical application of hNPCs. Using a high-throughput array-based screening approach, we identified a synthetic polymer, poly(4-vinyl phenol (P4VP, that supported the long-term proliferation and self-renewal of hNPCs. The hNPCs cultured on P4VP maintained their characteristic morphology, expressed high levels of markers of multipotency, and retained their ability to differentiate into neurons. Such chemically defined substrates will eliminate critical roadblocks for the utilization of hNPCs for human neural regenerative repair, disease modeling, and drug discovery.

  17. Strand displacement amplification for ultrasensitive detection of human pluripotent stem cells.

    Science.gov (United States)

    Wu, Wei; Mao, Yiping; Zhao, Shiming; Lu, Xuewen; Liang, Xingguo; Zeng, Lingwen

    2015-06-30

    Human pluripotent stem cells (hPSCs), such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), provide a powerful model system for studies of cellular identity and early mammalian development, which hold great promise for regenerative medicine. It is necessary to develop a convenient method to discriminate hPSCs from other cells in clinics and basic research. Herein, a simple and reliable biosensor for stem cell detection was established. In this biosensor system, stage-specific embryonic antigen-3 (SSEA-3) and stage-specific embryonic antigen-4 (SSEA-4) were used to mark human pluripotent stem cells (hPSCs). Antibody specific for SSEA-3 was coated onto magnetic beads for hPSCs enrichment, and antibody specific for SSEA-4 was conjugated with carboxyl-modified tDNA sequence which was used as template for strand displacement amplification (SDA). The amplified single strand DNA (ssDNA) was detected with a lateral flow biosensor (LFB). This biosensor is capable of detecting a minimum of 19 human embryonic stem cells by a strip reader and 100 human embryonic stem cells by the naked eye within 80min. This approach has also shown excellent specificity to distinguish hPSCs from other types of cells, showing that it is promising for specific and handy detection of human pluripotent stem cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The continuum of stem cell transdifferentiation: possibility of hematopoietic stem cell plasticity with concurrent CD45 expression.

    Science.gov (United States)

    Udani, V M

    2006-02-01

    Recent years have seen a surge of scientific research examining adult stem cell plasticity. For example, the hematopoietic stem cell has been shown to give rise to skin, respiratory epithelium, intestinal epithelium, renal epithelium, liver parenchyma, pancreas, skeletal muscle, vascular endothelium, myocardium, and central nervous system (CNS) neurons. The potential for such stem cell plasticity seems to be enhanced by stressors such as injury and neoplasia. Interestingly, recent studies have demonstrated that hematopoietic stem cells may be able to adopt certain nonhematopoietic phenotypes, such as endothelial, neural, or skeletal muscle phenotypes, without entirely losing their initial hematopoietic identity. We propose that transdifferentiation can, in certain conditions, be a partial rather than a complete event, and we encourage further investigation into the phenomenon of a stem cell simultaneously expressing phenotypic features of two distinct cell fates.

  19. New Monoclonal Antibodies to Defined Cell Surface Proteins on Human Pluripotent Stem Cells.

    Science.gov (United States)

    O'Brien, Carmel M; Chy, Hun S; Zhou, Qi; Blumenfeld, Shiri; Lambshead, Jack W; Liu, Xiaodong; Kie, Joshua; Capaldo, Bianca D; Chung, Tung-Liang; Adams, Timothy E; Phan, Tram; Bentley, John D; McKinstry, William J; Oliva, Karen; McMurrick, Paul J; Wang, Yu-Chieh; Rossello, Fernando J; Lindeman, Geoffrey J; Chen, Di; Jarde, Thierry; Clark, Amander T; Abud, Helen E; Visvader, Jane E; Nefzger, Christian M; Polo, Jose M; Loring, Jeanne F; Laslett, Andrew L

    2017-03-01

    The study and application of human pluripotent stem cells (hPSCs) will be enhanced by the availability of well-characterized monoclonal antibodies (mAbs) detecting cell-surface epitopes. Here, we report generation of seven new mAbs that detect cell surface proteins present on live and fixed human ES cells (hESCs) and human iPS cells (hiPSCs), confirming our previous prediction that these proteins were present on the cell surface of hPSCs. The mAbs all show a high correlation with POU5F1 (OCT4) expression and other hPSC surface markers (TRA-160 and SSEA-4) in hPSC cultures and detect rare OCT4 positive cells in differentiated cell cultures. These mAbs are immunoreactive to cell surface protein epitopes on both primed and naive state hPSCs, providing useful research tools to investigate the cellular mechanisms underlying human pluripotency and states of cellular reprogramming. In addition, we report that subsets of the seven new mAbs are also immunoreactive to human bone marrow-derived mesenchymal stem cells (MSCs), normal human breast subsets and both normal and tumorigenic colorectal cell populations. The mAbs reported here should accelerate the investigation of the nature of pluripotency, and enable development of robust cell separation and tracing technologies to enrich or deplete for hPSCs and other human stem and somatic cell types. Stem Cells 2017;35:626-640. © 2016 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  20. Β-amyloid 1-42 oligomers impair function of human embryonic stem cell-derived forebrain cholinergic neurons.

    Directory of Open Access Journals (Sweden)

    Linn Wicklund

    Full Text Available Cognitive impairment in Alzheimer's disease (AD patients is associated with a decline in the levels of growth factors, impairment of axonal transport and marked degeneration of basal forebrain cholinergic neurons (BFCNs. Neurogenesis persists in the adult human brain, and the stimulation of regenerative processes in the CNS is an attractive prospect for neuroreplacement therapy in neurodegenerative diseases such as AD. Currently, it is still not clear how the pathophysiological environment in the AD brain affects stem cell biology. Previous studies investigating the effects of the β-amyloid (Aβ peptide on neurogenesis have been inconclusive, since both neurogenic and neurotoxic effects on progenitor cell populations have been reported. In this study, we treated pluripotent human embryonic stem (hES cells with nerve growth factor (NGF as well as with fibrillar and oligomeric Aβ1-40 and Aβ1-42 (nM-µM concentrations and thereafter studied the differentiation in vitro during 28-35 days. The process applied real time quantitative PCR, immunocytochemistry as well as functional studies of intracellular calcium signaling. Treatment with NGF promoted the differentiation into functionally mature BFCNs. In comparison to untreated cells, oligomeric Aβ1-40 increased the number of functional neurons, whereas oligomeric Aβ1-42 suppressed the number of functional neurons. Interestingly, oligomeric Aβ exposure did not influence the number of hES cell-derived neurons compared with untreated cells, while in contrast fibrillar Aβ1-40 and Aβ1-42 induced gliogenesis. These findings indicate that Aβ1-42 oligomers may impair the function of stem cell-derived neurons. We propose that it may be possible for future AD therapies to promote the maturation of functional stem cell-derived neurons by altering the brain microenvironment with trophic support and by targeting different aggregation forms of Aβ.

  1. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin.

    Science.gov (United States)

    Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F; Psathaki, Olympia E; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R; Schlenke, Peter; Zaehres, Holm

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential. Copyright© Ferrata Storti Foundation.

  2. Concise Review: Kidney Generation with Human Pluripotent Stem Cells.

    Science.gov (United States)

    Morizane, Ryuji; Miyoshi, Tomoya; Bonventre, Joseph V

    2017-11-01

    Chronic kidney disease (CKD) is a worldwide health care problem, resulting in increased cardiovascular mortality and often leading to end-stage kidney disease, where patients require kidney replacement therapies such as hemodialysis or kidney transplantation. Loss of functional nephrons contributes to the progression of CKD, which can be attenuated but not reversed due to inability to generate new nephrons in human adult kidneys. Human pluripotent stem cells (hPSCs), by virtue of their unlimited self-renewal and ability to differentiate into cells of all three embryonic germ layers, are attractive sources for kidney regenerative therapies. Recent advances in stem cell biology have identified key signals necessary to maintain stemness of human nephron progenitor cells (NPCs) in vitro, and led to establishment of protocols to generate NPCs and nephron epithelial cells from human fetal kidneys and hPSCs. Effective production of large amounts of human NPCs and kidney organoids will facilitate elucidation of developmental and pathobiological pathways, kidney disease modeling and drug screening as well as kidney regenerative therapies. We summarize the recent studies to induce NPCs and kidney cells from hPSCs, studies of NPC expansion from mouse and human embryonic kidneys, and discuss possible approaches in vivo to regenerate kidneys with cell therapies and the development of bioengineered kidneys. Stem Cells 2017;35:2209-2217. © 2017 AlphaMed Press.

  3. Derivation of Stromal (Skeletal, Mesenchymal) Stem-like cells from Human Embryonic Stem Cells

    DEFF Research Database (Denmark)

    Mahmood, Amer; Harkness, Linda; Abdallah, Basem

    2012-01-01

    EBs using BMP2 (bone morphogenic protein 2) combined with standard osteoblast induction medium led to weak osteoblastic induction. Conversely, subcutaneous in vivo implantation of day 20 hEBs in immune deficient mice, mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) as an osteoconductive scaffold......Derivation of bone forming cells (osteoblasts) from human embryonic stem cells (hESC) is a pre-requisite for their use in clinical applications. However, there is no standard protocol for differentiating hESC into osteoblastic cells. The aim of this study was to identify the emergence of a human...... stromal (mesenchymal, skeletal) stem cell (hMSC)-like population, known to be osteoblastic cell precursors and to test their osteoblastic differentiation capacity in ex vivo cultures and in vivo. We cultured hESC in a feeder-free environment using serum replacement and as suspension aggregates (embryoid...

  4. CNS infiltration of peripheral immune cells: D-Day for neurodegenerative disease?

    Science.gov (United States)

    Rezai-Zadeh, Kavon; Gate, David; Town, Terrence

    2009-12-01

    While the central nervous system (CNS) was once thought to be excluded from surveillance by immune cells, a concept known as "immune privilege," it is now clear that immune responses do occur in the CNS-giving rise to the field of neuroimmunology. These CNS immune responses can be driven by endogenous (glial) and/or exogenous (peripheral leukocyte) sources and can serve either productive or pathological roles. Recent evidence from mouse models supports the notion that infiltration of peripheral monocytes/macrophages limits progression of Alzheimer's disease pathology and militates against West Nile virus encephalitis. In addition, infiltrating T lymphocytes may help spare neuronal loss in models of amyotrophic lateral sclerosis. On the other hand, CNS leukocyte penetration drives experimental autoimmune encephalomyelitis (a mouse model for the human demyelinating disease multiple sclerosis) and may also be pathological in both Parkinson's disease and human immunodeficiency virus encephalitis. A critical understanding of the cellular and molecular mechanisms responsible for trafficking of immune cells from the periphery into the diseased CNS will be key to target these cells for therapeutic intervention in neurodegenerative diseases, thereby allowing neuroregenerative processes to ensue.

  5. Neural stem/progenitor cells as a promising candidate for regenerative therapy of the central nervous system

    Directory of Open Access Journals (Sweden)

    Virginie eBonnamain

    2012-04-01

    Full Text Available Neural transplantation is a promising therapeutic strategy for neurodegenerative diseases and other affections of the central nervous system (CNS like Parkinson and Huntington diseases, multiple sclerosis or stroke. If cell replacement therapy already went through clinical trials for some of these diseases using fetal human neuroblasts, several important limitations led to the search for alternative cell sources that would be more suitable for intracerebral transplantation. Taking into account logistical and ethical issues linked to the use of tissue derived from human fetuses, and the immunologically special status of the CNS allowing the occurrence of deleterious immune reactions, Neural Stem/Progenitor Cells (NSPCs appear as an interesting cell source candidate. In addition to their ability for replacing cell populations lost during the pathological events, NSPCs also display surprising therapeutic effects of neuroprotection and immunomodulation. A better knowledge of the mechanisms involved in these specific characteristics will hopefully lead in the future to a successful use of NSPCs in regenerative medicine for CNS affections.

  6. Tumorigenicity studies for human pluripotent stem cell-derived products.

    Science.gov (United States)

    Kuroda, Takuya; Yasuda, Satoshi; Sato, Yoji

    2013-01-01

    Human pluripotent stem cells (hPSCs), i.e. human embryonic stem cells and human induced pluripotent stem cells, are able to self-renew and differentiate into multiple cell types. Because of these abilities, numerous attempts have been made to utilize hPSCs in regenerative medicine/cell therapy. hPSCs are, however, also tumorigenic, that is, they can give rise to the progressive growth of tumor nodules in immunologically unresponsive animals. Therefore, assessing and managing the tumorigenicity of all final products is essential in order to prevent ectopic tissue formation, tumor development, and/or malignant transformation elicited by residual pluripotent stem cells after implantation. No detailed guideline for the tumorigenicity testing of hPSC-derived products has yet been issued for regenerative medicine/cell therapy, despite the urgent necessity. Here, we describe the current situations and issues related to the tumorigenicity testing of hPSC-derived products and we review the advantages and disadvantages of several types of tumorigenicity-associated tests. We also refer to important considerations in the execution and design of specific studies to monitor the tumorigenicity of hPSC-derived products.

  7. Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells.

    Directory of Open Access Journals (Sweden)

    Leonardo D'Aiuto

    Full Text Available Human cytomegalovirus (HCMV infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs, neural progenitor cells (NPCs and neurons suggests that (i iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii Neural stem cells have impaired differentiation when infected by HCMV; (iii NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv most iPS-derived neurons are not permissive to HCMV infection; and (v infected neurons have impaired calcium influx in response to glutamate.

  8. Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells.

    NARCIS (Netherlands)

    Dormeyer, W.; van Hoof, D.; Braam, S.R.; Heck, A.J.R.; Mummery, C.L.; Krijgsveld, J.

    2008-01-01

    Human embryonic stem cells (hESCs) are of immense interest in regenerative medicine as they can self-renew indefinitely and can give rise to any adult cell type. Human embryonal carcinoma cells (hECCs) are the malignant counterparts of hESCs found in testis tumors. hESCs that have acquired

  9. Identification of molecules derived from human fibroblast feeder cells that support the proliferation of human embryonic stem cells

    DEFF Research Database (Denmark)

    Anisimov, Sergey V.; Christophersen, Nicolaj S.; Correia, Ana S.

    2011-01-01

    The majority of human embryonic stem cell lines depend on a feeder cell layer for continuous growth in vitro, so that they can remain in an undifferentiated state. Limited knowledge is available concerning the molecular mechanisms that underlie the capacity of feeder cells to support both...... the proliferation and pluripotency of these cells. Importantly, feeder cells generally lose their capacity to support human embryonic stem cell proliferation in vitro following long-term culture. In this study, we performed large-scale gene expression profiles of human foreskin fibroblasts during early...... foreskin fibroblasts to serve as feeder cells for human embryonic stem cell cultures. Among these, the C-KIT, leptin and pigment epithelium-derived factor (PEDF) genes were the most interesting candidates....

  10. Human induced pluripotent stem cells on autologous feeders.

    Directory of Open Access Journals (Sweden)

    Kazutoshi Takahashi

    Full Text Available BACKGROUND: For therapeutic usage of induced Pluripotent Stem (iPS cells, to accomplish xeno-free culture is critical. Previous reports have shown that human embryonic stem (ES cells can be maintained in feeder-free condition. However, absence of feeder cells can be a hostile environment for pluripotent cells and often results in karyotype abnormalities. Instead of animal feeders, human fibroblasts can be used as feeder cells of human ES cells. However, one still has to be concerned about the existence of unidentified pathogens, such as viruses and prions in these non-autologous feeders. METHODOLOGY/PRINCIPAL FINDINGS: This report demonstrates that human induced Pluripotent Stem (iPS cells can be established and maintained on isogenic parental feeder cells. We tested four independent human skin fibroblasts for the potential to maintain self-renewal of iPS cells. All the fibroblasts tested, as well as their conditioned medium, were capable of maintaining the undifferentiated state and normal karyotypes of iPS cells. Furthermore, human iPS cells can be generated on isogenic parental fibroblasts as feeders. These iPS cells carried on proliferation over 19 passages with undifferentiated morphologies. They expressed undifferentiated pluripotent cell markers, and could differentiate into all three germ layers via embryoid body and teratoma formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that autologous fibroblasts can be not only a source for iPS cells but also be feeder layers. Our results provide a possibility to solve the dilemma by using isogenic fibroblasts as feeder layers of iPS cells. This is an important step toward the establishment of clinical grade iPS cells.

  11. Human dental pulp stem cells: Applications in future regenerative medicine

    Science.gov (United States)

    Potdar, Pravin D; Jethmalani, Yogita D

    2015-01-01

    Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine. PMID:26131314

  12. In Vitro Cardiomyogenic Potential of Human Amniotic Fluid Stem Cells

    OpenAIRE

    Guan, Xuan; Delo, Dawn M.; Atala, Anthony; Soker, Shay

    2011-01-01

    Stem cell therapy for damaged cardiac tissue is currently limited by a number of factors, including the inability to obtain sufficient cell numbers, the potential tumorigenicity of certain types of stem cells, and the possible link between stem cell therapy and the development of malignant arrhythmias. In this study, we investigated whether human amniotic fluid-derived stem (hAFS) cells could be a potential source of cells for cardiac cell therapy by testing the in vitro differentiation capab...

  13. Male germline stem cells in non-human primates

    Directory of Open Access Journals (Sweden)

    S. Sharma

    2017-09-01

    Full Text Available Over the past few decades, several studies have attempted to decipher the biology of mammalian germline stem cells (GSCs. These studies provide evidence that regulatory mechanisms for germ cell specification and migration are evolutionarily conserved across species. The characteristics and functions of primate GSCs are highly distinct from rodent species; therefore the findings from rodent models cannot be extrapolated to primates. Due to limited availability of human embryonic and testicular samples for research purposes, two non-human primate models (marmoset and macaque monkeys are extensively employed to understand human germline development and differentiation. This review provides a broader introduction to the in vivo and in vitro germline stem cell terminology from primordial to differentiating germ cells. Primordial germ cells (PGCs are the most immature germ cells colonizing the gonad prior to sex differentiation into testes or ovaries. PGC specification and migratory patterns among different primate species are compared in the review. It also reports the distinctions and similarities in expression patterns of pluripotency markers (OCT4A, NANOG, SALL4 and LIN28 during embryonic developmental stages, among marmosets, macaques and humans. This review presents a comparative summary with immunohistochemical and molecular evidence of germ cell marker expression patterns during postnatal developmental stages, among humans and non-human primates. Furthermore, it reports findings from the recent literature investigating the plasticity behavior of germ cells and stem cells in other organs of humans and monkeys. The use of non-human primate models would enable bridging the knowledge gap in primate GSC research and understanding the mechanisms involved in germline development. Reported similarities in regulatory mechanisms and germ cell expression profile in primates demonstrate the preclinical significance of monkey models for development of

  14. New perspectives in human stem cell therapeutic research

    Directory of Open Access Journals (Sweden)

    Trounson Alan

    2009-06-01

    Full Text Available Abstract Human stem cells are in evaluation in clinical stem cell trials, primarily as autologous bone marrow studies, autologous and allogenic mesenchymal stem cell trials, and some allogenic neural stem cell transplantation projects. Safety and efficacy are being addressed for a number of disease state applications. There is considerable data supporting safety of bone marrow and mesenchymal stem cell transplants but the efficacy data are variable and of mixed benefit. Mechanisms of action of many of these cells are unknown and this raises the concern of unpredictable results in the future. Nevertheless there is considerable optimism that immune suppression and anti-inflammatory properties of mesenchymal stem cells will be of benefit for many conditions such as graft versus host disease, solid organ transplants and pulmonary fibrosis. Where bone marrow and mesenchymal stem cells are being studied for heart disease, stroke and other neurodegenerative disorders, again progress is mixed and mostly without significant benefit. However, correction of multiple sclerosis, at least in the short term is encouraging. Clinical trials on the use of embryonic stem cell derivatives for spinal injury and macular degeneration are beginning and a raft of other clinical trials can be expected soon, for example, the use of neural stem cells for killing inoperable glioma and embryonic stem cells for regenerating β islet cells for diabetes. The change in attitude to embryonic stem cell research with the incoming Obama administration heralds a new co-operative environment for study and evaluation of stem cell therapies. The Californian stem cell initiative (California Institute for Regenerative Medicine has engendered global collaboration for this new medicine that will now also be supported by the US Federal Government. The active participation of governments, academia, biotechnology, pharmaceutical companies, and private investment is a powerful consortium for

  15. Directed Differentiation of Human-Induced Pluripotent Stem Cells to Mesenchymal Stem Cells.

    Science.gov (United States)

    Lian, Qizhou; Zhang, Yuelin; Liang, Xiaoting; Gao, Fei; Tse, Hung-Fat

    2016-01-01

    Multipotent stromal cells, also known as mesenchymal stem cells (MSCs), possess great potential to generate a wide range of cell types including endothelial cells, smooth muscle cells, bone, cartilage, and lipid cells. This protocol describes in detail how to perform highly efficient, lineage-specific differentiation of human-induced pluripotent stem cells (iPSCs) with an MSCs fate. The approach uses a clinically compliant protocol with chemically defined media, feeder-free conditions, and a CD105 positive and CD24 negative selection to achieve a single cell-based MSCs derivation from differentiating human pluripotent cells in approximately 20 days. Cells generated with this protocol express typical MSCs surface markers and undergo adipogenesis, osteogenesis, and chondrogenesis similar to adult bone marrow-derived MSCs (BM-MSCs). Nonetheless, compared with adult BM-MSCs, iPSC-MSCs display a higher proliferative capacity, up to 120 passages, without obvious loss of self-renewal potential and constitutively express MSCs surface antigens. MSCs generated with this protocol have numerous applications, including expansion to large scale cell numbers for tissue engineering and the development of cellular therapeutics. This approach has been used to rescue limb ischemia, allergic disorders, and cigarette smoke-induced lung damage and to model mesenchymal and vascular disorders of Hutchinson-Gilford progeria syndrome (HGPS).

  16. Central nervous system infection following allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Hanajiri, Ryo; Kobayashi, Takeshi; Yoshioka, Kosuke; Watanabe, Daisuke; Watakabe, Kyoko; Murata, Yutaka; Hagino, Takeshi; Seno, Yasushi; Najima, Yuho; Igarashi, Aiko; Doki, Noriko; Kakihana, Kazuhiko; Sakamaki, Hisashi; Ohashi, Kazuteru

    2017-03-01

    Here, we described the clinical characteristics and outcomes of central nervous system (CNS) infections occurring after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in a single institution over the previous 6 years. Charts of 353 consecutive allogeneic transplant recipients were retrospectively reviewed for CNS infection. A total of 17 cases of CNS infection were identified at a median of 38 days (range, 10-1028 days) after allo-HSCT. Causative pathogens were human herpesvirus-6 (n=6), enterococcus (n=2), staphylococcus (n=2), streptococcus (n=2), varicella zoster virus (n=1), cytomegalovirus (n=1), John Cunningham virus (n=1), adenovirus (n=1), and Toxoplasma gondii (n=1). The cumulative incidence of CNS infection was 4.1% at 1 year and 5.5% at 5 years. Multivariate analysis revealed that high-risk disease status was a risk factor for developing CNS infection (p=.02), and that overall survival at 3 years after allo-HSCT was 33% in patients with CNS infection and 53% in those without CNS infection (p=.04). Copyright © 2016 King Faisal Specialist Hospital & Research Centre. Published by Elsevier Ltd. All rights reserved.

  17. New frontiers in human cell biology and medicine: can pluripotent stem cells deliver?

    Science.gov (United States)

    Goldstein, Lawrence S B

    2012-11-12

    Human pluripotent stem cells provide enormous opportunities to treat disease using cell therapy. But human stem cells can also drive biomedical and cell biological discoveries in a human model system, which can be directly linked to understanding disease or developing new therapies. Finally, rigorous scientific studies of these cells can and should inform the many science and medical policy issues that confront the translation of these technologies to medicine. In this paper, I discuss these issues using amyotrophic lateral sclerosis as an example.

  18. Human Salivary Gland Stem Cells Functionally Restore Radiation Damaged Salivary Glands

    DEFF Research Database (Denmark)

    Pringle, Sarah; Maimets, Martti; van der Zwaag, Marianne

    2016-01-01

    Adult stem cells are often touted as therapeutic agents in the regenerative medicine field, however data detailing both the engraftment and functional capabilities of solid tissue derived human adult epithelial stem cells is scarce. Here we show the isolation of adult human salivary gland (SG) st...... for the first time that salispheres cultured from human SGs contain stem/progenitor cells capable of self-renewal and differentiation and rescue of saliva production. Our study underpins the therapeutic promise of salisphere cell therapy for the treatment of xerostomia....

  19. Human intestinal tissue with adult stem cell properties derived from pluripotent stem cells

    NARCIS (Netherlands)

    Forster, Ryan; Chiba, Kunitoshi; Schaeffer, Lorian; Regalado, Samuel G; Lai, Christine S; Gao, Qing; Kiani, Samira; Farin, Henner F; Clevers, Hans; Cost, Gregory J; Chan, Andy; Rebar, Edward J; Urnov, Fyodor D; Gregory, Philip D; Pachter, Lior; Jaenisch, Rudolf; Hockemeyer, Dirk

    2014-01-01

    Genetically engineered human pluripotent stem cells (hPSCs) have been proposed as a source for transplantation therapies and are rapidly becoming valuable tools for human disease modeling. However, many applications are limited due to the lack of robust differentiation paradigms that allow for the

  20. Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells

    International Nuclear Information System (INIS)

    Li Hongzhen; Zhou Jianjun; Miki, Jun; Furusato, Bungo; Gu Yongpeng; Srivastava, Shiv; McLeod, David G.; Vogel, Jonathan C.; Rhim, Johng S.

    2008-01-01

    Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin α2β1 hi and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum and 5 μg/ml insulin (DMEM + 10% FBS + Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation

  1. Modelling Neurodegenerative Diseases Using Human Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane

    2016-01-01

    Neurodegenerative diseases are being modelled in-vitro using human patient-specific, induced pluripotent stem cells and transgenic embryonic stem cells to determine more about disease mechanisms, as well as to discover new treatments for patients. Current research in modelling Alzheimer’s disease......, frontotemporal dementia and Parkinson’s disease using pluripotent stem cells is described, along with the advent of gene-editing, which has been the complimentary tool for the field. Current methods used to model these diseases are predominantly dependent on 2D cell culture methods. Outcomes reveal that only...... that includes studying more complex 3D cell cultures, as well as accelerating aging of the neurons, may help to yield stronger phenotypes in the cultured cells. Thus, the use and application of pluripotent stem cells for modelling disease have already shown to be a powerful approach for discovering more about...

  2. The contribution of human/non-human animal chimeras to stem cell research

    Directory of Open Access Journals (Sweden)

    Sonya Levine

    2017-10-01

    Full Text Available Chimeric animals are made up of cells from two separate zygotes. Human/non-human animal chimeras have been used for a number of research purposes, including human disease modeling. Pluripotent stem cell (PSC research has relied upon the chimera approach to examine the developmental potential of stem cells, to determine the efficacy of cell replacement therapies, and to establish a means of producing human organs. Based on ethical issues, this work has faced pushback from various sources including funding agencies. We discuss here the essential role these studies have played, from gaining a better understanding of human biology to providing a stepping stone to human disease treatments. We also consider the major ethical issues, as well as the current status of support for this work in the United States.

  3. The stem cell secretome and its role in brain repair.

    Science.gov (United States)

    Drago, Denise; Cossetti, Chiara; Iraci, Nunzio; Gaude, Edoardo; Musco, Giovanna; Bachi, Angela; Pluchino, Stefano

    2013-12-01

    Compelling evidence exists that non-haematopoietic stem cells, including mesenchymal (MSCs) and neural/progenitor stem cells (NPCs), exert a substantial beneficial and therapeutic effect after transplantation in experimental central nervous system (CNS) disease models through the secretion of immune modulatory or neurotrophic paracrine factors. This paracrine hypothesis has inspired an alternative outlook on the use of stem cells in regenerative neurology. In this paradigm, significant repair of the injured brain may be achieved by injecting the biologics secreted by stem cells (secretome), rather than implanting stem cells themselves for direct cell replacement. The stem cell secretome (SCS) includes cytokines, chemokines and growth factors, and has gained increasing attention in recent years because of its multiple implications for the repair, restoration or regeneration of injured tissues. Thanks to recent improvements in SCS profiling and manipulation, investigators are now inspired to harness the SCS as a novel alternative therapeutic option that might ensure more efficient outcomes than current stem cell-based therapies for CNS repair. This review discusses the most recent identification of MSC- and NPC-secreted factors, including those that are trafficked within extracellular membrane vesicles (EVs), and reflects on their potential effects on brain repair. It also examines some of the most convincing advances in molecular profiling that have enabled mapping of the SCS. Copyright © 2013 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  4. Human induced pluripotent stem cells: A disruptive innovation.

    Science.gov (United States)

    De Vos, J; Bouckenheimer, J; Sansac, C; Lemaître, J-M; Assou, S

    2016-01-01

    This year (2016) will mark the 10th anniversary of the discovery of induced pluripotent stem cells (iPSCs). The finding that the transient expression of four transcription factors can radically remodel the epigenome, transcriptome and metabolome of differentiated cells and reprogram them into pluripotent stem cells has been a major and groundbreaking technological innovation. In this review, we discuss the major applications of this technology that we have grouped in nine categories: a model to study cell fate control; a model to study pluripotency; a model to study human development; a model to study human tissue and organ physiology; a model to study genetic diseases in a dish; a tool for cell rejuvenation; a source of cells for drug screening; a source of cells for regenerative medicine; a tool for the production of human organs in animals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Human pluripotent stem cells: an emerging model in developmental biology.

    Science.gov (United States)

    Zhu, Zengrong; Huangfu, Danwei

    2013-02-01

    Developmental biology has long benefited from studies of classic model organisms. Recently, human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, have emerged as a new model system that offers unique advantages for developmental studies. Here, we discuss how studies of hPSCs can complement classic approaches using model organisms, and how hPSCs can be used to recapitulate aspects of human embryonic development 'in a dish'. We also summarize some of the recently developed genetic tools that greatly facilitate the interrogation of gene function during hPSC differentiation. With the development of high-throughput screening technologies, hPSCs have the potential to revolutionize gene discovery in mammalian development.

  6. Cell fiber-based three-dimensional culture system for highly efficient expansion of human induced pluripotent stem cells.

    Science.gov (United States)

    Ikeda, Kazuhiro; Nagata, Shogo; Okitsu, Teru; Takeuchi, Shoji

    2017-06-06

    Human pluripotent stem cells are a potentially powerful cellular resource for application in regenerative medicine. Because such applications require large numbers of human pluripotent stem cell-derived cells, a scalable culture system of human pluripotent stem cell needs to be developed. Several suspension culture systems for human pluripotent stem cell expansion exist; however, it is difficult to control the thickness of cell aggregations in these systems, leading to increased cell death likely caused by limited diffusion of gases and nutrients into the aggregations. Here, we describe a scalable culture system using the cell fiber technology for the expansion of human induced pluripotent stem (iPS) cells. The cells were encapsulated and cultured within the core region of core-shell hydrogel microfibers, resulting in the formation of rod-shaped or fiber-shaped cell aggregations with sustained thickness and high viability. By encapsulating the cells with type I collagen, we demonstrated a long-term culture of the cells by serial passaging at a high expansion rate (14-fold in four days) while retaining its pluripotency. Therefore, our culture system could be used for large-scale expansion of human pluripotent stem cells for use in regenerative medicine.

  7. Intestinal Stem Cell Dynamics: A Story of Mice and Humans.

    Science.gov (United States)

    Hodder, Michael C; Flanagan, Dustin J; Sansom, Owen J

    2018-06-01

    Stem cell dynamics define the probability of accumulating mutations within the intestinal epithelium. In this issue of Cell Stem Cell, Nicholson et al. (2018) report that human intestinal stem cell dynamics differ significantly from those of mice and establish that oncogenic mutations are more likely to expand; therefore, "normal" epithelium may carry multiple mutations. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Efficient derivation of multipotent neural stem/progenitor cells from non-human primate embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Hiroko Shimada

    Full Text Available The common marmoset (Callithrix jacchus is a small New World primate that has been used as a non-human primate model for various biomedical studies. We previously demonstrated that transplantation of neural stem/progenitor cells (NS/PCs derived from mouse and human embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs promote functional locomotor recovery of mouse spinal cord injury models. However, for the clinical application of such a therapeutic approach, we need to evaluate the efficacy and safety of pluripotent stem cell-derived NS/PCs not only by xenotransplantation, but also allotransplantation using non-human primate models to assess immunological rejection and tumorigenicity. In the present study, we established a culture method to efficiently derive NS/PCs as neurospheres from common marmoset ESCs. Marmoset ESC-derived neurospheres could be passaged repeatedly and showed sequential generation of neurons and astrocytes, similar to that of mouse ESC-derived NS/PCs, and gave rise to functional neurons as indicated by calcium imaging. Although marmoset ESC-derived NS/PCs could not differentiate into oligodendrocytes under default culture conditions, these cells could abundantly generate oligodendrocytes by incorporating additional signals that recapitulate in vivo neural development. Moreover, principal component analysis of microarray data demonstrated that marmoset ESC-derived NS/PCs acquired similar gene expression profiles to those of fetal brain-derived NS/PCs by repeated passaging. Therefore, marmoset ESC-derived NS/PCs may be useful not only for accurate evaluation by allotransplantation of NS/PCs into non-human primate models, but are also applicable to analysis of iPSCs established from transgenic disease model marmosets.

  9. Efficient and rapid derivation of primitive neural stem cells and generation of brain subtype neurons from human pluripotent stem cells.

    Science.gov (United States)

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir; Vemuri, Mohan C

    2013-11-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, are unique cell sources for disease modeling, drug discovery screens, and cell therapy applications. The first step in producing neural lineages from hPSCs is the generation of neural stem cells (NSCs). Current methods of NSC derivation involve the time-consuming, labor-intensive steps of an embryoid body generation or coculture with stromal cell lines that result in low-efficiency derivation of NSCs. In this study, we report a highly efficient serum-free pluripotent stem cell neural induction medium that can induce hPSCs into primitive NSCs (pNSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. The pNSCs expressed the neural stem cell markers Pax6, Sox1, Sox2, and Nestin; were negative for Oct4; could be expanded for multiple passages; and could be differentiated into neurons, astrocytes, and oligodendrocytes, in addition to the brain region-specific neuronal subtypes GABAergic, dopaminergic, and motor neurons. Global gene expression of the transcripts of pNSCs was comparable to that of rosette-derived and human fetal-derived NSCs. This work demonstrates an efficient method to generate expandable pNSCs, which can be further differentiated into central nervous system neurons and glia with temporal, spatial, and positional cues of brain regional heterogeneity. This method of pNSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.

  10. 75 FR 8085 - National Institutes of Health Guidelines for Human Stem Cell Research

    Science.gov (United States)

    2010-02-23

    ... Health Guidelines for Human Stem Cell Research SUMMARY: The National Institutes of Health (NIH) is requesting public comment on a revision to the definition of human embryonic stem cells (hESCs) in the ``National Institutes of Health Guidelines for Human Stem Cell Research'' (Guidelines). On July 7, 2009, NIH...

  11. 75 FR 13137 - National Institutes of Health Guidelines for Human Stem Cell Research

    Science.gov (United States)

    2010-03-18

    ... Health Guidelines for Human Stem Cell Research SUMMARY: The National Institutes of Health (NIH) is extending the public comment period on a revision to the definition of human embryonic stem cells (hESCs) in the ``National Institutes of Health Guidelines for Human Stem Cell Research'' (Guidelines). Due to a...

  12. The contribution of human/non-human animal chimeras to stem cell research.

    Science.gov (United States)

    Levine, Sonya; Grabel, Laura

    2017-10-01

    Chimeric animals are made up of cells from two separate zygotes. Human/non-human animal chimeras have been used for a number of research purposes, including human disease modeling. Pluripotent stem cell (PSC) research has relied upon the chimera approach to examine the developmental potential of stem cells, to determine the efficacy of cell replacement therapies, and to establish a means of producing human organs. Based on ethical issues, this work has faced pushback from various sources including funding agencies. We discuss here the essential role these studies have played, from gaining a better understanding of human biology to providing a stepping stone to human disease treatments. We also consider the major ethical issues, as well as the current status of support for this work in the United States. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. A Method to Identify and Isolate Pluripotent Human Stem Cells and Mouse Epiblast Stem Cells Using Lipid Body-Associated Retinyl Ester Fluorescence

    OpenAIRE

    Thangaselvam Muthusamy; Odity Mukherjee; Radhika Menon; Megha Prakash Bangalore; Mitradas M. Panicker

    2014-01-01

    Summary We describe the use of a characteristic blue fluorescence to identify and isolate pluripotent human embryonic stem cells and human-induced pluripotent stem cells. The blue fluorescence emission (450–500 nm) is readily observed by fluorescence microscopy and correlates with the expression of pluripotency markers (OCT4, SOX2, and NANOG). It allows easy identification and isolation of undifferentiated human pluripotent stem cells, high-throughput fluorescence sorting and subsequent propa...

  14. Induction of Skin-Derived Precursor Cells from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Sugiyama-Nakagiri, Yoriko; Fujimura, Tsutomu; Moriwaki, Shigeru

    2016-01-01

    The generation of full thickness human skin from dissociated cells is an attractive approach not only for treating skin diseases, but also for treating many systemic disorders. However, it is currently not possible to obtain an unlimited number of skin dermal cells. The goal of this study was to develop a procedure to produce skin dermal stem cells from induced pluripotent stem cells (iPSCs). Skin-derived precursor cells (SKPs) were isolated as adult dermal precursors that could differentiate into both neural and mesodermal progenies and could reconstitute the dermis. Thus, we attempted to generate SKPs from iPSCs that could reconstitute the skin dermis. Human iPSCs were initially cultured with recombinant noggin and SB431542, an inhibitor of activin/nodal and TGFβ signaling, to induce neural crest progenitor cells. Those cells were then treated with SKP medium that included CHIR99021, a WNT signal activator. The induction efficacy from neural crest progenitor cells to SKPs was more than 97%. No other modifiers tested were able to induce those cells. Those human iPSC-derived SKPs (hiPSC-SKPs) showed a similar gene expression signature to SKPs isolated from human skin dermis. Human iPSC-SKPs differentiated into neural and mesodermal progenies, including adipocytes, skeletogenic cell types and Schwann cells. Moreover, they could be induced to follicular type keratinization when co-cultured with human epidermal keratinocytes. We here provide a new efficient protocol to create human skin dermal stem cells from hiPSCs that could contribute to the treatment of various skin disorders.

  15. In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Kadivar, Mehdi; Khatami, Shohreh; Mortazavi, Yousef; Shokrgozar, Mohammad Ali; Taghikhani, Mohammad; Soleimani, Masoud

    2006-01-01

    Cardiomyocyte loss in the ischemically injured human heart often leads to irreversible defects in cardiac function. Recently, cellular cardiomyoplasty with mesenchymal stem cells, which are multipotent cells with the ability to differentiate into specialized cells under appropriate stimuli, has emerged as a new approach for repairing damaged myocardium. In the present study, the potential of human umbilical cord-derived mesenchymal stem cells to differentiate into cells with characteristics of cardiomyocyte was investigated. Mesenchymal stem cells were isolated from endothelial/subendothelial layers of the human umbilical cords using a method similar to that of human umbilical vein endothelial cell isolation. Isolated cells were characterized by transdifferentiation ability to adipocytes and osteoblasts, and also with flow cytometry analysis. After treatment with 5-azacytidine, the human umbilical cord-derived mesenchymal stem cells were morphologically transformed into cardiomyocyte-like cells and expressed cardiac differentiation markers. During the differentiation, cells were monitored by a phase contrast microscope and their morphological changes were demonstrated. Immunostaining of the differentiated cells for sarcomeric myosin (MF20), desmin, cardiac troponin I, and sarcomeric α-actinin was positive. RT-PCR analysis showed that these differentiated cells express cardiac-specific genes. Transmission electron microscopy revealed a cardiomyocyte-like ultrastructure and typical sarcomers. These observations confirm that human umbilical cord-derived mesenchymal stem cells can be chemically transformed into cardiomyocytes and can be considered as a source of cells for cellular cardiomyoplasty

  16. Molecular characterisation of stromal populations derived from human embryonic stem cells

    DEFF Research Database (Denmark)

    Harkness, L.; Twine, N. A.; Abu Dawud, R.

    2015-01-01

    Human bone marrow-derived stromal (skeletal) stem cells (BM-hMSC) are being employed in an increasing number of clinical trials for tissue regeneration. A limiting factor for their clinical use is the inability to obtain sufficient cell numbers. Human embryonic stem cells (hESC) can provide an un...

  17. Generation and Characterization of Erythroid Cells from Human Embryonic Stem Cells and Induced Pluripotent Stem Cells: An Overview

    Directory of Open Access Journals (Sweden)

    Kai-Hsin Chang

    2011-01-01

    Full Text Available Because of the imbalance in the supply and demand of red blood cells (RBCs, especially for alloimmunized patients or patients with rare blood phenotypes, extensive research has been done to generate therapeutic quantities of mature RBCs from hematopoietic stem cells of various sources, such as bone marrow, peripheral blood, and cord blood. Since human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs can be maintained indefinitely in vitro, they represent potentially inexhaustible sources of donor-free RBCs. In contrast to other ex vivo stem-cell-derived cellular therapeutics, tumorigenesis is not a concern, as RBCs can be irradiated without marked adverse effects on in vivo function. Here, we provide a comprehensive review of the recent publications relevant to the generation and characterization of hESC- and iPSC-derived erythroid cells and discuss challenges to be met before the eventual realization of clinical usage of these cells.

  18. Nestin-positive mesenchymal stem cells favour the astroglial lineage in neural progenitors and stem cells by releasing active BMP4

    Directory of Open Access Journals (Sweden)

    Leprince Pierre

    2004-09-01

    Full Text Available Abstract Background Spontaneous repair is limited after CNS injury or degeneration because neurogenesis and axonal regrowth rarely occur in the adult brain. As a result, cell transplantation has raised much interest as potential treatment for patients with CNS lesions. Several types of cells have been considered as candidates for such cell transplantation and replacement therapies. Foetal brain tissue has already been shown to have significant effects in patients with Parkinson's disease. Clinical use of the foetal brain tissue is, however, limited by ethical and technical problems as it requires high numbers of grafted foetal cells and immunosuppression. Alternatively, several reports suggested that mesenchymal stem cells, isolated from adult bone marrow, are multipotent cells and could be used in autograft approach for replacement therapies. Results In this study, we addressed the question of the possible influence of mesenchymal stem cells on neural stem cell fate. We have previously reported that adult rat mesenchymal stem cells are able to express nestin in defined culture conditions (in the absence of serum and after 25 cell population doublings and we report here that nestin-positive (but not nestin-negative mesenchymal stem cells are able to favour the astroglial lineage in neural progenitors and stem cells cultivated from embryonic striatum. The increase of the number of GFAP-positive cells is associated with a significant decrease of the number of Tuj1- and O4-positive cells. Using quantitative RT-PCR, we demonstrate that mesenchymal stem cells express LIF, CNTF, BMP2 and BMP4 mRNAs, four cytokines known to play a role in astroglial fate decision. In this model, BMP4 is responsible for the astroglial stimulation and oligodendroglial inhibition, as 1 this cytokine is present in a biologically-active form only in nestin-positive mesenchymal stem cells conditioned medium and 2 anti-BMP4 antibodies inhibit the nestin-positive mesenchymal

  19. Three-dimensional bioprinting of stem-cell derived tissues for human regenerative medicine.

    Science.gov (United States)

    Skeldon, Gregor; Lucendo-Villarin, Baltasar; Shu, Wenmiao

    2018-07-05

    Stem cell technology in regenerative medicine has the potential to provide an unlimited supply of cells for drug testing, medical transplantation and academic research. In order to engineer a realistic tissue model using stem cells as an alternative to human tissue, it is essential to create artificial stem cell microenvironment or niches. Three-dimensional (3D) bioprinting is a promising tissue engineering field that offers new opportunities to precisely place stem cells within their niches layer-by-layer. This review covers bioprinting technologies, the current development of 'bio-inks' and how bioprinting has already been applied to stem-cell culture, as well as their applications for human regenerative medicine. The key considerations for bioink properties such as stiffness, stability and biodegradation, biocompatibility and printability are highlighted. Bioprinting of both adult and pluriopotent stem cells for various types of artificial tissues from liver to brain has been reviewed. 3D bioprinting of stem-cell derived tissues for human regenerative medicine is an exciting emerging area that represents opportunities for new research, industries and products as well as future challenges in clinical translation.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Author(s).

  20. Human induced pluripotent stem cells: a review of the US patent landscape.

    Science.gov (United States)

    Georgieva, Bilyana P; Love, Jane M

    2010-07-01

    Human induced pluripotent stem (iPS) cells and human embryonic stem cells are cells that have the ability to differentiate into a variety of cell types. Embryonic stem cells are derived from human embryos; however, by contrast, human iPS cells can be obtained from somatic cells that have undergone a process of 'reprogramming' via genetic manipulation such that they develop pluripotency. Since iPS cells are not derived from human embryos, they are a less complicated source of human pluripotent cells and are considered valuable research tools and potentially useful in therapeutic applications in regenerative medicine. Worldwide, there are only three issued patents concerning iPS cells. Therefore, the patent landscape in this field is largely undefined. This article provides an overview of the issued patents as well as the pending published patent applications in the field.

  1. Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells.

    Science.gov (United States)

    Salehi, Paria Motamen; Foroutan, Tahereh; Javeri, Arash; Taha, Masoumeh Fakhr

    2017-11-01

    In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Human ADSCs were isolated from subcutaneous abdominal adipose tissue and characterized by flow cytometric analysis for the expression of some mesenchymal stem cell markers and adipogenic and osteogenic differentiation. Frequent freeze-thaw technique was used to prepare cytoplasmic extract of ESCs. Plasma membranes of the ADSCs were reversibly permeabilized by streptolysin-O (SLO). Then the permeabilized ADSCs were incubated with the ESC extract and cultured in resealing medium. After reprogramming, the expression of some pluripotency genes was evaluated by RT-PCR and quantitative real-time PCR (qPCR) analyses. Third-passaged ADSCs showed a fibroblast-like morphology and expressed mesenchymal stem cell markers. They also showed adipogenic and osteogenic differentiation potential. QPCR analysis revealed a significant upregulation in the expression of some pluripotency genes including OCT4 , SOX2 , NANOG , REX1 and ESG1 in the reprogrammed ADSCs compared to the control group. These findings showed that mouse ESC extract can be used to induce reprogramming of human ADSCs. In fact, this method is applicable for reprogramming of human adult stem cells to a more pluripotent sate and may have a potential in regenerative medicine.

  2. Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells.

    Science.gov (United States)

    Kang, N-H; Hwang, K-A; Kim, S U; Kim, Y-B; Hyun, S-H; Jeung, E-B; Choi, K-C

    2012-08-01

    As stem cells are capable of self-renewal and can generate differentiated progenies for organ development, they are considered as potential source for regenerative medicine and tissue replacement after injury or disease. Along with this capacity, stem cells have the therapeutic potential for treating human diseases including cancers. According to the origins, stem cells are broadly classified into two types: embryonic stem cells (ESCs) and adult stem cells. In terms of differentiation potential, ESCs are pluripotent and adult stem cells are multipotent. Amnion, which is a membranous sac that contains the fetus and amniotic fluid and functions in protecting the developing embryo during gestation, is another stem cell source. Amnion-derived stem cells are classified as human amniotic membrane-derived epithelial stem cells, human amniotic membrane-derived mesenchymal stem cells and human amniotic fluid-derived stem cells. They are in an intermediate stage between pluripotent ESCs and lineage-restricted adult stem cells, non-tumorigenic, and contribute to low immunogenicity and anti-inflammation. Furthermore, they are easily available and do not cause any controversial issues in their recovery and applications. Not only are amnion-derived stem cells applicable in regenerative medicine, they have anticancer capacity. In non-engineered stem cells transplantation strategies, amnion-derived stem cells effectively target the tumor and suppressed the tumor growth by expressing cytotoxic cytokines. Additionally, they also have a potential as novel delivery vehicles transferring therapeutic genes to the cancer formation sites in gene-directed enzyme/prodrug combination therapy. Owing to their own advantageous properties, amnion-derived stem cells are emerging as a new candidate in anticancer therapy.

  3. Human Embryonic Stem Cell Therapy in Crohn’s Disease: A Case Report

    Science.gov (United States)

    Shroff, Geeta

    2016-01-01

    Patient: Male, 21 Final Diagnosis: Crohn’s disease Symptoms: Intolerance to specific foods • abdominal pain and diarrhea Medication: Human embryonic stem cell therapy Clinical Procedure: Human embryonic stem cell transplantation Specialty: Gastroenterology Objective: Unusual or unexpected effect of treatment Background: Crohn’s disease is a chronic inflammatory disease of the intestines, mainly the colon and ileum, related with ulcers and fistulae. It is estimated to affect 565 000 people in the United States. Currently available therapies, such as antibiotics, thiopurines, and anti-tumor necrosis factor-alpha agents, are only observed to reduce the complications associated with Crohn’s disease and to improve quality of life, but cannot cure the disease. Stem cell therapy appears to have certain advantages over conventional therapies. Our study aimed to evaluate the efficacy of human embryonic stem cell therapy in a patient with Crohn’s disease. Case Report: A 21-year-old male with chief complaints of intolerance to specific foods, abdominal pain, and diarrhea underwent human embryonic stem cell therapy for two months. After undergoing human embryonic stem cell therapy, the patient showed symptomatic relief. He had no complaints of back pain, abdominal pain, or diarrhea and had improved digestion. The patient had no signs and symptoms of skin infection, and had improved limb stamina, strength, and endurance. The condition of patient was stable after the therapy. Conclusions: Human embryonic stem cell therapy might serve as a new optimistic treatment approach for Crohn’s disease. PMID:26923312

  4. Sex-Dependent Gene Expression in Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Daniel Ronen

    2014-08-01

    Full Text Available Males and females have a variety of sexually dimorphic traits, most of which result from hormonal differences. However, differences between male and female embryos initiate very early in development, before hormonal influence begins, suggesting the presence of genetically driven sexual dimorphisms. By comparing the gene expression profiles of male and X-inactivated female human pluripotent stem cells, we detected Y-chromosome-driven effects. We discovered that the sex-determining gene SRY is expressed in human male pluripotent stem cells and is induced by reprogramming. In addition, we detected more than 200 differentially expressed autosomal genes in male and female embryonic stem cells. Some of these genes are involved in steroid metabolism pathways and lead to sex-dependent differentiation in response to the estrogen precursor estrone. Thus, we propose that the presence of the Y chromosome and specifically SRY may drive sex-specific differences in the growth and differentiation of pluripotent stem cells.

  5. Isolation and characterization of neural stem cells from human fetal striatum

    International Nuclear Information System (INIS)

    Li Xiaoxia; Xu Jinchong; Bai Yun; Wang Xuan; Dai Xin; Liu Yinan; Zhang Jun; Zou Junhua; Shen Li; Li Lingsong

    2005-01-01

    This paper described that neural stem cells (hsNSCs) were isolated and expanded rapidly from human fetal striatum in adherent culture. The population was serum- and growth factor-dependent and expressed neural stem cell markers. They were capable of multi-differentiation into neurons, astrocytes, and oligodendrocytes. When plated in the dopaminergic neuron inducing medium, human striatum neural stem cells could differentiate into tyrosine hydroxylase positive neurons. hsNSCs were morphologically homogeneous and possessed high proliferation ability. The population doubled every 44.28 h and until now it has divided for more than 82 generations in vitro. Normal human diploid karyotype was unchanged throughout the in vitro culture period. Together, this study has exploited a method for continuous and rapid expansion of human neural stem cells as pure population, which maintained the capacity to generate almost fifty percent neurons. The availability of such cells may hold great interest for basic and applied neuroscience

  6. Generation of Oligodendrogenic Spinal Neural Progenitor Cells From Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Khazaei, Mohamad; Ahuja, Christopher S; Fehlings, Michael G

    2017-08-14

    This unit describes protocols for the efficient generation of oligodendrogenic neural progenitor cells (o-NPCs) from human induced pluripotent stem cells (hiPSCs). Specifically, detailed methods are provided for the maintenance and differentiation of hiPSCs, human induced pluripotent stem cell-derived neural progenitor cells (hiPS-NPCs), and human induced pluripotent stem cell-oligodendrogenic neural progenitor cells (hiPSC-o-NPCs) with the final products being suitable for in vitro experimentation or in vivo transplantation. Throughout, cell exposure to growth factors and patterning morphogens has been optimized for both concentration and timing, based on the literature and empirical experience, resulting in a robust and highly efficient protocol. Using this derivation procedure, it is possible to obtain millions of oligodendrogenic-NPCs within 40 days of initial cell plating which is substantially shorter than other protocols for similar cell types. This protocol has also been optimized to use translationally relevant human iPSCs as the parent cell line. The resultant cells have been extensively characterized both in vitro and in vivo and express key markers of an oligodendrogenic lineage. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.

  7. Human Pluripotent Stem Cell Differentiation into Functional Epicardial Progenitor Cells

    NARCIS (Netherlands)

    Guadix, Juan Antonio; Orlova, Valeria V.; Giacomelli, Elisa; Bellin, Milena; Ribeiro, Marcelo C.; Mummery, Christine L.; Pérez-Pomares, José M.; Passier, Robert

    2017-01-01

    Human pluripotent stem cells (hPSCs) are widely used to study cardiovascular cell differentiation and function. Here, we induced differentiation of hPSCs (both embryonic and induced) to proepicardial/epicardial progenitor cells that cover the heart during development. Addition of retinoic acid (RA)

  8. Retinal Ganglion Cell Diversity and Subtype Specification from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Kirstin B. Langer

    2018-04-01

    Full Text Available Summary: Retinal ganglion cells (RGCs are the projection neurons of the retina and transmit visual information to postsynaptic targets in the brain. While this function is shared among nearly all RGCs, this class of cell is remarkably diverse, comprised of multiple subtypes. Previous efforts have identified numerous RGC subtypes in animal models, but less attention has been paid to human RGCs. Thus, efforts of this study examined the diversity of RGCs differentiated from human pluripotent stem cells (hPSCs and characterized defined subtypes through the expression of subtype-specific markers. Further investigation of these subtypes was achieved using single-cell transcriptomics, confirming the combinatorial expression of molecular markers associated with these subtypes, and also provided insight into more subtype-specific markers. Thus, the results of this study describe the derivation of RGC subtypes from hPSCs and will support the future exploration of phenotypic and functional diversity within human RGCs. : In this article, Langer and colleagues present extensive characterization of RGC subtypes derived from human pluripotent stem cells, with multiple subtypes identified by subtype-specific molecular markers. Their results present a more detailed analysis of RGC diversity in human cells and yield the use of different markers to identify RGC subtypes. Keywords: iPSC, retina, retinal ganglion cell, RGC subtype, stem cell, ipRGC, alpha RGC, direction selective RGC, RNA-seq

  9. "NeuroStem Chip": a novel highly specialized tool to study neural differentiation pathways in human stem cells

    Directory of Open Access Journals (Sweden)

    Li Jia-Yi

    2007-02-01

    Full Text Available Abstract Background Human stem cells are viewed as a possible source of neurons for a cell-based therapy of neurodegenerative disorders, such as Parkinson's disease. Several protocols that generate different types of neurons from human stem cells (hSCs have been developed. Nevertheless, the cellular mechanisms that underlie the development of neurons in vitro as they are subjected to the specific differentiation protocols are often poorly understood. Results We have designed a focused DNA (oligonucleotide-based large-scale microarray platform (named "NeuroStem Chip" and used it to study gene expression patterns in hSCs as they differentiate into neurons. We have selected genes that are relevant to cells (i being stem cells, (ii becoming neurons, and (iii being neurons. The NeuroStem Chip has over 1,300 pre-selected gene targets and multiple controls spotted in quadruplicates (~46,000 spots total. In this study, we present the NeuroStem Chip in detail and describe the special advantages it offers to the fields of experimental neurology and stem cell biology. To illustrate the utility of NeuroStem Chip platform, we have characterized an undifferentiated population of pluripotent human embryonic stem cells (hESCs, cell line SA02. In addition, we have performed a comparative gene expression analysis of those cells versus a heterogeneous population of hESC-derived cells committed towards neuronal/dopaminergic differentiation pathway by co-culturing with PA6 stromal cells for 16 days and containing a few tyrosine hydroxylase-positive dopaminergic neurons. Conclusion We characterized the gene expression profiles of undifferentiated and dopaminergic lineage-committed hESC-derived cells using a highly focused custom microarray platform (NeuroStem Chip that can become an important research tool in human stem cell biology. We propose that the areas of application for NeuroStem microarray platform could be the following: (i characterization of the

  10. Towards consistent generation of pancreatic lineage progenitors from human pluripotent stem cells.

    Science.gov (United States)

    Rostovskaya, Maria; Bredenkamp, Nicholas; Smith, Austin

    2015-10-19

    Human pluripotent stem cells can in principle be used as a source of any differentiated cell type for disease modelling, drug screening, toxicology testing or cell replacement therapy. Type I diabetes is considered a major target for stem cell applications due to the shortage of primary human beta cells. Several protocols have been reported for generating pancreatic progenitors by in vitro differentiation of human pluripotent stem cells. Here we first assessed one of these protocols on a panel of pluripotent stem cell lines for capacity to engender glucose sensitive insulin-producing cells after engraftment in immunocompromised mice. We observed variable outcomes with only one cell line showing a low level of glucose response. We, therefore, undertook a systematic comparison of different methods for inducing definitive endoderm and subsequently pancreatic differentiation. Of several protocols tested, we identified a combined approach that robustly generated pancreatic progenitors in vitro from both embryo-derived and induced pluripotent stem cells. These findings suggest that, although there are intrinsic differences in lineage specification propensity between pluripotent stem cell lines, optimal differentiation procedures may consistently direct a substantial fraction of cells into pancreatic specification. © 2015 The Authors.

  11. DNA Repair in Human Pluripotent Stem Cells Is Distinct from That in Non-Pluripotent Human Cells

    Science.gov (United States)

    Luo, Li Z.; Park, Sang-Won; Bates, Steven E.; Zeng, Xianmin; Iverson, Linda E.; O'Connor, Timothy R.

    2012-01-01

    The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use. PMID:22412831

  12. Isolation and functional interrogation of adult human prostate epithelial stem cells at single cell resolution.

    Science.gov (United States)

    Hu, Wen-Yang; Hu, Dan-Ping; Xie, Lishi; Li, Ye; Majumdar, Shyama; Nonn, Larisa; Hu, Hong; Shioda, Toshi; Prins, Gail S

    2017-08-01

    Using primary cultures of normal human prostate epithelial cells, we developed a novel prostasphere-based, label-retention assay that permits identification and isolation of stem cells at a single cell level. Their bona fide stem cell nature was corroborated using in vitro and in vivo regenerative assays and documentation of symmetric/asymmetric division. Robust WNT10B and KRT13 levels without E-cadherin or KRT14 staining distinguished individual stem cells from daughter progenitors in spheroids. Following FACS to isolate label-retaining stem cells from label-free progenitors, RNA-seq identified unique gene signatures for the separate populations which may serve as useful biomarkers. Knockdown of KRT13 or PRAC1 reduced sphere formation and symmetric self-renewal highlighting their role in stem cell maintenance. Pathways analysis identified ribosome biogenesis and membrane estrogen-receptor signaling enriched in stem cells with NF-ĸB signaling enriched in progenitors; activities that were biologically confirmed. Further, bioassays identified heightened autophagy flux and reduced metabolism in stem cells relative to progenitors. These approaches similarly identified stem-like cells from prostate cancer specimens and prostate, breast and colon cancer cell lines suggesting wide applicability. Together, the present studies isolate and identify unique characteristics of normal human prostate stem cells and uncover processes that maintain stem cell homeostasis in the prostate gland. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Isolation and functional interrogation of adult human prostate epithelial stem cells at single cell resolution

    Directory of Open Access Journals (Sweden)

    Wen-Yang Hu

    2017-08-01

    Full Text Available Using primary cultures of normal human prostate epithelial cells, we developed a novel prostasphere-based, label-retention assay that permits identification and isolation of stem cells at a single cell level. Their bona fide stem cell nature was corroborated using in vitro and in vivo regenerative assays and documentation of symmetric/asymmetric division. Robust WNT10B and KRT13 levels without E-cadherin or KRT14 staining distinguished individual stem cells from daughter progenitors in spheroids. Following FACS to isolate label-retaining stem cells from label-free progenitors, RNA-seq identified unique gene signatures for the separate populations which may serve as useful biomarkers. Knockdown of KRT13 or PRAC1 reduced sphere formation and symmetric self-renewal highlighting their role in stem cell maintenance. Pathways analysis identified ribosome biogenesis and membrane estrogen-receptor signaling enriched in stem cells with NF-ĸB signaling enriched in progenitors; activities that were biologically confirmed. Further, bioassays identified heightened autophagy flux and reduced metabolism in stem cells relative to progenitors. These approaches similarly identified stem-like cells from prostate cancer specimens and prostate, breast and colon cancer cell lines suggesting wide applicability. Together, the present studies isolate and identify unique characteristics of normal human prostate stem cells and uncover processes that maintain stem cell homeostasis in the prostate gland.

  14. Human Embryonic Stem Cell Therapy in Crohn's Disease: A Case Report.

    Science.gov (United States)

    Shroff, Geeta

    2016-02-29

    Crohn's disease is a chronic inflammatory disease of the intestines, mainly the colon and ileum, related with ulcers and fistulae. It is estimated to affect 565,000 people in the United States. Currently available therapies, such as antibiotics, thiopurines, and anti-tumor necrosis factor-alpha agents, are only observed to reduce the complications associated with Crohn's disease and to improve quality of life, but cannot cure the disease. Stem cell therapy appears to have certain advantages over conventional therapies. Our study aimed to evaluate the efficacy of human embryonic stem cell therapy in a patient with Crohn's disease. A 21-year-old male with chief complaints of intolerance to specific foods, abdominal pain, and diarrhea underwent human embryonic stem cell therapy for two months. After undergoing human embryonic stem cell therapy, the patient showed symptomatic relief. He had no complaints of back pain, abdominal pain, or diarrhea and had improved digestion. The patient had no signs and symptoms of skin infection, and had improved limb stamina, strength, and endurance. The condition of patient was stable after the therapy. Human embryonic stem cell therapy might serve as a new optimistic treatment approach for Crohn's disease.

  15. Electrical Guidance of Human Stem Cells in the Rat Brain

    Directory of Open Access Journals (Sweden)

    Jun-Feng Feng

    2017-07-01

    Full Text Available Limited migration of neural stem cells in adult brain is a roadblock for the use of stem cell therapies to treat brain diseases and injuries. Here, we report a strategy that mobilizes and guides migration of stem cells in the brain in vivo. We developed a safe stimulation paradigm to deliver directional currents in the brain. Tracking cells expressing GFP demonstrated electrical mobilization and guidance of migration of human neural stem cells, even against co-existing intrinsic cues in the rostral migration stream. Transplanted cells were observed at 3 weeks and 4 months after stimulation in areas guided by the stimulation currents, and with indications of differentiation. Electrical stimulation thus may provide a potential approach to facilitate brain stem cell therapies.

  16. Efficient Generation of Functional Hepatocytes From Human Embryonic Stem Cells and Induced Pluripotent Stem Cells by HNF4α Transduction

    OpenAIRE

    Takayama, Kazuo; Inamura, Mitsuru; Kawabata, Kenji; Katayama, Kazufumi; Higuchi, Maiko; Tashiro, Katsuhisa; Nonaka, Aki; Sakurai, Fuminori; Hayakawa, Takao; Kusuda Furue, Miho; Mizuguchi, Hiroyuki

    2012-01-01

    Hepatocyte-like cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are expected to be a useful source of cells drug discovery. Although we recently reported that hepatic commitment is promoted by transduction of SOX17 and HEX into human ESC- and iPSC-derived cells, these hepatocyte-like cells were not sufficiently mature for drug screening. To promote hepatic maturation, we utilized transduction of the hepatocyte nuclear factor 4α (HNF4α) gene, which is kn...

  17. Nanoscale Mechanical Stimulation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    H Nikukar

    2014-05-01

    We observed significant responses after 1 and 2-week stimulations in cell number, cell shapes and phenotypical markers. Microarray was performed for all groups. Cell count showed normal cell growth with stimulation. However, cell surface area, cell perimeter, and arboration after 1-week stimulation showed significant increases. Immunofluorescent studies have showed significant increase in osteocalcin production after stimulation. Conclusions: Nanoscale mechanical vibration showed significant changes in human mesenchymal stem cell behaviours. Cell morphology changed to become more polygonal and increased expression of the osteoblast markers were noted. These findings with gene regulation changes suggesting nanoscale mechanostimulation has stimulated osteoblastogenesis.  Keywords:  Mesenchymal, Nanoscale, Stem Cells.

  18. Mapping the stem cell state: eight novel human embryonic stem and embryonal carcinoma cell antibodies

    DEFF Research Database (Denmark)

    Wright, A; Andrews, N; Bardsley, K

    2011-01-01

    The antigenic profile of human embryonic stem (ES) and embryonal carcinoma (EC) cells has served as a key element of their characterization, with a common panel of surface and intracellular markers now widely used. Such markers have been used to identify cells within the 'undifferentiated state...... of reactivity for all antibodies against both ES and EC cells, suggesting that these markers will afford recognition of unique sub-states within the undifferentiated stem cell compartment....... and EC cells, and herein describe their characterization. The reactivity of these antibodies against a range of cell lines is reported, as well as their developmental regulation, basic biochemistry and reactivity in immunohistochemistry of testicular germ cell tumours. Our data reveal a range...

  19. DNA damage responses in human induced pluripotent stem cells and embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Olga Momcilovic

    2010-10-01

    Full Text Available Induced pluripotent stem (iPS cells have the capability to undergo self-renewal and differentiation into all somatic cell types. Since they can be produced through somatic cell reprogramming, which uses a defined set of transcription factors, iPS cells represent important sources of patient-specific cells for clinical applications. However, before these cells can be used in therapeutic designs, it is essential to understand their genetic stability.Here, we describe DNA damage responses in human iPS cells. We observe hypersensitivity to DNA damaging agents resulting in rapid induction of apoptosis after γ-irradiation. Expression of pluripotency factors does not appear to be diminished after irradiation in iPS cells. Following irradiation, iPS cells activate checkpoint signaling, evidenced by phosphorylation of ATM, NBS1, CHEK2, and TP53, localization of ATM to the double strand breaks (DSB, and localization of TP53 to the nucleus of NANOG-positive cells. We demonstrate that iPS cells temporary arrest cell cycle progression in the G(2 phase of the cell cycle, displaying a lack of the G(1/S cell cycle arrest similar to human embryonic stem (ES cells. Furthermore, both cell types remove DSB within six hours of γ-irradiation, form RAD51 foci and exhibit sister chromatid exchanges suggesting homologous recombination repair. Finally, we report elevated expression of genes involved in DNA damage signaling, checkpoint function, and repair of various types of DNA lesions in ES and iPS cells relative to their differentiated counterparts.High degrees of similarity in DNA damage responses between ES and iPS cells were found. Even though reprogramming did not alter checkpoint signaling following DNA damage, dramatic changes in cell cycle structure, including a high percentage of cells in the S phase, increased radiosensitivity and loss of DNA damage-induced G(1/S cell cycle arrest, were observed in stem cells generated by induced pluripotency.

  20. Embryonic stem cell-like cells derived from adult human testis

    NARCIS (Netherlands)

    Mizrak, S. C.; Chikhovskaya, J. V.; Sadri-Ardekani, H.; van Daalen, S.; Korver, C. M.; Hovingh, S. E.; Roepers-Gajadien, H. L.; Raya, A.; Fluiter, K.; de Reijke, Th M.; de la Rosette, J. J. M. C. H.; Knegt, A. C.; Belmonte, J. C.; van der Veen, F.; de rooij, D. G.; Repping, S.; van Pelt, A. M. M.

    2010-01-01

    Given the significant drawbacks of using human embryonic stem (hES) cells for regenerative medicine, the search for alternative sources of multipotent cells is ongoing. Studies in mice have shown that multipotent ES-like cells can be derived from neonatal and adult testis. Here we report the

  1. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells.

    Science.gov (United States)

    Vander Griend, Donald J; Karthaus, Wouter L; Dalrymple, Susan; Meeker, Alan; DeMarzo, Angelo M; Isaacs, John T

    2008-12-01

    Resolving the specific cell of origin for prostate cancer is critical to define rational targets for therapeutic intervention and requires the isolation and characterization of both normal human prostate stem cells and prostate cancer-initiating cells (CIC). Single epithelial cells from fresh normal human prostate tissue and prostate epithelial cell (PrEC) cultures derived from them were evaluated for the presence of subpopulations expressing stem cell markers and exhibiting stem-like growth characteristics. When epithelial cell suspensions containing cells expressing the stem cell marker CD133+ are inoculated in vivo, regeneration of stratified human prostate glands requires inductive prostate stromal cells. PrEC cultures contain a small subpopulation of CD133+ cells, and fluorescence-activated cell sorting-purified CD133+ PrECs self-renew and regenerate cell populations expressing markers of transit-amplifying cells (DeltaNp63), intermediate cells (prostate stem cell antigen), and neuroendocrine cells (CD56). Using a series of CD133 monoclonal antibodies, attachment and growth of CD133+ PrECs requires surface expression of full-length glycosylated CD133 protein. Within a series of androgen receptor-positive (AR+) human prostate cancer cell lines, CD133+ cells are present at a low frequency, self-renew, express AR, generate phenotypically heterogeneous progeny negative for CD133, and possess an unlimited proliferative capacity, consistent with CD133+ cells being CICs. Unlike normal adult prostate stem cells, prostate CICs are AR+ and do not require functional CD133. This suggests that (a) AR-expressing prostate CICs are derived from a malignantly transformed intermediate cell that acquires "stem-like activity" and not from a malignantly transformed normal stem cell and (b) AR signaling pathways are a therapeutic target for prostate CICs.

  2. Successful isolation, in vitro expansion and characterization of stem cells from Human Dental Pulp

    OpenAIRE

    Preethy SP; Srinivasan T; Tholcopiyan L; Thamaraikannan P; Srinivasan V; Murugan P; Manjunath S; Kannan TA; Shalini R; Sunil PM; Manikandhan R; Muthu MS; Abraham S

    2010-01-01

    BACKGROUND: Recent studies have shown that mesenchymal stem cells isolated from post natal human dental pulp, (Dental pulp stem cells-DPSCs) which is from permanent teeth and SHED (stem cells from human exfoliated deciduous teeth),the Periodontal ligament stem cells (PDLSC) and Stem cells from root Apical papilla(SCAP)have the potential to differentiate into cells of a variety of tissues including heart, muscle, cartilage, bone, nerve, salivary glands, teeth etc(1,2,3,4).This multipotential a...

  3. Lifespan Extension and Sustained Expression of Stem Cell Phenotype of Human Breast Epithelial Stem Cells in a Medium with Antioxidants

    Directory of Open Access Journals (Sweden)

    Kai-Hung Wang

    2016-01-01

    Full Text Available We have previously reported the isolation and culture of a human breast epithelial cell type with stem cell characteristics (Type I HBEC from reduction mammoplasty using the MSU-1 medium. Subsequently, we have developed several different normal human adult stem cell types from different tissues using the K-NAC medium. In this study, we determined whether this low calcium K-NAC medium with antioxidants (N-acetyl-L-cysteine and L-ascorbic acid-2-phosphate is a better medium to grow human breast epithelial cells. The results clearly show that the K-NAC medium is a superior medium for prolonged growth (cumulative population doubling levels ranged from 30 to 40 of normal breast epithelial cells that expressed stem cell phenotypes. The characteristics of these mammary stem cells include deficiency in gap junctional intercellular communication, expression of Oct-4, and the ability to differentiate into basal epithelial cells and to form organoid showing mammary ductal and terminal end bud-like structures. Thus, this new method of growing Type I HBECs will be very useful in future studies of mammary development, breast carcinogenesis, chemoprevention, and cancer therapy.

  4. Phosphorylation dynamics during early differentiation of human embryonic stem cells

    NARCIS (Netherlands)

    van Hoof, D.; Munoz, J.; Braam, S.R.; Pinkse, M.W.H.; Linding, R.; Heck, A.J.R.; Mummery, C.L.; Krijgsveld, J.

    2009-01-01

    Pluripotent stem cells self-renew indefinitely and possess characteristic protein-protein networks that remodel during differentiation. How this occurs is poorly understood. Using quantitative mass spectrometry, we analyzed the (phospho)proteome of human embryonic stem cells (hESCs) during

  5. Nuclear Nox4 Role in Stemness Power of Human Amniotic Fluid Stem Cells

    Directory of Open Access Journals (Sweden)

    Tullia Maraldi

    2015-01-01

    Full Text Available Human amniotic fluid stem cells (AFSC are an attractive source for cell therapy due to their multilineage differentiation potential and accessibility advantages. However the clinical application of human stem cells largely depends on their capacity to expand in vitro, since there is an extensive donor-to-donor heterogeneity. Reactive oxygen species (ROS and cellular oxidative stress are involved in many physiological and pathophysiological processes of stem cells, including pluripotency, proliferation, differentiation, and stress resistance. The mode of action of ROS is also dependent on the localization of their target molecules. Thus, the modifications induced by ROS can be separated depending on the cellular compartments they affect. NAD(PH oxidase family, particularly Nox4, has been known to produce ROS in the nucleus. In the present study we show that Nox4 nuclear expression (nNox4 depends on the donor and it correlates with the expression of transcription factors involved in stemness regulation, such as Oct4, SSEA-4, and Sox2. Moreover nNox4 is linked with the nuclear localization of redox sensitive transcription factors, as Nrf2 and NF-κB, and with the differentiation potential. Taken together, these results suggest that nNox4 regulation may have important effects in stem cell capability through modulation of transcription factors and DNA damage.

  6. In Vitro Modeling of Human Germ Cell Development Using Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Yuncheng Zhao

    2018-02-01

    Full Text Available Summary: Due to differences across species, the mechanisms of cell fate decisions determined in mice cannot be readily extrapolated to humans. In this study, we developed a feeder- and xeno-free culture protocol that efficiently induced human pluripotent stem cells (iPSCs into PLZF+/GPR125+/CD90+ spermatogonium-like cells (SLCs. These SLCs were enriched with key genes in germ cell development such as MVH, DAZL, GFRα1, NANOS3, and DMRT1. In addition, a small fraction of SLCs went through meiosis in vitro to develop into haploid cells. We further demonstrated that this chemically defined induction protocol faithfully recapitulated the features of compromised germ cell development of PSCs with NANOS3 deficiency or iPSC lines established from patients with non-obstructive azoospermia. Taken together, we established a powerful experimental platform to investigate human germ cell development and pathology related to male infertility. : In this article, Wang and colleagues established a feeder- and xeno-free system to robustly induce human pluripotent stem cells (PSCs into spermatogonia-like cells. This chemically defined induction protocol faithfully recapitulated the features of compromised germ cell development of PSCs with NANOS3 deficiency or iPSC lines established from patients with non-obstructive azoospermia. Keywords: pluripotent stem cells, spermatogonia, infertility, non-obstructive azoospermia

  7. Comparative study of human embryonic stem cells (hESC and human induced pluripotent stem cells (hiPSC as a treatment for retinal dystrophies

    Directory of Open Access Journals (Sweden)

    Marina Riera

    2016-01-01

    Full Text Available Retinal dystrophies (RD are major causes of familial blindness and are characterized by progressive dysfunction of photoreceptor and/or retinal pigment epithelium (RPE cells. In this study, we aimed to evaluate and compare the therapeutic effects of two pluripotent stem cell (PSC-based therapies. We differentiated RPE from human embryonic stem cells (hESCs or human-induced pluripotent stem cells (hiPSCs and transplanted them into the subretinal space of the Royal College of Surgeons (RCS rat. Once differentiated, cells from either source of PSC resembled mature RPE in their morphology and gene expression profile. Following transplantation, both hESC- and hiPSC-derived cells maintained the expression of specific RPE markers, lost their proliferative capacity, established tight junctions, and were able to perform phagocytosis of photoreceptor outer segments. Remarkably, grafted areas showed increased numbers of photoreceptor nuclei and outer segment disk membranes. Regardless of the cell source, human transplants protected retina from cell apoptosis, glial stress and accumulation of autofluorescence, and responded better to light stimuli. Altogether, our results show that hESC- and hiPSC-derived cells survived, migrated, integrated, and functioned as RPE in the RCS rat retina, providing preclinical evidence that either PSC source could be of potential benefit for treating RD.

  8. Comparative study of human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) as a treatment for retinal dystrophies

    Science.gov (United States)

    Riera, Marina; Fontrodona, Laura; Albert, Silvia; Ramirez, Diana Mora; Seriola, Anna; Salas, Anna; Muñoz, Yolanda; Ramos, David; Villegas-Perez, Maria Paz; Zapata, Miguel Angel; Raya, Angel; Ruberte, Jesus; Veiga, Anna; Garcia-Arumi, Jose

    2016-01-01

    Retinal dystrophies (RD) are major causes of familial blindness and are characterized by progressive dysfunction of photoreceptor and/or retinal pigment epithelium (RPE) cells. In this study, we aimed to evaluate and compare the therapeutic effects of two pluripotent stem cell (PSC)-based therapies. We differentiated RPE from human embryonic stem cells (hESCs) or human-induced pluripotent stem cells (hiPSCs) and transplanted them into the subretinal space of the Royal College of Surgeons (RCS) rat. Once differentiated, cells from either source of PSC resembled mature RPE in their morphology and gene expression profile. Following transplantation, both hESC- and hiPSC-derived cells maintained the expression of specific RPE markers, lost their proliferative capacity, established tight junctions, and were able to perform phagocytosis of photoreceptor outer segments. Remarkably, grafted areas showed increased numbers of photoreceptor nuclei and outer segment disk membranes. Regardless of the cell source, human transplants protected retina from cell apoptosis, glial stress and accumulation of autofluorescence, and responded better to light stimuli. Altogether, our results show that hESC- and hiPSC-derived cells survived, migrated, integrated, and functioned as RPE in the RCS rat retina, providing preclinical evidence that either PSC source could be of potential benefit for treating RD. PMID:27006969

  9. Is Human-induced Pluripotent Stem Cell the Best Optimal?

    Science.gov (United States)

    Wang, Feng; Kong, Jie; Cui, Yi-Yao; Liu, Peng; Wen, Jian-Yan

    2018-04-05

    Since the advent of induced pluripotent stem cell (iPSC) technology a decade ago, enormous progress has been made in stem cell biology and regenerative medicine. Human iPSCs have been widely used for disease modeling, drug discovery, and cell therapy development. In this review, we discuss the progress in applications of iPSC technology that are particularly relevant to drug discovery and regenerative medicine, and consider the remaining challenges and the emerging opportunities in the field. Articles in this review were searched from PubMed database from January 2014 to December 2017. Original articles about iPSCs and cardiovascular diseases were included and analyzed. iPSC holds great promises for human disease modeling, drug discovery, and stem cell-based therapy, and this potential is only beginning to be realized. However, several important issues remain to be addressed. The recent availability of human cardiomyocytes derived from iPSCs opens new opportunities to build in vitro models of cardiac disease, screening for new drugs and patient-specific cardiac therapy.

  10. Generation of Functional Thymic Epithelium from Human Embryonic Stem Cells that Supports Host T Cell Development

    OpenAIRE

    Parent, Audrey V.; Russ, Holger A.; Khan, Imran S.; LaFlam, Taylor N.; Metzger, Todd C.; Anderson, Mark S.; Hebrok, Matthias

    2013-01-01

    Inducing immune tolerance to prevent rejection is a key step toward successful engraftment of stem-cell-derived tissue in a clinical setting. Using human pluripotent stem cells to generate thymic epithelial cells (TECs) capable of supporting T cell development represents a promising approach to reach this goal; however, progress toward generating functional TECs has been limited. Here, we describe a robust in vitro method to direct differentiation of human embryonic stem cells (hESCs) into th...

  11. Generation of a transplantable erythropoietin-producer derived from human mesenchymal stem cells.

    Science.gov (United States)

    Yokoo, Takashi; Fukui, Akira; Matsumoto, Kei; Ohashi, Toya; Sado, Yoshikazu; Suzuki, Hideaki; Kawamura, Tetsuya; Okabe, Masataka; Hosoya, Tatsuo; Kobayashi, Eiji

    2008-06-15

    Differentiation of autologous stem cells into functional transplantable tissue for organ regeneration is a promising regenerative therapeutic approach for cancer, diabetes, and many human diseases. Yet to be established, however, is differentiation into tissue capable of producing erythropoietin (EPO), which has a critical function in anemia. We report a novel EPO-producing organ-like structure (organoid) derived from human mesenchymal stem cells. Using our previously established relay culture system, a human mesenchymal stem cell-derived, human EPO-competent organoid was established in rat omentum. The organoid-derived levels of human EPO increased in response to anemia induced by rapid blood withdrawal. In addition, the presence of an organoid in rats suppressed for native (rat) EPO production enhanced recovery from anemia when compared with control animals lacking the organoid. Together these results confirmed the generation of a stem cell-derived organoid that is capable of producing EPO and sensitive to physiological regulation.

  12. Derivation of novel human ground state naive pluripotent stem cells.

    Science.gov (United States)

    Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2013-12-12

    Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation

  13. Gene Transfer Properties and Structural Modeling of Human Stem Cell-derived AAV

    OpenAIRE

    Smith, Laura J; Ul-Hasan, Taihra; Carvaines, Sarah K; Van Vliet, Kim; Yang, Ethel; Wong, Kamehameha K; Agbandje-McKenna, Mavis; Chatterjee, Saswati

    2014-01-01

    Adeno-associated virus (AAV) vectors are proving to be remarkably successful for in vivo gene delivery. Based upon reports of abundant AAV in the human marrow, we tested CD34+ hematopoietic stem cells for the presence of natural AAV. Here, we report for the first time, the presence of novel AAV variants in healthy CD34+ human peripheral blood stem cells. The majority of healthy peripheral blood stem cell donors were found to harbor AAV in their CD34+ cells. Every AAV isolated from CD34+ cells...

  14. High-content screening of small compounds on human embryonic stem cells.

    Science.gov (United States)

    Barbaric, Ivana; Gokhale, Paul J; Andrews, Peter W

    2010-08-01

    Human ES (embryonic stem) cells and iPS (induced pluripotent stem) cells have been heralded as a source of differentiated cells that could be used in the treatment of degenerative diseases, such as Parkinson's disease or diabetes. Despite the great potential for their use in regenerative therapy, the challenge remains to understand the basic biology of these remarkable cells, in order to differentiate them into any functional cell type. Given the scale of the task, high-throughput screening of agents and culture conditions offers one way to accelerate these studies. The screening of small-compound libraries is particularly amenable to such high-throughput methods. Coupled with high-content screening technology that enables simultaneous assessment of multiple cellular features in an automated and quantitative way, this approach is proving powerful in identifying both small molecules as tools for manipulating stem cell fates and novel mechanisms of differentiation not previously associated with stem cell biology. Such screens performed on human ES cells also demonstrate the usefulness of human ES/iPS cells as cellular models for pharmacological testing of drug efficacy and toxicity, possibly a more imminent use of these cells than in regenerative medicine.

  15. Cell surface glycan engineering of neural stem cells augments neurotropism and improves recovery in a murine model of multiple sclerosis

    KAUST Repository

    Merzaban, Jasmeen; Imitola, Jaime; Starossom, Sarah C.; Zhu, Bing; Wang, Yue; Lee, Jack; Ali, Amal J.; Olah, Marta; AbuElela, Ayman; Khoury, Samia J.; Sackstein, Robert

    2015-01-01

    Neural stem cell (NSC)-based therapies offer potential for neural repair in central nervous system (CNS) inflammatory and degenerative disorders. Typically, these conditions present with multifocal CNS lesions making it impractical to inject NSCs

  16. Human Pluripotent Stem Cell Differentiation into Functional Epicardial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Juan Antonio Guadix

    2017-12-01

    Full Text Available Summary: Human pluripotent stem cells (hPSCs are widely used to study cardiovascular cell differentiation and function. Here, we induced differentiation of hPSCs (both embryonic and induced to proepicardial/epicardial progenitor cells that cover the heart during development. Addition of retinoic acid (RA and bone morphogenetic protein 4 (BMP4 promoted expression of the mesodermal marker PDGFRα, upregulated characteristic (proepicardial progenitor cell genes, and downregulated transcription of myocardial genes. We confirmed the (proepicardial-like properties of these cells using in vitro co-culture assays and in ovo grafting of hPSC-epicardial cells into chick embryos. Our data show that RA + BMP4-treated hPSCs differentiate into (proepicardial-like cells displaying functional properties (adhesion and spreading over the myocardium of their in vivo counterpart. The results extend evidence that hPSCs are an excellent model to study (proepicardial differentiation into cardiovascular cells in human development and evaluate their potential for cardiac regeneration. : The authors have shown that hPSCs can be instructed in vitro to differentiate into a specific cardiac embryonic progenitor cell population called the proepicardium. Proepicardial cells are required for normal formation of the heart during development and might contribute to the development of cell-based therapies for heart repair. Keywords: human pluripotent stem cells, proepicardium, progenitor cells, cardiovascular, differentiation

  17. Guidelines for human embryonic stem cell research

    National Research Council Canada - National Science Library

    Committee on Guidelines for Human Embryonic Stem Cell Research, National Research Council

    2005-01-01

    Since 1998, the volume of research being conducted using human embryonic stem (hES) cells has expanded primarily using private funds because of restrictions on the use of federal funds for such research...

  18. Physical passaging of embryoid bodies generated from human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Mi-Young Son

    Full Text Available Spherical three-dimensional cell aggregates called embryoid bodies (EBs, have been widely used in in vitro differentiation protocols for human pluripotent stem cells including human embryonic stem cells (hESCs and human induced pluripotent stem cells (hiPSCs. Recent studies highlight the new devices and techniques for hEB formation and expansion, but are not involved in the passaging or subculture process. Here, we provide evidence that a simple periodic passaging markedly improved hEB culture condition and thus allowed the size-controlled, mass production of human embryoid bodies (hEBs derived from both hESCs and hiPSCs. hEBs maintained in prolonged suspension culture without passaging (>2 weeks showed a progressive decrease in the cell growth and proliferation and increase in the apoptosis compared to 7-day-old hEBs. However, when serially passaged in suspension, hEB cell populations were significantly increased in number while maintaining the normal rates of cell proliferation and apoptosis and the differentiation potential. Uniform-sized hEBs produced by manual passaging using a 1∶4 split ratio have been successfully maintained for over 20 continuous passages. The passaging culture method of hEBs, which is simple, readily expandable, and reproducible, could be a powerful tool for improving a robust and scalable in vitro differentiation system of human pluripotent stem cells.

  19. Glycoconjugates reveal diversity of human neural stem cells (hNSCs) derived from human induced pluripotent stem cells (hiPSCs).

    Science.gov (United States)

    Kandasamy, Majury; Roll, Lars; Langenstroth, Daniel; Brüstle, Oliver; Faissner, Andreas

    2017-06-01

    Neural stem cells (NSCs) have the ability to self-renew and to differentiate into various cell types of the central nervous system. This potential can be recapitulated by human induced pluripotent stem cells (hiPSCs) in vitro. The differentiation capacity of hiPSCs is characterized by several stages with distinct morphologies and the expression of various marker molecules. We used the monoclonal antibodies (mAbs) 487 LeX , 5750 LeX and 473HD to analyze the expression pattern of particular carbohydrate motifs as potential markers at six differentiation stages of hiPSCs. Mouse ESCs were used as a comparison. At the pluripotent stage, 487 LeX -, 5750 LeX - and 473HD-related glycans were differently expressed. Later, cells of the three germ layers in embryoid bodies (hEBs) and, even after neuralization of hEBs, subpopulations of cells were labeled with these surface antibodies. At the human rosette-stage of NSCs (hR-NSC), LeX- and 473HD-related epitopes showed antibody-specific expression patterns. We also found evidence that these surface antibodies could be used to distinguish the hR-NSCs from the hSR-NSCs stages. Characterization of hNSCs FGF-2/EGF derived from hSR-NSCs revealed that both LeX antibodies and the 473HD antibody labeled subpopulations of hNSCs FGF-2/EGF . Finally, we identified potential LeX carrier molecules that were spatiotemporally regulated in early and late stages of differentiation. Our study provides new insights into the regulation of glycoconjugates during early human stem cell development. The mAbs 487 LeX , 5750 LeX and 473HD are promising tools for identifying distinct stages during neural differentiation.

  20. Generation of Spinal Motor Neurons from Human Pluripotent Stem Cells.

    Science.gov (United States)

    Santos, David P; Kiskinis, Evangelos

    2017-01-01

    Human embryonic stem cells (ESCs) are characterized by their unique ability to self-renew indefinitely, as well as to differentiate into any cell type of the human body. Induced pluripotent stem cells (iPSCs) share these salient characteristics with ESCs and can easily be generated from any given individual by reprogramming somatic cell types such as fibroblasts or blood cells. The spinal motor neuron (MN) is a specialized neuronal subtype that synapses with muscle to control movement. Here, we present a method to generate functional, postmitotic, spinal motor neurons through the directed differentiation of ESCs and iPSCs by the use of small molecules. These cells can be utilized to study the development and function of human motor neurons in healthy and disease states.

  1. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines

    Directory of Open Access Journals (Sweden)

    Chen Lei

    2011-06-01

    Full Text Available Abstract Background Cancer stem cells (CSCs are regarded as the cause of tumor formation and recurrence. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. Methods Human hepatoma cell lines were plated in stem cell conditioned culture system allowed for sphere forming. To evaluate the stemness characteristics of spheres, the self-renewal, proliferation, chemoresistance, tumorigenicity of the PLC/PRF/5 sphere-forming cells, and the expression levels of stem cell related proteins in the PLC/PRF/5 sphere-forming cells were assessed, comparing with the parental cells. The stem cell RT-PCR array was performed to further explore the biological properties of liver CSCs. Results The PLC/PRF/5, MHCC97H and HepG2 cells could form clonal nonadherent 3-D spheres and be serially passaged. The PLC/PRF/5 sphere-forming cells possessed a key criteria that define CSCs: persistent self-renewal, extensive proliferation, drug resistance, overexpression of liver CSCs related proteins (Oct3/4, OV6, EpCAM, CD133 and CD44. Even 500 sphere-forming cells were able to form tumors in NOD/SCID mice, and the tumor initiating capability was not decreased when spheres were passaged. Besides, downstream proteins DTX1 and Ep300 of the CSL (CBF1 in humans, Suppressor of hairless in Drosophila and LAG1 in C. elegans -independent Notch signaling pathway were highly expressed in the spheres, and a gamma-secretase inhibitor MRK003 could significantly inhibit the sphere formation ability. Conclusions Nonadherent tumor spheres from hepatoma cell lines cultured in stem cell conditioned medium possess liver CSC properties, and the CSL-independent Notch signaling pathway may play a role in liver CSCs.

  2. Notch signaling is required for maintaining stem-cell features of neuroprogenitor cells derived from human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Chung Hyung-Min

    2009-08-01

    Full Text Available Abstract Background Studies have provided important findings about the roles of Notch signaling in neural development. Unfortunately, however, most of these studies have investigated the neural stem cells (NSCs of mice or other laboratory animals rather than humans, mainly owing to the difficulties associated with obtaining human brain samples. It prompted us to focus on neuroectodermal spheres (NESs which are derived from human embryonic stem cell (hESC and densely inhabited by NSCs. We here investigated the role of Notch signaling with the hESC-derived NESs. Results From hESCs, we derived NESs, the in-vitro version of brain-derived neurospheres. NES formation was confirmed by increased levels of various NSC marker genes and the emergence of rosette structures in which neuroprogenitors are known to reside. We found that Notch signaling, which maintains stem cell characteristics of in-vivo-derived neuroprogenitors, is active in these hESC-derived NESs, similar to their in-vivo counterpart. Expression levels of Notch signaling molecules such as NICD, DLLs, JAG1, HES1 and HES5 were increased in the NESs. Inhibition of the Notch signaling by a γ-secretase inhibitor reduced rosette structures, expression levels of NSC marker genes and proliferation potential in the NESs, and, if combined with withdrawal of growth factors, triggered differentiation toward neurons. Conclusion Our results indicate that the hESC-derived NESs, which share biochemical features with brain-derived neurospheres, maintain stem cell characteristics mainly through Notch signaling, which suggests that the hESC-derived NESs could be an in-vitro model for in-vivo neurogenesis.

  3. Direct Differentiation of Human Pluripotent Stem Cells into Haploid Spermatogenic Cells

    Directory of Open Access Journals (Sweden)

    Charles A. Easley, IV

    2012-09-01

    Full Text Available Human embryonic stem cells (hESCs and induced pluripotent stem cells (hiPSCs have been shown to differentiate into primordial germ cells (PGCs but not into spermatogonia, haploid spermatocytes, or spermatids. Here, we show that hESCs and hiPSCs differentiate directly into advanced male germ cell lineages, including postmeiotic, spermatid-like cells, in vitro without genetic manipulation. Furthermore, our procedure mirrors spermatogenesis in vivo by differentiating PSCs into UTF1-, PLZF-, and CDH1-positive spermatogonia-like cells; HIWI- and HILI-positive spermatocyte-like cells; and haploid cells expressing acrosin, transition protein 1, and protamine 1 (proteins that are uniquely found in spermatids and/or sperm. These spermatids show uniparental genomic imprints similar to those of human sperm on two loci: H19 and IGF2. These results demonstrate that male PSCs have the ability to differentiate directly into advanced germ cell lineages and may represent a novel strategy for studying spermatogenesis in vitro.

  4. Dynamic methylation and expression of Oct4 in early neural stem cells.

    Science.gov (United States)

    Lee, Shih-Han; Jeyapalan, Jennie N; Appleby, Vanessa; Mohamed Noor, Dzul Azri; Sottile, Virginie; Scotting, Paul J

    2010-09-01

    Neural stem cells are a multipotent population of tissue-specific stem cells with a broad but limited differentiation potential. However, recent studies have shown that over-expression of the pluripotency gene, Oct4, alone is sufficient to initiate a process by which these can form 'induced pluripotent stem cells' (iPS cells) with the same broad potential as embryonic stem cells. This led us to examine the expression of Oct4 in endogenous neural stem cells, as data regarding its expression in neural stem cells in vivo are contradictory and incomplete. In this study we have therefore analysed the expression of Oct4 and other genes associated with pluripotency throughout development of the mouse CNS and in neural stem cells grown in vitro. We find that Oct4 is still expressed in the CNS by E8.5, but that this expression declines rapidly until it is undetectable by E15.5. This decline is coincident with the gradual methylation of the Oct4 promoter and proximal enhancer. Immunostaining suggests that the Oct4 protein is predominantly cytoplasmic in location. We also found that neural stem cells from all ages expressed the pluripotency associated genes, Sox2, c-Myc, Klf4 and Nanog. These data provide an explanation for the varying behaviour of cells from the early neuroepithelium at different stages of development. The expression of these genes also provides an indication of why Oct4 alone is sufficient to induce iPS formation in neural stem cells at later stages.

  5. Asynchronous replication and autosome-pair non-equivalence in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Devkanya Dutta

    Full Text Available A number of mammalian genes exhibit the unusual properties of random monoallelic expression and random asynchronous replication. Such exceptional genes include genes subject to X inactivation and autosomal genes including odorant receptors, immunoglobulins, interleukins, pheromone receptors, and p120 catenin. In differentiated cells, random asynchronous replication of interspersed autosomal genes is coordinated at the whole chromosome level, indicative of chromosome-pair non-equivalence. Here we have investigated the replication pattern of the random asynchronously replicating genes in undifferentiated human embryonic stem cells, using fluorescence in situ hybridization based assay. We show that allele-specific replication of X-linked genes and random monoallelic autosomal genes occur in human embryonic stem cells. The direction of replication is coordinated at the whole chromosome level and can cross the centromere, indicating the existence of autosome-pair non-equivalence in human embryonic stem cells. These results suggest that epigenetic mechanism(s that randomly distinguish between two parental alleles are emerging in the cells of the inner cell mass, the source of human embryonic stem cells.

  6. Identification of Multipotent Stem Cells in Human Brain Tissue Following Stroke.

    Science.gov (United States)

    Tatebayashi, Kotaro; Tanaka, Yasue; Nakano-Doi, Akiko; Sakuma, Rika; Kamachi, Saeko; Shirakawa, Manabu; Uchida, Kazutaka; Kageyama, Hiroto; Takagi, Toshinori; Yoshimura, Shinichi; Matsuyama, Tomohiro; Nakagomi, Takayuki

    2017-06-01

    Perivascular regions of the brain harbor multipotent stem cells. We previously demonstrated that brain pericytes near blood vessels also develop multipotency following experimental ischemia in mice and these ischemia-induced multipotent stem cells (iSCs) can contribute to neurogenesis. However, it is essential to understand the traits of iSCs in the poststroke human brain for possible applications in stem cell-based therapies for stroke patients. In this study, we report for the first time that iSCs can be isolated from the poststroke human brain. Putative iSCs were derived from poststroke brain tissue obtained from elderly stroke patients requiring decompressive craniectomy and partial lobectomy for diffuse cerebral infarction. Immunohistochemistry showed that these iSCs were localized near blood vessels within poststroke areas containing apoptotic/necrotic neurons and expressed both the stem cell marker nestin and several pericytic markers. Isolated iSCs expressed these same markers and demonstrated high proliferative potential without loss of stemness. Furthermore, isolated iSCs expressed other stem cell markers, such as Sox2, c-myc, and Klf4, and differentiated into multiple cells in vitro, including neurons. These results show that iSCs, which are likely brain pericyte derivatives, are present within the poststroke human brain. This study suggests that iSCs can contribute to neural repair in patients with stroke.

  7. Isolation, Characterization, Cryopreservation of Human Amniotic Stem Cells and Differentiation to Osteogenic and Adipogenic Cells.

    Directory of Open Access Journals (Sweden)

    Shiva Gholizadeh-Ghaleh Aziz

    Full Text Available Human stem cells and progenitor cells can be used to treat cancer and replace dysfunctional cells within a tissue or organ. The objective of this study was to identify the appropriate cells type in regenerative medicine and targeted therapy. As an alternative to embryonic and bone marrow stem cells, we examined human amniotic fluid stem cells (hAFSCs, one of the potential source of multipotent stem cells isolated from both cell pellet (using single-stage method, and supernatant of human amniotic fluid. Source of isolation and unique property of the cells emphasize that these cells are one of the promising new tools in therapeutic field. Double sources for isolation and availability of the left over samples in diagnostic laboratory at the same time have less legal and ethical concerns compared with embryonic stem cell studies. Cells were isolated, cultured for 18th passage for 6 months and characterized using qPCR and flow cytometry. Cells showed good proliferative ability in culture condition. The cells successfully differentiated into the adipogenic and osteogenic lineages. Based on these findings, amniotic fluid can be considered as an appropriate and convenient source of human amniotic fluid stem cells. These cells provide potential tools for therapeutic applications in the field of regenerative medicine. To get a better understanding of crosstalk between Oct4/NANOG with osteogenesis and adipogenesis, we used network analysis based on Common Targets algorithm and Common Regulators algorithm as well as subnetwork discovery based on gene set enrichment. Network analysis highlighted the possible role of MIR 302A and MIR let-7g. We demonstrated the high expression of MIR 302A and low expression of MIR let7g in hAFSCs by qPCR.

  8. Developmental neurotoxicity screening using human embryonic stem cells.

    Science.gov (United States)

    Bosnjak, Zeljko J

    2012-09-01

    Research in the area of stem cell biology and regenerative medicine, along with neuroscience, will further our understanding of drug-induced death of neurons during their development. With the development of an in vitro model of stem cell-derived human neural cell lines investigators can, under control conditions and during intense neuronal growth, examine molecular mechanisms of various drugs and conditions on early developmental neuroapoptosis in humans. If the use of this model will lead to fewer risks, or identification of drugs and anesthetics that are less likely to cause the death of neurons, this approach will be a major stride toward assuring the safety of drugs during the brain development. The ultimate goal would be not only to find the trigger for the catastrophic chain of events, but also to prevent neuronal cell death itself. Copyright © 2012. Published by Elsevier Inc.

  9. Dissection of a stem cell hierarchy in the human breast

    DEFF Research Database (Denmark)

    Rubner Fridriksdottir, Agla Jael

    and apoptosis during each menstrual cycle. These changes are most prominent during pregnancy, lactation and involution after breast feeding. These highly dynamic changes are thought to rely on the presence of a breast epithelial stem cell population (reviewed in (Fridriksdottir et al. 2005)). Nevertheless......, cellular pathways that contribute to adult human breast gland architecture and cell lineages have not been described. Here, I identify a candidate stem cell niche in ducts, and zones containing progenitor cells in lobules (Villadsen and Fridriksdottir et al. 2007). Putative stem cells residing in ducts......-rich extracellular matrix gel. Staining for the epithelial lineage markers, cytokeratins K14 and K19, further reveals multipotent cells in the stem cell zone and three lineage- restricted cell types outside this zone. Multiparameter cell sorting and functional characterization with reference to anatomical sites...

  10. Titanium phosphate glass microcarriers induce enhanced osteogenic cell proliferation and human mesenchymal stem cell protein expression

    Directory of Open Access Journals (Sweden)

    Nilay J Lakhkar

    2015-11-01

    Full Text Available In this study, we have developed 50- to 100-µm-sized titanium phosphate glass microcarriers (denoted as Ti5 that show enhanced proliferation of human mesenchymal stem cells and MG63 osteosarcoma cells, as well as enhanced human mesenchymal stem cell expression of bone differentiation markers, in comparison with commercially available glass microspheres at all time points. We also demonstrate that these microcarriers provide superior human mesenchymal stem cell proliferation with conventional Dulbecco’s Modified Eagle medium than with a specially developed commercial stem cell medium. The microcarrier proliferative capacity is revealed by a 24-fold increase in MG63 cell numbers in spinner flask bioreactor studies performed over a 7-day period, versus only a 6-fold increase in control microspheres under the same conditions; the corresponding values of Ti5 and control microspheres under static culture are 8-fold and 7-fold, respectively. The capability of guided osteogenic differentiation is confirmed by ELISAs for bone morphogenetic protein-2 and osteopontin, which reveal significantly greater expression of these markers, especially osteopontin, by human mesenchymal stem cells on the Ti5 microspheres than on the control. Scanning electron microscopy and confocal laser scanning microscopy images reveal favorable MG63 and human mesenchymal stem cell adhesion on the Ti5 microsphere surfaces. Thus, the results demonstrate the suitability of the developed microspheres for use as microcarriers in bone tissue engineering applications.

  11. Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells.

    Science.gov (United States)

    Quang, Tara; Marquez, Maribel; Blanco, Giselle; Zhao, Yuanxiang

    2014-01-01

    Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4-10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system.

  12. Generation of Megakaryocytes and Platelets from Human Pluripotent Stem Cells.

    Science.gov (United States)

    Pick, Marjorie

    2016-01-01

    Human pluripotent stem cells (hPSC) have the potential to produce any tissue type in the body and thus represent a source of cells for regenerative medicine. Here we have shown that human platelets can be produced from embryonic or induced pluripotent stem cells in a defined culture system. We describe a serum- and feeder-free culture system that enabled the generation of megakaryocyte (Mk) progenitors and functional platelets from hPSCs. After 13 days the differentiated population included precursor cells that formed colonies containing differentiated Mks, and after 20 days these Mks were able to fragment into platelet-like particles that were functional. This protocol represents an important step towards the generation of human platelets for therapeutic use.

  13. Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells.

    Science.gov (United States)

    Koehler, Karl R; Nie, Jing; Longworth-Mills, Emma; Liu, Xiao-Ping; Lee, Jiyoon; Holt, Jeffrey R; Hashino, Eri

    2017-06-01

    The derivation of human inner ear tissue from pluripotent stem cells would enable in vitro screening of drug candidates for the treatment of hearing and balance dysfunction and may provide a source of cells for cell-based therapies of the inner ear. Here we report a method for differentiating human pluripotent stem cells to inner ear organoids that harbor functional hair cells. Using a three-dimensional culture system, we modulate TGF, BMP, FGF, and WNT signaling to generate multiple otic-vesicle-like structures from a single stem-cell aggregate. Over 2 months, the vesicles develop into inner ear organoids with sensory epithelia that are innervated by sensory neurons. Additionally, using CRISPR-Cas9, we generate an ATOH1-2A-eGFP cell line to detect hair cell induction and demonstrate that derived hair cells exhibit electrophysiological properties similar to those of native sensory hair cells. Our culture system should facilitate the study of human inner ear development and research on therapies for diseases of the inner ear.

  14. Improved genetic manipulation of human embryonic stem cells.

    NARCIS (Netherlands)

    Braam, S.R.; Denning, C.; van den Brink, S.; Kats, P.; Hochstenbach, R.; Passier, R.; Mummery, C.L.

    2008-01-01

    Low efficiency of transfection limits the ability to genetically manipulate human embryonic stem cells (hESCs), and differences in cell derivation and culture methods require optimization of transfection protocols. We transiently transferred multiple independent hESC lines with different growth

  15. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  16. Future perspective of induced pluripotent stem cells for diagnosis, drug screening and treatment of human diseases.

    Science.gov (United States)

    Lian, Qizhou; Chow, Yenyen; Esteban, Miguel Angel; Pei, Duanqing; Tse, Hung-Fat

    2010-07-01

    Recent advances in stem cell biology have transformed the understanding of cell physiology and developmental biology such that it can now play a more prominent role in the clinical application of stem cell and regenerative medicine. Success in the generation of human induced pluripotent stem cells (iPS) as well as related emerging technology on the iPS platform provide great promise in the development of regenerative medicine. Human iPS cells show almost identical properties to human embryonic stem cells (ESC) in pluripotency, but avoid many of their limitations of use. In addition, investigations into reprogramming of somatic cells to pluripotent stem cells facilitate a deeper understanding of human stem cell biology. The iPS cell technology has offered a unique platform for studying the pathogenesis of human disease, pharmacological and toxicological testing, and cell-based therapy. Nevertheless, significant challenges remain to be overcome before the promise of human iPS cell technology can be realised.

  17. Genome editing of human pluripotent stem cells to generate human cellular disease models

    Directory of Open Access Journals (Sweden)

    Kiran Musunuru

    2013-07-01

    Full Text Available Disease modeling with human pluripotent stem cells has come into the public spotlight with the awarding of the Nobel Prize in Physiology or Medicine for 2012 to Drs John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent. This discovery has opened the door for the generation of pluripotent stem cells from individuals with disease and the differentiation of these cells into somatic cell types for the study of disease pathophysiology. The emergence of genome-editing technology over the past few years has made it feasible to generate and investigate human cellular disease models with even greater speed and efficiency. Here, recent technological advances in genome editing, and its utility in human biology and disease studies, are reviewed.

  18. Myogenic Differentiation Potential of Human Newborn Foreskin Stem Cells Combined with Polycaprolactone-Based Nanofiber

    Directory of Open Access Journals (Sweden)

    Ozge Sezin Somuncu

    2016-03-01

    Full Text Available A previous study performed by the authors of the current study revealed the characterization and differentiation of newly defined stem cells known as human newborn foreskin stem cells (hnFSSCs. According to their stem cell properties, this study aimed at investigating myogenic differentiation and related tissue engineering. Human newborn foreskin stem cells were characterized by flow cytometry. The results showed that hnFSSCs carries a noble prospective for myogenic differentiation and can be used as a beneficial method for muscle related diseases, including muscular dystrophy, neuromuscular disorders, muscle damages, muscle weakness, lesion formations, and other problems associated with tissue obtainability and multi-potency; these cells may be accepted as effortlessly accessible and functional, and even superior to other stem cell origins. Furthermore, hnFFSCs were also seeded onto 3D micro-wells and Polycaprolactone (PCL scaffolds in order to examine tissue development. Human newborn foreskin stem cells on PCL scaffolds showed good cell-cell integration, so that they may be thought as a stem cell basis for tissue engineering.

  19. Generation of human induced pluripotent stem cell lines from human dermal fibroblasts using a non-integration system

    Directory of Open Access Journals (Sweden)

    Kyung-Ok Uhm

    2017-05-01

    Full Text Available We generated human induced pluripotent stem cells (hiPSCs from dermal fibroblasts using a Sendai virus (SeV-based gene delivery method. The generated hiPSC line, KSCBi002-A, has a normal karyotype (46,XY. The pluripotency and differentiation capacity were characterized by comparison with those of a human embryonic stem cell line. This cell line is registered and available from the National Stem Cell Bank, Korea National Institute of Health.

  20. Conditioned Media from Human Adipose Tissue-Derived Mesenchymal Stem Cells and Umbilical Cord-Derived Mesenchymal Stem Cells Efficiently Induced the Apoptosis and Differentiation in Human Glioma Cell Lines In Vitro

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2014-01-01

    Full Text Available Human mesenchymal stem cells (MSCs have an intrinsic property for homing towards tumor sites and can be used as tumor-tropic vectors for tumor therapy. But very limited studies investigated the antitumor properties of MSCs themselves. In this study we investigated the antiglioma properties of two easily accessible MSCs, namely, human adipose tissue-derived mesenchymal stem cells (ASCs and umbilical cord-derived mesenchymal stem cells (UC-MSCs. We found (1 MSC conditioned media can significantly inhibit the growth of human U251 glioma cell line; (2 MSC conditioned media can significantly induce apoptosis in human U251 cell line; (3 real-time PCR experiments showed significant upregulation of apoptotic genes of both caspase-3 and caspase-9 and significant downregulation of antiapoptotic genes such as survivin and XIAP after MSC conditioned media induction in U 251 cells; (4 furthermore, MSCs conditioned media culture induced rapid and complete differentiation in U251 cells. These results indicate MSCs can efficiently induce both apoptosis and differentiation in U251 human glioma cell line. Whereas UC-MSCs are more efficient for apoptosis induction than ASCs, their capability of differentiation induction is not distinguishable from each other. Our findings suggest MSCs themselves have favorable antitumor characteristics and should be further explored in future glioma therapy.

  1. Is Human-induced Pluripotent Stem Cell the Best Optimal?

    OpenAIRE

    Feng Wang; Jie Kong; Yi-Yao Cui; Peng Liu; Jian-Yan Wen

    2018-01-01

    Objective: Since the advent of induced pluripotent stem cell (iPSC) technology a decade ago, enormous progress has been made in stem cell biology and regenerative medicine. Human iPSCs have been widely used for disease modeling, drug discovery, and cell therapy development. In this review, we discuss the progress in applications of iPSC technology that are particularly relevant to drug discovery and regenerative medicine, and consider the remaining challenges and the emerging opportunities in...

  2. Induced pluripotent stem (iPS) cells from human fetal stem cells

    OpenAIRE

    Guillot, P. V.

    2016-01-01

    Pluripotency defines the ability of stem cells to differentiate into all the lineages of the three germ layers and self-renew indefinitely. Somatic cells can regain the developmental potential of embryonic stem cells following ectopic expression of a set of transcription factors or, in certain circumstances, via modulation of culture conditions and supplementation with small molecule, that is, induced pluripotent stem (iPS) cells. Here, we discuss the use of fetal tissues for reprogramming, f...

  3. Human Long Noncoding RNA Regulation of Stem Cell Potency and Differentiation

    Directory of Open Access Journals (Sweden)

    Seahyoung Lee

    2017-01-01

    Full Text Available Because of their capability of differentiation into lineage-specific cells, stem cells are an attractive therapeutic modality in regenerative medicine. To develop an effective stem cell-based therapeutic strategy with predictable results, deeper understanding of the underlying molecular mechanisms of stem cell differentiation and/or pluripotency maintenance is required. Thus, reviewing the key factors involved in the transcriptional and epigenetic regulation of stem cell differentiation and maintenance is important. Accumulating data indicate that long noncoding RNAs (lncRNAs mediate numerous biological processes, including stem cell differentiation and maintenance. Here, we review recent findings on the human lncRNA regulation of stem cell potency and differentiation. Although the clinical implication of these lncRNAs is only beginning to be elucidated, it is anticipated that lncRNAs will become important therapeutic targets in the near future.

  4. Differentiation of human-induced pluripotent stem cells into insulin-producing clusters.

    Science.gov (United States)

    Shaer, Anahita; Azarpira, Negar; Vahdati, Akbar; Karimi, Mohammad Hosein; Shariati, Mehrdad

    2015-02-01

    In diabetes mellitus type 1, beta cells are mostly destroyed; while in diabetes mellitus type 2, beta cells are reduced by 40% to 60%. We hope that soon, stem cells can be used in diabetes therapy via pancreatic beta cell replacement. Induced pluripotent stem cells are a kind of stem cell taken from an adult somatic cell by "stimulating" certain genes. These induced pluripotent stem cells may be a promising source of cell therapy. This study sought to produce isletlike clusters of insulin-producing cells taken from induced pluripotent stem cells. A human-induced pluripotent stem cell line was induced into isletlike clusters via a 4-step protocol, by adding insulin, transferrin, and selenium (ITS), N2, B27, fibroblast growth factor, and nicotinamide. During differentiation, expression of pancreatic β-cell genes was evaluated by reverse transcriptase-polymerase chain reaction; the morphologic changes of induced pluripotent stem cells toward isletlike clusters were observed by a light microscope. Dithizone staining was used to stain these isletlike clusters. Insulin produced by these clusters was evaluated by radio immunosorbent assay, and the secretion capacity was analyzed with a glucose challenge test. Differentiation was evaluated by analyzing the morphology, dithizone staining, real-time quantitative polymerase chain reaction, and immunocytochemistry. Gene expression of insulin, glucagon, PDX1, NGN3, PAX4, PAX6, NKX6.1, KIR6.2, and GLUT2 were documented by analyzing real-time quantitative polymerase chain reaction. Dithizone-stained cellular clusters were observed after 23 days. The isletlike clusters significantly produced insulin. The isletlike clusters could increase insulin secretion after a glucose challenge test. This work provides a model for studying the differentiation of human-induced pluripotent stem cells to insulin-producing cells.

  5. Self-contained induction of neurons from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Okuno

    Full Text Available BACKGROUND: Neurons and glial cells can be efficiently induced from mouse embryonic stem (ES cells in a conditioned medium collected from rat primary-cultured astrocytes (P-ACM. However, the use of rodent primary cells for clinical applications may be hampered by limited supply and risk of contamination with xeno-proteins. METHODOLOGY/PRINCIPAL FINDINGS: We have developed an alternative method for unimpeded production of human neurons under xeno-free conditions. Initially, neural stem cells in sphere-like clusters were induced from human ES (hES cells after being cultured in P-ACM under free-floating conditions. The resultant neural stem cells could circumferentially proliferate under subsequent adhesive culture, and selectively differentiate into neurons or astrocytes by changing the medium to P-ACM or G5, respectively. These hES cell-derived neurons and astrocytes could procure functions similar to those of primary cells. Interestingly, a conditioned medium obtained from the hES cell-derived astrocytes (ES-ACM could successfully be used to substitute P-ACM for induction of neurons. Neurons made by this method could survive in mice brain after xeno-transplantation. CONCLUSION/SIGNIFICANCE: By inducing astrocytes from hES cells in a chemically defined medium, we could produce human neurons without the use of P-ACM. This self-serving method provides an unlimited source of human neural cells and may facilitate clinical applications of hES cells for neurological diseases.

  6. Evidence for a stem cell hierarchy in the adult human breast

    DEFF Research Database (Denmark)

    Villadsen, René; Fridriksdottir, Agla J; Rønnov-Jessen, Lone

    2007-01-01

    Cellular pathways that contribute to adult human mammary gland architecture and lineages have not been previously described. In this study, we identify a candidate stem cell niche in ducts and zones containing progenitor cells in lobules. Putative stem cells residing in ducts were essentially...... in laminin-rich extracellular matrix gels. Staining for the lineage markers keratins K14 and K19 further revealed multipotent cells in the stem cell zone and three lineage-restricted cell types outside this zone. Multiparameter cell sorting and functional characterization with reference to anatomical sites...

  7. Effects of Wnt3a on proliferation and differentiation of human epidermal stem cells

    International Nuclear Information System (INIS)

    Jia Liwei; Zhou Jiaxi; Peng Sha; Li Juxue; Cao Yujing; Duan Enkui

    2008-01-01

    Epidermal stem cells maintain development and homeostasis of mammalian epidermis throughout life. However, the molecular mechanisms involved in the proliferation and differentiation of epidermal stem cells are far from clear. In this study, we investigated the effects of Wnt3a and Wnt/β-catenin signaling on proliferation and differentiation of human fetal epidermal stem cells. We found both Wnt3a and active β-catenin, two key members of the Wnt/β-catenin signaling, were expressed in human fetal epidermis and epidermal stem cells. In addition, Wnt3a protein can promote proliferation and inhibit differentiation of epidermal stem cells in vitro culture. Our results suggest that Wnt/β-catenin signaling plays important roles in human fetal skin development and homeostasis, which also provide new insights on the molecular mechanisms of oncogenesis in human epidermis

  8. A murine ESC-like state facilitates transgenesis and homologous recombination in human pluripotent stem cells

    NARCIS (Netherlands)

    C. Buecker (Christa); H.H. Chen; J.M. Polo (Jose); L. Daheron (Laurence); L. Bu (Lei); T.S. Barakat (Tahsin Stefan); P. Okwieka (Patricia); A. Porter (Andrew); J.H. Gribnau (Joost); K. Hochedlinger (Konrad); N. Geijsen (Niels)

    2010-01-01

    textabstractMurine pluripotent stem cells can exist in two functionally distinct states, LIF-dependent embryonic stem cells (ESCs) and bFGF-dependent epiblast stem cells (EpiSCs). However, human pluripotent cells so far seemed to assume only an epiblast-like state. Here we demonstrate that human

  9. Characteristics of human amniotic fluid mesenchymal stem cells and their tropism to human ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Liru Li

    Full Text Available The mesenchymal stem cells (MSCs derived from amniotic fluid (AF have become an attractive stem cells source for cell-based therapy because they can be harvested at low cost and avoid ethical disputes. In human research, stem cells derived from AF gradually became a hot research direction for disease treatment, specifically for their plasticity, their reduced immunogenicity and their tumor tropism regardless of the tumor size, location and source. Our work aimed to obtain and characterize human amniotic fluid mesenchymal stem cells (AFMSCs and detect their ovarian cancer tropsim in nude mice model. Ten milliliters of twenty independent amniotic fluid samples were collected from 16-20 week pregnant women who underwent amniocentesis for fetal genetic determination in routine prenatal diagnosis in the first affiliated hospital of Harbin medical university. We successfully isolated the AFMSCs from thirteen of twenty amniotic fluid samples. AFMSCs presented a fibroblastic-like morphology during the culture. Flow cytometry analyses showed that the cells were positive for specific stem cell markers CD73,CD90, CD105, CD166 and HLA-ABC (MHC class I, but negative for CD 45,CD40, CD34, CD14 and HLA-DR (MHC class II. RT-PCR results showed that the AFMSCs expressed stem cell marker OCT4. AFMSCs could differentiate into bone cells, fat cells and chondrocytes under certain conditions. AFMSCs had the high motility to migrate to ovarian cancer site but didn't have the tumorigenicity. This study enhances the possibility of AFMSCs as drug carrier in human cell-based therapy. Meanwhile, the research emphasis in the future can also put in targeting therapy of ovarian cancer.

  10. Isolation and in vitro expansion of human colonic stem cells

    NARCIS (Netherlands)

    Jung, P.; Sato, T.; Merlos-Suarez, A.; Barriga, F.M.; Iglesias, M.; Rossell, D.; Auer, H.; Gallardo, M.; Blasco, M.A.; Sancho, E.; Clevers, H.; Batlle, E.

    2011-01-01

    Here we describe the isolation of stem cells of the human colonic epithelium. Differential cell surface abundance of ephrin type-B receptor 2 (EPHB2) allows the purification of different cell types from human colon mucosa biopsies. The highest EPHB2 surface levels correspond to epithelial colonic

  11. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    OpenAIRE

    Hayato Fukusumi; Tomoko Shofuda; Yohei Bamba; Atsuyo Yamamoto; Daisuke Kanematsu; Yukako Handa; Keisuke Okita; Masaya Nakamura; Shinya Yamanaka; Hideyuki Okano; Yonehiro Kanemura

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPS...

  12. Human heart disease : lessons from human pluripotent stem cell-derived cardiomyocytes

    NARCIS (Netherlands)

    Giacomelli, E.; Mummery, C.L.; Bellin, M.

    2017-01-01

    Technical advances in generating and phenotyping cardiomyocytes from human pluripotent stem cells (hPSC-CMs) are now driving their wider acceptance as in vitro models to understand human heart disease and discover therapeutic targets that may lead to new compounds for clinical use. Current

  13. Neural Crossroads in the Hematopoietic Stem Cell Niche.

    Science.gov (United States)

    Agarwala, Sobhika; Tamplin, Owen J

    2018-05-29

    The hematopoietic stem cell (HSC) niche supports steady-state hematopoiesis and responds to changing needs during stress and disease. The nervous system is an important regulator of the niche, and its influence is established early in development when stem cells are specified. Most research has focused on direct innervation of the niche, however recent findings show there are different modes of neural control, including globally by the central nervous system (CNS) and hormone release, locally by neural crest-derived mesenchymal stem cells, and intrinsically by hematopoietic cells that express neural receptors and neurotransmitters. Dysregulation between neural and hematopoietic systems can contribute to disease, however new therapeutic opportunities may be found among neuroregulator drugs repurposed to support hematopoiesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. The GluN2B subunit represents a major functional determinant of NMDA receptors in human induced pluripotent stem cell-derived cortical neurons

    Directory of Open Access Journals (Sweden)

    Ioana Neagoe

    2018-04-01

    Full Text Available Abnormal signaling pathways mediated by N-methyl-d-aspartate receptors (NMDARs have been implicated in the pathogenesis of various CNS disorders and have been long considered as promising points of therapeutic intervention. However, few efforts have been previously described concerning evaluation of therapeutic modulators of NMDARs and their downstream pathways in human neurons with endogenous expression of NMDARs. In the present study, we assessed expression, functionality, and subunit composition of endogenous NMDARs in human induced pluripotent stem cell (hiPSC-derived cortical neurons (iCell Neurons and iCell GlutaNeurons. We initially confirmed the expected pharmacological response of iCell Neurons and iCell GlutaNeurons to NMDA by patch-clamp recordings. Subsequent pharmacological interrogation using GluN2 subunit-selective antagonists revealed the predominance of GluN2B in both iCell Neurons and iCell GlutaNeurons. This observation was also supported by qRT-PCR and Western blot analyses of GluN2 subunit expression as well as pharmacological experiments using positive allosteric modulators with distinct GluN2 subunit selectivity. We conclude that iCell Neurons and iCell GlutaNeurons express functional GluN2B-containing NMDARs and could serve as a valuable system for development and validation of GluN2B-modulating pharmaceutical agents. Keywords: Human induced pluripotent stem cell-derived neurons, iCell Neurons, iCell GlutaNeurons, NMDA receptors, GluN2B, Positive allosteric modulators

  15. Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Mononuclear Cells Using Sendai Virus.

    Science.gov (United States)

    Soares, Filipa A C; Pedersen, Roger A; Vallier, Ludovic

    2016-01-01

    This protocol describes the efficient isolation of peripheral blood mononuclear cells from circulating blood via density gradient centrifugation and subsequent generation of integration-free human induced pluripotent stem cells. Peripheral blood mononuclear cells are cultured for 9 days to allow expansion of the erythroblast population. The erythroblasts are then used to derive human induced pluripotent stem cells using Sendai viral vectors, each expressing one of the four reprogramming factors Oct4, Sox2, Klf4, and c-Myc.

  16. Hurdles to clinical translation of human induced pluripotent stem cells

    OpenAIRE

    Neofytou, Evgenios; O’Brien, Connor Galen; Couture, Larry A.; Wu, Joseph C.

    2015-01-01

    Human pluripotent stem cells are known to have the capacity to renew indefinitely, being intrinsically able to differentiate into many different cell types. These characteristics have generated tremendous enthusiasm about the potential applications of these cells in regenerative medicine. However, major challenges remain with the development and testing of novel experimental stem cell therapeutics in the field. In this Review, we focus on the nature of the preclinical challenges and discuss p...

  17. Persistent Inflammation Alters the Function of the Endogenous Brain Stem Cell Compartment

    OpenAIRE

    Pluchino, Stefano; Muzio, Luca; Alfaro-Cervello, Clara; Salani, Giuliana; Porcheri, Cristina; Brambilla, Elena; Cavasinni, Francesca; Bergamaschi, Andrea; Garcia-Verdugo, Jose Manuel; Comi, Giancarlo; Martino, Gianvito; Imitola, Jaime; Deleidi, Michela; Khoury, Samia Joseph

    2008-01-01

    Endogenous neural stem/precursor cells (NPCs) are considered a functional reservoir for promoting tissue homeostasis and repair after injury, therefore regenerative strategies that mobilize these cells have recently been proposed. Despite evidence of increased neurogenesis upon acute inflammatory insults (e.g. ischaemic stroke), the plasticity of the endogenous brain stem cell compartment in chronic CNS inflammatory disorders remains poorly characterized. Here we show that persistent brain in...

  18. Proteome of human stem cells from periodontal ligament and dental pulp.

    Directory of Open Access Journals (Sweden)

    Enrica Eleuterio

    Full Text Available BACKGROUND: Many adult tissues contain a population of stem cells with the ability to regenerate structures similar to the microenvironments from which they are derived in vivo and represent a promising therapy for the regeneration of complex tissues in the clinical disorder. Human adult stem cells (SCs including bone marrow stem cells (BMSCs, dental pulp stem cells (DPSCs and periodontal ligament stem cells (PDLSCs have been characterized for their high proliferative potential, expression of characteristic SC-associated markers and for the plasticity to differentiate in different lineage in vitro. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this study is to define the molecular features of stem cells from oral tissue by comparing the proteomic profiles obtained with 2-DE followed by MALDI-TOF/TOF of ex-vivo cultured human PDLSCs, DPSCs and BMSCs. Our results showed qualitative similarities in the proteome profiles among the SCs examined including some significant quantitative differences. To enrich the knowledge of oral SCs proteome we performed an analysis in narrow range pH 4-7 and 6-9, and we found that DPSCs vs PDLSCs express differentially regulated proteins that are potentially related to growth, regulation and genesis of neuronal cells, suggesting that SCs derived from oral tissue source populations may possess the potential ability of neuronal differentiation which is very consistent with their neural crest origin. CONCLUSION/SIGNIFICANCE: This study identifies some differentially expressed proteins by using comparative analysis between DPSCs and PDLSCs and BMSCs and suggests that stem cells from oral tissue could have a different cell lineage potency compared to BMSCs.

  19. Current practices for screening, consent and care of related donors in France: Haematopoietic stem cell transplantation coordinator nurses' perceptions.

    Science.gov (United States)

    Polomeni, A; Bompoint, C; Gomez, A; Brissot, E; Ruggeri, A; Belhocine, R; Mohty, M

    2017-11-01

    Haematopoietic stem cell transplantation-coordinating nurses (HSCT-CNs) play an important role in informing related donors (RDs) and in organising human leucocyte antigen (HLA) tests, pre-donation workup and stem cells collection. Our pilot study aimed to explore French HSCT-CNs' perceptions of RD care issues. Twenty-nine French HSCT adult units were sent a questionnaire on the subject of donation procedures, HSCT-CNs' data and their professional experience of related donation issues. Twenty-two HSCT-CNs returned a completed questionnaire, and 90% of HSCT units were involved to some degree in both patient and donor care. Responses indicated that the provision of information to potential donors prior to HLA tests was insufficient, while donors were given a medical consultation only during the pre-donation workup. Questions were raised about the consent and voluntary status of RDs. None of the HSCT teams organised a post-donation consultation, while 57% provided follow-up by phone or via a questionnaire. Our results draw attention to the conflict of interest experienced by HSCT-CNs when caring simultaneously for patients and donors. The specific psychosocial difficulties associated with becoming an RD are also highlighted. French HSCT-CNs' perceptions of related donation reveal many ethical and clinical problems that have yet to be fully explored. Data on this topic remain scarce, and our pilot study may contribute to the current debate on the organisation of RD care. © 2016 John Wiley & Sons Ltd.

  20. Isolation of Human Colon Stem Cells Using Surface Expression of PTK7.

    Science.gov (United States)

    Jung, Peter; Sommer, Christian; Barriga, Francisco M; Buczacki, Simon J; Hernando-Momblona, Xavier; Sevillano, Marta; Duran-Frigola, Miquel; Aloy, Patrick; Selbach, Matthias; Winton, Douglas J; Batlle, Eduard

    2015-12-08

    Insertion of reporter cassettes into the Lgr5 locus has enabled the characterization of mouse intestinal stem cells (ISCs). However, low cell surface abundance of LGR5 protein and lack of high-affinity anti-LGR5 antibodies represent a roadblock to efficiently isolate human colonic stem cells (hCoSCs). We set out to identify stem cell markers that would allow for purification of hCoSCs. In an unbiased approach, membrane-enriched protein fractions derived from in vitro human colonic organoids were analyzed by quantitative mass spectrometry. Protein tyrosine pseudokinase PTK7 specified a cell population within human colonic organoids characterized by highest self-renewal and re-seeding capacity. Antibodies recognizing the extracellular domain of PTK7 allowed us to isolate and expand hCoSCs directly from patient-derived mucosa samples. Human PTK7+ cells display features of canonical Lgr5+ ISCs and include a fraction of cells that undergo differentiation toward enteroendocrine lineage that resemble crypt label retaining cells (LRCs). Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Generation of insulin-producing human mesenchymal stem cells using recombinant adeno-associated virus.

    Science.gov (United States)

    Kim, Jeong Hwan; Park, Si-Nae; Suh, Hwal

    2007-02-28

    The purpose of current experiment is the generation of insulin-producing human mesenchymal stem cells as therapeutic source for the cure of type 1 diabetes. Type 1 diabetes is generally caused by insulin deficiency accompanied by the destruction of islet beta-cells. In various trials for the treatment of type 1 diabetes, cell-based gene therapy using stem cells is considered as one of the most useful candidate for the treatment. In this experiment, human mesenchymal stem cells were transduced with AAV which is containing furin-cleavable human preproinsulin gene to generate insulin-producing cells as surrogate beta-cells for the type 1 diabetes therapy. In the rAAV production procedure, rAAV was generated by transfection of AD293 cells. Human mesenchymal stems cells were transduced using rAAV with a various multiplicity of infection. Transduction of recombinant AAV was also tested using beta-galactosidse expression. Cell viability was determined by using MTT assay to evaluate the toxicity of the transduction procedure. Expression and production of Insulin were tested using reverse transcriptase-polymerase chain reaction and immunocytochemistry. Secretion of human insulin and C-peptide from the cells was assayed using enzyme-linked immunosorbent assay. Production of insulin and C-peptide from the test group represented a higher increase compared to the control group. In this study, we examined generation of insulin-producing cells from mesenchymal stem cells by genetic engineering for diabetes therapy. This work might be valuable to the field of tissue engineering for diabetes treatment.

  2. Human cloning, stem cell research. An Islamic perspective.

    Science.gov (United States)

    Al-Aqeel, Aida I

    2009-12-01

    The rapidly changing technologies that involve human subjects raise complex ethical, legal, social, and religious issues. Recent advances in the field of cloning and stem cell research have introduced new hopes for the treatment of serious diseases. But this promise has raised many complex questions. This field causes debate and challenge, not only among scientists but also among ethicists, religious scholars, governments, and politicians. There is no consensus on the morality of human cloning, even within specific religious traditions. In countries in which religion has a strong influence on political decision making, the moral status of the human embryo is at the center of the debate. Because of the inevitable consequences of reproductive cloning, it is prohibited in Islam. However, stem cell research for therapeutic purposes is permissible with full consideration, and all possible precautions in the pre-ensoulment stages of early fetus development, if the source is legitimate.

  3. Generation of human hepatocytes by stem cell technology: definition of the hepatocyte.

    Science.gov (United States)

    Hengstler, Jan G; Brulport, Marc; Schormann, Wiebke; Bauer, Alexander; Hermes, Matthias; Nussler, Andreas K; Fandrich, Fred; Ruhnke, Maren; Ungefroren, Hendrik; Griffin, Louise; Bockamp, Ernesto; Oesch, Franz; von Mach, Marc-Alexander

    2005-06-01

    Since 1999, numerous articles have reported the generation of hepatocytes from different types of extrahepatic stem or precursor cells. This opens exciting new possibilities for pharmacology and toxicology, as well as for cell therapy. Hepatocyte marker expression, including albumin, cytokeratin 18, c-met, alpha-fetoprotein and cytochrome P450 3A4 and -2B6, has been observed after transplantation of different types of human stem cells into the liver of laboratory animals or in vitro after incubation with cytokines. These intriguing observations have prompted scientists to classify stem cell-derived cell populations as hepatocytes. However, this conclusion may be premature. It has been shown that factors of the liver microenvironment can induce expression of a limited number of hepatocyte marker genes in nonhepatic cell types. To conclude on the grounds of a limited number of markers that these cells are true hepatocytes is not indicated. In this case one should carefully evaluate crucial hepatocyte-defining enzymatic properties. The present article: i) reviews studies describing the fate of extrahepatic human stem and precursor cells in livers of laboratory animals, including the possibility of cell fusion; and ii) critically discusses the phenotype of stem cells after application of various differentiation protocols aimed at generating human hepatocytes. In addition, the necessary criteria needed for defining a true hepatocyte are suggested. Establishing the necessary properties for stem cell-derived hepatocytes is timely and reasonable, and thus avoids further misleading semantic confusion. Finally, it is essential to understand that the definition of a bona fide hepatocyte should not be limited to qualitative assays, such as reverse transcriptase polymerase chain reaction and immunohistochemistry, but has to include a quantitative analysis of enzymatic activities, which allows direct comparison with primary hepatocytes. Although the stem cell

  4. Modeling Niemann Pick type C1 using human embryonic and induced pluripotent stem cells.

    Science.gov (United States)

    Ordoñez, M Paulina; Steele, John W

    2017-02-01

    Data generated in Niemann Pick type C1 (NPC1) human embryonic and human induced pluripotent stem cell derived neurons complement on-going studies in animal models and provide the first example, in disease-relevant human cells, of processes that underlie preferential neuronal defects in a NPC1. Our work and that of other investigators in human neurons derived from stem cells highlight the importance of performing rigorous mechanistic studies in relevant cell types to guide drug discovery and therapeutic development, alongside of existing animal models. Through the use of human stem cell-derived models of disease, we can identify and discover or repurpose drugs that revert early events that lead to neuronal failure in NPC1. Together with the study of disease pathogenesis and efficacy of therapies in animal models, these strategies will fulfill the promise of stem cell technology in the development of new treatments for human diseases. This article is part of a Special Issue entitled SI: Exploiting human neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Efficient and Rapid Derivation of Primitive Neural Stem Cells and Generation of Brain Subtype Neurons From Human Pluripotent Stem Cells

    OpenAIRE

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir; Vemuri, Mohan C.

    2013-01-01

    This study developed a highly efficient serum-free pluripotent stem cell (PSC) neural induction medium that can induce human PSCs into primitive neural stem cells (NSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. This method of primitive NSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.

  6. One-step derivation of mesenchymal stem cell (MSC-like cells from human pluripotent stem cells on a fibrillar collagen coating.

    Directory of Open Access Journals (Sweden)

    Yongxing Liu

    Full Text Available Controlled differentiation of human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs into cells that resemble adult mesenchymal stem cells (MSCs is an attractive approach to obtain a readily available source of progenitor cells for tissue engineering. The present study reports a new method to rapidly derive MSC-like cells from hESCs and hiPSCs, in one step, based on culturing the cells on thin, fibrillar, type I collagen coatings that mimic the structure of physiological collagen. Human H9 ESCs and HDFa-YK26 iPSCs were singly dissociated in the presence of ROCK inhibitor Y-27632, plated onto fibrillar collagen coated plates and cultured in alpha minimum essential medium (alpha-MEM supplemented with 10% fetal bovine serum, 50 uM magnesium L-ascorbic acid phosphate and 100 nM dexamethasone. While fewer cells attached on the collagen surface initially than standard tissue culture plastic, after culturing for 10 days, resilient colonies of homogenous spindle-shaped cells were obtained. Flow cytometric analysis showed that a high percentage of the derived cells expressed typical MSC surface markers including CD73, CD90, CD105, CD146 and CD166 and were negative as expected for hematopoietic markers CD34 and CD45. The MSC-like cells derived from pluripotent cells were successfully differentiated in vitro into three different lineages: osteogenic, chondrogenic, and adipogenic. Both H9 hES and YK26 iPS cells displayed similar morphological changes during the derivation process and yielded MSC-like cells with similar properties. In conclusion, this study demonstrates that bioimimetic, fibrillar, type I collagen coatings applied to cell culture plates can be used to guide a rapid, efficient derivation of MSC-like cells from both human ES and iPS cells.

  7. Quantification of Crypt and Stem Cell Evolution in the Normal and Neoplastic Human Colon

    Directory of Open Access Journals (Sweden)

    Ann-Marie Baker

    2014-08-01

    Full Text Available Human intestinal stem cell and crypt dynamics remain poorly characterized because transgenic lineage-tracing methods are impractical in humans. Here, we have circumvented this problem by quantitatively using somatic mtDNA mutations to trace clonal lineages. By analyzing clonal imprints on the walls of colonic crypts, we show that human intestinal stem cells conform to one-dimensional neutral drift dynamics with a “functional” stem cell number of five to six in both normal patients and individuals with familial adenomatous polyposis (germline APC−/+. Furthermore, we show that, in adenomatous crypts (APC−/−, there is a proportionate increase in both functional stem cell number and the loss/replacement rate. Finally, by analyzing fields of mtDNA mutant crypts, we show that a normal colon crypt divides around once every 30–40 years, and the division rate is increased in adenomas by at least an order of magnitude. These data provide in vivo quantification of human intestinal stem cell and crypt dynamics.

  8. Expression of stem cell markers in the human fetal kidney.

    Directory of Open Access Journals (Sweden)

    Sally Metsuyanim

    Full Text Available In the human fetal kidney (HFK self-renewing stem cells residing in the metanephric mesenchyme (MM/blastema are induced to form all cell types of the nephron till 34(th week of gestation. Definition of useful markers is crucial for the identification of HFK stem cells. Because wilms' tumor, a pediatric renal cancer, initiates from retention of renal stem cells, we hypothesized that surface antigens previously up-regulated in microarrays of both HFK and blastema-enriched stem-like wilms' tumor xenografts (NCAM, ACVRIIB, DLK1/PREF, GPR39, FZD7, FZD2, NTRK2 are likely to be relevant markers. Comprehensive profiling of these putative and of additional stem cell markers (CD34, CD133, c-Kit, CD90, CD105, CD24 in mid-gestation HFK was performed using immunostaining and FACS in conjunction with EpCAM, an epithelial surface marker that is absent from the MM and increases along nephron differentiation and hence can be separated into negative, dim or bright fractions. No marker was specifically localized to the MM. Nevertheless, FZD7 and NTRK2 were preferentially localized to the MM and emerging tubules (50% of HFK cells and predominantly co-express EpCAM(bright, indicating they are mostly markers of differentiation. Furthermore, localization of NCAM exclusively in the MM and in its nephron progenitor derivatives but also in stroma and the expression pattern of significantly elevated renal stem/progenitor genes Six2, Wt1, Cited1, and Sall1 in NCAM(+EpCAM(- and to a lesser extent in NCAM(+EpCAM(+ fractions confirmed regional identity of cells and assisted us in pinpointing the presence of subpopulations that are putative MM-derived progenitor cells (NCAM(+EpCAM(+FZD7(+, MM stem cells (NCAM(+EpCAM(-FZD7(+ or both (NCAM(+FZD7(+. These results and concepts provide a framework for developing cell selection strategies for human renal cell-based therapies.

  9. Stem cell therapy for diabetes

    Directory of Open Access Journals (Sweden)

    K O Lee

    2012-01-01

    Full Text Available Stem cell therapy holds immense promise for the treatment of patients with diabetes mellitus. Research on the ability of human embryonic stem cells to differentiate into islet cells has defined the developmental stages and transcription factors involved in this process. However, the clinical applications of human embryonic stem cells are limited by ethical concerns, as well as the potential for teratoma formation. As a consequence, alternative forms of stem cell therapies, such as induced pluripotent stem cells, umbilical cord stem cells and bone marrow-derived mesenchymal stem cells, have become an area of intense study. Recent advances in stem cell therapy may turn this into a realistic treatment for diabetes in the near future.

  10. Hurdles to clinical translation of human induced pluripotent stem cells.

    Science.gov (United States)

    Neofytou, Evgenios; O'Brien, Connor Galen; Couture, Larry A; Wu, Joseph C

    2015-07-01

    Human pluripotent stem cells are known to have the capacity to renew indefinitely, being intrinsically able to differentiate into many different cell types. These characteristics have generated tremendous enthusiasm about the potential applications of these cells in regenerative medicine. However, major challenges remain with the development and testing of novel experimental stem cell therapeutics in the field. In this Review, we focus on the nature of the preclinical challenges and discuss potential solutions that could help overcome them. Furthermore, we discuss the use of allogeneic versus autologous stem cell products, including a review of their respective advantages and disadvantages, major clinical requirements, quality standards, time lines, and costs of clinical grade development.

  11. Development of Gonadotropin-Releasing Hormone-Secreting Neurons from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Carina Lund

    2016-08-01

    Full Text Available Gonadotropin-releasing hormone (GnRH neurons regulate human puberty and reproduction. Modeling their development and function in vitro would be of interest for both basic research and clinical translation. Here, we report a three-step protocol to differentiate human pluripotent stem cells (hPSCs into GnRH-secreting neurons. Firstly, hPSCs were differentiated to FOXG1, EMX2, and PAX6 expressing anterior neural progenitor cells (NPCs by dual SMAD inhibition. Secondly, NPCs were treated for 10 days with FGF8, which is a key ligand implicated in GnRH neuron ontogeny, and finally, the cells were matured with Notch inhibitor to bipolar TUJ1-positive neurons that robustly expressed GNRH1 and secreted GnRH decapeptide into the culture medium. The protocol was reproducible both in human embryonic stem cells and induced pluripotent stem cells, and thus provides a translational tool for investigating the mechanisms of human puberty and its disorders.

  12. Beta1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance

    DEFF Research Database (Denmark)

    Campos, Lia S; Leone, Dino P; Relvas, Joao B

    2004-01-01

    , signalling is required for neural stem cell maintenance, as assessed by neurosphere formation, and inhibition or genetic ablation of beta1 integrin using cre/lox technology reduces the level of MAPK activity. We conclude that integrins are therefore an important part of the signalling mechanisms that control......The emerging evidence that stem cells develop in specialised niches highlights the potential role of environmental factors in their regulation. Here we examine the role of beta1 integrin/extracellular matrix interactions in neural stem cells. We find high levels of beta1 integrin expression...... in the stem-cell containing regions of the embryonic CNS, with associated expression of the laminin alpha2 chain. Expression levels of laminin alpha2 are reduced in the postnatal CNS, but a population of cells expressing high levels of beta1 remains. Using neurospheres - aggregate cultures, derived from...

  13. Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Kunimatsu, Ryo; Nakajima, Kengo; Awada, Tetsuya; Tsuka, Yuji; Abe, Takaharu; Ando, Kazuyo; Hiraki, Tomoka; Kimura, Aya; Tanimoto, Kotaro

    2018-06-18

    Mesenchymal stem cells (MSCs) are used clinically in tissue engineering and regenerative medicine. The proliferation and osteogenic differentiation potential of MSCs vary according to factors such as tissue source and cell population heterogeneity. Dental tissue has received attention as an easily accessible source of high-quality stem cells. In this study, we compared the in vitro characteristics of dental pulp stem cells from deciduous teeth (SHED), human dental pulp stem cells (hDPSCs), and human bone marrow mesenchymal stem cells (hBMSCs). SEHD and hDPSCs were isolated from dental pulp and analyzed in comparison with human bone marrow (hBM)MSCs. Proliferative capacity of cultured cells was analyzed using a bromodeoxyuridine immunoassay and cell counting. Alkaline phosphatase (ALP) levels were monitored to assess osteogenic differentiation. Mineralization was evaluated by alizarin red staining. Levels of bone marker mRNA were examined by real-time PCR analysis. SHED were highly proliferative compared with hDPSCs and hBMSCs. SHED, hDPSCs, and hBMSCs exhibited dark alizarin red staining on day 21 after induction of osteogenic differentiation, and staining of hBMSCs was significantly higher than that of SHED and hDPSCs by spectrophotometry. ALP staining was stronger in hBMSCs compared with SHED and hDPSCs, and ALP activity was significantly higher in hBMSCs compared with SHED or hDPSCs. SHED showed significantly higher expression of the Runx2 and ALP genes compared with hBMSCs, based on real-time PCR analysis. In bFGF, SHED showed significantly higher expression of the basic fibroblast growth factor (bFGF) gene compared with hDPSCs and hBMSCs. SHED exhibited higher proliferative activity and levels of bFGF and BMP-2 gene expression compared with BMMSCs and DPSCs. The ease of harvesting cells and ability to avoid invasive surgical procedures suggest that SHED may be a useful cell source for application in bone regeneration treatments. Copyright © 2018 Elsevier Inc

  14. A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer

    OpenAIRE

    Sanal, Madhusudana Girija

    2014-01-01

    Even after several years since the discovery of human embryonic stem cells and induced pluripotent stem cells (iPSC), we are still unable to make any significant therapeutic benefits out of them such as cell therapy or generation of organs for transplantation. Recent success in somatic cell nuclear transfer (SCNT) made it possible to generate diploid embryonic stem cells, which opens up the way to make high-quality pluripotent stem cells. However, the process is highly inefficient and hence e...

  15. Hybrid clone cells derived from human breast epithelial cells and human breast cancer cells exhibit properties of cancer stem/initiating cells.

    Science.gov (United States)

    Gauck, Daria; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas

    2017-08-02

    The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS

  16. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system.

    Science.gov (United States)

    Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo

    2015-11-17

    Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells.

  17. Expanding the Tissue Toolbox : Deriving Colon Tissue from Human Pluripotent Stem Cells

    NARCIS (Netherlands)

    Bruens, Lotte; Snippert, Hugo J.G.

    2017-01-01

    Organoid technology holds great potential for disease modeling and regenerative medicine. In this issue of Cell Stem Cell, Múnera et al. (2017) establish the generation of pluripotent stem cell-derived colon organoids that upon transplantation in mice, resembling human colon to a large extent,

  18. Research on human placenta-derived mesenchymal stem cells ...

    African Journals Online (AJOL)

    Research on human placenta-derived mesenchymal stem cells transfected with pIRES2-EGFP-VEGF165 using liposome. ... African Journal of Biotechnology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue ...

  19. Oncogenic KRAS activates an embryonic stem cell-like program in human colon cancer initiation.

    Science.gov (United States)

    Le Rolle, Anne-France; Chiu, Thang K; Zeng, Zhaoshi; Shia, Jinru; Weiser, Martin R; Paty, Philip B; Chiu, Vi K

    2016-01-19

    Colorectal cancer is the third most frequently diagnosed cancer worldwide. Prevention of colorectal cancer initiation represents the most effective overall strategy to reduce its associated morbidity and mortality. Activating KRAS mutation (KRASmut) is the most prevalent oncogenic driver in colorectal cancer development, and KRASmut inhibition represents an unmet clinical need. We apply a systems-level approach to study the impact of KRASmut on stem cell signaling during human colon cancer initiation by performing gene set enrichment analysis on gene expression from human colon tissues. We find that KRASmut imposes the embryonic stem cell-like program during human colon cancer initiation from colon adenoma to stage I carcinoma. Expression of miR145, an embryonic SC program inhibitor, promotes cell lineage differentiation marker expression in KRASmut colon cancer cells and significantly suppresses their tumorigenicity. Our data support an in vivo plasticity model of human colon cancer initiation that merges the intrinsic stem cell properties of aberrant colon stem cells with the embryonic stem cell-like program induced by KRASmut to optimize malignant transformation. Inhibition of the embryonic SC-like program in KRASmut colon cancer cells reveals a novel therapeutic strategy to programmatically inhibit KRASmut tumors and prevent colon cancer.

  20. Isolation and characterization of human salivary gland cells for stem cell transplantation to reduce radiation-induced hyposalivation

    International Nuclear Information System (INIS)

    Feng Jielin; Zwaag, Marianne van der; Stokman, Monique A.; Os, Ronald van; Coppes, Robert P.

    2009-01-01

    Background: Recently, we showed that transplantation of 100-300 c-Kit + stem cells isolated from cultured salispheres ameliorates radiation-damage in murine salivary glands. The aim of this study is to optimize and translate these findings from mice to man. Methods: Mouse and human non-malignant parotid and submandibular salivary gland tissue was collected and enzymatically digested. The remaining cell suspension was cultured according to our salisphere culture method optimized for murine salispheres. Salisphere cells were tested using 3D matrix culturing for their in vitro stem cell characteristics such as the potential to differentiate into tissue specific cell types. Several potential mouse and human salivary gland stem cells were selected using FACS. Results: In human salivary gland, c-Kit + cells were only detected in excretory ducts as shown previously in mice. From both human parotid and submandibular gland cell suspensions salispheres could be grown, which when placed in 3D culture developed ductal structures and mucin-expressing acinar-like cells. Moreover, cells dispersed from primary salispheres were able to form secondary spheres in matrigel, a procedure that could be repeated for at least seven passages. Approximately 3000 c-Kit + cells could be isolated from primary human salispheres per biopsy. Conclusion: Human salivary glands contain a similar 'putative' stem cell population as rodents, expressing c-kit and capable of in vitro differentiation and self-renewal. In the future, these cells may have the potential to reduce radiotherapy-induced salivary gland dysfunction in patients.

  1. Disease modeling using human induced pluripotent stem cells: lessons from the liver.

    Science.gov (United States)

    Gieseck, Richard L; Colquhoun, Jennifer; Hannan, Nicholas R F

    2015-01-01

    Human pluripotent stem cells (hPSCs) have the capacity to differentiate into any of the hundreds of distinct cell types that comprise the human body. This unique characteristic has resulted in considerable interest in the field of regenerative medicine, given the potential for these cells to be used to protect, repair, or replace diseased, injured, and aged cells within the human body. In addition to their potential in therapeutics, hPSCs can be used to study the earliest stages of human development and to provide a platform for both drug screening and disease modeling using human cells. Recently, the description of human induced pluripotent stem cells (hIPSCs) has allowed the field of disease modeling to become far more accessible and physiologically relevant, as pluripotent cells can be generated from patients of any genetic background. Disease models derived from hIPSCs that manifest cellular disease phenotypes have been established to study several monogenic diseases; furthermore, hIPSCs can be used for phenotype-based drug screens to investigate complex diseases for which the underlying genetic mechanism is unknown. As a result, the use of stem cells as research tools has seen an unprecedented growth within the last decade as researchers look for in vitro disease models which closely mimic in vivo responses in humans. Here, we discuss the beginnings of hPSCs, starting with isolation of human embryonic stem cells, moving into the development and optimization of hIPSC technology, and ending with the application of hIPSCs towards disease modeling and drug screening applications, with specific examples highlighting the modeling of inherited metabolic disorders of the liver. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  2. Migratory capabilities of human umbilical cord blood-derived neural stem cells (HUCB-NSC) in vitro.

    Science.gov (United States)

    Janowski, Miroslaw; Lukomska, Barbara; Domanska-Janik, Krystyna

    2011-01-01

    Many types of neural progenitors from various sources have been evaluated for therapy of CNS disorders. Prerequisite for success in cell therapy is the ability for transplanted cells to reach appropriate target such as stroke lesion. We have established neural stem cell line from human umbilical cord blood neural stem (HUCB-NSC). In the present study we evaluated migratory capabilities of cells (HUCB-NSC) and the presence of various migration-related receptors. Immunocytochemical analysis revealed abundant expression of CXCR4, PDGFR-alpha, PDGFR-beta, c-Met, VEGFR, IGF-1R and PSA-NCAM receptors in non-adherent population of HUCB-NSC cultured in serum free (SF) conditions (SF cells). Biological activity of selected receptors was confirmed by HUCB-NSC in vitro migration towards SDF-1 and IGF-1 ligands. Additionally, rat brain-derived homogenates have been assessed for their chemoattractive activity of HUCB-NSC. Our experiments unveiled that brain tissue was more attracted for HUCB-NSC than single ligands with higher potency of injured than intact brain. Moreover, adherent HUCB-NSC cultured in low serum (LS) conditions (LS cells) were employed to investigate an impact of different extracellular matrix (ECM) proteins on cell motility. It turned out that laminin provided most permissive microenvironment for cell migration, followed by fibronectin and gelatin. Unexpected nuclear localization of CXCR4 in SF cells prompted us to characterize intracellular pattern of this expression in relation to developmental stage of cells cultured in different conditions. Continuous culture of LS cells revealed cytoplasmatic pattern of CXCR4 expression while HUCB-NSC cultured in high serum conditions (HS cells) resulted in gradual translocation of CXCR4 from nucleus to cytoplasm and then to arising processes. Terminal differentiation of HUCB-NSC was followed by CXCR4 expression decline.

  3. Human spermatogonial stem cells display limited proliferation in vitro under mouse spermatogonial stem cell culture conditions.

    Science.gov (United States)

    Medrano, Jose V; Rombaut, Charlotte; Simon, Carlos; Pellicer, Antonio; Goossens, Ellen

    2016-11-01

    To study the ability of human spermatogonial stem cells (hSSCs) to proliferate in vitro under mouse spermatogonial stem cell (mSSC) culture conditions. Experimental basic science study. Reproductive biology laboratory. Cryopreserved testicular tissue with normal spermatogenesis obtained from three donors subjected to orchiectomy due to a prostate cancer treatment. Testicular cells used to create in vitro cell cultures corresponding to the following groups: [1] unsorted human testicular cells, [2] differentially plated human testicular cells, and [3] cells enriched with major histocompatibility complex class 1 (HLA - )/epithelial cell surface antigen (EPCAM + ) in coculture with inactivated testicular feeders from the same patient. Analyses and characterization including immunocytochemistry and quantitative reverse-transcription polymerase chain reaction for somatic and germ cell markers, testosterone and inhibin B quantification, and TUNEL assay. Putative hSSCs appeared in singlets, doublets, or small groups of up to four cells in vitro only when testicular cells were cultured in StemPro-34 medium supplemented with glial cell line-derived neurotrophic factor (GDNF), leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF). Fluorescence-activated cell sorting with HLA - /EPCAM + resulted in an enrichment of 27% VASA + /UTF1 + hSSCs, compared to 13% in unsorted controls. Coculture of sorted cells with inactivated testicular feeders gave rise to an average density of 112 hSSCs/cm 2 after 2 weeks in vitro compared with unsorted cells (61 hSSCs/cm 2 ) and differentially plated cells (49 hSSCS/cm 2 ). However, putative hSSCs rarely stained positive for the proliferation marker Ki67, and their presence was reduced to the point of almost disappearing after 4 weeks in vitro. We found that hSSCs show limited proliferation in vitro under mSSC culture conditions. Coculture of HLA - /EPCAM + sorted cells with testicular

  4. Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Michal Aharonowiz

    Full Text Available BACKGROUND: Multiple sclerosis (MS is an immune mediated demyelinating disease of the central nervous system (CNS. A potential new therapeutic approach for MS is cell transplantation which may promote remyelination and suppress the inflammatory process. METHODS: We transplanted human embryonic stem cells (hESC-derived early multipotent neural precursors (NPs into the brain ventricles of mice induced with experimental autoimmune encephalomyelitis (EAE, the animal model of MS. We studied the effect of the transplanted NPs on the functional and pathological manifestations of the disease. RESULTS: Transplanted hESC-derived NPs significantly reduced the clinical signs of EAE. Histological examination showed migration of the transplanted NPs to the host white matter, however, differentiation to mature oligodendrocytes and remyelination were negligible. Time course analysis of the evolution and progression of CNS inflammation and tissue injury showed an attenuation of the inflammatory process in transplanted animals, which was correlated with the reduction of both axonal damage and demyelination. Co-culture experiments showed that hESC-derived NPs inhibited the activation and proliferation of lymph node-derived T cells in response to nonspecific polyclonal stimuli. CONCLUSIONS: The therapeutic effect of transplantation was not related to graft or host remyelination but was mediated by an immunosuppressive neuroprotective mechanism. The attenuation of EAE by hESC-derived NPs, demonstrated here, may serve as the first step towards further developments of hESC for cell therapy in MS.

  5. Collagen Type I Improves the Differentiation of Human Embryonic Stem Cells towards Definitive Endoderm

    DEFF Research Database (Denmark)

    Rasmussen, Camilla Holzmann; Petersen, Dorthe Roenn; Møller, Jonas Bech

    2015-01-01

    Human embryonic stem cells have the ability to generate all cell types in the body and can potentially provide an unlimited source of cells for cell replacement therapy to treat degenerative diseases such as diabetes. Current differentiation protocols of human embryonic stem cells towards insulin...... and consistent differentiation of stem cells to definitive endoderm. The results shed light on the importance of extracellular matrix proteins for differentiation and also points to a cost effective and easy method to improve differentiation....... embryonic stem cells to the definitive endoderm lineage. The percentage of definitive endoderm cells after differentiation on collagen I and fibronectin was >85% and 65%, respectively. The cells on collagen I substrates displayed different morphology and gene expression during differentiation as assessed...

  6. Differentiation of human mesenchymal stem cell spheroids under microgravity conditions

    Directory of Open Access Journals (Sweden)

    Wolfgang H Cerwinka

    2012-01-01

    Full Text Available To develop and characterize a novel cell culture method for the generation of undifferentiated and differentiated human mesenchymal stem cell 3D structures, we utilized the RWV system with a gelatin-based scaffold. 3 × 106 cells generated homogeneous spheroids and maximum spheroid loading was accomplished after 3 days of culture. Spheroids cultured in undifferentiated spheroids of 3 and 10 days retained expression of CD44, without expression of differentiation markers. Spheroids cultured in adipogenic and osteogenic differentiation media exhibited oil red O staining and von Kossa staining, respectively. Further characterization of osteogenic lineage, showed that 10 day spheroids exhibited stronger calcification than any other experimental group corresponding with significant expression of vitamin D receptor, alkaline phosphatase, and ERp60 . In conclusion this study describes a novel RWV culture method that allowed efficacious engineering of undifferentiated human mesenchymal stem cell spheroids and rapid osteogenic differentiation. The use of gelatin scaffolds holds promise to design implantable stem cell tissue of various sizes and shapes for future regenerative treatment.

  7. A simple, xeno-free method for oligodendrocyte generation from human neural stem cells derived from umbilical cord: engagement of gelatinases in cell commitment and differentiation.

    Science.gov (United States)

    Sypecka, Joanna; Ziemka-Nalecz, Małgorzata; Dragun-Szymczak, Patrycja; Zalewska, Teresa

    2017-05-01

    Oligodendrocyte progenitors (OPCs) are ranked among the most likely candidates for cell-based strategies aimed at treating neurodegenerative diseases accompanied by dys/demyelination of the central nervous system (CNS). In this regard, different sources of stem cells are being tested to elaborate xeno-free protocols for efficient generation of OPCs for clinical applications. In the present study, neural stem cells of human umbilical cord blood (HUCB-NSCs) have been used to derive OPCs and subsequently to differentiate them into mature, GalC-expressing oligodendrocytes. Applied components of the extracellular matrix (ECM) and the analogues of physiological substances known to increase glial commitment of neural stem cells have been shown to significantly increase the yield of the resulting OPC fraction. The efficiency of ECM components in promoting oligodendrocyte commitment and differentiation prompted us to investigate the potential role of gelatinases in those processes. Subsequently, endogenous and ECM metalloproteinases (MMPs) activity has been compared with that detected in primary cultures of rat oligodendrocytes in vitro, as well as in rat brains in vivo. The data indicate that gelatinases are engaged in gliogenesis both in vitro and in vivo, although differently, which presumably results from distinct extracellular conditions. In conclusion, the study presents an efficient xeno-free method of deriving oligodendrocyte from HUCB-NSCs and analyses the engagement of MMP-2/MMP-9 in the processes of cell commitment and maturation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Semi-synthetic salinomycin analogs exert cytotoxic activity against human colorectal cancer stem cells.

    Science.gov (United States)

    Klose, Johannes; Kattner, Sarah; Borgström, Björn; Volz, Claudia; Schmidt, Thomas; Schneider, Martin; Oredsson, Stina; Strand, Daniel; Ulrich, Alexis

    2018-01-01

    Salinomycin, a polyether antibiotic, is a well-known inhibitor of human cancer stem cells. Chemical modification of the allylic C20 hydroxyl of salinomycin has enabled access to synthetic analogs that display increased cytotoxic activity compared to the native structure. The aim of this study was to investigate the activity of a cohort of C20-O-acyl analogs of salinomycin on human colorectal cancer cell lines in vitro. Two human colorectal cancer cell lines (SW480 and SW620) were exposed to three C20-O-acylated analogs and salinomycin. The impact of salinomycin and its analogs on tumor cell number, migration, cell death, and cancer stem cell specifity was analyzed. Exposure of human colorectal cancer cells to the C20-O-acylated analogs of salinomycin resulted in reduced tumor cell number and impaired tumor cell migration at lower concentrations than salinomycin. When used at higher (micromolar) concentrations, these effects were accompanied by induction of apoptotic cell death. Salinomycin analogs further expose improved activity against cancer stem cells compared to salinomycin. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Use of genome editing tools in human stem cell-based disease modeling and precision medicine.

    Science.gov (United States)

    Wei, Yu-da; Li, Shuang; Liu, Gai-gai; Zhang, Yong-xian; Ding, Qiu-rong

    2015-10-01

    Precision medicine emerges as a new approach that takes into account individual variability. The successful conduct of precision medicine requires the use of precise disease models. Human pluripotent stem cells (hPSCs), as well as adult stem cells, can be differentiated into a variety of human somatic cell types that can be used for research and drug screening. The development of genome editing technology over the past few years, especially the CRISPR/Cas system, has made it feasible to precisely and efficiently edit the genetic background. Therefore, disease modeling by using a combination of human stem cells and genome editing technology has offered a new platform to generate " personalized " disease models, which allow the study of the contribution of individual genetic variabilities to disease progression and the development of precise treatments. In this review, recent advances in the use of genome editing in human stem cells and the generation of stem cell models for rare diseases and cancers are discussed.

  10. A novel method to generate and culture human mast cells: Peripheral CD34+ stem cell-derived mast cells (PSCMCs).

    Science.gov (United States)

    Schmetzer, Oliver; Valentin, Patricia; Smorodchenko, Anna; Domenis, Rossana; Gri, Giorgia; Siebenhaar, Frank; Metz, Martin; Maurer, Marcus

    2014-11-01

    The identification and characterization of human mast cell (MC) functions are hindered by the shortage of MC populations suitable for investigation. Here, we present a novel technique for generating large numbers of well differentiated and functional human MCs from peripheral stem cells (=peripheral stem cell-derived MCs, PSCMCs). Innovative and key features of this technique include 1) the use of stem cell concentrates, which are routinely discarded by blood banks, as the source of CD34+ stem cells, 2) cell culture in serum-free medium and 3) the addition of LDL as well as selected cytokines. In contrast to established and published protocols that use CD34+ or CD133+ progenitor cells from full blood, we used a pre-enriched cell population obtained from stem cell concentrates, which yielded up to 10(8) differentiated human MCs per batch after only three weeks of culture starting with 10(6) total CD34+ cells. The total purity on MCs (CD117+, FcεR1+) generated by this method varied between 55 and 90%, of which 4-20% were mature MCs that contain tryptase and chymase and show expression of FcεRI and CD117 in immunohistochemistry. PSCMCs showed robust histamine release in response to stimulation with anti-FcεR1 or IgE/anti-IgE, and increased proliferation and differentiation in response to IL-1β or IFN-γ. Taken together, this new protocol of the generation of large numbers of human MCs provides for an innovative and suitable option to investigate the biology of human MCs. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells.

    Science.gov (United States)

    Prabakar, Kamalaveni R; Domínguez-Bendala, Juan; Molano, R Damaris; Pileggi, Antonello; Villate, Susana; Ricordi, Camillo; Inverardi, Luca

    2012-01-01

    We sought to assess the potential of human cord blood-derived mesenchymal stem cells (CB-MSCs) to derive insulin-producing, glucose-responsive cells. We show here that differentiation protocols based on stepwise culture conditions initially described for human embryonic stem cells (hESCs) lead to differentiation of cord blood-derived precursors towards a pancreatic endocrine phenotype, as assessed by marker expression and in vitro glucose-regulated insulin secretion. Transplantation of these cells in immune-deficient animals shows human C-peptide production in response to a glucose challenge. These data suggest that human cord blood may be a promising source for regenerative medicine approaches for the treatment of diabetes mellitus.

  12. Meninges: from protective membrane to stem cell niche.

    Science.gov (United States)

    Decimo, Ilaria; Fumagalli, Guido; Berton, Valeria; Krampera, Mauro; Bifari, Francesco

    2012-01-01

    Meninges are a three tissue membrane primarily known as coverings of the brain. More in depth studies on meningeal function and ultrastructure have recently changed the view of meninges as a merely protective membrane. Accurate evaluation of the anatomical distribution in the CNS reveals that meninges largely penetrate inside the neural tissue. Meninges enter the CNS by projecting between structures, in the stroma of choroid plexus and form the perivascular space (Virchow-Robin) of every parenchymal vessel. Thus, meninges may modulate most of the physiological and pathological events of the CNS throughout the life. Meninges are present since the very early embryonic stages of cortical development and appear to be necessary for normal corticogenesis and brain structures formation. In adulthood meninges contribute to neural tissue homeostasis by secreting several trophic factors including FGF2 and SDF-1. Recently, for the first time, we have identified the presence of a stem cell population with neural differentiation potential in meninges. In addition, we and other groups have further described the presence in meninges of injury responsive neural precursors. In this review we will give a comprehensive view of meninges and their multiple roles in the context of a functional network with the neural tissue. We will highlight the current literature on the developmental feature of meninges and their role in cortical development. Moreover, we will elucidate the anatomical distribution of the meninges and their trophic properties in adult CNS. Finally, we will emphasize recent evidences suggesting the potential role of meninges as stem cell niche harbouring endogenous precursors that can be activated by injury and are able to contribute to CNS parenchymal reaction.

  13. Human embryonic stem cells and good manufacturing practice: Report of a 1- day workshop held at Stem Cell Biology Research Center, Yazd, 27th April 2017

    Directory of Open Access Journals (Sweden)

    Fatemeh Akyash

    2017-09-01

    Full Text Available This report explains briefly the minutes of a 1-day workshop entitled; “human embryonic stem cells (hESCs and good manufacturing practice (GMP” held by Stem Cell Biology Research Center based in Yazd Reproductive Sciences Institute at Shahid Sadoughi University of Medical Sciences, Yazd, Iran on 27th April 2017. In this workshop, in addition to the practical sessions, Prof. Harry D. Moore from Centre for Stem Cell Biology, University of Sheffield, UK presented the challenges and the importance of the biotechnology of clinical-grade human embryonic stem cells from first derivation to robust defined culture for therapeutic applications.

  14. Human embryonic stem cells and good manufacturing practice: Report of a 1- day workshop held at Stem Cell Biology Research Center, Yazd, 27th April 2017.

    Science.gov (United States)

    Akyash, Fatemeh; Sadeghian-Nodoushan, Fatemeh; Tahajjodi, Somayyeh Sadat; Nikukar, Habib; Farashahi Yazd, Ehsan; Azimzadeh, Mostafa; D Moore, Harry; Aflatoonian, Behrouz

    2017-05-01

    This report explains briefly the minutes of a 1-day workshop entitled; "human embryonic stem cells (hESCs) and good manufacturing practice (GMP)" held by Stem Cell Biology Research Center based in Yazd Reproductive Sciences Institute at Shahid Sadoughi University of Medical Sciences, Yazd, Iran on 27 th April 2017. In this workshop, in addition to the practical sessions, Prof. Harry D. Moore from Centre for Stem Cell Biology, University of Sheffield, UK presented the challenges and the importance of the biotechnology of clinical-grade human embryonic stem cells from first derivation to robust defined culture for therapeutic applications.

  15. Tumor tropism of intravenously injected human-induced pluripotent stem cell-derived neural stem cells and their gene therapy application in a metastatic breast cancer model.

    Science.gov (United States)

    Yang, Jing; Lam, Dang Hoang; Goh, Sally Sallee; Lee, Esther Xingwei; Zhao, Ying; Tay, Felix Chang; Chen, Can; Du, Shouhui; Balasundaram, Ghayathri; Shahbazi, Mohammad; Tham, Chee Kian; Ng, Wai Hoe; Toh, Han Chong; Wang, Shu

    2012-05-01

    Human pluripotent stem cells can serve as an accessible and reliable source for the generation of functional human cells for medical therapies. In this study, we used a conventional lentiviral transduction method to derive human-induced pluripotent stem (iPS) cells from primary human fibroblasts and then generated neural stem cells (NSCs) from the iPS cells. Using a dual-color whole-body imaging technology, we demonstrated that after tail vein injection, these human NSCs displayed a robust migratory capacity outside the central nervous system in both immunodeficient and immunocompetent mice and homed in on established orthotopic 4T1 mouse mammary tumors. To investigate whether the iPS cell-derived NSCs can be used as a cellular delivery vehicle for cancer gene therapy, the cells were transduced with a baculoviral vector containing the herpes simplex virus thymidine kinase suicide gene and injected through tail vein into 4T1 tumor-bearing mice. The transduced NSCs were effective in inhibiting the growth of the orthotopic 4T1 breast tumor and the metastatic spread of the cancer cells in the presence of ganciclovir, leading to prolonged survival of the tumor-bearing mice. The use of iPS cell-derived NSCs for cancer gene therapy bypasses the sensitive ethical issue surrounding the use of cells derived from human fetal tissues or human embryonic stem cells. This approach may also help to overcome problems associated with allogeneic transplantation of other types of human NSCs. Copyright © 2012 AlphaMed Press.

  16. Angiogenic factors stimulate growth of adult neural stem cells.

    Directory of Open Access Journals (Sweden)

    Andreas Androutsellis-Theotokis

    2010-02-01

    Full Text Available The ability to grow a uniform cell type from the adult central nervous system (CNS is valuable for developing cell therapies and new strategies for drug discovery. The adult mammalian brain is a source of neural stem cells (NSC found in both neurogenic and non-neurogenic zones but difficulties in culturing these hinders their use as research tools.Here we show that NSCs can be efficiently grown in adherent cell cultures when angiogenic signals are included in the medium. These signals include both anti-angiogenic factors (the soluble form of the Notch receptor ligand, Dll4 and pro-angiogenic factors (the Tie-2 receptor ligand, Angiopoietin 2. These treatments support the self renewal state of cultured NSCs and expression of the transcription factor Hes3, which also identifies the cancer stem cell population in human tumors. In an organotypic slice model, angiogenic factors maintain vascular structure and increase the density of dopamine neuron processes.We demonstrate new properties of adult NSCs and a method to generate efficient adult NSC cultures from various central nervous system areas. These findings will help establish cellular models relevant to cancer and regeneration.

  17. Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation.

    Science.gov (United States)

    Hamid, Adila A; Idrus, Ruszymah Bt Hj; Saim, Aminuddin Bin; Sathappan, Somasumdaram; Chua, Kien-Hui

    2012-01-01

    Understanding the changes in chondrogenic gene expression that are involved in the differentiation of human adipose-derived stem cells to chondrogenic cells is important prior to using this approach for cartilage repair. The aims of the study were to characterize human adipose-derived stem cells and to examine chondrogenic gene expression after one, two, and three weeks of induction. Human adipose-derived stem cells at passage 4 were evaluated by flow cytometry to examine the expression of surface markers. These adipose-derived stem cells were tested for adipogenic and osteogenic differentiation capacity. Ribonucleic acid was extracted from the cells for quantitative polymerase chain reaction analysis to determine the expression levels of chondrogenic genes after chondrogenic induction. Human adipose-derived stem cells were strongly positive for the mesenchymal markers CD90, CD73, CD44, CD9, and histocompatibility antigen and successfully differentiated into adipogenic and osteogenic lineages. The human adipose-derived stem cells aggregated and formed a dense matrix after chondrogenic induction. The expression of chondrogenic genes (collagen type II, aggrecan core protein, collagen type XI, COMP, and ELASTIN) was significantly higher after the first week of induction. However, a significantly elevated expression of collagen type X was observed after three weeks of chondrogenic induction. Human adipose-derived stem cells retain stem cell characteristics after expansion in culture to passage 4 and serve as a feasible source of cells for cartilage regeneration. Chondrogenesis in human adipose-derived stem cells was most prominent after one week of chondrogenic induction.

  18. Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation

    Directory of Open Access Journals (Sweden)

    Adila A Hamid

    2012-01-01

    Full Text Available OBJECTIVES: Understanding the changes in chondrogenic gene expression that are involved in the differentiation of human adipose-derived stem cells to chondrogenic cells is important prior to using this approach for cartilage repair. The aims of the study were to characterize human adipose-derived stem cells and to examine chondrogenic gene expression after one, two, and three weeks of induction. MATERIALS AND METHODS: Human adipose-derived stem cells at passage 4 were evaluated by flow cytometry to examine the expression of surface markers. These adipose-derived stem cells were tested for adipogenic and osteogenic differentiation capacity. Ribonucleic acid was extracted from the cells for quantitative polymerase chain reaction analysis to determine the expression levels of chondrogenic genes after chondrogenic induction. RESULTS: Human adipose-derived stem cells were strongly positive for the mesenchymal markers CD90, CD73, CD44, CD9, and histocompatibility antigen and successfully differentiated into adipogenic and osteogenic lineages. The human adipose-derived stem cells aggregated and formed a dense matrix after chondrogenic induction. The expression of chondrogenic genes (collagen type II, aggrecan core protein, collagen type XI, COMP, and ELASTIN was significantly higher after the first week of induction. However, a significantly elevated expression of collagen type X was observed after three weeks of chondrogenic induction. CONCLUSION: Human adipose-derived stem cells retain stem cell characteristics after expansion in culture to passage 4 and serve as a feasible source of cells for cartilage regeneration. Chondrogenesis in human adiposederived stem cells was most prominent after one week of chondrogenic induction.

  19. Human induced pluripotent stem cell-derived vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Ayoubi, Sohrab; Sheikh, Søren P; Eskildsen, Tilde V

    2017-01-01

    . To this end, human induced pluripotent stem cells (hiPSCs) have generated great enthusiasm, and have been a driving force for development of novel strategies in drug discovery and regenerative cell-therapy for the last decade. Hence, investigating the mechanisms underlying the differentiation of hi......PSCs into specialized cell types such as cardiomyocytes, endothelial cells, and vascular smooth muscle cells (VSMCs) may lead to a better understanding of developmental cardiovascular processes and potentiate progress of safe autologous regenerative therapies in pathological conditions. In this review, we summarize...

  20. Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells.

    Science.gov (United States)

    Merkle, Florian T; Maroof, Asif; Wataya, Takafumi; Sasai, Yoshiki; Studer, Lorenz; Eggan, Kevin; Schier, Alexander F

    2015-02-15

    Hypothalamic neurons orchestrate many essential physiological and behavioral processes via secreted neuropeptides, and are relevant to human diseases such as obesity, narcolepsy and infertility. We report the differentiation of human pluripotent stem cells into many of the major types of neuropeptidergic hypothalamic neurons, including those producing pro-opiolemelanocortin, agouti-related peptide, hypocretin/orexin, melanin-concentrating hormone, oxytocin, arginine vasopressin, corticotropin-releasing hormone (CRH) or thyrotropin-releasing hormone. Hypothalamic neurons can be generated using a 'self-patterning' strategy that yields a broad array of cell types, or via a more reproducible directed differentiation approach. Stem cell-derived human hypothalamic neurons share characteristic morphological properties and gene expression patterns with their counterparts in vivo, and are able to integrate into the mouse brain. These neurons could form the basis of cellular models, chemical screens or cellular therapies to study and treat common human diseases. © 2015. Published by The Company of Biologists Ltd.

  1. The effect of stem cell factor on proliferation of human endometrial CD146+ cells

    Directory of Open Access Journals (Sweden)

    Mehri Fayazi

    2016-07-01

    Full Text Available Background: Stem cell factor (SCF is a transcriptional factor which plays crucial roles in normal proliferation, differentiation and survival in a range of stem cells. Objective: The aim of the present study was to examine the proliferation effect of different concentrations of SCF on expansion of human endometrial CD146+ cells. Materials and Methods: In this experimental study, total populations of isolated human endometrial suspensions after fourth passage were isolated by magnetic activated cell sorting (MACS into CD146+ cells. Human endometrial CD146+ cells were karyotyped and tested for the effect of SCF on proliferation of CD146+ cells, then different concentrations of 0, 12.5, 25, 50 and 100 ng/ml was carried out and mitogens-stimulated endometrial CD146+ cells proliferation was assessed by MTT assay. Results: Chromosomal analysis showed a normal metaphase spread and 46XX karyotype. The proliferation rate of endometrial CD146P + P cells in the presence of 0, 12.5, 25, 50 and 100 ng/ml SCF were 0.945±0.094, 0.962±0.151, 0.988±0.028, 1.679±0.012 and 1.129±0.145 respectively. There was a significant increase in stem/ stromal cell proliferation following in vitro treatment by 50 ng/ml than other concentrations of SCF (p=0.01. Conclusion: The present study suggests that SCF could have effect on the proliferation and cell survival of human endometrial CD146P+P cells and it has important implications for medical sciences and cell therapies

  2. Two sides of the same coin? Unraveling subtle differences between human embryonic and induced pluripotent stem cells by Raman spectroscopy.

    Science.gov (United States)

    Parrotta, Elvira; De Angelis, Maria Teresa; Scalise, Stefania; Candeloro, Patrizio; Santamaria, Gianluca; Paonessa, Mariagrazia; Coluccio, Maria Laura; Perozziello, Gerardo; De Vitis, Stefania; Sgura, Antonella; Coluzzi, Elisa; Mollace, Vincenzo; Di Fabrizio, Enzo Mario; Cuda, Giovanni

    2017-11-28

    Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, hold enormous promise for many biomedical applications, such as regenerative medicine, drug testing, and disease modeling. Although induced pluripotent stem cells resemble embryonic stem cells both morphologically and functionally, the extent to which these cell lines are truly equivalent, from a molecular point of view, remains controversial. Principal component analysis and K-means cluster analysis of collected Raman spectroscopy data were used for a comparative study of the biochemical fingerprint of human induced pluripotent stem cells and human embryonic stem cells. The Raman spectra analysis results were further validated by conventional biological assays. Raman spectra analysis revealed that the major difference between human embryonic stem cells and induced pluripotent stem cells is due to the nucleic acid content, as shown by the strong positive peaks at 785, 1098, 1334, 1371, 1484, and 1575 cm -1 , which is enriched in human induced pluripotent stem cells. Here, we report a nonbiological approach to discriminate human induced pluripotent stem cells from their native embryonic stem cell counterparts.

  3. Two sides of the same coin? Unraveling subtle differences between human embryonic and induced pluripotent stem cells by Raman spectroscopy

    KAUST Repository

    Parrotta, Elvira

    2017-11-28

    Background: Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, hold enormous promise for many biomedical applications, such as regenerative medicine, drug testing, and disease modeling. Although induced pluripotent stem cells resemble embryonic stem cells both morphologically and functionally, the extent to which these cell lines are truly equivalent, from a molecular point of view, remains controversial. Methods: Principal component analysis and K-means cluster analysis of collected Raman spectroscopy data were used for a comparative study of the biochemical fingerprint of human induced pluripotent stem cells and human embryonic stem cells. The Raman spectra analysis results were further validated by conventional biological assays. Results: Raman spectra analysis revealed that the major difference between human embryonic stem cells and induced pluripotent stem cells is due to the nucleic acid content, as shown by the strong positive peaks at 785, 1098, 1334, 1371, 1484, and 1575 cm–1, which is enriched in human induced pluripotent stem cells. Conclusions: Here, we report a nonbiological approach to discriminate human induced pluripotent stem cells from their native embryonic stem cell counterparts.

  4. Two sides of the same coin? Unraveling subtle differences between human embryonic and induced pluripotent stem cells by Raman spectroscopy

    KAUST Repository

    Parrotta, Elvira; De Angelis, Maria Teresa; Scalise, Stefania; Candeloro, Patrizio; Santamaria, Gianluca; Paonessa, Mariagrazia; Coluccio, Maria Laura; Perozziello, Gerardo; De Vitis, Stefania; Sgura, Antonella; Coluzzi, Elisa; Mollace, Vincenzo; Di Fabrizio, Enzo M.; Cuda, Giovanni

    2017-01-01

    Background: Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, hold enormous promise for many biomedical applications, such as regenerative medicine, drug testing, and disease modeling. Although induced pluripotent stem cells resemble embryonic stem cells both morphologically and functionally, the extent to which these cell lines are truly equivalent, from a molecular point of view, remains controversial. Methods: Principal component analysis and K-means cluster analysis of collected Raman spectroscopy data were used for a comparative study of the biochemical fingerprint of human induced pluripotent stem cells and human embryonic stem cells. The Raman spectra analysis results were further validated by conventional biological assays. Results: Raman spectra analysis revealed that the major difference between human embryonic stem cells and induced pluripotent stem cells is due to the nucleic acid content, as shown by the strong positive peaks at 785, 1098, 1334, 1371, 1484, and 1575 cm–1, which is enriched in human induced pluripotent stem cells. Conclusions: Here, we report a nonbiological approach to discriminate human induced pluripotent stem cells from their native embryonic stem cell counterparts.

  5. Efficient generation of induced pluripotent stem cells from human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Yulin, X; Lizhen, L; Lifei, Z; Shan, F; Ru, L; Kaimin, H; Huang, H

    2012-01-01

    Ectopic expression of defined sets of genetic factors can reprogramme somatic cells to induced pluripotent stem cells (iPSCs) that closely resemble embryonic stem cells. However, the low reprogramming efficiency is a significant handicap for mechanistic studies and potential clinical application. In this study, we used human bone marrow-derived mesenchymal stem cells (hBMMSCs) as target cells for reprogramming and investigated efficient iPSC generation from hBMMSCs using the compounds of p53 siRNA, valproic acid (VPA) and vitamin C (Vc) with four transcription factors OCT4, SOX2, KLF4, and c-MYC (compound induction system). The synergetic mechanism of the compounds was studied. Our results showed that the compound induction system could efficiently reprogramme hBMMSCs to iPSCs. hBMMSC-derived iPSC populations expressed pluripotent markers and had multi-potential to differentiate into three germ layer-derived cells. p53 siRNA, VPA and Vc had a synergetic effect on cell reprogramming and the combinatorial use of these substances greatly improved the efficiency of iPSC generation by suppressing the expression of p53, decreasing cell apoptosis, up-regulating the expression of the pluripotent gene OCT4 and modifying the cell cycle. Therefore, our study highlights a straightforward method for improving the speed and efficiency of iPSC generation and provides versatile tools for investigating early developmental processes such as haemopoiesis and relevant diseases. In addition, this study provides a paradigm for the combinatorial use of genetic factors and molecules to improve the efficiency of iPSC generation.

  6. Analysis of Neural Stem Cells from Human Cortical Brain Structures In Vitro.

    Science.gov (United States)

    Aleksandrova, M A; Poltavtseva, R A; Marei, M V; Sukhikh, G T

    2016-05-01

    Comparative immunohistochemical analysis of the neocortex from human fetuses showed that neural stem and progenitor cells are present in the brain throughout the gestation period, at least from week 8 through 26. At the same time, neural stem cells from the first and second trimester fetuses differed by the distribution, morphology, growth, and quantity. Immunocytochemical analysis of neural stem cells derived from fetuses at different gestation terms and cultured under different conditions showed their differentiation capacity. Detailed analysis of neural stem cell populations derived from fetuses on gestation weeks 8-9, 18-20, and 26 expressing Lex/SSEA1 was performed.

  7. Anti-aging effects of vitamin C on human pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Kim, Yoon Young; Ku, Seung-Yup; Huh, Yul; Liu, Hung-Ching; Kim, Seok Hyun; Choi, Young Min; Moon, Shin Yong

    2013-10-01

    Human pluripotent stem cells (hPSCs) have arisen as a source of cells for biomedical research due to their developmental potential. Stem cells possess the promise of providing clinicians with novel treatments for disease as well as allowing researchers to generate human-specific cellular metabolism models. Aging is a natural process of living organisms, yet aging in human heart cells is difficult to study due to the ethical considerations regarding human experimentation as well as a current lack of alternative experimental models. hPSC-derived cardiomyocytes (CMs) bear a resemblance to human cardiac cells and thus hPSC-derived CMs are considered to be a viable alternative model to study human heart cell aging. In this study, we used hPSC-derived CMs as an in vitro aging model. We generated cardiomyocytes from hPSCs and demonstrated the process of aging in both human embryonic stem cell (hESC)- and induced pluripotent stem cell (hiPSC)-derived CMs. Aging in hESC-derived CMs correlated with reduced membrane potential in mitochondria, the accumulation of lipofuscin, a slower beating pattern, and the downregulation of human telomerase RNA (hTR) and cell cycle regulating genes. Interestingly, the expression of hTR in hiPSC-derived CMs was not significantly downregulated, unlike in hESC-derived CMs. In order to delay aging, vitamin C was added to the cultured CMs. When cells were treated with 100 μM of vitamin C for 48 h, anti-aging effects, specifically on the expression of telomere-related genes and their functionality in aging cells, were observed. Taken together, these results suggest that hPSC-derived CMs can be used as a unique human cardiomyocyte aging model in vitro and that vitamin C shows anti-aging effects in this model.

  8. Generation and properties of a new human ventral mesencephalic neural stem cell line

    DEFF Research Database (Denmark)

    Villa, Ana; Liste, Isabel; Courtois, Elise T

    2009-01-01

    . Here we report the generation of a new stable cell line of human neural stem cells derived from ventral mesencephalon (hVM1) based on v-myc immortalization. The cells expressed neural stem cell and radial glia markers like nestin, vimentin and 3CB2 under proliferation conditions. After withdrawal......Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to cell therapy in neurodegenerative diseases like Parkinson's disease. Several epigenetic and genetic strategies have been tested for long-term maintenance and expansion of these cells in vitro...... derivatives may constitute good candidates for the study of development and physiology of human dopaminergic neurons in vitro, and to develop tools for Parkinson's disease cell replacement preclinical research and drug testing....

  9. Dendrimer-driven neurotrophin expression differs in temporal patterns between rodent and human stem cells.

    Science.gov (United States)

    Shakhbazau, Antos; Shcharbin, Dzmitry; Seviaryn, Ihar; Goncharova, Natalya; Kosmacheva, Svetlana; Potapnev, Mihail; Bryszewska, Maria; Kumar, Ranjan; Biernaskie, Jeffrey; Midha, Rajiv

    2012-05-07

    This study reports the use of a nonviral expression system based on polyamidoamine dendrimers for time-restricted neurotrophin overproduction in mesenchymal stem cells and skin precursor-derived Schwann cells. The dendrimers were used to deliver plasmids for brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3) expression in both rodent and human stem cells, and the timelines of expression were studied. We have found that, despite the fact that transfection efficiencies and protein expression levels were comparable, dendrimer-driven expression in human mesenchymal stem cells was characterized by a more rapid decline compared to rodent cells. Transient expression systems can be beneficial for some neurotrophins, which were earlier reported to cause unwanted side effects in virus-based long-term expression models. Nonviral neurotrophin expression is a biologically safe and accessible alternative to increase the therapeutic potential of autologous adult stem cells and stem cell-derived functional differentiated cells.

  10. In vitro effects of Epidiferphane™ on adult human neural progenitor cells

    Science.gov (United States)

    Neural stem cells have the capacity to respond to their environment, migrate to the injury site and generate functional cell types, and thus they hold great promise for cell therapies. In addition to representing a source for central nervous system (CNS) repair, neural stem and progenitor cells als...

  11. Differentiation and molecular profiling of human embryonic stem cell-derived corneal epithelial cells.

    Science.gov (United States)

    Brzeszczynska, J; Samuel, K; Greenhough, S; Ramaesh, K; Dhillon, B; Hay, D C; Ross, J A

    2014-06-01

    It has been suggested that the isolation of scalable populations of limbal stem cells may lead to radical changes in ocular therapy. In particular, the derivation and transplantation of corneal stem cells from these populations may result in therapies providing clinical normality of the diseased or damaged cornea. Although feasible in theory, the lack of donor material in sufficient quantity and quality currently limits such a strategy. A potential scalable source of corneal cells could be derived from pluripotent stem cells (PSCs). We developed an in vitro and serum-free corneal differentiation model which displays significant promise. Our stepwise differentiation model was designed with reference to development and gave rise to cells which displayed similarities to epithelial progenitor cells which can be specified to cells displaying a corneal epithelial phenotype. We believe our approach is novel, provides a robust model of human development and in the future, may facilitate the generation of corneal epithelial cells that are suitable for clinical use. Additionally, we demonstrate that following continued cell culture, stem cell-derived corneal epithelial cells undergo transdifferentiation and exhibit squamous metaplasia and therefore, also offer an in vitro model of disease.

  12. The promises of stem cells: stem cell therapy for movement disorders.

    Science.gov (United States)

    Mochizuki, Hideki; Choong, Chi-Jing; Yasuda, Toru

    2014-01-01

    Despite the multitude of intensive research, the exact pathophysiological mechanisms underlying movement disorders including Parkinson's disease, multiple system atrophy and Huntington's disease remain more or less elusive. Treatments to halt these disease progressions are currently unavailable. With the recent induced pluripotent stem cells breakthrough and accomplishment, stem cell research, as the vast majority of scientists agree, holds great promise for relieving and treating debilitating movement disorders. As stem cells are the precursors of all cells in the human body, an understanding of the molecular mechanisms that govern how they develop and work would provide us many fundamental insights into human biology of health and disease. Moreover, stem-cell-derived neurons may be a renewable source of replacement cells for damaged neurons in movement disorders. While stem cells show potential for regenerative medicine, their use as tools for research and drug testing is thought to have more immediate impact. The use of stem-cell-based drug screening technology could be a big boost in drug discovery for these movement disorders. Particular attention should also be given to the involvement of neural stem cells in adult neurogenesis so as to encourage its development as a therapeutic option. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Efficient cryopreservation of human pluripotent stem cells by surface-based vitrification

    NARCIS (Netherlands)

    Neubauer, Julia C; Beier, Axel F; Geijsen, Niels; Zimmermann, Heiko

    2015-01-01

    Efficient cryopreservation of human stem cells is crucial for guaranteeing a permanent supply of high-quality cell material for drug discovery or regenerative medicine. Conventionally used protocols usually employing slow freezing rates, however, result in low recovery rates for human pluripotent

  14. Potential of stem cell based therapy and tissue engineering in the regeneration of the central nervous system

    International Nuclear Information System (INIS)

    An Yihua; Tsang, Kent K S; Zhang Han

    2006-01-01

    The insufficiency of self-repair and regeneration of the central nervous system (CNS) leads to difficulty of rehabilitation of the injured brain. In the past few decades, the significant progress in cell therapy and tissue engineering has contributed to the functional recovery of the CNS to a great extent. The present review focuses on the potential role of stem cell based therapy and tissue engineering in the regeneration of the CNS. (topical review)

  15. Deriving Dorsal Spinal Sensory Interneurons from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Sandeep Gupta

    2018-02-01

    Full Text Available Summary: Cellular replacement therapies for neurological conditions use human embryonic stem cell (hESC- or induced pluripotent stem cell (hiPSC-derived neurons to replace damaged or diseased populations of neurons. For the spinal cord, significant progress has been made generating the in-vitro-derived motor neurons required to restore coordinated movement. However, there is as yet no protocol to generate in-vitro-derived sensory interneurons (INs, which permit perception of the environment. Here, we report on the development of a directed differentiation protocol to derive sensory INs for both hESCs and hiPSCs. Two developmentally relevant factors, retinoic acid in combination with bone morphogenetic protein 4, can be used to generate three classes of sensory INs: the proprioceptive dI1s, the dI2s, and mechanosensory dI3s. Critical to this protocol is the competence state of the neural progenitors, which changes over time. This protocol will facilitate developing cellular replacement therapies to reestablish sensory connections in injured patients. : In this article, Gupta and colleagues describe a robust protocol to derive spinal dorsal sensory interneurons from human pluripotent stem cells using the sequential addition of RA and BMP4. They find that neural progenitors must be in the correct competence state to respond to RA/BMP4 as dorsalizing signals. This competence state changes over time and determines the efficiency of the protocol. Keywords: spinal cord, neurons, sensory interneurons, proprioception, mechanosensation, human embryonic stem cells, induced pluripotent stem cells, directed differentiation, primate spinal cord, mouse spinal cord

  16. Induced Pluripotent Stem Cells: A novel frontier in the study of human primary immunodeficiencies

    Science.gov (United States)

    Pessach, Itai M.; Ordovas-Montanes, Jose; Zhang, Shen-Ying; Casanova, Jean-Laurent; Giliani, Silvia; Gennery, Andrew R.; Al-Herz, Waleed; Manos, Philip D.; Schlaeger, Thorsten M.; Park, In-Hyun; Rucci, Francesca; Agarwal, Suneet; Mostoslavsky, Gustavo; Daley, George Q.; Notarangelo, Luigi D.

    2010-01-01

    Background The novel ability to epigenetically reprogram somatic cells into induced pluripotent stem cells through the exogenous expression of transcription promises to revolutionize the study of human diseases. Objective Here we report on the generation of 25 induced pluripotent stem cell lines from 6 patients with various forms of Primary Immunodeficiencies, affecting adaptive and/or innate immunity. Methods Patients’ dermal fibroblasts were reprogrammed by expression of four transcription factors, OCT4, SOX2, KLF4, and c-MYC using a single excisable polycistronic lentiviral vector. Results Induced pluripotent stem cells derived from patients with primary immunodeficiencies show a stemness profile that is comparable to that observed in human embryonic stem cells. Following in vitro differentiation into embryoid bodies, pluripotency of the patient-derived indiced pluripotent stem cells lines was demonstrated by expression of genes characteristic of each of the three embryonic layers. We have confirmed the patient-specific origin of the induced pluripotent stem cell lines, and ascertained maintenance of karyotypic integrity. Conclusion By providing a limitless source of diseased stem cells that can be differentiated into various cell types in vitro, the repository of induced pluripotent stem cell lines from patients with primary immunodeficiencies represents a unique resource to investigate the pathophysiology of hematopoietic and extra-hematopoietic manifestations of these diseases, and may assist in the development of novel therapeutic approaches based on gene correction. PMID:21185069

  17. Combined sequencing of mRNA and DNA from human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Florian Mertes

    2016-06-01

    Full Text Available Combined transcriptome and whole genome sequencing of the same ultra-low input sample down to single cells is a rapidly evolving approach for the analysis of rare cells. Besides stem cells, rare cells originating from tissues like tumor or biopsies, circulating tumor cells and cells from early embryonic development are under investigation. Herein we describe a universal method applicable for the analysis of minute amounts of sample material (150 to 200 cells derived from sub-colony structures from human embryonic stem cells. The protocol comprises the combined isolation and separate amplification of poly(A mRNA and whole genome DNA followed by next generation sequencing. Here we present a detailed description of the method developed and an overview of the results obtained for RNA and whole genome sequencing of human embryonic stem cells, sequencing data is available in the Gene Expression Omnibus (GEO database under accession number GSE69471.

  18. Amniotic Fluid Stem Cells: A Novel Source for Modeling of Human Genetic Diseases

    Directory of Open Access Journals (Sweden)

    Ivana Antonucci

    2016-04-01

    Full Text Available In recent years, great interest has been devoted to the use of Induced Pluripotent Stem cells (iPS for modeling of human genetic diseases, due to the possibility of reprogramming somatic cells of affected patients into pluripotent cells, enabling differentiation into several cell types, and allowing investigations into the molecular mechanisms of the disease. However, the protocol of iPS generation still suffers from technical limitations, showing low efficiency, being expensive and time consuming. Amniotic Fluid Stem cells (AFS represent a potential alternative novel source of stem cells for modeling of human genetic diseases. In fact, by means of prenatal diagnosis, a number of fetuses affected by chromosomal or Mendelian diseases can be identified, and the amniotic fluid collected for genetic testing can be used, after diagnosis, for the isolation, culture and differentiation of AFS cells. This can provide a useful stem cell model for the investigation of the molecular basis of the diagnosed disease without the necessity of producing iPS, since AFS cells show some features of pluripotency and are able to differentiate in cells derived from all three germ layers “in vitro”. In this article, we describe the potential benefits provided by using AFS cells in the modeling of human genetic diseases.

  19. Imaging gene expression in human mesenchymal stem cells: from small to large animals

    DEFF Research Database (Denmark)

    Willmann, Jürgen K; Paulmurugan, Ramasamy; Rodriguez-Porcel, Martin

    2009-01-01

    To evaluate the feasibility of reporter gene imaging in implanted human mesenchymal stem cells (MSCs) in porcine myocardium by using clinical positron emission tomography (PET)-computed tomography (CT) scanning.......To evaluate the feasibility of reporter gene imaging in implanted human mesenchymal stem cells (MSCs) in porcine myocardium by using clinical positron emission tomography (PET)-computed tomography (CT) scanning....

  20. Publishing SNP genotypes of human embryonic stem cell lines: policy statement of the International Stem Cell Forum Ethics Working Party.

    Science.gov (United States)

    Knoppers, Bartha M; Isasi, Rosario; Benvenisty, Nissim; Kim, Ock-Joo; Lomax, Geoffrey; Morris, Clive; Murray, Thomas H; Lee, Eng Hin; Perry, Margery; Richardson, Genevra; Sipp, Douglas; Tanner, Klaus; Wahlström, Jan; de Wert, Guido; Zeng, Fanyi

    2011-09-01

    Novel methods and associated tools permitting individual identification in publicly accessible SNP databases have become a debatable issue. There is growing concern that current technical and ethical safeguards to protect the identities of donors could be insufficient. In the context of human embryonic stem cell research, there are no studies focusing on the probability that an hESC line donor could be identified by analyzing published SNP profiles and associated genotypic and phenotypic information. We present the International Stem Cell Forum (ISCF) Ethics Working Party's Policy Statement on "Publishing SNP Genotypes of Human Embryonic Stem Cell Lines (hESC)". The Statement prospectively addresses issues surrounding the publication of genotypic data and associated annotations of hESC lines in open access databases. It proposes a balanced approach between the goals of open science and data sharing with the respect for fundamental bioethical principles (autonomy, privacy, beneficence, justice and research merit and integrity).

  1. Human pluripotent stem cells in modeling human disorders: the case of fragile X syndrome.

    Science.gov (United States)

    Vershkov, Dan; Benvenisty, Nissim

    2017-01-01

    Human pluripotent stem cells (PSCs) generated from affected blastocysts or from patient-derived somatic cells are an emerging platform for disease modeling and drug discovery. Fragile X syndrome (FXS), the leading cause of inherited intellectual disability, was one of the first disorders modeled in both embryonic stem cells and induced PCSs and can serve as an exemplary case for the utilization of human PSCs in the study of human diseases. Over the past decade, FXS-PSCs have been used to address the fundamental questions regarding the pathophysiology of FXS. In this review we summarize the methodologies for generation of FXS-PSCs, discuss their advantages and disadvantages compared with existing modeling systems and describe their utilization in the study of FXS pathogenesis and in the development of targeted treatment.

  2. Human Pluripotent Stem Cell-Derived Cardiomyocytes as Research and Therapeutic Tools

    Directory of Open Access Journals (Sweden)

    Ivana Acimovic

    2014-01-01

    Full Text Available Human pluripotent stem cells (hPSCs, namely, embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs, with their ability of indefinite self-renewal and capability to differentiate into cell types derivatives of all three germ layers, represent a powerful research tool in developmental biology, for drug screening, disease modelling, and potentially cell replacement therapy. Efficient differentiation protocols that would result in the cell type of our interest are needed for maximal exploitation of these cells. In the present work, we aim at focusing on the protocols for differentiation of hPSCs into functional cardiomyocytes in vitro as well as achievements in the heart disease modelling and drug testing on the patient-specific iPSC-derived cardiomyocytes (iPSC-CMs.

  3. In vitro generation of functional insulin-producing cells from lipoaspirated human adipose tissue-derived stem cells.

    Science.gov (United States)

    Mohamad Buang, Mohamad Lizan; Seng, Heng Kien; Chung, Lee Han; Saim, Aminuddin Bin; Idrus, Ruszymah Bt Hj

    2012-01-01

    Tissue engineering strategy has been considered as an alternative treatment for diabetes mellitus due to lack of permanent pharmaceutical treatment and islet donors for transplantation. Various cell lines have been used to generate functional insulin-producing cells (IPCs) including progenitor pancreatic cell lines, embryonic stem cells (ESCs), umbilical cord blood stem cells (UCB-SCs), adult bone marrow stem cells (BMSCs), and adipose tissue-derived stem cells (ADSCs). Human ADSCs from lipoaspirated abdominal fat tissue was differentiated into IPCs following a two-step induction protocol based on a combination of alternating high and low glucose, nicotinamide, activin A and glucagon-like peptide 1 (GLP-1) for a duration of 3 weeks. During differentiation, histomorphological changes of the stem cells towards pancreatic β-islet characteristics were observed via light microscope and transmission electron microscope (TEM). Dithizone (DTZ) staining, which is selective towards IPCs, was used to stain the new islet-like cells. Production of insulin hormone by the cells was analyzed via enzyme-linked immunosorbent assay (ELISA), whereas its hormonal regulation was tested via a glucose challenge test. Histomorphological changes of the differentiated cells were noted to resemble pancreatic β-cells, whereas DTZ staining positively stained the cells. The differentiated cells significantly produced human insulin as compared to the undifferentiated ADSCs, and its production was increased with an increase of glucose concentration in the culture medium. These initial data indicate that human lipoaspirated ADSCs have the potential to differentiate into functional IPCs, and could be used as a therapy to treat diabetes mellitus in the future. Copyright © 2012 IMSS. Published by Elsevier Inc. All rights reserved.

  4. Human embryonic stem cell technologies and drug discovery.

    Science.gov (United States)

    Jensen, Janne; Hyllner, Johan; Björquist, Petter

    2009-06-01

    Development of new drugs is costly and takes huge resources into consideration. The big pharmaceutical companies are currently facing increasing developmental costs and a lower success-rate of bringing new compounds to the market. Therefore, it is now of outmost importance that the drug-hunting companies minimize late attritions due to sub-optimal pharmacokinetic properties or unexpected toxicity when entering the clinical programs. To achieve this, a strong need to test new candidate drugs in assays of high human relevance in vitro as early as possible has been identified. The traditionally used cell systems are however remarkably limited in this sense, and new improved technologies are of greatest importance. The human embryonic stem cells (hESC) is one of the most powerful cell types known. They have not only the possibility to divide indefinitely; these cells can also differentiate into all mature cell types of the human body. This makes them potentially very valuable for pharmaceutical development, spanning from use as tools in early target studies, DMPK or safety assessment, as screening models to find new chemical entities modulating adult stem cell fate, or as the direct use in cell therapies. This review illustrates the use of hESC in the drug discovery process, today, as well as in a future perspective. This will specifically be exemplified with the most important cell type for pharmaceutical development-the hepatocyte. We discuss how hESC-derived hepatocyte-like cells could improve this process, and how these cells should be cultured if optimized functionality and usefulness should be achieved. J. Cell. Physiol. 219: 513-519, 2009. (c) 2009 Wiley-Liss, Inc.

  5. Electrophysiological properties of neurons derived from human stem cells and iNeurons in vitro.

    Science.gov (United States)

    Halliwell, Robert F

    2017-06-01

    Functional studies of neurons have traditionally used nervous system tissues from a variety of non-human vertebrate and invertebrate species, even when the focus of much of this research has been directed at understanding human brain function. Over the last decade, the identification and isolation of human stem cells from embryonic, tissue (or adult) and induced pluripotent stem cells (iPSCs) has revolutionized the availability of human neurons for experimental studies in vitro. In addition, the direct conversion of terminally differentiated fibroblasts into Induced neurons (iN) has generated great excitement because of the likely value of such human stem cell derived neurons (hSCNs) and iN cells in drug discovery, neuropharmacology, neurotoxicology and regenerative medicine. This review addresses the current state of our knowledge of functional receptors and ion channels expressed in neurons derived from human stem cells and iNeurons and identifies gaps and questions that might be investigated in future studies; it focusses almost exclusively on what is known about the electrophysiological properties of neurons derived from human stem cells and iN cells in vitro with an emphasis on voltage and ligand gated ion channels, since these mediate synaptic signalling in the nervous system and they are at the heart of neuropharmacology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Aging, metabolism and stem cells: Spotlight on muscle stem cells.

    Science.gov (United States)

    García-Prat, Laura; Muñoz-Cánoves, Pura

    2017-04-15

    All tissues and organs undergo a progressive regenerative decline as they age. This decline has been mainly attributed to loss of stem cell number and/or function, and both stem cell-intrinsic changes and alterations in local niches and/or systemic environment over time are known to contribute to the stem cell aging phenotype. Advancing in the molecular understanding of the deterioration of stem cell cells with aging is key for targeting the specific causes of tissue regenerative dysfunction at advanced stages of life. Here, we revise exciting recent findings on why stem cells age and the consequences on tissue regeneration, with a special focus on regeneration of skeletal muscle. We also highlight newly identified common molecular pathways affecting diverse types of aging stem cells, such as altered proteostasis, metabolism, or senescence entry, and discuss the questions raised by these findings. Finally, we comment on emerging stem cell rejuvenation strategies, principally emanating from studies on muscle stem cells, which will surely burst tissue regeneration research for future benefit of the increasing human aging population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Drug-loaded nanoparticles induce gene expression in human pluripotent stem cell derivatives

    Science.gov (United States)

    Gajbhiye, Virendra; Escalante, Leah; Chen, Guojun; Laperle, Alex; Zheng, Qifeng; Steyer, Benjamin; Gong, Shaoqin; Saha, Krishanu

    2013-12-01

    Tissue engineering and advanced manufacturing of human stem cells requires a suite of tools to control gene expression spatiotemporally in culture. Inducible gene expression systems offer cell-extrinsic control, typically through addition of small molecules, but small molecule inducers typically contain few functional groups for further chemical modification. Doxycycline (DXC), a potent small molecule inducer of tetracycline (Tet) transgene systems, was conjugated to a hyperbranched dendritic polymer (Boltorn H40) and subsequently reacted with polyethylene glycol (PEG). The resulting PEG-H40-DXC nanoparticle exhibited pH-sensitive drug release behavior and successfully controlled gene expression in stem-cell-derived fibroblasts with a Tet-On system. While free DXC inhibited fibroblast proliferation and matrix metalloproteinase (MMP) activity, PEG-H40-DXC nanoparticles maintained higher fibroblast proliferation levels and MMP activity. The results demonstrate that the PEG-H40-DXC nanoparticle system provides an effective tool to controlling gene expression in human stem cell derivatives.Tissue engineering and advanced manufacturing of human stem cells requires a suite of tools to control gene expression spatiotemporally in culture. Inducible gene expression systems offer cell-extrinsic control, typically through addition of small molecules, but small molecule inducers typically contain few functional groups for further chemical modification. Doxycycline (DXC), a potent small molecule inducer of tetracycline (Tet) transgene systems, was conjugated to a hyperbranched dendritic polymer (Boltorn H40) and subsequently reacted with polyethylene glycol (PEG). The resulting PEG-H40-DXC nanoparticle exhibited pH-sensitive drug release behavior and successfully controlled gene expression in stem-cell-derived fibroblasts with a Tet-On system. While free DXC inhibited fibroblast proliferation and matrix metalloproteinase (MMP) activity, PEG-H40-DXC nanoparticles maintained

  8. Mammary gland stem cells

    DEFF Research Database (Denmark)

    Fridriksdottir, Agla J R; Petersen, Ole W; Rønnov-Jessen, Lone

    2011-01-01

    Distinct subsets of cells, including cells with stem cell-like properties, have been proposed to exist in normal human breast epithelium and breast carcinomas. The cellular origins of epithelial cells contributing to gland development, tissue homeostasis and cancer are, however, still poorly...... and differences between mouse and human gland development with particular emphasis on the identity and localization of stem cells, and the influence of the surrounding microenvironment. It is concluded that while recent advances in the field have contributed immense insight into how the normal mammary gland...... develops and is maintained, significant discrepancies exist between the mouse and human gland which should be taken into consideration in current and future models of mammary stem cell biology....

  9. Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids.

    Science.gov (United States)

    Seet, Christopher S; He, Chongbin; Bethune, Michael T; Li, Suwen; Chick, Brent; Gschweng, Eric H; Zhu, Yuhua; Kim, Kenneth; Kohn, Donald B; Baltimore, David; Crooks, Gay M; Montel-Hagen, Amélie

    2017-05-01

    Studies of human T cell development require robust model systems that recapitulate the full span of thymopoiesis, from hematopoietic stem and progenitor cells (HSPCs) through to mature T cells. Existing in vitro models induce T cell commitment from human HSPCs; however, differentiation into mature CD3 + TCR-αβ + single-positive CD8 + or CD4 + cells is limited. We describe here a serum-free, artificial thymic organoid (ATO) system that supports efficient and reproducible in vitro differentiation and positive selection of conventional human T cells from all sources of HSPCs. ATO-derived T cells exhibited mature naive phenotypes, a diverse T cell receptor (TCR) repertoire and TCR-dependent function. ATOs initiated with TCR-engineered HSPCs produced T cells with antigen-specific cytotoxicity and near-complete lack of endogenous TCR Vβ expression, consistent with allelic exclusion of Vβ-encoding loci. ATOs provide a robust tool for studying human T cell differentiation and for the future development of stem-cell-based engineered T cell therapies.

  10. Molecular Imaging in Stem Cell Therapy for Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Fahuan Song

    2014-01-01

    Full Text Available Spinal cord injury (SCI is a serious disease of the center nervous system (CNS. It is a devastating injury with sudden loss of motor, sensory, and autonomic function distal to the level of trauma and produces great personal and societal costs. Currently, there are no remarkable effective therapies for the treatment of SCI. Compared to traditional treatment methods, stem cell transplantation therapy holds potential for repair and functional plasticity after SCI. However, the mechanism of stem cell therapy for SCI remains largely unknown and obscure partly due to the lack of efficient stem cell trafficking methods. Molecular imaging technology including positron emission tomography (PET, magnetic resonance imaging (MRI, optical imaging (i.e., bioluminescence imaging (BLI gives the hope to complete the knowledge concerning basic stem cell biology survival, migration, differentiation, and integration in real time when transplanted into damaged spinal cord. In this paper, we mainly review the molecular imaging technology in stem cell therapy for SCI.

  11. Clinical potentials of human pluripotent stem cells.

    Science.gov (United States)

    Mora, Cristina; Serzanti, Marialaura; Consiglio, Antonella; Memo, Maurizio; Dell'Era, Patrizia

    2017-08-01

    Aging, injuries, and diseases can be considered as the result of malfunctioning or damaged cells. Regenerative medicine aims to restore tissue homeostasis by repairing or replacing cells, tissues, or damaged organs, by linking and combining different disciplines including engineering, technology, biology, and medicine. To pursue these goals, the discipline is taking advantage of pluripotent stem cells (PSCs), a peculiar type of cell possessing the ability to differentiate into every cell type of the body. Human PSCs can be isolated from the blastocysts and maintained in culture indefinitely, giving rise to the so-called embryonic stem cells (ESCs). However, since 2006, it is possible to restore in an adult cell a pluripotent ESC-like condition by forcing the expression of four transcription factors with the rejuvenating reprogramming technology invented by Yamanaka. Then the two types of PSC can be differentiated, using standardized protocols, towards the cell type necessary for the regeneration. Although the use of these derivatives for therapeutic transplantation is still in the preliminary phase of safety and efficacy studies, a lot of efforts are presently taking place to discover the biological mechanisms underlying genetic pathologies, by differentiating induced PSCs derived from patients, and new therapies by challenging PSC-derived cells in drug screening.

  12. Functional Studies of Missense TREM2 Mutations in Human Stem Cell-Derived Microglia

    Directory of Open Access Journals (Sweden)

    Philip W. Brownjohn

    2018-04-01

    Full Text Available Summary: The derivation of microglia from human stem cells provides systems for understanding microglial biology and enables functional studies of disease-causing mutations. We describe a robust method for the derivation of human microglia from stem cells, which are phenotypically and functionally comparable with primary microglia. We used stem cell-derived microglia to study the consequences of missense mutations in the microglial-expressed protein triggering receptor expressed on myeloid cells 2 (TREM2, which are causal for frontotemporal dementia-like syndrome and Nasu-Hakola disease. We find that mutant TREM2 accumulates in its immature form, does not undergo typical proteolysis, and is not trafficked to the plasma membrane. However, in the absence of plasma membrane TREM2, microglia differentiate normally, respond to stimulation with lipopolysaccharide, and are phagocytically competent. These data indicate that dementia-associated TREM2 mutations have subtle effects on microglia biology, consistent with the adult onset of disease in individuals with these mutations. : Brownjohn and colleagues report methods to generate microglia from induced pluripotent human stem cells, which they demonstrate are highly similar to cultured primary human microglia. Microglia differentiated from patient-derived stem cells carrying neurological disease-causing mutations in the TREM2 receptor differentiate normally and respond appropriately to pathogenic stimuli, despite the absence of functional TREM2 receptor on the plasma membrane. Keywords: dementia, microglia, TREM2, Nasu-Hakola disease, frontotemporal dementia, iPSC-microglia, neuroinflammation

  13. Derivation of Stromal (Skeletal and Mesenchymal) Stem-Like Cells from Human Embryonic Stem Cells

    Science.gov (United States)

    Harkness, Linda; Abdallah, Basem M.; Elsafadi, Mona; Al-Nbaheen, May S.; Aldahmash, Abdullah; Kassem, Moustapha

    2012-01-01

    Derivation of bone forming cells (osteoblasts) from human embryonic stem cells (hESCs) is a prerequisite for their use in clinical applications. However, there is no standard protocol for differentiating hESCs into osteoblastic cells. The aim of this study was to identify the emergence of a human stromal (mesenchymal and skeletal) stem cell (hMSC)-like population, known to be osteoblastic cell precursors and to test their osteoblastic differentiation capacity in ex vivo cultures and in vivo. We cultured hESCs in a feeder-free environment using serum replacement and as suspension aggregates (embryoid bodies; hEBs). Over a 20 day developmental period, the hEBs demonstrated increasing enrichment for cells expressing hMSC markers: CD29, CD44, CD63, CD56, CD71, CD73, CD105, CD106, and CD166 as revealed by immunohistochemical staining and flow cytometry (fluorescence-activated cell sorting) analysis. Ex vivo differentiation of hEBs using bone morphogenic protein 2 (BMP2) combined with standard osteoblast induction medium led to weak osteoblastic induction. Conversely, subcutaneous in vivo implantation of day 20 hEBs in immune deficient mice, mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) as an osteoconductive scaffold, revealed bone and cartilage, and fibrous tissue elements after 8 weeks. These tissues were of human origin and there was no evidence of differentiation to nonmesodermal tissues. hEBs implanted in the absence of HA/TCP formed vacuolated tissue containing glandular, fibrous and muscle-like tissue elements. Conversely, implantation of undifferentiated hESCs resulted in the formation of a teratoma containing a mixture of endodermal, mesodermal, and ectodermal tissues. Our study demonstrates that hMSC-like cells can be obtained from hESCs and they can be induced to form skeletal tissues in vivo when combined with HA/TCP. These findings are relevant for tissue engineering and suggest that differentiated hEBs can provide an unlimited source for

  14. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    Directory of Open Access Journals (Sweden)

    Hayato Fukusumi

    2016-01-01

    Full Text Available Human neural progenitor cells (hNPCs have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi. Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  15. Differentiation of hepatocytes from induced pluripotent stem cells derived from human hair follicle mesenchymal stem cells.

    Science.gov (United States)

    Shi, Xu; Lv, Shuang; He, Xia; Liu, Xiaomei; Sun, Meiyu; Li, Meiying; Chi, Guangfan; Li, Yulin

    2016-10-01

    Due to the limitations of organ donors and immune rejection in severe liver diseases, stem cell-based therapy presents a promising application for tissue repair and regeneration. As a novel cell source, mesenchymal stem cells separated from human hair follicles (HF-MSCs) are convenient to obtain and have no age limit. To date, the differentiation of HF-MSCs into hepatocytes has not been reported. In this study, we explored whether HF-MSCs and HF-MSC-derived-induced pluripotent stem cells (HF-iPS) could differentiate into hepatocytes in vitro. Flow cytometry, Oil Red O stain and Alizarin Red stain were used to identify the characteristics of HF-MSCs. The expression of liver-specific gene was detected by immunofluorescence and Quantitative Polymerase Chain Reaction. Periodic Acid-Schiff stain, Indocyanine Green stain and Low-Density Lipoprotein stain were performed to evaluate the functions of induced hepatocyte-like cells (HLCs). HF-MSCs were unable to differentiate into HLCs using previously reported procedures for MSCs from other tissues. However, HF-iPS efficiently induced the generation of HLCs that expressed hepatocyte markers and drug metabolism-related genes. HF-iPS can be used as novel and alternative cellular tools for inducing hepatocytes in vitro, simultaneously benefiting from utilizing HF-MSCs as a noninvasive and convenient cell source for reprogramming.

  16. Human finger-prick induced pluripotent stem cells facilitate the development of stem cell banking.

    Science.gov (United States)

    Tan, Hong-Kee; Toh, Cheng-Xu Delon; Ma, Dongrui; Yang, Binxia; Liu, Tong Ming; Lu, Jun; Wong, Chee-Wai; Tan, Tze-Kai; Li, Hu; Syn, Christopher; Tan, Eng-Lee; Lim, Bing; Lim, Yoon-Pin; Cook, Stuart A; Loh, Yuin-Han

    2014-05-01

    Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients can be a good model for studying human diseases and for future therapeutic regenerative medicine. Current initiatives to establish human iPSC (hiPSC) banking face challenges in recruiting large numbers of donors with diverse diseased, genetic, and phenotypic representations. In this study, we describe the efficient derivation of transgene-free hiPSCs from human finger-prick blood. Finger-prick sample collection can be performed on a "do-it-yourself" basis by donors and sent to the hiPSC facility for reprogramming. We show that single-drop volumes of finger-prick samples are sufficient for performing cellular reprogramming, DNA sequencing, and blood serotyping in parallel. Our novel strategy has the potential to facilitate the development of large-scale hiPSC banking worldwide.

  17. Transcriptional and Cell Cycle Alterations Mark Aging of Primary Human Adipose-Derived Stem Cells.

    Science.gov (United States)

    Shan, Xiaoyin; Roberts, Cleresa; Kim, Eun Ji; Brenner, Ariana; Grant, Gregory; Percec, Ivona

    2017-05-01

    Adult stem cells play a critical role in the maintenance of tissue homeostasis and prevention of aging. While the regenerative potential of stem cells with low cellular turnover, such as adipose-derived stem cells (ASCs), is increasingly recognized, the study of chronological aging in ASCs is technically difficult and remains poorly understood. Here, we use our model of chronological aging in primary human ASCs to examine genome-wide transcriptional networks. We demonstrate first that the transcriptome of aging ASCs is distinctly more stable than that of age-matched fibroblasts, and further, that age-dependent modifications in cell cycle progression and translation initiation specifically characterize aging ASCs in conjunction with increased nascent protein synthesis and a distinctly shortened G1 phase. Our results reveal novel chronological aging mechanisms in ASCs that are inherently different from differentiated cells and that may reflect an organismal attempt to meet the increased demands of tissue and organ homeostasis during aging. Stem Cells 2017;35:1392-1401. © 2017 AlphaMed Press.

  18. Proliferation-promoting effect of platelet-rich plasma on human adipose-derived stem cells and human dermal fibroblasts.

    Science.gov (United States)

    Kakudo, Natsuko; Minakata, Tatsuya; Mitsui, Toshihito; Kushida, Satoshi; Notodihardjo, Frederik Zefanya; Kusumoto, Kenji

    2008-11-01

    This study evaluated changes in platelet-derived growth factor (PDGF)-AB and transforming growth factor (TGF)-beta1 release from platelets by platelet-rich plasma activation, and the proliferation potential of activated platelet-rich plasma and platelet-poor plasma on human adipose-derived stem cells and human dermal fibroblasts. Platelet-rich plasma was prepared using a double-spin method, with the number of platelets counted in each preparation stage. Platelet-rich and platelet-poor plasma were activated with autologous thrombin and calcium chloride, and levels of platelet-released PDGF-AB and TGF-beta1 were determined by enzyme-linked immunosorbent assay. Cells were cultured for 1, 4, or 7 days in serum-free Dulbecco's Modified Eagle Medium supplemented with 5% whole blood plasma, nonactivated platelet-rich plasma, nonactivated platelet-poor plasma, activated platelet-rich plasma, or activated platelet-poor plasma. In parallel, these cells were cultured for 1, 4, or 7 days in serum-free Dulbecco's Modified Eagle Medium supplemented with 1%, 5%, 10%, or 20% activated platelet-rich plasma. The cultured human adipose-derived stem cells and human dermal fibroblasts were assayed for proliferation. Platelet-rich plasma contained approximately 7.9 times as many platelets as whole blood, and its activation was associated with the release of large amounts of PDGF-AB and TGF-beta1. Adding activated platelet-rich or platelet-poor plasma significantly promoted the proliferation of human adipose-derived stem cells and human dermal fibroblasts. Adding 5% activated platelet-rich plasma to the medium maximally promoted cell proliferation, but activated platelet-rich plasma at 20% did not promote it. Platelet-rich plasma can enhance the proliferation of human adipose-derived stem cells and human dermal fibroblasts. These results support clinical platelet-rich plasma application for cell-based, soft-tissue engineering and wound healing.

  19. Crispr-mediated Gene Targeting of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Byrne, Susan M; Church, George M

    2015-01-01

    CRISPR/Cas9 nuclease systems can create double-stranded DNA breaks at specific sequences to efficiently and precisely disrupt, excise, mutate, insert, or replace genes. However, human embryonic stem or induced pluripotent stem cells (iPSCs) are more difficult to transfect and less resilient to DNA damage than immortalized tumor cell lines. Here, we describe an optimized protocol for genome engineering of human iPSCs using a simple transient transfection of plasmids and/or single-stranded oligonucleotides. With this protocol, we achieve transfection efficiencies greater than 60%, with gene disruption efficiencies from 1-25% and gene insertion/replacement efficiencies from 0.5-10% without any further selection or enrichment steps. We also describe how to design and assess optimal sgRNA target sites and donor targeting vectors; cloning individual iPSC by single cell FACS sorting, and genotyping successfully edited cells.

  20. CD133 (Prominin negative human neural stem cells are clonogenic and tripotent.

    Directory of Open Access Journals (Sweden)

    Yirui Sun

    Full Text Available CD133 (Prominin is widely used as a marker for the identification and isolation of neural precursor cells from normal brain or tumor tissue. However, the assumption that CD133 is expressed constitutively in neural precursor cells has not been examined.In this study, we demonstrate that CD133 and a second marker CD15 are expressed heterogeneously in uniformly undifferentiated human neural stem (NS cell cultures. After fractionation by flow cytometry, clonogenic tripotent cells are found in populations negative or positive for either marker. We further show that CD133 is down-regulated at the mRNA level in cells lacking CD133 immunoreactivity. Cell cycle profiling reveals that CD133 negative cells largely reside in G1/G0, while CD133 positive cells are predominantly in S, G2, or M phase. A similar pattern is apparent in mouse NS cell lines. Compared to mouse NS cells, however, human NS cell cultures harbour an increased proportion of CD133 negative cells and display a longer doubling time. This may in part reflect a sub-population of slow- or non-cycling cells amongst human NS cells because we find that around 5% of cells do not take up BrdU over a 14-day labelling period. Non-proliferating NS cells remain undifferentiated and at least some of them are capable of re-entry into the cell cycle and subsequent continuous expansion.The finding that a significant fraction of clonogenic neural stem cells lack the established markers CD133 and CD15, and that some of these cells may be dormant or slow-cycling, has implications for approaches to identify and isolate neural stem cells and brain cancer stem cells. Our data also suggest the possibility that CD133 may be specifically down-regulated during G0/G1, and this should be considered when this marker is used to identify and isolate other tissue and cancer stem cells.

  1. Chitosan derived co-spheroids of neural stem cells and mesenchymal stem cells for neural regeneration.

    Science.gov (United States)

    Han, Hao-Wei; Hsu, Shan-Hui

    2017-10-01

    Chitosan has been considered as candidate biomaterials for neural applications. The effective treatment of neurodegeneration or injury to the central nervous system (CNS) is still in lack nowadays. Adult neural stem cells (NSCs) represents a promising cell source to treat the CNS diseases but they are limited in number. Here, we developed the core-shell spheroids of NSCs (shell) and mesenchymal stem cells (MSCs, core) by co-culturing cells on the chitosan surface. The NSCs in chitosan derived co-spheroids displayed a higher survival rate than those in NSC homo-spheroids. The direct interaction of NSCs with MSCs in the co-spheroids increased the Notch activity and differentiation tendency of NSCs. Meanwhile, the differentiation potential of MSCs in chitosan derived co-spheroids was significantly enhanced toward neural lineages. Furthermore, NSC homo-spheroids and NSC/MSC co-spheroids derived on chitosan were evaluated for their in vivo efficacy by the embryonic and adult zebrafish brain injury models. The locomotion activity of zebrafish receiving chitosan derived NSC homo-spheroids or NSC/MSC co-spheroids was partially rescued in both models. Meanwhile, the higher survival rate was observed in the group of adult zebrafish implanted with chitosan derived NSC/MSC co-spheroids as compared to NSC homo-spheroids. These evidences indicate that chitosan may provide an extracellular matrix-like environment to drive the interaction and the morphological assembly between NSCs and MSCs and promote their neural differentiation capacities, which can be used for neural regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Report of the International Stem Cell Banking Initiative Workshop Activity: Current Hurdles and Progress in Seed-Stock Banking of Human Pluripotent Stem Cells.

    Science.gov (United States)

    Kim, Jung-Hyun; Kurtz, Andreas; Yuan, Bao-Zhu; Zeng, Fanyi; Lomax, Geoff; Loring, Jeanne F; Crook, Jeremy; Ju, Ji Hyeon; Clarke, Laura; Inamdar, Maneesha S; Pera, Martin; Firpo, Meri T; Sheldon, Michael; Rahman, Nafees; O'Shea, Orla; Pranke, Patricia; Zhou, Qi; Isasi, Rosario; Rungsiwiwut, Ruttachuk; Kawamata, Shin; Oh, Steve; Ludwig, Tenneille; Masui, Tohru; Novak, Thomas J; Takahashi, Tsuneo; Fujibuchi, Wataru; Koo, Soo Kyung; Stacey, Glyn N

    2017-11-01

    This article summarizes the recent activity of the International Stem Cell Banking Initiative (ISCBI) held at the California Institute for Regenerative Medicine (CIRM) in California (June 26, 2016) and the Korean National Institutes for Health in Korea (October 19-20, 2016). Through the workshops, ISCBI is endeavoring to support a new paradigm for human medicine using pluripotent stem cells (hPSC) for cell therapies. Priority considerations for ISCBI include ensuring the safety and efficacy of a final cell therapy product and quality assured source materials, such as stem cells and primary donor cells. To these ends, ISCBI aims to promote global harmonization on quality and safety control of stem cells for research and the development of starting materials for cell therapies, with regular workshops involving hPSC banking centers, biologists, and regulatory bodies. Here, we provide a brief overview of two such recent activities, with summaries of key issues raised. Stem Cells Translational Medicine 2017;6:1956-1962. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  3. Differentiation of human stem cells is promoted by amphiphilic pluronic block copolymers

    Directory of Open Access Journals (Sweden)

    Doğan A

    2012-09-01

    Full Text Available Aysegül Doğan,1 Mehmet E Yalvaç,1,2 Fikrettin Şahin,1 Alexander V Kabanov,3–5 András Palotás,6 Albert A Rizvanov71Department of Genetics and BioEngineering, College of Engineering and Architecture, Yeditepe University, Istanbul, Turkey; 2Center for Gene Therapy, Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA; 3Center for Drug Delivery and Nanomedicine, 4Department of Pharmaceutical Sciences, College of Pharmacy, Durham Research Center, University of Nebraska Medical Center, Omaha, NE, USA; 5Laboratory of Chemical Design of Bio-nano-materials, Department of Chemistry, Mikhail V Lomonosov Moscow State University, Moscow, Russia; 6Asklepios-Med, Szeged, Hungary; 7Institute of Fundamental Medicine and Biology, Kazan (Volga Region Federal University, Kazan, RussiaAbstract: Stem cell usage provides novel avenues of tissue regeneration and therapeutics across disciplines. Apart from ethical considerations, the selection and amplification of donor stem cells remain a challenge. Various biopolymers with a wide range of properties have been used extensively to deliver biomolecules such as drugs, growth factors and nucleic acids, as well as to provide biomimetic surface for cellular adhesion. Using human tooth germ stem cells with high proliferation and transformation capacity, we have investigated a range of biopolymers to assess their potential for tissue engineering. Tolerability, toxicity, and their ability to direct differentiation were evaluated. The majority of pluronics, consisting of both hydrophilic and hydrophobic poly(ethylene oxide chains, either exerted cytotoxicity or had no significant effect on human tooth germ stem cells; whereas F68 increased the multi-potency of stem cells, and efficiently transformed them into osteogenic, chondrogenic, and adipogenic tissues. The data suggest that differentiation and maturation of stem cells can be promoted by selecting the appropriate mechanical and chemical

  4. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    Science.gov (United States)

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  5. Radiation-induced bystander effects in cultured human stem cells.

    Directory of Open Access Journals (Sweden)

    Mykyta V Sokolov

    2010-12-01

    Full Text Available The radiation-induced "bystander effect" (RIBE was shown to occur in a number of experimental systems both in vitro and in vivo as a result of exposure to ionizing radiation (IR. RIBE manifests itself by intercellular communication from irradiated cells to non-irradiated cells which may cause DNA damage and eventual death in these bystander cells. It is known that human stem cells (hSC are ultimately involved in numerous crucial biological processes such as embryologic development; maintenance of normal homeostasis; aging; and aging-related pathologies such as cancerogenesis and other diseases. However, very little is known about radiation-induced bystander effect in hSC. To mechanistically interrogate RIBE responses and to gain novel insights into RIBE specifically in hSC compartment, both medium transfer and cell co-culture bystander protocols were employed.Human bone-marrow mesenchymal stem cells (hMSC and embryonic stem cells (hESC were irradiated with doses 0.2 Gy, 2 Gy and 10 Gy of X-rays, allowed to recover either for 1 hr or 24 hr. Then conditioned medium was collected and transferred to non-irradiated hSC for time course studies. In addition, irradiated hMSC were labeled with a vital CMRA dye and co-cultured with non-irradiated bystander hMSC. The medium transfer data showed no evidence for RIBE either in hMSC and hESC by the criteria of induction of DNA damage and for apoptotic cell death compared to non-irradiated cells (p>0.05. A lack of robust RIBE was also demonstrated in hMSC co-cultured with irradiated cells (p>0.05.These data indicate that hSC might not be susceptible to damaging effects of RIBE signaling compared to differentiated adult human somatic cells as shown previously. This finding could have profound implications in a field of radiation biology/oncology, in evaluating radiation risk of IR exposures, and for the safety and efficacy of hSC regenerative-based therapies.

  6. L1TD1 Is a Marker for Undifferentiated Human Embryonic Stem Cells

    OpenAIRE

    Wong, Raymond Ching-Bong; Ibrahim, Abel; Fong, Helen; Thompson, Noelle; Lock, Leslie F.; Donovan, Peter J.

    2011-01-01

    Background Human embryonic stem cells (hESC) are stem cells capable of differentiating into cells representative of the three primary embryonic germ layers. There has been considerable interest in understanding the mechanisms regulating stem cell pluripotency, which will ultimately lead to development of more efficient methods to derive and culture hESC. In particular, Oct4, Sox2 and Nanog are transcription factors known to be important in maintenance of hESC. However, many of the downstream ...

  7. A Simple and Efficient Method of Slow Freezing for Human Embryonic Stem Cells and Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Imaizumi, Keitaro; Iha, Momoe; Nishishita, Naoki; Kawamata, Shin; Nishikawa, Shinichi; Akuta, Teruo

    2016-01-01

    Protocols available for the cryopreservation of human embryonic stem (ES) and induced pluripotent stem (iPS) cells are very inefficient and laborious compared to those for the cryopreservation of murine ES/iPS cells or other general cell lines. While the vitrification method may be adequate when working with small numbers of human ES/iPS cells, it requires special skills and is unsuitable when working with large cell numbers. Here, we describe a simple and efficient method for the cryopreservation of hES/hiPS cells that is based on a conventional slow freezing method that uses a combination of Pronase/EDTA for Stem™ and CP-5E™ [final concentrations: 6 % hydroxyethyl starch, 5 % DMSO, and 5 % ethylene glycol in saline]. CP-5E™ is highly effective for the cryopreservation of small cell clumps produced by hES/hiPS colony detachment in the presence of Pronase and EDTA (Pronase/EDTA for Stem™, a formulation containing multiple digestive enzymes from Streptomyces griseus). This novel method would be quite useful for large-scale hES/iPS cell banking for use in clinical applications.

  8. Molecular Imaging of Human Embryonic Stem Cells Stably Expressing Human PET Reporter Genes After Zinc Finger Nuclease-Mediated Genome Editing.

    Science.gov (United States)

    Wolfs, Esther; Holvoet, Bryan; Ordovas, Laura; Breuls, Natacha; Helsen, Nicky; Schönberger, Matthias; Raitano, Susanna; Struys, Tom; Vanbilloen, Bert; Casteels, Cindy; Sampaolesi, Maurilio; Van Laere, Koen; Lambrichts, Ivo; Verfaillie, Catherine M; Deroose, Christophe M

    2017-10-01

    Molecular imaging is indispensable for determining the fate and persistence of engrafted stem cells. Standard strategies for transgene induction involve the use of viral vectors prone to silencing and insertional mutagenesis or the use of nonhuman genes. Methods: We used zinc finger nucleases to induce stable expression of human imaging reporter genes into the safe-harbor locus adeno-associated virus integration site 1 in human embryonic stem cells. Plasmids were generated carrying reporter genes for fluorescence, bioluminescence imaging, and human PET reporter genes. Results: In vitro assays confirmed their functionality, and embryonic stem cells retained differentiation capacity. Teratoma formation assays were performed, and tumors were imaged over time with PET and bioluminescence imaging. Conclusion: This study demonstrates the application of genome editing for targeted integration of human imaging reporter genes in human embryonic stem cells for long-term molecular imaging. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  9. Generation of human pluripotent stem cell-derived hepatocyte-like cells for drug toxicity screening.

    Science.gov (United States)

    Takayama, Kazuo; Mizuguchi, Hiroyuki

    2017-02-01

    Because drug-induced liver injury is one of the main reasons for drug development failures, it is important to perform drug toxicity screening in the early phase of pharmaceutical development. Currently, primary human hepatocytes are most widely used for the prediction of drug-induced liver injury. However, the sources of primary human hepatocytes are limited, making it difficult to supply the abundant quantities required for large-scale drug toxicity screening. Therefore, there is an urgent need for a novel unlimited, efficient, inexpensive, and predictive model which can be applied for large-scale drug toxicity screening. Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are able to replicate indefinitely and differentiate into most of the body's cell types, including hepatocytes. It is expected that hepatocyte-like cells generated from human ES/iPS cells (human ES/iPS-HLCs) will be a useful tool for drug toxicity screening. To apply human ES/iPS-HLCs to various applications including drug toxicity screening, homogenous and functional HLCs must be differentiated from human ES/iPS cells. In this review, we will introduce the current status of hepatocyte differentiation technology from human ES/iPS cells and a novel method to predict drug-induced liver injury using human ES/iPS-HLCs. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  10. Modeling human neurological disorders with induced pluripotent stem cells.

    Science.gov (United States)

    Imaizumi, Yoichi; Okano, Hideyuki

    2014-05-01

    Human induced pluripotent stem (iPS) cells obtained by reprogramming technology are a source of great hope, not only in terms of applications in regenerative medicine, such as cell transplantation therapy, but also for modeling human diseases and new drug development. In particular, the production of iPS cells from the somatic cells of patients with intractable diseases and their subsequent differentiation into cells at affected sites (e.g., neurons, cardiomyocytes, hepatocytes, and myocytes) has permitted the in vitro construction of disease models that contain patient-specific genetic information. For example, disease-specific iPS cells have been established from patients with neuropsychiatric disorders, including schizophrenia and autism, as well as from those with neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. A multi-omics analysis of neural cells originating from patient-derived iPS cells may thus enable investigators to elucidate the pathogenic mechanisms of neurological diseases that have heretofore been unknown. In addition, large-scale screening of chemical libraries with disease-specific iPS cells is currently underway and is expected to lead to new drug discovery. Accordingly, this review outlines the progress made via the use of patient-derived iPS cells toward the modeling of neurological disorders, the testing of existing drugs, and the discovery of new drugs. The production of human induced pluripotent stem (iPS) cells from the patients' somatic cells and their subsequent differentiation into specific cells have permitted the in vitro construction of disease models that contain patient-specific genetic information. Furthermore, innovations of gene-editing technologies on iPS cells are enabling new approaches for illuminating the pathogenic mechanisms of human diseases. In this review article, we outlined the current status of neurological diseases-specific iPS cell research and described recently obtained

  11. Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells as an Individual-Specific and Renewable Source of Adult Stem Cells.

    Science.gov (United States)

    Sequiera, Glen Lester; Saravanan, Sekaran; Dhingra, Sanjiv

    2017-01-01

    This chapter deals with the employment of human-induced pluripotent stem cells (hiPSCs) as a candidate to differentiate into mesenchymal stem cells (MSCs). This would enable to help establish a regular source of human MSCs with the aim of avoiding the problems associated with procuring the MSCs either from different healthy individuals or patients, limited extraction potentials, batch-to-batch variations or from diverse sources such as bone marrow or adipose tissue. The procedures described herein allow for a guided and ensured approach for the regular maintenance of hiPSCs and their subsequent differentiation into MSCs using the prescribed medium. Subsequently, an easy protocol for the successive isolation and purification of the hiPSC-differentiated MSCs is outlined, which is carried out through passaging and can be further sorted through flow cytometry. Further, the maintenance and expansion of the resultant hiPSC-differentiated MSCs using appropriate characterization techniques, i.e., Reverse-transcription PCR and immunostaining is also elaborated. The course of action has been deliberated keeping in mind the awareness and the requisites available to even beginner researchers who mostly have access to regular consumables and medium components found in the general laboratory.

  12. Utilization of human amniotic mesenchymal cells as feeder layers to sustain propagation of human embryonic stem cells in the undifferentiated state.

    Science.gov (United States)

    Zhang, Kehua; Cai, Zhe; Li, Yang; Shu, Jun; Pan, Lin; Wan, Fang; Li, Hong; Huang, Xiaojie; He, Chun; Liu, Yanqiu; Cui, Xiaohui; Xu, Yang; Gao, Yan; Wu, Liqun; Cao, Shanxia; Li, Lingsong

    2011-08-01

    Human embryonic stem (ES) cells are usually maintained in the undifferentiated state by culturing on feeder cells layers of mouse embryonic fibroblasts (MEFs). However, MEFs are not suitable to support human ES cells used for clinical purpose because of risk of zoonosis from animal cells. Therefore, human tissue-based feeder layers need to be developed for human ES cells for clinical purpose. Hereof we report that human amniotic mesenchymal cells (hAMCs) could act as feeder cells for human ES cells, because they are easily obtained and relatively exempt from ethical problem. Like MEFs, hAMCs could act as feeder cells for human ES cells to grow well on. The self-renewal rate of human ES cells cultured on hAMCs feeders was higher than that on MEFs and human amniotic epithelial cells determined by measurement of colonial diameters and growth curve as well as cell cycle analysis. Both immunofluorescence staining and immunoblotting showed that human ES cells cultured on hAMCs expressed stem cell markers such as Oct-3/4, Sox2, and NANOG. Verified by embryoid body formation in vitro and teratoma formation in vivo, we found out that after 20 passages of culture, human ES cells grown on hAMCs feeders could still retain the potency of differentiating into three germ layers. Taken together, our data suggested hAMCs may be safe feeder cells to sustain the propagation of human ES cells in undifferentiated state for future therapeutic use.

  13. CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Rouzbeh Taghizadeh

    2010-12-01

    Full Text Available A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+.We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone.The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.

  14. Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies

    Directory of Open Access Journals (Sweden)

    Karina O. Brandão

    2017-09-01

    Full Text Available It is now a decade since human induced pluripotent stem cells (hiPSCs were first described. The reprogramming of adult somatic cells to a pluripotent state has become a robust technology that has revolutionised our ability to study human diseases. Crucially, these cells capture all the genetic aspects of the patient from which they were derived. Combined with advances in generating the different cell types present in the human heart, this has opened up new avenues to study cardiac disease in humans and investigate novel therapeutic approaches to treat these pathologies. Here, we provide an overview of the current state of the field regarding the generation of cardiomyocytes from human pluripotent stem cells and methods to assess them functionally, an essential requirement when investigating disease and therapeutic outcomes. We critically evaluate whether treatments suggested by these in vitro models could be translated to clinical practice. Finally, we consider current shortcomings of these models and propose methods by which they could be further improved.

  15. Usage of Human Mesenchymal Stem Cells in Cell-based Therapy: Advantages and Disadvantages.

    Science.gov (United States)

    Kim, Hee Jung; Park, Jeong-Soo

    2017-03-01

    The use of human mesenchymal stem cells (hMSCs) in cell-based therapy has attracted extensive interest in the field of regenerative medicine, and it shows applications to numerous incurable diseases. hMSCs show several superior properties for therapeutic use compared to other types of stem cells. Different cell types are discussed in terms of their advantages and disadvantages, with focus on the characteristics of hMSCs. hMSCs can proliferate readily and produce differentiated cells that can substitute for the targeted affected tissue. To maximize the therapeutic effects of hMSCs, a substantial number of these cells are essential, requiring extensive ex vivo cell expansion. However, hMSCs have a limited lifespan in an in vitro culture condition. The senescence of hMSCs is a double-edged sword from the viewpoint of clinical applications. Although their limited cell proliferation potency protects them from malignant transformation after transplantation, senescence can alter various cell functions including proliferation, differentiation, and migration, that are essential for their therapeutic efficacy. Numerous trials to overcome the limited lifespan of mesenchymal stem cells are discussed.

  16. Xenotransplantation of human adipose-derived stem cells in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Jin Li

    Full Text Available Zebrafish is a widely used animal model with well-characterized background in developmental biology. The fate of human adipose-derived stem cells (ADSCs after their xenotransplantation into the developing embryos of zebrafish is unknown. Therefore, human ADSCs were firstly isolated, and then transduced with lentiviral vector system carrying a green fluorescent protein (GFP reporter gene, and followed by detection of their cell viability and the expression of cell surface antigens. These GFP-expressing human ADSCs were transplanted into the zebrafish embryos at 3.3-4.3 hour post-fertilization (hpf. Green fluorescent signal, the proliferation and differentiation of human ADSCs in recipient embryos were respectively examined using fluorescent microscopy and immunohistochemical staining. The results indicated that human ADSCs did not change their cell viability and the expression levels of cell surface antigens after GFP transduction. Microscopic examination demonstrated that green fluorescent signals of GFP expressed in the transplanted cells were observed in the embryos and larva fish at post-transplantation. The positive staining of Ki-67 revealed the survival and proliferation of human ADSCs in fish larvae after transplantation. The expression of CD105 was observable in the xenotransplanted ADSCs, but CD31 expression was undetectable. Therefore, our results indicate that human ADSCs xenotransplanted in the zebrafish embryos not only can survive and proliferate at across-species circumstance, but also seem to maintain their undifferentiation status in a short term. This xenograft model of zebrafish embryos may provide a promising and useful technical platform for the investigation of biology and physiology of stem cells in vivo.

  17. Electrophysiological properties of neurosensory progenitors derived from human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Karina Needham

    2014-01-01

    Full Text Available In severe cases of sensorineural hearing loss where the numbers of auditory neurons are significantly depleted, stem cell-derived neurons may provide a potential source of replacement cells. The success of such a therapy relies upon producing a population of functional neurons from stem cells, to enable precise encoding of sound information to the brainstem. Using our established differentiation assay to produce sensory neurons from human stem cells, patch-clamp recordings indicated that all neurons examined generated action potentials and displayed both transient sodium and sustained potassium currents. Stem cell-derived neurons reliably entrained to stimuli up to 20 pulses per second (pps, with 50% entrainment at 50 pps. A comparison with cultured primary auditory neurons indicated similar firing precision during low-frequency stimuli, but significant differences after 50 pps due to differences in action potential latency and width. The firing properties of stem cell-derived neurons were also considered relative to time in culture (31–56 days and revealed no change in resting membrane potential, threshold or firing latency over time. Thus, while stem cell-derived neurons did not entrain to high frequency stimulation as effectively as mammalian auditory neurons, their electrical phenotype was stable in culture and consistent with that reported for embryonic auditory neurons.

  18. Restoration of heart functions using human embryonic stem cells derived heart muscle cells.

    Science.gov (United States)

    Gepstein, Lior; Kehat, Izhak

    2005-02-01

    Extract: Recent advances in molecular and cellular biology and specifically in the areas of stem cell biology and tissue engineering have paved the way for the development of a new field in biomedicine, regenerative medicine. This exciting approach seeks to develop new biological solutions, using the mobilization of endogenous stem cells or delivery of exogenous cells to replace or modify the function of diseased, absent, or malfunctioning tissue. The adult heart represents an attractive candidate for these emerging technologies, since adult cardiomyocytes have limited regenerative capacity. Thus, any significant heart cell loss or dysfunction, such as occurs during heart attack, is mostly irreversible and may lead to the development of progressive heart failure, one of the leading causes of world-wide morbidity and mortality. Similarly, dysfunction of the specialized electrical conduction system within the heart may result in inefficient rhythm initiation or impulse conduction, leading to significant slowing of the heart rate, usually requiring the implantation of a permanent electronic pacemaker. Replacement of the dysfunctional myocardium (heart muscle) by implantation of external heart muscle cells is emerging as a novel paradigm for restoration of the myocardial electromechanical properties, but has been significantly hampered by the paucity of cell sources for human heart cells and by the relatively limited evidence for functional integration between grafted and host cells. The recently described human embryonic stem cell (hESC) lines may provide a possible solution for the aforementioned cell sourcing problem.

  19. Generation of Gastrointestinal Organoids from Human Pluripotent Stem Cells.

    Science.gov (United States)

    Múnera, Jorge O; Wells, James M

    2017-01-01

    Over the past several decades, developmental biologists have discovered fundamental mechanisms by which organs form in developing embryos. With this information it is now possible to generate human "organoids" by the stepwise differentiation of human pluripotent stem cells using a process that recapitulates organ development. For the gastrointestinal tract, one of the first key steps is the formation of definitive endoderm and mesoderm, a process that relies on the TGFb molecule Nodal. Endoderm is then patterned along the anterior-posterior axis, with anterior endoderm forming the foregut and posterior endoderm forming the mid and hindgut. A-P patterning of the endoderm is accomplished by the combined activities of Wnt, BMP, and FGF. High Wnt and BMP promote a posterior fate, whereas repressing these pathways promotes an anterior endoderm fate. The stomach derives from the posterior foregut and retinoic acid signaling is required for promoting a posterior foregut fate. The small and large intestine derive from the mid and hindgut, respectively.These stages of gastrointestinal development can be precisely manipulated through the temporal activation and repression of the pathways mentioned above. For example, stimulation of the Nodal pathway with the mimetic Activin A, another TGF-β superfamily member, can trigger the differentiation of pluripotent stem cells into definitive endoderm (D'Amour et al., Nat Biotechnol 23:1534-1541, 2005). Exposure of definitive endoderm to high levels of Wnt and FGF promotes the formation of posterior endoderm and mid/hindgut tissue that expresses CDX2. Mid-hindgut spheroids that are cultured in a three-dimensional matrix form human intestinal organoids (HIOs) that are small intestinal in nature Spence et al., Nature 2011. In contrast, activation of FGF and Wnt in the presence of the BMP inhibitor Noggin promotes the formation of anterior endoderm and foregut tissues that express SOX2. These SOX2-expressing foregut spheroids can be

  20. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells

    International Nuclear Information System (INIS)

    Oka, Naoki; Soeda, Akio; Inagaki, Akihito; Onodera, Masafumi; Maruyama, Hidekazu; Hara, Akira; Kunisada, Takahiro; Mori, Hideki; Iwama, Toru

    2007-01-01

    There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massive expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche

  1. The presence of carbon nanostructures in bakery products induces metabolic stress in human mesenchymal stem cells through CYP1A and p53 gene expression.

    Science.gov (United States)

    Al-Hadi, Ahmed M; Periasamy, Vaiyapuri Subbarayan; Athinarayanan, Jegan; Alshatwi, Ali A

    2016-01-01

    Ingredients commonly present in processed foods are excellent substrates for chemical reactions during modern thermal cooking or processing, which could possibly result in deteriorative carbonization changes mediated by a variety of thermal reactions. Spontaneous self-assembling complexation or polymerization of partially combusted lipids, proteins, and other food macromolecules with synthetic food additives during high temperature food processing or baking (200-250 °C) would result in the formation of carbon nanostructures (CNs). These unknown nanostructures may produce adverse physiological effects or potential health risks. The present work aimed to identify and characterize the nanostructures from the crusts of bread. Furthermore, a toxicological risk assessment of these nanostructures was conducted using human mesenchymal stem cells (hMSCs) as a model for cellular uptake and metabolic oxidative stress, with special reference to induced adipogenesis. CNs isolated from bread crusts were characterized using transmission electron microscopy. The in vitro risk assessment of the CNs was carried out in hMSCs using an MTT assay, cell morphological assessment, a reactive oxygen species assay, a mitochondrial trans-membrane potential assay, cell cycle progression assessment and gene expression analysis. Our results revealed that bread crusts contain CNs, which may form during the bread-making process. The in vitro results indicate that carbon nanostructures have moderately toxic effects in the hMSCs at a high dose (400 μg/mL). The mitochondrial trans-membrane potentials and intracellular ROS levels of the hMSCs were altered at this dose. The levels of the mRNA transcripts of metabolic stress-responsive genes such as CAT, GSR, GSTA4, CYP1A and p53 were significantly altered in response to CNs. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Human Decidua-Derived Mesenchymal Cells Are a Promising Source for the Generation and Cell Banking of Human Induced Pluripotent Stem Cells

    Science.gov (United States)

    Shofuda, Tomoko; Kanematsu, Daisuke; Fukusumi, Hayato; Yamamoto, Atsuyo; Bamba, Yohei; Yoshitatsu, Sumiko; Suemizu, Hiroshi; Nakamura, Masato; Sugimoto, Yoshikazu; Furue, Miho Kusuda; Kohara, Arihiro; Akamatsu, Wado; Okada, Yohei; Okano, Hideyuki; Yamasaki, Mami; Kanemura, Yonehiro

    2013-01-01

    Placental tissue is a biomaterial with remarkable potential for use in regenerative medicine. It has a three-layer structure derived from the fetus (amnion and chorion) and the mother (decidua), and it contains huge numbers of cells. Moreover, placental tissue can be collected without any physical danger to the donor and can be matched with a variety of HLA types. The decidua-derived mesenchymal cells (DMCs) are highly proliferative fibroblast-like cells that express a similar pattern of CD antigens as bone marrow-derived mesenchymal cells (BM-MSCs). Here we demonstrated that induced pluripotent stem (iPS) cells could be efficiently generated from DMCs by retroviral transfer of reprogramming factor genes. DMC-hiPS cells showed equivalent characteristics to human embryonic stem cells (hESCs) in colony morphology, global gene expression profile (including human pluripotent stem cell markers), DNA methylation status of the OCT3/4 and NANOG promoters, and ability to differentiate into components of the three germ layers in vitro and in vivo. The RNA expression of XIST and the methylation status of its promoter region suggested that DMC-iPSCs, when maintained undifferentiated and pluripotent, had three distinct states: (1) complete X-chromosome reactivation, (2) one inactive X-chromosome, or (3) an epigenetic aberration. Because DMCs are derived from the maternal portion of the placenta, they can be collected with the full consent of the adult donor and have considerable ethical advantages for cell banking and the subsequent generation of human iPS cells for regenerative applications. PMID:26858858

  3. Transplantation of Human Embryonic Stem Cells in Patients with Multiple Sclerosis and Lyme Disease

    OpenAIRE

    Shroff, Geeta

    2016-01-01

    Case series Patient: Male, 42 ? Female, 30 Final Diagnosis: Human embryonic stem cells showed good therapeutic potential for treatment of multiple sclerosis with lyme disease Symptoms: Fatigue ? weakness in limbs Medication: ? Clinical Procedure: Human embryonic stem cells transplantation Specialty: Transplantology Objective: Rare disease Background: Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease in which the myelin sheath of nerve cells is damaged. It can cause dela...

  4. Biology and relevance of human acute myeloid leukemia stem cells.

    Science.gov (United States)

    Thomas, Daniel; Majeti, Ravindra

    2017-03-23

    Evidence of human acute myeloid leukemia stem cells (AML LSCs) was first reported nearly 2 decades ago through the identification of rare subpopulations of engrafting cells in xenotransplantation assays. These AML LSCs were shown to reside at the apex of a cellular hierarchy that initiates and maintains the disease, exhibiting properties of self-renewal, cell cycle quiescence, and chemoresistance. This cancer stem cell model offers an explanation for chemotherapy resistance and disease relapse and implies that approaches to treatment must eradicate LSCs for cure. More recently, a number of studies have both refined and expanded our understanding of LSCs and intrapatient heterogeneity in AML using improved xenotransplant models, genome-scale analyses, and experimental manipulation of primary patient cells. Here, we review these studies with a focus on the immunophenotype, biological properties, epigenetics, genetics, and clinical associations of human AML LSCs and discuss critical questions that need to be addressed in future research. © 2017 by The American Society of Hematology.

  5. Generation and purification of human stem cell-derived cardiomyocytes

    NARCIS (Netherlands)

    Schwach, Verena; Passier, Robert

    2016-01-01

    © 2016 International Society of Differentiation Efficient and reproducible generation and purification of human stem cell-derived cardiomyocytes (CMs) is crucial for regenerative medicine, disease modeling, drug screening and study of developmental events during cardiac specification. Established

  6. Advances toward regenerative medicine in the central nervous system: challenges in making stem cell therapy a viable clinical strategy.

    Science.gov (United States)

    Stoll, Elizabeth A

    2014-01-01

    Over recent years, there has been a great deal of interest in the prospects of stem cell-based therapies for the treatment of nervous system disorders. The eagerness of scientists, clinicians, and spin-out companies to develop new therapies led to premature clinical trials in human patients, and now the initial excitement has largely turned to skepticism. Rather than embracing a defeatist attitude or pressing blindly ahead, I argue it is time to evaluate the challenges encountered by regenerative medicine in the central nervous system and the progress that is being made to solve these problems. In the twenty years since the adult brain was discovered to have an endogenous regenerative capacity, much basic research has been done to elucidate mechanisms controlling proliferation and cellular identity; how stem cells may be directed into neuronal lineages; genetic, pharmacological, and behavioral interventions that modulate neurogenic activity; and the exact nature of limitations to regeneration in the adult, aged, diseased and injured CNS. These findings should prove valuable in designing realistic clinical strategies to improve the prospects of stem cell-based therapies. In this review, I discuss how basic research continues to play a critical role in identifying both barriers and potential routes to regenerative therapy in the CNS.

  7. Transplantation of Human Dental Pulp-Derived Stem Cells or Differentiated Neuronal Cells from Human Dental Pulp-Derived Stem Cells Identically Enhances Regeneration of the Injured Peripheral Nerve.

    Science.gov (United States)

    Ullah, Imran; Park, Ju-Mi; Kang, Young-Hoon; Byun, June-Ho; Kim, Dae-Geon; Kim, Joo-Heon; Kang, Dong-Ho; Rho, Gyu-Jin; Park, Bong-Wook

    2017-09-01

    Human dental mesenchymal stem cells isolated from the dental follicle, pulp, and root apical papilla of extracted wisdom teeth have been known to exhibit successful and potent neurogenic differentiation capacity. In particular, human dental pulp-derived stem cells (hDPSCs) stand out as the most prominent source for in vitro neuronal differentiation. In this study, to evaluate the in vivo peripheral nerve regeneration potential of hDPSCs and differentiated neuronal cells from DPSCs (DF-DPSCs), a total of 1 × 10 6 hDPSCs or DF-hDPSCs labeled with PKH26 tracking dye and supplemented with fibrin glue scaffold and collagen tubulization were transplanted into the sciatic nerve resection (5-mm gap) of rat models. At 12 weeks after cell transplantation, both hDPSC and DF-hDPSC groups showed notably increased behavioral activities and higher muscle contraction forces compared with those in the non-cell transplanted control group. In immunohistochemical analysis of regenerated nerve specimens, specific markers for angiogenesis, axonal fiber, and myelin sheath increased in both the cell transplantation groups. Pretransplanted labeled PKH26 were also distinctly detected in the regenerated nerve tissues, indicating that transplanted cells were well-preserved and differentiated into nerve cells. Furthermore, no difference was observed in the nerve regeneration potential between the hDPSC and DF-hDPSC transplanted groups. These results demonstrate that dental pulp tissue is an excellent stem cell source for nerve regeneration, and in vivo transplantation of the undifferentiated hDPSCs could exhibit sufficient and excellent peripheral nerve regeneration potential.

  8. Generation of Distal Airway Epithelium from Multipotent Human Foregut Stem Cells.

    Science.gov (United States)

    Hannan, Nicholas R F; Sampaziotis, Fotios; Segeritz, Charis-Patricia; Hanley, Neil A; Vallier, Ludovic

    2015-07-15

    Collectively, lung diseases are one of the largest causes of premature death worldwide and represent a major focus in the field of regenerative medicine. Despite significant progress, only few stem cell platforms are currently available for cell-based therapy, disease modeling, and drug screening in the context of pulmonary disorders. Human foregut stem cells (hFSCs) represent an advantageous progenitor cell type that can be used to amplify large quantities of cells for regenerative medicine applications and can be derived from any human pluripotent stem cell line. Here, we further demonstrate the application of hFSCs by generating a near homogeneous population of early pulmonary endoderm cells coexpressing NKX2.1 and FOXP2. These progenitors are then able to form cells that are representative of distal airway epithelium that express NKX2.1, GATA6, and cystic fibrosis transmembrane conductance regulator (CFTR) and secrete SFTPC. This culture system can be applied to hFSCs carrying the CFTR mutation Δf508, enabling the development of an in vitro model for cystic fibrosis. This platform is compatible with drug screening and functional validations of small molecules, which can reverse the phenotype associated with CFTR mutation. This is the first demonstration that multipotent endoderm stem cells can differentiate not only into both liver and pancreatic cells but also into lung endoderm. Furthermore, our study establishes a new approach for the generation of functional lung cells that can be used for disease modeling as well as for drug screening and the study of lung development.

  9. Purification of human induced pluripotent stem cell-derived neural precursors using magnetic activated cell sorting.

    Science.gov (United States)

    Rodrigues, Gonçalo M C; Fernandes, Tiago G; Rodrigues, Carlos A V; Cabral, Joaquim M S; Diogo, Maria Margarida

    2015-01-01

    Neural precursor (NP) cells derived from human induced pluripotent stem cells (hiPSCs), and their neuronal progeny, will play an important role in disease modeling, drug screening tests, central nervous system development studies, and may even become valuable for regenerative medicine treatments. Nonetheless, it is challenging to obtain homogeneous and synchronously differentiated NP populations from hiPSCs, and after neural commitment many pluripotent stem cells remain in the differentiated cultures. Here, we describe an efficient and simple protocol to differentiate hiPSC-derived NPs in 12 days, and we include a final purification stage where Tra-1-60+ pluripotent stem cells (PSCs) are removed using magnetic activated cell sorting (MACS), leaving the NP population nearly free of PSCs.

  10. Differentiation of human pluripotent stem cells into highly functional classical brown adipocytes.

    Science.gov (United States)

    Nishio, Miwako; Saeki, Kumiko

    2014-01-01

    We describe a detailed method for directed differentiation of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), into functional classical brown adipocytes (BAs) under serum-free and feeder-free conditions. It is a two-tiered culture system, based on very simple techniques, a floating culture and a subsequent adherent culture. It does not require gene transfer. The entire process can be carried out in about 10 days. The key point is the usage of our special hematopoietic cytokine cocktail. Almost all the differentiated cells express uncoupling protein 1, a BA-selective marker, as determined by immunostaining. The differentiated cells show characteristics of classical BA as assessed by morphology and gene/protein expression. Moreover, the expression of myoblast marker genes is transiently induced during the floating culture step. hESC/hiPSC-derived BAs show significantly higher oxygen consumption rates (OCRs) than white adipocytes generated from human mesenchymal stem cell. They also show responsiveness to adrenergic stimuli, with about twofold upregulation in OCR by β-adrenergic receptor (β-AR) agonist treatments. hESC/hiPSC-derived BAs exert in vivo calorigenic activities in response to β-AR agonist treatments as assessed by thermography. Finally, lipid and glucose metabolisms are significantly improved in hESC/hiPSC-derived BA-transplanted mice. Our system provides a highly feasible way to produce functional classical BA bearing metabolism-improving capacities from hESC/hiPSC under a feeder-free and serum-free condition without gene transfer. © 2014 Elsevier Inc. All rights reserved.

  11. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Yang, Xiulan; Pabon, Lil; Murry, Charles E

    2014-01-31

    The discovery of human pluripotent stem cells (hPSCs), including both human embryonic stem cells and human-induced pluripotent stem cells, has opened up novel paths for a wide range of scientific studies. The capability to direct the differentiation of hPSCs into functional cardiomyocytes has provided a platform for regenerative medicine, development, tissue engineering, disease modeling, and drug toxicity testing. Despite exciting progress, achieving the optimal benefits has been hampered by the immature nature of these cardiomyocytes. Cardiac maturation has long been studied in vivo using animal models; however, finding ways to mature hPSC cardiomyocytes is only in its initial stages. In this review, we discuss progress in promoting the maturation of the hPSC cardiomyocytes, in the context of our current knowledge of developmental cardiac maturation and in relation to in vitro model systems such as rodent ventricular myocytes. Promising approaches that have begun to be examined in hPSC cardiomyocytes include long-term culturing, 3-dimensional tissue engineering, mechanical loading, electric stimulation, modulation of substrate stiffness, and treatment with neurohormonal factors. Future studies will benefit from the combinatorial use of different approaches that more closely mimic nature's diverse cues, which may result in broader changes in structure, function, and therapeutic applicability.

  12. Expression of human adenosine deaminase in mice reconstituted with retrovirus-transduced hematopoietic stem cells

    International Nuclear Information System (INIS)

    Wilson, J.M.; Danos, O.; Grossman, M.; Raulet, D.H.; Mulligan, R.C.

    1990-01-01

    Recombinant retroviruses encoding human adenosine deaminase have been used to infect murine hematopoietic stem cells. In bone marrow transplant recipients reconstituted with the genetically modified cells, human ADA was detected in peripheral blood mononuclear cells of the recipients for at least 6 months after transplantation. In animals analyzed in detail 4 months after transplantation, human ADA and proviral sequences were detected in all hematopoietic lineages; in several cases, human ADA activity exceeded the endogenous activity. These studies demonstrate the feasibility of introducing a functional human ADA gene into hematopoietic stem cells and obtaining expression in multiple hematopoietic lineages long after transplantation. This approach should be helpful in designing effective gene therapies for severe combined immunodeficiency syndromes in humans

  13. Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line

    International Nuclear Information System (INIS)

    Martins-Neves, Sara R; Lopes, Áurio O; Carmo, Anália do; Paiva, Artur A; Simões, Paulo C; Abrunhosa, Antero J; Gomes, Célia MF

    2012-01-01

    Osteosarcoma is a bone-forming tumor of mesenchymal origin that presents a clinical pattern that is consistent with the cancer stem cell model. Cells with stem-like properties (CSCs) have been identified in several tumors and hypothesized as the responsible for the relative resistance to therapy and tumor relapses. In this study, we aimed to identify and characterize CSCs populations in a human osteosarcoma cell line and to explore their role in the responsiveness to conventional therapies. CSCs were isolated from the human MNNG/HOS cell line using the sphere formation assay and characterized in terms of self-renewal, mesenchymal stem cell properties, expression of pluripotency markers and ABC transporters, metabolic activity and tumorigenicity. Cell's sensitivity to conventional chemotherapeutic agents and to irradiation was analyzed and related with cell cycle-induced alterations and apoptosis. The isolated CSCs were found to possess self-renewal and multipotential differentiation capabilities, express markers of pluripotent embryonic stem cells Oct4 and Nanog and the ABC transporters P-glycoprotein and BCRP, exhibit low metabolic activity and induce tumors in athymic mice. Compared with parental MNNG/HOS cells, CSCs were relatively more resistant to both chemotherapy and irradiation. None of the treatments have induced significant cell-cycle alterations and apoptosis in CSCs. MNNG/HOS osteosarcoma cells contain a stem-like cell population relatively resistant to conventional chemotherapeutic agents and irradiation. This resistant phenotype appears to be related with some stem features, namely the high expression of the drug efflux transporters P-glycoprotein and BCRP and their quiescent nature, which may provide a biological basis for resistance to therapy and recurrence commonly observed in osteosarcoma

  14. Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line

    Directory of Open Access Journals (Sweden)

    Martins-Neves Sara R

    2012-04-01

    Full Text Available Abstract Background Osteosarcoma is a bone-forming tumor of mesenchymal origin that presents a clinical pattern that is consistent with the cancer stem cell model. Cells with stem-like properties (CSCs have been identified in several tumors and hypothesized as the responsible for the relative resistance to therapy and tumor relapses. In this study, we aimed to identify and characterize CSCs populations in a human osteosarcoma cell line and to explore their role in the responsiveness to conventional therapies. Methods CSCs were isolated from the human MNNG/HOS cell line using the sphere formation assay and characterized in terms of self-renewal, mesenchymal stem cell properties, expression of pluripotency markers and ABC transporters, metabolic activity and tumorigenicity. Cell's sensitivity to conventional chemotherapeutic agents and to irradiation was analyzed and related with cell cycle-induced alterations and apoptosis. Results The isolated CSCs were found to possess self-renewal and multipotential differentiation capabilities, express markers of pluripotent embryonic stem cells Oct4 and Nanog and the ABC transporters P-glycoprotein and BCRP, exhibit low metabolic activity and induce tumors in athymic mice. Compared with parental MNNG/HOS cells, CSCs were relatively more resistant to both chemotherapy and irradiation. None of the treatments have induced significant cell-cycle alterations and apoptosis in CSCs. Conclusions MNNG/HOS osteosarcoma cells contain a stem-like cell population relatively resistant to conventional chemotherapeutic agents and irradiation. This resistant phenotype appears to be related with some stem features, namely the high expression of the drug efflux transporters P-glycoprotein and BCRP and their quiescent nature, which may provide a biological basis for resistance to therapy and recurrence commonly observed in osteosarcoma.

  15. TET2 deficiency inhibits mesoderm and hematopoietic differentiation in human embryonic stem cells

    DEFF Research Database (Denmark)

    Langlois, Thierry; da Costa Reis Monte Mor, Barbara; Lenglet, Gaëlle

    2014-01-01

    . Here, we show that TET2 expression is low in human embryonic stem (ES) cell lines and increases during hematopoietic differentiation. ShRNA-mediated TET2 knockdown had no effect on the pluripotency of various ES cells. However, it skewed their differentiation into neuroectoderm at the expense...... profile, including abnormal expression of neuronal genes. Intriguingly, when TET2 was knockdown in hematopoietic cells, it increased hematopoietic development. In conclusion, our work suggests that TET2 is involved in different stages of human embryonic development, including induction of the mesoderm...... and hematopoietic differentiation. Stem Cells 2014....

  16. A matter of identity — Phenotype and differentiation potential of human somatic stem cells

    Directory of Open Access Journals (Sweden)

    S.E.P. New

    2015-07-01

    Full Text Available Human somatic stem cells with neural differentiation potential can be valuable for developing cell-based therapies, including treatment of birth-related defects, while avoiding issues associated with cell reprogramming. Precisely defining the “identity” and differentiation potential of somatic stem cells from different sources, has proven difficult, given differences in sets of specific markers, protocols used and lack of side-by-side characterization of these cells in different studies. Therefore, we set to compare expression of mesenchymal and neural markers in human umbilical cord-derived mesenchymal stem cells (UC-MSCs, pediatric adipose-derived stem cells (p-ADSCs in parallel with human neural stem cells (NSCs. We show that UC-MSCs at a basal level express mesenchymal and so-called “neural” markers, similar to that we previously reported for the p-ADSCs. All somatic stem cell populations studied, independently from tissue and patient of origin, displayed a remarkably similar expression of surface markers, with the main difference being the restricted expression of CD133 and CD34 to NSCs. Expression of certain surface and neural markers was affected by the expansion medium used. As predicted, UC-MSCs and p-ADSCs demonstrated tri-mesenchymal lineage differentiation potential, though p-ADSCs display superior chondrogenic differentiation capability. UC-MSCs and p-ADSCs responded also to neurogenic induction by up-regulating neuronal markers, but crucially they appeared morphologically immature when compared with differentiated NSCs. This highlights the need for further investigation into the use of these cells for neural therapies. Crucially, this study demonstrates the lack of simple means to distinguish between different cell types and the effect of culture conditions on their phenotype, and indicates that a more extensive set of markers should be used for somatic stem cell characterization, especially when developing therapeutic

  17. [Efficient genome editing in human pluripotent stem cells through CRISPR/Cas9].

    Science.gov (United States)

    Liu, Gai-gai; Li, Shuang; Wei, Yu-da; Zhang, Yong-xian; Ding, Qiu-rong

    2015-11-01

    The RNA-guided CRISPR (clustered regularly interspaced short palindromic repeat)-associated Cas9 nuclease has offered a new platform for genome editing with high efficiency. Here, we report the use of CRISPR/Cas9 technology to target a specific genomic region in human pluripotent stem cells. We show that CRISPR/Cas9 can be used to disrupt a gene by introducing frameshift mutations to gene coding region; to knock in specific sequences (e.g. FLAG tag DNA sequence) to targeted genomic locus via homology directed repair; to induce large genomic deletion through dual-guide multiplex. Our results demonstrate the versatile application of CRISPR/Cas9 in stem cell genome editing, which can be widely utilized for functional studies of genes or genome loci in human pluripotent stem cells.

  18. Stem Cell Therapy: A Promising Therapeutic Method for Intracerebral Hemorrhage.

    Science.gov (United States)

    Gao, Liansheng; Xu, Weilin; Li, Tao; Chen, Jingyin; Shao, Anwen; Yan, Feng; Chen, Gao

    2018-01-01

    Spontaneous intracerebral hemorrhage (ICH) is one type of the most devastating cerebrovascular diseases worldwide, which causes high morbidity and mortality. However, efficient treatment is still lacking. Stem cell therapy has shown good neuroprotective and neurorestorative effect in ICH and is a promising treatment. In this study, our aim was to review the therapeutic effects, strategies, related mechanisms and safety issues of various types of stem cell for ICH treatment. Numerous studies had demonstrated the therapeutic effects of diverse stem cell types in ICH. The potential mechanisms include tissue repair and replacement, neurotrophy, promotion of neurogenesis and angiogenesis, anti-apoptosis, immunoregulation and anti-inflammation and so forth. The microenvironment of the central nervous system (CNS) can also influence the effects of stem cell therapy. The detailed therapeutic strategies for ICH treatment such as cell type, the number of cells, time window, and the routes of medication delivery, varied greatly among different studies and had not been determined. Moreover, the safety issues of stem cell therapy for ICH should not be ignored. Stem cell therapy showed good therapeutic effect in ICH, making it a promising treatment. However, safety should be carefully evaluated, and more clinical trials are required before stem cell therapy can be extensively applied to clinical use.

  19. Carvacrol promotes angiogenic paracrine potential and endothelial differentiation of human mesenchymal stem cells at low concentrations.

    Science.gov (United States)

    Matluobi, Danial; Araghi, Atefeh; Maragheh, Behnaz Faramarzian Azimi; Rezabakhsh, Aysa; Soltani, Sina; Khaksar, Majid; Siavashi, Vahid; Feyzi, Adel; Bagheri, Hesam Saghaei; Rahbarghazi, Reza; Montazersaheb, Soheila

    2018-01-01

    Phenolic monoterpene compound, named Carvacrol, has been found to exert different biological outcomes. It has been accepted that the angiogenic activity of human mesenchymal stem cells was crucial in the pursuit of appropriate regeneration. In the current experiment, we investigated the contribution of Carvacrol on the angiogenic behavior of primary human mesenchymal stem cells. Mesenchymal stem cells were exposed to Carvacrol in a dose ranging from 25 to 200μM for 48h. We measured cell survival rate by MTT assay and migration rate by a scratch test. The oxidative status was monitored by measuring SOD, GPx activity. The endothelial differentiation was studied by evaluating the level of VE-cadherin and vWF by real-time PCR and ELISA analyses. The content of VEGF and tubulogenesis behavior was monitored in vitro. We also conducted Matrigel plug in vivo CAM assay to assess the angiogenic potential of conditioned media from human mesenchymal stem cells after exposure to Carvacrol. Carvacrol was able to increase mesenchymal stem cell survival and migration rate (pcells by detecting vWF and VE-cadherin expression (pmesenchymal stem cells conditioned media improved angiogenesis tube formation in vitro (pmesenchymal stem cells by modulating cell differentiation and paracrine angiogenic response. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. miRNA-720 controls stem cell phenotype, proliferation and differentiation of human dental pulp cells.

    Directory of Open Access Journals (Sweden)

    Emilio Satoshi Hara

    Full Text Available Dental pulp cells (DPCs are known to be enriched in stem/progenitor cells but not well characterized yet. Small non-coding microRNAs (miRNAs have been identified to control protein translation, mRNA stability and transcription, and have been reported to play important roles in stem cell biology, related to cell reprogramming, maintenance of stemness and regulation of cell differentiation. In order to characterize dental pulp stem/progenitor cells and its mechanism of differentiation, we herein sorted stem-cell-enriched side population (SP cells from human DPCs and periodontal ligament cells (PDLCs, and performed a locked nucleic acid (LNA-based miRNA array. As a result, miR-720 was highly expressed in the differentiated main population (MP cells compared to that in SP cells. In silico analysis and a reporter assay showed that miR-720 targets the stem cell marker NANOG, indicating that miR-720 could promote differentiation of dental pulp stem/progenitor cells by repressing NANOG. Indeed, gain-and loss-of-function analyses showed that miR-720 controls NANOG transcript and protein levels. Moreover, transfection of miR-720 significantly decreased the number of cells positive for the early stem cell marker SSEA-4. Concomitantly, mRNA levels of DNA methyltransferases (DNMTs, which are known to play crucial factors during stem cell differentiation, were also increased by miR-720 through unknown mechanism. Finally, miR-720 decreased DPC proliferation as determined by immunocytochemical analysis against ki-67, and promoted odontogenic differentiation as demonstrated by alizarin red staining, as well as alkaline phosphatase and osteopontin mRNA levels. Our findings identify miR-720 as a novel miRNA regulating the differentiation of DPCs.

  1. Comprehensive quantitative comparison of the membrane proteome and PTM-ome of human embryonic stem cells and neural stem cells

    DEFF Research Database (Denmark)

    Braga, Marcella Nunes de Melo; Schulz, Melanie; Jakobsen, Lene

    Introduction: Human embryonic stem cells (hESCs) can differentiate into all three germ layers and self-renew. Due to its ability to differentiate in vitro into human neural stem cells (hNSCs), which can further be differentiated into motor neurons and dopaminergic neurons, these cells are potential...... identified phosphorylated and SA glycosylated proteins, respectively. This study allowed us to identify several significantly regulated proteins during the differentiation process, including proteins involved in the early embryonic development as well as in the neural development. In the latter group...... of proteins we could identify a number of proteins associated with synaptic vesicles, which are vesicles that store neurotransmitters in the nerve-terminals. An example of an upregulated protein in hESCs is the gap junction alpha 1 (GJA1), a phosphorylated protein which plays a crucial role in embryonic...

  2. Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.

    Science.gov (United States)

    Chun, So Young; Soker, Shay; Jang, Yu-Jin; Kwon, Tae Gyun; Yoo, Eun Sang

    2016-02-01

    We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.

  3. Human periapical cyst-mesenchymal stem cells differentiate into neuronal cells.

    Science.gov (United States)

    Marrelli, M; Paduano, F; Tatullo, M

    2015-06-01

    It was recently reported that human periapical cysts (hPCys), a commonly occurring odontogenic cystic lesion of inflammatory origin, contain mesenchymal stem cells (MSCs) with the capacity for self-renewal and multilineage differentiation. In this study, periapical inflammatory cysts were compared with dental pulp to determine whether this tissue may be an alternative accessible tissue source of MSCs that retain the potential for neurogenic differentiation. Flow cytometry and immunofluorescence analysis indicated that hPCy-MSCs and dental pulp stem cells spontaneously expressed the neuron-specific protein β-III tubulin and the neural stem-/astrocyte-specific protein glial fibrillary acidic protein (GFAP) in their basal state before differentiation occurs. Furthermore, undifferentiated hPCy-MSCs showed a higher expression of transcripts for neuronal markers (β-III tubulin, NF-M, MAP2) and neural-related transcription factors (MSX-1, Foxa2, En-1) as compared with dental pulp stem cells. After exposure to neurogenic differentiation conditions (neural media containing epidermal growth factor [EGF], basic fibroblast growth factor [bFGF], and retinoic acid), the hPCy-MSCs showed enhanced expression of β-III tubulin and GFAP proteins, as well as increased expression of neurofilaments medium, neurofilaments heavy, and neuron-specific enolase at the transcript level. In addition, neurally differentiated hPCy-MSCs showed upregulated expression of the neural transcription factors Pitx3, Foxa2, Nurr1, and the dopamine-related genes tyrosine hydroxylase and dopamine transporter. The present study demonstrated for the first time that hPCy-MSCs have a predisposition toward the neural phenotype that is increased when exposed to neural differentiation cues, based on upregulation of a comprehensive set of proteins and genes that define neuronal cells. In conclusion, these results provide evidence that hPCy-MSCs might be another optimal source of neural/glial cells for cell

  4. Efficient CRISPR/Cas9-Based Genome Engineering in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Kime, Cody; Mandegar, Mohammad A; Srivastava, Deepak; Yamanaka, Shinya; Conklin, Bruce R; Rand, Tim A

    2016-01-01

    Human pluripotent stem cells (hPS cells) are rapidly emerging as a powerful tool for biomedical discovery. The advent of human induced pluripotent stem cells (hiPS cells) with human embryonic stem (hES)-cell-like properties has led to hPS cells with disease-specific genetic backgrounds for in vitro disease modeling and drug discovery as well as mechanistic and developmental studies. To fully realize this potential, it will be necessary to modify the genome of hPS cells with precision and flexibility. Pioneering experiments utilizing site-specific double-strand break (DSB)-mediated genome engineering tools, including zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), have paved the way to genome engineering in previously recalcitrant systems such as hPS cells. However, these methods are technically cumbersome and require significant expertise, which has limited adoption. A major recent advance involving the clustered regularly interspaced short palindromic repeats (CRISPR) endonuclease has dramatically simplified the effort required for genome engineering and will likely be adopted widely as the most rapid and flexible system for genome editing in hPS cells. In this unit, we describe commonly practiced methods for CRISPR endonuclease genomic editing of hPS cells into cell lines containing genomes altered by insertion/deletion (indel) mutagenesis or insertion of recombinant genomic DNA. Copyright © 2016 John Wiley & Sons, Inc.

  5. Cell surface glycan engineering of neural stem cells augments neurotropism and improves recovery in a murine model of multiple sclerosis

    KAUST Repository

    Merzaban, Jasmeen S.

    2015-09-13

    Neural stem cell (NSC)-based therapies offer potential for neural repair in central nervous system (CNS) inflammatory and degenerative disorders. Typically, these conditions present with multifocal CNS lesions making it impractical to inject NSCs locally, thus mandating optimization of vascular delivery of the cells to involved sites. Here, we analyzed NSCs for expression of molecular effectors of cell migration and found that these cells are natively devoid of E-selectin ligands. Using glycosyltransferase-programmed stereosubstitution (GPS), we glycan engineered the cell surface of NSCs ("GPS-NSCs") with resultant enforced expression of the potent E-selectin ligand HCELL (hematopoietic cell E-/L-selectin ligand) and of an E-selectin-binding glycoform of neural cell adhesion molecule ("NCAM-E"). Following intravenous (i.v.) injection, short-term homing studies demonstrated that, compared with buffer-treated (control) NSCs, GPS-NSCs showed greater neurotropism. Administration of GPS-NSC significantly attenuated the clinical course of experimental autoimmune encephalomyelitis (EAE), with markedly decreased inflammation and improved oligodendroglial and axonal integrity, but without evidence of long-term stem cell engraftment. Notably, this effect of NSC is not a universal property of adult stem cells, as administration of GPS-engineered mouse hematopoietic stem/progenitor cells did not improve EAE clinical course. These findings highlight the utility of cell surface glycan engineering to boost stem cell delivery in neuroinflammatory conditions and indicate that, despite the use of a neural tissue-specific progenitor cell population, neural repair in EAE results from endogenous repair and not from direct, NSC-derived cell replacement.

  6. Effects of mesenchymal stem cells from human induced pluripotent stem cells on differentiation, maturation, and function of dendritic cells.

    Science.gov (United States)

    Gao, Wen-Xiang; Sun, Yue-Qi; Shi, Jianbo; Li, Cheng-Lin; Fang, Shu-Bin; Wang, Dan; Deng, Xue-Quan; Wen, Weiping; Fu, Qing-Ling

    2017-03-02

    Mesenchymal stem cells (MSCs) have potent immunomodulatory effects on multiple immune cells and have great potential in treating immune disorders. Induced pluripotent stem cells (iPSCs) serve as an unlimited and noninvasive source of MSCs, and iPSC-MSCs have been reported to have more advantages and exhibit immunomodulation on T lymphocytes and natural killer cells. However, the effects of iPSC-MSCs on dendritic cells (DCs) are unclear. The aim of this study is to investigate the effects of iPSC-MSCs on the differentiation, maturation, and function of DCs. Human monocyte-derived DCs were induced and cultured in the presence or absence of iPSC-MSCs. Flow cytometry was used to analyze the phenotype and functions of DCs, and enzyme-linked immunosorbent assay (ELISA) was used to study cytokine production. In this study, we successfully induced MSCs from different clones of human iPSCs. iPSC-MSCs exhibited a higher proliferation rate with less cell senescence than BM-MSCs. iPSC-MSCs inhibited the differentiation of human monocyte-derived DCs by both producing interleukin (IL)-10 and direct cell contact. Furthermore, iPSC-MSCs did not affect immature DCs to become mature DCs, but modulated their functional properties by increasing their phagocytic ability and inhibiting their ability to stimulate proliferation of lymphocytes. More importantly, iPSC-MSCs induced the generation of IL-10-producing regulatory DCs in the process of maturation, which was mostly mediated by a cell-cell contact mechanism. Our results indicate an important role for iPSC-MSCs in the modulation of DC differentiation and function, supporting the clinical application of iPSC-MSCs in DC-mediated immune diseases.

  7. Generation of hematopoietic stem cells from human embryonic stem cells using a defined, stepwise, serum-free, and serum replacement-free monolayer culture method.

    Science.gov (United States)

    Kim, So-Jung; Jung, Ji-Won; Ha, Hye-Yeong; Koo, Soo Kyung; Kim, Eung-Gook; Kim, Jung-Hyun

    2017-03-01

    Embryonic stem cells (ESCs) can be expanded infinitely in vitro and have the potential to differentiate into hematopoietic stem cells (HSCs); thus, they are considered a useful source of cells for HSC production. Although several technical in vitro methods for engineering HSCs from pluripotent stem cells have been developed, clinical application of HSCs engineered from pluripotent stem cells is restricted because of the possibility of xenogeneic contamination resulting from the use of murine materials. Human ESCs (CHA-hES15) were cultured on growth factor-reduced Matrigel-coated dishes in the mTeSR1 serum-free medium. When the cells were 70% confluent, we initiated HSC differentiation by three methods involving (1) knockout serum replacement (KSR), cytokines, TGFb1, EPO, and FLT3L; (2) KSR, cytokines, and bFGF; or (3) cytokines and bFGF. Among the three differentiation methods, the minimal number of cytokines without KSR resulted in the greatest production of HSCs. The optimized method resulted in a higher proportion of CD34 + CD43 + hematopoietic progenitor cells (HPCs) and CD34 + CD45 + HPCs compared to the other methods. In addition, the HSCs showed the potential to differentiate into multiple lineages of hematopoietic cells in vitro . In this study, we optimized a two-step, serum-free, animal protein-free, KSR-free, feeder-free, chemically defined monolayer culture method for generation of HSCs and hematopoietic stem and progenitor cells (HSPCs) from human ESCs.

  8. Trophoblast lineage cells derived from human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-01-01

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro

  9. Trophoblast lineage cells derived from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Wang, Kai; Chandramouli, Gadisetti V.R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Knott, Jason G. [Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University (United States); Leach, Richard, E-mail: Richard.leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group (United States)

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  10. Expand and Regularize Federal Funding for Human Pluripotent Stem Cell Research

    Science.gov (United States)

    Owen-Smith, Jason; Scott, Christopher Thomas; McCormick, Jennifer B.

    2012-01-01

    Human embryonic stem cell (hESC) research has sparked incredible scientific and public excitement, as well as significant controversy. hESCs are pluripotent, which means, in theory, that they can be differentiated into any type of cell found in the human body. Thus, they evoke great enthusiasm about potential clinical applications. They are…

  11. Engineering the human pluripotent stem cell microenvironment to direct cell fate.

    Science.gov (United States)

    Hazeltine, Laurie B; Selekman, Joshua A; Palecek, Sean P

    2013-11-15

    Human pluripotent stem cells (hPSCs), including both embryonic stem cells and induced pluripotent stem cells, offer a potential cell source for research, drug screening, and regenerative medicine applications due to their unique ability to self-renew or differentiate to any somatic cell type. Before the full potential of hPSCs can be realized, robust protocols must be developed to direct their fate. Cell fate decisions are based on components of the surrounding microenvironment, including soluble factors, substrate or extracellular matrix, cell-cell interactions, mechanical forces, and 2D or 3D architecture. Depending on their spatio-temporal context, these components can signal hPSCs to either self-renew or differentiate to cell types of the ectoderm, mesoderm, or endoderm. Researchers working at the interface of engineering and biology have identified various factors which can affect hPSC fate, often based on lessons from embryonic development, and they have utilized this information to design in vitro niches which can reproducibly direct hPSC fate. This review highlights culture systems that have been engineered to promote self-renewal or differentiation of hPSCs, with a focus on studies that have elucidated the contributions of specific microenvironmental cues in the context of those culture systems. We propose the use of microsystem technologies for high-throughput screening of spatial-temporal presentation of cues, as this has been demonstrated to be a powerful approach for differentiating hPSCs to desired cell types. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Microspectroscopy of spectral biomarkers associated with human corneal stem cells

    OpenAIRE

    Nakamura, Takahiro; Kelly, Jemma G.; Trevisan, J?lio; Cooper, Leanne J.; Bentley, Adam J.; Carmichael, Paul L.; Scott, Andrew D.; Cotte, Marine; Susini, Jean; Martin-Hirsch, Pierre L.; Kinoshita, Shigeru; Fullwood, Nigel J.; Martin, Francis L.

    2010-01-01

    Purpose Synchrotron-based radiation (SRS) Fourier-transform infrared (FTIR) microspectroscopy potentially provides novel biomarkers of the cell differentiation process. Because such imaging gives a ?biochemical-cell fingerprint? through a cell-sized aperture, we set out to determine whether distinguishing chemical entities associated with putative stem cells (SCs), transit-amplifying (TA) cells, or terminally-differentiated (TD) cells could be identified in human corneal epithelium. Methods D...

  13. Human amnion mesenchymal stem cells promote proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Wang, Yuli; Yin, Ying; Jiang, Fei; Chen, Ning

    2015-02-01

    Human amnion mesenchymal stem cells (HAMSCs) can be obtained from human amniotic membrane, a highly abundant and readily available tissue. HAMSC sources present fewer ethical issues, have low immunogenicity, anti-inflammatory properties, considerable advantageous characteristics, and are considered an attractive potential treatment material in the field of regenerative medicine. We used a co-culture system to determine whether HAMSCs could promote osteogenesis in human bone marrow mesenchymal stem cells (HBMSCs). We isolated HAMSCs from discarded amnion samples and collected them using pancreatin/collagenase digestion. We cultured HAMSCs and HBMSCSs in basal medium. Activity of alkaline phosphatase (ALP), an early osteogenesis marker, was increased in the co-culture system compared to the control single cultures, which we also confirmed by ALP staining. We used immunofluorescence testing to investigate the effects of co-culturing with HAMSCs on HBMSC proliferation, which revealed that the co-culturing enhanced EdU expression in HBMSCs. Western blotting and quantitative real-time PCR indicated that co-culturing promoted osteogenesis in HBMSCs. Furthermore, Alizarin red S staining revealed that extracellular matrix calcium levels in mineralized nodule formation produced by the co-cultures were higher than that in the controls. Using the same co-culture system, we further observed the effects of HAMSCs on osteogenic differentiation in primary osteoblasts by Western blotting, which better addressed the mechanism for HAMSCs in bone regeneration. The results showed HAMSCs are osteogenic and not only play a role in promoting HBMSC proliferation and osteogenic differentiation but also in osteoblasts, laying the foundation for new regenerative medicine methods.

  14. Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging.

    Science.gov (United States)

    Zhang, Weiqi; Li, Jingyi; Suzuki, Keiichiro; Qu, Jing; Wang, Ping; Zhou, Junzhi; Liu, Xiaomeng; Ren, Ruotong; Xu, Xiuling; Ocampo, Alejandro; Yuan, Tingting; Yang, Jiping; Li, Ying; Shi, Liang; Guan, Dee; Pan, Huize; Duan, Shunlei; Ding, Zhichao; Li, Mo; Yi, Fei; Bai, Ruijun; Wang, Yayu; Chen, Chang; Yang, Fuquan; Li, Xiaoyu; Wang, Zimei; Aizawa, Emi; Goebl, April; Soligalla, Rupa Devi; Reddy, Pradeep; Esteban, Concepcion Rodriguez; Tang, Fuchou; Liu, Guang-Hui; Belmonte, Juan Carlos Izpisua

    2015-06-05

    Werner syndrome (WS) is a premature aging disorder caused by WRN protein deficiency. Here, we report on the generation of a human WS model in human embryonic stem cells (ESCs). Differentiation of WRN-null ESCs to mesenchymal stem cells (MSCs) recapitulates features of premature cellular aging, a global loss of H3K9me3, and changes in heterochromatin architecture. We show that WRN associates with heterochromatin proteins SUV39H1 and HP1α and nuclear lamina-heterochromatin anchoring protein LAP2β. Targeted knock-in of catalytically inactive SUV39H1 in wild-type MSCs recapitulates accelerated cellular senescence, resembling WRN-deficient MSCs. Moreover, decrease in WRN and heterochromatin marks are detected in MSCs from older individuals. Our observations uncover a role for WRN in maintaining heterochromatin stability and highlight heterochromatin disorganization as a potential determinant of human aging. Copyright © 2015, American Association for the Advancement of Science.

  15. Recruitment of host's progenitor cells to sites of human amniotic fluid stem cells implantation.

    Science.gov (United States)

    Mirabella, Teodelinda; Poggi, Alessandro; Scaranari, Monica; Mogni, Massimo; Lituania, Mario; Baldo, Chiara; Cancedda, Ranieri; Gentili, Chiara

    2011-06-01

    The amniotic fluid is a new source of multipotent stem cells with a therapeutic potential for human diseases. Cultured at low cell density, human amniotic fluid stem cells (hAFSCs) were still able to generate colony-forming unit-fibroblast (CFU-F) after 60 doublings, thus confirming their staminal nature. Moreover, after extensive in vitro cell expansion hAFSCs maintained a stable karyotype. The expression of genes, such as SSEA-4, SOX2 and OCT3/4 was confirmed at early and later culture stage. Also, hAFSCs showed bright expression of mesenchymal lineage markers and immunoregulatory properties. hAFSCs, seeded onto hydroxyapatite scaffolds and subcutaneously implanted in nude mice, played a pivotal role in mounting a response resulting in the recruitment of host's progenitor cells forming tissues of mesodermal origin such as fat, muscle, fibrous tissue and immature bone. Implanted hAFSCs migrated from the scaffold to the skin overlying implant site but not to other organs. Given their in vivo: (i) recruitment of host progenitor cells, (ii) homing towards injured sites and (iii) multipotentiality in tissue repair, hAFSCs are a very appealing reserve of stem cells potentially useful for clinical application in regenerative medicine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Medullospheres from DAOY, UW228 and ONS-76 cells: increased stem cell population and proteomic modifications.

    Science.gov (United States)

    Zanini, Cristina; Ercole, Elisabetta; Mandili, Giorgia; Salaroli, Roberta; Poli, Alice; Renna, Cristiano; Papa, Valentina; Cenacchi, Giovanna; Forni, Marco

    2013-01-01

    Medulloblastoma (MB) is an aggressive pediatric tumor of the Central Nervous System (CNS) usually treated according to a refined risk stratification. The study of cancer stem cells (CSC) in MB is a promising approach aimed at finding new treatment strategies. The CSC compartment was studied in three characterized MB cell lines (DAOY, UW228 and ONS-76) grown in standard adhesion as well as being grown as spheres, which enables expansion of the CSC population. MB cell lines, grown in adherence and as spheres, were subjected to morphologic analysis at the light and electron microscopic level, as well as cytofluorimetric determinations. Medullospheres (MBS) were shown to express increasingly immature features, along with the stem cells markers: CD133, Nestin and β-catenin. Proteomic analysis highlighted the differences between MB cell lines, demonstrating a unique protein profile for each cell line, and minor differences when grown as spheres. In MBS, MALDI-TOF also identified some proteins, that have been linked to tumor progression and resistance, such as Nucleophosmin (NPM). In addition, immunocytochemistry detected Sox-2 as a stemness marker of MBS, as well as confirming high NPM expression. Culture conditioning based on low attachment flasks and specialized medium may provide new data on the staminal compartment of CNS tumors, although a proteomic profile of CSC is still elusive for MB.

  17. Medullospheres from DAOY, UW228 and ONS-76 cells: increased stem cell population and proteomic modifications.

    Directory of Open Access Journals (Sweden)

    Cristina Zanini

    Full Text Available BACKGROUND: Medulloblastoma (MB is an aggressive pediatric tumor of the Central Nervous System (CNS usually treated according to a refined risk stratification. The study of cancer stem cells (CSC in MB is a promising approach aimed at finding new treatment strategies. METHODOLOGY/PRINCIPAL FINDINGS: The CSC compartment was studied in three characterized MB cell lines (DAOY, UW228 and ONS-76 grown in standard adhesion as well as being grown as spheres, which enables expansion of the CSC population. MB cell lines, grown in adherence and as spheres, were subjected to morphologic analysis at the light and electron microscopic level, as well as cytofluorimetric determinations. Medullospheres (MBS were shown to express increasingly immature features, along with the stem cells markers: CD133, Nestin and β-catenin. Proteomic analysis highlighted the differences between MB cell lines, demonstrating a unique protein profile for each cell line, and minor differences when grown as spheres. In MBS, MALDI-TOF also identified some proteins, that have been linked to tumor progression and resistance, such as Nucleophosmin (NPM. In addition, immunocytochemistry detected Sox-2 as a stemness marker of MBS, as well as confirming high NPM expression. CONCLUSIONS/SIGNIFICANCE: Culture conditioning based on low attachment flasks and specialized medium may provide new data on the staminal compartment of CNS tumors, although a proteomic profile of CSC is still elusive for MB.

  18. Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Jensen, Charlotte H; Gutierrez, Gloria

    2004-01-01

    Dlk-1/Pref-1 was identified as a novel regulator of human skeletal stem cell differentiation. Dlk1/Pref-1 is expressed in bone and cultured osteoblasts, and its constitutive overexpression led to inhibition of osteoblast and adipocyte differentiation of human marrow stromal cells. INTRODUCTION......: Molecular control of human mesenchymal stem cell (hMSC) differentiation into osteoblasts and adipocytes is not known. In this study, we examined the role of delta-like 1/preadipocyte factor-1 (Dlk1/Pref-1) in regulating the differentiation of hMSCs. MATERIALS AND METHODS: As a model for hMSCs, we have...... was used to confirm the in vitro effect of Dlk/Pref-1 on bone formation. RESULTS: Dlk1/Pref-1 was found to be expressed in fetal and adult bone, hMSCs, and some osteoblastic cell lines. A retroviral vector containing the human Dlk1/Pref-1 cDNA was used to create a cell line (hMSC-dlk1) expressing high...

  19. PDGFRα and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion.

    Science.gov (United States)

    Pinho, Sandra; Lacombe, Julie; Hanoun, Maher; Mizoguchi, Toshihide; Bruns, Ingmar; Kunisaki, Yuya; Frenette, Paul S

    2013-07-01

    The intermediate filament protein Nestin labels populations of stem/progenitor cells, including self-renewing mesenchymal stem cells (MSCs), a major constituent of the hematopoietic stem cell (HSC) niche. However, the intracellular location of Nestin prevents its use for prospective live cell isolation. Hence it is important to find surface markers specific for Nestin⁺ cells. In this study, we show that the expression of PDGFRα and CD51 among CD45⁻ Ter119⁻ CD31⁻ mouse bone marrow (BM) stromal cells characterizes a large fraction of Nestin⁺ cells, containing most fibroblastic CFUs, mesenspheres, and self-renewal capacity after transplantation. The PDGFRα⁺ CD51 ⁺subset of Nestin⁺ cells is also enriched in major HSC maintenance genes, supporting the notion that niche activity co-segregates with MSC activity. Furthermore, we show that PDGFRα⁺ CD51⁺ cells in the human fetal BM represent a small subset of CD146⁺ cells expressing Nestin and enriched for MSC and HSC niche activities. Importantly, cultured human PDGFRα⁺ CD51⁺ nonadherent mesenspheres can significantly expand multipotent hematopoietic progenitors able to engraft immunodeficient mice. These results thus indicate that the HSC niche is conserved between the murine and human species and suggest that highly purified nonadherent cultures of niche cells may represent a useful novel technology to culture human hematopoietic stem and progenitor cells.

  20. Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell intermediates

    Science.gov (United States)

    Bajpai, Vivek K.; Mistriotis, Panagiotis; Loh, Yuin-Han; Daley, George Q.; Andreadis, Stelios T.

    2012-01-01

    Aims Smooth muscle cells (SMC) play an important role in vascular homeostasis and disease. Although adult mesenchymal stem cells (MSC) have been used as a source of contractile SMC, they suffer from limited proliferation potential and culture senescence, particularly when originating from older donors. By comparison, human induced pluripotent stem cells (hiPSC) can provide an unlimited source of functional SMC for autologous cell-based therapies and for creating models of vascular disease. Our goal was to develop an efficient strategy to derive functional, contractile SMC from hiPSC. Methods and results We developed a robust, stage-wise, feeder-free strategy for hiPSC differentiation into functional SMC through an intermediate stage of multipotent MSC, which could be coaxed to differentiate into fat, bone, cartilage, and muscle. At this stage, the cells were highly proliferative and displayed higher clonogenic potential and reduced senescence when compared with parental hair follicle mesenchymal stem cells. In addition, when exposed to differentiation medium, the myogenic proteins such as α-smooth muscle actin, calponin, and myosin heavy chain were significantly upregulated and displayed robust fibrillar organization, suggesting the development of a contractile phenotype. Indeed, tissue constructs prepared from these cells exhibited high levels of contractility in response to receptor- and non-receptor-mediated agonists. Conclusion We developed an efficient stage-wise strategy that enabled hiPSC differentiation into contractile SMC through an intermediate population of clonogenic and multipotent MSC. The high yield of MSC and SMC derivation suggests that our strategy may facilitate an acquisition of the large numbers of cells required for regenerative medicine or for studying vascular disease pathophysiology. PMID:22941255

  1. In vitro chondrogenic differentiation of human adipose-derived stem cells with silk scaffolds

    Directory of Open Access Journals (Sweden)

    Hyeon Joo Kim

    2012-12-01

    Full Text Available Human adipose-derived stem cells have shown chondrogenic differentiation potential in cartilage tissue engineering in combination with natural and synthetic biomaterials. In the present study, we hypothesized that porous aqueous-derived silk protein scaffolds would be suitable for chondrogenic differentiation of human adipose-derived stem cells. Human adipose-derived stem cells were cultured up to 6 weeks, and cell proliferation and chondrogenic differentiation were investigated and compared with those in conventional micromass culture. Cell proliferation, glycosaminoglycan, and collagen levels in aqueous-derived silk scaffolds were significantly higher than in micromass culture. Transcript levels of SOX9 and type II collagen were also upregulated in the cell–silk constructs at 6 weeks. Histological examination revealed that the pores of the silk scaffolds were filled with cells uniformly distributed. In addition, chondrocyte-specific lacunae formation was evident and distributed in the both groups. The results suggest the biodegradable and biocompatible three-dimensional aqueous-derived silk scaffolds provided an improved environment for chondrogenic differentiation compared to micromass culture.

  2. Human-induced pluripotent stem cell-derived cardiomyocytes from cardiac progenitor cells: effects of selective ion channel blockade.

    Science.gov (United States)

    Altomare, Claudia; Pianezzi, Enea; Cervio, Elisabetta; Bolis, Sara; Biemmi, Vanessa; Benzoni, Patrizia; Camici, Giovanni G; Moccetti, Tiziano; Barile, Lucio; Vassalli, Giuseppe

    2016-12-01

    Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are likely to revolutionize electrophysiological approaches to arrhythmias. Recent evidence suggests the somatic cell origin of hiPSCs may influence their differentiation potential. Owing to their cardiomyogenic potential, cardiac-stromal progenitor cells (CPCs) are an interesting cellular source for generation of hiPSC-derived cardiomyocytes. The effect of ionic current blockade in hiPSC-derived cardiomyocytes generated from CPCs has not been characterized yet. Human-induced pluripotent stem cell-derived cardiomyocytes were generated from adult CPCs and skin fibroblasts from the same individuals. The effect of selective ionic current blockade on spontaneously beating hiPSC-derived cardiomyocytes was assessed using multi-electrode arrays. Cardiac-stromal progenitor cells could be reprogrammed into hiPSCs, then differentiated into hiPSC-derived cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin showed higher upregulation of cardiac-specific genes compared with those of fibroblastic origin. Human-induced pluripotent stem cell-derived cardiomyocytes of both somatic cell origins exhibited sensitivity to tetrodotoxin, a blocker of Na +  current (I Na ), nifedipine, a blocker of L-type Ca 2+  current (I CaL ), and E4031, a blocker of the rapid component of delayed rectifier K +  current (I Kr ). Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin exhibited sensitivity to JNJ303, a blocker of the slow component of delayed rectifier K +  current (I Ks ). In hiPSC-derived cardiomyocytes of cardiac origin, I Na , I CaL , I Kr , and I Ks were present as tetrodotoxin-, nifedipine-, E4031-, and JNJ303-sensitive currents, respectively. Although cardiac differentiation efficiency was improved in hiPSCs of cardiac vs. non-cardiac origin, no major functional differences were observed between hiPSC-derived cardiomyocytes of different somatic

  3. Placenta-an alternative source of stem cells

    International Nuclear Information System (INIS)

    Matikainen, Tiina; Laine, Jarmo

    2005-01-01

    The two most promising practical applications of human stem cells are cellular replacement therapies in human disease and toxicological screening of candidate drug molecules. Both require a source of human stem cells that can be isolated, purified, expanded in number and differentiated into the cell type of choice in a controlled manner. Currently, uses of both embryonic and adult stem cells are investigated. While embryonic stem cells are pluripotent and can differentiate into any specialised cell type, their use requires establishment of embryonic stem cell lines using the inner cell mass of an early pre-implantation embryo. As the blastocyst is destroyed during the process, ethical issues need to be carefully considered. The use of embryonic stem cells is also limited by the difficulties in growing large numbers of the cells without inducing spontaneous differentiation, and the problems in controlling directed differentiation of the cells. The use of adult stem cells, typically derived from bone marrow, but also from other tissues, is ethically non-controversial but their differentiation potential is more limited than that of the embryonic stem cells. Since human cord blood, umbilical cord, placenta and amnion are normally discarded at birth, they provide an easily accessible alternative source of stem cells. We review the potential and current status of the use of adult stem cells derived from the placenta or umbilical cord in therapeutic and toxicological applications

  4. Mesenchymal stem cells in human placental chorionic villi reside in a vascular Niche

    NARCIS (Netherlands)

    Castrechini, N. M.; Murthi, P.; Gude, N. M.; Erwich, J. J. H. M.; Gronthos, S.; Zannettino, A.; Brennecke, S. R.; Kalionis, B.; Brennecke, S.P.

    The chorionic villi of human term placentae are a rich source of mesenchymal stem cells (PMSCs) The stem cell "niche" within the chorionic villi regulates how PMSCs participate in placental tissue generation, maintenance and repair, but the anatomic location of the niche has not been defined A

  5. Characterization of human neural differentiation from pluripotent stem cells using proteomics/PTMomics

    DEFF Research Database (Denmark)

    Braga, Marcella Nunes de Melo; Meyer, Morten; Zeng, Xianmin

    2015-01-01

    Stem cells are unspecialized cells capable of self-renewal and to differentiate into the large variety of cells in the body. The possibility to differentiate these cells into neural precursors and neural cells in vitro provides the opportunity to study neural development, nerve cell biology, neur...... differentiation from pluripotent stem cells. Moreover, some of the challenges in stem cell biology, differentiation, and proteomics/PTMomics that are not exclusive to neural development will be discussed.......Stem cells are unspecialized cells capable of self-renewal and to differentiate into the large variety of cells in the body. The possibility to differentiate these cells into neural precursors and neural cells in vitro provides the opportunity to study neural development, nerve cell biology...... the understanding of molecular processes in cells. Substantial advances in PTM enrichment methods and mass spectrometry has allowed the characterization of a subset of PTMs in large-scale studies. This review focuses on the current state-of-the-art of proteomic, as well as PTMomic studies related to human neural...

  6. Site-Specific Genome Engineering in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Merkert, Sylvia; Martin, Ulrich

    2016-06-24

    The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies.

  7. Human embryonic stem cells: preclinical perspectives

    Directory of Open Access Journals (Sweden)

    Sarda Kanchan

    2008-01-01

    Full Text Available Abstract Human embryonic stem cells (hESCs have been extensively discussed in public and scientific communities for their potential in treating diseases and injuries. However, not much has been achieved in turning them into safe therapeutic agents. The hurdles in transforming hESCs to therapies start right with the way these cells are derived and maintained in the laboratory, and goes up-to clinical complications related to need for patient specific cell lines, gender specific aspects, age of the cells, and several post transplantation uncertainties. The different types of cells derived through directed differentiation of hESC and used successfully in animal disease and injury models are described briefly. This review gives a brief outlook on the present and the future of hESC based therapies, and talks about the technological advances required for a safe transition from laboratory to clinic.

  8. Knowledge Gaps in Rodent Pancreas Biology: Taking Human Pluripotent Stem Cell-Derived Pancreatic Beta Cells into Our Own Hands.

    Science.gov (United States)

    Santosa, Munirah Mohamad; Low, Blaise Su Jun; Pek, Nicole Min Qian; Teo, Adrian Kee Keong

    2015-01-01

    In the field of stem cell biology and diabetes, we and others seek to derive mature and functional human pancreatic β cells for disease modeling and cell replacement therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas developmental biology research involving human pluripotent stem cells (hPSCs). While much has been learnt from rodent pancreas biology in the early steps toward Pdx1(+) pancreatic progenitors, much less is known about the transition toward Ngn3(+) pancreatic endocrine progenitors. Essentially, the later steps of pancreatic β cell development and maturation remain elusive to date. As a result, the most recent advances in the stem cell and diabetes field have relied upon combinatorial testing of numerous growth factors and chemical compounds in an arbitrary trial-and-error fashion to derive mature and functional human pancreatic β cells from hPSCs. Although this hit-or-miss approach appears to have made some headway in maturing human pancreatic β cells in vitro, its underlying biology is vaguely understood. Therefore, in this mini-review, we discuss some of these late-stage signaling pathways that are involved in human pancreatic β cell differentiation and highlight our current understanding of their relevance in rodent pancreas biology. Our efforts here unravel several novel signaling pathways that can be further studied to shed light on unexplored aspects of rodent pancreas biology. New investigations into these signaling pathways are expected to advance our knowledge in human pancreas developmental biology and to aid in the translation of stem cell biology in the context of diabetes treatments.

  9. Embryos, Clones, and Stem Cells: A Scientific Primer

    Directory of Open Access Journals (Sweden)

    Kenyon S. Tweedell

    2004-01-01

    Full Text Available This article is intended to give the nonspecialist an insight into the nuances of “clones”, cloning, and stem cells. It distinguishes embryonic and adult stem cells, their normal function in the organism, their origin, and how they are recovered to produce stem cell lines in culture. As background, the fundamental processes of embryo development are reviewed and defined, since the manipulation of stem cell lines into desired specialized cells employs many of the same events. Stem cells are defined and characterized and shown how they function in the intact organism during early development and later during cell regeneration in the adult. The complexity of stem cell recovery and their manipulation into specific cells and tissue is illustrated by reviewing current experimentation on both embryonic and adult stem cells in animals and limited research on human stem cell lines. The current and projected use of stem cells for human diseases and repair, along with the expanding methodology for the recovery of human embryonic stem cells, is described. An assessment on the use of human embryonic stem cells is considered from ethical, legal, religious, and political viewpoints.

  10. Generation of polyhormonal and multipotent pancreatic progenitor lineages from human pluripotent stem cells.

    Science.gov (United States)

    Korytnikov, Roman; Nostro, Maria Cristina

    2016-05-15

    Generation of pancreatic β-cells from human pluripotent stem cells (hPSCs) has enormous importance in type 1 diabetes (T1D), as it is fundamental to a treatment strategy based on cellular therapeutics. Being able to generate β-cells, as well as other mature pancreatic cells, from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) will also enable the development of platforms that can be used for disease modeling and drug testing for a variety of pancreas-associated diseases, including cystic fibrosis. For this to occur, it is crucial to develop differentiation strategies that are robust and reproducible across cell lines and laboratories. In this article we describe two serum-free differentiation protocols designed to generate specific pancreatic lineages from hPSCs. Our approach employs a variety of cytokines and small molecules to mimic developmental pathways active during pancreatic organogenesis and allows for the in vitro generation of distinct pancreatic populations. The first protocol is designed to give rise to polyhormonal cells that have the potential to differentiate into glucagon-producing cells. The second protocol is geared to generate multipotent pancreatic progenitor cells, which harbor the potential to generate all pancreatic lineages including: monohormonal endocrine cells, acinar, and ductal cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Putative Stem Cells in Human Dental Pulp with Irreversible Pulpitis-An Exploratory Study

    Science.gov (United States)

    Wang, Z.; Pan, J.; Wright, JT; Bencharit, S.; Zhang, S.; Everett, ET; Teixeira, FB; Preisser, JS

    2010-01-01

    Introduction Although human dental pulp stem cells isolated from healthy teeth have been extensively characterized, it is unknown whether stem cells also exist in clinically compromised teeth with irreversible pulpitis. Here we explored whether cells retrieved from clinically compromised dental pulp have stem cell-like properties. Methods Pulp cells were isolated from healthy teeth (control group) and from teeth with clinically diagnosed irreversible pulpitis (diseased group). Cell proliferation, stem cell marker STRO-1 expression and cell odonto-osteo-genic differentiation competence were compared. Results Cells from the diseased group demonstrated decreased colony formation capacity and a slightly decreased cell proliferation rate but had similar STRO-1 expression, and exhibited a similar percentage of positive ex vivo osteogenic induction and dentin sialophosphoprotein expression from STRO-1-enriched pulp cells. Conclusion Our study provides preliminary evidence that clinically compromised dental pulp may contain putative cells with certain stem cell properties. Further characterization of these cells will provide insight regarding whether they could serve as a source of endogenous multipotent cells in tissue regeneration based dental pulp therapy. PMID:20416426

  12. Biobanking human embryonic stem cell lines: policy, ethics and efficiency.

    Science.gov (United States)

    Holm, Søren

    2015-12-01

    Stem cell banks curating and distributing human embryonic stem cells have been established in a number of countries and by a number of private institutions. This paper identifies and critically discusses a number of arguments that are used to justify the importance of such banks in policy discussions relating to their establishment or maintenance. It is argued (1) that 'ethical arguments' are often more important in the establishment phase and 'efficiency arguments' more important in the maintenance phase, and (2) that arguments relating to the interests of embryo and gamete donors are curiously absent from the particular stem cell banking policy discourse. This to some extent artificially isolates this discourse from the broader discussions about the flows of reproductive materials and tissues in modern society, and such isolation may lead to the interests of important actors being ignored in the policy making process.

  13. Expansion on stromal cells preserves the undifferentiated state of human hematopoietic stem cells despite compromised reconstitution ability.

    Science.gov (United States)

    Magnusson, Mattias; Sierra, Maria I; Sasidharan, Rajkumar; Prashad, Sacha L; Romero, Melissa; Saarikoski, Pamela; Van Handel, Ben; Huang, Andy; Li, Xinmin; Mikkola, Hanna K A

    2013-01-01

    Lack of HLA-matched hematopoietic stem cells (HSC) limits the number of patients with life-threatening blood disorders that can be treated by HSC transplantation. So far, insufficient understanding of the regulatory mechanisms governing human HSC has precluded the development of effective protocols for culturing HSC for therapeutic use and molecular studies. We defined a culture system using OP9M2 mesenchymal stem cell (MSC) stroma that protects human hematopoietic stem/progenitor cells (HSPC) from differentiation and apoptosis. In addition, it facilitates a dramatic expansion of multipotent progenitors that retain the immunophenotype (CD34+CD38-CD90+) characteristic of human HSPC and proliferative potential over several weeks in culture. In contrast, transplantable HSC could be maintained, but not significantly expanded, during 2-week culture. Temporal analysis of the transcriptome of the ex vivo expanded CD34+CD38-CD90+ cells documented remarkable stability of most transcriptional regulators known to govern the undifferentiated HSC state. Nevertheless, it revealed dynamic fluctuations in transcriptional programs that associate with HSC behavior and may compromise HSC function, such as dysregulation of PBX1 regulated genetic networks. This culture system serves now as a platform for modeling human multilineage hematopoietic stem/progenitor cell hierarchy and studying the complex regulation of HSC identity and function required for successful ex vivo expansion of transplantable HSC.

  14. Expansion on stromal cells preserves the undifferentiated state of human hematopoietic stem cells despite compromised reconstitution ability.

    Directory of Open Access Journals (Sweden)

    Mattias Magnusson

    Full Text Available Lack of HLA-matched hematopoietic stem cells (HSC limits the number of patients with life-threatening blood disorders that can be treated by HSC transplantation. So far, insufficient understanding of the regulatory mechanisms governing human HSC has precluded the development of effective protocols for culturing HSC for therapeutic use and molecular studies. We defined a culture system using OP9M2 mesenchymal stem cell (MSC stroma that protects human hematopoietic stem/progenitor cells (HSPC from differentiation and apoptosis. In addition, it facilitates a dramatic expansion of multipotent progenitors that retain the immunophenotype (CD34+CD38-CD90+ characteristic of human HSPC and proliferative potential over several weeks in culture. In contrast, transplantable HSC could be maintained, but not significantly expanded, during 2-week culture. Temporal analysis of the transcriptome of the ex vivo expanded CD34+CD38-CD90+ cells documented remarkable stability of most transcriptional regulators known to govern the undifferentiated HSC state. Nevertheless, it revealed dynamic fluctuations in transcriptional programs that associate with HSC behavior and may compromise HSC function, such as dysregulation of PBX1 regulated genetic networks. This culture system serves now as a platform for modeling human multilineage hematopoietic stem/progenitor cell hierarchy and studying the complex regulation of HSC identity and function required for successful ex vivo expansion of transplantable HSC.

  15. Self-organization of human embryonic stem cells on micropatterns

    Science.gov (United States)

    Deglincerti, Alessia; Etoc, Fred; Guerra, M. Cecilia; Martyn, Iain; Metzger, Jakob; Ruzo, Albert; Simunovic, Mijo; Yoney, Anna; Brivanlou, Ali H.; Siggia, Eric; Warmflash, Aryeh

    2018-01-01

    Fate allocation in the gastrulating embryo is spatially organized as cells differentiate to specialized cell types depending on their positions with respect to the body axes. There is a need for in vitro protocols that allow the study of spatial organization associated with this developmental transition. While embryoid bodies and organoids can exhibit some spatial organization of differentiated cells, these methods do not yield consistent and fully reproducible results. Here, we describe a micropatterning approach where human embryonic stem cells are confined to disk-shaped, sub-millimeter colonies. After 42 hours of BMP4 stimulation, cells form self-organized differentiation patterns in concentric radial domains, which express specific markers associated with the embryonic germ layers, reminiscent of gastrulating embryos. Our protocol takes 3 days; it uses commercial microfabricated slides (CYTOO), human laminin-521 (LN-521) as extra-cellular matrix coating, and either conditioned or chemically-defined medium (mTeSR). Differentiation patterns within individual colonies can be determined by immunofluorescence and analyzed with cellular resolution. Both the size of the micropattern and the type of medium affect the patterning outcome. The protocol is appropriate for personnel with basic stem cell culture training. This protocol describes a robust platform for quantitative analysis of the mechanisms associated with pattern formation at the onset of gastrulation. PMID:27735934

  16. Epigenetic modulation of cancer-germline antigen gene expression in tumorigenic human mesenchymal stem cells: implications for cancer therapy

    DEFF Research Database (Denmark)

    Gjerstorff, Morten; Burns, Jorge S; Nielsen, Ole

    2009-01-01

    Cancer-germline antigens are promising targets for cancer immunotherapy, but whether such therapies will also eliminate the primary tumor stem cell population remains undetermined. We previously showed that long-term cultures of telomerized adult human bone marrow mesenchymal stem cells can...... spontaneously evolve into tumor-initiating, mesenchymal stem cells (hMSC-TERT20), which have characteristics of clinical sarcoma cells. In this study, we used the hMSC-TERT20 tumor stem cell model to investigate the potential of cancer-germline antigens to serve as tumor stem cell targets. We found...... of cancer-germline antigens in hMSC-TERT20 cells, while their expression levels in primary human mesenchymal stem cells remained unaffected. The expression pattern of cancer-germline antigens in tumorigenic mesenchymal stem cells and sarcomas, plus their susceptibility to enhancement by epigenetic...

  17. Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture.

    Directory of Open Access Journals (Sweden)

    Devaveena Dey

    Full Text Available BACKGROUND: Cancer stem cells exhibit close resemblance to normal stem cells in phenotype as well as function. Hence, studying normal stem cell behavior is important in understanding cancer pathogenesis. It has recently been shown that human breast stem cells can be enriched in suspension cultures as mammospheres. However, little is known about the behavior of these cells in long-term cultures. Since extensive self-renewal potential is the hallmark of stem cells, we undertook a detailed phenotypic and functional characterization of human mammospheres over long-term passages. METHODOLOGY: Single cell suspensions derived from human breast 'organoids' were seeded in ultra low attachment plates in serum free media. Resulting primary mammospheres after a week (termed T1 mammospheres were subjected to passaging every 7th day leading to the generation of T2, T3, and T4 mammospheres. PRINCIPAL FINDINGS: We show that primary mammospheres contain a distinct side-population (SP that displays a CD24(low/CD44(low phenotype, but fails to generate mammospheres. Instead, the mammosphere-initiating potential rests within the CD44(high/CD24(low cells, in keeping with the phenotype of breast cancer-initiating cells. In serial sphere formation assays we find that even though primary (T1 mammospheres show telomerase activity and fourth passage T4 spheres contain label-retaining cells, they fail to initiate new mammospheres beyond T5. With increasing passages, mammospheres showed an increase in smaller sized spheres, reduction in proliferation potential and sphere forming efficiency, and increased differentiation towards the myoepithelial lineage. Significantly, staining for senescence-associated beta-galactosidase activity revealed a dramatic increase in the number of senescent cells with passage, which might in part explain the inability to continuously generate mammospheres in culture. CONCLUSIONS: Thus, the self-renewal potential of human breast stem cells is

  18. Establishment of Cancer Stem Cell Cultures from Human Conventional Osteosarcoma.

    Science.gov (United States)

    Palmini, Gaia; Zonefrati, Roberto; Mavilia, Carmelo; Aldinucci, Alessandra; Luzi, Ettore; Marini, Francesca; Franchi, Alessandro; Capanna, Rodolfo; Tanini, Annalisa; Brandi, Maria Luisa

    2016-10-14

    The current improvements in therapy against osteosarcoma (OS) have prolonged the lives of cancer patients, but the survival rate of five years remains poor when metastasis has occurred. The Cancer Stem Cell (CSC) theory holds that there is a subset of tumor cells within the tumor that have stem-like characteristics, including the capacity to maintain the tumor and to resist multidrug chemotherapy. Therefore, a better understanding of OS biology and pathogenesis is needed in order to advance the development of targeted therapies to eradicate this particular subset and to reduce morbidity and mortality among patients. Isolating CSCs, establishing cell cultures of CSCs, and studying their biology are important steps to improving our understanding of OS biology and pathogenesis. The establishment of human-derived OS-CSCs from biopsies of OS has been made possible using several methods, including the capacity to create 3-dimensional stem cell cultures under nonadherent conditions. Under these conditions, CSCs are able to create spherical floating colonies formed by daughter stem cells; these colonies are termed "cellular spheres". Here, we describe a method to establish CSC cultures from primary cell cultures of conventional OS obtained from OS biopsies. We clearly describe the several passages required to isolate and characterize CSCs.

  19. Role of resident CNS cell populations in HTLV-1-associated neuroinflammatory disease.

    Science.gov (United States)

    Lepoutre, Veronique; Jain, Pooja; Quann, Kevin; Wigdahl, Brian; Khan, Zafar K

    2009-01-01

    Human T cell leukemia virus type 1 (HTLV-1), the first human retrovirus discovered, is the etiologic agent for a number of disorders; the two most common pathologies include adult T cell leukemia (ATL) and a progressive demyelinating neuroinflammatory disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The neurologic dysfunction associated with HAM/TSP is a result of viral intrusion into the central nervous system (CNS) and the generation of a hyperstimulated host response within the peripheral and central nervous system that includes expanded populations of CD4+ and CD8+ T cells and proinflammatory cytokines/chemokines in the cerebrospinal fluid (CSF). This robust, yet detrimental immune response likely contributes to the death of myelin producing oligodendrocytes and degeneration of neuronal axons. The mechanisms of neurological degeneration in HAM/TSP have yet to be fully delineated in vivo and may involve the immunogenic properties of the HTLV-1 transactivator protein Tax. This comprehensive review characterizes the available knowledge to date concerning the effects of HTLV-1 on CNS resident cell populations with emphasis on both viral and host factors contributing to the genesis of HAM/TSP.

  20. Generation of human induced pluripotent stem cells from urinary cells of a healthy donor using a non-integration system.

    Science.gov (United States)

    Uhm, Kyung-Ok; Jo, Eun Hee; Go, Gue Youn; Kim, So-Jung; Choi, Hye Young; Im, Young Sam; Ha, Hye-Yeong; Jung, Ji-Won; Koo, Soo Kyung

    2017-05-01

    Urinary cells can be an ideal source for generating hiPSCs and progenitors, as they are easily accessible, non-invasive, and universally available. We generated human induced pluripotent stem cells (hiPSCs) from the urinary cells of a healthy donor using a Sendai virus-based gene delivery method. The generated hiPSC line, KSCBi001-A, has a normal karyotype (46,XY). The pluripotency and capacity of multilineage differentiation were characterized by comparison with those of a human embryonic stem cell line. This cell line is registered and available from National Stem Cell Bank, Korea National Institute of Health. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Isolation and Multiple Differentiation Potential Assessment of Human Gingival Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    2014-11-01

    Full Text Available The aim of this study was to isolate human mesenchymal stem cells (MSCs from the gingiva (GMSCs and confirm their multiple differentiation potentials, including the odontogenic lineage. GMSCs, periodontal ligament stem cells (PDLSCs and dermal stem cells (DSCs cultures were analyzed for cell shape, cell cycle, colony-forming unit-fibroblast (CFU-F and stem cell markers. Cells were then induced for osteogenic and adipogenic differentiation and analyzed for differentiation markers (alkaline phosphatase (ALP activity, mineralization nodule formation and Runx2, ALP, osteocalcin (OCN and collagen I expressions for the osteogenic differentiation, and lipid vacuole formation and PPARγ-2 expression for the adipogenic differentiation. Besides, the odontogenic differentiation potential of GMSCs induced with embryonic tooth germ cell-conditioned medium (ETGC-CM was observed. GMSCs, PDLSCs and DSCs were all stromal origin. PDLSCs showed much higher osteogenic differentiation ability but lower adipogenic differentiation potential than DSCs. GMSCs showed the medial osteogenic and adipogenic differentiation potentials between those of PDLSCs and DSCs. GMSCs were capable of expressing the odontogenic genes after ETGC-CM induction. This study provides evidence that GMSCs can be used in tissue engineering/regeneration protocols as an approachable stem cell source.

  2. Human serum and platelet lysate are appropriate xeno-free alternatives for clinical-grade production of human MuStem cell batches.

    Science.gov (United States)

    Saury, Charlotte; Lardenois, Aurélie; Schleder, Cindy; Leroux, Isabelle; Lieubeau, Blandine; David, Laurent; Charrier, Marine; Guével, Laëtitia; Viau, Sabrina; Delorme, Bruno; Rouger, Karl

    2018-05-02

    Canine MuStem cells have demonstrated regenerative efficacy in a dog model of muscular dystrophy, and the recent characterization of human counterparts (hMuStem) has highlighted the therapeutic potential of this muscle-derived stem cell population. To date, these cells have only been generated in research-grade conditions. However, evaluation of the clinical efficacy of any such therapy will require the production of hMuStem cells in compliance with good manufacturing practices (GMPs). Because the current use of fetal bovine serum (FBS) to isolate and expand hMuStem cells raises several ethical, safety, and supply concerns, we assessed the use of two alternative xeno-free blood derivatives: human serum (HS) and a human platelet lysate (hPL). hMuStem cells were isolated and expanded in vitro in either HS-supplemented or hPL-supplemented media and the proliferation rate, clonogenicity, myogenic commitment potential, and oligopotency compared with that observed in FBS-supplemented medium. Flow cytometry and high-throughput 3'-digital gene expression RNA sequencing were used to characterize the phenotype and global gene expression pattern of hMuStem cells cultured with HS or hPL. HS-supplemented and hPL-supplemented media both supported the isolation and long-term proliferation of hMuStem cells. Compared with FBS-based medium, both supplements enhanced clonogenicity and allowed for a reduction in growth factor supplementation. Neither supplement altered the cell lineage pattern of hMuStem cells. In vitro differentiation assays revealed a decrease in myogenic commitment and in the fusion ability of hMuStem cells when cultured with hPL. In return, this reduction of myogenic potential in hPL-supplemented cultures was rapidly reversed by substitution of hPL with HS or fibrinogen-depleted hPL. Moreover, culture of hMuStem cells in hPL hydrogel and fibrinogen-depleted hPL demonstrated that myogenic differentiation potential is maintained in heparin-free hPL derivatives. Our

  3. Comparison of osteo/odontogenic differentiation of human adult dental pulp stem cells and stem cells from apical papilla in the presence of platelet lysate.

    Science.gov (United States)

    Abuarqoub, Duaa; Awidi, Abdalla; Abuharfeil, Nizar

    2015-10-01

    Human dental pulp cells (DPSCs) and stem cells from apical papilla have been used for the repair of damaged tooth tissues. Human platelet lysate (PL) has been suggested as a substitute for fetal bovine serum (FBS) for large scale expansion of dental stem cells. However, biological effects and optimal concentrations of PL for proliferation and differentiation of human dental stem cells remain to be elucidated. DPSCs and SCAP cells were isolated from impacted third molars of young healthy donors, at the stage of root development and identified by markers using flow cytometry. For comparison the cells were cultured in media containing PL (1%, 5% and 10%) and FBS, with subsequent induction for osteogenic/odontogenic differentiation. The cultures were analyzed for; morphology, growth characteristics, mineralization potential (Alizarin Red method) and differentiation markers using ELISA and real time -polymerase chain reaction (qPCR). The proliferation rates of DPSCs and SCAP significantly increased when cells were treated with 5% PL (7X doubling time) as compared to FBS. 5% PL also enhanced mineralized differentiation of DPSCs and SCAP, as indicated by the measurement of alkaline phosphatase activity, osteocalcin and osteopontin, calcium deposition and q-PCR. Our findings suggest that using 5% platelet lysate, proliferation and osteo/odontogenesis of DPSCs and SCAP for a short period of time (15 days), was significantly improved. This may imply its use as an optimum concentration for expansion of dental stem cells in bone regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Strategies for future histocompatible stem cell therapy

    DEFF Research Database (Denmark)

    Nehlin, Jan; Barington, Torben

    2009-01-01

    Stem cell therapy based on the safe and unlimited self-renewal of human pluripotent stem cells is envisioned for future use in tissue or organ replacement after injury or disease. A gradual decline of regenerative capacity has been documented among the adult stem cell population in some body organs...... during the aging process. Recent progress in human somatic cell nuclear transfer and inducible pluripotent stem cell technologies has shown that patient-derived nuclei or somatic cells can be reprogrammed in vitro to become pluripotent stem cells, from which the three germ layer lineages can be generated......, genetically identical to the recipient. Once differentiation protocols and culture conditions can be defined and optimized, patient-histocompatible pluripotent stem cells could be directed towards virtually every cell type in the human body. Harnessing this capability to enrich for given cells within...

  5. Defining differentially methylated regions specific for the acquisition of pluripotency and maintenance in human pluripotent stem cells via microarray.

    Directory of Open Access Journals (Sweden)

    WenYin He

    Full Text Available Epigenetic regulation is critical for the maintenance of human pluripotent stem cells. It has been shown that pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells, appear to have a hypermethylated status compared with differentiated cells. However, the epigenetic differences in genes that maintain stemness and regulate reprogramming between embryonic stem cells and induced pluripotent stem cells remain unclear. Additionally, differential methylation patterns of induced pluripotent stem cells generated using diverse methods require further study.Here, we determined the DNA methylation profiles of 10 human cell lines, including 2 ESC lines, 4 virally derived iPSC lines, 2 episomally derived iPSC lines, and the 2 parental cell lines from which the iPSCs were derived using Illumina's Infinium HumanMethylation450 BeadChip. The iPSCs exhibited a hypermethylation status similar to that of ESCs but with distinct differences from the parental cells. Genes with a common methylation pattern between iPSCs and ESCs were classified as critical factors for stemness, whereas differences between iPSCs and ESCs suggested that iPSCs partly retained the parental characteristics and gained de novo methylation aberrances during cellular reprogramming. No significant differences were identified between virally and episomally derived iPSCs. This study determined in detail the de novo differential methylation signatures of particular stem cell lines.This study describes the DNA methylation profiles of human iPSCs generated using both viral and episomal methods, the corresponding somatic cells, and hESCs. Series of ss-DMRs and ES-iPS-DMRs were defined with high resolution. Knowledge of this type of epigenetic information could be used as a signature for stemness and self-renewal and provides a potential method for selecting optimal pluripotent stem cells for human regenerative medicine.

  6. Mesenchymal Stem Cells Isolated From Human Gliomas Increase Proliferation and Maintain Stemness of Glioma Stem Cells Through the IL-6/gp130/STAT3 Pathway.

    Science.gov (United States)

    Hossain, Anwar; Gumin, Joy; Gao, Feng; Figueroa, Javier; Shinojima, Naoki; Takezaki, Tatsuya; Priebe, Waldemar; Villarreal, Diana; Kang, Seok-Gu; Joyce, Celine; Sulman, Erik; Wang, Qianghu; Marini, Frank C; Andreeff, Michael; Colman, Howard; Lang, Frederick F

    2015-08-01

    Although mesenchymal stem cells (MSCs) have been implicated as stromal components of several cancers, their ultimate contribution to tumorigenesis and their potential to drive cancer stem cells, particularly in the unique microenvironment of human brain tumors, remain largely undefined. Consequently, using established criteria, we isolated glioma-associated-human MSCs (GA-hMSCs) from fresh human glioma surgical specimens for the first time. We show that these GA-hMSCs are nontumorigenic stromal cells that are phenotypically similar to prototypical bone marrow-MSCs. Low-passage genomic sequencing analyses comparing GA-hMSCs with matched tumor-initiating glioma stem cells (GSCs) suggest that most GA-hMSCs (60%) are normal cells recruited to the tumor (group 1 GA-hMSCs), although, rarely (10%), GA-hMSCs may differentiate directly from GSCs (group 2 GA-hMSCs) or display genetic patterns intermediate between these groups (group 3 GA-hMSCs). Importantly, GA-hMSCs increase proliferation and self-renewal of GSCs in vitro and enhance GSC tumorigenicity and mesenchymal features in vivo, confirming their functional significance within the GSC niche. These effects are mediated by GA-hMSC-secreted interleukin-6, which activates STAT3 in GSCs. Our results establish GA-hMSCs as a potentially new stromal component of gliomas that drives the aggressiveness of GSCs, and point to GA-hMSCs as a novel therapeutic target within gliomas. © 2015 AlphaMed Press.

  7. Herpesvirus-associated central nervous system diseases after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Wu, Meiqing; Huang, Fen; Jiang, Xinmiao; Fan, Zhiping; Zhou, Hongsheng; Liu, Can; Jiang, Qianli; Zhang, Yu; Zhao, Ke; Xuan, Li; Zhai, Xiao; Zhang, Fuhua; Yin, Changxin; Sun, Jing; Feng, Ru; Liu, Qifa

    2013-01-01

    Herpesvirus infections of the central nervous system (CNS) are associated with encephalitis/myelitis and lymphoproliferative diseases in immunocompromised individuals. As of now, data of herpesvirus-associated CNS diseases in transplant recipients is limited. Hence, in this prospective study, we investigated the incidence of herpesvirus-associated CNS diseases and explored the diagnosis of these diseases in 281 allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Herpesvirus-DNA and cerebrospinal fluid (CSF) cells were sampled from 58 recipients with herpesvirus-associated diseases or with unexplainable CNS manifestations. Results showed that 23 patients were diagnosed as herpesvirus-associated CNS diseases, including 15 Epstein-Barr virus (EBV)-associated diseases (4 encephalitis and 11 lymphoproliferative diseases), 5 herpes simplex virus type 1 encephalitis, 2 cytomegalovirus encephalitis/myelitis and 1 varicella zoster virus encephalitis. The median time of diseases onset was 65 (range 22-542) days post-transplantation. The 3-year cumulative incidence of herpesvirus-associated encephalitis/myelitis and post-transplant lymphoproliferative disorder (PTLD) was 6.3% ± 1.9% and 4.1% ± 1.2%, respectively. Of the evaluable cases, CSF cells mainly consisted of CD19(+)CD20(+) B cells (7/11) and had clonal rearrangement of immunoglobulin genes (3/11) in patients with CNS-PTLD. On the contrary, in patients with encephalitis/myelitis, CSF cells were comprised of different cell populations and none of the gene rearrangement was detected. Herpesvirus-associated CNS diseases are common in the early stages of allo-HSCT, wherein EBV is the most frequent causative virus. The immunophenotypic and clonal analysis of CSF cells might be helpful in the differential diagnosis between encephalitis and lymphoproliferative diseases.

  8. Generation of Corneal Keratocytes from Human Embryonic Stem Cells.

    Science.gov (United States)

    Hertsenberg, Andrew J; Funderburgh, James L

    2016-01-01

    Human Embryonic Stem Cells (hESC) offer an important resource as a limitless supply of any differentiated cell type of the human body. Keratocytes, cells from the corneal stroma, may have the potential for restoration of vision in cell therapy and biomedical engineering applications, but these specialized cells are not readily expanded in vitro. Here we describe a two-part method to produce keratocytes from the H1 hESC cell line. The hESC cells, maintained and expanded in feeder-free culture medium are first differentiated to neural crest cells using the stromal-derived inducing activity (SDIA) of the PA6 mouse embryonic fibroblast cell line. The resulting neural crest cells are selected by their expression of cell-surface CD271 and subsequently cultured as 3D pellets in a defined differentiation medium to induce a keratocyte phenotype.

  9. Efflux protein expression in human stem cell-derived retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Kati Juuti-Uusitalo

    Full Text Available Retinal pigment epithelial (RPE cells in the back of the eye nourish photoreceptor cells and form a selective barrier that influences drug transport from the blood to the photoreceptor cells. At the molecular level, ATP-dependent efflux transporters have a major role in drug delivery in human RPE. In this study, we assessed the relative expression of several ATP-dependent efflux transporter genes (MRP1, -2, -3, -4, -5, -6, p-gp, and BCRP, the protein expression and localization of MRP1, MRP4, and MRP5, and the functionality of MRP1 efflux pumps at different maturation stages of undifferentiated human embryonic stem cells (hESC and RPE derived from the hESC (hESC-RPE. Our findings revealed that the gene expression of ATP-dependent efflux transporters MRP1, -3, -4, -5, and p-gp fluctuated during hESC-RPE maturation from undifferentiated hESC to fusiform, epithelioid, and finally to cobblestone hESC-RPE. Epithelioid hESC-RPE had the highest expression of MRP1, -3, -4, and P-gp, whereas the most mature cobblestone hESC-RPE had the highest expression of MRP5 and MRP6. These findings indicate that a similar efflux protein profile is shared between hESC-RPE and the human RPE cell line, ARPE-19, and suggest that hESC-RPE cells are suitable in vitro RPE models for drug transport studies. Embryonic stem cell model might provide a novel tool to study retinal cell differentiation, mechanisms of RPE-derived diseases, drug testing and targeted drug therapy.

  10. Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations

    Directory of Open Access Journals (Sweden)

    Hicks Steven D

    2012-10-01

    Full Text Available Abstract Background Alcohol use disorders (AUDs lead to alterations in central nervous system (CNS architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Results Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1 was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5 showed a highly significant correlation with AUD-induced decreases in the volume of the left

  11. Human embryonic stem cells have enhanced repair of multiple forms of DNA damage

    DEFF Research Database (Denmark)

    Maynard, Scott; Swistowska, Anna Maria; Lee, Jae Wan

    2008-01-01

    cells compared with various differentiated murine cells. Using single-cell gel electrophoresis (comet assay) we found that human embryonic stem cells (BG01, I6) have more efficient repair of different types of DNA damage (generated from H2O2, UV-C, ionizing radiation, or psoralen) than human primary...

  12. Human Pluripotent Stem Cells to Engineer Blood Vessels.

    Science.gov (United States)

    Chan, Xin Yi; Elliott, Morgan B; Macklin, Bria; Gerecht, Sharon

    2018-01-01

    Development of pluripotent stem cells (PSCs) is a remarkable scientific advancement that allows scientists to harness the power of regenerative medicine for potential treatment of disease using unaffected cells. PSCs provide a unique opportunity to study and combat cardiovascular diseases, which continue to claim the lives of thousands each day. Here, we discuss the differentiation of PSCs into vascular cells, investigation of the functional capabilities of the derived cells, and their utilization to engineer microvascular beds or vascular grafts for clinical application. Graphical Abstract Human iPSCs generated from patients are differentiated toward ECs and perivascular cells for use in disease modeling, microvascular bed development, or vascular graft fabrication.

  13. Procedures for Derivation and Characterisation of Human Embryonic Stem Cells from Odense, Denmark

    DEFF Research Database (Denmark)

    Harkness, Linda; Kassem, Moustapha

    2012-01-01

    In 1998, a development occurred in stem cell biology with the fi rst report of the derivation of a human embryonic stem cell (hESC) line. Since then a number of techniques have been used to derive and characterise hESCs. Here, we describe the derivation methods used by our laboratory for isolatio...

  14. Mast Cells and Innate Lymphoid Cells: Underappreciated Players in CNS Autoimmune Demyelinating Disease.

    Science.gov (United States)

    Brown, Melissa A; Weinberg, Rebecca B

    2018-01-01

    Multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis, are autoimmune CNS inflammatory diseases. As a result of a breakdown in the relatively impermeable blood-brain barrier (BBB) in affected individuals, myelin-specific CD4 + and CD8 + T cells gain entry into the immune privileged CNS and initiate myelin, oligodendrocyte, and nerve axon destruction. However, despite the absolute requirement for T cells, there is increasing evidence that innate immune cells also play critical amplifying roles in disease pathogenesis. By modulating the character and magnitude of the myelin-reactive T cell response and regulating BBB integrity, innate cells affect both disease initiation and progression. Two classes of innate cells, mast cells and innate lymphoid cells (ILCs), have been best studied in models of allergic and gastrointestinal inflammatory diseases. Yet, there is emerging evidence that these cell types also exert a profound influence in CNS inflammatory disease. Both cell types are residents within the meninges and can be activated early in disease to express a wide variety of disease-modifying cytokines and chemokines. In this review, we discuss how mast cells and ILCs can have either disease-promoting or -protecting effects on MS and other CNS inflammatory diseases and how sex hormones may influence this outcome. These observations suggest that targeting these cells and their unique mediators can be exploited therapeutically.

  15. Ethical Issues in Stem Cell Research

    OpenAIRE

    Lo, Bernard; Parham, Lindsay

    2009-01-01

    Stem cell research offers great promise for understanding basic mechanisms of human development and differentiation, as well as the hope for new treatments for diseases such as diabetes, spinal cord injury, Parkinson’s disease, and myocardial infarction. However, human stem cell (hSC) research also raises sharp ethical and political controversies. The derivation of pluripotent stem cell lines from oocytes and embryos is fraught with disputes about the onset of human personhood. The reprogramm...

  16. Correlation between proliferative activity and cellular thickness of human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Katsube, Yoshihiro; Hirose, Motohiro; Nakamura, Chikashi; Ohgushi, Hajime

    2008-01-01

    A cell's shape is known to be related to its proliferative activity. In particular, large and flat mammalian adult stem cells seem to show slow proliferation, however using quantitative analysis to prove the phenomenon is difficult. We measured the proliferation and cellular thickness of human mesenchymal stem cells (MSCs) by atomic force microscopy and found that MSCs with high proliferative activity were thick while those with low proliferative activity were thin, even though these MSCs were early passage cells. Further, low proliferative MSCs contained many senescence-associated β-galactosidase positive cells together with high senescence-associated gene expression. These findings suggest that the measurement of cellular thickness is useful for estimating the proliferative activity of human MSCs and is expected to be a practical tool for MSC applications in regenerative medicine

  17. Scalable cultivation of human pluripotent stem cells on chemically-defined surfaces

    Science.gov (United States)

    Hsiung, Michael Chi-Wei

    Human stem cells (SCs) are classified as self-renewing cells possessing great ability in therapeutic applications due of their ability to differentiate along any major cell lineage in the human body. Despite their restorative potential, widespread use of SCs is hampered by strenuous control issues. Along with the need for strict xeno-free environments to sustain growth in culture, current methods for growing human pluripotent stem cells (hPSCs) rely on platforms which impede large-scale cultivation and therapeutic delivery. Hence, any progress towards development of large-scale culture systems is severely hindered. In a concentrated effort to develop a scheme that can serve as a model precursor for large scale SC propagation in clinical use, we have explored methods for cultivating hPSCs on completely defined surfaces. We discuss novel approaches with the potential to go beyond the limitations presented by current methods. In particular, we studied the cultivation of human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) on surface which underwent synthetic or chemical modification. Current methods for hPSCs rely on animal-based extracellular matrices (ECMs) such as mouse embryonic fibroblasts (MEFs) or feeders and murine sacoma cell-derived substrates to facilitate their growth. While these layers or coatings can be used to maximize the output of hPSC production, they cannot be considered for clinical use because they risk introducing foreign pathogens into culture. We have identified and developed conditions for a completely defined xeno-free substrate used for culturing hPSCs. By utilizing coupling chemistry, we can functionalize ester groups on a given surface and conjugate synthetic peptides containing the arginine-glycine-aspartic acid (RGD) motif, known for their role in cell adhesion. This method offers advantages over traditional hPSC culture by keeping the modified substrata free of xenogenic response and can be scaled up in

  18. Engineering of a Potent Recombinant Lectin-Toxin Fusion Protein to Eliminate Human Pluripotent Stem Cells.

    Science.gov (United States)

    Tateno, Hiroaki; Saito, Sayoko

    2017-07-10

    The use of human pluripotent stem cells (hPSCs) such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) in regenerative medicine is hindered by their tumorigenic potential. Previously, we developed a recombinant lectin-toxin fusion protein of the hPSC-specific lectin rBC2LCN, which has a 23 kDa catalytic domain (domain III) of Pseudomonas aeruginosa exotoxin A (rBC2LCN-PE23). This fusion protein could selectively eliminate hPSCs following its addition to the cell culture medium. Here we conjugated rBC2LCN lectin with a 38 kDa domain of exotoxin A containing domains Ib and II in addition to domain III (PE38). The developed rBC2LCN-PE38 fusion protein could eliminate 50% of 201B7 hPSCs at a concentration of 0.003 μg/mL (24 h incubation), representing an approximately 556-fold higher activity than rBC2LCN-PE23. Little or no effect on human fibroblasts, human mesenchymal stem cells, and hiPSC-derived hepatocytes was observed at concentrations lower than 1 μg/mL. Finally, we demonstrate that rBC2LCN-PE38 selectively eliminates hiPSCs from a mixed culture of hiPSCs and hiPSC-derived hepatocytes. Since rBC2LCN-PE38 can be prepared from soluble fractions of E. coli culture at a yield of 9 mg/L, rBC2LCN-PE38 represents a practical reagent to remove human pluripotent stem cells residing in cultured cells destined for transplantation.

  19. Engineering bone tissue from human embryonic stem cells

    OpenAIRE

    Marolt, Darja; Campos, Iván Marcos; Bhumiratana, Sarindr; Koren, Ana; Petridis, Petros; Zhang, Geping; Spitalnik, Patrice F.; Grayson, Warren L.; Vunjak-Novakovic, Gordana

    2012-01-01

    In extensive bone defects, tissue damage and hypoxia lead to cell death, resulting in slow and incomplete healing. Human embryonic stem cells (hESC) can give rise to all specialized lineages found in healthy bone and are therefore uniquely suited to aid regeneration of damaged bone. We show that the cultivation of hESC-derived mesenchymal progenitors on 3D osteoconductive scaffolds in bioreactors with medium perfusion leads to the formation of large and compact bone constructs. Notably, the i...

  20. Human cancer stem cells are a target for cancer prevention using (-)-epigallocatechin gallate.

    Science.gov (United States)

    Fujiki, Hirota; Sueoka, Eisaburo; Rawangkan, Anchalee; Suganuma, Masami

    2017-12-01

    Our previous experiments show that the main constituent of green-tea catechins, (-)-epigallocatechin gallate (EGCG), completely prevents tumor promotion on mouse skin initiated with 7,12-dimethylbenz(a)anthracene followed by okadaic acid and that EGCG and green tea extract prevent cancer development in a wide range of target organs in rodents. Therefore, we focused our attention on human cancer stem cells (CSCs) as targets of cancer prevention and treatment with EGCG. The numerous reports concerning anticancer activity of EGCG against human CSCs enriched from cancer cell lines were gathered from a search of PubMed, and we hope our review of the literatures will provide a broad selection for the effects of EGCG on various human CSCs. Based on our theoretical study, we discuss the findings as follows: (1) Compared with the parental cells, human CSCs express increased levels of the stemness markers Nanog, Oct4, Sox2, CD44, CD133, as well as the EMT markers, Twist, Snail, vimentin, and also aldehyde dehydrogenase. They showed decreased levels of E-cadherin and cyclin D1. (2) EGCG inhibits the transcription and translation of genes encoding stemness markers, indicating that EGCG generally inhibits the self-renewal of CSCs. (3) EGCG inhibits the expression of the epithelial-mesenchymal transition phenotypes of human CSCs. (4) The inhibition of EGCG of the stemness of CSCs was weaker compared with parental cells. (5) The weak inhibitory activity of EGCG increased synergistically in combination with anticancer drugs. Green tea prevents human cancer, and the combination of EGCG and anticancer drugs confers cancer treatment with tissue-agnostic efficacy.

  1. Neuromuscular junction formation between human stem cell-derived motoneurons and human skeletal muscle in a defined system.

    Science.gov (United States)

    Guo, Xiufang; Gonzalez, Mercedes; Stancescu, Maria; Vandenburgh, Herman H; Hickman, James J

    2011-12-01

    Functional in vitro models composed of human cells will constitute an important platform in the next generation of system biology and drug discovery. This study reports a novel human-based in vitro Neuromuscular Junction (NMJ) system developed in a defined serum-free medium and on a patternable non-biological surface. The motoneurons and skeletal muscles were derived from fetal spinal stem cells and skeletal muscle stem cells. The motoneurons and skeletal myotubes were completely differentiated in the co-culture based on morphological analysis and electrophysiology. NMJ formation was demonstrated by phase contrast microscopy, immunocytochemistry and the observation of motoneuron-induced muscle contractions utilizing time-lapse recordings and their subsequent quenching by d-Tubocurarine. Generally, functional human based systems would eliminate the issue of species variability during the drug development process and its derivation from stem cells bypasses the restrictions inherent with utilization of primary human tissue. This defined human-based NMJ system is one of the first steps in creating functional in vitro systems and will play an important role in understanding NMJ development, in developing high information content drug screens and as test beds in preclinical studies for spinal or muscular diseases/injuries such as muscular dystrophy, Amyotrophic lateral sclerosis and spinal cord repair. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Human Neural Stem Cell Aging Is Counteracted by α-Glycerylphosphorylethanolamine.

    Science.gov (United States)

    Daniele, Simona; Da Pozzo, Eleonora; Iofrida, Caterina; Martini, Claudia

    2016-07-20

    Neural stem cells (NSCs) represent a subpopulation of cells, located in specific regions of the adult mammalian brain, with the ability of self-renewing and generating neurons and glia. In aged NSCs, modifications in the amount and composition of membrane proteins/lipids, which lead to a reduction in membrane fluidity and cholinergic activities, have been reported. In this respect, molecules that are effective at normalizing the membrane composition and cholinergic signaling could counteract stem cell aging. α-Glycerylphosphorylethanolamine (GPE), a nootropic drug, plays a role in phospholipid biosynthesis and acetylcholine release. Herein, GPE was assayed on human NSC cultures and on hydroxyurea-aged cells. Using cell counting, colorimetric, and fluorimetric analyses, immunoenzymatic assays, and real time PCR experiments, NSC culture proliferation, senescence, reactive oxygen species, and ADP/ATP levels were assessed. Aged NSCs exhibited cellular senescence, decreased proliferation, and an impairment in mitochondrial metabolism. These changes included a substantial induction in the nuclear factor NF-κB, a key inflammatory mediator. GPE cell treatment significantly protected the redox state and functional integrity of mitochondria, and counteracted senescence and NF-κB activation. In conclusion, our data show the beneficial properties of GPE in this model of stem cell aging.

  3. Reprogramming of HUVECs into induced pluripotent stem cells (HiPSCs, generation and characterization of HiPSC-derived neurons and astrocytes.

    Directory of Open Access Journals (Sweden)

    Yohannes Haile

    Full Text Available Neurodegenerative diseases are characterized by chronic and progressive structural or functional loss of neurons. Limitations related to the animal models of these human diseases have impeded the development of effective drugs. This emphasizes the need to establish disease models using human-derived cells. The discovery of induced pluripotent stem cell (iPSC technology has provided novel opportunities in disease modeling, drug development, screening, and the potential for "patient-matched" cellular therapies in neurodegenerative diseases. In this study, with the objective of establishing reliable tools to study neurodegenerative diseases, we reprogrammed human umbilical vein endothelial cells (HUVECs into iPSCs (HiPSCs. Using a novel and direct approach, HiPSCs were differentiated into cells of central nervous system (CNS lineage, including neuronal, astrocyte and glial cells, with high efficiency. HiPSCs expressed embryonic genes such as nanog, sox2 and Oct-3/4, and formed embryoid bodies that expressed markers of the 3 germ layers. Expression of endothelial-specific genes was not detected in HiPSCs at RNA or protein levels. HiPSC-derived neurons possess similar morphology but significantly longer neurites compared to primary human fetal neurons. These stem cell-derived neurons are susceptible to inflammatory cell-mediated neuronal injury. HiPSC-derived neurons express various amino acids that are important for normal function in the CNS. They have functional receptors for a variety of neurotransmitters such as glutamate and acetylcholine. HiPSC-derived astrocytes respond to ATP and acetylcholine by elevating cytosolic Ca2+ concentrations. In summary, this study presents a novel technique to generate differentiated and functional HiPSC-derived neurons and astrocytes. These cells are appropriate tools for studying the development of the nervous system, the pathophysiology of various neurodegenerative diseases and the development of potential

  4. A genome editing approach to study cancer stem cells in human tumors.

    Science.gov (United States)

    Cortina, Carme; Turon, Gemma; Stork, Diana; Hernando-Momblona, Xavier; Sevillano, Marta; Aguilera, Mònica; Tosi, Sébastien; Merlos-Suárez, Anna; Stephan-Otto Attolini, Camille; Sancho, Elena; Batlle, Eduard

    2017-07-01

    The analysis of stem cell hierarchies in human cancers has been hampered by the impossibility of identifying or tracking tumor cell populations in an intact environment. To overcome this limitation, we devised a strategy based on editing the genomes of patient-derived tumor organoids using CRISPR/Cas9 technology to integrate reporter cassettes at desired marker genes. As proof of concept, we engineered human colorectal cancer (CRC) organoids that carry EGFP and lineage-tracing cassettes knocked in the LGR5 locus. Analysis of LGR5-EGFP + cells isolated from organoid-derived xenografts demonstrated that these cells express a gene program similar to that of normal intestinal stem cells and that they propagate the disease to recipient mice very efficiently. Lineage-tracing experiments showed that LGR5 + CRC cells self-renew and generate progeny over long time periods that undergo differentiation toward mucosecreting- and absorptive-like phenotypes. These genetic experiments confirm that human CRCs adopt a hierarchical organization reminiscent of that of the normal colonic epithelium. The strategy described herein may have broad applications to study cell heterogeneity in human tumors. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Definitive Endoderm Formation from Plucked Human Hair-Derived Induced Pluripotent Stem Cells and SK Channel Regulation

    Directory of Open Access Journals (Sweden)

    Anett Illing

    2013-01-01

    Full Text Available Pluripotent stem cells present an extraordinary powerful tool to investigate embryonic development in humans. Essentially, they provide a unique platform for dissecting the distinct mechanisms underlying pluripotency and subsequent lineage commitment. Modest information currently exists about the expression and the role of ion channels during human embryogenesis, organ development, and cell fate determination. Of note, small and intermediate conductance, calcium-activated potassium channels have been reported to modify stem cell behaviour and differentiation. These channels are broadly expressed throughout human tissues and are involved in various cellular processes, such as the after-hyperpolarization in excitable cells, and also in differentiation processes. To this end, human induced pluripotent stem cells (hiPSCs generated from plucked human hair keratinocytes have been exploited in vitro to recapitulate endoderm formation and, concomitantly, used to map the expression of the SK channel (SKCa subtypes over time. Thus, we report the successful generation of definitive endoderm from hiPSCs of ectodermal origin using a highly reproducible and robust differentiation system. Furthermore, we provide the first evidence that SKCas subtypes are dynamically regulated in the transition from a pluripotent stem cell to a more lineage restricted, endodermal progeny.

  6. Mesenchymal Stem Cells Retain Their Defining Stem Cell Characteristics After Exposure to Ionizing Radiation

    International Nuclear Information System (INIS)

    Nicolay, Nils H.; Sommer, Eva; Lopez, Ramon; Wirkner, Ute; Trinh, Thuy; Sisombath, Sonevisay; Debus, Jürgen; Ho, Anthony D.; Saffrich, Rainer; Huber, Peter E.

    2013-01-01

    Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IR were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression

  7. Dazlin' pluripotent stem cells

    NARCIS (Netherlands)

    Welling, M.A.

    2014-01-01

    Pluripotent embryonic stem cells (ESCs) can be isolated from the inner cell mass (ICM) of blastocyst embryos and differentiate into all three germ layers in vitro. However, despite their similar origin, mouse embryonic stem cells represent a more naïve ICM-like pluripotent state whereas human

  8. Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro

    Science.gov (United States)

    Salamon, Achim; van Vlierberghe, Sandra; van Nieuwenhove, Ine; Baudisch, Frank; Graulus, Geert-Jan; Benecke, Verena; Alberti, Kristin; Neumann, Hans-Georg; Rychly, Joachim; Martins, José C.; Dubruel, Peter; Peters, Kirsten

    2014-01-01

    Due to the weak regeneration potential of cartilage, there is a high clinical incidence of articular joint disease, leading to a strong demand for cartilaginous tissue surrogates. The aim of this study was to evaluate a gelatin-based hydrogel for its suitability to support chondrogenic differentiation of human mesenchymal stem cells. Gelatin-based hydrogels are biodegradable, show high biocompatibility, and offer possibilities to introduce functional groups and/or ligands. In order to prove their chondrogenesis-supporting potential, a hydrogel film was developed and compared with standard cell culture polystyrene regarding the differentiation behavior of human mesenchymal stem cells. Cellular basis for this study were human adipose tissue-derived mesenchymal stem cells, which exhibit differentiation potential along the adipogenic, osteogenic and chondrogenic lineage. The results obtained show a promotive effect of gelatin-based hydrogels on chondrogenic differentiation of mesenchymal stem cells in vitro and therefore encourage subsequent in vivo studies. PMID:28788517

  9. Revisit the Candidacy of Brain Cell Types as the Cell(s of Origin for Human High-Grade Glioma

    Directory of Open Access Journals (Sweden)

    Fangjie Shao

    2018-02-01

    Full Text Available High-grade glioma, particularly, glioblastoma, is the most aggressive cancer of the central nervous system (CNS in adults. Due to its heterogeneous nature, glioblastoma almost inevitably relapses after surgical resection and radio-/chemotherapy, and is thus highly lethal and associated with a dismal prognosis. Identifying the cell of origin has been considered an important aspect in understanding tumor heterogeneity, thereby holding great promise in designing novel therapeutic strategies for glioblastoma. Taking advantage of genetic lineage-tracing techniques, performed mainly on genetically engineered mouse models (GEMMs, multiple cell types in the CNS have been suggested as potential cells of origin for glioblastoma, among which adult neural stem cells (NSCs and oligodendrocyte precursor cells (OPCs are the major candidates. However, it remains highly debated whether these cell types are equally capable of transforming in patients, given that in the human brain, some cell types divide so slowly, therefore may never have a chance to transform. With the recent advances in studying adult NSCs and OPCs, particularly from the perspective of comparative biology, we now realize that notable differences exist among mammalian species. These differences have critical impacts on shaping our understanding of the cell of origin of glioma in humans. In this perspective, we update the current progress in this field and clarify some misconceptions with inputs from important findings about the biology of adult NSCs and OPCs. We propose to re-evaluate the cellular origin candidacy of these cells, with an emphasis on comparative studies between animal models and humans.

  10. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells

    International Nuclear Information System (INIS)

    Timper, Katharina; Seboek, Dalma; Eberhardt, Michael; Linscheid, Philippe; Christ-Crain, Mirjam; Keller, Ulrich; Mueller, Beat; Zulewski, Henryk

    2006-01-01

    Mesenchymal stem cells (MSC) from mouse bone marrow were shown to adopt a pancreatic endocrine phenotype in vitro and to reverse diabetes in an animal model. MSC from human bone marrow and adipose tissue represent very similar cell populations with comparable phenotypes. Adipose tissue is abundant and easily accessible and could thus also harbor cells with the potential to differentiate in insulin producing cells. We isolated human adipose tissue-derived MSC from four healthy donors. During the proliferation period, the cells expressed the stem cell markers nestin, ABCG2, SCF, Thy-1 as well as the pancreatic endocrine transcription factor Isl-1. The cells were induced to differentiate into a pancreatic endocrine phenotype by defined culture conditions within 3 days. Using quantitative PCR a down-regulation of ABCG2 and up-regulation of pancreatic developmental transcription factors Isl-1, Ipf-1, and Ngn3 were observed together with induction of the islet hormones insulin, glucagon, and somatostatin

  11. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke.

    Science.gov (United States)

    Wei, Ling; Wei, Zheng Z; Jiang, Michael Qize; Mohamad, Osama; Yu, Shan Ping

    2017-10-01

    One of the exciting advances in modern medicine and life science is cell-based neurovascular regeneration of damaged brain tissues and repair of neuronal structures. The progress in stem cell biology and creation of adult induced pluripotent stem (iPS) cells has significantly improved basic and pre-clinical research in disease mechanisms and generated enthusiasm for potential applications in the treatment of central nervous system (CNS) diseases including stroke. Endogenous neural stem cells and cultured stem cells are capable of self-renewal and give rise to virtually all types of cells essential for the makeup of neuronal structures. Meanwhile, stem cells and neural progenitor cells are well-known for their potential for trophic support after transplantation into the ischemic brain. Thus, stem cell-based therapies provide an attractive future for protecting and repairing damaged brain tissues after injury and in various disease states. Moreover, basic research on naïve and differentiated stem cells including iPS cells has markedly improved our understanding of cellular and molecular mechanisms of neurological disorders, and provides a platform for the discovery of novel drug targets. The latest advances indicate that combinatorial approaches using cell based therapy with additional treatments such as protective reagents, preconditioning strategies and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the characteristics of cell therapy in different ischemic models and the application of stem cells and progenitor cells as regenerative medicine for the treatment of stroke. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer.

    Science.gov (United States)

    Sanal, Madhusudana Girija

    2014-01-01

    Even after several years since the discovery of human embryonic stem cells and induced pluripotent stem cells (iPSC), we are still unable to make any significant therapeutic benefits out of them such as cell therapy or generation of organs for transplantation. Recent success in somatic cell nuclear transfer (SCNT) made it possible to generate diploid embryonic stem cells, which opens up the way to make high-quality pluripotent stem cells. However, the process is highly inefficient and hence expensive compared to the generation of iPSC. Even with the latest SCNT technology, we are not sure whether one can make therapeutic quality pluripotent stem cell from any patient's somatic cells or by using oocytes from any donor. Combining iPSC technology with SCNT, that is, by using the nucleus of the candidate somatic cell which got reprogrammed to pluripotent state instead that of the unmodified nucleus of the candidate somatic cell, would boost the efficiency of the technique, and we would be able to generate therapeutic quality pluripotent stem cells. Induced pluripotent stem cell nuclear transfer (iPSCNT) combines the efficiency of iPSC generation with the speed and natural reprogramming environment of SCNT. The new technique may be called iPSCNT. This technique could prove to have very revolutionary benefits for humankind. This could be useful in generating organs for transplantation for patients and for reproductive cloning, especially for childless men and women who cannot have children by any other techniques. When combined with advanced gene editing techniques (such as CRISPR-Cas system) this technique might also prove useful to those who want to have healthy children but suffer from inherited diseases. The current code of ethics may be against reproductive cloning. However, this will change with time as it happened with most of the revolutionary scientific breakthroughs. After all, it is the right of every human to have healthy offspring and it is the question of

  13. A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer

    Directory of Open Access Journals (Sweden)

    Madhusudana Girija Sanal

    2014-09-01

    Full Text Available Even after several years since the discovery of human embryonic stem cells and induced pluripotent stem cells (iPSC, we are still unable to make any significant therapeutic benefits out of them such as cell therapy or generation of organs for transplantation. Recent success in somatic cell nuclear transfer (SCNT made it possible to generate diploid embryonic stem cells, which opens up the way to make high-quality pluripotent stem cells. However, the process is highly inefficient and hence expensive compared to the generation of iPSC. Even with the latest SCNT technology, we are not sure whether one can make therapeutic quality pluripotent stem cell from any patient’s somatic cells or by using oocytes from any donor. Combining iPSC technology with SCNT, that is, by using the nucleus of the candidate somatic cell which got reprogrammed to pluripotent state instead that of the unmodified nucleus of the candidate somatic cell, would boost the efficiency of the technique, and we would be able to generate therapeutic quality pluripotent stem cells. Induced pluripotent stem cell nuclear transfer (iPSCNT combines the efficiency of iPSC generation with the speed and natural reprogramming environment of SCNT. The new technique may be called iPSCNT. This technique could prove to have very revolutionary benefits for humankind. This could be useful in generating organs for transplantation for patients and for reproductive cloning, especially for childless men and women who cannot have children by any other techniques. When combined with advanced gene editing techniques (such as CRISPR-Cas system this technique might also prove useful to those who want to have healthy children but suffer from inherited diseases. The current code of ethics may be against reproductive cloning. However, this will change with time as it happened with most of the revolutionary scientific breakthroughs. After all, it is the right of every human to have healthy offspring and it is

  14. Dental Stem Cell in Tooth Development and Advances of Adult Dental Stem Cell in Regenerative Therapies.

    Science.gov (United States)

    Tan, Jiali; Xu, Xin; Lin, Jiong; Fan, Li; Zheng, Yuting; Kuang, Wei

    2015-01-01

    Stem cell-based therapies are considered as a promising treatment for many clinical usage such as tooth regeneration, bone repairation, spinal cord injury, and so on. However, the ideal stem cell for stem cell-based therapy still remains to be elucidated. In the past decades, several types of stem cells have been isolated from teeth, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), dental follicle progenitor stem cells (DFPCs) and stem cells from apical papilla (SCAP), which may be a good source for stem cell-based therapy in certain disease, especially when they origin from neural crest is considered. In this review, the specific characteristics and advantages of the adult dental stem cell population will be summarized and the molecular mechanisms of the differentiation of dental stem cell during tooth development will be also discussed.

  15. mRNA transfection of mouse and human neural stem cell cultures.

    Directory of Open Access Journals (Sweden)

    Samuel McLenachan

    Full Text Available The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages.

  16. mRNA Transfection of Mouse and Human Neural Stem Cell Cultures

    Science.gov (United States)

    McLenachan, Samuel; Zhang, Dan; Palomo, Ana Belén Alvarez; Edel, Michael J.; Chen, Fred K.

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages. PMID:24386231

  17. mRNA transfection of mouse and human neural stem cell cultures.

    Science.gov (United States)

    McLenachan, Samuel; Zhang, Dan; Palomo, Ana Belén Alvarez; Edel, Michael J; Chen, Fred K

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages.

  18. Limbal Stem Cell Deficiency and Treatment with Stem Cell Transplantation.

    Science.gov (United States)

    Barut Selver, Özlem; Yağcı, Ayşe; Eğrilmez, Sait; Gürdal, Mehmet; Palamar, Melis; Çavuşoğlu, Türker; Ateş, Utku; Veral, Ali; Güven, Çağrı; Wolosin, Jose Mario

    2017-10-01

    The cornea is the outermost tissue of the eye and it must be transparent for the maintenance of good visual function. The superficial epithelium of the cornea, which is renewed continuously by corneal stem cells, plays a critical role in the permanence of this transparency. These stem cells are localized at the cornea-conjunctival transition zone, referred to as the limbus. When this zone is affected/destroyed, limbal stem cell deficiency ensues. Loss of limbal stem cell function allows colonization of the corneal surface by conjunctival epithelium. Over 6 million people worldwide are affected by corneal blindness, and limbal stem cell deficiency is one of the main causes. Fortunately, it is becoming possible to recover vision by autologous transplantation of limbal cells obtained from the contralateral eye in unilateral cases. Due to the potential risks to the donor eye, only a small amount of tissue can be obtained, in which only 1-2% of the limbal epithelial cells are actually limbal stem cells. Vigorous attempts are being made to expand limbal stem cells in culture to preserve or even enrich the stem cell population. Ex vivo expanded limbal stem cell treatment in limbal stem cell deficiency was first reported in 1997. In the 20 years since, various protocols have been developed for the cultivation of limbal epithelial cells. It is still not clear which method promotes effective stem cell viability and this remains a subject of ongoing research. The most preferred technique for limbal cell culture is the explant culture model. In this approach, a small donor eye limbal biopsy is placed as an explant onto a biocompatible substrate (preferably human amniotic membrane) for expansion. The outgrowth (cultivated limbal epithelial cells) is then surgically transferred to the recipient eye. Due to changing regulations concerning cell-based therapy, the implementation of cultivated limbal epithelial transplantation in accordance with Good Laboratory Practice using

  19. Cloning of Soluble Human Stem Cell Factor in pET-26b(+) Vector.

    Science.gov (United States)

    Asghari, Salman; Shekari Khaniani, Mahmoud; Darabi, Masood; Mansoori Derakhshan, Sima

    2014-01-01

    Stem cell factor (SCF) plays an important role in the survival, proliferation and differentiation of hematopoietic stem cells and progenitor cells. Potential therapeutic applications of SCF include hematopoietic stem cell mobilization, exvivo stem/progenitor cell expansion, gene therapy, and immunotherapy. Considering the cost and problem in accessibility of this product in Iran, clears the importance of indigenizing production of rhSCF. In the present work, we describe the construction of the soluble rhSCF expression vector in pET-26b (+) with periplasmic localization potential. Following PCR amplification of human SCF ORF, it is cloned in pET-26b (+) vector in NcoI and XhoI sites. The recombinant construct was transformed into BL21 (DE3) Ecoli strains. The construction of recombinant vector was verified by colony PCR and sequence analysis of pET26b-hSCF vector. Sequence analyses proved that human SCF ORF has been inserted into NcoI and XhoI site with correct orientation downstream of strong T7 promotor and showed no nucleotide errors. The SCF ORF was successfully cloned in pET-26b (+) expression vector and is ready for future production of SCF protein.

  20. Islet neogenesis potential of human adult stem cells and its applications in cell replacement therapy for diabetes

    Directory of Open Access Journals (Sweden)

    Bhonde RR

    2008-11-01

    Full Text Available In recent years regenerative biology has reached to greater heights due to its therapeutic potential in treating degenerative diseases; as they are not curable by modern medicine. With the advent of research in stem cells and developmental biology the regenerative potential of adult resident stem cells is becoming clearer. The long term objective of regenerative medicine or cell therapy is to treat patients with their own stem cells. These stem cells could be derived from the diseased organs such as skin, liver, pancreas etc. or from reservoirs of multipotent stem cells such as bone marrow or cord blood.Manipulating the ability of tissue resident stem cells as well as from multipotent reservoirs such as bone marrow, umbilical cord and cord blood to give rise to endocrine cells may open new avenues in the treatment of diabetes. A better understanding of stem cell biology would almost certainly allow for the establishment of efficient and reliable cell transplantation experimental programs in the clinic. We show here that multipotent mesenchymal stem cells can be isolated from various sources such as the bone marrow, placenta, umbilical cord. Upon stimulation with specific growth factors they differentiate into islet like clusters (ILCs. When ILCs obtained from the above mentioned sources were transplanted in experimental diabetic mice, restoration of normoglycemia was observed within three weeks of transplantation with concomitant increase in the body weight. These euglycemic mice exhibited normal glucose tolerance test indicating normal utilization of glucose. Allthough the MSCs isolated from all the sources had the same characteristics; they showed significant differences in their islet differentiation potential. ILCs isolated for the human bone marrow did not show any pancreatic hormones in vitro, but upon transplantation they matured into insulin and somatostatin producing hormones. Placental MSCs as well as ILCs showed insulin trascripts

  1. DNA methylation dynamics in human induced pluripotent stem cells over time.

    Directory of Open Access Journals (Sweden)

    Koichiro Nishino

    2011-05-01

    Full Text Available Epigenetic reprogramming is a critical event in the generation of induced pluripotent stem cells (iPSCs. Here, we determined the DNA methylation profiles of 22 human iPSC lines derived from five different cell types (human endometrium, placental artery endothelium, amnion, fetal lung fibroblast, and menstrual blood cell and five human embryonic stem cell (ESC lines, and we followed the aberrant methylation sites in iPSCs for up to 42 weeks. The iPSCs exhibited distinct epigenetic differences from ESCs, which were caused by aberrant methylation at early passages. Multiple appearances and then disappearances of random aberrant methylation were detected throughout iPSC reprogramming. Continuous passaging of the iPSCs diminished the differences between iPSCs and ESCs, implying that iPSCs lose the characteristics inherited from the parent cells and adapt to very closely resemble ESCs over time. Human iPSCs were gradually reprogrammed through the "convergence" of aberrant hyper-methylation events that continuously appeared in a de novo manner. This iPS reprogramming consisted of stochastic de novo methylation and selection/fixation of methylation in an environment suitable for ESCs. Taken together, random methylation and convergence are driving forces for long-term reprogramming of iPSCs to ESCs.

  2. Simultaneous isolation of vascular endothelial cells and mesenchymal stem cells from the human umbilical cord.

    Science.gov (United States)

    Kadam, Sachin S; Tiwari, Shubha; Bhonde, Ramesh R

    2009-01-01

    The umbilical cord represents the link between mother and fetus during pregnancy. This cord is usually discarded as a biological waste after the child's birth; however, its importance as a "store house" of stem cells has been explored recently. We developed a method of simultaneous isolation of endothelial cells (ECs) from the vein and mesenchymal stem cells from umbilical cord Wharton's jelly of the same cord. The isolation protocol has been simplified, modified, and improvised with respect to choice of enzyme and enzyme mixture, digestion time, cell yield, cell growth, and culture medium. Isolated human umbilical vascular ECs (hUVECs) were positive for von-Willibrand factor, a classical endothelial marker, and could form capillary-like structures when seeded on Matrigel, thus proving their functionality. The isolated human umbilical cord mesenchymal stem cells (hUCMSCs) were found positive for CD44, CD90, CD 73, and CD117 and were found negative for CD33, CD34, CD45, and CD105 surface markers; they were also positive for cytoskeleton markers of smooth muscle actin and vimentin. The hUCMSCs showed multilineage differentiation potential and differentiated into adipogenic, chondrogenic, osteogenic, and neuronal lineages under influence of lineage specific differentiation medium. Thus, isolating endothelial cells as well as mesenchymal cells from the same umbilical cord could lead to complete utilization of the available tissue for the tissue engineering and cell therapy.

  3. Generation of induced pluripotent stem cells with high efficiency from human embryonic renal cortical cells.

    Science.gov (United States)

    Yao, Ling; Chen, Ruifang; Wang, Pu; Zhang, Qi; Tang, Hailiang; Sun, Huaping

    2016-01-01

    Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) emerges as a prospective therapeutic angle in regenerative medicine and a tool for drug screening. Although increasing numbers of iPSCs from different sources have been generated, there has been limited progress in yield of iPSC. Here, we show that four Yamanaka factors Oct4, Sox2, Klf4 and c-Myc can convert human embryonic renal cortical cells (hERCCs) to pluripotent stem cells with a roughly 40-fold higher reprogramming efficiency compared with that of adult human dermal fibroblasts. These iPSCs show pluripotency in vitro and in vivo, as evidenced by expression of pluripotency associated genes, differentiation into three embryonic germ layers by teratoma tests, as well as neuronal fate specification by embryoid body formation. Moreover, the four exogenous genes are effectively silenced in these iPSCs. This study highlights the use of hERCCs to generate highly functional human iPSCs which may aid the study of genetic kidney diseases and accelerate the development of cell-based regenerative therapy.

  4. Reactive Oxygen Species Are Required for Human Mesenchymal Stem Cells to Initiate Proliferation after the Quiescence Exit

    Directory of Open Access Journals (Sweden)

    O. G. Lyublinskaya

    2015-01-01

    Full Text Available The present study focuses on the involvement of reactive oxygen species (ROS in the process of mesenchymal stem cells “waking up” and entering the cell cycle after the quiescence. Using human endometrial mesenchymal stem cells (eMSCs, we showed that intracellular basal ROS level is positively correlated with the proliferative status of the cell cultures. Our experiments with the eMSCs synchronized in the G0 phase of the cell cycle revealed a transient increase in the ROS level upon the quiescence exit after stimulation of the cell proliferation. This increase was registered before the eMSC entry to the S-phase of the cell cycle, and elimination of this increase by antioxidants (N-acetyl-L-cysteine, Tempol, and Resveratrol blocked G1–S-phase transition. Similarly, a cell cycle arrest which resulted from the antioxidant treatment was observed in the experiments with synchronized human mesenchymal stem cells derived from the adipose tissue. Thus, we showed that physiologically relevant level of ROS is required for the initiation of human mesenchymal stem cell proliferation and that low levels of ROS due to the antioxidant treatment can block the stem cell self-renewal.

  5. Successful isolation, in vitro expansion and characterization of stem cells from Human Dental Pulp

    Directory of Open Access Journals (Sweden)

    Preethy SP

    2010-01-01

    Full Text Available BACKGROUND: Recent studies have shown that mesenchymal stem cells isolated from post natal human dental pulp, (Dental pulp stem cells-DPSCs which is from permanent teeth and SHED (stem cells from human exfoliated deciduous teeth,the Periodontal ligament stem cells (PDLSC and Stem cells from root Apical papilla(SCAPhave the potential to differentiate into cells of a variety of tissues including heart, muscle, cartilage, bone, nerve, salivary glands, teeth etc(1,2,3,4.This multipotential ability of DPSCs is being researched for clinical application for treating a variety of diseases like myocardial infarction, muscular dystrophy, neuro-degenerative disorders, cartilage replacement, tooth regeneration and for repair of bone defects to mention a few. Moreover, the isolation of stem cells from teeth is minimally invasive, readily accessible and the non immunogenic characteristic of dental stem cells has paved the way for efforts to store the exfoliated deciduous teeth or milk teeth which is usually discarded, for use in the future. In this study we have isolated and expanded in vitro, the cells obtained from human dental pulp. MATERIALS AND METHODS: After obtaining written informed consent, 24 teeth that were extracted for therapeutic or cosmetic reasons from 16 patients were used in this study. The specimens were transported from the clinic to NCRM lab taking 6 to 48 Hrs. For removal of the pulp tissue, the teeth were split obliquely at the Cementoenamel junction and the pulp tissue was isolated using brooches. The extracted pulp tissues were subjected to digestion using Collagenase type-I and type II at 37˚C for 15- 30 minutes. The digested cells were filtered with 70µm filter and centrifuged at 1800 rpm for 10 minutes. The pellet was then suspended in Dulbecco’s modified Eagle’s medium (DMEM/Ham’s F12 supplemented with 15% fetal bovine serum , 100 U/ml penicillin, 100 µg/ml streptomycin,2 m M L -glutamine, and 2 m M nonessential amino

  6. Stem cells in pharmaceutical biotechnology.

    Science.gov (United States)

    Zuba-Surma, Ewa K; Józkowicz, Alicja; Dulak, Józef

    2011-11-01

    Multiple populations of stem cells have been indicated to potentially participate in regeneration of injured organs. Especially, embryonic stem cells (ESC) and recently inducible pluripotent stem cells (iPS) receive a marked attention from scientists and clinicians for regenerative medicine because of their high proliferative and differentiation capacities. Despite that ESC and iPS cells are expected to give rise into multiple regenerative applications when their side effects are overcame during appropriate preparation procedures, in fact their most recent application of human ESC may, however, reside in their use as a tool in drug development and disease modeling. This review focuses on the applications of stem cells in pharmaceutical biotechnology. We discuss possible relevance of pluripotent cell stem populations in developing physiological models for any human tissue cell type useful for pharmacological, metabolic and toxicity evaluation necessary in the earliest steps of drug development. The present models applied for preclinical drug testing consist of primary cells or immortalized cell lines that show limitations in terms of accessibility or relevance to their in vivo counterparts. The availability of renewable human cells with functional similarities to their in vivo counterparts is the first landmark for a new generation of cell-based assays. We discuss the approaches for using stem cells as valuable physiological targets of drug activity which may increase the strength of target validation and efficacy potentially resulting in introducing new safer remedies into clinical trials and the marketplace. Moreover, we discuss the possible applications of stem cells for elucidating mechanisms of disease pathogenesis. The knowledge about the mechanisms governing the development and progression of multitude disorders which would come from the cellular models established based on stem cells, may give rise to new therapeutical strategies for such diseases. All

  7. Adipose-Derived Stem Cells and Application Areas

    Directory of Open Access Journals (Sweden)

    Mujde Kivanc

    2015-09-01

    Full Text Available The use of stem cells derived from adipose tissue as an autologous and self-replenishing source for a variety of differentiated cell phenotypes, provides a great deal of promise for reconstructive surgery. The secret of the human body, stem cells are reserved. Stem cells are undifferentiated cells found in the human body placed in any body tissue characteristics that differentiate and win ever known to cross the tissue instead of more than 200 diseases and thus improve and, rejuvenates the tissues. So far, the cord blood of newborn babies are used as a source of stem cells, bone marrow, and twenty years after tooth stem cells in human adipose tissue, scientists studied more than other sources of stem cells in adipose tissue and discovered that. Increase in number of in vitro studies on adult stem cells, depending on many variables is that the stem cells directly to the desired soybean optimization can be performed.. We will conclude by assessing potential avenues for developing this incredibly promising field. The aim of this paper is to review the existing literature on applications of harvest, purification, characterization and cryopreservation of adipose-derived stem cells (ASCs. [Cukurova Med J 2015; 40(3.000: 399-408

  8. Prediction of human CNS pharmacokinetics using a physiologically-based pharmacokinetic modeling approach

    NARCIS (Netherlands)

    Yamamoto, Yumi; Valitalo, Pyry A.; Wong, Yin Cheong; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; Kokki, Hannu; Kokki, Merja; Danhof, Meindert; van Hasselt, Johan G. C.; de Lange, Elizabeth C. M.

    2018-01-01

    Knowledge of drug concentration-time profiles at the central nervous system (CNS) target-site is critically important for rational development of CNS targeted drugs. Our aim was to translate a recently published comprehensive CNS physiologically-based pharmacokinetic (PBPK) model from rat to human,

  9. Regeneration of cervical reserve cell-like cells from human induced pluripotent stem cells (iPSCs): A new approach to finding targets for cervical cancer stem cell treatment.

    Science.gov (United States)

    Sato, Masakazu; Kawana, Kei; Adachi, Katsuyuki; Fujimoto, Asaha; Yoshida, Mitsuyo; Nakamura, Hiroe; Nishida, Haruka; Inoue, Tomoko; Taguchi, Ayumi; Ogishima, Juri; Eguchi, Satoko; Yamashita, Aki; Tomio, Kensuke; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Osuga, Yutaka; Fujii, Tomoyuki

    2017-06-20

    Cervical reserve cells are epithelial progenitor cells that are pathologically evident as the origin of cervical cancer. Thus, investigating the characteristics of cervical reserve cells could yield insight into the features of cervical cancer stem cells (CSCs). In this study, we established a method for the regeneration of cervical reserve cell-like properties from human induced pluripotent stem cells (iPSCs) and named these cells induced reserve cell-like cells (iRCs). Approximately 70% of iRCs were positive for the reserve cell markers p63, CK5 and CK8. iRCs also expressed the SC junction markers CK7, AGR2, CD63, MMP7 and GDA. While iRCs expressed neither ERα nor ERβ, they expressed CA125. These data indicated that iRCs possessed characteristics of cervical epithelial progenitor cells. iRCs secreted higher levels of several inflammatory cytokines such as macrophage migration inhibitory factor (MIF), soluble intercellular adhesion molecule 1 (sICAM-1) and C-X-C motif ligand 10 (CXCL-10) compared with normal cervical epithelial cells. iRCs also expressed human leukocyte antigen-G (HLA-G), which is an important cell-surface antigen for immune tolerance and carcinogenesis. Together with the fact that cervical CSCs can originate from reserve cells, our data suggested that iRCs were potent immune modulators that might favor cervical cancer cell survival. In conclusion, by generating reserve cell-like properties from iPSCs, we provide a new approach that may yield new insight into cervical cancer stem cells and help find new oncogenic targets.

  10. Human induced pluripotent stem cell-derived beating cardiac tissues on paper.

    Science.gov (United States)

    Wang, Li; Xu, Cong; Zhu, Yujuan; Yu, Yue; Sun, Ning; Zhang, Xiaoqing; Feng, Ke; Qin, Jianhua

    2015-11-21

    There is a growing interest in using paper as a biomaterial scaffold for cell-based applications. In this study, we made the first attempt to fabricate a paper-based array for the culture, proliferation, and direct differentiation of human induced pluripotent stem cells (hiPSCs) into functional beating cardiac tissues and create "a beating heart on paper." This array was simply constructed by binding a cured multi-well polydimethylsiloxane (PDMS) mold with common, commercially available paper substrates. Three types of paper material (print paper, chromatography paper and nitrocellulose membrane) were tested for adhesion, proliferation and differentiation of human-derived iPSCs. We found that hiPSCs grew well on these paper substrates, presenting a three-dimensional (3D)-like morphology with a pluripotent property. The direct differentiation of human iPSCs into functional cardiac tissues on paper was also achieved using our modified differentiation approach. The cardiac tissue retained its functional activities on the coated print paper and chromatography paper with a beating frequency of 40-70 beats per min for up to three months. Interestingly, human iPSCs could be differentiated into retinal pigment epithelium on nitrocellulose membrane under the conditions of cardiac-specific induction, indicating the potential roles of material properties and mechanical cues that are involved in regulating stem cell differentiation. Taken together, these results suggest that different grades of paper could offer great opportunities as bioactive, low-cost, and 3D in vitro platforms for stem cell-based high-throughput drug testing at the tissue/organ level and for tissue engineering applications.

  11. Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Grayson, Warren L.; Zhao, Feng; Bunnell, Bruce; Ma, Teng

    2007-01-01

    Changes in oxygen concentrations affect many of the innate characteristics of stem and progenitor cells. Human mesenchymal stem cells (hMSCs) were maintained under hypoxic atmospheres (2% O 2 ) for up to seven in vitro passages. This resulted in approximately 30-fold higher hMSC expansion over 6 weeks without loss of multi-lineage differentiation capabilities. Under hypoxia, hMSCs maintained their growth-rates even after reaching confluence, resulting in the formation of multiple cell layers. Hypoxic hMSCs also displayed differences in the cell and nuclear morphologies as well as enhanced ECM formation and organization. These changes in cellular characteristics were accompanied by higher mRNA levels of Oct-4 and HIF-2α, as well as increased expression levels of connexin-43, a protein used in gap junction formation. The results from this study demonstrated that oxygen concentrations affected many aspects of stem-cell physiology, including growth and in vitro development, and may be a critical parameter during expansion and differentiation

  12. Practical Integration-Free Episomal Methods for Generating Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Kime, Cody; Rand, Tim A; Ivey, Kathryn N; Srivastava, Deepak; Yamanaka, Shinya; Tomoda, Kiichiro

    2015-10-06

    The advent of induced pluripotent stem (iPS) cell technology has revolutionized biomedicine and basic research by yielding cells with embryonic stem (ES) cell-like properties. The use of iPS-derived cells for cell-based therapies and modeling of human disease holds great potential. While the initial description of iPS cells involved overexpression of four transcription factors via viral vectors that integrated within genomic DNA, advances in recent years by our group and others have led to safer and higher quality iPS cells with greater efficiency. Here, we describe commonly practiced methods for non-integrating induced pluripotent stem cell generation using nucleofection of episomal reprogramming plasmids. These methods are adapted from recent studies that demonstrate increased hiPS cell reprogramming efficacy with the application of three powerful episomal hiPS cell reprogramming factor vectors and the inclusion of an accessory vector expressing EBNA1. Copyright © 2015 John Wiley & Sons, Inc.

  13. The requirement for freshly isolated human colorectal cancer (CRC) cells in isolating CRC stem cells.

    Science.gov (United States)

    Fan, F; Bellister, S; Lu, J; Ye, X; Boulbes, D R; Tozzi, F; Sceusi, E; Kopetz, S; Tian, F; Xia, L; Zhou, Y; Bhattacharya, R; Ellis, L M

    2015-02-03

    Isolation of colorectal cancer (CRC) cell populations enriched for cancer stem cells (CSCs) may facilitate target identification. There is no consensus regarding the best methods for isolating CRC stem cells (CRC-SCs). We determined the suitability of various cellular models and various stem cell markers for the isolation of CRC-SCs. Established human CRC cell lines, established CRC cell lines passaged through mice, patient-derived xenograft (PDX)-derived cells, early passage/newly established cell lines, and cells directly from clinical specimens were studied. Cells were FAC-sorted for the CRC-SC markers CD44, CD133, and aldehyde dehydrogenase (ALDH). Sphere formation and in vivo tumorigenicity studies were used to validate CRC-SC enrichment. None of the markers studied in established cell lines, grown either in vitro or in vivo, consistently enriched for CRC-SCs. In the three other cellular models, CD44 and CD133 did not reliably enrich for stemness. In contrast, freshly isolated PDX-derived cells or early passage/newly established CRC cell lines with high ALDH activity formed spheres in vitro and enhanced tumorigenicity in vivo, whereas cells with low ALDH activity did not. PDX-derived cells, early passages/newly established CRC cell lines and cells from clinical specimen with high ALDH activity can be used to identify CRC-SC-enriched populations. Established CRC cell lines should not be used to isolate CSCs.

  14. Identification of stable reference genes in differentiating human pluripotent stem cells.

    Science.gov (United States)

    Holmgren, Gustav; Ghosheh, Nidal; Zeng, Xianmin; Bogestål, Yalda; Sartipy, Peter; Synnergren, Jane

    2015-06-01

    Reference genes, often referred to as housekeeping genes (HKGs), are frequently used to normalize gene expression data based on the assumption that they are expressed at a constant level in the cells. However, several studies have shown that there may be a large variability in the gene expression levels of HKGs in various cell types. In a previous study, employing human embryonic stem cells (hESCs) subjected to spontaneous differentiation, we observed that the expression of commonly used HKG varied to a degree that rendered them inappropriate to use as reference genes under those experimental settings. Here we present a substantially extended study of the HKG signature in human pluripotent stem cells (hPSC), including nine global gene expression datasets from both hESC and human induced pluripotent stem cells, obtained during directed differentiation toward endoderm-, mesoderm-, and ectoderm derivatives. Sets of stably expressed genes were compiled, and a handful of genes (e.g., EID2, ZNF324B, CAPN10, and RABEP2) were identified as generally applicable reference genes in hPSCs across all cell lines and experimental conditions. The stability in gene expression profiles was confirmed by reverse transcription quantitative PCR analysis. Taken together, the current results suggest that differentiating hPSCs have a distinct HKG signature, which in some aspects is different from somatic cell types, and underscore the necessity to validate the stability of reference genes under the actual experimental setup used. In addition, the novel putative HKGs identified in this study can preferentially be used for normalization of gene expression data obtained from differentiating hPSCs. Copyright © 2015 the American Physiological Society.

  15. Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Achim Salamon

    2014-02-01

    Full Text Available Due to the weak regeneration potential of cartilage, there is a high clinical incidence of articular joint disease, leading to a strong demand for cartilaginous tissue surrogates. The aim of this study was to evaluate a gelatin-based hydrogel for its suitability to support chondrogenic differentiation of human mesenchymal stem cells. Gelatin-based hydrogels are biodegradable, show high biocompatibility, and offer possibilities to introduce functional groups and/or ligands. In order to prove their chondrogenesis-supporting potential, a hydrogel film was developed and compared with standard cell culture polystyrene regarding the differentiation behavior of human mesenchymal stem cells. Cellular basis for this study were human adipose tissue-derived mesenchymal stem cells, which exhibit differentiation potential along the adipogenic, osteogenic and chondrogenic lineage. The results obtained show a promotive effect of gelatin-based hydrogels on chondrogenic differentiation of mesenchymal stem cells in vitro and therefore encourage subsequent in vivo studies.

  16. [Eth