WorldWideScience

Sample records for human cns pathologies

  1. Monitoring the CNS pathology in aspartylglucosaminuria mice.

    Science.gov (United States)

    Tenhunen, K; Uusitalo, A; Autti, T; Joensuu, R; Kettunen, M; Kauppinen, R A; Ikonen, S; LaMarca, M E; Haltia, M; Ginns, E I; Jalanko, A; Peltonen, L

    1998-12-01

    Aspartylglucosaminuria (AGU) is a recessively inherited lysosomal storage disorder caused by the deficiency of the aspartylglucosaminidase (AGA) enzyme. The hallmark of AGU is slowly progressing mental retardation but the progression of brain pathology has remained uncharacterized in humans. Here we describe the long-term follow-up of mice carrying a targeted AGU-mutation in both alleles. Immunohistochemistry, histology, electron microscopy, quantitative magnetic resonance imaging (MRI) and behavioral studies were carried out to evaluate the CNS affection of the disease during development. The lysosomal storage vacuoles of the AGA -/- mice were most evident in central brain regions where MRI also revealed signs of brain atrophy similar to that seen in the older human patients. By immunohistochemistry and MRI examinations, a subtle delay of myelination was observed in AGA -/- mice. The life span of the AGA -/- mice was not shortened. Similar to the slow clinical course observed in human patients, the AGA -/- mice have behavioral symptoms that emerge at older age. Thus, the AGU knock-out mice represent an accurate model for AGU, both histopathologically and phenotypically.

  2. MicroRNA (miRNA) Signaling in the Human CNS in Sporadic Alzheimer's Disease (AD)-Novel and Unique Pathological Features.

    Science.gov (United States)

    Zhao, Yuhai; Pogue, Aileen I; Lukiw, Walter J

    2015-12-17

    Of the approximately ~2.65 × 10³ mature microRNAs (miRNAs) so far identified in Homo sapiens, only a surprisingly small but select subset-about 35-40-are highly abundant in the human central nervous system (CNS). This fact alone underscores the extremely high selection pressure for the human CNS to utilize only specific ribonucleotide sequences contained within these single-stranded non-coding RNAs (ncRNAs) for productive miRNA-mRNA interactions and the down-regulation of gene expression. In this article we will: (i) consolidate some of our still evolving ideas concerning the role of miRNAs in the CNS in normal aging and in health, and in sporadic Alzheimer's disease (AD) and related forms of chronic neurodegeneration; and (ii) highlight certain aspects of the most current work in this research field, with particular emphasis on the findings from our lab of a small pathogenic family of six inducible, pro-inflammatory, NF-κB-regulated miRNAs including miRNA-7, miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a and miRNA-155. This group of six CNS-abundant miRNAs significantly up-regulated in sporadic AD are emerging as what appear to be key mechanistic contributors to the sporadic AD process and can explain much of the neuropathology of this common, age-related inflammatory neurodegeneration of the human CNS.

  3. MicroRNA (miRNA Signaling in the Human CNS in Sporadic Alzheimer’s Disease (AD-Novel and Unique Pathological Features

    Directory of Open Access Journals (Sweden)

    Yuhai Zhao

    2015-12-01

    Full Text Available Of the approximately ~2.65 × 103 mature microRNAs (miRNAs so far identified in Homo sapiens, only a surprisingly small but select subset—about 35–40—are highly abundant in the human central nervous system (CNS. This fact alone underscores the extremely high selection pressure for the human CNS to utilize only specific ribonucleotide sequences contained within these single-stranded non-coding RNAs (ncRNAs for productive miRNA–mRNA interactions and the down-regulation of gene expression. In this article we will: (i consolidate some of our still evolving ideas concerning the role of miRNAs in the CNS in normal aging and in health, and in sporadic Alzheimer’s disease (AD and related forms of chronic neurodegeneration; and (ii highlight certain aspects of the most current work in this research field, with particular emphasis on the findings from our lab of a small pathogenic family of six inducible, pro-inflammatory, NF-κB-regulated miRNAs including miRNA-7, miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a and miRNA-155. This group of six CNS-abundant miRNAs significantly up-regulated in sporadic AD are emerging as what appear to be key mechanistic contributors to the sporadic AD process and can explain much of the neuropathology of this common, age-related inflammatory neurodegeneration of the human CNS.

  4. Myelin Damage and Repair in Pathologic CNS: Challenges and Prospects

    Directory of Open Access Journals (Sweden)

    Arsalan eAlizadeh

    2015-07-01

    Full Text Available Injury to the central nervous system (CNS results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells (OPCs and neural stem/progenitor cells (NPCs contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal. Emerging evidence indicates that optimal remyelination is restricted by multiple factors including (i low levels of factors that promote oligodendrogenesis; (ii cell death among newly generated oligodendrocytes, (iii inhibitory factors in the post-injury milieu that impede remyelination, and (iv deficient expression of key growth factors essential for proper re-construction of a highly organized myelin sheath. Considering these challenges, over the past several years, a number of cell-based strategies have been developed to optimize remyelination therapeutically. Outcomes of these basic and preclinical discoveries are promising and signify the importance of remyelination as a mechanism for improving functions in CNS injuries. In this review, we provide an overview on: 1 the precise organization of myelinated axons and the reciprocal axo-myelin interactions that warrant properly balanced physiological activities within the CNS; 2 underlying cause of demyelination and the structural and functional consequences of demyelination in axons following injury and disease; 3 the endogenous mechanisms of oligodendrocyte replacement; 4 the modulatory role of reactive astrocytes and inflammatory cells in remyelination; and 5 the current status of cell-based therapies for promoting remyelination. Careful elucidation of the cellular and molecular mechanisms of demyelination in the pathologic CNS is a key to better understanding the impact of

  5. Neuroinlfammation and comorbidities are frequently ignored factors in CNS pathology

    Institute of Scientific and Technical Information of China (English)

    Raluca Elena Sandu; Ana Maria Buga; Adriana Uzoni; Eugen Bogdan Petcu; Aurel Popa-Wagner

    2015-01-01

    Virtually all drug interventions that have been successful pre-clinically in experimental stroke have failed to prove their efifcacy in a clinical setting. This could be partly explained by the complexity and heterogeneity of human diseases as well as the associated co-morbidities which may render neuroprotective drugs less efifcacious in clinical practice. One aspect of crucial importance in the physiopathology of stroke which is not completely understood is neuroinlfammation. At the pres-ent time, it is becoming evident that subtle, but continuous neuroinlfammation can provide the ground for disorders such as cerebral small vessel disease. Moreover, advanced aging and a number of highly prevalent risk factors such as obesity, hypertension, diabetes and atherosclerosis could act as “silent contributors” promoting a chronic proinlfammatory state. This could aggravate the out-come of various pathological entities and can contribute to a number of subsequent post-stroke complications such as dementia, depression and neurodegeneration creating a pathological vicious cycle. Moreover, recent data suggests that the inlfammatory process might be closely linked with multiple neurodegenerative pathways related to depression. In addition, pro-inlfammatory cyto-kines could play a central role in the pathophysiology of both depression and dementia.

  6. Programmed cell death in developing human fetal CNS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The spatial and temporal distributions of programmed cell death (PCD) in developing central nervous system (CNS) of human fetuses ranging from 12 to 39 weeks of gestation were investigated using techniques of flow cytometry and terminal transferase-mediated nick end labeling (TUNEL). The results showed that PCD did occur in every representative brain region of all fetuses examined in different stages. It was found that there were two peaks of PCD appearing at the 12th and 39th weeks respectively, which suggested that the first peak of apoptosis may be involved in the selective elimination of neurons overproduced during the early development and the second may play an important role in establishing the correct neuronal circuitry.

  7. In vivo human apolipoprotein E isoform fractional turnover rates in the CNS.

    Directory of Open Access Journals (Sweden)

    Kristin R Wildsmith

    Full Text Available Apolipoprotein E (ApoE is the strongest genetic risk factor for Alzheimer's disease and has been implicated in the risk for other neurological disorders. The three common ApoE isoforms (ApoE2, E3, and E4 each differ by a single amino acid, with ApoE4 increasing and ApoE2 decreasing the risk of Alzheimer's disease (AD. Both the isoform and amount of ApoE in the brain modulate AD pathology by altering the extent of amyloid beta (Aβ peptide deposition. Therefore, quantifying ApoE isoform production and clearance rates may advance our understanding of the role of ApoE in health and disease. To measure the kinetics of ApoE in the central nervous system (CNS, we applied in vivo stable isotope labeling to quantify the fractional turnover rates of ApoE isoforms in 18 cognitively-normal adults and in ApoE3 and ApoE4 targeted-replacement mice. No isoform-specific differences in CNS ApoE3 and ApoE4 turnover rates were observed when measured in human CSF or mouse brain. However, CNS and peripheral ApoE isoform turnover rates differed substantially, which is consistent with previous reports and suggests that the pathways responsible for ApoE metabolism are different in the CNS and the periphery. We also demonstrate a slower turnover rate for CSF ApoE than that for amyloid beta, another molecule critically important in AD pathogenesis.

  8. Electrophysiological CNS-processes related to associative learning in humans.

    Science.gov (United States)

    Christoffersen, Gert R J; Schachtman, Todd R

    2016-01-01

    The neurophysiology of human associative memory has been studied with electroencephalographic techniques since the 1930s. This research has revealed that different types of electrophysiological processes in the human brain can be modified by conditioning: sensory evoked potentials, sensory induced gamma-band activity, periods of frequency-specific waves (alpha and beta waves, the sensorimotor rhythm and the mu-rhythm) and slow cortical potentials. Conditioning of these processes has been studied in experiments that either use operant conditioning or repeated contingent pairings of conditioned and unconditioned stimuli (classical conditioning). In operant conditioning, the appearance of a specific brain process is paired with an external stimulus (neurofeedback) and the feedback enables subjects to obtain varying degrees of control of the CNS-process. Such acquired self-regulation of brain activity has found practical uses for instance in the amelioration of epileptic seizures, Autism Spectrum Disorders (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). It has also provided communicative means of assistance for tetraplegic patients through the use of brain computer interfaces. Both extra and intracortically recorded signals have been coupled with contingent external feedback. It is the aim for this review to summarize essential results on all types of electromagnetic brain processes that have been modified by classical or operant conditioning. The results are organized according to type of conditioned EEG-process, type of conditioning, and sensory modalities of the conditioning stimuli.

  9. Cerebral Blastomycosis: Radiologic-Pathologic Correlation of Solitary CNS Blastomycosis Mass-Like Infection

    Directory of Open Access Journals (Sweden)

    Costas Stavrakis

    2015-01-01

    Full Text Available Blastomycosis is a fungal infection rarely seen in clinical practice. Endemic to the Midwestern United States as well as the Canadian provinces of Manitoba and Ontario, Blastomyces dermatitidis characteristically involves the skin and lungs. Central nervous system (CNS involvement, although a rare complication of this disease, can be fatal. The current literature on CNS blastomycosis primarily centers on the spectrum of traditional imaging features of T1- and T2-weighted imaging with which this entity can present. However, here we present the direct histopathologic correlation of the imaging findings of solitary mass like CNS blastomycosis, with an emphasis on the association of diffusion restriction within the lesion with a granulomatous immune response.

  10. MicroRNAs: Key Players in Microglia and Astrocyte Mediated Inflammation in CNS Pathologies.

    Science.gov (United States)

    Karthikeyan, Aparna; Patnala, Radhika; Jadhav, Shweta P; Eng-Ang, Ling; Dheen, S Thameem

    2016-01-01

    The significance of microglia and astrocytes in neural development, in maintaining synaptic connections and homeostasis in the healthy brain is well established. Microglia are dynamic immune cells of the brain that elicit an immune response during brain damage and also participate in tissue repair and regeneration, while astrocytes contribute to the local inflammatory response by producing proinflammatory cytokines and resolving neuronal damage through production of anti-inflammatory cytokines and neurotrophic factors. Recent efforts have focused on elucidating the epigenetic mechanisms which regulate glial cell behavior in normal and pathologic states. An important class of epigenetic regulators is microRNAs (miRNAs) which are small non-coding RNA molecules that regulate gene expression posttranscriptionally. Certain dysregulated miRNAs contribute to chronic microglial inflammation in the brain, thereby leading to progression of neurological diseases like Alzheimer's disease, traumatic injury, amyotrophic lateral sclerosis and stroke. Further, several miRNAs are differentially expressed in astrocytes after ischemia and spinal cord injury. Despite knowledge about miRNAs in neuroinflammation, little is known about effective delivery routes and pharmacokinetic data for miRNA based therapeutics. This review summarizes the current research on the role of miRNAs in promoting and inhibiting inflammatory response of microglia and astrocytes in a disease-specific manner. In addition, miRNA delivery as a therapeutic strategy to treat neuroinflammation is discussed.

  11. Human Vision Pathology Diagnostics by Photogrammetrics Means

    Science.gov (United States)

    Murynin, A.; Knyaz, V.; Mateev, I.

    2014-06-01

    One of the reasons of such vision pathology as human stereoscopic vision capability dysfunction is an asymmetry of a human face. As a rule, such dysfunctions occur as early as in the babyhood, when diagnostic methods applied for adults are ineffective. Early diagnostics and prophylaxis could help in treatment of such pathology and face 3D modeling is one of the promising ways to solve this problem.

  12. HuCNS-SC Human NSCs Fail to Differentiate, Form Ectopic Clusters, and Provide No Cognitive Benefits in a Transgenic Model of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Samuel E. Marsh

    2017-02-01

    Full Text Available Transplantation of neural stem cells (NSCs can improve cognition in animal models of Alzheimer's disease (AD. However, AD is a protracted disorder, and prior studies have examined only short-term effects. We therefore used an immune-deficient model of AD (Rag-5xfAD mice to examine long-term transplantation of human NSCs (StemCells Inc.; HuCNS-SCs. Five months after transplantation, HuCNS-SCs had engrafted and migrated throughout the hippocampus and exhibited no differences in survival or migration in response to β-amyloid pathology. Despite robust engraftment, HuCNS-SCs failed to terminally differentiate and over a quarter of the animals exhibited ectopic human cell clusters within the lateral ventricle. Unlike prior short-term experiments with research-grade HuCNS-SCs, we also found no evidence of improved cognition, no changes in brain-derived neurotrophic factor, and no increase in synaptic density. These data, while disappointing, reinforce the notion that individual human NSC lines need to be carefully assessed for efficacy and safety in appropriate long-term models.

  13. Metallothionein induction in human CNS in vitro: neuroprotection from ionizing radiation.

    Science.gov (United States)

    Cai, L; Cherian, M G; Iskander, S; Leblanc, M; Hammond, R R

    2000-07-01

    There have been extensive studies on the regulation of metallothionein (MT) synthesis, and its biological role in liver and kidney. Although there are few reports on brain MT, there is a growing interest in the role of MT in brain. There have been no publications to date on MT synthesis in the human central nervous system (CNS) following exposure to ionizing radiation. In the present study, primary human CNS cultures were used to examine the effect of ionizing radiation on MT mRNA and protein synthesis. In the same cultures, the neuroprotective effects of zinc (Zn) and cadmium (Cd)-induced MT synthesis from high-dose radiation were also examined. Primary, serum-free, human CNS cultures were exposed to 30 or 60 Gy gamma-rays. The total MT protein was then measured by a Cd-heme assay, and mRNA for MT-II and MT-III was detected by reverse transcription polymerase chain reaction (RT-PCR). Cytotoxicity was measured by LDH release and apoptotic cell death by DNA fragmentation analysis. Sublethal neuroglial injury was assessed morphologically using specific astrocytic (glial fibrillary acidic protein--GFAP) and neuronal (microtubule-associated protein 2--MAP2) immunohistochemical markers. The total MT protein content was increased 12h after exposure to 30Gy. The increase in MT content in response to 60Gy was not statistically significant. MT-II mRNA levels increased at 3 and 6h after exposure to 30Gy gamma-rays, with a maximum expression at 12-24 h. MT-III mRNA was not significantly affected. Exposure to 60 Gy, but not 30 Gy, caused a marked increase in LDH release. Cells exposed to 30 Gy or less showed some apoptotic cell death by DNA fragmentation analysis, while exposure to 60 Gy resulted in a DNA smear confirmed by LDH assays. Preinduction of MT by 5 microM Cd or 100 microM Zn resulted in a significant reduction in radiation-induced LDH release. Morphological evaluations revealed that Cd or Zn preincubation led to relative preservation of MAP2 staining and GFAP. Both

  14. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: Safety, pharmacokinetics, and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Vuillemenot, Brian R., E-mail: bvuillemenot@bmrn.com [BioMarin Pharmaceutical Inc., Novato, CA (United States); Kennedy, Derek [BioMarin Pharmaceutical Inc., Novato, CA (United States); Reed, Randall P.; Boyd, Robert B. [Northern Biomedical Research, Inc., Muskegon, MI (United States); Butt, Mark T. [Tox Path Specialists, LLC, Hagerstown, MD (United States); Musson, Donald G.; Keve, Steve; Cahayag, Rhea; Tsuruda, Laurie S.; O' Neill, Charles A. [BioMarin Pharmaceutical Inc., Novato, CA (United States)

    2014-05-15

    CLN2 disease is caused by deficiency in tripeptidyl peptidase-1 (TPP1), leading to neurodegeneration and death. The safety, pharmacokinetics (PK), and CNS distribution of recombinant human TPP1 (rhTPP1) were characterized following a single intracerebroventricular (ICV) or intrathecal-lumbar (IT-L) infusion to cynomolgus monkeys. Animals received 0, 5, 14, or 20 mg rhTPP1, ICV, or 14 mg IT-L, in artificial cerebrospinal fluid (aCSF) vehicle. Plasma and CSF were collected for PK analysis. Necropsies occurred at 3, 7, and 14 days post-infusion. CNS tissues were sampled for rhTPP1 distribution. TPP1 infusion was well tolerated and without effect on clinical observations or ECG. A mild increase in CSF white blood cells (WBCs) was detected transiently after ICV infusion. Isolated histological changes related to catheter placement and infusion were observed in ICV treated animals, including vehicle controls. The CSF and plasma exposure profiles were equivalent between animals that received an ICV or IT-L infusion. TPP1 levels peaked at the end of infusion, at which point the enzyme was present in plasma at 0.3% to 0.5% of CSF levels. TPP1 was detected in brain tissues with half-lives of 3–14 days. CNS distribution between ICV and IT-L administration was similar, although ICV resulted in distribution to deep brain structures including the thalamus, midbrain, and striatum. Direct CNS infusion of rhTPP1 was well tolerated with no drug related safety findings. The favorable nonclinical profile of ICV rhTPP1 supports the treatment of CLN2 by direct administration to the CNS. - Highlights: • TPP1 enzyme replacement therapy to the CNS is in development for CLN2 disease. • Toxicology, pharmacokinetics, and CNS distribution were assessed in monkeys. • TPP1 infusion directly to the brain did not result in any safety concerns. • A positive pharmacokinetic and distribution profile resulted from TPP1 infusion. • This study demonstrates the feasibility of ICV administered

  15. CNS-targeted production of IL-17A induces glial activation, microvascular pathology and enhances the neuroinflammatory response to systemic endotoxemia.

    Directory of Open Access Journals (Sweden)

    Julian Zimmermann

    Full Text Available Interleukin-17A (IL-17A is a key cytokine modulating the course of inflammatory diseases. Whereas effector functions of IL-17A like induction of antimicrobial peptides and leukocyte infiltration could clearly be demonstrated for peripheral organs, CNS specific effects are not well defined and appear controversial. To further clarify the functional significance of IL-17A in the CNS, we generated a transgenic mouse line with astrocyte-restricted expression of the IL-17A gene. GFAP/IL-17A transgenic mice develop normally and do not show any signs of neurological dysfunction. However, histological characterization revealed astrocytosis and activation of microglia. Demyelination, neurodegeneration or prominent tissue damage was not observed but a vascular pathology mimicking microangiopathic features was evident. Histological and flow cytometric analysis demonstrated the absence of parenchymal infiltration of immune cells into the CNS of GFAP/IL-17A transgenic mice. In GFAP/IL-17A mice, LPS-induced endotoxemia led to a more pronounced microglial activation with expansion of a distinct CD45(high/CD11b(+ population and increased induction of proinflammatory cytokines compared with controls. Our data argues against a direct role of IL-17A in mediating tissue damage during neuroinflammation. More likely IL-17A acts as a modulating factor in the network of induced cytokines. This novel mouse model will be a very useful tool to further characterize the role of IL-17A in neuroinflammatory disease models.

  16. CNS-targeted production of IL-17A induces glial activation, microvascular pathology and enhances the neuroinflammatory response to systemic endotoxemia.

    Science.gov (United States)

    Zimmermann, Julian; Krauthausen, Marius; Hofer, Markus J; Heneka, Michael T; Campbell, Iain L; Müller, Marcus

    2013-01-01

    Interleukin-17A (IL-17A) is a key cytokine modulating the course of inflammatory diseases. Whereas effector functions of IL-17A like induction of antimicrobial peptides and leukocyte infiltration could clearly be demonstrated for peripheral organs, CNS specific effects are not well defined and appear controversial. To further clarify the functional significance of IL-17A in the CNS, we generated a transgenic mouse line with astrocyte-restricted expression of the IL-17A gene. GFAP/IL-17A transgenic mice develop normally and do not show any signs of neurological dysfunction. However, histological characterization revealed astrocytosis and activation of microglia. Demyelination, neurodegeneration or prominent tissue damage was not observed but a vascular pathology mimicking microangiopathic features was evident. Histological and flow cytometric analysis demonstrated the absence of parenchymal infiltration of immune cells into the CNS of GFAP/IL-17A transgenic mice. In GFAP/IL-17A mice, LPS-induced endotoxemia led to a more pronounced microglial activation with expansion of a distinct CD45(high)/CD11b(+) population and increased induction of proinflammatory cytokines compared with controls. Our data argues against a direct role of IL-17A in mediating tissue damage during neuroinflammation. More likely IL-17A acts as a modulating factor in the network of induced cytokines. This novel mouse model will be a very useful tool to further characterize the role of IL-17A in neuroinflammatory disease models.

  17. Human prefrontal cortex: evolution, development, and pathology.

    Science.gov (United States)

    Teffer, Kate; Semendeferi, Katerina

    2012-01-01

    The prefrontal cortex is critical to many cognitive abilities that are considered particularly human, and forms a large part of a neural system crucial for normal socio-emotional and executive functioning in humans and other primates. In this chapter, we survey the literature regarding prefrontal development and pathology in humans as well as comparative studies of the region in humans and closely related primate species. The prefrontal cortex matures later in development than more caudal regions, and some of its neuronal subpopulations exhibit more complex dendritic arborizations. Comparative work suggests that the human prefrontal cortex differs from that of closely related primate species less in relative size than it does in organization. Specific reorganizational events in neural circuitry may have taken place either as a consequence of adjusting to increases in size or as adaptive responses to specific selection pressures. Living in complex environments has been recognized as a considerable factor in the evolution of primate cognition. Normal frontal lobe development and function are also compromised in several neurological and psychiatric disorders. A phylogenetically recent reorganization of frontal cortical circuitry may have been critical to the emergence of human-specific executive and social-emotional functions, and developmental pathology in these same systems underlies many psychiatric and neurological disorders, including autism and schizophrenia.

  18. Clearance of Heparan Sulfate and Attenuation of CNS Pathology by Intracerebroventricular BMN 250 in Sanfilippo Type B Mice

    Directory of Open Access Journals (Sweden)

    Mika Aoyagi-Scharber

    2017-09-01

    Full Text Available Sanfilippo syndrome type B (mucopolysaccharidosis IIIB, caused by inherited deficiency of α-N-acetylglucosaminidase (NAGLU, required for lysosomal degradation of heparan sulfate (HS, is a pediatric neurodegenerative disorder with no approved treatment. Intracerebroventricular (ICV delivery of a modified recombinant NAGLU, consisting of human NAGLU fused with insulin-like growth factor 2 (IGF2 for enhanced lysosomal targeting, was previously shown to result in marked enzyme uptake and clearance of HS storage in the Naglu−/− mouse brain. To further evaluate regional, cell type-specific, and dose-dependent biodistribution of NAGLU-IGF2 (BMN 250 and its effects on biochemical and histological pathology, Naglu−/− mice were treated with 1–100 μg ICV doses (four times over 2 weeks. 1 day after the last dose, BMN 250 (100 μg doses resulted in above-normal NAGLU activity levels, broad biodistribution, and uptake in all cell types, with NAGLU predominantly localized to neurons in the Naglu−/− mouse brain. This led to complete clearance of disease-specific HS and reduction of secondary lysosomal defects and neuropathology across various brain regions lasting for at least 28 days after the last dose. The substantial brain uptake of NAGLU attainable by this highest ICV dosage was required for nearly complete attenuation of disease-driven storage accumulations and neuropathology throughout the Naglu−/− mouse brain.

  19. Clearance of Heparan Sulfate and Attenuation of CNS Pathology by Intracerebroventricular BMN 250 in Sanfilippo Type B Mice.

    Science.gov (United States)

    Aoyagi-Scharber, Mika; Crippen-Harmon, Danielle; Lawrence, Roger; Vincelette, Jon; Yogalingam, Gouri; Prill, Heather; Yip, Bryan K; Baridon, Brian; Vitelli, Catherine; Lee, Amanda; Gorostiza, Olivia; Adintori, Evan G; Minto, Wesley C; Van Vleet, Jeremy L; Yates, Bridget; Rigney, Sara; Christianson, Terri M; Tiger, Pascale M N; Lo, Melanie J; Holtzinger, John; Fitzpatrick, Paul A; LeBowitz, Jonathan H; Bullens, Sherry; Crawford, Brett E; Bunting, Stuart

    2017-09-15

    Sanfilippo syndrome type B (mucopolysaccharidosis IIIB), caused by inherited deficiency of α-N-acetylglucosaminidase (NAGLU), required for lysosomal degradation of heparan sulfate (HS), is a pediatric neurodegenerative disorder with no approved treatment. Intracerebroventricular (ICV) delivery of a modified recombinant NAGLU, consisting of human NAGLU fused with insulin-like growth factor 2 (IGF2) for enhanced lysosomal targeting, was previously shown to result in marked enzyme uptake and clearance of HS storage in the Naglu(-/-) mouse brain. To further evaluate regional, cell type-specific, and dose-dependent biodistribution of NAGLU-IGF2 (BMN 250) and its effects on biochemical and histological pathology, Naglu(-/-) mice were treated with 1-100 μg ICV doses (four times over 2 weeks). 1 day after the last dose, BMN 250 (100 μg doses) resulted in above-normal NAGLU activity levels, broad biodistribution, and uptake in all cell types, with NAGLU predominantly localized to neurons in the Naglu(-/-) mouse brain. This led to complete clearance of disease-specific HS and reduction of secondary lysosomal defects and neuropathology across various brain regions lasting for at least 28 days after the last dose. The substantial brain uptake of NAGLU attainable by this highest ICV dosage was required for nearly complete attenuation of disease-driven storage accumulations and neuropathology throughout the Naglu(-/-) mouse brain.

  20. Hypoxia in CNS Pathologies: Emerging Role of miRNA-Based Neurotherapeutics and Yoga Based Alternative Therapies.

    Science.gov (United States)

    Minhas, Gillipsie; Mathur, Deepali; Ragavendrasamy, Balakrishnan; Sharma, Neel K; Paanu, Viraaj; Anand, Akshay

    2017-01-01

    Cellular respiration is a vital process for the existence of life. Any condition that results in deprivation of oxygen (also termed as hypoxia) may eventually lead to deleterious effects on the functioning of tissues. Brain being the highest consumer of oxygen is prone to increased risk of hypoxia-induced neurological insults. This in turn has been associated with many diseases of central nervous system (CNS) such as stroke, Alzheimer's, encephalopathy etc. Although several studies have investigated the pathophysiological mechanisms underlying ischemic/hypoxic CNS diseases, the knowledge about protective therapeutic strategies to ameliorate the affected neuronal cells is meager. This has augmented the need to improve our understanding of the hypoxic and ischemic events occurring in the brain and identify novel and alternate treatment modalities for such insults. MicroRNA (miRNAs), small non-coding RNA molecules, have recently emerged as potential neuroprotective agents as well as targets, under hypoxic conditions. These 18-22 nucleotide long RNA molecules are profusely present in brain and other organs and function as gene regulators by cleaving and silencing the gene expression. In brain, these are known to be involved in neuronal differentiation and plasticity. Therefore, targeting miRNA expression represents a novel therapeutic approach to intercede against hypoxic and ischemic brain injury. In the first part of this review, we will discuss the neurophysiological changes caused as a result of hypoxia, followed by the contribution of hypoxia in the neurodegenerative diseases. Secondly, we will provide recent updates and insights into the roles of miRNA in the regulation of genes in oxygen and glucose deprived brain in association with circadian rhythms and how these can be targeted as neuroprotective agents for CNS injuries. Finally, we will emphasize on alternate breathing or yogic interventions to overcome the hypoxia associated anomalies that could ultimately

  1. Hypoxia in CNS Pathologies: Emerging Role of miRNA-Based Neurotherapeutics and Yoga Based Alternative Therapies

    Directory of Open Access Journals (Sweden)

    Gillipsie Minhas

    2017-07-01

    Full Text Available Cellular respiration is a vital process for the existence of life. Any condition that results in deprivation of oxygen (also termed as hypoxia may eventually lead to deleterious effects on the functioning of tissues. Brain being the highest consumer of oxygen is prone to increased risk of hypoxia-induced neurological insults. This in turn has been associated with many diseases of central nervous system (CNS such as stroke, Alzheimer's, encephalopathy etc. Although several studies have investigated the pathophysiological mechanisms underlying ischemic/hypoxic CNS diseases, the knowledge about protective therapeutic strategies to ameliorate the affected neuronal cells is meager. This has augmented the need to improve our understanding of the hypoxic and ischemic events occurring in the brain and identify novel and alternate treatment modalities for such insults. MicroRNA (miRNAs, small non-coding RNA molecules, have recently emerged as potential neuroprotective agents as well as targets, under hypoxic conditions. These 18–22 nucleotide long RNA molecules are profusely present in brain and other organs and function as gene regulators by cleaving and silencing the gene expression. In brain, these are known to be involved in neuronal differentiation and plasticity. Therefore, targeting miRNA expression represents a novel therapeutic approach to intercede against hypoxic and ischemic brain injury. In the first part of this review, we will discuss the neurophysiological changes caused as a result of hypoxia, followed by the contribution of hypoxia in the neurodegenerative diseases. Secondly, we will provide recent updates and insights into the roles of miRNA in the regulation of genes in oxygen and glucose deprived brain in association with circadian rhythms and how these can be targeted as neuroprotective agents for CNS injuries. Finally, we will emphasize on alternate breathing or yogic interventions to overcome the hypoxia associated anomalies

  2. A reliable primary human CNS culture protocol for morphological studies of dendritic and synaptic elements.

    Science.gov (United States)

    Hammond, Robert R; Iskander, Sam; Achim, Cristian L; Hearn, Stephen; Nassif, Jane; Wiley, Clayton A

    2002-08-30

    Primary dissociated human fetal forebrain cultures were grown in defined serum-free conditions. At 4 weeks in vitro the cultures contained abundant morphologically well differentiated neurons with complex dendritic arbors. Astrocytic proliferation was negligible without the use of antimitotic agents. Confocal scanning laser microscopy (CSLM) and electron microscopy confirmed the presence of a dense neuropil, numerous cell-cell contacts and synapses. Neurons expressed a variety of proteins including growth associated protein-43 (GAP43), microtubule associated protein-2ab (MAP), class-III beta tubulin (C3BT), neurofilaments (NF), synaptophysin (SYN), parvalbumin (PA) and calbindin (CB). The cultures have proven to be reliable and simple to initiate and maintain for many weeks without passaging. They are useful in investigations of dendritic growth and injury of primary human CNS neurons.

  3. Evolving towards a human-cell based and multiscale approach to drug discovery for CNS disorders

    Directory of Open Access Journals (Sweden)

    Eric eSchadt

    2014-12-01

    Full Text Available A disruptive approach to therapeutic discovery and development is required in order to significantly improve the success rate of drug discovery for central nervous system (CNS disorders. In this review, we first assess the key factors contributing to the frequent clinical failures for novel drugs. Second, we discuss cancer translational research paradigms that addressed key issues in drug discovery and development and have resulted in delivering drugs with significantly improved outcomes for patients. Finally, we discuss two emerging technologies that could improve the success rate of CNS therapies: human induced pluripotent stem cell (hiPSC-based studies and multiscale biology models. Coincident with advances in cellular technologies that enable the generation of hiPSCs directly from patient blood or skin cells, together with methods to differentiate these hiPSC lines into specific neural cell types relevant to neurological disease, it is also now possible to combine data from large-scale forward genetics and post-mortem global epigenetic and expression studies in order to generate novel predictive models. The application of systems biology approaches to account for the multiscale nature of different data types, from genetic to molecular and cellular to clinical, can lead to new insights into human diseases that are emergent properties of biological networks, not the result of changes to single genes. Such studies have demonstrated the heterogeneity in etiological pathways and the need for studies on model systems that are patient-derived and thereby recapitulate neurological disease pathways with higher fidelity. In the context of two common and presumably representative neurological diseases, the neurodegenerative disease Alzheimer’s Disease (AD, and the psychiatric disorder schizophrenia (SZ, we propose the need for, and exemplify the impact of, a multiscale biology approach that can integrate panomic, clinical, imaging, and literature

  4. Molecular Pathology of Human Prion Diseases

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available Prion diseases are fatal neurodegenerative conditions in humans and animals. In this review, we summarize the molecular background of phenotypic variability, relation of prion protein (PrP to other proteins associated with neurodegenerative diseases, and pathogenesis of neuronal vulnerability. PrP exists in different forms that may be present in both diseased and non-diseased brain, however, abundant disease-associated PrP together with tissue pathology characterizes prion diseases and associates with transmissibility. Prion diseases have different etiological background with distinct pathogenesis and phenotype. Mutations of the prion protein gene are associated with genetic forms. The codon 129 polymorphism in combination with the Western blot pattern of PrP after proteinase K digestion serves as a basis for molecular subtyping of sporadic Creutzfeldt-Jakob disease. Tissue damage may result from several parallel, interacting or subsequent pathways that involve cellular systems associated with synapses, protein processing, oxidative stress, autophagy, and apoptosis.

  5. Pervasive supply of therapeutic lysosomal enzymes in the CNS of normal and Krabbe-affected non-human primates by intracerebral lentiviral gene therapy.

    Science.gov (United States)

    Meneghini, Vasco; Lattanzi, Annalisa; Tiradani, Luigi; Bravo, Gabriele; Morena, Francesco; Sanvito, Francesca; Calabria, Andrea; Bringas, John; Fisher-Perkins, Jeanne M; Dufour, Jason P; Baker, Kate C; Doglioni, Claudio; Montini, Eugenio; Bunnell, Bruce A; Bankiewicz, Krystof; Martino, Sabata; Naldini, Luigi; Gritti, Angela

    2016-05-02

    Metachromatic leukodystrophy (MLD) and globoid cell leukodystrophy (GLD or Krabbe disease) are severe neurodegenerative lysosomal storage diseases (LSD) caused by arylsulfatase A (ARSA) and galactosylceramidase (GALC) deficiency, respectively. Our previous studies established lentiviral gene therapy (GT) as a rapid and effective intervention to provide pervasive supply of therapeutic lysosomal enzymes in CNS tissues of MLD and GLD mice. Here, we investigated whether this strategy is similarly effective in juvenile non-human primates (NHP). To provide proof of principle for tolerability and biological efficacy of the strategy, we established a comprehensive study in normal NHP delivering a clinically relevant lentiviral vector encoding for the human ARSA transgene. Then, we injected a lentiviral vector coding for the human GALC transgene in Krabbe-affected rhesus macaques, evaluating for the first time the therapeutic potential of lentiviral GT in this unique LSD model. We showed favorable safety profile and consistent pattern of LV transduction and enzyme biodistribution in the two models, supporting the robustness of the proposed GT platform. We documented moderate inflammation at the injection sites, mild immune response to vector particles in few treated animals, no indication of immune response against transgenic products, and no molecular evidence of insertional genotoxicity. Efficient gene transfer in neurons, astrocytes, and oligodendrocytes close to the injection sites resulted in robust production and extensive spreading of transgenic enzymes in the whole CNS and in CSF, leading to supraphysiological ARSA activity in normal NHP and close to physiological GALC activity in the Krabbe NHP, in which biological efficacy was associated with preliminary indication of therapeutic benefit. These results support the rationale for the clinical translation of intracerebral lentiviral GT to address CNS pathology in MLD, GLD, and other neurodegenerative LSD.

  6. Developmental hyperbilirubinemia and CNS toxicity in mice humanized with the UDP glucuronosyltransferase 1 (UGT1) locus.

    Science.gov (United States)

    Fujiwara, Ryoichi; Nguyen, Nghia; Chen, Shujuan; Tukey, Robert H

    2010-03-16

    High levels of unconjugated bilirubin (UCB) in newborn children is associated with a reduction in hepatic UDP glucuronosyltransferase (UGT) 1A1 activity that can lead to CNS toxicity, brain damage, and even death. Little is known regarding those events that lead to UCB accumulation in brain tissue, and therefore, we sought to duplicate this condition in mice. The human UGT1 locus, encoding all 9-UGT1A genes including UGT1A1, was expressed in Ugt1(-/-) mice. Because the most common clinical condition associated with jaundice in adults is Gilbert's syndrome, which is characterized by an allelic polymorphism in the UGT1A1 promoter, hyperbilirubinemia was monitored in humanized UGT1 mice that expressed either the Gilbert's UGT1A1*28 allele [Tg(UGT1(A1*28))Ugt1(-/-) mice] or the normal UGT1A1*1 allele [Tg(UGT1(A1*1))Ugt1(-/-) mice]. Adult Tg(UGT1(A1*28))Ugt1(-/-) mice expressed elevated levels of total bilirubin (TB) compared with Tg(UGT1(A1*1))Ugt1(-/-) mice, confirming that the promoter polymorphism associated with the UGT1A1*28 allele contributes to hyperbilirubinemia in mice. However, TB accumulated to near toxic levels during neonatal development, a finding that is independent of the Gilbert's UGT1A1*28 promoter polymorphism. Whereas serum TB levels eventually returned to adult levels, TB clearance in neonatal mice was not associated with hepatic UGT1A1 expression. In approximately 10% of the humanized UGT1 mice, peak TB levels culminated in seizures followed by death. UCB deposition in brain tissue and the ensuing seizures were associated with developmental milestones and can be prevented by enhancing regulation of the UGT1A1 gene in neonatal mice.

  7. New tools for studying microglia in the mouse and human CNS.

    Science.gov (United States)

    Bennett, Mariko L; Bennett, F Chris; Liddelow, Shane A; Ajami, Bahareh; Zamanian, Jennifer L; Fernhoff, Nathaniel B; Mulinyawe, Sara B; Bohlen, Christopher J; Adil, Aykezar; Tucker, Andrew; Weissman, Irving L; Chang, Edward F; Li, Gordon; Grant, Gerald A; Hayden Gephart, Melanie G; Barres, Ben A

    2016-03-22

    The specific function of microglia, the tissue resident macrophages of the brain and spinal cord, has been difficult to ascertain because of a lack of tools to distinguish microglia from other immune cells, thereby limiting specific immunostaining, purification, and manipulation. Because of their unique developmental origins and predicted functions, the distinction of microglia from other myeloid cells is critically important for understanding brain development and disease; better tools would greatly facilitate studies of microglia function in the developing, adult, and injured CNS. Here, we identify transmembrane protein 119 (Tmem119), a cell-surface protein of unknown function, as a highly expressed microglia-specific marker in both mouse and human. We developed monoclonal antibodies to its intracellular and extracellular domains that enable the immunostaining of microglia in histological sections in healthy and diseased brains, as well as isolation of pure nonactivated microglia by FACS. Using our antibodies, we provide, to our knowledge, the first RNAseq profiles of highly pure mouse microglia during development and after an immune challenge. We used these to demonstrate that mouse microglia mature by the second postnatal week and to predict novel microglial functions. Together, we anticipate these resources will be valuable for the future study and understanding of microglia in health and disease.

  8. Aluminum, the genetic apparatus of the human CNS and Alzheimer's disease (AD).

    Science.gov (United States)

    Pogue, A I; Lukiw, W J

    2016-06-01

    The genomes of eukaryotes orchestrate their expression to ensure an effective, homeostatic and functional gene signaling program, and this includes fundamentally altered patterns of transcription during aging, development, differentiation and disease. These actions constitute an extremely complex and intricate process as genetic operations such as transcription involve the very rapid translocation and polymerization of ribonucleotides using RNA polymerases, accessory transcription protein complexes and other interrelated chromatin proteins and genetic factors. As both free ribonucleotides and polymerized single-stranded RNA chains, ribonucleotides are highly charged with phosphate, and this genetic system is extremely vulnerable to disruption by a large number of electrostatic forces, and primarily by cationic metals such as aluminum. Aluminum has been shown by independent researchers to be particularly genotoxic to the genetic apparatus, and it has become reasonably clear that aluminum disturbs genetic signaling programs in the CNS that bear a surprising resemblance to those observed in Alzheimer's disease (AD) brain. This paper will focus on a discussion of two molecular-genetic aspects of aluminum genotoxicity: (1) the observation that micro-RNA (miRNA)-mediated global gene expression patterns in aluminum-treated transgenic animal models of AD (Tg-AD) strongly resemble those found in AD; and (2) the concept of "human biochemical individuality" and the hypothesis that individuals with certain gene expression patterns may be especially sensitive and perhaps predisposed to aluminum genotoxicity.

  9. Innate Interferons Regulate CNS Inflammation

    DEFF Research Database (Denmark)

    Dieu, Ruthe; Khorooshi, Reza M. H.; Mariboe, Anne

    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) whose pathology is characterised by demyelination and axonal damage. This results from interplay between CNS-resident glia, infiltrating leukocytes and a plethora of cytokines and chemokines. Currently, ...

  10. Transcriptional Regulation of CXCL5 in HIV-1-Infected Macrophages and Its Functional Consequences on CNS Pathology.

    Science.gov (United States)

    Guha, Debjani; Klamar, Cynthia R; Reinhart, Todd; Ayyavoo, Velpandi

    2015-05-01

    Human immunodeficiency virus-1 (HIV-1)-infected monocytes/macrophages and microglia release increased levels of proinflammatory cytokines and chemokines, including ELR+ (containing glutamic acid-leucine-arginine motif) chemokines. To investigate the role of HIV-1 infection on chemokine regulation, monocyte-derived macrophages (MDMs) from normal donors were infected with HIV-1 and the expression of chemokines and their downstream biological functions were evaluated. Among the tested chemokines, CXCL5 was upregulated significantly both at the mRNA and protein level in the HIV-1-infected MDMs compared with mock-infected cultures. Upregulation of CXCL5 in the HIV-1-infected MDMs is, in part, regulated by increased interleukin-1β (IL-1β) production and phosphorylation of ERK1/2. Functional analyses indicate that HIV-1-induced overexpression of CXCL5 has enhanced the ability to attract neutrophils, as observed by chemotaxis assay. However, exposure of NT2, SH-SY5Y cells, and primary neurons to HIV-1-infected MDM supernatants resulted in cell death that was not rescued by anti-CXCL5 antibody suggesting that CXCL5 does not have direct effect on neuronal death. Together, these results suggest that the increased level of CXCL5 in tissue compartments, including the central nervous system of HIV-1-infected individuals might alter the inflammatory response through the infiltration of neutrophils into tissue compartment, thus causing secondary effects on resident cells.

  11. Trace copper levels in the drinking water, but not zinc or aluminum influence CNS Alzheimer-like pathology.

    Science.gov (United States)

    Sparks, D L; Friedland, R; Petanceska, S; Schreurs, B G; Shi, J; Perry, G; Smith, M A; Sharma, A; Derosa, S; Ziolkowski, C; Stankovic, G

    2006-01-01

    Mounting evidence suggests copper may influence the progression of Alzheimer's disease by reducing clearance of the amyloid beta protein (Abeta) from the brain. Previous experiments show that addition of only 0.12 PPM copper (one-tenth the Environmental Protection Agency Human consumption limits) to distilled water was sufficient to precipitate the accumulation of Abeta in the brains of cholesterol-fed rabbits (1). Here we report that addition of copper to the drinking water of spontaneously hypercholesterolemic Watanabe rabbits, cholesterol-fed beagles and rabbits, PS1/APP transgenic mice produced significantly enhanced brain levels of Abeta. In contrast to the effects of copper, we found that aluminum- or zinc-ion-supplemented distilled water did not have a significant effect on brain Ab accumulation in cholesterol-fed rabbits. We also report that administration of distilled water produced a reduction in the expected accumulation of Ab in three separate animal models. Collectively, these data suggest that water quality may have a significant influence on disease progression and Ab neuropathology in AD.

  12. The Rise of Forensic Pathology in Human Medicine: Lessons for Veterinary Forensic Pathology.

    Science.gov (United States)

    Pollanen, M S

    2016-09-01

    The rise of forensic pathology in human medicine has greatly contributed to the administration of justice, public safety and security, and medical knowledge. However, the evolution of human forensic pathology has been challenging. Veterinary forensic pathologists can learn from some of the lessons that have informed the growth and development of human forensic pathology. Three main observations have emerged in the past decade. First, wrongful convictions tell us to use a truth-seeking stance rather than an a priori "think dirty" stance when investigating obscure death. Second, missed homicides and concealed homicides tell us that training and certification are the beginning of reliable forensic pathology. Third, failure of a sustainable institutional arrangement that fosters a combination of service, research, and teaching will lead to stagnation of knowledge. Forensic pathology of humans and animals will flourish, help protect society, and support justice if we embrace a modern biomedical scientific model for our practice. We must build training programs, contribute to the published literature, and forge strong collaborative institutions.

  13. A preliminary pathological study on human allotransplantation

    Institute of Scientific and Technical Information of China (English)

    WANG Hui-jun 王慧君; DING Yan-qing 丁彦青; PEI Guo-xian 裴国献; GU Li-qiang 顾立强; ZHU Li-jun 朱立军

    2003-01-01

    Objective: To observe the survival of hand allograft under the state of immunosuppression and the pathological changes of rejection in the recovery process.Methods: The biopsies of the skin, nerve, muscle, tendon and bone tissue of hand allografts during different stages from 1 day to 7 months after operation were observed using routine histological technique.Results: No significant changes due to rejection in skin, nerve, muscle and bone tissue were observed.But different degrees of weak rejective changes were found on the wall of blood vessels; in the muscle and nerve the reactions were markedly stronger than those found in skin tissues.Conclusions: The rejection in deep tissues should be monitored in controlling the rejection of hand allograft.

  14. Targeted CNS delivery using human MiniPromoters and demonstrated compatibility with adeno-associated viral vectors

    Directory of Open Access Journals (Sweden)

    Charles N de Leeuw

    2014-01-01

    Full Text Available Critical for human gene therapy is the availability of small promoters tools to drive gene expression in a highly specific and reproducible manner. We tackled this challenge by developing human DNA MiniPromoters (MiniPs using computational biology and phylogenetic conservation. MiniPs were tested in mouse as single-copy knock-ins at the Hprt locus on the X chromosome and evaluated for lacZ reporter expression in central nervous system (CNS and non–CNS tissue. Eighteen novel MiniPs driving expression in mouse brain were identified, 2 MiniPs for driving pan-neuronal expression and 17 MiniPs for the mouse eye. Key areas of therapeutic interest were represented in this set: the cerebral cortex, embryonic hypothalamus, spinal cord, bipolar and ganglion cells of the retina, and skeletal muscle. We also demonstrated that three retinal ganglion cell MiniPs exhibit similar cell type specificity when delivered via adeno-associated virus vectors intravitreally. We conclude that our methodology and characterization has resulted in desirable expression characteristics that are intrinsic to the MiniPromoter, not dictated by copy-number effects or genomic location, and results in constructs predisposed to success in adeno-associated virus. These MiniPs are immediately applicable for preclinical studies toward gene therapy in humans and are publicly available to facilitate basic and clinical research, and human gene therapy.

  15. Targeted CNS delivery using human MiniPromoters and demonstrated compatibility with adeno-associated viral vectors

    Science.gov (United States)

    de Leeuw, Charles N; Dyka, Frank M; Boye, Sanford L; Laprise, Stéphanie; Zhou, Michelle; Chou, Alice Y; Borretta, Lisa; McInerny, Simone C; Banks, Kathleen G; Portales-Casamar, Elodie; Swanson, Magdalena I; D’Souza, Cletus A; Boye, Shannon E; Jones, Steven JM; Holt, Robert A; Goldowitz, Daniel; Hauswirth, William W; Wasserman, Wyeth W; Simpson, Elizabeth M

    2014-01-01

    Critical for human gene therapy is the availability of small promoters tools to drive gene expression in a highly specific and reproducible manner. We tackled this challenge by developing human DNA MiniPromoters (MiniPs) using computational biology and phylogenetic conservation. MiniPs were tested in mouse as single-copy knock-ins at the Hprt locus on the X chromosome and evaluated for lacZ reporter expression in central nervous system (CNS) and non–CNS tissue. Eighteen novel MiniPs driving expression in mouse brain were identified, 2 MiniPs for driving pan-neuronal expression and 17 MiniPs for the mouse eye. Key areas of therapeutic interest were represented in this set: the cerebral cortex, embryonic hypothalamus, spinal cord, bipolar and ganglion cells of the retina, and skeletal muscle. We also demonstrated that three retinal ganglion cell MiniPs exhibit similar cell type specificity when delivered via adeno-associated virus vectors intravitreally. We conclude that our methodology and characterization has resulted in desirable expression characteristics that are intrinsic to the MiniPromoter, not dictated by copy-number effects or genomic location, and results in constructs predisposed to success in adeno-associated virus. These MiniPs are immediately applicable for preclinical studies toward gene therapy in humans and are publicly available to facilitate basic and clinical research, and human gene therapy. PMID:24761428

  16. Comprehensive small animal imaging strategies on a clinical 3 T dedicated head MR-scanner; adapted methods and sequence protocols in CNS pathologies.

    Directory of Open Access Journals (Sweden)

    Deepu R Pillai

    Full Text Available BACKGROUND: Small animal models of human diseases are an indispensable aspect of pre-clinical research. Being dynamic, most pathologies demand extensive longitudinal monitoring to understand disease mechanisms, drug efficacy and side effects. These considerations often demand the concomitant development of monitoring systems with sufficient temporal and spatial resolution. METHODOLOGY AND RESULTS: This study attempts to configure and optimize a clinical 3 Tesla magnetic resonance scanner to facilitate imaging of small animal central nervous system pathologies. The hardware of the scanner was complemented by a custom-built, 4-channel phased array coil system. Extensive modification of standard sequence protocols was carried out based on tissue relaxometric calculations. Proton density differences between the gray and white matter of the rodent spinal cord along with transverse relaxation due to magnetic susceptibility differences at the cortex and striatum of both rats and mice demonstrated statistically significant differences. The employed parallel imaging reconstruction algorithms had distinct properties dependent on the sequence type and in the presence of the contrast agent. The attempt to morphologically phenotype a normal healthy rat brain in multiple planes delineated a number of anatomical regions, and all the clinically relevant sequels following acute cerebral ischemia could be adequately characterized. Changes in blood-brain-barrier permeability following ischemia-reperfusion were also apparent at a later time. Typical characteristics of intra-cerebral haemorrhage at acute and chronic stages were also visualized up to one month. Two models of rodent spinal cord injury were adequately characterized and closely mimicked the results of histological studies. In the employed rodent animal handling system a mouse model of glioblastoma was also studied with unequivocal results. CONCLUSIONS: The implemented customizations including extensive

  17. The pathology of human spinal cord injury: defining the problems.

    Science.gov (United States)

    Norenberg, Michael D; Smith, Jon; Marcillo, Alex

    2004-04-01

    This article reviews the pathology of human spinal cord injury (SCI), focusing on potential differences between humans and experimental animals, as well as on aspects that may have mechanistic or therapeutic relevance. Importance is placed on astrocyte and microglial reactions. These cells carry out a myriad of functions and we review the evidence that supports their beneficial or detrimental effects. Likewise, vascular responses and the role of inflammation and demyelination in the mechanism of SCI are reviewed. Lastly, schwannosis is discussed, highlighting its high frequency and potential role when designing therapeutic interventions. We anticipate that a better understanding of the pathological responses in the human will be useful to investigators in their studies on the pathogenesis and therapy of SCI.

  18. Scientific basis for learning transfer from movements to urinary bladder functions for bladder repair in human patients with CNS injury.

    Science.gov (United States)

    Schalow, G

    2010-01-01

    Coordination Dynamics Therapy (CDT) has been shown to be able to partly repair CNS injury. The repair is based on a movement-based re-learning theory which requires at least three levels of description: the movement or pattern (and anamnesis) level, the collective variable level, and the neuron level. Upon CDT not only the actually performed movement pattern itself is repaired, but the entire dynamics of CNS organization is improved, which is the theoretical basis for (re-) learning transfer. The transfer of learning for repair from jumping on springboard and exercising on a special CDT and recording device to urinary bladder functions is investigated at the neuron level. At the movement or pattern level, the improvement of central nervous system (CNS) functioning in human patients can be seen (or partly measured) by the improvement of the performance of the pattern. At the collective variable level, coordination tendencies can be measured by the so-called 'coordination dynamics' before, during and after treatment. At the neuron level, re-learning can additionally be assessed by surface electromyography (sEMG) as alterations of single motor unit firings and motor programs. But to express the ongoing interaction between the numerous neural, muscular, and metabolic elements involved in perception and action, it is relevant to inquire how the individual afferent and efferent neurons adjust their phase and frequency coordination to other neurons to satisfy learning task requirements. With the single-nerve fibre action potential recording method it was possible to measure that distributed single neurons communicate by phase and frequency coordination. It is shown that this timed firing of neurons is getting impaired upon injury and has to be improved by learning The stability of phase and frequency coordination among afferent and efferent neuron firings can be related to pattern stability. The stability of phase and frequency coordination at the neuron level can

  19. Loss of methylation at the IFNG promoter and CNS-1 is associated with the development of functional IFN-γ memory in human CD4(+) T lymphocytes.

    Science.gov (United States)

    Dong, Jun; Chang, Hyun-Dong; Ivascu, Claudia; Qian, Yu; Rezai, Soheila; Okhrimenko, Anna; Cosmi, Lorenzo; Maggi, Laura; Eckhardt, Florian; Wu, Peihua; Sieper, Joachim; Alexander, Tobias; Annunziato, Francesco; Gossen, Manfred; Li, Jun; Radbruch, Andreas; Thiel, Andreas

    2013-03-01

    Cytokine memory for IFN-γ production by effector/memory Th1 cells plays a key role in both protective and pathological immune responses. To understand the epigenetic mechanism determining the ontogeny of effector/memory Th1 cells characterized by stable effector functions, we identified a T-cell-specific methylation pattern at the IFNG promoter and CNS-1 in ex vivo effector/memory Th1 cells, and investigated methylation dynamics of these regions during the development of effector/memory Th1 cells. During Th1 differentiation, demethylation occurred at both the promoter and CNS-1 regions of IFNG as early as 16 h, and this process was independent of cell proliferation and DNA synthesis. Using an IFN-γ capture assay, we found early IFN-γ-producing cells from 2-day differentiating cultures acquired "permissive" levels of demethylation and developed into effector/memory Th1 cells undergoing progressive demethylation at the IFNG promoter and CNS-1 when induced by IL-12. Methylation levels of these regions in effector/memory Th1 cells of peripheral blood from rheumatoid arthritis patients correlated inversely with reduced frequencies of IFN-γ-producers, coincident with recruitment of effector/memory Th1 cells to the site of inflammation. Thus, after termination of TCR stimulation, IL-12 signaling potentiates the stable functional IFN-γ memory in effector/memory Th1 cells characterized by hypomethylation at the IFNG promoter and CNS-1.

  20. A mouse model for fucosidosis recapitulates storage pathology and neurological features of the milder form of the human disease.

    Science.gov (United States)

    Wolf, Heike; Damme, Markus; Stroobants, Stijn; D'Hooge, Rudi; Beck, Hans Christian; Hermans-Borgmeyer, Irm; Lüllmann-Rauch, Renate; Dierks, Thomas; Lübke, Torben

    2016-09-01

    Fucosidosis is a rare lysosomal storage disorder caused by the inherited deficiency of the lysosomal hydrolase α-L-fucosidase, which leads to an impaired degradation of fucosylated glycoconjugates. Here, we report the generation of a fucosidosis mouse model, in which the gene for lysosomal α-L-fucosidase (Fuca1) was disrupted by gene targeting. Homozygous knockout mice completely lack α-L-fucosidase activity in all tested organs leading to highly elevated amounts of the core-fucosylated glycoasparagine Fuc(α1,6)-GlcNAc(β1-N)-Asn and, to a lesser extent, other fucosylated glycoasparagines, which all were also partially excreted in urine. Lysosomal storage pathology was observed in many visceral organs, such as in the liver, kidney, spleen and bladder, as well as in the central nervous system (CNS). On the cellular level, storage was characterized by membrane-limited cytoplasmic vacuoles primarily containing water-soluble storage material. In the CNS, cellular alterations included enlargement of the lysosomal compartment in various cell types, accumulation of secondary storage material and neuroinflammation, as well as a progressive loss of Purkinje cells combined with astrogliosis leading to psychomotor and memory deficits. Our results demonstrate that this new fucosidosis mouse model resembles the human disease and thus will help to unravel underlying pathological processes. Moreover, this model could be utilized to establish diagnostic and therapeutic strategies for fucosidosis.

  1. A mouse model for fucosidosis recapitulates storage pathology and neurological features of the milder form of the human disease

    Directory of Open Access Journals (Sweden)

    Heike Wolf

    2016-09-01

    Full Text Available Fucosidosis is a rare lysosomal storage disorder caused by the inherited deficiency of the lysosomal hydrolase α-L-fucosidase, which leads to an impaired degradation of fucosylated glycoconjugates. Here, we report the generation of a fucosidosis mouse model, in which the gene for lysosomal α-L-fucosidase (Fuca1 was disrupted by gene targeting. Homozygous knockout mice completely lack α-L-fucosidase activity in all tested organs leading to highly elevated amounts of the core-fucosylated glycoasparagine Fuc(α1,6-GlcNAc(β1-N-Asn and, to a lesser extent, other fucosylated glycoasparagines, which all were also partially excreted in urine. Lysosomal storage pathology was observed in many visceral organs, such as in the liver, kidney, spleen and bladder, as well as in the central nervous system (CNS. On the cellular level, storage was characterized by membrane-limited cytoplasmic vacuoles primarily containing water-soluble storage material. In the CNS, cellular alterations included enlargement of the lysosomal compartment in various cell types, accumulation of secondary storage material and neuroinflammation, as well as a progressive loss of Purkinje cells combined with astrogliosis leading to psychomotor and memory deficits. Our results demonstrate that this new fucosidosis mouse model resembles the human disease and thus will help to unravel underlying pathological processes. Moreover, this model could be utilized to establish diagnostic and therapeutic strategies for fucosidosis.

  2. A mouse model for fucosidosis recapitulates storage pathology and neurological features of the milder form of the human disease

    Science.gov (United States)

    Wolf, Heike; Stroobants, Stijn; D'Hooge, Rudi; Hermans-Borgmeyer, Irm; Lüllmann-Rauch, Renate; Dierks, Thomas; Lübke, Torben

    2016-01-01

    ABSTRACT Fucosidosis is a rare lysosomal storage disorder caused by the inherited deficiency of the lysosomal hydrolase α-L-fucosidase, which leads to an impaired degradation of fucosylated glycoconjugates. Here, we report the generation of a fucosidosis mouse model, in which the gene for lysosomal α-L-fucosidase (Fuca1) was disrupted by gene targeting. Homozygous knockout mice completely lack α-L-fucosidase activity in all tested organs leading to highly elevated amounts of the core-fucosylated glycoasparagine Fuc(α1,6)-GlcNAc(β1-N)-Asn and, to a lesser extent, other fucosylated glycoasparagines, which all were also partially excreted in urine. Lysosomal storage pathology was observed in many visceral organs, such as in the liver, kidney, spleen and bladder, as well as in the central nervous system (CNS). On the cellular level, storage was characterized by membrane-limited cytoplasmic vacuoles primarily containing water-soluble storage material. In the CNS, cellular alterations included enlargement of the lysosomal compartment in various cell types, accumulation of secondary storage material and neuroinflammation, as well as a progressive loss of Purkinje cells combined with astrogliosis leading to psychomotor and memory deficits. Our results demonstrate that this new fucosidosis mouse model resembles the human disease and thus will help to unravel underlying pathological processes. Moreover, this model could be utilized to establish diagnostic and therapeutic strategies for fucosidosis. PMID:27491075

  3. Dissecting phenotypic traits linked to human resilience to Alzheimer's pathology.

    Science.gov (United States)

    Perez-Nievas, Beatriz G; Stein, Thor D; Tai, Hwan-Ching; Dols-Icardo, Oriol; Scotton, Thomas C; Barroeta-Espar, Isabel; Fernandez-Carballo, Leticia; de Munain, Estibaliz Lopez; Perez, Jesus; Marquie, Marta; Serrano-Pozo, Alberto; Frosch, Mathew P; Lowe, Val; Parisi, Joseph E; Petersen, Ronald C; Ikonomovic, Milos D; López, Oscar L; Klunk, William; Hyman, Bradley T; Gómez-Isla, Teresa

    2013-08-01

    Clinico-pathological correlation studies and positron emission tomography amyloid imaging studies have shown that some individuals can tolerate substantial amounts of Alzheimer's pathology in their brains without experiencing dementia. Few details are known about the neuropathological phenotype of these unique cases that might prove relevant to understanding human resilience to Alzheimer's pathology. We conducted detailed quantitative histopathological and biochemical assessments on brains from non-demented individuals before death whose brains were free of substantial Alzheimer's pathology, non-demented individuals before death but whose post-mortem examination demonstrated significant amounts of Alzheimer's changes ('mismatches'), and demented Alzheimer's cases. Quantification of amyloid-β plaque burden, stereologically-based counts of neurofibrillary tangles, neurons and reactive glia, and morphological analyses of axons were performed in the multimodal association cortex lining the superior temporal sulcus. Levels of synaptic integrity markers, and soluble monomeric and multimeric amyloid-β and tau species were measured. Our results indicate that some individuals can accumulate equivalent loads of amyloid-β plaques and tangles to those found in demented Alzheimer's cases without experiencing dementia. Analyses revealed four main phenotypic differences among these two groups: (i) mismatches had striking preservation of neuron numbers, synaptic markers and axonal geometry compared to demented cases; (ii) demented cases had significantly higher burdens of fibrillar thioflavin-S-positive plaques and of oligomeric amyloid-β deposits reactive to conformer-specific antibody NAB61 than mismatches; (iii) strong and selective accumulation of hyperphosphorylated soluble tau multimers into the synaptic compartment was noted in demented cases compared with controls but not in mismatches; and (iv) the robust glial activation accompanying amyloid-β and tau pathologies in

  4. Lipidomics of human brain aging and Alzheimer's disease pathology.

    Science.gov (United States)

    Naudí, Alba; Cabré, Rosanna; Jové, Mariona; Ayala, Victoria; Gonzalo, Hugo; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2015-01-01

    Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context. © 2015 Elsevier Inc. All rights reserved.

  5. Study of Functional Status of CNS in Human-Operator in Conditions of Imitation Deep Spase Exploration

    Science.gov (United States)

    Marina, Skedina; Michael, Potapov; Anna, Kovaleva

    Functional status (FS) of CNS may influence human’s behavior and his professional activity. The purpose of study - analysis of FS CNS of human-operator in conditions of long-term isolation. The studies were conducted within the framework of the project «Mars-500» which simulates of interplanetary flight isolation conditions of different durations. We examined nine people aged from 26 to 40 years. Synchronous registration of classical bioelectric activity of brain (EEG) and a cerebral power exchange (a level of constant brain potential (LCP)) was carried out for study of functional status of CNS using the hardware-software complex «Neuro-KM - Omega-Neyroanalizator» (Ltd. «Statokin», Russia). The synchronical registration was performed in seven unipolar leads on a «10-20» (Fp1, Fp2, T3, T4, O1, O2, Cz) combined with the placement of reference electrode on the earlobe and «biological zero» electrode - on the wrist. During 105-days isolation with 3 volunteers on day 52 the following was observed: simultaneous displacement of α-rhythm localization, increase of its frequency by 10% with a decrease in the index and disorganization of α-activity, emergence of asymmetry. Appearance of LCP asymmetry for more than 5 mV (in one case - with a strong dominance of the left hemisphere) was registered with the overall reduction of the amplitude, indicating a stress reaction in isolation. Before 520-days isolation (6 volunteers) 3 from them had signs of stress reaction in accordance to EEG with: displacement of α-rhythm localization, increase of its frequency by 1-2 Hz and increase level LCP. During isolation before «exit on a surface of Mars» individual fluctuations of EEG and LCP were observed depending on the specifics of the crew activities. Directly «exit on a surface of Mars» for 2 volunteers of «crew of Mars» the increase in power of α-rhythm was observed. Other members of crew showed decrease power of α-rhythm. At various stages of experiment in 35

  6. Mycobacterium tuberculosis-infected human monocytes down-regulate microglial MMP-2 secretion in CNS tuberculosis via TNFα, NFκB, p38 and caspase 8 dependent pathways

    Directory of Open Access Journals (Sweden)

    Elkington Paul T

    2011-05-01

    Full Text Available Abstract Tuberculosis (TB of the central nervous system (CNS is a deadly disease characterized by extensive tissue destruction, driven by molecules such as Matrix Metalloproteinase-2 (MMP-2 which targets CNS-specific substrates. In a simplified cellular model of CNS TB, we demonstrated that conditioned medium from Mycobacterium tuberculosis-infected primary human monocytes (CoMTb, but not direct infection, unexpectedly down-regulates constitutive microglial MMP-2 gene expression and secretion by 72.8% at 24 hours, sustained up to 96 hours (P M.tb-infected monocyte-dependent networks paradoxically involves the pro-inflammatory mediators TNF-α, p38 MAP kinase and NFκB in addition to a novel caspase 8-dependent pathway.

  7. Ketamine displaces the novel NMDA receptor SPET probe [{sup 123}I]CNS-1261 in humans in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Stone, James M. [Institute of Psychiatry, King' s College London, De Crespigny Park London, SE5 8AF (United Kingdom)]. E-mail: j.stone@iop.kcl.ac.uk; Erlandsson, Kjell [Institute of Nuclear Medicine, University College London, London, W1N 8AA (United Kingdom); Arstad, Erik [Institute of Psychiatry, King' s College London, De Crespigny Park London, SE5 8AF (United Kingdom); Bressan, Rodrigo A. [Institute of Psychiatry, King' s College London, De Crespigny Park London, SE5 8AF (United Kingdom); Squassante, Lisa [GlaxoSmithKline (GSK), Verona 37135 (Italy); Teneggi, Vincenza [GlaxoSmithKline (GSK), Verona 37135 (Italy); Ell, Peter J. [Institute of Nuclear Medicine, University College London, London, W1N 8AA (United Kingdom); Pilowsky, Lyn S. [Institute of Psychiatry, King' s College London, De Crespigny Park London, SE5 8AF (United Kingdom); Institute of Nuclear Medicine, University College London, London, W1N 8AA (United Kingdom)

    2006-02-15

    [{sup 123}I]CNS-1261 [N-(1-naphthyl)-N'-(3-iodophenyl)-N-methylguanidine] is a high-affinity SPET ligand with selectivity for the intrachannel PCP/ketamine/MK-801 site of the N-methyl-D-aspartate (NMDA) receptor. This study evaluated the effects of ketamine (a specific competitor for the intrachannel PCP/ketamine/MK-801 site) on [{sup 123}I]CNS-1261 binding to NMDA receptors in vivo. Ten healthy volunteers underwent 2 bolus-plus-infusion [{sup 123}I]CNS-1261 scans, one during placebo and the other during a ketamine challenge. Ketamine administration led to a significant decrease in [{sup 123}I]CNS-1261 V {sub T} in most of the brain regions examined (P<.05). [{sup 123}I]CNS-1261 appears to be a specific ligand in vivo for the intrachannel PCP/ketamine/MK-801 NMDA binding site.

  8. Evaluation of helper-dependent canine adenovirus vectors in a 3D human CNS model

    Science.gov (United States)

    Simão, Daniel; Pinto, Catarina; Fernandes, Paulo; Peddie, Christopher J.; Piersanti, Stefania; Collinson, Lucy M.; Salinas, Sara; Saggio, Isabella; Schiavo, Giampietro; Kremer, Eric J.; Brito, Catarina; Alves, Paula M.

    2017-01-01

    Gene therapy is a promising approach with enormous potential for treatment of neurodegenerative disorders. Viral vectors derived from canine adenovirus type 2 (CAV-2) present attractive features for gene delivery strategies in the human brain, by preferentially transducing neurons, are capable of efficient axonal transport to afferent brain structures, have a 30-kb cloning capacity and have low innate and induced immunogenicity in pre-clinical tests. For clinical translation, in-depth pre-clinical evaluation of efficacy and safety in a human setting is primordial. Stem cell-derived human neural cells have a great potential as complementary tools by bridging the gap between animal models, which often diverge considerably from human phenotype, and clinical trials. Herein, we explore helper-dependent CAV-2 (hd-CAV-2) efficacy and safety for gene delivery in a human stem cell-derived 3D neural in vitro model. Assessment of hd-CAV-2 vector efficacy was performed at different multiplicities of infection, by evaluating transgene expression and impact on cell viability, ultrastructural cellular organization and neuronal gene expression. Under optimized conditions, hd-CAV-2 transduction led to stable long-term transgene expression with minimal toxicity. hd-CAV-2 preferentially transduced neurons, while human adenovirus type 5 (HAdV5) showed increased tropism towards glial cells. This work demonstrates, in a physiologically relevant 3D model, that hd-CAV-2 vectors are efficient tools for gene delivery to human neurons, with stable long-term transgene expression and minimal cytotoxicity. PMID:26181626

  9. Genotype-specific differences between mouse CNS stem cell lines expressing frontotemporal dementia mutant or wild type human tau.

    Directory of Open Access Journals (Sweden)

    Miranda E Orr

    Full Text Available Stem cell (SC lines that capture the genetics of disease susceptibility provide new research tools. To assess the utility of mouse central nervous system (CNS SC-containing neurosphere cultures for studying heritable neurodegenerative disease, we compared neurosphere cultures from transgenic mice that express human tau with the P301L familial frontotemporal dementia (FTD mutation, rTg(tau(P301L4510, with those expressing comparable levels of wild type human tau, rTg(tau(wt21221. rTg(tau(P301L4510 mice express the human tau(P301L variant in their forebrains and display cellular, histological, biochemical and behavioral abnormalities similar to those in human FTD, including age-dependent differences in tau phosphorylation that distinguish them from rTg(tau(wt21221 mice. We compared FTD-hallmark tau phosphorylation in neurospheres from rTg(tau(P301L4510 mice and from rTg(tau(wt21221 mice. The tau genotype-specific phosphorylation patterns in neurospheres mimicked those seen in mice, validating use of neurosphere cultures as models for studying tau phosphorylation. Genotype-specific tau phosphorylation was observed in 35 independent cell lines from individual fetuses; tau in rTg(tau(P301L4510 cultures was hypophosphorylated in comparison with rTg(tau(wt21221 as was seen in young adult mice. In addition, there were fewer human tau-expressing cells in rTg(tau(P301L4510 than in rTg(tau(wt21221 cultures. Following differentiation, neuronal filopodia-spine density was slightly greater in rTg(tau(P301L4510 than rTg(tau(wt21221 and control cultures. Together with the recapitulation of genotype-specific phosphorylation patterns, the observation that neurosphere lines maintained their cell line-specific-differences and retained SC characteristics over several passages supports the utility of SC cultures as surrogates for analysis of cellular disease mechanisms.

  10. DNA methylation functions as a critical regulator of Kir4.1 expression during CNS development.

    Science.gov (United States)

    Nwaobi, Sinifunanya E; Lin, Erica; Peramsetty, Sasank R; Olsen, Michelle L

    2014-03-01

    Kir4.1, a glial-specific K+ channel, is critical for normal CNS development. Studies using both global and glial-specific knockout of Kir4.1 reveal abnormal CNS development with the loss of the channel. Specifically, Kir4.1 knockout animals are characterized by ataxia, severe hypomyelination, and early postnatal death. Additionally, Kir4.1 has emerged as a key player in several CNS diseases. Notably, decreased Kir4.1 protein expression occurs in several human CNS pathologies including CNS ischemic injury, spinal cord injury, epilepsy, ALS, and Alzheimer's disease. Despite the emerging significance of Kir4.1 in normal and pathological conditions, its mechanisms of regulation are unknown. Here, we report the first epigenetic regulation of a K+ channel in the CNS. Robust developmental upregulation of Kir4.1 expression in rats is coincident with reductions in DNA methylation of the Kir4.1 gene, KCNJ10. Chromatin immunoprecipitation reveals a dynamic interaction between KCNJ10 and DNA methyltransferase 1 during development. Finally, demethylation of the KCNJ10 promoter is necessary for transcription. These findings indicate DNA methylation is a key regulator of Kir4.1 transcription. Given the essential role of Kir4.1 in normal CNS development, understanding the regulation of this K+ channel is critical to understanding normal glial biology.

  11. Immunohistochemistry of Programmed Cell Death in Archival Human Pathology Specimens

    Directory of Open Access Journals (Sweden)

    Takami Matsuyama

    2012-05-01

    Full Text Available Immunohistochemistry (IHC for detecting key signal molecules involved in programmed cell death (PCD in archival human pathology specimens is fairly well established. Detection of cleaved caspase-3 in lymphocytes in rheumatoid arthritis (RA and gastric surface foveolar glandular epithelia but not in synoviocytes in RA, gastric fundic glandular epithelia, or nasal NK/T-cell lymphoma (NKTCL cells suggests anti-apoptotic mechanisms in cell differentiation and in oncogenesis such as the induction of survivin. Enzymatically pretreated and ultra-super sensitive detection of beclin-1 in synoviocytes in RA and gastric fundic glandular epithelia suggests enhanced autophagy. The deposition of beclin-1 in fibrinoid necrosis in RA and expression of beclin-1 in detached gastric fundic glandular cells suggest that enhanced autophagy undergoes autophagic cell death (ACD. NKTCL exhibited enhanced autophagy through LC3 labeling and showed densely LC3 labeled cell-debris in regions of peculiar necrosis without deposition of beclin-1, indicating massive ACD in NKTCL and the alternative pathway enhancing autophagy following autophagic vesicle nucleation. Autophagy progression was monitored by labeling aggregated mitochondria and cathepsin D. The cell-debris in massive ACD in NKTCL were positive for 8-hydroxydeoxyguanosine, suggesting DNA oxidation occurred in ACD. Immunohistochemical autophagy and PCD analysis in archival human pathology specimens may offer new insights into autophagy in humans.

  12. Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors

    Energy Technology Data Exchange (ETDEWEB)

    Colleoni, Silvia, E-mail: silviacolleoni@avantea.it [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy); Galli, Cesare [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy); Dipartimento Clinico Veterinario, Universita di Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia (Italy); Giannelli, Serena G. [Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan (Italy); Armentero, Marie-Therese; Blandini, Fabio [Laboratory of Functional Neurochemistry, Interdepartmental Research Center for Parkinson' s Disease, Neurological Institute C. Mondino, Via Mondino 2, 27100 Pavia (Italy); Broccoli, Vania, E-mail: broccoli.vania@hsr.it [Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan (Italy); Lazzari, Giovanna, E-mail: giovannalazzari@avantea.it [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy)

    2010-04-15

    In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation. In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.

  13. Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmunity.

    Science.gov (United States)

    Shaw, C A; Tomljenovic, L

    2013-07-01

    We have examined the neurotoxicity of aluminum in humans and animals under various conditions, following different routes of administration, and provide an overview of the various associated disease states. The literature demonstrates clearly negative impacts of aluminum on the nervous system across the age span. In adults, aluminum exposure can lead to apparently age-related neurological deficits resembling Alzheimer's and has been linked to this disease and to the Guamanian variant, ALS-PDC. Similar outcomes have been found in animal models. In addition, injection of aluminum adjuvants in an attempt to model Gulf War syndrome and associated neurological deficits leads to an ALS phenotype in young male mice. In young children, a highly significant correlation exists between the number of pediatric aluminum-adjuvanted vaccines administered and the rate of autism spectrum disorders. Many of the features of aluminum-induced neurotoxicity may arise, in part, from autoimmune reactions, as part of the ASIA syndrome.

  14. Organosulfur compounds from alliaceae in the prevention of human pathologies.

    Science.gov (United States)

    Tapiero, Haim; Townsend, Danyelle M; Tew, Kenneth D

    2004-04-01

    A strong association between elevated plasma low-density-lipoprotein (LDL) and the development of cardiovascular diseases (CVD) has been established. Oxidation of LDL (Ox-LDL) promotes vascular dysfunction, enhances the production and release of inflammatory mediators such as reactive oxygen species and contribute to the initiation and progression of atherosclerosis. In addition, Ox-LDL enhances the production and release of tumor necrosis factor (TNF-alpha), interleukin (IL)-6, arachidonic acid metabolites and nitric oxide (NO) that are responsible for various human pathologies including cancer. Organosulfur compounds (OSC) from alliaceae modulate the glutathione (GSH) redox cycle and inhibits NFkappa-B activation in human T cells. Furthermore, OSC bioactivities include antioxidant, antibacterial, anticarcinogenic, antiatherogenic, immunostimulatory, and liver protection potential.

  15. Intracellular Aβ pathology and early cognitive impairments in a transgenic rat overexpressing human amyloid precursor protein: a multidimensional study.

    Science.gov (United States)

    Iulita, M Florencia; Allard, Simon; Richter, Luise; Munter, Lisa-Marie; Ducatenzeiler, Adriana; Weise, Christoph; Do Carmo, Sonia; Klein, William L; Multhaup, Gerhard; Cuello, A Claudio

    2014-06-05

    Numerous studies have implicated the abnormal accumulation of intraneuronal amyloid-β (Aβ) as an important contributor to Alzheimer's disease (AD) pathology, capable of triggering neuroinflammation, tau hyperphosphorylation and cognitive deficits. However, the occurrence and pathological relevance of intracellular Aβ remain a matter of controversial debate. In this study, we have used a multidimensional approach including high-magnification and super-resolution microscopy, cerebro-spinal fluid (CSF) mass spectrometry analysis and ELISA to investigate the Aβ pathology and its associated cognitive impairments, in a novel transgenic rat model overexpressing human APP. Our microscopy studies with quantitative co-localization analysis revealed the presence of intraneuronal Aβ in transgenic rats, with an immunological signal that was clearly distinguished from that of the amyloid precursor protein (APP) and its C-terminal fragments (CTFs). The early intraneuronal pathology was accompanied by a significant elevation of soluble Aβ42 peptides that paralleled the presence and progression of early cognitive deficits, several months prior to amyloid plaque deposition. Aβ38, Aβ39, Aβ40 and Aβ42 peptides were detected in the rat CSF by MALDI-MS analysis even at the plaque-free stages; suggesting that a combination of intracellular and soluble extracellular Aβ may be responsible for impairing cognition at early time points. Taken together, our results demonstrate that the intraneuronal development of AD-like amyloid pathology includes a mixture of molecular species (Aβ, APP and CTFs) of which a considerable component is Aβ; and that the early presence of these species within neurons has deleterious effects in the CNS, even before the development of full-blown AD-like pathology.

  16. Muscle Gene Expression Patterns in Human Rotator Cuff Pathology

    Science.gov (United States)

    Choo, Alexander; McCarthy, Meagan; Pichika, Rajeswari; Sato, Eugene J.; Lieber, Richard L.; Schenk, Simon; Lane, John G.; Ward, Samuel R.

    2014-01-01

    Background: Rotator cuff pathology is a common source of shoulder pain with variable etiology and pathoanatomical characteristics. Pathological processes of fatty infiltration, muscle atrophy, and fibrosis have all been invoked as causes for poor outcomes after rotator cuff tear repair. The aims of this study were to measure the expression of key genes associated with adipogenesis, myogenesis, and fibrosis in human rotator cuff muscle after injury and to compare the expression among groups of patients with varied severities of rotator cuff pathology. Methods: Biopsies of the supraspinatus muscle were obtained arthroscopically from twenty-seven patients in the following operative groups: bursitis (n = 10), tendinopathy (n = 7), full-thickness rotator cuff tear (n = 8), and massive rotator cuff tear (n = 2). Quantitative polymerase chain reaction (qPCR) was performed to characterize gene expression pathways involved in myogenesis, adipogenesis, and fibrosis. Results: Patients with a massive tear demonstrated downregulation of the fibrogenic, adipogenic, and myogenic genes, indicating that the muscle was not in a state of active change and may have difficulty responding to stimuli. Patients with a full-thickness tear showed upregulation of fibrotic and adipogenic genes; at the tissue level, these correspond to the pathologies most detrimental to outcomes of surgical repair. Patients with bursitis or tendinopathy still expressed myogenic genes, indicating that the muscle may be attempting to accommodate the mechanical deficiencies induced by the tendon tear. Conclusions: Gene expression in human rotator cuff muscles varied according to tendon injury severity. Patients with bursitis and tendinopathy appeared to be expressing pro-myogenic genes, whereas patients with a full-thickness tear were expressing genes associated with fatty atrophy and fibrosis. In contrast, patients with a massive tear appeared to have downregulation of all gene programs except inhibition of

  17. Modeling physiological and pathological human neurogenesis in the dish

    Directory of Open Access Journals (Sweden)

    Vania eBroccoli

    2014-07-01

    Full Text Available New advances in directing the neuronal differentiation of human embryonic and induced pluripotent stem cells (hPSCs, abbreviation intended to convey both categories of pluripotent stem cells have promoted the development of culture systems capable of modeling early neurogenesis and neural specification at some of their critical milestones. The hPSC-derived neural rosette can be considered the in vitro counterpart of the developing neural tube, since both structures share a virtually equivalent architecture and related functional properties. Epigenetic stimulation methods can modulate the identity of the rosette neural progenitors in order to generate authentic neuronal subtypes, as well as a full spectrum of neural crest derivatives. The intrinsic capacity of induced pluripotent cell-derived neural tissue to self-organize has become fully apparent with the emergence of innovative in vitro systems that are able to shape the neuronal differentiation of hPSCs into organized tissues that develop in three dimensions. However, significant hurdles remain that must be completely solved in order to facilitate the use of hPSCs in modeling (e.g., late-onset disorders or in building therapeutic strategies for cell replacement. In this direction, new procedures have been established to promote the maturation and functionality of hPSC-derived neurons. Meanwhile, new methods to accelerate the aging of in vitro differentiating cells are still in development. hPSC-based technology has matured enough to offer a significant and reliable model system for early and late neurogenesis that could be extremely informative for the study of the physiological and pathological events that occur during this process. Thus, full exploitation of this cellular system can provide a better understanding of the physiological events that shape human brain structures, as well as a solid platform to investigate the pathological mechanisms at the root of human diseases.

  18. Imaging of peripheral benzodiazepine receptor expression as biomarkers of detrimental versus beneficial glial responses in mouse models of Alzheimer's and other CNS pathologies.

    Science.gov (United States)

    Ji, Bin; Maeda, Jun; Sawada, Makoto; Ono, Maiko; Okauchi, Takashi; Inaji, Motoki; Zhang, Ming-Rong; Suzuki, Kazutoshi; Ando, Kiyoshi; Staufenbiel, Matthias; Trojanowski, John Q; Lee, Virginia M Y; Higuchi, Makoto; Suhara, Tetsuya

    2008-11-19

    We demonstrate the significance of peripheral benzodiazepine receptor (PBR) imaging in living mouse models of Alzheimer's disease (AD) as biomarkers and functional signatures of glial activation. By radiochemically and immunohistochemically analyzing murine models of the two pathological hallmarks of AD, we found that AD-like Abeta deposition is concurrent with astrocyte-dominant PBR expression, in striking contrast with nonastroglial PBR upregulation in accumulations of AD-like phosphorylated tau. Because tau-induced massive neuronal loss was distinct from the marginal neurodegeneration associated with Abeta plaques in these models, cellular localization of PBR reflected deleterious and beneficial glial reactions to tau versus Abeta pathologies, respectively. This notion was subsequently examined in models of various non-AD neuropathologies, revealing the following reactive glial dynamics underlying differential PBR upregulation: (1) PBR(-) astrogliosis uncoupled with microgliosis or coupled with PBR(+) microgliosis associated with irreversible neuronal insults; and (2) PBR(+) astrogliosis coupled with PBR(- or +/-) microgliosis associated with minimal or reversible neuronal toxicity. Intracranial transplantation of microglia also indicated that nontoxic microglia drives astroglial PBR expression. Moreover, levels of glial cell line-derived neurotrophic factor (GDNF) in astrocytes were correlated with astroglial PBR, except for increased GDNF in PBR(-) astrocytes in the model of AD-like tau pathology, thereby suggesting that PBR upregulation in astrocytes is an indicator of neurotrophic support. Together, PBR expressions in astrocytes and microglia reflect beneficial and deleterious glial reactions, respectively, in diverse neurodegenerative disorders including AD, pointing to new applications of PBR imaging for monitoring the impact of gliosis on the pathogenesis and treatment of AD.

  19. Partial correction of the CNS lysosomal storage defect in a mouse model of juvenile neuronal ceroid lipofuscinosis by neonatal CNS administration of an adeno-associated virus serotype rh.10 vector expressing the human CLN3 gene.

    Science.gov (United States)

    Sondhi, Dolan; Scott, Emma C; Chen, Alvin; Hackett, Neil R; Wong, Andrew M S; Kubiak, Agnieszka; Nelvagal, Hemanth R; Pearse, Yewande; Cotman, Susan L; Cooper, Jonathan D; Crystal, Ronald G

    2014-03-01

    Juvenile neuronal ceroid lipofuscinosis (JNCL or CLN3 disease) is an autosomal recessive lysosomal storage disease resulting from mutations in the CLN3 gene that encodes a lysosomal membrane protein. The disease primarily affects the brain with widespread intralysosomal accumulation of autofluorescent material and fibrillary gliosis, as well as the loss of specific neuronal populations. As an experimental treatment for the CNS manifestations of JNCL, we have developed a serotype rh.10 adeno-associated virus vector expressing the human CLN3 cDNA (AAVrh.10hCLN3). We hypothesized that administration of AAVrh.10hCLN3 to the Cln3(Δex7/8) knock-in mouse model of JNCL would reverse the lysosomal storage defect, as well as have a therapeutic effect on gliosis and neuron loss. Newborn Cln3(Δex7/8) mice were administered 3 × 10(10) genome copies of AAVrh.10hCLN3 to the brain, with control groups including untreated Cln3(Δex7/8) mice and wild-type littermate mice. After 18 months, CLN3 transgene expression was detected in various locations throughout the brain, particularly in the hippocampus and deep anterior cortical regions. Changes in the CNS neuronal lysosomal accumulation of storage material were assessed by immunodetection of subunit C of ATP synthase, luxol fast blue staining, and periodic acid-Schiff staining. For all parameters, Cln3(Δex7/8) mice exhibited abnormal lysosomal accumulation, but AAVrh.10hCLN3 administration resulted in significant reductions in storage material burden. There was also a significant decrease in gliosis in AAVrh.10hCLN3-treated Cln3(Δex7/8) mice, and a trend toward improved neuron counts, compared with their untreated counterparts. These data demonstrate that AAVrh.10 delivery of a wild-type cDNA to the CNS is not harmful and instead provides a partial correction of the neurological lysosomal storage defect of a disease caused by a lysosomal membrane protein, indicating that this may be an effective therapeutic strategy for JNCL and

  20. A mouse model for fucosidosis recapitulates storage pathology and neurological features of the milder form of the human disease

    DEFF Research Database (Denmark)

    Wolf, Heike; Damme, Markus; Stroobants, Stijn

    2016-01-01

    were also partially excreted with the urine. Lysosomal storage pathology was observed in many visceral organs like liver, kidney, spleen and bladder as well as in the CNS. On the cellular level storage was characterized by membrane-limited cytoplasmic vacuoles primarily containing water-soluble storage...

  1. Ionotropic glutamate receptors & CNS disorders.

    Science.gov (United States)

    Bowie, Derek

    2008-04-01

    Disorders of the central nervous system (CNS) are complex disease states that represent a major challenge for modern medicine. Although aetilogy is often unknown, it is established that multiple factors such as defects in genetics and/or epigenetics, the environment as well as imbalance in neurotransmitter receptor systems are all at play in determining an individual's susceptibility to disease. Gene therapy is currently not available and therefore, most conditions are treated with pharmacological agents that modify neurotransmitter receptor signaling. Here, I provide a review of ionotropic glutamate receptors (iGluRs) and the roles they fulfill in numerous CNS disorders. Specifically, I argue that our understanding of iGluRs has reached a critical turning point to permit, for the first time, a comprehensive re-evaluation of their role in the cause of disease. I illustrate this by highlighting how defects in AMPA receptor (AMPAR) trafficking are important to fragile X mental retardation and ectopic expression of kainate receptor (KAR) synapses contributes to the pathology of temporal lobe epilepsy. Finally, I discuss how parallel advances in studies of other neurotransmitter systems may allow pharmacologists to work towards a cure for many CNS disorders rather than developing drugs to treat their symptoms.

  2. Flow cytometry of cerebrospinal fluid (CSF) lymphocytes: alterations of blood/CSF ratios of lymphocyte subsets in inflammation disorders of human central nervous system (CNS).

    Science.gov (United States)

    Kleine, T O; Albrecht, J; Zöfel, P

    1999-03-01

    Flow cytometry was adapted to measure lymphocytes in human cerebrospinal fluid (CSF). The method was sufficiently precise, reproducible and accurate despite low cell counts. In lumbar CSF of controls with 500 to 3500 (10(3)/l) leukocytes, lymphocyte counts correlated with those in corresponding venous blood: blood/CSF ratios of approximately 2000 : 1 were found for total T cells (CD3+) and CD3+ HLA-DR-, CD3+4+, CD3+8+ subsets, ratios were increased for the lymphocyte subsets CD3+ HLA-DR+ blood-brain and blood-CSF barriers) to blood lymphocyte subsets which favor the transfer of T subsets. Correlation of the subset ratios to the CD3+ ratio indicates distinct barrier properties which changed differently with acute and subacute inflammations and neuroimmunological diseases of central nervous system (CNS) in lumbar or ventricular CSF, but not with simple protein barrier disturbance. HLA DR+ T ratios were higher than HLA DR- T ratios only with controls and some neuroimmunological diseases. Lymphocyte barrier characteristics were related to protein leakage situated at the same barriers, indicating for the lymphocyte subsets selective transfer routes in control subjects and non-selective routes in patients with CNS inflammation where altered ratios revealed a mixture of both routes.

  3. CNS development: an overview

    Science.gov (United States)

    Nowakowski, R. S.; Hayes, N. L.

    1999-01-01

    The basic principles of the development of the central nervous system (CNS) are reviewed, and their implications for both normal and abnormal development of the brain are discussed. The goals of this review are (a) to provide a set of concepts to aid in understanding the variety of complex processes that occur during CNS development, (b) to illustrate how these concepts contribute to our knowledge of the normal anatomy of the adult brain, and (c) to provide a basis for understanding how modifications of normal developmental processes by traumatic injury, by environmental or experiential influences, or by genetic variations may lead to modifications in the resultant structure and function of the adult CNS.

  4. CNS infections in Greenland

    DEFF Research Database (Denmark)

    Nordholm, Anne Christine; Søborg, Bolette; Andersson, Mikael

    2017-01-01

    BACKGROUND: Indigenous Arctic people suffer from high rates of infectious diseases. However, the burden of central nervous system (CNS) infections is poorly documented. This study aimed to estimate incidence rates and mortality of CNS infections among Inuits and non-Inuits in Greenland...... and in Denmark. METHODS: We conducted a nationwide cohort study using the populations of Greenland and Denmark 1990-2012. Information on CNS infection hospitalizations and pathogens was retrieved from national registries and laboratories. Incidence rates were estimated as cases per 100,000 person......-years. Incidence rate ratios were calculated using log-linear Poisson-regression. Mortality was estimated using Kaplan-Meier curves and Log Rank test. RESULTS: The incidence rate of CNS infections was twice as high in Greenland (35.6 per 100,000 person years) as in Denmark (17.7 per 100,000 person years...

  5. Flavonoids and the CNS

    Directory of Open Access Journals (Sweden)

    Anna K. Jäger

    2011-02-01

    Full Text Available Flavonoids are present in almost all terrestrial plants, where they provide UV-protection and colour. Flavonoids have a fused ring system consisting of an aromatic ring and a benzopyran ring with a phenyl substituent. The flavonoids can be divided into several classes depending on their structure. Flavonoids are present in food and medicinal plants and are thus consumed by humans. They are found in plants as glycosides. Before oral absorption, flavonoids undergo deglycosylation either by lactase phloridzin hydrolase or cytosolic β-glucocidase. The absorbed aglycone is then conjugated by methylation, sulphatation or glucuronidation. Both the aglycones and the conjugates can pass the blood-brain barrier. In the CNS several flavones bind to the benzodiazepine site on the GABAA-receptor resulting in sedation, anxiolytic or anti-convulsive effects. Flavonoids of several classes are inhibitors of monoamine oxidase A or B, thereby working as anti-depressants or to improve the conditions of Parkinson’s patients. Flavanols, flavanones and anthocyanidins have protective effects preventing inflammatory processes leading to nerve injury. Flavonoids seem capable of influencing health and mood.

  6. CNS toxoplasmosis in an immunocompetent individual

    OpenAIRE

    2015-01-01

    Toxoplasmosis is a serious and life-threatening disease in humans with a high prevalence in immunocompromised persons. The disease has a wide spectrum, depending on the immune status of the person. A CNS manifestation of toxoplasmosis in an immunocompetent person is very rare and often undetected. Our case of CNS toxoplasmosis in an immunocompetent person emphasizes the radiological diagnosis, which was further confirmed by advanced microbiology technique.

  7. CNS toxoplasmosis in an immunocompetent individual

    Directory of Open Access Journals (Sweden)

    Rajoo Ramachandran, MBBS, MD

    2014-01-01

    Full Text Available Toxoplasmosis is a serious and life-threatening disease in humans with a high prevalence in immunocompromised persons. The disease has a wide spectrum, depending on the immune status of the person. A CNS manifestation of toxoplasmosis in an immunocompetent person is very rare and often undetected. Our case of CNS toxoplasmosis in an immunocompetent person emphasizes the radiological diagnosis, which was further confirmed by advanced microbiology technique.

  8. CNS recruitment of CD8+ T lymphocytes specific for a peripheral virus infection triggers neuropathogenesis during polymicrobial challenge.

    Directory of Open Access Journals (Sweden)

    Christine M Matullo

    2011-12-01

    Full Text Available Although viruses have been implicated in central nervous system (CNS diseases of unknown etiology, including multiple sclerosis and amyotrophic lateral sclerosis, the reproducible identification of viral triggers in such diseases has been largely unsuccessful. Here, we explore the hypothesis that viruses need not replicate in the tissue in which they cause disease; specifically, that a peripheral infection might trigger CNS pathology. To test this idea, we utilized a transgenic mouse model in which we found that immune cells responding to a peripheral infection are recruited to the CNS, where they trigger neurological damage. In this model, mice are infected with both CNS-restricted measles virus (MV and peripherally restricted lymphocytic choriomeningitis virus (LCMV. While infection with either virus alone resulted in no illness, infection with both viruses caused disease in all mice, with ∼50% dying following seizures. Co-infection resulted in a 12-fold increase in the number of CD8+ T cells in the brain as compared to MV infection alone. Tetramer analysis revealed that a substantial proportion (>35% of these infiltrating CD8+ lymphocytes were LCMV-specific, despite no detectable LCMV in CNS tissues. Mechanistically, CNS disease was due to edema, induced in a CD8-dependent but perforin-independent manner, and brain herniation, similar to that observed in mice challenged intracerebrally with LCMV. These results indicate that T cell trafficking can be influenced by other ongoing immune challenges, and that CD8+ T cell recruitment to the brain can trigger CNS disease in the apparent absence of cognate antigen. By extrapolation, human CNS diseases of unknown etiology need not be associated with infection with any particular agent; rather, a condition that compromises and activates the blood-brain barrier and adjacent brain parenchyma can render the CNS susceptible to pathogen-independent immune attack.

  9. A pathology atlas of the human cancer transcriptome.

    Science.gov (United States)

    Uhlen, Mathias; Zhang, Cheng; Lee, Sunjae; Sjöstedt, Evelina; Fagerberg, Linn; Bidkhori, Gholamreza; Benfeitas, Rui; Arif, Muhammad; Liu, Zhengtao; Edfors, Fredrik; Sanli, Kemal; von Feilitzen, Kalle; Oksvold, Per; Lundberg, Emma; Hober, Sophia; Nilsson, Peter; Mattsson, Johanna; Schwenk, Jochen M; Brunnström, Hans; Glimelius, Bengt; Sjöblom, Tobias; Edqvist, Per-Henrik; Djureinovic, Dijana; Micke, Patrick; Lindskog, Cecilia; Mardinoglu, Adil; Ponten, Fredrik

    2017-08-18

    Cancer is one of the leading causes of death, and there is great interest in understanding the underlying molecular mechanisms involved in the pathogenesis and progression of individual tumors. We used systems-level approaches to analyze the genome-wide transcriptome of the protein-coding genes of 17 major cancer types with respect to clinical outcome. A general pattern emerged: Shorter patient survival was associated with up-regulation of genes involved in cell growth and with down-regulation of genes involved in cellular differentiation. Using genome-scale metabolic models, we show that cancer patients have widespread metabolic heterogeneity, highlighting the need for precise and personalized medicine for cancer treatment. All data are presented in an interactive open-access database (www.proteinatlas.org/pathology) to allow genome-wide exploration of the impact of individual proteins on clinical outcomes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Epigenetic modifications and human pathologies: cancer and CVD.

    Science.gov (United States)

    Duthie, Susan J

    2011-02-01

    Epigenetic changes are inherited alterations in DNA that affect gene expression and function without altering the DNA sequence. DNA methylation is one epigenetic process implicated in human disease that is influenced by diet. DNA methylation involves addition of a 1-C moiety to cytosine groups in DNA. Methylated genes are not transcribed or are transcribed at a reduced rate. Global under-methylation (hypomethylation) and site-specific over-methylation (hypermethylation) are common features of human tumours. DNA hypomethylation, leading to increased expression of specific proto-oncogenes (e.g. genes involved in proliferation or metastasis) can increase the risk of cancer as can hypermethylation and reduced expression of tumour suppressor (TS) genes (e.g. DNA repair genes). DNA methyltransferases (DNMT), together with the methyl donor S-adenosylmethionine (SAM), facilitate DNA methylation. Abnormal DNA methylation is implicated not only in the development of human cancer but also in CVD. Polyphenols, a group of phytochemicals consumed in significant amounts in the human diet, effect risk of cancer. Flavonoids from tea, soft fruits and soya are potent inhibitors of DNMT in vitro, capable of reversing hypermethylation and reactivating TS genes. Folates, a group of water-soluble B vitamins found in high concentration in green leafy vegetables, regulate DNA methylation through their ability to generate SAM. People who habitually consume the lowest level of folate or with the lowest blood folate concentrations have a significantly increased risk of developing several cancers and CVD. This review describes how flavonoids and folates in the human diet alter DNA methylation and may modify the risk of human colon cancer and CVD.

  11. A brief overview of the 33rd Annual STP Symposium on the translational pathology: relevance of toxicologic pathology to human health.

    Science.gov (United States)

    Hoenerhoff, Mark J; Silverman, Lee; Francke, Sabine

    2015-01-01

    The 33rd Society of Toxicologic Pathology's Annual Symposium focused on translational science and the relevance of toxicologic pathology to human health. Toxicologic pathologists work in diverse settings studying changes elicited by pharmacological, chemical, and environmental agents and factors that modify these responses. Regardless of the work setting, society members are dedicated to the integration of toxicologic pathology into hazard identification, risk assessment, and risk communication regarding human and animal exposure to potentially toxic substances. Toxicologic pathologists routinely face not only questions regarding pathological changes related to compound exposure but also questions concerning what translational relevance those lesions and exposures have to a human population or organ system. This symposium provided a basis for the membership to understand the variety of roles the toxicologic pathologist plays in translational science, where our gaps in translational science are, and how we can move forward to better address the challenges in the field translational science in order to continue to positively impact human health.

  12. Cardiovascular pathology in patients with human immune deficiency virus infection

    OpenAIRE

    Valenzuela-Rodríguez, Germán; Fellow of the American College of Physicians

    2013-01-01

    Human immunodeficiency virus (HIV) infection increases both morbidity and mortality by inducing severe immunosupression that generates opportunistic infections. Following use of high active antiretroviral therapy (HAART) in infected patients, infection-related mortality has decreased and both survival and cardiovascular disease have increased. The etiology of cardiovascular disease could be related to either infection itself, proatherogenic conditions associated with antiretroviral therapy or...

  13. Overview of the "epigenetic end points in toxicologic pathology and relevance to human health" session of the 2014 Society Of Toxicologic Pathology Annual Symposium.

    Science.gov (United States)

    Hoenerhoff, Mark J; Hartke, James

    2015-01-01

    The theme of the Society of Toxicologic Pathology 2014 Annual Symposium was "Translational Pathology: Relevance of Toxicologic Pathology to Human Health." The 5th session focused on epigenetic end points in biology, toxicity, and carcinogenicity, and how those end points are relevant to human exposures. This overview highlights the various presentations in this session, discussing integration of epigenetics end points in toxicologic pathology studies, investigating the role of epigenetics in product safety assessment, epigenetic changes in cancers, methodologies to detect them, and potential therapies, chromatin remodeling in development and disease, and epigenomics and the microbiome. The purpose of this overview is to discuss the application of epigenetics to toxicologic pathology and its utility in preclinical or mechanistic based safety, efficacy, and carcinogenicity studies.

  14. Lead optimization of a pyrazole sulfonamide series of Trypanosoma brucei N-myristoyltransferase inhibitors: identification and evaluation of CNS penetrant compounds as potential treatments for stage 2 human African trypanosomiasis.

    Science.gov (United States)

    Brand, Stephen; Norcross, Neil R; Thompson, Stephen; Harrison, Justin R; Smith, Victoria C; Robinson, David A; Torrie, Leah S; McElroy, Stuart P; Hallyburton, Irene; Norval, Suzanne; Scullion, Paul; Stojanovski, Laste; Simeons, Frederick R C; van Aalten, Daan; Frearson, Julie A; Brenk, Ruth; Fairlamb, Alan H; Ferguson, Michael A J; Wyatt, Paul G; Gilbert, Ian H; Read, Kevin D

    2014-12-11

    Trypanosoma brucei N-myristoyltransferase (TbNMT) is an attractive therapeutic target for the treatment of human African trypanosomiasis (HAT). From previous studies, we identified pyrazole sulfonamide, DDD85646 (1), a potent inhibitor of TbNMT. Although this compound represents an excellent lead, poor central nervous system (CNS) exposure restricts its use to the hemolymphatic form (stage 1) of the disease. With a clear clinical need for new drug treatments for HAT that address both the hemolymphatic and CNS stages of the disease, a chemistry campaign was initiated to address the shortfalls of this series. This paper describes modifications to the pyrazole sulfonamides which markedly improved blood-brain barrier permeability, achieved by reducing polar surface area and capping the sulfonamide. Moreover, replacing the core aromatic with a flexible linker significantly improved selectivity. This led to the discovery of DDD100097 (40) which demonstrated partial efficacy in a stage 2 (CNS) mouse model of HAT.

  15. Pathology of Human Pheochromocytoma and Paraganglioma Xenografts in NSG Mice

    Science.gov (United States)

    Powers, James F.; Pacak, Karel; Tischler, Arthur S.

    2016-01-01

    A major impediment to the development of effective treatments for metastatic or unresectable pheochromocytomas and paragangliomas has been the absence of valid models for pre-clinical testing. Attempts to establish cell lines or xenografts from human pheochromocytomas and paragangliomas have previously been unsuccessful. NOD-scid gamma (NSG) mice are a recently developed strain lacking functional B-cells, T-cells and NK cells. We report here that xenografts of primary human paragangliomas will take in NSG mice while maintaining their architectural and immunophenotypic characteristics as expressed in the patients. In contrast to grafts of cell lines and of most common types of primary tumors, the growth rate of grafted paragangliomas is very slow, accurately representing the growth rate of most pheochromocytomas and paragangliomas even in metastases in humans. Although the model is therefore technically challenging, primary patient derived xenografts of paragangliomas in NSG mice provide a potentially valuable new tool that could prove especially valuable for testing treatments aimed at eradicating the small tumor deposits that are often numerous in patients with metastatic paraganglioma. PMID:27709415

  16. Phase transition of the microvascular network architecture in human pathologies.

    Science.gov (United States)

    Bianciardi, Giorgio; Traversi, Claudio; Cattaneo, Ruggero; De Felice, Claudia; Monaco, Annalisa; Tosi, Gianmarco; Parrini, Stefano; Latini, Giuseppe

    2012-01-01

    We have investigated the microvascular pattern in acquired or genetic diseases in humans. The lower gingival and vestibular oral mucosa, as well as the optic nerve head, was chosen to characterize the vascular pattern complexity due to the simple accessibility and visibility Local fractal dimensions, fractal dimension of the minimum path and Lempel-Ziv complexity have been used as operational numerical tools to characterize the microvascular networks. In the normal healthy subjects microvascular networks show nonlinear values corresponding to the complexity of a diffusion limited aggregation (DLA) model, while in several acquired or genetic diseases they are approaching the ones of an invasion percolation model.

  17. [Role of animal gastric Helicobacter species in human gastric pathology].

    Science.gov (United States)

    Pozdeev, O K; Pozdeeva, A O; Pozdnyak, A O; Saifutdinov, R G

    2015-01-01

    Animal Helicobacter species other than Helicobacter pylori are also able to cause human gastritis, gastric ulcers, and MALT lymphomas. Animal Helicobacter species are presented with typical spiral fastidious microorganisms colonizing the gastric mucosa of different animals. Bacteria initially received their provisional name Helicobacter heilmannii, and out of them at least five species colonizing the gastric mucosa of pigs, cats, and dogs were isolated later on. A high proportion of these diseases are shown to be zoonotic. Transmission of pathogens occurs by contact. The factors of bacterial pathogenicity remain little studied.

  18. In situ apoptosis of adaptive immune cells and the cellular escape of rabies virus in CNS from patients with human rabies transmitted by Desmodus rotundus.

    Science.gov (United States)

    Fernandes, Elaine Raniero; de Andrade, Heitor Franco; Lancellotti, Carmen Lúcia Penteado; Quaresma, Juarez Antônio Simões; Demachki, Samia; da Costa Vasconcelos, Pedro Fernando; Duarte, Maria Irma Seixas

    2011-03-01

    The aim of the current study was to investigate the apoptosis of neurons, astrocytes and immune cells from human patients that were infected with rabies virus by vampire bats bite. Apoptotic neurons were identified by their morphology and immune cells were identified using double immunostaining. There were very few apoptotic neurons present in infected tissue samples, but there was an increase of apoptotic infiltrating CD4+ and TCD8+ adaptive immune cells in the rabies infected tissue. No apoptosis was present in NK, macrophage and astrocytes. The dissemination of the human rabies virus within an infected host may be mediated by viral escape of the virus from an infected cell and may involve an anti-apoptotic mechanism, which does not kill the neuron or pro-apoptosis of TCD4+ and TCD8+ lymphocytes and which allows for increased proliferation of the virus within the CNS by attenuation of the adaptive immune response. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Human cysticercosis: parasitology, pathology, clinical manifestations and available treatment.

    Science.gov (United States)

    Webbe, G

    1994-10-01

    Human cysticercosis is a global health problem and neurocysticercosis a serious clinical syndrome. The diagnosis of neurocysticercosis can now be made with a high degree of accuracy by scrutiny of clinical signs and symptoms in combination with X-ray, computed tomography or magnetic resonance imaging, serological tests and laboratory examinations. Differential clinical diagnosis with tumor, and vascular and inflammatory conditions, may however, prove difficult in nonendemic areas. The management of cysticercosis has been radically changed by the advent of effective chemotherapy. Both the heterocyclic pyrazinoisoquinoline compound, praziquantel and the benzimidazole carbamate, albendazole, have now been extensively tested and successfully used for treatments of neurocysticercosis, usually in combination with corticosteroids. The definition of appropriate criteria and guidelines for the use of chemotherapy, may however, require further research. Surgical interventions continue to play an important role in certain clinical presentations. Recent advances in immunological research hold realistic promise for the development of a vaccine against Taenia solium.

  20. Gene Expression Analysis of Human Vascular Endothelial Cells Treated by Ouabain in Pathological Concentration

    Institute of Scientific and Technical Information of China (English)

    任延平; 吕卓人

    2004-01-01

    Objectives To study the gene expression of human vascular endothelial cells (HUVEC) treated by ouabain in pathological concentration. Methods The response of endothelial cells to ouabain of 1.8 nmol/L was explored with a complementary DNA microarray representing 8 464 different human genes. Results The results of mRNA profiles analysis indicated that 129 of the genes were differently expressed, 26 were upregulated. Conclusions The pathological role of ouabain on HUVEC may be involved in the controlling of DNA transcription、protein translation、 metabolism and signal transduction.

  1. Trace elements in human physiology and pathology: zinc and metallothioneins.

    Science.gov (United States)

    Tapiero, Haim; Tew, Kenneth D

    2003-11-01

    Zinc is one of the most abundant nutritionally essential elements in the human body. It is found in all body tissues with 85% of the whole body zinc in muscle and bone, 11% in the skin and the liver and the remaining in all the other tissues. In multicellular organisms, virtually all zinc is intracellular, 30-40% is located in the nucleus, 50% in the cytoplasm, organelles and specialized vesicles (for digestive enzymes or hormone storage) and the remainder in the cell membrane. Zinc intake ranges from 107 to 231 micromol/d depending on the source, and human zinc requirement is estimated at 15 mg/d. Zinc has been shown to be essential to the structure and function of a large number of macromolecules and for over 300 enzymic reactions. It has both catalytic and structural roles in enzymes, while in zinc finger motifs, it provides a scaffold that organizes protein sub-domains for the interaction with either DNA or other proteins. It is critical for the function of a number of metalloproteins, inducing members of oxido-reductase, hydrolase ligase, lyase family and has co-activating functions with copper in superoxide dismutase or phospholipase C. The zinc ion (Zn(++)) does not participate in redox reactions, which makes it a stable ion in a biological medium whose potential is in constant flux. Zinc ions are hydrophilic and do not cross cell membranes by passive diffusion. In general, transport has been described as having both saturable and non-saturable components, depending on the Zn(II) concentrations involved. Zinc ions exist primarily in the form of complexes with proteins and nucleic acids and participate in all aspects of intermediary metabolism, transmission and regulation of the expression of genetic information, storage, synthesis and action of peptide hormones and structural maintenance of chromatin and biomembranes.

  2. Integrating pathology into human disease modelling--how to eat the elephant.

    Science.gov (United States)

    Scudamore, Cheryl L

    2014-05-01

    Mouse models are increasingly being used for the study of human disease, and the generation and functional characterisation of new models is underpinned by high-throughput phenotyping consortia such as the International Mouse Phenotyping Consortium. A new study by Adissu and colleagues, published in Disease Models & Mechanisms, demonstrates the usefulness of histopathology in providing corroborative information and uncovering novel phenotypes in genetically modified mice in a high-throughput screen. Although pathology is recognised as a valuable tool to enhance our understanding of animal disease models, it has also been systematically under-resourced. This Editorial aims to highlight ways in which the gap between the usefulness of pathology and its perceived inaccessibility can be addressed by considering pragmatic solutions for planning, resourcing and accessing pathology expertise. The role of funding agencies, academic centres and journals in ensuring that the value of pathology is fully recognised and is adequately supported and funded is also discussed.

  3. Flavonoids and the CNS

    DEFF Research Database (Denmark)

    Jäger, Anna Katharina; Saaby, Lasse

    2011-01-01

    , sulphatation or glucuronidation. Both the aglycones and the conjugates can pass the blood-brain barrier. In the CNS several flavones bind to the benzodiazepine site on the GABA(A)-receptor resulting in sedation, anxiolytic or anti-convulsive effects. Flavonoids of several classes are inhibitors of monoamine...

  4. Genomic imprinting and human psychology: cognition, behavior and pathology.

    Science.gov (United States)

    Goos, Lisa M; Ragsdale, Gillian

    2008-01-01

    Imprinted genes expressed in the brain are numerous and it has become clear that they play an important role in nervous system development and function. The significant influence of genomic imprinting during development sets the stage for structural and physiological variations affecting psychological function and behaviour, as well as other physiological systems mediating health and well-being. However, our understanding of the role of imprinted genes in behaviour lags far behind our understanding of their roles in perinatal growth and development. Knowledge of genomic imprinting remains limited among behavioral scientists and clinicians and research regarding the influence of imprinted genes on normal cognitive processes and the most common forms of neuropathology has been limited to date. In this chapter, we will explore how knowledge of genomic imprinting can be used to inform our study of normal human cognitive and behavioral processes as well as their disruption. Behavioural analyses of rare imprinted disorders, such as Prader-Willi and Angelman syndromes, provide insight regarding the phenotypic impact of imprinted genes in the brain, and can be used to guide the study of normal behaviour as well as more common but etiologically complex disorders such as ADHD and autism. Furthermore, hypotheses regarding the evolutionary development of imprinted genes can be used to derive predictions about their role in normal behavioural variation, such as that observed in food-related and social interactions.

  5. The mouse who couldn't stop washing: pathologic grooming in animals and humans.

    Science.gov (United States)

    Feusner, Jamie D; Hembacher, Emily; Phillips, Katharine A

    2009-09-01

    The basic science literature is replete with descriptions of naturally occurring or experimentally induced pathological grooming behaviors in animals, which are widely considered animal models of obsessive-compulsive disorder (OCD). These animal models rely largely on observed similarities between animal behaviors and human OCD behaviors, and on studies of animal pathological grooming disorders that respond to serotonin enhancing drugs. However, current limitations in assessment of complex cognition and affect in animals precludes the field's ability to match the driving primary processes behind observable phenomenology in animal "OCD" with human behavioral disorders. We propose that excessive grooming behaviors in animals may eventually prove to be equally, or possibly more relevant to, other conditions in humans that involve pathological grooming or grooming-like behaviors, such as trichotillomania, body dysmorphic disorder, olfactory reference syndrome, compulsive skin-picking, and onychophagia. Research is needed to better understand pathological grooming behaviors in both humans and animals, as animal models have the potential to elucidate pathogenic mechanisms and inform the treatment of these psychiatric conditions in humans.

  6. Microorganisms human control pathological of aerial transport; Control de microorganismos patogenos humanos de transmision aerea

    Energy Technology Data Exchange (ETDEWEB)

    Pascual, L.; Moreno, C.; Amo, A.; Luz, S.P.; Apraiz, D.; Catalan, V.

    1999-05-01

    The search of methods of display and effective analysis in order to could detect and carry out a recount of human pathological microorganisms of aerial transmission has been one of the fields that more has worried to the micro biologists from beginnings of the XX century. (Author) 14 refs.

  7. Spectrophotometric determination of certain CNS stimulants in dosage forms and spiked human urine via derivatization with 2,4-Dinitrofluorobenzene

    Directory of Open Access Journals (Sweden)

    Saad Samar

    2011-10-01

    Full Text Available Abstract A new spectrophotometric method is developed for the determination of phenylpropanolamine HCl (PPA, ephedrine HCl (EPH and pseudoephedrine HCl (PSE in pharmaceutical preparations and spiked human urine. The method involved heat-catalyzed derivatization of the three drugs with 2,4-dinitrofluorobenzene (DNFB producing a yellow colored product peaking at 370 nm for PPA and 380 nm for EPH and PSE, respectively. The absorbance concentration plots were rectilinear over the range of 2-20 for PPA and 1-14 μg/mL for both of EPH and PSE, respectively. The limit of detection (LOD values were 0.20, 0.13 and 0.20 μg/mL for PPA, EPH and PSE, respectively and limit of quantitation (LOQ values of 0.60 and 0.40 and 0.59 μg/mL for PPA, EPH and PSE, respectively. The analytical performance of the method was fully validated and the results were satisfactory. The proposed method was successfully applied to the determination of the three studied drugs in their commercial dosage forms including tablets, capsules and ampoules with good percentage recoveries. The proposed method was further applied for the determination of PSE in spiked human urine with a mean percentage recovery of 108.17 ± 1.60 for (n = 3. Statistical comparison of the results obtained with those of the comparison methods showed good agreement and proved that there was no significant difference in the accuracy and precision between the two methods. The mechanism of the reaction pathway was postulated.

  8. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.

    Science.gov (United States)

    Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda

    2016-07-01

    Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies

  9. Correlative Light and Scanning X-Ray Scattering Microscopy of Healthy and Pathologic Human Bone Sections

    Science.gov (United States)

    Giannini, C.; Siliqi, D.; Bunk, O.; Beraudi, A.; Ladisa, M.; Altamura, D.; Stea, S.; Baruffaldi, F.

    2012-01-01

    Scanning small and wide angle X-ray scattering (scanning SWAXS) experiments were performed on healthy and pathologic human bone sections. Via crystallographic tools the data were transformed into quantitative images and as such compared with circularly polarized light (CPL) microscopy images. SWAXS and CPL images allowed extracting information of the mineral nanocrystalline phase embedded, with and without preferred orientation, in the collagen fibrils, mapping local changes at sub-osteon resolution. This favorable combination has been applied for the first time to biopsies of dwarfism syndrome and Paget's disease to shed light onto the cortical structure of natural bone in healthy and pathologic sections. PMID:22666538

  10. CNS Tumors in Neurofibromatosis.

    Science.gov (United States)

    Campian, Jian; Gutmann, David H

    2017-07-20

    Neurofibromatosis (NF) encompasses a group of distinct genetic disorders in which affected children and adults are prone to the development of benign and malignant tumors of the nervous system. The purpose of this review is to discuss the spectrum of CNS tumors arising in individuals with NF type 1 (NF1) and NF type 2 (NF2), their pathogenic etiologies, and the rational treatment options for people with these neoplasms. This article is a review of preclinical and clinical data focused on the treatment of the most common CNS tumors encountered in children and adults with NF1 and NF2. Although children with NF1 are at risk for developing low-grade gliomas of the optic pathway and brainstem, individuals with NF2 typically manifest low-grade tumors affecting the cranial nerves (vestibular schwannomas), meninges (meningiomas), and spinal cord (ependymomas). With the identification of the NF1 and NF2 genes, molecularly targeted therapies are beginning to emerge, as a result of a deeper understanding of the mechanisms underlying NF1 and NF2 protein function. As we enter into an era of precision oncology, a more comprehensive awareness of the factors that increase the risk of developing CNS cancers in affected individuals, coupled with a greater appreciation of the cellular and molecular determinants that maintain tumor growth, will undoubtedly yield more effective therapies for these cancer predisposition syndromes.

  11. Correlative Light and Scanning X-Ray Scattering Microscopy of Healthy and Pathologic Human Bone Sections

    OpenAIRE

    Giannini, C.; D. Siliqi; Bunk, O.; Beraudi, A.; Ladisa, M.; Altamura, D.; Stea, S.; Baruffaldi, F.

    2012-01-01

    Scanning small and wide angle X-ray scattering (scanning SWAXS) experiments were performed on healthy and pathologic human bone sections. Via crystallographic tools the data were transformed into quantitative images and as such compared with circularly polarized light (CPL) microscopy images. SWAXS and CPL images allowed extracting information of the mineral nanocrystalline phase embedded, with and without preferred orientation, in the collagen fibrils, mapping local changes at sub-osteon res...

  12. Homo floresiensis contextualized: a geometric morphometric comparative analysis of fossil and pathological human samples.

    Directory of Open Access Journals (Sweden)

    Karen L Baab

    Full Text Available The origin of hominins found on the remote Indonesian island of Flores remains highly contentious. These specimens may represent a new hominin species, Homo floresiensis, descended from a local population of Homo erectus or from an earlier (pre-H. erectus migration of a small-bodied and small-brained hominin out of Africa. Alternatively, some workers suggest that some or all of the specimens recovered from Liang Bua are pathological members of a small-bodied modern human population. Pathological conditions proposed to explain their documented anatomical features include microcephaly, myxoedematous endemic hypothyroidism ("cretinism" and Laron syndrome (primary growth hormone insensitivity. This study evaluates evolutionary and pathological hypotheses through comparative analysis of cranial morphology. Geometric morphometric analyses of landmark data show that the sole Flores cranium (LB1 is clearly distinct from healthy modern humans and from those exhibiting hypothyroidism and Laron syndrome. Modern human microcephalic specimens converge, to some extent, on crania of extinct species of Homo. However in the features that distinguish these two groups, LB1 consistently groups with fossil hominins and is most similar to H. erectus. Our study provides further support for recognizing the Flores hominins as a distinct species, H. floresiensis, whose affinities lie with archaic Homo.

  13. Homo floresiensis contextualized: a geometric morphometric comparative analysis of fossil and pathological human samples.

    Science.gov (United States)

    Baab, Karen L; McNulty, Kieran P; Harvati, Katerina

    2013-01-01

    The origin of hominins found on the remote Indonesian island of Flores remains highly contentious. These specimens may represent a new hominin species, Homo floresiensis, descended from a local population of Homo erectus or from an earlier (pre-H. erectus) migration of a small-bodied and small-brained hominin out of Africa. Alternatively, some workers suggest that some or all of the specimens recovered from Liang Bua are pathological members of a small-bodied modern human population. Pathological conditions proposed to explain their documented anatomical features include microcephaly, myxoedematous endemic hypothyroidism ("cretinism") and Laron syndrome (primary growth hormone insensitivity). This study evaluates evolutionary and pathological hypotheses through comparative analysis of cranial morphology. Geometric morphometric analyses of landmark data show that the sole Flores cranium (LB1) is clearly distinct from healthy modern humans and from those exhibiting hypothyroidism and Laron syndrome. Modern human microcephalic specimens converge, to some extent, on crania of extinct species of Homo. However in the features that distinguish these two groups, LB1 consistently groups with fossil hominins and is most similar to H. erectus. Our study provides further support for recognizing the Flores hominins as a distinct species, H. floresiensis, whose affinities lie with archaic Homo.

  14. Osler's pathology.

    Science.gov (United States)

    Pai, S A

    2000-12-01

    Sir William Osler, one of the giants of clinical medicine, had his initial training as a pathologist. He was one of the physicians responsible for the impact that autopsies have had on medicine. He also contributed to the development of laboratory medicine. Osler made significant discoveries in anatomic pathology and hematology. His expertise was restricted not just to human pathology, but also to veterinary pathology. His mentors played a fundamental role in his achievements in academics.

  15. A human stem cell model of early Alzheimer's disease pathology in Down syndrome.

    Science.gov (United States)

    Shi, Yichen; Kirwan, Peter; Smith, James; MacLean, Glenn; Orkin, Stuart H; Livesey, Frederick J

    2012-03-07

    Human cellular models of Alzheimer's disease (AD) pathogenesis would enable the investigation of candidate pathogenic mechanisms in AD and the testing and developing of new therapeutic strategies. We report the development of AD pathologies in cortical neurons generated from human induced pluripotent stem (iPS) cells derived from patients with Down syndrome. Adults with Down syndrome (caused by trisomy of chromosome 21) develop early-onset AD, probably due to increased expression of a gene on chromosome 21 that encodes the amyloid precursor protein (APP). We found that cortical neurons generated from iPS cells and embryonic stem cells from Down syndrome patients developed AD pathologies over months in culture, rather than years in vivo. These cortical neurons processed the transmembrane APP protein, resulting in secretion of the pathogenic peptide fragment amyloid-β42 (Aβ42), which formed insoluble intracellular and extracellular amyloid aggregates. Production of Aβ peptides was blocked by a γ-secretase inhibitor. Finally, hyperphosphorylated tau protein, a pathological hallmark of AD, was found to be localized to cell bodies and dendrites in iPS cell-derived cortical neurons from Down syndrome patients, recapitulating later stages of the AD pathogenic process.

  16. CNS regulation of appetite.

    Science.gov (United States)

    Harrold, Joanne A; Dovey, Terry M; Blundell, John E; Halford, Jason C G

    2012-07-01

    This article reviews the regulation of appetite from a biopsychological perspective. It considers psychological experiences and peripheral nutritional systems (both episodic and tonic) and addresses their relationship with the CNS networks that process and integrate their input. Whilst such regulatory aspects of obesity focus on homeostatic control mechanisms, in the modern environment hedonic aspects of appetite are also critical. Enhanced knowledge of the complexity of appetite regulation and the mechanisms that sustain obesity indicate the challenge presented by management of the obesity epidemic. Nonetheless, effective control of appetite expression remains a critical therapeutic target for weight management. Currently, strategies which utilise a combination of agents to target both homeostatic and hedonic control mechanisms represent the most promising approaches. This article is part of a Special Issue entitled 'Central Control of Food Intake'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Multivariate analysis of the scattering profiles of healthy and pathological human breast tissues

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, A.L.C.; Antoniassi, M. [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto 14040-901, Sao Paulo (Brazil); Cunha, D.M. [Instituto de Fisica, Universidade Federal de Uberlandia, 38400-902, Uberlandia, Minas Gerais (Brazil); Ribeiro-Silva, A. [Departamento de Patologia, HCFMRP, Universidade de Sao Paulo, Ribeirao Preto 14040-901, Sao Paulo (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.br [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto 14040-901, Sao Paulo (Brazil)

    2011-10-01

    Scattering profiles of 106 healthy and pathological human breast samples were obtained using the angular dispersive X-ray scattering technique (AD-XRD) and synchrotron radiation covering the momentum transfer interval of 0.7 nm{sup -1}{<=}q(=4{pi} sin({theta}/2)/{lambda}){<=}70.5 nm{sup -1}. Multivariate analysis in the form of discriminant analysis was applied over the whole scattering profile curve of each sample in order to build a model for breast tissue classification. The classification results were validated and compared with histological sample classification obtained by microscopy analysis. Finally, the model allows classifying correctly 91.5% of the samples and presented values of 98.5%, 89.7% and 0.90 for sensitivity, specificity and Cohen's {kappa}, respectively, in correctly differentiating between healthy and pathological tissues.

  18. The pathological consequences of impaired genome integrity in humans; disorders of the DNA replication machinery.

    Science.gov (United States)

    O'Driscoll, Mark

    2017-01-01

    Accurate and efficient replication of the human genome occurs in the context of an array of constitutional barriers, including regional topological constraints imposed by chromatin architecture and processes such as transcription, catenation of the helical polymer and spontaneously generated DNA lesions, including base modifications and strand breaks. DNA replication is fundamentally important for tissue development and homeostasis; differentiation programmes are intimately linked with stem cell division. Unsurprisingly, impairments of the DNA replication machinery can have catastrophic consequences for genome stability and cell division. Functional impacts on DNA replication and genome stability have long been known to play roles in malignant transformation through a variety of complex mechanisms, and significant further insights have been gained from studying model organisms in this context. Congenital hypomorphic defects in components of the DNA replication machinery have been and continue to be identified in humans. These disorders present with a wide range of clinical features. Indeed, in some instances, different mutations in the same gene underlie different clinical presentations. Understanding the origin and molecular basis of these features opens a window onto the range of developmental impacts of suboptimal DNA replication and genome instability in humans. Here, I will briefly overview the basic steps involved in DNA replication and the key concepts that have emerged from this area of research, before switching emphasis to the pathological consequences of defects within the DNA replication network; the human disorders. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  19. Humanized Tau Mice with Regionalized Amyloid Exhibit Behavioral Deficits but No Pathological Interaction

    Science.gov (United States)

    Yetman, Michael J.; Fowler, Stephanie W.; Jankowsky, Joanna L.

    2016-01-01

    Alzheimer’s disease (AD) researchers have struggled for decades to draw a causal link between extracellular Aβ aggregation and intraneuronal accumulation of microtubule-associated protein tau. The amyloid cascade hypothesis posits that Aβ deposition promotes tau hyperphosphorylation, tangle formation, cell loss, vascular damage, and dementia. While the genetics of familial AD and the pathological staging of sporadic disease support this sequence of events, attempts to examine the molecular mechanism in transgenic animal models have largely relied on models of other inherited tauopathies as the basis for testing the interaction with Aβ. In an effort to more accurately model the relationship between Aβ and wild-type tau in AD, we intercrossed mice that overproduce human Aβ with a tau substitution model in which all 6 isoforms of the human protein are expressed in animals lacking murine tau. We selected an amyloid model in which pathology was biased towards the entorhinal region so that we could further examine whether the anticipated changes in tau phosphorylation occurred at the site of Aβ deposition or in synaptically connected regions. We found that Aβ and tau had independent effects on locomotion, learning, and memory, but found no behavioral evidence for an interaction between the two transgenes. Moreover, we saw no indication of amyloid-induced changes in the phosphorylation or aggregation of human tau either within the entorhinal area or elsewhere. These findings suggest that robust amyloid pathology within the medial temporal lobe has little effect on the metabolism of wild type human tau in this model. PMID:27070146

  20. Identification of new therapeutic targets for prevention of CNS inflammation

    DEFF Research Database (Denmark)

    Owens, Trevor

    2002-01-01

    Multiple sclerosis (MS) is a disease of complex pathologies, which involves infiltration by CD4(+) and CD8(+) T cells of and response within the central nervous system. Expression in the CNS of cytokines, reactive nitrogen species and costimulator molecules have all been described in MS. Notably......, the cytokines IFN-gamma and TNF are strongly expressed. Microglial cells in the CNS express costimulator molecules and it is assumed that they play a role in directing or inducing the T cell response. Transgenic experiments have tested the effects of overexpression of these molecules in mice and have shown...... via the enzyme inducible nitric oxide synthase, which is immunosuppressive, IFN-gamma is predominantly pro-inflammatory. In CNS disease in mice that involves CD8(+) T cells, IFN-gamma blockade is protective. Finally, microglial expression of the costimulator ligand B7.2 induces demyelinating pathology...

  1. Integrating gross pathology into teaching of undergraduate medical science students using human cadavers.

    Science.gov (United States)

    Gopalan, Vinod; Dissabandara, Lakal; Nirthanan, Selvanayagam; Forwood, Mark R; Lam, Alfred King-Yin

    2016-09-01

    Human cadavers offer a great opportunity for histopathology students for the learning and teaching of tissue pathology. In this study, we aimed to implement an integrated learning approach by using cadavers to enhance students' knowledge and to develop their skills in gross tissue identification, handling and dissection techniques. A total of 35 students enrolled in the undergraduate medical science program participated in this study. A 3-hour laboratory session was conducted that included an active exploration of cadaveric specimens to identify normal and pathological tissues as well as tissue dissection. The majority of the students strongly agreed that the integration of normal and morbid anatomy improved their understanding of tissue pathology. All the students either agreed or strongly agreed that this laboratory session was useful to improve their tissue dissection and instrument handling skills. Furthermore, students from both cohorts rated the session as very relevant to their learning and recommended that this approach be added to the existing histopathology curriculum. To conclude, an integrated cadaver-based practical session can be used effectively to enhance the learning experience of histopathology science students, as well as improving their manual skills of tissue treatment, instrument handling and dissection.

  2. Third harmonic generation imaging for fast, label-free pathology of human brain tumors.

    Science.gov (United States)

    Kuzmin, N V; Wesseling, P; Hamer, P C de Witt; Noske, D P; Galgano, G D; Mansvelder, H D; Baayen, J C; Groot, M L

    2016-05-01

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third harmonic generation (THG) microscopy provides label-free, real-time images of histopathological quality; increased cellularity, nuclear pleomorphism, and rarefaction of neuropil in fresh, unstained human brain tissue could be clearly recognized. We further demonstrate THG images taken with a GRIN objective, as a step toward in situ THG microendoscopy of tumor boundaries. THG imaging is thus a promising tool for optical biopsies.

  3. Third harmonic generation imaging for fast, label-free pathology of human brain tumors

    Science.gov (United States)

    Kuzmin, N. V.; Wesseling, P.; Hamer, P. C. de Witt; Noske, D. P.; Galgano, G. D.; Mansvelder, H. D.; Baayen, J. C.; Groot, M. L.

    2016-01-01

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third harmonic generation (THG) microscopy provides label-free, real-time images of histopathological quality; increased cellularity, nuclear pleomorphism, and rarefaction of neuropil in fresh, unstained human brain tissue could be clearly recognized. We further demonstrate THG images taken with a GRIN objective, as a step toward in situ THG microendoscopy of tumor boundaries. THG imaging is thus a promising tool for optical biopsies. PMID:27231629

  4. microRNAs in CNS disorders

    DEFF Research Database (Denmark)

    Kocerha, Jannet; Kauppinen, Sakari; Wahlestedt, Claes

    2009-01-01

    In recent years, there has been a shift in the conventional paradigms for transcriptional and translational regulation as extensive sequencing efforts have yielded new insights into the landscape of the human genome and transcriptome. Hundreds of non-coding regulatory RNA molecules called microRNAs...... (miRNAs) have been identified in the mammalian central nervous system (CNS) and are reported to mediate pivotal roles in many aspects of neuronal functions. Disruption of miRNA-based post-transcriptional regulation has been implicated in a range of CNS disorders as one miRNA is predicted to impact...... the expression of numerous downstream mRNA targets. The intricate molecular networks mediated by an miRNA form a robust mechanism for rapid and potent responses to cellular events throughout the development of the human brain. Recent studies have identified a molecular and ultimately pathogenic role for a subset...

  5. Human synaptic plasticity gene expression profile and dendritic spine density changes in HIV-infected human CNS cells: role in HIV-associated neurocognitive disorders (HAND.

    Directory of Open Access Journals (Sweden)

    Venkata Subba Rao Atluri

    Full Text Available HIV-associated neurocognitive disorders (HAND is characterized by development of cognitive, behavioral and motor abnormalities, and occur in approximately 50% of HIV infected individuals. Our current understanding of HAND emanates mainly from HIV-1 subtype B (clade B, which is prevalent in USA and Western countries. However very little information is available on neuropathogenesis of HIV-1 subtype C (clade C that exists in Sub-Saharan Africa and Asia. Therefore, studies to identify specific neuropathogenic mechanisms associated with HAND are worth pursuing to dissect the mechanisms underlying this modulation and to prevent HAND particularly in clade B infection. In this study, we have investigated 84 key human synaptic plasticity genes differential expression profile in clade B and clade C infected primary human astrocytes by using RT(2 Profile PCR Array human Synaptic Plasticity kit. Among these, 31 and 21 synaptic genes were significantly (≥3 fold down-regulated and 5 genes were significantly (≥3 fold up-regulated in clade B and clade C infected cells, respectively compared to the uninfected control astrocytes. In flow-cytometry analysis, down-regulation of postsynaptic density and dendrite spine morphology regulatory proteins (ARC, NMDAR1 and GRM1 was confirmed in both clade B and C infected primary human astrocytes and SK-N-MC neuroblastoma cells. Further, spine density and dendrite morphology changes by confocal microscopic analysis indicates significantly decreased spine density, loss of spines and decreased dendrite diameter, total dendrite and spine area in clade B infected SK-N-MC neuroblastoma cells compared to uninfected and clade C infected cells. We have also observed that, in clade B infected astrocytes, induction of apoptosis was significantly higher than in the clade C infected astrocytes. In conclusion, this study suggests that down-regulation of synaptic plasticity genes, decreased dendritic spine density and induction of

  6. Human isolates of Bartonella tamiae induce pathology in experimentally inoculated immunocompetent mice

    Directory of Open Access Journals (Sweden)

    Kosoy Michael Y

    2010-07-01

    Full Text Available Abstract Background Bartonella tamiae, a newly described bacterial species, was isolated from the blood of three hospitalized patients in Thailand. These patients presented with headache, myalgia, anemia, and mild liver function abnormalities. Since B. tamiae was presumed to be the cause of their illness, these isolates were inoculated into immunocompetent mice to determine their relative pathogenicity in inducing manifestations of disease and pathology similar to that observed in humans. Methods Three groups of four Swiss Webster female mice aged 15-18 months were each inoculated with 106-7 colony forming units of one of three B. tamiae isolates [Th239, Th307, and Th339]. A mouse from each experimental group was sampled at 3, 4, 5 and 6 weeks post-inoculation. Two saline inoculated age-matched controls were included in the study. Samples collected at necropsy were evaluated for the presence of B. tamiae DNA, and tissues were formalin-fixed, stained with hematoxylin and eosin, and examined for histopathology. Results Following inoculation with B. tamiae, mice developed ulcerative skin lesions and subcutaneous masses on the lateral thorax, as well as axillary and inguinal lymphadenopathy. B. tamiae DNA was found in subcutaneous masses, lymph node, and liver of inoculated mice. Histopathological changes were observed in tissues of inoculated mice, and severity of lesions correlated with the isolate inoculated, with the most severe pathology induced by B. tamiae Th239. Mice inoculated with Th239 and Th339 demonstrated myocarditis, lymphadenitis with associated vascular necrosis, and granulomatous hepatitis and nephritis with associated hepatocellular and renal necrosis. Mice inoculated with Th307 developed a deep dermatitis and granulomas within the kidneys. Conclusions The three isolates of B. tamiae evaluated in this study induce disease in immunocompetent Swiss Webster mice up to 6 weeks after inoculation. The human patients from whom these

  7. Glial fibrillary acidic protein is a body fluid biomarker for glial pathology in human disease.

    Science.gov (United States)

    Petzold, Axel

    2015-03-10

    This review on the role of glial fibrillary acidic protein (GFAP) as a biomarker for astroglial pathology in neurological diseases provides background to protein synthesis, assembly, function and degeneration. Qualitative and quantitative analytical techniques for the investigation of human tissue and biological fluid samples are discussed including partial lack of parallelism and multiplexing capabilities. Pathological implications are reviewed in view of immunocytochemical, cell-culture and genetic findings. Particular emphasis is given to neurodegeneration related to autoimmune astrocytopathies and to genetic gain of function mutations. The current literature on body fluid levels of GFAP in human disease is summarised and illustrated by disease specific meta-analyses. In addition to the role of GFAP as a diagnostic biomarker for chronic disease, there are important data on the prognostic value for acute conditions. The published evidence permits to classify the dominant GFAP signatures in biological fluids. This classification may serve as a template for supporting diagnostic criteria of autoimmune astrocytopathies, monitoring disease progression in toxic gain of function mutations, clinical treatment trials (secondary outcome and toxicity biomarker) and provide prognostic information in neurocritical care if used within well defined time-frames.

  8. Comparative efficacy and safety of multiple routes of direct CNS administration of adeno-associated virus gene transfer vector serotype rh.10 expressing the human arylsulfatase A cDNA to nonhuman primates.

    Science.gov (United States)

    Rosenberg, Jonathan B; Sondhi, Dolan; Rubin, David G; Monette, Sébastien; Chen, Alvin; Cram, Sara; De, Bishnu P; Kaminsky, Stephen M; Sevin, Caroline; Aubourg, Patrick; Crystal, Ronald G

    2014-09-01

    Metachromatic leukodystrophy (MLD), a fatal disorder caused by deficiency of the lysosomal enzyme arylsulfatase A (ARSA), is associated with an accumulation of sulfatides, causing widespread demyelination in both central and peripheral nervous systems. On the basis of prior studies demonstrating that adeno-associated virus AAVrh.10 can mediate widespread distribution in the CNS of a secreted lysosomal transgene, and as a prelude to human trials, we comparatively assessed the optimal CNS delivery route of an AAVrh.10 vector encoding human ARSA in a large animal model for broadest distribution of ARSA enzyme. Five routes were tested (each total dose, 1.5 × 10(12) genome copies of AAVrh.10hARSA-FLAG): (1) delivery to white matter centrum ovale; (2) deep gray matter delivery (putamen, thalamus, and caudate) plus overlying white matter; (3) convection-enhanced delivery to same deep gray matter locations; (4) lateral cerebral ventricle; and (5) intraarterial delivery with hyperosmotic mannitol to the middle cerebral artery. After 13 weeks, the distribution of ARSA activity subsequent to each of the three direct intraparenchymal administration routes was significantly higher than in phosphate-buffered saline-administered controls, but administration by the intraventricular and intraarterial routes failed to demonstrate measurable levels above controls. Immunohistochemical staining in the cortex, white matter, deep gray matter of the striatum, thalamus, choroid plexus, and spinal cord dorsal root ganglions confirmed these results. Of the five routes studied, administration to the white matter generated the broadest distribution of ARSA, with 80% of the brain displaying more than a therapeutic (10%) increase in ARSA activity above PBS controls. No significant toxicity was observed with any delivery route as measured by safety parameters, although some inflammatory changes were seen by histopathology. We conclude that AAVrh.10-mediated delivery of ARSA via CNS

  9. LINGO-1 and its role in CNS repair.

    Science.gov (United States)

    Mi, Sha; Sandrock, Alfred; Miller, Robert H

    2008-01-01

    LINGO-1 is selectively expressed in the CNS on both oligodendrocyte precursor cells (OPCs) and neurons. Its expression is developmentally regulated in the normal CNS, as well as up-regulated in human or rat models of neuropathologies. LINGO-1 functions as a negative regulator of oligodendrocyte differentiation and myelination, neuronal survival and axonal regeneration. Across diverse animal CNS disease models, targeted LINGO-1 inhibition was found to promote neuron and oligodendrocyte survival, axon regeneration, oligodendrocyte differentiation, remyelination and improved functional recovery. The targeted inhibition of LINGO-1 therefore presents a novel therapeutic approach for the treatment of neurological diseases.

  10. Environmental Causes of CNS Maldevelopment

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-04-01

    Full Text Available Developmental processes and the effects of toxic agents in the environment that alter CNS growth and maturation are reviewed by a researcher in the Department of OB/GYN, University of Rochester Medical Center, Rochester, NY.

  11. DUF1220-domain copy number implicated in human brain-size pathology and evolution.

    Science.gov (United States)

    Dumas, Laura J; O'Bleness, Majesta S; Davis, Jonathan M; Dickens, C Michael; Anderson, Nathan; Keeney, J G; Jackson, Jay; Sikela, Megan; Raznahan, Armin; Giedd, Jay; Rapoport, Judith; Nagamani, Sandesh S C; Erez, Ayelet; Brunetti-Pierri, Nicola; Sugalski, Rachel; Lupski, James R; Fingerlin, Tasha; Cheung, Sau Wai; Sikela, James M

    2012-09-07

    DUF1220 domains show the largest human-lineage-specific increase in copy number of any protein-coding region in the human genome and map primarily to 1q21, where deletions and reciprocal duplications have been associated with microcephaly and macrocephaly, respectively. Given these findings and the high correlation between DUF1220 copy number and brain size across primate lineages (R(2) = 0.98; p = 1.8 × 10(-6)), DUF1220 sequences represent plausible candidates for underlying 1q21-associated brain-size pathologies. To investigate this possibility, we used specialized bioinformatics tools developed for scoring highly duplicated DUF1220 sequences to implement targeted 1q21 array comparative genomic hybridization on individuals (n = 42) with 1q21-associated microcephaly and macrocephaly. We show that of all the 1q21 genes examined (n = 53), DUF1220 copy number shows the strongest association with brain size among individuals with 1q21-associated microcephaly, particularly with respect to the three evolutionarily conserved DUF1220 clades CON1(p = 0.0079), CON2 (p = 0.0134), and CON3 (p = 0.0116). Interestingly, all 1q21 DUF1220-encoding genes belonging to the NBPF family show significant correlations with frontal-occipital-circumference Z scores in the deletion group. In a similar survey of a nondisease population, we show that DUF1220 copy number exhibits the strongest correlation with brain gray-matter volume (CON1, p = 0.0246; and CON2, p = 0.0334). Notably, only DUF1220 sequences are consistently significant in both disease and nondisease populations. Taken together, these data strongly implicate the loss of DUF1220 copy number in the etiology of 1q21-associated microcephaly and support the view that DUF1220 domains function as general effectors of evolutionary, pathological, and normal variation in brain size. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. Expression of aquaporin8 in human astrocytomas: Correlation with pathologic grade

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Shu-juan; Wang, Ke-jian; Gan, Sheng-wei; Xu, Jin; Xu, Shi-ye; Sun, Shan-quan, E-mail: sunsq2151@cqmu.edu.cn

    2013-10-11

    Highlights: •AQP8 is mainly distributed in the cytoplasm of human astrocytoma cells. •AQP8 over-expressed in human astrocytomas, especially glioblastoma. •The up-regulation of AQP8 is related to the pathological grade of human astrocytomas. •AQP8 may contribute to the growth and proliferation of astrocytomas. -- Abstract: Aquaporin8 (AQP8), a member of the aquaporin (AQP) protein family, is weakly distributed in mammalian brains. Previous studies on AQP8 have focused mainly on the digestive and the reproductive systems. AQP8 has a pivotal role in keeping the fluid and electrolyte balance. In this study, we investigated the expression changes of AQP8 in 75 cases of human brain astrocytic tumors using immunohistochemistry, Western blotting, and reverse transcription polymerase chain reaction. The results demonstrated that AQP8 was mainly distributed in the cytoplasm of astrocytoma cells. The expression levels and immunoreactive score of AQP8 protein and mRNA increased in low-grade astrocytomas, and further increased in high-grade astrocytomas, especially in glioblastoma. Therefore, AQP8 may contribute to the proliferation of astrocytomas, and may be a biomarker and candidate therapy target for patients with astrocytomas.

  13. Determination of oxidation state of iron in normal and pathologically altered human aortic valves

    Energy Technology Data Exchange (ETDEWEB)

    Czapla-Masztafiak, J. [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Kraków (Poland); Lis, G.J.; Gajda, M.; Jasek, E. [Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków (Poland); Czubek, U. [Department of Coronary Disease, Jagiellonian University Medical College, John Paul II Hospital, Prądnicka 80, 31-202 Kraków (Poland); Bolechała, F. [Department of Forensic Medicine, Jagiellonian University Medical College, Grzegórzecka 16, 31-531 Kraków (Poland); Borca, C. [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Kwiatek, W.M. [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Kraków (Poland)

    2015-12-01

    In order to investigate changes in chemical state of iron in normal and pathologically altered human aortic valves X-ray absorption spectroscopy was applied. Since Fe is suspected to play detrimental role in aortic valve stenosis pathogenesis the oxidation state of this element has been determined. The experimental material consisted of 10 μm sections of valves excised during routine surgery and from autopsies. The experiment was performed at the MicroXAS beamline of the SLS synchrotron facility in Villigen (Switzerland). The Fe K-edge XANES spectra obtained from tissue samples were carefully analyzed and compared with the spectra of reference compounds containing iron in various chemical structures. The analysis of absorption edge position and shape of the spectra revealed that both chemical forms of iron are presented in valve tissue but Fe{sup 3+} is the predominant form. Small shift of the absorption edge toward higher energy in the spectra from stenotic valve samples indicates higher content of the Fe{sup 3+} form in pathological tissue. Such a phenomenon suggests the role of Fenton reaction and reactive oxygen species in the etiology of aortic valve stenosis. The comparison of pre-edge regions of XANES spectra for control and stenotic valve tissue confirmed no differences in local symmetry or spin state of iron in analyzed samples.

  14. Integrated optical coherence tomography and optical coherence microscopy imaging of human pathology

    Science.gov (United States)

    Lee, Hsiang-Chieh; Zhou, Chao; Wang, Yihong; Aquirre, Aaron D.; Tsai, Tsung-Han; Cohen, David W.; Connolly, James L.; Fujimoto, James G.

    2010-02-01

    Excisional biopsy is the current gold standard for disease diagnosis; however, it requires a relatively long processing time and it may also suffer from unacceptable false negative rates due to sampling errors. Optical coherence tomography (OCT) is a promising imaging technique that provide real-time, high resolution and three-dimensional (3D) images of tissue morphology. Optical coherence microscopy (OCM) is an extension of OCT, combining both the coherence gating and the confocal gating techniques. OCM imaging achieves cellular resolution with deeper imaging depth compared to confocal microscopy. An integrated OCT/OCM imaging system can provide co-registered multiscale imaging of tissue morphology. 3D-OCT provides architectural information with a large field of view and can be used to find regions of interest; while OCM provides high magnification to enable cellular imaging. The integrated OCT/OCM system has an axial resolution of kidney (19), were imaged with OCT and OCM within 2 to 6 hours after excision. The images were compared with H & E histology to identify characteristic features useful for disease diagnosis. The feasibility of visualizing human pathology using integrated OCT/OCM was demonstrated in the pathology laboratory settings.

  15. Photoacoustic spectroscopy of the expired air at a human respiratory pathology

    Science.gov (United States)

    Ageev, B. G.; Kapitanov, V. A.; Ponomarev, Yu. N.; Nikiforova, O. Yu.; Karapuzikov, A. I.; Sherstov, I. V.; Volkova, L. I.; Djakova, E. Yu.; Kapilevich, L. V.; Kapitanova, D. V.; Kistenev, Yu. V.; Smotrova, N. A.; Fokin, V. A.; Plohotin, A. V.; Berendeeva, T. A.

    2006-12-01

    There are about 600 volatile compounds in air expired by man, including molecules-biomarkers of endogenous (produced in organism) origin, the specificity of generation and excretion mechanisms of which is sufficient for studies of both normal and pathologic processes. The goal of this work is analysis of the human-expired air by means of the intracavity laser photoacoustic sensor intended for detection of air gas admixtures having the absorption bands in the wavelength spectral range 9.2 - 10.8 μm. The sensor principle of operation is based on the photoacoustic effect caused by gas absorption of the CO II laser radiation. Measurements were conducted with a test group consisting of 100 persons and a group of patients (60 persons) affected by different bronchopulnionary pathologies. The state of health of each group members was determined from questioning data. The spectral absorption dependences were normalized to referent points and then investigated in respect to a qualitative coincidence. The typical results are presented below.

  16. Are PrP(C)s involved in some human myelin diseases? Relating experimental studies to human pathology.

    Science.gov (United States)

    Veber, Daniela; Scalabrino, Giuseppe

    2015-12-15

    We have experimentally demonstrated that cobalamin (Cbl) deficiency increases normal cellular prion (PrP(C)) levels in rat spinal cord (SC) and cerebrospinal fluid (CSF), and decreases PrP(C)-mRNA levels in rat SC. Repeated intracerebroventricular administrations of anti-octapeptide repeat-PrP(C)-region antibodies to Cbl-deficient (Cbl-D) rats prevent SC myelin lesions, and the administrations of PrP(C)s to otherwise normal rats cause SC white matter lesions similar to those induced by Cbl deficiency. Cbl positively regulates SC PrP(C) synthesis in rat by stimulating the local synthesis of epidermal growth factor (EGF), which also induces the local synthesis of PrP(C)-mRNAs, and downregulating the local synthesis of tumor necrosis factor(TNF)-α, thus preventing local PrP(C) overproduction. We have clinically demonstrated that PrP(C) levels are increased in the CSF of patients with subacute combined degeneration (SCD), unchanged in the CSF of patients with Alzheimer's disease and amyotrophic lateral sclerosis, and decreased in the CSF and SC of patients with multiple sclerosis (MS), regardless of its clinical course. We conclude that SCD (human and experimental) is a neurological disease due to excess PrP(C) without conformational change and aggregation, that the increase in PrP(C) levels in SCD and Cbl-D polyneuropathy and their decrease in MS CNS make them antipodian myelin diseases in terms of quantitative PrP(C) abnormalities, and that these abnormalities are related to myelin damage in the former, and impede myelin repair in the latter.

  17. Human movement variability, nonlinear dynamics, and pathology: is there a connection?

    Science.gov (United States)

    Stergiou, Nicholas; Decker, Leslie M

    2011-10-01

    Fields studying movement generation, including robotics, psychology, cognitive science, and neuroscience utilize concepts and tools related to the pervasiveness of variability in biological systems. The concept of variability and the measures for nonlinear dynamics used to evaluate this concept open new vistas for research in movement dysfunction of many types. This review describes innovations in the exploration of variability and their potential importance in understanding human movement. Far from being a source of error, evidence supports the presence of an optimal state of variability for healthy and functional movement. This variability has a particular organization and is characterized by a chaotic structure. Deviations from this state can lead to biological systems that are either overly rigid and robotic or noisy and unstable. Both situations result in systems that are less adaptable to perturbations, such as those associated with unhealthy pathological states or absence of skillfulness.

  18. Diffuse Optical Characterization of the Healthy Human Thyroid Tissue and Two Pathological Case Studies.

    Directory of Open Access Journals (Sweden)

    Claus Lindner

    Full Text Available The in vivo optical and hemodynamic properties of the healthy (n = 22 and pathological (n = 2 human thyroid tissue were measured non-invasively using a custom time-resolved spectroscopy (TRS and diffuse correlation spectroscopy (DCS system. Medical ultrasound was used to guide the placement of the hand-held hybrid optical probe. TRS measured the absorption and reduced scattering coefficients (μa, μs' at three wavelengths (690, 785 and 830 nm to derive total hemoglobin concentration (THC and oxygen saturation (StO2. DCS measured the microvascular blood flow index (BFI. Their dependencies on physiological and clinical parameters and positions along the thyroid were investigated and compared to the surrounding sternocleidomastoid muscle. The THC in the thyroid ranged from 131.9 μM to 144.8 μM, showing a 25-44% increase compared to the surrounding sternocleidomastoid muscle tissue. The blood flow was significantly higher in the thyroid (BFIthyroid = 16.0 × 10-9 cm2/s compared to the muscle (BFImuscle = 7.8 × 10-9 cm2/s, while StO2 showed a small (StO2, muscle = 63.8% to StO2, thyroid = 68.4%, yet significant difference. Two case studies with thyroid nodules underwent the same measurement protocol prior to thyroidectomy. Their THC and BFI reached values around 226.5 μM and 62.8 × 10-9 cm2/s respectively showing a clear contrast to the nodule-free thyroid tissue as well as the general population. The initial characterization of the healthy and pathologic human thyroid tissue lays the ground work for the future investigation on the use of diffuse optics in thyroid cancer screening.

  19. Expression of the TGF-beta1 system in human testicular pathologies

    Directory of Open Access Journals (Sweden)

    Puigdomenech Elisa

    2010-12-01

    Full Text Available Abstract Background In non-obstructive azoospermia, histological patterns of Sertoli cell-only Syndrome (SCO and hypospermatogenesis (H are commonly found. In these pathologies, Leydig cell hyperplasia (LCH is detected in some patients. Since TGF-β1 is involved in cellular proliferation/development, the aim of this work was to analyze the expression of TGF-β1, its receptors TGFBRII, TGFBRI (ALK-1 and ALK-5, and the co-receptor endoglin in human biopsies from patients with idiopathic infertility. Methods Specific immunostaining of TGF-β1, its receptors TGFBRII, TGFBRI (ALK-1 and ALK-5, co-receptor endoglin and Smads proteins, were carried out in testicular biopsies from normal and infertile men with SCO or H. Gene expression of TGF-β1 system were made in biopsies from infertile patients with semi-quantitative and quantitative PCR. Results Immunohistochemical studies revealed that TGF-β1 and its specific receptors are present in Leydig cells in biopsies from normal tissue or patients with SCO or H with or without LCH. Smad proteins, which are involved in TGF-β1 signaling, are also detected in both their phosphorylated (activated and dephosphorylated form in all samples TGF-β1, ALK-1 and endoglin gene expression are stronger in human biopsies with LCH than in those with SCO or H. Neither TGFBRII nor ALK-5 gene expression showed significant differences between pathologies. A significant correlation between ALK-1 and endoglin expression was observed. Conclusions In conclusion, the high levels of mRNA and protein expression of the TGF-β1 system in patients with LCH, particularly ALK1 and its correlation with endoglin, suggest that these proteins acting in concert might be, at least in part, committed actors in the Leydig cell hyperplasia.

  20. Propagation of alpha-synuclein pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies.

    Science.gov (United States)

    Uchihara, Toshiki; Giasson, Benoit I

    2016-01-01

    Progressive aggregation of alpha-synuclein (αS) through formation of amorphous pale bodies to mature Lewy bodies or in neuronal processes as Lewy neurites may be the consequence of conformational protein changes and accumulations, which structurally represents "molecular template". Focal initiation and subsequent spread along anatomically connected structures embody "structural template". To investigate the hypothesis that both processes might be closely associated and involved in the progression of αS pathology, which can be observed in human brains, αS amyloidogenic precursors termed "seeds" were experimentally injected into the brain or peripheral nervous system of animals. Although these studies showed that αS amyloidogenic seeds can induce αS pathology, which can spread in the nervous system, the findings are still not unequivocal in demonstrating predominant transsynaptic or intraneuronal spreads either in anterograde or retrograde directions. Interpretation of some of these studies is further complicated by other concurrent aberrant processes including neuroimmune activation, injury responses and/or general perturbation of proteostasis. In human brain, αS deposition and neuronal degeneration are accentuated in distal axon/synapse. Hyperbranching of axons is an anatomical commonality of Lewy-prone systems, providing a structural basis for abundance in distal axons and synaptic terminals. This neuroanatomical feature also can contribute to such distal accentuation of vulnerability in neuronal demise and the formation of αS inclusion pathology. Although retrograde progression of αS aggregation in hyperbranching axons may be a consistent feature of Lewy pathology, the regional distribution and gradient of Lewy pathology are not necessarily compatible with a predictable pattern such as upward progression from lower brainstem to cerebral cortex. Furthermore, "focal Lewy body disease" with the specific isolated involvement of autonomic, olfactory or cardiac

  1. Morphological characterization of the nasopalatine region in human fetuses and its association to pathologies

    Directory of Open Access Journals (Sweden)

    Saulo Gabriel Moreira FALCI

    2013-06-01

    Full Text Available The nasopalatine region is composed of structures such as the vomeronasal organ and nasopalatine duct. The nasopalatine duct may provide the communication of the mouth to the nasal cavity in human fetuses and can be obliterated in an adult human. Knowledge on the development of the nasopalatine region and nasopalatine duct in humans is necessary for understanding the morphology and etiopathogenesis of lesions that occur in this region. Objective The aim of the present study was to describe the morphological aspects of the nasopalatine region in human fetuses and correlate these aspects with the development of pathologies in this region. Material and Methods Five human fetuses with no facial or palatine abnormalities were used for the acquisition of specimens from the nasopalatine region. After demineralization, the specimens were histologically processed. Histological cuts were stained with methylene blue to orient the cutting plane and hematoxylin-eosin for the descriptive histological analysis. Results The age of the fetuses was 8.00, 8.25, 9.00 and 9.25 weeks, and it was not possible to determine the age in the last one. The incisive canal was observed in all specimens as an opening delimited laterally by the periosteum and connecting oral and nasal cavity. The nasopalatine duct is an epithelial structure with the greatest morphological variation, with either unilateral or bilateral occurrence and total patent, partial patent and islet forms. The vomeronasal organ is a bilateral epithelized structure located alongside the nasal septum above the incisive canal in all the fetuses. Conclusions The incisive canal, nasopalatine duct and vomeronasal organ are distinct anatomic structures. The development of nasopalatine duct cysts may occur in all forms of the nasopalatine duct.

  2. CNS drug design: balancing physicochemical properties for optimal brain exposure.

    Science.gov (United States)

    Rankovic, Zoran

    2015-03-26

    The human brain is a uniquely complex organ, which has evolved a sophisticated protection system to prevent injury from external insults and toxins. Designing molecules that can overcome this protection system and achieve optimal concentration at the desired therapeutic target in the brain is a specific and major challenge for medicinal chemists working in CNS drug discovery. Analogous to the now widely accepted rule of 5 in the design of oral drugs, the physicochemical properties required for optimal brain exposure have been extensively studied in an attempt to similarly define the attributes of successful CNS drugs and drug candidates. This body of work is systematically reviewed here, with a particular emphasis on the interplay between the most critical physicochemical and pharmacokinetic parameters of CNS drugs as well as their impact on medicinal chemistry strategies toward molecules with optimal brain exposure. A summary of modern CNS pharmacokinetic concepts and methods is also provided.

  3. Pharmacokinetic, Pharmacogenetic, and Other Factors Influencing CNS Penetration of Antiretrovirals

    Directory of Open Access Journals (Sweden)

    Jacinta Nwamaka Nwogu

    2016-01-01

    Full Text Available Neurological complications associated with the human immunodeficiency virus (HIV are a matter of great concern. While antiretroviral (ARV drugs are the cornerstone of HIV treatment and typically produce neurological benefit, some ARV drugs have limited CNS penetration while others have been associated with neurotoxicity. CNS penetration is a function of several factors including sieving role of blood-brain and blood-CSF barriers and activity of innate drug transporters. Other factors are related to pharmacokinetics and pharmacogenetics of the specific ARV agent or mediated by drug interactions, local inflammation, and blood flow. In this review, we provide an overview of the various factors influencing CNS penetration of ARV drugs with an emphasis on those commonly used in sub-Saharan Africa. We also summarize some key associations between ARV drug penetration, CNS efficacy, and neurotoxicity.

  4. Imaging of CNS Vasculitis

    Directory of Open Access Journals (Sweden)

    Nahid Sedighi

    2010-05-01

    Full Text Available The vasculitides are the most interesting assorted group of diseases. Most have an imunologic basis resulting in vascular injury."nInflammatory changes within and surrounding the vessel wall result in narrowing and obliteration of the vascular lumen with subsequent thrombotic occlusion or necrosis and rupture of the vessel. The pathologic features in this lesion include spasm, edema, cellular infiltration, and proliferation. "nThese inflammatory changes result in the classic angiographic picture of segmental narrowing and dilataion. Long segments of vessels are involved, circumferentially."nWhen seen in the cerebral arteries, these features strongly favor vasculitis, although other disease processes can produce this picture."nMR scan is quite sensitive detecting abnormalities in patients with vasculitis, but falls short in specificity. MRA is very limited in this diagnosis, both because of technique and its limited ability to visualize distal vessels. "nThe aim of this lecture is to try to categorize and narrow the differential diagnosis, presenting some of our cases in the department of radiology in Shariati hospital and the private practice.

  5. Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders

    Directory of Open Access Journals (Sweden)

    Mamchaoui Kamel

    2011-11-01

    Full Text Available Abstract Background Investigations into both the pathophysiology and therapeutic targets in muscle dystrophies have been hampered by the limited proliferative capacity of human myoblasts. Isolation of reliable and stable immortalized cell lines from patient biopsies is a powerful tool for investigating pathological mechanisms, including those associated with muscle aging, and for developing innovative gene-based, cell-based or pharmacological biotherapies. Methods Using transduction with both telomerase-expressing and cyclin-dependent kinase 4-expressing vectors, we were able to generate a battery of immortalized human muscle stem-cell lines from patients with various neuromuscular disorders. Results The immortalized human cell lines from patients with Duchenne muscular dystrophy, facioscapulohumeral muscular dystrophy, oculopharyngeal muscular dystrophy, congenital muscular dystrophy, and limb-girdle muscular dystrophy type 2B had greatly increased proliferative capacity, and maintained their potential to differentiate both in vitro and in vivo after transplantation into regenerating muscle of immunodeficient mice. Conclusions Dystrophic cellular models are required as a supplement to animal models to assess cellular mechanisms, such as signaling defects, or to perform high-throughput screening for therapeutic molecules. These investigations have been conducted for many years on cells derived from animals, and would greatly benefit from having human cell models with prolonged proliferative capacity. Furthermore, the possibility to assess in vivo the regenerative capacity of these cells extends their potential use. The innovative cellular tools derived from several different neuromuscular diseases as described in this report will allow investigation of the pathophysiology of these disorders and assessment of new therapeutic strategies.

  6. Isolated vasculitis of the CNS; Isolierte Vaskulitis des ZNS

    Energy Technology Data Exchange (ETDEWEB)

    Block, F. [RWTH Aachen (Germany). Neurologische Klinik; Reith, W. [Universitaet des Saarlandes, Homburg/Saar (Germany). Radiologische Klinik

    2000-11-01

    Vasculitis is a rare cause for disease of the CNS. The isolated vasculitis of the CNS is restricted to the CNS whereas other forms of vasculitis affect various organs including the CNS. Headache, encephalopathy, focal deficits and epileptic seizures are the major symptoms suggestive for vasculitis. One major criterion of the isolated vasculitis of the CNS is the lack of evidence for other vasculitis forms or for pathology of other organs. Angiography displays multifocal segmental stenosis of intracranial vessels. MRI demonstrates multiple lesions which in part show enhancement after gadolinium. A definite diagnosis can only be made on the grounds of biopsy from leptomeninges and parenchyma. Therapy consists of corticosteroids and cyclophosphamid. (orig.) [German] Vaskulitiden sind eine seltene Ursache fuer Erkrankungen des ZNS. Die Vaskulitiden lassen sich in primaere und sekundaere einteilen, von denen sich die ueberwiegende Mehrzahl an verschiedenen Organsystemen einschliesslich dem ZNS manifestieren kann. Die isolierte ZNS-Vaskulitis ist auf das ZNS beschraenkt, bei ihr stehen klinisch-neurologisch wie bei den anderen Vaskulitisformen Kopfschmerzen, Enzephalopathie, fokale Defizite und epileptische Anfaelle im Vordergrund. Ein Kriterium der isolierten ZNS-Vaskulitis ist der klinische und laborchemische Ausschluss anderer Vaskulitiden bzw. der Beteiligung anderer Organsysteme. Multiple Kaliberspruenge intrakranieller Arterien in der zerebralen Angiographie und multiple, kleine, z.T. kontrastmittelaufnehmende Laesionen in der MRT des Schaedels sind vaskulitistypische Befunde, die allerdings auch bei anderen Vaskulitiden zu finden sind. Einzig beweisend ist eine Hirnhaut- und Hirnparenchymbiopsie. Besonders vor dem Hintergrund der therapeutischen Option, Immunsuppression mit Kortison und Cyclophosphamid, ist eine moeglichst genaue Diagnose erforderlich. (orig.)

  7. Anal study in immunocompetent women with human papillomavirus related lower genital tract pathology.

    Science.gov (United States)

    Donaire, Concepción; Reillo, Marcos; Martínez-Escoriza, Juan C; López-Fernández, José A

    2017-04-01

    To estimate the prevalence of anal dysplasia in immunocompetent women with cervical intraepithelial dysplasia. We did a prospective cohort study, in which we enrolled 166 women with gynecological pathology related to human papilloma virus (HPV) infection. All patients underwent an anal cytology and HPV detection. Statistical analysis with a 95% confidence interval was used for prevalence calculations. A Χ2 test and Fisher's exact one were used to determine differences between groups of qualitative variables. Differences between normally distributed and non-normally distributed groups in quantitative variables were accounted for using Student's t-test or Mann-Whitney's U test, respectively. Out of the 166 patients studied, high risk HPV in the anal canal was detected in 107 (64.46%) cases. The most prevalent genotype observed was non 16/18 high risk HPV, present in 54 (50.47%) patients. There was no a significant association with smoking, use of condom, anal intercourse, or anal benign pathology. However, a significant correlation between the presence of high risk HPV in the anal canal and the antecedent of condylomas was observed (p=0.047) (CI95%: 1.00%-12.58%). Women with cervical intraepithelial neoplasia (CIN) grade 1 had a significantly increased presence of high risk HPV in the anal canal (p=0.044). Out of the 166 women, 6 (3.61%) had abnormal anal cytology results, and were referred to high-resolution anoscopy. Anal biopsy was performed in these six cases. In 2 patients the biopsy reported low-grade Anal Intraepithelial Neoplasia: 1.20% (0.15%-4.28%). Women with cervical intraepithelial dysplasia have 1.20% prevalence of anal intraepithelial neoplasia, so that it does not seem necessary to screen this population. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The human rhinovirus: human-pathological impact, mechanisms of antirhinoviral agents, and strategies for their discovery.

    Science.gov (United States)

    Rollinger, Judith M; Schmidtke, Michaela

    2011-01-01

    As the major etiological agent of the common cold, human rhinoviruses (HRV) cause millions of lost working and school days annually. Moreover, clinical studies proved an association between harmless upper respiratory tract infections and more severe diseases e.g. sinusitis, asthma, and chronic obstructive pulmonary disease. Both the medicinal and socio-economic impact of HRV infections and the lack of antiviral drugs substantiate the need for intensive antiviral research. A common structural feature of the approximately 100 HRV serotypes is the icosahedrally shaped capsid formed by 60 identical copies of viral capsid proteins VP1-4. The capsid protects the single-stranded, positive sense RNA genome of about 7,400 bases in length. Both structural as well as nonstructural proteins produced during the viral life cycle have been identified as potential targets for blocking viral replication at the step of attachment, entry, uncoating, RNA and protein synthesis by synthetic or natural compounds. Moreover, interferon and phytoceuticals were shown to protect host cells. Most of the known inhibitors of HRV replication were discovered as a result of empirical or semi-empirical screening in cell culture. Structure-activity relationship studies are used for hit optimization and lead structure discovery. The increasing structural insight and molecular understanding of viral proteins on the one hand and the advent of innovative computer-assisted technologies on the other hand have facilitated a rationalized access for the discovery of small chemical entities with antirhinoviral (anti-HRV) activity. This review will (i) summarize existing structural knowledge about HRV, (ii) focus on mechanisms of anti-HRV agents from synthetic and natural origin, and (iii) demonstrate strategies for efficient lead structure discovery.

  9. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model.

    Science.gov (United States)

    Lee, Il-Shin; Jung, Kwangsoo; Kim, Il-Sun; Lee, Haejin; Kim, Miri; Yun, Seokhwan; Hwang, Kyujin; Shin, Jeong Eun; Park, Kook In

    2015-08-21

    Alzheimer's disease (AD) is an inexorable neurodegenerative disease that commonly occurs in the elderly. The cognitive impairment caused by AD is associated with abnormal accumulation of amyloid-β (Aβ) and hyperphosphorylated tau, which are accompanied by inflammation. Neural stem cells (NSCs) are self-renewing, multipotential cells that differentiate into distinct neural cells. When transplanted into a diseased brain, NSCs repair and replace injured tissues after migration toward and engraftment within lesions. We investigated the therapeutic effects in an AD mouse model of human NSCs (hNSCs) that derived from an aborted human fetal telencephalon at 13 weeks of gestation. Cells were transplanted into the cerebral lateral ventricles of neuron-specific enolase promoter-controlled APPsw-expressing (NSE/APPsw) transgenic mice at 13 months of age. Implanted cells extensively migrated and engrafted, and some differentiated into neuronal and glial cells, although most hNSCs remained immature. The hNSC transplantation improved spatial memory in these mice, which also showed decreased tau phosphorylation and Aβ42 levels and attenuated microgliosis and astrogliosis. The hNSC transplantation reduced tau phosphorylation via Trk-dependent Akt/GSK3β signaling, down-regulated Aβ production through an Akt/GSK3β signaling-mediated decrease in BACE1, and decreased expression of inflammatory mediators through deactivation of microglia that was mediated by cell-to-cell contact, secretion of anti-inflammatory factors generated from hNSCs, or both. The hNSC transplantation also facilitated synaptic plasticity and anti-apoptotic function via trophic supplies. Furthermore, the safety and feasibility of hNSC transplantation are supported. These findings demonstrate the hNSC transplantation modulates diverse AD pathologies and rescue impaired memory via multiple mechanisms in an AD model. Thus, our data provide tangible preclinical evidence that human NSC transplantation could be a

  10. A functionally significant polymorphism in ID3 is associated with human coronary pathology.

    Directory of Open Access Journals (Sweden)

    Ani Manichaikul

    Full Text Available We previously identified association between the ID3 SNP rs11574 and carotid intima-media thickness in the Diabetes Heart Study, a predominantly White diabetic population. The nonsynonymous SNP rs11574 results in an amino acid substitution in the C-terminal region of ID3, attenuating the dominant negative function of ID3 as an inhibitor of basic HLH factor E12-mediated transcription. In the current investigation, we characterize the association between the functionally significant polymorphism in ID3, rs11574, with human coronary pathology.The Multi-Ethnic Study of Atherosclerosis (MESA is a longitudinal study of subclinical cardiovascular disease, including non-Hispanic White (n = 2,588, African American (n = 2,560 and Hispanic (n = 2,130 participants with data on coronary artery calcium (CAC. The Coronary Assessment in Virginia cohort (CAVA included 71 patients aged 30-80 years, undergoing a medically necessary cardiac catheterization and intravascular ultrasound (IVUS at the University of Virginia. ID3 SNP rs11574 risk allele was associated with the presence of CAC in MESA Whites (P = 0.017. In addition, the risk allele was associated with greater atheroma burden and stenosis in the CAVA cohort (P = 0.003, P = 0.04 respectively. The risk allele remained predictive of atheroma burden in multivariate analysis (Model 1: covariates age, gender, and LDL, regression coefficient = 9.578, SE = 3.657, p = 0.0110; Model 2: covariates Model 1, presence of hypertension, presence of diabetes, regression coefficient = 8.389, SE = 4.788, p = 0.0163.We present additional cohorts that demonstrate association of ID3 SNP rs11574 directly with human coronary artery pathology as measured by CAC and IVUS: one a multiethnic, relatively healthy population with low levels of diabetes and the second a predominantly White population with a higher incidence of T2DM referred for cardiac catheterization.

  11. Pathological cyclic strain-induced apoptosis in human periodontal ligament cells through the RhoGDIα/caspase-3/PARP pathway.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available AIM: Human periodontal ligament (PDL cells incur changes in morphology and express proteins in response to cyclic strain. However, it is not clear whether cyclic strain, especially excessive cyclic strain, induces PDL cell apoptosis and if so, what mechanism(s are responsible. The aim of the present study was to elucidate the molecular mechanisms by which pathological levels of cyclic strain induce human PDL cell apoptosis. MATERIALS AND METHODS: Human PDL cells were obtained from healthy premolar tissue. After three to five passages in culture, the cells were subjected to 20% cyclic strain at a frequency of 0.1 Hz for 6 or 24 h using an FX-5000T system. Morphological changes of the cells were assessed by inverted phase-contrast microscopy, and apoptosis was detected by fluorescein isothiocyanate (FITC-conjugated annexin V and propidium iodide staining followed by flow cytometry. Protein expression was evaluated by Western blot analysis. RESULTS: The number of apoptotic human PDL cells increased in a time-dependent manner in response to pathological cyclic strain. The stretched cells were oriented parallel to each another with their long axes perpendicular to the strain force vector. Cleaved caspase-3 and poly-ADP-ribose polymerase (PARP protein levels increased in response to pathological cyclic strain over time, while Rho GDP dissociation inhibitor alpha (RhoGDIα decreased. Furthermore, knock-down of RhoGDIα by targeted siRNA transfection increased stretch-induced apoptosis and upregulated cleaved caspase-3 and PARP protein levels. Inhibition of caspase-3 prevented stretch-induced apoptosis, but did not change RhoGDIα protein levels. CONCLUSION: The overall results suggest that pathological-level cyclic strain not only influenced morphology but also induced apoptosis in human PDL cells through the RhoGDIα/caspase-3/PARP pathway. Our findings provide novel insight into the mechanism of apoptosis induced by pathological cyclic strain in

  12. Procurement of Human Tissues for Research Banking in the Surgical Pathology Laboratory: Prioritization Practices at Washington University Medical Center

    Science.gov (United States)

    Chernock, Rebecca D.; Leach, Tracey A.; Kahn, Ajaz A.; Yip, James H.; Rossi, Joan; Pfeifer, John D.

    2011-01-01

    Academic hospitals and medical schools with research tissue repositories often derive many of their internal human specimen acquisitions from their site's surgical pathology service. Typically, such acquisitions come from appropriately consented tissue discards sampled from surgical resections. Because the practice of surgical pathology has patient care as its primary mission, competing needs for tissue inevitably arise, with the requirement to preserve adequate tissue for clinical diagnosis being paramount. A set of best-practice gross pathology guidelines are summarized here, focused on the decision for tissue banking at the time specimens are macroscopically evaluated. These reflect our collective experience at Washington University School of Medicine, and are written from the point of view of our site biorepository. The involvement of trained pathology personnel in such procurements is very important. These guidelines reflect both good surgical pathology practice (including the pathologic features characteristic of various anatomic sites) and the typical objectives of research biorepositories. The guidelines should be helpful to tissue bank directors, and others charged with the procurement of tissues for general research purposes. We believe that appreciation of these principles will facilitate the partnership between surgical pathologists and biorepository directors, and promote both good patient care and strategic, value-added banking procurements. PMID:23386925

  13. Genetic models for CNS inflammation

    DEFF Research Database (Denmark)

    Owens, T; Wekerle, H; Antel, J

    2001-01-01

    The use of transgenic technology to over-express or prevent expression of genes encoding molecules related to inflammation has allowed direct examination of their role in experimental disease. This article reviews transgenic and knockout models of CNS demyelinating disease, focusing primarily on ...

  14. Basic Concepts of CNS Development.

    Science.gov (United States)

    Nowakowski, R. S.

    1987-01-01

    The goals of this review are to: (1) provide a set of concepts to aid in the understanding of complex processes which occur during central nervous system (CNS) development; (2) illustrate how they contribute to our knowlege of adult brain anatomy; and (3) delineate how modifications of normal developmental processes may affect the structure and…

  15. [Hyaluronic acid (hyaluronan) levels in pathological human saphenous veins. Effects of procyanidol oligomers].

    Science.gov (United States)

    Drubaix, I; Maraval, M; Robert, L; Robert, A M

    1997-01-01

    We investigated the hyaluronan content in the pathologic human venous wall using an ELSA assay with hyaluronectin according to the method of Delpech et al. The mean hyaluronan content in the 74 fragments from 12 venous walls studied was 596 +/- 528 ng/mg dry weight. These 12 venous walls could be separated in 3 distinct groups according to their hyaluronan content, low (277 +/- 141 ng/mg dry weight), moderate (552 +/- 361 ng/m dry weight) or high (1299 +/- 568 ng/mg dry weight). The differences between these groups are significant (p < 0.001). The presence of a veino-lymphatic oedema was generally associated with a high hyaluronan level (in 65% of cases). The 3H-glucosamine incorporation in cultured venous wall explants showed a 35% increase (p < 0.002) in varicosis as compared with the non or less modified segments of the vein and a 29% (p < 0.001) increase in presence of a veino-lymphatic oedema. The addition of 1 mg/ml of PCO (Procyanidolic Oligomers) to the culture media induced near to 20% decrease of the 3H-glucosamine incorporation and a 34% decrease of the hyaluronan content. Our results confirm the role of local overproduction of hyaluronan in the establishment of oedema and the potential effect of PCO to counteract it.

  16. Wavelet analysis of hemispheroid flow separation toward understanding human vocal fold pathologies

    Science.gov (United States)

    Plesniak, Daniel H.; Carr, Ian A.; Bulusu, Kartik V.; Plesniak, Michael W.

    2014-11-01

    Physiological flows observed in human vocal fold pathologies, such as polyps and nodules, can be modeled by flow over a wall-mounted protuberance. The experimental investigation of flow separation over a surface-mounted hemispheroid was performed using particle image velocimetry (PIV) and measurements of surface pressure in a low-speed wind tunnel. This study builds on the hypothesis that the signatures of vortical structures associated with flow separation are imprinted on the surface pressure distributions. Wavelet decomposition methods in one- and two-dimensions were utilized to elucidate the flow behavior. First, a complex Gaussian wavelet was used for the reconstruction of surface pressure time series from static pressure measurements acquired from ports upstream, downstream, and on the surface of the hemispheroid. This was followed by the application of a novel continuous wavelet transform algorithm (PIVlet 1.2) using a 2D-Ricker wavelet for coherent structure detection on instantaneous PIV-data. The goal of this study is to correlate phase shifts in surface pressure with Strouhal numbers associated with the vortex shedding. Ultimately, the wavelet-based analytical framework will be aimed at addressing pulsatile flows. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  17. Mining the human genome after Association for Molecular Pathology v. Myriad Genetics.

    Science.gov (United States)

    Evans, Barbara J

    2014-07-01

    The Supreme Court's recent decision in Association for Molecular Pathology v. Myriad Genetics portrays the human genome as a product of nature. This frames medical genetics as an extractive industry that mines a natural resource to produce valuable goods and services. Natural resource law offers insights into problems medical geneticists can expect after this decision and suggests possible solutions. Increased competition among clinical laboratories offers various benefits but threatens to increase fragmentation of genetic data resources, potentially causing waste in the form of lost opportunities to discover the clinical significance of particular gene variants. The solution lies in addressing legal barriers to appropriate data sharing. Sustainable discovery in the field of medical genetics can best be achieved through voluntary data sharing rather than command-and-control tactics, but voluntary mechanisms must be conceived broadly to include market-based approaches as well as donative and publicly funded data commons. The recently revised Health Insurance Portability and Accountability Act Privacy Rule offers an improved--but still imperfect--framework for market-oriented data sharing. This article explores strategies for addressing the Privacy Rule's remaining defects. America is close to having a legal framework that can reward innovators, protect privacy, and promote needed data sharing to advance medical genetics.

  18. Evolutionary developmental pathology and anthropology: A new field linking development, comparative anatomy, human evolution, morphological variations and defects, and medicine.

    Science.gov (United States)

    Diogo, Rui; Smith, Christopher M; Ziermann, Janine M

    2015-11-01

    We introduce a new subfield of the recently created field of Evolutionary-Developmental-Anthropology (Evo-Devo-Anth): Evolutionary-Developmental-Pathology-and-Anthropology (Evo-Devo-P'Anth). This subfield combines experimental and developmental studies of nonhuman model organisms, biological anthropology, chordate comparative anatomy and evolution, and the study of normal and pathological human development. Instead of focusing on other organisms to try to better understand human development, evolution, anatomy, and pathology, it places humans as the central case study, i.e., as truly model organism themselves. We summarize the results of our recent Evo-Devo-P'Anth studies and discuss long-standing questions in each of the broader biological fields combined in this subfield, paying special attention to the links between: (1) Human anomalies and variations, nonpentadactyly, homeotic transformations, and "nearest neighbor" vs. "find and seek" muscle-skeleton associations in limb+facial muscles vs. other head muscles; (2) Developmental constraints, the notion of "phylotypic stage," internalism vs. externalism, and the "logic of monsters" vs. "lack of homeostasis" views about human birth defects; (3) Human evolution, reversions, atavisms, paedomorphosis, and peromorphosis; (4) Scala naturae, Haeckelian recapitulation, von Baer's laws, and parallelism between phylogeny and development, here formally defined as "Phylo-Devo parallelism"; and (5) Patau, Edwards, and Down syndrome (trisomies 13, 18, 21), atavisms, apoptosis, heart malformations, and medical implications.

  19. Molecular Pathology of Neuro-AIDS (CNS-HIV

    Directory of Open Access Journals (Sweden)

    Eliezer Masliah

    2009-03-01

    Full Text Available The cognitive deficits in patients with HIV profoundly affect the quality of life of people living with this disease and have often been linked to the neuro-inflammatory condition known as HIV encephalitis (HIVE. With the advent of more effective anti-retroviral therapies, HIVE has shifted from a sub-acute to a chronic condition. The neurodegenerative process in patients with HIVE is characterized by synaptic and dendritic damage to pyramidal neurons, loss of calbindin-immunoreactive interneurons and myelin loss. The mechanisms leading to neurodegeneration in HIVE might involve a variety of pathways, and several lines of investigation have found that interference with signaling factors mediating neuroprotection might play an important role. These signaling pathways include, among others, the GSK3b, CDK5, ERK, Pyk2, p38 and JNK cascades. Of these, GSK3b has been a primary focus of many previous studies showing that in infected patients, HIV proteins and neurotoxins secreted by immune-activated cells in the brain abnormally activate this pathway, which is otherwise regulated by growth factors such as FGF. Interestingly, modulation of the GSK3b signaling pathway by FGF1 or GSK3b inhibitors (lithium, valproic acid is protective against HIV neurotoxicity, and several pilot clinical trials have demonstrated cognitive improvements in HIV patients treated with GSK3b inhibitors. In addition to the GSK3b pathway, the CDK5 pathway has recently been implicated as a mediator of neurotoxicity in HIV, and HIV proteins might activate this pathway and subsequently disrupt the diverse processes that CDK5 regulates, including synapse formation and plasticity and neurogenesis. Taken together, the GSK3b and CDK5 signaling pathways are important regulators of neurotoxicity in HIV, and modulation of these factors might have therapeutic potential in the treatment of patients suffering from HIVE. In this context, the subsequent sections will focus on reviewing the involvement of the GSK3b and CDK5 pathways in neurodegeneration in HIV.

  20. Metallothioneins I and II: neuroprotective significance during CNS pathology

    DEFF Research Database (Denmark)

    Penkowa, Milena; Stankovic, Roger; Chung, Roger

    2006-01-01

    isoforms of the protein (MT-I and MT-II) are induced by numerous stimuli and pathogens but most importantly their induction by metals is closely linked to the physiological metabolism of zinc and protection from the toxic affects following heavy metal exposure. Although the preservation of their genetic......Metallothioneins (MTs) constitutes a superfamily of highly conserved, low molecular weight polypeptides, which are characterized by high contents of cysteine (sulphur) and metals. As intracellular metal-binding proteins they play a significant role in the regulation of essential metals. The major...... may provide neurotherapeutic targets offering protection against neuronal injury and degeneration....

  1. Brain-derived neurotrophic factor expression predicts adverse pathological & clinical outcomes in human breast cancer

    Directory of Open Access Journals (Sweden)

    Mokbel Kefah

    2011-07-01

    Full Text Available Abstract Introduction Brain-derived neurotrophic factor (BDNF has established physiological roles in the development and function of the vertebrate nervous system. BDNF has also been implicated in several human malignancies, including breast cancer (BC. However, the precise biological role of BDNF and its utility as a novel biomarker have yet to be determined. The objective of this study was to determine the mRNA and protein expression of BDNF in a cohort of women with BC. Expression levels were compared with normal background tissues and evaluated against established pathological parameters and clinical outcome over a 10 year follow-up period. Methods BC tissues (n = 127 and normal tissues (n = 33 underwent RNA extraction and reverse transcription, BDNF transcript levels were determined using real-time quantitative PCR. BDNF protein expression in mammary tissues was assessed with standard immuno-histochemical methodology. Expression levels were analyzed against tumour size, grade, nodal involvement, TNM stage, Nottingham Prognostic Index (NPI and clinical outcome over a 10 year follow-up period. Results Immuno-histochemical staining revealed substantially greater BDNF expression within neoplastic cells, compared to normal mammary epithelial cells. Significantly higher mRNA transcript levels were found in the BC specimens compared to background tissues (p = 0.007. The expression of BDNF mRNA was demonstrated to increase with increasing NPI; NPI-1 vs. NPI-2 (p = 0.009. Increased BDNF transcript levels were found to be significantly associated with nodal positivity (p = 0.047. Compared to patients who remained disease free, higher BDNF expression was significantly associated with local recurrence (LR (p = 0.0014, death from BC (p = 0.018 and poor prognosis overall (p = 0.013. After a median follow up of 10 years, higher BDNF expression levels were significantly associated with reduced overall survival (OS (106 vs. 136 months, p = 0.006. BDNF

  2. General Information about Primary CNS Lymphoma

    Science.gov (United States)

    ... Research Primary CNS Lymphoma Treatment (PDQ®)–Patient Version General Information About Primary CNS Lymphoma Go to Health ... start in the eye (called ocular lymphoma). Enlarge Anatomy of the lymph system, showing the lymph vessels ...

  3. A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes

    DEFF Research Database (Denmark)

    Hansen, Kasper Lage; Hansen, Niclas Tue; Karlberg, Erik, Olof, Linnart

    2008-01-01

    Heritable diseases are caused by germ-line mutations that, despite tissuewide presence, often lead to tissue-specific pathology. Here, we make a systematic analysis of the link between tissue-specific gene expression and pathological manifestations in many human diseases and cancers. Diseases were...... to be overexpressed in the normal tissues where defects cause pathology. In contrast, cancer genes and complexes were not overexpressed in the tissues from which the tumors emanate. We specifically identified a complex involved in XY sex reversal that is testis-specific and down-regulated in ovaries. We also...... identified complexes in Parkinson disease, cardiomyopathies, and muscular dystrophy syndromes that are similarly tissue specific. Our method represents a conceptual scaffold for organism-spanning analyses and reveals an extensive list of tissue-specific draft molecular pathways, both known and unexpected...

  4. Brain burdens of aluminum, iron, and copper and their relationships with amyloid-β pathology in 60 human brains.

    Science.gov (United States)

    Exley, Christopher; House, Emily; Polwart, Anthony; Esiri, Margaret M

    2012-01-01

    The deposition in the brain of amyloid-β as beta sheet conformers associated with senile plaques and vasculature is frequently observed in Alzheimer’s disease. While metals, primarily aluminum, iron, zinc, and copper, have been implicated in amyloid-β deposition in vivo, there are few data specifically relating brain metal burden with extent of amyloid pathologies in human brains. Herein brain tissue content of aluminum, iron, and copper are compared with burdens of amyloid-β, as senile plaques and as congophilic amyloid angiopathy, in 60 aged human brains. Significant observations were strong negative correlations between brain copper burden and the degree of severity of both senile plaque and congophilic amyloid angiopathy pathologies with the relationship with the former reaching statistical significance. While we did not have access to the dementia status of the majority of the 60 brain donors, this knowledge for just 4 donors allowed us to speculate that diagnosis of dementia might be predicted by a combination of amyloid pathology and a ratio of the brain burden of copper to the brain burden of aluminum. Taking into account only those donor brains with either senile plaque scores ≥4 and/or congophilic amyloid angiopathy scores ≥12, a Cu:Al ratio of <20 would predict that at least 39 of the 60 donors would have been diagnosed as suffering from dementia. Future research should test the hypothesis that, in individuals with moderate to severe amyloid pathology, low brain copper is a predisposition to developing dementia.

  5. Age-associated and cell-type-specific neurofibrillary pathology in transgenic mice expressing the human midsized neurofilament subunit.

    Science.gov (United States)

    Vickers, J C; Morrison, J H; Friedrich, V L; Elder, G A; Perl, D P; Katz, R N; Lazzarini, R A

    1994-09-01

    Alterations in neurofilaments are a common occurrence in neurons of the human nervous system during aging and diseases associated with aging. Such pathologic changes may be attributed to species-specific properties of human neurofilaments as well as cell-type-specific regulation of this element of the cytoskeleton. The development of transgenic animals containing human neurofilament subunits offers an opportunity to study the effects of aging and other experimental conditions on the human-specific form of these proteins in a rodent model. The present study shows that mice from the transgenic line NF(M)27, which express the human midsized neurofilament subunit at low levels (2-25% of the endogenous NF-M), develop neurofilamentous accumulations in specific subgroups of neurons that are age dependent, affecting 78% of transgenic mice over 12 months of age. Similar accumulations do not occur in age-matched, wild-type littermates or in 3-month-old transgenic mice. In 12-month-old transgenic mice, somatic neurofilament accumulations resembling neurofibrillary tangles were present predominantly in layers III and V of the neocortex, as well as in select subpopulations of subcortical neurons. Intraperikaryal, spherical neurofilamentous accumulations were particularly abundant in cell bodies in layer II of the neocortex, and neurofilament-containing distentions of Purkinje cell proximal axons occurred in the cerebellum. These pathological accumulations contained mouse as well as human NF subunits, but could be distinguished by their content of phosphorylation-dependent NF epitopes. These cytoskeletal alterations closely resemble the cell-type-specific alterations in neurofilaments that occur during normal human aging and in diseases associated with aging, indicating that these transgenic animals may serve as models of some aspects of the pathologic features of human neurodegenerative diseases.

  6. HIV-associated opportunistic CNS infections: pathophysiology, diagnosis and treatment.

    Science.gov (United States)

    Bowen, Lauren N; Smith, Bryan; Reich, Daniel; Quezado, Martha; Nath, Avindra

    2016-10-27

    Nearly 30 years after the advent of antiretroviral therapy (ART), CNS opportunistic infections remain a major cause of morbidity and mortality in HIV-positive individuals. Unknown HIV-positive disease status, antiretroviral drug resistance, poor drug compliance, and recreational drug abuse are factors that continue to influence the morbidity and mortality of infections. The clinical and radiographic pattern of CNS opportunistic infections is unique in the setting of HIV infection: opportunistic infections in HIV-positive patients often have characteristic clinical and radiological presentations that can differ from the presentation of opportunistic infections in immunocompetent patients and are often sufficient to establish the diagnosis. ART in the setting of these opportunistic infections can lead to a paradoxical worsening caused by an immune reconstitution inflammatory syndrome (IRIS). In this Review, we discuss several of the most common CNS opportunistic infections: cerebral toxoplasmosis, progressive multifocal leukoencephalopathy (PML), tuberculous meningitis, cryptococcal meningitis and cytomegalovirus infection, with an emphasis on clinical pearls, pathological findings, MRI findings and treatment. Moreover, we discuss the risk factors, pathophysiology and management of IRIS. We also summarize the challenges that remain in management of CNS opportunistic infections, which includes the lack of phase II and III clinical trials, absence of antimicrobials for infections such as PML, and controversy regarding the use of corticosteroids for treatment of IRIS.

  7. Potential for Cell-Transplant Therapy with Human Neuronal Precursors to Treat Neuropathic Pain in Models of PNS and CNS Injury: Comparison of hNT2.17 and hNT2.19 Cell Lines

    Directory of Open Access Journals (Sweden)

    Mary J. Eaton

    2012-01-01

    Full Text Available Effective treatment of sensory neuropathies in peripheral neuropathies and spinal cord injury (SCI is one of the most difficult problems in modern clinical practice. Cell therapy to release antinociceptive agents near the injured spinal cord is a logical next step in the development of treatment modalities. But few clinical trials, especially for chronic pain, have tested the potential of transplant of cells to treat chronic pain. Cell lines derived from the human neuronal NT2 cell line parentage, the hNT2.17 and hNT2.19 lines, which synthesize and release the neurotransmitters gamma-aminobutyric acid (GABA and serotonin (5HT, respectively, have been used to evaluate the potential of cell-based release of antinociceptive agents near the lumbar dorsal (horn spinal sensory cell centers to relieve neuropathic pain after PNS (partial nerve and diabetes-related injury and CNS (spinal cord injury damage in rat models. Both cell lines transplants potently and permanently reverse behavioral hypersensitivity without inducing tumors or other complications after grafting. Functioning as cellular minipumps for antinociception, human neuronal precursors, like these NT2-derived cell lines, would likely provide a useful adjuvant or replacement for current pharmacological treatments for neuropathic pain.

  8. A mouse model for fucosidosis recapitulates storage pathology and neurological features of the milder form of the human disease

    DEFF Research Database (Denmark)

    Wolf, Heike; Damme, Markus; Stroobants, Stijn;

    2016-01-01

    Fucosidosis is a rare lysosomal storage disorder caused by the inherited deficiency of the lysosomal hydrolase α-L-fucosidase, which leads to an impaired degradation of fucosylated glycoconjugates. Here we report the generation of a fucosidosis mouse model, in which the gene for lysosomal α-L-fuc...... demonstrate that this new fucosidosis mouse model resembles the human disease and thus will help to unravel underlying pathological processes. Moreover, this model may be utilized to establish diagnostic and therapeutic strategies for fucosidosis....

  9. Interleukin 35-Producing B Cells (i35-Breg): A New Mediator of Regulatory B-Cell Functions in CNS Autoimmune Diseases.

    Science.gov (United States)

    Egwuagu, Charles E; Yu, Cheng-Rong

    2015-01-01

    Neuroinflammation contributes to neuronal deficits in neurodegenerative CNS (central nervous system) autoimmune diseases, such as multiple sclerosis and uveitis. The major goal of most treatment modalities for CNS autoimmune diseases is to limit inflammatory responses in the CNS; immune-suppressive drugs are the therapy of choice. However, lifelong immunosuppression increases the occurrence of infections, nephrotoxicity, malignancies, cataractogenesis, and glaucoma, which can greatly impair quality of life for the patient. Biologics that target pathogenic T cells is an alternative approach that is gaining wide acceptance as indicated by the popularity of a variety of Food and Drug Administration (FDA)-approved anti-inflammatory compounds and humanized antibodies such as Zenapax, Etanercept, Remicade, anti-ICAM, rapamycin, or tacrolimus. B cells are also potential therapeutic targets because they provide costimulatory signals that activate pathogenic T cells and secrete cytokines that promote autoimmune pathology. B cells also produce autoreactive antibodies implicated in several organ-specific and systemic autoimmune diseases including lupus erythematosus, Graves' disease, and Hashimoto's thyroiditis. On the other hand, recent studies have led to the discovery of several regulatory B-cell (Breg) populations that suppress immune responses and autoimmune diseases. In this review, we present a brief overview of Breg phenotypes and in particular, the newly discovered IL35-producing regulatory B cell (i35-Breg). We discuss the critical roles played by i35-Bregs in regulating autoimmune diseases and the potential use of adoptive Breg therapy in CNS autoimmune diseases.

  10. Therapeutic immune clearance of rabies virus from the CNS

    Science.gov (United States)

    Hooper, D Craig; Roy, Anirban; Kean, Rhonda B; Phares, Timothy W; Barkhouse, Darryll A

    2011-01-01

    The long-held concept that rabies infection is lethal in humans once the causative rabies virus has reached the CNS has been called into question by the recent survival of a number of patients with clinical rabies. Studies in animal models provide insight into why survival from a rabies virus infection that has spread to the CNS is possible and the immune mechanisms involved. In the CNS, both innate mechanisms capable of inhibiting virus replication and the activity of infiltrating rabies virus-specific T and B cells with the capacity to clear the virus are required. Deficiencies in the induction of either aspect of rabies immunity can lead to lethal consequences but may be overcome by novel approaches to active and passive immunization. PMID:21686076

  11. Pathological alterations typical of human Tay-Sachs disease, in the retina of a deep-sea fish

    Science.gov (United States)

    Fishelson, L.; Delarea, Yacov; Galil, Bella S.

    Micrographs of retinas from the deep-sea fish Cataetyx laticeps revealed visual cells containing membranous whorls in the ellipsoids of the inner segments resulting from stretching and modifications of the mitochondria membranes and their cristae. These pathological structures seem to be homologous to the whorls observed in retinas of human carriers of Tay-Sachs disease. This disease, a genetic disorder, is found in humans and some mammals. Our findings in fish suggest that the gene responsible can be found throughout the vertebrate evolutionary tree, possibly dormant in most taxa.

  12. Primary stromal cells isolated from human various histological/pathological prostate have different phenotypes and tumor promotion role

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-hai; ZHAO Fu-jun; HAN Bang-min; JIANG Qi; WANG Yong-chuan; WU Jian-hong; TANG Yue-qing; ZHANG Yue-ping; XIA Shu-jie

    2011-01-01

    Background Prostate stromal cells are known to regulate epithelial growth as well as support and maintain epithelial function. However, how stromal cells regulate epithelial cells and what differences among various histological/pathological prostate stromal cells in prostate cancer progression still remain unclear. This study aimed to investigate the different phenotypes of human various histological/pathological prostate stromal cells, and their role in tumor promotion.Methods The different phenotypes of the human normal prostatic peripheral zonal primary stromal cells (NPPF),transitional zonal primary stromal cells (NPTF), and prostate cancer associated primary stromal cells (CAF) were examined with growth curves and Annexin V-fluorescein isothiocyanate (FITC) assay. The different effects on prostate cancer cell line C4-2B by NPPF, NPTF, and CAF were examined with MTT assay and Annexin V-FITC assay. The gene expression of different histological/pathological prostate stromal cells was profiled by microarray and hierarchical cluster analysis.Results The growth rate of NPPF, NPTF and CAF gradually increased, followed by decreasing apoptosis. In vitro stromal-C4-2B cell line co-culture models, the proliferation and apoptosis of C4-2B cell line were differently affected by human various histological/pathological prostate stromal cells. CAF showed the most powerful effect to C4-2B cell line,as opposed to a weakest effect of NPTF. Microarray and hierarchical cluster analysis showed that the differentially expressed genes of CAF and NPPF were less than NPPF and NPTF, or CAF and NPTF. This was consistent with clinical observations that prostate cancer mostly derived from the peripheral zone and does not usually occur in the transitional zone.Conclusion NPPF, NPTF and CAF possess extremely different biological characteristics and gene expression, which may play an important role in genesis and development of prostate cancer.

  13. Expression of {mu}, {kappa}, and {delta} opioid receptor messenger RNA in the human CNS: a {sup 33}P in situ hybridization study

    Energy Technology Data Exchange (ETDEWEB)

    Peckys, D.; Landwehrmeyer, G.B. [Department of Neurology, Albert-Ludwigs-University Freiburg, Neurozentrum, Breisacherstrasse 64, D-79106 Freiburg (Germany)

    1999-02-01

    The existence of at least three opioid receptor types, referred to as {mu}, {kappa}, and {delta}, is well established. Complementary DNAs corresponding to the pharmacologically defined {mu}, {kappa}, and {delta} opioid receptors have been isolated in various species including man. The expression patterns of opioid receptor transcripts in human brain has not been established with a cellular resolution, in part because of the low apparent abundance of opioid receptor messenger RNAs in human brain. To visualize opioid receptor messenger RNAs we developed a sensitive in situ hybridization histochemistry method using {sup 33}P-labelled RNA probes. In the present study we report the regional and cellular expression of {mu}, {kappa}, and {delta} opioid receptor messenger RNAs in selected areas of the human brain. Hybridization of the different opioid receptor probes resulted in distinct labelling patterns. For the {mu} and {kappa} opioid receptor probes, the most intense regional signals were observed in striatum, thalamus, hypothalamus, cerebral cortex, cerebellum and certain brainstem areas as well as the spinal cord. The most intense signals for the {delta} opioid receptor probe were found in cerebral cortex. Expression of opioid receptor transcripts was restricted to subpopulations of neurons within most regions studied demonstrating differences in the cellular expression patterns of {mu}, {kappa}, and {delta} opioid receptor messenger RNAs in numerous brain regions. The messenger RNA distribution patterns for each opioid receptor corresponded in general to the distribution of opioid receptor binding sites as visualized by receptor autoradiography. However, some mismatches, for instance between {mu} opioid receptor receptor binding and {mu} opioid receptor messenger RNA expression in the anterior striatum, were observed. A comparison of the distribution patterns of opioid receptor messenger RNAs in the human brain and that reported for the rat suggests a homologous

  14. Radiation therapy of CNS lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Yutaka; Wako, Tadashi (Shinshu Univ., Matsumoto, Nagano (Japan). Faculty of Medicine)

    1983-08-01

    Six cases of the CNS malignant lymphoma occurring among 165 cases seen between 1975 -- 1981 were reviewed. Two cases had primary brain mass lesions and one case had a secondary brain mass in the systemic remission period. Two cases had primary extradural spinal mass lesions and one case had a secondary extradural spinal mass in the systemic relapse period. All patients were treated with radiotherapy. Irradiation fields, doses and those effects were discussed. Whole brain irradiation more than 40 Gy was recommended for brain lesion. Prognosis of the secondary case without systemic remission was poor.

  15. Third harmonic generation imaging for fast, label-free pathology of human brain tumors

    NARCIS (Netherlands)

    Kuzmin, N. V.; Wesseling, P.; Hamer, P. C de Witt; Noske, D. P.; Galgano, G. D.; Mansvelder, H. D.; Baayen, J. C.; Groot, M. L.

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third

  16. Third harmonic generation imaging for fast, label-free pathology of human brain tumors

    NARCIS (Netherlands)

    Kuzmin, N.V.; Wesseling, P.; Hamer, P.C.; Noske, D.P.; Galgano, G.D.; Mansvelder, H.D.; Baayen, J.C.; Groot, M.L.

    2016-01-01

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third

  17. Relation of Cystatin C and Cathepsin B Expression to the Pathological Grade and Invasion of Human Gliomas

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    OBJECTIVE To explore the relation of cystatin C and cathepsin B expression to the pathological grade and invasion of human gliomas.METHODS A immunohistochemical method was used to detect the expression of cystatin C and cathepsin B in 57 glioma samples.RESULTS The expression of cystatin C in high-grade (Grade Ⅲ~Ⅳ )gliomas was significantly weaker than that in low-grade(Grade Ⅰ~Ⅱ, P=0.0001).On the other hand, the expression of cathepsin B in high-grade gliomas was significantly stronger than that in low-grade (P=0.0001). Cystatin C expression correlated inversely with cathepsin B expression in gliomas (P=0.01).CONCLUSION Cystatin C and cathepsin B expression is related to the pathological grade and invasion of gliomas. Combining detection of cystatin C and cathepsin B expressions might provide significant information for clinical assessment of maglignant phenotypes and invasion of gliomas.

  18. Chorionic gonadotropin and its receptor are both expressed in human retina, possible implications in normal and pathological conditions.

    Directory of Open Access Journals (Sweden)

    Sladjana Dukic-Stefanovic

    Full Text Available Extra-gonadal role of gonadotropins has been re-evaluated over the last 20 years. In addition to pituitary secretion of luteinizing hormone (LH and follicle stimulating hormone (FSH, the CNS has been clearly identified as a source of hCG acting locally to influence behaviour. Here we demonstrated that human retina is producing this gonadotropin that acts as a neuroactive molecule. Müller glial and retinal pigmented epithelial (RPE cells are producing hCG that may affects neighbour cells expressing its receptor, namely cone photoreceptors. It was previously described that amacrine and retinal ganglion (RGC cells are targets of the gonadotropin releasing hormone that control the secretion of all gonadotropins. Therefore our findings suggest that a complex neuroendocrine circuit exists in the retina, involving hCG secreting cells (glial and RPE, hCG targets (photoreceptors and hCG-release controlling cells (amacrine and RGC. The exact physiological functions of this circuit have still to be identified, but the proliferation of photoreceptor-derived tumor induced by hCG demonstrated the need to control this neuroendocrine loop.

  19. Target Identification for CNS Diseases by Transcriptional Profiling

    OpenAIRE

    Altar, C. Anthony; Vawter, Marquis P.; Ginsberg, Stephen D.

    2008-01-01

    Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer’s disease and the cognitive decline associated with normal aging and mild ...

  20. [Recognition of commensal microflora by pattern recognition receptors in human physiology and pathology].

    Science.gov (United States)

    Bondarenko, V M; Likhoded, V G

    2012-01-01

    Contemporary data on the interaction of commensal microflora and Toll-like pattern recognition receptors are presented. These receptors recognize normal intestine microflora in physiological conditions, and this interaction is necessary for the maintenance of homeostasis and damage reparation of the intestine, for the induction of heat shock cytoprotective proteins. As a side effect in disruption of immunologic tolerance and misbalance of protective immunological mechanisms, multiorgan pathologic changes of organs and tissues may develop, including chronic inflammation processes of various localization.

  1. Identification of miRNAs differentially expressed in human epilepsy with or without granule cell pathology.

    Directory of Open Access Journals (Sweden)

    Silvia Zucchini

    Full Text Available The microRNAs (miRNAs are small size non-coding RNAs that regulate expression of target mRNAs at post-transcriptional level. miRNAs differentially expressed under pathological conditions may help identifying mechanisms underlying the disease and may represent biomarkers with prognostic value. However, this kind of studies are difficult in the brain because of the cellular heterogeneity of the tissue and of the limited access to fresh tissue. Here, we focused on a pathology affecting specific cells in a subpopulation of epileptic brains (hippocampal granule cells, an approach that bypasses the above problems. All patients underwent surgery for intractable temporal lobe epilepsy and had hippocampal sclerosis associated with no granule cell pathology in half of the cases and with type-2 granule cell pathology (granule cell layer dispersion or bilamination in the other half. The expression of more than 1000 miRNAs was examined in the laser-microdissected dentate granule cell layer. Twelve miRNAs were differentially expressed in the two groups. One of these, miR487a, was confirmed to be expressed at highly differential levels in an extended cohort of patients, using RT-qPCR. Bioinformatics searches and RT-qPCR verification identified ANTXR1 as a possible target of miR487a. ANTXR1 may be directly implicated in granule cell dispersion because it is an adhesion molecule that favors cell spreading. Thus, miR487a could be the first identified element of a miRNA signature that may be useful for prognostic evaluation of post-surgical epilepsy and may drive mechanistic studies leading to the identification of therapeutic targets.

  2. Armed Forces Institute of Pathology Becomes CDC Registered Testing Site for Human Swine Influenza

    Science.gov (United States)

    2010-01-01

    Bethesda, Maryland This impressive course covers general and specialized areas of ana- tomic pathology. An intensive session in inflammatory, infectious ... peritoneal leiomyomatosis, and synovial sarcomas (posi- tive in 5/42, 4/17, and 6/37 cases). Leiomyo- mas colonized by DOG1-positive Cajal cells...and specificity should be recognized. Am J Surg Pathol. 2009 Sep;33(9):1401-8. Feline peripheral nerve sheath tumors: histologic, immunohis

  3. Neuronopathic Lysosomal Storage Diseases: Clinical and Pathologic Findings

    Science.gov (United States)

    Prada, Carlos E.; Grabowski, Gregory A.

    2013-01-01

    Background: The lysosomal--autophagocytic system diseases (LASDs) affect multiple body systems including the central nervous system (CNS). The progressive CNS pathology has its onset at different ages, leading to neurodegeneration and early death. Methods: Literature review provided insight into the current clinical neurological findings,…

  4. Causes of CNS inflammation and potential targets for anticonvulsants.

    Science.gov (United States)

    Falip, Mercé; Salas-Puig, Xavier; Cara, Carlos

    2013-08-01

    Inflammation is one of the most important endogenous defence mechanisms in an organism. It has been suggested that inflammation plays an important role in the pathophysiology of a number of human epilepsies and convulsive disorders, and there is clinical and experimental evidence to suggest that inflammatory processes within the CNS may either contribute to or be a consequence of epileptogenesis. This review discusses evidence from human studies on the role of inflammation in epilepsy and highlights potential new targets in the inflammatory cascade for antiepileptic drugs. A number of mechanisms have been shown to be involved in CNS inflammatory reactions. These include an inflammatory response at the level of the blood-brain barrier (BBB), immune-mediated damage to the CNS, stress-induced release of inflammatory mediators and direct neuronal dysfunction or damage as a result of inflammatory reactions. Mediators of inflammation in the CNS include interleukin (IL)-1β, tumour necrosis factor-α, nuclear factor-κB and toll-like receptor-4 (TLR4). IL-1β, BBB and high-mobility group box-1-TLR4 signalling appear to be the most promising targets for anticonvulsant agents directed at inflammation. Such agents may provide effective therapy for drug-resistant epilepsies in the future.

  5. A philosophy for CNS radiotracer design.

    Science.gov (United States)

    Van de Bittner, Genevieve C; Ricq, Emily L; Hooker, Jacob M

    2014-10-21

    Decades after its discovery, positron emission tomography (PET) remains the premier tool for imaging neurochemistry in living humans. Technological improvements in radiolabeling methods, camera design, and image analysis have kept PET in the forefront. In addition, the use of PET imaging has expanded because researchers have developed new radiotracers that visualize receptors, transporters, enzymes, and other molecular targets within the human brain. However, of the thousands of proteins in the central nervous system (CNS), researchers have successfully imaged fewer than 40 human proteins. To address the critical need for new radiotracers, this Account expounds on the decisions, strategies, and pitfalls of CNS radiotracer development based on our current experience in this area. We discuss the five key components of radiotracer development for human imaging: choosing a biomedical question, selection of a biological target, design of the radiotracer chemical structure, evaluation of candidate radiotracers, and analysis of preclinical imaging. It is particularly important to analyze the market of scientists or companies who might use a new radiotracer and carefully select a relevant biomedical question(s) for that audience. In the selection of a specific biological target, we emphasize how target localization and identity can constrain this process and discuss the optimal target density and affinity ratios needed for binding-based radiotracers. In addition, we discuss various PET test-retest variability requirements for monitoring changes in density, occupancy, or functionality for new radiotracers. In the synthesis of new radiotracer structures, high-throughput, modular syntheses have proved valuable, and these processes provide compounds with sites for late-stage radioisotope installation. As a result, researchers can manage the time constraints associated with the limited half-lives of isotopes. In order to evaluate brain uptake, a number of methods are available

  6. MiR-125a-3p timely inhibits oligodendroglial maturation and is pathologically up-regulated in human multiple sclerosis

    Science.gov (United States)

    Lecca, Davide; Marangon, Davide; Coppolino, Giusy T.; Méndez, Aida Menéndez; Finardi, Annamaria; Costa, Gloria Dalla; Martinelli, Vittorio; Furlan, Roberto; Abbracchio, Maria P.

    2016-01-01

    In the mature central nervous system (CNS), oligodendrocytes provide support and insulation to axons thanks to the production of a myelin sheath. During their maturation to myelinating cells, oligodendroglial precursors (OPCs) follow a very precise differentiation program, which is finely orchestrated by transcription factors, epigenetic factors and microRNAs (miRNAs), a class of small non-coding RNAs involved in post-transcriptional regulation. Any alterations in this program can potentially contribute to dysregulated myelination, impaired remyelination and neurodegenerative conditions, as it happens in multiple sclerosis (MS). Here, we identify miR-125a-3p, a developmentally regulated miRNA, as a new actor of oligodendroglial maturation, that, in the mammalian CNS regulates the expression of myelin genes by simultaneously acting on several of its already validated targets. In cultured OPCs, over-expression of miR-125a-3p by mimic treatment impairs while its inhibition with an antago-miR stimulates oligodendroglial maturation. Moreover, we show that miR-125a-3p levels are abnormally high in the cerebrospinal fluid of MS patients bearing active demyelinating lesions, suggesting that its pathological upregulation may contribute to MS development, at least in part by blockade of OPC differentiation leading to impaired repair of demyelinated lesions. PMID:27698367

  7. Effects of age and pathology on shear wave speed of the human rotator cuff.

    Science.gov (United States)

    Baumer, Timothy G; Dischler, Jack; Davis, Leah; Labyed, Yassin; Siegal, Daniel S; van Holsbeeck, Marnix; Moutzouros, Vasilios; Bey, Michael J

    2017-06-28

    Rotator cuff tears are common and often repaired surgically, but post-operative repair tissue healing, and shoulder function can be unpredictable. Tear chronicity is believed to influence clinical outcomes, but conventional clinical approaches for assessing tear chronicity are subjective. Shear wave elastography (SWE) is a promising technique for assessing soft tissue via estimates of shear wave speed (SWS), but this technique has not been used extensively on the rotator cuff. Specifically, the effects of age and pathology on rotator cuff SWS are not well known. The objectives of this study were to assess the association between SWS and age in healthy, asymptomatic subjects, and to compare measures of SWS between patients with a rotator cuff tear and healthy, asymptomatic subjects. SWE images of the supraspinatus muscle and intramuscular tendon were acquired from 19 asymptomatic subjects and 11 patients with a rotator cuff tear. Images were acquired with the supraspinatus under passive and active (i.e., minimal activation) conditions. Mean SWS was positively associated with age in the supraspinatus muscle and tendon under passive and active conditions (p ≤ 0.049). Compared to asymptomatic subjects, patients had a lower mean SWS in their muscle and tendon under active conditions (p ≤ 0.024), but no differences were detected under passive conditions (p ≥ 0.783). These findings identify the influences of age and pathology on SWS in the rotator cuff. These preliminary findings are an important step toward evaluating the clinical utility of SWE for assessing rotator cuff pathology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Structural Features of Human Memapsin 2 (β-Secretase) and Their Biological and Pathological Implications

    Institute of Scientific and Technical Information of China (English)

    Lin HONG; Xiangyuan HE; Xiangping HUANG; Wanpin CHANG; Jordan TANG

    2004-01-01

    Memapsin 2 (β-secretase) is the membrane-anchored aspartic protease that initiates the cleavage of β-amyloid precursor protein (APP) leading to the production of amyloid-β (Aβ), a major factor in the pathogenesis of Alzheimer's disease (AD). Since memapsin 2 is a major target for the development of inhibitor drugs for AD, it has been intensively studied during the past five years. Here we discuss the structural features of the catalytic/specificity apparatus, transmembrane domain, cytosolic domain and the implications of these features in the physiological and pathological roles of this protease.

  9. ["Acute human glanders". Contribution for the scientific history of the Museum of pathological anatomy established in Trieste Hospital].

    Science.gov (United States)

    Braulin, F

    2005-12-01

    The Museum of Pathological Anatomy of the Regina Elena City Hospital of Trieste houses various pathological preparations of infective and contagious diseases, dating back to the early 1900's (ileo-typhus, dysentery, tuberculosis, syphillis, pulmonary plague, etc.) together with their relative diagnostic certificates. These bear witness to the key role of the Hospital's Anatomical Institute (in operation operating since 1872) during the height of the Pasteurian age. In fact, the Institute houses several anatomical-pathological preparations from a fatal clinical case of "acute human glanders". These preparations were correlated by laboratory animal experiments using Strauss' method and emblematically recall the eziological determinism of the new bacteriological science. The preparations served in their day not only as indisputable diagnostic evidence, but can now be considered a promotional metaphor of the scientific mission the Triestine Anatomical Institutés Director, Dr. Enrico Ferrarri (a disciple of Richard Paltauf), endeavored to assign to the Triestine Pathological and Anatomical Institute by strenghthening it with new laboratory methodologies. The establishment of a new "predominant and determining vision" in the international diagnostics of infectious disease was also emerging from the Haspurg city's hospital medicine. Indeed, it was here that in 1907, the brief scientific debate focussing on the cadaver of a coachman who had been infected by a glanders-infected horse was apparently taking place only locally. Yet, it can now be seen as referring to what was happening on the international scale, in a setting that after a century of empiricism and morphologism, was characterized by the progressive penetration of laboratory medicine into clinical-anatomical medicine.

  10. PPAR agonists as therapeutics for CNS trauma and neurological diseases

    Science.gov (United States)

    Mandrekar-Colucci, Shweta; Sauerbeck, Andrew; Popovich, Phillip G.; McTigue, Dana M.

    2013-01-01

    Traumatic injury or disease of the spinal cord and brain elicits multiple cellular and biochemical reactions that together cause or are associated with neuropathology. Specifically, injury or disease elicits acute infiltration and activation of immune cells, death of neurons and glia, mitochondrial dysfunction, and the secretion of substrates that inhibit axon regeneration. In some diseases, inflammation is chronic or non-resolving. Ligands that target PPARs (peroxisome proliferator-activated receptors), a group of ligand-activated transcription factors, are promising therapeutics for neurologic disease and CNS injury because their activation affects many, if not all, of these interrelated pathologic mechanisms. PPAR activation can simultaneously weaken or reprogram the immune response, stimulate metabolic and mitochondrial function, promote axon growth and induce progenitor cells to differentiate into myelinating oligodendrocytes. PPAR activation has beneficial effects in many pre-clinical models of neurodegenerative diseases and CNS injury; however, the mechanisms through which PPARs exert these effects have yet to be fully elucidated. In this review we discuss current literature supporting the role of PPAR activation as a therapeutic target for treating traumatic injury and degenerative diseases of the CNS. PMID:24215544

  11. Absorption spectra and light penetration depth of normal and pathologically altered human skin

    Science.gov (United States)

    Barun, V. V.; Ivanov, A. P.; Volotovskaya, A. V.; Ulashchik, V. S.

    2007-05-01

    A three-layered skin model (stratum corneum, epidermis, and dermis) and engineering formulas for radiative transfer theory are used to study absorption spectra and light penetration depths of normal and pathologically altered skin. The formulas include small-angle and asymptotic approximations and a layer-addition method. These characteristics are calculated for wavelengths used for low-intensity laser therapy. We examined several pathologies such as vitiligo, edema, erythematosus lupus, and subcutaneous wound, for which the bulk concentrations of melanin and blood vessels or tissue structure (for subcutaneous wound) change compared with normal skin. The penetration depth spectrum is very similar to the inverted blood absorption spectrum. In other words, the depth is minimal at blood absorption maxima. The calculated absorption spectra enable the power and irradiation wavelength providing the required light effect to be selected. Relationships between the penetration depth and the diffuse reflectance coefficient of skin (unambiguously expressed through the absorption coefficient) are analyzed at different wavelengths. This makes it possible to find relationships between the light fields inside and outside the tissue.

  12. PEG minocycline-liposomes ameliorate CNS autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available BACKGROUND: Minocycline is an oral tetracycline derivative with good bioavailability in the central nervous system (CNS. Minocycline, a potent inhibitor of matrix metalloproteinase (MMP-9, attenuates disease activity in experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. Potential adverse effects associated with long-term daily minocycline therapy in human patients are concerning. Here, we investigated whether less frequent treatment with long-circulating polyethylene glycol (PEG minocycline liposomes are effective in treating EAE. FINDINGS: Performing in vitro time kinetic studies of PEG minocycline-liposomes in human peripheral blood mononuclear cells (PBMCs, we determined that PEG minocycline-liposome preparations stabilized with CaCl(2 are effective in diminishing MMP-9 activity. Intravenous injections of PEG minocycline-liposomes every five days were as effective in ameliorating clinical EAE as daily intraperitoneal injections of minocycline. Treatment of animals with PEG minocycline-liposomes significantly reduced the number of CNS-infiltrating leukocytes, and the overall expression of MMP-9 in the CNS. There was also a significant suppression of MMP-9 expression and proteolytic activity in splenocytes of treated animals, but not in CNS-infiltrating leukocytes. Thus, leukocytes gaining access to the brain and spinal cord require the same absolute amount of MMP-9 in all treatment groups, but minocycline decreases the absolute cell number. CONCLUSIONS: Our data indicate that less frequent injections of PEG minocycline-liposomes are an effective alternative pharmacotherapy to daily minocycline injections for the treatment of CNS autoimmune diseases. Also, inhibition of MMP-9 remains a promising treatment target in EAE and patients with MS.

  13. Metallothionein expression and roles in the CNS

    DEFF Research Database (Denmark)

    Penkowa, Milena

    2002-01-01

    -I+II) are regulated and expressed coordinately and are currently the best characterized MT isoforms. This review will focus on the expression and roles of MT-I+II in the CNS. MT-I+II are implicated in diverse physiological and pathophysiological functions, such as metal ion metabolism, regulation of the CNS...

  14. Detection of CNS and PrPSc in meat products.

    Science.gov (United States)

    Lücker, Ernst; Hardt, Michael; Groschup, Martin H

    2002-01-01

    Several methods for the detection of tissues of the central nervous system (CNS) in meat products have been developed and partly validated for use in official food control as pertaining to human BSE-exposure risk. So far, however, methods for the detection of abnormal prion protein (PrPSc) were not evaluated for their potential applicability to the matrix of heat treated meat products. We developed a micro technological procedure for the preparation of meat products suitable for high security laboratories as masses were 6 to 8 orders of magnitude lower than in conventional meat technology. Thus it was possible to produce standard micro sausages containing defined amounts of bovine BSE-positive brain. This material showed all characteristics of normal meat products and a homogeneous distribution of brain as indicated by NSE and GFAP western immunoblotting and GFAP immunometric analyses. Using a commercially available and certified immunometric assay for detection of PrPSc in untreated brain it was possible to detect BSE-positive CNS down to a content of 0.25% in heat treated meat products. We found a high correlation between PrPSc OD-values and CNS content and linearity up to 10% CNS. In 30 samples of retail meat products no sample transgressed the official cut off value for untreated bovine brain. Further studies are needed to show whether an increase of sensitivity in PrPSc detection from the meat product matrix is possible, in particular by optimisation of the extraction procedure.

  15. The spectrum of post-vaccination inflammatory CNS demyelinating syndromes.

    Science.gov (United States)

    Karussis, Dimitrios; Petrou, Panayiota

    2014-03-01

    A wide variety of inflammatory diseases temporally associated with the administration of various vaccines, has been reported in the literature. A PubMed search from 1979 to 2013 revealed seventy one (71) documented cases. The most commonly reported vaccinations that were associated with CNS demyelinating diseases included influenza (21 cases), human papilloma virus (HPV) (9 cases), hepatitis A or B (8 cases), rabies (5 cases), measles (5 cases), rubella (5 cases), yellow fever (3 cases), anthrax (2 cases),meningococcus (2 cases) and tetanus (2 cases). The vast majority of post-vaccination CNS demyelinating syndromes, are related to influenza vaccination and this could be attributed to the high percentage of the population that received the vaccine during the HI1N1 epidemia from 2009 to 2012. Usually the symptoms of the CNS demyelinating syndrome appear few days following the immunization (mean: 14.2 days) but there are cases where the clinical presentation was delayed (more than 3 weeks or even up to 5 months post-vaccination) (approximately a third of all the reported cases). In terms of the clinical presentation and the affected CNS areas, there is a great diversity among the reported cases of post-vaccination acute demyelinating syndromes. Optic neuritis was the prominent clinical presentation in 38 cases, multifocal disseminated demyelination in 30, myelitis in 24 and encephalitis in 17. Interestingly in a rather high proportion of the patients (and especially following influenza and human papiloma virus vaccination-HPV) the dominant localizations of demyelination were the optic nerves and the myelon, presenting as optic neuritis and myelitis (with or without additional manifestations of ADEM), reminiscent to neuromyelitic optica (or, more generally, the NMO-spectrum of diseases). Seven patients suffered an NMO-like disease following HPV and we had two similar cases in our Center. One patient with post-vaccination ADEM, subsequently developed NMO. Overall, the

  16. The shifting landscape of metastatic breast cancer to the CNS.

    Science.gov (United States)

    Quigley, Matthew R; Fukui, Olivia; Chew, Brandon; Bhatia, Sanjay; Karlovits, Steven

    2013-07-01

    The improved survival following the diagnosis of breast cancer has potentially altered the characteristics and course of patients presenting with CNS involvement. We therefore sought to define our current cohort of breast cancer patients with metastatic disease to the CNS in regard to modern biomarkers and clinical outcome. Review of clinical and radiographic records of women presenting to a tertiary medical center with the new diagnosis of CNS metastatic disease from breast cancer. This was a retrospective review from patients identities obtained from two prospective databases. There were 88 women analyzed who were treated over the period of January 2003 to February 2010, average age 56.9 years. At the time of initial presentation of CNS disease, 68 % of patients had multiple brain metastases, 17 % had a solitary metastasis, and 15 % had only leptomeningeal disease (LMD). The median survival for all patients from the time of diagnosis of breast disease was 50.0 months, and 9.7 months from diagnosis of CNS involvement. The only factor related to overall survival was estrogen receptor-positive pathology (57.6 v. 38.2 months, p = .02 log-rank); those related to survival post CNS diagnosis were presentation with LMD (p = .004, HR = 3.1, Cox regression) and triple-negative hormonal/HER2 status (p = .02, HR = 2.3, Cox regression). Patients with either had a median survival of 3.1 months (no patients in common). Of the 75 patients who initially presented with metastatic brain lesions, 20 (26 %) subsequently developed LMD in the course of their disease (median 10.4 months), following which survival was grim (1.8 months median). Symptoms of LMD were most commonly lower extremity weakness (14/33), followed by cranial nerve deficits (11/33). The recently described Graded Prognostic Assessment (GPA) tumor index stratified median survival at 2.5, 5.9, 13.1, and 21.7 months, respectively, for indices of 1-4 (p = .004, log-rank), which

  17. Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy

    Science.gov (United States)

    Zhou, Chao; Wang, Yihong; Aguirre, Aaron D.; Tsai, Tsung-Han; Cohen, David W.; Connolly, James L.; Fujimoto, James G.

    2010-01-01

    We evaluate the feasibility of optical coherence tomography (OCT) and optical coherence microscopy (OCM) for imaging of benign and malignant thyroid lesions ex vivo using intrinsic optical contrast. 34 thyroid gland specimens are imaged from 17 patients, covering a spectrum of pathology ranging from normal thyroid to benign disease/neoplasms (multinodular colloid goiter, Hashimoto's thyroiditis, and follicular adenoma) and malignant thyroid tumors (papillary carcinoma and medullary carcinoma). Imaging is performed using an integrated OCT and OCM system, with sections. Characteristic features that suggest malignant lesions, such as complex papillary architecture, microfollicules, psammomatous calcifications, or replacement of normal follicular architecture with sheets/nests of tumor cells, can be identified from OCT and OCM images and are clearly differentiable from normal or benign thyroid tissues. With further development of needle-based imaging probes, OCT and OCM could be promising techniques to use for the screening of thyroid nodules and to improve the diagnostic specificity of fine needle aspiration evaluation.

  18. Role of Histological Findings and Pathologic Diagnosis for Detection of Human Papillomavirus Infection in Men

    Science.gov (United States)

    Vyas, Nikki S.; Pierce Campbell, Christine M.; Mathew, Rahel; Abrahamsen, Martha; Van der Kooi, Kaisa; Jukic, Drazen M.; Stoler, Mark H.; Villa, Luisa L.; da Silva, Roberto Carvalho; Lazcano-Ponce, Eduardo; Quiterio, Manuel; Salmeron, Jorge; Sirak, Bradley A.; Ingles, Donna J.; Giuliano, Anna R.; Messina, Jane L.

    2016-01-01

    Early HPV infection in males is difficult to detect clinically and pathologically. This study assessed histopathology in diagnosing male genital HPV. External genital lesions (n = 352) were biopsied, diagnosed by a dermatopathologist, and HPV genotyped. A subset (n = 167) was diagnosed independently by a second dermatopathologist and also re-evaluated in detail, tabulating the presence of a set of histopathologic characteristics related to HPV infection. Cases that received discrepant diagnoses or HPV-related diagnoses were evaluated by a third dermatopathologist (n = 163). Across dermatopathologists, three-way concordance was fair (k = 0.30). Pairwise concordance for condyloma was fair to good (k = 0.30–0.67) and poor to moderate for penile intraepithelial neoplasia (k = −0.05 to 0.42). Diagnoses were 44–47% sensitive and 65–72% specific for HPV 6/ 11-containing lesions, and 20–37% sensitive and 98–99% specific for HPV 16/18. Presence of HPV 6/ 11 was 75–79% sensitive and 35% specific for predicting pathologic diagnosis of condyloma. For diagnosis of penile intraepithelial neoplasia, HPV 16/18 was 95–96% specific but only 40–64% sensitive. Rounded papillomatosis, hypergranulosis, and dilated vessels were significantly (P<0.05) associated with HPV 6/11. Dysplasia was significantly (P= 0.001) associated with HPV 16/18. Dermatopathologists’ diagnoses of early male genital HPV-related lesions appear discordant with low sensitivity, while genotyping may overestimate clinically significant HPV-related disease. Rounded papillomatosis, hypergranulosis, and dilated vessels may help establish diagnosis of early condyloma. PMID:25945468

  19. Role of histological findings and pathologic diagnosis for detection of human papillomavirus infection in men.

    Science.gov (United States)

    Vyas, Nikki S; Pierce Campbell, Christine M; Mathew, Rahel; Abrahamsen, Martha; Van der Kooi, Kaisa; Jukic, Drazen M; Stoler, Mark H; Villa, Luisa L; da Silva, Roberto Carvalho; Lazcano-Ponce, Eduardo; Quiterio, Manuel; Salmeron, Jorge; Sirak, Bradley A; Ingles, Donna J; Giuliano, Anna R; Messina, Jane L

    2015-10-01

    Early HPV infection in males is difficult to detect clinically and pathologically. This study assessed histopathology in diagnosing male genital HPV. External genital lesions (n = 352) were biopsied, diagnosed by a dermatopathologist, and HPV genotyped. A subset (n = 167) was diagnosed independently by a second dermatopathologist and also re-evaluated in detail, tabulating the presence of a set of histopathologic characteristics related to HPV infection. Cases that received discrepant diagnoses or HPV-related diagnoses were evaluated by a third dermatopathologist (n = 163). Across dermatopathologists, three-way concordance was fair (k = 0.30). Pairwise concordance for condyloma was fair to good (k = 0.30-0.67) and poor to moderate for penile intraepithelial neoplasia (k = -0.05 to 0.42). Diagnoses were 44-47% sensitive and 65-72% specific for HPV 6/11-containing lesions, and 20-37% sensitive and 98-99% specific for HPV 16/18. Presence of HPV 6/11 was 75-79% sensitive and 35% specific for predicting pathologic diagnosis of condyloma. For diagnosis of penile intraepithelial neoplasia, HPV 16/18 was 95-96% specific but only 40-64% sensitive. Rounded papillomatosis, hypergranulosis, and dilated vessels were significantly (P < 0.05) associated with HPV 6/11. Dysplasia was significantly (P = 0.001) associated with HPV 16/18. Dermatopathologists' diagnoses of early male genital HPV-related lesions appear discordant with low sensitivity, while genotyping may overestimate clinically significant HPV-related disease. Rounded papillomatosis, hypergranulosis, and dilated vessels may help establish diagnosis of early condyloma.

  20. An investigation of the effects of antiretroviral CNS penetration effectiveness on procedural learning in HIV+ drug users

    OpenAIRE

    Wilson, Michael J.; Martin-Engel, Lindsay; Vassileva, Jasmin; Gonzalez, Raul; Martin, Eileen M.

    2013-01-01

    Treatment with combination antiretroviral therapy (cART) regimens with a high capacity to penetrate the blood-brain barrier has been associated with lower levels of human immunodeficiency virus (HIV) in the central nervous system (CNS). This study examined neurocognitive performance among a sample of 118 HIV+ substance dependent individuals (SDIs) and 310 HIV− SDIs. HIV+ participants were prescribed cART regimens with varying capacity to penetrate the CNS as indexed by the revised CNS penetra...

  1. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants.

    Science.gov (United States)

    Barak, Jeri D; Schroeder, Brenda K

    2012-01-01

    Bacterial food-borne pathogens use plants as vectors between animal hosts, all the while following the life cycle script of plant-associated bacteria. Similar to phytobacteria, Salmonella, pathogenic Escherichia coli, and cross-domain pathogens have a foothold in agricultural production areas. The commonality of environmental contamination translates to contact with plants. Because of the chronic absence of kill steps against human pathogens for fresh produce, arrival on plants leads to persistence and the risk of human illness. Significant research progress is revealing mechanisms used by human pathogens to colonize plants and important biological interactions between and among bacteria in planta. These findings articulate the difficulty of eliminating or reducing the pathogen from plants. The plant itself may be an untapped key to clean produce. This review highlights the life of human pathogens outside an animal host, focusing on the role of plants, and illustrates areas that are ripe for future investigation.

  2. MicroRNAs as biomarkers for CNS disease

    Directory of Open Access Journals (Sweden)

    Pooja eRao

    2013-11-01

    Full Text Available For many neurological diseases, the efficacy and outcome of treatment depend on early detection. Diagnosis is currently based on the detection of symptoms and neuroimaging abnormalities, which appear at relatively late stages in the pathogenesis. However, the underlying molecular responses to genetic and environmental insults begin much earlier and non-coding RNA networks are critically involved in these cellular regulatory mechanisms. Profiling RNA expression patterns could thus facilitate presymptomatic disease detection.Obtaining indirect readouts of pathological processes is particularly important for brain disorders because of the lack of direct access to tissue for molecular analyses. Living neurons and other CNS cells secrete microRNA and other small non-coding RNA into the extracellular space packaged in exosomes, microvesicles or lipoprotein complexes. This discovery, together with the rapidly evolving massive sequencing technologies that allow detection of virtually all RNA species from small amounts of biological material, has allowed significant progress in the use of extracellular RNA as a biomarker for CNS malignancies, neurological and psychiatric diseases. There is also recent evidence that the interactions between external stimuli and brain pathological processes may be reflected in peripheral tissues, facilitating their use as potential diagnostic markers. In this review, we explore the possibilities and challenges of using microRNA and other small RNAs as a signature for neurodegenerative and other neuropsychatric conditions.

  3. Identification of "pathologs" (disease-related genes from the RIKEN mouse cDNA dataset using human curation plus FACTS, a new biological information extraction system

    Directory of Open Access Journals (Sweden)

    Socha Luis A

    2004-04-01

    Full Text Available Abstract Background A major goal in the post-genomic era is to identify and characterise disease susceptibility genes and to apply this knowledge to disease prevention and treatment. Rodents and humans have remarkably similar genomes and share closely related biochemical, physiological and pathological pathways. In this work we utilised the latest information on the mouse transcriptome as revealed by the RIKEN FANTOM2 project to identify novel human disease-related candidate genes. We define a new term "patholog" to mean a homolog of a human disease-related gene encoding a product (transcript, anti-sense or protein potentially relevant to disease. Rather than just focus on Mendelian inheritance, we applied the analysis to all potential pathologs regardless of their inheritance pattern. Results Bioinformatic analysis and human curation of 60,770 RIKEN full-length mouse cDNA clones produced 2,578 sequences that showed similarity (70–85% identity to known human-disease genes. Using a newly developed biological information extraction and annotation tool (FACTS in parallel with human expert analysis of 17,051 MEDLINE scientific abstracts we identified 182 novel potential pathologs. Of these, 36 were identified by computational tools only, 49 by human expert analysis only and 97 by both methods. These pathologs were related to neoplastic (53%, hereditary (24%, immunological (5%, cardio-vascular (4%, or other (14%, disorders. Conclusions Large scale genome projects continue to produce a vast amount of data with potential application to the study of human disease. For this potential to be realised we need intelligent strategies for data categorisation and the ability to link sequence data with relevant literature. This paper demonstrates the power of combining human expert annotation with FACTS, a newly developed bioinformatics tool, to identify novel pathologs from within large-scale mouse transcript datasets.

  4. Matrine protects neuro-axon from CNS inflammation-induced injury.

    Science.gov (United States)

    Kan, Quan-Cheng; Lv, Peng; Zhang, Xiao-Jian; Xu, Yu-Ming; Zhang, Guang-Xian; Zhu, Lin

    2015-02-01

    Neuro-axonal injury in the central nervous system (CNS) is one of the major pathological hallmarks of experimental autoimmune encephalomyelitis (EAE), an experimental model of multiple sclerosis (MS). Matrine (MAT), a quinolizidine alkaloid derived from the herb Radix Sophorae Flave, has recently been shown to effectively suppress EAE through an anti-inflammatory mechanism. However, whether MAT can also protect myelin/axons from damage is not known. In the present study we show that, while untreated rats developed severe clinical disease, CNS inflammatory demyelination, and axonal damage, these clinical and pathological signs were significantly reduced by MAT treatment. Consistently, MAT treatment reduced the concentration of myelin basic protein in serum and downregulated expression of β-amyloid (Aβ) and B-site APP cleaving enzyme 1 (BACE-1) in the CNS. Further, the CNS of MAT-treated rats exhibited increased expression of brain-derived neurotrophic factor (BDNF), an important factor for neuronal survival and axonal growth. Together, these results demonstrate that MAT effectively prevented neuro-axonal injury, which can likely be attributed to inhibiting risk factors such as BACE-1 and upregulating neuroprotective factors such as BDNF. We conclude that this novel natural reagent, MAT, which effectively protects neuro-axons from CNS inflammation-induced damage, could be a potential candidate for the treatment of neurodegenerative diseases such as MS.

  5. Delayed loss of hearing after hearing preservation cochlear implantation: Human temporal bone pathology and implications for etiology.

    Science.gov (United States)

    Quesnel, Alicia M; Nakajima, Hideko Heidi; Rosowski, John J; Hansen, Marlan R; Gantz, Bruce J; Nadol, Joseph B

    2016-03-01

    After initially successful preservation of residual hearing with cochlear implantation, some patients experience subsequent delayed hearing loss. The etiology of such delayed hearing loss is unknown. Human temporal bone pathology is critically important in investigating the etiology, and directing future efforts to maximize long term hearing preservation in cochlear implant patients. Here we present the temporal bone pathology from a patient implanted during life with an Iowa/Nucleus Hybrid S8 implant, with initially preserved residual hearing and subsequent hearing loss. Both temporal bones were removed for histologic processing and evaluated. Complete clinical and audiologic records were available. He had bilateral symmetric high frequency severe to profound hearing loss prior to implantation. Since he was implanted unilaterally, the unimplanted ear was presumed to be representative of the pre-implantation pathology related to his hearing loss. The implanted and contralateral unimplanted temporal bones both showed complete degeneration of inner hair cells and outer hair cells in the basal half of the cochleae, and only mild patchy loss of inner hair cells and outer hair cells in the apical half. The total spiral ganglion neuron counts were similar in both ears: 15,138 (56% of normal for age) in the unimplanted right ear and 13,722 (51% of normal for age) in the implanted left ear. In the basal turn of the implanted left cochlea, loose fibrous tissue and new bone formation filled the scala tympani, and part of the scala vestibuli. Delayed loss of initially preserved hearing after cochlear implantation was not explained by additional post-implantation degeneration of hair cells or spiral ganglion neurons in this patient. Decreased compliance at the round window and increased damping in the scala tympani due to intracochlear fibrosis and new bone formation might explain part of the post-implantation hearing loss. Reduction of the inflammatory and immune response to

  6. Glucocorticoid treatment of MCMV infected newborn mice attenuates CNS inflammation and limits deficits in cerebellar development.

    Directory of Open Access Journals (Sweden)

    Kate Kosmac

    2013-03-01

    Full Text Available Infection of the developing fetus with human cytomegalovirus (HCMV is a major cause of central nervous system disease in infants and children; however, mechanism(s of disease associated with this intrauterine infection remain poorly understood. Utilizing a mouse model of HCMV infection of the developing CNS, we have shown that peripheral inoculation of newborn mice with murine CMV (MCMV results in CNS infection and developmental abnormalities that recapitulate key features of the human infection. In this model, animals exhibit decreased granule neuron precursor cell (GNPC proliferation and altered morphogenesis of the cerebellar cortex. Deficits in cerebellar cortical development are symmetric and global even though infection of the CNS results in a non-necrotizing encephalitis characterized by widely scattered foci of virus-infected cells with mononuclear cell infiltrates. These findings suggested that inflammation induced by MCMV infection could underlie deficits in CNS development. We investigated the contribution of host inflammatory responses to abnormal cerebellar development by modulating inflammatory responses in infected mice with glucocorticoids. Treatment of infected animals with glucocorticoids decreased activation of CNS mononuclear cells and expression of inflammatory cytokines (TNF-α, IFN-β and IFNγ in the CNS while minimally impacting CNS virus replication. Glucocorticoid treatment also limited morphogenic abnormalities and normalized the expression of developmentally regulated genes within the cerebellum. Importantly, GNPC proliferation deficits were normalized in MCMV infected mice following glucocorticoid treatment. Our findings argue that host inflammatory responses to MCMV infection contribute to deficits in CNS development in MCMV infected mice and suggest that similar mechanisms of disease could be responsible for the abnormal CNS development in human infants infected in-utero with HCMV.

  7. Development of Pathological Diagnostics of Human Kidney Cancer by Multiple Staining Using New Fluorescent Fluolid Dyes

    Directory of Open Access Journals (Sweden)

    Dilibaier Wuxiuer

    2014-01-01

    Full Text Available New fluorescent Fluolid dyes have advantages over others such as stability against heat, dryness, and excess light. Here, we performed simultaneous immunostaining of renal tumors, clear cell renal cell carcinoma (RCC, papillary RCC, chromophobe RCC, acquired cystic disease-associated RCC (ACD-RCC, and renal angiomyolipoma (AML, with primary antibodies against Kank1, cytokeratin 7 (CK7, and CD10, which were detected with secondary antibodies labeled with Fluolid-Orange, Fluolid-Green, and Alexa Fluor 647, respectively. Kank1 was stained in normal renal tubules, papillary RCC, and ACD-RCC, and weakly or negatively in all other tumors. CK7 was positive in normal renal tubules, papillary RCC, and ACD-RCC. In contrast, CD10 was expressed in renal tubules and clear cell RCC, papillary RCC, AML, and AC-RCC, and weakly in chromophobe RCC. These results may contribute to differentiating renal tumors and subtypes of RCCs. We also examined the stability of fluorescence and found that fluorescent images of Fluolid dyes were identical between a tissue section and the same section after it was stored for almost three years at room temperature. This indicates that tissue sections can be stored at room temperature for a relatively long time after they are stained with multiple fluorescent markers, which could open a door for pathological diagnostics.

  8. Valganciclovir Inhibits Human Adenovirus Replication and Pathology in Permissive Immunosuppressed Female and Male Syrian Hamsters

    Directory of Open Access Journals (Sweden)

    Karoly Toth

    2015-03-01

    Full Text Available Adenovirus infections of immunocompromised pediatric hematopoietic stem cell transplant patients can develop into serious and often deadly multi-organ disease. There are no drugs approved for adenovirus infections. Cidofovir (an analog of 2-deoxycytidine monophosphate is used at times but it can be nephrotoxic and its efficacy has not been proven in clinical trials. Brincidofovir, a promising lipid-linked derivative of cidofovir, is in clinical trials. Ganciclovir, an analog of 2-deoxyguanosine, has been employed occasionally but with unknown efficacy in the clinic. In this study, we evaluated valganciclovir against disseminated adenovirus type 5 (Ad5 infection in our permissive immunosuppressed Syrian hamster model. We administered valganciclovir prophylactically, beginning 12 h pre-infection or therapeutically starting at Day 1, 2, 3, or 4 post-infection. Valganciclovir significantly increased survival, reduced viral replication in the liver, and mitigated the pathology associated with Ad5 infection. In cultured cells, valganciclovir inhibited Ad5 DNA replication and blocked the transition from early to late stage of infection. Valganciclovir directly inhibited Ad5 DNA polymerase in vitro, which may explain, at least in part, its mechanism of action. Ganciclovir and valganciclovir are approved to treat infections by certain herpesviruses. Our results support the use of valganciclovir to treat disseminated adenovirus infections in immunosuppressed patients.

  9. Pathology of Human Coronary and Carotid Artery Atherosclerosis and Vascular Calcification in Diabetes Mellitus.

    Science.gov (United States)

    Yahagi, Kazuyuki; Kolodgie, Frank D; Lutter, Christoph; Mori, Hiroyoshi; Romero, Maria E; Finn, Aloke V; Virmani, Renu

    2017-02-01

    The continuing increase in the prevalence of diabetes mellitus in the general population is predicted to result in a higher incidence of cardiovascular disease. Although the mechanisms of diabetes mellitus-associated progression of atherosclerosis are not fully understood, at clinical and pathological levels, there is an appreciation of increased disease burden and higher levels of arterial calcification in these subjects. Plaques within the coronary arteries of patients with diabetes mellitus generally exhibit larger necrotic cores and significantly greater inflammation consisting mainly of macrophages and T lymphocytes relative to patients without diabetes mellitus. Moreover, there is a higher incidence of healed plaque ruptures and positive remodeling in hearts from subjects with type 1 diabetes mellitus and type 2 diabetes mellitus, suggesting a more active atherogenic process. Lesion calcification in the coronary, carotid, and other arterial beds is also more extensive. Although the role of coronary artery calcification in identifying cardiovascular disease and predicting its outcome is undeniable, our understanding of how key hormonal and physiological alterations associated with diabetes mellitus such as insulin resistance and hyperglycemia influence the process of vascular calcification continues to grow. Important drivers of atherosclerotic calcification in diabetes mellitus include oxidative stress, endothelial dysfunction, alterations in mineral metabolism, increased inflammatory cytokine production, and release of osteoprogenitor cells from the marrow into the circulation. Our review will focus on the pathophysiology of type 1 diabetes mellitus- and type 2 diabetes mellitus-associated vascular disease with particular focus on coronary and carotid atherosclerotic calcification.

  10. Valganciclovir inhibits human adenovirus replication and pathology in permissive immunosuppressed female and male Syrian hamsters.

    Science.gov (United States)

    Toth, Karoly; Ying, Baoling; Tollefson, Ann E; Spencer, Jacqueline F; Balakrishnan, Lata; Sagartz, John E; Buller, Robert Mark L; Wold, William S M

    2015-03-23

    Adenovirus infections of immunocompromised pediatric hematopoietic stem cell transplant patients can develop into serious and often deadly multi-organ disease. There are no drugs approved for adenovirus infections. Cidofovir (an analog of 2-deoxycytidine monophosphate) is used at times but it can be nephrotoxic and its efficacy has not been proven in clinical trials. Brincidofovir, a promising lipid-linked derivative of cidofovir, is in clinical trials. Ganciclovir, an analog of 2-deoxyguanosine, has been employed occasionally but with unknown efficacy in the clinic. In this study, we evaluated valganciclovir against disseminated adenovirus type 5 (Ad5) infection in our permissive immunosuppressed Syrian hamster model. We administered valganciclovir prophylactically, beginning 12 h pre-infection or therapeutically starting at Day 1, 2, 3, or 4 post-infection. Valganciclovir significantly increased survival, reduced viral replication in the liver, and mitigated the pathology associated with Ad5 infection. In cultured cells, valganciclovir inhibited Ad5 DNA replication and blocked the transition from early to late stage of infection. Valganciclovir directly inhibited Ad5 DNA polymerase in vitro, which may explain, at least in part, its mechanism of action. Ganciclovir and valganciclovir are approved to treat infections by certain herpesviruses. Our results support the use of valganciclovir to treat disseminated adenovirus infections in immunosuppressed patients.

  11. [Physiology and pathology of bactericidal activity in human polymorphonuclear neutrophils (author's transl)].

    Science.gov (United States)

    Hakim, J

    1980-09-13

    Blood polymorphonuclear neutrophils defend man against aggressions from pathogens. Under the combined influence of granulocytic and non-granulocytic factors, the defensive process develops by steps: the neutrophil moves towards the pathogenic organism which, one reached, is engulfed and killed. The killing systems of the cell are either oxygen-dependent or independent. the oxygen-dependent system is triggered off by stimulation of the cell membrane and involves various reactions, including cyanide-resistant oxygen consumption, production of activated oxygen, oxygen peroxide and halogenisation of the pathogen membrane. Impairment of the killing activity requires quantitative assessment of its various components in the presence of autologous or control serum with the view of: determining the origin (granulocytic or non-granulocytic) of the impairment, and identifying the step in oxygen metabolism that is affected. In the vast majority of non-granulocytic insufficiencies the cause lies in defective opsonins. In granulocytic insufficiencies, global failure of the system indicates chromic granulomatous disease, a syndrome that is now being dismembered. Defective halogenisation should lead to testing for deficiency of myeloperoxidase or abnormal degranulation. The non oxygen-independent bactericidal system, although highly effective in vitro, appears to be less important in vivo than the oxygen-dependent system. Little is known of its pathology.

  12. Concordance of gene expression in human protein complexes reveals tissue specificity and pathology

    DEFF Research Database (Denmark)

    Börnigen, Daniela; Pers, Tune Hannes; Thorrez, Lieven

    2013-01-01

    Disease-causing variants in human genes usually lead to phenotypes specific to only a few tissues. Here, we present a method for predicting tissue specificity based on quantitative deregulation of protein complexes. The underlying assumption is that the degree of coordinated expression among...... proteins in a complex within a given tissue may pinpoint tissues that will be affected by a mutation in the complex and coordinated expression may reveal the complex to be active in the tissue. We identified known disease genes and their protein complex partners in a high-quality human interactome. Each...... susceptibility gene's tissue involvement was ranked based on coordinated expression with its interaction partners in a non-disease global map of human tissue-specific expression. The approach demonstrated high overall area under the curve (0.78) and was very successfully benchmarked against a random model...

  13. Modelling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology

    Directory of Open Access Journals (Sweden)

    Srikanth Mairpady Shambat

    2015-11-01

    Full Text Available Staphylococcus aureus necrotizing pneumonia is recognized as a toxin-mediated disease, yet the tissue-destructive events remain elusive, partly as a result of lack of mechanistic studies in human lung tissue. In this study, a three-dimensional (3D tissue model composed of human lung epithelial cells and fibroblasts was used to delineate the role of specific staphylococcal exotoxins in tissue pathology associated with severe pneumonia. To this end, the models were exposed to the mixture of exotoxins produced by S. aureus strains isolated from patients with varying severity of lung infection, namely necrotizing pneumonia or lung empyema, or to purified toxins. The necrotizing pneumonia strains secreted high levels of α-toxin and Panton-Valentine leukocidin (PVL, and triggered high cytotoxicity, inflammation, necrosis and loss of E-cadherin from the lung epithelium. In contrast, the lung empyema strain produced moderate levels of PVL, but negligible amounts of α-toxin, and triggered limited tissue damage. α-toxin had a direct damaging effect on the epithelium, as verified using toxin-deficient mutants and pure α-toxin. Moreover, PVL contributed to pathology through the lysis of neutrophils. A combination of α-toxin and PVL resulted in the most severe epithelial injury. In addition, toxin-induced release of pro-inflammatory mediators from lung tissue models resulted in enhanced neutrophil migration. Using a collection of 31 strains from patients with staphylococcal pneumonia revealed that strains producing high levels of α-toxin and PVL were cytotoxic and associated with fatal outcome. Also, the strains that produced the highest toxin levels induced significantly greater epithelial disruption. Of importance, toxin-mediated lung epithelium destruction could be inhibited by polyspecific intravenous immunoglobulin containing antibodies against α-toxin and PVL. This study introduces a novel model system for study of staphylococcal pneumonia in a

  14. Modelling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology.

    Science.gov (United States)

    Mairpady Shambat, Srikanth; Chen, Puran; Nguyen Hoang, Anh Thu; Bergsten, Helena; Vandenesch, Francois; Siemens, Nikolai; Lina, Gerard; Monk, Ian R; Foster, Timothy J; Arakere, Gayathri; Svensson, Mattias; Norrby-Teglund, Anna

    2015-11-01

    Staphylococcus aureus necrotizing pneumonia is recognized as a toxin-mediated disease, yet the tissue-destructive events remain elusive, partly as a result of lack of mechanistic studies in human lung tissue. In this study, a three-dimensional (3D) tissue model composed of human lung epithelial cells and fibroblasts was used to delineate the role of specific staphylococcal exotoxins in tissue pathology associated with severe pneumonia. To this end, the models were exposed to the mixture of exotoxins produced by S. aureus strains isolated from patients with varying severity of lung infection, namely necrotizing pneumonia or lung empyema, or to purified toxins. The necrotizing pneumonia strains secreted high levels of α-toxin and Panton-Valentine leukocidin (PVL), and triggered high cytotoxicity, inflammation, necrosis and loss of E-cadherin from the lung epithelium. In contrast, the lung empyema strain produced moderate levels of PVL, but negligible amounts of α-toxin, and triggered limited tissue damage. α-toxin had a direct damaging effect on the epithelium, as verified using toxin-deficient mutants and pure α-toxin. Moreover, PVL contributed to pathology through the lysis of neutrophils. A combination of α-toxin and PVL resulted in the most severe epithelial injury. In addition, toxin-induced release of pro-inflammatory mediators from lung tissue models resulted in enhanced neutrophil migration. Using a collection of 31 strains from patients with staphylococcal pneumonia revealed that strains producing high levels of α-toxin and PVL were cytotoxic and associated with fatal outcome. Also, the strains that produced the highest toxin levels induced significantly greater epithelial disruption. Of importance, toxin-mediated lung epithelium destruction could be inhibited by polyspecific intravenous immunoglobulin containing antibodies against α-toxin and PVL. This study introduces a novel model system for study of staphylococcal pneumonia in a human setting. The

  15. Recognition memory and the medial temporal lobe: from monkey research to human pathology.

    Science.gov (United States)

    Meunier, M; Barbeau, E

    2013-01-01

    This review provides a historical overview of decades of research on recognition memory, the process that allows both humans and animals to tell familiar from novel items. The emphasis is put on how monkey research improved our understanding of the medial temporal lobe (MTL) role and how tasks designed for monkeys influenced research in humans. The story starts in the early 1950s. Back then, memory was not a fashionable scientific topic. It was viewed as a function of the whole brain and not of specialized brain areas. All that changed in 1957-1958 when Brenda Milner, a neuropsychologist from Montreal, described patient H.M. He forgot all events as he lived them despite a fully preserved intelligence. He had received a MTL resection to relieve epilepsy. H.M. (1926-2008) would become the most influential patient in brain science. Which structures among those included in H.M.'s large lesion were important for recognition memory could not be evaluated in humans. It was gradually understood only after the successful development of a monkey model of human amnesia by Mishkin in 1978. Selective lesions and two behavioral tasks, delayed nonmatching-to-sample and visual paired comparison, were used to distinguish the contribution of the hippocampus from that of adjacent cortical areas. Driven by findings in non-human primates, human research on recognition memory is now trying to solve the question of whether the different structures composing MTL contributes to familiarity and recollection, the two possible forms taken by recognition. We described in particular two French patients, FRG and JMG, whose deficits support the currently dominant model attributing to the perirhinal cortex a critical role in recognition memory. Research on recognition memory has implications for the clinician as it may help understanding the cognitive deficits observed in different diseases. An illustration of such approach, linking basic and applied research, is provided for Alzheimer's disease.

  16. Localization and quantitation of the chromosome 6-encoded dystrophin-related protein in normal and pathological human muscle.

    Science.gov (United States)

    Karpati, G; Carpenter, S; Morris, G E; Davies, K E; Guerin, C; Holland, P

    1993-03-01

    A dystrophin-related protein (DRP) encoded by a gene on chromosome 6 was studied in 14 normal and 79 pathological human skeletal muscle biopsies, as well as in cultured myotubes by light microscopic immunocytochemistry and quantitative immunoblots. In normal muscle immunoreactive DRP was present at the postjunctional surface membrane, at the surface of satellite cells, in the walls of blood vessels, in Schwann cells and in perineurium of intramuscular nerves. All of this produced a weak signal on immunoblots. In Duchenne/Becker dystrophy (DMD/BMD) and in polymyositis (PM) or dermatomyositis (DM) DRP was present throughout the extrajunctional surface membrane of extra- and intrafusal muscle fibers, particularly regenerating ones. This produced a 15-17-fold increase of DRP over normal in DMD/BMD and 4-10-fold increase over normal in PM and DM on immunoblots. In other pathological muscles, DRP localization pattern and quantity was about the same as in normals. Dystrophin-related protein was present in about the same amounts and distribution in normal and DMD cultured myoblasts and myotubes. The molecular stimulus for the marked upregulation of DRP in DMD/BMD and in the inflammatory myopathies is not known. In DMD/BMD the diffuse sarcolemmal DRP may partially compensate for dystrophin deficiency.

  17. [Pathomorphology of lung changes caused by gramoxone poisoning. Human pathologic and animal experimental studies].

    Science.gov (United States)

    Vadnay, I; Haraszti, A

    1988-01-01

    An account is given in this paper of changes caused by Gramoxone, a week killer, to the human lung as well as to experimental material. The process of damage was found to depend on the amount of toxic substance involved and on the route of uptake. Fibrosis, eventually, is the greatest danger. Intraperitoneal application leads to squamous epithelium metaplasia in the lung.

  18. Study of OH● Radicals in Human Serum Blood of Healthy Individuals and Those with Pathological Schizophrenia

    Directory of Open Access Journals (Sweden)

    Wolfgang Linert

    2011-01-01

    Full Text Available The human body is constantly under attack from free radicals that occur as part of normal cell metabolism, and by exposure to environmental factors such as UV light, cigarette smoke, environmental pollutants and gamma radiation. The resulting “Reactive Oxygen Species” (ROS circulate freely in the body with access to all organs and tissues, which can have serious repercussions throughout the body. The body possesses a number of mechanisms both to control the production of ROS and to cope with free radicals in order to limit or repair damage to tissues. Overproduction of ROS or insufficient defense mechanisms leads to a dangerous disbalance in the organism. Thereby several pathomechanisms implicated in over 100 human diseases, e.g., cardiovascular disease, cancer, diabetes mellitus, physiological disease, aging, etc., can be induced. Thus, a detailed investigation on the quantity of oxygen radicals, such as hydroxyl radicals (OH● in human serum blood, and its possible correlation with antioxidant therapy effects, is highly topical. The subject of this study was the influence of schizophrenia on the amount of OH● in human serum blood. The radicals were detected by fluorimetry, using terephthalic acid as a chemical trap. For all experiments the serum blood of healthy people was used as a control group.

  19. The Impact of Neural Stem Cell Biology on CNS Carcinogenesis and Tumor Types

    Directory of Open Access Journals (Sweden)

    K. M. Kurian

    2011-01-01

    Full Text Available The incidence of gliomas is on the increase, according to epidemiological data. This increase is a conundrum because the brain is in a privileged protected site behind the blood-brain barrier, and therefore partially buffered from environmental factors. In addition the brain also has a very low proliferative potential compared with other parts of the body. Recent advances in neural stem cell biology have impacted on our understanding of CNS carcinogenesis and tumor types. This article considers the cancer stem cell theory with regard to CNS cancers, whether CNS tumors arise from human neural stem cells and whether glioma stem cells can be reprogrammed.

  20. Defining the molecular pathologies in cloaca malformation: similarities between mouse and human

    Directory of Open Access Journals (Sweden)

    Laura A. Runck

    2014-04-01

    Full Text Available Anorectal malformations are congenital anomalies that form a spectrum of disorders, from the most benign type with excellent functional prognosis, to very complex, such as cloaca malformation in females in which the rectum, vagina and urethra fail to develop separately and instead drain via a single common channel into the perineum. The severity of this phenotype suggests that the defect occurs in the early stages of embryonic development of the organs derived from the cloaca. Owing to the inability to directly investigate human embryonic cloaca development, current research has relied on the use of mouse models of anorectal malformations. However, even studies of mouse embryos lack analysis of the earliest stages of cloaca patterning and morphogenesis. Here we compared human and mouse cloaca development and retrospectively identified that early mis-patterning of the embryonic cloaca might underlie the most severe forms of anorectal malformation in humans. In mouse, we identified that defective sonic hedgehog (Shh signaling results in early dorsal-ventral epithelial abnormalities prior to the reported defects in septation. This is manifested by the absence of Sox2 and aberrant expression of keratins in the embryonic cloaca of Shh knockout mice. Shh knockout embryos additionally develop a hypervascular stroma, which is defective in BMP signaling. These epithelial and stromal defects persist later, creating an indeterminate epithelium with molecular alterations in the common channel. We then used these animals to perform a broad comparison with patients with mild-to-severe forms of anorectal malformations including cloaca malformation. We found striking parallels with the Shh mouse model, including nearly identical defective molecular identity of the epithelium and surrounding stroma. Our work strongly suggests that early embryonic cloacal epithelial differentiation defects might be the underlying cause of severe forms of anorectal malformations

  1. Immune genes are associated with human glioblastoma pathology and patient survival

    Directory of Open Access Journals (Sweden)

    Vauléon Elodie

    2012-09-01

    Full Text Available Abstract Background Glioblastoma (GBM is the most common and lethal primary brain tumor in adults. Several recent transcriptomic studies in GBM have identified different signatures involving immune genes associated with GBM pathology, overall survival (OS or response to treatment. Methods In order to clarify the immune signatures found in GBM, we performed a co-expression network analysis that grouped 791 immune-associated genes (IA genes in large clusters using a combined dataset of 161 GBM specimens from published databases. We next studied IA genes associated with patient survival using 3 different statistical methods. We then developed a 6-IA gene risk predictor which stratified patients into two groups with statistically significantly different survivals. We validated this risk predictor on two other Affymetrix data series, on a local Agilent data series, and using RT-Q-PCR on a local series of GBM patients treated by standard chemo-radiation therapy. Results The co-expression network analysis of the immune genes disclosed 6 powerful modules identifying innate immune system and natural killer cells, myeloid cells and cytokine signatures. Two of these modules were significantly enriched in genes associated with OS. We also found 108 IA genes linked to the immune system significantly associated with OS in GBM patients. The 6-IA gene risk predictor successfully distinguished two groups of GBM patients with significantly different survival (OS low risk: 22.3 months versus high risk: 7.3 months; p  Conclusions This study demonstrates the immune signatures found in previous GBM genomic analyses and suggests the involvement of immune cells in GBM biology. The robust 6-IA gene risk predictor should be helpful in establishing prognosis in GBM patients, in particular in those with a proneural GBM subtype, and even in the well-known good prognosis group of patients with methylated MGMT promoter-bearing tumors.

  2. Study of OH● Radicals in Human Serum Blood of Healthy Individuals and Those with Pathological Schizophrenia

    OpenAIRE

    2011-01-01

    The human body is constantly under attack from free radicals that occur as part of normal cell metabolism, and by exposure to environmental factors such as UV light, cigarette smoke, environmental pollutants and gamma radiation. The resulting “Reactive Oxygen Species” (ROS) circulate freely in the body with access to all organs and tissues, which can have serious repercussions throughout the body. The body possesses a number of mechanisms both to control the production of ROS and to cope with...

  3. CNS Infiltration of Peripheral Immune Cells: D-Day for Neurodegenerative Disease?

    OpenAIRE

    Rezai-Zadeh, Kavon; Gate, David; Town, Terrence

    2009-01-01

    While the central nervous system (CNS) was once thought to be excluded from surveillance by immune cells, a concept known as “immune privilege,” it is now clear that immune responses do occur in the CNS—giving rise to the field of neuroimmunology. These CNS immune responses can be driven by endogenous (glial) and/or exogenous (peripheral leukocyte) sources and can serve either productive or pathological roles. Recent evidence from mouse models supports the notion that infiltration of peripher...

  4. INS/CNS/GNSS integrated navigation technology

    CERN Document Server

    Quan, Wei; Gong, Xiaolin; Fang, Jiancheng

    2015-01-01

    This book not only introduces the principles of INS, CNS and GNSS, the related filters and semi-physical simulation, but also systematically discusses the key technologies needed for integrated navigations of INS/GNSS, INS/CNS, and INS/CNS/GNSS, respectively. INS/CNS/GNSS integrated navigation technology has established itself as an effective tool for precise positioning navigation, which can make full use of the complementary characteristics of different navigation sub-systems and greatly improve the accuracy and reliability of the integrated navigation system. The book offers a valuable reference guide for graduate students, engineers and researchers in the fields of navigation and its control. Dr. Wei Quan, Dr. Jianli Li, Dr. Xiaolin Gong and Dr. Jiancheng Fang are all researchers at the Beijing University of Aeronautics and Astronautics.

  5. Electron Pathways through Erythrocyte Plasma Membrane in Human Physiology and Pathology: Potential Redox Biomarker?

    Directory of Open Access Journals (Sweden)

    Elena Matteucci

    2007-01-01

    Full Text Available Erythrocytes are involved in the transport of oxygen and carbon dioxide in the body. Since pH is the influential factor in the Bohr-Haldane effect, pHi is actively maintained via secondary active transports Na+/H+ exchange and HC3 -/Cl- anion exchanger. Because of the redox properties of the iron, hemoglobin generates reactive oxygen species and thus, the human erythrocyte is constantly exposed to oxidative damage. Although the adult erythrocyte lacks protein synthesis and cannot restore damaged proteins, it is equipped with high activity of protective enzymes. Redox changes in the cell initiate various signalling pathways. Plasma membrane oxido-reductases (PMORs are transmembrane electron transport systems that have been found in the membranes of all cells and have been extensively characterized in the human erythrocyte. Erythrocyte PMORs transfer reducing equivalents from intracellular reductants to extracellular oxidants, thus their most important role seems to be to enable the cell respond to changes in intra- and extra-cellular redox environments.So far the activity of erythrocyte PMORs in disease states has not been systematically investigated. This review summarizes present knowledge on erythrocyte electron transfer activity in humans (health, type 1 diabetes, diabetic nephropathy, and chronic uremia and hypothesizes an integrated model of the functional organization of erythrocyte plasma membrane where electron pathways work in parallel with transport metabolons to maintain redox homeostasis.

  6. MRI-based glomerular morphology and pathology in whole human kidneys.

    Science.gov (United States)

    Beeman, Scott C; Cullen-McEwen, Luise A; Puelles, Victor G; Zhang, Min; Wu, Teresa; Baldelomar, Edwin J; Dowling, John; Charlton, Jennifer R; Forbes, Michael S; Ng, Amanda; Wu, Qi-zhu; Armitage, James A; Egan, Gary F; Bertram, John F; Bennett, Kevin M

    2014-06-01

    Nephron number (N(glom)) and size (V(glom)) are correlated with risk for chronic cardiovascular and kidney disease and may be predictive of renal allograft viability. Unfortunately, there are no techniques to assess N(glom) and V(glom) in intact kidneys. This work demonstrates the use of cationized ferritin (CF) as a magnetic resonance imaging (MRI) contrast agent to measure N(glom) and V(glom) in viable human kidneys donated to science. The kidneys were obtained from patients with varying levels of cardiovascular and renal disease. CF was intravenously injected into three viable human kidneys. A fourth control kidney was perfused with saline. After fixation, immunofluorescence and electron microscopy confirmed binding of CF to the glomerulus. The intact kidneys were imaged with three-dimensional MRI and CF-labeled glomeruli appeared as punctate spots. Custom software identified, counted, and measured the apparent volumes of CF-labeled glomeruli, with an ~6% false positive rate. These measurements were comparable to stereological estimates. The MRI-based technique yielded a novel whole kidney distribution of glomerular volumes. Histopathology demonstrated that the distribution of CF-labeled glomeruli may be predictive of glomerular and vascular disease. Variations in CF distribution were quantified using image texture analyses, which be a useful marker of glomerular sclerosis. This is the first report of direct measurement of glomerular number and volume in intact human kidneys.

  7. Electron Pathways through Erythrocyte Plasma Membrane in Human Physiology and Pathology: Potential Redox Biomarker?

    Science.gov (United States)

    Matteucci, Elena; Giampietro, Ottavio

    2007-09-17

    Erythrocytes are involved in the transport of oxygen and carbon dioxide in the body. Since pH is the influential factor in the Bohr-Haldane effect, pHi is actively maintained via secondary active transports Na(+)/H(+) exchange and HC(3) (-)/Cl(-) anion exchanger. Because of the redox properties of the iron, hemoglobin generates reactive oxygen species and thus, the human erythrocyte is constantly exposed to oxidative damage. Although the adult erythrocyte lacks protein synthesis and cannot restore damaged proteins, it is equipped with high activity of protective enzymes. Redox changes in the cell initiate various signalling pathways. Plasma membrane oxido-reductases (PMORs) are transmembrane electron transport systems that have been found in the membranes of all cells and have been extensively characterized in the human erythrocyte. Erythrocyte PMORs transfer reducing equivalents from intracellular reductants to extracellular oxidants, thus their most important role seems to be to enable the cell respond to changes in intra- and extra-cellular redox environments.So far the activity of erythrocyte PMORs in disease states has not been systematically investigated. This review summarizes present knowledge on erythrocyte electron transfer activity in humans (health, type 1 diabetes, diabetic nephropathy, and chronic uremia) and hypothesizes an integrated model of the functional organization of erythrocyte plasma membrane where electron pathways work in parallel with transport metabolons to maintain redox homeostasis.

  8. Pathological implications of Cx43 down-regulation in human colon cancer.

    Science.gov (United States)

    Ismail, Rehana; Rashid, Rabiya; Andrabi, Khurshid; Parray, Fazl Q; Besina, Syed; Shah, Mohd Amin; Ul Hussain, Mahboob

    2014-01-01

    Connexin 43 is an important gap junction protein in vertebrates and is known for its tumor suppressive properties. Cx43 is abundantly expressed in the human intestinal epithelial cells and muscularis mucosae. To explore the role of Cx43 in the genesis of human colon cancer, we performed the expression analysis of Cx43 in 80 cases of histopathologically confirmed and clinically diagnosed human colon cancer samples and adjacent control tissue and assessed correlations with clinicopathological variables. Western blotting using anti-Cx43 antibody indicated that the expression of Cx43 was significantly down regulated (75%) in the cancer samples as compared to the adjacent control samples. Moreover, immunohistochemical analysis of the tissue samples confirmed the down regulation of the Cx43 in the intestinal epithelial cells. Cx43 down regulation showed significant association (pcancer. Our data demonstrated that loss of Cx43 may be an important event in colon carcinogenesis and tumor progression, providing significant insights about the tumor suppressive properties of the Cx43 and its potential as a diagnostic marker for colon cancer.

  9. Alterations of CNS structure & function by charged particle radiation & resultant oxidative stress

    Science.gov (United States)

    Nelson, Gregory; Chang, Polly; Favre, Cecile; Fike, John; Komarova, Natalia; Limoli, Charles; Mao, Xiao-Wen; Obenaus, Andre; Raber, Jacob; Spigelman, Igor; Soltesz, Ivan; Song, Sheng-Kwei; Stampanoni, Marco; Vlkolinsky, Roman; Wodarz, Dominik

    The NSCOR program project is transitioning from establishing the existence of CNS responses to low doses of charged particles, to an investigation of mechanisms underlying these changes and extending the irradiation paradigm to more space-like exposures. In earlier experiments we examined radiation responses of the mouse brain (hippocampus) following exposure to 250 MeV protons and 600 MeV/n iron ions. Our key findings on structural changes were: 1) Significant dose and time dependent loss of en-dothelial cells and microvessel network remodeling occurs suggesting that vascular insufficiency is produced. 2) Significant dose dependent losses of neural precursor cells were observed in a lineage specific pattern which may be associated with cognitive impairment. 3) Evaluation of DNA damage showed dose and time dependent accumulation of mutations with region-specific mutation structures and gene expression profiling demonstrated activation of neurotrophic and adhesion factors as well as chemokine receptors associated with inflammation. Our key find-ings on functional changes were: 1) Time and dose dependent modifications to neural output expressed as enhanced excitability but reduced synaptic efficacy and plasticity (including long term potentiation). 2) Intrinsic membrane properties of neurons were not significantly modi-fied by radiation exposure but pharmacological treatments demonstrated changes in inhibitory synapses. 3) MRI imaging visualized brain structural changes based on altered water diffu-sion properties and patterns were consistent with demyelination or gliosis. Our key findings on neurodegeneration and fidelity of homeostasis were: 1) APP23 transgenic mice exhibited accelerated APP-type electrophysiological pathology over several months. 2) Microvessel net-work changes following irradiation were suggestive of poor tissue oxygenation. 3) The ability of the brain to respond a controlled septic shock was altered by irradiation; the septic shock reactions

  10. Human leukocyte antigen class II transgenic mouse model unmasks the significant extrahepatic pathology in toxic shock syndrome.

    Science.gov (United States)

    Tilahun, Ashenafi Y; Marietta, Eric V; Wu, Tsung-Teh; Patel, Robin; David, Chella S; Rajagopalan, Govindarajan

    2011-06-01

    Among the exotoxins produced by Staphylococcus aureus and Streptococcus pyogenes, the superantigens (SAgs) are the most potent T-cell activators known to date. SAgs are implicated in several serious diseases including toxic shock syndrome (TSS), Kawasaki disease, and sepsis. However, the immunopathogenesis of TSS and other diseases involving SAgs are still not completely understood. The commonly used conventional laboratory mouse strains do not respond robustly to SAgs in vivo. Therefore, they must be artificially rendered susceptible to TSS by using sensitizing agents such as d-galactosamine (d-galN), which skews the disease exclusively to the liver and, hence, is not representative of the disease in humans. SAg-induced TSS was characterized using transgenic mice expressing HLA class II molecules that are extremely susceptible to TSS without d-galN. HLA-DR3 transgenic mice recapitulated TSS in humans with extensive multiple-organ inflammation affecting the lung, liver, kidneys, heart, and small intestines. Heavy infiltration with T lymphocytes (both CD4(+) and CD8+), neutrophils, and macrophages was noted. In particular, the pathologic changes in the small intestines were extensive and accompanied by significantly altered absorptive functions of the enterocytes. In contrast to massive liver failure alone in the d-galN sensitization model of TSS, findings of the present study suggest that gut dysfunction might be a key pathogenic event that leads to high morbidity and mortality in humans with TSS.

  11. Optical pathology of human brain metastasis of lung cancer using combined resonance Raman and spatial frequency spectroscopies

    Science.gov (United States)

    Zhou, Yan; Liu, Cheng-hui; Pu, Yang; Cheng, Gangge; Zhou, Lixin; Chen, Jun; Zhu, Ke; Alfano, Robert R.

    2016-03-01

    Raman spectroscopy has become widely used for diagnostic purpose of breast, lung and brain cancers. This report introduced a new approach based on spatial frequency spectra analysis of the underlying tissue structure at different stages of brain tumor. Combined spatial frequency spectroscopy (SFS), Resonance Raman (RR) spectroscopic method is used to discriminate human brain metastasis of lung cancer from normal tissues for the first time. A total number of thirty-one label-free micrographic images of normal and metastatic brain cancer tissues obtained from a confocal micro- Raman spectroscopic system synchronously with examined RR spectra of the corresponding samples were collected from the identical site of tissue. The difference of the randomness of tissue structures between the micrograph images of metastatic brain tumor tissues and normal tissues can be recognized by analyzing spatial frequency. By fitting the distribution of the spatial frequency spectra of human brain tissues as a Gaussian function, the standard deviation, σ, can be obtained, which was used to generate a criterion to differentiate human brain cancerous tissues from the normal ones using Support Vector Machine (SVM) classifier. This SFS-SVM analysis on micrograph images presents good results with sensitivity (85%), specificity (75%) in comparison with gold standard reports of pathology and immunology. The dual-modal advantages of SFS combined with RR spectroscopy method may open a new way in the neuropathology applications.

  12. RET/PTC Translocations and Clinico-Pathological Features in Human Papillary Thyroid Carcinoma.

    Science.gov (United States)

    Romei, Cristina; Elisei, Rossella

    2012-01-01

    Thyroid carcinoma is the most frequent endocrine cancer accounting for 5-10% of thyroid nodules. Papillary histotype (PTC) is the most prevalent form accounting for 80% of all thyroid carcinoma. Although much is known about its epidemiology, pathogenesis, clinical, and biological behavior, the only documented risk factor for PTC is the ionizing radiation exposure. Rearrangements of the Rearranged during Transfection (RET) proto-oncogene are found in PTC and have been shown to play a pathogenic role. The first RET rearrangement, named RET/PTC, was discovered in 1987. This rearrangement constitutively activates the transcription of the RET tyrosine-kinase domain in follicular cell, thus triggering the signaling along the MAPK pathway and an uncontrolled proliferation. Up to now, 13 different types of RET/PTC rearrangements have been reported but the two most common are RET/PTC1 and RET/PTC3. Ionizing radiations are responsible for the generation of RET/PTC rearrangements, as supported by in vitro studies and by the evidence that RET/PTC, and particularly RET/PTC3, are highly prevalent in radiation induced PTC. However, many thyroid tumors without any history of radiation exposure harbor similar RET rearrangements. The overall prevalence of RET/PTC rearrangements varies from 20 to 70% of PTCs and they are more frequent in childhood than in adulthood thyroid cancer. Controversial data have been reported on the relationship between RET/PTC rearrangements and the PTC prognosis. RET/PTC3 is usually associated with a more aggressive phenotype and in particular with a greater tumor size, the solid variant, and a more advanced stage at diagnosis which are all poor prognostic factors. In contrast, RET/PTC1 rearrangement does not correlate with any clinical-pathological characteristics of PTC. Moreover, the RET protein and mRNA expression level did not show any correlation with the outcome of patients with PTC and no correlation between RET/PTC rearrangements and the

  13. HIV-1 target cells in the CNS

    OpenAIRE

    Joseph, Sarah B.; Arrildt, Kathryn T.; Sturdevant, Christa B.; Swanstrom, Ronald

    2014-01-01

    HIV-1 replication in the central nervous system (CNS) is typically limited by the availability of target cells. HIV-1 variants that are transmitted and dominate the early stages of infection almost exclusively use the CCR5 coreceptor and are well adapted to entering, and thus infecting, cells expressing high CD4 densities similar to those found on CD4+ T cells. While the “immune privileged” CNS is largely devoid of CD4+ T cells, macrophage and microglia are abundant throughout ...

  14. Normal aging in rats and pathological aging in human Alzheimer's disease decrease FAAH activity: modulation by cannabinoid agonists.

    Science.gov (United States)

    Pascual, A C; Martín-Moreno, A M; Giusto, N M; de Ceballos, M L; Pasquaré, S J

    2014-12-01

    Anandamide is an endocannabinoid involved in several physiological functions including neuroprotection. Anandamide is synthesized on demand and its endogenous level is regulated through its degradation, where fatty acid amide hydrolase plays a major role. The aim of this study was to characterize anandamide breakdown in physiological and pathological aging and its regulation by CB1 and CB2 receptor agonists. Fatty acid amide hydrolase activity was analyzed in an independent cohort of human cortical membrane samples from control and Alzheimer's disease patients, and in membrane and synaptosomes from adult and aged rat cerebral cortex. Our results demonstrate that fatty acid amide hydrolase activity decreases in the frontal cortex from human patients with Alzheimer's disease and this effect is mimicked by Aβ(1-40) peptide. This activity increases and decreases in aged rat cerebrocortical membranes and synaptosomes, respectively. Also, while the presence of JWH-133, a CB2 selective agonist, slightly increases anandamide hydrolysis in human controls, it decreases this activity in adults and aged rat cerebrocortical membranes and synaptosomes. In the presence of WIN55,212-2, a mixed CB1/CB2 agonist, anandamide hydrolysis increases in Alzheimer's disease patients but decreases in human controls as well as in adult and aged rat cerebrocortical membranes and synaptosomes. Although a similar profile is observed in fatty acid amide hydrolase activity between aged rat synaptic endings and human Alzheimer's disease brains, it is differently modulated by CB1/CB2 agonists. This modulation leads to a reduced availability of anandamide in Alzheimer's disease and to an increased availability of this endocannabinoid in aging.

  15. Inhibitory effect of human telomerase antisense oligodeoxyribonucleotides on the growth of gastric cancer cell lines in variant tumor pathological subtype

    Institute of Scientific and Technical Information of China (English)

    Jing Ye; Yun-Lin Wu; Shu Zhang; Zi Chen; Li-Xia Guo; Ruo-Yu Zhou; Hong Xie

    2005-01-01

    AIM: To investigate the inhibitory effect of specialized human telomerase antisense oligodeoxyribonucleotides on the growth of well (MKN-28), moderately (SGC-7901)and poorly (MKN-45) differentiated gastric cancer cell lines under specific conditions and its inhibition mechanism,and to observe the correlation between the growth inhibition ratio and the tumor pathologic subtype of gastric cancer cells.METHODS: Telomerase activity in three gastric cancer cell lines of variant tumor pathologic subtype was determined by modified TRAP assay before and after the specialized human telomerase antisense oligodeoxyribonucleotides were dealt with under specific conditions. Effect of antisense oligomer under specific conditions of the growth and viability of gastric cancer cell lines was explored by using trypan blue dye exclusion assay, and cell apoptosis was detected by cell morphology observation, flow cytometry and TUNEL assay.RESULTS: Telomerase activity was detected in well,moderately and poorly differentiated gastric cancer cell lines (the quantification expression of telomerase activity was 43.7TPG, 56.5TPG, 76.7TPG, respectively).Telomerase activity was controlled to 30.2TPG, 36.3TPG and 35.2TPG for MKN-28, SGC-7901 and MKN-45 cell lines respectively after treatment with human telomerase antisense oligomers at the concentration of 5 μmol/L, and was entirely inhibited at 10 μmol/L, against the template region of telomerase RNA component, whereas no inhibition effect was detected in missense oligomers (P<0.05). After treatment with antisense oligomers at different concentrations under specific conditions for 96 h, significant growth inhibition effects were found in MKN-45 and SGC-7901gastric cancer cell lines (the inhibition ratio was 40.89%and 71.28%), but not in MKN-28 cell lines (15.86%). The ratio of inactive SGC-7901 cells increased according to the prolongation of treatment from 48 to 96 h. Missense oligomers could not lead to the same effect (P<0

  16. Knowledge-Based, Central Nervous System (CNS) Lead Selection and Lead Optimization for CNS Drug Discovery.

    Science.gov (United States)

    Ghose, Arup K; Herbertz, Torsten; Hudkins, Robert L; Dorsey, Bruce D; Mallamo, John P

    2012-01-18

    The central nervous system (CNS) is the major area that is affected by aging. Alzheimer's disease (AD), Parkinson's disease (PD), brain cancer, and stroke are the CNS diseases that will cost trillions of dollars for their treatment. Achievement of appropriate blood-brain barrier (BBB) penetration is often considered a significant hurdle in the CNS drug discovery process. On the other hand, BBB penetration may be a liability for many of the non-CNS drug targets, and a clear understanding of the physicochemical and structural differences between CNS and non-CNS drugs may assist both research areas. Because of the numerous and challenging issues in CNS drug discovery and the low success rates, pharmaceutical companies are beginning to deprioritize their drug discovery efforts in the CNS arena. Prompted by these challenges and to aid in the design of high-quality, efficacious CNS compounds, we analyzed the physicochemical property and the chemical structural profiles of 317 CNS and 626 non-CNS oral drugs. The conclusions derived provide an ideal property profile for lead selection and the property modification strategy during the lead optimization process. A list of substructural units that may be useful for CNS drug design was also provided here. A classification tree was also developed to differentiate between CNS drugs and non-CNS oral drugs. The combined analysis provided the following guidelines for designing high-quality CNS drugs: (i) topological molecular polar surface area of <76 Å(2) (25-60 Å(2)), (ii) at least one (one or two, including one aliphatic amine) nitrogen, (iii) fewer than seven (two to four) linear chains outside of rings, (iv) fewer than three (zero or one) polar hydrogen atoms, (v) volume of 740-970 Å(3), (vi) solvent accessible surface area of 460-580 Å(2), and (vii) positive QikProp parameter CNS. The ranges within parentheses may be used during lead optimization. One violation to this proposed profile may be acceptable. The

  17. Motorcycle accidents in forensic pathology. Human factors, and injury and crash tipologies

    Directory of Open Access Journals (Sweden)

    Annalisa Lanino

    2008-10-01

    Full Text Available The aim of this study is to investigate the association between the main human factors, related to motorcycle accidents, and the accident configuration and the lesive pattern. The present study considers the 200 two-wheel crashes occurred in Italy in the Province of Pavia between 1999 and 2001. For all cases a revision of the injured people’s interviews and their clinical records has been made. All the accidents of the survey have been examined considering the traumatic lesion abscribed to the accident to assess a direct causal link between human factors and the crash tipology and the injury pattern. Chi-square test was used to evaluate the relationship between the variables and a logistic regression was performed to evaluate the association of injury severity with some variables supposed to be predictive factors. Frontal-lateral impact collisions are about 6 times more likely to be caused by a traffic scan error of the other vehicle driver (no rider than other types of crashes (OR= 5,8; p < 0,0001; IC 95%: 2,875-11,736. Contusions-abrasions show the highest percentages in motorcyclists with no coverage worn (p < 0,001 and riders with no clothing have a higher risk to be severely injured than riders with coverage, but it is not statistically significant. Instead, there is not a statistical significant association between: rider’s gender, rider’s age, riding experience and accident configuration; damaged region of the helmet and cranium injury severity.

  18. CNTNAP1 mutations cause CNS hypomyelination and neuropathy with or without arthrogryposis

    Science.gov (United States)

    Hengel, Holger; Magee, Alex; Mahanjah, Muhammad; Vallat, Jean-Michel; Ouvrier, Robert; Abu-Rashid, Mohammad; Mahamid, Jamal; Schüle, Rebecca; Schulze, Martin; Krägeloh-Mann, Ingeborg; Bauer, Peter; Züchner, Stephan; Sharkia, Rajech

    2017-01-01

    Objective: To explore the phenotypic spectrum and pathophysiology of human disease deriving from mutations in the CNTNAP1 gene. Methods: In a field study on consanguineous Palestinian families, we identified 3 patients carrying homozygous mutations in the CNTNAP1 gene using whole-exome sequencing. An unrelated Irish family was detected by screening the GENESIS database for further CNTNAP1 mutations. Neurophysiology, MRI, and nerve biopsy including electron microscopy were performed for deep phenotyping. Results: We identified 3 novel CNTNAP1 mutations in 5 patients from 2 families: c.2015G>A:p.(Trp672*) in a homozygous state in family 1 and c.2011C>T:p.(Gln671*) in a compound heterozygous state with c.2290C>T:p.(Arg764Cys) in family 2. Affected patients suffered from a severe CNS disorder with hypomyelinating leukodystrophy and peripheral neuropathy of sensory-motor type. Arthrogryposis was present in 2 patients but absent in 3 patients. Brain MRI demonstrated severe hypomyelination and secondary cerebral and cerebellar atrophy as well as a mega cisterna magna and corpus callosum hypoplasia. Nerve biopsy revealed very distinct features with lack of transverse bands at the paranodes and widened paranodal junctional gaps. Conclusions: CNTNAP1 mutations have recently been linked to patients with arthrogryposis multiplex congenita. However, we show that arthrogryposis is not an obligate feature. CNTNAP1-related disorders are foremost severe hypomyelinating disorders of the CNS and the peripheral nervous system. The pathology is partly explained by the involvement of CNTNAP1 in the proper formation and preservation of paranodal junctions and partly by the assumed role of CNTNAP1 as a key regulator in the development of the cerebral cortex. PMID:28374019

  19. The apelinergic system: the role played in human physiology and pathology and potential therapeutic applications.

    Science.gov (United States)

    Ladeiras-Lopes, Ricardo; Ferreira-Martins, João; Leite-Moreira, Adelino F

    2008-05-01

    Apelin is a recently discovered peptide, identified as an endogenous ligand of receptor APJ. Apelin and receptor APJ are expressed in a wide variety of tissues including heart, brain, kidneys and lungs. Their interaction may have relevant pathophysiologic effects in those tissues. In fact, the last decade has been rich in illustrating the possible roles played by apelin in human physiology, namely as a regulating peptide of cardiovascular, hypothalamus-hypophysis, gastrointestinal, and immune systems. The possible involvement of apelin in the pathogenesis of high prevalence conditions and comorbidities - such as hypertension, heart failure, and Diabetes Mellitus Type 2 (T2DM) - rank it as a likely therapeutic target to be investigated in the future. The present paper is an overview of apelin physiologic effects and presents the possible role played by this peptide in the pathogenesis of a number of conditions as well as the therapeutic implications that might, therefore, be investigated.

  20. The fuzzy coat of pathological human Tau fibrils is a two-layered polyelectrolyte brush.

    Science.gov (United States)

    Wegmann, Susanne; Medalsy, Izhar D; Mandelkow, Eckhard; Müller, Daniel J

    2013-01-22

    The structure and properties of amyloid-like Tau fibrils accumulating in neurodegenerative diseases have been debated for decades. Although the core of Tau fibrils assembles from short β-strands, the properties of the much longer unstructured Tau domains protruding from the fibril core remain largely obscure. Applying immunogold transmission EM, and force-volume atomic force microscopy (AFM), we imaged human Tau fibrils at high resolution and simultaneously mapped their mechanical and adhesive properties. Tau fibrils showed a ≈ 16-nm-thick fuzzy coat that resembles a two-layered polyelectrolyte brush, which is formed by the unstructured short C-terminal and long N-terminal Tau domains. The mechanical and adhesive properties of the fuzzy coat are modulated by electrolytes and pH, and thus by the cellular environment. These unique properties of the fuzzy coat help in understanding how Tau fibrils disturb cellular interactions and accumulate in neurofibrillary tangles.

  1. A network biology approach to understanding the importance of chameleon proteins in human physiology and pathology.

    Science.gov (United States)

    Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Marashi, Sayed-Amir

    2017-02-01

    Chameleon proteins are proteins which include sequences that can adopt α-helix-β-strand (HE-chameleon) or α-helix-coil (HC-chameleon) or β-strand-coil (CE-chameleon) structures to operate their crucial biological functions. In this study, using a network-based approach, we examined the chameleon proteins to give a better knowledge on these proteins. We focused on proteins with identical chameleon sequences with more than or equal to seven residues long in different PDB entries, which adopt HE-chameleon, HC-chameleon, and CE-chameleon structures in the same protein. One hundred and ninety-one human chameleon proteins were identified via our in-house program. Then, protein-protein interaction (PPI) networks, Gene ontology (GO) enrichment, disease network, and pathway enrichment analyses were performed for our derived data set. We discovered that there are chameleon sequences which reside in protein-protein interaction regions between two proteins critical for their dual function. Analysis of the PPI networks for chameleon proteins introduced five hub proteins, namely TP53, EGFR, HSP90AA1, PPARA, and HIF1A, which were presented in four PPI clusters. The outcomes demonstrate that the chameleon regions are in critical domains of these proteins and are important in the development and treatment of human cancers. The present report is the first network-based functional study of chameleon proteins using computational approaches and might provide a new perspective for understanding the mechanisms of diseases helping us in developing new medical therapies along with discovering new proteins with chameleon properties which are highly important in cancer.

  2. Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy

    Directory of Open Access Journals (Sweden)

    Chong-Chong Xu

    2016-01-01

    Full Text Available Spinal muscular atrophy (SMA, characterized by specific degeneration of spinal motor neurons, is caused by mutations in the survival of motor neuron 1, telomeric (SMN1 gene and subsequent decreased levels of functional SMN. How the deficiency of SMN, a ubiquitously expressed protein, leads to spinal motor neuron-specific degeneration in individuals affected by SMA remains unknown. In this study, we examined the role of SMN in mitochondrial axonal transport and morphology in human motor neurons by generating SMA type 1 patient-specific induced pluripotent stem cells (iPSCs and differentiating these cells into spinal motor neurons. The initial specification of spinal motor neurons was not affected, but these SMA spinal motor neurons specifically degenerated following long-term culture. Moreover, at an early stage in SMA spinal motor neurons, but not in SMA forebrain neurons, the number of mitochondria, mitochondrial area and mitochondrial transport were significantly reduced in axons. Knocking down of SMN expression led to similar mitochondrial defects in spinal motor neurons derived from human embryonic stem cells, confirming that SMN deficiency results in impaired mitochondrial dynamics. Finally, the application of N-acetylcysteine (NAC mitigated the impairment in mitochondrial transport and morphology and rescued motor neuron degeneration in SMA long-term cultures. Furthermore, NAC ameliorated the reduction in mitochondrial membrane potential in SMA spinal motor neurons, suggesting that NAC might rescue apoptosis and motor neuron degeneration by improving mitochondrial health. Overall, our data demonstrate that SMN deficiency results in abnormal mitochondrial transport and morphology and a subsequent reduction in mitochondrial health, which are implicated in the specific degeneration of spinal motor neurons in SMA.

  3. Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy.

    Science.gov (United States)

    Xu, Chong-Chong; Denton, Kyle R; Wang, Zhi-Bo; Zhang, Xiaoqing; Li, Xue-Jun

    2016-01-01

    Spinal muscular atrophy (SMA), characterized by specific degeneration of spinal motor neurons, is caused by mutations in the survival of motor neuron 1, telomeric (SMN1) gene and subsequent decreased levels of functional SMN. How the deficiency of SMN, a ubiquitously expressed protein, leads to spinal motor neuron-specific degeneration in individuals affected by SMA remains unknown. In this study, we examined the role of SMN in mitochondrial axonal transport and morphology in human motor neurons by generating SMA type 1 patient-specific induced pluripotent stem cells (iPSCs) and differentiating these cells into spinal motor neurons. The initial specification of spinal motor neurons was not affected, but these SMA spinal motor neurons specifically degenerated following long-term culture. Moreover, at an early stage in SMA spinal motor neurons, but not in SMA forebrain neurons, the number of mitochondria, mitochondrial area and mitochondrial transport were significantly reduced in axons. Knocking down of SMN expression led to similar mitochondrial defects in spinal motor neurons derived from human embryonic stem cells, confirming that SMN deficiency results in impaired mitochondrial dynamics. Finally, the application of N-acetylcysteine (NAC) mitigated the impairment in mitochondrial transport and morphology and rescued motor neuron degeneration in SMA long-term cultures. Furthermore, NAC ameliorated the reduction in mitochondrial membrane potential in SMA spinal motor neurons, suggesting that NAC might rescue apoptosis and motor neuron degeneration by improving mitochondrial health. Overall, our data demonstrate that SMN deficiency results in abnormal mitochondrial transport and morphology and a subsequent reduction in mitochondrial health, which are implicated in the specific degeneration of spinal motor neurons in SMA.

  4. Two rare human mitofusin 2 mutations alter mitochondrial dynamics and induce retinal and cardiac pathology in Drosophila.

    Directory of Open Access Journals (Sweden)

    William H Eschenbacher

    Full Text Available Mitochondrial fusion is essential to organelle homeostasis and organ health. Inexplicably, loss of function mutations of mitofusin 2 (Mfn2 specifically affect neurological tissue, causing Charcot Marie Tooth syndrome (CMT and atypical optic atrophy. As CMT-linked Mfn2 mutations are predominantly within the GTPase domain, we postulated that Mfn2 mutations in other functional domains might affect non-neurological tissues. Here, we defined in vitro and in vivo consequences of rare human mutations in the poorly characterized Mfn2 HR1 domain. Human exome sequencing data identified 4 rare non-synonymous Mfn2 HR1 domain mutations, two bioinformatically predicted as damaging. Recombinant expression of these (Mfn2 M393I and R400Q in Mfn2-null murine embryonic fibroblasts (MEFs revealed incomplete rescue of characteristic mitochondrial fragmentation, compared to wild-type human Mfn2 (hMfn2; Mfn2 400Q uniquely induced mitochondrial fragmentation in normal MEFs. To compare Mfn2 mutation effects in neurological and non-neurological tissues in vivo, hMfn2 and the two mutants were expressed in Drosophila eyes or heart tubes made deficient in endogenous fly mitofusin (dMfn through organ-specific RNAi expression. The two mutants induced similar Drosophila eye phenotypes: small eyes and an inability to rescue the eye pathology induced by suppression of dMfn. In contrast, Mfn2 400Q induced more severe cardiomyocyte mitochondrial fragmentation and cardiac phenotypes than Mfn2 393I, including heart tube dilation, depressed fractional shortening, and progressively impaired negative geotaxis. These data reveal a central functional role for Mfn2 HR1 domains, describe organ-specific effects of two Mfn2 HR1 mutations, and strongly support prospective studies of Mfn2 400Q in heritable human heart disease of unknown genetic etiology.

  5. [Does Alzheimer's disease exist in all primates? Alzheimer pathology in non-human primates and its pathophysiological implications (II)].

    Science.gov (United States)

    Toledano, A; Álvarez, M I; López-Rodríguez, A B; Toledano-Díaz, A; Fernández-Verdecia, C I

    2014-01-01

    In the ageing process there are some species of non-human primates which can show some of the defining characteristics of the Alzheimer's disease (AD) of man, both in neuropathological changes and cognitive-behavioural symptoms. The study of these species is of prime importance to understand AD and develop therapies to combat this neurodegenerative disease. In this second part of the study, these AD features are discussed in the most important non-experimental AD models (Mouse Lemur -Microcebus murinus, Caribbean vervet -Chlorocebus aethiops, and the Rhesus and stump-tailed macaque -Macaca mulatta and M. arctoides) and experimental models (lesional, neurotoxic, pharmacological, immunological, etc.) non-human primates. In all these models cerebral amyloid neuropathology can occur in senility, although with different levels of incidence (100% in vervets;Alzheimer's) senility in these species are difficult to establish due to the lack of cognitive-behavioural studies in the many groups analysed, as well as the controversy in the results of these studies when they were carried out. However, in some macaques, a correlation between a high degree of functional brain impairment and a large number of neuropathological changes ("possible AD") has been found. In some non-human primates, such as the macaque, the existence of a possible continuum between "normal" ageing process, "normal" ageing with no deep neuropathological and cognitive-behavioural changes, and "pathological ageing" (or "Alzheimer type ageing"), may be considered. In other cases, such as the Caribbean vervet, neuropathological changes are constant and quite marked, but its impact on cognition and behaviour does not seem to be very important. This does assume the possible existence in the human senile physiological regression of a stable phase without dementia even if neuropathological changes appeared. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  6. The Role of Laminin α4 in Human Umbilical Vein Endothelial Cells and Pathological Mechanism of Preeclampsia.

    Science.gov (United States)

    Shan, Nan; Zhang, Xuemei; Xiao, Xiaoqiu; Zhang, Hua; Chen, Ying; Luo, Xin; Liu, Xiru; Zhuang, Baimei; Peng, Wei; Qi, Hongbo

    2015-08-01

    Preeclampsia (PE) is associated with defective placental angiogenesis and poor placentation. Laminins are the main noncollagenous glycoproteins in basement membranes, and laminin α4 (LAMA4) promotes the migration, proliferation, and survival of various cells. The primary purpose of this study is to investigate the role of LAMA4 in human umbilical vein endothelial cells (HUVECs) function during the development of PE. We found expression levels of LAMA4 in human PE placentas were significantly lower compared to the control placentas. The LAMA4 small-interfering RNA transfection and hypoxia-reoxygenation (H/R) intervention reduced the migratory and tube formation abilities of HUVECs. The mitogen-activated protein kinase (MAPK) signaling pathways interacted with LAMA4 expression and H/Rexposure led to MAPK pathways activation in HUVECs. We demonstrated that LAMA4 is very crucial in promoting the functions of endothelial cells. Oxidative stress plays a vital role in controlling expression of LAMA4 through MAPK signaling pathways, which suggests a possible pathological mechanism of PE.

  7. Structure of FGFR3 transmembrane domain dimer: implications for signaling and human pathologies.

    Science.gov (United States)

    Bocharov, Eduard V; Lesovoy, Dmitry M; Goncharuk, Sergey A; Goncharuk, Marina V; Hristova, Kalina; Arseniev, Alexander S

    2013-11-05

    Fibroblast growth factor receptor 3 (FGFR3) transduces biochemical signals via lateral dimerization in the plasma membrane, and plays an important role in human development and disease. Eight different pathogenic mutations, implicated in cancers and growth disorders, have been identified in the FGFR3 transmembrane segment. Here, we describe the dimerization of the FGFR3 transmembrane domain in membrane-mimicking DPC/SDS (9/1) micelles. In the solved NMR structure, the two transmembrane helices pack into a symmetric left-handed dimer, with intermolecular stacking interactions occurring in the dimer central region. Some pathogenic mutations fall within the helix-helix interface, whereas others are located within a putative alternative interface. This implies that although the observed dimer structure is important for FGFR3 signaling, the mechanism of FGFR3-mediated transduction across the membrane is complex. We propose an FGFR3 signaling mechanism that is based on the solved structure, available structures of isolated soluble FGFR domains, and published biochemical and biophysical data.

  8. Antimycotic effect of the essential oil of Aloysia triphylla against Candida species obtained from human pathologies.

    Science.gov (United States)

    Oliva, María de las Mercedes; Carezzano, María Evangelina; Gallucci, Mauro Nicolás; Demo, Mirta Susana

    2011-07-01

    The research of alternative substances to treat infections caused by Candida species is a need. Aromatic plants have the ability to produce secondary metabolites, such as essential oils (EO). The antimicrobial properties of Aloysia triphylla (L'Her.) Britton (cedrón) EO has been previously described. The aims of this work were to determine the antimicrobial activity and the effect on the cell structure of the EO of A. triphylla against Candida sp isolated from human illnesses. The EO was obtained by hydrodistillation of A. triphylla leaves. The minimum inhibitory concentration (MIC) was performed with microdilution method and the minimum fungicidal concentration (MFC) was determined. A. triphylla EO's showed antifungal activity against all yeast: C. albicans, C. dubliniensis, C. glabrata, C. krusei, C. guillermondii, C. parapsilosis and C. tropicalis which were resistant to fluconazol (150 mg/mL). The range of MIC values was from: 35 to 140 microg/mL and the MFC: 1842 to 2300 microg/mL. The time of killing at the MFC against C. albicans (3 x 10(5) UFC/mL) was 140 min. The dates of OD620 and OD260 suggest lysis and loss of absorbing material, respectively. The HROM shows distortion in morphology and shape of the cell, with large vacuoles in the cytoplasm. These studies clearly show that A. triphylla EO is a promising alternative for the treatment of candidiasis.

  9. Genotypes of human papilloma virus in Sudanese women with cervical pathology

    Directory of Open Access Journals (Sweden)

    Tobi Khater

    2010-12-01

    Full Text Available Abstract Background Knowledge of the distribution of human papillomavirus (HPV genotypes among women with cervical lesion and in invasive cervical cancer is crucial to guide the introduction of prophylactic vaccines. There is no published data concerning HPV and cervical abnormalities in Sudan. This study aimed to define the prevalence of HPV and its subtypes in the cervical smears of women presenting with gynecological complains at Omdurman Military Hospital, Sudan. During the period between March 2003 and April 2004, 135 cervical smears collected from these women, were screened using cytological techniques, and analysed by PCR for (beta-globin and HPV DNA using gel electrophoresis and ELISA. Results Of these 135 smears, there were 94 (69.3% negative, 22 (16.3% positive for inflammation, 12(8.9 mild dyskaryosis, 5 (3.7 moderate dyskaryosis and 2 (1.8 severe dyskaryosis. There were 60.7% ß. globin positive samples for HPV indicating DNA integrity. HPV DNA was identified in three samples (2.2% by gel electrophoresis and. was positive in four samples (2.9% as single and multiple infections by PCR-ELISA. The high risk HPV types 16 and 58 were identified in one sample as a mixed infection. The low risk HPV types 40 and 42 were also found as a mixed infection in another patient. HPV types 58 and 42 were identified in the other two patients. Conclusion HPV type distribution in Sudan appears to differ from that in other countries. The HPV genotypes identified were not associated with cancer.

  10. Mechanisms of CNS invasion and damage by parasites.

    Science.gov (United States)

    Kristensson, Krister; Masocha, Willias; Bentivoglio, Marina

    2013-01-01

    Invasion of the central nervous system (CNS) is a most devastating complication of a parasitic infection. Several physical and immunological barriers provide obstacles to such an invasion. In this broad overview focus is given to the physical barriers to neuroinvasion of parasites provided at the portal of entry of the parasites, i.e., the skin and epithelial cells of the gastrointestinal tract, and between the blood and the brain parenchyma, i.e., the blood-brain barrier (BBB). A description is given on how human pathogenic parasites can reach the CNS via the bloodstream either as free-living or extracellular parasites, by embolization of eggs, or within red or white blood cells when adapted to intracellular life. Molecular mechanisms are discussed by which parasites can interact with or pass across the BBB. The possible targeting of the circumventricular organs by parasites, as well as the parasites' direct entry to the brain from the nasal cavity through the olfactory nerve pathway, is also highlighted. Finally, examples are given which illustrate different mechanisms by which parasites can cause dysfunction or damage in the CNS related to toxic effects of parasite-derived molecules or to immune responses to the infection.

  11. Environmental cues from CNS, PNS, and ENS cells regulate CNS progenitor differentiation

    DEFF Research Database (Denmark)

    Brännvall, Karin; Corell, Mikael; Forsberg-Nilsson, Karin;

    2008-01-01

    Cellular origin and environmental cues regulate stem cell fate determination. Neuroepithelial stem cells form the central nervous system (CNS), whereas neural crest stem cells generate the peripheral (PNS) and enteric nervous system (ENS). CNS neural stem/progenitor cell (NSPC) fate determination...

  12. E- and N-Cadherin Distribution in Developing and Functional Human Teeth under Normal and Pathological Conditions

    Science.gov (United States)

    Heymann, Robert; About, Imad; Lendahl, Urban; Franquin, Jean-Claude; Öbrink, Björn; Mitsiadis, Thimios A.

    2002-01-01

    Cadherins are calcium-dependent cell adhesion molecules involved in the regulation of various biological processes such as cell recognition, intercellular communication, cell fate, cell polarity, boundary formation, and morphogenesis. Although previous studies have shown E-cadherin expression during rodent or human odontogenesis, there is no equivalent study available on N-cadherin expression in dental tissues. Here we examined and compared the expression patterns of E- and N-cadherins in both embryonic and adult (healthy, injured, carious) human teeth. Both proteins were expressed in the developing teeth during the cap and bell stages. E-cadherin expression in dental epithelium followed an apical-coronal gradient that was opposite to that observed for N-cadherin. E-cadherin was distributed in proliferating cells of the inner and outer enamel epithelia but not in differentiated cells such as ameloblasts, whereas N-cadherin expression was up-regulated in differentiated epithelial cells. By contrast to E-cadherin, N-cadherin was also expressed in mesenchymal cells that differentiate into odontoblasts and produce the hard tissue matrix of dentin. Although N-cadherin was not detected in permanent intact teeth, it was re-expressed during dentin repair processes in odontoblasts surrounding carious or traumatic sites. Similarly, N-cadherin re-expression was seen in vitro, in cultured primary pulp cells that differentiate into odontoblast-like cells. Taken together these results suggest that E- and N-cadherins may play a role during human tooth development and, moreover, indicate that N-cadherin is important for odontoblast function in normal development and under pathological conditions. PMID:12057916

  13. Virally mediated gene manipulation in the adult CNS

    Directory of Open Access Journals (Sweden)

    Efrat eEdry

    2011-12-01

    Full Text Available Understanding how the CNS functions poses one of the greatest challenges in modern life science and medicine. Studying the brain is especially challenging because of its complexity, the heterogeneity of its cellular composition, and the substantial changes it undergoes throughout its life-span. The complexity of adult-brain neural networks results also from the diversity of properties and functions of neuronal cells, governed, inter alia, by temporally and spatially differential expression of proteins in mammalian brain cell populations. Hence, research into the biology of CNS activity and its implications to human and animal behavior must use novel scientific tools. One source of such tools is the field of molecular genetics – recently utilized more and more frequently in neuroscience research. Transgenic approaches in general, and gene targeting in rodents have become fundamental tools for elucidating gene function in the CNS. Although spectacular progress has been achieved over recent decades by using these approaches, it is important to note that they face a number of restrictions. One of the main challenges is presented by the temporal and spatial regulation of introduced genetic manipulations. Viral vectors provide an alternative approach to temporally regulated, localized delivery of genetic modifications into neurons. In this review we describe available technologies for gene transfer into the adult mammalian CNS that use both viral and non-viral tools. We discuss viral vectors frequently used in neuroscience, with emphasis on lentiviral vector (LV systems. We consider adverse effects of LVs, and the use of LVs for temporally and spatially controllable manipulations. Especially, we highlight the significance of viral vector-mediated genetic manipulations in studying learning and memory processes, and how they may be effectively used to separate out the various phases of learning: acquisition, consolidation, retrieval, and maintenance.

  14. An invertebrate model for CNS drug discovery

    DEFF Research Database (Denmark)

    Al-Qadi, Sonia; Schiøtt, Morten; Hansen, Steen Honoré

    2015-01-01

    BACKGROUND: ABC efflux transporters at the blood brain barrier (BBB), namely the P-glycoprotein (P-gp), restrain the development of central nervous system (CNS) drugs. Consequently, early screening of CNS drug candidates is pivotal to identify those affected by efflux activity. Therefore, simple,...... barriers. CONCLUSION: Findings suggest a conserved mechanism of brain efflux activity between insects and vertebrates, confirming that this model holds promise for inexpensive and high-throughput screening relative to in vivo models, for CNS drug discovery......., high-throughput and predictive screening models are required. The grasshopper (locust) has been developed as an invertebrate in situ model for BBB permeability assessment, as it has shown similarities to vertebrate models. METHODS: Transcriptome profiling of ABC efflux transporters in the locust brain......BACKGROUND: ABC efflux transporters at the blood brain barrier (BBB), namely the P-glycoprotein (P-gp), restrain the development of central nervous system (CNS) drugs. Consequently, early screening of CNS drug candidates is pivotal to identify those affected by efflux activity. Therefore, simple...

  15. Is Multiple Sclerosis CNS Leprosy?

    Directory of Open Access Journals (Sweden)

    Noha t. Abokrysha

    2008-05-01

    Full Text Available Multiple sclerosis (MS is widely believed to be an autoimmune disorder. Another exciting idea regarding the aetiology of MS may be that the immune response in MS could result from a chronic infection rather than autoimmunity in the usual sense. M. leprae-induced myelin damage in the early infectious process provides valuable insights into the pathologic mechanisms of multiple sclerosis. However, no research has hypothesized the possible involvement of mycobacterium leprae or its components in pathogenesis of MS. Most of the antigens of mycobacterium leprae and mycobacterium tuberculosis are members of stress protein families. Of the M. leprae and M. tuberculosis antigens identified by monoclonal antibodies, all except the 18-kDa M. leprae antigen and the 19-kDa M. tuberculosis antigen are strongly coded with very similar genes. I hypothesize that MS is a syndrome of diseases, induced by intradermal BCG vaccine which may contain the antigen component resembling that of leprae that can either produce central demyelination by itself, or by delayed hypersensitivity. The hypothesis should be assessed in several experimental and clinical trials. If my hypothesis can be verified experimentally and clinically, then measurements to prevent MS disease could be accomplished.

  16. MOLECULAR (RE-)CLASSIFICATION OF CNS-PRIMITIVE NEUROECTODERMAL TUMORS

    OpenAIRE

    Kool, Marcel; Sturm, Dominik; Northcott, Paul A.; Jones, David T. W.; Korshunov, Andrey; Lichter, Peter; Pfister, Stefan

    2014-01-01

    BACKGROUND: According to the current WHO classification of CNS tumors, childhood CNS primitive neuro-ectodermal tumors (CNS-PNETs; WHO °IV) are poorly differentiated embryonal tumors with early onset and aggressive clinical behavior. Histological diagnosis can be complicated by morphological heterogeneity and divergent differentiation. Recent studies suggest the existence of molecular subgroups of CNS-PNETs sharing biological characteristics with other childhood CNS tumors. Here, we aimed at ...

  17. Abbreviated exposure to hypoxia is sufficient to induce CNS dysmyelination, modulate spinal motor neuron composition, and impair motor development in neonatal mice.

    Science.gov (United States)

    Watzlawik, Jens O; Kahoud, Robert J; O'Toole, Ryan J; White, Katherine A M; Ogden, Alyssa R; Painter, Meghan M; Wootla, Bharath; Papke, Louisa M; Denic, Aleksandar; Weimer, Jill M; Carey, William A; Rodriguez, Moses

    2015-01-01

    Neonatal white matter injury (nWMI) is an increasingly common cause of cerebral palsy that results predominantly from hypoxic injury to progenitor cells including those of the oligodendrocyte lineage. Existing mouse models of nWMI utilize prolonged periods of hypoxia during the neonatal period, require complex cross-fostering and exhibit poor growth and high mortality rates. Abnormal CNS myelin composition serves as the major explanation for persistent neuro-motor deficits. Here we developed a simplified model of nWMI with low mortality rates and improved growth without cross-fostering. Neonatal mice are exposed to low oxygen from postnatal day (P) 3 to P7, which roughly corresponds to the period of human brain development between gestational weeks 32 and 36. CNS hypomyelination is detectable for 2-3 weeks post injury and strongly correlates with levels of body and brain weight loss. Immediately following hypoxia treatment, cell death was evident in multiple brain regions, most notably in superficial and deep cortical layers as well as the subventricular zone progenitor compartment. PDGFαR, Nkx2.2, and Olig2 positive oligodendrocyte progenitor cell were significantly reduced until postnatal day 27. In addition to CNS dysmyelination we identified a novel pathological marker for adult hypoxic animals that strongly correlates with life-long neuro-motor deficits. Mice reared under hypoxia reveal an abnormal spinal neuron composition with increased small and medium diameter axons and decreased large diameter axons in thoracic lateral and anterior funiculi. Differences were particularly pronounced in white matter motor tracts left and right of the anterior median fissure. Our findings suggest that 4 days of exposure to hypoxia are sufficient to induce experimental nWMI in CD1 mice, thus providing a model to test new therapeutics. Pathological hallmarks of this model include early cell death, decreased OPCs and hypomyelination in early postnatal life, followed by

  18. Requirements for an Integrated UAS CNS Architecture

    Science.gov (United States)

    Templin, Fred; Jain, Raj; Sheffield, Greg; Taboso, Pedro; Ponchak, Denise

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating revolutionary and advanced universal, reliable, always available, cyber secure and affordable Communication, Navigation, Surveillance (CNS) options for all altitudes of UAS operations. In Spring 2015, NASA issued a Call for Proposals under NASA Research Announcements (NRA) NNH15ZEA001N, Amendment 7 Subtopic 2.4. Boeing was selected to conduct a study with the objective to determine the most promising candidate technologies for Unmanned Air Systems (UAS) air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. The overall objectives are to develop UAS CNS requirements and then develop architectures that satisfy the requirements for UAS in both controlled and uncontrolled air space. This contract is funded under NASAs Aeronautics Research Mission Directorates (ARMD) Aviation Operations and Safety Program (AOSP) Safe Autonomous Systems Operations (SASO) project and proposes technologies for the Unmanned Air Systems Traffic Management (UTM) service. Communications, Navigation and Surveillance (CNS) requirements must be developed in order to establish a CNS architecture supporting Unmanned Air Systems integration in the National Air Space (UAS in the NAS). These requirements must address cybersecurity, future communications, satellite-based navigation APNT, and scalable surveillance and situational awareness. CNS integration, consolidation and miniaturization requirements are also important to support the explosive growth in small UAS deployment. Air Traffic Management (ATM) must also be accommodated to support critical Command and Control (C2) for Air Traffic Controllers (ATC). This document therefore presents UAS CNS requirements that will guide the architecture.

  19. Pathology in Greece.

    Science.gov (United States)

    Sakellariou, S; Patsouris, E

    2015-11-01

    Pathology is the field of medicine that studies diseases. Ancient Greece hosted some of the earliest societies that laid the structural foundations of pathology. Initially, knowledge was based on observations but later on the key elements of pathology were established based on the dissection of animals and the autopsy of human cadavers. Christianized Greece under Ottoman rule (1453-1821) was not conducive to the development of pathology. After liberation, however, a series of events took place that paved the way for the establishment and further development of the specialty. The appointment in 1849 of two Professors of Pathology at the Medical School of Athens for didactical purposes proved to be the most important step in fostering the field of pathology in modern Greece. Presently in Greece there are seven university departments and 74 pathology laboratories in public hospitals, employing 415 specialized pathologists and 90 residents. The First Department of Pathology at the Medical School of Athens University is the oldest (1849) and largest in Greece, encompassing most pathology subspecialties.

  20. High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging of human tissue sections towards improving pathology.

    Science.gov (United States)

    Sreedhar, Hari; Varma, Vishal K; Nguyen, Peter L; Davidson, Bennett; Akkina, Sanjeev; Guzman, Grace; Setty, Suman; Kajdacsy-Balla, Andre; Walsh, Michael J

    2015-01-21

    High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis.

  1. Astrocyte pathology in a human neural stem cell model of frontotemporal dementia caused by mutant TAU protein

    Science.gov (United States)

    Hallmann, Anna-Lena; Araúzo-Bravo, Marcos J.; Mavrommatis, Lampros; Ehrlich, Marc; Röpke, Albrecht; Brockhaus, Johannes; Missler, Markus; Sterneckert, Jared; Schöler, Hans R.; Kuhlmann, Tanja; Zaehres, Holm; Hargus, Gunnar

    2017-01-01

    Astroglial pathology is seen in various neurodegenerative diseases including frontotemporal dementia (FTD), which can be caused by mutations in the gene encoding the microtubule-associated protein TAU (MAPT). Here, we applied a stem cell model of FTD to examine if FTD astrocytes carry an intrinsic propensity to degeneration and to determine if they can induce non-cell-autonomous effects in neighboring neurons. We utilized CRISPR/Cas9 genome editing in human induced pluripotent stem (iPS) cell-derived neural progenitor cells (NPCs) to repair the FTD-associated N279K MAPT mutation. While astrocytic differentiation was not impaired in FTD NPCs derived from one patient carrying the N279K MAPT mutation, FTD astrocytes appeared larger, expressed increased levels of 4R-TAU isoforms, demonstrated increased vulnerability to oxidative stress and elevated protein ubiquitination and exhibited disease-associated changes in transcriptome profiles when compared to astrocytes derived from one control individual and to the isogenic control. Interestingly, co-culture experiments with FTD astrocytes revealed increased oxidative stress and robust changes in whole genome expression in previously healthy neurons. Our study highlights the utility of iPS cell-derived NPCs to elucidate the role of astrocytes in the pathogenesis of FTD. PMID:28256506

  2. The presence and absence of lymphatic vessels in the adult human intervertebral disc: relation to disc pathology

    Energy Technology Data Exchange (ETDEWEB)

    Kliskey, Karolina; Williams, Kelly; Yu, J.; Urban, Jill; Athanasou, Nick [University of Oxford, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Science, Oxford (United Kingdom); Jackson, David [Weatherall Institute of Molecular Medicine, Human Immunology Unit, Oxford (United Kingdom)

    2009-12-15

    Although the normal adult human intervertebral disc is considered to be avascular, vascularised cellular fibrous tissue can be found in pathological conditions involving the disc such as disc herniation. Whether lymphatics vessels form a component of this reparative tissue is not known as the presence or absence of lymphatics in herniated and normal disc tissue is not known. We examined spinal tissues and discectomy specimens for the presence of lymphatics. The examination used immunohistochemistry to identify the specific lymphatic endothelial cell markers, podoplanin and LYVE1. Lymphatic vessels were not found in the nucleus pulposus or annulus fibrosus of intact, non-herniated lumbar and thoracic discs but were present in the surrounding ligaments. Ingrowth of fibrous tissue was seen in 73% of herniated disc specimens of which 36% contained LYVE1+/podoplanin + lymphatic vessels. Lymphatic vessels were not seen in the sacrum and coccyx or biopsies of four sacrococcygeal chordomas, but they were noted in surrounding extra-osseous fat and fibrous tissue at the edge of the infiltrating tumour. Our findings indicate that lymphatic vessels are not present in the normal adult intervertebral disc but that, when there is extrusion of disc material into surrounding soft tissue, there is ingrowth of reparative fibrous tissue containing lymphatic vessels. Our findings also indicate that chordoma, a tumour of notochordal origin, spreads to regional lymph nodes via lymphatics in para-spinal soft tissues. (orig.)

  3. The Role of Gap Junction Channels During Physiologic and Pathologic Conditions of the Human Central Nervous System

    Science.gov (United States)

    Basilio, Daniel; Sáez, Juan C.; Orellana, Juan A.; Raine, Cedric S.; Bukauskas, Feliksas; Bennett, Michael V. L.; Berman, Joan W.

    2013-01-01

    Gap junctions (GJs) are expressed in most cell types of the nervous system, including neuronal stem cells, neurons, astrocytes, oligodendrocytes, cells of the blood brain barrier (endothelial cells and astrocytes) and under inflammatory conditions in microglia/macrophages. GJs connect cells by the docking of two hemichannels, one from each cell with each hemichannel being formed by 6 proteins named connexins (Cx). Unapposed hemichannels (uHC) also can be open on the surface of the cells allowing the release of different intracellular factors to the extracellular space. GJs provide a mechanism of cell-to-cell communication between adjacent cells that enables the direct exchange of intracellular messengers, such as calcium, nucleotides, IP3, and diverse metabolites, as well as electrical signals that ultimately coordinate tissue homeostasis, proliferation, differentiation, metabolism, cell survival and death. Despite their essential functions in physiological conditions, relatively little is known about the role of GJs and uHC in human diseases, especially within the nervous system. The focus of this review is to summarize recent findings related to the role of GJs and uHC in physiologic and pathologic conditions of the central nervous system. PMID:22438035

  4. The role of gap junction channels during physiologic and pathologic conditions of the human central nervous system.

    Science.gov (United States)

    Eugenin, Eliseo A; Basilio, Daniel; Sáez, Juan C; Orellana, Juan A; Raine, Cedric S; Bukauskas, Feliksas; Bennett, Michael V L; Berman, Joan W

    2012-09-01

    Gap junctions (GJs) are expressed in most cell types of the nervous system, including neuronal stem cells, neurons, astrocytes, oligodendrocytes, cells of the blood brain barrier (endothelial cells and astrocytes) and under inflammatory conditions in microglia/macrophages. GJs connect cells by the docking of two hemichannels, one from each cell with each hemichannel being formed by 6 proteins named connexins (Cx). Unapposed hemichannels (uHC) also can be open on the surface of the cells allowing the release of different intracellular factors to the extracellular space. GJs provide a mechanism of cell-to-cell communication between adjacent cells that enables the direct exchange of intracellular messengers, such as calcium, nucleotides, IP(3), and diverse metabolites, as well as electrical signals that ultimately coordinate tissue homeostasis, proliferation, differentiation, metabolism, cell survival and death. Despite their essential functions in physiological conditions, relatively little is known about the role of GJs and uHC in human diseases, especially within the nervous system. The focus of this review is to summarize recent findings related to the role of GJs and uHC in physiologic and pathologic conditions of the central nervous system.

  5. [Pathological jealousy].

    Science.gov (United States)

    Zacher, A

    2004-10-28

    Pathological jealousy can make life unbearable for all concerned. The proximity of this condition to obsessive-compulsive phenomena has given rise to the notion that it might respond to substances of proven value in the treatment of obsessive-compulsive disorders. This case history exemplifies the successful treatment of pathological jealousy with the selective serotonin reuptake inhibitor (SSRI) fluoxetine. The substance not only proved to be a successful antidepressant, but also effectively mitigated the anguish of the patient's pathological jealousy. On the basis of these findings, fluoxetine--as also other SSRIs--should always be considered as a possible effective pharmacological strategy for the treatment of pathological jealousy.

  6. Pathological changes in acute experimental toxoplasmosis with Toxoplasma gondii strains obtained from human cases of congenital disease.

    Science.gov (United States)

    Pinheiro, Breno Veloso; Noviello, Maria de Lourdes Meirelles; Cunha, Mariana Maciel; Tavares, Alice Thomaz; Carneiro, Ana Carolina Aguiar Vasconcelos; Arantes, Rosa Maria Esteves; Vitor, Ricardo Wagner Almeida

    2015-09-01

    There is a lack of studies using Toxoplasma gondii strains isolated from human patients. Here, we present a pathological study of three strains obtained from human cases of congenital toxoplasmosis in Brazil using inbred mice after oral infection with 10 tissue cysts. Multiplex-nested PCR-RFLP of eleven loci revealed atypical genotypes commonly found in Brazil: toxodb #8 for TgCTBr5 and TgCTBr16 strains and toxodb #11 for the TgCTBr9 strain. BALB/c and C57BL/6 mice were evaluated for survival and histological changes during the acute phase of the disease. All mice inoculated with the non-virulent TgCTBR5 strain survived after 30 days, although irreversible tissue damage was found. In contrast, no mice were resistant to infection with the highly virulent TgCTBR9 strain. The TgCTBr16 strain resulted in 80% survival in mice. However, this strain presented low infectivity, especially by the oral route of infection. Despite being identified with the same genotype, TgCTBr5 and TgCTBr16 strains showed biological differences. Histopathologic analysis revealed liver and lungs to be the most affected organs, and the pattern of tissue injury was similar to that found in mice inoculated perorally with strains belonging to clonal genotypes. However, there was a variation in the intensity of ileum lesions according to T. gondii strain and mouse lineage. C57BL/6 mice showed higher susceptibility than BALB/c for histological lesions. Taken together, these results revealed that the pathogenesis of T. gondii strains belonging to atypical genotypes can induce similar tissue damage to those from clonal genotypes, although intrinsic aspects of the strains seem critical to the induction of ileitis in the infected host.

  7. Mitochondrial network complexity and pathological decrease in complex I activity are tightly correlated in isolated human complex I deficiency.

    Science.gov (United States)

    Koopman, Werner J H; Visch, Henk-Jan; Verkaart, Sjoerd; van den Heuvel, Lambertus W P J; Smeitink, Jan A M; Willems, Peter H G M

    2005-10-01

    Complex I (NADH:ubiquinone oxidoreductase) is the largest multisubunit assembly of the oxidative phosphorylation system, and its malfunction is associated with a wide variety of clinical syndromes ranging from highly progressive, often early lethal, encephalopathies to neurodegenerative disorders in adult life. The changes in mitochondrial structure and function that are at the basis of the clinical symptoms are poorly understood. Video-rate confocal microscopy of cells pulse-loaded with mitochondria-specific rhodamine 123 followed by automated analysis of form factor (combined measure of length and degree of branching), aspect ratio (measure of length), and number of revealed marked differences between primary cultures of skin fibroblasts from 13 patients with an isolated complex I deficiency. These differences were independent of the affected subunit, but plotting of the activity of complex I, normalized to that of complex IV, against the ratio of either form factor or aspect ratio to number revealed a linear relationship. Relatively small reductions in activity appeared to be associated with an increase in form factor and never with a decrease in number, whereas relatively large reductions occurred in association with a decrease in form factor and/or an increase in number. These results demonstrate that complex I activity and mitochondrial structure are tightly coupled in human isolated complex I deficiency. To further prove the relationship between aberrations in mitochondrial morphology and pathological condition, fibroblasts from two patients with a different mutation but a highly fragmented mitochondrial phenotype were fused. Full restoration of the mitochondrial network demonstrated that this change in mitochondrial morphology was indeed associated with human complex I deficiency.

  8. Organotypic Cultures as a Model to Study Adult Neurogenesis in CNS Disorders

    Science.gov (United States)

    Cavaliere, Fabio; Benito-Muñoz, Monica; Matute, Carlos

    2016-01-01

    Neural regeneration resides in certain specific regions of adult CNS. Adult neurogenesis occurs throughout life, especially from the subgranular zone of hippocampus and the subventricular zone, and can be modulated in physiological and pathological conditions. Numerous techniques and animal models have been developed to demonstrate and observe neural regeneration but, in order to study the molecular and cellular mechanisms and to characterize multiple types of cell populations involved in the activation of neurogenesis and gliogenesis, investigators have to turn to in vitro models. Organotypic cultures best recapitulate the 3D organization of the CNS and can be explored taking advantage of many techniques. Here, we review the use of organotypic cultures as a reliable and well defined method to study the mechanisms of neurogenesis under normal and pathological conditions. As an example, we will focus on the possibilities these cultures offer to study the pathophysiology of diseases like Alzheimer disease, Parkinson's disease, and cerebral ischemia. PMID:27127518

  9. Organotypic Cultures as a Model to Study Adult Neurogenesis in CNS Disorders

    Directory of Open Access Journals (Sweden)

    Fabio Cavaliere

    2016-01-01

    Full Text Available Neural regeneration resides in certain specific regions of adult CNS. Adult neurogenesis occurs throughout life, especially from the subgranular zone of hippocampus and the subventricular zone, and can be modulated in physiological and pathological conditions. Numerous techniques and animal models have been developed to demonstrate and observe neural regeneration but, in order to study the molecular and cellular mechanisms and to characterize multiple types of cell populations involved in the activation of neurogenesis and gliogenesis, investigators have to turn to in vitro models. Organotypic cultures best recapitulate the 3D organization of the CNS and can be explored taking advantage of many techniques. Here, we review the use of organotypic cultures as a reliable and well defined method to study the mechanisms of neurogenesis under normal and pathological conditions. As an example, we will focus on the possibilities these cultures offer to study the pathophysiology of diseases like Alzheimer disease, Parkinson’s disease, and cerebral ischemia.

  10. Metallothionein Expression and Roles During Neuropathology in the CNS

    DEFF Research Database (Denmark)

    Penkowa, Milena

    2006-01-01

    effects are obtained after brain injury by using native or recombinant MT-I or MT-II derived from diverse non-mammalian and mammalian species like drosophila, mouse, rabbit, horse and human. Treatment with these MT-I and MT-II proteins significantly reduce inflammation, oxidative stress, neurodegeneration...... and apoptotic cell death after brain injury, while astroglia is stimulated. This indicates that MT-I+II function independently of species of origin. Previously, we showed that MT-I+II also ameliorate autoimmune, excitotoxic and inflammatory CNS disorders, and independent groups have confirmed this and have...

  11. Delusional Disorder Arising From a CNS Neoplasm.

    Science.gov (United States)

    Stupinski, John; Kim, Jihye; Francois, Dimitry

    2017-01-01

    Erotomania arising from a central nervous system (CNS) neoplasm has not been previously described. Here, we present the first known case, to our knowledge, of erotomania with associated persecutory delusions arising following diagnosis and treatment of a left frontal lobe brain tumor.

  12. Immune regulation and CNS autoimmune disease

    DEFF Research Database (Denmark)

    Antel, J P; Owens, T

    1999-01-01

    The central nervous system is a demonstrated target of both clinical and experimental immune mediated disorders. Immune regulatory mechanisms operative at the levels of the systemic immune system, the blood brain barrier, and within the CNS parenchyma are important determinants of the intensity a...

  13. Amyloidosis, synucleinopathy, and prion encephalopathy in a neuropathic lysosomal storage disease: the CNS-biomarker potential of peripheral blood.

    Directory of Open Access Journals (Sweden)

    Bartholomew J Naughton

    Full Text Available Mucopolysaccharidosis (MPS IIIB is a devastating neuropathic lysosomal storage disease with complex pathology. This study identifies molecular signatures in peripheral blood that may be relevant to MPS IIIB pathogenesis using a mouse model. Genome-wide gene expression microarrays on pooled RNAs showed dysregulation of 2,802 transcripts in blood from MPS IIIB mice, reflecting pathological complexity of MPS IIIB, encompassing virtually all previously reported and as yet unexplored disease aspects. Importantly, many of the dysregulated genes are reported to be tissue-specific. Further analyses of multiple genes linked to major pathways of neurodegeneration demonstrated a strong brain-blood correlation in amyloidosis and synucleinopathy in MPS IIIB. We also detected prion protein (Prnp deposition in the CNS and Prnp dysregulation in the blood in MPS IIIB mice, suggesting the involvement of Prnp aggregation in neuropathology. Systemic delivery of trans-BBB-neurotropic rAAV9-hNAGLU vector mediated not only efficient restoration of functional α-N-acetylglucosaminidase and clearance of lysosomal storage pathology in the central nervous system (CNS and periphery, but also the correction of impaired neurodegenerative molecular pathways in the brain and blood. Our data suggest that molecular changes in blood may reflect pathological status in the CNS and provide a useful tool for identifying potential CNS-specific biomarkers for MPS IIIB and possibly other neurological diseases.

  14. The large-scale functional connectivity correlates of consciousness and arousal during the healthy and pathological human sleep cycle.

    Science.gov (United States)

    Tagliazucchi, Enzo; van Someren, Eus J W

    2017-06-12

    Advances in neuroimaging have greatly improved our understanding of human sleep from a systems neuroscience perspective. However, cognition and awareness are reduced during sleep, hindering the applicability of standard task-based paradigms. Methods recently developed to study spontaneous brain activity fluctuations have proven useful to overcome this limitation. In this review, we focus on the concept of functional connectivity (FC, i.e. statistical covariance between brain activity signals) and its application to functional magnetic resonance imaging (fMRI) data acquired during sleep. We discuss how FC analyses of endogenous brain activity during sleep have contributed towards revealing the large-scale neural networks associated with arousal and conscious awareness. We argue that the neuroimaging of deep sleep can be used to evaluate the predictions of theories of consciousness; at the same time, we highlight some apparent limitations of deep sleep as an experimental model of unconsciousness. In resting state fMRI experiments, the onset of sleep can be regarded as the object of interest but also as an undesirable confound. We discuss a series of articles contributing towards the disambiguation of wakefulness from sleep on the basis of fMRI-derived dynamic FC, and then outline a plan for the development of more general and data-driven sleep classifiers. To complement our review of studies investigating the brain systems of arousal and consciousness during healthy sleep, we then turn to pathological and abnormal sleep patterns. We review the current literature on sleep deprivation studies and sleep disorders, adopting the critical stance that lack of independent vigilance monitoring during fMRI experiments is liable for false positives related to atypical sleep propensity in clinical and sleep-deprived populations. Finally, we discuss multimodal neuroimaging as a promising future direction to achieve a better understanding of the large-scale FC of the brain during

  15. Trichohyalin-like 1 protein, a member of fused S100 proteins, is expressed in normal and pathologic human skin

    Energy Technology Data Exchange (ETDEWEB)

    Yamakoshi, Takako [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Makino, Teruhiko, E-mail: tmakino@med.u-toyama.ac.jp [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Ur Rehman, Mati; Yoshihisa, Yoko [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Sugimori, Michiya [Department of Integrative Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Shimizu, Tadamichi, E-mail: shimizut@med.u-toyama.ac.jp [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan)

    2013-03-01

    Highlights: ► Trichohyalin-like 1 protein is a member of the fused-type S100 protein gene family. ► Specific antibodies against the C-terminus of the TCHHL1 protein were generated. ► TCHHL1 proteins were expressed in the basal layer of the normal epidermis. ► TCHHL1 proteins were strongly expressed in tumor nests of BCC and SCC. ► The expression of TCHHL1 proteins increased in epidermis of psoriasis vulgaris. - Abstract: Trichohyalin-like 1 (TCHHL1) protein is a novel member of the fused-type S100 protein gene family. The deduced amino acid sequence of TCHHL1 contains an EF-hand domain in the N-terminus, one trans-membrane domain and a nuclear localization signal. We generated specific antibodies against the C-terminus of the TCHHL1 protein and examined the expression of TCHHL1 proteins in normal and pathological human skin. An immunohistochemical study showed that TCHHL1 proteins were expressed in the basal layer of the normal epidermis. In addition, signals of TCHHL1 proteins were observed around the nuclei of cultured growing keratinocytes. Accordingly, TCHHL1 mRNA has been detected in normal skin and cultured growing keratinocytes. Furthermore, TCHHL1 proteins were strongly expressed in the peripheral areas of tumor nests in basal cell carcinomas and squamous cell carcinomas. A dramatic increase in the number of Ki67 positive cells was observed in TCHHL1-expressing areas. The expression of TCHHL1 proteins also increased in non-cancerous hyperproliferative epidermal tissues such as those of psoriasis vulgaris and lichen planus. These findings highlight the possibility that TCHHL1 proteins are expressed in growing keratinocytes of the epidermis and might be associated with the proliferation of keratinocytes.

  16. Pathological concentration of zinc dramatically accelerates abnormal aggregation of full-length human Tau and thereby significantly increases Tau toxicity in neuronal cells.

    Science.gov (United States)

    Hu, Ji-Ying; Zhang, De-Lin; Liu, Xiao-Ling; Li, Xue-Shou; Cheng, Xiao-Qing; Chen, Jie; Du, Hai-Ning; Liang, Yi

    2017-02-01

    A pathological hallmark of Alzheimer disease and other tauopathies is the formation of neurofibrillary tangles mainly composed of bundles of fibrils formed by microtubule-associated protein Tau. Here we study the effects of Zn(2+) on abnormal aggregation and cytotoxicity of a pathological mutant ΔK280 of full-length human Tau. As revealed by Congo red binding assays, transmission electron microscopy, immunofluorescence, Western blot, and immunogold electron microscopy, pathological concentration of Zn(2+) dramatically accelerates the fibrillization of ΔK280 both in vitro and in SH-SY5Y neuroblastoma cells. As evidenced by annexin V-FITC apoptosis detection assay and MTT reduction assay, pathological concentration of Zn(2+) remarkably enhances ΔK280 fibrillization-induced apoptosis and toxicity in SH-SY5Y cells. Substitution of Cys-291 and Cys-322 with Ala, however, essentially eliminates such enhancing effects of Zn(2+) on the fibrillization and the consequent cytotoxicity of ΔK280. Furthermore, Zn(2+) is co-localized with and highly enriched in amyloid fibrils formed by ΔK280 in SH-SY5Y cells. The results from isothermal titration calorimetry show that Zn(2+) binds to full-length human Tau by interacting with Cys-291 and Cys-322, forming a 1:1 Zn(2+)-Tau complex. Our data demonstrate that zinc dramatically accelerates abnormal aggregation of human Tau and significantly increases Tau toxicity in neuronal cells mainly via bridging Cys-291 and Cys-322. Our findings could explain how pathological zinc regulates Tau aggregation and toxicity associated with Alzheimer disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Are capecitabine and the active metabolite 5-Fu CNS penetrable to treat breast cancer brain metastasis?

    Science.gov (United States)

    Zhang, Jinqiang; Zhang, Lingli; Yan, Yumei; Li, Shaorong; Xie, Liang; Zhong, Wei; Lv, Jing; Zhang, Xiuhua; Bai, Yu; Cheng, Ziqiang

    2015-03-01

    Brain metastasis (BM) is increasingly diagnosed in Her2 positive breast cancer (BC) patients. Lack of effective treatment to breast cancer brain metastases (BCBMs) is probably due to inability of the current therapeutic agents to cross the blood-brain barrier. The central nervous system (CNS) response rate in BCBM patients was reported to improve from 2.6%-6% (lapatinib) to 20%-65% (lapatinib in combination with capecitabine). Lapatinib is a poor brain penetrant. In this study, we evaluated the CNS penetration of capecitabine and hoped to interpret the mechanism of the improved CNS response from the pharmacokinetic (PK) perspective. Capecitabine does not have antiproliferative activity and 5-fluorouracil (5-FU) is the active metabolite. Capecitabine was orally administered to mouse returning an unbound brain-to-blood ratio (Kp,uu,brain) at 0.13 and cerebrospinal fluid (CSF)-to-unbound blood ratio (Kp,uu,CSF) at 0.29 for 5-FU. Neither free brain nor CSF concentration of 5-FU can achieve antiproliferative concentration for 50% of maximal inhibition of cell proliferation of 4.57 µM. BCBM mice were treated with capecitabine monotherapy or in combination with lapatinib. The Kp,uu,brain value of 5-FU increased to 0.17 in the brain tumor in the presence of lapatinib, which is still far below unity. The calculated free concentration of 5-FU and lapatinib in the brain tumor did not reach the antiproliferative potency and neither treatment showed antitumor activity in the BCBM mice. The CNS penetration of 5-FU in human was predicted based on the penetration in preclinical brain tumor, CSF, and human PK and the predicted free CNS concentration was below the antiproliferative potency. These results suggest that CNS penetration of 5-FU and lapatinib are not desirable and development of a true CNS penetrable therapeutic agent will further improve the response rate for BCBM.

  18. Oral pathology.

    Science.gov (United States)

    Niemiec, Brook A

    2008-05-01

    Oral disease is exceedingly common in small animal patients. In addition, there is a very wide variety of pathologies that are encountered within the oral cavity. These conditions often cause significant pain and/or localized and systemic infection; however, the majority of these conditions have little to no obvious clinical signs. Therefore, diagnosis is not typically made until late in the disease course. Knowledge of these diseases will better equip the practitioner to effectively treat them. This article covers the more common forms of oral pathology in the dog and cat, excluding periodontal disease, which is covered in its own chapter. The various pathologies are presented in graphic form, and the etiology, clinical signs, recommended diagnostic tests, and treatment options are discussed. Pathologies that are covered include: persistent deciduous teeth, fractured teeth, intrinsically stained teeth, feline tooth resorption, caries, oral neoplasia, eosinophilic granuloma complex, lymphoplasmacytic gingivostomatitis, enamel hypoplasia, and "missing" teeth.

  19. Pathology Milestones

    Directory of Open Access Journals (Sweden)

    J. Stacey Klutts MD, PhD

    2015-10-01

    Full Text Available All Accreditation Council for Graduate Medical Education accredited pathology residency training programs are now required to evaluate residents using the new Pathology Milestones assessment tool. Similar to implementation of the 6 Accreditation Council for Graduate Medical Education competencies a decade ago, there have been challenges in implementation of the new milestones for many residency programs. The pathology department at the University of Iowa has implemented a process that divides the labor of the task in rating residents while also maintaining consistency in the process. The process is described in detail, and some initial trends in milestone evaluation are described and discussed. Our experience indicates that thoughtful implementation of the Pathology Milestones can provide programs with valuable information that can inform curricular changes.

  20. MAG, myelin and overcoming growth inhibition in the CNS

    National Research Council Canada - National Science Library

    McKerracher, Lisa; Rosen, Kenneth M

    2015-01-01

    While neurons in the central nervous system (CNS) have the capacity to regenerate their axons after injury, they fail to do so, in part because regeneration is limited by growth inhibitory proteins present in CNS myelin...

  1. Considerations for an Integrated UAS CNS Architecture

    Science.gov (United States)

    Templin, Fred L.; Jain, Raj; Sheffield, Greg; Taboso-Bellesteros, Pedro; Ponchak, Denise

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating revolutionary and advanced universal, reliable, always available, cyber secure and affordable Communication, Navigation, Surveillance (CNS) options for all altitudes of UAS operations. In Spring 2015, NASA issued a Call for Proposals under NASA Research Announcements (NRA) NNH15ZEA001N, Amendment 7 Subtopic 2.4. Boeing was selected to conduct a study with the objective to determine the most promising candidate technologies for Unmanned Air Systems (UAS) air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. The overall objectives are to develop UAS CNS requirements and then develop architectures that satisfy the requirements for UAS in both controlled and uncontrolled air space. This contract is funded under NASAs Aeronautics Research Mission Directorates (ARMD) Aviation Operations and Safety Program (AOSP) Safe Autonomous Systems Operations (SASO) project and proposes technologies for the Unmanned Air Systems Traffic Management (UTM) service.There is a need for accommodating large-scale populations of Unmanned Air Systems (UAS) in the national air space. Scale obviously impacts capacity planning for Communication, Navigation, and Surveillance (CNS) technologies. For example, can wireless communications data links provide the necessary capacity for accommodating millions of small UASs (sUAS) nationwide? Does the communications network provide sufficient Internet Protocol (IP) address space to allow air traffic control to securely address both UAS teams as a whole as well as individual UAS within each team? Can navigation and surveillance approaches assure safe route planning and safe separation of vehicles even in crowded skies?Our objective is to identify revolutionary and advanced CNS alternatives supporting UASs operating at all altitudes and in all airspace while accurately navigating in the absence of

  2. Links between Evolution, Development, Human Anatomy, Pathology, and Medicine, with A Proposition of A Re-defined Anatomical Position and Notes on Constraints and Morphological "Imperfections".

    Science.gov (United States)

    Diogo, Rui; Molnar, Julia

    2016-06-01

    Surprisingly the oldest formal discipline in medicine (anatomy) has not yet felt the full impact of evolutionary developmental biology. In medical anatomy courses and textbooks, the human body is still too often described as though it is a "perfect machine." In fact, the study of human anatomy predates evolutionary theory; therefore, many of its conventions continue to be outdated, making it difficult to study, understand, and treat the human body, and to compare it with that of other, nonbipedal animals, including other primates. Moreover, such an erroneous view of our anatomy as "perfect" can be used to fuel nonevolutionary ideologies such as intelligent design. In the section An Evolutionary and Developmental Approach to Human Anatomical Position of this paper, we propose the redefinition of the "human standard anatomical position" used in textbooks to be consistent with human evolutionary and developmental history. This redefined position also simplifies, for students and practitioners of the health professions, the study and learning of embryonic muscle groups (each group including muscles derived from the same/ontogenetically closely related primordium/primordia) and joint movements and highlights the topological correspondence between the upper and lower limbs. Section Evolutionary and Developmental Constraints, "Imperfections" and Sports Pathologies continues the theme by describing examples of apparently "illogical" characteristics of the human body that only make sense when one understands the developmental and evolutionary constraints that have accumulated over millions of years. We focus, in particular, on musculoskeletal functional problems and sports pathologies to emphasize the links with pathology and medicine. These examples demonstrate how incorporating evolutionary theory into anatomy education can be helpful for medical students, teachers, researchers, and physicians, as well as for anatomists, functional morphologists, and evolutionary and

  3. Endovascular transplantation of stem cells to the injured rat CNS

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Johan; Soederman, Mikael; Andersson, Tommy; Holmin, Staffan [Karolinska University Hospital, Department of Clinical Neuroscience, Karolinska Institutet, Department of Neuroradiology, Stockholm (Sweden); Le Blanc, Katarina [Karolinska University Hospital, Department of Stem Cell Research, Karolinska Institutet, Department of Clinical Immunology, Stockholm (Sweden)

    2009-10-15

    Transplantation procedures using intraparenchymal injection of stem cells result in tissue injury in addition to associated surgical risks. Intravenous injection of mesenchymal stem cells gives engraftment to lesions, but the method has low efficiency and specificity. In traumatic brain injuries (TBI), there is a transient breakdown of the blood-brain barrier and an inflammatory response, which increase migration of cells from blood to parenchyma. The aim of this investigation was to analyze the effect of intra-arterial administration on cellular engraftment. Experimental TBI was produced in a rat model. Endovascular technique was used to administer human mesenchymal stem cells in the ipsilateral internal carotid artery. Evaluation of engraftment and side effects were performed by immunohistochemical analysis of the brain and several other organs. The results were compared to intravenous administration of stem cells. Intra-arterial transplantion of mesenchymal stem cells resulted in central nervous system (CNS) engraftment without thromboembolic ischemia. We observed a significantly higher number of transplanted cells in the injured hemisphere after intra-arterial compared to intravenous administration both 1 day (p<0.01) and 5 days (p<0.05) after the transplantation. Some cells were also detected in the spleen but not in the other organs analyzed. Selective intra-arterial administration of mesenchymal stem cells to the injured CNS is a minimally invasive method for transplantation. The method is significantly more efficient than the intravenous route and causes no side effects in the current model. The technique can potentially be used for repeated transplantation to the CNS after TBI and in other diseases. (orig.)

  4. VIIP: Central Nervous System (CNS) Modeling

    Science.gov (United States)

    Vera, Jerry; Mulugeta, Lealem; Nelson, Emily; Raykin, Julia; Feola, Andrew; Gleason, Rudy; Samuels, Brian; Ethier, C. Ross; Myers, Jerry

    2015-01-01

    Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome. It has been hypothesized that the headward shift of cerebrospinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn may then induce VIIP syndrome through interaction with various biomechanical pathways. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the related IWS works submitted by Nelson et al., Feola et al. and Ethier et al.

  5. Interneuron progenitor transplantation to treat CNS dysfunction

    Directory of Open Access Journals (Sweden)

    Muhammad O Chohan

    2016-08-01

    Full Text Available Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field.

  6. Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers

    Directory of Open Access Journals (Sweden)

    Jessica L Williams

    2014-05-01

    Full Text Available In the adult central nervous system (CNS, chemokines and their receptors are involved in developmental, physiological and pathological processes. Although most lines of investigation focus on their ability to induce the migration of cells, recent studies indicate that chemokines also promote cellular interactions and activate signaling pathways that maintain CNS homeostatic functions. Many homeostatic chemokines are expressed on the vasculature of the blood brain barrier including CXCL12, CCL19, CCL20, and CCL21. While endothelial cell expression of these chemokines is known to regulate the entry of leukocytes into the CNS during immunosurveillance, new data indicate that CXCL12 is also involved in diverse cellular activities including adult neurogenesis and neuronal survival, having an opposing role to the homeostatic chemokine, CXCL14, which appears to regulate synaptic inputs to neural precursors. Neuronal expression of CX3CL1, yet another homeostatic chemokine that promotes neuronal survival and communication with microglia, is partly regulated by CXCL12. Regulation of CXCL12 is unique in that it may regulate its own expression levels via binding to its scavenger receptor CXCR7/ACKR3. In this review, we explore the diverse roles of these and other homeostatic chemokines expressed within the CNS, including the possible implications of their dysfunction as a cause of neurologic disease.

  7. Primary angiitis of CNS : neuropathological study of three autopsied cases with brief review of literature.

    Directory of Open Access Journals (Sweden)

    Panda K

    2000-04-01

    Full Text Available Primary angiitis of CNS(PACNS or granulomatous angiitis of CNS is a rare inflammatory disease of small blood vessels mostly confined to the CNS. The clinical and pathological features of 3 autopsied cases are described. Clinically all the three PACNS patients were young males, age ranging from 19 to 31 years. All presented with varied neurological manifestations. There was no evidence of systemic disease in any of the cases. The ESR was normal and CSF analysis showed chronic meningitic pattern. The cerebral angiogram in one case was normal and the CT scan done in another case showed multiple intracerebral haematoma due to vasculitis. Brain biopsy was not done. Diagnosis was made at post-mortem examination. Histology showed characteristic but variable degree of granulomatous and non-granulomatous angiitis of small vessels. Venulitis with parenchymal haemorrhages was the predominant feature and in one case phlebitis with thrombosis was noted. Since the disease responds to steroids and immunosuppressive therapy, establishing antemortem diagnosis is important. In view of the association of angiitis of CNS with bacteria and viral infections, their role in the evolution of the disease needs to be investigated.

  8. Pathology and first report of natural infections of the eye trematode Philophthalmus lachrymosus Braun, 1902 (Digenea, Philophthalmidae in a non-human mammalian host

    Directory of Open Access Journals (Sweden)

    Roberto Magalhães Pinto

    2005-10-01

    Full Text Available The avian eye trematode Philophthalmus lachrymosus Braun, 1902 is for the first time referred naturally occurring in a non-human mammalian host. Previously, natural infections with P. lachrymosus and other species of Philophthalmus have been occasionally reported from man, with few data on experimental infections of non-human mammals. Results presented here are related to the report of two cases of philophthalmosis due to natural infections of wild Brazilian capybaras, Hydrochaeris hydrochaeris L., 1766 with P. lachrymosus and associated pathology. Clinical signs, gross and microscopic lesions as well as new morphometric data on the parasite are presented.

  9. Helicobacter pylori lipopolysaccharide:Biological activities in vitro and in vivo, pathological correlation to human chronic gastritis and peptic ulcer

    Institute of Scientific and Technical Information of China (English)

    Yi-Hui Luo; Jie Yan; Ya-Fei Mao

    2004-01-01

    AIM: To determine the biological activity of Helicobacter pylori (Hpylori) lipopolysaccharide (H-LPS) and understand pathological correlation between H-LPS and human chronic gastritis and peptic ulcer.METHODS: H-LPS of a clinical Hpylori strain and LPS of Escherichia coli strain O55:B5 (E-LPS) were extracted by phenol-water method. Biological activities of H-LPS and E-LPS were detected by limulus lysate assay, pyrogen assay,blood pressure test and PBMC induction test in rabbits,cytotoxicity test in NIH 3T3 fibroblast cells and lethality test in NIH mice. By using self-prepared rabbit anti-H-LPS serum as the first antibody and commercial HRP-labeled sheep anti-rabbit sera as the second antibody, H-LPS in biopsy specimens from 126 patients with chronic gastritis (68 cases) or gastric ulcer (58 cases) were examined by immunohistochemistry.RESULTS: Fibroblast cytotoxicity and mouse lethality of H-LPS were weaker than those of E-LPS. But the ability of coagulating limulus lysate of the two LPSs was similar (+/0.5 ng/mL). At 0.5 h after H-LPS injection, the blood pressures of the 3 rabbits rapidly declined. At 1.0 h after H-LPS injection, the blood pressures in 2 of the 3 rabbits fell to zero causing death of the 2 animals. For the other one rabbit in the same group, its blood pressure gradually elevated. At 0.5 h after E-LPS injection, the blood pressures of the three rabbits also quickly declined and then maintained at low level for approximately 1.0 h. At 0.5 h after injection with H-LPS or E-LPS, PBMC numbers of the rabbits showed a remarkable increase. The total positivity rate of H-LPS from 126 biopsy specimens was 60.3%(76/126). H-LPS positivity rate in the biopsy specimens from chronic gastritis (50/68, 73.5%) was significantly higher than that from gastric ulcer (26/58, 44.8%) (X2=10.77,P<0.01). H-LPS positivity rates in biopsy specimens from chronic superficial gastritis (38/48, 79.2%) and chronic active gastritis (9/10, 90.0%) were significantly higher than

  10. Digital pathology

    CERN Document Server

    Sucaet, Yves

    2014-01-01

    Digital pathology has experienced exponential growth, in terms of its technology and applications, since its inception just over a decade ago. Though it has yet to be approved for primary diagnostics, its values as a teaching tool, facilitator of second opinions and quality assurance reviews and research are becoming, if not already, undeniable. It also offers the hope of providing pathology consultant and educational services to under-served areas, including regions of the world that could not possibly sustain this level of services otherwise. And this is just the beginning, as its adoption b

  11. Plant Derived Phytocompound, Embelin in CNS Disorders: A Systematic Review.

    Science.gov (United States)

    Kundap, Uday P; Bhuvanendran, Saatheeyavaane; Kumari, Yatinesh; Othman, Iekhsan; Shaikh, Mohd Farooq

    2017-01-01

    A Central nervous system (CNS) disease is the one which affects either the spinal cord or brain and causing neurological or psychiatric complications. During the nineteenth century, modern medicines have occupied the therapy for many ailments and are widely used these days. Herbal medicines have often maintained popularity for historical and cultural reasons and also considered safer as they originate from natural sources. Embelin is a plant-based benzoquinone which is the major active constituent of the fruits of Embelia ribes Burm. It is an Indo-Malaysian species, extensively used in various traditional medicine systems for treating various diseases. Several natural products including quinone derivatives, which are considered to possess better safety and efficacy profile, are known for their CNS related activity. The bright orange hydroxybenzoquinone embelin-rich fruits of E. ribes have become popular in ethnomedicine. The present systematic review summarizes the effects of embelin on central nervous system and related diseases. A PRISMA model for systematic review was utilized for search. Various electronic databases such as Pubmed, Springer, Scopus, ScienceDirect, and Google Scholar were searched between January 2000 and February 2016. Based on the search criteria for the literature, 13 qualified articles were selected and discussed in this review. The results of the report showed that there is a lack of translational research and not a single study was found in human. This report gives embelin a further way to be explored in clinical trials for its safety and efficacy.

  12. Plant Derived Phytocompound, Embelin in CNS Disorders: A Systematic Review

    Science.gov (United States)

    Kundap, Uday P.; Bhuvanendran, Saatheeyavaane; Kumari, Yatinesh; Othman, Iekhsan; Shaikh, Mohd. Farooq

    2017-01-01

    A Central nervous system (CNS) disease is the one which affects either the spinal cord or brain and causing neurological or psychiatric complications. During the nineteenth century, modern medicines have occupied the therapy for many ailments and are widely used these days. Herbal medicines have often maintained popularity for historical and cultural reasons and also considered safer as they originate from natural sources. Embelin is a plant-based benzoquinone which is the major active constituent of the fruits of Embelia ribes Burm. It is an Indo-Malaysian species, extensively used in various traditional medicine systems for treating various diseases. Several natural products including quinone derivatives, which are considered to possess better safety and efficacy profile, are known for their CNS related activity. The bright orange hydroxybenzoquinone embelin-rich fruits of E. ribes have become popular in ethnomedicine. The present systematic review summarizes the effects of embelin on central nervous system and related diseases. A PRISMA model for systematic review was utilized for search. Various electronic databases such as Pubmed, Springer, Scopus, ScienceDirect, and Google Scholar were searched between January 2000 and February 2016. Based on the search criteria for the literature, 13 qualified articles were selected and discussed in this review. The results of the report showed that there is a lack of translational research and not a single study was found in human. This report gives embelin a further way to be explored in clinical trials for its safety and efficacy. PMID:28289385

  13. SINS/CNS Nonlinear Integrated Navigation Algorithm for Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Yong-jun Yu

    2015-01-01

    Full Text Available Celestial Navigation System (CNS has characteristics of accurate orientation and strong autonomy and has been widely used in Hypersonic Vehicle. Since the CNS location and orientation mainly depend upon the inertial reference that contains errors caused by gyro drifts and other error factors, traditional Strap-down Inertial Navigation System (SINS/CNS positioning algorithm setting the position error between SINS and CNS as measurement is not effective. The model of altitude azimuth, platform error angles, and horizontal position is designed, and the SINS/CNS tightly integrated algorithm is designed, in which CNS altitude azimuth is set as measurement information. GPF (Gaussian particle filter is introduced to solve the problem of nonlinear filtering. The results of simulation show that the precision of SINS/CNS algorithm which reaches 130 m using three stars is improved effectively.

  14. Human embryonic stem cell-derived pancreatic endoderm alleviates diabetic pathology and improves reproductive outcome in C57BL/KsJ-Lep(db/+) gestational diabetes mellitus mice.

    Science.gov (United States)

    Xing, Baoheng; Wang, Lili; Li, Qin; Cao, Yalei; Dong, Xiujuan; Liang, Jun; Wu, Xiaohua

    2015-07-01

    Gestational diabetes mellitus is a condition commonly encountered during mid to late pregnancy with pathologic manifestations including hyperglycemia, hyperinsulinemia, insulin resistance, and fetal maldevelopment. The cause of gestational diabetes mellitus can be attributed to both genetic and environmental factors, hence complicating its diagnosis and treatment. Pancreatic progenitors derived from human embryonic stem cells were shown to be able to effectively treat diabetes in mice. In this study, we have developed a system of treating diabetes using human embryonic stem cell-derived pancreatic endoderm in a mouse model of gestational diabetes mellitus. Human embryonic stem cells were differentiated in vitro into pancreatic endoderm, which were then transplanted into db/+ mice suffering from gestational diabetes mellitus. The transplant greatly improved glucose metabolism and reproductive outcome of the females compared with the control groups. Our findings support the feasibility of using differentiated human embryonic stem cells for treating gestational diabetes mellitus patients.

  15. Cardiac fibroblast-derived extracellular matrix (biomatrix) as a model for the studies of cardiac primitive cell biological properties in normal and pathological adult human heart.

    Science.gov (United States)

    Castaldo, Clotilde; Di Meglio, Franca; Miraglia, Rita; Sacco, Anna Maria; Romano, Veronica; Bancone, Ciro; Della Corte, Alessandro; Montagnani, Stefania; Nurzynska, Daria

    2013-01-01

    Cardiac tissue regeneration is guided by stem cells and their microenvironment. It has been recently described that both cardiac stem/primitive cells and extracellular matrix (ECM) change in pathological conditions. This study describes the method for the production of ECM typical of adult human heart in the normal and pathological conditions (ischemic heart disease) and highlights the potential use of cardiac fibroblast-derived ECM for in vitro studies of the interactions between ECM components and cardiac primitive cells responsible for tissue regeneration. Fibroblasts isolated from adult human normal and pathological heart with ischemic cardiomyopathy were cultured to obtain extracellular matrix (biomatrix), composed of typical extracellular matrix proteins, such as collagen and fibronectin, and matricellular proteins, laminin, and tenascin. After decellularization, this substrate was used to assess biological properties of cardiac primitive cells: proliferation and migration were stimulated by biomatrix from normal heart, while both types of biomatrix protected cardiac primitive cells from apoptosis. Our model can be used for studies of cell-matrix interactions and help to determine the biochemical cues that regulate cardiac primitive cell biological properties and guide cardiac tissue regeneration.

  16. Cardiac Fibroblast-Derived Extracellular Matrix (Biomatrix as a Model for the Studies of Cardiac Primitive Cell Biological Properties in Normal and Pathological Adult Human Heart

    Directory of Open Access Journals (Sweden)

    Clotilde Castaldo

    2013-01-01

    Full Text Available Cardiac tissue regeneration is guided by stem cells and their microenvironment. It has been recently described that both cardiac stem/primitive cells and extracellular matrix (ECM change in pathological conditions. This study describes the method for the production of ECM typical of adult human heart in the normal and pathological conditions (ischemic heart disease and highlights the potential use of cardiac fibroblast-derived ECM for in vitro studies of the interactions between ECM components and cardiac primitive cells responsible for tissue regeneration. Fibroblasts isolated from adult human normal and pathological heart with ischemic cardiomyopathy were cultured to obtain extracellular matrix (biomatrix, composed of typical extracellular matrix proteins, such as collagen and fibronectin, and matricellular proteins, laminin, and tenascin. After decellularization, this substrate was used to assess biological properties of cardiac primitive cells: proliferation and migration were stimulated by biomatrix from normal heart, while both types of biomatrix protected cardiac primitive cells from apoptosis. Our model can be used for studies of cell-matrix interactions and help to determine the biochemical cues that regulate cardiac primitive cell biological properties and guide cardiac tissue regeneration.

  17. The rostral migratory stream plays a key role in intranasal delivery of drugs into the CNS.

    Directory of Open Access Journals (Sweden)

    Robert A Scranton

    Full Text Available BACKGROUND: The blood brain barrier (BBB is impermeable to most drugs, impeding the establishment of novel neuroprotective therapies and strategies for many neurological diseases. Intranasal administration offers an alternative path for efficient drug delivery into the CNS. So far, the anatomical structures discussed to be involved in the transport of intranasally administered drugs into the CNS include the trigeminal nerve, olfactory nerve and the rostral migratory stream (RMS, but the relative contributions are debated. METHODS AND FINDINGS: In the present study we demonstrate that surgical transection, and the resulting structural disruption of the RMS, in mice effectively obstructs the uptake of intranasally administered radioligands into the CNS. Furthermore, using a fluorescent cell tracer, we demonstrate that intranasal administration in mice allows agents to be distributed throughout the entire brain, including olfactory bulb, hippocampus, cortex and cerebellum. CONCLUSIONS: This study provides evidence of the vital role the RMS has in the CNS delivery of intranasally administered agents. The identification of the RMS as the major access path for intranasally administered drugs into the CNS may contribute to the development of treatments that are tailored for efficient transport within this structure. Research into the RMS needs to continue to elucidate its limitations, capabilities, mechanisms of transport and potential hazards before we are able to advance this technique into human research.

  18. The emerging role of in vitro electrophysiological methods in CNS safety pharmacology.

    Science.gov (United States)

    Accardi, Michael V; Pugsley, Michael K; Forster, Roy; Troncy, Eric; Huang, Hai; Authier, Simon

    2016-01-01

    Adverse CNS effects account for a sizeable proportion of all drug attrition cases. These adverse CNS effects are mediated predominately by off-target drug activity on neuronal ion-channels, receptors, transporters and enzymes - altering neuronal function and network communication. In response to these concerns, there is growing support within the pharmaceutical industry for the requirement to perform more comprehensive CNS safety testing prior to first-in-human trials. Accordingly, CNS safety pharmacology commonly integrates several in vitro assay methods for screening neuronal targets in order to properly assess therapeutic safety. One essential assay method is the in vitro electrophysiological technique - the 'gold standard' ion channel assay. The in vitro electrophysiological method is a useful technique, amenable to a variety of different tissues and cell configurations, capable of assessing minute changes in ion channel activity from the level of a single receptor to a complex neuronal network. Recent advances in automated technology have further expanded the usefulness of in vitro electrophysiological methods into the realm of high-throughput, addressing the bottleneck imposed by the manual conduct of the technique. However, despite a large range of applications, manual and automated in vitro electrophysiological techniques have had a slow penetrance into the field of safety pharmacology. Nevertheless, developments in throughput capabilities and in vivo applicability have led to a renewed interest in in vitro electrophysiological techniques that, when complimented by more traditional safety pharmacology methods, often increase the preclinical predictability of potential CNS liabilities.

  19. Inguinoscrotal pathology

    Science.gov (United States)

    Guerra, Luis; Leonard, Michael

    2017-01-01

    Infants, children, and adolescents with inguinoscrotal pathology comprise a significant proportion of emergency department and outpatient visits. Visits to the emergency department primarily comprise individuals presenting with scrotal pain due to testicular torsion or torsion of the testicular appendages. At such time, immediate urological consultation is sought. Outpatient visits comprise those individuals with undescended testes, hydroceles, and varicoceles. Rare, but important problems, such as pediatric testicular tumours, may also present in the office setting. Many of these outpatient visits are to primary care physicians, who should have an appreciation of the timing and need for referral. The purpose of this review is to familiarize the general urologist and primary care physician with these varied pathologies and give insight into their assessment and management. Some of these same conditions are seen in adult patients, but there are some significant differences in their management in the pediatric group. In addition, the utility of imaging studies, such as ultrasound, are discussed within each pathological entity. It is hoped that this overview will assist our general urology and primary care colleagues in patient management for diverse inguinoscrotal pathologies. PMID:28265317

  20. Myelin-reactive antibodies initiate T cell-mediated CNS autoimmune disease by opsonization of endogenous antigen.

    Science.gov (United States)

    Kinzel, Silke; Lehmann-Horn, Klaus; Torke, Sebastian; Häusler, Darius; Winkler, Anne; Stadelmann, Christine; Payne, Natalie; Feldmann, Linda; Saiz, Albert; Reindl, Markus; Lalive, Patrice H; Bernard, Claude C; Brück, Wolfgang; Weber, Martin S

    2016-07-01

    In the pathogenesis of central nervous system (CNS) demyelinating disorders, antigen-specific B cells are implicated to act as potent antigen-presenting cells (APC), eliciting waves of inflammatory CNS infiltration. Here, we provide the first evidence that CNS-reactive antibodies (Ab) are similarly capable of initiating an encephalitogenic immune response by targeting endogenous CNS antigen to otherwise inert myeloid APC. In a transgenic mouse model, constitutive production of Ab against myelin oligodendrocyte glycoprotein (MOG) was sufficient to promote spontaneous experimental autoimmune encephalomyelitis (EAE) in the absence of B cells, when mice endogenously contained MOG-recognizing T cells. Adoptive transfer studies corroborated that anti-MOG Ab triggered activation and expansion of peripheral MOG-specific T cells in an Fc-dependent manner, subsequently causing EAE. To evaluate the underlying mechanism, anti-MOG Ab were added to a co-culture of myeloid APC and MOG-specific T cells. At otherwise undetected concentrations, anti-MOG Ab enabled Fc-mediated APC recognition of intact MOG; internalized, processed and presented MOG activated naïve T cells to differentiate in an encephalitogenic manner. In a series of translational experiments, anti-MOG Ab from two patients with an acute flare of CNS inflammation likewise facilitated detection of human MOG. Jointly, these observations highlight Ab-mediated opsonization of endogenous CNS auto-antigen as a novel disease- and/or relapse-triggering mechanism in CNS demyelinating disorders.

  1. Natural host genetic resistance to lentiviral CNS disease: a neuroprotective MHC class I allele in SIV-infected macaques.

    Directory of Open Access Journals (Sweden)

    Joseph L Mankowski

    Full Text Available Human immunodeficiency virus (HIV infection frequently causes neurologic disease even with anti-retroviral treatment. Although associations between MHC class I alleles and acquired immunodeficiency syndrome (AIDS have been reported, the role MHC class I alleles play in restricting development of HIV-induced organ-specific diseases, including neurologic disease, has not been characterized. This study examined the relationship between expression of the MHC class I allele Mane-A*10 and development of lentiviral-induced central nervous system (CNS disease using a well-characterized simian immunodeficiency (SIV/pigtailed macaque model. The risk of developing CNS disease (SIV encephalitis was 2.5 times higher for animals that did not express the MHC class I allele Mane-A*10 (P = 0.002; RR = 2.5. Animals expressing the Mane-A*10 allele had significantly lower amounts of activated macrophages, SIV RNA, and neuronal dysfunction in the CNS than Mane-A*10 negative animals (P<0.001. Mane-A*10 positive animals with the highest CNS viral burdens contained SIV gag escape mutants at the Mane-A*10-restricted KP9 epitope in the CNS whereas wild type KP9 sequences dominated in the brain of Mane-A*10 negative animals with comparable CNS viral burdens. These concordant findings demonstrate that particular MHC class I alleles play major neuroprotective roles in lentiviral-induced CNS disease.

  2. Detection of allergenic compounds using an IL-4/luciferase/CNS-1 transgenic mice model.

    Science.gov (United States)

    Bae, Chang Joon; Lee, Jae Won; Bae, Hee Sook; Shim, Sun Bo; Jee, Seung Wan; Lee, Su Hae; Lee, Chang Kyu; Hong, Jin Tae; Hwang, Dae Youn

    2011-04-01

    The interleukin-4 (IL-4) signaling cascade has been identified as a potentially important pathway in the development of allergies. The principal objective of this study was to produce novel transgenic (Tg) mice harboring the luciferase gene under the control of the human IL-4 promoter and the enhancer of IL-4 (CNS-1), in an effort to evaluate three types of allergens including a respiratory sensitizer, vaccine additives, and crude extracts of natural allergens in vivo. A new lineage of Tg mice was generated by the microinjection of pIL-4/Luc/CNS-1 constructs into a fertilized mice egg. The luciferase activity was successfully regulated by the IL-4 promoter in splenocytes cultured from IL-4/Luc/CNS-1 Tg mice. From the first five founder lines, one (#57) evidencing a profound response to ovalbumin was selected for use in evaluating the allergens. Additionally, the lungs, thymus, and lymph nodes of IL-4/Luc/CNS-1 Tg mice evidenced high luciferase activity in response to allergens such as phthalic anhydride (PA), trimellitic anhydride, ovalbumin, gelatin, Dermatophagoides pteronyssinus extracts, and Japanese cedar pollen, whereas key allergy-related indicators including ear thickness, Immunoglobulin E concentration, and the infiltration of inflammatory leukocytes in response to PA were unaltered in the Tg mice relative to the non-Tg mice. Furthermore, the expression levels of endogenous type 2 helper T cells cytokines and proinflammatory cytokines were similarly increased in these organs of IL-4/Luc/CNS-1 Tg mice in response to allergens. These results indicate that IL-4/Luc/CNS-1 Tg mice may be used as an animal model for the evaluation and prediction of the human body response to a variety of allergens originating from the environment and from certain industrial products.

  3. Obstructive hydrocephalus due to CNS toxocariasis.

    Science.gov (United States)

    Choi, Jae-Hwan; Cho, Jae-Wook; Lee, Jae-Hyeok; Lee, Sang Weon; Kim, Hak-Jin; Choi, Kwang-Dong

    2013-06-15

    A 46-year-old man developed intermittent headache, diplopia, and visual obscuration for two months. Funduscopic examination showed optic disk swelling in both eyes. Brain MRI exhibited hydrocephalus and leptomeningeal enhancement at the prepontine cistern, left cerebellopontine angle cistern and bilateral cerebral hemisphere, and hemosiderin deposition along the cerebellar folia. CSF analysis revealed an elevated opening pressure with xanthochromic appearance and small amount of red blood cells. Antibody titer against Toxocariasis using ELISA was elevated both in blood and CSF. Obstructive hydrocephalus and hemosiderin deposition in this case may result from the active inflammatory process due to CNS toxocariasis within the subarachnoid space.

  4. Evaluation of CNS activity of Bramhi Ghrita

    Directory of Open Access Journals (Sweden)

    Achliya G

    2005-01-01

    Full Text Available OBJECTIVE: To eavaluate the CNS activity of Bramhi Ghrita, a polyherbal formulation containing Bacopa monneri, Evolvulus alsinoids, Acorus calamus, Saussurea lappa and cow′s ghee. MATERIALS AND METHODS: The effect of Bramhi Ghrita on motor coordination, behavior, sleep, convulsions, locomotion and analgesia was evaluated in mice using standard procedures. RESULTS: The formulation exhibited reduced alertness, spontaneous locomotor activity and reactivity. It also antagonized the behavioral effects of d-amphetamine, potentiated the pentobarbitone-induced sleep and increased the pain threshold. Bramhi Ghrita protected mice from maximum electroshock and pentylene tetrazole-induced convulsions.

  5. Enumeration of the colony-forming units–fibroblast from mouse and human bone marrow in normal and pathological conditions

    OpenAIRE

    Kuznetsov, Sergei A; Mankani, Mahesh H.; Bianco, Paolo; Robey, Pamela G.

    2008-01-01

    Bone marrow stromal cell populations, containing a subset of multipotential skeletal stem cells, are increasingly contemplated for use in tissue engineering and stem cell therapy, whereas their involvement in the pathogenetic mechanisms of skeletal disorders is far less recognized. We compared the concentrations of stromal clonogenic cells, colony forming units–fibroblast (CFU-Fs), in norm and pathology. Initially, culture conditions were optimized by demonstrating that fetal bovine serum hea...

  6. Immune cell trafficking from the brain maintains CNS immune tolerance.

    Science.gov (United States)

    Mohammad, Mohammad G; Tsai, Vicky W W; Ruitenberg, Marc J; Hassanpour, Masoud; Li, Hui; Hart, Prue H; Breit, Samuel N; Sawchenko, Paul E; Brown, David A

    2014-03-01

    In the CNS, no pathway dedicated to immune surveillance has been characterized for preventing the anti-CNS immune responses that develop in autoimmune neuroinflammatory disease. Here, we identified a pathway for immune cells to traffic from the brain that is associated with the rostral migratory stream (RMS), which is a forebrain source of newly generated neurons. Evaluation of fluorescently labeled leukocyte migration in mice revealed that DCs travel via the RMS from the CNS to the cervical LNs (CxLNs), where they present antigen to T cells. Pharmacologic interruption of immune cell traffic with the mononuclear cell-sequestering drug fingolimod influenced anti-CNS T cell responses in the CxLNs and modulated experimental autoimmune encephalomyelitis (EAE) severity in a mouse model of multiple sclerosis (MS). Fingolimod treatment also induced EAE in a disease-resistant transgenic mouse strain by altering DC-mediated Treg functions in CxLNs and disrupting CNS immune tolerance. These data describe an immune cell pathway that originates in the CNS and is capable of dampening anti-CNS immune responses in the periphery. Furthermore, these data provide insight into how fingolimod treatment might exacerbate CNS neuroinflammation in some cases and suggest that focal therapeutic interventions, outside the CNS have the potential to selectively modify anti-CNS immunity.

  7. Homing of regulatory T cells to human skin is important for the prevention of alloimmune-mediated pathology in an in vivo cellular therapy model.

    Directory of Open Access Journals (Sweden)

    Fadi Issa

    Full Text Available Regulatory T cell (Treg therapy for immune modulation is a promising therapeutic strategy for the treatment and prevention of autoimmune disease and graft-versus-host disease (GvHD after bone marrow transplantation. However, Treg are heterogeneous and express a variety of chemokine receptor molecules. The optimal subpopulation of Treg for therapeutic use may vary according to the pathological target. Indeed, clinical trials of Treg for the prevention of GvHD where the skin is a major target of the anti-host response have employed Treg derived from a variety of different sources. We postulated that for the effective treatment of GvHD-related skin pathology, Treg must be able to migrate to skin in order to regulate local alloimmune responses efficiently. To test the hypothesis that different populations of Treg display distinct efficacy in vivo based on their expression of tissue-specific homing molecules, we evaluated the activity of human Treg derived from two disparate sources in a model of human skin transplantation. Treg were derived from adult blood or cord blood and expanded in vitro. While Treg from both sources displayed similar in vitro suppressive efficacy, they exhibited marked differences in the expression of skin homing molecules. Importantly, only adult-derived Treg were able to prevent alloimmune-mediated human skin destruction in vivo, by virtue of their improved migration to skin. The presence of Treg within the skin was sufficient to prevent its alloimmune-mediated destruction. Additionally, Treg expressing the skin homing cutaneous lymphocyte antigen (CLA were more efficient at preventing skin destruction than their CLA-deficient counterparts. Our findings highlight the importance of the careful selection of an effective subpopulation of Treg for clinical use according to the pathology of interest.

  8. Stress preconditioning of spreading depression in the locust CNS.

    Directory of Open Access Journals (Sweden)

    Corinne I Rodgers

    Full Text Available Cortical spreading depression (CSD is closely associated with important pathologies including stroke, seizures and migraine. The mechanisms underlying SD in its various forms are still incompletely understood. Here we describe SD-like events in an invertebrate model, the ventilatory central pattern generator (CPG of locusts. Using K(+ -sensitive microelectrodes, we measured extracellular K(+ concentration ([K(+](o in the metathoracic neuropile of the CPG while monitoring CPG output electromyographically from muscle 161 in the second abdominal segment to investigate the role K(+ in failure of neural circuit operation induced by various stressors. Failure of ventilation in response to different stressors (hyperthermia, anoxia, ATP depletion, Na(+/K(+ ATPase impairment, K(+ injection was associated with a disturbance of CNS ion homeostasis that shares the characteristics of CSD and SD-like events in vertebrates. Hyperthermic failure was preconditioned by prior heat shock (3 h, 45 degrees C and induced-thermotolerance was associated with an increase in the rate of clearance of extracellular K(+ that was not linked to changes in ATP levels or total Na(+/K(+ ATPase activity. Our findings suggest that SD-like events in locusts are adaptive to terminate neural network operation and conserve energy during stress and that they can be preconditioned by experience. We propose that they share mechanisms with CSD in mammals suggesting a common evolutionary origin.

  9. The homozygote VCP(R¹⁵⁵H/R¹⁵⁵H mouse model exhibits accelerated human VCP-associated disease pathology.

    Directory of Open Access Journals (Sweden)

    Angèle Nalbandian

    Full Text Available Valosin containing protein (VCP mutations are the cause of hereditary inclusion body myopathy, Paget's disease of bone, frontotemporal dementia (IBMPFD. VCP gene mutations have also been linked to 2% of isolated familial amyotrophic lateral sclerosis (ALS. VCP is at the intersection of disrupted ubiquitin proteasome and autophagy pathways, mechanisms responsible for the intracellular protein degradation and abnormal pathology seen in muscle, brain and spinal cord. We have developed the homozygous knock-in VCP mouse (VCP(R155H/R155H model carrying the common R155H mutations, which develops many clinical features typical of the VCP-associated human diseases. Homozygote VCP(R155H/R155H mice typically survive less than 21 days, exhibit weakness and myopathic changes on EMG. MicroCT imaging of the bones reveal non-symmetrical radiolucencies of the proximal tibiae and bone, highly suggestive of PDB. The VCP(R155H/R155H mice manifest prominent muscle, heart, brain and spinal cord pathology, including striking mitochondrial abnormalities, in addition to disrupted autophagy and ubiquitin pathologies. The VCP(R155H/R155H homozygous mouse thus represents an accelerated model of VCP disease and can be utilized to elucidate the intricate molecular mechanisms involved in the pathogenesis of VCP-associated neurodegenerative diseases and for the development of novel therapeutic strategies.

  10. Stem cell therapy in animal models of central nervous system (CNS diseases: therapeutic role, challenges and perspectives

    Directory of Open Access Journals (Sweden)

    Swapan Kumar Maiti

    2014-09-01

    Full Text Available Many human diseases relating to central nervous system (CNS are mimicked in animal models to evaluate the efficacy of stem cell therapy. The therapeutic role of stem cells in animal models of CNS diseases include replacement of diseased or degenerated neuron, oligodendrocytes or astrocytes with healthy ones, secretion of neurotrophic factors and delivery of therapeutics/genes. Scaffolds can be utilized for delivering stem cells in brain. Sustained delivery of stem cells, lineage specific differentiation, and enhanced neuronal network integration are the hallmarks of scaffold mediated stem cell delivery in CNS diseases. This review discusses the therapeutic role, challenges and future perspectives of stem cell therapy in animal models of CNS diseases.

  11. Cidofovir treatment improves the pathology caused by the growth of human papillomavirus-positive cervical carcinoma xenografts in athymic nude mice.

    Science.gov (United States)

    De Schutter, Tim; Andrei, Graciela; Topalis, Dimitri; Duraffour, Sophie; Mitera, Tania; Naesens, Lieve; van den Oord, Joost; Matthys, Patrick; Snoeck, Robert

    2013-02-28

    Cidofovir has shown antiproliferative effects against human papillomavirus (HPV)-positive cells and successfully suppressed the growth of HPV-positive xenografts in athymic nude mice. The present study evaluated the effect of cidofovir on several disease parameters in this animal model. Intratumoral administration of cidofovir resulted in a beneficial effect on body weight gain, a reduction in splenomegaly, a partial restoration of tryptophan catabolism, and diminished the inflammatory state induced by the xenografts. Administration of cidofovir to tumor-free animals did not have a direct effect on these parameters. Beyond suppressing tumor growth, intratumoral treatment with cidofovir ameliorated the pathology associated with HPV-tumor growth.

  12. The therapeutic effects of Rho-ROCK inhibitors on CNS disorders

    Directory of Open Access Journals (Sweden)

    Takekazu Kubo

    2008-06-01

    Full Text Available Takekazu Kubo1, Atsushi Yamaguchi1, Nobuyoshi Iwata2, Toshihide Yamashita1,31Department of Neurobiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; 2Information Institute for Medical Research Ltd.; 3Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University 2-2 Yamadaoka, Suita, Osaka 565-0871, JapanAbstract: Rho-kinase (ROCK is a serine/threonine kinase and one of the major downstream effectors of the small GTPase Rho. The Rho-ROCK pathway is involved in many aspects of neuronal functions including neurite outgrowth and retraction. The Rho-ROCK pathway becomes an attractive target for the development of drugs for treating central nervous system (CNS disorders, since it has been recently revealed that this pathway is closely related to the pathogenesis of several CNS disorders such as spinal cord injuries, stroke, and Alzheimer’s disease (AD. In the adult CNS, injured axons regenerate poorly due to the presence of myelin-associated axonal growth inhibitors such as myelin-associated glycoprotein (MAG, Nogo, oligodendrocyte-myelin glycoprotein (OMgp, and the recently identified repulsive guidance molecule (RGM. The effects of these inhibitors are reversed by blockade of the Rho-ROCK pathway in vitro, and the inhibition of this pathway promotes axonal regeneration and functional recovery in the injured CNS in vivo. In addition, the therapeutic effects of the Rho-ROCK inhibitors have been demonstrated in animal models of stroke. In this review, we summarize the involvement of the Rho-ROCK pathway in CNS disorders such as spinal cord injuries, stroke, and AD and also discuss the potential of Rho-ROCK inhibitors in the treatment of human CNS disorders.Keywords: neuron, Rho, Rho-kinase, axonal regeneration, central nervous system disorder

  13. Mining the topography and dynamics of the 4D Nucleome to identify novel CNS drug pathways.

    Science.gov (United States)

    Higgins, Gerald A; Allyn-Feuer, Ari; Georgoff, Patrick; Nikolian, Vahagn; Alam, Hasan; Athey, Brian D

    2017-04-03

    The pharmacoepigenome can be defined as the active, noncoding province of the genome including canonical spatial and temporal regulatory mechanisms of gene regulation that respond to xenobiotic stimuli. Many psychotropic drugs that have been in clinical use for decades have ill-defined mechanisms of action that are beginning to be resolved as we understand the transcriptional hierarchy and dynamics of the nucleus. In this review, we describe spatial, temporal and biomechanical mechanisms mediated by psychotropic medications. Focus is placed on a bioinformatics pipeline that can be used both for detection of pharmacoepigenomic variants that discretize drug response and adverse events to improve pharmacogenomic testing, and for the discovery of novel CNS therapeutics. This approach integrates the functional topology and dynamics of the transcriptional hierarchy of the pharmacoepigenome, gene variant-driven identification of pharmacogenomic regulatory domains, and mesoscale mapping for the discovery of novel CNS pharmacodynamic pathways in human brain. Examples of the application of this pipeline are provided, including the discovery of valproic acid (VPA) mediated transcriptional reprogramming of neuronal cell fate following injury, and mapping of a CNS pathway glutamatergic pathway for the mood stabilizer lithium. These examples in regulatory pharmacoepigenomics illustrate how ongoing research using the 4D nucleome provides a foundation to further insight into previously unrecognized psychotropic drug pharmacodynamic pathways in the human CNS.

  14. Progressive Motor Neuron Pathology and the Role of Astrocytes in a Human Stem Cell Model of VCP-Related ALS

    Directory of Open Access Journals (Sweden)

    Claire E. Hall

    2017-05-01

    Full Text Available Motor neurons (MNs and astrocytes (ACs are implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS, but their interaction and the sequence of molecular events leading to MN death remain unresolved. Here, we optimized directed differentiation of induced pluripotent stem cells (iPSCs into highly enriched (> 85% functional populations of spinal cord MNs and ACs. We identify significantly increased cytoplasmic TDP-43 and ER stress as primary pathogenic events in patient-specific valosin-containing protein (VCP-mutant MNs, with secondary mitochondrial dysfunction and oxidative stress. Cumulatively, these cellular stresses result in synaptic pathology and cell death in VCP-mutant MNs. We additionally identify a cell-autonomous VCP-mutant AC survival phenotype, which is not attributable to the same molecular pathology occurring in VCP-mutant MNs. Finally, through iterative co-culture experiments, we uncover non-cell-autonomous effects of VCP-mutant ACs on both control and mutant MNs. This work elucidates molecular events and cellular interplay that could guide future therapeutic strategies in ALS.

  15. Morphological and chemical studies of pathological human and mice brain at the subcellular level: correlation between light, electron, and nanosims microscopies.

    Science.gov (United States)

    Quintana, Carmen; Wu, Ting-Di; Delatour, Benoit; Dhenain, Marc; Guerquin-Kern, Jean Luc; Croisy, Alain

    2007-04-01

    Neurodegenerative diseases induce morphological and chemical alterations in well-characterized regions of the brain. Understanding their pathological processes requires the use of methods that assess both morphological and chemical alterations in the tissues. In the past, microprobe approaches such as scanning electron microscopy combined with an X-ray spectrometer, Proton induced X-ray emission, secondary ion mass spectrometry (SIMS), and laser microprobe mass analysis have been used for the study of pathological human brain with limited success. At the present, new SIMS instruments have been developed, such as the NanoSIMS-50 ion microprobe, that allow the simultaneous identification of five elements with high sensitivity, at subcellular spatial resolution (about 50-100 nm with the Cs(+) source and about 150-200 nm with O(-) source). Working in scanning mode, 2D distribution of five elements (elemental maps) can be obtained, thus providing their exact colocalization. The analysis can be performed on semithin or ultrathin embedded sections. The possibility of using transmission electron microscopy and SIMS on the same ultrathin sections allows the correlation between structural and analytical observations at subcellular and ultrastructural level to be established. Our observations on pathological brain areas allow us to establish that the NanoSIMS-50 ion microprobe is a highly useful instrument for the imaging of the morphological and chemical alterations that take place in these brain areas. In the human brain our results put forward the subcellular distribution of iron-ferritin-hemosiderin in the hippocampus of Alzheimer disease patients. In the thalamus of transgenic mice, our results have shown the presence of Ca-Fe mineralized amyloid deposits.

  16. A Simple Method for Establishing Adherent Ex Vivo Explant Cultures from Human Eye Pathologies for Use in Subsequent Calcium Imaging and Inflammatory Studies

    Directory of Open Access Journals (Sweden)

    Sofija Andjelic

    2014-01-01

    Full Text Available A novel, simple, and reproducible method for cultivating pathological tissues obtained from human eyes during surgery was developed using viscoelastic material as a tissue adherent to facilitate cell attachment and expansion and calcium imaging of cultured cells challenged by mechanical and acetylcholine (ACh stimulation as well as inflammatory studies. Anterior lens capsule-lens epithelial cells (aLC-LECs from cataract surgery and proliferative diabetic retinopathy (PDR fibrovascular epiretinal membranes (fvERMs from human eyes were used in the study. We hereby show calcium signaling in aLC-LECs by mechanical and acetylcholine (ACh stimulation and indicate presence of ACh receptors in these cells. Furthermore, an ex vivo study model was established for measuring the inflammatory response in fvERMs and aLC-LECs upon TNFα treatment.

  17. Humanized HLA-DR4 mice fed with the protozoan pathogen of oysters Perkinsus marinus (Dermo do not develop noticeable pathology but elicit systemic immunity.

    Directory of Open Access Journals (Sweden)

    Wathsala Wijayalath

    Full Text Available Perkinsus marinus (Phylum Perkinsozoa is a marine protozoan parasite responsible for "Dermo" disease in oysters, which has caused extensive damage to the shellfish industry and estuarine environment. The infection prevalence has been estimated in some areas to be as high as 100%, often causing death of infected oysters within 1-2 years post-infection. Human consumption of the parasites via infected oysters is thus likely to occur, but to our knowledge the effect of oral consumption of P. marinus has not been investigated in humans or other mammals. To address the question we used humanized mice expressing HLA-DR4 molecules and lacking expression of mouse MHC-class II molecules (DR4.EA(0 in such a way that CD4 T cell responses are solely restricted by the human HLA-DR4 molecule. The DR4.EA(0 mice did not develop diarrhea or any detectable pathology in the gastrointestinal tract or lungs following single or repeated feedings with live P. marinus parasites. Furthermore, lymphocyte populations in the gut associated lymphoid tissue and spleen were unaltered in the parasite-fed mice ruling out local or systemic inflammation. Notably, naïve DR4.EA(0 mice had antibodies (IgM and IgG reacting against P. marinus parasites whereas parasite specific T cell responses were undetectable. Feeding with P. marinus boosted the antibody responses and stimulated specific cellular (IFNγ immunity to the oyster parasite. Our data indicate the ability of P. marinus parasites to induce systemic immunity in DR4.EA(0 mice without causing noticeable pathology, and support rationale grounds for using genetically engineered P. marinus as a new oral vaccine platform to induce systemic immunity against infectious agents.

  18. Early and Late CNS Inflammation in Alzheimer's Disease: Two Extremes of a Continuum?

    Science.gov (United States)

    Cuello, A Claudio

    2017-08-31

    In 1990 it was reported that individuals receiving NSAIDs (non-steroidal anti-inflammatory drugs) showed a markedly reduced prevalence of Alzheimer's disease (AD) compared to the overall population. Large epidemiological studies corroborated this assertion and provoked numerous prospective AD clinical trials with a variety of NSAIDs, all of which demonstrated lack of efficacy. It is postulated that the explanation for the success of NSAIDS in preventing AD onset when given at preclinical stages, and for their failure when administered after AD clinical presentation, lies in the changing nature of central nervous system (CNS) inflammation in the decades-long continuum of AD pathology. Early disease-aggravating CNS inflammation might start decades before the presentation of severe cognitive impairments or dementia, and the nature of this process will co-evolve with the neuropathological progression from preclinical to clinical AD stages. This early CNS inflammation should be considered a promising therapeutic target as we continue searching for an unequivocal diagnosis of AD preclinical stages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Robust regeneration of CNS axons through a track depleted of CNS glia.

    Science.gov (United States)

    Moon, L D; Brecknell, J E; Franklin, R J; Dunnett, S B; Fawcett, J W

    2000-01-01

    Transected CNS axons do not regenerate spontaneously but may do so if given an appropriate environment through which to grow. Since molecules associated with CNS macroglia are thought to be inhibitory to axon regeneration, we have tested the hypothesis that removing these cell types from an area of brain will leave an environment more permissive for axon regeneration. Adult rats received unilateral knife cuts of the nigrostriatal tract and ethidium bromide (EB) was used to create a lesion devoid of astrocytes, oligodendrocytes, intact myelin sheaths, and NG2 immunoreactive cells from the site of the knife cut to the ipsilateral striatum (a distance of 6 mm). The regenerative response and the EB lesion environment was examined with immunostaining and electron microscopy at different timepoints following surgery. We report that large numbers of dopaminergic nigral axons regenerated for over 4 mm through EB lesions. At 4 days postlesion dopaminergic sprouting was maximal and the axon growth front had reached the striatum, but there was no additional growth into the striatum after 7 days. Regenerating axons did not leave the EB lesion to form terminals in the striatum, there was no recovery of function, and the end of axon growth correlated with increasing glial immunoreactivity around the EB lesion. We conclude that the removal of CNS glia promotes robust axon regeneration but that this becomes limited by the reappearance of nonpermissive CNS glia. These results suggest, first, that control of the glial reaction is likely to be an important feature in brain repair and, second, that reports of axon regeneration must be interpreted with caution since extensive regeneration can occur simply as a result of a major glia-depleting lesion, rather than as the result of some other specific intervention.

  20. The large-scale functional connectivity correlates of consciousness and arousal during the healthy and pathological human sleep cycle

    NARCIS (Netherlands)

    Tagliazucchi, E.; van Someren, Eus J W

    2017-01-01

    Advances in neuroimaging have greatly improved our understanding of human sleep from a systems neuroscience perspective. However, cognition and awareness are reduced during sleep, hindering the applicability of standard task-based paradigms. Methods recently developed to study spontaneous brain

  1. Ultrastructural characteristics of novel epithelial cell types identified in human pathologic liver specimens with chronic ductular reaction.

    OpenAIRE

    De Vos, R; Desmet, V

    1992-01-01

    Previous immunohistochemical studies on human liver biopsies with chronic ductular reaction revealed the presence of "small cells" with bile-duct type cytokeratin profile in the periportal area. This study identified similar cells by electron microscopy. The authors studied 13 human liver specimens with various liver diseases, but all characterized by chronic ductular reaction. In all specimens, variable numbers of "small cells" with common epithelial characteristics were identified in the pe...

  2. Sodium chloride promotes pro-inflammatory macrophage polarization thereby aggravating CNS autoimmunity.

    Science.gov (United States)

    Hucke, Stephanie; Eschborn, Melanie; Liebmann, Marie; Herold, Martin; Freise, Nicole; Engbers, Annika; Ehling, Petra; Meuth, Sven G; Roth, Johannes; Kuhlmann, Tanja; Wiendl, Heinz; Klotz, Luisa

    2016-02-01

    The increasing incidence in Multiple Sclerosis (MS) during the last decades in industrialized countries might be linked to a change in dietary habits. Nowadays, enhanced salt content is an important characteristic of Western diet and increased dietary salt (NaCl) intake promotes pathogenic T cell responses contributing to central nervous system (CNS) autoimmunity. Given the importance of macrophage responses for CNS disease propagation, we addressed the influence of salt consumption on macrophage responses in CNS autoimmunity. We observed that EAE-diseased mice receiving a NaCl-high diet showed strongly enhanced macrophage infiltration and activation within the CNS accompanied by disease aggravation during the effector phase of EAE. NaCl treatment of macrophages elicited a strong pro-inflammatory phenotype characterized by enhanced pro-inflammatory cytokine production, increased expression of immune-stimulatory molecules, and an antigen-independent boost of T cell proliferation. This NaCl-induced pro-inflammatory macrophage phenotype was accompanied by increased activation of NF-kB and MAPK signaling pathways. The pathogenic relevance of NaCl-conditioned macrophages is illustrated by the finding that transfer into EAE-diseased animals resulted in significant disease aggravation compared to untreated macrophages. Importantly, also in human monocytes, NaCl promoted a pro-inflammatory phenotype that enhanced human T cell proliferation. Taken together, high dietary salt intake promotes pro-inflammatory macrophages that aggravate CNS autoimmunity. Together with other studies, these results underline the need to further determine the relevance of increased dietary salt intake for MS disease severity.

  3. Blocking LINGO-1 as a therapy to promote CNS repair: from concept to the clinic.

    Science.gov (United States)

    Mi, Sha; Pepinsky, R Blake; Cadavid, Diego

    2013-07-01

    LINGO-1 is a leucine-rich repeat and Ig domain-containing, Nogo receptor interacting protein, selectively expressed in the CNS on both oligodendrocytes and neurons. Its expression is developmentally regulated, and is upregulated in CNS diseases and injury. In animal models, LINGO-1 expression is upregulated in rat spinal cord injury, experimental autoimmune encephalomyelitis, 6-hydroxydopamine neurotoxic lesions and glaucoma models. In humans, LINGO-1 expression is increased in oligodendrocyte progenitor cells from demyelinated white matter of multiple sclerosis post-mortem samples, and in dopaminergic neurons from Parkinson's disease brains. LINGO-1 negatively regulates oligodendrocyte differentiation and myelination, neuronal survival and axonal regeneration by activating ras homolog gene family member A (RhoA) and inhibiting protein kinase B (Akt) phosphorylation signalling pathways. Across diverse animal CNS disease models, targeted LINGO-1 inhibition promotes neuron and oligodendrocyte survival, axon regeneration, oligodendrocyte differentiation, remyelination and functional recovery. The targeted inhibition of LINGO-1 function presents a novel therapeutic approach for the treatment of CNS diseases.

  4. Differential cellular expression of organic anion transporting peptides OATP1A2 and OATP2B1 in the human retina and brain: implications for carrier-mediated transport of neuropeptides and neurosteriods in the CNS.

    Science.gov (United States)

    Gao, Bo; Vavricka, Stephan R; Meier, Peter J; Stieger, Bruno

    2015-07-01

    Organic anion transporting polypeptides (OATPs) are polyspecific organic anion transporters, which are expressed in the blood-brain barrier, the choroid plexus, and other organs. The physiologic function of OATPs in extrahepatic tissues remains ambiguous. In rat retina, members of the OATP family are expressed. We therefore investigated the human retina for the expression of OATP1A2 and OATP2B1 and extended the study to human brain. Furthermore, we searched for peptide neurotransmitters as novel OATP substrates. OATP1A2 displayed a broad expression pattern in human retina as assessed by immunofluorescence localization. It is expressed in photoreceptor bodies and somas of amacrine cells. OATP1B2 expression is restricted to the inner nuclear layer and to the inner plexiform layer. Using paraffin sections from human cortex, cerebellum, and hippocampus, OATP1A2 was localized to neurons and neuronal processes, while OATP2B1 is expressed in endothelial cells of brain capillaries. Substance P and vasoactive intestinal peptide were identified as substrates for OATP1A2 and OATP2B1. Double-labeling immunofluorescence of human retina demonstrated the presence of substance P and of vasoactive intestinal peptides in neurons expressing OATP1A2 and OATP2B1, respectively. The expression of OATP1A2 and OATP2B1 in retinal neurons implies a role of these transporters in the reuptake of peptide neurotransmitters released from retinal neurons. The abundant expression of OATP1A2 in brain neurons points to the possibility that OATP1A2 could be involved in the homeostasis of neurosteroids. The high expression of OATP2B1 in brain capillaries supports an important function of OATPs in substance penetration across the blood-brain barrier.

  5. CNS Involvement in the Non-Hodgkin's Lymhoma

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Chang Ok; Kim, Gwi Eon; Park, Chang Yun; Kim, Byung Soo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1983-06-15

    Two cases of primary malignant lymphoma of the brain and six cases of secondary CNS lymphoma seen at Yonsei cancer center, radiotherapy department for recent 4 years are presented. Primary lymphomas revealed single tumor mass on corpus callosum area and secondary lymphoma were intracranial (3 cases) or leptomeningeal type (3 cases). Histology of primary lymphoma were reticulum cell sarcoma and secondary lymphomas were either diffuse histiocytic or diffuse poorly differentiated lymphocytic lymphoma. All patients showed good response to radiation. Two patients with primary CNS lymphoma and two of six secondary CNS lymphoma are alive after radiotherapy (34, 31, 26, 12 months). But the prognosis of secondary CNS lymphoma is grave, because of progressive systemic disease. Incidence, risk factors, diagnosis and therapeutic management of CNS involvement are also discussed.

  6. STUDY ON ORGANIZATIONAL PATHOLOGY AND IMPLICATIONS ON HUMAN RESOURCES JOB SATISFACTION, ALSO ON THE EMPLOYMENT OF THE LABOR MARKET

    Directory of Open Access Journals (Sweden)

    Diana-Elena, SERB

    2014-11-01

    Full Text Available People need to face the demands resulting induced neurotic styles of their leaders. The result is lower morale, affect behavior, dissatisfaction at work. This paper aims to present the point of view of theoretical and practical implications of failures in the organization on job satisfaction of employees. The practical part of this article is the analysis of statistically labor employment level , and a marketing research field, a survey using questionnaire as the main instrument. The main objectives during the research aims: knowledge labor employment in Romania, identify employee satisfaction on labor relations between managers and subordinates, knowledge of the involvement of the manager in providing a suitable work environment, to determine the extent the problems arising in the workplace creates dissatisfaction which ultimately rebounds on return. The main results drawn as a result of research carried out show that existing pathology in an organization is felt on one side by the employee the aggression and persecution has implications for morale, and on the other hand these disturbances are felt at employment in that workplace, stress employees resign and this leads to higher unemployment.

  7. The SIRT 3 Expression Profile is Associated with Pathological and Clinical Outcomes in Human Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Shaozhong He

    2014-11-01

    Full Text Available Aims: To investigate the association of Sirtuin 3 (SIRT 3 expression between the clinical characteristics and prognosis in breast cancer patients. Methods: 308 female patients with histologically confirmed breast cancer were enrolled in this study. The SIRT 3 expressions in tumor samples were detected. All the patients were followed up overall survival time (OS and disease-free survival (DFS time. Results: SIRT 3 expression was significantly correlated with clinical characteristics including lymph node metastasis, pathological grade and tumor size of breast cancer. SIRT 3 expression status also affected the DFS and OS of breast cancer. Patients with high expression of SIRT 3 had shorter DFS and OS than those with low expression. Univariate and multivariate Cox analyses confirmed that high SIRT 3 expression predicted a poor prognosis in breast cancer patient. In vitro study revealed that the SIRT 3 knockdown by small interfering RNA technique dramatically reduced the proliferation, migration and invasion of breast cancer cell lines. Conclusion: Our results suggest that SIRT 3 may serve as a marker for clinical feature and prognosis for breast cancer.

  8. The Use of Human Adipose-Derived Stem Cells in the Treatment of Physiological and Pathological Vulvar Dystrophies

    Directory of Open Access Journals (Sweden)

    Maria Giuseppina Onesti

    2016-01-01

    Full Text Available “Vulvar dystrophy” is characterized by chronic alterations of vulvar trophism, occurring in both physiological (menopause and pathological (lichen sclerosus, vulvar graft-versus-host disease conditions. Associated symptoms are itching, burning, dyspareunia and vaginal dryness. Current treatments often do not imply a complete remission of symptoms. Adipose-Derived Stem Cells (ADSCs injection represents a valid alternative therapy to enhance trophism and tone of dystrophic tissues. We evaluated efficacy of ADSCs-based therapy in the dystrophic areas. From February to April 2013 we enrolled 8 patients with vulvar dystrophy. A biopsy specimen was performed before and after treatment. Digital photographs were taken at baseline and during the follow-up. Pain was detected with Visual Analogue Scale and sexual function was evaluated with Female Sexual Function Index. All patients received 2 treatments in 3 months. Follow-up was at 1 week , 1 and 3 months, and 1 and 2 years. We obtained a significant vulvar trophism enhancement in all patients, who reported pain reduction and sexual function improvement. Objective exam with speculum was easy to perform after treatment. We believe ADSCs-based therapy finds its application in the treatment of vulvar dystrophies, since ADSCs could induce increased vascularization due to their angiogenic properties and tissue trophism improvement thanks to their eutrophic effect.

  9. [Study of the probable role of the agent of enzootic ovine abortion in infectious human pathology. Preliminary report].

    Science.gov (United States)

    Gnutov, I N; Erokhina, S G

    1980-01-01

    418 workers were surveyed at a meat-packing plant. The presence of complement-fixing antibodies to the causative agent of enzootic abortion of sheep (EAS) was detected in 59 workers (14.27%), brucellosis in 32 workers (7.64%) and Q fever in 5 workers (1.18%). EAS antibodies were found to reach titers of 1 : 10 to 1 : 40 and higher, changing dynamically. The persons found to be seropositive belonged mainly to the workers of the sausage-making, slaughtering, intestinal, subproduct and skin-salting departments, as well as to the workers of the sanitary slaughter-house. Such diseases as acute respiratory infections, pneumonia, arthralgia, arthritis, and in women inflammatory urogenital infections, as well as spontaneous abortions were more frequent among the workers seropositive to the causative agent of EAS than in the control groups. Enzootic halprovial abortion of sheep was suggested to be potentially dangerous for certain groups of workers at the meat-packing plant, but the results of the survey indicate that further research in the fields of the epidemiology, clinical picture and laboratory diagnostics of infectious pathology in persons having contacts with the animals infected with the causative agent of EAS is necessary.

  10. SteatoNet: the first integrated human metabolic model with multi-layered regulation to investigate liver-associated pathologies.

    Directory of Open Access Journals (Sweden)

    Adviti Naik

    2014-12-01

    Full Text Available Current state-of-the-art mathematical models to investigate complex biological processes, in particular liver-associated pathologies, have limited expansiveness, flexibility, representation of integrated regulation and rely on the availability of detailed kinetic data. We generated the SteatoNet, a multi-pathway, multi-tissue model and in silico platform to investigate hepatic metabolism and its associated deregulations. SteatoNet is based on object-oriented modelling, an approach most commonly applied in automotive and process industries, whereby individual objects correspond to functional entities. Objects were compiled to feature two novel hepatic modelling aspects: the interaction of hepatic metabolic pathways with extra-hepatic tissues and the inclusion of transcriptional and post-transcriptional regulation. SteatoNet identification at normalised steady state circumvents the need for constraining kinetic parameters. Validation and identification of flux disturbances that have been proven experimentally in liver patients and animal models highlights the ability of SteatoNet to effectively describe biological behaviour. SteatoNet identifies crucial pathway branches (transport of glucose, lipids and ketone bodies where changes in flux distribution drive the healthy liver towards hepatic steatosis, the primary stage of non-alcoholic fatty liver disease. Cholesterol metabolism and its transcription regulators are highlighted as novel steatosis factors. SteatoNet thus serves as an intuitive in silico platform to identify systemic changes associated with complex hepatic metabolic disorders.

  11. Role of the Yes and Csk tyrosine kinases in the development of a pathological state in the human retina.

    Science.gov (United States)

    Baranova, Lyudmila; Emelyanova, Valentina; Volotovski, Igor

    2010-07-01

    Amplification and a cloning of fragments of genes of human retina tyrosine kinases, the nucleotide sequences of which feature a high homology to the gene families of the Yes and Csk tyrosine kinases, and a cloning of the complete coding sequence of the cDNA of the Csk tyrosine kinase gene of the human lymphocytes have been carried out. It has been established that this sequence contains 1,624 bp and encodes a protein that, with a 99% homology, corresponds to the human tyrosine kinase. A comparative analysis of the nucleotide sequences of the full-size cDNA of the Csk tyrosine kinase of the lymphocytes of healthy donors and of patients with an eye choroidal melanoma has shown that a risk of development of an eye choroidal melanoma can be estimated by the frequency of occurrence of a mutant allele in the 10th exon.

  12. Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tusscher, K H W J Ten; Panfilov, A V [Department of Theoretical Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands)

    2006-12-07

    In this paper, we formulate a model for human ventricular cells that is efficient enough for whole organ arrhythmia simulations yet detailed enough to capture the effects of cell level processes such as current blocks and channelopathies. The model is obtained from our detailed human ventricular cell model by using mathematical techniques to reduce the number of variables from 19 to nine. We carefully compare our full and reduced model at the single cell, cable and 2D tissue level and show that the reduced model has a very similar behaviour. Importantly, the new model correctly produces the effects of current blocks and channelopathies on AP and spiral wave behaviour, processes at the core of current day arrhythmia research. The new model is well over four times more efficient than the full model. We conclude that the new model can be used for efficient simulations of the effects of current changes on arrhythmias in the human heart.

  13. Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions

    Science.gov (United States)

    Ten Tusscher, K. H. W. J.; Panfilov, A. V.

    2006-12-01

    In this paper, we formulate a model for human ventricular cells that is efficient enough for whole organ arrhythmia simulations yet detailed enough to capture the effects of cell level processes such as current blocks and channelopathies. The model is obtained from our detailed human ventricular cell model by using mathematical techniques to reduce the number of variables from 19 to nine. We carefully compare our full and reduced model at the single cell, cable and 2D tissue level and show that the reduced model has a very similar behaviour. Importantly, the new model correctly produces the effects of current blocks and channelopathies on AP and spiral wave behaviour, processes at the core of current day arrhythmia research. The new model is well over four times more efficient than the full model. We conclude that the new model can be used for efficient simulations of the effects of current changes on arrhythmias in the human heart.

  14. Gene expression profiling suggests a pathological role of human bone marrow-derived mesenchymal stem cells in aging-related skeletal diseases.

    Science.gov (United States)

    Jiang, Shih Sheng; Chen, Chung-Hsing; Tseng, Kuo-Yun; Tsai, Fang-Yu; Wang, Ming Jen; Chang, I-Shou; Lin, Jiunn-Liang; Lin, Shankung

    2011-07-01

    Aging is associated with bone loss and degenerative joint diseases, in which the aging of bone marrow-derived mesenchymal stem cell (bmMSC)[1] may play an important role. In this study, we analyzed the gene expression profiles of bmMSC from 14 donors between 36 and 74 years old, and obtained age-associated genes (in the background of osteoarthritis) and osteoarthritis-associated genes (in the background of old age). Pathway analysis of these genes suggests that alterations in glycobiology might play an important role in the aging of human bmMSC. On the other hand, antigen presentation and signaling of immune cells were the top pathways enriched by osteoarthritis-associated genes, suggesting that alteration in immunology of bmMSC might be involved in the pathogenesis of osteoarthritis. Most intriguingly, we found significant age-associated differential expression of HEXA, HEXB, CTSK, SULF1, ADAMTS5, SPP1, COL8A2, GPNMB, TNFAIP6, and RPL29; those genes have been implicated in the bone loss and the pathology of osteoporosis and osteoarthritis in aging. Collectively, our results suggest a pathological role of bmMSC in aging-related skeletal diseases, and suggest the possibility that alteration in the immunology of bmMSC might also play an important role in the etiology of adult-onset osteoarthritis.

  15. Distinct Renal Pathology and a Chemotactic Phenotype after Enterohemorrhagic Escherichia coli Shiga Toxins in Non-Human Primate Models of Hemolytic Uremic Syndrome

    Science.gov (United States)

    Stearns-Kurosawa, Deborah J.; Oh, Sun-Young; Cherla, Rama P.; Lee, Moo-Seung; Tesh, Vernon L.; Papin, James; Henderson, Joel; Kurosawa, Shinichiro

    2014-01-01

    Enterohemorrhagic Escherichia coli cause approximately 1.5 million infections globally with 176,000 cases occurring in the United States annually from ingesting contaminated food, most frequently E. coli O157:H7 in ground beef or fresh produce. In severe cases, the painful prodromal hemorrhagic colitis is complicated by potentially lethal hemolytic uremic syndrome (HUS), particularly in children. Bacterial Shiga-like toxins (Stx1, Stx2) are primarily responsible for HUS and the kidney and neurologic damage that ensue. Small animal models are hampered by the inability to reproduce HUS with thrombotic microangiopathy, hemolytic anemia, and acute kidney injury. Earlier, we showed that nonhuman primates (Papio) recapitulated clinical HUS after Stx challenge and that novel therapeutic intervention rescued the animals. Here, we present detailed light and electron microscopic pathology examination of the kidneys from these Stx studies. Stx1 challenge resulted in more severe glomerular endothelial injury, whereas the glomerular injury after Stx2 also included prominent mesangiolysis and an eosinophilic inflammatory infiltration. Both toxins induced glomerular platelet-rich thrombi, interstitial hemorrhage, and tubular injury. Analysis of kidney and other organs for inflammation biomarkers showed a striking chemotactic profile, with extremely high mRNA levels for IL-8, monocyte chemoattractant protein 1, and macrophage inflammatory protein 1α and elevated urine chemokines at 48 hours after challenge. These observations give unique insight into the pathologic consequences of each toxin in a near human setting and present potential pathways for therapeutic intervention. PMID:23402998

  16. Retinal Angiogenesis Effects of TGF-β1 and Paracrine Factors Secreted From Human Placental Stem Cells in Response to a Pathological Environment.

    Science.gov (United States)

    Kim, Kyung-Sul; Park, Ji-Min; Kong, TaeHo; Kim, Chul; Bae, Sang-Hun; Kim, Han Wool; Moon, Jisook

    2016-01-01

    Abnormal angiogenesis is a primary cause of many eye diseases, including diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity. Mesenchymal stem cells (MSCs) are currently being investigated as a treatment for several such retinal diseases based on their neuroprotective and angiogenic potentials. In this study, we evaluated the role of systemically injected human placental amniotic membrane-derived MSCs (AMSCs) on pathological neovascularization of proliferative retinopathy. We determined that AMSCs secrete higher levels of transforming growth factor-β (TGF-β1) than other MSCs, and the secreted TGF-β1 directly suppresses the proliferation of endothelial cells under pathological conditions in vitro. Moreover, in a mouse model of oxygen-induced retinopathy, intraperitoneally injected AMSCs migrated into the retina and suppressed excessive neovascularization of the vasculature via expression of TGF-β1, and the antineovascular effect of AMSCs was blocked by treatment with TGF-β1 siRNA. These findings are the first to demonstrate that TGF-β1 secreted from AMSCs is one of the key factors to suppress retinal neovascularization in proliferative retinopathy and further elucidate the therapeutic function of AMSCs for the treatment of retinal neovascular diseases.

  17. Evidence from human and animal studies: Pathological roles of CD8+ T cells in autoimmune peripheral neuropathies

    Directory of Open Access Journals (Sweden)

    Mu eYang

    2015-10-01

    Full Text Available Autoimmune peripheral neuropathies such as Guillain Barre Syndrome (GBS and chronic inflammatory demyelinating polyneuropathy (CIDP affect millions of people worldwide. Despite significant advances in understanding the pathology, the molecular and cellular mechanisms of immune-mediated neuropathies remain elusive. T lymphocytes definitely play an important role in disease pathogenesis and CD4+ T cells have been the main area of research for decades. This is partly due to the fact that the most frequent animal model to study autoimmune peripheral neuropathy is experimental allergic neuritis (EAN. As it is induced commonly by immunization with peripheral nerve proteins, EAN is driven mainly by CD4+ T cells. However, similarly to what has been reported for patients suffering from multiple sclerosis, a significant body of evidence indicate that CD8+ T cells may play a pathogenic role in GBS and CIDP disease development and/or progression. Here, we summarize clinical studies pertaining to the presence and potential role of CD8+ T cells in autoimmune peripheral neuropathy. We also discuss the findings from our most recent studies using a transgenic mouse line (L31 mice in which the T cell co-stimulator molecule B7.2 (CD86 is constitutively expressed in antigen presenting cells of the nervous tissues. L31 mice spontaneously develop peripheral neuropathy, and CD8+ T cells are found accumulating in peripheral nerves of symptomatic animals. Interestingly, depletion of CD4+ T cells accelerates disease onset and increases disease prevalence. Finally, we point out some unanswered questions for future research to dissect the critical roles of CD8+ T cells in autoimmune peripheral neuropathies.

  18. Blood-CNS Barrier Impairment in ALS Patients versus an Animal Model

    Directory of Open Access Journals (Sweden)

    Svitlana eGarbuzova-Davis

    2014-02-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a severe neurodegenerative disease with a compli-cated and poorly understood pathogenesis. Recently, alterations in the blood-Central Nervous System barrier (B-CNS-B have been recognized as a key factor possibly aggravating motor neuron damage. The majority of findings on ALS microvascular pathology have been deter-mined in mutant SOD1 rodent models, identifying barrier damage during disease develop-ment which might similarly occur in familial ALS patients carrying the SOD1 mutation. However, our knowledge of B-CNS-B competence in sporadic ALS (SALS has been limited. We recently showed structural and functional impairment in postmortem gray and white mat-ter microvessels of medulla and spinal cord tissue from SALS patients, suggesting pervasive barrier damage. Although numerous signs of barrier impairment (endothelial cell degenera-tion, capillary leakage, perivascular edema, downregulation of tight junction proteins, and microhemorrhages are indicated in both mutant SOD1 animal models of ALS and SALS pa-tients, other pathogenic barrier alterations have as yet only been identified in SALS patients. Pericyte degeneration, perivascular collagen IV expansion, and white matter capillary abnor-malities in SALS patients are significant barrier related pathologies yet to be noted in ALS SOD1 animal models. In the current review, these important differences in blood-CNS barrier damage between ALS patients and animal models, which may signify altered barrier transport mechanisms, are discussed. Understanding discrepancies in barrier condition between ALS patients and animal models may be crucial for developing effective therapies.

  19. System xc⁻ cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS.

    Science.gov (United States)

    Bridges, Richard J; Natale, Nicholas R; Patel, Sarjubhai A

    2012-01-01

    System x(c)(-) is an amino acid antiporter that typically mediates the exchange of extracellular l-cystine and intracellular L-glutamate across the cellular plasma membrane. Studied in a variety of cell types, the import of L-cystine through this transporter is critical to glutathione production and oxidative protection. The exchange-mediated export of L-glutamate takes on added significance within the CNS, as it represents a non-vesicular route of release through which this excitatory neurotransmitter can participate in either neuronal signalling or excitotoxic pathology. When both the import of L-cystine and the export of L-glutamate are taken into consideration, system x(c)(-) has now been linked to a wide range of CNS functions, including oxidative protection, the operation of the blood-brain barrier, neurotransmitter release, synaptic organization, viral pathology, drug addiction, chemosensitivity and chemoresistance, and brain tumour growth. The ability to selectively manipulate system x(c)(-), delineate its function, probe its structure and evaluate it as a therapeutic target is closely linked to understanding its pharmacology and the subsequent development of selective inhibitors and substrates. Towards that goal, this review will examine the current status of our understanding of system x(c)(-) pharmacology and the structure-activity relationships that have guided the development of an initial pharmacophore model, including the presence of lipophilic domains adjacent to the substrate binding site. A special emphasis is placed on the roles of system x(c)(-) within the CNS, as it is these actions that are among the most exciting as potential long-range therapeutic targets.

  20. 42 CFR 493.853 - Condition: Pathology.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Pathology. 493.853 Section 493.853 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... These Tests § 493.853 Condition: Pathology. The specialty of pathology includes, for purposes...

  1. Tuning up the developing auditory CNS.

    Science.gov (United States)

    Sanes, Dan H; Bao, Shaowen

    2009-04-01

    Although the auditory system has limited information processing resources, the acoustic environment is infinitely variable. To properly encode the natural environment, the developing central auditory system becomes somewhat specialized through experience-dependent adaptive mechanisms that operate during a sensitive time window. Recent studies have demonstrated that cellular and synaptic plasticity occurs throughout the central auditory pathway. Acoustic-rearing experiments can lead to an over-representation of the exposed sound frequency, and this is associated with specific changes in frequency discrimination. These forms of cellular plasticity are manifest in brain regions, such as midbrain and cortex, which interact through feed-forward and feedback pathways. Hearing loss leads to a profound re-weighting of excitatory and inhibitory synaptic gain throughout the auditory CNS, and this is associated with an over-excitability that is observed in vivo. Further behavioral and computational analyses may provide insights into how theses cellular and systems plasticity effects underlie the development of cognitive functions such as speech perception.

  2. Endocannabinoids and synaptic function in the CNS.

    Science.gov (United States)

    Hashimotodani, Yuki; Ohno-Shosaku, Takako; Kano, Masanobu

    2007-04-01

    Marijuana affects neural functions through the binding of its active component (Delta(9)-THC) to cannabinoid receptors in the CNS. Recent studies have elucidated that endogenous ligands for cannabinoid receptors, endocannabinoids, serve as retrograde messengers at central synapses. Endocannabinoids are produced on demand in activity-dependent manners and released from postsynaptic neurons. The released endocannabinoids travel backward across the synapse, activate presynaptic CB1 cannabinoid receptors, and modulate presynaptic functions. Retrograde endocannabinoid signaling is crucial for certain forms of short-term and long-term synaptic plasticity at excitatory or inhibitory synapses in many brain regions, and thereby contributes to various aspects of brain function including learning and memory. Molecular identities of the CB1 receptor and enzymes involved in production and degradation of endocannabinoids have been elucidated. Anatomical studies have demonstrated unique distributions of these molecules around synapses, which provide morphological bases for the roles of endocannabinoids as retrograde messengers. CB1-knockout mice exhibit various behavioral abnormalities and multiple defects in synaptic plasticity, supporting the notion that endocannabinoid signaling is involved in various aspects of neural function. In this review article, the authors describe molecular mechanisms of the endocannabinoid-mediated synaptic modulation and its possible physiological significance.

  3. Computer treatment of the contents of some elements in the normal and pathologically altered human colon mucosa tissues obtained by INAA

    Energy Technology Data Exchange (ETDEWEB)

    Draskovic, R.J.; Bozanic, M.; Bozanic, V.; Bohus, T. (Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia))

    1984-11-01

    Distribution of some elements (Cr, Fe, Co, Sb, Sc and Zn) in normal and pathologically altered human colon mucosa tissues were investigated by INAA. The following tissues were analyzed: normal colon mucosa, colitis chronica, colitis ulcerosa, adenoma tubulare and adenocarcinoma (diagnoses were previously confirmed clinically and histopathologically). The values of contents of the elements in these tissues (Csub(x) in nkg/g) are treated by specific computer functional programs. Regression functions of these parameters were found for the altered tissues in comparison to the normal, as well as specific functional correlations of the Csub(x)/Csub(y) relations for pairs of investigated elements. The functions which characterize these relations for the investigated colon mucosa tissue were also determined.

  4. Nanomaterials for delivery of nucleic acid to the central nervous system (CNS)

    DEFF Research Database (Denmark)

    Wang, Danyang; Wu, Lin-Ping

    2017-01-01

    Billions of dollars have been invested in the therapeutic application of nucleic acid-based agents in humans in recent years. There are inspirable data from ongoing clinical trial for different diseases. However, in order to widely apply nucleic acid in prevention, diagnosis and treatment of age...... system (CNS) and summary several types of nanomaterials which can be potentially used in the brain delivery nucleic acid....

  5. Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery

    OpenAIRE

    Adam Michael Stewart; Robert eGerlai; Kalueff, Allan V.

    2015-01-01

    The high prevalence of brain disorders and the lack of their efficient treatments necessitate improved in-vivo pre-clinical models and tests. The zebrafish (Danio rerio), a vertebrate species with high genetic and physiological homology to humans, is an excellent organism for innovative central nervous system (CNS) drug discovery and small molecule screening. Here, we outline new strategies for developing higher-throughput zebrafish screens to test neuroactive drugs and predict their pharmaco...

  6. Alpha-1-antitrypsin deficiency: from genoma to liver disease. PiZ mouse as model for the development of liver pathology in human.

    Science.gov (United States)

    Giovannoni, Isabella; Callea, Francesco; Stefanelli, Marta; Mariani, Riccardo; Santorelli, Filippo M; Francalanci, Paola

    2015-01-01

    Homozygous individuals with alpha-1-antitrypsin deficiency (AATD) type PiZ have an increased risk of chronic liver disease and hepatocellular carcinoma (HCC). It is noteworthy that HCCs are composed by hepatocytes without accumulation of AAT, but the reason for this remains unclear. The aim of this study was to determine liver pathology in PiZ mice, focusing the attention on the distribution of AAT globules in normal liver, regenerative foci and neoplastic nodules. Liver of 79 PiZ mice and 18 wild type (Wt) was histologically analysed for steatosis, clear cell foci, hyperplasia and neoplasia. The expression of human-AAT transgene and murine AAT, in non-neoplastic liver and in hyperplastic/neoplastic nodules was tested by qPCR and qRT-PCR. RT-PCR was used to study expression of hepatic markers: albumin, α-foetoprotein, transthyretin, AAT, glucose-6-phospate, tyrosine aminotransferase. Liver pathology was seen more frequently in PiZ (47/79) than in Wt (5/18) and its development was age related. In older PiZ mice (18-24 m), livers showed malignant tumours (HCC and angiosarcoma) (17/50), hyperplastic nodules (28/50), non-specific changes (33/50), whereas only 9/50 were normal. Both human-AATZ DNA and mRNA showed no differences between tumours/nodules and normal liver, while murine-AAT mRNA was reduced in tumours/nodules. Accumulation of AAT is associated with an increased risk of liver nodules. The presence of globule-devoid hepatocytes and the reduced expression of murine-AAT mRNA in hyperplastic and neoplastic nodules suggest that these hepatic lesions in AATD could originate from proliferating dedifferentiated cells, lacking AAT storage and becoming capable of AFP re-expression. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Ultrastructural characteristics of novel epithelial cell types identified in human pathologic liver specimens with chronic ductular reaction.

    Science.gov (United States)

    De Vos, R; Desmet, V

    1992-06-01

    Previous immunohistochemical studies on human liver biopsies with chronic ductular reaction revealed the presence of "small cells" with bile-duct type cytokeratin profile in the periportal area. This study identified similar cells by electron microscopy. The authors studied 13 human liver specimens with various liver diseases, but all characterized by chronic ductular reaction. In all specimens, variable numbers of "small cells" with common epithelial characteristics were identified in the periportal area. They could be classified into three types. Type I cells showed an oval cell shape and oval nucleus, early or established formation of junctional complexes with adjacent cells, a full assortment of cytoplasmic organelles, and bundles of tonofilaments. Type II cells showed features of bile-duct cell differentiation, including lateral interdigitations, apical microvilli, basal pinocytotic vacuoles, and basement membrane formation. In contrast, type III cells displayed additional features indicating hepatocellular differentiation, such as a more prominent nucleus, formation of a hemicanaliculus, and glycogen rosettes. It is concluded that these small cells of epithelial nature display variable differentiation characteristics of either bile-duct type cells or hepatocytes. These findings support the existence of bipotential progenitor epithelial cells in human liver. They may have implications for liver regeneration and carcinogenesis.

  8. Alcohol intake alters immune responses and promotes CNS viral persistence in mice.

    Science.gov (United States)

    Loftis, Jennifer M; Taylor, Jonathan; Raué, Hans-Peter; Slifka, Mark K; Huang, Elaine

    2016-10-01

    Chronic hepatitis C virus (HCV) infection leads to progressive liver disease and is associated with a variety of extrahepatic effects, including central nervous system (CNS) damage and neuropsychiatric impairments. Alcohol abuse can exacerbate these adverse effects on brain and behavior, but the molecular mechanisms are not well understood. This study investigated the role of alcohol in regulating viral persistence and CNS immunopathology in mice infected with lymphocytic choriomeningitis virus (LCMV), a model for HCV infections in humans. Female and male BALB/c mice (n=94) were exposed to alcohol (ethanol; EtOH) and water (or water only) using a two-bottle choice paradigm, followed one week later by infection with either LCMV clone 13 (causes chronic infection similar to chronic HCV), LCMV Armstrong (causes acute infection), or vehicle. Mice were monitored for 60days post-infection and continued to receive 24-h access to EtOH and water. Animals infected with LCMV clone 13 drank more EtOH, as compared to those with an acute or no viral infection. Six weeks after infection with LCMV clone 13, mice with EtOH exposure evidenced higher serum viral titers, as compared to mice without EtOH exposure. EtOH intake was also associated with reductions in virus-specific CD8(+) T cell frequencies (particularly CD11a(hi) subsets) and evidence of persistent CNS viremia in chronically infected mice. These findings support the hypothesis that EtOH use and chronic viral infection can result in combined toxic effects accelerating CNS damage and neuropsychiatric dysfunction and suggest that examining the role of EtOH in regulating viral persistence and CNS immunopathology in mice infected with LCMV can lead to a more comprehensive understanding of comorbid alcohol use disorder and chronic viral infection.

  9. Cidofovir and brincidofovir reduce the pathology caused by systemic infection with human type 5 adenovirus in immunosuppressed Syrian hamsters, while ribavirin is largely ineffective in this model.

    Science.gov (United States)

    Tollefson, Ann E; Spencer, Jacqueline F; Ying, Baoling; Buller, R Mark L; Wold, William S M; Toth, Karoly

    2014-12-01

    There are no drugs approved specifically to treat disseminated adenovirus (Ad) infections in humans. Cidofovir is active against Ad in cell culture, and it is used frequently in the clinic with disseminated infection in pediatric transplant patients; however, controlled clinical studies have not been conducted to prove the anti-Ad efficacy of cidofovir. Brincidofovir, a lipid-linked derivative of cidofovir, which has strong activity against Ad in cell culture and in animal models, is a promising new drug currently in clinical trials. Ribavirin, which has modest activity against some Ad types in cell culture, has been used in the clinic against disseminated Ad, but the efficacy of ribavirin is unknown. In the current study, we have examined the activity of cidofovir, brincidofovir, and ribavirin against disseminated Ad5 infection in the immunosuppressed Syrian hamster model. Hamsters are immunosuppressed by treatment with cyclophosphamide, then infected intravenously with Ad5, leading to disseminated Ad5 infection, especially in the liver. We found that cidofovir and brincidofovir have excellent activity against Ad5 pathology and replication in the liver, even when administered therapeutically starting at 3 days post-challenge with Ad5. Ribavirin did not have anti-Ad5 activity in our model. Our data support the use of cidofovir and brincidofovir in humans for the treatment of disseminated Ad infections in humans.

  10. Target identification for CNS diseases by transcriptional profiling.

    Science.gov (United States)

    Altar, C Anthony; Vawter, Marquis P; Ginsberg, Stephen D

    2009-01-01

    Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer's disease and the cognitive decline associated with normal aging and mild cognitive impairment. In addition to tau, amyloid-beta precursor protein, and amyloid-beta peptides (Abeta), these targets include all three high-affinity neurotrophin receptors and the fibroblast growth factor (FGF) system, synapse markers, glutamate receptors (GluRs) and transporters, and dopamine (DA) receptors, particularly the D2 subtype. Gene-based candidates for Parkinson's disease (PD) include the ubiquitin-proteosome system, scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase C and RAS pathways. Increasing variability and decreases in brain mRNA production from middle age to old age suggest that cognitive impairments during normal aging may be addressed by drugs that restore antioxidant, DNA repair, and synaptic functions including those of DA to levels of younger adults. Studies in schizophrenia identify robust decreases in genes for GABA function, including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic functions, particularly glycolysis and ATP generation. Many of these metabolic genes are increased by insulin and muscarinic agonism, both of which are therapeutic in psychosis. Differential genomic signals are relatively sparse in bipolar disorder, but include deficiencies in the expression of 14

  11. B cells in the Multiple Sclerosis Central Nervous System: Trafficking and contribution to CNS-compartmentalized inflammation

    Directory of Open Access Journals (Sweden)

    Laure eMichel

    2015-12-01

    Full Text Available Clinical trial results of peripheral B cell depletion indicate abnormal pro-inflammatory B cell properties, and particularly antibody-independent functions, contribute to relapsing MS disease activity. However, potential roles of B cells in progressive forms of disease continue to be debated. Prior work indicates that presence of B cells is fostered within the inflamed MS central nervous system (CNS environment, and that B cell-rich immune-cell collections may be present within the meninges of patients. A potential association is reported between such meningeal immune-cell collections and the sub-pial pattern of cortical injury that is now considered important in progressive disease. Elucidating the characteristics of B cells that populate the MS CNS, how they traffic into the CNS and how they may contribute to progressive forms of the disease has become of considerable interest. Here, we will review characteristics of human B cells identified within distinct CNS sub-compartments of patients with MS, including the cerebrospinal fluid (CSF, parenchymal lesions and meninges, as well as the relationship between B cell populations identified in these sub-compartments and the periphery. We will further describe the different barriers of the CNS and the possible mechanisms of migration of B cells across these barriers. Finally, we will consider the range of human B cell responses (including potential for antibody production, cytokine secretion and antigen presentation that may contribute to propagating inflammation and injury cascades thought to underlie MS progression.

  12. Possible Roles of Proinflammatory and Chemoattractive Cytokines Produced by Human Fetal Membrane Cells in the Pathology of Adverse Pregnancy Outcomes Associated with Influenza Virus Infection

    Directory of Open Access Journals (Sweden)

    Noboru Uchide

    2012-01-01

    Full Text Available Pregnant women are at an increased risk of influenza-associated adverse outcomes, such as premature delivery, based on data from the latest pandemic with a novel influenza A (H1N1 virus in 2009-2010. It has been suggested that the transplacental transmission of influenza viruses is rarely detected in humans. A series of our study has demonstrated that influenza virus infection induced apoptosis in primary cultured human fetal membrane chorion cells, from which a factor with monocyte differentiation-inducing (MDI activity was secreted. Proinflammatory cytokines, such as interleukin (IL-6, tumor necrosis factor (TNF-α, and interferon (IFN-β, were identified as a member of the MDI factor. Influenza virus infection induced the mRNA expression of not only the proinflammatory cytokines but also chemoattractive cytokines, such as monocyte chemoattractant protein (MCP-1, regulated on activation, normal T-cell expressed and secreted (RANTES, macrophage inflammatory protein (MIP-1β, IL-8, growth-regulated oncogene (GRO-α, GRO-β, epithelial cell-derived neutrophil-activating protein (ENA-78, and interferon inducible protein (IP-10 in cultured chorion cells. These cytokines are postulated to associate with human parturition. This paper, therefore, reviews (1 lessons from pandemic H1N1 2009 in pregnancy, (2 production of proinflammatory and chemoattractive cytokines by human fetal membranes and their functions in gestational tissues, and (3 possible roles of cytokines produced by human fetal membranes in the pathology of adverse pregnancy outcomes associated with influenza virus infection.

  13. Anti-α4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection.

    Directory of Open Access Journals (Sweden)

    Jennifer H Campbell

    2014-12-01

    Full Text Available Four SIV-infected monkeys with high plasma virus and CNS injury were treated with an anti-α4 blocking antibody (natalizumab once a week for three weeks beginning on 28 days post-infection (late. Infection in the brain and gut were quantified, and neuronal injury in the CNS was assessed by MR spectroscopy, and compared to controls with AIDS and SIV encephalitis. Treatment resulted in stabilization of ongoing neuronal injury (NAA/Cr by 1H MRS, and decreased numbers of monocytes/macrophages and productive infection (SIV p28+, RNA+ in brain and gut. Antibody treatment of six SIV infected monkeys at the time of infection (early for 3 weeks blocked monocyte/macrophage traffic and infection in the CNS, and significantly decreased leukocyte traffic and infection in the gut. SIV - RNA and p28 was absent in the CNS and the gut. SIV DNA was undetectable in brains of five of six early treated macaques, but proviral DNA in guts of treated and control animals was equivalent. Early treated animals had low-to-no plasma LPS and sCD163. These results support the notion that monocyte/macrophage traffic late in infection drives neuronal injury and maintains CNS viral reservoirs and lesions. Leukocyte traffic early in infection seeds the CNS with virus and contributes to productive infection in the gut. Leukocyte traffic early contributes to gut pathology, bacterial translocation, and activation of innate immunity.

  14. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells.

    Science.gov (United States)

    Bursomanno, Sara; Beli, Petra; Khan, Asif M; Minocherhomji, Sheroy; Wagner, Sebastian A; Bekker-Jensen, Simon; Mailand, Niels; Choudhary, Chunaram; Hickson, Ian D; Liu, Ying

    2015-01-01

    SUMOylation is a form of post-translational modification involving covalent attachment of SUMO (Small Ubiquitin-like Modifier) polypeptides to specific lysine residues in the target protein. In human cells, there are four SUMO proteins, SUMO1-4, with SUMO2 and SUMO3 forming a closely related subfamily. SUMO2/3, in contrast to SUMO1, are predominantly involved in the cellular response to certain stresses, including heat shock. Substantial evidence from studies in yeast has shown that SUMOylation plays an important role in the regulation of DNA replication and repair. Here, we report a proteomic analysis of proteins modified by SUMO2 in response to DNA replication stress in S phase in human cells. We have identified a panel of 22 SUMO2 targets with increased SUMOylation during DNA replication stress, many of which play key functions within the DNA replication machinery and/or in the cellular response to DNA damage. Interestingly, POLD3 was found modified most significantly in response to a low dose aphidicolin treatment protocol that promotes common fragile site (CFS) breakage. POLD3 is the human ortholog of POL32 in budding yeast, and has been shown to act during break-induced recombinational repair. We have also shown that deficiency of POLD3 leads to an increase in RPA-bound ssDNA when cells are under replication stress, suggesting that POLD3 plays a role in the cellular response to DNA replication stress. Considering that DNA replication stress is a source of genome instability, and that excessive replication stress is a hallmark of pre-neoplastic and tumor cells, our characterization of SUMO2 targets during a perturbed S-phase should provide a valuable resource for future functional studies in the fields of DNA metabolism and cancer biology.

  15. [Research of keratinophiles in the soil and their effects on human cutaneous pathology in the Lyons area].

    Science.gov (United States)

    Coudert, J; Michel-Brun, J; Mojon, M; Pichot, J

    1979-01-01

    Between 1967 and 1977, the systematic research of keratinophiles of the ground in a radius of 30--50 km around Lyon, has shown the ubiquitarian predominance of Microsporum nanum, which is probably the most ancient occupant of the ground. The most intensive areas of human and animal occupation in the Rhodanian tract show the predominance of Microsporum gypseum, which is scarcely found in man. Sporadic localizations, tightly limites, bound to cirulcation axes and international gathering, let us detect Microsporum cookei, Trichophyton verrucosum, Trichophyton mentagrophytes, Chrysosporium keratinophilum, and Keratinomyces ajelloi. However, in the last years, a progressive extension of recently imported kinds and a decrease in native kinds appears to have occurred.

  16. 3rd ENRI International Workshop on ATM/CNS

    CERN Document Server

    2014-01-01

    The Electronic Navigation Research Institute (ENRI) held its third International Workshop on ATM / CNS in 2013 with the theme of "Drafting the future sky". There is worldwide activity taking place in the research and development of modern air traffic management (ATM) and its enabling technologies in Communication, Navigation and Surveillance (CNS). Pioneering work is necessary to contribute to the global harmonization of air traffic management and control. At this workshop, leading experts in  research, industry and academia from around the world met to share their ideas and approaches on ATM/CNS related topics.

  17. A rare case of CNS tuberculosis with pregnancy

    Directory of Open Access Journals (Sweden)

    Sanjay Singh

    2015-06-01

    Full Text Available Whereas pelvic tuberculosis leading to infertility is quite common in female population of developing countries, Central Nervous System (CNS tuberculosis (TB with pregnancy is a rare entity. Most of the information on this subject is based on sporadic case reports only. Most of the earlier reports suggest very high adverse outcome of CNS Tuberculosis in pregnancy. We are presenting a case of CNS Tuberculosis which was diagnosed timely and managed appropriately in our institute with a favourable outcome, thus highlighting the importance of early diagnosis and treatment. [Int J Reprod Contracept Obstet Gynecol 2015; 4(3.000: 911-914

  18. CNS Vasculitis Associated with Waldenström Macroglobulinemia

    Science.gov (United States)

    Riangwiwat, Tanawan; Wu, Chris Y.; Santos-Ocampo, Alberto S.; Liu, Randal J.

    2016-01-01

    Waldenström macroglobulinemia (WM) is an indolent B cell lymphoproliferative disorder with monoclonal IgM secretion. We present a patient with WM who presented with multifocal acute cortical ischemic strokes and was found to have central nervous system (CNS) vasculitis. Workup was negative for cryoglobulins and hyperviscosity syndrome. Immunosuppression with intravenous steroids and cyclophosphamide stabilized the patient's mental status and neurologic deficits. On followup over 7 years, patient gained independence from walking aids and experienced no recurrences of CNS vasculitis. To our knowledge, CNS vasculitis in a WM patient, in the absence of cryoglobulins, has not been reported. Immunosuppression is the preferred treatment. PMID:27818812

  19. CNS Vasculitis Associated with Waldenström Macroglobulinemia

    Directory of Open Access Journals (Sweden)

    Tanawan Riangwiwat

    2016-01-01

    Full Text Available Waldenström macroglobulinemia (WM is an indolent B cell lymphoproliferative disorder with monoclonal IgM secretion. We present a patient with WM who presented with multifocal acute cortical ischemic strokes and was found to have central nervous system (CNS vasculitis. Workup was negative for cryoglobulins and hyperviscosity syndrome. Immunosuppression with intravenous steroids and cyclophosphamide stabilized the patient’s mental status and neurologic deficits. On followup over 7 years, patient gained independence from walking aids and experienced no recurrences of CNS vasculitis. To our knowledge, CNS vasculitis in a WM patient, in the absence of cryoglobulins, has not been reported. Immunosuppression is the preferred treatment.

  20. Identification of Phylogenetic Position in the Chlamydiaceae Family for Chlamydia Strains Released from Monkeys and Humans with Chlamydial Pathology

    Directory of Open Access Journals (Sweden)

    Alexander Karaulov

    2010-01-01

    Full Text Available Based on the results of the comparative analysis concerning relatedness and evolutional difference of the 16S–23S nucleotide sequences of the middle ribosomal cluster and 23S rRNA I domain, and based on identification of phylogenetic position for Chlamydophila pneumoniae and Chlamydia trichomatis strains released from monkeys, relatedness of the above stated isolates with similar strains released from humans and with strains having nucleotide sequences presented in the GenBank electronic database has been detected for the first time ever. Position of these isolates in the Chlamydiaceae family phylogenetic tree has been identified. The evolutional position of the investigated original Chlamydia and Chlamydophila strains close to analogous strains from the Gen-Bank electronic database has been demonstrated. Differences in the 16S–23S nucleotide sequence of the middle ribosomal cluster and 23S rRNA I domain of plasmid and nonplasmid Chlamydia trachomatis strains released from humans and monkeys relative to different genotype groups (group B-B, Ba, D, Da, E, L1, L2, L2a; intermediate group-F, G, Ga have been revealed for the first time ever. Abnormality in incA chromosomal gene expression resulting in Chlamydia life development cycle disorder, and decrease of Chlamydia virulence can be related to probable changes in the nucleotide sequence of the gene under consideration

  1. Protective and Pathological Immunity during Central Nervous System Infections.

    Science.gov (United States)

    Klein, Robyn S; Hunter, Christopher A

    2017-06-20

    The concept of immune privilege of the central nervous system (CNS) has dominated the study of inflammatory processes in the brain. However, clinically relevant models have highlighted that innate pathways limit pathogen invasion of the CNS and adaptive immunity mediates control of many neural infections. As protective responses can result in bystander damage, there are regulatory mechanisms that balance protective and pathological inflammation, but these mechanisms might also allow microbial persistence. The focus of this review is to consider the host-pathogen interactions that influence neurotropic infections and to highlight advances in our understanding of innate and adaptive mechanisms of resistance as key determinants of the outcome of CNS infection. Advances in these areas have broadened our comprehension of how the immune system functions in the brain and can readily overcome immune privilege. Copyright © 2017. Published by Elsevier Inc.

  2. Convulsant bicuculline modifies CNS muscarinic receptor affinity

    Directory of Open Access Journals (Sweden)

    Rodríguez de Lores Arnaiz Georgina

    2006-04-01

    Full Text Available Abstract Background Previous work from this laboratory has shown that the administration of the convulsant drug 3-mercaptopropionic acid (MP, a GAD inhibitor, modifies not only GABA synthesis but also binding of the antagonist [3H]-quinuclidinyl benzilate ([3H]-QNB to central muscarinic receptors, an effect due to an increase in affinity without modifications in binding site number. The cholinergic system has been implicated in several experimental epilepsy models and the ability of acetylcholine to regulate neuronal excitability in the neocortex is well known. To study the potential relationship between GABAergic and cholinergic systems with seizure activity, we analyzed the muscarinic receptor after inducing seizure by bicuculline (BIC, known to antagonize the GABA-A postsynaptic receptor subtype. Results We analyzed binding of muscarinic antagonist [3H]-QNB to rat CNS membranes after i.p. administration of BIC at subconvulsant (1.0 mg/kg and convulsant (7.5 mg/kg doses. Subconvulsant BIC dose failed to develop seizures but produced binding alteration in the cerebellum and hippocampus with roughly 40% increase and 10% decrease, respectively. After convulsant BIC dose, which invariably led to generalized tonic-clonic seizures, binding increased 36% and 15% to cerebellar and striatal membranes respectively, but decreased 12% to hippocampal membranes. Kd value was accordingly modified: with the subconvulsant dose it decreased 27% in cerebellum whereas it increased 61% in hippocampus; with the convulsant dose, Kd value decreased 33% in cerebellum but increased 85% in hippocampus. No change in receptor number site was found, and Hill number was invariably close to unity. Conclusion Results indicate dissimilar central nervous system area susceptibility of muscarinic receptor to BIC. Ligand binding was modified not only by a convulsant BIC dose but also by a subconvulsant dose, indicating that changes are not attributable to the seizure process

  3. Loss of Coupling Distinguishes GJB1 Mutations Associated with CNS Manifestations of CMT1X from Those Without CNS Manifestations

    Science.gov (United States)

    Abrams, Charles K.; Goman, Mikhail; Wong, Sarah; Scherer, Steven S.; Kleopa, Kleopas A.; Peinado, Alejandro; Freidin, Mona M.

    2017-01-01

    CMT1X, an X-linked inherited neuropathy, is caused by mutations in GJB1, which codes for Cx32, a gap junction protein expressed by Schwann cells and oligodendrocytes. Many GJB1 mutations cause central nervous system (CNS) abnormality in males, including stable subclinical signs and, less often, short-duration episodes characterized by motor difficulties and altered consciousness. However, some mutations have no apparent CNS effects. What distinguishes mutations with and without CNS manifestations has been unclear. Here we studied a total of 14 Cx32 mutations, 10 of which are associated with florid episodic CNS clinical syndromes in addition to peripheral neuropathy. The other 4 mutations exhibit neuropathy without clinical or subclinical CNS abnormalities. These “PNS-only” mutations (Y151C, V181M, R183C and L239I) form gap junction plaques and produce levels of junctional coupling similar to those for wild-type Cx32. In contrast, mutants with CNS manifestations (F51L, E102del, V139M, R142Q, R142W, R164W T55I, R164Q and C168Y) either form no morphological gap junction plaques or, if they do, produce little or no detectable junctional coupling. Thus, PNS and CNS abnormalities may involve different aspects of connexin function. PMID:28071741

  4. Advances in Drug Design Based on the Amino Acid Approach: Taurine Analogues for the Treatment of CNS Diseases

    Directory of Open Access Journals (Sweden)

    Paulo Renato Yamasaki

    2012-10-01

    Full Text Available Amino acids are well known to be an important class of compounds for the maintenance of body homeostasis and their deficit, even for the polar neuroactive aminoacids, can be controlled by supplementation. However, for the amino acid taurine (2-aminoethanesulfonic acid this is not true. Due its special physicochemical properties, taurine is unable to cross the blood-brain barrier. In addition of injured taurine transport systems under pathological conditions, CNS supplementation of taurine is almost null. Taurine is a potent antioxidant and anti-inflammatory semi-essential amino acid extensively involved in neurological activities, acting as neurotrophic factor, binding to GABA A/glycine receptors and blocking the excitotoxicity glutamate-induced pathway leading to be a neuroprotective effect and neuromodulation. Taurine deficits have been implicated in several CNS diseases, such as Alzheimer’s, Parkinson’s, epilepsy and in the damage of retinal neurons. This review describes the  CNS physiological functions of taurine and the development of new derivatives based on its structure useful in CNS disease treatment.

  5. [Methods and methodology of pathology].

    Science.gov (United States)

    Lushnikov, E F

    2016-01-01

    The lecture gives the state-of-the-art of the methodology of human pathology that is an area of the scientific and practice activity of specialists to produce and systematize objective knowledge of pathology and to use the knowledge in clinical medicine. It considers the objects and subjects of an investigation, materials and methods of a pathologist, and the results of his/her work.

  6. Progressive inflammatory pathology in the retina of aluminum-fed 5xFAD transgenic mice.

    Science.gov (United States)

    Pogue, A I; Dua, P; Hill, J M; Lukiw, W J

    2015-11-01

    At least 57 murine transgenic models for Alzheimer's disease (Tg-AD) have been developed to overexpress the 42 amino acid amyloid-beta (Aβ42) peptide in the central nervous system (CNS). These 'humanized murine Tg-AD models' have greatly expanded our understanding of the contribution of Aβ42 peptide-mediated pro-inflammatory neuropathology to the AD process. A number of independent laboratories using different amyloid-overexpressing Tg-AD models have shown that supplementation of murine Tg-AD diets and/or drinking water with aluminum significantly enhances Aβ42 peptide-mediated inflammatory pathology and AD-type cognitive change compared to animals receiving control diets. In humans AD-type pathology appears to originate in the limbic system and progressively spreads into primary processing and sensory regions such as the retina. In these studies, for the first time, we assess the propagation of Aβ42 and inflammatory signals into the retina of 5xFAD Tg-AD amyloid-overexpressing mice whose diets were supplemented with aluminum. The two most interesting findings were (1) that similar to other Tg-AD models, there was a significantly accelerated development of Aβ42 and inflammatory pathology in 5xFAD Tg-AD mice fed aluminum; and (2) in aluminum-supplemented animals, markers for inflammatory pathology appeared in both the brain and the retina as evidenced by an evolving presence of Aβ42 peptides, and accompanied by inflammatory markers - cyclooxygenase-2 (COX-2) and C-reactive protein (CRP). The results indicate that in the 5xFAD Tg-AD model aluminum not only enhances an Aβ42-mediated inflammatory degeneration of the brain but also appears to induce AD-type pathology in an anatomically-linked primary sensory area that involves vision.

  7. CNS Structural Anomalies in Iranian Children with Global Developmental Delay

    Directory of Open Access Journals (Sweden)

    Gholam Reza ZAMANI

    2013-02-01

    Full Text Available How to Cite This Article: Zamani GH, Shervin Badv R, Niksirat A, Alizadeh H. CNS Structural Anomalies in Iranian Children with Global Developmental Delay. Iran J Child Neurol. 2013 Winter; 7 (1:25-28. ObjectiveCentral Nervous system (CNS malformations are one of the most important causes of global developmental delay (GDD in Children. About one percent of infants with GDD have an inherited metabolic disorder and 3-10 percent have a chromosomal disorder. This study aimed to survey the frequency of brain structural anomalies and their subtypes among the variety of etiologic factors in children with GDD in our patients.Materials & MethodsThis study used the results of neuroimaging studies [unenhanced brain Magnetic Resonance Imaging (MRI] of all children who had been referred for evaluation of GDD to outpatient Clinic of Pediatric neurology at Children’s Medical Center affiliated to Tehran University of Medical Science between September 2009 and September 2010.ResultsIn this study, unenhanced brain MRI was performed on 405 children, of which80 cases (20 percent had brain structural anomalies. In 8.7 percent of the cases, previous history of brain structural disorders existed in other children of the family and 20 percent of mothers had inadequate consumption of folate during pregnancy.ConclusionBased on the results of this study, unenhanced cranial MRI seems to be a fundamental part of evaluation in all children with GDD. Adequate folate consumption as prophylaxis as well as genetic counseling can be worthy for high-risk mothers who have previous history of CNS anomaly or miscarriage to avoid repeated CNS anomalies in their next pregnancies. References1. Fenichel M. Clinical Pediatric Neurology: A Signs and Symptoms Approach. 6th ed. Philadelphia: Saunders; 2009. p. 119-52.2. A guide to investigation of children with developmental delay in East Anglia 2005Available from:http://www. phgfoundation.org/file/2366.3. Williams J. Global developmental

  8. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells

    DEFF Research Database (Denmark)

    Bursomanno, Sara; Beli, Petra; Khan, Asif M;

    2015-01-01

    SUMOylation is a form of post-translational modification involving covalent attachment of SUMO (Small Ubiquitin-like Modifier) polypeptides to specific lysine residues in the target protein. In human cells, there are four SUMO proteins, SUMO1-4, with SUMO2 and SUMO3 forming a closely related...... subfamily. SUMO2/3, in contrast to SUMO1, are predominantly involved in the cellular response to certain stresses, including heat shock. Substantial evidence from studies in yeast has shown that SUMOylation plays an important role in the regulation of DNA replication and repair. Here, we report a proteomic...... repair. We have also shown that deficiency of POLD3 leads to an increase in RPA-bound ssDNA when cells are under replication stress, suggesting that POLD3 plays a role in the cellular response to DNA replication stress. Considering that DNA replication stress is a source of genome instability...

  9. Fetal MRI in Prenatal Diagnosis of CNS Abnormalities

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2009-02-01

    Full Text Available The value of fetal MRI (fMRI compared to ultrasound in the prenatal detection of CNS abnormalities and impact on counseling were determined in 25 pregnant women examined at University of Dusseldorf, Germany.

  10. A curated transcriptome dataset collection to investigate the development and differentiation of the human placenta and its associated pathologies [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Alexandra K. Marr

    2016-05-01

    Full Text Available Compendia of large-scale datasets made available in public repositories provide a precious opportunity to discover new biomedical phenomena and to fill gaps in our current knowledge. In order to foster novel insights it is necessary to ensure that these data are made readily accessible to research investigators in an interpretable format. Here we make a curated, public, collection of transcriptome datasets relevant to human placenta biology available for further analysis and interpretation via an interactive data browsing interface. We identified and retrieved a total of 24 datasets encompassing 759 transcriptome profiles associated with the development of the human placenta and associated pathologies from the NCBI Gene Expression Omnibus (GEO and present them in a custom web-based application designed for interactive query and visualization of integrated large-scale datasets (http://placentalendocrinology.gxbsidra.org/dm3/landing.gsp. We also performed quality control checks using relevant biological markers. Multiple sample groupings and rank lists were subsequently created to facilitate data query and interpretation. Via this interface, users can create web-links to customized graphical views which may be inserted into manuscripts for further dissemination, or e-mailed to collaborators for discussion. The tool also enables users to browse a single gene across different projects, providing a mechanism for  developing new perspectives on the role of a molecule of interest across multiple biological states. The dataset collection we created here is available at: http://placentalendocrinology.gxbsidra.org/dm3.

  11. Violence, mental illness, and the brain - A brief history of psychosurgery: Part 3 - From deep brain stimulation to amygdalotomy for violent behavior, seizures, and pathological aggression in humans.

    Science.gov (United States)

    Faria, Miguel A

    2013-01-01

    In the final installment to this three-part, essay-editorial on psychosurgery, we relate the history of deep brain stimulation (DBS) in humans and glimpse the phenomenal body of work conducted by Dr. Jose Delgado at Yale University from the 1950s to the 1970s. The inception of the National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research (1974-1978) is briefly discussed as it pertains to the "determination of the Secretary of Health, Education and Welfare regarding the recommendations and guidelines on psychosurgery." The controversial work - namely recording of brain activity, DBS, and amygdalotomy for intractable psychomotor seizures in patients with uncontrolled violence - conducted by Drs. Vernon H. Mark and Frank Ervin is recounted. This final chapter recapitulates advances in neuroscience and neuroradiology in the evaluation of violent individuals and ends with a brief discussion of the problem of uncontrolled rage and "pathologic aggression" in today's modern society - as violence persists, and in response, we move toward authoritarianism, with less freedom and even less dignity.

  12. Human breast cancer in vitro: matching histo-pathology with small-angle x-ray scattering and diffraction enhanced x-ray imaging

    Science.gov (United States)

    Fernández, Manuel; Keyriläinen, Jani; Serimaa, Ritva; Torkkeli, Mika; Karjalainen-Lindsberg, Marja-Liisa; Leidenius, Marjut; von Smitten, Karl; Tenhunen, Mikko; Fiedler, Stefan; Bravin, Alberto; Weiss, Thomas M.; Suortti, Pekka

    2005-07-01

    Twenty-eight human breast tumour specimens were studied with small-angle x-ray scattering (SAXS), and 10 of those were imaged by the diffraction enhanced x-ray imaging (DEI) technique. The sample diameter was 20 mm and the thickness 1 mm. Two examples of ductal carcinoma are illustrated by histology images, DEI, and maps of the collagen d-spacing and scattered intensity in the Porod regime, which characterize the SAXS patterns from collagen-rich regions of the samples. Histo-pathology reveals the cancer-invaded regions, and the maps of the SAXS parameters show that in these regions the scattering signal differs significantly from scattering by the surrounding tissue, indicating a degradation of the collagen structure in the invaded regions. The DEI images show the borders between collagen and adipose tissue and provide a co-ordinate system for tissue mapping by SAXS. In addition, degradation of the collagen structure in an invaded region is revealed by fading contrast of the DEI refraction image. The 28 samples include fresh, defrosted tissue and formalin-fixed tissue. The d-values with their standard deviations are given. In the fresh samples there is a systematic 0.76% increase of the d-value in the invaded regions, averaged over 11 samples. Only intra-sample comparisons are made for the formalin-fixed samples, and with a long fixation time, the difference in the d-value stabilizes at about 0.7%. The correspondence between the DEI images, the SAXS maps and the histo-pathology suggests that definitive information on tumour growth and malignancy is obtained by combining these x-ray methods.

  13. Administrations of human adult ischemia-tolerant mesenchymal stem cells and factors reduce amyloid beta pathology in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Harach, Taoufiq; Jammes, Fabien; Muller, Charles; Duthilleul, Nicolas; Cheatham, Victoria; Zufferey, Valentin; Cheatham, David; Lukasheva, Yelizaveta A; Lasser, Theo; Bolmont, Tristan

    2017-03-01

    The impact of human adult ischemia-tolerant mesenchymal stem cells (hMSCs) and factors (stem cell factors) on cerebral amyloid beta (Aβ) pathology was investigated in a mouse model of Alzheimer's disease (AD). To this end, hMSCs were administered intravenously to APPPS1 transgenic mice that normally develop cerebral Aβ. Quantitative reverse transcriptase polymerase chain reaction biodistribution revealed that intravenously delivered hMSCs were readily detected in APPPS1 brains 1 hour following administration, and dropped to negligible levels after 1 week. Notably, intravenously injected hMSCs that migrated to the brain region were localized in the cerebrovasculature, but they also could be observed in the brain parenchyma particularly in the hippocampus, as revealed by immunohistochemistry. A single hMSC injection markedly reduced soluble cerebral Aβ levels in APPPS1 mice after 1 week, although increasing several Aβ-degrading enzymes and modulating a panel of cerebral cytokines, suggesting an amyloid-degrading and anti-inflammatory impact of hMSCs. Furthermore, 10 weeks of hMSC treatment significantly reduced cerebral Aβ plaques and neuroinflammation in APPPS1 mice, without increasing cerebral amyloid angiopathy or microhemorrhages. Notably, a repeated intranasal delivery of soluble factors secreted by hMSCs in culture, in the absence of intravenous hMSC injection, was also sufficient to diminish cerebral amyloidosis in the mice. In conclusion, this preclinical study strongly underlines that cerebral amyloidosis is amenable to therapeutic intervention based on peripheral applications of hMSC or hMSC factors, paving the way for a novel therapy for Aβ amyloidosis and associated pathologies observed in AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The role of CNS TLR2 activation in mediating innate versus adaptive neuroinflammation.

    Science.gov (United States)

    Luz, Avital; Fainstein, Nina; Einstein, Ofira; Ben-Hur, Tamir

    2015-11-01

    does not alter the clinical and pathological course of EAE, it implies that CNS TLR2 activation affects the innate but not adaptive brain immune responses.

  15. A crystallographic study of human NONO (p54(nrb)): overcoming pathological problems with purification, data collection and noncrystallographic symmetry.

    Science.gov (United States)

    Knott, Gavin J; Panjikar, Santosh; Thorn, Andrea; Fox, Archa H; Conte, Maria R; Lee, Mihwa; Bond, Charles S

    2016-06-01

    Non-POU domain-containing octamer-binding protein (NONO, a.k.a. p54(nrb)) is a central player in nuclear gene regulation with rapidly emerging medical significance. NONO is a member of the highly conserved Drosophila behaviour/human splicing (DBHS) protein family, a dynamic family of obligatory dimeric nuclear regulatory mediators. However, work with the NONO homodimer has been limited by rapid irreversible sample aggregation. Here, it is reported that L-proline stabilizes purified NONO homodimers, enabling good-quality solution small-angle X-ray structure determination and crystallization. NONO crystallized in the apparent space group P21 with a unique axis (b) of 408.9 Å and with evidence of twinning, as indicated by the cumulative intensity distribution L statistic, suggesting the possibility of space group P1. Structure solution by molecular replacement shows a superhelical arrangement of six NONO homodimers (or 12 in P1) oriented parallel to the long axis, resulting in extensive noncrystallographic symmetry. Further analysis revealed that the crystal was not twinned, but the collected data suffered from highly overlapping reflections that obscured the L-test. Optimized data collection on a new crystal using higher energy X-rays, a smaller beam width and an increased sample-to-detector distance produced non-overlapping reflections to 2.6 Å resolution. The steps taken to analyse and overcome this series of practical difficulties and to produce a biologically informative structure are discussed.

  16. Reversal of Alzheimer's-like pathology and behavior in human APP transgenic mice by mutation of Asp664.

    Science.gov (United States)

    Galvan, Veronica; Gorostiza, Olivia F; Banwait, Surita; Ataie, Marina; Logvinova, Anna V; Sitaraman, Sandhya; Carlson, Elaine; Sagi, Sarah A; Chevallier, Nathalie; Jin, Kunlin; Greenberg, David A; Bredesen, Dale E

    2006-05-02

    The deficits characteristic of Alzheimer's disease (AD) are believed to result, at least in part, from the neurotoxic effects of beta-amyloid peptides, a set of 39-43 amino acid fragments derived proteolytically from beta-amyloid precursor protein (APP). APP also is cleaved intracytoplasmically at Asp-664 to generate a second cytotoxic peptide, APP-C31, but whether this C-terminal processing of APP plays a role in the pathogenesis of AD is unknown. Therefore, we compared elements of the Alzheimer's phenotype in transgenic mice modeling AD with vs. without a functional Asp-664 caspase cleavage site. Surprisingly, whereas beta-amyloid production and plaque formation were unaltered, synaptic loss, astrogliosis, dentate gyral atrophy, increased neuronal precursor proliferation, and behavioral abnormalities were completely prevented by a mutation at Asp-664. These results suggest that Asp-664 plays a critical role in the generation of Alzheimer-related pathophysiological and behavioral changes in human APP transgenic mice, possibly as a cleavage site or via protein-protein interactions.

  17. Topographic maps of human motor cortex in normal and pathological conditions: mirror movements, amputations and spinal cord injuries.

    Science.gov (United States)

    Cohen, L G; Bandinelli, S; Topka, H R; Fuhr, P; Roth, B J; Hallett, M

    1991-01-01

    We studied motor evoked potentials to transcranial magnetic stimulation in patients with unilateral upper limb amputations, complete T10-T12 spinal cord transection, and congenital mirror movements and in controls. Different muscles in the trunk and upper and lower extremities were evaluated at rest. In controls, muscles could be activated with stimulation of regions several centimeters wide. These areas overlapped extensively when muscles studied were from the same limb and shifted positions abruptly when muscles were from different limbs. Distal muscles were easier to activate than proximal muscles and normally evidenced exclusively a contralateral representation. Congenital defects in motor control in patients with mirror movements resulted in marked derangement of the map of outputs of distal hand muscles with enlarged and ipsilateral representations. Peripheral lesions, either acquired (amputations) or congenital (congenital absence of a limb), resulted in plastic reorganization of motor outputs targeting muscles immediately proximal to the stump. Central nervous system lesions (i.e., spinal cord injury producing paraplegia) also resulted in enlargement of the map of outputs targeting muscles proximal to the lesion. These results indicate that magnetic stimulation is a useful non-invasive tool for exploring plastic changes in human motor pathways following different types of injury.

  18. CNS Involvement in AML Patient Treated with 5-Azacytidine

    Directory of Open Access Journals (Sweden)

    Diamantina Vasilatou

    2014-01-01

    Full Text Available Central nervous system (CNS involvement in acute myeloid leukemia (AML is a rare complication of the disease and is associated with poor prognosis. Sometimes the clinical presentation can be unspecific and the diagnosis can be very challenging. Here we report a case of CNS infiltration in a patient suffering from AML who presented with normal complete blood count and altered mental status.

  19. An instructive case of CNS histoplasmosis in an immunocompetent host.

    Science.gov (United States)

    Ramireddy, Sweeya; Wanger, Audrey; Ostrosky, Luis

    2012-01-01

    Histoplasma capsulatum is a dimorphic endemic fungus which infects both immunocompetent and immunocompromised hosts. Isolated CNS histoplasmosis is a rare presentation with increased risk in individuals with impaired cellular immunity, however not all patients with this condition are immunocompromised. We report a case of isolated CNS histoplasmosis in an otherwise healthy immunocompetent patient who was initially treated with Liposomal Amphotericin B followed by oral Voriconazole and later Itraconazole with significant improvement in clinical status.

  20. Cug2 is essential for normal mitotic control and CNS development in zebrafish

    Directory of Open Access Journals (Sweden)

    Kim Nam-Soon

    2011-08-01

    Full Text Available Abstract Background We recently identified a novel oncogene, Cancer-upregulated gene 2 (CUG2, which is essential for kinetochore formation and promotes tumorigenesis in mammalian cells. However, the in vivo function of CUG2 has not been studied in animal models. Results To study the function of CUG2 in vivo, we isolated a zebrafish homologue that is expressed specifically in the proliferating cells of the central nervous system (CNS. Morpholino-mediated knockdown of cug2 resulted in apoptosis throughout the CNS and the development of neurodegenerative phenotypes. In addition, cug2-deficient embryos contained mitotically arrested cells displaying abnormal spindle formation and chromosome misalignment in the neural plate. Conclusions Therefore, our findings suggest that Cug2 is required for normal mitosis during early neurogenesis and has functions in neuronal cell maintenance, thus demonstrating that the cug2 deficient embryos may provide a model system for human neurodegenerative disorders.

  1. Curriculum Guidelines for Pathology and Oral Pathology.

    Science.gov (United States)

    Journal of Dental Education, 1985

    1985-01-01

    Guidelines for dental school pathology courses describe the interrelationships of general, systemic, and oral pathology; primary educational goals; prerequisites; a core curriculum outline and behavioral objectives for each type of pathology. Notes on sequencing, faculty, facilities, and occupational hazards are included. (MSE)

  2. Insights into the Physiological Role of CNS Regeneration Inhibitors

    Directory of Open Access Journals (Sweden)

    Katherine Therese Baldwin

    2015-06-01

    Full Text Available The growth inhibitory nature of injured adult mammalian central nervous system (CNS tissue constitutes a major barrier to robust axonal outgrowth and functional recovery following trauma or disease. Prototypic CNS regeneration inhibitors are broadly expressed in the healthy and injured brain and spinal cord and include myelin-associated glycoprotein (MAG, the reticulon family member NogoA, oligodendrocyte myelin glycoprotein (OMgp, and chondroitin sulfate proteoglycans (CSPGs. These structurally diverse molecules strongly inhibit neurite outgrowth in vitro, and have been most extensively studied in the context of nervous system injury in vivo. The physiological role of CNS regeneration inhibitors in the naïve, or uninjured, CNS remains less well understood, but has received growing attention in recent years and is the focus of this review. CNS regeneration inhibitors regulate myelin development and axon stability, consolidate neuronal structure shaped by experience, and limit activity-dependent modification of synaptic strength. Altered function of CNS regeneration inhibitors is associated with neuropsychiatric disorders, suggesting crucial roles in brain development and health.

  3. The role of inflammation in CNS injury and disease.

    Science.gov (United States)

    Lucas, Sian-Marie; Rothwell, Nancy J; Gibson, Rosemary M

    2006-01-01

    For many years, the central nervous system (CNS) was considered to be 'immune privileged', neither susceptible to nor contributing to inflammation. It is now appreciated that the CNS does exhibit features of inflammation, and in response to injury, infection or disease, resident CNS cells generate inflammatory mediators, including proinflammatory cytokines, prostaglandins, free radicals and complement, which in turn induce chemokines and adhesion molecules, recruit immune cells, and activate glial cells. Much of the key evidence demonstrating that inflammation and inflammatory mediators contribute to acute, chronic and psychiatric CNS disorders is summarised in this review. However, inflammatory mediators may have dual roles, with detrimental acute effects but beneficial effects in long-term repair and recovery, leading to complications in their application as novel therapies. These may be avoided in acute diseases in which treatment administration might be relatively short-term. Targeting interleukin (IL)-1 is a promising novel therapy for stroke and traumatic brain injury, the naturally occurring antagonist (IL-1ra) being well tolerated by rheumatoid arthritis patients. Chronic disorders represent a greater therapeutic challenge, a problem highlighted in Alzheimer's disease (AD); significant data suggested that anti-inflammatory agents might reduce the probability of developing AD, or slow its progression, but prospective clinical trials of nonsteroidal anti-inflammatory drugs or cyclooxygenase inhibitors have been disappointing. The complex interplay between inflammatory mediators, ageing, genetic background, and environmental factors may ultimately regulate the outcome of acute CNS injury and progression of chronic neurodegeneration, and be critical for development of effective therapies for CNS diseases.

  4. The pathology of severe dengue in multiple organs of human fatal cases: histopathology, ultrastructure and virus replication.

    Directory of Open Access Journals (Sweden)

    Tiago F Póvoa

    Full Text Available Dengue is a public health problem, with several gaps in understanding its pathogenesis. Studies based on human fatal cases are extremely important and may clarify some of these gaps. In this work, we analyzed lesions in different organs of four dengue fatal cases, occurred in Brazil. Tissues were prepared for visualization in optical and electron microscopy, with damages quantification. As expected, we observed in all studied organ lesions characteristic of severe dengue, such as hemorrhage and edema, although other injuries were also detected. Cases presented necrotic areas in the liver and diffuse macro and microsteatosis, which were more accentuated in case 1, who also had obesity. The lung was the most affected organ, with hyaline membrane formation associated with mononuclear infiltrates in patients with pre-existing diseases such as diabetes and obesity (cases 1 and 2, respectively. These cases had also extensive acute tubular necrosis in the kidney. Infection induced destruction of cardiac fibers in most cases, with absence of nucleus and loss of striations, suggesting myocarditis. Spleens revealed significant destruction of the germinal centers and atrophy of lymphoid follicles, which may be associated to decrease of T cell number. Circulatory disturbs were reinforced by the presence of megakaryocytes in alveolar spaces, thrombus formation in glomerular capillaries and loss of endothelium in several tissues. Besides histopathological and ultrastructural observations, virus replication were investigated by detection of dengue antigens, especially the non-structural 3 protein (NS3, and confirmed by the presence of virus RNA negative strand (in situ hybridization, with second staining for identification of some cells. Results showed that dengue had broader tropism comparing to what was described before in literature, replicating in hepatocytes, type II pneumocytes and cardiac fibers, as well as in resident and circulating monocytes

  5. The pathology of severe dengue in multiple organs of human fatal cases: histopathology, ultrastructure and virus replication.

    Science.gov (United States)

    Póvoa, Tiago F; Alves, Ada M B; Oliveira, Carlos A B; Nuovo, Gerard J; Chagas, Vera L A; Paes, Marciano V

    2014-01-01

    Dengue is a public health problem, with several gaps in understanding its pathogenesis. Studies based on human fatal cases are extremely important and may clarify some of these gaps. In this work, we analyzed lesions in different organs of four dengue fatal cases, occurred in Brazil. Tissues were prepared for visualization in optical and electron microscopy, with damages quantification. As expected, we observed in all studied organ lesions characteristic of severe dengue, such as hemorrhage and edema, although other injuries were also detected. Cases presented necrotic areas in the liver and diffuse macro and microsteatosis, which were more accentuated in case 1, who also had obesity. The lung was the most affected organ, with hyaline membrane formation associated with mononuclear infiltrates in patients with pre-existing diseases such as diabetes and obesity (cases 1 and 2, respectively). These cases had also extensive acute tubular necrosis in the kidney. Infection induced destruction of cardiac fibers in most cases, with absence of nucleus and loss of striations, suggesting myocarditis. Spleens revealed significant destruction of the germinal centers and atrophy of lymphoid follicles, which may be associated to decrease of T cell number. Circulatory disturbs were reinforced by the presence of megakaryocytes in alveolar spaces, thrombus formation in glomerular capillaries and loss of endothelium in several tissues. Besides histopathological and ultrastructural observations, virus replication were investigated by detection of dengue antigens, especially the non-structural 3 protein (NS3), and confirmed by the presence of virus RNA negative strand (in situ hybridization), with second staining for identification of some cells. Results showed that dengue had broader tropism comparing to what was described before in literature, replicating in hepatocytes, type II pneumocytes and cardiac fibers, as well as in resident and circulating monocytes/macrophages and

  6. Epidemiological data of different human papillomavirus genotypes in cervical specimens of HIV-1-infected women without history of cervical pathology.

    Science.gov (United States)

    Videla, Sebastian; Darwich, Laila; Cañadas, Maria Paz; Paredes, Roger; Tarrats, Antoni; Castella, Eva; Llatjos, Mariona; Bofill, Margarita; Clotet, Bonaventura; Sirera, Guillem

    2009-02-01

    To study the epidemiology of different human papillomavirus (HPV) genotypes in cervical samples of HIV-1-infected women with normal Papanicolau smears. : Retrospective analysis of a prospective cohort. We selected HIV-1-infected women with 2 consecutive normal Papanicolau smears at baseline and at least 1 baseline and 1 follow-up cervical sample. HPV infection was assessed by second-generation hybrid capture (HC-2) and multiplex polymerase chain reaction (mPCR). HPV genotypes were determined by mPCR. From a cohort of 139 women followed up to 4 years, 93 women meeting the inclusion criteria were analyzed. The mean period between samples was 20 months (range, 6-44 months). HPV baseline prevalence was 63% [59/93; 95% confidence interval (CI), 53% to 73%] using polymerase chain reaction and 41% (38/93; 95% CI, 31% to 51%) using HC-2, P = 0.007 (kappa, 0.45; P = 0.001). The most prevalent high oncogenic risk genotypes (HR-HPV) were HPV-16 (28%), HPV-33 (18%), HPV-52 (12%), HPV-58 (11%), and HPV-39 (11%). Infection with multiple HPV genotypes was detected in >40% of women. HPV infection persisted at follow-up in 86% (51/59; 95% CI, 77% to 95%) by polymerase chain reaction and 76% (29/38; 95% CI, 62% to 90%) by HC-2. HPV infection persisted in 55% of women with samples available beyond 3 years. The actuarial probabilities of clearance and incidence of HPV infection at 36 months were 16% and 45%, respectively. HPV infection is highly prevalent and persistent among HIV-1-infected women with normal Papanicolau smears. HR-HPV genotypes other than HPV-16 (HPV-33, HPV-52) are frequently detected in HIV-infected women. mPCR provides better surveillance of HPV infection than HC-2 methods.

  7. The Pathology of Severe Dengue in Multiple Organs of Human Fatal Cases: Histopathology, Ultrastructure and Virus Replication

    Science.gov (United States)

    Póvoa, Tiago F.; Alves, Ada M. B.; Oliveira, Carlos A. B.; Nuovo, Gerard J.; Chagas, Vera L. A.; Paes, Marciano V.

    2014-01-01

    Dengue is a public health problem, with several gaps in understanding its pathogenesis. Studies based on human fatal cases are extremely important and may clarify some of these gaps. In this work, we analyzed lesions in different organs of four dengue fatal cases, occurred in Brazil. Tissues were prepared for visualization in optical and electron microscopy, with damages quantification. As expected, we observed in all studied organ lesions characteristic of severe dengue, such as hemorrhage and edema, although other injuries were also detected. Cases presented necrotic areas in the liver and diffuse macro and microsteatosis, which were more accentuated in case 1, who also had obesity. The lung was the most affected organ, with hyaline membrane formation associated with mononuclear infiltrates in patients with pre-existing diseases such as diabetes and obesity (cases 1 and 2, respectively). These cases had also extensive acute tubular necrosis in the kidney. Infection induced destruction of cardiac fibers in most cases, with absence of nucleus and loss of striations, suggesting myocarditis. Spleens revealed significant destruction of the germinal centers and atrophy of lymphoid follicles, which may be associated to decrease of T cell number. Circulatory disturbs were reinforced by the presence of megakaryocytes in alveolar spaces, thrombus formation in glomerular capillaries and loss of endothelium in several tissues. Besides histopathological and ultrastructural observations, virus replication were investigated by detection of dengue antigens, especially the non-structural 3 protein (NS3), and confirmed by the presence of virus RNA negative strand (in situ hybridization), with second staining for identification of some cells. Results showed that dengue had broader tropism comparing to what was described before in literature, replicating in hepatocytes, type II pneumocytes and cardiac fibers, as well as in resident and circulating monocytes/macrophages and

  8. Expression of LFA-1/ICAM-1 in CNS lymphomas: possible mechanism for lymphoma homing into the brain.

    Science.gov (United States)

    Bashir, R; Coakham, H; Hochberg, F

    1992-02-01

    We examined a possible role for the adhesion molecules LFA-1 and ICAM-1 in localizing central nervous system non-Hodgkin's lymphomas (CNS-NHLs) to the brain. Fresh frozen sections from 12 monoclonal CNS NHLs (11 primary, one secondary) were stained with monoclonal antibodies to LFA-1 alpha chain (CD11a), beta chain (CD18) and, ICAM-1 (CD54). Additional staining made use of rat monoclonal antibodies to the human and mouse high endothelial venule antigens HECA 452 and MECA 79 and mouse ICAM-1. The expression of these same molecules was also studied in mice with severe combined immunodeficiency (SCID) mice, bearing intracranial human lymphoblastoid cells. Eleven of the CNS-NHL tumors expressed LFA-1 alpha (one strongly, one intermediate, nine weakly). Nine of the tumors weakly expressed LFA-1 beta.. Nine of twelve tumors weakly expressed ICAM-1. In six of seven tumors definite blood vessels stained for ICAM-1. Non-tumor brain from two patients and non-tumor cerebral blood vessels showed no staining with CD11a, CD18 or CD54 antibodies. Strong expression of LFA-alpha and LFA-beta as well as ICAM-1 was noted in human lymphoblastoid cells (LCLs)/SCID mouse CNS lymphomas. Tumor blood vessels in these mice stained for mouse ICAM-1. Normal SCID mouse brains showed no staining with CD11a, CD18, CD54 or mouse ICAM-1 antibodies. Human, human/mouse CNS lymphomas, normal human, and mouse brains showed no staining with either HECA 452 or MECA 79.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Microglia activation: one of the checkpoints in the CNS inflammation caused by Angiostrongylus cantonensis infection in rodent model.

    Science.gov (United States)

    Wei, Jie; Wu, Feng; He, Ai; Zeng, Xin; Ouyang, Li-si; Liu, Ming-she; Zheng, Huan-qin; Lei, Wan-long; Wu, Zhong-dao; Lv, Zhi-yue

    2015-09-01

    Angiostrongylus cantonensis (A. cantonensis) is a rodent nematode. Adult worms of A. cantonensis live in the pulmonary arteries of rats; humans are non-permissive hosts like the mice. The larva cannot develop into an adult worm and only causes serious eosinophilic meningitis or meningo-encephalitis if humans or mice eat food containing larva of A. cantonensis in the third stage. The differing consequences largely depend on differing immune responses of hosts to parasite during A. cantonensis invasion and development. To further understand the reasons why mice and rats attain different outcomes in A. cantonensis infection, we used the HE staining to observe the pathological changes of infected mice and rats. In addition, we measured mRNA levels of some cytokines (IL-5, IL-6, IL-13, Eotaxin, IL-4, IL-10, TGF-β, IFN-γ, IL-17A, TNF-α, IL-1β, and iNOS) in brain tissues of mice and rats by real-time PCR. The result showed that brain inflammation in mice was more serious than in rats. Meanwhile, mRNA expression levels of IL-6, IL-1β, TNF-α, and iNOS increased after mice were infected. In contrast, mRNA levels of these cytokines in rats brain tissues decreased at post- infection 21 days. These cytokines mostly were secreted by activated microglia in central nervous system. Microglia of mice and rats were showed by Iba-1 (microglia marker) staining. In micee brains, microglia got together and had more significant activation than in rats brains. The results demonstrate that mice and rats have different CNS inflammation after infection by A. cantonensis, and it is in line with other researchers' reported findings. In conclusion, it is suggested that microglia activation is probably to be one of the most important factors in angiostrongyliasis from our study.

  10. An investigation of the effects of antiretroviral CNS penetration effectiveness on procedural learning in HIV+ drug users

    Science.gov (United States)

    Wilson, Michael J.; Martin-Engel, Lindsay; Vassileva, Jasmin; Gonzalez, Raul; Martin, Eileen M.

    2013-01-01

    Treatment with combination antiretroviral therapy (cART) regimens with a high capacity to penetrate the blood-brain barrier has been associated with lower levels of human immunodeficiency virus (HIV) in the central nervous system (CNS). This study examined neurocognitive performance among a sample of 118 HIV+ substance dependent individuals (SDIs) and 310 HIV− SDIs. HIV+ participants were prescribed cART regimens with varying capacity to penetrate the CNS as indexed by the revised CNS penetration effectiveness (CPE) scale. Participants completed the Rotary Pursuit Task (RPT) and the Weather Prediction Task (WPT)--two measures of procedural learning (PL) with known sensitivity to HIV infection--and a control task of sustained attention. HIV+ SDIs prescribed cART with relatively high CNS penetrance performed significantly more poorly on both tasks than HIV− controls. Task performance of HIV+ SDIs prescribed cART with relatively low CNS penetrance did not differ significantly from either HIV− controls or the HIV+/High CPE group, although a trend towards lower RPT performance relative to HIV− participants was observed. Between-group differences were not seen on a control task of motor impulsivity (Immediate Memory Task), indicating that the observed deficits among HIV+/High CPE SDIs may have some specificity. PMID:24079384

  11. Central nervous system lesions in adult T-cell leukaemia: MRI and pathology

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, M.; Korogi, Y.; Shigematsu, Y.; Liang, L.; Takahashi, M. [Department of Radiology, Kumamoto University School of Medicine, Honjo, Kumamoto (Japan); Matsuoka, M. [Second Division of Internal Medicine, Kumamoto University School of Medicine, Honjo, Kumamoto (Japan); Yamamoto, T. [Department of Pathology, Kumamoto University School of Medicine, Honjo, Kumamoto (Japan); Jhono, M. [Department of Dermatology, Kumamoto University School of Medicine, Honjo, Kumamoto (Japan); Eto, K. [The National Institute for Minamata Disease, Minamata (Japan)

    2002-07-01

    Adult T-cell leukaemia (ATL) is a T-cell lymphoid neoplasm caused by human T-cell leukaemia virus type I (HTLV-I). Radiological findings in central nervous system (CNS) involvement have not been well characterised. We reviewed the MRI of 18 patients with ATL who developed new neurological symptoms or signs, and pathology specimens from a 53-year-old woman who died of ATL. MRI findings were divided into three categories: definite, probable, and other abnormal. Definite and probable findings were defined as ATL-related. The characteristic findings were multiple parenchymal masses with or without contrast enhancement adjacent to cerebrospinal fluid (CSF) spaced and the deep grey matter of both cerebral hemispheres, plus leptomeningeal lesion. One patient had both cerebral and spinal cord lesions. Other abnormal findings in eight patients included one case of leukoencephalopathy caused by methotrexate. The histology findings consisted of clusters of tumour cells along perivascular spaces, and scattered infiltration of the parenchyma, with nests of tumour cells. Leptomeningeal infiltration by tumour spread into the parenchyma and secondary degeneration of the neuronal tracts was observed. MRI was useful for detecting CNS invasion by ATL and differentiating it from other abnormalities. The MRI findings seemed to correlate well with the histological changes. (orig.)

  12. NFIA haploinsufficiency is associated with a CNS malformation syndrome and urinary tract defects.

    Directory of Open Access Journals (Sweden)

    Weining Lu

    2007-05-01

    Full Text Available Complex central nervous system (CNS malformations frequently coexist with other developmental abnormalities, but whether the associated defects share a common genetic basis is often unclear. We describe five individuals who share phenotypically related CNS malformations and in some cases urinary tract defects, and also haploinsufficiency for the NFIA transcription factor gene due to chromosomal translocation or deletion. Two individuals have balanced translocations that disrupt NFIA. A third individual and two half-siblings in an unrelated family have interstitial microdeletions that include NFIA. All five individuals exhibit similar CNS malformations consisting of a thin, hypoplastic, or absent corpus callosum, and hydrocephalus or ventriculomegaly. The majority of these individuals also exhibit Chiari type I malformation, tethered spinal cord, and urinary tract defects that include vesicoureteral reflux. Other genes are also broken or deleted in all five individuals, and may contribute to the phenotype. However, the only common genetic defect is NFIA haploinsufficiency. In addition, previous analyses of Nfia(-/- knockout mice indicate that Nfia deficiency also results in hydrocephalus and agenesis of the corpus callosum. Further investigation of the mouse Nfia(+/- and Nfia(-/- phenotypes now reveals that, at reduced penetrance, Nfia is also required in a dosage-sensitive manner for ureteral and renal development. Nfia is expressed in the developing ureter and metanephric mesenchyme, and Nfia(+/- and Nfia(-/- mice exhibit abnormalities of the ureteropelvic and ureterovesical junctions, as well as bifid and megaureter. Collectively, the mouse Nfia mutant phenotype and the common features among these five human cases indicate that NFIA haploinsufficiency contributes to a novel human CNS malformation syndrome that can also include ureteral and renal defects.

  13. Behavioral and Genetic Evidence for GIRK Channels in the CNS: Role in Physiology, Pathophysiology, and Drug Addiction.

    Science.gov (United States)

    Mayfield, Jody; Blednov, Yuri A; Harris, R Adron

    2015-01-01

    G protein-coupled inwardly rectifying potassium (GIRK) channels are widely expressed throughout the brain and mediate the inhibitory effects of many neurotransmitters. As a result, these channels are important for normal CNS function and have also been implicated in Down syndrome, Parkinson's disease, psychiatric disorders, epilepsy, and drug addiction. Knockout mouse models have provided extensive insight into the significance of GIRK channels under these conditions. This review examines the behavioral and genetic evidence from animal models and genetic association studies in humans linking GIRK channels with CNS disorders. We further explore the possibility that subunit-selective modulators and other advanced research tools will be instrumental in establishing the role of individual GIRK subunits in drug addiction and other relevant CNS diseases and in potentially advancing treatment options for these disorders. © 2015 Elsevier Inc. All rights reserved.

  14. Corrosion Behavior of Ferritic/Martensitic Steels CNS-I and Modified CNS-II in Supercritical Water

    Institute of Scientific and Technical Information of China (English)

    YANG Ying; YAN Qing-zhi; YANG Ya-feng; ZHANG Le-fu; GE Chang-chun

    2012-01-01

    The corrosion behaviors of CNS-I and modified CNS-II were evaluated by exposing to superciritical water (SCW) at 550℃ and 25 MPa with a dissolved oxygen concentration of 200× 10 ^-9 for up to 1 000 h. Detailed corrosion results of these two alloys were provided, including the growth rate of the oxide scales, microstructure of the oxide scales, distribution of phases and alloying elements. The mass gains of CNS-I and modified CNS-II were 609.73 mg/dm2 and 459.42 mg/dm2 , respectively, after exposing to SCW for 1 000 h. A duplex oxide scale with an outer porous magnetite layer and an inner relatively dense magnetite/spinel-mixed layer was identified on CNS-I and modified CNS-II after the test. The oxide scales were rather porous at the beginning of the test but the porosity decreased with increase of the exposure duration. It was found that Fe was enriched in the outer oxide layer, Cr was enriched in the inner oxide layer and O existed at a very high concnetration in the whole oxide scale. Other alloying elements such as Mo, W, Mn were depleted from the outer oxide layer and showed slightly enrichment in the inner oxide layer. The distributution of Ni was different from other elements, it was enriched in the interface bewteen the base metal and the oxide scale and depleted in the outer and inner oxide layers.

  15. The prostaglandin F synthase activity of the human aldose reductase AKR1B1 brings new lenses to look at pathologic conditions.

    Directory of Open Access Journals (Sweden)

    Eva eBresson

    2012-05-01

    Full Text Available Prostaglandins are important regulators of female reproductive functions to which aldose reductases exhibiting hydroxysteroid dehydrogenase activity also contribute. Our work on the regulation of reproductive function by prostaglandins (PGs, lead us to the discovery that AKR1B5 and later AKR1B1 were highly efficient and physiologically relevant PGF synthases. PGE2 and PGF2α are the main prostanoids produced in the human endometrium and proper balance in their relative production is important for normal menstruation and optimal fertility. Recent evidence suggests that PGE2 and PGF2α may constitute a functional dyad with physiological relevance at least as important as the prostacyclin-thromboxane dyad in the vascular system. We have recently reported that AKR1B1 was expressed and modulated in association with PGF2α production in response to IL-1β in the human endometrium. In the present study, we show that the human AKR1B1 (gene ID: 231 also known as ALDR1 or ALR2 is a functional PGF2α synthase in different models of living cells and tissues. Using human endometrial cells, prostate and vascular smooth muscle cells, cardiomyocytes and endothelial cells we demonstrate that IL-1β is able to up regulate COX-2 and AKR1B1 proteins as well as PGF2α production under normal glucose concentrations. We show that the promoter activity of AKR1B1 gene is increased by IL-1β particularly around the multiple stress response region (MSRR containing two putative antioxidant response elements (ARE adjacent to TonE and AP1.We also show that AKR1B1 is able to regulate PGE2 production through PGF2α acting on its FP receptor and that aldose reductase inhibitors (ARIs like alrestatin, statil (ponalrestat and EBPC exhibit distinct and characteristic inhibition of PGF2α production in different cell models. The PGF synthase activity of AKR1B1 represents a new and important target to regulate ischemic and inflammatory responses associated with several human

  16. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Tansey Malú G

    2008-10-01

    Full Text Available Abstract The role of tumor necrosis factor (TNF as an immune mediator has long been appreciated but its function in the brain is still unclear. TNF receptor 1 (TNFR1 is expressed in most cell types, and can be activated by binding of either soluble TNF (solTNF or transmembrane TNF (tmTNF, with a preference for solTNF; whereas TNFR2 is expressed primarily by microglia and endothelial cells and is preferentially activated by tmTNF. Elevation of solTNF is a hallmark of acute and chronic neuroinflammation as well as a number of neurodegenerative conditions including ischemic stroke, Alzheimer's (AD, Parkinson's (PD, amyotrophic lateral sclerosis (ALS, and multiple sclerosis (MS. The presence of this potent inflammatory factor at sites of injury implicates it as a mediator of neuronal damage and disease pathogenesis, making TNF an attractive target for therapeutic development to treat acute and chronic neurodegenerative conditions. However, new and old observations from animal models and clinical trials reviewed here suggest solTNF and tmTNF exert different functions under normal and pathological conditions in the CNS. A potential role for TNF in synaptic scaling and hippocampal neurogenesis demonstrated by recent studies suggest additional in-depth mechanistic studies are warranted to delineate the distinct functions of the two TNF ligands in different parts of the brain prior to large-scale development of anti-TNF therapies in the CNS. If inactivation of TNF-dependent inflammation in the brain is warranted by additional pre-clinical studies, selective targeting of TNFR1-mediated signaling while sparing TNFR2 activation may lessen adverse effects of anti-TNF therapies in the CNS.

  17. Decreased agonist-stimulated mitochondrial ATP production caused by a pathological reduction in endoplasmic reticulum calcium content in human complex I deficiency.

    Science.gov (United States)

    Visch, Henk-Jan; Koopman, Werner J H; Leusink, Anouk; van Emst-de Vries, Sjenet E; van den Heuvel, Lambertus W P J; Willems, Peter H G M; Smeitink, Jan A M

    2006-01-01

    Although a large number of mutations causing malfunction of complex I (NADH:ubiquinone oxidoreductase) of the OXPHOS system is now known, their cell biological consequences remain obscure. We previously showed that the bradykinin (Bk)-induced increase in mitochondrial [ATP] ([ATP](M)) is significantly reduced in primary skin fibroblasts from a patient with an isolated complex I deficiency. The present work addresses the mechanism(s) underlying this impaired response. Luminometry of fibroblasts from 6 healthy subjects and 14 genetically characterized patients expressing mitochondria targeted luciferase revealed that the Bk-induced increase in [ATP](M) was significantly, but to a variable degree, decreased in 10 patients. The same variation was observed for the increases in mitochondrial [Ca(2+)] ([Ca(2+)](M)), measured with mitochondria targeted aequorin, and cytosolic [Ca(2+)] ([Ca(2+)](C)), measured with fura-2, and for the Ca(2+) content of the endoplasmic reticulum (ER), calculated from the increase in [Ca(2+)](C) evoked by thapsigargin, an inhibitor of the ER Ca(2+) ATPase. Regression analysis revealed that the increase in [ATP](M) was directly proportional to the increases in [Ca(2+)](C) and [Ca(2+)](M) and to the ER Ca(2+) content. Our findings provide evidence that a pathological reduction in ER Ca(2+) content is the direct cause of the impaired Bk-induced increase in [ATP](M) in human complex I deficiency.

  18. Detection of human papilomavirus types 16 and 18 in pathologic samples from patients with cervical cancer by PCR and RFLP methods

    Directory of Open Access Journals (Sweden)

    Parviz Maleknejad

    2006-05-01

    Full Text Available Infection with human papiloma virus (HPV is the most frequent sexually transmitted disease worldwide. HPV types 16, 18, 31 and 33 are considered as the most important types in the cervical cancer.This study was undertaken on 64 samples of archival cervical carcinoma pathologic to assess the rate of HPV infection (HPV16,18 in cervical carcinoma among Iranian patients. HPV DNA was detected by polymerase chain reaction (PCR and typing by restriction fragment length polymorphism (RFLP analysis.The total prevalence of HPV in this study (HPV16,18 for all cases was 59.4% (38/64. HPV type 16 was the most common one (22/64, 34% followed by HPV type 18 (16/64, 25%. On the basis of the rate of HPV (16,18 which were detected in squamous cell carcinoma and adenocarcinoma,only women with HPV18 infection showed a statistically significant risk for development of cervical cancer (P=0.019 while P value for HPV16 was 0.47 .

  19. Horizontal transmission of malignancy: in-vivo fusion of human lymphomas with hamster stroma produces tumors retaining human genes and lymphoid pathology.

    Directory of Open Access Journals (Sweden)

    David M Goldenberg

    Full Text Available We report the in-vivo fusion of two Hodgkin lymphomas with golden hamster cheek pouch cells, resulting in serially-transplanted (over 5-6 years GW-532 and GW-584 heterosynkaryon tumor cells displaying both human and hamster DNA (by FISH, lymphoma-like morphology, aggressive metastasis, and retention of 7 human genes (CD74, CXCR4, CD19, CD20, CD71, CD79b, and VIM out of 24 tested by PCR. The prevalence of B-cell restricted genes (CD19, CD20, and CD79b suggests that this uniform population may be the clonal initiating (malignant cells of Hodgkin lymphoma, despite their not showing translation to their respective proteins by immunohistochemical analysis. This is believed to be the first report of in-vivo cell-cell fusion of human lymphoma and rodent host cells, and may be a method to disclose genes regulating both organoid and metastasis signatures, suggesting that the horizontal transfer of tumor DNA to adjacent stromal cells may be implicated in tumor heterogeneity and progression. The B-cell gene signature of the hybrid xenografts suggests that Hodgkin lymphoma, or its initiating cells, is a B-cell malignancy.

  20. 14-3-3 adaptor protein-protein interactions as therapeutic targets for CNS diseases.

    Science.gov (United States)

    Kaplan, Andrew; Ottmann, Christian; Fournier, Alyson E

    2017-09-14

    14-3-3s are a family of ubiquitously expressed adaptor proteins that regulate hundreds of functionally diverse 'client proteins.' In humans, there are seven isoforms with conserved structure and function. 14-3-3s typically bind to client proteins at phosphorylated serine/threonine motifs via a linear binding groove. Binding can have a variety of effects on the stability, activity and/or localization of the client protein. 14-3-3s are generating significant interest as potential drug targets for their involvement in cellular homeostasis and disease. They are especially abundant in the central nervous system (CNS) and are implicated in numerous CNS diseases, often through specific interactions with disease-relevant client proteins. Several tool compounds that can modulate 14-3-3 interactions with client proteins to elicit therapeutic effects have recently been described. Here we offer a perspective on the functions of 14-3-3s in neurons and the potential development of drugs to therapeutically target 14-3-3 PPIs for CNS diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A dramatic increase of C1q protein in the CNS during normal aging.

    Science.gov (United States)

    Stephan, Alexander H; Madison, Daniel V; Mateos, José María; Fraser, Deborah A; Lovelett, Emilie A; Coutellier, Laurence; Kim, Leo; Tsai, Hui-Hsin; Huang, Eric J; Rowitch, David H; Berns, Dominic S; Tenner, Andrea J; Shamloo, Mehrdad; Barres, Ben A

    2013-08-14

    The decline of cognitive function has emerged as one of the greatest health threats of old age. Age-related cognitive decline is caused by an impacted neuronal circuitry, yet the molecular mechanisms responsible are unknown. C1q, the initiating protein of the classical complement cascade and powerful effector of the peripheral immune response, mediates synapse elimination in the developing CNS. Here we show that C1q protein levels dramatically increase in the normal aging mouse and human brain, by as much as 300-fold. This increase was predominantly localized in close proximity to synapses and occurred earliest and most dramatically in certain regions of the brain, including some but not all regions known to be selectively vulnerable in neurodegenerative diseases, i.e., the hippocampus, substantia nigra, and piriform cortex. C1q-deficient mice exhibited enhanced synaptic plasticity in the adult and reorganization of the circuitry in the aging hippocampal dentate gyrus. Moreover, aged C1q-deficient mice exhibited significantly less cognitive and memory decline in certain hippocampus-dependent behavior tests compared with their wild-type littermates. Unlike in the developing CNS, the complement cascade effector C3 was only present at very low levels in the adult and aging brain. In addition, the aging-dependent effect of C1q on the hippocampal circuitry was independent of C3 and unaccompanied by detectable synapse loss, providing evidence for a novel, complement- and synapse elimination-independent role for C1q in CNS aging.

  2. High doses of pseudoephedrine hydrochloride accelerate onset of CNS oxygen toxicity seizures in unanesthetized rats.

    Science.gov (United States)

    Pilla, R; Held, H E; Landon, C S; Dean, J B

    2013-08-29

    Pseudoephedrine (PSE) salts (hydrochloride and sulfate) are commonly used as nasal and paranasal decongestants by scuba divers. Anecdotal reports from the Divers Alert Network suggest that taking PSE prior to diving while breathing pure O₂ increases the risk for CNS oxygen toxicity (CNS-OT), which manifests as seizures. We hypothesized that high doses of PSE reduce the latency time to seizure (LS) in unanesthetized rats breathing 5 atmospheres absolute (ATA) of hyperbaric oxygen. Sixty-three male rats were implanted with radio-transmitters that recorded electroencephalogram activity and body temperature. After ≥7-day recovery, and 2 h before "diving", each rat was administered either saline solution (control) or PSE hydrochloride intragastrically at the following doses (mg PSE/kg): 0, 40, 80, 100, 120, 160, and 320. Rats breathed pure O₂ and were dived to 5ATA until the onset of behavioral seizures coincident with neurological seizures. LS was the time elapsed between reaching 5ATA and exhibiting seizures. We observed a significant dose-dependent decrease in the LS at doses of 100-320 mg/kg, whereas no significant differences in LS from control value were observed at doses ≤80 mg/kg. Our findings showed that high doses of PSE accelerate the onset of CNS-OT seizures in unanesthetized rats breathing 5ATA of poikilocapnic hyperoxia. Extrapolating our findings to humans, we conclude that the recommended daily dose of PSE should not be abused prior to diving with oxygen-enriched gas mixes or pure O₂.

  3. Northwestern profiling of potential translation-regulatory proteins in human breast epithelial cells and malignant breast tissues: evidence for pathological activation of the IGF1R IRES.

    Science.gov (United States)

    Blume, Scott W; Jackson, Nateka L; Frost, Andra R; Grizzle, William E; Shcherbakov, Oleg D; Choi, Hyoungsoo; Meng, Zheng

    2010-06-01

    . Most importantly, we are able to assess the RNA-binding activities of these putative translation-regulatory proteins in primary human breast surgical specimens, and begin to discern positive correlations between individual ITAFs and the malignant phenotype. Together with our previous findings, these new data provide further evidence that pathological dysregulation of IGF1R translational control may contribute to development and progression of human breast cancer, and breast metastasis in particular.

  4. CNS Anticancer Drug Discovery and Development Conference White Paper.

    Science.gov (United States)

    Levin, Victor A; Tonge, Peter J; Gallo, James M; Birtwistle, Marc R; Dar, Arvin C; Iavarone, Antonio; Paddison, Patrick J; Heffron, Timothy P; Elmquist, William F; Lachowicz, Jean E; Johnson, Ted W; White, Forest M; Sul, Joohee; Smith, Quentin R; Shen, Wang; Sarkaria, Jann N; Samala, Ramakrishna; Wen, Patrick Y; Berry, Donald A; Petter, Russell C

    2015-11-01

    Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric "Accelerating Drug Discovery and Development for Brain Tumors," further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. The Danish Pathology Register

    DEFF Research Database (Denmark)

    Bjerregaard, Beth; Larsen, Ole B

    2011-01-01

    The National Board of Health, Denmark in 1997 published guidelines for reporting of pathology data and the Danish Pathology Register (DPR) was established.......The National Board of Health, Denmark in 1997 published guidelines for reporting of pathology data and the Danish Pathology Register (DPR) was established....

  6. Illumination from light-emitting diodes (LEDs) disrupts pathological cytokines expression and activates relevant signal pathways in primary human retinal pigment epithelial cells.

    Science.gov (United States)

    Shen, Ye; Xie, Chen; Gu, Yangshun; Li, Xiuyi; Tong, Jianping

    2016-04-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the aged people. The latest systemic review of epidemiological investigations revealed that excessive light exposure increases the risk of AMD. With the drastically increasing use of high-energy light-emitting diodes (LEDs) light in our domestic environment nowadays, it is supposed to pose a potential oxidative threat to ocular health. Retinal pigment epithelium (RPE) is the major ocular source of pathological cytokines, which regulate local inflammation and angiogenesis. We hypothesized that high-energy LED light might disrupt the pathological cytokine expression of retinal pigment epithelium (RPE), contributing to the pathogenesis of AMD. Primary human RPE cells were isolated from eyecups of normal eye donors and seeded into plate wells for growing to confluence. Two widely used multichromatic white light-emitting diodes (LEDs) with correlated color temperatures (CCTs) of 2954 and 7378 K were used in this experiment. The confluent primary RPE cells were under white LEDs light exposure until 24 h. VEGF-A, IL-6, IL-8 and MCP-1 proteins and mRNAs were measured using an ELISA kit and RT-PCR, respectively. Activation of mitogen-activated protein kinases (MAPKs), Akt, Janus kinase (JAK)2 and Nuclear factor (NF)-κB signal pathways after LEDs illumination were evaluated by western blotting analysis. The level of reactive oxygen species (ROS) using chloromethyl- 2',7'-dichlorodihydrofluorescein diacetate. Inhibitors of relevant signal pathways and anti-oxidants were added to the primary RPE cells before LEDs illumination to evaluate their biological functions. We found that 7378 K light, but not 2954 K upregulated the VEGF-A, IL-6, IL-8 and downregulated MCP-1 proteins and mRNAs levels in a time-dependent manner. In parallel, initial activation of MAPKs and NF-κB signal pathways were also observed after 7378 K light exposure. Mechanistically, antioxidants for eliminating reactive oxygen

  7. Mucopolysaccharidosis IIIB, a lysosomal storage disease, triggers a pathogenic CNS autoimmune response

    Directory of Open Access Journals (Sweden)

    Popovich Phillip G

    2010-07-01

    Full Text Available Abstract Background Recently, using a mouse model of mucopolysaccharidosis (MPS IIIB, a lysosomal storage disease with severe neurological deterioration, we showed that MPS IIIB neuropathology is accompanied by a robust neuroinflammatory response of unknown consequence. This study was to assess whether MPS IIIB lymphocytes are pathogenic. Methods Lymphocytes from MPS IIIB mice were adoptively transferred to naïve wild-type mice. The recipient animals were then evaluated for signs of disease and inflammation in the central nervous system. Results Our results show for the first time, that lymphocytes isolated from MPS IIIB mice caused a mild paralytic disease when they were injected systemically into naïve wild-type mice. This disease is characterized by mild tail and lower trunk weakness with delayed weight gain. The MPS IIIB lymphocytes also trigger neuroinflammation within the CNS of recipient mice characterized by an increase in transcripts of IL2, IL4, IL5, IL17, TNFα, IFNα and Ifi30, and intraparenchymal lymphocyte infiltration. Conclusions Our data suggest that an autoimmune response directed at CNS components contributes to MPS IIIB neuropathology independent of lysosomal storage pathology. Adoptive transfer of purified T-cells will be needed in future studies to identify specific effector T-cells in MPS IIIB neuroimmune pathogenesis.

  8. Extending Injury- and Disease-Resistant CNS Phenotypes by Repetitive Epigenetic Conditioning

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Gidday

    2015-03-01

    Full Text Available Significant reductions in the extent of acute injury in the CNS can be achieved by exposure to different preconditioning stimuli, but the duration of the induced protective phenotype is typically short-lasting, and thus is deemed as limiting its clinical applicability. Extending the period over which such adaptive epigenetic changes persist – in effect, expanding conditioning’s therapeutic window – would significantly broaden the potential applications of such a treatment approach in patients. The frequency of the conditioning stimulus may hold the key. While transient (1-3 days protection against CNS ischemic injury is well established preclinically following a single preconditioning stimulus, repetitively presenting preconditioning stimuli extends the duration of ischemic tolerance by many weeks. Moreover, repetitive intermittent postconditioning enhances postischemic recovery metrics and improves long-term survival. Intermittent conditioning is also efficacious for preventing or delaying injury in preclinical models of chronic neurodegenerative disease, and for promoting long-lasting functional improvements in a number of other pathologies as well. Although the detailed mechanisms underlying these protracted kinds of neuroplasticity remain largely unstudied, accumulating empirical evidence supports the contention that all of these adaptive phenotypes are epigenetically mediated. Going forward, additional preclinical demonstrations of the ability to induce sustained beneficial phenotypes that reduce the burden of acute and chronic neurodegeneration, and experimental interrogations of the regulatory constructs responsible for these epigenetic responses, will accelerate the identification of not only efficacious, but practical, adaptive epigenetics-based treatments for individuals with neurological disease.

  9. Age-related response of IL-4/Luc/CNS-1 transgenic miceto phthalic anhydrideexposure

    Directory of Open Access Journals (Sweden)

    Sung Ji Eun

    2016-01-01

    Full Text Available Age-related changes are associated with susceptibility to infection, malignancy, autoimmunity, response to vaccination and wound healing. To investigate the relationship of several pathological phenotypes of allergic inflammationto age, alterations in theIL-4 derived luciferase signal and general phenotype biomarkers were measured in young (2-month-old and old (12-month-old IL-4/Luc/CNS-1 transgenic (Tg mice with phthalic anhydride (PA-induced allergic inflammationfor 2 weeks. There was no difference in the ear phenotypes and thickness between young and old mice, although these levels were higher in the PA-treated group thantheacetone-olive oil (AOO-treated group. The luciferase signal was detected in the mesenteric lymph node (ML, thymus and pancreas of both young and old PA-treated mice, but showed a greater increasein old Tg mice (exceptin thethymus. Agreaterincrease inthe epidermal thickness and dermal thickness was measured in old PA-treated mice than young PA-treated mice, while total mast cell number remainedconstant in both groups. Furthermore, the concentration of IgE was greater in young PA-treated mice than in old PA-treated mice,as wasthe expression of VEGF and IL-6. Taken together, theresults of this study showed that an animal’s age is an important factor that must be considered when PA-induced allergic inflammation in IL-4/Luc/CNS-1 Tg mice areinvestigated to screen for allergens and therapeutic compounds.

  10. Subspecialty surgical pathologist′s performances as triage pathologists on a telepathology-enabled quality assurance surgical pathology service: A human factors study

    Directory of Open Access Journals (Sweden)

    Beth L. Braunhut

    2014-01-01

    Full Text Available Background: The case triage practice workflow model was used to manage incoming cases on a telepathology-enabled surgical pathology quality assurance (QA service. Maximizing efficiency of workflow and the use of pathologist time requires detailed information on factors that influence telepathologists′ decision-making on a surgical pathology QA service, which was gathered and analyzed in this study. Materials and Methods: Surgical pathology report reviews and telepathology service logs were audited, for 1862 consecutive telepathology QA cases accrued from a single Arizona rural hospital over a 51 month period. Ten university faculty telepathologists served as the case readers. Each telepathologist had an area of subspecialty surgical pathology expertise (i.e. gastrointestinal pathology, dermatopathology, etc. but functioned largely as a general surgical pathologist while on this telepathology-enabled QA service. They handled all incoming cases during their individual 1-h telepathology sessions, regardless of the nature of the organ systems represented in the real-time incoming stream of outside surgical pathology cases. Results: The 10 participating telepathologists′ postAmerican Board of pathology examination experience ranged from 3 to 36 years. This is a surrogate for age. About 91% of incoming cases were immediately signed out regardless of the subspecialty surgical pathologists′ area of surgical pathology expertise. One hundred and seventy cases (9.13% were deferred. Case concurrence rates with the provisional surgical pathology diagnosis of the referring pathologist, for incoming cases, averaged 94.3%, but ranged from 88.46% to 100% for individual telepathologists. Telepathology case deferral rates, for second opinions or immunohistochemistry, ranged from 4.79% to 21.26%. Differences in concordance rates and deferral rates among telepathologists, for incoming cases, were significant but did not correlate with years of experience as a

  11. Glial connexins and gap junctions in CNS inflammation and disease.

    Science.gov (United States)

    Kielian, Tammy

    2008-08-01

    Gap junctions facilitate direct cytoplasmic communication between neighboring cells, facilitating the transfer of small molecular weight molecules involved in cell signaling and metabolism. Gap junction channels are formed by the joining of two hemichannels from adjacent cells, each composed of six oligomeric protein subunits called connexins. Of paramount importance to CNS homeostasis are astrocyte networks formed by gap junctions, which play a critical role in maintaining the homeostatic regulation of extracellular pH, K+, and glutamate levels. Inflammation is a hallmark of several diseases afflicting the CNS. Within the past several years, the number of publications reporting effects of cytokines and pathogenic stimuli on glial gap junction communication has increased dramatically. The purpose of this review is to discuss recent observations characterizing the consequences of inflammatory stimuli on homocellular gap junction coupling in astrocytes and microglia as well as changes in connexin expression during various CNS inflammatory conditions.

  12. Prospects for the development of epigenetic drugs for CNS conditions.

    Science.gov (United States)

    Szyf, Moshe

    2015-07-01

    Advances in our understanding of the epigenetic mechanisms that control gene expression in the central nervous system (CNS) and their role in neuropsychiatric disorders are paving the way for a potential new therapeutic approach that is focused on reversing the epigenetic underpinnings of neuropsychiatric conditions. In this article, the complexity of epigenetic processes and the current level of proof for their involvement in CNS disorders are discussed. The preclinical evidence for efficacy of pharmacological approaches that target epigenetics in the CNS and the particular challenges of this approach are also examined. Finally, strategies to address these challenges through the development of improved evidence-based epigenetic therapeutics and through combining pharmacological and behavioural approaches are presented.

  13. Disruption of microtubule integrity initiates mitosis during CNS repair.

    Science.gov (United States)

    Bossing, Torsten; Barros, Claudia S; Fischer, Bettina; Russell, Steven; Shepherd, David

    2012-08-14

    Mechanisms of CNS repair have vital medical implications. We show that traumatic injury to the ventral midline of the embryonic Drosophila CNS activates cell divisions to replace lost cells. A pilot screen analyzing transcriptomes of single cells during repair pointed to downregulation of the microtubule-stabilizing GTPase mitochondrial Rho (Miro) and upregulation of the Jun transcription factor Jun-related antigen (Jra). Ectopic Miro expression can prevent midline divisions after damage, whereas Miro depletion destabilizes cortical β-tubulin and increases divisions. Disruption of cortical microtubules, either by chemical depolymerization or by overexpression of monomeric tubulin, triggers ectopic mitosis in the midline and induces Jra expression. Conversely, loss of Jra renders midline cells unable to replace damaged siblings. Our data indicate that upon injury, the integrity of the microtubule cytoskeleton controls cell division in the CNS midline, triggering extra mitosis to replace lost cells. The conservation of the identified molecules suggests that similar mechanisms may operate in vertebrates.

  14. Pericytes Stimulate Oligodendrocyte Progenitor Cell Differentiation during CNS Remyelination

    Directory of Open Access Journals (Sweden)

    Alerie Guzman De La Fuente

    2017-08-01

    Full Text Available The role of the neurovascular niche in CNS myelin regeneration is incompletely understood. Here, we show that, upon demyelination, CNS-resident pericytes (PCs proliferate, and parenchymal non-vessel-associated PC-like cells (PLCs rapidly develop. During remyelination, mature oligodendrocytes were found in close proximity to PCs. In Pdgfbret/ret mice, which have reduced PC numbers, oligodendrocyte progenitor cell (OPC differentiation was delayed, although remyelination proceeded to completion. PC-conditioned medium accelerated and enhanced OPC differentiation in vitro and increased the rate of remyelination in an ex vivo cerebellar slice model of demyelination. We identified Lama2 as a PC-derived factor that promotes OPC differentiation. Thus, the functional role of PCs is not restricted to vascular homeostasis but includes the modulation of adult CNS progenitor cells involved in regeneration.

  15. Forensic Pathology Education in Pathology Residency

    Science.gov (United States)

    Ross, Wayne K.; Domen, Ronald E.

    2017-01-01

    Forensic pathology is a fundamental part of anatomic pathology training during pathology residency. However, the lack of information on forensic teaching suggests the highly variable nature of forensic education. A survey of pathology residency program directors was performed to determine key aspects of their respective forensic rotations and curriculum. A total of 38.3% of programs from across the country responded, and the survey results show 5.6% don’t require a forensic pathology rotation. In those that do, most forensic pathology rotations are 4 weeks long, are done at a medical examiner’s office, and require set prerequisites. A total of 21.1% of responding programs have residents who are not receiving documented evaluations for this rotation. While 39.6% of programs have a defined forensics curriculum, as many as 15% do not. Furthermore, nearly 43% of programs place no limit on counting forensic autopsies when applying for pathology board examinations. Our survey confirmed the inconsistent nature of forensic pathology training in resident education. Additionally, our curriculum was reorganized to create a more robust educational experience. A pre- and post-forensic lecture quiz and Resident In-Service Examination scores were analyzed to determine our curriculum’s impact and effectiveness. Analysis of our pre- and post-lecture quiz showed an improved overall average as well as an increase in Resident In-Service Examination scores, indicating improved general forensic pathology knowledge. Using this knowledge, along with changes in our curriculum, we generated a number of recommendations for improving forensic pathology education in pathology residency. PMID:28913415

  16. Development of pathology in Turkey

    Directory of Open Access Journals (Sweden)

    Gökhan GEDİKOĞLU

    2007-05-01

    Full Text Available Autospy is an important tool for the development of pathology as a science. In western civilisation dissection of human body became widespread with Renaissance, in contrast in the Ottoman Empire first dissection was not performed until the 19th century. Mustafa Behçet Efendi, head physician of the Empire, was one of the Ottoman physician who suggested the importance of dissection in the medical education. The first dissection was however performed by Charles Ambroise Bernard, a foreign physician who had been invited to help establishing a new medical school; “Mekteb-i Tıbbiye-i Adliye-i Şâhâne”, in 1843. The first modern medical schools called “Tıphane” and “Cerrahhane-i Amire” which were founded in 1827, did not have pathology courses. Pathology courses began in “Mekteb-i Tıbbiye-i Adliyei Şâhâne”. Dr. Hamdi Suat (Aknar, educated in anatomic pathology in Germany, was the first pathologist who established the modern pathology in Turkey in “İstanbul Darülfünun” medical school. In 1933 “Darülfünün” was closed and İstanbul University was built and the “University Reform Commission” invited many scientists escaping from Nazi government to study in İstanbul University. Dr. Philipp Schwartz had an important role both in the invitation of these scientists and establishment of the pathology department in İstanbul University. Practical courses were increased, clinicopathologic courses were organized for the first time and a lot of autopsies were performed, as high as 1000 autopsy per year, by Dr. Philipp Schwartz. More progress has takes place in Turkey over the years since pathology was first established. Today Turkey has many pathology departments which keep up with the worldwide advances in the field.

  17. Gray matter pathology and multiple sclerosis.

    Science.gov (United States)

    Wegner, Christiane; Stadelmann, Christine

    2009-09-01

    Gray matter demyelination is frequent and extensive in most patients with multiple sclerosis (MS) and has recently received much attention in neuropathologic and imaging studies. Gray matter lesions show distinct pathologic features that make their detection difficult with conventional imaging techniques. Thus, despite their high prevalence, their impact on clinical symptoms has not been defined well so far. This review focuses on recent information from pathologic and imaging studies and summarizes our current knowledge on cortical pathology derived from human and experimental studies.

  18. Robust Uptake of Magnetic Nanoparticles (MNPs by Central Nervous System (CNS Microglia: Implications for Particle Uptake in Mixed Neural Cell Populations

    Directory of Open Access Journals (Sweden)

    Divya M. Chari

    2010-03-01

    Full Text Available Magnetic nanoparticles (MNPs are important contrast agents used to monitor a range of neuropathological processes; microglial cells significantly contribute to MNP uptake in sites of pathology. Microglial activation occurs following most CNS pathologies but it is not known if such activation alters MNP uptake, intracellular processing and toxicity. We assessed these parameters in microglial cultures with and without experimental ‘activation’. Microglia showed rapid and extensive MNP uptake under basal conditions with no changes found following activation; significant microglial toxicity was observed at higher particle concentrations. Based on our findings, we suggest that avid MNP uptake by endogenous CNS microglia could significantly limit uptake by other cellular subtypes in mixed neural cell populations.

  19. The risk of CNS involvement in aggressive lymphomas in the rituximab era.

    Science.gov (United States)

    Benevolo, Giulia; Chiappella, Annalisa; Vitolo, Umberto

    2013-12-01

    The risk of CNS dissemination and CNS prophylaxis strategies in aggressive non-Hodgkin lymphoma (NHL) is still debated. CNS dissemination is a rare but fatal event. A CNS prophylaxis is common for Burkitt and B-cell lymphoblastic lymphoma; however, in other NHLs, prophylactic treatments are not systematically warranted. Current risk models showed low sensitivity in predicting CNS involvement, implying overtreatment in roughly 70% of high-risk patients. Risk models in the rituximab era were modulated for the detection of occult CNS disease at diagnosis using flow cytometry. The optimal regimen for CNS prophylaxis in aggressive lymphoma patients has not been established thus far and should be modulated at different levels of 'intensity' such as standard intrathecal chemotherapy, 'active' intrathecal chemotherapy with liposomal cytarabine or more aggressive systemic treatment with high doses of drugs having good CNS bioavailability reserved for patients who are truly at high risk of CNS dissemination.

  20. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.

    Science.gov (United States)

    Sturm, Dominik; Orr, Brent A; Toprak, Umut H; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J; Balasubramanian, Gnanaprakash; Worst, Barbara C; Pajtler, Kristian W; Brabetz, Sebastian; Johann, Pascal D; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M; Remke, Marc; Phillips, Joanna J; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C; Schniederjan, Matthew J; Santi, Mariarita; Buccoliero, Anna M; Dahiya, Sonika; Kramm, Christof M; von Bueren, André O; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S; Taylor, Michael D; Jones, Chris; Jabado, Nada; Karajannis, Matthias A; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M; Ellison, David W; Korshunov, Andrey; Kool, Marcel

    2016-02-25

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors.

  1. Steroid hormones and CNS sexual dimorphisms modulate symptom expression in Tourette's syndrome.

    Science.gov (United States)

    Peterson, B S; Leckman, J F; Scahill, L; Naftolin, F; Keefe, D; Charest, N J; Cohen, D J

    1992-11-01

    We present our hypothesis that various steroid hormones play an important role in the symptom expression of Gilles de la Tourette's syndrome (TS) and that androgenic hormones, in particular, are likely to exacerbate symptoms of the disorder. We review the clinical evidence supporting our hypothesis. Sex steroids establish brain sexual dimorphisms early in CNS development, and we suggest mechanisms whereby androgenic and other hormonal changes later in human development might act at dimorphic brain regions to influence the natural history of TS. Finally, we discuss the various ways in which neuroendocrine studies might assist in genetic and neurobiologic research programs in TS.

  2. Pathological Gambling in Parkinson's Disease

    DEFF Research Database (Denmark)

    Callesen, Mette Buhl; Linnet, Jakob; Thomsen, Kristine Rømer

    Pathological Gambling in Parkinson’s Disease Mette Buhl Callesen, Jakob Linnet, Kristine Rømer Thomsen, Albert Gjedde, Arne Møller PET Center, Aarhus University Hospital and Center of Functionally Integrative Neuroscience, Aarhus University.   The neurotransmitter dopamine is central to many...... aspects of human functioning, e.g., reward, learning, and addiction, including Pathological Gambling (PG), and its loss is key to Parkinson’s Disease (PD). PD is a neurodegenrative disorder caused by progressive loss of dopamine-producing cells in the midbrain [1]. One type of treatment of PD symptoms...

  3. The role of zinc in the pathogenesis and treatment of central nervous system (CNS) diseases. Implications of zinc homeostasis for proper CNS function.

    Science.gov (United States)

    Tyszka-Czochara, Małgorzata; Grzywacz, Agata; Gdula-Argasińska, Joanna; Librowski, Tadeusz; Wiliński, Bogdan; Opoka, Włodzimierz

    2014-01-01

    Zinc, the essential trace element, is known to play multiple biological functions in human organism. This metal is a component of many structural as well as regulatory and catalytic proteins. The precise regulation of zinc homeostasis is essential for central nervous system and for the whole organism. Zinc plays a significant role in the brain development and in the proper brain function at every stage of life. This article is a review of knowledge about the role of zinc in central nervous system (CNS) function. The influence of this biometal on etiopathogenesis, prevention and treatment of selected brain diseases and disorders was discussed. Zinc imbalance can result not only from insufficient dietary intake, but also from impaired activity of zinc transport proteins and zinc dependent regulation of metabolic pathways. It is known that some neurodegenerative processes are connected with zinc dyshomeostasis and it may influence the state of Alzheimer's disease, depression and ageing-connected loss of cognitive function. The exact role of zinc and zinc-binding proteins in CNS pathogenesis processes is being under intensive investigation. The appropriate zinc supplementation in brain diseases may help in the prevention as well as in the proper treatment of several brain dysfunctions.

  4. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation.

    Science.gov (United States)

    Goldmann, Tobias; Wieghofer, Peter; Müller, Philippe F; Wolf, Yochai; Varol, Diana; Yona, Simon; Brendecke, Stefanie M; Kierdorf, Katrin; Staszewski, Ori; Datta, Moumita; Luedde, Tom; Heikenwalder, Mathias; Jung, Steffen; Prinz, Marco

    2013-11-01

    Microglia are brain macrophages and, as such, key immune-competent cells that can respond to environmental changes. Understanding the mechanisms of microglia-specific responses during pathologies is hence vital for reducing disease burden. The definition of microglial functions has so far been hampered by the lack of genetic in vivo approaches that allow discrimination of microglia from closely related peripheral macrophage populations in the body. Here we introduce a mouse experimental system that specifically targets microglia to examine the role of a mitogen-associated protein kinase kinase kinase (MAP3K), transforming growth factor (TGF)-β-activated kinase 1 (TAK1), during autoimmune inflammation. Conditional depletion of TAK1 in microglia only, not in neuroectodermal cells, suppressed disease, significantly reduced CNS inflammation and diminished axonal and myelin damage by cell-autonomous inhibition of the NF-κB, JNK and ERK1/2 pathways. Thus, we found TAK1 to be pivotal in CNS autoimmunity, and we present a tool for future investigations of microglial function in the CNS.

  5. 人松果体组织结构的退行性变化及其意义%Degenerative pathological change of human pineal body and its significance

    Institute of Scientific and Technical Information of China (English)

    申新华; 马超; 李文婷; 王乃利; 鲍双振; 王保芝

    2012-01-01

    Objective:To study the size, amount, distribution of brain sands and other morphology features in the human pineal body. Methods: Micro-and ultra-structure of 43 pineal bodies from human cadaver was observed under a light microscope, scanning-and transmission electron microscope. Results: The human pineal body was mainly composed of two elements of parenchyma and interstitium. The pineal parenchyma consisted of many pinealocytes and a few neurogliocytes. The pineal interstitium was made up of connective tissues through which the blood vessels and nerve fibers went The brain sands usually clustered together and formed large plaques in the central part of the pineal body. The number and size of brain sands varied individually. In the samples from aged people, we observed an increase in the number and size of brain sands together with proliferation of connective tissues in the interstitium. However, the pinealocytes of parenchyma decreased with aging. In addition, granulovacuolar degeneration was also seen in the pinealocytes. Conclusion: These degenerative pathological changes observed in the human pineal body may lead to progressive degradation of its neuroendo-crine function.%目的:观察人松果体的细微和超微结构,探讨松果体内脑砂的形态特点、大小、多少及分布规律.方法:取人尸体的松果体,光镜、扫描和透射电镜观察其结构特征.结果:松果体主要由实质和间质两种成分构成;松果体实质由松果体细胞和神经胶质细胞组成,间质为结缔组织和穿行其中的神经和血管.脑砂多分布于松果体的中央部,常聚集形成较大的斑块.脑砂的大小、多少个体差异较大.变化趋势为随着年龄的增加,松果体内脑砂增多、增大,并伴有间质成分的结缔组织增生;然而,松果体实质成分减少;而且,在大量的松果体细胞内,可观察到颗粒空泡样变性.结论:松果体组织结构出现的退行性变化,可造成松果体神经内分泌功能的进行性减退.

  6. Diagnostic and therapeutic challenges in superficial CNS siderosis

    DEFF Research Database (Denmark)

    Kondziella, Daniel; Lindelof, M.; Haziri, Donika

    2015-01-01

    that neurodegeneration due to haemosiderin-associated iron toxicity becomes irreversible with time. CONCLUSION: Surgical therapy in superficial CNS siderosis is rarely achieved. We suggest that prospective, large-scale multicentre studies are needed to search for non-surgical therapies that reverse (or prevent) ongoing...... neurotoxicity due to accumulating iron toxicity. FUNDING: not relevant. TRIAL REGISTRATION: not relevant....

  7. ELECTROSTATIC CHARGE STIMULATES OXIDATIVE STRESS IN CNS MICROGLIA.

    Science.gov (United States)

    Nanometer size particles carry free radical activity on their surface and can create oxidative stress (OS)-mediated inflammatory changes upon impact. The oxidative burst signals the activation of phage-lineage cells such as peripheral macrophages, Kupffer cells and CNS microgl...

  8. Commentary on Special Issue : CNS Diseases and the Immune System

    NARCIS (Netherlands)

    't Hart, Bert A.; den Dunnen, Wilfred F.

    2013-01-01

    In an increasing number of central nervous system (CNS) diseases a pathogenic contribution of the immune system is proposed. However, the exact underlying mechanisms are often poorly understood. The collection of articles in this special issue presents a state-of-the-art review of adaptive and innat

  9. Pathology of the parathyroid glands in hyperparathyroidism.

    Science.gov (United States)

    Baloch, Zubair W; LiVolsi, Virginia A

    2013-08-01

    This paper reviews the embryology, histology and pathology of the human parathyroid glands. It emphasizes those pathologic lesions which are found in the setting of clinical hyperparathyroidism. Also discussed are certain molecular features of hyperfunctioning parathyroid glands. The difficulties encountered in parathyroid FNA are reviewed and illustrated.

  10. B-Cell Depletion Attenuates White and Gray Matter Pathology in Marmoset Experimental Autoimmune Encephalomyelitis

    NARCIS (Netherlands)

    Kap, Yolanda S.; Bauer, Jan; van Driel, Nikki; Bleeker, Wim K.; Parren, Paul W. H. I.; Kooi, Evert-Jan; Geurts, Jeroen J. G.; Laman, Jon D.; Craigen, Jenny L.; Blezer, Erwin; 't Hart, Bert A.

    2011-01-01

    This study investigated the effect of CD20-positive B-cell depletion on central nervous system (CNS) white and gray matter pathology in experimental autoimmune encephalomyelitis in common marmosets, a relevant preclinical model of multiple sclerosis. Experimental autoimmune encephalomyelitis was ind

  11. Communicating the financial worth of the CNS through the use of fiscal reports.

    Science.gov (United States)

    Ferraro-McDuffie, A; Chan, J S; Jerome, A M

    1993-03-01

    To maintain the clinical nurse specialist's (CNS's) leading role within hospital nursing services, routine communication to hospital administration of the impact of the CNS role on the hospital's budget is imperative. The CNS group at Children's Hospital of The King's Daughters implemented a quarterly Fiscal Report to clarify the financial worth of CNS practice. The Fiscal Report presents cost savings and revenue generating activities utilizing the role components of the CNS. During fiscal year 1991, the CNS group reported a total impact of $1,600,000. This article describes in detail the use of the Fiscal Report.

  12. Systemic Central Nervous System (CNS)-targeted Delivery of Neuropeptide Y (NPY) Reduces Neurodegeneration and Increases Neural Precursor Cell Proliferation in a Mouse Model of Alzheimer Disease.

    Science.gov (United States)

    Spencer, Brian; Potkar, Rewati; Metcalf, Jeff; Thrin, Ivy; Adame, Anthony; Rockenstein, Edward; Masliah, Eliezer

    2016-01-22

    Neuropeptide Y (NPY) is one of the most abundant protein transmitters in the central nervous system with roles in a variety of biological functions including: food intake, cardiovascular regulation, cognition, seizure activity, circadian rhythms, and neurogenesis. Reduced NPY and NPY receptor expression is associated with numerous neurodegenerative disorders including Alzheimer disease (AD). To determine whether replacement of NPY could ameliorate some of the neurodegenerative and behavioral pathology associated with AD, we generated a lentiviral vector expressing NPY fused to a brain transport peptide (apoB) for widespread CNS delivery in an APP-transgenic (tg) mouse model of AD. The recombinant NPY-apoB effectively reversed neurodegenerative pathology and behavioral deficits although it had no effect on accumulation of Aβ. The subgranular zone of the hippocampus showed a significant increase in proliferation of neural precursor cells without further differentiation into neurons. The neuroprotective and neurogenic effects of NPY-apoB appeared to involve signaling via ERK and Akt through the NPY R1 and NPY R2 receptors. Thus, widespread CNS-targeted delivery of NPY appears to be effective at reversing the neuronal and glial pathology associated with Aβ accumulation while also increasing NPC proliferation. Overall, increased delivery of NPY to the CNS for AD might be an effective therapy especially if combined with an anti-Aβ therapeutic.

  13. [Non-reflex activity of the CNS].

    Science.gov (United States)

    Brozek, G

    1995-06-01

    Recent studies of biological rhythms have modified Sherrington's concept of nervous system as exclusively reflexive to include the fact that some neural activity is also endogenously rhythmic. Reflexes are undoubtedly the most important components of animal's and human behavior. But are reflexes the basic units of all complex movements and acts? Rhythmical movements such as respiration, walking and running and other forms of locomotion, as well as rhythmical alimentary processes such as respiration, walking and running and other forms of locomotion, as well as rhythmical alimentary processes such as licking, mastication, and the peristaltic propulsion of nutrients and waste are examples of acts controlled by intrinsic oscillators, so called central pattern generators. Information from the periphery is, however, essential for controlling the extent and rate of movements. Between reflex and non-reflex activity it is possible to place complex species-specific responses called by ethologists fixed-action patterns. Recent investigators have shown that many complex sequences of behavior like speech or piano playing are determined by an internal plan, rather than being generated by a "chain" of reflexes. Non-reflexive activity appears earlier in ontogeny, and is probably phylogenetically older than reflexes.

  14. Pathological differences between white and grey matter multiple sclerosis lesions.

    Science.gov (United States)

    Prins, Marloes; Schul, Emma; Geurts, Jeroen; van der Valk, Paul; Drukarch, Benjamin; van Dam, Anne-Marie

    2015-09-01

    Multiple sclerosis (MS) is a debilitating disease characterized by demyelination of the central nervous system (CNS), resulting in widespread formation of white matter lesions (WMLs) and grey matter lesions (GMLs). WMLs are pathologically characterized by the presence of immune cells that infiltrate the CNS, whereas these immune cells are barely present in GMLs. This striking pathological difference between WMLs and GMLs raises questions about the underlying mechanism. It is known that infiltrating leukocytes contribute to the generation of WMLs; however, since GMLs show a paucity of infiltrating immune cells, their importance in GML formation remains to be determined. Here, we review pathological characteristics of WMLs and GMLs, and suggest some possible explanations for the observed pathological differences. In our view, cellular and molecular characteristics of WM and GM, and local differences within WMLs and GMLs (in particular, in glial cell populations and the molecules they express), determine the pathway to demyelination. Further understanding of GML pathogenesis, considered to contribute to chronic MS, may have a direct impact on the development of novel therapeutic targets to counteract this progressive neurological disorder.

  15. Sleep-wake mechanisms and drug discovery: sleep EEG as a tool for the development of CNS-acting drugs

    OpenAIRE

    Staner, Luc

    2002-01-01

    Sleep laboratory investigations constitute a unique noninvasive tool to analyze brain functioning, Polysomnographic recordings, even in the very early phase of development in humans, are mandatory in a developmental plan of a new sleep-acting compound. Sleep is also an interesting tool for the development of other drugs acting on the central nervous system (CNS), Indeed, changes in sleep electroencephalographic (EEG) characteristics are a very sensitive indication of the objective central eff...

  16. Dual DNA methylation patterns in the CNS reveal developmentally poised chromatin and monoallelic expression of critical genes.

    Science.gov (United States)

    Wang, Jinhui; Valo, Zuzana; Bowers, Chauncey W; Smith, David D; Liu, Zheng; Singer-Sam, Judith

    2010-11-04

    As a first step towards discovery of genes expressed from only one allele in the CNS, we used a tiling array assay for DNA sequences that are both methylated and unmethylated (the MAUD assay). We analyzed regulatory regions of the entire mouse brain transcriptome, and found that approximately 10% of the genes assayed showed dual DNA methylation patterns. They include a large subset of genes that display marks of both active and silent, i.e., poised, chromatin during development, consistent with a link between differential DNA methylation and lineage-specific differentiation within the CNS. Sixty-five of the MAUD hits and 57 other genes whose function is of relevance to CNS development and/or disorders were tested for allele-specific expression in F(1) hybrid clonal neural stem cell (NSC) lines. Eight MAUD hits and one additional gene showed such expression. They include Lgi1, which causes a subtype of inherited epilepsy that displays autosomal dominance with incomplete penetrance; Gfra2, a receptor for glial cell line-derived neurotrophic factor GDNF that has been linked to kindling epilepsy; Unc5a, a netrin-1 receptor important in neurodevelopment; and Cspg4, a membrane chondroitin sulfate proteoglycan associated with malignant melanoma and astrocytoma in human. Three of the genes, Camk2a, Kcnc4, and Unc5a, show preferential expression of the same allele in all clonal NSC lines tested. The other six genes show a stochastic pattern of monoallelic expression in some NSC lines and bi-allelic expression in others. These results support the estimate that 1-2% of genes expressed in the CNS may be subject to allelic exclusion, and demonstrate that the group includes genes implicated in major disorders of the CNS as well as neurodevelopment.

  17. Dual DNA methylation patterns in the CNS reveal developmentally poised chromatin and monoallelic expression of critical genes.

    Directory of Open Access Journals (Sweden)

    Jinhui Wang

    Full Text Available As a first step towards discovery of genes expressed from only one allele in the CNS, we used a tiling array assay for DNA sequences that are both methylated and unmethylated (the MAUD assay. We analyzed regulatory regions of the entire mouse brain transcriptome, and found that approximately 10% of the genes assayed showed dual DNA methylation patterns. They include a large subset of genes that display marks of both active and silent, i.e., poised, chromatin during development, consistent with a link between differential DNA methylation and lineage-specific differentiation within the CNS. Sixty-five of the MAUD hits and 57 other genes whose function is of relevance to CNS development and/or disorders were tested for allele-specific expression in F(1 hybrid clonal neural stem cell (NSC lines. Eight MAUD hits and one additional gene showed such expression. They include Lgi1, which causes a subtype of inherited epilepsy that displays autosomal dominance with incomplete penetrance; Gfra2, a receptor for glial cell line-derived neurotrophic factor GDNF that has been linked to kindling epilepsy; Unc5a, a netrin-1 receptor important in neurodevelopment; and Cspg4, a membrane chondroitin sulfate proteoglycan associated with malignant melanoma and astrocytoma in human. Three of the genes, Camk2a, Kcnc4, and Unc5a, show preferential expression of the same allele in all clonal NSC lines tested. The other six genes show a stochastic pattern of monoallelic expression in some NSC lines and bi-allelic expression in others. These results support the estimate that 1-2% of genes expressed in the CNS may be subject to allelic exclusion, and demonstrate that the group includes genes implicated in major disorders of the CNS as well as neurodevelopment.

  18. Tau pathology spread in PS19 tau transgenic mice following locus coeruleus (LC) injections of synthetic tau fibrils is determined by the LC's afferent and efferent connections.

    Science.gov (United States)

    Iba, Michiyo; McBride, Jennifer D; Guo, Jing L; Zhang, Bin; Trojanowski, John Q; Lee, Virginia M-Y

    2015-09-01

    Filamentous tau inclusions are hallmarks of Alzheimer's disease (AD) and other neurodegenerative tauopathies. An increasing number of studies implicate the cell-to-cell propagation of tau pathology in the progression of tauopathies. We recently showed (Iba et al., J Neurosci 33:1024-1037, 2013) that inoculation of preformed synthetic tau fibrils (tau PFFs) into the hippocampus of young transgenic (Tg) mice (PS19) overexpressing human P301S mutant tau induced robust tau pathology in anatomically connected brain regions including the locus coeruleus (LC). Since Braak and colleagues hypothesized that the LC is the first brain structure to develop tau lesions and since LC has widespread connections throughout the CNS, LC neurons could be the critical initiators of the stereotypical spreading of tau pathology through connectome-dependent transmission of pathological tau in AD. Here, we report that injections of tau PFFs into the LC of PS19 mice induced propagation of tau pathology to major afferents and efferents of the LC. Notably, tau pathology propagated along LC efferent projections was localized not only to axon terminals but also to neuronal perikarya, suggesting transneuronal transfer of templated tau pathology to neurons receiving LC projections. Further, brainstem neurons giving rise to major LC afferents also developed perikaryal tau pathology. Surprisingly, while tangle-bearing neurons degenerated in the LC ipsilateral to the injection site starting 6 months post-injection, no neuron loss was seen in the contralateral LC wherein tangle-bearing neurons gradually cleared tau pathology by 6-12 months post-injection. However, the spreading pattern of tau pathology observed in our LC-injected mice is different from that in AD brains since hippocampus and entorhinal cortex, which are affected in early stages of AD, were largely spared of tau inclusions in our model. Thus, while our study tested critical aspects of the Braak hypothesis of tau pathology spread

  19. CNS metastasis from malignant uveal melanoma: a clinical and histopathological characterisation

    DEFF Research Database (Denmark)

    Holfort, S K; Lindegaard, J; Isager, P;

    2008-01-01

    to the CNS were identified. For each patient, clinical and histopathological data were gathered. RESULTS: Sixteen patients with CNS metastasis were identified. The median age was 58 years. The majority of CNS metastases were located in the frontal and parietal lobes. Eleven patients had widespread metastases...

  20. AVN-101: A Multi-Target Drug Candidate for the Treatment of CNS Disorders

    Science.gov (United States)

    Ivachtchenko, Alexandre V.; Lavrovsky, Yan; Okun, Ilya

    2016-01-01

    Lack of efficacy of many new highly selective and specific drug candidates in treating diseases with poorly understood or complex etiology, as are many of central nervous system (CNS) diseases, encouraged an idea of developing multi-modal (multi-targeted) drugs. In this manuscript, we describe molecular pharmacology, in vitro ADME, pharmacokinetics in animals and humans (part of the Phase I clinical studies), bio-distribution, bioavailability, in vivo efficacy, and safety profile of the multimodal drug candidate, AVN-101. We have carried out development of a next generation drug candidate with a multi-targeted mechanism of action, to treat CNS disorders. AVN-101 is a very potent 5-HT7 receptor antagonist (Ki = 153 pM), with slightly lesser potency toward 5-HT6, 5-HT2A, and 5HT-2C receptors (Ki = 1.2–2.0 nM). AVN-101 also exhibits a rather high affinity toward histamine H1 (Ki = 0.58 nM) and adrenergic α2A, α2B, and α2C (Ki = 0.41–3.6 nM) receptors. AVN-101 shows a good oral bioavailability and facilitated brain-blood barrier permeability, low toxicity, and reasonable efficacy in animal models of CNS diseases. The Phase I clinical study indicates the AVN-101 to be well tolerated when taken orally at doses of up to 20 mg daily. It does not dramatically influence plasma and urine biochemistry, nor does it prolong QT ECG interval, thus indicating low safety concerns. The primary therapeutic area for AVN-101 to be tested in clinical trials would be Alzheimer’s disease. However, due to its anxiolytic and anti-depressive activities, there is a strong rational for it to also be studied in such diseases as general anxiety disorders, depression, schizophrenia, and multiple sclerosis. PMID:27232215

  1. Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned

    Directory of Open Access Journals (Sweden)

    Viktoria eGudi

    2014-03-01

    Full Text Available Although astrogliosis and microglia activation are characteristic features of multiple sclerosis (MS and other central nervous system (CNS lesions the exact functions of these events are not fully understood. Animal models help to understand the complex interplay between the different cell types of the CNS and uncover general mechanisms of damage and repair of myelin sheaths. The so called cuprizone model is a toxic model of demyelination in the CNS white and grey matter, which lacks an autoimmune component. Cuprizone induces apoptosis of mature oligodendrocytes that leads to a robust demyelination and profound activation of both astrocytes and microglia with regional heterogeneity between different white and grey matter regions. Although not suitable to study autoimmune mediated demyelination, this model is extremely helpful to elucidate basic cellular and molecular mechanisms during de- and particularly remyelination independently of interactions with peripheral immune cells. Phagocytosis and removal of damaged myelin seems to be one of the major roles of microglia in this model and it is well known that removal of myelin debris is a prerequisite of successful remyelination. Furthermore, microglia provide several signals that support remyelination.The role of astrocytes during de- and remyelination is not well defined. Both supportive and destructive functions have been suggested. Using the cuprizone model we could demonstrate that there is an important crosstalk between astrocytes and microglia. In this review we focus on the role of glial reactions and interaction in the cuprizone model. Advantages and limitations of as well as its potential therapeutic relevance for the human disease MS are critically discussed in comparison to other animal models.

  2. Pulsar/CNS integrated navigation based on federated UKF

    Institute of Scientific and Technical Information of China (English)

    Jin Liu; Jie Ma; Jinwen Tian

    2010-01-01

    In order to improve the autonomous navigation capability of satellite,a pulsar/CNS(celestial navigation system)integrated navigation method based on federated unscented Kalman filter(UKF)is proposed.The celestial navigation is a mature and stable navigation method.However,its position determination performance is not satisfied due to the low accuracy of horizon sensor.Single pulsar navigation is a new navigation method,which can provide highly accurate range measurements.The major drawback of single pulsar navigation is that the system is completely unobservabie.As two methods are complementary to each other,the federated UKF is used here for fusing the navigation data from single pulsar navigation and CNS.Compared to the traditional celestial navigation method and single pulsar navigation,the integrated navigation method can provide better navigation performance.The simulation results demonstrate the feasibility and effectiveness of the navigation method.

  3. Positron emission tomography in CNS drug discovery and drug monitoring.

    Science.gov (United States)

    Piel, Markus; Vernaleken, Ingo; Rösch, Frank

    2014-11-26

    Molecular imaging methods such as positron emission tomography (PET) are increasingly involved in the development of new drugs. Using radioactive tracers as imaging probes, PET allows the determination of the pharmacokinetic and pharmacodynamic properties of a drug candidate, via recording target engagement, the pattern of distribution, and metabolism. Because of the noninvasive nature and quantitative end point obtainable by molecular imaging, it seems inherently suited for the examination of a pharmaceutical's behavior in the brain. Molecular imaging, most especially PET, can therefore be a valuable tool in CNS drug research. In this Perspective, we present the basic principles of PET, the importance of appropriate tracer selection, the impact of improved radiopharmaceutical chemistry in radiotracer development, and the different roles that PET can fulfill in CNS drug research.

  4. Autoradiographic visualization of CNS receptors for vasoactive intestinal peptide

    Energy Technology Data Exchange (ETDEWEB)

    Shaffer, M.M.; Moody, T.W.

    1986-03-01

    Receptors for VIP were characterized in the rat CNS. /sup 125/I-VIP bound with high affinity to rat brain slices. Binding was time dependent and specific. Pharmacology studies indicated that specific /sup 125/I-VIP binding was inhibited with high affinity by VIP and low affinity by secretin and PHI. Using in vitro autoradiographic techniques high grain densities were present in the dentate gyrus, pineal gland, supraoptic and suprachiasmatic nuclei, superficial gray layer of the superior colliculus and the area postrema. Moderate grain densities were present in the olfactory bulb and tubercle, cerebral cortex, nucleus accumbens, caudate putamen, interstitial nucleus of the stria terminalis, paraventricular thalamic nucleus, medial amygdaloid nucleus, subiculum and the medial geniculate nucleus. Grains were absent in the corpus callosum and controls treated with 1 microM unlabeled VIP. The discrete regional distribution of VIP receptors suggest that it may function as an important modulator of neural activity in the CNS.

  5. Application of Molecular Pathology in Endocrine Pathology.

    Science.gov (United States)

    Linke, Ebru Serinsoz; Tezel, Gaye Güler

    2015-01-01

    Rapid growth in knowledge of cell and molecular biology led to the increased usage of molecular techniques in anatomical pathology. This is also due to the advances achieved in the techniques introduced in the last few years which are less laborious as compared to the techniques used at the beginning of the "molecular era". The initial assays were also very expensive and were not performed except for selected centers. Moreover, the clinicians were not sure how to make use of the accumulating molecular information. That situation has also changed and molecular techniques are being performed in a wide variety of medical settings which also has a reflection on the endocrine system pathology among other organ systems. This review will provide an update of genetic changes observed in different endocrine system pathologies and their diagnostic, therapeutic and prognostic values.

  6. A 10 YEAR SURVEY ON CHILDHOOD CNS TUMORS

    Directory of Open Access Journals (Sweden)

    F. Jadali

    2008-10-01

    Full Text Available AbstractObjectiveTumors of the central nervous system constitute the largest group of solid neoplasms in children and are second only to leukemia in their overall frequency during childhood. The main purpose of the present study is to determine the incidence, age, sex, location and histological diagnosis of CNS tumors in children, less than 15 years of age, in the Mofid Children's Hospital, in the past 10 years. Materials and MethodsIn this descriptive retrospective study we reviewed the medical records of 143 children with diagnosis of CNS tumors admitted during the past 10 years in neurology and surgery departments of Mofid Children's Hospital between the years 1996 and 2006.ResultsDuring the 10 year study period, CNS tumor was diagnosed in 143 patients; of these tumors, 119 were intracranial and 58 were intraspinal; 51.3% of brain tumors were located in the supratentorial and 48.7% in the infratentorial regions. The most common intracranial neoplasms were astrocytic tumors (36.8%, embryonal tumors (31.1% and ependymal tumors (13.4%. Of the intraspinal neoplasms the most frequently noted were embryonal tumors(37.5%, mesenchymal meningothelial tumors (20.8%, followed by astrocytic tumors (16.7%. The median age at diagnosis was 8.9 ± 4.1 years with a male to female ratio of 1.4:1 (P Conclusion Brain tumors in children constitute a diverse group in terms of incidence,distribution and histopathological diagnosis.Keywords: CNS tumors, Histopathology, Children.

  7. C.N.S. tumors in eastern Saudi Arabia.

    Science.gov (United States)

    Ibrahim, A W

    1992-01-01

    In Saudi Arabia, there were no attempts previously to describe a population based frequency or incidence, particularly so the age adjusted incidence of various CNS tumors. This paper presents the primary CNS tumors from a population based tumor registry over two years period, from January 1987 till December 1988. There was a total of 85 cases representing 5.4% of the total captured cases (1,568 cases of malignant tumors at all sites). The population of the Eastern Province is estimated to be 1.37 million, the Saudis forming 80% of the total population. Out of the 85 cases captured over two years, there were 64 cases diagnosed in indigenous Saudi population forming 75%. The remaining occurred in non-Saudi residents. The male/female ratio in Saudis was 1:1.1 with a slight predominance of the female, while the reverse is true in the non-Saudis (2:1). The total captured cases per annum is 43, making the incidence of primary CNS neoplasms in the Eastern Province of Saudi Arabia 3.1/100,000 of all the population and 2.9/100,000 in Saudi nationals. Comparing this incidence to the international figure, it was clear that it is far less than the incidence reported from North America and Europe, particularly in the Caucasian population, but similar to incidences reported in the Chinese, black Americans, Romanians and Yugoslavians, but certainly less than the Ashkenazi or Safari Jews, and slightly higher than the incidence reported in Japan and Southeast Asia. Malignant brain tumors of various types dominated the primary CNS neoplasms reported over these two years forming 69% of the cases and 52% of the primary brain tumors.

  8. 4th ENRI International Workshop on ATM/CNS

    CERN Document Server

    2017-01-01

    This book is a compilation of selected papers from the 4th ENRI International Workshop on ATM/CNS (EIWAC2015). The work focuses on novel techniques for aviation infrastructure in air traffic management (ATM) and communications, navigation, surveillance, and informatics (CNSI) domains. The contents make valuable contributions to academic researchers, engineers in the industry, and regulators of aviation authorities. As well, readers will encounter new ideas for realizing a more efficient and safer aviation system. .

  9. Leptin and the CNS Control of Glucose Metabolism

    Science.gov (United States)

    Morton, Gregory J.; Schwartz, Michael W.

    2012-01-01

    The regulation of body fat stores and blood glucose levels is critical for survival. This review highlights growing evidence that leptin action in the central nervous system (CNS) plays a key role in both processes. Investigation into underlying mechanisms has begun to clarify the physiological role of leptin in the control of glucose metabolism and raises interesting new possibilities for the treatment of diabetes and related disorders. PMID:21527729

  10. Rickettsioses as causes of CNS infection in southeast Asia

    OpenAIRE

    Carole Eldin; Philippe Parola

    2015-01-01

    International audience; In The Lancet Global Health, Sabine Dittrich and colleagues 1 report that scrub typhus caused by Orientia tsutsugamushi, murine typhus caused by Rickettsia typhi, and leptospirosis caused by various Leptospira species account for more than a third of CNS infections diagnosed over 8 years in Vientiane Hospital in Laos. The study is one more great contribution from this team in their investigation of undocumented syndromes, as well as in the public health challenge of ri...

  11. Origin, fate and dynamics of macrophages at CNS interfaces

    Science.gov (United States)

    Goldmann, Tobias; Jordão, Marta Joana Costa; Wieghofer, Peter; Prutek, Fabiola; Hagemeyer, Nora; Frenzel, Kathrin; Staszewski, Ori; Kierdorf, Katrin; Amann, Lukas; Krueger, Martin; Locatelli, Giuseppe; Hochgarner, Hannah; Zeiser, Robert; Epelman, Slava; Geissmann, Frederic; Priller, Josef; Rossi, Fabio; Bechmann, Ingo; Kerschensteiner, Martin; Linnarsson, Sten; Jung, Steffen; Prinz, Marco

    2016-01-01

    Perivascular, meningeal and choroid plexus macrophages are non-parenchymal macrophages that mediate immune responses at brain boundaries. Although the origin of parenchymal microglia has recently been elucidated, much less is known about the precursors, the underlying transcriptional program and the dynamics of the other macrophages in the central nervous system (CNS). It has been assumed that they have a high turnover with blood-borne monocytes. However, large scale single-cell RNA-sequencing reveals a striking molecular overlap between perivascular macrophages and microglia but not monocytes. Using several fate mapping approaches and parabiosis we demonstrate that CNS macrophages arise from yolk sac precursors during embryonic development and remain a stable population. Notably, the generation of CNS macrophages relies on the transcription factor Pu.1 whereas myb, Batf3 and Nr4a1 are not required. Upon autoimmune inflammation, macrophages undergo extensive self-renewal by local proliferation. Our data provide challenging new insights into brains innate immune system. PMID:27135602

  12. A Review of the Comparative Anatomy, Histology, Physiology and Pathology of the Nasal Cavity of Rats, Mice, Dogs and Non-human Primates. Relevance to Inhalation Toxicology and Human Health Risk Assessment.

    Science.gov (United States)

    Chamanza, R; Wright, J A

    2015-11-01

    There are many significant differences in the structural and functional anatomy of the nasal cavity of man and laboratory animals. Some of the differences may be responsible for the species-specific nasal lesions that are often observed in response to inhaled toxicants. This paper reviews the comparative anatomy, physiology and pathology of the nasal cavity of the rat, mouse, dog, monkey and man, highlighting factors that may influence the distribution of nasal lesions. Gross anatomical variations such as turbinate structure, folds or grooves on nasal walls, or presence or absence of accessory structures, may influence nasal airflow and species-specific uptake and deposition of inhaled material. In addition, interspecies variations in the morphological and biochemical composition and distribution of the nasal epithelium may affect the local tissue susceptibility and play a role in the development of species-specific nasal lesions. It is concluded that, while the nasal cavity of the monkey might be more similar to that of man, each laboratory animal species provides a model that responds in a characteristic and species-specific manner. Therefore for human risk assessment, careful consideration must be given to the anatomical differences between a given animal model and man.

  13. Handheld computing in pathology

    Directory of Open Access Journals (Sweden)

    Seung Park

    2012-01-01

    Full Text Available Handheld computing has had many applications in medicine, but relatively few in pathology. Most reported uses of handhelds in pathology have been limited to experimental endeavors in telemedicine or education. With recent advances in handheld hardware and software, along with concurrent advances in whole-slide imaging (WSI, new opportunities and challenges have presented themselves. This review addresses the current state of handheld hardware and software, provides a history of handheld devices in medicine focusing on pathology, and presents future use cases for such handhelds in pathology.

  14. Handheld computing in pathology

    Science.gov (United States)

    Park, Seung; Parwani, Anil; Satyanarayanan, Mahadev; Pantanowitz, Liron

    2012-01-01

    Handheld computing has had many applications in medicine, but relatively few in pathology. Most reported uses of handhelds in pathology have been limited to experimental endeavors in telemedicine or education. With recent advances in handheld hardware and software, along with concurrent advances in whole-slide imaging (WSI), new opportunities and challenges have presented themselves. This review addresses the current state of handheld hardware and software, provides a history of handheld devices in medicine focusing on pathology, and presents future use cases for such handhelds in pathology. PMID:22616027

  15. Immune Privilege as an Intrinsic CNS Property: Astrocytes Protect the CNS against T-Cell-Mediated Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Ulrike Gimsa

    2013-01-01

    Full Text Available Astrocytes have many functions in the central nervous system (CNS. They support differentiation and homeostasis of neurons and influence synaptic activity. They are responsible for formation of the blood-brain barrier (BBB and make up the glia limitans. Here, we review their contribution to neuroimmune interactions and in particular to those induced by the invasion of activated T cells. We discuss the mechanisms by which astrocytes regulate pro- and anti-inflammatory aspects of T-cell responses within the CNS. Depending on the microenvironment, they may become potent antigen-presenting cells for T cells and they may contribute to inflammatory processes. They are also able to abrogate or reprogram T-cell responses by inducing apoptosis or secreting inhibitory mediators. We consider apparently contradictory functions of astrocytes in health and disease, particularly in their interaction with lymphocytes, which may either aggravate or suppress neuroinflammation.

  16. Radiological-Pathological Correlations Following Blast-Related Traumatic Brain Injury in the Whole Human Brain Using ex Vivo Diffusion Tensor Imaging

    Science.gov (United States)

    2014-01-01

    injuries caused by non-blast related trauma (e.g. falls, motor vehicle accidents, etc.), post - mortem pathological analyses have revealed that...issues: 1) Selection of control cases: we will select only young, otherwise healthy patients who died from non-head trauma and had a short post - mortem ...20 Oppenheimer, D. R. (1968). "Microscopic lesions in the brain following head injury." J Neurol Neurosurg Psychiatry 31(4): 299-306. http

  17. Metabolomics of human brain aging and age-related neurodegenerative diseases.

    Science.gov (United States)

    Jové, Mariona; Portero-Otín, Manuel; Naudí, Alba; Ferrer, Isidre; Pamplona, Reinald

    2014-07-01

    Neurons in the mature human central nervous system (CNS) perform a wide range of motor, sensory, regulatory, behavioral, and cognitive functions. Such diverse functional output requires a great diversity of CNS neuronal and non-neuronal populations. Metabolomics encompasses the study of the complete set of metabolites/low-molecular-weight intermediates (metabolome), which are context-dependent and vary according to the physiology, developmental state, or pathologic state of the cell, tissue, organ, or organism. Therefore, the use of metabolomics can help to unravel the diversity-and to disclose the specificity-of metabolic traits and their alterations in the brain and in fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of aging and neurodegenerative diseases. Here, we review the current applications of metabolomics in studies of CNS aging and certain age-related neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis. Neurometabolomics will increase knowledge of the physiologic and pathologic functions of neural cells and will place the concept of selective neuronal vulnerability in a metabolic context.

  18. The DOCK protein sponge binds to ELMO and functions in Drosophila embryonic CNS development.

    Directory of Open Access Journals (Sweden)

    Bridget Biersmith

    Full Text Available Cell morphogenesis, which requires rearrangement of the actin cytoskeleton, is essential to coordinate the development of tissues such as the musculature and nervous system during normal embryonic development. One class of signaling proteins that regulate actin cytoskeletal rearrangement is the evolutionarily conserved CDM (C. elegansCed-5, human DOCK180, DrosophilaMyoblast city, or Mbc family of proteins, which function as unconventional guanine nucleotide exchange factors for the small GTPase Rac. This CDM-Rac protein complex is sufficient for Rac activation, but is enhanced upon the association of CDM proteins with the ELMO/Ced-12 family of proteins. We identified and characterized the role of Drosophila Sponge (Spg, the vertebrate DOCK3/DOCK4 counterpart as an ELMO-interacting protein. Our analysis shows Spg mRNA and protein is expressed in the visceral musculature and developing nervous system, suggesting a role for Spg in later embryogenesis. As maternal null mutants of spg die early in development, we utilized genetic interaction analysis to uncover the role of Spg in central nervous system (CNS development. Consistent with its role in ELMO-dependent pathways, we found genetic interactions with spg and elmo mutants exhibited aberrant axonal defects. In addition, our data suggests Ncad may be responsible for recruiting Spg to the membrane, possibly in CNS development. Our findings not only characterize the role of a new DOCK family member, but help to further understand the role of signaling downstream of N-cadherin in neuronal development.

  19. Drug Elucidation: Invertebrate Genetics Sheds New Light on the Molecular Targets of CNS Drugs

    Directory of Open Access Journals (Sweden)

    Donard S. Dwyer

    2014-07-01

    Full Text Available Many important drugs approved to treat common human diseases were discovered by serendipity, without a firm understanding of their modes of action. As a result, the side effects and interactions of these medications are often unpredictable, and there is limited guidance for improving the design of next-generation drugs. Here, we review the innovative use of simple model organisms, especially Caenorhabditis elegans, to gain fresh insights into the complex biological effects of approved CNS medications. Whereas drug discovery involves the identification of new drug targets and lead compounds/biologics, and drug development spans preclinical testing to FDA approval, drug elucidation refers to the process of understanding the mechanisms of action of marketed drugs by studying their novel effects in model organisms. Drug elucidation studies have revealed new pathways affected by antipsychotic drugs, e.g., the insulin signaling pathway, a trace amine receptor and a nicotinic acetylcholine receptor. Similarly, novel targets of antidepressant drugs and lithium have been identified in C. elegans, including lipid-binding/transport proteins and the SGK-1 signaling pathway, respectively. Elucidation of the mode of action of anesthetic agents has shown that anesthesia can involve mitochondrial targets, leak currents and gap junctions. The general approach reviewed in this article has advanced our knowledge about important drugs for CNS disorders and can guide future drug discovery efforts.

  20. Distinctive response of CNS glial cells in oro-facial pain associated with injury, infection and inflammation

    Directory of Open Access Journals (Sweden)

    Ribeiro-da-Silva Alfredo

    2010-11-01

    Full Text Available Abstract Oro-facial pain following injury and infection is frequently observed in dental clinics. While neuropathic pain evoked by injury associated with nerve lesion has an involvement of glia/immune cells, inflammatory hyperalgesia has an exaggerated sensitization mediated by local and circulating immune mediators. To better understand the contribution of central nervous system (CNS glial cells in these different pathological conditions, in this study we sought to characterize functional phenotypes of glial cells in response to trigeminal nerve injury (loose ligation of the mental branch, infection (subcutaneous injection of lipopolysaccharide-LPS and to sterile inflammation (subcutaneous injection of complete Freund's adjuvant-CFA on the lower lip. Each of the three insults triggered a specific pattern of mechanical allodynia. In parallel with changes in sensory response, CNS glial cells reacted distinctively to the challenges. Following ligation of the mental nerve, both microglia and astrocytes in the trigeminal nuclear complex were highly activated, more prominent in the principal sensory nucleus (Pr5 and subnucleus caudalis (Sp5C area. Microglial response was initiated early (days 3-14, followed by delayed astrocytes activation (days 7-28. Although the temporal profile of microglial and astrocyte reaction corresponded respectively to the initiation and chronic stage of neuropathic pain, these activated glial cells exhibited a low profile of cytokine expression. Local injection of LPS in the lower lip skin also triggered a microglial reaction in the brain, which started in the circumventricular organs (CVOs at 5 hours post-injection and diffused progressively into the brain parenchyma at 48 hours. This LPS-induced microglial reaction was accompanied by a robust induction of IκB-α mRNA and pro-inflammatory cytokines within the CVOs. However, LPS induced microglial activation did not specifically occur along the pain signaling pathway. In

  1. Stabilization of HIF-1α and HIF-2α, up-regulation of MYCC and accumulation of stabilized p53 constitute hallmarks of CNS-PNET animal model

    Science.gov (United States)

    Malchenko, Sergey; Sredni, Simone Treiger; Bi, Yingtao; Margaryan, Naira V.; Boyineni, Jerusha; Mohanam, Indra; Tomita, Tadanori; Davuluri, Ramana V.; Soares, Marcelo B.

    2017-01-01

    Recently, we described a new animal model of CNS primitive neuroectodermal tumors (CNS-PNET), which was generated by orthotopic transplantation of human Radial Glial (RG) cells into NOD-SCID mice’s brain sub-ventricular zone. In the current study we conducted comprehensive RNA-Seq analyses to gain insights on the mechanisms underlying tumorigenesis in this mouse model of CNS-PNET. Here we show that the RNA-Seq profiles derived from these tumors cluster with those reported for patients’ PNETs. Moreover, we found that (i) stabilization of HIF-1α and HIF-2α, which are involved in mediation of the hypoxic responses in the majority of cell types, (ii) up-regulation of MYCC, a key onco-protein whose dysregulation occurs in ~70% of human tumors, and (iii) accumulation of stabilized p53, which is commonly altered in human cancers, constitute hallmarks of our tumor model, and might represent the basis for CNS-PNET tumorigenesis in this model. We discuss the possibility that these three events might be interconnected. These results indicate that our model may prove invaluable to uncover the molecular events leading to MYCC and TP53 alterations, which would be of broader interest considering their relevance to many human malignancies. Lastly, this mouse model might prove useful for drug screening targeting MYCC and related members of its protein interaction network. PMID:28249000

  2. Isolation of mineralizing Nestin+ Nkx6.1+ vascular muscular cells from the adult human spinal cord

    Directory of Open Access Journals (Sweden)

    Guillon Hélène

    2011-10-01

    Full Text Available Abstract Background The adult central nervous system (CNS contains different populations of immature cells that could possibly be used to repair brain and spinal cord lesions. The diversity and the properties of these cells in the human adult CNS remain to be fully explored. We previously isolated Nestin+ Sox2+ neural multipotential cells from the adult human spinal cord using the neurosphere method (i.e. non adherent conditions and defined medium. Results Here we report the isolation and long term propagation of another population of Nestin+ cells from this tissue using adherent culture conditions and serum. QPCR and immunofluorescence indicated that these cells had mesenchymal features as evidenced by the expression of Snai2 and Twist1 and lack of expression of neural markers such as Sox2, Olig2 or GFAP. Indeed, these cells expressed markers typical of smooth muscle vascular cells such as Calponin, Caldesmone and Acta2 (Smooth muscle actin. These cells could not differentiate into chondrocytes, adipocytes, neuronal and glial cells, however they readily mineralized when placed in osteogenic conditions. Further characterization allowed us to identify the Nkx6.1 transcription factor as a marker for these cells. Nkx6.1 was expressed in vivo by CNS vascular muscular cells located in the parenchyma and the meninges. Conclusion Smooth muscle cells expressing Nestin and Nkx6.1 is the main cell population derived from culturing human spinal cord cells in adherent conditions with serum. Mineralization of these cells in vitro could represent a valuable model for studying calcifications of CNS vessels which are observed in pathological situations or as part of the normal aging. In addition, long term propagation of these cells will allow the study of their interaction with other CNS cells and their implication in scar formation during spinal cord injury.

  3. Hip joint pathology

    DEFF Research Database (Denmark)

    Tijssen, M; van Cingel, R E H; de Visser, E

    2016-01-01

    The purpose of this retrospective cohort study was to (a) describe the clinical presentation of femoroacetabular impingement (FAI) and hip labral pathology; (b) describe the accuracy of patient history and physical tests for FAI and labral pathology as confirmed by hip arthroscopy. Patients (18-6...

  4. Transcriptome analysis of CNS immediately before and after the detection of PrP(Sc) in SSBP/1 sheep scrapie.

    Science.gov (United States)

    Gossner, Anton G; Hopkins, John

    2014-10-10

    Sheep scrapie is a transmissible spongiform encephalopathy (TSE), progressive and fatal neurodegenerative diseases of the central nervous system (CNS) linked to the accumulation of misfolded prion protein, PrP(Sc). New Zealand Cheviot sheep, homozygous for the VRQ genotype of the PRNP gene are most susceptible with an incubation period of 193 days with SSBP/1 scrapie. However, the earliest time point that PrP(Sc) can be detected in the CNS is 125 days (D125). The aim of this study was to quantify changes to the transcriptome of the thalamus and obex (medulla) at times immediately before (D75) and after (D125) PrP(Sc) was detected. Affymetrix gene arrays were used to quantify gene expression in the thalamus and Illumina DGE-tag profiling for obex. Ingenuity Pathway Analysis was used to help describe the biological processes of scrapie pathology. Neurological disease and Cancer were common Bio Functions in each tissue at D75; inflammation and cell death were major processes at D125. Several neurological receptors were significantly increased at D75 (e.g. CHRNA6, GRM1, HCN2), which might be clues to the molecular basis of psychiatric changes associated with TSEs. No genes were significantly differentially expressed at both D75 and D125 and there was no progression of events from earlier to later time points. This implies that there is no simple linear progression of pathological or molecular events. There seems to be a step-change between D75 and D125, correlating with the detection of PrP(Sc), resulting in the involvement of different pathological processes in later TSE disease.

  5. Pygmy squids and giant brains: mapping the complex cephalopod CNS by phalloidin staining of vibratome sections and whole-mount preparations.

    Science.gov (United States)

    Wollesen, T; Loesel, R; Wanninger, A

    2009-04-30

    Among bilaterian invertebrates, cephalopod molluscs (e.g., squids, cuttlefish and octopuses) have a central nervous system (CNS) that rivals in complexity that of the phylogenetically distant vertebrates (e.g., mouse and human). However, this prime example of convergent evolution has rarely been the subject of recent developmental and evolutionary studies, which may partly be due to the lack of suitable neural markers and the large size of cephalopod brains. Here, we demonstrate the usefulness of fluorescence-coupled phalloidin to characterize the CNS of cephalopods using histochemistry combined with confocal laser scanning microscopy. Whole-mount preparations of developmental stages as well as vibratome sections of embryonic and adult brains were analyzed and the benefits of this technique are illustrated. Compared to classical neuroanatomical and antibody-based studies, phalloidin labeling experiments are less time-consuming and allow a high throughput of samples. Besides other advantages summarized here, phalloidin reliably labels the entire neuropil of the CNS of all squids, cuttlefish and octopuses investigated. This facilitates high-resolution in toto reconstructions of the CNS and contributes to a better understanding of the organization of neural networks. Amenable for multi-labeling experiments employing antibodies against neurotransmitters, proteins and enzymes, phalloidin constitutes an excellent neuropil marker for the complex cephalopod CNS.

  6. Theoretical and practical applications of the intracerebroventricular route for CSF sampling and drug administration in CNS drug discovery research: a mini review.

    Science.gov (United States)

    Kuo, Andy; Smith, Maree T

    2014-08-15

    Clinically, central nervous system (CNS) disorders account for more hospitalisations and prolonged care than almost all other diseases combined. In the preclinical setting, the intracerebroventricular (ICV) route for cerebrospinal fluid (CSF) sampling or dose administration in rodent models of human CNS disorders has potential to provide key insight on the pathobiology of these conditions. Low level neuroinflammation is present in >40% of patients with severe depression or schizophrenia and so comparative assessment of CSF composition between patients and rodent models of CNS disorders is potentially invaluable for hypothesis generation and for assessing rodent model validity. As molecules in the CSF have relatively low protein binding and are freely exchanged into the extracellular fluid of the brain parenchyma, supraspinal drug administration into the CSF can produce therapeutic drug concentrations in the brain. Direct administration of investigational agents into the CSF of the lateral ventricle of the brain enables intrinsic efficacy and adverse effect profiles to be evaluated without the confounding effects of drug metabolism, due to the low capacity of the CNS to metabolise exogenous compounds. It is our view that the ICV route for CSF sampling and for administration of novel drugs in development is under-utilised in preclinical research on CNS disorders. This is due to the high degree of technical skill and low margin for error associated with correct ICV guide cannula implantation in the rat. However, these technical challenges can be overcome by using standardised procedures and attention to detail during surgery and in the post-operative period.

  7. Updates in ophthalmic pathology.

    Science.gov (United States)

    Mendoza, Pia R; Grossniklaus, Hans E

    2017-05-01

    Ophthalmic pathology has a long history and rich heritage in the field of ophthalmology. This review article highlights updates in ophthalmic pathology that have developed significantly through the years because of the efforts of committed individuals and the confluence of technology such as molecular biology and digital pathology. This is an exciting period in the history of ocular pathology, with cutting-edge techniques paving the way for new developments in diagnostics, therapeutics, and research. Collaborations between ocular oncologists and pathologists allow for improved and comprehensive patient care. Ophthalmic pathology continues to be a relevant specialty that is important in the understanding and clinical management of ocular disease, education of eye care providers, and overall advancement of the field.

  8. Meningeal infiltration of the spinal cord by non-classically activated B cells is associated with chronic disease course in a spontaneous B cell-dependent model of CNS autoimmune disease

    Directory of Open Access Journals (Sweden)

    Amy K Dang

    2015-09-01

    Full Text Available We characterized B cell infiltration of the spinal cord in a B cell-dependent, spontaneous model of central nervous system (CNS autoimmunity that develops in a proportion of mice with mutant T and B cell receptors specific for myelin oligodendrocyte glycoprotein (MOG. We found that, while males are more likely to develop disease, females are more likely to have a chronic rather than monophasic disease course. B cell infiltration of the spinal cord was investigated by histology and FACs. CD4+ T cell infiltration was pervasive throughout the white and in some cases grey matter. B cells were almost exclusively restricted to the meninges, often in clusters reminiscent of those described in human multiple sclerosis (MS. These clusters were typically found adjacent to white matter lesions and their presence was associated with a chronic disease course. Extensive investigation of these clusters by histology did not identify features of lymphoid follicles, including organization of T and B cells into separate zones, CD35+ follicular dendritic cells (FDCs, or germinal centers (GCs. The majority of cluster B cells were IgD+ with little evidence of class switch. Consistent with this, B cells isolated from the spinal cord were of the naïve/memory CD38hi CD95lo phenotype. Nevertheless, they were CD62Llo and CD80hi compared to lymph node B cells suggesting that they were at least partly activated and primed to present antigen. Therefore, if meningeal B cells contribute to CNS pathology in autoimmunity, follicular differentiation is not necessary for the pathogenic mechanism.

  9. Meningeal Infiltration of the Spinal Cord by Non-Classically Activated B Cells is Associated with Chronic Disease Course in a Spontaneous B Cell-Dependent Model of CNS Autoimmune Disease.

    Science.gov (United States)

    Dang, Amy K; Tesfagiorgis, Yodit; Jain, Rajiv W; Craig, Heather C; Kerfoot, Steven M

    2015-01-01

    We characterized B cell infiltration of the spinal cord in a B cell-dependent spontaneous model of central nervous system (CNS) autoimmunity that develops in a proportion of mice with mutant T and B cell receptors specific for myelin oligodendrocyte glycoprotein. We found that, while males are more likely to develop disease, females are more likely to have a chronic rather than monophasic disease course. B cell infiltration of the spinal cord was investigated by histology and FACs. CD4(+) T cell infiltration was pervasive throughout the white and in some cases gray matter. B cells were almost exclusively restricted to the meninges, often in clusters reminiscent of those described in human multiple sclerosis. These clusters were typically found adjacent to white matter lesions and their presence was associated with a chronic disease course. Extensive investigation of these clusters by histology did not identify features of lymphoid follicles, including organization of T and B cells into separate zones, CD35(+) follicular dendritic cells, or germinal centers. The majority of cluster B cells were IgD(+) with little evidence of class switch. Consistent with this, B cells isolated from the spinal cord were of the naïve/memory CD38(hi) CD95(lo) phenotype. Nevertheless, they were CD62L(lo) and CD80(hi) compared to lymph node B cells suggesting that they were at least partly activated and primed to present antigen. Therefore, if meningeal B cells contribute to CNS pathology in autoimmunity, follicular differentiation is not necessary for the pathogenic mechanism.

  10. Time-Dependent Progression of Demyelination and Axonal Pathology in MP4-Induced Experimental Autoimmune Encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Johanna Prinz

    Full Text Available Multiple sclerosis (MS is an autoimmune disease of the central nervous system (CNS characterized by inflammation, demyelination and axonal pathology. Myelin basic protein/proteolipid protein (MBP-PLP fusion protein MP4 is capable of inducing chronic experimental autoimmune encephalomyelitis (EAE in susceptible mouse strains mirroring diverse histopathological and immunological hallmarks of MS. Lack of human tissue underscores the importance of animal models to study the pathology of MS.Twenty-two female C57BL/6 (B6 mice were immunized with MP4 and the clinical development of experimental autoimmune encephalomyelitis (EAE was observed. Methylene blue-stained semi-thin and ultra-thin sections of the lumbar spinal cord were assessed at the peak of acute EAE, three months (chronic EAE and six months after onset of EAE (long-term EAE. The extent of lesional area and inflammation were analyzed in semi-thin sections on a light microscopic level. The magnitude of demyelination and axonal damage were determined using electron microscopy. Emphasis was put on the ventrolateral tract (VLT of the spinal cord.B6 mice demonstrated increasing demyelination and severe axonal pathology in the course of MP4-induced EAE. Additionally, mitochondrial swelling and a decrease in the nearest neighbor neurofilament distance (NNND as early signs of axonal damage were evident with the onset of EAE. In semi-thin sections we observed the maximum of lesional area in the chronic state of EAE while inflammation was found to a similar extent in acute and chronic EAE. In contrast to the well-established myelin oligodendrocyte glycoprotein (MOG model, disease stages of MP4-induced EAE could not be distinguished by assessing the extent of parenchymal edema or the grade of inflammation.Our results complement our previous ultrastructural studies of B6 EAE models and suggest that B6 mice immunized with different antigens constitute useful instruments to study the diverse

  11. Induction of Golli-MBP Expression in CNS Macrophages During Acute LPS-Induced CNS Inflammation and Experimental Autoimmune Encephalomyelitis (EAE

    Directory of Open Access Journals (Sweden)

    Tracey L. Papenfuss

    2007-01-01

    Full Text Available Microglia are the tissue macrophages of the CNS. Microglial activation coupled with macrophage infiltration is a common feature of many classic neurodegenerative disorders. The absence of cell-type specific markers has confounded and complicated the analysis of cell-type specific contributions toward the onset, progression, and remission of neurodegeneration. Molecular screens comparing gene expression in cultured microglia and macrophages identified Golli-myelin basic protein (MBP as a candidate molecule enriched in peripheral macrophages. In situ hybridization analysis of LPS/IFNg and experimental autoimmune encephalomyelitis (EAE–induced CNS inflammation revealed that only a subset of CNS macrophages express Golli-MBP. Interestingly, the location and morphology of Golli-MBP+ CNS macrophages differs between these two models of CNS inflammation. These data demonstrate the difficulties of extending in vitro observations to in vivo biology and concretely illustrate the complex heterogeneity of macrophage activation states present in region- and stage-specific phases of CNS inflammation. Taken altogether, these are consistent with the emerging picture that the phenotype of CNS macrophages is actively defined by their molecular interactions with the CNS microenvironment.

  12. Pathological Gambling in Parkinson's Disease

    DEFF Research Database (Denmark)

    Callesen, Mette Buhl; Linnet, Jakob; Thomsen, Kristine Rømer

    Pathological Gambling in Parkinson’s Disease Mette Buhl Callesen, Jakob Linnet, Kristine Rømer Thomsen, Albert Gjedde, Arne Møller PET Center, Aarhus University Hospital and Center of Functionally Integrative Neuroscience, Aarhus University.   The neurotransmitter dopamine is central to many...... aspects of human functioning, e.g., reward, learning, and addiction, including Pathological Gambling (PG), and its loss is key to Parkinson’s Disease (PD). PD is a neurodegenrative disorder caused by progressive loss of dopamine-producing cells in the midbrain [1]. One type of treatment of PD symptoms...... is medication that binds to dopamine receptors in the brain, i.e., dopamine agonists [1]. Unfortunately, for some PD patients a very serious side effect to this specific kind of treatment is developing PG. PG is an Impulse Control Disorder characterized by recurrent maladaptive behavior associated with personal...

  13. A 10 YEAR SURVEY ON CHILDHOOD CNS TUMORS

    Directory of Open Access Journals (Sweden)

    F. Jadali

    2008-06-01

    Full Text Available ObjectiveTumors of the central nervous system constitute the largest group of solid neoplasms in children and are second only to leukemia in their overall frequency during childhood. The main purpose of the present study is to determine the incidence, age, sex, location and histological diagnosis of CNS tumors in children, less than 15 years of age, in the Mofid Children’s Hospital, in the past 10 years.Materials and Methods In this descriptive retrospective study we reviewed the medical records of 143children with diagnosis of CNS tumors admitted during the past 10 years in neurology and surgery departments of Mofid Children’s Hospital between the years 1996 and 2006.ResultsDuring the 10 year study period, CNS tumor was diagnosed in 143 patients; of these tumors, 119 were intracranial and 58 were intraspinal; 51.3% of brain tumors were located in the supratentorial and 48.7% in the infratentorial regions. The most common intracranial neoplasms were astrocytic tumors (36.8%, embryonal tumors (31.1% and ependymal tumors (13.4%. Of the intraspinal neoplasms the most frequently noted were embryonal tumors (37.5%, mesenchymal meningothelial tumors (20.8%, followed by astrocytic tumors (16.7%. The median age at diagnosis was 8.9 ± 4.1 years with a male to female ratio of 1.4:1 (P<0.5. The most common intracranial astrocytic and embryonal neoplasms were pilocytic astrocytoma and medulloblastoma / PNET respectively.ConclusionBrain tumors in children constitute a diverse group in terms of incidence, distribution and histopathological diagnosis.

  14. New perspectives on using brain imaging to study CNS stimulants.

    Science.gov (United States)

    Lukas, Scott E

    2014-12-01

    While the recent application of brain imaging to study CNS stimulants has offered new insights into the fundamental factors that contribute to their use and abuse, many gaps remain. Brain circuits that mediate pleasure, dependence, craving and relapse are anatomically, neurophysiologically and neurochemically distinct from one another, which has guided the search for correlates of stimulant-seeking and taking behavior. However, unlike other drugs of abuse, metrics for tolerance and physical dependence on stimulants are not obvious. The dopamine theory of stimulant abuse does not sufficiently explain this disorder as serotonergic, GABAergic and glutamagergic circuits are clearly involved in stimulant pharmacology and so tracking the source of the "addictive" processes must adopt a more multimodal, multidisciplinary approach. To this end, both anatomical and functional magnetic resonance imaging (MRI), MR spectroscopy (MRS) and positron emission tomography (PET) are complementary and have equally contributed to our understanding of how stimulants affect the brain and behavior. New vistas in this area include nanotechnology approaches to deliver small molecules to receptors and use MRI to resolve receptor dynamics. Anatomical and blood flow imaging has yielded data showing that cognitive enhancers might be useful adjuncts in treating CNS stimulant dependence, while MRS has opened opportunities to examine the brain's readiness to accept treatment as GABA tone normalizes after detoxification. A desired outcome of the above approaches is being able to offer evidence-based rationales for treatment approaches that can be implemented in a more broad geographic area, where access to brain imaging facilities may be limited. This article is part of the Special Issue entitled 'CNS Stimulants'.

  15. Pathology of the Nervous System in Von Hippel-Lindau Disease

    Directory of Open Access Journals (Sweden)

    Alexander O. Vortmeyer

    2015-06-01

    Full Text Available Von Hippel-Lindau (VHL disease is a tumor syndrome that frequently involves the central nervous system (CNS. It is caused by germline mutation of the VHL gene. Subsequent VHL inactivation in selected cells is followed by numerous well-characterized molecular consequences, in particular, activation and stabilization of hypoxia-inducible factors HIF1 and HIF2. The link between VHL gene inactivation and tumorigenesis remains poorly understood. Hemangioblastomas are the most common manifestation in the CNS; however, CNS invasion by VHL disease-associated endolymphatic sac tumors or metastatic renal cancer also occur, and their differentiation from primary hemangioblastoma may be challenging. Finally, in this review, we present recent morphologic insights on the developmental concept of VHL tumorigenesis which is best explained by pathologic persistence of temporary embryonic progenitor cells. 

  16. Achieving Control of Lesion Growth in CNS with Minimal Damage

    CERN Document Server

    Raja, Mathankumar

    2012-01-01

    Lesions in central nervous system (CNS) and their growth leads to debilitating diseases like Multiple Sclerosis (MS), Alzheimer's etc. We developed a model earlier which shows how the lesion growth can be arrested through a beneficial auto-immune mechanism. The success of the approach depends on a set of control parameters and their phase space was shown to have a smooth manifold separating the uncontrolled lesion growth region from the controlled. Here we show that an optimal set of parameter values exist which minimizes system damage while achieving control of lesion growth.

  17. [Pathology- a new revival].

    Science.gov (United States)

    Barshack, Iris

    2013-06-01

    The field of pathology has undergone considerable change in recent years. The editor and editorial board of this journal are to be commended for their decision to devote a special issue to the field of pathology. Pathology deals with the characterization, investigation, and diagnosis of disease and disease processes and as such, has Long been considered one of the foundations of medicine. It is a rich and multi-faceted field which has retained its breadth of scope in the face of ever-increasing specialization and sub-specialization in medicine. In addition to its classic roles in autopsy, case description, and the diagnosis of pathoLogic processes, new and innovative spheres of activity are becoming integral to the field, especially in the realm of molecular pathology. Pathology is a Leading player in the new age of "personalized cancer therapy", where pathologists are responsible not only for diagnosing disease in the tissue, but also for conducting additional tests which may predict its response to specific drug therapies. In this context, moLecular pathology has become essential to the field both in the provision of cLinical service and research. To fully implement this trend, we are witness to the rise of tissue collection and tissue banking initiatives for both diagnostic and research purposes. A national tissue banking project in Israel has recently received considerable attention.

  18. Pathologic Correlates of Primary Central Nervous System Lymphoma Defined in an Orthotopic Xenograft Model

    Science.gov (United States)

    Kadoch, Cigall; Dinca, Eduard B.; Voicu, Ramona; Chen, Lingjing; Nguyen, Diana; Parikh, Seema; Karrim, Juliana; Shuman, Marc A.; Lowell, Clifford A.; Treseler, Patrick A.; James, C. David; Rubenstein, James L.

    2014-01-01

    Purpose The prospect for advances in the treatment of patients with primary central nervous system lymphoma (PCNSL) is likely dependent on the systematic evaluation of its pathobiology. Animal models of PCNSL are needed to facilitate the analysis of its molecular pathogenesis and for the efficient evaluation of novel therapeutics. Experimental Design We characterized the molecular pathology of CNS lymphoma tumors generated by the intracerebral implantation of Raji B lymphoma cells in athymic mice. Lymphoma cells were modified for bioluminescence imaging to facilitate monitoring of tumor growth and response to therapy. In parallel, we identified molecular features of lymphoma xenograft histopathology that are evident in human PCNSL specimens. Results Intracerebral Raji tumors were determined to faithfully reflect the molecular pathogenesis of PCNSL, including the predominant immunophenotypic state of differentiation of lymphoma cells and their reactive microenvironment. We show the expression of interleukin-4 by Raji and other B lymphoma cell lines in vitro and by Raji tumors in vivo and provide evidence for a role of this cytokine in the M2 polarization of lymphoma macrophages both in the murine model and in diagnostic specimens of human PCNSL. Conclusion Intracerebral implantation of Raji cells results in a reproducible and invasive xenograft model, which recapitulates the histopathology and molecular features of PCNSL, and is suitable for preclinical testing of novel agents. We also show for the first time the feasibility and accuracy of tumor bioluminescence in the monitoring of a highly infiltrative brain tumor. PMID:19276270

  19. Protection by neuroglobin expression in brain pathologies

    Directory of Open Access Journals (Sweden)

    Eliana Baez

    2016-09-01

    Full Text Available Astrocytes play an important role in physiological, metabolic and structural functions and, when impaired, they can be involved in various pathologies including Alzheimer, focal ischemic stroke and traumatic brain injury. These disorders involve an imbalance in the blood flow and nutrients such as glucose and lactacte, leading to biochemical and molecular changes that cause neuronal damage, which is followed by loss of cognitive and motor functions. Previous studies have shown that astrocytes are more resilient than neurons during brain insults as a consequence of their more effective antioxidant systems, transporters and enzymes, which made them less susceptible to excitotoxicity. In addition, astrocytes synthesize and release different protective molecules for neurons, including neuroglobin, a member of the globin family of proteins. After brain injury neuroglobin expression is induced in astrocytes. Since neuroglobin promotes neuronal survival, its increased expression in astrocytes after brain injury may represent an endogenous neuroprotective mechanism. Here, we review the role of neuroglobin in the CNS, its relationship with different pathologies, and the role of different factors that regulate its expression in astrocytes.

  20. [Gunshot wounds: forensic pathology].

    Science.gov (United States)

    Lorin de la Grandmaison, Geoffroy

    2012-02-01

    Gunshot wounds are among the most complex traumatic lesions encountered in forensic pathology. At the time of autopsy, careful scrutiny of the wounds is essential for correct interpretation of the lesions. Complementary pathological analysis has many interests: differentiation between entrance and exit wounds, estimation of firing distance, differentiation between vital and post mortem wounds and wounds dating. In case of multiple headshots, neuropathological examination can provide arguments for or against suicide. Sampling of gunshot wounds at autopsy must be systematic. Pathological data should be confronted respectively to autopsy and death scene investigation data and also ballistic studies. Forensic pathologist must be aware of the limits of optic microscopy.

  1. Long-term follow-up of post hematopoietic stem cell transplantation for Hurler syndrome: Clinical, biochemical, and pathological improvements

    Directory of Open Access Journals (Sweden)

    Eriko Yasuda

    2015-03-01

    In conclusion, this long-term post-HSCT observation should shed light on a new aspect of therapeutic effect associated with skeletal pathology and GAG levels as a biomarker, indicating that HSCT is a primary choice at an early stage for not only CNS but also skeletal system in combination of appropriate surgical procedures.

  2. Contribution of Human Lung Parenchyma and Leukocyte Influx to Oxidative Stress and Immune System-Mediated Pathology following Nipah Virus Infection.

    Science.gov (United States)

    Escaffre, Olivier; Saito, Tais B; Juelich, Terry L; Ikegami, Tetsuro; Smith, Jennifer K; Perez, David D; Atkins, Colm; Levine, Corri B; Huante, Matthew B; Nusbaum, Rebecca J; Endsley, Janice J; Freiberg, Alexander N; Rockx, Barry

    2017-08-01

    Nipah virus (NiV) is a zoonotic emerging paramyxovirus that can cause fatal respiratory illness or encephalitis in humans. Despite many efforts, the molecular mechanisms of NiV-induced acute lung injury (ALI) remain unclear. We previously showed that NiV replicates to high titers in human lung grafts in NOD-SCID/γ mice, resulting in a robust inflammatory response. Interestingly, these mice can undergo human immune system reconstitution by the bone marrow, liver, and thymus (BLT) reconstitution method, in addition to lung tissue engraftment, giving altogether a realistic model to study human respiratory viral infections. Here, we characterized NiV Bangladesh strain (NiV-B) infection of human lung grafts from human immune system-reconstituted mice in order to identify the overall effect of immune cells on NiV pathogenesis of the lung. We show that NiV-B replicated to high titers in human lung grafts and caused similar cytopathic effects irrespective of the presence of human leukocytes in mice. However, the human immune system interfered with virus spread across lung grafts, responded to infection by leukocyte migration to small airways and alveoli of the lung grafts, and accelerated oxidative stress in lung grafts. In addition, the presence of human leukocytes increased the expression of cytokines and chemokines that regulate inflammatory influx to sites of infection and tissue damage. These results advance our understanding of how the immune system limits NiV dissemination and contributes to ALI and inform efforts to identify therapeutic targets.IMPORTANCE Nipah virus (NiV) is an emerging paramyxovirus that can cause a lethal respiratory and neurological disease in humans. Only limited data are available on NiV pathogenesis in the human lung, and the relative contribution of the innate immune response and NiV to acute lung injury (ALI) is still unknown. Using human lung grafts in a human immune system-reconstituted mouse model, we showed that the NiV Bangladesh

  3. Delivery of Therapeutic siRNA to the CNS Using Cationic and Anionic Liposomes.

    Science.gov (United States)

    Bender, Heather R; Kane, Sarah; Zabel, Mark D

    2016-07-23

    Prion diseases result from the misfolding of the normal, cellular prion protein (PrP(C)) to an abnormal protease resistant isomer called PrP(Res). The emergence of prion diseases in wildlife populations and their increasing threat to human health has led to increased efforts to find a treatment for these diseases. Recent studies have found numerous anti-prion compounds that can either inhibit the infectious PrP(Res) isomer or down regulate the normal cellular prion protein. However, most of these compounds do not cross the blood brain barrier to effectively inhibit PrP(Res) formation in brain tissue, do not specifically target neuronal PrP(C), and are often too toxic to use in animal or human subjects. We investigated whether siRNA delivered intravascularly and targeted towards neuronal PrP(C) is a safer and more effective anti-prion compound. This report outlines a protocol to produce two siRNA liposomal delivery vehicles, and to package and deliver PrP siRNA to neuronal cells. The two liposomal delivery vehicles are 1) complexed-siRNA liposome formulation using cationic liposomes (LSPCs), and 2) encapsulated-siRNA liposome formulation using cationic or anionic liposomes (PALETS). For the LSPCs, negatively charged siRNA is electrostatically bound to the cationic liposome. A positively charged peptide (RVG-9r [rabies virus glycoprotein]) is added to the complex, which specifically targets the liposome-siRNA-peptide complexes (LSPCs) across the blood brain barrier (BBB) to acetylcholine expressing neurons in the central nervous system (CNS). For the PALETS (peptide addressed liposome encapsulated therapeutic siRNA), the cationic and anionic lipids were rehydrated by the PrP siRNA. This procedure results in encapsulation of the siRNA within the cationic or anionic liposomes. Again, the RVG-9r neuropeptide was bound to the liposomes to target the siRNA/liposome complexes to the CNS. Using these formulations, we have successfully delivered PrP siRNA to Ach

  4. Drug discrimination: A versatile tool for characterization of CNS safety pharmacology and potential for drug abuse.

    Science.gov (United States)

    Swedberg, Michael D B

    2016-01-01

    Drug discrimination studies for assessment of psychoactive properties of drugs in safety pharmacology and drug abuse and drug dependence potential evaluation have traditionally been focused on testing novel compounds against standard drugs for which drug abuse has been documented, e.g. opioids, CNS stimulants, cannabinoids etc. (e.g. Swedberg & Giarola, 2015), and results are interpreted such that the extent to which the test drug causes discriminative effects similar to those of the standard training drug, the test drug would be further characterized as a potential drug of abuse. Regulatory guidance for preclinical assessment of abuse liability by the European Medicines Agency (EMA, 2006), the U.S. Food and Drug Administration (FDA, 2010), the International Conference of Harmonization (ICH, 2009), and the Japanese Ministry of Health Education and Welfare (MHLW, 1994) detail that compounds with central nervous system (CNS) activity, whether by design or not, need abuse and dependence liability assessment. Therefore, drugs with peripheral targets and a potential to enter the CNS, as parent or metabolite, are also within scope (see Swedberg, 2013, for a recent review and strategy). Compounds with novel mechanisms of action present a special challenge due to unknown abuse potential, and should be carefully assessed against defined risk criteria. Apart from compounds sharing mechanisms of action with known drugs of abuse, compounds intended for indications currently treated with drugs with potential for abuse and or dependence are also within scope, regardless of mechanism of action. Examples of such compounds are analgesics, anxiolytics, cognition enhancers, appetite control drugs, sleep control drugs and drugs for psychiatric indications. Recent results (Swedberg et al., 2014; Swedberg & Raboisson, 2014; Swedberg, 2015) on the metabotropic glutamate receptor type 5 (mGluR5) antagonists demonstrate that compounds causing hallucinatory effects in humans did not exhibit

  5. CNS effects of citalopram, a new serotonin inhibitor antidepressant (a quantitative pharmaco-electroencephalography study).

    Science.gov (United States)

    Itil, T M; Menon, G N; Bozak, M M; Itil, K Z

    1984-01-01

    Citalopram, a new phthalane derivative and a specific serotonin re-uptake inhibitor in animal pharmacological tests, was evaluated in a double-blind, crossover, quantitative pharmaco-EEG (QPEEGTM) study in healthy human volunteers. The CNS effects of citalopram are linear, dose- and time-related, can statistically be differentiated from placebo, and indicate a rapid onset of effects with short duration. According to the Computer Data Bank, citalopram has a mode of action similar to mood elevators (antidepressants) with fewer sedative properties. Thus the therapeutic action of citalopram is predicted to be similar to desipramine and protriptyline from the tricyclics, and fluvoxamine from non-tricyclics. According to data bank assessment, it is hypothesized that the single antidepressant dose of citalopram is to be more than 25 mg, which should be given t.i.d. in clinical trials.

  6. The farnesoid-X-receptor in myeloid cells controls CNS autoimmunity in an IL-10-dependent fashion.

    Science.gov (United States)

    Hucke, Stephanie; Herold, Martin; Liebmann, Marie; Freise, Nicole; Lindner, Maren; Fleck, Ann-Katrin; Zenker, Stefanie; Thiebes, Stephanie; Fernandez-Orth, Juncal; Buck, Dorothea; Luessi, Felix; Meuth, Sven G; Zipp, Frauke; Hemmer, Bernhard; Engel, Daniel Robert; Roth, Johannes; Kuhlmann, Tanja; Wiendl, Heinz; Klotz, Luisa

    2016-09-01

    Innate immune responses by myeloid cells decisively contribute to perpetuation of central nervous system (CNS) autoimmunity and their pharmacologic modulation represents a promising strategy to prevent disease progression in Multiple Sclerosis (MS). Based on our observation that peripheral immune cells from relapsing-remitting and primary progressive MS patients exhibited strongly decreased levels of the bile acid receptor FXR (farnesoid-X-receptor, NR1H4), we evaluated its potential relevance as therapeutic target for control of established CNS autoimmunity. Pharmacological FXR activation promoted generation of anti-inflammatory macrophages characterized by arginase-1, increased IL-10 production, and suppression of T cell responses. In mice, FXR activation ameliorated CNS autoimmunity in an IL-10-dependent fashion and even suppressed advanced clinical disease upon therapeutic administration. In analogy to rodents, pharmacological FXR activation in human monocytes from healthy controls and MS patients induced an anti-inflammatory phenotype with suppressive properties including control of effector T cell proliferation. We therefore, propose an important role of FXR in control of T cell-mediated autoimmunity by promoting anti-inflammatory macrophage responses.

  7. Regulation of immune cell infiltration into the CNS by regional neural inputs explained by the gate theory.

    Science.gov (United States)

    Arima, Yasunobu; Kamimura, Daisuke; Sabharwal, Lavannya; Yamada, Moe; Bando, Hidenori; Ogura, Hideki; Atsumi, Toru; Murakami, Masaaki

    2013-01-01

    The central nervous system (CNS) is an immune-privileged environment protected by the blood-brain barrier (BBB), which consists of specific endothelial cells that are brought together by tight junctions and tight liner sheets formed by pericytes and astrocytic end-feet. Despite the BBB, various immune and tumor cells can infiltrate the CNS parenchyma, as seen in several autoimmune diseases like multiple sclerosis (MS), cancer metastasis, and virus infections. Aside from a mechanical disruption of the BBB like trauma, how and where these cells enter and accumulate in the CNS from the blood is a matter of debate. Recently, using experimental autoimmune encephalomyelitis (EAE), an animal model of MS, we found a "gateway" at the fifth lumber cord where pathogenic autoreactive CD4+ T cells can cross the BBB. Interestingly, this gateway is regulated by regional neural stimulations that can be mechanistically explained by the gate theory. In this review, we also discuss this theory and its potential for treating human diseases.

  8. Actuarial risk of isolated CNS involvement in Ewing's sarcoma following prophylactic cranial irradiation and intrathecal methotrexate

    Energy Technology Data Exchange (ETDEWEB)

    Trigg, M.E.; Makuch, R.; Glaubiger, D.

    1985-04-01

    Records of 154 patients with Ewing's sarcoma treated at the National Cancer Institute were reviewed to assess the incidence and risk of developing isolated central nervous system (CNS) Ewing's sarcoma. Sixty-two of the 154 patients had received CNS irradiation and intrathecal (i.t.) methotrexate as part of their initial therapy to prevent the occurrence of isolated CNS Ewing's sarcoma. The risk of developing isolate CNS Ewing's sarcoma was greatest within the first two years after diagnosis and was approximately 10%. The overall risk of CNS recurrence in the group of patients receiving DNS treatment was similar to the group receiving no therapy directed to the CNS. The occurrence of isolated CNS involvement was not prevented by the use of CNS irradiation and i.t. methotrexate. Because of a lack of efficacy to the CNS irradiation regimen, current treatment regimens do not include therapy directed to CNS.

  9. Simulation and mockup tests for developing TRR-II CNS

    Science.gov (United States)

    Lee, C. H.; Kawai, T.; Chan, Y. K.; Hong, W. T.; Lee, D. J.; Guung, T. C.; Lan, K. C.

    2002-01-01

    The Taiwan Research Reactor improvement and the utilization promotion project (TRR-II) with Cold Neutron Source (CNS) was carried out at Institute of Nuclear Energy Research. The CNS with a two-phase thermosiphon loop consists of an annular cylindrical moderator cell, a single moderator transfer tube, and a condenser. The self-regulating characteristics of a two-phase thermosiphon loop are investigated against variations of heat load. The experiments on the thermal-hydraulic characteristics have been performed using a full-scale mockup loop and a Freon-11 was used as a working fluid. Two cases were evaluated by the simulation and experiments. One case is an ORPHEE-type moderator cell in which an inner shell is open at the bottom, the other case is one with an inner cavity with no hole at the bottom but a vapor inlet opening at the uppermost part of the cavity. The flooding limitations, liquid level and void fraction in the moderator cell as a function of the initial Freon-11 inventory and the heat load are also reported.

  10. Drug Delivery Systems, CNS Protection, and the Blood Brain Barrier

    Directory of Open Access Journals (Sweden)

    Ravi Kant Upadhyay

    2014-01-01

    Full Text Available Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods.

  11. Emerging tumor entities and variants of CNS neoplasms.

    Science.gov (United States)

    Cenacchi, Giovanna; Giangaspero, Felice

    2004-03-01

    Since the appearance in 2000 of the World Health Organization (WHO) classification for central nervous system (CNS) neoplasms, numerous descriptions of new entities or variants have appeared in the literature. In the group of neuronal and mixed glioneuronal neoplasms are lesions with distinctive morphological features that are still not included in a precise classification, including extraventricular neurocytoma, papillary glioneuronal tumor, rosette-forming glioneuronal of the fourth ventricle, glioneuronal with neuropil-like rosette, and DNT-like tumor of the septum pellucidum. The glioneuronal tumor with neuropil-like rosette and oligodendroglioma with neurocytic differentiation represent morphological variants of genetically proven diffuse gliomas. The lipoastrocytoma and the pilomixoid astrocytoma enlarge the group of astrocytic lesions. Rare, low-grade gliomas of the spinal cord with extensive leptomeningeal dissemination associated with unusual neuroimaging are described. The chordoid glioma of the third ventricle and the papillary tumor of the pineal region seem to be correlated by a common histogenesis from the specialized ependyma of the subcommissural organ. An embryonal tumor with neuropil and true rosettes combining features of neuroblastoma and ependymoblastoma is discussed. These new, recently described lesions indicate that the complex morphologic spectrum of CNS tumors is far from being completely delineated.

  12. The Role of Rho GTPase Proteins in CNS Neuronal Migration

    Science.gov (United States)

    Govek, Eve-Ellen; Hatten, Mary E.; Van Aelst, Linda

    2011-01-01

    The architectonics of the mammalian brain arise from a remarkable range of directed cell migrations, which orchestrate the emergence of cortical neuronal layers and pattern brain circuitry. At different stages of cortical histogenesis, specific modes of cell motility are essential to the stepwise formation of cortical architecture. These movements range from interkinetic nuclear movements at the ventricular zone (VZ), to migrations of early-born, postmitotic polymorphic cells into the preplate, to the radial migration of precursors of cortical output neurons across the thickening cortical wall, and the vast, tangential migrations of interneurons from the basal forebrain into the emerging cortical layers. In all cases, acto-myosin motors act in concert with cell adhesion receptor systems to provide the force and traction needed for forward movement. As key regulators of actin and microtubule cytoskeletons, cell polarity, and adhesion, the Rho GTPases play a critical role in CNS neuronal migration. This review will focus on the different types of migration in the developing neocortex and cerebellar cortex, and the role of the Rho GTPases, their regulators and effectors in these CNS migrations, with particular emphasis on their involvement in radial migration. PMID:21557504

  13. MAG, myelin and overcoming growth inhibition in the CNS.

    Directory of Open Access Journals (Sweden)

    Lisa eMcKerracher

    2015-09-01

    Full Text Available While neurons in the central nervous system have the capacity to regenerate their axons after injury, they fail to do so, in part because regeneration is limited by growth inhibitory proteins present in CNS myelin. Myelin-associated glycoprotein (MAG was the first myelin-derived growth inhibitory protein identified, and its inhibitory activity was initially elucidated in 1994 independently by the Filbin lab and the McKerracher lab using cell-based and biochemical techniques, respectively. Since that time we have gained a wealth of knowledge concerning the numerous growth inhibitory proteins that are present in myelin, and we also have dissected many of the neuronal signaling pathways that act as stop signs for axon regeneration. Here we give an overview of the early research efforts that led to the identification of myelin-derived growth inhibitory proteins, and the importance of this family of proteins for understanding neurotrauma and CNS diseases. We further provide an update on how this knowledge has been translated towards current clinical studies in regenerative medicine.

  14. Acquired CNS lesions in fetal MRI; Erworbene ZNS-Laesionen im fetalen MRT

    Energy Technology Data Exchange (ETDEWEB)

    Reith, W.; Pogledic, I. [Universitaetsklinikum des Saarlandes, Homburg/Saar, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2013-02-15

    Acquired central nervous system (CNS) lesions are often subtle; therefore, the prenatal diagnosis of these lesions is extremely important. The fetal ultrasound examination and magnetic resonance imaging (MRI) are two important imaging methods that give an insight into these types lesions. The method of choice during pregnancy is still fetal ultrasound; however, fetal MRI is important when there are certain pathologies, e.g. periventricular leukomalacia (PVL) or malformations of the vein of Galen. In this manner clinicians can plan further therapy after childbirth in advance (e.g. cerebral angiography or embolization). (orig.) [German] Die erworbenen ZNS-Laesionen sind oft subtil, und eine praezise praenatale Diagnostik ist in diesen Faellen besonders wichtig. Die fetale Sonographie und das fetale MRT koennen hierzu einen relevanten Beitrag leisten. Die Sonographie ist immer noch die Untersuchungsmethode der Wahl waehrend der Schwangerschaft. Insbesondere bei bestimmten Pathologien wie der periventrikulaeren Leukomalazie (PVL) oder einer V. -Galeni-Malformation ist das fetale MRT sehr hilfreich, um nach der Geburt die entsprechenden weitergehenden Massnahmen, wie eine zerebrale Angiographie und Embolisation, fruehzeitig zu planen. (orig.)